Regulation of mouse hepatic CYP2D9 mRNA expression by growth and adrenal hormones.
Jarukamjorn, Kanokwan; Sakuma, Tsutomu; Jaruchotikamol, Atika; Oguro, Miki; Nemoto, Nobuo
2006-02-01
The constitutive expression of CYP2D9 is sexually dimorphic, namely, strong in males, but diminutive in females. Repetition of mimic growth hormone (GH) secretion pattern impressively returned the mRNA expression level to that in intact mice: the GH secretion pattern's regulation of CYP2D9 mRNA expression has been predominantly disrupted by exogenous GH-administration. The extensive decline of CYP2D9 mRNA expression becoming a sexually non-specific P450 in 9-week-old male mice exposed as neonates to monosodium L-glutamate (MSG) suggested that the male GH secretion pattern is a key to the regulation of male-specific CYP2D9 mRNA expression in adult mice. Dexamethasone (Dex) showed possibility to induce CYP2D9 mRNA expression in adult MSG-neonatally treated mice of either sex. However, the antagonism was observed by co-administration of Dex and GH in the males. Dex-administration in adrenalectomized mice significantly elevated CYP2D9 mRNA expression levels. These findings suggest that an adrenal hormone participates in the regulatory mechanism of CYP2D9 mRNA expression in association with GH.
Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes
Arikawa, Kentaro; Iwanaga, Tomoyuki; Wakakuwa, Motohiro; Kinoshita, Michiyo
2017-01-01
Following gene duplication events, the expression patterns of the resulting gene copies can often diverge both spatially and temporally. Here we report on gene duplicates that are expressed in distinct but overlapping patterns, and which exhibit temporally divergent expression. Butterflies have sophisticated color vision and spectrally complex eyes, typically with three types of heterogeneous ommatidia. The eyes of the butterfly Papilio xuthus express two green- and one red-absorbing visual pigment, which came about via gene duplication events, in addition to one ultraviolet (UV)- and one blue-absorbing visual pigment. We localized mRNAs encoding opsins of these visual pigments in developing eye disks throughout the pupal stage. The mRNAs of the UV and blue opsin are expressed early in pupal development (pd), specifying the type of the ommatidium in which they appear. Red sensitive photoreceptors first express a green opsin mRNA, which is replaced later by the red opsin mRNA. Broadband photoreceptors (that coexpress the green and red opsins) first express the green opsin mRNA, later change to red opsin mRNA and finally re-express the green opsin mRNA in addition to the red mRNA. Such a unique temporal and spatial expression pattern of opsin mRNAs may reflect the evolution of visual pigments and provide clues toward understanding how the spectrally complex eyes of butterflies evolved. PMID:29238294
T-lymphocyte cytokine mRNA expression in cystic echinococcosis.
Fauser, S; Kern, P
1997-04-01
In the present study we investigated cytokine mRNA expression by peripheral blood mononuclear cells (PBMC) from patients with cystic echinococcosis (CE) after stimulation with different antigens. By using reverse transcriptase polymerase chain reaction (RT-PCR) we could demonstrate that restimulation with crude Echinococcus granulosus antigen (Eg-Ag) induced or enhanced Th2 cytokine mRNA expression, especially IL-5 (by using antigen from sheep cyst fluid) in 23 out of 26 investigated CE patients and IL-10 (by using antigen from camel cyst fluid) in 10 out of 10 investigated CE patients. In contrast, IL-5 mRNA expression was absent in PBMC of healthy controls after Eg-Ag stimulation. To determine the specificity of this reaction we stimulated PBMC from 11 CE patients with crude Echinococcus multilocularis antigen (Em-Ag) and PBMC from 8 CE patients with Toxocara canis antigen (Tc-Ag). We found that the PBMC of patients showed a similar mRNA cytokine pattern on stimulation with Em-Ag when compared with Eg-Ag stimulation. The cytokine mRNA pattern on stimulation with Tc-Ag, however, resembled the cytokine mRNA pattern of unstimulated PBMC. Furthermore, the stimulation of PBMC with crude Mycobacterium tuberculosis antigen (H37Ra) and purified protein derivative (PPD) of M. tuberculosis revealed distinct IL-5 mRNA expression in all investigated CE patients, whereas in healthy controls IL-5 mRNA expression was very weak or totally absent. Thus, our results indicate an induction of Th2 cytokine mRNA expression in CE patients, which is frequently observed in parasite infections. Interestingly, this response persists after stimulation with tuberculosis antigens, which normally induce Th1 response.
Tissue-specific mRNA expression profiling in grape berry tissues
Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C
2007-01-01
Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and transport processes. Seeds, which supply essential resources for embryo development, showed higher mRNA abundance of genes encoding phenylpropanoid biosynthetic enzymes, seed storage proteins, and late embryogenesis abundant proteins. Water-deficit stress affected the mRNA abundance of 13% of the genes with differential expression patterns occurring mainly in the pulp and skin. In pulp and seed tissues transcript abundance in most functional categories declined in water-deficit stressed vines relative to well-watered vines with transcripts for storage proteins and novel (no-hit) functional assignments being over represented. In the skin of berries from water-deficit stressed vines, however, transcripts from several functional categories including general phenypropanoid and ethylene metabolism, pathogenesis-related responses, energy, and interaction with the environment were significantly over-represented. Conclusion These results revealed novel insights into the tissue-specific expression mRNA expression patterns of an extensive repertoire of genes expressed in berry tissues. This work also establishes an extensive catalogue of gene expression patterns for future investigations aimed at the dissection of the transcriptional regulatory hierarchies that govern tissue-specific expression patterns associated with tissue differentiation within berries. These results also confirmed that water-deficit stress has a profound effect on mRNA expression patterns particularly associated with the biosynthesis of aroma and color metabolites within skin and pulp tissues that ultimately impact wine quality. PMID:17584945
Molecular signaling in intervertebral disk development.
DiPaola, Christian P; Farmer, James C; Manova, Katia; Niswander, Lee A
2005-09-01
The purpose of this investigation is to identify and study the expression pattern of pertinent molecular factors involved in the differentiation of the intervertebral disk (IVD). It is likely that hedgehog genes and the BMP inhibitors are key factors involved in spinal joint formation. Radioactive in situ hybridization with mRNA probes for pax-1, SHH, IHH and Noggin gene was performed on mouse embryo and adult tissue. Immunohistochemistry was performed to localize hedgehog receptor, "patched" (ptc). From 14.5 dpc until birth pax-1 mRNA was expressed in the developing anulus fibrosus (AF). During the same developmental period Noggin mRNA is highly expressed throughout the spine, in the developing AF, while ptc protein and SHH mRNA were expressed in the developing nucleus pulposus (NP). IHH mRNA was expressed by condensing chondrocytes of the vertebral bodies and later becomes confined to the vertebral endplate. We show for the first time that pax-1 is expressed in the adult intervertebral disk. Ptc expression in the NP is an indicator of hedgehog protein signaling in the developing IVD. The expression pattern of the BMP inhibitor Noggin appears to be important for the normal formation of the IVD and may prove to play a role in its segmental pattern formation.
Differential expression of decorin and biglycan genes during mouse tooth development
NASA Technical Reports Server (NTRS)
Matsuura, T.; Duarte, W. R.; Cheng, H.; Uzawa, K.; Yamauchi, M.
2001-01-01
Small leucine-rich proteoglycans (SLRPs) have a number of biological functions and some of them are thought to regulate collagen mineralizaton in bone and tooth. We have previously identified and immunolocalized two members of the SLRPs family, decorin and biglycan, in bovine tooth/periodontium. To investigate their potential roles in tooth development, we examined the mRNA expression patterns of decorin, biglycan and type I collagen in newborn (day 19) mice tooth germs by in situ hybridization. At this developmental stage, the first maxillary and mandibular molars include stages before and after secretion of the predentin matrix, respectively. The expression of decorin mRNA coincided with that of type I collagen mRNA and was mostly observed in secretory odontoblasts, while the biglycan mRNA was expressed throughout the tooth germ, including pre-secretory odontoblasts/ameloblasts, dental papilla and stellate reticulum. However, its signal in secretory odontoblasts was not as evident as that of decorin. In mandibular incisors, where a significant amount of predentin matrix and a small amount of enamel matrix were already secreted, a similar differential expression pattern was observed. In secretory ameloblasts the biglycan mRNA expression was apparent, while that of decorin was not. These differential expression patterns suggest the distinct roles of biglycan and decorin in the process of tooth development.
MicroRNA networks in mouse lung organogenesis.
Dong, Jie; Jiang, Guoqian; Asmann, Yan W; Tomaszek, Sandra; Jen, Jin; Kislinger, Thomas; Wigle, Dennis A
2010-05-26
MicroRNAs (miRNAs) are known to be important regulators of both organ development and tumorigenesis. MiRNA networks and their regulation of messenger RNA (mRNA) translation and protein expression in specific biological processes are poorly understood. We explored the dynamic regulation of miRNAs in mouse lung organogenesis. Comprehensive miRNA and mRNA profiling was performed encompassing all recognized stages of lung development beginning at embryonic day 12 and continuing to adulthood. We analyzed the expression patterns of dynamically regulated miRNAs and mRNAs using a number of statistical and computational approaches, and in an integrated manner with protein levels from an existing mass-spectrometry derived protein database for lung development. In total, 117 statistically significant miRNAs were dynamically regulated during mouse lung organogenesis and clustered into distinct temporal expression patterns. 11,220 mRNA probes were also shown to be dynamically regulated and clustered into distinct temporal expression patterns, with 3 major patterns accounting for 75% of all probes. 3,067 direct miRNA-mRNA correlation pairs were identified involving 37 miRNAs. Two defined correlation patterns were observed upon integration with protein data: 1) increased levels of specific miRNAs directly correlating with downregulation of predicted mRNA targets; and 2) increased levels of specific miRNAs directly correlating with downregulation of translated target proteins without detectable changes in mRNA levels. Of 1345 proteins analyzed, 55% appeared to be regulated in this manner with a direct correlation between miRNA and protein level, but without detectable change in mRNA levels. Systematic analysis of microRNA, mRNA, and protein levels over the time course of lung organogenesis demonstrates dynamic regulation and reveals 2 distinct patterns of miRNA-mRNA interaction. The translation of target proteins affected by miRNAs independent of changes in mRNA level appears to be a prominent mechanism of developmental regulation in lung organogenesis.
Ciurana, Neus; Artells, Rosa; Muñoz, Carmen; Arias-Martorell, Júlia; Bello-Hellegouarch, Gaëlle; Casado, Aroa; Cuesta, Elisabeth; Pérez-Pérez, Alejandro; Pastor, Juan Francisco; Potau, Josep Maria
2017-11-01
The common chimpanzee (Pan troglodytes) is the primate that is phylogenetically most closely related to humans (Homo sapiens). In order to shed light on the anatomy and function of the temporalis muscle in the chimpanzee, we have analyzed the expression patterns of the mRNA transcripts of the myosin heavy chain (MyHC) isoforms in different parts of the muscle. We dissected the superficial, deep and sphenomandibularis portions of the temporalis muscle in five adult P. troglodytes and quantified the expression of the mRNA transcripts of the MyHC isoforms in each portion using real-time quantitative polymerase chain reaction. We observed significant differences in the patterns of expression of the mRNA transcripts of the MyHC-IIM isoform between the sphenomandibularis portion and the anterior superficial temporalis (33.6% vs 47.0%; P=0.032) and between the sphenomandibularis portion and the anterior deep temporalis (33.6% vs 43.0; P=0.016). We also observed non-significant differences between the patterns of expression in the anterior and posterior superficial temporalis. The differential expression patterns of the mRNA transcripts of the MyHC isoforms in the temporalis muscle in P. troglodytes may be related to the functional differences that have been observed in electromyographic studies in other species of primates. Our findings can be applicable to the fields of comparative anatomy, evolutionary anatomy, and anthropology. Copyright © 2017 Elsevier GmbH. All rights reserved.
2011-01-01
Background Fatty acid binding proteins (FABP) play an important role in carcinogenesis. Modified FABP expression patterns were described for prostate, bladder and for renal cell carcinoma. Studies on metabolic relationships and interactions in permanent cell lines allow a deeper insight into molecular processes. The aim of this study is therefore a systematic overview on mRNA and protein expressions of seven FABPs in frequently used urological cell lines. Methods Nine cell lines of renal carcinomas, seven of urinary bladder carcinomas, and five of prostate carcinomas were investigated. Quantitative RT-qPCR and western blotting were used to determine different FABPs. In addition, 46 paired cancerous and noncancerous tissue samples from nephrectomy specimen with renal cell carcinomas were investigated regarding the ileum FABP mRNA expression level and associated with survival outcome. Results General characteristics of all urological carcinoma cell lines were the expression of E-and IL-FABP on mRNA and protein level, while the expressions differed between the cell lines. The protein expression was not always congruent with the mRNA expression. Renal cell carcinoma cell lines showed expressions of L-, H- and B-FABP mRNA in addition to the general FABP expression in five out of the eight investigated cell lines. In bladder cancer cell lines, we additionally found the expression of A-FABP mRNA in six cell lines, while H-FABP was present only in three cell lines. In prostate cancer cell lines, a strong reduction of A- and E- FABP mRNA was observed. The expression of B-FABP mRNA and protein was observed only in the 22 RV-1 cells. IL-FABP mRNA was over-expressed in renal tumour tissue. The IL-FABP ratio was identified as an independent indicator of survival outcome. Conclusions Distinctly different FABP expression patterns were observed not only between the cell lines derived from the three cancer types, but also between the cell lines from the same cancer. The FABP patterns in the cell lines do not always reflect the real situation in the tumours. These facts have to be considered in functional studies concerning the different FABPs. PMID:21767383
Differential Expression Patterns of occ1-Related Genes in Adult Monkey Visual Cortex
Takahata, Toru; Komatsu, Yusuke; Watakabe, Akiya; Hashikawa, Tsutomu; Tochitani, Shiro
2009-01-01
We have previously revealed that occ1 is preferentially expressed in the primary visual area (V1) of the monkey neocortex. In our attempt to identify more area-selective genes in the macaque neocortex, we found that testican-1, an occ1-related gene, and its family members also exhibit characteristic expression patterns along the visual pathway. The expression levels of testican-1 and testican-2 mRNAs as well as that of occ1 mRNA start of high in V1, progressively decrease along the ventral visual pathway, and end of low in the temporal areas. Complementary to them, the neuronal expression of SPARC mRNA is abundant in the association areas and scarce in V1. Whereas occ1, testican-1, and testican-2 mRNAs are preferentially distributed in thalamorecipient layers including “blobs,” SPARC mRNA expression avoids these layers. Neither SC1 nor testican-3 mRNA expression is selective to particular areas, but SC1 mRNA is abundantly observed in blobs. The expressions of occ1, testican-1, testican-2, and SC1 mRNA were downregulated after monocular tetrodotoxin injection. These results resonate with previous works on chemical and functional gradients along the primate occipitotemporal visual pathway and raise the possibility that these gradients and functional architecture may be related to the visual activity–dependent expression of these extracellular matrix glycoproteins. PMID:19073625
Kim, Na Na; Jin, Deuk-Hee; Lee, Jehee; Kil, Gyung-Suk; Choi, Cheol Young
2010-10-01
In the present study, we investigated the expression pattern of estrogen receptors (esr) and vitellogenin (vtg) mRNA in the gonads and liver during sex change in cinnamon clownfish by using quantitative polymerase chain reaction. We divided gonadal development during the sex change from male to female into 3 stages (mature male, male at 90days after removing female, and mature female) and investigated esr and vtg mRNA expressions during the sex change. With female, the esr and vtg mRNA expressions increased. In western blot analysis, Esr1 protein was detected only in the ovaries of female cinnamon clownfish. Also, to understand the effect of 17beta-estradiol (E(2)), we investigated the esr and vtg mRNA expression patterns in the gonads and liver, and the changes in plasma E(2) level after E(2) injection. E(2) treatment increased both mRNA expression levels of esr and vtg and plasma E(2) levels. The present study describes the molecular characterization of esr subtypes and the interactions between esr and vtg after E(2) treatment in cinnamon clownfish. 2010 Elsevier Inc. All rights reserved.
Inoue, Makiko; Shiina, Tomoya; Aizawa, Sayaka; Sakata, Ichiro; Takagi, Hiroyasu; Sakai, Takafumi
2012-06-01
Although δ-crystallin (δ-crys), also known as lens protein, is transiently expressed in Rathke's pouch (RP) of the chick embryo, detailed temporal and spatial expression patterns have been obscure. In this study, to understand the relationship between the δ-crys mRNA-expressing region and RP formation, we examined the embryonic expression pattern of δ-crys mRNA in the primordium of the adenohypophysis. δ-crys mRNA expression was initially found at stage 15 anterior to the foregut and posterior to the invaginated oral ectoderm. After RP formation, the δ-crys mRNA was expressed in the post-ventral region of RP and the anterior region of RP. δ-crys mRNA expression was then restricted to the cephalic lobe of the pituitary gland. From stage 20, the δ-crys and alpha-glycoprotein subunit (αGSU) mRNA-expressing regions were almost completely overlapping. The αGSU mRNA-expressing region is thought to be the primordium of the pars tuberalis, and these regions were overlapped with the Lhx3 mRNA-expressing region. The intensity of δ-crys mRNA expression gradually decreased with development and completely disappeared by stage 34. These results suggest that the embryonic chick pituitary gland consists of two different regions labeled with δ-crys and Lhx3.
Urbatzka, R; Lutz, I; Kloas, W
2007-01-01
The key enzymes involved in the production of endogenous sex steroids are steroid-5-alpha-reductase and aromatase converting testosterone (T) into dihydrotestosterone (DHT) and into estradiol (E2), respectively. To gain more insights into the molecular mechanisms of sexual differentiation of amphibians, we determined the mRNA expression of steroid-5-alpha-reductase type1 (Srd5a1), type2 (Srd5a2) and aromatase (Aro) during ontogeny starting from the egg and ending after completion of metamorphosis in Xenopus laevis. Expression of all three enzymes was measured by means of semi-quantitative RT-PCR, determining for the first time Srd5a1 and Srd5a2 mRNA expression in amphibians. mRNA was analyzed in whole body homogenates from stage 12 to 48, while brain and gonads with kidney were studied separately from stage 48 to 66. Different ontogenetic mRNA expression patterns were observed for all genes analyzed, revealing early mRNA expression of Srd5a1 already in the egg at stage 12 whereas Srd5a2 and Aro was detected at stage 39. Sex-specific mRNA expressions of Srd5a2 and of Aro were determined in the gonads with kidney but not in brain. Srd5a2 was two-fold higher expressed in testes than in ovaries while Aro mRNA was ten-fold higher in ovaries. No gender-specific mRNA expression was observed for Srd5a1 in gonads and in brain. The ontogenetic patterns of Aro, Srd5a1 and Srd5a2 suggest that these genes are involved in sexual differentiation of gonads and brain already in early developmental stages. Especially in gonads Srd5a2 seems to be important for physiological regulation of testis development while Aro is associated with the development of ovaries.
Kitada, Masaaki; Takeda, Kazuya; Dezawa, Mari
2016-07-01
We previously demonstrated that NG2-positive oligodendrocyte precursor cells (OPCs) do not express DM-20 mRNA and identified a distinct DM-20 mRNA-positive cell population expressing glutathione-S-transferase pi isoform (GST-pi) in the nucleus (GST-pi(Nuc)) of the adult rat spinal cord. As GST-pi intranuclear localization correlates with progenitor cell properties, we examined the differentiation status of this cell population under the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method, consisting of intraperitoneal BrdU injections every 2 h for 48 h. We observed that a certain population of proliferating/proliferated cells expressed DM-20 mRNA, and sometimes two proliferating/proliferated cells were observed still attached to each other. We performed triple staining for BrdU, DM-20 mRNA, and NG2 and found pairs of neighboring BrdU-positive cells, which were considered to originate from the same progenitor cells and where both cells expressed DM-20 mRNA. Triple staining for BrdU, DM-20 mRNA, and GST-pi detected proliferating/proliferated cells exhibiting the GST-pi(Nuc)/DM-20 mRNA-positive expression pattern. These findings suggested the presence of a GST-pi(Nuc)/DM-20 mRNA-positive oligodendrocyte-lineage progenitor cell population in the adult rat spinal cord. However, we did not find any pair of neighboring BrdU-positive cells with this expression pattern. These observations collectively support the idea that GST-pi(Nuc)/DM-20 mRNA-expressing cells are the progeny of NG2-positive OPCs rather than a novel type of oligodendrocyte-lineage progenitor cells and that DM-20 mRNA expression is dynamically regulated during differentiation of OPCs into oligodendrocytes.
Topographical cone photopigment gene expression in deutan-type red-green color vision defects.
Bollinger, Kathryn; Sjoberg, Stacy A; Neitz, Maureen; Neitz, Jay
2004-01-01
Eye donors were identified who had X-chromosome photopigment gene arrays like those of living deuteranomalous men; the arrays contained two genes encoding long-wavelength sensitive (L) pigments as well as genes to encode middle-wavelength sensitive (M) photopigment. Ultrasensitive methods failed to detect the presence of M photopigment mRNA in the retinas of these deutan donors. This provides direct evidence that deuteranomaly is caused by the complete absence of M pigment mRNA. Additionally, for those eyes with mRNA corresponding to two different L-type photopigments, the ratio of mRNA from the first vs. downstream L genes was analyzed across the retinal topography. Results show that the pattern of first relative to downstream L gene expression in the deuteranomalous retina is similar to the pattern of L vs. M gene expression found in normal retinas.
Kolkova, Z; Noskova, V; Ehinger, A; Hansson, S; Casslén, B
2010-10-01
The recently identified trans-membrane G protein-coupled estrogen receptor 1 (GPER, GPR30) has been implicated in rapid non-genomic effects of estrogens. This focuses on expression and localization of GPER mRNA and protein in normal cyclic endometrium and early pregnancy decidua. Real-time PCR, western blotting, in situ hybridization and immuno-histochemistry were used. Endometrial expression of GPER mRNA was lower in the secretory phase than in the proliferative phase, and even lower in the decidua. The expression pattern was similar to that of ERα mRNA, but different from that of ERβ mRNA. Western blot detected GPER protein as a 54 kDa band in all endometrial and decidual samples. In contrast to the mRNA, GPER protein did not show cyclic variations. Apparently, a lower amount of mRNA is sufficient to maintain protein levels in the secretory phase. GPER mRNA was predominantly localized in the epithelium of mid- and late-proliferative phase endometrium, whereas expression in early proliferative and secretory glands could not be distinguished from the diffuse stromal signal, which was present throughout the cycle. Immuno-staining for GPER was stronger in glandular and luminal epithelium than in the stroma throughout the cycle. The cyclic variations of GPER mRNA obviously relate to strong epithelial expression in the proliferative phase, and the expression pattern suggests regulation by ovarian steroids. GPER protein is present in endometrial tissue throughout the cycle, and the epithelial localization suggests potential functions during sperm migration at mid-cycle, as well as decidualization and blastocyst implantation in the mid-secretory phase.
Xie, Fang-Fei; Deng, Fei-Yan; Wu, Long-Fei; Mo, Xing-Bo; Zhu, Hong; Wu, Jian; Guo, Yu-Fan; Zeng, Ke-Qin; Wang, Ming-Jun; Zhu, Xiao-Wei; Xia, Wei; Wang, Lan; He, Pei; Bing, Peng-Fei; Lu, Xin; Zhang, Yong-Hong; Lei, Shu-Feng
2018-01-01
DNA methylation is an important regulator on the mRNA expression. However, a genome-wide correlation pattern between DNA methylation and mRNA expression in human peripheral blood mononuclear cells (PBMCs) is largely unknown. The comprehensive relationship between mRNA and DNA methylation was explored by using four types of correlation analyses and a genome-wide methylation-mRNA expression quantitative trait locus (eQTL) analysis in PBMCs in 46 unrelated female subjects. An enrichment analysis was performed to detect biological function for the detected genes. Single pair correlation coefficient (r T1 ) between methylation level and mRNA is moderate (-0.63-0.62) in intensity, and the negative and positive correlations are nearly equal in quantity. Correlation analysis on each gene (T4) found 60.1% genes showed correlations between mRNA and gene-based methylation at P < 0.05 and more than 5.96% genes presented very strong correlation (R T4 > 0.8). Methylation sites have regulation effects on mRNA expression in eQTL analysis, with more often observations in region of transcription start site (TSS). The genes under significant methylation regulation both in correlation analysis and eQTL analysis tend to cluster to the categories (e.g., transcription, translation, regulation of transcription) that are essential for maintaining the basic life activities of cells. Our findings indicated that DNA methylation has predictive regulation effect on mRNA with a very complex pattern in PBMCs. The results increased our understanding on correlation of methylation and mRNA and also provided useful clues for future epigenetic studies in exploring biological and disease-related regulatory mechanisms in PBMC.
Zhang, Yuxiang; Mori, Tetsuji; Iseki, Ken; Hagino, Seita; Takaki, Hiromi; Takeuchi, Mayumi; Hikake, Tsuyoshi; Tase, Choichiro; Murakawa, Masahiro; Yokoya, Sachihiko; Wanaka, Akio
2003-04-01
Proteoglycans are involved in secondary palate formation. In the present study, we focused on two small leucine-rich proteoglycans, decorin and biglycan, because they assembled extracellular matrix molecules such as collagens and modulated signaling pathway of transforming growth factor-beta. To investigate the functions of decorin and biglycan in palatogenesis, we compared their mRNA expression patterns between normal palate and retinoic acid-induced cleft palate in mice by using in situ hybridization analysis during the period of embryonic day 13.5 (E13.5) to E15.5. On E13.5, decorin mRNA was expressed in the epithelia and mesenchyme on the nasal side of the developing secondary palate. During the period the palate shelves were fusing (E14.5), decorin mRNA was strongly expressed in the mesenchyme but its expression pattern was asymmetric; decorin mRNA expression area in the nasal side was broader than that in the oral side. The expression of decorin mRNA was hardly detected in the mesenchyme on either side of the medial edge epithelium. After fusion (E15.5), its expression converged to the mesenchyme just around the palatine bone. Biglycan mRNA was ubiquitously distributed throughout the palatal mesenchyme for the mid-gestation period. Its expression area became limited to the ossification area within the palate after the late gestation period. In the retinoic acid-treated mice, the area of the decorin gene expression expanded to the core region of the palate primordium where little signal was observed in control mice. On the other hand, biglycan in the retinoic acid-treated mice did not show remarkable change in its distribution patterns compared with that in the control mice. These findings suggest that decorin and biglycan play distinct roles in palatogenesis, and decorin was more actively involved in the process of secondary palate formation than biglycan. Up-regulation of decorin gene expression in the retinoic acid-treated mice might influence the pathogenesis of cleft palate. Copyright 2003 Wiley-Liss, Inc.
Hu, Yan; Liu, Hongxiang; Shan, Yanju; Ji, Gaige; Xu, Wenjuan; Shu, Jingting; Li, Huifang
2015-08-10
Genetic selection is a powerful tool for modifying poultry muscle yield. Insulin-like growth factor I (IGF-I) and myostatin (MSTN) are important regulators of muscle growth, especially in the myogenesis stage. This study compared the developmental pattern of the pectoralis major (PM) and lateral gastrocnemius (LM) muscles, mRNA expression characterization of IGF-I and MSTN-A and their correlation between 14 days in ovo and 1 week post-hatch in two Chinese local duck breeds. During early development, the growth of duck PM and LM followed an asynchronous pattern. Variations in PM growth rate observed with development followed the relative variations of MSTN and IGF-I expression; however, the same behavior was not observed in LM. Moreover, the profile of IGF-I expression in duck skeletal muscles indicated that genetic selection for high meat-yield poultry has altered the temporal expression of IGF-I and affected cellular characteristics and mass by hatch in a PM-specific manner. The MSTN-A expression profile showed synchronization with the growth of skeletal muscle and peaks of myofiber proliferation. The expression patterns of IGF-I and MSTN suggest that duck pectoralis fibers are prioritized for proliferation in embryogenesis. The IGF-1/MSTN-A mRNA ratios in PM and LM presented very similar trends in the changes of myofiber characteristics, and differences in the IGF-1/MSTN-A mRNA ratio in PM between the two breeds corresponded to the timing of differences in PM mass between the varieties. Our results support the hypothesis that relative levels of IGF-I and MSTN mRNA may participate in ordering muscle growth rates with selected development. Copyright © 2015 Elsevier B.V. All rights reserved.
Törmä, Hans; Berne, Berit
2009-12-01
Detergents irritate skin and affect skin barrier homeostasis. In this study, healthy skin was exposed to 1% sodium lauryl sulphate (SLS) in water for 24 h. Biopsies were taken 6 h to 8 days post exposure. Lipid patterns were stained in situ and real-time polymerase chain reaction (PCR) was used to examine mRNA expression of enzymes synthesizing barrier lipids, peroxisome proliferator-activated receptors (PPAR) and lipoxygenases. The lipid pattern was disorganized from 6 h to 3 days after SLS exposure. Concomitant changes in mRNA expression included: (i) reduction, followed by induction, of ceramide-generating beta-glucocerebrosidase, (ii) increase on day 1 of two other enzymes for ceramide biosynthesis and (iii) persistent reduction of acetyl-CoA carboxylase-B, a key enzyme in fatty acid synthesis. Surprisingly, the rate-limiting enzyme in cholesterol synthesis, HMG-CoA reductase, was unaltered. Among putative regulators of barrier lipids synthesis, PPARalpha and PPARgamma exhibited reduced mRNA expression, while PPARbeta/delta and LXRbeta were unaltered. Epidermal lipoxygenase-3, which may generate PPARalpha agonists, exhibited reduced expression. In conclusion, SLS induces reorganization of lipids in the stratum corneum, which play a role in detergents' destruction of the barrier. The changes in mRNA expression of enzymes involved in synthesizing barrier lipids are probably important for the restoration of the barrier.
Günthner, Roman; Kumar, Vankayala Ramaiah Santhosh; Lorenz, Georg; Anders, Hans-Joachim; Lech, Maciej
2013-01-01
The cell type-, organ-, and species-specific expression of the pattern-recognition receptors (PRRs) are well described but little is known about the respective expression profiles of their negative regulators. We therefore determined the mRNA expression levels of A20, CYLD, DUBA, ST2, CD180, SIGIRR, TANK, SOCS1, SOCS3, SHIP, IRAK-M, DOK1, DOK2, SHP1, SHP2, TOLLIP, IRF4, SIKE, NLRX1, ERBIN, CENTB1, and Clec4a2 in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. Additionally, we characterized their expression profiles in mononuclear blood cells upon bacterial endotoxin, which showed a consistent induction of A20, SOCS3, IRAK-M, and Clec4a2 in human and murine cells. Furthermore, we studied the expression pattern in transient kidney ischemia-reperfusion injury versus post-ischemic atrophy and fibrosis in mice. A20, CD180, ST2, SOCS1, SOCS3, SHIP, IRAK-M, DOK1, DOK2, IRF4, CENTB1, and Clec4a2 were all induced, albeit at different times of injury and repair. Progressive fibrosis was associated with a persistent induction of these factors. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to PRR-mediated innate immunity, which seems to be involved in tissue injury, tissue regeneration and in progressive tissue scarring. PMID:24009023
Nagler, James J.; Cavileer, Timothy D.; Verducci, Joseph S.; Schultz, Irvin R.; Hook, Sharon E.; Hayton, William L.
2012-01-01
Estrogens are critical hormones involved in reproduction and need to bind to estrogen receptors in target organs for biological activity. Fishes have two distinct estrogen receptor subtypes, alpha (α) and beta (β), with variable combinations of additional isoforms of each subtype dependent on the history of genome duplication within a taxon. The comparative expression patterns of estrogen receptor isoforms during the female reproductive cycle will provide important insights into the unique function and importance of each. The purpose of this study was to measure the mRNAs for the four estrogen receptor isoforms (erα1, erα2, erβ1, erβ2) in the liver and ovary of adult, female rainbow trout over the course of an annual reproductive cycle. The expression of estrogen receptor mRNA isoforms was measured by quantitative real-time RT-PCR. Several reproductive indices (gonadosomatic index, maximum oocyte diameter, plasma estradiol-17β, plasma vitellogenin, and ovulation) were also quantified for comparison and used in a correlation analysis to examine any inter-relationships. Of the four isoforms, the expression of erα1 was highest in the liver, and had a significant positive correlation with liver erβ1 expression. Liver expression of erα2 mRNA was the lowest, but showed a significant positive correlation with maximum oocyte diameter in the ovary. The pattern of the erβ isoforms in liver was one of initially elevated mRNA expression followed by a gradual decrease as reproductive development proceeded. In the ovary the erβ1 isoform had the highest mRNA expression of all estrogen receptor isoforms, at the beginning of the reproductive cycle, but then decreased afterward. Both ovarian erβ isoforms had a significant positive correlation with one another. In contrast, erα2 mRNA expression showed a high maximum level in the ovary near the end of the cycle along with a significant positive correlation with plasma estradiol-17β levels; the highest gonadosomatic indices, maximum oocyte diameter, and vitellogenin levels occurred then too. PMID:22732076
Developmental expression of the neuroligins and neurexins in fragile X mice.
Lai, Jonathan K Y; Doering, Laurie C; Foster, Jane A
2016-03-01
Neuroligins and neurexins are transsynaptic proteins involved in the maturation of glutamatergic and GABAergic synapses. Research has identified synaptic proteins and function as primary contributors to the development of fragile X syndrome. Fragile X mental retardation protein (FMRP), the protein that is lacking in fragile X syndrome, binds neuroligin-1 and -3 mRNA. Using in situ hybridization, we examined temporal and spatial expression patterns of neuroligin (NLGN) and neurexin (NRXN) mRNAs in the somatosensory (S1) cortex and hippocampus in wild-type (WT) and fragile X knockout (FMR1-KO) mice during the first 5 weeks of postnatal life. Genotype-based differences in expression included increased NLGN1 mRNA in CA1 and S1 cortex, decreased NLGN2 mRNA in CA1 and dentate gyrus (DG) regions of the hippocampus, and increased NRXN3 mRNA in CA1, DG, and S1 cortex between female WT and FMR1-KO mice. In male mice, decreased expression of NRXN3 mRNA was observed in CA1 and DG regions of FMR1-KO mice. Sex differences in hippocampal expression of NLGN2, NRXN1, NRXN2, and NRXN3 mRNAs and in S1 cortex expression of NRXN3 mRNAs were observed WT mice, whereas sex differences in NLGN3, NRXN1, NRXN2, and NRXN3 mRNA expression in the hippocampus and in NLGN1, NRXN2 and NRXN3 mRNA expression in S1 cortex were detected in FMR1-KO mice. These results provide a neuroanatomical map of NLGN and NRXN expression patterns over postnatal development in WT and FMR1-KO mice. The differences in developmental trajectory of these synaptic proteins could contribute to long-term differences in CNS wiring and synaptic function. © 2015 Wiley Periodicals, Inc.
Komar, Carolyn M; Curry, Thomas E
2002-05-01
Structural and functional development of the corpus luteum (CL) involves tissue remodeling, angiogenesis, lipid metabolism, and steroid production. The peroxisome proliferator-activated receptors (PPARs) have been shown to play a role in these as well as in a multitude of other cellular processes. To examine the expression of mRNA corresponding to the PPAR family members (alpha, delta, and gamma) in luteal tissue, ovaries were collected from gonadotropin-treated, immature rats on Days 1, 4, 8, and 14 of pseudopregnancy and from adult, cycling animals on each day of the estrous cycle. Ovaries were processed for in situ hybridization or RNA isolation for analysis by RNase protection assay. The expression of PPARgamma mRNA was abundant in granulosa cells of developing follicles during both pseudopregnancy and the estrous cycle and was low to undetectable in CL from pseudopregnant rats. However, luteal tissue in cycling animals, especially CL remaining from previous cycles, had high levels of PPARgamma mRNA. The PPARalpha mRNA was localized mainly in the theca and stroma, and PPARdelta mRNA was expressed throughout the ovary. Levels of mRNA for PPARgamma decreased between Days 1 and 4 of pseudopregnancy, and PPARalpha mRNA levels were lower on the day of estrus compared to pro- and metestrus (P < 0.05). The PPARdelta mRNA levels remained steady throughout the estrous cycle and pseudopregnancy. These data illustrate a difference in the luteal expression of mRNA for PPARgamma between the adult, cycling rat and the immature, gonadotropin-treated rat. This differential pattern of expression may be related to the difference in timing of the preovulatory prolactin surge, because the gonadotropin-primed animals would not experience a prolactin surge coincident with the LH surge, as occurs in adult, cycling animals. Additionally, the expression pattern of PPARdelta mRNA indicates that it may be involved in cellular functions involved with maintaining basal ovarian function, whereas PPARalpha may play a role in lipid metabolism in the theca and stroma.
Deneke, Carlus; Lipowsky, Reinhard; Valleriani, Angelo
2013-01-01
Experimental studies on mRNA stability have established several, qualitatively distinct decay patterns for the amount of mRNA within the living cell. Furthermore, a variety of different and complex biochemical pathways for mRNA degradation have been identified. The central aim of this paper is to bring together both the experimental evidence about the decay patterns and the biochemical knowledge about the multi-step nature of mRNA degradation in a coherent mathematical theory. We first introduce a mathematical relationship between the mRNA decay pattern and the lifetime distribution of individual mRNA molecules. This relationship reveals that the mRNA decay patterns at steady state expression level must obey a general convexity condition, which applies to any degradation mechanism. Next, we develop a theory, formulated as a Markov chain model, that recapitulates some aspects of the multi-step nature of mRNA degradation. We apply our theory to experimental data for yeast and explicitly derive the lifetime distribution of the corresponding mRNAs. Thereby, we show how to extract single-molecule properties of an mRNA, such as the age-dependent decay rate and the residual lifetime. Finally, we analyze the decay patterns of the whole translatome of yeast cells and show that yeast mRNAs can be grouped into three broad classes that exhibit three distinct decay patterns. This paper provides both a method to accurately analyze non-exponential mRNA decay patterns and a tool to validate different models of degradation using decay data. PMID:23408982
Gao, Jian; Ulekleiv, Camilla H; Halstensen, Trond S
2016-09-26
Increased expression of epidermal growth factor receptor (EGFR) and its ligands is associated with poor prognosis and chemoresistance in many carcinoma types, but its role in head and neck squamous cell carcinoma (HNSCC) is unclear. Our aim was to clarify whether mRNA expression of EGFR-ligands was linked to prognosis and cisplatin resistance, and if so, which ligand was most important and how was the expression regulated. To examine the prognostic effect of EGFR-ligand expression, we analyzed tumorous mRNA expression in 399 HNSCC patients. The intracellular signaling pathways controlling epidermal growth factor (EGF)-induced amphiregulin (AREG) expression were examined in three oral squamous cell carcinoma (OSCC) cell lines. Effect of AREG on cisplatin resistance was examined by viability assays in four-, and by association in 11 OSCC cell lines. The patients were divided into five groups according to the median mRNA expression levels of four EGFR ligands, i.e. AREG, EGF, heparin-binding EGF-like growth factor (HBEGF) and beta-cellulin (BTC). The number of increased-expressed EGFR-ligands were progressively correlated to five-year survival, even in advanced TNM-stage IV patients, where five-year mortality increased from 26 % if tumor expressed none to one EGFR-ligand, to 45 % in three to four ligand expressing tumors. Thus, staging the tumor according to these EGFR-ligand mRNA expression pattern completely out performed TNM staging in predicting prognosis. Multivariate analysis identified AREG as the dominating predictor, and AREG was overexpressed in OSCC compared to tumors from other sites. Both EGF and HBEGF stimulation induced strong AREG increase in OSCC cell lines, which was partially mediated by the extracellular signal-regulated kinase 1/2 pathway, and negatively regulated by p38, c-Jun N-terminal kinase, and phosphoinositide-3 kinase. Although increased AREG mRNA expression predicted unfavorable prognosis in platinum treated HNSCC patients, AREG did not mediate cisplatin resistance in the OSCC cell lines. Increased tumorous mRNA expression of four EGFR ligands was progressively associated with poor prognosis in HNSCC. Thus, EGFR-ligands mRNA expression pattern may be a new prognostic biomarker. The tightly regulated EGF-induced AREG mRNA expression was partly lost in the OSCC cell lines and restoring its regulation may be a new target in cancer treatment. Not applicable as the clinical data of the 498 HNSCC patients and their mRNA expression profiles were collected from the open TCGA database: http://cancergenome.nih.gov/cancersselected/headandneck .
Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce
2013-01-01
Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.
Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce
2013-01-01
Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein. PMID:23825634
Expression of inflammation-related genes in aldosterone-producing adenomas with KCNJ5 mutation.
Murakami, Masanori; Yoshimoto, Takanobu; Nakano, Yujiro; Tsuchiya, Kyoichiro; Minami, Isao; Bouchi, Ryotaro; Fujii, Yasuhisa; Nakabayashi, Kazuhiko; Hashimoto, Koshi; Hata, Ken-Ichiro; Kihara, Kazunori; Ogawa, Yoshihiro
2016-08-05
The adrenocortical cells have been shown to produce various inflammatory cytokines such as TNFα and IL-6, which could modulate steroidogenesis. However, the role of inflammatory cytokines in aldosterone-producing adenomas (APAs) is not fully understood. In the present study, we examined the relationships between mRNA expression levels of the inflammation-related genes and somatic mutations in APA tissues. We evaluated mRNA expression levels of TNFA, IL6, and NFKB1 in APA tissues obtained from 44 Japanese APA patients. We revealed that mRNA expression patterns of the inflammation-related genes depended on a KCNJ5 somatic mutation. In addition, we showed that mRNA expression levels of the inflammation-related genes correlated with those of the steroidogenic enzyme CYP11B1 in the patients with APAs. The present study documented for the first time the expression of inflammation-related genes in APAs and the correlation of their expression levels with the KCNJ5 mutation status and mRNA expression levels of steroidogenic enzymes, indicating the pathophysiological relevance of inflammation-related genes in APAs. Copyright © 2016 Elsevier Inc. All rights reserved.
Katagiri, Fumiaki; Glazebrook, Jane
2003-01-01
A major task in computational analysis of mRNA expression profiles is definition of relationships among profiles on the basis of similarities among them. This is generally achieved by pattern recognition in the distribution of data points representing each profile in a high-dimensional space. Some drawbacks of commonly used pattern recognition algorithms stem from their use of a globally linear space and/or limited degrees of freedom. A pattern recognition method called Local Context Finder (LCF) is described here. LCF uses nonlinear dimensionality reduction for pattern recognition. Then it builds a network of profiles based on the nonlinear dimensionality reduction results. LCF was used to analyze mRNA expression profiles of the plant host Arabidopsis interacting with the bacterial pathogen Pseudomonas syringae. In one case, LCF revealed two dimensions essential to explain the effects of the NahG transgene and the ndr1 mutation on resistant and susceptible responses. In another case, plant mutants deficient in responses to pathogen infection were classified on the basis of LCF analysis of their profiles. The classification by LCF was consistent with the results of biological characterization of the mutants. Thus, LCF is a powerful method for extracting information from expression profile data. PMID:12960373
Non-Smad TGF-β signaling components are possible biomarkers of tamoxifen resistance
NASA Astrophysics Data System (ADS)
Babyshkina, N.; Zavyalova, M.; Patalyak, S.; Dronova, T.; Slonimskaya, E.; Cherdyntseva, N.
2017-09-01
A crosstalk between the estrogen receptor alpha (ERα) and tyrosine kinase receptors contribute to endocrine resistance. We investigated the effect of the four Smad-independent TGF-β signaling components and the distribution pattern of ERα expression on the response to adjuvant tamoxifen treatment in 122 estrogen positive breast cancer patients. We identified a low mRNA expression of TGF-βR1 in tamoxifen resistant group patients (TR) in contrast to tamoxifen sensitive group (TS). Similarly, negative TGF-βR1 expression was significantly higher in TR patients than in TS patients. The expression of TGF-βR1 was strongly correlated with the distribution pattern of ERα expression, level of CD44+/CD24-/low cells and Akt (pS473) expression. The patients with a low mRNA expression of TGF-βR1 as well as with a negative TGF-βR1 expression had an unfavorable prognosis concerning progression-free survival. The expression of TGF-βR1 and the distribution pattern of ERα expression can be considered as additional molecular predictive markers for estrogen positive breast cancer patients treated with adjuvant tamoxifen.
Conserved Non-Coding Sequences are Associated with Rates of mRNA Decay in Arabidopsis.
Spangler, Jacob B; Feltus, Frank Alex
2013-01-01
Steady-state mRNA levels are tightly regulated through a combination of transcriptional and post-transcriptional control mechanisms. The discovery of cis-acting DNA elements that encode these control mechanisms is of high importance. We have investigated the influence of conserved non-coding sequences (CNSs), DNA patterns retained after an ancient whole genome duplication event, on the breadth of gene expression and the rates of mRNA decay in Arabidopsis thaliana. The absence of CNSs near α duplicate genes was associated with a decrease in breadth of gene expression and slower mRNA decay rates while the presence CNSs near α duplicates was associated with an increase in breadth of gene expression and faster mRNA decay rates. The observed difference in mRNA decay rate was fastest in genes with CNSs in both non-transcribed and transcribed regions, albeit through an unknown mechanism. This study supports the notion that some Arabidopsis CNSs regulate the steady-state mRNA levels through post-transcriptional control mechanisms and that CNSs also play a role in controlling the breadth of gene expression.
Conserved Non-Coding Sequences are Associated with Rates of mRNA Decay in Arabidopsis
Spangler, Jacob B.; Feltus, Frank Alex
2013-01-01
Steady-state mRNA levels are tightly regulated through a combination of transcriptional and post-transcriptional control mechanisms. The discovery of cis-acting DNA elements that encode these control mechanisms is of high importance. We have investigated the influence of conserved non-coding sequences (CNSs), DNA patterns retained after an ancient whole genome duplication event, on the breadth of gene expression and the rates of mRNA decay in Arabidopsis thaliana. The absence of CNSs near α duplicate genes was associated with a decrease in breadth of gene expression and slower mRNA decay rates while the presence CNSs near α duplicates was associated with an increase in breadth of gene expression and faster mRNA decay rates. The observed difference in mRNA decay rate was fastest in genes with CNSs in both non-transcribed and transcribed regions, albeit through an unknown mechanism. This study supports the notion that some Arabidopsis CNSs regulate the steady-state mRNA levels through post-transcriptional control mechanisms and that CNSs also play a role in controlling the breadth of gene expression. PMID:23675377
Xi, Jianing; Wang, Minghui; Li, Ao
2018-06-05
Discovery of mutated driver genes is one of the primary objective for studying tumorigenesis. To discover some relatively low frequently mutated driver genes from somatic mutation data, many existing methods incorporate interaction network as prior information. However, the prior information of mRNA expression patterns are not exploited by these existing network-based methods, which is also proven to be highly informative of cancer progressions. To incorporate prior information from both interaction network and mRNA expressions, we propose a robust and sparse co-regularized nonnegative matrix factorization to discover driver genes from mutation data. Furthermore, our framework also conducts Frobenius norm regularization to overcome overfitting issue. Sparsity-inducing penalty is employed to obtain sparse scores in gene representations, of which the top scored genes are selected as driver candidates. Evaluation experiments by known benchmarking genes indicate that the performance of our method benefits from the two type of prior information. Our method also outperforms the existing network-based methods, and detect some driver genes that are not predicted by the competing methods. In summary, our proposed method can improve the performance of driver gene discovery by effectively incorporating prior information from interaction network and mRNA expression patterns into a robust and sparse co-regularized matrix factorization framework.
McCord, Lauren A.; Li, Feixue; Rosewell, Katherine L.; Brännström, Mats; Curry, Thomas E.
2011-01-01
ABSTRACT The matrix metalloproteinases (MMPs) are postulated to facilitate follicular rupture. In the present study, expression of the stromelysins (MMP3, MMP10, MMP11) was analyzed in the periovulatory human and rat ovary. Human granulosa and theca cells were collected from the dominant follicle at various times after human chorionic gonadotropin (hCG). Intact rat ovaries, granulosa cells, and residual tissue (tissue remaining after granulosa cell collection) were isolated from equine CG (eCG)-hCG-primed animals. Mmp10 mRNA was highly induced in human granulosa and theca cells and intact rat ovaries, granulosa cells, and residual tissue. Localization of MMP10 to granulosa and theca cells in both human and rat ovarian follicles was confirmed by immunohistochemistry. Mmp3 mRNA was unchanged in human cells and rat granulosa cells, but increased in intact rat ovaries and residual tissue. Mmp11 mRNA decreased following hCG treatment in human granulosa and theca cells as well as rat granulosa cells. Regulation of Mmp10 in cultured rat granulosa cells revealed that the EGF inhibitor AG1478 and the progesterone receptor antagonist RU486 suppressed the induction of Mmp10 mRNA, whereas the prostaglandin inhibitor NS398 had no effect. Studies on the Mmp10 promoter demonstrated that forskolin plus PMA stimulated promoter activity, which was dependent upon a proximal AP1 site. In conclusion, there are divergent patterns of stromelysin expression associated with ovulation, with a marked induction of Mmp10 mRNA and a decrease in Mmp11 mRNA, yet a species-dependent pattern on Mmp3 mRNA expression. The induction of Mmp10 expression suggests an important role for this MMP in the follicular changes associated with ovulation and subsequent luteinization. PMID:22116802
McCord, Lauren A; Li, Feixue; Rosewell, Katherine L; Brännström, Mats; Curry, Thomas E
2012-03-01
The matrix metalloproteinases (MMPs) are postulated to facilitate follicular rupture. In the present study, expression of the stromelysins (MMP3, MMP10, MMP11) was analyzed in the periovulatory human and rat ovary. Human granulosa and theca cells were collected from the dominant follicle at various times after human chorionic gonadotropin (hCG). Intact rat ovaries, granulosa cells, and residual tissue (tissue remaining after granulosa cell collection) were isolated from equine CG (eCG)-hCG-primed animals. Mmp10 mRNA was highly induced in human granulosa and theca cells and intact rat ovaries, granulosa cells, and residual tissue. Localization of MMP10 to granulosa and theca cells in both human and rat ovarian follicles was confirmed by immunohistochemistry. Mmp3 mRNA was unchanged in human cells and rat granulosa cells, but increased in intact rat ovaries and residual tissue. Mmp11 mRNA decreased following hCG treatment in human granulosa and theca cells as well as rat granulosa cells. Regulation of Mmp10 in cultured rat granulosa cells revealed that the EGF inhibitor AG1478 and the progesterone receptor antagonist RU486 suppressed the induction of Mmp10 mRNA, whereas the prostaglandin inhibitor NS398 had no effect. Studies on the Mmp10 promoter demonstrated that forskolin plus PMA stimulated promoter activity, which was dependent upon a proximal AP1 site. In conclusion, there are divergent patterns of stromelysin expression associated with ovulation, with a marked induction of Mmp10 mRNA and a decrease in Mmp11 mRNA, yet a species-dependent pattern on Mmp3 mRNA expression. The induction of Mmp10 expression suggests an important role for this MMP in the follicular changes associated with ovulation and subsequent luteinization.
Sequencing of mRNA identifies re-expression of fetal splice variants in cardiac hypertrophy
Ames, EG; Lawson, MJ; Mackey, AJ; Holmes, JW
2013-01-01
Cardiac hypertrophy has been well-characterized at the level of transcription. During cardiac hypertrophy, genes normally expressed primarily during fetal heart development are reexpressed, and this fetal gene program is believed to be a critical component of the hypertrophic process. Recently, alternative splicing of mRNA transcripts has been shown to be temporally regulated during heart development, leading us to consider whether fetal patterns of splicing also reappear during hypertrophy. We hypothesized that patterns of alternative splicing occurring during heart development are recapitulated during cardiac hypertrophy. Here we present a study of isoform expression during pressure-overload cardiac hypertrophy induced by 10 days of transverse aortic constriction (TAC) in rats and in developing fetal rat hearts compared to sham-operated adult rat hearts, using high-throughput sequencing of poly(A) tail mRNA. We find a striking degree of overlap between the isoforms expressed differentially in fetal and pressure-overloaded hearts compared to control: forty-four percent of the isoforms with significantly altered expression in TAC hearts are also expressed at significantly different levels in fetal hearts compared to control (P < 0.001). The isoforms that are shared between hypertrophy and fetal heart development are significantly enriched for genes involved in cytoskeletal organization, RNA processing, developmental processes, and metabolic enzymes. Our data strongly support the concept that mRNA splicing patterns normally associated with heart development recur as part of the hypertrophic response to pressure overload. These findings suggest that cardiac hypertrophy shares post-transcriptional as well as transcriptional regulatory mechanisms with fetal heart development. PMID:23688780
Price, Edwin R; Rott, Katherine H; Caviedes-Vidal, Enrique; Karasov, William H
2016-01-01
Bats exhibit higher paracellular absorption of glucose-sized molecules than non-flying mammals, a phenomenon that may be driven by higher permeability of the intestinal tight junctions. The various claudins, occludin, and other proteins making up the tight junctions are thought to determine their permeability properties. Here we show that absorption of the paracellular probe l-arabinose is higher in a bat (Eptesicus fuscus) than in a vole (Microtus pennsylvanicus) or a hedgehog (Atelerix albiventris). Furthermore, histological measurements demonstrated that hedgehogs have many more enterocytes in their intestines, suggesting that bats cannot have higher absorption of arabinose simply by having more tight junctions. We therefore investigated the mRNA levels of several claudins and occludin, because these proteins may affect permeability of tight junctions to macronutrients. To assess the expression levels of claudins per tight junction, we normalized the mRNA levels of the claudins to the constitutively expressed tight junction protein ZO-1, and combined these with measurements previously made in a bat and a rodent to determine if there were among-species differences. Although expression ratios of several genes varied among species, there was not a consistent difference between bats and non-flyers in the expression ratio of any particular gene. Protein expression patterns may differ from mRNA expression patterns, and might better explain differences among species in arabinose absorption. Copyright © 2015 Elsevier Inc. All rights reserved.
Danesh Mesgaran, Sadjad; Sharbati, Jutta; Einspanier, Ralf; Gabler, Christoph
2016-08-15
The mammalian oviduct provides the optimal environment for gamete maturation including sperm capacitation, fertilization, and development of the early embryo. Various cell culture models for primary bovine oviductal epithelial cells (BOEC) were established to reveal such physiological events. The aim of this study was to evaluate 17 candidate mRNA expression patterns in oviductal epithelial cells (1) in transition from in vivo cells to in vitro cells; (2) during three consecutive cell culture passages; (3) affected by the impact of LOW or HIGH glucose content media; and (4) influenced by different phases of the estrous cycle in vivo and in vitro. In addition, the release of a metabolite and proteins from BOEC at two distinct cell culture passage numbers was estimated to monitor the functionality. BOEC from 8 animals were isolated and cultured for three consecutive passages. Total RNA was extracted from in vivo and in vitro samples and subjected to reverse transcription quantitative polymerase chain reaction to reveal mRNA expression of selected candidate genes. The release of prostaglandin E2 (PGE2), oviduct-specific glycoprotein 1 (OVGP1) and interleukin 8 (IL8) by BOEC was measured by EIA or ELISA after 24 h. Almost all candidate genes (prostaglandin synthases, enzymes of cellular metabolism and mucins) mRNA expression pattern differed compared in vivo with in vitro state. In addition, transcription of most candidate genes was influenced by the number of cell culture passages. Different glucose medium content did not affect mRNA expression of most candidate genes. The phase of the estrous cycle altered some candidate mRNA expression in BOEC in vitro at later passages. The release of PGE2 and OVGP1 between passages did not differ. However, BOEC in passage 3 released significantly higher amount of IL8 compared with cells in passage 0. This study supports the hypothesis that candidate mRNA expression in BOEC was influenced by transition from the in vivo situation to the new in vitro environment and during consecutive passages. The consequence of cell culture passaging on BOEC ability to release bioactive compounds should be considered.
Hu, Yan; Liu, Hongxiang; Song, Chi; Xu, Wenjuan; Ji, Gaige; Zhu, Chunhong; Shu, Jingting; Li, Huifang
2015-03-15
In this study, the ontogeny of body and liver weight and the pattern of related gene mRNA expression in the hypothalamus-pituitary growth axis (HPGA) of two different duck breeds (Anas platyrhynchos domestica) were compared during embryonic and post-hatch development. Duck hypothalamic growth hormone release hormone (GHRH), somatostatin (SS), pituitary growth hormone (GH), liver growth hormone receptor (GHR) and insulin-like growth factor-I (IGF-1) mRNA were first detected on the 13th embryonic day. During early duck development, SS maintained a lower expression status, whereas the other four genes exhibited highly significant variations in an age-specific manner. Highly significant breed specificity was observed with respect to hepatic IGF-1 mRNA expression, which showed a significant breed-age interaction effect. Compared with previous studies on chickens, significant species differences were observed regarding the mRNA expression of bird embryonic HPGA-related genes. During early development, highly significant breed and age specificity were observed with respect to developmental changes in body and liver weight, and varying degrees of significant linear correlation were found between these performances and the mRNA expression of HPGA-related genes in the duck HPGA. These results suggest that different genetic backgrounds may lead to differences in duck growth and HPGA-related gene mRNA expression, and the differential mRNA expression of related genes in the duck HPGA may be particularly important in the early growth of ducks. Furthermore, hepatic IGF-1 mRNA expression presented highly significant breed specificity, and evidence suggests the involvement of hepatic IGF-1 in mediating genetic effects on embryo and offspring growth in ducks. Copyright © 2015 Elsevier B.V. All rights reserved.
Kato, Yoko; Li, Xiangping; Amarnath, Dasari; Ushizawa, Koichi; Hashizume, Kazuyoshi; Tokunaga, Tomoyuki; Taniguchi, Masanori; Tsunoda, Yukio
2007-01-01
Placental abnormalities are the main factor in the high incidence of somatic cell clone abnormalities. The expression of several trophoblast cell-specific molecules is enhanced during gestational days 7 to 14. To determine the possible genes whose expression patterns might reflect calf normality, we first compared the gene expression profiles on day 15 between in vitro-fertilized (IVF) embryos and two types of somatic cell nuclear-transferred embryos with either a high (FNT) or low (CNT) incidence of neonatal abnormalities using a cDNA microarray containing 16 of 21 placenta-specific genes developed from tissues collected across gestation. To identify significant genes from the screening of day 15 embryos, genes with a less than two-fold difference in expression between IVF and CNT embryos, and those with a greater than two-fold difference between IVF and FNT and between CNT and FNT were considered to contribute to clone abnormalities. These two comparisons revealed 18 down-regulated and 18 upregulated genes of the 1722 genes examined. We then examined the expression levels of 10 genes with known functions in eight-cell and blastocyst-stage embryos by real-time PCR. The mRNA expression pattern of interferon (IFN)-tau, a trophectoderm-related gene, differed between IVF, CNT, and FNT eight-cell embryos; few or none of the IVF or CNT eight-cell embryos expressed IFN-tau mRNA, but all eight-cell FNT embryos expressed IFN-tau. IFN-tau mRNA expression was significantly higher in IVF blastocysts, however, than in nuclear-transferred blastocysts. Average IFN-tau mRNA expression in FNT blastocysts was not different from that in CNT blastocysts, due to one CNT blastocyst with high expression. The precise relation between early expression of IFN-tau mRNA and inferior developmental potential in cloned embryos should be examined further.
Jäger, Dirk; Unkelbach, Marc; Frei, Claudia; Bert, Florian; Scanlan, Matthew J; Jäger, Elke; Old, Lloyd J; Chen, Yao-Tseng; Knuth, Alexander
2002-06-28
Serological analysis of recombinant cDNA expression libraries (SEREX) has led to the identification of several categories of new tumor antigens. We analyzed a testicular cDNA expression library with serum obtained from a breast cancer patient and isolated 13 genes designated NW-BR-1 through NW-BR-13. Of these, 3 showed tumor-restricted expression (NW-BR-1, -2 and -3), the others being expressed ubiquitously. NW-BR-3, representing 9 of 24 primary clones, showed tissue-restricted mRNA expression, being expressed in normal testis but not in 15 other normal tissues tested by Northern blotting. RT-PCR analysis showed strong NW-BR-3 expression in normal testis, weak expression in brain, kidney, trachea, uterus and normal prostate, and was negative in liver, heart, lung, colon, small intestine, bone marrow, breast, thymus, muscle, spleen, and stomach. NW-BR-3 mRNA expression was found in different tumor tissues and tumor cell lines by RT-PCR, thus showing a 'cancer/testis' (CT)-like mRNA expression pattern. NW-BR-3 shares 71% nucleotide and amino acid homology to a mouse gene cloned from mouse testicular tissue. Based on the mRNA expression pattern, NW-BR-3 represents a new candidate target gene for cancer immunotherapy. NW-BR-1 and NW-BR-2 also showed tumor-restricted mRNA expression. NW-BR-1 is a partial clone of the breast differentiation antigen NY-BR-1 previously identified by SEREX. NY-BR-1 is expressed in normal breast, testis and 80% of breast cancers. NW-BR-2 is identical to the CT antigen SCP-1, initially isolated by SEREX analysis of renal cancer. This study provides further evidence that SEREX is a powerful tool to identify new tumor antigens potentially relevant for immunotherapy approaches.
Gilhar, A; Ullmann, Y; Shalagino, R; Weisinger, G
1998-01-01
Whether the impact of skin biological age on cytokine expression is a result of this tissue's proliferation potential or not is an important issue in dermatology. We investigated these questions by monitoring cytokine marker mRNA expression from human skin samples from healthy groups of individuals. The skin samples studied represented three age groups: fetal (17-21 weeks), young (18-35 years) and aged (76-88 years). Furthermore, upon skin transplantation of tissue from different age groups onto nude mice, we investigated whether cytokine marker RNA levels would change or normalize. Interestingly, both TNF-alpha and P53 mRNA showed a similar pattern of expression. Both were significantly higher in fetal skin (p < 0.0001 and p < 0.05, respectively), and no difference was noted between aged versus young skin. In contrast to this, IL1-alpha mRNA was expressed at its lowest and highest levels in fetal and young skin, respectively. Following skin transplantation, cytokines and P53 mRNA expression were normalized to similar levels in all age groups. This study implies that when cytokine expression was determined directly at the mRNA level, post-natal expression was not significantly different at either age group. Furthermore, it seems that the environmental conditions surrounding the grafted human skin found on nude mice encouraged normalization of donor cytokine expression.
Tena-Sempere, M; Barreiro, M L; González, L C; Pinilla, L; Aguilar, E
2001-11-01
Two distinct nuclear estrogen receptors (ERs) have been identified, the classical one, renamed ERalpha, and the more recently cloned ERbeta. In a variety of tissues, gene expression of both receptor subtypes results in the generation of multiple transcripts encoding the full-length as well as several alternately spliced isoforms. In the rat pituitary, a truncated, tissue-specific variant of ERalpha, called TERP-1, has been identified and found able to modulate ERalpha and ERbeta activity. So far, its pattern of expression and hormonal regulation have been mostly studied in females. The present study was designed to analyze the pattern of expression of TERP-1 mRNA in the male rat pituitary at different stages of postnatal development, and to evaluate the impact of neonatal imprinting and estrogen treatment upon TERP-1 expression in the male pituitary. Assessment of TERP-1 mRNA levels by semi-quantitative RT-PCR, using a variant-specific primer pair, revealed that TERP-1 is also expressed in the male rat pituitary. Relative mRNA expression levels changed markedly during postnatal development, with moderate expression of the TERP-1 transcript at birth, barely detectable levels during the infantile-prepubertal period, and maximal values in adulthood. Expression of TERP-1 was sensitive to neonatal estrogen exposure, which resulted in a significant, persistent increase in mRNA levels from the infantile period until puberty. This phenomenon was not mimicked by neonatal blockade of endogenous GnRH. In addition, estrogen was able to acutely up-regulate pituitary TERP-1 mRNA expression levels in prepubertal (30-day-old) and adult (75-day-old) males. Interestingly, neonatal imprinting as well as acute estrogen treatment resulted in opposite effects on TERP-1 and full-length ERalpha and ERbeta transcripts, the latter being decreased under both conditions. In conclusion, our data indicate that TERP-1 mRNA is expressed in a developmentally regulated manner in the male rat pituitary, and is affected by neonatal estrogen imprinting and acute estrogen treatment. Regulation of TERP-1 expression by neonatal or acute estrogen treatment may thus represent an additional tuning mechanism for estrogen actions in the male rat pituitary. Copyright 2001 S. Karger AG, Basel
RNA splicing and splicing regulator changes in prostate cancer pathology.
Munkley, Jennifer; Livermore, Karen; Rajan, Prabhakar; Elliott, David J
2017-09-01
Changes in mRNA splice patterns have been associated with key pathological mechanisms in prostate cancer progression. The androgen receptor (abbreviated AR) transcription factor is a major driver of prostate cancer pathology and activated by androgen steroid hormones. Selection of alternative promoters by the activated AR can critically alter gene function by switching mRNA isoform production, including creating a pro-oncogenic isoform of the normally tumour suppressor gene TSC2. A number of androgen-regulated genes generate alternatively spliced mRNA isoforms, including a prostate-specific splice isoform of ST6GALNAC1 mRNA. ST6GALNAC1 encodes a sialyltransferase that catalyses the synthesis of the cancer-associated sTn antigen important for cell mobility. Genetic rearrangements occurring early in prostate cancer development place ERG oncogene expression under the control of the androgen-regulated TMPRSS2 promoter to hijack cell behaviour. This TMPRSS2-ERG fusion gene shows different patterns of alternative splicing in invasive versus localised prostate cancer. Alternative AR mRNA isoforms play a key role in the generation of prostate cancer drug resistance, by providing a mechanism through which prostate cancer cells can grow in limited serum androgen concentrations. A number of splicing regulator proteins change expression patterns in prostate cancer and may help drive key stages of disease progression. Up-regulation of SRRM4 establishes neuronal splicing patterns in neuroendocrine prostate cancer. The splicing regulators Sam68 and Tra2β increase expression in prostate cancer. The SR protein kinase SRPK1 that modulates the activity of SR proteins is up-regulated in prostate cancer and has already given encouraging results as a potential therapeutic target in mouse models.
Preprotachykinin A mRNA expression in the rat brain during development.
Brené, S; Lindefors, N; Friedman, W J; Persson, H
1990-12-15
Expression of preprotachykinin A (PPT-A) mRNA was analyzed by northern blots using mRNA prepared from rat brain at 12 different developmental stages ranging from embryonic day 15 (E15) to adult. A single PPT-A mRNA of 1.3 kb was detected throughout development. PPT-A mRNA was detected as early as E15 and an approximately 3-fold increase occurred at birth. This amount remained until 3 weeks of age when the level increased, reaching a peak at 5 weeks of age. Adult amounts were approximately 3-fold higher than the levels at birth. The distribution of PPT-A mRNA-expressing cells in rat brain was studied by in situ hybridization on sections from embryonic day 20, postnatal days 4 and 7 as well as adult. Cells expressing PPT-A mRNA were detected in the forebrain at all 4 ages analyzed. However, the hybridization pattern and the labeling intensity varied in different brain regions during development. In cingulate cortex, intense labeling was seen in numerous cells at embryonic day 20 and postnatal days 4 and 7, whereas in the adult cingulate cortex only a few scattered labeled cells were observed. In frontoparietal cortex labeled cells were found from postnatal day 4 to adult, with the highest density of labeled cells at P7. Developmental differences in both the distribution of PPT-A mRNA-expressing cells and the level of PPT-A mRNA expression were also found in caudate-putamen, lateral hypothalamus and amygdala. Thus, our results show several changes in PPT-A mRNA expression during ontogeny, indicating a region and time-specific regulation of PPT-A mRNA expression during brain maturation.
Maissen-Villiger, Carla A; Schweighauser, Ariane; van Dorland, H Anette; Morel, Claudine; Bruckmaier, Rupert M; Zurbriggen, Andreas; Francey, Thierry
2016-01-01
Dogs with leptospirosis show similar organ manifestations and disease course as human patients, including acute kidney injury and pulmonary hemorrhage, making this naturally-occurring infection a good animal model for human leptospirosis. Expression patterns of cytokines and enzymes have been correlated with disease manifestations and clinical outcome in humans and animals. The aim of this study was to describe mRNA expression of pro- and anti-inflammatory mediators in canine leptospirosis and to compare it with other renal diseases to identify patterns characterizing the disease and especially its pulmonary form. The mRNA abundance of cytokines (IL-1α, IL-1β, IL-8, IL-10, TNF-α, TGF-β) and enzymes (5-LO, iNOS) was measured prospectively in blood leukocytes from 34 dogs with severe leptospirosis and acute kidney injury, including 22 dogs with leptospirosis-associated pulmonary hemorrhages. Dogs with leptospirosis were compared to 14 dogs with acute kidney injury of other origin than leptospirosis, 8 dogs with chronic kidney disease, and 10 healthy control dogs. Canine leptospirosis was characterized by high 5-LO and low TNF-α expression compared to other causes of acute kidney injury, although the decreased TNF-α expression was also seen in chronic kidney disease. Leptospirosis-associated pulmonary hemorrhage was not characterized by a specific pattern, with only mild changes noted, including increased IL-10 and decreased 5-LO expression on some days in affected dogs. Fatal outcome from pulmonary hemorrhages was associated with low TNF-α, high IL-1β, and high iNOS expression, a pattern possibly expressed also in dogs with other forms of acute kidney injury. The patterns of cytokine and enzyme expression observed in the present study indicate a complex pro- and anti-inflammatory response to the infection with leptospires. The recognition of these signatures may be of diagnostic and prognostic relevance for affected individuals and they may indicate options for newer therapies targeting the identified pathways.
Kortner, Trond M; Overrein, Ingrid; Oie, Gunvor; Kjørsvik, Elin; Bardal, Tora; Wold, Per-Arvid; Arukwe, Augustine
2011-10-01
We have profiled the expression of twelve genes, in order to provide an overview on the molecular ontogeny of digestive capability with the associated endocrine control during Atlantic cod (Gadus morhua) larval development. Enzyme activity levels for the key digestive enzyme, trypsin, was also measured. Specifically, transcripts for trypsin, amylase, lipolytic enzymes: bile salt activated lipase (BAL), phospholipase A2 (PLA2) and Acyl CoA dehydrogenase (ACADM), regulatory peptides: neuropeptide Y (NPY), orexin (OX) cholecystokinin (CCK) and cocaine and amphetamine-related transcript (CART), the somatotropic factors: growth hormone (GH), preprosomatostatin 1 (PPSS1) and thyroid hormone receptors (TRα and TRβ) were analyzed using quatitative (real-time) polymerase chain reaction (qPCR). Trypsin and BAL mRNA levels peaked at approximately day 17 and 25 post-hatch, respectively, and thereafter displayed a decreasing pattern until metamorphosis. GH mRNA levels decreased moderately from 3 to 33dph, and thereafter, an increase was observed until 46dph. TRα mRNA levels showed a fluctuating pattern peaking at day 39 post-hatch. TRβ mRNA levels were too low to obtain quantitative measurements. Amylase mRNA slightly increased from day 3 to 17 post-hatch, and thereafter showed a steady decrease until day 60. Interestingly, PLA2 mRNA expression showed a consistent increase throughout the study period, indicating an increasingly important role during larval development. Overall, data from this study indicate that cod larvae show differential developmental mode of expression patterns for key genes and endocrine factors that regulate digestive capability, growth and development. These data are discussed in relation to larval trypsin enzyme activity and previous reports for other teleost species. Copyright © 2011 Elsevier Inc. All rights reserved.
Kreth, Simone; Thon, Niklas; Eigenbrod, Sabina; Lutz, Juergen; Ledderose, Carola; Egensperger, Rupert; Tonn, Joerg C.; Kretzschmar, Hans A.; Hinske, Ludwig C.; Kreth, Friedrich W.
2011-01-01
Background We analyzed prospectively whether MGMT (O6-methylguanine-DNA methyltransferase) mRNA expression gains prognostic/predictive impact independent of MGMT promoter methylation in malignant glioma patients undergoing radiotherapy with concomitant and adjuvant temozolomide or temozolomide alone. As DNA-methyltransferases (DNMTs) are the enzymes responsible for setting up and maintaining DNA methylation patterns in eukaryotic cells, we analyzed further, whether MGMT promoter methylation is associated with upregulation of DNMT expression. Methodology/Principal Findings Adult patients with a histologically proven malignant astrocytoma (glioblastoma: N = 53, anaplastic astrocytoma: N = 10) were included. MGMT promoter methylation was determined by methylation-specific PCR (MSP) and sequencing analysis. Expression of MGMT and DNMTs mRNA were analysed by real-time qPCR. Prognostic factors were obtained from proportional hazards models. Correlation between MGMT mRNA expression and MGMT methylation status was validated using data from the Cancer Genome Atlas (TCGA) database (N = 229 glioblastomas). Low MGMT mRNA expression was strongly predictive for prolonged time to progression, treatment response, and length of survival in univariate and multivariate models (p<0.0001); the degree of MGMT mRNA expression was highly correlated with the MGMT promoter methylation status (p<0.0001); however, discordant findings were seen in 12 glioblastoma patients: Patients with methylated tumors with high MGMT mRNA expression (N = 6) did significantly worse than those with low transcriptional activity (p<0.01). Conversely, unmethylated tumors with low MGMT mRNA expression (N = 6) did better than their counterparts. A nearly identical frequency of concordant and discordant findings was obtained by analyzing the TCGA database (p<0.0001). Expression of DNMT1 and DNMT3b was strongly upregulated in tumor tissue, but not correlated with MGMT promoter methylation and MGMT mRNA expression. Conclusions/Significance MGMT mRNA expression plays a direct role for mediating tumor sensitivity to alkylating agents. Discordant findings indicate methylation-independent pathways of MGMT expression regulation. DNMT1 and DNMT3b are likely to be involved in CGI methylation. However, their exact role yet has to be defined. PMID:21365007
Mukhopadhyay, Debdip; Priya, Pooja; Chattopadhyay, Ansuman
2015-09-01
Sodium fluoride (NaF), used as pesticides and for industrial purposes are deposited in the water bodies and therefore affects its biota. Zebrafish exposed to NaF in laboratory condition showed hyperactivity and frequent surfacing activity, somersaulting and vertical swimming pattern as compared to the control group. Reactive oxygen species level was elevated and glutathione level was depleted along with increased malondialdehyde content in the brain. Levels of glutathione-s-transferase (GST), catalase (CAT) and superoxide dismutase were also elevated in the treatment groups. Expression of mRNA of nuclear factor erythroid 2 related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein 1 (Keap1) during stress condition were observed along with Gst, Cat, NADPH: quinone oxidoreductase 1(Nqo1) and p38. Except Keap1, all other genes exhibited elevated expression. Nrf2/Keap1 proteins had similar expression pattern as their corresponding mRNA. The findings in this study might help to understand the molecular mechanism of fluoride induced neurotoxicity in fish. Copyright © 2015 Elsevier B.V. All rights reserved.
Clinton, Sarah M.; Glover, Matthew E.; Maltare, Astha; Laszczyk, Ann M.; Mehi, Stephen J.; Simmons, Rebecca K.; King, Gwendalyn D.
2013-01-01
Without the age-regulating protein klotho, mouse lifespan is shortened and the rapid onset of age-related disorders occurs. Conversely, overexpression of klotho extends mouse lifespan. Klotho is most abundant in kidney and expressed in a limited number of other organs, including the brain, where klotho levels are highest in choroid plexus. Reports vary on where klotho is expressed within the brain parenchyma, and no data is available as to whether klotho levels change across postnatal development. We used in situ hybridization to map klotho mRNA expression in the developing and adult rat brain and report moderate, widespread expression across grey matter regions. mRNA expression levels in cortex, hippocampus, caudate putamen, and amygdala decreased during the second week of life and then gradually rose to adult levels by postnatal day 21. Immunohistochemistry revealed a protein expression pattern similar to the mRNA results, with klotho protein expressed widely throughout the brain. Klotho protein co-localized with both the neuronal marker NeuN, as well as, oligodendrocyte marker olig2. These results provide the first anatomical localization of klotho mRNA and protein in rat brain parenchyma and demonstrate that klotho levels vary during early postnatal development. PMID:23838326
Upregulation of Ryk expression in rat dorsal root ganglia after peripheral nerve injury.
Li, Xin; Li, Yao-hua; Yu, Shun; Liu, Yaobo
2008-10-22
To study changes of Ryk expression in dorsal root ganglia (DRG) after peripheral nerve injury, we set up an animal model of unilateral sciatic nerve lesioned rats. Changes of Ryk protein expression in DRG neurons after unilateral sciatic nerve injury were investigated by immunostaining. Changes of Ryk mRNA were also tested by semi-quantitative PCR concurrently. We found, both at the level of protein and mRNA, that Ryk could be induced in cells of ipsilateral DRG after unilateral sciatic nerve lesion. Further investigation by co-immunostaining confirmed that the Ryk-immunoreactive (Ryk-IR) cells were NeuN-immunoreactive (NeuN-IR) neurons of DRG. We also showed the pattern of Ryk induction in DRG neurons after sciatic nerve injury: the number of Ryk IR neurons peaked at 2 weeks post-lesion and decreased gradually by 3 weeks post-lesion. The proportions of different sized Ryk IR neurons were also observed and counted at various stages after nerve lesion. Analysis of Ryk mRNA by RT-PCR showed the same induction pattern as by immunostaining. Ryk mRNA was not expressed in normal or contralateral DRG, but was expressed 1, 2 and 3 weeks post-lesion in the ipsilateral DRG. Ryk mRNA levels increased slightly from 1 to 2 weeks, decreased then by 3 weeks post-lesion. These results indicate that Ryk might be involved in peripheral nerve plasticity after injury. This is a novel function apart from its well-known fundamental activity as a receptor mediating axon guidance and outgrowth.
Guffanti, Federica; Fratelli, Maddalena; Ganzinelli, Monica; Bolis, Marco; Ricci, Francesca; Bizzaro, Francesca; Chilà, Rosaria; Sina, Federica Paola; Fruscio, Robert; Lupia, Michela; Cavallaro, Ugo; Cappelletti, Maria Rosa; Generali, Daniele; Giavazzi, Raffaella; Damia, Giovanna
2018-01-01
A xenobank of patient-derived (PDX) ovarian tumor samples has been established consisting of tumors with different sensitivity to cisplatin (DDP), from very responsive to resistant. As the DNA repair pathway is an important driver in tumor response to DDP, we analyzed the mRNA expression of 20 genes involved in the nucleotide excision repair, fanconi anemia, homologous recombination, base excision repair, mismatch repair and translesion repair pathways and the methylation patterns of some of these genes. We also investigated the correlation with the response to platinum-based therapy. The mRNA levels of the selected genes were evaluated by Real Time-PCR (RT-PCR) with ad hoc validated primers and gene promoter methylation by pyrosequencing. All the DNA repair genes were variably expressed in all 42 PDX samples analyzed, with no particular histotype-specific pattern of expression. In high-grade serous/endometrioid PDXs, the CDK12 mRNA expression levels positively correlated with the expression of TP53BP1, PALB2, XPF and POLB. High-grade serous/endometrioid PDXs with TP53 mutations had significantly higher levels of POLQ, FANCD2, RAD51 and POLB than high-grade TP53 wild type PDXs. The mRNA levels of CDK12, PALB2 and XPF inversely associated with the in vivo DDP antitumor activity; higher CDK12 mRNA levels were associated with a higher recurrence rate in ovarian patients with low residual tumor. These data support the important role of CDK12 in the response to a platinum based therapy in ovarian patients. PMID:29872499
Ramaiah, Santhosh Kumar Vankayala; Günthner, Roman; Lech, Maciej; Anders, Hans-Joachim
2013-01-01
The cell type-, organ-, and species-specific expression of the Toll-like receptors (TLRs) are well described, but little is known about the respective expression profiles of their accessory molecules. We therefore determined the mRNA expression levels of LBP, MD2, CD36, CD14, granulin, HMGB1, LL37, GRP94, UNC93b1, TRIL, PRAT4A, AP3B1, AEP and the respective TLRs in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. In addition, the expression profiles in transient tissue inflammation upon renal ischemia-reperfusion injury, in spleens and kidneys from mice with lupus-like systemic autoimmunity, and in progressive tissue fibrosis upon unilateral ureteral obstruction were studied. Several TLR co-factors were specifically regulated during the different phases of these disease entities, suggesting a functional involvement in the disease process. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to TLR-mediated innate immunity, which seems to be involved in the tissue injury phase, in the phase of tissue regeneration, and in progressive tissue remodelling. PMID:23803655
Guerra, D M; Giometti, I C; Price, C A; Andrade, P B; Castilho, A C; Machado, M F; Ripamonte, P; Papa, P C; Buratini, J
2008-01-01
There is evidence that fibroblast growth factors (FGFs) are involved in the regulation of growth and regression of the corpus luteum (CL). However, the expression pattern of most FGF receptors (FGFRs) during CL lifespan is still unknown. The objective of the present study was to determine the pattern of expression of 'B' and 'C' splice variants of FGFRs in the bovine CL. Bovine CL were collected from an abattoir and classed as corpora hemorrhagica (Stage I), developing (Stage II), developed (Stage III) or regressed (Stage IV) CL. Expression of FGFR mRNA was measured by semiquantitative reverse transcription-polymerase chain reaction and FGFR protein was localised by immunohistochemistry. Expression of mRNA encoding the 'B' and 'C' spliced forms of FGFR1 and FGFR2 was readily detectable in the bovine CL and was accompanied by protein localisation. FGFR1C and FGFR2C mRNA expression did not vary throughout CL lifespan, whereas FGFR1B was upregulated in the developed (Stage III) CL. FGFR3B, FGFR3C and FGFR4 expression was inconsistent in the bovine CL. The present data indicate that FGFR1 and FGFR2 splice variants are the main receptors for FGF action in the bovine CL.
Ortega Serrano, P V; Guzmán, A; Hernández-Coronado, C G; Castillo-Juárez, H; Rosales-Torres, A M
2016-12-01
The vascular endothelial growth factor (VEGF) is essential for follicular development by promoting follicular angiogenesis, as well as for the proliferation and survival of granulosa cells. The biological effects of VEGF are regulated by two membrane receptors, VEGFR1 and VEGFR2, and two soluble receptors, sVEGFR1 and sVEGFR2, which play an antagonistic role. Thus, the objective of this study was to identify the mRNA expression pattern of total VEGF, VEGFR1, VEGFR2, sVEGFR1 and sVEGFR2 in bovine preselected follicles (PRF) and post-selected follicles (POF). The mRNA expression of these five genes in both granulosa cells (GC) and theca cells (TC) was compared between follicles classified as PRF and POF based on their diameter and on their ratio of estradiol/progesterone (E2/P4). Results showed a lower expression of mRNA of sVEGFR1 and sVEGFR2 in POF than in PRF (p < .05). Regarding the mRNA expression of total VEGF, VEGFR1 and VEGFR2, there was no difference between POF and PRF follicles (p > .05). Our results showed that the mRNA expression of VEGFR2 and sVEGFR1 was more abundant than the expression of VEGFR1 and sVEGFR2, while GC was the main source of mRNA for total VEGF. On the other hand, TC was the follicular compartment where the receptors were most expressed. Our results suggest that non-dominant follicles maintain a greater concentration of the mRNA expression of both membrane and soluble VEGF receptors. On the other hand, follicular dominance is related to a reduction in the mRNA expression of sVEGFR1 and sVEGFR2, which may favour VEGF binding with VEGFR2 and, hence, improve the follicular health and development. © 2016 Blackwell Verlag GmbH.
Josephson, Anna; Trifunovski, Alexandra; Widmer, Hans Ruedi; Widenfalk, Johan; Olson, Lars; Spenger, Christian
2002-11-18
Nogo (reticulon-4) is a myelin-associated protein that is expressed in three different splice variants, Nogo-A, Nogo-B, and Nogo-C. Nogo-A inhibits neurite regeneration in the central nervous system. Messenger RNA encoding Nogo is expressed in oligodendrocytes and central and peripheral neurons, but not in astrocytes or Schwann cells. Nogo is a transmembraneous protein; the extracellular domain is termed Nogo-66, and a Nogo-66-receptor (Nogo-R) has been identified. We performed in situ hybridization in human and mouse nervous tissues to map the cellular distribution of Nogo-R gene activity patterns in fetal and adult human spinal cord and sensory ganglia, adult human brain, and the nervous systems of developing and adult mice. In the human fetus Nogo-R was transcribed in the ventral horn of the spinal cord and in dorsal root ganglia. In adult human tissues Nogo-R gene activity was found in neocortex, hippocampus, amygdala, and a subset of large and medium-sized neurons of the dorsal root ganglia. Nogo-R mRNA was not expressed in the adult human spinal cord at detectable levels. In the fetal mouse, Nogo-R was diffusely expressed in brain, brainstem, trigeminal ganglion, spinal cord, and dorsal root ganglia at all stages. In the adult mouse strong Nogo-R mRNA expression was found in neurons in neocortex, hippocampus, amygdala, habenula, thalamic nuclei, brainstem, the granular cell layer of cerebellum, and the mitral cell layer of the olfactory bulb. Neurons in the adult mouse striatum, the medial septal nucleus, and spinal cord did not express Nogo-R mRNA at detectable levels. In summary, Nogo-66-R mRNA expression in humans and mice was observed in neurons of the developing nervous system Expression was downregulated in the adult spinal cord of both species, and specific expression patterns were seen in the adult brain. Copyright 2002 Wiley-Liss, Inc.
Törmä, Hans; Lindberg, Magnus; Berne, Berit
2008-05-01
Detergents are skin irritants affecting keratinocytes. In this study, healthy volunteers were exposed to water (vehicle) and 1% sodium lauryl sulfate (SLS) under occlusive patch tests for 24 hours. The messenger RNA (mRNA) expression of keratinocyte differentiation markers and of enzymes involved in corneodesmosome degradation was examined in skin biopsies (n=8) during the repair phase (6 hours to 7 days postexposure) using real-time reverse-transcription PCR. It was found that the expression of involucrin was increased at 6 hours, but then rapidly normalized. The expression of transglutaminase 1 exhibited a twofold increase after 24 hours in the SLS-exposed skin. Profilaggrin was decreased after 6 hours. Later (4-7 days), the expression in SLS-exposed areas was >50% above than in control areas. An increased and altered immunofluorescence pattern of involucrin, transglutaminase 1, and filaggrin was also found (n=4). At 6 hours post-SLS exposure, the mRNA expression of kallikrein-7 (KLK-7) and kallikrein-5 (KLK-5) was decreased by 50 and 75%, respectively, as compared with control and water-exposed areas. Thereafter, the expression pattern of KLK-7 and KLK-5 was normalized. Changes in protein expression of KLK-5 were also found. In conclusion, SLS-induced skin barrier defects induce altered mRNA expression of keratinocyte differentiation markers and enzymes degrading corneodesmosomes.
Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns.
Norred, S Elizabeth; Caveney, Patrick M; Chauhan, Gaurav; Collier, Lauren K; Collier, C Patrick; Abel, Steven M; Simpson, Michael L
2018-05-18
Recent superresolution microscopy studies in E. coli demonstrate that the cytoplasm has highly variable local concentrations where macromolecular crowding plays a central role in establishing membrane-less compartmentalization. This spatial inhomogeneity significantly influences molecular transport and association processes central to gene expression. Yet, little is known about how macromolecular crowding influences gene expression bursting-the episodic process where mRNA and proteins are produced in bursts. Here, we simultaneously measured mRNA and protein reporters in cell-free systems, showing that macromolecular crowding decoupled the well-known relationship between fluctuations in the protein population (noise) and mRNA population statistics. Crowded environments led to a 10-fold increase in protein noise even though there were only modest changes in the mRNA population and fluctuations. Instead, cell-like macromolecular crowding created an inhomogeneous spatial distribution of mRNA ("spatial noise") that led to large variability in the protein production burst size. As a result, the mRNA spatial noise created large temporal fluctuations in the protein population. These results highlight the interplay between macromolecular crowding, spatial inhomogeneities, and the resulting dynamics of gene expression, and provide insights into using these organizational principles in both cell-based and cell-free synthetic biology.
Fe Lanfranco, Maria; Loane, David J.; Mocchetti, Italo; Burns, Mark P.; Villapol, Sonia
2017-01-01
Microglia and macrophage cells are the primary producers of cytokines in response to neuroinflammatory processes. But these cytokines are also produced by other glial cells, endothelial cells, and neurons. It is essential to identify the cells that produce these cytokines to target their different levels of activation. We used dual RNAscope® fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) techniques to visualize the mRNA expression pattern of pro- and anti-inflammatory cytokines in microglia/macrophages cells. Using these methods, we can associate one mRNA to specific cell types when combining with different cellular markers by immunofluorescence. Results from RNAscope® probes IL-1β, TNFα, TGFβ, IL-10 or Arg1, showed colocalization with antibodies for microglia/macrophage cells. These target probes showed adequate sensitivity and specificity to detect mRNA expression. New FISH detection techniques combined with immunohistochemical techniques will help to jointly determine the protein and mRNA localization, as well as provide reliable quantification of the mRNA expression levels. PMID:29238736
Use of mRNA expression signatures to discover small molecule inhibitors of skeletal muscle atrophy
Adams, Christopher M.; Ebert, Scott M.; Dyle, Michael C.
2017-01-01
Purpose of review Here, we discuss a recently developed experimental strategy for discovering small molecules with potential to prevent and treat skeletal muscle atrophy. Recent findings Muscle atrophy involves and requires widespread changes in skeletal muscle gene expression, which generate complex but measurable patterns of positive and negative changes in skeletal muscle mRNA levels (a.k.a. mRNA expression signatures of muscle atrophy). Many bioactive small molecules generate their own characteristic mRNA expression signatures, and by identifying small molecules whose signatures approximate mirror images of muscle atrophy signatures, one may identify small molecules with potential to prevent and/or reverse muscle atrophy. Unlike a conventional drug discovery approach, this strategy does not rely on a predefined molecular target but rather exploits the complexity of muscle atrophy to identify small molecules that counter the entire spectrum of pathological changes in atrophic muscle. We discuss how this strategy has been used to identify two natural compounds, ursolic acid and tomatidine, that reduce muscle atrophy and improve skeletal muscle function. Summary Discovery strategies based on mRNA expression signatures can elucidate new approaches for preserving and restoring muscle mass and function. PMID:25807353
Use of mRNA expression signatures to discover small molecule inhibitors of skeletal muscle atrophy.
Adams, Christopher M; Ebert, Scott M; Dyle, Michael C
2015-05-01
Here, we discuss a recently developed experimental strategy for discovering small molecules with potential to prevent and treat skeletal muscle atrophy. Muscle atrophy involves and requires widespread changes in skeletal muscle gene expression, which generate complex but measurable patterns of positive and negative changes in skeletal muscle mRNA levels (a.k.a. mRNA expression signatures of muscle atrophy). Many bioactive small molecules generate their own characteristic mRNA expression signatures, and by identifying small molecules whose signatures approximate mirror images of muscle atrophy signatures, one may identify small molecules with potential to prevent and/or reverse muscle atrophy. Unlike a conventional drug discovery approach, this strategy does not rely on a predefined molecular target but rather exploits the complexity of muscle atrophy to identify small molecules that counter the entire spectrum of pathological changes in atrophic muscle. We discuss how this strategy has been used to identify two natural compounds, ursolic acid and tomatidine, that reduce muscle atrophy and improve skeletal muscle function. Discovery strategies based on mRNA expression signatures can elucidate new approaches for preserving and restoring muscle mass and function.
Rogero, Marcelo M.; Hesketh, John
2017-01-01
Selenium (Se) is an essential micronutrient for human health. Its beneficial effects are exerted by selenoproteins, which can be quantified in blood and used as molecular biomarkers of Se status. We hypothesize that the presence of genetic polymorphisms in selenoprotein genes may: (1) influence the gene expression of specific selenoproteins and (2) influence the pattern of global gene expression after Brazil nut supplementation. The study was conducted with 130 healthy volunteers in Sao Paulo, Brazil, who consumed one Brazil nut (300 μg/Se) a day for eight weeks. Gene expression of GPX1 and SELENOP and genotyping were measured by real-time PCR using TaqMan Assays. Global gene expression was assessed by microarray using Illumina HumanHT-12 v4 BeadChips. Brazil nut supplementation significantly increased GPX1 mRNA expression only in subjects with CC genotype at rs1050450 (p < 0.05). SELENOP mRNA expression was significantly higher in A-carriers at rs7579 either before or after supplementation (p < 0.05). Genotype for rs713041 in GPX4 affected the pattern of blood cell global gene expression. Genetic variations in selenoprotein genes modulated both GPX1 and SELENOP selenoprotein gene expression and global gene expression in response to Brazil nut supplementation. PMID:28696394
Saveliev, Alexei; Zhu, Fan; Yuan, Yan
2002-08-01
Viral immediate-early (IE) genes are the first class of viral genes expressed during primary infection or reactivation from latency. They usually encode regulatory proteins that play crucial roles in viral life cycle. In a previous study, four regions in the KSHV genome were found to be actively transcribed in the immediate-early stage of viral reactivation in primary effusion lymphoma cells. Three immediate-early transcripts were characterized in these regions, as follows: mRNAs for ORF50 (KIE-1), ORF-45 (KIE-2), and ORF K4.2 (KIE-3) (F. X. Zhu, T. Cusano, and Y. Yuan, 1999, J. Virol. 73, 5556-5567). In the present study, we further analyzed the expression of genes in these IE regions in BC-1 and BCBL-1 cells. One of the immediate-early regions (KIE-1) that encompasses ORF50 and other genes was intensively studied to establish a detailed transcription map and expression patterns of genes in this region. This study led to identification of several novel IE transcripts in this region. They include a 2.6-kb mRNA which encodes ORF48/ORF29b, a family of transcripts that are complementary to ORF50 mRNA and a novel K8 IE mRNA of 1.5 kb. Together with the IE mRNA for ORF50 which was identified previously, four immediate-early genes have been mapped to KIE-1 region. Therefore, we would designate KIE-1 the major immediate-early region of KSHV. In addition, we showed that transcription of K8 gene is controlled by two promoters, yielding two transcripts, an immediate-early mRNA of 1.5 kb and a delayed-early mRNA of 1.3 kb.
Grommen, Sylvia V H; Arckens, Lutgarde; Theuwissen, Tim; Darras, Veerle M; De Groef, Bert
2008-03-01
In this study, we tried to elucidate the changes in thyroid hormone (TH) receptor beta2 (TRbeta2) expression at the different levels of the hypothalamo-pituitary-thyroidal (HPT) axis during the last week of chicken embryonic development and hatching, a period characterized by an augmented activity of the HPT axis. We quantified TRbeta2 mRNA in retina, pineal gland, and the major control levels of the HPT axis - brain, pituitary, and thyroid gland - at day 18 of incubation, and found the most abundant mRNA content in retina and pituitary. Thyroidal TRbeta2 mRNA content increased dramatically between embryonic day 14 and 1 day post-hatch. In pituitary and hypothalamus, TRbeta2 mRNA expression rose gradually, in parallel with increases in plasma thyroxine concentrations. Using in situ hybridization, we have demonstrated the presence of TRbeta2 mRNA throughout the diencephalon and confirmed the elevation in TRbeta2 mRNA expression in the hypophyseal thyrotropes. In vitro incubation with THs caused a down-regulation of TRbeta2 mRNA levels in embryonic but not in post-hatch pituitaries. The observed expression patterns in pituitary and diencephalon may point to substantial changes in TRbeta2-mediated TH feedback active during the perinatal period. The strong rise in thyroidal TRbeta2 mRNA content could be indicative of an augmented modulation of thyroid development and/or function by THs toward and after hatching. Finally, THs proved to exert an age-dependent effect on pituitary TRbeta2 mRNA expression.
Wang, Y; Wang, J; Gao, Y
2001-07-01
To observe and compare the expression pattern of Msx-1, Msx-2 mRNA during the different stages of hard tissue formation in the first mandibular molar of mouse and investigate the relationship between the two genes. First mandibular molar germs from 1, 3, 7 and 14-days old mouse were separated and reverse transcription-polymerase chain reaction was performed on the total RNA of them using Msx-1, Msx-2 specific primers separately. Expression of both genes were detected during the different stages of hard tissue formation in the mouse first mandibular molars, but there was some interesting differences in the quantitiy between the two genes. Msx-1 transcripts appeared at the 1 day postnatally, and increase through 3 day, 7 day, then maximally expressed at 14 days postnatally; while Msx-2 mRNA was seen and expressed maximally at the 3 days postnatally, then there was a gradual reduction at 7 days, and 14 days postnatally. The homeobox gene Msx-1, Msx-2 may play a role in the events of the hard tissue formation. The complementary expression pattern of them during the specific stage of hard tissue formation indicates that there may be some functional redundancy between them during the biomineralization.
Golini, Rebeca S.; Delgado, Silvia M.; Navigatore Fonzo, Lorena S.; Ponce, Ivana T.; Lacoste, María G.; Anzulovich, Ana C.
2012-01-01
The circadian expression of clock and clock-controlled cognition-related genes in the hippocampus would be essential to achieve an optimal daily cognitive performance. There is some evidence that retinoid nuclear receptors (RARs and RXRs) can regulate circadian gene expression in different tissues. In this study, Holtzman male rats from control and vitamin A-deficient groups were sacrificed throughout a 24-h period and hippocampus samples were isolated every 4 or 5 h. RARα and RXRβ expression level was quantified and daily expression patterns of clock BMAL1, PER1, RORα and REVERB genes, RORα and REVERB proteins, as well as temporal expression of cognition-related RC3 and BDNF genes were determined in the hippocampus of the two groups of rats. Our results show significant daily variations of BMAL1, PER1, RORα and REVERB genes, RORα and REVERB proteins and, consequently, daily oscillating expression of RC3 and BDNF genes in the rat hippocampus. Vitamin A deficiency reduced RXRβ mRNA level as well as the amplitude of PER1, REVERB gene and REVERB protein rhythms, and phase-shifted the daily peaks of BMAL1 and RORα mRNA, RORα protein and RC3 and BDNF mRNA levels. Thus, nutritional factors, such as vitamin A and its derivatives the retinoids, might modulate daily patterns of BDNF and RC3 expression in the hippocampus and they could be essential to maintain an optimal daily performance at molecular level in this learning-and-memory-related brain area. PMID:22434687
Altered skeletal pattern of gene expression in response to spaceflight and hindlimb elevation
NASA Technical Reports Server (NTRS)
Bikle, D. D.; Harris, J.; Halloran, B. P.; Morey-Holton, E.
1994-01-01
Spaceflight leads to osteopenia, in part by inhibiting bone formation. Using an animal model (hindlimb elevation) that simulates the weightlessness of spaceflight, we and others showed a reversible inhibition of bone formation and bone mineralization. In this study, we have measured the mRNA levels of insulin-like growth factor I (IGF-I), IGF-I receptor (IGF-IR), alkaline phosphatase, and osteocalcin in the tibiae of rats flown aboard National Aeronautics and Space Administration Shuttle Flight STS-54 and compared the results with those obtained from their ground-based controls and from the bones of hindlimb-elevated animals. Spaceflight and hindlimb elevation transiently increase the mRNA levels for IGF-I, IGF-IR, and alkaline phosphatase but decrease the mRNA levels for osteocalcin. The changes in osteocalcin and alkaline phosphatase mRNA levels are consistent with a shift toward decreased maturation, whereas the rise in IGF-I and IGF-IR mRNA levels may indicate a compensatory response to the fall in bone formation. We conclude that skeletal unloading during spaceflight or hindlimb elevation resets the pattern of gene expression in the osteoblast, giving it a less mature profile.
Goubau, S; Morck, D W; Buret, A
2000-01-01
The expression of the interleukin-8 (IL-8) gene was examined by in situ hybridization in lung tissues from calves experimentally infected with Mannheimia (Pasteurella) haemolytica and treated with tilmicosin. Interleukin-8 mRNA expression was detected in alveolar areas, particularly along interlobular septa, in the lumen, and in the epithelial cells of some bronchioles. In lesional lung tissues from animals that had received tilmicosin, we found large areas with limited inflammation. There was no staining for IL-8 mRNA in these areas. In contrast, in strongly inflamed areas, the same patterns and intensities of staining for IL-8 mRNA were detected in tilmicosin- and sham-treated animals. We conclude that tilmicosin does not affect the expression of IL-8 mRNA in tissue showing microscopic signs of inflammation. Together with previous reports, this supports the view that the pro-apoptotic properties of tilmicosin on neutrophils do not compromise the host defense mechanisms required to control the infection. Images Figure 1. PMID:11041503
Yang, Xue; Cui, Yan; Yue, Jing; He, Honghong; Yu, Chuan; Liu, Penggang; Liu, Jun; Ren, Xiandong; Meng, Yun
2017-01-01
Objective This experiment was conducted to study the histological characteristics, age-related thickness changes, and expression of HSPs in the skin of yak. Methods A total of 20 yaks (10 males and 10 females) were used. Different regions of the normal skin of three different ages (newborn, half-year-old and adult) of yaks were harvested for histological study and thickness measurement. Biopsy samples were taken from the scapula regions of the skin from the same five approximately 1-year-old yaks during the hair cycle (telogen, anagen and catagen). RT-PCR, western blot and immunohistochemistry methods using the mRNA and protein levels were used to detect the expression of HSP27, HSP70 and HSP90. RT-PCR method was used to detect the mRNA expression of CGI-58 and KDF1. The IPP6.0 software was used to analyze the immunohistochemistry and measure the thickness of the skin. Results The general histological structure of hairy yak skin was similar to other domestic mammals. The unique features included prominent cutaneous vascular plexuses, underdeveloped sweat glands, a large number of nasolabial glands in the nasolabial plate, and hair follicle groups composed of one primary follicle and several secondary follicles. The skin, epidermis and dermis thickness did vary significantly between different body regions and different ages. The thickness of the skin, epidermis and dermis increased from newborn to adult in yaks. Yak skin thickness decreased from dorsally to ventrally on the trunk. The skin on the lateral surface was thicker than the skin on the medial surface on the limbs. HSP27, HSP70 and HSP90 showed different expression patterns during the hair cycle using RT-PCR, western blot and immunohistochemistry methods. The expression of HSP27 mRNA and protein in the anagen stage was the highest, followed by the catagen stage, and the expression in the telogen stage was the lowest. The expression of HSP70 mRNA and protein in the telogen stage was the highest, followed by the anagen stage, and the expression in the catagen stage was the lowest. The expression of HSP90 mRNA and protein in the anagen stage was the highest, followed by the telogen stage, and the expression in the catagen stage was the lowest. HSPs were mainly expressed in the outer root sheath of hair follicle during the hair cycle, also expressed in epidermis, sebaceous gland and sweat gland in the skin of Yak. The expression of CGI-58 mRNA in the anagen stage was the highest, followed by the catagen stage, and the expression in the telogen stage was the lowest. The expression of KDF1 mRNA in the telogen stage was the highest, followed by the catagen stage, and the expression in the anagen stage was the lowest. Meaning In this study, we examined and fully described the histology of normal skin in Yak and measured the skin thickness of different ages and different regions in Yak. These data may be useful to better understand and appreciate the adaptability features of yak skin. Our investigation reports the expression patterns of HSPs in yak skin for the first time. The different expression pattern of HSPs during the hair cycle suggests they may play different roles in yak hair follicle biology. PMID:28463974
Yang, Xue; Cui, Yan; Yue, Jing; He, Honghong; Yu, Chuan; Liu, Penggang; Liu, Jun; Ren, Xiandong; Meng, Yun
2017-01-01
This experiment was conducted to study the histological characteristics, age-related thickness changes, and expression of HSPs in the skin of yak. A total of 20 yaks (10 males and 10 females) were used. Different regions of the normal skin of three different ages (newborn, half-year-old and adult) of yaks were harvested for histological study and thickness measurement. Biopsy samples were taken from the scapula regions of the skin from the same five approximately 1-year-old yaks during the hair cycle (telogen, anagen and catagen). RT-PCR, western blot and immunohistochemistry methods using the mRNA and protein levels were used to detect the expression of HSP27, HSP70 and HSP90. RT-PCR method was used to detect the mRNA expression of CGI-58 and KDF1. The IPP6.0 software was used to analyze the immunohistochemistry and measure the thickness of the skin. The general histological structure of hairy yak skin was similar to other domestic mammals. The unique features included prominent cutaneous vascular plexuses, underdeveloped sweat glands, a large number of nasolabial glands in the nasolabial plate, and hair follicle groups composed of one primary follicle and several secondary follicles. The skin, epidermis and dermis thickness did vary significantly between different body regions and different ages. The thickness of the skin, epidermis and dermis increased from newborn to adult in yaks. Yak skin thickness decreased from dorsally to ventrally on the trunk. The skin on the lateral surface was thicker than the skin on the medial surface on the limbs. HSP27, HSP70 and HSP90 showed different expression patterns during the hair cycle using RT-PCR, western blot and immunohistochemistry methods. The expression of HSP27 mRNA and protein in the anagen stage was the highest, followed by the catagen stage, and the expression in the telogen stage was the lowest. The expression of HSP70 mRNA and protein in the telogen stage was the highest, followed by the anagen stage, and the expression in the catagen stage was the lowest. The expression of HSP90 mRNA and protein in the anagen stage was the highest, followed by the telogen stage, and the expression in the catagen stage was the lowest. HSPs were mainly expressed in the outer root sheath of hair follicle during the hair cycle, also expressed in epidermis, sebaceous gland and sweat gland in the skin of Yak. The expression of CGI-58 mRNA in the anagen stage was the highest, followed by the catagen stage, and the expression in the telogen stage was the lowest. The expression of KDF1 mRNA in the telogen stage was the highest, followed by the catagen stage, and the expression in the anagen stage was the lowest. In this study, we examined and fully described the histology of normal skin in Yak and measured the skin thickness of different ages and different regions in Yak. These data may be useful to better understand and appreciate the adaptability features of yak skin. Our investigation reports the expression patterns of HSPs in yak skin for the first time. The different expression pattern of HSPs during the hair cycle suggests they may play different roles in yak hair follicle biology.
Smith, M J; Wise, P M
2001-07-01
Neurotensin (NT)-containing neurons in the rostral portion of the medial preoptic nucleus (rMPN) of the brain may play a key role in regulating the pattern of secretion of GnRH, thereby influencing the reproductive cycle in females. The major goals of this study were to determine whether NT messenger RNA (mRNA) levels in the rMPN exhibit a unique pattern of expression in temporal association with the preovulatory LH surge and to assess whether NT neurons may communicate directly with GnRH neurons. We analyzed NT gene expression in rats using in situ hybridization over the day of proestrus and compared this with diestrous day 1. We also determined whether the high-affinity NT receptor (NT1) is expressed in GnRH neurons using dual-label in situ hybridization and whether this expression varies over the estrous cycle. We found that NT mRNA levels in the rMPN increase significantly on the day of proestrus, rising before the LH surge. No such change was detected on diestrous day 1, when the LH surge does not occur. Furthermore, we observed that a significant number of GnRH neurons coexpress NT1 mRNA and that the number of GnRH neurons expressing NT1 mRNA peaks on proestrus. Together with previous findings, our results suggest that increased expression of NT in the rMPN may directly stimulate GnRH neurons on proestrus, contributing to the LH surge. In addition, our results suggest that responsiveness of GnRH neurons to NT stimulation is enhanced on proestrus due to increased expression of NT receptors within GnRH neurons.
Szot, Patricia; Franklin, Allyn; Figlewicz, Dianne P; Beuca, Timothy Petru; Bullock, Kristin; Hansen, Kim; Banks, William A; Raskind, Murray A; Peskind, Elaine R
2017-07-04
Neuroinflammation is proposed to be an important component in the development of several central nervous system (CNS) disorders including depression, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. However, exactly how neuroinflammation leads to, or contributes to, these central disorders is unclear. The objective of the study was to examine and compare the expression of mRNAs for interleukin-6 (IL-6), IL-7, IL-10 and the receptors for IL-6 (IL-6R) and IL-7 (IL-7R) using in situ hybridization in discrete brain regions and in the spleen after multiple injections of 3mg/kg lipopolysaccharide (LPS), a model of neuroinflammation. In the spleen, LPS significantly elevated IL-6 mRNA expression, then IL-10 mRNA, with no effect on IL-7 or IL-7R mRNA, while significantly decreasing IL-6R mRNA expression. In the CNS, LPS administration had the greatest effect on IL-6 and IL-6R mRNA. LPS increased IL-6 mRNA expression only in non-neuronal cells throughout the brain, but significantly elevated IL-6R mRNA in neuronal populations, where observed, except the cerebellum. LPS resulted in variable effects on IL-10 mRNA, and had no effect on IL-7 or IL-7R mRNA expression. These studies indicate that LPS-induced neuroinflammation has substantial but variable effects on the regional and cellular patterns of CNS IL-6, IL-7 and IL-10, and for IL-6R and IL-7R mRNA expression. It is apparent that administration of LPS can affect non-neuronal and neuronal cells in the brain. Further research is required to determine how CNS inflammatory changes associated with IL-6, IL-10 and IL-6R could in turn contribute to the development of CNS neurological disorders. Published by Elsevier Ltd.
Kontogiannatos, Dimitrios; Gkouvitsas, Theodoros; Kourti, Anna
2017-01-01
To obtain clues to the link between the molecular mechanism of circadian and photoperiod clocks, we cloned two circadian clock genes, period (per) and timeless (tim) from the moth Sesamia nonagrioides, which undergoes facultative diapause controlled by photoperiod. Sequence analysis revealed a high degree of conservation among the compared insects fοr both genes. We also investigated the expression patterns of per and tim in brains of larvae growing under 16L:8D (long days), constant darkness (DD) and 10L:14D (short days) conditions by qPCR assays. The results showed that mRNA accumulations encoding both genes exhibited diel oscillations under different photoperiods. The oscillation of per and tim mRNA, under short-day photoperiod differed from long-day. The difference between long-day and short-day conditions in the pattern of mRNA levels of per and tim appears to distinguish photoperiodic conditions clearly and both genes were influenced by photoperiod in different ways. We infer that not all photoperiodic clocks of insects interact with circadian clocks in the same fashion. Our results suggest that transcriptional regulations of the both clock genes act in the diapause programing in S. nonagrioides. The expression patterns of these genes are affected by photoperiod but runs with 24 h by entrainment to daily environmental cues. © 2016 Wiley Periodicals, Inc.
Polygalacturonase Gene Expression in Rutgers, rin, nor, and Nr Tomato Fruits 1
DellaPenna, Dean; Kates, David S.; Bennett, Alan B.
1987-01-01
Polygalacturonase (PG) gene expression was studied in normally ripening tomato fruit (Lycopersicon esculentum Mill, cv Rutgers) and in three ripening-impaired mutants, rin, nor, and Nr. Normal and mutant fruit of identical chronological age were analyzed at 41, 49, and 62 days after pollination. These stages corresponded to mature-green, ripe, and overripe, respectively, for Rutgers. The amount of PG mRNA in Rutgers was highest at 49 days and accounted for 2.3% of the total mRNA mass but at 62 days had decreased to 0.004% of the total mRNA mass. In Nr, the amount of PG mRNA steadily increased between 41 and 62 days after pollination, reaching a maximum level of 0.5% of the total mRNA mass. The mutant nor exhibited barely detectable levels of PG mRNA at all stages tested. Surprisingly, PG mRNA, comprising approximately 0.06% of the mRNA mass, was detected in 49 day rin fruit. This mRNA accumulation occurred in the absence of elevated ethylene production by the fruit and resulted in the synthesis of enzymically active PG I. The different patterns of PG mRNA accumulation in the three mutants suggests that distinct molecular mechanisms contribute to reduced PG expression in each ripening-impaired mutant. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:16665727
Parreira, Kleber S; Debaix, Huguette; Cnops, Yvette; Geffers, Lars; Devuyst, Olivier
2009-08-01
High-throughput analyses have shown that aquaporins (AQPs) belong to a cluster of genes that are differentially expressed during kidney organogenesis. However, the spatiotemporal expression patterns of the AQP gene family during tubular maturation and the potential influence of genetic variation on these patterns and on water handling remain unknown. We investigated the expression patterns of all AQP isoforms in fetal (E13.5 to E18.5), postnatal (P1 to P28), and adult (9 weeks) kidneys of inbred (C57BL/6J) and outbred (CD-1) mice. Using quantitative polymerase chain reaction (PCR), we evidenced two mRNA patterns during tubular maturation in C57 mice. The AQPs 1-7-11 showed an early (from E14.5) and progressive increase to adult levels, similar to the mRNA pattern observed for proximal tubule markers (Megalin, NaPi-IIa, OAT1) and reflecting the continuous increase in renal cortical structures during development. By contrast, AQPs 2-3-4 showed a later (E15.5) and more abrupt increase, with transient postnatal overexpression. Most AQP genes were expressed earlier and/or stronger in maturing CD-1 kidneys. Furthermore, adult CD-1 kidneys expressed more AQP2 in the collecting ducts, which was reflected by a significant delay in excreting a water load. The expression patterns of proximal vs. distal AQPs and the earlier expression in the CD-1 strain were confirmed by immunoblotting and immunostaining. These data (1) substantiate the clustering of important genes during tubular maturation and (2) demonstrate that genetic variability influences the regulation of the AQP gene family during tubular maturation and water handling by the mature kidney.
Yang, Y.; Hao, J.; Liu, X.; Dalkin, B.; Nagle, R. B.
1997-01-01
The expression of cytokeratin (CK) mRNA for CK5, -8, -14, -16, and -19 was investigated in normal prostate, prostatic intraepithelial neoplasia (PIN) lesions, and invasive carcinoma using in situ hybridization. Protein localization was carried out in adjacent sections using immunohistochemistry and correlated with mRNA expression. Snap-frozen human prostate samples including 22 examples of normal glands, 20 cases of PIN lesions, and 12 cases of invasive carcinoma were examined. CK5 and -14 mRNA and protein were prominently expressed only in the basal cells of normal glands and PIN lesions. CK14 mRNA was absent in the luminal cells of the most of the PIN lesions but was seen at a low level in some PIN lesions. CK14 protein was not detected in any PIN lesion, suggesting that, if the cell that makes up the PIN lesions is derived from a basal cell, CK14 translation is depressed although a low level of CK14 mRNA may persist. CK8 mRNA and protein were constitutively expressed in all epithelia of normal and abnormal prostate tissues. CK19 mRNA and protein were persistently expressed in both basal and luminal cells of the tubular portion of normal glands as well as PIN lesions, but were expressed heterogeneously in both basal and luminal cells of normal alveoli. CK16 mRNA was expressed in a similar pattern as CK19, but CK16 protein was not detected either in normal or in abnormal prostate tissues. In conclusion, the expression of CK19 in PIN lesions is similar to its tubular expression and would support an origin of PIN lesions from this structure rather than the alveolar portion of the glands. The similar cytokeratin expression between PIN lesions and invasive carcinoma further supports the concept that PIN is a precursor lesion of invasive carcinoma. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:9033282
Nagasawa, Kazue; Fernandes, Jorge MO; Yoshizaki, Goro; Miwa, Misako; Babiak, Igor
2013-01-01
No information exists on the identification of primordial germ cells (PGCs) in the super-order Protacanthopterygii, which includes the Salmonidae family and Atlantic salmon (Salmo salar L.), one of the most commercially important aquatic animals worldwide. In order to identify salmon PGCs, we cloned the full-length cDNA of vasa, dead end (dnd), and lymphocyte antigen 75 (ly75/CD205) genes as germ cell marker candidates, and analyzed their expression patterns in both adult and embryonic stages of Atlantic salmon. Semi-quantitative RT-PCR results showed that salmon vasa and dnd were specifically expressed in testis and ovary, and vasa, dnd, and ly75 mRNA were maternally deposited in the egg. vasa mRNA was consistently detected throughout embryogenesis while dnd and ly75 mRNA were gradually degraded during cleavages. In situ analysis revealed the localization of vasa and dnd mRNA and Ly75 protein in PGCs of hatched larvae. Whole-mount in situ hybridization detected vasa mRNA during embryogenesis, showing a distribution pattern somewhat different to that of zebrafish; specifically, at mid-blastula stage, vasa-expressing cells were randomly distributed at the central part of blastodisc, and then they migrated to the presumptive region of embryonic shield. Therefore, the typical vasa localization pattern of four clusters during blastulation, as found in zebrafish, was not present in Atlantic salmon. In addition, salmon PGCs could be specifically labeled with a green fluorescence protein (GFP) using gfp-rt-vasa 3′-UTR RNA microinjection for further applications. These findings may assist in understanding PGC development not only in Atlantic salmon but also in other salmonids. PMID:23239145
Xu, Yongjiang; Zang, Kun; Liu, Xuezhou; Shi, Bao; Li, Cunyu; Shi, Xueying
2015-02-01
In order to elucidate the possible roles of insulin-like growth factors I and II (IGF-I and IGF-II) in the embryonic development of Platichthys stellatus, their cDNAs were isolated and their spatial expression pattern in adult organs and temporal expression pattern throughout embryonic development were examined by quantitative real-time PCR assay. The IGF-I cDNA sequence was 1,268 bp in length and contained an open reading frame (ORF) of 558 bp, which encoded 185 amino acid residues. With respect to IGF-II, the full-length cDNA was 899 bp in length and contained a 648-bp ORF, which encoded 215 amino acid residues. The amino acid sequences of IGF-I and IGF-II exhibited high identities with their fish counterparts. The highest IGF-I mRNA level was found in the liver for both sexes, whereas the IGF-II gene was most abundantly expressed in female liver and male liver, gill, and brain. The sex-specific and spatial expression patterns of IGF-I and IGF-II mRNAs are thought to be related to the sexually dimorphic growth and development of starry flounder. Both IGF-I and IGF-II mRNAs were detected in unfertilized eggs, which indicated that IGF-I and IGF-II were parentally transmitted. Nineteen embryonic development stages were tested. IGF-I mRNA level remained high from unfertilized eggs to low blastula followed by a significant decrease at early gastrula and then maintained a lower level. In contrast, IGF-II mRNA level was low from unfertilized eggs to high blastula and peaked at low blastula followed by a gradual decrease. Moreover, higher levels of IGF-I mRNA than that of IGF-II were found from unfertilized eggs to high blastula, vice versa from low blastula to newly hatched larva, and the different expression pattern verified the differential roles of IGF-I and IGF-II in starry flounder embryonic development. These results could help in understanding the endocrine mechanism involved in the early development and growth of starry flounder.
Huang, Jin; Hu, Huabin; Xie, Yangchun; Tang, Youhong; Liu, Wei; Zhong, Meizuo
2013-06-01
To analyze the impact of β-tubulin-III (TUBB3), thymidylate synthase (TS) and excision repair cross complementation group 1 (ERCC1) mRNA expression on chemoresponse and clinical outcome of patients with advanced gastric cancer treated with TXT/CDDP/FU (DCF) regimen chemotherapy. The study population consisted of 48 patients with advanced gastric cancer. All patients were treated with DCF regimen palliative chemotherapy. The mRNA expressions of TUBB3, TS and ERCC1 of primary tumors were examined by multiplex branched-DNA liquid chip technology. The patients with low TUBB3 mRNA expression had higher response rate to chemotherapy than patients with high TUBB3 expression (P=0.011). There were no significant differences between response rate and TS or ERCC1 expression pattern. Median overall survival (OS) and median time to progression (TTP) were significantly longer in patients with low TUBB3 mRNA expression (P=0.002, P<0.001). TS or ERCC1 expression was not correlated with TTP and OS. In the combined analysis including TUBB3, TS and ERCC1, the patients with 0 or 1 high expression gene had better response rate, TTP and OS than the remaining patients (all P<0.001). Multivariate analysis revealed that ECOG (Eastern Cooperative Oncology Group)≥2 (HR=2.42, P=0.009) and TUBB3 (HR=2.34, P=0.036) mRNA expression significantly impacted on OS. High TUBB3 mRNA expression is correlated with resistance to DCF regimen chemotherapy. TUBB3 might be a predictive and prognostic factor in patients with advanced gastric cancer treated with TXT-based chemotherapy. The combined evaluation of TUBB3, TS and ERCC1 expression can promote the individual treatment in advanced gastric cancer.
Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse.
Jurado, Juan; Prieto-Alamo, María-José; Madrid-Rísquez, José; Pueyo, Carmen
2003-11-14
This work provides the first absolute expression patterns of genes coding for all known components of both thioredoxin (Trx) and glutaredoxin (Grx) systems in mouse: Trx1, Trx2, Grx1, Grx2, TrxR1, TrxR2, thioredoxin/glutathione reductase, and glutathione reductase. We devised a novel assay that, combining the advantages of multiplex and real-time PCR, streamlines the quantitation of the actual mRNA copy numbers in whole-animal experiments. Quantitations reported establish differences among adult organs and embryonic stages, compare mRNA decay rates, explore the significance of alternative mRNA isoforms derived from TrxR1 and Grx2 genes, and examine the time-course expression upon superoxide stress promoted by paraquat. Collectively, these quantitations show: i) unique expression profiles for each transcript and mouse organ examined, yet with some general trends like the higher amounts of mRNA species coding for thioredoxins than those coding for the reductases that control their redox states and activities; ii) continuous expression during embryogenesis with outstanding up-regulations of Trx1 and TrxR1 mRNAs in specific temporal sequences; iii) drastic differences in mRNA stability, liver decay rates range from 2.8 h (thioredoxin/glutathione reductase) to >/= 35 h (Trx1 and Trx2), and directly correlate with mRNA steady-state values; iv) testis-specific differences in the amounts (relative to total isoforms) of transcripts yielding the mitochondrial Grx2a and 67-kDa TrxR1 variants; and v) coordinated up-regulation of TrxR1 and glutathione reductase mRNAs in response to superoxide stress in an organ-specific manner. Further insights into in vivo roles of these redox systems should be gained from more focused studies of the mechanisms underlying the vast differences reported here at the transcript level.
Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns
Norred, Sarah Elizabeth; Caveney, Patrick M.; Chauhan, Gaurav; ...
2018-04-24
Recent superresolution microscopy studies in E. coli demonstrate that the cytoplasm has highly variable local concentrations where macromolecular crowding plays a central role in establishing membrane-less compartmentalization. This spatial inhomogeneity significantly influences molecular transport and association processes central to gene expression. Yet, little is known about how macromolecular crowding influences gene expression bursting—the episodic process where mRNA and proteins are produced in bursts. Here, we simultaneously measured mRNA and protein reporters in cell-free systems, showing that macromolecular crowding decoupled the well-known relationship between fluctuations in the protein population (noise) and mRNA population statistics. Crowded environments led to a 10-fold increasemore » in protein noise even though there were only modest changes in the mRNA population and fluctuations. Instead, cell-like macromolecular crowding created an inhomogeneous spatial distribution of mRNA (“spatial noise”) that led to large variability in the protein production burst size. As a result, the mRNA spatial noise created large temporal fluctuations in the protein population. Furthermore, these results highlight the interplay between macromolecular crowding, spatial inhomogeneities, and the resulting dynamics of gene expression, and provide insights into using these organizational principles in both cell-based and cell-free synthetic biology.« less
Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norred, Sarah Elizabeth; Caveney, Patrick M.; Chauhan, Gaurav
Recent superresolution microscopy studies in E. coli demonstrate that the cytoplasm has highly variable local concentrations where macromolecular crowding plays a central role in establishing membrane-less compartmentalization. This spatial inhomogeneity significantly influences molecular transport and association processes central to gene expression. Yet, little is known about how macromolecular crowding influences gene expression bursting—the episodic process where mRNA and proteins are produced in bursts. Here, we simultaneously measured mRNA and protein reporters in cell-free systems, showing that macromolecular crowding decoupled the well-known relationship between fluctuations in the protein population (noise) and mRNA population statistics. Crowded environments led to a 10-fold increasemore » in protein noise even though there were only modest changes in the mRNA population and fluctuations. Instead, cell-like macromolecular crowding created an inhomogeneous spatial distribution of mRNA (“spatial noise”) that led to large variability in the protein production burst size. As a result, the mRNA spatial noise created large temporal fluctuations in the protein population. Furthermore, these results highlight the interplay between macromolecular crowding, spatial inhomogeneities, and the resulting dynamics of gene expression, and provide insights into using these organizational principles in both cell-based and cell-free synthetic biology.« less
VGLUT1 and VGLUT2 mRNA expression in the primate auditory pathway
Hackett, Troy A.; Takahata, Toru; Balaram, Pooja
2011-01-01
The vesicular glutamate transporters (VGLUTs) regulate storage and release of glutamate in the brain. In adult animals, the VGLUT1 and VGLUT2 isoforms are widely expressed and differentially distributed, suggesting that neural circuits exhibit distinct modes of glutamate regulation. Studies in rodents suggest that VGLUT1 and VGLUT2 mRNA expression patterns are partly complementary, with VGLUT1 expressed at higher levels in cortex and VGLUT2 prominent subcortically, but with overlapping distributions in some nuclei. In primates, VGLUT gene expression has not been previously studied in any part of the brain. The purposes of the present study were to document the regional expression of VGLUT1 and VGLUT2 mRNA in the auditory pathway through A1 in cortex, and to determine whether their distributions are comparable to rodents. In situ hybridization with antisense riboprobes revealed that VGLUT2 was strongly expressed by neurons in the cerebellum and most major auditory nuclei, including the dorsal and ventral cochlear nuclei, medial and lateral superior olivary nuclei, central nucleus of the inferior colliculus, sagulum, and all divisions of the medial geniculate. VGLUT1 was densely expressed in the hippocampus and ventral cochlear nuclei, and at reduced levels in other auditory nuclei. In auditory cortex, neurons expressing VGLUT1 were widely distributed in layers II – VI of the core, belt and parabelt regions. VGLUT2 was most strongly expressed by neurons in layers IIIb and IV, weakly by neurons in layers II – IIIa, and at very low levels in layers V – VI. The findings indicate that VGLUT2 is strongly expressed by neurons at all levels of the subcortical auditory pathway, and by neurons in the middle layers of cortex, whereas VGLUT1 is strongly expressed by most if not all glutamatergic neurons in auditory cortex and at variable levels among auditory subcortical nuclei. These patterns imply that VGLUT2 is the main vesicular glutamate transporter in subcortical and thalamocortical (TC) circuits, whereas VGLUT1 is dominant in cortico-cortical (CC) and cortico-thalamic (CT) systems of projections. The results also suggest that VGLUT mRNA expression patterns in primates are similar to rodents, and establishes a baseline for detailed studies of these transporters in selected circuits of the auditory system. PMID:21111036
VGLUT1 and VGLUT2 mRNA expression in the primate auditory pathway.
Hackett, Troy A; Takahata, Toru; Balaram, Pooja
2011-04-01
The vesicular glutamate transporters (VGLUTs) regulate the storage and release of glutamate in the brain. In adult animals, the VGLUT1 and VGLUT2 isoforms are widely expressed and differentially distributed, suggesting that neural circuits exhibit distinct modes of glutamate regulation. Studies in rodents suggest that VGLUT1 and VGLUT2 mRNA expression patterns are partly complementary, with VGLUT1 expressed at higher levels in the cortex and VGLUT2 prominent subcortically, but with overlapping distributions in some nuclei. In primates, VGLUT gene expression has not been previously studied in any part of the brain. The purposes of the present study were to document the regional expression of VGLUT1 and VGLUT2 mRNA in the auditory pathway through A1 in the cortex, and to determine whether their distributions are comparable to rodents. In situ hybridization with antisense riboprobes revealed that VGLUT2 was strongly expressed by neurons in the cerebellum and most major auditory nuclei, including the dorsal and ventral cochlear nuclei, medial and lateral superior olivary nuclei, central nucleus of the inferior colliculus, sagulum, and all divisions of the medial geniculate. VGLUT1 was densely expressed in the hippocampus and ventral cochlear nuclei, and at reduced levels in other auditory nuclei. In the auditory cortex, neurons expressing VGLUT1 were widely distributed in layers II-VI of the core, belt and parabelt regions. VGLUT2 was expressed most strongly by neurons in layers IIIb and IV, weakly by neurons in layers II-IIIa, and at very low levels in layers V-VI. The findings indicate that VGLUT2 is strongly expressed by neurons at all levels of the subcortical auditory pathway, and by neurons in the middle layers of the cortex, whereas VGLUT1 is strongly expressed by most if not all glutamatergic neurons in the auditory cortex and at variable levels among auditory subcortical nuclei. These patterns imply that VGLUT2 is the main vesicular glutamate transporter in subcortical and thalamocortical (TC) circuits, whereas VGLUT1 is dominant in corticocortical (CC) and corticothalamic (CT) systems of projections. The results also suggest that VGLUT mRNA expression patterns in primates are similar to rodents, and establish a baseline for detailed studies of these transporters in selected circuits of the auditory system. Copyright © 2010 Elsevier B.V. All rights reserved.
Fumuso, Elida; Giguère, Steeve; Wade, José; Rogan, Dragan; Videla-Dorna, Ignacio; Bowden, Raúl A
2003-11-15
Endometrial mRNA expression of the pro-inflammatory cytokines interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) was assessed in mares resistant (RM) or susceptible (SM) to persistent post-breeding endometritis (PPBE). Eight RM and eight SM, were selected based on reproductive records and functional tests out of a herd of 2,000 light cross-type mares. Three experiments were done to study transcription patterns in (i) basal conditions; (ii) after artificial insemination (AI); and (iii) after administration of an immunomodulator at time of artificial insemination. Endometrial biopsies were taken during consecutive cycles: (i) at estrus, when follicles reached 35 mm and at diestrus (7 +/- 1 days after ovulation); (ii) at 24 h post-AI, with dead semen (estrus) and in diestrus; (iii) at 24 h after treatment with a Mycobacterium phlei cell-wall extract (MCWE) preparation and AI (with dead semen), and at diestrus. mRNA expression was quantitated by real time PCR. Under basal conditions, SM had significantly higher mRNA expression of all cytokines in estrus and of IL-1beta and TNF-alpha in diestrus, compared to RM. After AI, there were no differences between RM and SM in estrus; however, mRNA expression for all three pro-inflammatory cytokines was higher than under basal conditions. In diestrus, RM showed significantly lower IL-1beta and TNF-alpha mRNA expression than SM. When MCWE was administered at time of AI, no differences between cytokine induction from RM and SM were found. Globally, mRNA expression for all three cytokines correlated well among themselves when expression was high. The present study showed that (i) in basal conditions RM had lower mRNA expression of pro-inflammatory cytokines than SM with no effect of estrous cycle; (ii) AI upregulated mRNA expression for all three cytokines in both RM and SM, with persistance in diestrus in the latter; (iii) treatment with MCWE at time of AI down-regulated mRNA expression of IL-1 with significant effects in SM which behaved like RM. Immunomodulation with MCWE could be of help in restoring homeostatic local inflammatory mechanisms, thus assisting in the prophylaxis of post-breeding endometritis in mares.
Rivière, Guillaume; Lienhard, Daniel; Andrieu, Thomas; Vieau, Didier; Frey, Brigitte M; Frey, Felix J
2011-04-01
Somatic angiotensin-converting enzyme (sACE) is crucial in cardiovascular homeostasis and displays a tissue-specific profile. Epigenetic patterns modulate genes expression and their alterations were implied in pathologies including hypertension. However, the influence of DNA methylation and chromatin condensation state on the expression of sACE is unknown. We examined whether such epigenetic mechanisms could participate in the control of sACE expression in vitro and in vivo. We identified two CpG islands in the human ace-1 gene 3 kb proximal promoter region. Their methylation abolished the luciferase activity of ace-1 promoter/reporter constructs transfected into human liver (HepG2), colon (HT29), microvascular endothelial (HMEC-1) and lung (SUT) cell lines (p < 0.001). Bisulphite sequencing revealed a cell-type specific basal methylation pattern of the ace-1 gene -1,466/+25 region. As assessed by RT-qPCR, inhibition of DNA methylation by 5-aza-2'-deoxycytidine and/or of histone deacetylation by trichostatin A highly stimulated sACE mRNA expression cell-type specifically (p < 0.001 vs. vehicle treated cells). In the rat, in vivo 5-aza-cytidine injections demethylated the ace-1 promoter and increased sACE mRNA expression in the lungs and liver (p = 0.05), but not in the kidney. In conclusion, the expression level of somatic ACE is modulated by CpG-methylation and histone deacetylases inhibition. The basal methylation pattern of the promoter of the ace-1 gene is cell-type specific and correlates to sACE transcription. DNMT inhibition is associated with altered methylation of the ace-1 promoter and a cell-type and tissue-specific increase of sACE mRNA levels. This study indicates a strong influence of epigenetic mechanisms on sACE expression.
Regulation of hepatic bile acid transporters Ntcp and Bsep expression.
Cheng, Xingguo; Buckley, David; Klaassen, Curtis D
2007-12-03
Sodium-taurocholate cotransporting polypeptide (Ntcp) and bile salt export pump (Bsep) are two key transporters for hepatic bile acid uptake and excretion. Alterations in Ntcp and Bsep expression have been reported in pathophysiological conditions. In the present study, the effects of age, gender, and various chemicals on the regulation of these two transporters were characterized in mice. Ntcp and Bsep mRNA levels in mouse liver were low in the fetus, but increased to its highest expression at parturition. After birth, mouse Ntcp and Bsep mRNA decreased by more than 50%, and then gradually increased to adult levels by day 30. Expression of mouse Ntcp mRNA and protein exhibit higher levels in female than male livers. No gender difference exists in BSEP/Bsep expression in human and mouse livers. Hormone replacements conducted in gonadectomized, hypophysectomized, and lit/lit mice indicate that female-predominant Ntcp expression in mouse liver is due to the inhibitory effect of male-pattern GH secretion, but not sex hormones. Ntcp and Bsep expression are in general resistant to induction by a large battery of microsomal enzyme inducers. Administration of cholestyramine increased Ntcp, whereas chenodeoxycholic acid (CDCA) increased Bsep mRNA expression. In conclusion, mouse Ntcp and Bsep are regulated by age, gender, cholestyramine, and bile acid, but resistant to induction by most microsomal enzyme inducers.
He, Jun; Tian, Yong; Li, Jinjun; Shen, Junda; Tao, Zhengrong; Fu, Yan; Niu, Dong; Lu, Lizhi
2013-01-01
Liver fatty acid binding protein (L-FABP) is a member of intracellular lipid-binding proteins responsible for the transportation of fatty acids. The expression pattern of duck L-FABP mRNA was examined in this study by quantitative RT-PCR. The results showed that duck L-FABP gene was expressed in many tissues, including heart, lung, kidney, muscle, ovary, brain, intestine, stomach and adipocyte tissues, and highly expressed in liver. Several lipid metabolism-related genes were selected to detect the regulation of L-FABP in duck. The expression of L-FABP and lipoprotein lipase was promoted by oleic acid. The L-FABP knockdown decreased the expression levels of peroxisome proliferator-activated receptor α (PPARα), fatty acid synthase and lipoprotein lipase by 61.1, 42.3 and 53.7 %, respectively (P < 0.05), but had no influences on the mRNA levels of PPARγ and leptin receptor. L-FABP might function through the PPARα to regulate the fat metabolism-related gene expression and play important roles in lipid metabolism in duck hepatocytes.
Ivanova, T N; Matthews, A; Gross, C; Mappus, R C; Gollnick, C; Swanson, A; Bassell, G J; Liu, R C
2011-05-05
Acquiring the behavioral significance of sound has repeatedly been shown to correlate with long term changes in response properties of neurons in the adult primary auditory cortex. However, the molecular and cellular basis for such changes is still poorly understood. To address this, we have begun examining the auditory cortical expression of an activity-dependent effector immediate early gene (IEG) with documented roles in synaptic plasticity and memory consolidation in the hippocampus: Arc/Arg3.1. For initial characterization, we applied a repeated 10 min (24 h separation) sound exposure paradigm to determine the strength and consistency of sound-evoked Arc/Arg3.1 mRNA expression in the absence of explicit behavioral contingencies for the sound. We used 3D surface reconstruction methods in conjunction with fluorescent in situ hybridization (FISH) to assess the layer-specific subcellular compartmental expression of Arc/Arg3.1 mRNA. We unexpectedly found that both the intranuclear and cytoplasmic patterns of expression depended on the prior history of sound stimulation. Specifically, the percentage of neurons with expression only in the cytoplasm increased for repeated versus singular sound exposure, while intranuclear expression decreased. In contrast, the total cellular expression did not differ, consistent with prior IEG studies of primary auditory cortex. Our results were specific for cortical layers 3-6, as there was virtually no sound driven Arc/Arg3.1 mRNA in layers 1-2 immediately after stimulation. Our results are consistent with the kinetics and/or detectability of cortical subcellular Arc/Arg3.1 mRNA expression being altered by the initial exposure to the sound, suggesting exposure-induced modifications in the cytoplasmic Arc/Arg3.1 mRNA pool. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Ivanova, Tamara; Matthews, Andrew; Gross, Christina; Mappus, Rudolph C.; Gollnick, Clare; Swanson, Andrew; Bassell, Gary J.; Liu, Robert C.
2011-01-01
Acquiring the behavioral significance of a sound has repeatedly been shown to correlate with long term changes in response properties of neurons in the adult primary auditory cortex. However, the molecular and cellular basis for such changes is still poorly understood. To address this, we have begun examining the auditory cortical expression of an activity-dependent effector immediate early gene (IEG) with documented roles in synaptic plasticity and memory consolidation in the hippocampus: Arc/Arg3.1. For initial characterization, we applied a repeated 10 minute (24 hour separation) sound exposure paradigm to determine the strength and consistency of sound-evoked Arc/Arg3.1 mRNA expression in the absence of explicit behavioral contingencies for the sound. We used 3D surface reconstruction methods in conjunction with fluorescent in-situ hybridization (FISH) to assess the layer-specific sub-cellular compartmental expression of Arc/Arg3.1 mRNA. We unexpectedly found that both the intranuclear and cytoplasmic patterns of expression depended on the prior history of sound stimulation. Specifically, the percentage of neurons with expression only in the cytoplasm increased for repeated versus singular sound exposure, while intranuclear expression decreased. In contrast, the total cellular expression did not differ, consistent with prior IEG studies of primary auditory cortex. Our results were specific for cortical layers 3–6, as there was virtually no sound driven Arc/Arg3.1 mRNA in layers 1–2 immediately after stimulation. Our results are consistent with the kinetics and/or detectability of cortical sub-cellular Arc/Arg3.1 mRNA expression being altered by the initial exposure to the sound, suggesting exposure-induced modifications in the cytoplasmic Arc/Arg3.1 mRNA pool. PMID:21334422
Auger, Catherine J.; Coss, Dylan; Auger, Anthony P.; Forbes-Lorman, Robin M.
2011-01-01
Although some DNA methylation patterns are altered by steroid hormone exposure in the developing brain, less is known about how changes in steroid hormone levels influence DNA methylation patterns in the adult brain. Steroid hormones act in the adult brain to regulate gene expression. Specifically, the expression of the socially relevant peptide vasopressin (AVP) within the bed nucleus of the stria terminalis (BST) of adult brain is dependent upon testosterone exposure. Castration dramatically reduces and testosterone replacement restores AVP expression within the BST. As decreases in mRNA expression are associated with increases in DNA promoter methylation, we explored the hypothesis that AVP expression in the adult brain is maintained through sustained epigenetic modifications of the AVP gene promoter. We find that castration of adult male rats resulted in decreased AVP mRNA expression and increased methylation of specific CpG sites within the AVP promoter in the BST. Similarly, castration significantly increased estrogen receptor α (ERα) mRNA expression and decreased ERα promoter methylation within the BST. These changes were prevented by testosterone replacement. This suggests that the DNA promoter methylation status of some steroid responsive genes in the adult brain is actively maintained by the presence of circulating steroid hormones. The maintenance of methylated or demethylated states of some genes in the adult brain by the presence of steroid hormones may play a role in the homeostatic regulation of behaviorally relevant systems. PMID:21368111
Chandra, Vikas; Das, Tapojyoti; Gulati, Puneet; Biswas, Nidhan K; Rote, Sarang; Chatterjee, Uttara; Ghosh, Samarendra N; Deb, Sumit; Saha, Suniti K; Chowdhury, Anup K; Ghosh, Subhashish; Rudin, Charles M; Mukherjee, Ankur; Basu, Analabha; Dhara, Surajit
2015-01-01
Hedgehog (Hh) signaling pathway is a valid therapeutic target in a wide range of malignancies. We focus here on glioblastoma multiforme (GBM), a lethal malignancy of the central nervous system (CNS). By analyzing RNA-sequencing based transcriptomics data on 149 clinical cases of TCGA-GBM database we show here a strong correlation (r = 0.7) between GLI1 and PTCH1 mRNA expression--as a hallmark of the canonical Hh-pathway activity in this malignancy. GLI1 mRNA expression varied in 3 orders of magnitude among the GBM patients of the same cohort showing a single continuous distribution-unlike the discrete high/low-GLI1 mRNA expressing clusters of medulloblastoma (MB). When compared with MB as a reference, the median GLI1 mRNA expression in GBM appeared 14.8 fold lower than that of the "high-Hh" cluster of MB but 5.6 fold higher than that of the "low-Hh" cluster of MB. Next, we demonstrated statistically significant up- and down-regulation of GLI1 mRNA expressions in GBM patient-derived low-passage neurospheres in vitro by sonic hedgehog ligand-enriched conditioned media (shh-CM) and by Hh-inhibitor drug vismodegib respectively. We also showed clinically achievable dose (50 μM) of vismodegib alone to be sufficient to induce apoptosis and cell cycle arrest in these low-passage GBM neurospheres in vitro. Vismodegib showed an effect on the neurospheres, both by down-regulating GLI1 mRNA expression and by inducing apoptosis/cell cycle arrest, irrespective of their relative endogenous levels of GLI1 mRNA expression. We conclude from our study that this single continuous distribution pattern of GLI1 mRNA expression technically puts almost all GBM patients in a single group rather than discrete high- or low-clusters in terms of Hh-pathway activity. That is suggestive of therapies with Hh-pathway inhibitor drugs in this malignancy without a need for further stratification of patients on the basis of relative levels of Hh-pathway activity among them.
Expression of c-Fes protein isoforms correlates with differentiation in myeloid leukemias.
Carlson, Anne; Berkowitz, Jeanne McAdara; Browning, Damaris; Slamon, Dennis J; Gasson, Judith C; Yates, Karen E
2005-05-01
The cellular fes gene encodes a 93-kilodalton protein-tyrosine kinase (p93) that is expressed in both normal and neoplastic myeloid cells. Increased c-Fes expression is associated with differentiation in normal myeloid cells and cell lines. Our hypothesis was that primary leukemia cells would show a similar pattern of increased expression in more differentiated cells. Therefore, we compared c-Fes expression in cells with an undifferentiated, blast phenotype (acute myelogenous leukemia--AML) to cells with a differentiated phenotype (chronic myelogenous leukemia--CML). Instead of differences in p93 expression levels, we found complex patterns of c-Fes immunoreactive proteins that corresponded with differentiation in normal and leukemic myeloid cells. The "blast" pattern consisted of c-Fes immunoreactive proteins p93, p74, and p70; the "differentiated" pattern showed two additional c-Fes immunoreactive proteins, p67 and p62. Using mRNA from mouse and human cell lines, we found deletion of one or more exons in the c-fes mRNA. Those deletions predicted truncation of conserved domains (CDC15/FCH and SH2) involved in protein-protein interactions. No deletions were found, however, within the kinase domain. We infer that alternative splicing generates a family of c-Fes proteins. This may be a mechanism to direct the c-Fes kinase domain to different subcellular locations and/or substrates at specific stages of myeloid cell differentiation.
Molina-Ortiz, Dora; Camacho-Carranza, Rafael; González-Zamora, José Francisco; Shalkow-Kalincovstein, Jaime; Cárdenas-Cardós, Rocío; Ností-Palacios, Rosario; Vences-Mejía, Araceli
2014-01-01
Intratumoral expression of genes encoding Cytochrome P450 enzymes (CYP) might play a critical role not only in cancer development but also in the metabolism of anticancer drugs. The purpose of this study was to compare the mRNA expression patterns of seven representative CYPs in paired tumor and normal tissue of child patients with rabdomyosarcoma (RMS). Using real time quantitative RT-PCR, the gene expression pattern of CYP1A1, CYP1A2, CYP1B1, CYP2E1, CYP2W1, CYP3A4, and CYP3A5 were analyzed in tumor and adjacent non-tumor tissues from 13 child RMS patients. Protein concentration of CYPs was determined using Western blot. The expression levels were tested for correlation with the clinical and pathological data of the patients. Our data showed that the expression levels of CYP1A1 and CYP1A2 were negligible. Elevated expression of CYP1B1 mRNA and protein was detected in most RMS tumors and adjacent normal tissues. Most cancerous samples exhibit higher levels of both CYP3A4 and CYP3A5 compared with normal tissue samples. Expression of CYP2E1 mRNA was found to be significantly higher in tumor tissue, however no relation was found with protein levels. CYP2W1 mRNA and/or protein are mainly expressed in tumors. In conclusion, we defined the CYP gene expression profile in tumor and paired normal tissue of child patients with RMS. The overexpression of CYP2W1, CYP3A4 and CYP3A5 in tumor tissues suggests that they may be involved in RMS chemoresistance; furthermore, they may be exploited for the localized activation of anticancer prodrugs. PMID:24699256
Hamiduzzaman, Mollah Md; Emsen, Berna; Hunt, Greg J; Subramanyam, Subhashree; Williams, Christie E; Tsuruda, Jennifer M; Guzman-Novoa, Ernesto
2017-05-01
Honey bee (Apis mellifera) grooming behavior is an important mechanism of resistance against the parasitic mite Varroa destructor. This research was conducted to study associations between grooming behavior and the expression of selected immune, neural, detoxification, developmental and health-related genes. Individual bees tested in a laboratory assay for various levels of grooming behavior in response to V. destructor were also analyzed for gene expression. Intense groomers (IG) were most efficient in that they needed significantly less time to start grooming and fewer grooming attempts to successfully remove mites from their bodies than did light groomers (LG). In addition, the relative abundance of the neurexin-1 mRNA, was significantly higher in IG than in LG, no groomers (NG) or control (bees without mite). The abundance of poly U binding factor kd 68 and cytochrome p450 mRNAs were significantly higher in IG than in control bees. The abundance of hymenoptaecin mRNA was significantly higher in IG than in NG, but it was not different from that of control bees. The abundance of vitellogenin mRNA was not changed by grooming activity. However, the abundance of blue cheese mRNA was significantly reduced in IG compared to LG or NG, but not to control bees. Efficient removal of mites by IG correlated with different gene expression patterns in bees. These results suggest that the level of grooming behavior may be related to the expression pattern of vital honey bee genes. Neurexin-1, in particular, might be useful as a bio-marker for behavioral traits in bees.
Murashita, Koji; Fukada, Haruhisa; Hosokawa, Hidetsuyo; Masumoto, Toshiro
2007-03-01
In fish, the regulation of digestive enzyme secretion by hormonal control such as cholecystokinin (CCK) and neuropeptide Y (NPY)-related peptide is not well understood. To investigate the roles of fish CCK and peptide Y (PY) in digestive enzyme secretion, mRNA levels of CCK and PY, pyloric caeca enzyme activities and mRNA levels of pancreatic digestive enzymes (lipase, trypsin and amylase) were measured at pre- and post-prandial stages in yellowtail. Pyloric caeca were sampled at 0, 0.5, 1.5, 3, 6, 12, 24 and 48 h after feeding. The mRNA levels of trypsin and amylase increased after feeding, suggesting that transcription was induced by feed ingestion. Digestive enzyme activities decreased in exocrine pancreas after feeding, suggesting the stored enzyme was secreted from pancreas post-prandially. mRNA levels for CCK displayed a time-dependent increase, peaking between 1.5 and 3 h after-feeding followed by a rapid decrease 3 to 6 h after feeding. The mRNA expression pattern of PY was inverse to the pattern of CCK, decreasing until 1.5 h after feeding and then rising to initial levels by 12 h after feeding. These results suggest that CCK and PY work antagonistically in the exocrine pancreas of yellowtail.
Uncovering Hidden Layers of Cell Cycle Regulation through Integrative Multi-omic Analysis
Aviner, Ranen; Shenoy, Anjana; Elroy-Stein, Orna; Geiger, Tamar
2015-01-01
Studying the complex relationship between transcription, translation and protein degradation is essential to our understanding of biological processes in health and disease. The limited correlations observed between mRNA and protein abundance suggest pervasive regulation of post-transcriptional steps and support the importance of profiling mRNA levels in parallel to protein synthesis and degradation rates. In this work, we applied an integrative multi-omic approach to study gene expression along the mammalian cell cycle through side-by-side analysis of mRNA, translation and protein levels. Our analysis sheds new light on the significant contribution of both protein synthesis and degradation to the variance in protein expression. Furthermore, we find that translation regulation plays an important role at S-phase, while progression through mitosis is predominantly controlled by changes in either mRNA levels or protein stability. Specific molecular functions are found to be co-regulated and share similar patterns of mRNA, translation and protein expression along the cell cycle. Notably, these include genes and entire pathways not previously implicated in cell cycle progression, demonstrating the potential of this approach to identify novel regulatory mechanisms beyond those revealed by traditional expression profiling. Through this three-level analysis, we characterize different mechanisms of gene expression, discover new cycling gene products and highlight the importance and utility of combining datasets generated using different techniques that monitor distinct steps of gene expression. PMID:26439921
Effects of gonadoliberin analogue triptorelin on the pituitary-testicular complex in neonatal rats.
Dygalo, N N; Shemenkova, T V; Kalinina, T S; Shishkina, G T
2014-02-01
Triptorelin, a synthetic analogue of neurohormone gonadoliberin (gonadotropin-releasing hormone, GnRH) administered daily to rats on postnatal days 5-7 suppressed the expression of GnRH receptor in the pituitary gland, but did not change functioning of the pituitary-testicular complex. Administration of triptorelin on postnatal days 12-14 (i.e. during the formation of pulsatile pattern of GnRH secretion and increasing levels of its mRNA receptor in the pituitary gland) had no effect on receptor expression, but increased the levels of luteinizing hormone mRNA in the pituitary gland and the weight of testes. At that time, blood levels of testosterone were lowered, which indicated disturbed pulsatile pattern of GnRH secretion.
Patterns of gene expression in atrophying skeletal muscles: response to food deprivation
NASA Technical Reports Server (NTRS)
Jagoe, R. Thomas; Lecker, Stewart H.; Gomes, Marcelo; Goldberg, Alfred L.
2002-01-01
During fasting and many systemic diseases, muscle undergoes rapid loss of protein and functional capacity. To define the transcriptional changes triggering muscle atrophy and energy conservation in fasting, we used cDNA microarrays to compare mRNAs from muscles of control and food-deprived mice. Expression of >94% of genes did not change, but interesting patterns emerged among genes that were differentially expressed: 1) mRNAs encoding polyubiquitin, ubiquitin extension proteins, and many (but not all) proteasome subunits increased, which presumably contributes to accelerated protein breakdown; 2) a dramatic increase in mRNA for the ubiquitin ligase, atrogin-1, but not most E3s; 3) a significant suppression of mRNA for myosin binding protein H (but not other myofibrillar proteins) and IGF binding protein 5, which may favor cell protein loss; 4) decreases in mRNAs for several glycolytic enzymes and phosphorylase kinase subunits, and dramatic increases in mRNAs for pyruvate dehydrogenase kinase 4 and glutamine synthase, which should promote glucose sparing and gluconeogenesis. During fasting, metallothionein mRNA increased dramatically, mRNAs for extracellular matrix components fell, and mRNAs that may favor cap-independent mRNA translation rose. Significant changes occurred in mRNAs for many growth-related proteins and transcriptional regulators. These transcriptional changes indicate a complex adaptive program that should favor protein degradation and suppress glucose oxidation in muscle. Similar analysis of muscles atrophying for other causes is allowing us to identify a set of atrophy-specific changes in gene expression.
Maheux, Jérôme; Vuillier, Laura; Mahfouz, Mylène; Rouillard, Claude; Lévesque, Daniel
2015-01-01
Different patterns of expression of the transcription factors of Nur77 and Nor-1 are induced following acute administration of typical and atypical antipsychotic drugs. The pharmacological profile of atypical antipsychotics suggests that serotonergic and/or adrenergic receptors might contribute to these reported differences. In order to test this possibility, we examined the abilities of serotonin 5-HT1A and 5-HT2A/2C, and α1- and α2-adrenergic receptor drugs to modify the pattern of Nur77 (NR4A1) and Nor-1 (NR4A3) mRNA expression induced by haloperidol. Various groups of mice were treated with either saline, DOI, a 5-HT2A/2C agonist, MDL11939, a 5-HT2A antagonist, 8-OH-DPAT, a 5-HT1A agonist, prazosin, an α1-adrenergic antagonist and idazoxan, an α2-adrenergic antagonist, alone or in combination with haloperidol. The 5-HT2A/2C agonist DOI alone significantly increased Nur77 expression in the medial striatum and nucleus accumbens. DOI reduced Nor-1 expression, while MDL11939 increased the expression of this transcript in the cortex. Prazosin reduced Nur77 expression in the dorsal striatum and nucleus accumbens. Interestingly, 8-OH-DPAT and MDL11939 partially prevented haloperidol-induced Nur77 up-regulation, while MDL11939 completely abolished Nor-1 expression in the striatum. In addition, MDL11939 decreased haloperidol-induced Nur77 and Nor-1 mRNA levels in the ventral tegmental area. On the contrary, idazoxan (α2 antagonist) consistently potentiated haloperidol-induced Nur77, but not Nor-1 mRNA levels in the striatum, whereas prazosin (α1 antagonist) remained without effect. Taken together, these results show the ability of a 5-HT1A agonist or a 5-HT2A antagonist to reduce haloperidol-induced Nur77 and Nor-1 striatal expression, suggesting that these serotonin receptor subtypes participate in the differential pattern of gene expression induced by typical and atypical antipsychotic drugs. PMID:21524335
Braundmeier, A G; Fazleabas, A T; Nowak, R A
2016-01-01
Extracellular matrix metalloproteinase inducer (EMMPRIN; BSG) regulates tissue remodeling through matrix metalloproteinases (MMPs). In human and non-human primates, endometrial remodeling is important for menstruation and the pathogenesis of endometriosis. We hypothesized that as in humans, BSG and MMPs are expressed in the endometrium of cycling baboons, and their expression is hormonally regulated by ovarian hormones, but endometriosis disrupts this regulation. BSG expression was evaluated in the baboon endometrium by q-PCR and immunohistochemistry. In the endometrium of control cycling animals, BSG mRNA levels were highest in late secretory stage tissue. BSG protein localized to glandular epithelial cells during the proliferative phase; whereas, secretory stage tissues expressed BSG in glandular and luminal epithelia with weak stromal staining. Several MMPs were differentially expressed throughout the menstrual cycle with the highest levels found during menstruation. In ovariectomized animals, BSG endometrial mRNA levels were highest with treatment of both estrogen and progesterone than that with only estrogen. Estrogen alone resulted in BSG protein localization primarily in the endometrial glandular epithelia, while estrogen and progesterone treatment displayed BSG protein localization in both the glandular and stromal cells. Exogenous hormone treatment resulted in differential expression patterns of all MMPs compared with the control cycling animals. In the eutopic endometrium of endometriotic animals, BSG mRNA levels and protein were elevated early but decreased later in disease progression. Endometriosis elevated the expression of all MMPs except MMP7 compared with the control animals. In baboons, BSG and MMP endometrial expression is regulated by both ovarian hormones, and their expression patterns are dysregulated in endometriotic animals. PMID:20841363
Regulation of connexin26 and connexin43 expression in rat endometrium by ovarian steroid hormones.
Grümmer, R; Chwalisz, K; Mulholland, J; Traub, O; Winterhager, E
1994-12-01
A distinct spatial and temporal pattern of connexin26 and connexin43 (cx26 and cx43) expression was observed in the rat endometrium in response to embryo implantation; however, connexin expression was suppressed during the preimplantation period. Pseudopregnant rats did not show connexin mRNA, while artificial decidualization induced by a scratch led to a strong expression of cx26 and cx43 in the endometrium of these animals. In order to examine the regulatory effects of ovarian steroid hormones on connexin expression, ovariectomized rats were treated with progesterone (P) and/or estradiol-17 beta (E2). Untreated, ovariectomized animals expressed mRNA for cx43, but not for cx26. Endometrial expression of mRNA for both connexins was strongly enhanced by E2 treatment; immunolabeling revealed protein for cx26 in the uterine luminal epithelial cells and for cx43 in the uterine stromal cells. P treatment, either alone or in combination with E2, suppressed expression of connexin mRNA. P suppression in the presence of E2 was reversible when P was withdrawn. When administered on Days 0-2 of pregnancy, the antiprogestin onapristone inhibited the effect of P and gave rise to strong expression of both connexin transcripts. These results demonstrate that expression of cx26 and cx43 in the rat uterine endometrium is differentially regulated by E2 and P during early pregnancy.
Ding, Wan-Jun; Zeng, Tao; Wang, Li-Jun; Lei, Hong-Bo; Ge, Wei; Wang, Zhi
2017-11-17
In the United States, breast cancer is the second leading cause of cancer death in women. Over the past 20 years, breast cancer incidence and mortality rates increased rapidly in developing regions. We aimed to identify the gene mutation patterns that associated with the clinical patterns, including survival status, histo-pathological classes and so forth, of breast cancer. We retrieved 1098 cases of the clinical information, and level-3 legacy data of mRNA expression level, protein expression data and mutation files from GDC data portal. The genes with mutation significance were obtained. We studied the impacts of mutation types on the expression levels of mRNA and protein. Different statistics methods were used to calculate the correlation between the mutation types and the expression data or histo-clinical measures. There were 24 genes with mutation significance identified. The most mutated genes were selected to study the role of specific mutations played on the patients with breast cancer. One interesting finding was the missense mutations on TP53 were related with high expression levels of mRNA and protein. The missense mutations on TP53 were highly related with the morphology, race, ER status, PR status and HER2 Status, while the truncated mutations were only related with the morphology, ER status and PR status. The missense mutation on PIK3CA was highly associated with the morphology, race, ER status and PR status. The mutants with different mutants and the wild type of the most mutated genes had different impacts on the histo-clinical measures that might help personalized therapy.
NASA Astrophysics Data System (ADS)
Shin, Moon-Kyeong; Park, Ho-Ra; Yeo, Won-Jun; Han, Kyung-Nam
2018-03-01
The aim of this study was to elucidate the molecular mechanisms underlying the thermal stress response in the spotted sea bass ( Lateolabrax maculatus). Spotted sea basses were exposed to 4 different water temperatures (20, 22, 24, and 28°C) in increasing increments of 2°C/h from 18°C (control) for different time periods (0, 6, 12, 24, 48, 72, and 96 h). Subsequently, 3 tissues (liver, muscle, and gill) were isolated, and the levels of SOD, HSP90, and HSP70 mRNA were assessed. SOD mRNA expression was maintained at baseline levels of control fish at all water temperatures in the liver, while muscle and gill tissue showed an increase followed by a decrease over each certain time with higher water temperature. HSP90 mRNA expression increased in the liver at ≤ 24°C over time, but maintained baseline expression at 28°C. In muscle, HSP90 mRNA expression gradually increased at all water temperatures, but increased and then decreased at ≥ 24°C in gill tissue. HSP70 mRNA expression exhibited an increase and then a decrease in liver tissue at 28°C, but mainly showed similar expression patterns to HSP90 in all tissues. These results suggest the activity of a defense mechanism using SOD, HSP90, and HSP70 in the spotted sea bass upon rapid increases in water temperature, where the expression of these genes indicated differences between tissues in the extent of the defense mechanisms. Also, these results indicate that high water temperature and long-term thermal stress exposure can inhibit physiological defense mechanisms.
Choi, Young Jae; Shin, Hyun Suk; Kim, Na Na; Cho, Sung Hwoan; Yamamoto, Yuzo; Ueda, Hiroshi; Lee, Jehee; Choi, Cheol Young
2013-06-01
This study aimed to examine the role of 2 aquaporin (AQP) isoforms (AQP3, and -8) in sockeye salmon (Oncorhynchus nerka) in response to a hyperosmotic challenge from freshwater to seawater (SW) during the parr and smoltification (smolt) stages. AQP3 mRNA was primarily detected in the osmoregulatory organs, such as gills, while AQP8 mRNA was primarily found in the intestine. These results suggested that AQP isoforms play a role in osmoregulation in specific osmoregulatory organs. Similarly, AQP3 mRNA expression in the gills (mean values:1.06 ± 0.05 [parr] and 1.29 ± 0.07 [smolt]) was significantly higher than AQP8 mRNA levels (parr: 0.04 ± 0.003; smolt: 0.14 ± 0.004), and in the intestine, AQP8 mRNA expression (parr: 0.89 ± 0.007; smolt: 1.91 ± 0.03) was significantly higher than AQP3 mRNA levels (parr: 0.24 ± 0.006; smolt: 0.83 ± 0.005); these expression patterns were similar in vivo and in vitro. Additionally, AQP mRNA levels were lower in cortisol treated than in control groups. Therefore, these results suggest that AQPs play important roles in the water absorption mechanisms associated with multiple AQP isoforms, and that cortisol enhances the hypo-osmoregulatory capacity of fish in SW, and also controls the expression of AQPs in a hyperosmotic environment. Copyright © 2013 Elsevier Inc. All rights reserved.
Kim, H; You, S; Foster, L K; Farris, J; Choi, Y J; Foster, D N
2001-01-01
We have used differential display PCR to study altered gene expression in immortalized chicken embryo fibroblasts (CEFs) that have been established in our laboratory. This technique resulted in the cloning of a novel counterpart of the previously cloned chicken dimerization cofactor of hepatocyte nuclear factor (HNF)-1 (cDcoH), which was identified as cDcoHalpha. The steady-state mRNA levels of cDcoHalpha were up-regulated in all immortal CEFs tested compared with primary CEF cells. cDcoH and cDcoHalpha showed opposite patterns of mRNA expression due to differential regulation of transcription rates, but not mRNA half-lives, in primary and immortal CEFs. Expression of cDcoHalpha increased in the late G1 and early S phases of the cell cycle, while cDcoH mRNA increased in the late S and G2/M phases. In contrast with consistent expression of both genes in primary quiescent cells, cDcoH mRNA, but not cDcoHalpha mRNA, was dramatically decreased in primary senescent cells. The highest levels of cDcoHalpha mRNA were found in the kidney, liver, heart and ovarian follicles, while the major tissues expressing cDcoH were hypothalamus, kidney and liver. cDcoH and cDcoHalpha probes did not cross-hybridize to human hepatocyte mRNA. When transfected into human HepG2 cells, both cDcoH and cDcoHalpha showed similar functional activity as measured by increased expression of a reporter gene, as well as alpha-fetoprotein and albumin genes that both contain HNF-1 binding elements in their promoters. Our results suggest that the novel chicken DcoHalpha might function as a transcriptional cofactor for HNF-1 in specific cellular-environmental states. PMID:11237869
Hashimoto, Takanori; Bazmi, H Holly; Mirnics, Karoly; Wu, Qiang; Sampson, Allan R; Lewis, David A
2008-04-01
Individuals with schizophrenia exhibit disturbances in a number of cognitive, affective, sensory, and motor functions that depend on the circuitry of different cortical areas. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related genes. Consequently, the authors sought to determine whether this pattern of altered gene expression is restricted to the dorsolateral prefrontal cortex or could also contribute to the dysfunction of other cortical areas in subjects with schizophrenia. Real-time quantitative polymerase chain reaction was used to assess the levels of eight GABA-related transcripts in four cortical areas (dorsolateral prefrontal cortex, anterior cingulate cortex, and primary motor and primary visual cortices) of subjects (N=12) with schizophrenia and matched normal comparison subjects. Expression levels of seven transcripts were lower in subjects with schizophrenia, with the magnitude of reduction for each transcript comparable across the four areas. The largest reductions were detected for mRNA encoding somatostatin and parvalbumin, followed by moderate decreases in mRNA expression for the 67-kilodalton isoform of glutamic acid decarboxylase, the GABA membrane transporter GAT-1, and the alpha 1 and delta subunits of GABA(A) receptors. In contrast, the expression of calretinin mRNA did not differ between the subject groups in any of the four areas. Because the areas examined represent the major functional domains (e.g., association, limbic, motor, and sensory) of the cerebral cortex, our findings suggest that a conserved set of molecular alterations affecting GABA neurotransmission contribute to the pathophysiology of different clinical features of schizophrenia.
Lapin, Morten; Tjensvoll, Kjersti; Oltedal, Satu; Javle, Milind; Smaaland, Rune; Gilje, Bjørnar; Nordgård, Oddmund
2017-05-31
Single-cell mRNA profiling of circulating tumour cells may contribute to a better understanding of the biology of these cells and their role in the metastatic process. In addition, such analyses may reveal new knowledge about the mechanisms underlying chemotherapy resistance and tumour progression in patients with cancer. Single circulating tumour cells were isolated from patients with locally advanced or metastatic pancreatic cancer with immuno-magnetic depletion and immuno-fluorescence microscopy. mRNA expression was analysed with single-cell multiplex RT-qPCR. Hierarchical clustering and principal component analysis were performed to identify expression patterns. Circulating tumour cells were detected in 33 of 56 (59%) examined blood samples. Single-cell mRNA profiling of intact isolated circulating tumour cells revealed both epithelial-like and mesenchymal-like subpopulations, which were distinct from leucocytes. The profiled circulating tumour cells also expressed elevated levels of stem cell markers, and the extracellular matrix protein, SPARC. The expression of SPARC might correspond to an epithelial-mesenchymal transition in pancreatic circulating tumour cells. The analysis of single pancreatic circulating tumour cells identified distinct subpopulations and revealed elevated expression of transcripts relevant to the dissemination of circulating tumour cells to distant organ sites.
The GDNF System Is Altered in Diverticular Disease – Implications for Pathogenesis
Böttner, Martina; Barrenschee, Martina; Hellwig, Ines; Harde, Jonas; Egberts, Jan-Hendrik; Becker, Thomas; Zorenkov, Dimitri; Schäfer, Karl-Herbert; Wedel, Thilo
2013-01-01
Background & Aims Absence of glial cell line-derived neurotrophic factor (GDNF) leads to intestinal aganglionosis. We recently demonstrated that patients with diverticular disease (DD) exhibit hypoganglionosis suggesting neurotrophic factor deprivation. Thus, we screened mRNA expression pattern of the GDNF system in DD and examined the effects of GDNF on cultured enteric neurons. Methods Colonic specimens obtained from patients with DD (n = 21) and controls (n = 20) were assessed for mRNA expression levels of the GDNF system (GDNF, GDNF receptors GFRα1 and RET). To identify the tissue source of GDNF and its receptors, laser-microdissected (LMD) samples of human myenteric ganglia and intestinal muscle layers were analyzed separately by qPCR. Furthermore, the effects of GDNF treatment on cultured enteric neurons (receptor expression, neuronal differentiation and plasticity) were monitored. Results mRNA expression of GDNF and its receptors was significantly down-regulated in the muscularis propria of patients with DD. LMD samples revealed high expression of GDNF in circular and longitudinal muscle layers, whereas GDNF receptors were also expressed in myenteric ganglia. GDNF treatment of cultured enteric neurons increased mRNA expression of its receptors and promoted neuronal differentiation and plasticity revealed by synaptophysin mRNA and protein expression. Conclusions Our results suggest that the GDNF system is compromised in DD. In vitro studies demonstrate that GDNF enhances expression of its receptors and promotes enteric neuronal differentiation and plasticity. Since patients with DD exhibit hypoganglionosis, we propose that the observed enteric neuronal loss in DD may be due to lacking neurotrophic support mediated by the GDNF system. PMID:23805210
Taylor, Robert M; Severns, Virginia; Brown, David C; Bisoffi, Marco; Sillerud, Laurel O
2012-04-01
Membrane receptors are frequent targets of cancer therapeutic and imaging agents. However, promising in vitro results often do not translate to in vivo clinical applications. To better understand this obstacle, we measured the expression differences in receptor signatures among several human prostate cancer cell lines and xenografts as a function of tumorigenicity. Messenger RNA and protein expression levels for integrin α(ν) β(3), neurotensin receptor 1 (NTSR1), prostate specific membrane antigen (PSMA), and prostate stem cell antigen (PSCA) were measured in LNCaP, C4-2, and PC-3 human prostate cancer cell lines and in murine xenografts using quantitative reverse transcriptase polymerase chain reaction, flow cytometry, and immunohistochemistry. Stable expression patterns were observed for integrin α(ν) and PSMA in all cells and corresponding xenografts. Integrin β(3) mRNA expression was greatly reduced in C4-2 xenografts and greatly elevated in PC-3 xenografts compared with the corresponding cultured cells. NTSR1 mRNA expression was greatly elevated in LNCaP and PC-3 xenografts. PSCA mRNA expression was elevated in C4-2 xenografts when compared with C4-2 cells cultured in vitro. Furthermore, at the protein level, PSCA was re-expressed in all xenografts compared with cells in culture. The regulation of mRNA and protein expression of the cell-surface target proteins α(ν) β(3), NTSR1, PSMA, and PSCA, in prostate cancer cells with different tumorigenic potential, was influenced by factors of the microenvironment, differing between cell cultures and murine xenotransplants. Integrin α(ν) β(3), NTRS1 and PSCA mRNA expression increased with tumorigenic potential, but mRNA expression levels for these proteins do not translate directly to equivalent expression levels of membrane bound protein. Copyright © 2011 Wiley Periodicals, Inc.
Protein functional features are reflected in the patterns of mRNA translation speed.
López, Daniel; Pazos, Florencio
2015-07-09
The degeneracy of the genetic code makes it possible for the same amino acid string to be coded by different messenger RNA (mRNA) sequences. These "synonymous mRNAs" may differ largely in a number of aspects related to their overall translational efficiency, such as secondary structure content and availability of the encoded transfer RNAs (tRNAs). Consequently, they may render different yields of the translated polypeptides. These mRNA features related to translation efficiency are also playing a role locally, resulting in a non-uniform translation speed along the mRNA, which has been previously related to some protein structural features and also used to explain some dramatic effects of "silent" single-nucleotide-polymorphisms (SNPs). In this work we perform the first large scale analysis of the relationship between three experimental proxies of mRNA local translation efficiency and the local features of the corresponding encoded proteins. We found that a number of protein functional and structural features are reflected in the patterns of ribosome occupancy, secondary structure and tRNA availability along the mRNA. One or more of these proxies of translation speed have distinctive patterns around the mRNA regions coding for certain protein local features. In some cases the three patterns follow a similar trend. We also show specific examples where these patterns of translation speed point to the protein's important structural and functional features. This support the idea that the genome not only codes the protein functional features as sequences of amino acids, but also as subtle patterns of mRNA properties which, probably through local effects on the translation speed, have some consequence on the final polypeptide. These results open the possibility of predicting a protein's functional regions based on a single genomic sequence, and have implications for heterologous protein expression and fine-tuning protein function.
Comparison of the age-related porcine endogenous retrovirus (PERV) expression using duplex RT-PCR
Moon, Hyoung Joon; Kim, Hye Kwon; Park, Seong Jun; Lee, Chul Seung; Song, Dae Sub; Kang, Bo Kyu
2009-01-01
Porcine endogenous retroviruses (PERVs) are members of family Retroviridae, genus Gamma retrovirus, and transmitted by both horizontally and vertically like other endogenous retroviruses (ERVs). PERV was initially described in the 1970s having inserted its gene in the host genome of different pig breeds, and three classes, PERV-A, PERV-B, and PERV-C are known. The therapeutic use of living cells, tissues, and organs from animals called xenotransplantation might relieve the limited supply of allografts in the treatment of organ dysfunction. Because of ethical considerations, compatible organ sizes, and physiology, the pig has been regarded as an alternative source for xenotransplantation. Sensitive duplex reverse transcription-polymerase chain reaction protocols for simultaneously detecting PERV gag mRNA and porcine glyceraldehydes 3-phosphate dehydrogenase mRNA in one tube was established. To compare the age-related PERV expression patterns of the lung, liver, spleen, kidney, heart, and pancreas in commercial pigs, 20 pigs from four age groups (5 heads each in 10 days-, 40 days-, 70 days-, and 110 days-old, respectively) were used in this study. The expression patterns of PERV were statistically different among age groups in lung, liver, and kidney (ANOVA, p < 0.05). These data may support in the selection of appropriate donor pigs expressing low levels of PERV mRNA. PMID:19934597
Szczyglowski, K; Hamburger, D; Kapranov, P; de Bruijn, F J
1997-01-01
A range of novel expressed sequence tags (ESTs) associated with late developmental events during nodule organogenesis in the legume Lotus japonicus were identified using mRNA differential display; 110 differentially displayed polymerase chain reaction products were cloned and analyzed. Of 88 unique cDNAs obtained, 22 shared significant homology to DNA/protein sequences in the respective databases. This group comprises, among others, a nodule-specific homolog of protein phosphatase 2C, a peptide transporter protein, and a nodule-specific form of cytochrome P450. RNA gel-blot analysis of 16 differentially displayed ESTs confirmed their nodule-specific expression pattern. The kinetics of mRNA accumulation of the majority of the ESTs analyzed were found to resemble the expression pattern observed for the L. japonicus leghemoglobin gene. These results indicate that the newly isolated molecular markers correspond to genes induced during late developmental stages of L. japonicus nodule organogenesis and provide important, novel tools for the study of nodulation. PMID:9276951
Lépée-Lorgeoux, I; Betancur, C; Rostène, W; Pélaprat, D
1999-03-12
The postnatal ontogeny of the levocabastine-sensitive neurotensin receptor (NT2) mRNA was studied by in situ hybridization in the rat brain and compared with the distribution of the levocabastine-insensitive NT1 receptor. NT2 receptor mRNA was absent at birth from all brain structures except the ependymal cell layer lining the ventricles. The development of NT2 receptor mRNA followed three ontogenetic patterns. The first pattern, involving the majority of the cerebral gray matter, was characterized by a continuous increase from postnatal day 5 (P5) to P30. The second one, involving regions rich in myelinated fibers such as the corpus callosum and lacunosum moleculare layer of the hippocampus, exhibited a pronounced increase between P5 and P10, peaked at P15 and was followed by a plateau or a slight decrease. The third pattern was observed in the ependymal cell layer lining the olfactory and lateral ventricles, where the high labeling already present at birth continued to increase during development. These different developmental patterns could reflect the variety of cells expressing NT2 receptor mRNA, including neurons, protoplasmic astrocytes in gray matter, fibrous astrocytes present in myelinated fibers tracts, and ependymal cells. In contrast, NT1 receptor mRNA, which seems to be associated only with neurons, was highly and transiently expressed during the perinatal period in the cerebral cortex, hippocampus and striatal neuroepithelium. Other regions, notably the ventral tegmental area and substantia nigra compacta, exhibited a gradual increase in NT1 receptor signal, reaching adult levels by P21. Both the differential localization and ontogenetic profiles of NT1 and NT2 receptor mRNAs suggest different involvement of these two receptors in brain functions and development. Copyright 1999 Elsevier Science B.V.
Almoguera, C.; Coca, M. A.; Jordano, J.
1995-01-01
We have isolated and sequenced Ha UbiS, a cDNA for a dry-seed-stored mRNA that encodes tetraubiquitin. We have observed differential accumulation of tetraubiquitin mRNAs during sunflower (Helianthus annuus L.) zygotic embryogenesis. These mRNAs were up-regulated during late embryogenesis and reached higher prevalence in the dry seed, where they were found to be associated mainly with provascular tissue. UbiS mRNA, as confirmed by Rnase A protection experiments, accumulated also in response to heat shock, but only in leaves and later during postgerminative development. These novel observations demonstrate expression during seed maturation of specific plant polyubiquitin transcripts and developmental regulation of their heat-shock response. Using ubiquitin antibodies we also detected discrete, seed-specific proteins with distinct temporal expression patterns during zygotic embryogenesis. Some of these patterns were concurrent with UbiS mRNA accumulation in seeds. The most abundant ubiquitin-reacting proteins found in mature seeds were small (16-22 kD) and acidic (isoelectric points of 6.1-7.4). Possible functional implications for UbiS expression elicited from these observations are discussed. PMID:12228401
Benedito-Palos, Laura; Calduch-Giner, Josep A; Ballester-Lozano, Gabriel F; Pérez-Sánchez, Jaume
2013-04-14
The effect of ration size on muscle fatty acid (FA) composition and mRNA expression levels of key regulatory enzymes of lipid and lipoprotein metabolism have been addressed in juveniles of gilthead sea bream fed a practical diet over the course of an 11-week trial. The experimental setup included three feeding levels: (i) full ration until visual satiety, (ii) 70 % of satiation and (iii) 70 % of satiation with the last 2 weeks at the maintenance ration. Feed restriction reduced lipid content of whole body by 30 % and that of fillet by 50 %. In this scenario, the FA composition of fillet TAG was not altered by ration size, whereas that of phospholipids was largely modified with a higher retention of arachidonic acid and DHA. The mRNA transcript levels of lysophosphatidylcholine acyltransferases, phosphatidylethanolamine N-methyltransferase and FA desaturase 2 were not regulated by ration size in the present experimental model. In contrast, mRNA levels of stearoyl-CoA desaturases were markedly down-regulated by feed restriction. An opposite trend was found for a muscle-specific lipoprotein lipase, which is exclusive of fish lineage. Several upstream regulatory transcriptions were also assessed, although nutritionally mediated changes in mRNA transcripts were almost reduced to PPARα and β, which might act in a counter-regulatory way on lipolysis and lipogenic pathways. This gene expression pattern contributes to the construction of a panel of biomarkers to direct marine fish production towards muscle lean phenotypes with increased retentions of long-chain PUFA.
Wang, Mengqiang; Wang, Lingling; Xin, Lusheng; Wang, Xiudan; Wang, Lin; Xu, Jianchao; Jia, Zhihao; Yue, Feng; Wang, Hao; Song, Linsheng
2016-06-01
Leucine-rich repeat (LRR)-only proteins could mediate protein-ligand and protein-protein interactions and be involved in the immune response. In the present study, two novel LRR-only proteins, CfLRRop-2 and CfLRRop-3, were identified and characterized from scallop Chlamys farreri. They both contained nine LRR motifs with the consensus signature sequence LxxLxLxxNxL and formed typical horseshoe structure. The CfLRRop-2 and CfLRRop-3 mRNA transcripts were constitutively expressed in haemocytes, muscle, mantle, gill, haepatopancreas and gonad, with the highest expression level in haepatopancreas and gill, respectively. During the ontogenesis of scallop, the mRNA transcripts of CfLRRop-2 were kept at a high level in oocytes and embryos, while those of CfLRRop-3 were expressed at a rather low level from oocytes to blastula. Their mRNA transcripts were significantly increased after the stimulation of lipopolysaccharide (LPS), peptidoglycan (PGN), glucan (GLU) and polyinosinic-polycytidylic acid (poly I:C), and the mRNA expression of CfLRRop-2 rose more intensely than that of CfLRRop-3. After the suppression of CfTLR (previously identified Toll-like receptor in C. farreri) via RNA interference (RNAi), CfLRRop-3 mRNA transcripts increased more intensely and lastingly than those of CfLRRop-2. The rCfLRRop-3 protein could bind LPS, PGN, GLU and poly I:C, while rCfLRRop-2 exhibited no significant binding activity to them. Additionally, rCfLRRop-2 could significantly induce the release of TNF-α from the mixed primary cultured scallop haemocytes, but rCfLRRop-3 failed. These results collectively indicated that CfLRRop-2 might act as an immune effector or pro-inflammatory factor, while CfLRRop-3 would function as a pattern recognition receptor (PRR), suggesting the function of LRR-only protein family has differentiated in scallop. Copyright © 2016 Elsevier Ltd. All rights reserved.
Peter, A B; Schittny, J C; Niggli, V; Reuter, H; Sigel, E
1991-08-01
Foreign mRNA was expressed in Xenopus laevis oocytes. Newly expressed ion currents localized in defined plasma membrane areas were measured using the two-electrode voltage clamp technique in combination with a specially designed chamber, that exposed only part of the surface on the oocytes to channel agonists or inhibitors. Newly expressed currents were found to be unequally distributed in the surface membrane of the oocyte. This asymmetry was most pronounced during the early phase of expression, when channels could almost exclusively be detected in the animal hemisphere of the oocyte. 4 d after injection of the mRNA, or later, channels could be found at a threefold higher density at the animal than at the vegetal pole area. The pattern of distribution was observed to be similar with various ion channels expressed from crude tissue mRNA and from cRNAs coding for rat GABAA receptor channel subunits. Electron microscopical analysis revealed very similar microvilli patterns at both oocyte pole areas. Thus, the asymmetric current distribution is not due to asymmetric surface structure. Upon incubation during the expression period in either colchicine or cytochalasin D, the current density was found to be equal in both pole areas. The inactive control substance beta-lumicolchicine had no effect on the asymmetry of distribution. Colchicine was without effect on the amplitude of the expressed whole cell current. Our measurements reveal a pathway for plasma membrane protein expression endogenous to the Xenopus oocyte, that may contribute to the formation and maintenance of polarity of this highly organized cell.
Shepherd, Andrew; Wesley, Uma; Wesley, Cedric
2010-01-01
Notch and Delta proteins generate Notch signaling that specifies cell fates during animal development. There is an intriguing phenomenon in Drosophila embryogenesis that has not received much attention and whose significance to embryogenesis is unknown. Notch and Delta mRNAs expressed in early-stage embryos are shorter than their counterparts in mid-stage embryos. We show here that the difference in sizes is due to mRNA 3′ processing at alternate polyadenylation sites. While the early-stage Notch mRNA has a lower protein-producing potential than the mid-stage Notch mRNA, the early-stage Delta mRNA has a higher protein-producing potential than the mid-stage Delta mRNA. Our data can explain the complementary patterns of Notch and Delta protein levels in early-stage and mid-stage embryos. Our data also raise the possibility that the manner and regulation of Notch signaling change in the course of embryogenesis and that this change is effected by 3′ UTR and mRNA 3′ processing factors. PMID:20201103
Mishra, Ila; Bhardwaj, Sanjay K; Malik, Shalie; Kumar, Vinod
2017-01-05
Hypothalamic expression of the thyroid hormone (TH) responsive gonadostimulatory (eya3, cga, tshβ, dio2, dio3, gnrh, gnih) and neurosteroid pathway genes (androgen receptor [ar], aromatase [cyp19], estrogen receptor [er] α and β) was examined in photosensitive redheaded buntings exposed to 2 (acute, experiment 1) or 12 (chronic, experiment 2) long days (16L:8D). Experiment 2 also included a photorefractory group. Acute long days caused a significant increase in eya3, cga, tshβ, dio2 and gnrh and decrease in dio3 mRNA levels. eya3, cga and tshβ expressions were unchanged after the chronic long days. We also found increased cyp19, erα and erβ mRNA levels after acute, and increased cyp19 and decreased erβ levels after the chronic long-day exposure. Photorefractory buntings showed expression patterns similar to that in the photosensitive state, except for high gnrh and gnih and low dio3 mRNA levels. Consistent with gene expression patterns, there were changes in fat deposition, body mass, testis size, and plasma levels of testosterone, tri-iodothyronine and thyroxine. These results show concurrent photostimulation of the TH-signalling and neurosteroid pathways, and extend the idea, based on differences in gene expression, that transitions in seasonal photoperiodic states are accomplished at the transcriptional levels in absolute photorefractory species. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Aberrant expression of erythropoietin in uterine leiomyoma: implications in tumor growth.
Asano, Ryoko; Asai-Sato, Mikiko; Miyagi, Yohei; Mizushima, Taichi; Koyama-Sato, Makiko; Nagashima, Yoji; Taguri, Masataka; Sakakibara, Hideya; Hirahara, Fumiki; Miyagi, Etsuko
2015-08-01
Myomatous erythrocytosis syndrome is a rare complication of uterine leiomyoma caused by erythropoietin (EPO) that is produced by tumor cells. We assessed the EPO expression in leiomyomas and investigated the effects of EPO on the tumor growth. Tissue samples were collected from 114 patients with uterine leiomyomas who underwent myomectomy or hysterectomy in Yokohama City University Hospital. From 17 patients, the corresponding normal myometrium was also collected. All samples were analyzed for EPO messenger RNA (mRNA) expression by real-time reverse transcription-polymerase chain reaction. EPO protein expression was determined by an enzyme-linked immunosorbent assay. The relationships between EPO expression and clinicopathological features were retrospectively analyzed using the patients' charts. Blood vessel density and maturity were assessed using hematoxylin-eosin staining and CD34 immunohistochemistry. EPO mRNA expression was detected in 108 of 114, or 95%, of the leiomyomas. The mean EPO mRNA expression in the leiomyoma was higher than the corresponding normal myometrium (3836 ± 4122 vs 1455 ± 2141; P = .025 by Wilcoxon rank test). The EPO mRNA expression in the leiomyomas varied extensively among samples, ranging from undetectable levels to 18-fold above the mean EPO mRNA of normal myometrium. EPO protein production was observed concomitant with mRNA expression. A positive correlation of leiomyoma size and EPO mRNA expression was shown by Spearman rank correlation coefficient (ρ = 0.294; P = .001), suggesting the involvement of EPO in leiomyoma growth. The blood vessel maturity was also significantly increased in EPO-producing leiomyomas (high vessel maturity in high vs low EPO group: 67% vs 20%; P = .013 by Fisher exact test). This report demonstrates that EPO is produced in most of conventional leiomyomas and supports a model in which EPO accelerates tumor growth, possibly by inducing vessel maturity. Our study suggests one possible mechanism by which some uterine leiomyomas reach a large size, and the understanding of EPO expression patterns in these tumors may be useful for management of the patients with leiomyomas. Copyright © 2015 Elsevier Inc. All rights reserved.
Diegelmann, Julia; Seiderer, Julia; Niess, Jan-Hendrik; Haller, Dirk; Göke, Burkhard; Reinecker, Hans-Christian; Brand, Stephan
2010-01-01
Background/Aims CXCL16 mediates adhesion and phagocytosis of both Gram-negative and Gram-positive bacteria and is a strong chemoattractant for CXCR6+ T cells. In this study, we determined the so far unknown expression and signal transduction of the novel CXCL16-CXCR6 chemokine-ligand receptor system in intestinal inflammation in vivo and in vitro. Methods CXCL16 mRNA was measured by quantitative PCR in human colonic biopsies of patients with Crohn’s disease (CD) as well as in the TNFΔARE mouse model of ileitis and in murine cytomegalovirus (MCMV)-induced colitis. CXCL16 serum levels were analyzed by ELISA. CXCL16-induced signal transduction was analyzed in IEC with phospho-specific antibodies for MAP kinases and Akt. Results We found an inverse expression pattern of CXCL16 and CXCR6 with highest CXCL16 mRNA levels in the proximal murine small intestine and highest CXCR6 mRNA expression in the distal colon. CXCL16 and CXCR6 mRNA were expressed in colorectal cancer (CRC)-derived IEC lines. CRC-expressed CXCR6 was functional as demonstrated by CXCL16-induced MAP kinase and Akt activation. Intestinal CXCL16 expression was elevated in the TNFΔARE mouse model of ileitis and in MCMV-induced colitis (p<0.05) and in the sera and colons of patients with CD (p<0.05), where its expression correlated highly with CXCR6 and IL-8 levels (r=0.85 and 0.89, respectively). Conclusion CRC-derived IEC express the functional CXCL16 receptor CXCR6. CXCL16 mRNA and protein expression is up-regulated in intestinal inflammation in vitro and in CD patients, suggesting an important role for this chemokine in intestinal inflammation. PMID:20848509
NASA Technical Reports Server (NTRS)
Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.
1998-01-01
Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; P<0.05) at all examined time points (2 to 24 hours). mRNA half-life studies showed that this response was not due to increased mRNA instability. tPA mRNA expression was decreased (to 10% of stationary control; P<0.05) by low shear stress after 12 hours of exposure and was increased (to 250% of stationary control; P<0.05) after 24 hours at high shear stress. The same trends in PAR-1 mRNA levels were observed in rat smooth muscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.
Lattimore, Vanessa L.; Pearson, John F.; Currie, Margaret J.; Spurdle, Amanda B.; Robinson, Bridget A.; Walker, Logan C.
2018-01-01
PCR-based RNA splicing assays are commonly used in diagnostic and research settings to assess the potential effects of variants of uncertain clinical significance in BRCA1 and BRCA2. The Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium completed a multicentre investigation to evaluate differences in assay design and the integrity of published data, raising a number of methodological questions associated with cell culture conditions and PCR-based protocols. We utilized targeted RNA-seq to re-assess BRCA1 and BRCA2 mRNA isoform expression patterns in lymphoblastoid cell lines (LCLs) previously used in the multicentre ENIGMA study. Capture of the targeted cDNA sequences was carried out using 34 BRCA1 and 28 BRCA2 oligonucleotides from the Illumina Truseq Targeted RNA Expression platform. Our results show that targeted RNA-seq analysis of LCLs overcomes many of the methodology limitations associated with PCR-based assays leading us to make the following observations and recommendations: (1) technical replicates (n > 2) of variant carriers to capture methodology induced variability associated with RNA-seq assays, (2) LCLs can undergo multiple freeze/thaw cycles and can be cultured up to 2 weeks without noticeably influencing isoform expression levels, (3) nonsense-mediated decay inhibitors are essential prior to splicing assays for comprehensive mRNA isoform detection, (4) quantitative assessment of exon:exon junction levels across BRCA1 and BRCA2 can help distinguish between normal and aberrant isoform expression patterns. Experimentally derived recommendations from this study will facilitate the application of targeted RNA-seq platforms for the quantitation of BRCA1 and BRCA2 mRNA aberrations associated with sequence variants of uncertain clinical significance. PMID:29774201
Lattimore, Vanessa L; Pearson, John F; Currie, Margaret J; Spurdle, Amanda B; Robinson, Bridget A; Walker, Logan C
2018-01-01
PCR-based RNA splicing assays are commonly used in diagnostic and research settings to assess the potential effects of variants of uncertain clinical significance in BRCA1 and BRCA2 . The Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium completed a multicentre investigation to evaluate differences in assay design and the integrity of published data, raising a number of methodological questions associated with cell culture conditions and PCR-based protocols. We utilized targeted RNA-seq to re-assess BRCA1 and BRCA2 mRNA isoform expression patterns in lymphoblastoid cell lines (LCLs) previously used in the multicentre ENIGMA study. Capture of the targeted cDNA sequences was carried out using 34 BRCA1 and 28 BRCA2 oligonucleotides from the Illumina Truseq Targeted RNA Expression platform. Our results show that targeted RNA-seq analysis of LCLs overcomes many of the methodology limitations associated with PCR-based assays leading us to make the following observations and recommendations: (1) technical replicates ( n > 2) of variant carriers to capture methodology induced variability associated with RNA-seq assays, (2) LCLs can undergo multiple freeze/thaw cycles and can be cultured up to 2 weeks without noticeably influencing isoform expression levels, (3) nonsense-mediated decay inhibitors are essential prior to splicing assays for comprehensive mRNA isoform detection, (4) quantitative assessment of exon:exon junction levels across BRCA1 and BRCA2 can help distinguish between normal and aberrant isoform expression patterns. Experimentally derived recommendations from this study will facilitate the application of targeted RNA-seq platforms for the quantitation of BRCA1 and BRCA2 mRNA aberrations associated with sequence variants of uncertain clinical significance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, W.R., E-mail: w.francis@swansea.ac.uk; Owens, S.E.; Wilde, C.
2014-10-24
Highlights: • ERα36 is the predominant ERα isoform involved in bone regulation in human BMSC. • ERα36 mRNA is significantly upregulated during the process of osteogenesis. • The pattern of ERα36 and runx2 mRNA expression is similar during osteogenesis. • ERα36 appears to be co-localised with runx2 during osteogenesis. - Abstract: During bone maintenance in vivo, estrogen signals through estrogen receptor (ER)-α. The objectives of this study were to investigate the temporal expression of ERα36 and ascertain its functional relevance during osteogenesis in human bone marrow derived stromal cells (BMSC). This was assessed in relation to runt-related transcription factor-2 (runx2),more » a main modulatory protein involved in bone formation. ERα36 and runx2 subcellular localisation was assessed using immunocytochemistry, and their mRNA expression levels by real time PCR throughout the process of osteogenesis. The osteogenically induced BMSCs demonstrated a rise in ERα36 mRNA during proliferation followed by a decline in expression at day 10, which represents a change in dynamics within the culture between the proliferative stage and the differentiative stage. The mRNA expression profile of runx2 mirrored that of ERα36 and showed a degree subcellular co-localisation with ERα36. This study suggests that ERα36 is involved in the process of osteogenesis in BMSCs, which has implications in estrogen deficient environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Tomoya, E-mail: toyamada@affrc.go.jp; Higuchi, Mikito; Nakanishi, Naoto
Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere lengthmore » of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size.« less
Lau, Tze Pheng; Roslani, April Camilla; Lian, Lay Hoong; Chai, Hwa Chia; Lee, Ping Chin; Hilmi, Ida; Goh, Khean Lee; Chua, Kek Heng
2014-01-01
Objectives To characterise the mRNA expression patterns of early and advanced stage colorectal adenocarcinomas of Malaysian patients. Design Comparative expression analysis. Setting and participants We performed a combination of annealing control primer (ACP)-based PCR and reverse transcription-quantitative real-time PCR for the identification of differentially expressed genes (DEGs) associated with early and advanced stage primary colorectal tumours. We recruited four paired samples from patients with colorectal cancer (CRC) of Dukes’ A and B for the preliminary differential expression study, and a total of 27 paired samples, ranging from CRC stages I to IV, for subsequent confirmatory test. The tumouric samples were obtained from the patients with CRC undergoing curative surgical resection without preoperative chemoradiotherapy. The recruited patients with CRC were newly diagnosed with CRC, and were not associated with any hereditary syndromes, previously diagnosed cancer or positive family history of CRC. The paired non-cancerous tissue specimens were excised from macroscopically normal colonic mucosa distally located from the colorectal tumours. Primary and secondary outcome measures The differential mRNA expression patterns of early and advanced stage colorectal adenocarcinomas compared with macroscopically normal colonic mucosa were characterised by ACP-based PCR and reverse transcription-quantitative real-time PCR. Results The RPL35, RPS23 and TIMP1 genes were found to be overexpressed in both early and advanced stage colorectal adenocarcinomas (p<0.05). However, the ARPC2 gene was significantly underexpressed in early colorectal adenocarcinomas, while the advanced stage primary colorectal tumours exhibited an additional overexpression of the C6orf173 gene (p<0.05). Conclusions We characterised two distinctive gene expression patterns to aid in the stratification of primary colorectal neoplasms among Malaysian patients with CRC. Further work can be done to assess and compare the mRNA expression levels of these identified DEGs between each CRC stage group, stages I–IV. PMID:25107436
Expression of the beta-catenin gene in the skin of embryonic geese during feather bud development.
Wu, W; Xu, R F; Xiao, L; Xu, H; Gao, G
2008-01-01
beta-Catenin signaling has been reported to initiate feather bud development. In the present study, beta-catenin gene was isolated and identified from a cDNA library constructed using embryonic goose skin. Expression patterns of beta-catenin gene in the dorsal skin of goose embryos were investigated using the methods of semi-quantitative reverse transcription PCR, Northern blot analysis, and in situ hybridization. The sequence of beta-catenin was found highly conserved at the amino acid level, sharing 100, 99, and 99% identity with chicken, Chinese soft-shell turtle, and human sequences, respectively. Relatively high levels (62.51 +/- 7.11% to 101.74 +/- 7.29%) of beta-catenin mRNA were detected in the dorsal skin samples. The levels of beta-catenin expression were most prominent at the early stage from embryo day (E)10 to E20 and then significantly declined with the embryonic development. In situ hybridization demonstrated that at E10, beta-catenin expression was mainly observed at the surface periderm cells and the localized region of the epidermal layer. Because feather bud forms with an anterior-posterior orientation, strong staining was observed in the periderm layer and in the ectoderm and epidermis with a diffuse distribution within the internal area of the buds. The stronger staining was seen in the barb ridges than in the center pulp of the feather follicles at E18 and E20. In this study, expression of Shh as a marker gene for the bud development was examined paralleling with expression patterns of beta-catenin. It was found that the expression pattern of beta-catenin was almost similar spatially and temporally to that of Shh mRNA at the later stages of bud development. The differential beta-catenin mRNA expression in the goose dorsal skin may be essential for promoting the normal development of embryonic feather bud.
Transterm—extended search facilities and improved integration with other databases
Jacobs, Grant H.; Stockwell, Peter A.; Tate, Warren P.; Brown, Chris M.
2006-01-01
Transterm has now been publicly available for >10 years. Major changes have been made since its last description in this database issue in 2002. The current database provides data for key regions of mRNA sequences, a curated database of mRNA motifs and tools to allow users to investigate their own motifs or mRNA sequences. The key mRNA regions database is derived computationally from Genbank. It contains 3′ and 5′ flanking regions, the initiation and termination signal context and coding sequence for annotated CDS features from Genbank and RefSeq. The database is non-redundant, enabling summary files and statistics to be prepared for each species. Advances include providing extended search facilities, the database may now be searched by BLAST in addition to regular expressions (patterns) allowing users to search for motifs such as known miRNA sequences, and the inclusion of RefSeq data. The database contains >40 motifs or structural patterns important for translational control. In this release, patterns from UTRsite and Rfam are also incorporated with cross-referencing. Users may search their sequence data with Transterm or user-defined patterns. The system is accessible at . PMID:16381889
2012-01-01
Background Even though ovarian tumors are not generally considered estrogen-sensitive, estrogens may still have an impact on ovarian tumor progression. The recently identified trans-membrane estrogen receptor GPER is involved in rapid estrogen signaling. Furthermore, it binds selective estrogen receptor modulators with agonistic effect, which could explain tamoxifen controversies. Methods GPER mRNA was assayed with quantitative real-time PCR (qPCR) in 42 primary ovarian tumors and 7 ovarian cancer cell lines. ERα and ERβ mRNA were analyzed for comparison. GPER protein was semi-quantified with densitometric scanning of Western blots and its tissue distribution analyzed with immunohistochemistry (IHC) in 40 ovarian tumors. In addition, IHC was evaluated in a tissue microarray (TMA) of 150 primary malignant ovarian tumors. Results All tumor samples contained GPER mRNA. The content of mRNA was not different between benign and malignant tumors, but one third of malignant samples over-expressed GPER mRNA. The content of ERα mRNA was higher in malignant than in benign tumors, whereas ERβ mRNA was higher in benign than in malignant tumors. GPER mRNA was detected in all seven ovarian cancer cell lines with highest levels in TOV21G and TOV112D cells. Similar expression pattern was seen for ERβ mRNA. Western blot demonstrated GPER protein in all tumor samples. Semi-quantification showed no difference between benign and malignant tumors, but about one third of malignant samples over-expressed GPER protein. GPER staining was localized mainly in epithelial cells. In the TMA study we found no correlation between GPER staining and clinical stage, histological grade or patient survival. Conclusions GPER mRNA as well as GPER protein is present in both benign and malignant ovarian tumor tissue. About one third of malignant tumors over-expressed both GPER mRNA and protein. This, however, correlated neither with histological or clinical parameters nor with patient survival. PMID:22424333
Cha, Sang-Wook; McAdams, Meredith; Kormish, Jay; Wylie, Christopher; Kofron, Matthew
2012-01-01
Foxi1e is a zygotic transcription factor that is essential for the expression of early ectodermal genes. It is expressed in a highly specific pattern, only in the deep cell layers of the animal hemisphere, and in a mosaic pattern in which expressing cells are interspersed with non-expressing cells. Previous work has shown that several signals in the blastula control this expression pattern, including nodals, the TGFβ family member Vg1, and Notch. However, these are all inhibitory, which raises the question of what activates Foxi1e. In this work, we show that a related Forkhead family protein, Foxi2, is a maternal activator of Foxi1e. Foxi2 mRNA is maternally encoded, and highly enriched in animal hemisphere cells of the blastula. ChIP assays show that it acts directly on upstream regulatory elements of Foxi1e. Its effect is specific, since animal cells depleted of Foxi2 are able to respond normally to mesoderm inducing signals from vegetal cells. Foxi2 thus acts as a link between the oocyte and the early pathway to ectoderm, in a similar fashion to the vegetally localized VegT acts to initiate endoderm and mesoderm formation. PMID:22848601
Wojtczyk-Miaskowska, Anita; Presler, Malgorzata; Michajlowski, Jerzy; Matuszewski, Marcin; Schlichtholz, Beata
2017-01-01
This study investigated the gene expression and DNA methylation of selected DNA repair genes (MBD4, TDG, MLH1, MLH3) and DNMT1 in human bladder cancer in the context of pathophysiological and prognostic significance. To determine the relationship between the gene expression pattern, global methylation and promoter methylation status, we performed real-time PCR to quantify the mRNA of selected genes in 50 samples of bladder cancer and adjacent non-cancerous tissue. The methylation status was analyzed by methylation-specific polymerase chain reaction (MSP) or digestion of genomic DNA with a methylation-sensitive restriction enzyme and PCR with gene-specific primers (MSRE-PCR). The global DNA methylation level was measured using the antibody-based 5-mC detection method. The relative levels of mRNA for MBD4, MLH3, and MLH1 were decreased in 28% (14/50), 34% (17/50) and 36% (18/50) of tumor samples, respectively. The MBD4 mRNA expression was decreased in 46% of non-muscle invasive tumors (Ta/T1) compared with 11% found in muscle invasive tumors (T2-T4) (P<0.003). Analysis of mRNA expression for TDG did not show any significant differences between Ta/T1 and T2-T4 tumors. The frequency of increased DNMT1 mRNA expression was higher in T2-T4 (52%) comparing to Ta/T1 (16%). The overall methylation rates in tumor tissue were 18% for MBD4, 25% for MLH1 and there was no evidence of MLH3 promoter methylation. High grade tumors had significantly lower levels of global DNA methylation (P=0.04). There was a significant association between shorter survival and increased expression of DNMT1 mRNA (P=0.002), decreased expression of MLH1 mRNA (P=0.032) and the presence of MLH1 promoter methylation (P=0.006). This study highlights the importance of DNA repair pathways and provides the first evidence of the role of MBD4 and MLH3 in bladder cancer. In addition, our findings suggest that DNMT1 mRNA and MLH1 mRNA expression, as well as the status of MLH1 promoter methylation, are attractive prognostic markers in this pathology. © 2017 The Author(s). Published by S. Karger AG, Basel.
Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development.
Deluc, Laurent G; Grimplet, Jérôme; Wheatley, Matthew D; Tillett, Richard L; Quilici, David R; Osborne, Craig; Schooley, David A; Schlauch, Karen A; Cushman, John C; Cramer, Grant R
2007-11-22
Grape berry development is a dynamic process that involves a complex series of molecular genetic and biochemical changes divided into three major phases. During initial berry growth (Phase I), berry size increases along a sigmoidal growth curve due to cell division and subsequent cell expansion, and organic acids (mainly malate and tartrate), tannins, and hydroxycinnamates accumulate to peak levels. The second major phase (Phase II) is defined as a lag phase in which cell expansion ceases and sugars begin to accumulate. Véraison (the onset of ripening) marks the beginning of the third major phase (Phase III) in which berries undergo a second period of sigmoidal growth due to additional mesocarp cell expansion, accumulation of anthocyanin pigments for berry color, accumulation of volatile compounds for aroma, softening, peak accumulation of sugars (mainly glucose and fructose), and a decline in organic acid accumulation. In order to understand the transcriptional network responsible for controlling berry development, mRNA expression profiling was conducted on berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip Vitis oligonucleotide microarray ver. 1.0 spanning seven stages of berry development from small pea size berries (E-L stages 31 to 33 as defined by the modified E-L system), through véraison (E-L stages 34 and 35), to mature berries (E-L stages 36 and 38). Selected metabolites were profiled in parallel with mRNA expression profiling to understand the effect of transcriptional regulatory processes on specific metabolite production that ultimately influence the organoleptic properties of wine. Over the course of berry development whole fruit tissues were found to express an average of 74.5% of probes represented on the Vitis microarray, which has 14,470 Unigenes. Approximately 60% of the expressed transcripts were differentially expressed between at least two out of the seven stages of berry development (28% of transcripts, 4,151 Unigenes, had pronounced (> or =2 fold) differences in mRNA expression) illustrating the dynamic nature of the developmental process. The subset of 4,151 Unigenes was split into twenty well-correlated expression profiles. Expression profile patterns included those with declining or increasing mRNA expression over the course of berry development as well as transient peak or trough patterns across various developmental stages as defined by the modified E-L system. These detailed surveys revealed the expression patterns for genes that play key functional roles in phytohormone biosynthesis and response, calcium sequestration, transport and signaling, cell wall metabolism mediating expansion, ripening, and softening, flavonoid metabolism and transport, organic and amino acid metabolism, hexose sugar and triose phosphate metabolism and transport, starch metabolism, photosynthesis, circadian cycles and pathogen resistance. In particular, mRNA expression patterns of transcription factors, abscisic acid (ABA) biosynthesis, and calcium signaling genes identified candidate factors likely to participate in the progression of key developmental events such as véraison and potential candidate genes associated with such processes as auxin partitioning within berry cells, aroma compound production, and pathway regulation and sequestration of flavonoid compounds. Finally, analysis of sugar metabolism gene expression patterns indicated the existence of an alternative pathway for glucose and triose phosphate production that is invoked from véraison to mature berries. These results reveal the first high-resolution picture of the transcriptome dynamics that occur during seven stages of grape berry development. This work also establishes an extensive catalog of gene expression patterns for future investigations aimed at the dissection of the transcriptional regulatory hierarchies that govern berry development in a widely grown cultivar of wine grape. More importantly, this analysis identified a set of previously unknown genes potentially involved in critical steps associated with fruit development that can now be subjected to functional testing.
Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development
Deluc, Laurent G; Grimplet, Jérôme; Wheatley, Matthew D; Tillett, Richard L; Quilici, David R; Osborne, Craig; Schooley, David A; Schlauch, Karen A; Cushman, John C; Cramer, Grant R
2007-01-01
Background Grape berry development is a dynamic process that involves a complex series of molecular genetic and biochemical changes divided into three major phases. During initial berry growth (Phase I), berry size increases along a sigmoidal growth curve due to cell division and subsequent cell expansion, and organic acids (mainly malate and tartrate), tannins, and hydroxycinnamates accumulate to peak levels. The second major phase (Phase II) is defined as a lag phase in which cell expansion ceases and sugars begin to accumulate. Véraison (the onset of ripening) marks the beginning of the third major phase (Phase III) in which berries undergo a second period of sigmoidal growth due to additional mesocarp cell expansion, accumulation of anthocyanin pigments for berry color, accumulation of volatile compounds for aroma, softening, peak accumulation of sugars (mainly glucose and fructose), and a decline in organic acid accumulation. In order to understand the transcriptional network responsible for controlling berry development, mRNA expression profiling was conducted on berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0 spanning seven stages of berry development from small pea size berries (E-L stages 31 to 33 as defined by the modified E-L system), through véraison (E-L stages 34 and 35), to mature berries (E-L stages 36 and 38). Selected metabolites were profiled in parallel with mRNA expression profiling to understand the effect of transcriptional regulatory processes on specific metabolite production that ultimately influence the organoleptic properties of wine. Results Over the course of berry development whole fruit tissues were found to express an average of 74.5% of probes represented on the Vitis microarray, which has 14,470 Unigenes. Approximately 60% of the expressed transcripts were differentially expressed between at least two out of the seven stages of berry development (28% of transcripts, 4,151 Unigenes, had pronounced (≥2 fold) differences in mRNA expression) illustrating the dynamic nature of the developmental process. The subset of 4,151 Unigenes was split into twenty well-correlated expression profiles. Expression profile patterns included those with declining or increasing mRNA expression over the course of berry development as well as transient peak or trough patterns across various developmental stages as defined by the modified E-L system. These detailed surveys revealed the expression patterns for genes that play key functional roles in phytohormone biosynthesis and response, calcium sequestration, transport and signaling, cell wall metabolism mediating expansion, ripening, and softening, flavonoid metabolism and transport, organic and amino acid metabolism, hexose sugar and triose phosphate metabolism and transport, starch metabolism, photosynthesis, circadian cycles and pathogen resistance. In particular, mRNA expression patterns of transcription factors, abscisic acid (ABA) biosynthesis, and calcium signaling genes identified candidate factors likely to participate in the progression of key developmental events such as véraison and potential candidate genes associated with such processes as auxin partitioning within berry cells, aroma compound production, and pathway regulation and sequestration of flavonoid compounds. Finally, analysis of sugar metabolism gene expression patterns indicated the existence of an alternative pathway for glucose and triose phosphate production that is invoked from véraison to mature berries. Conclusion These results reveal the first high-resolution picture of the transcriptome dynamics that occur during seven stages of grape berry development. This work also establishes an extensive catalog of gene expression patterns for future investigations aimed at the dissection of the transcriptional regulatory hierarchies that govern berry development in a widely grown cultivar of wine grape. More importantly, this analysis identified a set of previously unknown genes potentially involved in critical steps associated with fruit development that can now be subjected to functional testing. PMID:18034876
Endothelial glucocorticoid receptor promoter methylation according to dexamethasone sensitivity
Mata-Greenwood, Eugenia; Jackson, P Naomi; Pearce, William J; Zhang, Lubo
2016-01-01
We have previously shown that in vitro sensitivity to dexamethasone (DEX) stimulation in human endothelial cells is positively regulated by the glucocorticoid receptor (NR3C1, GR). The present study determined the role of differential GR transcriptional regulation in glucocorticoid sensitivity. We studied 25 human umbilical vein endothelial cells (HUVECs) that had been previously characterized as DEX-sensitive (n = 15), or resistant (n = 10). Real-time PCR analysis of GR 5′UTR mRNA isoforms showed that all HUVECs expressed isoforms 1B, 1C, 1D, 1F, and 1H, and isoforms 1B and 1C were predominantly expressed. DEX-resistant cells expressed higher basal levels of the 5′UTR mRNA isoforms 1C and 1D, but lower levels of the 5′UTR mRNA isoform 1F than DEX-sensitive cells. DEX treatment significantly decreased GRα and GR-1C mRNA isoform expression in DEX-resistant cells only. Reporter luciferase assays indicated that differential GR mRNA isoform expression was not due to differential promoter usage between DEX-sensitive and DEX-resistant cells. Analysis of promoter methylation, however, showed that DEX-sensitive cells have higher methylation levels of promoter 1D and lower methylation levels of promoter 1F than DEX-resistant cells. Treatment with 5-aza-2-deoxycytidine abolished the differential 5′UTR mRNA isoform expression between DEX-sensitive and DEX-resistant cells. Finally, both GRα overexpression and 5-aza-2-deoxycytidine treatment eliminated the differences between sensitivity groups to DEX-mediated downregulation of endothelial nitric oxide synthase (NOS3), and upregulation of plasminogen activator inhibitor 1 (SERPINE1). In sum, human endothelial GR 5′UTR mRNA expression is regulated by promoter methylation with DEX-sensitive and DEX-resistant cells having different GR promoter methylation patterns. PMID:26242202
Mobley, Christopher Brooks; Fox, Carlton D; Ferguson, Brian S; Amin, Rajesh H; Dalbo, Vincent J; Baier, Shawn; Rathmacher, John A; Wilson, Jacob M; Roberts, Michael D
2014-01-01
The purpose of this study was to examine if L-leucine (Leu), β-hydroxy-β-methylbutyrate (HMB), or creatine monohydrate (Crea) prevented potential atrophic effects of myostatin (MSTN) on differentiated C2C12 myotubes. After four days of differentiation, myotubes were treated with MSTN (10 ng/ml) for two additional days and four treatment groups were studied: 1) 3x per day 10 mM Leu, 2) 3x per day 10 mM HMB, 3) 3x per day 10 mM Crea, 4) DM only. Myotubes treated with DM without MSTN were analyzed as the control condition (DM/CTL). Following treatment, cells were analyzed for total protein, DNA content, RNA content, muscle protein synthesis (MPS, SUnSET method), and fiber diameter. Separate batch treatments were analyzed for mRNA expression patterns of myostatin-related genes (Akirin-1/Mighty, Notch-1, Ski, MyoD) as well as atrogenes (MuRF-1, and MAFbx/Atrogin-1). MSTN decreased fiber diameter approximately 30% compared to DM/CTL myotubes (p < 0.001). Leu, HMB and Crea prevented MSTN-induced atrophy. MSTN did not decrease MPS levels compared to DM/CTL myotubes, but MSTN treatment decreased the mRNA expression of Akirin-1/Mighty by 27% (p < 0.001) and MyoD by 26% (p < 0.01) compared to DM/CTL myotubes. shRNA experiments confirmed that Mighty mRNA knockdown reduced myotube size, linking MSTN treatment to atrophy independent of MPS. Remarkably, MSTN + Leu and MSTN + HMB myotubes had similar Akirin-1/Mighty and MyoD mRNA levels compared to DM/CTL myotubes. Furthermore, MSTN + Crea myotubes exhibited a 36% (p < 0.05) and 86% (p < 0.001) increase in Akirin-1/Mighty mRNA compared to DM/CTL and MSTN-only treated myotubes, respectively. Leu, HMB and Crea may reduce MSTN-induced muscle fiber atrophy by influencing Akirin-1/Mighty mRNA expression patterns. Future studies are needed to examine if Leu, HMB and Crea independently or synergistically affect Akirin-1/Mighty expression, and how Akirin-1/Mighty expression mechanistically relates to skeletal muscle hypertrophy in vivo.
2014-01-01
Background The purpose of this study was to examine if L-leucine (Leu), β-hydroxy-β-methylbutyrate (HMB), or creatine monohydrate (Crea) prevented potential atrophic effects of myostatin (MSTN) on differentiated C2C12 myotubes. Methods After four days of differentiation, myotubes were treated with MSTN (10 ng/ml) for two additional days and four treatment groups were studied: 1) 3x per day 10 mM Leu, 2) 3x per day 10 mM HMB, 3) 3x per day 10 mM Crea, 4) DM only. Myotubes treated with DM without MSTN were analyzed as the control condition (DM/CTL). Following treatment, cells were analyzed for total protein, DNA content, RNA content, muscle protein synthesis (MPS, SUnSET method), and fiber diameter. Separate batch treatments were analyzed for mRNA expression patterns of myostatin-related genes (Akirin-1/Mighty, Notch-1, Ski, MyoD) as well as atrogenes (MuRF-1, and MAFbx/Atrogin-1). Results MSTN decreased fiber diameter approximately 30% compared to DM/CTL myotubes (p < 0.001). Leu, HMB and Crea prevented MSTN-induced atrophy. MSTN did not decrease MPS levels compared to DM/CTL myotubes, but MSTN treatment decreased the mRNA expression of Akirin-1/Mighty by 27% (p < 0.001) and MyoD by 26% (p < 0.01) compared to DM/CTL myotubes. shRNA experiments confirmed that Mighty mRNA knockdown reduced myotube size, linking MSTN treatment to atrophy independent of MPS. Remarkably, MSTN + Leu and MSTN + HMB myotubes had similar Akirin-1/Mighty and MyoD mRNA levels compared to DM/CTL myotubes. Furthermore, MSTN + Crea myotubes exhibited a 36% (p < 0.05) and 86% (p < 0.001) increase in Akirin-1/Mighty mRNA compared to DM/CTL and MSTN-only treated myotubes, respectively. Conclusions Leu, HMB and Crea may reduce MSTN-induced muscle fiber atrophy by influencing Akirin-1/Mighty mRNA expression patterns. Future studies are needed to examine if Leu, HMB and Crea independently or synergistically affect Akirin-1/Mighty expression, and how Akirin-1/Mighty expression mechanistically relates to skeletal muscle hypertrophy in vivo. PMID:25132809
Sawicki, C M; McKim, D B; Wohleb, E S; Jarrett, B L; Reader, B F; Norden, D M; Godbout, J P; Sheridan, J F
2015-08-27
Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b(+) cells (microglia/macrophages) and enriched GLAST-1(+)/CD11b(-) cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain region-dependent manner. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Sawicki, Caroline M.; McKim, Daniel B.; Wohleb, Eric S.; Jarrett, Brant L.; Reader, Brenda F.; Norden, Diana M.; Godbout, Jonathan P.; Sheridan, John F.
2014-01-01
Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain-myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b+ cells (microglia/macrophages) and enriched GLAST-1+/CD11b− cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain-region dependent manner. PMID:25445193
Forlano, Paul M; Marchaterre, Margaret; Deitcher, David L; Bass, Andrew H
2010-02-15
Across all major vertebrate groups, androgen receptors (ARs) have been identified in neural circuits that shape reproductive-related behaviors, including vocalization. The vocal control network of teleost fishes presents an archetypal example of how a vertebrate nervous system produces social, context-dependent sounds. We cloned a partial cDNA of AR that was used to generate specific probes to localize AR expression throughout the central nervous system of the vocal plainfin midshipman fish (Porichthys notatus). In the forebrain, AR mRNA is abundant in proposed homologs of the mammalian striatum and amygdala, and in anterior and posterior parvocellular and magnocellular nuclei of the preoptic area, nucleus preglomerulosus, and posterior, ventral and anterior tuberal nuclei of the hypothalamus. Many of these nuclei are part of the known vocal and auditory circuitry in midshipman. The midbrain periaqueductal gray, an essential link between forebrain and hindbrain vocal circuitry, and the lateral line recipient nucleus medialis in the rostral hindbrain also express abundant AR mRNA. In the caudal hindbrain-spinal vocal circuit, high AR mRNA is found in the vocal prepacemaker nucleus and along the dorsal periphery of the vocal motor nucleus congruent with the known pattern of expression of aromatase-containing glial cells. Additionally, abundant AR mRNA expression is shown for the first time in the inner ear of a vertebrate. The distribution of AR mRNA strongly supports the role of androgens as modulators of behaviorally defined vocal, auditory, and neuroendocrine circuits in teleost fish and vertebrates in general. 2009 Wiley-Liss, Inc.
Yúfera, Manuel; Moyano, Francisco J; Astola, Antonio; Pousão-Ferreira, Pedro; Martínez-Rodríguez, Gonzalo
2012-01-01
Two different modes for regulation of stomach acid secretion have been described in vertebrates. Some species exhibit a continuous acid secretion maintaining a low gastric pH during fasting. Others, as some teleosts, maintain a neutral gastric pH during fasting while the hydrochloric acid is released only after the ingestion of a meal. Those different patterns seem to be closely related to specific feeding habits. However, our recent observations suggest that this acidification pattern could be modified by changes in daily feeding frequency and time schedule. The aim of this study was to advance in understanding the regulation mechanisms of stomach digestion and pattern of acid secretion in teleost fish. We have examined the postprandial pattern of gastric pH, pepsin activity, and mRNA expression for pepsinogen and proton pump in white seabream juveniles maintained under a light/dark 12/12 hours cycle and receiving only one morning meal. The pepsin activity was analyzed according to the standard protocol buffering at pH 2 and using the actual pH measured in the stomach. The results show how the enzyme precursor is permanently available while the hydrochloric acid, which activates the zymogen fraction, is secreted just after the ingestion of food. Results also reveal that analytical protocol at pH 2 notably overestimates true pepsin activity in fish stomach. The expression of the mRNA encoding pepsinogen and proton pump exhibited almost parallel patterns, with notable increases during the darkness period and sharp decreases just before the morning meal. These results indicate that white seabream uses the resting hours for recovering the mRNA stock that will be quickly used during the feeding process. Our data clearly shows that both daily illumination pattern and feeding time are involved at different level in the regulation of the secretion of digestive juices.
Influence of culture medium composition on relative mRNA abundances in domestic cat embryos.
Hribal, R; Jewgenow, K; Braun, B C; Comizzoli, P
2013-04-01
Different culture conditions have been used to produce domestic cat embryos. As part of the in vitro procedures, the medium composition significantly affects the quality of the embryo development also. Quality assessments based on cleavage kinetics and blastomere symmetry are useful, but embryos also can differ in their relative gene expression patterns despite similar morphological characteristics. The aim of this study was to compare cat embryos produced with two different in vitro culture systems routinely used in two different laboratories [Smithsonian Conservation Biology Institute, Washington D.C., USA (SCBI) and Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany (IZW)]. Specifically, relative mRNA expression patterns of critical genes for pre-implantation embryo development were assessed in both conditions. Embryos were produced in parallel in both culture systems by IVF using frozen-thawed ejaculated semen in the United States and fresh epididymal sperm in Germany. Success of embryo development in vitro was recorded as well as relative mRNA abundances [DNA methyltransferases 1 and 3A (DNMT1, DNMT3A), gap junction protein alpha 1 (GJA1), octamer-binding transcription factor 4 [OCT4], insulin-like growth factors 1 and 2 receptors (IGF1R, IGF2R), beta-actin (ACTB)] in pools of days 4-5 morulae by semi-quantitative RT-PCR assay. Percentages of cleaved embryos were similar (p > 0.05) between both culture systems, regardless of the location. OCT4 mRNA abundance was higher (p < 0.05) in embryos derived in the SCBI culture system compared with those from the IZW system when epididymal sperm was used for IVF. No clear correlation between the expression pattern and the culture system could be found for all other genes. It is suggested that OCT4 expression might be affected by the media composition in some conditions and can be the indicator of a better embryo quality. © 2012 Blackwell Verlag GmbH.
Ito, Junko; Ito, Masahiko; Nambu, Hirohide; Fujikawa, Toru; Tanaka, Kenichi; Iwaasa, Hisashi; Tokita, Shigeru
2009-11-01
G-protein-coupled receptors (GPCRs) constitute the largest family of transmembrane receptors and regulate a variety of physiological and disease processes. Although the roles of many non-odorant GPCRs have been identified in vivo, several GPCRs remain orphans (oGPCRs). The gastrointestinal (GI) tract is the largest endocrine organ and is a promising target for drug discovery. Given their close link to physiological function, the anatomical and histological expression profiles of benchmark GI-related GPCRs, such as the cholecystokinin-1 receptor and GPR120, and 106 oGPCRs were investigated in the mucosal and muscle-myenteric nerve layers in the GI tract of C57BL/6J mice by quantitative real-time polymerase chain reaction. The mRNA expression patterns of these benchmark molecules were consistent with previous in situ hybridization and immunohistochemical studies, validating the experimental protocols in this study. Of 96 oGPCRs with significant mRNA expression in the GI tract, several oGPCRs showed unique expression patterns. GPR85, GPR37, GPR37L1, brain-specific angiogenesis inhibitor (BAI) 1, BAI2, BAI3, and GPRC5B mRNAs were preferentially expressed in the muscle-myenteric nerve layer, similar to GPCRs that are expressed in both the central and enteric nerve systems and that play multiple regulatory roles throughout the gut-brain axis. In contrast, GPR112, trace amine-associated receptor (TAAR) 1, TAAR2, and GPRC5A mRNAs were preferentially expressed in the mucosal layer, suggesting their potential roles in the regulation of secretion, immunity, and epithelial homeostasis. These anatomical and histological mRNA expression profiles of oGPCRs provide useful clues about the physiological roles of oGPCRs in the GI tract.
Sant'Anna, Gabriela Dos Santos; Brum, Ilma Simoni; Branchini, Gisele; Pizzolato, Lolita Schneider; Capp, Edison; Corleta, Helena von Eye
2017-08-01
Uterine leiomyomas are the most common benign smooth muscle cell tumors in women. Estrogen (E2), progesterone (P4) and environmental factors play important roles in the development of these tumors. New treatments, such as mifepristone, have been proposed. We evaluated the gene expression of total (PRT) and B (PRB) progesterone receptors, and the histone acetyltransferase (HAT) and deacetylase (HDAC) activity after treatment with E2, P4 and mifepristone (RU486) in primary cell cultures from uterine leiomyoma and normal myometrium. Compared to myometrium, uterine leiomyoma cells showed an increase in PRT mRNA expression when treated with E2, and increase in PRB mRNA expression when treated with E2 and P4. Treatment with mifepristone had no significant impact on mRNA expression in these cells. The HDAC activity was higher in uterine leiomyoma compared to myometrial cells after treatment with E2 and E2 + P4 + mifepristone. HAT activity was barely detectable. Our results suggest that ovarian steroid hormones modulate PR, and mifepristone was unable to decrease PRT and PRB mRNA. The higher activity of HDAC leiomyoma cells could be involved in transcriptional repression of genes implicated in normal myometrium cell function, contributing to the maintenance and growth of uterine leiomyoma.
CFTR expression and organ damage in cystic fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tizzano, E.; Chitayat, D.; Buchwald, M.
1994-09-01
To assist our understanding of the origin of organ damage caused by cystic fibrosis (CF) disease, we have analyzed the pattern of expression of the CF gene (CFTR). mRNA in situ hybridization analysis was carried out in human fetal, newborn, infant and adult tissues and the abundance of the mRNA was correlated with the known pathology at the various stages of human development. Analysis of the pattern of expression indicates a constitutive level of mRNA in gastrointestinal tissues starting during early development and maintained throughout life. Prenatal respiratory tissues show qualitative and quantitative major differences in comparison to postnatal lungmore » samples. Male reproductive tissues show high levels of expression in the head of the epididymis compared with the rest of the male ducts. Female reproductive tissues show a variable pattern of expression at different stages during fetal development and during puberty probably due to changes in hormonal levels. Gastrointestinal and male reproductive tissues have a consistent pathology at birth, whereas no lung abnormalities have been described in newborns affected by CF. Our results show that there is no exact correlations between organ damage present at birth and the degree of CFTR expression. To explain these observations, we hypothesize that the pathogenesis of organ damage in CF depend on at least three factors: the rate of CFTR-mediated fluid secretion, differences in genotype and environmental factors, such as the amount of macromolecules in the lumen of the ducts. This last element predicts that damage will occur in tissues with high protein loads and low flow rates (e.g. pancreas, epididymis), where the absence of CFTR function leads to obstruction and pathology. Organs that express CFTR but with no significant damage (e.g. prenatal lung, female reproductive tissues), will have a low protein load and a high flow rates.« less
Wang, Jianan; He, Max M; Li, Liren; Zhang, Jinfeng
2016-01-01
Asian Americans (AS) have significantly lower incidence and mortality rates of breast cancer (BRCA) than Caucasian Americans (CA). While this racial disparity has been documented the underlying pathogenetic factors explaining it are obscure. We addressed this issue by an integrative genomics approach to compare mRNA expression between AS and CA cases of BRCA. RNA-seq data from the Cancer Genome Atlas showed that mRNA expression revealed significant differences at gene and pathway levels. Increased susceptibility and severity in CA patients were likely the result of synergistic environmental and genetic risk factors, with arachidonic acid metabolism and PPAR signaling pathways implicated in linking environmental and genetic factors. An analysis that also added eQTL data from the Genotype-Tissue Expression Project and single nucleotide polymorphism (SNP) data from the 1000 Genomes Project identified several SNPs associated with differentially expressed genes. Overall, the associations we identified may enable a more focused study of genotypic differences that may help explain the disparity in BRCA incidence and mortality rates in CA and AS populations and inform precision medicine. PMID:28069798
Fu, Yuchang; Maianu, Lidia; Melbert, Barry R; Garvey, W Timothy
2004-01-01
Cellular glucose uptake is mediated by a family of facilitative glucose transporters (GLUT) exhibiting differences in kinetics, substrate specificity, and tissue-specific expression. GLUT isoform expression has not been comprehensively studied in human leukocytes, which participate in immune and inflammatory responses and are critical for host defense. Therefore, we studied the regulated expression of GLUT 1-5 mRNA and protein in isolated human lymphocytes and monocytes and in human THP-1 macrophages and foam cells. Lymphocytes expressed GLUT 1 and GLUT 3 proteins, and cellular levels of both isoforms were augmented 3.5- to 6-fold following activation by phytohemagglutinin (PHA). Monocytes expressed 8.4-fold more GLUT 3 protein and 88% less GLUT 1 than lymphocytes, and activation by lipopolysaccharide (LPS) led to a 1.9-fold increase in GLUT 1. At the level of mRNA expression, GLUT 3 mRNA was the most prevalent GLUT mRNA species in monocytes, while lymphocytes expressed equal numbers of GLUT 1 and GLUT 3 transcripts. Differentiation of THP-1 monocytes into macrophages was associated with marked induction of GLUT 3 and GLUT 5 protein expression, and high levels of GLUT 1, GLUT 3, and GLUT 5 were maintained after transformation to foam cells. GLUT 5 mRNA was expressed in 2-fold greater abundance in macrophages and foam cells than that observed for GLUT 1 mRNA, while the level of GLUT 3 mRNA was intermediate. This facilitative glucose transporters are differentially expressed and regulated in human leukocytes in a pattern that could facilitate cellular functions. Speculatively, high GLUT 1 and GLUT 3 expression could provide cellular fuel for the immune response, and high levels of high-affinity GLUT 3 in macrophages might allow the cell to compete with pathogens for hexoses, even in the presence of low interstitial glucose concentrations. Ample expression of GLUT 1 and GLUT 3 in foam cells could also provide hexose substrates and promote lipid loading. The role for high levels of the fructose transporter GLUT 5 in macrophages and foam cells is unknown since interstitial and circulating fructose concentrations are low in these cells.
Correlation between ZBED6 Gene Upstream CpG Island methylation and mRNA expression in cattle.
Huang, Yong-Zhen; Zhang, Zi-Jing; He, Hua; Cao, Xiu-Kai; Song, Cheng-Chuang; Liu, Kun-Peng; Lan, Xian-Yong; Lei, Chu-Zhao; Qi, Xing-Lei; Bai, Yue-Yu; Chen, Hong
2017-04-03
DNA methylation is essential for the regulation of gene expression and important roles in muscle development. To assess the extent of epigenetic modifications and gene expression on the differentially methylated region (DMR) in ZBED6, we simultaneously examined DNA methylation and expression in six tissues from two different developmental stages (fetal bovine and adult bovine). The DNA methylation pattern was compared using bisulfite sequencing polymerase chain reaction (BSP) and combined bisulfite restriction analysis (COBRA). The result of quantitative real-time PCR (qPCR) analysis showed that ZBED6 has a broad tissue distribution and is highly expressed in adult bovine (P < 0.05 or P < 0.01). The DNA methylation level was significantly different in liver, lung and spleen between the two cattle groups (P < 0.05 or P < 0.01). The adult bovine group exhibited a significantly higher mRNA level and lower DNA methylation level than the fetal bovine group in liver, lung, and spleen. No significant association was detected between DNA methylation level and muscle, heart, and kidney at two different stages. In this study, the statistical analyses indicated that DNA methylation patterns are associated with mRNA level in some tissues, these results may be a useful parameter to investigate muscle developmental in cattle and as a model for studies in other species, potentially contributing to an improvement of growth performance selection in beef cattle breeding program.
Rey, Juan Antonio; Pinto, Giovanny Rebouças; Lamarão, Leticia Martins; Montenegro, Raquel Carvalho; Alves, Ana Paula Negreiros Nunes; Assumpção, Paulo Pimentel; Borges, Barbara do Nascimento; Smith, Marília Cardoso; Burbano, Rommel Rodriguez
2015-01-01
Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies. PMID:26460485
Mello, Adriano Azevedo; Leal, Mariana Ferreira; Rey, Juan Antonio; Pinto, Giovanny Rebouças; Lamarão, Leticia Martins; Montenegro, Raquel Carvalho; Alves, Ana Paula Negreiros Nunes; Assumpção, Paulo Pimentel; Borges, Barbara do Nascimento; Smith, Marília Cardoso; Burbano, Rommel Rodriguez
2015-01-01
Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies.
Expression of fragile X mental retardation protein and Fmr1 mRNA during folliculogenesis in the rat.
Ferder, Ianina; Parborell, Fernanda; Sundblad, Victoria; Chiauzzi, Violeta; Gómez, Karina; Charreau, Eduardo H; Tesone, Marta; Dain, Liliana
2013-04-01
Fragile X mental retardation protein (FMRP) belongs to a small family of RNA-binding proteins. Its absence or inactivity is responsible for fragile X syndrome, the most common cause of inherited mental retardation. Despite its ubiquitous expression, FMRP function and expression remain almost understudied in non-neuronal tissues, though previous studies on germline development during oogenesis may suggest a special function of this protein also in ovarian tissue. In addition, the well-documented association of FMR1 premutation state with fragile X-related premature ovarian insufficiency adds interest to the role of FMRP in ovarian physiology. The aim of the present work was to investigate the expression of Fmr1 mRNA and its protein, FMRP, at different stages of rat follicular development. By immunohistochemical studies we demonstrated FMRP expression in granulosa, theca and germ cells in all stages of follicular development. In addition, changes in Fmr1 expression, both at the protein and mRNA levels, were observed. FMRP levels increased upon follicular development while preantral and early antral follicles presented similar levels of Fmr1 transcripts with decreased expression in preovulatory follicles. These observations suggest that Fmr1 expression in the ovary is regulated at different and perhaps independent levels. In addition, our results show expression of at least four different isoforms of FMRP during all stages of follicular growth with expression patterns that differ from those observed in brain and testis. Our study shows a regulated expression of Fmr1, both at mRNA and protein levels, during rat follicular development.
Kordulewska, Natalia Karolina; Kostyra, Elżbieta; Cieślińska, Anna; Matysiewicz, Michał; Fiedorowicz, Ewa; Sienkiewicz-Szłapka, Edyta
2017-03-01
Fexofenadine (FXF) is a third-generation antihistamine drug and osthole is assumed as a natural antihistamine alternative. This paper compares results of histamine, FXF and osthole impact on HRH-1, COX-2, NF-κB-p50, CCR1 mRNA expression. We also measured mRNA expression of IL-1β and CCL5/RANTES in incubated peripheral blood mononuclear cells (PBMC) to compared how histamine, FXF and osthole had influence on expression level and interacts on product secretion. The purpose was to investigate expression pattern in asthma PBMC. The cultures were treated 72h with FXF and osthole. We measured mRNA expression of histamine HRH-1, COX-2, NF-κB-p50, CCR1, IL-1β and CCL5/RANTES with Real-Time PCR (RT-PCR). The present study suggest that osthole may be a potential inhibitor of histamine H 1 receptor activity. We also demonstrated that cells cultured with histamine increase COX-2 mRNA expression and osthole reduce it. Allergy remains one of the most common chronic diseases in Europe and it is rapidly approaching epidemic proportions; with current predictions estimating that the number of allergy-afflicted will equal the healthy population by 2020. It is therefore paramount to find new pharmaceuticals which successfully combat allergic disease. Copyright © 2016 Elsevier GmbH. All rights reserved.
Sundarrajan, Lakshminarasimhan; Blanco, Ayelén Melisa; Bertucci, Juan Ignacio; Ramesh, Naresh; Canosa, Luis Fabián; Unniappan, Suraj
2016-01-01
Nesfatin-1 is an 82 amino acid anorexigen encoded in a secreted precursor nucleobindin-2 (NUCB2). NUCB2 was named so due to its high sequence similarity with nucleobindin-1 (NUCB1). It was recently reported that NUCB1 encodes an insulinotropic nesfatin-1-like peptide (NLP) in mice. Here, we aimed to characterize NLP in fish. RT- qPCR showed NUCB1 expression in both central and peripheral tissues. Western blot analysis and/or fluorescence immunohistochemistry determined NUCB1/NLP in the brain, pituitary, testis, ovary and gut of goldfish. NUCB1 mRNA expression in goldfish pituitary and gut displayed a daily rhythmic pattern of expression. Pituitary NUCB1 mRNA expression was downregulated by estradiol, while testosterone upregulated its expression in female goldfish brain. High carbohydrate and fat suppressed NUCB1 mRNA expression in the brain and gut. Intraperitoneal injection of synthetic rat NLP and goldfish NLP at 10 and 100 ng/g body weight doses caused potent inhibition of food intake in goldfish. NLP injection also downregulated the expression of mRNAs encoding orexigens, preproghrelin and orexin-A, and upregulated anorexigen cocaine and amphetamine regulated transcript mRNA in goldfish brain. Collectively, these results provide the first set of results supporting the anorectic action of NLP, and the regulation of tissue specific expression of goldfish NUCB1. PMID:27329836
Chen, Yi-Tzai; Trzoss, Lynnie; Yang, Dongfang; Yan, Bingfang
2015-01-01
Human carboxylesterase-2 (CES2) and cytochrome P450 3A4 (CYP3A4) are two major drug metabolizing enzymes that play critical roles in hydrolytic and oxidative biotransformation, respectively. They share substrates but may have opposite effect on therapeutic potential such as the metabolism of the anticancer prodrug irinotecan. Both CES2 and CYP3A4 are expressed in the liver and the gastrointestinal tract. This study was conducted to determine whether CES2 and CYP3A4 are expressed under developmental regulation and whether the regulation occurs differentially between the liver and duodenum. A large number of tissues (112) were collected with majority of them from donors at 1-198 days of age. In addition, multi-sampling (liver, duodenum and jejunum) was performed in some donors. The expression was determined at mRNA and protein levels. In the liver, CES2 and CYP3A4 mRNA exhibited a postnatal surge (1 versus 2 months of age) by 2.7 and 29 fold, respectively. CYP3A4 but not CES2 mRNA in certain pediatric groups reached or even exceeded the adult level. The duodenal samples, on the other hand, showed a gene-specific expression pattern at mRNA level. CES2 mRNA increased with age but the opposite was true with CYP3A4 mRNA. The levels of CES2 and CYP3A4 protein, on the other hand, increased with age in both liver and duodenum. The multi-sampling study demonstrated significant correlation of CES2 expression between the duodenum and jejunum. However, neither duodenal nor jejunal expression correlated with hepatic expression of CES2. These findings establish that developmental regulation occurs in a gene and organ-dependent manner. PMID:25724353
Ahmed, Ikhlak; Karedath, Thasni; Andrews, Simeon S; Al-Azwani, Iman K; Mohamoud, Yasmin Ali; Querleu, Denis; Rafii, Arash; Malek, Joel A
2016-06-14
Recently, a class of endogenous species of RNA called circular RNA (circRNA) has been shown to regulate gene expression in mammals and their role in cellular function is just beginning to be understood. To investigate the role of circRNAs in ovarian cancer, we performed paired-end RNA sequencing of primary sites, peritoneal and lymph node metastases from three patients with stage IIIC ovarian cancer. We developed an in-house computational pipeline to identify and characterize the circRNA expression from paired-end RNA-Seq libraries. This pipeline revealed thousands of circular isoforms in Epithelial Ovarian Carcinoma (EOC). These circRNAs are enriched for potentially effective miRNA seed matches. A significantly larger number of circRNAs are differentially expressed between tumor sites than mRNAs. Circular and linear expression exhibits an inverse trend for many cancer related pathways and signaling pathways like NFkB, PI3k/AKT and TGF-β typically activated for mRNA in metastases are inhibited for circRNA expression. Further, circRNAs show a more robust expression pattern across patients than mRNA forms indicating their suitability as biomarkers in highly heterogeneous cancer transcriptomes. The consistency of circular RNA expression may offer new candidates for cancer treatment and prognosis.
Ahmed, Ikhlak; Karedath, Thasni; Andrews, Simeon S.; Al, Iman K.; Mohamoud, Yasmin Ali; Querleu, Denis; Rafii, Arash; Malek, Joel A.
2016-01-01
Recently, a class of endogenous species of RNA called circular RNA (circRNA) has been shown to regulate gene expression in mammals and their role in cellular function is just beginning to be understood. To investigate the role of circRNAs in ovarian cancer, we performed paired-end RNA sequencing of primary sites, peritoneal and lymph node metastases from three patients with stage IIIC ovarian cancer. We developed an in-house computational pipeline to identify and characterize the circRNA expression from paired-end RNA-Seq libraries. This pipeline revealed thousands of circular isoforms in Epithelial Ovarian Carcinoma (EOC). These circRNAs are enriched for potentially effective miRNA seed matches. A significantly larger number of circRNAs are differentially expressed between tumor sites than mRNAs. Circular and linear expression exhibits an inverse trend for many cancer related pathways and signaling pathways like NFkB, PI3k/AKT and TGF-β typically activated for mRNA in metastases are inhibited for circRNA expression. Further, circRNAs show a more robust expression pattern across patients than mRNA forms indicating their suitability as biomarkers in highly heterogeneous cancer transcriptomes. The consistency of circular RNA expression may offer new candidates for cancer treatment and prognosis. PMID:27119352
Modification of N6-methyladenosine RNA methylation on heat shock protein expression.
Yu, Jiayao; Li, Yi; Wang, Tian; Zhong, Xiang
2018-01-01
This study was conducted to investigate effect of N6-methyladenosine (m6A) RNA methylation on Heat shock proteins (HSPs) and dissect the profile of HSP RNA methylation. The results showed that m6A methyltransferases METTL3 mRNA was decreased in responses to heat shock stress in HepG2 cells, but m6A-specific binding protein YTHDF2 mRNA was upregulated in a manner similar to HSP70 induction. Immunofluorescence staining showed that the majority of YTHDF2 was present in the cytosol, however, nearly all YTHDF2 translocated from the cytosol into the nucleus after heat shock. METTL3 knockdown significantly changed HSP70, HSP60, and HSP27 mRNA expression in HepG2 cells using siRNA, however, mRNA lifetime was not impacted. Silence of YTHDF2 using siRNA did not change expression of HSP70, but significantly increased HSP90, HSP60, and HSPB1 mRNA expression. In addition, m6A-seq revealed that HSP m6A methylation peaks are mainly enriched on exons and around stop codons, and shows a unique distribution profile in the 5'UTR and 3'UTR. Knockdown of METTL3 changed the methylation patterns of HSPs transcript. In conclusion, m6A RNA methylation regulates HSP gene expression. Differential expression of HSPs modulated by m6A may depend on the m6A site and abundance of the target gene. This finding provides insights into new regulatory mechanisms of HSPs in normal and stress situations.
Jang, Jin Young; Jang, Miae; Kim, Shin Hye; Um, Ki Bum; Kang, Yun Kyung; Kim, Hyun Jin; Chung, Sungkwon; Park, Myoung Kyu
2011-03-01
Dopamine (DA) receptors generate many cellular signals and play various roles in locomotion, motivation, hormone production, and drug abuse. According to the location and expression types of the receptors in the brain, DA signals act in either stimulatory or inhibitory manners. Although DA autoreceptors in the substantia nigra pars compacta are known to regulate firing activity, the exact expression patterns and roles of DA autoreceptor types on the firing activity are highly debated. Therefore, we performed individual correlation studies between firing activity and receptor expression patterns using acutely isolated rat substantia nigra pars compacta DA neurons. When we performed single-cell RT-PCR experiments, D(1), D(2)S, D(2)L, D(3), and D(5) receptor mRNA were heterogeneously expressed in the order of D(2)L > D(2)S > D(3) > D(5) > D(1). Stimulation of D(2) receptors with quinpirole suppressed spontaneous firing similarly among all neurons expressing mRNA solely for D(2)S, D(2)L, or D(3) receptors. However, quinpirole most strongly suppressed spontaneous firing in the neurons expressing mRNA for both D(2) and D(3) receptors. These data suggest that D(2) S, D(2)L, and D(3) receptors are able to equally suppress firing activity, but that D(2) and D(3) receptors synergistically suppress firing. This diversity in DA autoreceptors could explain the various actions of DA in the brain. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Prostacyclin synthase expression and epigenetic regulation in nonsmall cell lung cancer.
Cathcart, Mary-Clare; Gray, Steven G; Baird, Anne-Marie; Boyle, Elaine; Gately, Kathy; Kay, Elaine; Cummins, Robert; Pidgeon, Graham P; O'Byrne, Kenneth J
2011-11-15
Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. PGIS expression was reduced/absent in human NSCLC protein samples (P < .0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P = .004) and in male patients (P < .05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P < .001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC. Copyright © 2011 American Cancer Society.
Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability.
Dudek, Sabine Eva; Nitzsche, Katja; Ludwig, Stephan; Ehrhardt, Christina
2016-06-06
Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication.
Differential expression of the ufo/axl oncogene in human leukemia-lymphoma cell lines.
Challier, C; Uphoff, C C; Janssen, J W; Drexler, H G
1996-05-01
The ufo protein (also termed axl) is a member of a new family of receptor tyrosine kinases and is encoded by a transforming gene that was initially isolated from primary human myeloid leukemia cells by DNA-mediated transformation of NIH/3T3 cells. The ligand, Gas6, a protein S-related molecule lacking any known function yet, has recently been identified. We report the expression pattern of ufo mRNA in a panel of 76 human continuous leukemia-lymphoma cell lines. The gene was not expressed in cell lines derived from lymphoid malignancies (n=28), but transcription was seen in 3/11 myeloid, 0/6 monocytic, 9/13 erythroid and 11/18 megakaryocytic cell lines. Several cell lines were treated with phorbol ester leading to significant upregulation of the ufo message in constitutively positive cells. An apparent ufo mRNA overexpression was not found in any of the positive leukemia cell lines, but was identified in the drug-resistant subclones of the cervix carcinoma cell line HeLa. Southern blot analysis of restriction enzyme-digested genomic DNA did not provide evidence for gene amplification, but the HeLa subclones showed banding patterns suggestive of gene rearrangement. Two main ufo mRNA bands of 3.2 and 5.0 kb were identified; no differences in the half-lives (t1/2 = 2.5 h) of these two mRNA species could be identified. In summary, ufo, representing a novel type of receptor tyrosine kinase, is expressed solely in myeloid and erythro-megakaryocytic leukemias but not in lymphoid malignancies. These and previous data suggest an involvement of the ufo receptor tyrosine kinase in normal and malignant myelopoiesis; however, its exact role, if any, and mode of operation in leukemogenesis remains to be determined.
Bradford, Emily M; Vairamani, Kanimozhi; Shull, Gary E
2016-02-15
To investigate the intestinal functions of the NKCC1 Na(+)-K(+)-2Cl cotransporter (SLC12a2 gene), differential mRNA expression changes in NKCC1-null intestine were analyzed. Microarray analysis of mRNA from intestines of adult wild-type mice and gene-targeted NKCC1-null mice (n = 6 of each genotype) was performed to identify patterns of differential gene expression changes. Differential expression patterns were further examined by Gene Ontology analysis using the online Gorilla program, and expression changes of selected genes were verified using northern blot analysis and quantitative real time-polymerase chain reaction. Histological staining and immunofluorescence were performed to identify cell types in which upregulated pancreatic digestive enzymes were expressed. Genes typically associated with pancreatic function were upregulated. These included lipase, amylase, elastase, and serine proteases indicative of pancreatic exocrine function, as well as insulin and regenerating islet genes, representative of endocrine function. Northern blot analysis and immunohistochemistry showed that differential expression of exocrine pancreas mRNAs was specific to the duodenum and localized to a subset of goblet cells. In addition, a major pattern of changes involving differential expression of olfactory receptors that function in chemical sensing, as well as other chemosensing G-protein coupled receptors, was observed. These changes in chemosensory receptor expression may be related to the failure of intestinal function and dependency on parenteral nutrition observed in humans with SLC12a2 mutations. The results suggest that loss of NKCC1 affects not only secretion, but also goblet cell function and chemosensing of intestinal contents via G-protein coupled chemosensory receptors.
Laskowska-Macios, Karolina; Zapasnik, Monika; Hu, Tjing-Tjing; Kossut, Malgorzata; Arckens, Lutgarde; Burnat, Kalina
2015-10-01
Pattern vision deprivation (BD) can induce permanent deficits in global motion perception. The impact of timing and duration of BD on the maturation of the central and peripheral visual field representations in cat primary visual areas 17 and 18 remains unknown. We compared early BD, from eye opening for 2, 4, or 6 months, with late onset BD, after 2 months of normal vision, using the expression pattern of the visually driven activity reporter gene zif268 as readout. Decreasing zif268 mRNA levels between months 2 and 4 characterized the normal maturation of the (supra)granular layers of the central and peripheral visual field representations in areas 17 and 18. In general, all BD conditions had higher than normal zif268 levels. In area 17, early BD induced a delayed decrease, beginning later in peripheral than in central area 17. In contrast, the decrease occurred between months 2 and 4 throughout area 18. Lack of pattern vision stimulation during the first 4 months of life therefore has a different impact on the development of areas 17 and 18. A high zif268 expression level at a time when normal vision is restored seems to predict the capacity of a visual area to compensate for BD. © The Author 2014. Published by Oxford University Press.
MRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects.
Martínez-Pacheco, M; Hidalgo-Miranda, A; Romero-Córdoba, S; Valverde, M; Rojas, E
2014-01-10
Metals are a threat to human health by increasing disease risk. Experimental data have linked altered miRNA expression with exposure to some metals. MiRNAs comprise a large family of non-coding single-stranded molecules that primarily function to negatively regulate gene expression post-transcriptionally. Although several human populations are exposed to low concentrations of As, Cd and Pb as a mixture, most toxicology research focuses on the individual effects that these metals exert. Thus, this study aims to evaluate global miRNA and mRNA expression changes induced by a metal mixture containing NaAsO2, CdCl2, Pb(C2H3O2)2·3H2O and to predict possible metal-associated disease development under these conditions. Our results show that this metal mixture results in a miRNA expression profile that may be responsible for the mRNA expression changes observed under experimental conditions in which coding proteins are involved in cellular processes, including cell death, growth and proliferation related to the metal-associated inflammatory response and cancer. © 2013 Elsevier B.V. All rights reserved.
Köllisch, Gabriele; Kalali, Behnam Naderi; Voelcker, Verena; Wallich, Reinhard; Behrendt, Heidrun; Ring, Johannes; Bauer, Stefan; Jakob, Thilo; Mempel, Martin; Ollert, Markus
2005-01-01
Toll-like receptors (TLRs) are important pattern recognition molecules that activate the nuclear factor (NF)-κB pathway leading to the production of antimicrobial immune mediators. As keratinocytes represent the first barrier against exogenous pathogens in human skin, we investigated their complete functional TLR1–10 expression profile. First, reverse transcription–polymerase chain reaction (PCR) analysis revealed a very similar pattern of TLR mRNA expression when comparing freshly isolated human epidermis and cultured primary human keratinocytes. Thus, further experiments were carried out with primary keratinocytes in comparison with the spontaneously immortalized human keratinocyte cell line HaCaT. The quantitative expression of TLR1–10 mRNA in real-time PCR of primary human keratinocytes and HaCaT cells was analysed. Both cell types constitutively expressed TLR2, TLR3, TLR5, and to a lesser extent TLR10. TLR4 was only found in HaCaT cells, TLR1 to a higher degree in primary keratinocytes. In line with this, LPS induced mRNA expression of CD14 and TLR4 only in HaCaT cells. After stimulation with various TLR ligands, the NF-κB-activated chemokine interleukin-8 (IL-8) was measured. In primary keratinocytes and HaCaT cells the TLR3 ligand poly (I:C) was the most potent stimulator of IL-8 secretion. The TLR ligands peptidoglycan, Pam3Cys and flagellin which bind to TLR2, TLR1/TLR2 heterodimer, and TLR5, respectively, also induced IL-8 secretion, whereas no IL-8 was induced by LPS, R-848, loxoribine and cytosine guanine dinucleotide-containing oligodeoxynucleotide. A corresponding pattern was found in the RelA NF-κB translocation assay after ligand stimulation of primary keratinocytes. These studies provide substantial evidence for a functional TLR expression and signalling profile of normal human keratinocytes contributing to the antimicrobial defence barrier of human skin. PMID:15804290
Expression profiling of G-protein-coupled receptors in human urothelium and related cell lines.
Ochodnický, Peter; Humphreys, Sian; Eccles, Rachel; Poljakovic, Mirjana; Wiklund, Peter; Michel, Martin C
2012-09-01
What's known on the subject? and What does the study add? Urothelium emerged as a crucial integrator of sensory inputs and outputs in the bladder wall, and urothelial G-protein-coupled receptors (GPCRs) may represent plausible targets for treatment of various bladder pathologies. Urothelial cell lines provide a useful tool to study urothelial receptor function, but their validity as models for native human urothelium remains unclear. We characterize the mRNA expression of genes coding for GPCRs in human freshly isolated urothelium and compare the expression pattern with those in human urothelial cell lines. To characterize the mRNA expression pattern of genes coding for G-protein-coupled receptors (GPCRs) in human freshly isolated urothelium. To compare GPCR expression in human urothelium-derived cell lines to explore the suitability of these cell lines as model systems to study urothelial function. Native human urothelium (commercially sourced) and human urothelium-derived non-cancer (UROtsa and TERT-NHUC) and cancer (J82) cell lines were used. For mRNA expression profiling we used custom-designed real-time polymerase chain reaction array for 40 receptors and several related genes. Native urothelium expressed a wide variety of GPCRs, including α(1A), α(1D) and all subtypes of α(2) and β adrenoceptors. In addition, M(2) and M(3) cholinergic muscarinic receptors, angiotensin II AT(1) receptor, serotonin 5-HT(2A) receptor and all subtypes of bradykinin, endothelin, cannabinoid, tachykinin and sphingosine-1-phosphate receptors were detected. Nerve growth factor and both its low- and high-affinity receptors were also expressed in urothelium. In all cell lines expression of most GPCRs was markedly downregulated, with few exceptions. In UROtsa cells, but much less in other cell lines, the expression of β(2) adrenoceptors, M(3) muscarinic receptors, B(1) and B(2) bradykinin receptors, ET(B) endothelin receptors and several subtypes of sphingosine-1-phosphate receptors was largely retained. Human urothelium expresses a wide range of receptors which enables sensing and integration of various extracellular signals. Human urothelium-derived cell lines, especially UROtsa cells, show comparable mRNA expression to native tissue for several physiologically relevant GPCRs, but lose expression of many other receptors. The use of cell lines as model systems of human urothelium requires careful validation of suitability for the genes of interest. © 2012 BJU INTERNATIONAL.
Proteinases during Early Development of the Pacific Whiteleg Shrimp Penaeus vannamei.
Hernandez-Cortes, Patricia; Rivera-Pérez, Crisalejandra; García-Carreño, Fernando; Martínez-Alarcón, Diana
2017-02-01
During shrimp larval development, changes occur in molecular components. Enzyme activity and mRNA expression of proteinases were assayed in Penaeus vannamei during larval development, which consists of 5 nauplius stages, 3 protozoeal stages, 3 mysis stages, and 12 postlarval stages. Trypsin activity reached a maximum at the beginning of postlarval stages 1 and 2, and significantly decreased in subsequent postlarval stages. Chymotrypsin activity increased at the third protozoeal stage, then significantly decreased in subsequent stages. Identification of proteinase by mass spectrometry and inhibitors allowed us to track their appearance in zymograms and to distinguish between isoenzymes. Chymotrypsin BI and BII had a distinguishing pattern of appearance during larval development, which could compensate for the reduction in trypsin activity. The mRNA content of isotrypsin 21, chymotrypsin 1, and zinc proteinase was differentially expressed in larvae. Zinc proteinase and chymotrypsin 1 mRNA were expressed at a basal content at the beginning of the protozoeal stages, increased by the end of the mysis stages and onward, while isotrypsin 21 mRNA had a peak at mysis stage 3. Transcript changes reflect transcriptional regulation of the proteinases tested. Proteinase mRNA in tissues, other than the digestive gland, suggests potentially different roles besides digestion during ontogeny.
Downie, Bruce; Gurusinghe, Sunitha; Dahal, Petambar; Thacker, Richard R.; Snyder, John C.; Nonogaki, Hiroyuki; Yim, Kyuock; Fukanaga, Keith; Alvarado, Veria; Bradford, Kent J.
2003-01-01
Raffinose family oligosaccharides (RFOs) have been implicated in mitigating the effects of environmental stresses on plants. In seeds, proposed roles for RFOs include protecting cellular integrity during desiccation and/or imbibition, extending longevity in the dehydrated state, and providing substrates for energy generation during germination. A gene encoding galactinol synthase (GOLS), the first committed enzyme in the biosynthesis of RFOs, was cloned from tomato (Lycopersicon esculentum Mill. cv Moneymaker) seeds, and its expression was characterized in tomato seeds and seedlings. GOLS (LeGOLS-1) mRNA accumulated in developing tomato seeds concomitant with maximum dry weight deposition and the acquisition of desiccation tolerance. LeGOLS-1 mRNA was present in mature, desiccated seeds but declined within 8 h of imbibition in wild-type seeds. However, LeGOLS-1 mRNA accumulated again in imbibed seeds prevented from completing germination by dormancy or water deficit. Gibberellin-deficient (gib-1) seeds maintained LeGOLS-1 mRNA amounts after imbibition unless supplied with gibberellin, whereas abscisic acid (ABA) did not prevent the loss of LeGOLS-1 mRNA from wild-type seeds. The presence of LeGOLS-1 mRNA in ABA-deficient (sitiens) tomato seeds indicated that wild-type amounts of ABA are not necessary for its accumulation during seed development. In all cases, LeGOLS-1 mRNA was most prevalent in the radicle tip. LeGOLS-1 mRNA accumulation was induced by dehydration but not by cold in germinating seeds, whereas both stresses induced LeGOLS-1 mRNA accumulation in seedling leaves. The physiological implications of LeGOLS-1 expression patterns in seeds and leaves are discussed in light of the hypothesized role of RFOs in plant stress tolerance. PMID:12644684
Peng, Guogan; Zhao, Wen; Shi, Zhenguang; Chen, Huirong; Liu, Yang; Wei, Jie; Gao, Fengying
2016-03-01
The genes encoding HSP70 and HSP90 proteins were isolated from kaluga by homologous cloning and rapid amplification of complementary DNA (cDNA) ends (RACE). HSP70 (GenBank accession no. KP050541) and HSP90 (GenBank accession no. KP050542) cDNAs were composed of 2275 and 2718 bp and encoded polypeptides of 650 and 725 amino acids, respectively. Basic Local Alignment Search Tool (BLAST) analysis showed that HSP70 and HSP90 of kaluga shared high identities with those of Acipenser ruthenus, Acipenser schrenckii, and Acipenser baerii (98-99 %). Fluorescent real-time RT-PCR under unstressed conditions revealed that HSP70 and HSP90 were expressed in 11 different tissues of kaluga. Messenger RNA (mRNA) expressions of both HSP70 and HSP90 were highest in the intestine and lowest in the muscle. In addition, the patterns of mRNA expression of HSP70 and HSP90 were similar, although the level of expression was more in HSP90 than in HSP70 (P < 0.05).We also analyzed patterns of HSP70 and HSP90 expression in the muscle, gill, and liver of kaluga under different combinations of temperature and salinity stress, including temperatures of 4,10, 25, and 28 °C at 0 ppt salinity, and salinities of 10, 20, 30, and 40 ppt at 16 °C, where 16 °C at 0 ppt (parts per thousand) served as the control. We found that levels of mRNA expression of both HSP70 and HSP90 were highest at 4 °C in the muscle, gill, and liver and changed little with salinity stress. These results increase understanding of the mechanisms of stress response of cold freshwater fish.
Neutrophils Express Distinct RNA Receptors in a Non-canonical Way*
Berger, Michael; Hsieh, Chin-Yuan; Bakele, Martina; Marcos, Veronica; Rieber, Nikolaus; Kormann, Michael; Mays, Lauren; Hofer, Laura; Neth, Olaf; Vitkov, Ljubomir; Krautgartner, Wolf Dietrich; von Schweinitz, Dietrich; Kappler, Roland; Hector, Andreas; Weber, Alexander; Hartl, Dominik
2012-01-01
RNAs are capable of modulating immune responses by binding to specific receptors. Neutrophils represent the major fraction of circulating immune cells, but receptors and mechanisms by which neutrophils sense RNA are poorly defined. Here, we analyzed the mRNA and protein expression patterns and the subcellular localization of the RNA receptors RIG-I, MDA-5, TLR3, TLR7, and TLR8 in primary neutrophils and immortalized neutrophil-like differentiated HL-60 cells. Our results demonstrate that both neutrophils and differentiated HL-60 cells express RIG-I, MDA-5, and TLR8 at the mRNA and protein levels, whereas TLR3 and TLR7 are not expressed at the protein level. Subcellular fractionation, flow cytometry, confocal laser scanning microscopy, and immuno-transmission electron microscopy provided evidence that, besides the cytoplasm, RIG-I and MDA-5 are stored in secretory vesicles of neutrophils and showed that RIG-I and its ligand, 3p-RNA, co-localize at the cell surface without triggering neutrophil activation. In summary, this study demonstrates that neutrophils express a distinct pattern of RNA recognition receptors in a non-canonical way, which could have essential implications for future RNA-based therapeutics. PMID:22532562
Sawada, H; Nakagoshi, M; Reinhardt, R K; Ziegler, I; Koch, P B
2002-06-01
Color patterns of butterfly wings are composed of single color points represented by each scale. In the case of Precis coenia, at the end of pupal development, different types of pigments are synthesized sequentially in the differently colored scales beginning with white (pterins) followed by red (ommatins) and then black (melanin). In order to explain how formation of these different colors is regulated, we examined the expression of an mRNA-encoding guanosine triphosphate-cyclohydrolase I (GTP-CH I; EC 3.5.4.16), the first key enzyme in the biosynthesis of pteridines, during pigment formation in the wings of P. coenia. The strongest positive signal was recognized around pigment formation one day before butterfly emergence. This GTP-CH I gene expression is paralleled by GTP-CH I enzyme activity measured in wing extracts. We also investigated the effect of 20-hydroxyecdysone on the expression of GTP-CH I mRNA and the enzyme activity during color formation. The results strongly suggest that the onset and duration of the expression of a GTP-CH I mRNA is triggered by a declining ecdysteroid hormone titer during late pupal development.
Ishida, Ken; Kuboshima, Megumi; Morita, Hiroto; Maeda, Hiroshi; Okamoto, Ayako; Takeuchi, Michio; Yamagata, Youhei
2014-01-01
Alternative splicing is thought to be a means for diversification of products by mRNA modification. Although some intron retentions are predicted by transcriptome analysis in Aspergillus oryzae, its physiological significance remains unknown. We found that intron retention occurred occasionally in the serine-type carboxypeptidase gene, ocpG. Analysis under various culture conditions revealed that extracellular nitrogen conditions influence splicing patterns; this suggested that there might be a correlation between splicing efficiency and the necessity of OcpG activity for obtaining a nitrogen source. Since further analysis showed that splicing occurred independently in each intron, we constructed ocpG intron-exchanging strain by interchanging the positions of intron-1 and intron-2. The splicing pattern indicated the probability that ocpG intron retention was affected by the secondary structures of intronic mRNA.
Mo, Delin; Zhu, Zhengmao; te Pas, Marinus F W; Li, Xinyun; Yang, Shulin; Wang, Heng; Wang, Huanling; Li, Kui
2008-06-30
In a previous screen to identify differentially expressed genes associated with embryonic development, the porcine PNAS-4 gene had been found. Considering differentially expressed genes in early stages of muscle development are potential candidate genes to improve meat quality and production efficiency, we determined how porcine PNAS-4 gene regulates meat production. Therefore, this gene has been sequenced, expression analyzed and associated with meat production traits. We cloned the full-length cDNA of porcine PNAS-4 gene encoding a protein of 194 amino acids which was expressed in the Golgi complex. This gene was mapped to chromosome 10, q11-16, in a region of conserved synteny with human chromosome 1 where the human homologous gene was localized. Real-time PCR revealed that PNAS-4 mRNA was widely expressed with highest expression levels in skeletal muscle followed by lymph, liver and other tissues, and showed a down-regulated expression pattern during prenatal development while a up-regulated expression pattern after weaning. Association analysis revealed that allele C of SNP A1813C was prevalent in Chinese indigenous breeds whereas A was dominant allele in Landrace and Large White, and the pigs with homozygous CC had a higher fat content than those of the pigs with other genotypes (P < 0.05). Porcine PNAS-4 protein tagged with green fluorescent protein accumulated in the Golgi complex, and its mRNA showed a widespread expression across many tissues and organs in pigs. It may be an important factor affecting the meat production efficiency, because its down-regulated expression pattern during early embryogenesis suggests involvement in increase of muscle fiber number. In addition, the SNP A1813C associated with fat traits might be a genetic marker for molecular-assisted selection in animal breeding.
Alharby, Hesham F; Metwali, Ehab M R; Fuller, Michael P; Aldhebiani, Amal Y
2016-11-01
Five cultivars of tomato having different levels of salt stress tolerance were exposed to different treatments of NaCl (0, 3 and 6 g L -1 ) and ZnO-NPs (0, 15 and 30 mg L -1 ). Treatments with NaCl at both 3 and 6 g L -1 suppressed the mRNA levels of superoxide dismutase (SOD) and glutathione peroxidase (GPX) genes in all cultivars while plants treated with ZnO-NPs in the presence of NaCl, showed increments in the mRNA expression levels. This indicated that ZnO-NPs had a positive response on plant metabolism under salt stress. Superior expression levels of mRNA were observed in the salt tolerant cultivars, Sandpoint and Edkawy while the lowest level was detected in the salt sensitive cultivar, Anna Aasa. SDS-PAGE showed clear differences in patterns of protein expression among the cultivars. A negative protein marker for salt sensitivity and ZnO-NPs was detected in cv. Anna Aasa at a molecular weight of 19.162 kDa, while the tolerant cultivar Edkawy had two positive markers at molecular weights of 74.991 and 79.735 kDa.
Takai, C; Matsumoto, I; Inoue, A; Umeda, N; Tanaka, Y; Kurashima, Y; Wada, Y; Narita, I; Sumida, T
2015-06-01
The tumour necrosis factor (TNF)-α-induced proteins (TNFAIP)9 and TNFAIP3 play an important pathogenic role in murine arthritis. To clarify their pathophysiological roles in patients with rheumatoid arthritis (RA), we examined their expression and localization in peripheral blood mononuclear cells (PBMC). TNFAIP9 and TNFAIP3 mRNA expression was determined in PBMC of RA patients and healthy subjects (control). Flow cytometry was used to analyse the main TNFAIP9- and TNFAIP3-expressing cell populations. TNFAIP9 and TNFAIP3 mRNA expression levels were examined in vitro on CD14(+) cells stimulated with TNF-α and lipopolysaccharide (LPS). The expression levels of TNFAIP9 and TNFAIP3 mRNA were also measured before and 12 weeks after treatment with tocilizumab and abatacept. TNFAIP9 expression was significantly higher, while TNFAIP3 expression was lower in PBMC of RA (n=36) than the control (n=24) (each P < 0.05). TNFAIP9 was expressed on CD14(+) cells, especially in human leucocyte antigen D-related (HLA-DR)(+) CD14(bright) CD16(-) cells, while TNFAIP3 was expressed mainly on CD3(+) T cells. TNF-α and LPS induced TNFAIP9 and TNFAIP3 in human CD14(+) monocytes in vitro. Treatment with tocilizumab (n=13), but not abatacept (n=11), significantly reduced TNFAIP9 mRNA expression in PBMC, which was associated with reduction in the number of circulating CD14(bright) monocytes. The expression of TNFAIP9 in CD14(+) cells was specifically elevated in patients with RA, regulated by TNF-α and LPS, and suppressed by tocilizumab, while TNFAIP3 in PBMC showed different localization and induction patterns. © 2015 British Society for Immunology.
Hata, K; Andoh, A; Sato, H; Araki, Y; Tanaka, M; Tsujikawa, T; Fujiyama, Y; Bamba, T
2001-11-01
Transgenic rats expressing HLA-B27 and human beta2-microglobulin (HLA-B27 rats) spontaneously develop chronic colitis resembling human inflammatory bowel disease. We investigated the sequential changes in the luminal bacterial flora and mucosal cytokine mRNA expression in this model. HLA-B27 rats were maintained in a specific pathogen-free environment, and luminal microflora was evaluated by standard bacterial culture technique. The expression of mucosal cytokine mRNA was analysed by RT-PCR methods. Clinical symptoms of colitis appeared at 8 weeks of age. The total number of obligate anaerobes was higher than those of facultative anaerobes during the experimental period. At 6 weeks of age, the colonization of Bacteroides spp., Bifidobacterium spp. and Lactobacillus spp. was already detectable at high concentrations, whereas Clostridium spp. and Eubacterium spp. were not detected. The expression of proinflammatory cytokines (IL-Ibeta, IL-8 and TNF-alpha) appeared at 8 weeks of age, and these were detectable until 17 weeks. A similar pattern was observed in the expression of Th1 cytokines (IL-2, IL-12 and IFN-gamma). On the other hand, the expression of Th2 cytokines (IL-4, IL-10 and TGF-beta) was weak. IL-4 mRNA expression was weakly detectable only at 6 and 8 weeks of age. The expression of IL-10 and TGF-beta mRNA was scarcely detectable throughout the experimental period. The development of colitis may be mediated by both the predominant expression of Th1 cytokines and the weakness of Th2 cytokine expression in the mucosa. The colonization of anaerobic bacteria, especially Bacteroides spp., may be initiating and promoting these cytokine responses.
Alvarez-Salas, Elena; Mengod, Guadalupe; García-Luna, Cinthia; Soberanes-Chávez, Paulina; Matamoros-Trejo, Gilberto; de Gortari, Patricia
2016-04-01
Thyrotropin-releasing hormone (TRH) is a neuropeptide with endocrine and neuromodulatory effects. TRH from the paraventricular hypothalamic nucleus (PVN) participates in the control of energy homeostasis; as a neuromodulator TRH has anorexigenic effects. Negative energy balance decreases PVN TRH expression and TSH concentration; in contrast, a particular model of anorexia (dehydration) induces in rats a paradoxical increase in TRH expression in hypophysiotropic cells from caudal PVN and high TSH serum levels, despite their apparent hypothalamic hyperthyroidism and low body weight. We compared here the mRNA co-expression pattern of one of the brain thyroid hormones' transporters, the monocarboxylate transporter-8 (MCT8) with that of TRH in PVN subdivisions of dehydration-induced anorexic (DIA) and control rats. Our aim was to identify whether a low MCT8 expression in anorexic rats could contribute to their high TRH mRNA content.We registered daily food intake and body weight of 7-day DIA and control rats and analyzed TRH and MCT8 mRNA co-expression throughout the PVN by double in situ hybridization assays. We found that DIA rats showed increased number of TRHergic cells in caudal PVN, as well as a decreased percentage of TRH-expressing neurons that co-expressed MCT8 mRNA signal. Results suggest that the reduced proportion of double TRH/MCT8 expressing cells may be limiting the entry of hypothalamic triiodothyronine to the greater number of TRH-expressing neurons from caudal PVN and be in part responsible for the high TRH expression in anorexia rats and for the lack of adaptation of their hypothalamic-pituitary-thyroid axis to their low food intake.
Feng, Ling; Wang, Ru; Lian, Meng; Ma, Hongzhi; He, Ning; Liu, Honggang; Wang, Haizhou; Fang, Jugao
2016-01-01
Long non-coding RNA (lncRNA) plays an important role in tumorigenesis. However, the expression pattern and function of lncRNAs in laryngeal squamous cell carcinoma (LSCC) are still unclear. To investigate the aberrantly expressed lncRNAs and mRNAs in advanced LSCC, we screened lncRNA and mRNA expression profiles in 9 pairs of primary Stage IVA LSCC tissues and adjacent non-neoplastic tissues by lncRNA and mRNA integrated microarrays. Gene Ontology and pathway analysis were performed to find out the significant function and pathway of the differentially expressed mRNAs, gene-gene functional interaction network and ceRNA network were constructed to select core mRNAs, and lncRNA-mRNA expression correlation network was built to identify the interactions between lncRNA and mRNA. qRT-PCR was performed to further validate the expressions of selected lncRNAs and mRNAs in advanced LSCC. We found 1459 differentially expressed lncRNAs and 2381 differentially expressed mRNAs, including 846 up-regulated lncRNAs and 613 down-regulated lncRNAs, 1542 up-regulated mRNAs and 839 down-regulated mRNAs. The mRNAs ITGB1, HIF1A, and DDIT4 were selected as core mRNAs, which are mainly involved in biological processes, such as matrix organization, cell cycle, adhesion, and metabolic pathway. LncRNA-mRNA expression correlation network showed LncRNA NR_027340, MIR31HG were positively correlated with ITGB1, HIF1A respectively. LncRNA SOX2-OT was negatively correlated with DDIT4. qRT-PCR further validated the expression of these lncRNAs and mRNAs. The work provides convincing evidence that the identified lncRNAs and mRNAs are potential biomarkers in advanced LSCC for further future studies.
Singh, Prashant K; Long, Mark D; Battaglia, Sebastiano; Hu, Qiang; Liu, Song; Sucheston-Campbell, Lara E; Campbell, Moray J
2015-01-01
The Vitamin D Receptor (VDR) is a member of the nuclear receptor superfamily and is of therapeutic interest in cancer and other settings. Regulation of microRNA (miRNA) by the VDR appears to be important to mediate its actions, for example, to control cell growth. To identify if and to what extent VDR-regulated miRNA patterns change in prostate cancer progression, we undertook miRNA microarray analyses in 7 cell models representing non-malignant and malignant prostate cells (RWPE-1, RWPE-2, HPr1, HPr1AR, LNCaP, LNCaP-C4-2, and PC-3). To focus on primary VDR regulatory events, we undertook expression analyses after 30 minutes treatment with 1α,25(OH)2D3. Across all models, 111 miRNAs were significantly modulated by 1α,25(OH)2D3 treatment. Of these, only 5 miRNAs were modulated in more than one cell model, and of these, only 3 miRNAs were modulated in the same direction. The patterns of miRNA regulation, and the networks they targeted, significantly distinguished the different cell types. Integration of 1α,25(OH)2D3-regulated miRNAs with published VDR ChIP-seq data showed significant enrichment of VDR peaks in flanking regions of miRNAs. Furthermore, mRNA and miRNA expression analyses in non-malignant RWPE-1 cells revealed patterns of miRNA and mRNA co-regulation; specifically, 13 significant reciprocal patterns were identified and these patterns were also observed in TCGA prostate cancer data. Lastly, motif search analysis revealed differential motif enrichment within VDR peaks flanking mRNA compared to miRNA genes. Together, this study revealed that miRNAs are rapidly regulated in a highly cell-type specific manner, and are significantly co-integrated with mRNA regulation.
Quantification and molecular characterization of the feline leukemia virus A receptor.
Katrin Helfer-Hungerbuehler, A; Cattori, Valentino; Bachler, Barbara; Hartnack, Sonja; Riond, Barbara; Ossent, Pete; Lutz, Hans; Hofmann-Lehmann, Regina
2011-12-01
Virus receptors and their expression patterns on the cell surface determine the cell tropism of the virus, host susceptibility and the pathogenesis of the infection. Feline thiamine transport protein 1 (fTHTR1) has been identified as the receptor for feline leukemia virus (FeLV) A. The goal of the present study was to develop a quantitative, TaqMan real-time PCR assay to investigate fTHTR1 mRNA expression in tissues of uninfected and FeLV-infected cats, cats of different ages, in tumor tissues and leukocyte subsets. Moreover, the receptor was molecularly characterized in different feline species. fTHTR1 mRNA expression was detected in all 30 feline tissues investigated, oral mucosa scrapings and blood. Importantly, identification of significant differences in fTHTR1 expression relied on normalization with an appropriate reference gene. The lowest levels were found in the blood, whereas high levels were measured in the oral mucosa, salivary glands and the musculature. In the blood, T lymphocytes showed significantly higher fTHTR1 mRNA expression levels than neutrophil granulocytes. In vitro activation of peripheral blood mononuclear cells with concanavalin A alone or followed by interleukin-2 led to a transient increase of fTHTR1 mRNA expression. In the blood, but not in the examined tissues, FeLV-infected cats tended to have lower fTHTR1 mRNA levels than uninfected cats. The fTHTR1 mRNA levels were not significantly different between tissues with lymphomas and the corresponding non-neoplastic tissues. fTHTR1 was highly conserved among different feline species (Iberian lynx, Asiatic and Indian lion, European wildcat, jaguarundi, domestic cat). In conclusion, while ubiquitous fTHTR1 mRNA expression corresponded to the broad target tissue range of FeLV, particularly high fTHTR1 levels were found at sites of virus entry and shedding. The differential susceptibility of different species to FeLV could not be attributed to variations in the fTHTR1 sequence. Copyright © 2011 Elsevier B.V. All rights reserved.
Gao, Hong; Frost, Michael R; Siegwart, John T; Norton, Thomas T
2011-04-12
To increase our understanding of the mechanisms that remodel the sclera during the development of lens-induced myopia, when the sclera responds to putative "go" signals of retinal origin, and during recovery from lens-induced myopia, when the sclera responds to retinally-derived "stop" signals. Seven groups of tree shrews were used to examine mRNA levels during minus lens compensation and recovery. Starting 24 days after eye opening (days of visual experience [VE]) lens compensation animals wore a monocular -5D lens for 1, 4, or 11 days. Recovery animals wore the -5D lens for 11 days, which was then removed for 1 or 4 days. Normal animals were examined at 24 and 38 days of VE. All groups contained 8 animals. Scleral mRNA levels were examined in the treated and contralateral control eyes with quantitative real-time polymerase chain reaction (qPCR) for 27 genes divided into four categories: 1) signaling molecules, 2) matricellular proteins, 3) metalloproteinases (MPs) and tissue inhibitors of metalloproteinases (TIMPs), and 4) cell adhesion and other proteins. Four groups (n=5 per group) were used to examine protein levels. One group wore a -5D lens for 4 days. A second group recovered for 4 days after 11 days of -5D lens treatment. Two groups were used to examine age-matched normal protein levels at 28 and 39 days of VE. The levels of six scleral proteins that showed differential mRNA expression were examined with quantitative western blots. Nineteen of the genes showed differential (treated eye versus control eye) expression of mRNA levels in at least one group of animals. Which genes showed differential expression differed after 1 and 4 days of compensation and after 1 or 4 days of recovery. The mRNA level for one gene, a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1), was upregulated in the treated eyes after 1 day of compensation. After 4 days, transforming growth factor beta receptor 3 (TGFBR3), transforming growth factor-beta-induced protein ig-h3 (TGFBI), and matrix metalloproteinase 14 (MMP14) mRNA levels were upregulated. Downregulated were mRNA levels for transforming growth factor beta-1 (TGFB1), transforming growth factor beta-2 (TGFB2), thrombospondin 1 (THBS1), tenascin (TNC), osteonectin (SPARC), osteopontin (SPP1), tissue inhibitor of metalloproteinases 3 (TIMP3), and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5). After 11 days of lens wear, there was no differential expression. During recovery, after 1 day, treated-eye mRNA downregulation was found for TGFB2, TGFBR1, TGFBR2, TGFBR3, SPARC, ADAMTS1, ADAMTS5, syndecan 4 (SDC4), and collagen type VI, alpha 1 (COL6A1). After 4 days, TGFB1, TGFB2, TGFB3, THBS2, and TIMP3 mRNA levels were upregulated in the recovering eye. Significant downregulation, relative to normal eyes, was found in both the control and treated eyes for most genes after 1 day of compensation; a similar decrease was found, compared to lens-compensated eyes, after one day of recovery. Protein levels for THBS1 showed positive correlation with the differential mRNA levels and TGFBR3 showed a negative correlation. No differential protein expression was found for TGFB2, TGFBI, MMP14, and TIMP3. The different patterns of differential mRNA expression during minus lens compensation (hyperopia) and recovery (myopia) show that scleral fibroblasts distinguish between "go" and "stop" conditions. There is evidence of binocular global downregulation of genes at the start of both lens wear and recovery. As additional information accumulates about changes in gene expression that occur during compensation and recovery the "signature" of differential changes may help us to understand in more detail how the sclera responds in "go" and "stop" conditions.
Shock, Jennifer L; Fischer, Kael F; DeRisi, Joseph L
2007-01-01
The rate of mRNA decay is an essential element of post-transcriptional regulation in all organisms. Previously, studies in several organisms found that the specific half-life of each mRNA is precisely related to its physiologic role, and plays an important role in determining levels of gene expression. We used a genome-wide approach to characterize mRNA decay in Plasmodium falciparum. We found that, globally, rates of mRNA decay increase dramatically during the asexual intra-erythrocytic developmental cycle. During the ring stage of the cycle, the average mRNA half-life was 9.5 min, but this was extended to an average of 65 min during the late schizont stage of development. Thus, a major determinant of mRNA decay rate appears to be linked to the stage of intra-erythrocytic development. Furthermore, we found specific variations in decay patterns superimposed upon the dominant trend of progressive half-life lengthening. These variations in decay pattern were frequently enriched for genes with specific cellular functions or processes. Elucidation of Plasmodium mRNA decay rates provides a key element for deciphering mechanisms of genetic control in this parasite, by complementing and extending previous mRNA abundance studies. Our results indicate that progressive stage-dependent decreases in mRNA decay rate function are a major determinant of mRNA accumulation during the schizont stage of intra-erythrocytic development. This type of genome-wide change in mRNA decay rate has not been observed in any other organism to date, and indicates that post-transcriptional regulation may be the dominant mechanism of gene regulation in P. falciparum.
NASA Astrophysics Data System (ADS)
Bushel, Pierre R.; Bennett, Lee; Hamadeh, Hisham; Green, James; Ableson, Alan; Misener, Steve; Paules, Richard; Afshari, Cynthia
2002-06-01
We present an analysis of pattern recognition procedures used to predict the classes of samples exposed to pharmacologic agents by comparing gene expression patterns from samples treated with two classes of compounds. Rat liver mRNA samples following exposure for 24 hours with phenobarbital or peroxisome proliferators were analyzed using a 1700 rat cDNA microarray platform. Sets of genes that were consistently differentially expressed in the rat liver samples following treatment were stored in the MicroArray Project System (MAPS) database. MAPS identified 238 genes in common that possessed a low probability (P < 0.01) of being randomly detected as differentially expressed at the 95% confidence level. Hierarchical cluster analysis on the 238 genes clustered specific gene expression profiles that separated samples based on exposure to a particular class of compound.
Direct multiplexed measurement of gene expression with color-coded probe pairs.
Geiss, Gary K; Bumgarner, Roger E; Birditt, Brian; Dahl, Timothy; Dowidar, Naeem; Dunaway, Dwayne L; Fell, H Perry; Ferree, Sean; George, Renee D; Grogan, Tammy; James, Jeffrey J; Maysuria, Malini; Mitton, Jeffrey D; Oliveri, Paola; Osborn, Jennifer L; Peng, Tao; Ratcliffe, Amber L; Webster, Philippa J; Davidson, Eric H; Hood, Leroy; Dimitrov, Krassen
2008-03-01
We describe a technology, the NanoString nCounter gene expression system, which captures and counts individual mRNA transcripts. Advantages over existing platforms include direct measurement of mRNA expression levels without enzymatic reactions or bias, sensitivity coupled with high multiplex capability, and digital readout. Experiments performed on 509 human genes yielded a replicate correlation coefficient of 0.999, a detection limit between 0.1 fM and 0.5 fM, and a linear dynamic range of over 500-fold. Comparison of the NanoString nCounter gene expression system with microarrays and TaqMan PCR demonstrated that the nCounter system is more sensitive than microarrays and similar in sensitivity to real-time PCR. Finally, a comparison of transcript levels for 21 genes across seven samples measured by the nCounter system and SYBR Green real-time PCR demonstrated similar patterns of gene expression at all transcript levels.
Phenotype-specific CpG island methylation events in a murine model of prostate cancer.
Camoriano, Marta; Kinney, Shannon R Morey; Moser, Michael T; Foster, Barbara A; Mohler, James L; Trump, Donald L; Karpf, Adam R; Smiraglia, Dominic J
2008-06-01
Aberrant DNA methylation plays a significant role in nearly all human cancers and may contribute to disease progression to advanced phenotypes. Study of advanced prostate cancer phenotypes in the human disease is hampered by limited availability of tissues. We therefore took advantage of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model to study whether three different phenotypes of TRAMP tumors (PRIM, late-stage primary tumors; AIP, androgen-independent primary tumors; and MET, metastases) displayed specific patterns of CpG island hypermethylation using Restriction Landmark Genomic Scanning. Each tumor phenotype displayed numerous hypermethylation events, with the most homogeneous methylation pattern in AIP and the most heterogeneous pattern in MET. Several loci displayed a phenotype-specific methylation pattern; the most striking pattern being loci methylated at high frequency in PRIM and AIP but rarely in MET. Examination of the mRNA expression of three genes, BC058385, Goosecoid, and Neurexin 2, which exhibited nonpromoter methylation, revealed increased expression associated with downstream methylation. Only methylated samples showed mRNA expression, in which tumor phenotype was a key factor determining the level of expression. The CpG island in the human orthologue of BC058385 was methylated in human AIP but not in primary androgen-stimulated prostate cancer or benign prostate. The clinical data show a proof-of-principle that the TRAMP model can be used to identify targets of aberrant CpG island methylation relevant to human disease. In conclusion, phenotype-specific hypermethylation events were associated with the overexpression of different genes and may provide new markers of prostate tumorigenesis.
The expression characteristics of mt-ND2 gene in chicken.
Zhang, Wenwen; Hou, Lingling; Wang, Ting; Lu, Weiwei; Tao, Yafei; Chen, Wen; Du, Xiaohui; Huang, Yanqun
2016-09-01
Subunit 2 of NADH dehydrogenase (ND2) is encoded by the mt-ND2 gene and plays a critical role in controlling the production of the mitochondrial reactive oxygen species. Our study focused on exploring the mt-ND2 tissue expression patterns and the effects of energy restriction and dietary fat (linseed oil, corn oil, sesame oil or lard) level (2.5% and 5%) on its expression in chicken. The results showed that mt-ND2 gene was expressed in the 15 tissues of hybrid chickens with the highest level in heart and lowest level in pancreas tissue; 30% energy restriction did not significantly affect mt-ND2 mRNA level in chicken liver tissue. Both the mt-ND2 mRNA levels in chicken pectoralis (p < 0.05) and hepatic tissues (p < 0.05) at 42 d-old were affected by the type of dietary fats in 5% level, while not in abdominal fat tissues. The expression of mt-ND2 in hepatic tissues was down-regulated with chicken age (p < 0.01). The interactive effect of dietary fat types with chicken age (p < 0.05) was significant on mt-ND2 mRNA level. The study demonstrated that mt-ND2 gene was extensively expressed in tissues, and the expression was affected by dietary fat types and chicken age.
Expression and Regulation of the Fkbp5 Gene in the Adult Mouse Brain
Scharf, Sebastian H.; Liebl, Claudia; Binder, Elisabeth B.
2011-01-01
Background Chronic stress has been found to be a major risk factor for various human pathologies. Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, which is tightly regulated via, among others, the glucocorticoid receptor (GR). The activity of the GR is modulated by a variety of proteins, including the co-chaperone FK506 binding protein 51 (FKBP5). Although FKBP5 has been associated with risk for affective disorders and has been implicated in GR sensitivity, previous studies focused mainly on peripheral blood, while information about basal distribution and induction in the central nervous system are sparse. Methodology/Principal Findings In the present study, we describe the basal expression pattern of Fkbp5 mRNA in the brain of adult male mice and show the induction of Fkbp5 mRNA via dexamethasone treatment or different stress paradigms. We could show that Fkbp5 is often, but not exclusively, expressed in regions also known for GR expression, for example the hippocampus. Furthermore, we were able to induce Fkbp5 expression via dexamethasone in the CA1 and DG subregions of the hippocampus, the paraventricular nucleus (PVN) and the central amygdala (CeA). Increase of Fkbp5 mRNA was also found after restrained stress and 24 hours of food deprivation in the PVN and the CeA, while in the hippocampus only food deprivation caused an increase in Fkbp5 mRNA. Conclusions/Significance Interestingly, regions with a low basal expression showed higher increase in Fkbp5 mRNA following induction than regions with high basal expression, supporting the hypothesis that GR sensitivity is, at least partly, mediated via Fkbp5. In addition, this also supports the use of Fkbp5 gene expression as a marker for GR sensitivity. In summary, we were able to give an overview of the basal expression of fkbp5 mRNA as well as to extend the findings of induction of Fkbp5 and its regulatory influence on GR sensitivity from peripheral blood to the brain. PMID:21347384
Weinberg, Marc S.; Bhatt, Aadra P.; Girotti, Milena; Masini, Cher V.; Day, Heidi E. W.; Campeau, Serge; Spencer, Robert L.
2009-01-01
Repeated exposure to a moderately intense stressor typically produces attenuation of the hypothalamic-pituitary-adrenal (HPA) axis response (habituation) on re-presentation of the same stressor; however, if a novel stressor is presented to the same animals, the HPA axis response may be augmented (sensitization). The extent to which this adaptation is also evident within neural activity patterns is unknown. This study tested whether repeated ferret odor (FO) exposure, a moderately intense psychological stressor for rats, leads to both same-stressor habituation and novel-stressor sensitization of the HPA axis response and neuronal activity as determined by immediate early gene induction (c-fos mRNA). Rats were presented with FO in their home cages for 30 min a day for up to 2 wk and subsequently challenged with FO or restraint. Rats displayed HPA axis activity habituation and widespread habituation of c-fos mRNA expression (in situ hybridization) throughout the brain in as few as three repeated presentations of FO. However, repeated FO exposure led to a more gradual development of sensitized HPA-axis and c-fos mRNA responses to restraint that were not fully evident until after 14 d of prior FO exposure. The sensitized response was evident in many of the same brain regions that displayed habituation, including primary sensory cortices and the prefrontal cortex. The shared spatial expression but distinct temporal development of habituation and sensitization neural response patterns suggests two independent processes with opposing influences across overlapping brain systems. PMID:18845631
Lipska, Barbara K; Lerman, Daniel N; Khaing, Zin Z; Weickert, Cynthia Shannon; Weinberger, Daniel R
2003-07-01
We used in situ hybridization histochemistry to assess expression of dopamine receptors (D1R, D2R and D3R), neurotensin, proenkephalin and glutamate decarboxylase-67 (GAD67) in the prefrontal cortex, striatum, and/or nucleus accumbens in adult rats with neonatal ventral hippocampal (VH) lesions and in control animals after acute and chronic treatment with antipsychotic drugs clozapine and haloperidol. We also acquired these measures in a separate cohort of treatment-naïve sham and neonatally VH-lesioned rats used as an animal model of schizophrenia. Our results indicate that the neonatal VH lesion did not alter expression of D1R, D3R, neurotensin or proenkephalin expression in any brain region examined. However, D2R mRNA expression was down-regulated in the striatum, GAD67 mRNA was down-regulated in the prefrontal cortex and prodynorphin mRNA was up-regulated in the striatum of the VH-lesioned rats as compared with sham controls. Antipsychotic drugs did not alter expression of D1R, D2R or D3R receptor mRNAs but elevated neurotensin and proenkephalin expression in both groups of rats; patterns of changes were dependent on the duration of treatment and brain area examined. GAD67 mRNA was up-regulated by chronic antispychotics in the nucleus accumbens and the striatum and by chronic haloperidol in the prefrontal cortex in both sham and lesioned rats. These results indicate that the developmental VH lesion changed the striatal expression of D2R and prodynorphin and robustly compromised prefrontal GAD67 expression but did not modify drug-induced expression of any genes examined in this study.
Djurisic, S; Teiblum, S; Tolstrup, C K; Christiansen, O B; Hviid, T V F
2015-03-01
The HLA-G molecule is expressed on trophoblast cells at the feto-maternal interface, where it interacts with local immune cells, and upholds tolerance against the semi-allogeneic fetus. Aberrant HLA-G expression in the placenta and reduced soluble HLA-G levels are observed in pregnancy complications, partly explained by HLA-G polymorphisms which are associated with differences in the alternative splicing pattern and of the stability of HLA-G mRNA. Of special importance is a 14 bp insertion/deletion polymorphism located in the 3'-untranslated region of the HLA-G gene. In the current study, we present novel evidence for allelic imbalance of the 14 bp insertion/deletion polymorphism, using a very accurate and sensitive Digital droplet PCR technique. Allelic imbalance in heterozygous samples was observed as differential expression levels of 14 bp insertion/deletion allele-specific mRNA transcripts, which was further associated with low levels of HLA-G surface expression on primary trophoblast cells. Full gene sequencing of HLA-G allowed us to study correlations between HLA-G extended haplotypes and single-nucleotide polymorphisms and HLA-G surface expression. We found that a 1:1 expression (allelic balance) of the 14 bp insertion/deletion mRNA alleles was associated with high surface expression of HLA-G and with a specific HLA-G extended haplotype. The 14 bp del/del genotype was associated with a significantly lower abundance of the G1 mRNA isoform, and a higher abundance of the G3 mRNA isoform. Overall, the present study provides original evidence for allelic imbalance of the 14 bp insertion/deletion polymorphism, which influences HLA-G surface expression on primary trophoblast cells, considered to be important in the pathogenesis of pre-eclampsia and other pregnancy complications. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
[Schizophrenia and cortical GABA neurotransmission].
Hashimoto, Takanori; Matsubara, Takuro; Lewis, David A
2010-01-01
Individuals with schizophrenia show disturbances in a number of brain functions that regulate cognitive, affective, motor, and sensory processing. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related molecules. First, mRNA levels for the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67), an enzyme principally responsible for GABA synthesis, and the GABA membrane transporter GAT1, which regulates the reuptake of synaptically released GABA, are decreased in a subset of GABA neurons. Second, affected GABA neurons include those that express the calcium-binding protein parvalbumin (PV), because PV mRNA levels are decreased in the prefrontal cortex of subjects with schizophrenia and GAD67 mRNA is undetectable in almost half of PV-containing neurons. These changes are accompanied by decreased GAT1 expression in the presynaptic terminals of PV-containing neurons and by increased postsynaptic GABA-A receptor alpha2 subunit expression at the axon initial segments of pyramidal neurons. These findings indicate decreased GABA synthesis/release by PV-containing GABA neurons and compensatory changes at synapses formed by these neurons. Third, another subset of GABA neurons that express the neuropeptide somatostatin (SST) also appear to be affected because their specific markers, SST and neuropeptide Y mRNAs, are decreased in a manner highly correlated with the decreases in GAD67 mRNA. Finally, mRNA levels for GABA-A receptor subunits for synaptic (alpha1 and gamma2) and extra-synaptic (delta) receptors are decreased, indicating alterations in both synaptic and extra-synaptic GABA neurotransmission. Together, this pattern of changes indicates that the altered GABA neurotransmission is specific to PV-containing and SST-containing GABA neuron subsets and involves both synaptic and extra-synaptic GABA-A receptors. Our recent analyses demonstrated that this pattern exists across diverse cortical areas including the prefrontal, anterior cingulate, primary motor, and primary visual cortices. GABA neurotransmission by PV-containing and SST-containing neurons is important for the generation of cortical oscillatory activities in the gamma (30-100 Hz) and theta (4-7 Hz) bands, respectively. These oscillatory activities have been proposed to play critical roles in regulating the efficiency of information transfer between neurons and neuronal networks in the cortex. Altered cortical GABA neurotransmission appears to contribute to disturbances in diverse functions through affecting the generation of cortical oscillations in schizophrenia.
Expression patterns of nestin and dentin sialoprotein during dentinogenesis in mice.
Quispe-Salcedo, Angela; Ida-Yonemochi, Hiroko; Nakatomi, Mitsushiro; Ohshima, Hayato
2012-04-01
Differentiated odontoblasts could not be identified by one unique phenotypic marker, but the combination of expression of dentin phosphoprotein (Dpp), dentin sialoprotein (Dsp), dentin matrix protein 1 (Dmp1), and nestin may be valuable for the assessment of these cells. However, the findings using these proteins remain controversial. This study aimed to compare two odontoblast differentiation markers: nestin and Dsp in the process of dentinogenesis in mice. We performed immunohistochemistry and/or in situ hybridization technique for nestin and Dsp using 3-week-old incisors as well as postnatal 1-day- to 8-week-old molars. Preodontoblasts began to express nestin and Dsp proteins and Dsp mRNA, which increased in their intensity according to the progress of odontoblast differentiation in both incisors and developing molars. Nestin was consistently expressed in the differentiated odontoblasts even after the completion of dentin matrix deposition. The expression of Dsp mRNA coincided with the odontoblast secretory activity for dentin matrix deposition. In contrast, other pulpal cells, predentin matrix and dentinal tubules also showed a positive reaction for Dsp protein in addition to differentiated odontoblasts. In conclusion, nestin is valuable as a differentiation marker for odontoblasts, whereas Dsp mRNA is a functional marker for their secretory activity.
Expression dynamics of HSP70 during chronic heat stress in Tharparkar cattle.
Bharati, Jaya; Dangi, S S; Chouhan, V S; Mishra, S R; Bharti, M K; Verma, V; Shankar, O; Yadav, V P; Das, K; Paul, A; Bag, S; Maurya, V P; Singh, G; Kumar, P; Sarkar, M
2017-06-01
Six male Tharparkar cattle aged 2-3 years were selected for the study. The animals were acclimatized in the psychrometric chamber at thermoneutral zone (TNZ) for 15 days and then exposed to 42 °C temperature up to 23 days followed by 12 days of recovery period. Physiological responses were estimated, and peripheral blood mononuclear cells (PBMCs) were isolated at TNZ on day 1, day 5, and day 12; after 6 h of heat stress exposure on day 16 to day 20, day 25, day 30, day 32, day 34, day 36, and day 38; and a recovery period on day 45 and day 50. The PBMCs were cultured to study the effect of thermal challenge on HSP70 messenger RNA (mRNA) expression pattern at different temperature-time combinations. The mRNA and protein expression of HSP70 in PBMCs along with serum extracellular HSP70 (eHSP70) was increased (P < 0.05) and showed two peaks on day 17 and day 32 (2nd and 17th days of thermal challenge, respectively). The HSP70 mRNA expression was increased (P < 0.05) in a temperature- and time-dependent manner in heat stress challenge treatment as compared to control in cultured PBMCs. HSP70 expression was found to be higher (P < 0.05) after 10 days of heat exposure (corresponds to chronic heat stress) as compared to the first 5 days of heat stress (corresponds to short-term heat stress) and control period at TNZ. The present findings indicate that HSP70 is possibly involved in heat stress adaptive response in Tharparkar cattle and the biphasic expression pattern may be providing a second window of protection during chronic heat stress.
Kamata, Hiroaki; Karibe, Hiroyuki; Sato, Iwao
2018-06-01
Calcitonin gene-related peptide (CGRP) is released by motor neurons and affects skeletal muscle fiber and transient receptor potential cation channel subfamily V member 1 (TRPV1), an important marker of pain modulation. However, the expression of CGRP and TRPV1 in the trigeminal ganglion (TG) during changes and in feeding patterns has not been described. We used real-time reverse transcription polymerase chain reaction and in situ hybridization to investigate the mRNA expression levels of CGRP and TRPV1 in the TG. The expression of myosin heavy-chain (MyHC) isoforms was also investigated in the masseter muscle (MM) during the transition from sucking to mastication, an important functional trigger for muscle. The mRNA and protein levels of CGRP increased in the MM and TG from postnatal day 10 (P10) to P20 in male mice. The protein levels of TRPV1 were almost constant in the TG from P10 to P20, in contrast to increases in the MM. The mRNA abundance of TRPV1 in the TG and MM was increased from P10 to P20. The localization of an antisense probe was used to count CGRP cell numbers and found to differentiate the ophthalmic, maxillary, and mandibular nerve divisions of the TG. In particular, the number of CGRP + cells per 10,000 μm 2 in the maxillary and mandibular divisions of the TG gradually changed from P10 to P20. The expression of CGRP and TRPV1 in the TG and MM and the patterns of expression of different MyHC isoforms were affected by changes in feeding during male mouse development. © 2017 Wiley Periodicals, Inc.
Catalá, Carmen; Rose, Jocelyn K.C.; York, William S.; Albersheim, Peter; Darvill, Alan G.; Bennett, Alan B.
2001-01-01
The reorganization of the cellulose-xyloglucan matrix is proposed to serve as an important mechanism in the control of strength and extensibility of the plant primary cell wall. One of the key enzymes associated with xyloglucan metabolism is xyloglucan endotransglycosylase (XET), which catalyzes the endocleavage and religation of xyloglucan molecules. As with other plant species, XETs are encoded by a gene family in tomato (Lycopersicon esculentum cv T5). In a previous study, we demonstrated that the tomato XET gene LeEXT was abundantly expressed in the rapidly expanding region of the etiolated hypocotyl and was induced to higher levels by auxin. Here, we report the identification of a new tomato XET gene, LeXET2, that shows a different spatial expression and diametrically opposite pattern of auxin regulation from LeEXT. LeXET2 was expressed more abundantly in the mature nonelongating regions of the hypocotyl, and its mRNA abundance decreased dramatically following auxin treatment of etiolated hypocotyl segments. Analysis of the effect of several plant hormones on LeXET2 expression revealed that the inhibition of LeXET2 mRNA accumulation also occurred with cytokinin treatment. LeXET2 mRNA levels increased significantly in hypocotyl segments treated with gibberellin, but this increase could be prevented by adding auxin or cytokinin to the incubation media. Recombinant LeXET2 protein obtained by heterologous expression in Pichia pastoris exhibited greater XET activity against xyloglucan from tomato than that from three other species. The opposite patterns of expression and differential auxin regulation of LeXET2 and LeEXT suggest that they encode XETs with distinct roles during plant growth and development. PMID:11706197
Neonatal hyper- and hypothyroidism alter the myoglobin gene expression program in adulthood.
Souza, K de Picoli; Nunes, M T
2014-08-01
Myoglobin acts as an oxygen store and a reactive oxygen species acceptor in muscles. We examined myoglobin mRNA in rat cardiac ventricle and skeletal muscles during the first 42 days of life and the impact of transient neonatal hypo- and hyperthyroidism on the myoglobin gene expression pattern. Cardiac ventricle and skeletal muscles of Wistar rats at 7-42 days of life were quickly removed, and myoglobin mRNA was determined by Northern blot analysis. Rats were treated with propylthiouracil (5-10 mg/100 g) and triiodothyronine (0.5-50 µg/100 g) for 5, 15, or 30 days after birth to induce hypo- and hyperthyroidism and euthanized either just after treatment or at 90 days. During postnatal (P) days 7-28, the ventricle myoglobin mRNA remained unchanged, but it gradually increased in skeletal muscle (12-fold). Triiodothyronine treatment, from days P0-P5, increased the skeletal muscle myoglobin mRNA 1.5- to 4.5-fold; a 2.5-fold increase was observed in ventricle muscle, but only when triiodothyronine treatment was extended to day P15. Conversely, hypothyroidism at P5 markedly decreased (60%) ventricular myoglobin mRNA. Moreover, transient hyperthyroidism in the neonatal period increased ventricle myoglobin mRNA (2-fold), and decreased heart rate (5%), fast muscle myoglobin mRNA (30%) and body weight (20%) in adulthood. Transient hypothyroidism in the neonatal period also permanently decreased fast muscle myoglobin mRNA (30%) and body weight (14%). These results indicated that changes in triiodothyronine supply in the neonatal period alter the myoglobin expression program in ventricle and skeletal muscle, leading to specific physiological repercussions and alterations in other parameters in adulthood.
Neonatal hyper- and hypothyroidism alter the myoglobin gene expression program in adulthood
de Picoli Souza, K.; Nunes, M.T.
2014-01-01
Myoglobin acts as an oxygen store and a reactive oxygen species acceptor in muscles. We examined myoglobin mRNA in rat cardiac ventricle and skeletal muscles during the first 42 days of life and the impact of transient neonatal hypo- and hyperthyroidism on the myoglobin gene expression pattern. Cardiac ventricle and skeletal muscles of Wistar rats at 7-42 days of life were quickly removed, and myoglobin mRNA was determined by Northern blot analysis. Rats were treated with propylthiouracil (5-10 mg/100 g) and triiodothyronine (0.5-50 µg/100 g) for 5, 15, or 30 days after birth to induce hypo- and hyperthyroidism and euthanized either just after treatment or at 90 days. During postnatal (P) days 7-28, the ventricle myoglobin mRNA remained unchanged, but it gradually increased in skeletal muscle (12-fold). Triiodothyronine treatment, from days P0-P5, increased the skeletal muscle myoglobin mRNA 1.5- to 4.5-fold; a 2.5-fold increase was observed in ventricle muscle, but only when triiodothyronine treatment was extended to day P15. Conversely, hypothyroidism at P5 markedly decreased (60%) ventricular myoglobin mRNA. Moreover, transient hyperthyroidism in the neonatal period increased ventricle myoglobin mRNA (2-fold), and decreased heart rate (5%), fast muscle myoglobin mRNA (30%) and body weight (20%) in adulthood. Transient hypothyroidism in the neonatal period also permanently decreased fast muscle myoglobin mRNA (30%) and body weight (14%). These results indicated that changes in triiodothyronine supply in the neonatal period alter the myoglobin expression program in ventricle and skeletal muscle, leading to specific physiological repercussions and alterations in other parameters in adulthood. PMID:25098716
Kazmi, Hasan Raza; Chandra, Abhijit; Nigam, Jaya; Baghel, Kavita; Srivastava, Meenu; Maurya, Shailendra S; Parmar, Devendra
2016-10-01
In the present study, we investigated expression pattern of Cholecystokinin type A receptor (CCKAR) in relation to its commonly studied polymorphism (rs1800857, T/C) in gallstone disease (GSD) patients and controls. A total of 502 subjects (272 GSD and 230 controls) were enrolled, and genotyping was performed by evaluating restriction fragments of PstI digested DNA. For analyzing expression pattern of CCKAR in relation to polymorphism, gallbladder tissue samples from 80 subjects (GSD-55; control-25) were studied. Expression of CCKAR mRNA was evaluated by reverse transcriptase-PCR and confirmed using real-time PCR. Protein expression was evaluated by enzyme-linked immunosorbent assay. We observed significantly (p < 0.0001) lower expression of CCKAR mRNA and protein in GSD tissues as compared with control. Significantly higher frequency of A1/A1 genotype (C/T transition) (p = 0.0005) was observed for GSD as compared with control. Expression of CCKAR protein was found to be significantly lower (p < 0.0001) in A1/A1 genotype as compared with other genotypes for GSD patients. Perhaps, this is the first report providing evidence of alteration in CCKAR expression in relation to its polymorphism elucidating the molecular pathway of the disease. Additional investigations with lager sample size are needed to confirm these findings.
In silico analysis of stomach lineage specific gene set expression pattern in gastric cancer.
Pandi, Narayanan Sathiya; Suganya, Sivagurunathan; Rajendran, Suriliyandi
2013-10-04
Stomach lineage specific gene products act as a protective barrier in the normal stomach and their expression maintains the normal physiological processes, cellular integrity and morphology of the gastric wall. However, the regulation of stomach lineage specific genes in gastric cancer (GC) is far less clear. In the present study, we sought to investigate the role and regulation of stomach lineage specific gene set (SLSGS) in GC. SLSGS was identified by comparing the mRNA expression profiles of normal stomach tissue with other organ tissue. The obtained SLSGS was found to be under expressed in gastric tumors. Functional annotation analysis revealed that the SLSGS was enriched for digestive function and gastric epithelial maintenance. Employing a single sample prediction method across GC mRNA expression profiles identified the under expression of SLSGS in proliferative type and invasive type gastric tumors compared to the metabolic type gastric tumors. Integrative pathway activation prediction analysis revealed a close association between estrogen-α signaling and SLSGS expression pattern in GC. Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. In conclusion, our results highlight that estrogen mediated regulation of SLSGS in gastric tumor is a molecular predictor of metabolic type GC and prognostic factor in GC. Copyright © 2013 Elsevier Inc. All rights reserved.
Chun, Lauren E.; Hinds, Laura R.; Spencer, Robert L.
2016-01-01
Mood disorders are associated with dysregulation of prefrontal cortex (PFC) function, circadian rhythms, and diurnal glucocorticoid (corticosterone [CORT]) circulation. Entrainment of clock gene expression in some peripheral tissues depends on CORT. In this study, we characterized over the course of the day the mRNA expression pattern of the core clock genes Per1, Per2, and Bmal1 in the male rat PFC and suprachiasmatic nucleus (SCN) under different diurnal CORT conditions. In experiment 1, rats were left adrenal-intact (sham) or were adrenalectomized (ADX) followed by 10 daily antiphasic (opposite time of day of the endogenous CORT peak) ip injections of either vehicle or 2.5 mg/kg CORT. In experiment 2, all rats received ADX surgery followed by 13 daily injections of vehicle or CORT either antiphasic or in-phase with the endogenous CORT peak. In sham rats clock gene mRNA levels displayed a diurnal pattern of expression in the PFC and the SCN, but the phase differed between the 2 structures. ADX substantially altered clock gene expression patterns in the PFC. This alteration was normalized by in-phase CORT treatment, whereas antiphasic CORT treatment appears to have eliminated a diurnal pattern (Per1 and Bmal1) or dampened/inverted its phase (Per2). There was very little effect of CORT condition on clock gene expression in the SCN. These experiments suggest that an important component of glucocorticoid circadian physiology entails CORT regulation of the molecular clock in the PFC. Consequently, they also point to a possible mechanism that contributes to PFC disrupted function in disorders associated with abnormal CORT circulation. PMID:26901093
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opitz, Robert; Lutz, Ilka; Nguyen, Ngoc-Ha
2006-04-01
Amphibian metamorphosis represents a unique biological model to study thyroid hormone (TH) action in vivo. In this study, we examined the utility of thyroid hormone receptors {alpha} (TR{alpha}) and {beta}A (TR{beta}A) mRNA expression patterns in Xenopus laevis tadpoles as molecular markers indicating modulation of TH action. During spontaneous metamorphosis, only moderate changes were evident for TR{alpha} gene expression whereas a marked up-regulation of TR{beta}A mRNA occurred in hind limbs (prometamorphosis), head (late prometamorphosis), and tail tissue (metamorphic climax). Treatment of premetamorphic tadpoles with 1 nM 3,5,3'-triiodothyronine (T3) caused a rapid induction of TR{beta}A mRNA in head and tail tissue withinmore » 6 to 12 h which was maintained for at least 72 h after initiation of T3 treatment. Developmental stage had a strong influence on the responsiveness of tadpole tissues to induce TR{beta}A mRNA during 24 h treatment with thyroxine (0, 1, 5, 10 nM T4) or T3 (0, 1, 5, 10 nM). Premetamorphic tadpoles were highly sensitive in their response to T4 and T3 treatments, whereas sensitivity to TH was decreased in early prometamorphic tadpoles and strongly diminished in late prometamorphic tadpoles. To examine the utility of TR{beta}A gene expression analysis for detection of agonistic and antagonistic effects on T3 action, mRNA expression was assessed in premetamorphic tadpoles after 48 h of treatment with the synthetic agonist GC-1 (0, 10, 50, 250 nM), the synthetic antagonist NH-3 (0, 40, 200, 1000 nM), and binary combinations of NH-3 (0, 40, 200, 1000 nM) and T3 (1 nM). All tested concentrations of GC-1 as well as the highest concentration of NH-3 caused an up-regulation of TR{beta}A expression. Co-treatment with NH-3 and T3 revealed strong antagonistic effects by NH-3 on T3-induced TR{beta}A mRNA up-regulation. Results of this study suggest that TR{beta}A mRNA expression analysis could serve as a sensitive molecular testing approach to study effects of environmental compounds on the thyroid system in X. laevis tadpoles.« less
In silico analysis of miRNA-mediated gene regulation in OCA and OA genes.
Kamaraj, Balu; Gopalakrishnan, Chandrasekhar; Purohit, Rituraj
2014-12-01
Albinism is an autosomal recessive genetic disorder due to low secretion of melanin. The oculocutaneous albinism (OCA) and ocular albinism (OA) genes are responsible for melanin production and also act as a potential targets for miRNAs. The role of miRNA is to inhibit the protein synthesis partially or completely by binding with the 3'UTR of the mRNA thus regulating gene expression. In this analysis, we predicted the genetic variation that occurred in 3'UTR of the transcript which can be a reason for low melanin production thus causing albinism. The single nucleotide polymorphisms (SNPs) in 3'UTR cause more new binding sites for miRNA which binds with mRNA which leads to inhibit the translation process either partially or completely. The SNPs in the mRNA of OCA and OA genes can create new binding sites for miRNA which may control the gene expression and lead to hypopigmentation. We have developed a computational procedure to determine the SNPs in the 3'UTR region of mRNA of OCA (TYR, OCA2, TYRP1 and SLC45A2) and OA (GPR143) genes which will be a potential cause for albinism. We identified 37 SNPs in five genes that are predicted to create 87 new binding sites on mRNA, which may lead to abrogation of the translation process. Expression analysis confirms that these genes are highly expressed in skin and eye regions. It is well supported by enrichment analysis that these genes are mainly involved in eye pigmentation and melanin biosynthesis process. The network analysis also shows how the genes are interacting and expressing in a complex network. This insight provides clue to wet-lab researches to understand the expression pattern of OCA and OA genes and binding phenomenon of mRNA and miRNA upon mutation, which is responsible for inhibition of translation process at genomic levels.
Yan, Y L; Jowett, T; Postlethwait, J H
1998-12-01
To investigate pattern formation in the vertebrate hindbrain, we isolated a full length hoxb2 cDNA clone from zebrafish. In a gene phylogeny, zebrafish hoxb2 clusters with human HOXB2, and it maps on linkage group 3 along with several other loci whose orthologues are syntenic with human HOXB2. In the hindbrain, hoxb2 is expressed at high levels in rhombomere 3 (r3), lower levels in r4, still lower in r5, and at undetectable levels in r6. In r7, r8, and the rostral spinal cord, hoxb2 is expressed at a lower level than in r5. Lateral cells appearing to emanate from r4 express both hoxb2 and dlx2, suggesting that they are neural crest. Overexpression of hoxb2 by mRNA injections into early cleavage stage embryos resulted in abnormal morphogenesis of the midbrain and rostral hindbrain, abnormal patterning in r4, fusion of cartilage elements arising from pharyngeal arches 1 and 2, and ectopic expression of krx20 and valentino (but not pax2, rtk1, or hoxb1) in the rostral hindbrain, midbrain, and, surprisingly, the eye. Treatments with retinoic acid produced a phenotype similar to that of ectopic hoxb2 expression, including ectopic krx20 (but not valentino) expression in the eye, and fusion of cartilages from pharyngeal arches 1 and 2. The results suggest that hoxb2 plays an important role in the patterning of hindbrain and pharyngeal arches in the zebrafish.
Shen, L P; Sheridan, P; Cao, W W; Dailey, P J; Salazar-Gonzalez, J F; Breen, E C; Fahey, J L; Urdea, M S; Kolberg, J A
1998-06-01
Changes in the patterns of cytokine expression are thought to be of central importance in human infectious and inflammatory diseases. As such, there is a need for precise, reproducible assays for quantification of cytokine mRNA that are amenable to routine use in a clinical setting. In this report, we describe the design and performance of a branched DNA (bDNA) assay for the direct quantification of multiple cytokine mRNA levels in peripheral blood mononuclear cells (PBMCs). Oligonucleotide target probe sets were designed for several human cytokines, including TNFalpha, IL-2, IL-4, IL-6, IL-10, and IFNgamma. The bDNA assay yielded highly reproducible quantification of cytokine mRNAs, exhibited a broad linear dynamic range of over 3-log10, and showed a sensitivity sufficient to measure at least 3000 molecules. The potential clinical utility of the bDNA assay was explored by measuring cytokine mRNA levels in PBMCs from healthy and immunocompromised individuals. Cytokine expression levels in PBMCs from healthy blood donors were found to remain relatively stable over a one-month period of time. Elevated levels of IFNgamma mRNA were detected in PBMCs from HIV-1 seropositive individuals, but no differences in mean levels of TNFalpha or IL-6 mRNA were detected between seropositive and seronegative individuals. By providing a reproducible method for quantification of low abundance transcripts in clinical specimens, the bDNA assay may be useful for studies addressing the role of cytokine expression in disease.
Bradford, Emily M; Vairamani, Kanimozhi; Shull, Gary E
2016-01-01
AIM: To investigate the intestinal functions of the NKCC1 Na+-K+-2Cl cotransporter (SLC12a2 gene), differential mRNA expression changes in NKCC1-null intestine were analyzed. METHODS: Microarray analysis of mRNA from intestines of adult wild-type mice and gene-targeted NKCC1-null mice (n = 6 of each genotype) was performed to identify patterns of differential gene expression changes. Differential expression patterns were further examined by Gene Ontology analysis using the online Gorilla program, and expression changes of selected genes were verified using northern blot analysis and quantitative real time-polymerase chain reaction. Histological staining and immunofluorescence were performed to identify cell types in which upregulated pancreatic digestive enzymes were expressed. RESULTS: Genes typically associated with pancreatic function were upregulated. These included lipase, amylase, elastase, and serine proteases indicative of pancreatic exocrine function, as well as insulin and regenerating islet genes, representative of endocrine function. Northern blot analysis and immunohistochemistry showed that differential expression of exocrine pancreas mRNAs was specific to the duodenum and localized to a subset of goblet cells. In addition, a major pattern of changes involving differential expression of olfactory receptors that function in chemical sensing, as well as other chemosensing G-protein coupled receptors, was observed. These changes in chemosensory receptor expression may be related to the failure of intestinal function and dependency on parenteral nutrition observed in humans with SLC12a2 mutations. CONCLUSION: The results suggest that loss of NKCC1 affects not only secretion, but also goblet cell function and chemosensing of intestinal contents via G-protein coupled chemosensory receptors. PMID:26909237
Hoffmann, P; Feige, J-J; Alfaidy, N
2007-10-01
Compelling evidence indicates that vascular endothelial growth factor (VEGF) is an important mediator of placental angiogenesis and appears to be disregulated in pre-eclampsia (PE). Recently, we characterised the expression of EG-VEGF (endocrine gland-derived vascular endothelial growth factor), also known as prokineticin 1 (PK1) in human placenta during the first trimester of pregnancy and showed that this factor is likely to play an important role in human placentation. However, because it is impossible to prospectively study placentation in humans, it has been impossible to further characterise EG-VEGF expression throughout complete gestation and especially at critical gestational ages for PE development. In the present study, we used mouse placenta to further characterise EG-VEGF expression throughout gestation. We investigated the pattern of expression of EG-VEGF and its receptors, PKR1 and PKR2 at the mRNA and protein levels. Our results show that EG-VEGF and VEGF exhibit different patterns of expression and different localisations in the mouse placenta. EG-VEGF was mainly localised in the labyrinth whereas VEGF was mainly present in glycogen and giant cells. EG-VEGF mRNA and protein levels were highest before 10.5days post coitus (dpc) whereas those of VEGF showed stable expression throughout gestation. PKR1 protein was localised to the labyrinth layer and showed the same pattern of expression as EG-VEGF whereas PKR2 expression was maintained over 10.5dpc with both trophoblastic and endothelial cell localisations. Altogether these findings suggest that EG-VEGF may have a direct effect on both endothelial and trophoblastic cells and is likely to play an important role in mouse placentation.
Expression Analysis of the Theileria parva Subtelomere-Encoded Variable Secreted Protein Gene Family
Schmied, Stéfanie; Affentranger, Sarah; Parvanova, Iana; Kang'a, Simon; Nene, Vishvanath; Katzer, Frank; McKeever, Declan; Müller, Joachim; Bishop, Richard; Pain, Arnab; Dobbelaere, Dirk A. E.
2009-01-01
Background The intracellular protozoan parasite Theileria parva transforms bovine lymphocytes inducing uncontrolled proliferation. Proteins released from the parasite are assumed to contribute to phenotypic changes of the host cell and parasite persistence. With 85 members, genes encoding subtelomeric variable secreted proteins (SVSPs) form the largest gene family in T. parva. The majority of SVSPs contain predicted signal peptides, suggesting secretion into the host cell cytoplasm. Methodology/Principal Findings We analysed SVSP expression in T. parva-transformed cell lines established in vitro by infection of T or B lymphocytes with cloned T. parva parasites. Microarray and quantitative real-time PCR analysis revealed mRNA expression for a wide range of SVSP genes. The pattern of mRNA expression was largely defined by the parasite genotype and not by host background or cell type, and found to be relatively stable in vitro over a period of two months. Interestingly, immunofluorescence analysis carried out on cell lines established from a cloned parasite showed that expression of a single SVSP encoded by TP03_0882 is limited to only a small percentage of parasites. Epitope-tagged TP03_0882 expressed in mammalian cells was found to translocate into the nucleus, a process that could be attributed to two different nuclear localisation signals. Conclusions Our analysis reveals a complex pattern of Theileria SVSP mRNA expression, which depends on the parasite genotype. Whereas in cell lines established from a cloned parasite transcripts can be found corresponding to a wide range of SVSP genes, only a minority of parasites appear to express a particular SVSP protein. The fact that a number of SVSPs contain functional nuclear localisation signals suggests that proteins released from the parasite could contribute to phenotypic changes of the host cell. This initial characterisation will facilitate future studies on the regulation of SVSP gene expression and the potential biological role of these enigmatic proteins. PMID:19325907
Tang, Y. W.; Graham, B. S.
1997-01-01
Manipulation of the cytokine microenvironment at the time of vaccination can influence immune responses to remote challenge, providing a strategy to study the molecular pathogenesis of respiratory syncytial virus (RSV) vaccine-enhanced disease in the mouse model. Although treatment with antibody against IL-4 or recombinant IL-12 (rIL-12) at the time of formalin-inactivated RSV vaccination induced a similar shift in the pattern of cytokine mRNA expression upon live virus challenge, anti-IL-4 treated mice had increased CD8+ cytotoxic T lymphocyte activity and reduced illness compared with rIL-12-treated mice. To define effector mechanisms responsible for these patterns, CD4+ and/or CD8+ T lymphocytes were selectively depleted in vivo at the time of RSV challenge. In rIL-12-treated mice, CD4+ lymphocytes made the largest contribution to IFN-gamma mRNA, RSV clearance, and illness, while in anti-IL-4 treated mice, CD8+ lymphocytes were the major effector. The effector responsible for virus clearance also mediated illness, suggesting that efficiency of virus clearance determined disease expression. These results demonstrate that the phenotype of effector cells involved in the immune response to virus challenge may be a more important determinant of disease than patterns of cytokine expression classically assigned to Th1 and Th2 lymphocytes. PMID:9151790
Nishikawa, K; Nakanishi, T; Aoki, C; Hattori, T; Takahashi, K; Taniguchi, S
1994-03-01
The expression pattern of chick Msx-1 and Msx-2 homeobox genes in craniofacial primordia was examined by in situ hybridization using cRNA probes. Both genes were expressed in the distal region of the facial primordia, where the distribution of Msx-2 expression was restricted distally within the Msx-1 expression domain. On the contrary, Msx-2 expression in the lateral choroid plexus and cranial skull was broader and more intensive than Msx-1 expression. Our findings suggest that these two genes cooperate to play differential roles in craniofacial development. Msx-2 protein was detected immunohistochemically, and its localization essentially corresponded to the mRNA expression pattern, substantiating the involvement of Msx-2 protein as a transcriptional regulator in developing limb and face.
Porcella, A; Casellas, P; Gessa, G L; Pani, L
1998-07-15
We used RT-PCR to measure relative differences in cannabinoid receptor (CB) mRNAs in the rat eye, comparing CB1 or CB2 transcripts to that of the normalizing reference gene beta2 microglobulin (beta2m). Significantly higher levels of CB1 mRNA levels were found in the ciliary body (0.84+/-0.05% of beta2m) than in the iris, (0.34+/-0.04% of beta2m), retina (0.07+/-0.005% of beta2m) and choroid (0.06+/-0.005% of beta2m). CB2 mRNA was undetectable. This expression pattern supports a specific role for the CB1 receptor in controlling intraocular pressure, helping to explain the antiglaucoma property of cannabinoids. Copyright 1998 Elsevier Science B.V. All rights reserved.
Clark, Peter J.; Ghasem, Parsa R.; Mika, Agnieszka; Day, Heidi E.; Herrera, Jonathan J.; Greenwood, Benjamin N.; Fleshner, Monika
2014-01-01
Emerging evidence indicates that adenosine is a major regulator of striatum activity, in part, through the antagonistic modulation of dopaminergic function. Exercise can influence adenosine and dopamine activity, which may subsequently promote plasticity in striatum adenosine and dopamine systems. Such changes could alter activity of medium spiny neurons and impact striatum function. The purpose of this study was two-fold. The first was to characterize the effect of long-term wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor mRNA expression in adult rat dorsal and ventral striatum structures using in situ hybridization. The second was to determine if changes to adenosine and dopamine receptor mRNA from running are associated with altered cfos mRNA induction in dynorphin- (direct pathway) and enkephalin- (indirect pathway) expressing neurons of the dorsal striatum following stress exposure. We report that chronic running, as well as acute uncontrollable stress, reduced A1R and A2AR mRNA levels in the dorsal and ventral striatum. Running also modestly elevated D2R mRNA levels in striatum regions. Finally, stress-induced cfos was potentiated in dynorphin and attenuated in enkephalin expressing neurons of running rats. These data suggest striatum adenosine and dopamine systems are targets for neuroplasticity from exercise, which may contribute to changes in direct and indirect pathway activity. These findings may have implications for striatum mediated motor and cognitive processes, as well as exercise facilitated stress-resistance. PMID:25017571
Solberg, Monica F; Kvamme, Bjørn Olav; Nilsen, Frank; Glover, Kevin A
2012-12-05
Ten generations of domestication selection has caused farmed Atlantic salmon Salmo salar L. to deviate from wild salmon in a range of traits. Each year hundreds of thousands of farmed salmon escape into the wild. Thus, interbreeding between farmed escapees and wild conspecifics represents a significant threat to the genetic integrity of wild salmon populations. In a previous study we demonstrated how domestication has inadvertently selected for reduced responsiveness to stress in farmed salmon. To complement that study, we have evaluated the expression of seven stress-related genes in head kidney of salmon of farmed, hybrid and wild origin exposed to environmentally induced stress. In general, the crowding stressor used to induce environmental stress did not have a strong impact on mRNA expression levels of the seven genes, except for insulin-like growth factor-1 (IGF-1) that was downregulated in the stress treatment relative to the control treatment. mRNA expression levels of glutathione reductase (GR), Cu/Zn superoxide dismutase (Cu/Zn SOD), Mn superoxide dismutase (Mn SOD), glutathione peroxidase (GP) and IGF-1 were affected by genetic origin, thus expressed significantly different between the salmon of farmed, hybrid or wild origin. A positive relationship was detected between body size of wild salmon and mRNA expression level of the IGF-1 gene, in both environments. No such relationship was observed for the hybrid or farmed salmon. Farmed salmon in this study displayed significantly elevated mRNA levels of the IGF-1 gene relative to the wild salmon, in both treatments, while hybrids displayed a non additive pattern of inheritance. As IGF-1 mRNA levels are positively correlated to growth rate, the observed positive relationship between body size and IGF-1 mRNA levels detected in the wild but neither in the farmed nor the hybrid salmon, could indicate that growth selection has increased IGF-1 levels in farmed salmon to the extent that they may not be limiting growth rate.
2012-01-01
Background Ten generations of domestication selection has caused farmed Atlantic salmon Salmo salar L. to deviate from wild salmon in a range of traits. Each year hundreds of thousands of farmed salmon escape into the wild. Thus, interbreeding between farmed escapees and wild conspecifics represents a significant threat to the genetic integrity of wild salmon populations. In a previous study we demonstrated how domestication has inadvertently selected for reduced responsiveness to stress in farmed salmon. To complement that study, we have evaluated the expression of seven stress-related genes in head kidney of salmon of farmed, hybrid and wild origin exposed to environmentally induced stress. Results In general, the crowding stressor used to induce environmental stress did not have a strong impact on mRNA expression levels of the seven genes, except for insulin-like growth factor-1 (IGF-1) that was downregulated in the stress treatment relative to the control treatment. mRNA expression levels of glutathione reductase (GR), Cu/Zn superoxide dismutase (Cu/Zn SOD), Mn superoxide dismutase (Mn SOD), glutathione peroxidase (GP) and IGF-1 were affected by genetic origin, thus expressed significantly different between the salmon of farmed, hybrid or wild origin. A positive relationship was detected between body size of wild salmon and mRNA expression level of the IGF-1 gene, in both environments. No such relationship was observed for the hybrid or farmed salmon. Conclusion Farmed salmon in this study displayed significantly elevated mRNA levels of the IGF-1 gene relative to the wild salmon, in both treatments, while hybrids displayed a non additive pattern of inheritance. As IGF-1 mRNA levels are positively correlated to growth rate, the observed positive relationship between body size and IGF-1 mRNA levels detected in the wild but neither in the farmed nor the hybrid salmon, could indicate that growth selection has increased IGF-1 levels in farmed salmon to the extent that they may not be limiting growth rate. PMID:23217180
Expression of matrix metalloproteinase-1, -2 and -3 in squamous cell carcinoma and actinic keratosis
Tsukifuji, R; Tagawa, K; Hatamochi, A; Shinkai, H
1999-01-01
Matrix metalloproteinase (MMP) plays an important role in extracellular matrix degradation associated with cancer invasion. An expression of MMP-1 (interstitial collagenase), MMP-2 (72-kDa type IV collagenase) and MMP-3 (stromelysin-1) was investigated in squamous cell carcinoma (SCC) and its precancerous condition, actinic keratosis (AK), using in situ hybridization techniques. MMP-1 mRNA was detected in tumour cells and/or in stromal cells in all cases of SCC, four of six AKs adjacent to SCC and four of 16 AKs. MMP-2 and MMP-3 mRNAs were detected in SCC but not in AK. The expression of MMP-3 correlated to that of MMP-1 (P = 0.03) localized at the tumour mass and stroma of the invasive area, while MMP-2 mRNA was detected widely throughout the stroma independent of MMP-1 expression. Our results indicated that the expression of MMP-1, -2 and -3 showed different localization patterns, suggesting a unique role of each MMP in tumour progression. Moreover, MMP-1 expression could be an early event in the development of SCC, and AK demonstrating MMP-1 mRNA, might be in a more advanced dysplastic state, progressing to SCC. © 1999 Cancer Research Campaign PMID:10362121
Seo, Eunjoo; Yu, Jihyeon; Ryu, Kook Hui; Lee, Myeong Min; Lee, Ilha
2011-01-01
A key floral activator, FT, integrates stimuli from long-day, vernalization, and autonomous pathways and triggers flowering by directly regulating floral meristem identity genes in Arabidopsis (Arabidopsis thaliana). Since a small amount of FT transcript is sufficient for flowering, the FT level is strictly regulated by diverse genes. In this study, we show that WEREWOLF (WER), a MYB transcription factor regulating root hair pattern, is another regulator of FT. The mutant wer flowers late in long days but normal in short days and shows a weak sensitivity to vernalization, which indicates that WER controls flowering time through the photoperiod pathway. The expression and double mutant analyses showed that WER modulates FT transcript level independent of CONSTANS and FLOWERING LOCUS C. The histological analysis of WER shows that it is expressed in the epidermis of leaves, where FT is not expressed. Consistently, WER regulates not the transcription but the stability of FT mRNA. Our results reveal a novel regulatory mechanism of FT that is non cell autonomous. PMID:21653190
Seo, Eunjoo; Yu, Jihyeon; Ryu, Kook Hui; Lee, Myeong Min; Lee, Ilha
2011-08-01
A key floral activator, FT, integrates stimuli from long-day, vernalization, and autonomous pathways and triggers flowering by directly regulating floral meristem identity genes in Arabidopsis (Arabidopsis thaliana). Since a small amount of FT transcript is sufficient for flowering, the FT level is strictly regulated by diverse genes. In this study, we show that WEREWOLF (WER), a MYB transcription factor regulating root hair pattern, is another regulator of FT. The mutant wer flowers late in long days but normal in short days and shows a weak sensitivity to vernalization, which indicates that WER controls flowering time through the photoperiod pathway. The expression and double mutant analyses showed that WER modulates FT transcript level independent of CONSTANS and FLOWERING LOCUS C. The histological analysis of WER shows that it is expressed in the epidermis of leaves, where FT is not expressed. Consistently, WER regulates not the transcription but the stability of FT mRNA. Our results reveal a novel regulatory mechanism of FT that is non cell autonomous.
Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao
2015-01-01
Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma. PMID:25971279
Cai, Jinquan; Chen, Jing; Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao
2015-07-20
Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma.
Day, Pricilla E.; Ntani, Georgia; Crozier, Sarah R.; Mahon, Pam A.; Inskip, Hazel M.; Cooper, Cyrus; Harvey, Nicholas C.; Godfrey, Keith M.; Hanson, Mark A.; Lewis, Rohan M.; Cleal, Jane K.
2015-01-01
Introduction Maternal environment and lifestyle factors may modify placental function to match the mother’s capacity to support the demands of fetal growth. Much remains to be understood about maternal influences on placental metabolic and amino acid transporter gene expression. We investigated the influences of maternal lifestyle and body composition (e.g. fat and muscle content) on a selection of metabolic and amino acid transporter genes and their associations with fetal growth. Methods RNA was extracted from 102 term Southampton Women’s Survey placental samples. Expression of nine metabolic, seven exchange, eight accumulative and three facilitated transporter genes was analyzed using quantitative real-time PCR. Results Increased placental LAT2 (p = 0.01), y + LAT2 (p = 0.03), aspartate aminotransferase 2 (p = 0.02) and decreased aspartate aminotransferase 1 (p = 0.04) mRNA expression associated with pre-pregnancy maternal smoking. Placental mRNA expression of TAT1 (p = 0.01), ASCT1 (p = 0.03), mitochondrial branched chain aminotransferase (p = 0.02) and glutamine synthetase (p = 0.05) was positively associated with maternal strenuous exercise. Increased glutamine synthetase mRNA expression (r = 0.20, p = 0.05) associated with higher maternal diet quality (prudent dietary pattern) pre-pregnancy. Lower LAT4 (r = -0.25, p = 0.05) and aspartate aminotransferase 2 mRNA expression (r = -0.28, p = 0.01) associated with higher early pregnancy diet quality. Lower placental ASCT1 mRNA expression associated with measures of increased maternal fat mass, including pre-pregnancy BMI (r = -0.26, p = 0.01). Lower placental mRNA expression of alanine aminotransferase 2 associated with greater neonatal adiposity, for example neonatal subscapular skinfold thickness (r = -0.33, p = 0.001). Conclusion A number of maternal influences have been linked with outcomes in childhood, independently of neonatal size; our finding of associations between placental expression of transporter and metabolic genes and maternal smoking, physical activity and diet raises the possibility that their effects are mediated in part through alterations in placental function. The observed changes in placental gene expression in relation to modifiable maternal factors are important as they could form part of interventions aimed at maintaining a healthy lifestyle for the mother and for optimal fetal development. PMID:26657885
Lv, Xiaoyang; Sun, Wei; Yin, Jinfeng; Ni, Rong; Su, Rui; Wang, Qingzeng; Gao, Wen; Bao, Jianjun; Yu, Jiarui; Wang, Lihong; Chen, Ling
2016-01-01
Wave patterns in lambskin hair follicles are an important factor determining the quality of sheep’s wool. Hair follicles in lambskin from Hu sheep, a breed unique to China, have 3 types of waves, designated as large, medium, and small. The quality of wool from small wave follicles is excellent, while the quality of large waves is considered poor. Because no molecular and biological studies on hair follicles of these sheep have been conducted to date, the molecular mechanisms underlying the formation of different wave patterns is currently unknown. The aim of this article was to screen the candidate microRNAs (miRNA) and genes for the development of hair follicles in Hu sheep. Two-day-old Hu lambs were selected from full-sib individuals that showed large, medium, and small waves. Integrated analysis of microRNA and mRNA expression profiles employed high-throughout sequencing technology. Approximately 13, 24, and 18 differentially expressed miRNAs were found between small and large waves, small and medium waves, and medium and large waves, respectively. A total of 54, 190, and 81 differentially expressed genes were found between small and large waves, small and medium waves, and medium and large waves, respectively, by RNA sequencing (RNA-seq) analysis. Differentially expressed genes were classified using gene ontology and pathway analyses. They were found to be mainly involved in cell differentiation, proliferation, apoptosis, growth, immune response, and ion transport, and were associated with MAPK and the Notch signaling pathway. Reverse transcription-polymerase chain reaction (RT-PCR) analyses of differentially-expressed miRNA and genes were consistent with sequencing results. Integrated analysis of miRNA and mRNA expression indicated that, compared to small waves, large waves included 4 downregulated miRNAs that had regulatory effects on 8 upregulated genes and 3 upregulated miRNAs, which in turn influenced 13 downregulated genes. Compared to small waves, medium waves included 13 downregulated miRNAs that had regulatory effects on 64 upregulated genes and 4 upregulated miRNAs, which in turn had regulatory effects on 22 downregulated genes. Compared to medium waves, large waves consisted of 13 upregulated miRNAs that had regulatory effects on 48 downregulated genes. These differentially expressed miRNAs and genes may play a significant role in forming different patterns, and provide evidence for the molecular mechanisms underlying the formation of hair follicles of varying patterns. PMID:27404636
He, Li; Frost, Michael R; Siegwart, John T; Norton, Thomas T
2018-03-01
Hyperopic refractive error is detected by retinal neurons, which generate GO signals through a direct emmetropization signaling cascade: retinal pigment epithelium (RPE) into choroid and then into sclera, thereby increasing axial elongation. To examine signaling early in this cascade, we measured gene expression in the retina and RPE after short exposure to hyperopia produced by minus-lens wear. Gene expression in each tissue was compared with gene expression in combined retina + RPE. Starting 24 days after normal eye opening, three groups of juvenile tree shrews (n = 7 each) wore a monocular -5 D lens. The untreated fellow eye served as a control. The "6h" group wore the lens for 6 h; the "24h" group wore the lens for 24 h; each group provided separate retina and RPE tissues. Group "24hC" wore the lens for 24 h and provided combined retina + RPE tissue. Quantitative PCR was used to measure the relative differences (treated eye vs. control eye) in mRNA levels for 66 candidate genes. In the retina after 6 h, mRNA levels for seven genes were significantly regulated: EGR1 and FOS (early intermediate genes) were down-regulated in the treated eyes. Genes with secreted protein products, BMP2 and CTGF, were down-regulated, whilst FGF10, IL18, and SST were up-regulated. After 24 h the pattern changed; only one of the seven genes still showed differential expression; BMP2 was still down-regulated. Two new genes with secreted protein products, IGF2 and VIP, were up-regulated. In the RPE, consistent with its role in receiving, processing, and transmitting GO signaling, differential expression was found for genes whose protein products are at the cell surface, intracellular, in the nucleus, and are secreted. After 6 h, mRNA levels for 17 genes were down-regulated in the treated eyes, whilst four genes (GJA1, IGF2R, LRP2, and IL18) were up-regulated. After 24 h the pattern was similar; mRNA levels for 14 of the same genes were still down-regulated; only LRP2 remained up-regulated. mRNA levels for six genes no longer showed differential expression, whilst nine genes, not differentially expressed at 6 h, now showed differential expression. In the combined retina + RPE after 24 h, mRNA levels for only seven genes were differentially regulated despite the differential expression of many genes in the RPE. Four genes showed the same expression in combined tissue as in retina alone, including up-regulation of VIP despite significant VIP down-regulation in RPE. Thus, hyperopia-induced GO signaling, as measured by differential gene expression, differs in the retina and the RPE. Retinal gene expression changed between 6 h and 24 h of treatment, suggesting evolution of the retinal response. Gene expression in the RPE was similar at both time points, suggesting sustained signaling. The combined retina + RPE does not accurately represent gene expression in either retina or, especially, RPE. When gene expression signatures were compared with those in choroid and sclera, GO signaling, as encoded by differential gene expression, differs in each compartment of the direct emmetropization signaling cascade. Copyright © 2018 Elsevier Ltd. All rights reserved.
Horner, Kristen A; Noble, Erika S; Gilbert, Yamiece E
2010-06-01
Amphetamines induce stereotypy, which correlates with patch-enhanced c-Fos expression the patch compartment of caudate putamen (CPu). Methamphetamine (METH) treatment also induces patch-enhanced expression of prodynorphin (PD), arc and zif/268 in the CPu. Whether patch-enhanced activation of any of these genes correlates with METH-induced stereotypy is unknown, and the factors that contribute to this pattern of expression are poorly understood. Activation of mu opioid receptors, which are expressed by the neurons of the patch compartment, may underlie METH-induced patch-enhanced gene expression and stereotypy. The current study examined whether striatal mu opioid receptor blockade altered METH-induced stereotypy and patch-enhanced gene expression, and if there was a correlation between the two responses. Animals were intrastriatally infused with the mu antagonist CTAP (10 microg/microl), treated with METH (7.5 mg/kg, s.c.), placed in activity chambers for 3h, and then sacrificed. CTAP pretreatment attenuated METH-induced increases in PD, arc and zif/268 mRNA expression and significantly reduced METH-induced stereotypy. Patch-enhanced PD and arc mRNA expression in the dorsolateral CPu correlated negatively with METH-induced stereotypy. These data indicate that mu opioid receptor activation contributes to METH-induced gene expression in the CPu and stereotypy, and that patch-enhanced PD and arc expression may be a homeostatic response to METH treatment. Copyright 2010 Elsevier Inc. All rights reserved.
Horner, Kristen A.; Noble, Erika S.; Gilbert, Yamiece E.
2010-01-01
Amphetamines induce stereotypy, which correlates with patch-enhanced c-Fos expression the patch compartment of caudate putamen (CPu). Methamphetamine (METH) treatment also induces patch-enhanced expression of prodynorphin (PD), arc and zif/268 in the CPu. Whether patch-enhanced activation of any of these genes correlates with METH-induced stereotypy is unknown, and the factors that contribute to this pattern of expression are poorly understood. Activation of mu opioid receptors, which are expressed by the neurons of the patch compartment, may underlie METH-induced patch-enhanced gene expression and stereotypy. The current study examined whether striatal mu opioid receptor blockade altered METH-induced stereotypy and patch-enhanced gene expression, and if there was a correlation between the two responses. Animals were intrastriatally infused with the mu antagonist CTAP (10 μg/μl), treated with METH (7.5 mg/kg, s.c.), placed in activity chambers for 3h, and then sacrificed. CTAP pretreatment attenuated METH-induced increases in PD, arc and zif/268 mRNA expression and significantly reduced METH-induced stereotypy. Patch-enhanced PD and arc mRNA expression in the dorsolateral CPu correlated negatively with METH-induced stereotypy. These data indicate that mu opioid receptor activation contributes to METH-induced gene expression in the CPu and stereotypy, and that patch-enhanced PD and arc expression may be a homeostatic response to METH treatment. PMID:20298714
A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells.
Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I
2014-01-01
Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001.
A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells
Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I
2014-01-01
Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001 PMID:24596151
Proteogenomic characterization of human colon and rectal cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bing; Wang, Jing; Wang, Xiaojing
2014-09-18
We analyzed proteomes of colon and rectal tumors previously characterized by the Cancer Genome Atlas (TCGA) and performed integrated proteogenomic analyses. Protein sequence variants encoded by somatic genomic variations displayed reduced expression compared to protein variants encoded by germline variations. mRNA transcript abundance did not reliably predict protein expression differences between tumors. Proteomics identified five protein expression subtypes, two of which were associated with the TCGA "MSI/CIMP" transcriptional subtype, but had distinct mutation and methylation patterns and associated with different clinical outcomes. Although CNAs showed strong cis- and trans-effects on mRNA expression, relatively few of these extend to the proteinmore » level. Thus, proteomics data enabled prioritization of candidate driver genes. Our analyses identified HNF4A, a novel candidate driver gene in tumors with chromosome 20q amplifications. Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords novel insights into cancer biology.« less
G-cimp status prediction of glioblastoma samples using mRNA expression data.
Baysan, Mehmet; Bozdag, Serdar; Cam, Margaret C; Kotliarova, Svetlana; Ahn, Susie; Walling, Jennifer; Killian, Jonathan K; Stevenson, Holly; Meltzer, Paul; Fine, Howard A
2012-01-01
Glioblastoma Multiforme (GBM) is a tumor with high mortality and no known cure. The dramatic molecular and clinical heterogeneity seen in this tumor has led to attempts to define genetically similar subgroups of GBM with the hope of developing tumor specific therapies targeted to the unique biology within each of these subgroups. Recently, a subset of relatively favorable prognosis GBMs has been identified. These glioma CpG island methylator phenotype, or G-CIMP tumors, have distinct genomic copy number aberrations, DNA methylation patterns, and (mRNA) expression profiles compared to other GBMs. While the standard method for identifying G-CIMP tumors is based on genome-wide DNA methylation data, such data is often not available compared to the more widely available gene expression data. In this study, we have developed and evaluated a method to predict the G-CIMP status of GBM samples based solely on gene expression data.
G-Cimp Status Prediction Of Glioblastoma Samples Using mRNA Expression Data
Baysan, Mehmet; Bozdag, Serdar; Cam, Margaret C.; Kotliarova, Svetlana; Ahn, Susie; Walling, Jennifer; Killian, Jonathan K.; Stevenson, Holly; Meltzer, Paul; Fine, Howard A.
2012-01-01
Glioblastoma Multiforme (GBM) is a tumor with high mortality and no known cure. The dramatic molecular and clinical heterogeneity seen in this tumor has led to attempts to define genetically similar subgroups of GBM with the hope of developing tumor specific therapies targeted to the unique biology within each of these subgroups. Recently, a subset of relatively favorable prognosis GBMs has been identified. These glioma CpG island methylator phenotype, or G-CIMP tumors, have distinct genomic copy number aberrations, DNA methylation patterns, and (mRNA) expression profiles compared to other GBMs. While the standard method for identifying G-CIMP tumors is based on genome-wide DNA methylation data, such data is often not available compared to the more widely available gene expression data. In this study, we have developed and evaluated a method to predict the G-CIMP status of GBM samples based solely on gene expression data. PMID:23139755
Christoph, Frank; König, Frank; Lebentrau, Steffen; Jandrig, Burkhard; Krause, Hans; Strenziok, Romy; Schostak, Martin
2018-02-01
The cytokine system RANKL (receptor activator of NF-κB ligand), its receptor RANK and the antagonist OPG (osteoprotegerin) play a critical role in bone turnover. Our investigation was conducted to describe the gene expression at primary tumour site in prostate cancer patients and correlate the results with Gleason Score and PSA level. Seventy-one samples were obtained from prostate cancer patients at the time of radical prostatectomy and palliative prostate resection (n = 71). Patients with benign prostate hyperplasia served as controls (n = 60). We performed real-time RT-PCR after microdissection of the samples. The mRNA expression of RANK was highest in tumour tissue from patients with bone metastases (p < 0.001) as compared to BPH or locally confined tumours, also shown in clinical subgroups distinguished by Gleason Score (< 7 or ≥ 7, p = 0.028) or PSA level (< 10 or ≥ 10 µg/l, p = 0.004). RANKL and OPG mRNA expression was higher in tumour tissue from patients with metastatic compared to local disease. The RANKL/OPG ratio was low in normal prostate tissue and high tumours with bone metastases (p < 0.05). Expression of all three cytokines was high in BPH tissue but did not exceed as much as in the tumour tissue. We demonstrated that RANK, RANKL and OPG are directly expressed by prostate cancer cells at the primary tumour site and showed a clear correlation with Gleason Score, serum PSA level and advanced disease. In BPH, mRNA expression is also detectable, but RANK expression does not exceed as much as compared to tumour tissue.
Longerich, Thomas; Breuhahn, Kai; Odenthal, Margarete; Petmecky, Katharina; Schirmacher, Peter
2004-12-01
Transforming growth factor beta (TGFbeta) is a central mitoinhibitory factor for epithelial cells, and alterations of TGFbeta signalling have been demonstrated in many different human cancers. We have analysed human hepatocellular carcinomas (HCCs) for potential pro-tumourigenic alterations in regard to expression of Smad4 and mutations and expression changes of the pro-oncogenic transcriptional co-repressors Ski and SnoN, as well as mRNA levels of matrix metalloproteinase-2 (MMP2), which is transcriptionally regulated by TGFbeta. Smad4 mRNA was detected in all HCCs; while, using immunohistology, loss of Smad4 expression was found in 10% of HCCs. Neither mutations in the transformation-relevant sequences nor significant pro-tumourigenic expression changes of the Ski and SnoN genes were detected. In HCC cell lines, expression of both genes was regulated, potentially involving phosphorylation. Ski showed a distinct nuclear speckled pattern, indicating recruitment to active transcription complexes. MMP2 mRNA levels were increased in 19% of HCCs, whereas MMP2 mRNA was not detectable in HCC cell lines, suggesting that MMP2 was derived only from tumour stroma cells. Transcript levels of Smad4, Ski, SnoN and MMP2 correlated well. These data argue against a significant role of Ski and SnoN in human hepatocarcinogenesis and suggest that, in the majority of HCCs, the analysed factors are co-regulated by an upstream mechanism, potentially by TGFbeta itself.
Nagamine, Takeaki; Suzuki, Keiji; Kondo, Toshihiko; Nakazato, Kyomi; Kakizaki, Satoru; Takagi, Hitoshi; Nakajima, Katuyuki
2005-08-01
An association between reactive oxygen species and liver damage has been postulated in the course of hepatitis C virus (HCV) infection. Metallothionein (MT), induced by HCV core protein and interferon (IFN), plays a role in scavenging free radicals. MT expression in liver biopsies obtained from 21 patients with chronic HCV infection before and after IFN-alpha therapy was investigated. Changes in Knodell histological activity index (HAI) scores, MT protein levels (immunohistochemistry), MT-I and MT-II messenger (m)RNA expression levels (in situ hybridization) and proliferating cell nuclear antigen (PCNA) labelling index were determined and compared in serial liver specimens. MT staining was clustered around the portal tracts with inflammatory cells and fibrosis. The pattern of MT protein before IFN-alpha therapy was similar in all patients, but was higher in IFN-sustained responders than in nonresponders after IFN-alpha therapy. HAI scores and PCNA labelling indexes were significantly reduced after IFN-alpha therapy. MT-II mRNA expression correlated positively with PCNA index before therapy and with HAI scores after therapy (P<0.05). No correlation was found between MT-I mRNA and HAI scores or PCNA index. The findings indicate that IFN-alpha-induced hepatic MT may participate in the therapeutic effects of IFN-alpha for HCV. In addition, MT-II mRNA expression may be involved in cell proliferation in the livers of patients with chronic HCV infection.
Morita, Miyo Terao; Tanaka, Yoshiyuki; Kodama, Takashi S.; Kyogoku, Yoshimasa; Yanagi, Hideki; Yura, Takashi
1999-01-01
Induction of heat shock proteins in Escherichia coli is primarily caused by increased cellular levels of the heat shock σ-factor σ32 encoded by the rpoH gene. Increased σ32 levels result from both enhanced synthesis and stabilization. Previous work indicated that σ32 synthesis is induced at the translational level and is mediated by the mRNA secondary structure formed within the 5′-coding sequence of rpoH, including the translation initiation region. To understand the mechanism of heat induction of σ32 synthesis further, we analyzed expression of rpoH–lacZ gene fusions with altered stability of mRNA structure before and after heat shock. A clear correlation was found between the stability and expression or the extent of heat induction. Temperature-melting profiles of mRNAs with or without mutations correlated well with the expression patterns of fusion genes carrying the corresponding mutations in vivo. Furthermore, temperature dependence of mRNA–30S ribosome–tRNAfMet complex formation with wild-type or mutant mRNAs in vitro agreed well with that of the expression of gene fusions in vivo. Our results support a novel mechanism in which partial melting of mRNA secondary structure at high temperature enhances ribosome entry and translational initiation without involvement of other cellular components, that is, intrinsic mRNA stability controls synthesis of a transcriptional regulator. PMID:10090722
Dopaminergic Modulation of Risky Decision-Making
Simon, Nicholas W.; Montgomery, Karienn S.; Beas, Blanca S.; Mitchell, Marci R.; LaSarge, Candi L.; Mendez, Ian A.; Bañuelos, Cristina; Vokes, Colin M.; Taylor, Aaron B.; Haberman, Rebecca P.; Bizon, Jennifer L.; Setlow, Barry
2012-01-01
Many psychiatric disorders are characterized by abnormal risky decision-making and dysregulated dopamine receptor expression. The current study was designed to determine how different dopamine receptor subtypes modulate risk-taking in young adult rats, using a “Risky Decision-making Task” that involves choices between small “safe” rewards and large “risky” rewards accompanied by adverse consequences. Rats showed considerable, stable individual differences in risk preference in the task, which were not related to multiple measures of reward motivation, anxiety, or pain sensitivity. Systemic activation of D2-like receptors robustly attenuated risk-taking, whereas drugs acting on D1-like receptors had no effect. Systemic amphetamine also reduced risk-taking, an effect which was attenuated by D2-like (but not D1-like) receptor blockade. Dopamine receptor mRNA expression was evaluated in a separate cohort of drug-naive rats characterized in the task. D1 mRNA expression in both nucleus accumbens shell and insular cortex was positively associated with risk-taking, while D2 mRNA expression in orbitofrontal and medial prefrontal cortex predicted risk preference in opposing nonlinear patterns. Additionally, lower levels of D2 mRNA in dorsal striatum were associated with greater risk-taking. These data strongly implicate dopamine signaling in prefrontal corticalstriatal circuitry in modulating decision-making processes involving integration of reward information with risks of adverse consequences. PMID:22131407
Wang, Yong; He, Jianzhong; Yang, Wenxuan; Muhantay, Gemenggul; Chen, Ying; Xing, Jinming; Liu, Jianzhu
2015-01-01
This study aims to determine the polymorphism and mRNA expression pattern of the heart-type fatty acid-binding protein (H-FABP) gene and their association with intramuscular fat (IMF) content in the breast and leg muscles of Baicheng oil chicken (BOC). A total of 720 chickens, including 240 black Baicheng oil chicken (BBOC), 240 silky Baicheng oil chicken (SBOC), and 240 white Baicheng oil chicken (WBOC) were raised. Three genotypes of H-FABP gene second extron following AA, AB, and BB were detected by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) strategy. The G939A site created AA genotype and G956A site created BB genotype. The content of IMF in AA genotype in breast muscle of BBOC was significantly higher than that of AB (p = 0.0176) and the genotype in leg muscle of WBOC was significantly higher than that of AB (p = 0.0145). The G939A site could be taken as genetic marker for higher IMF content selecting for breast muscle of BBOC and leg muscle of WBOC. The relative mRNA expression of H-FABP was measured by real-time PCR at 30, 60, 90, and 120 d. The IMF content significantly increased with age in both muscles. The mRNA expression level of H-FABP significantly decreased with age in both muscles of the three types of chickens. Moreover, a significant negative correlation between H-FABP abundance and IMF content in the leg muscles of WBOC (p = 0.035) was observed. The mRNA expression of H-FABP negatively correlated with the IMF content in both breast and leg muscles of BOC sat slaughter time. PMID:26323394
NASA Technical Reports Server (NTRS)
Delalle, I.; Takahashi, T.; Nowakowski, R. S.; Tsai, L. H.; Caviness, V. S. Jr
1999-01-01
We have analyzed the expression patterns of mRNAs of five cell cycle related proteins in the ventricular zone of the neocortical cerebral wall over the course of the neuronogenetic interval in the mouse. One set of mRNAs (cyclin E and p21) are initially expressed at high levels but expression then falls to a low asymptote. A second set (p27, cyclin B and cdk2) are initially expressed at low levels but ascend to peak levels only to decline again. These patterns divide the overall neuronogenetic interval into three phases. In phase 1 cyclin E and p21 levels of mRNA expression are high, while those of mRNAs of p27, cdk2 and cyclin B are low. In this phase the fraction of cells leaving the cycle after each mitosis, Q, is low and the duration of the G1 phase, TG1, is short. In phase 2 levels of expression of cyclin E and p21 fall to asymptote while levels of expression of mRNA of the other three proteins reach their peaks. Q increases to approach 0.5 and TG1 increases even more rapidly to approach its maximum length. In phase 3 levels of expression of cyclin E and p21 mRNAs remain low and those of the mRNAs of the other three proteins fall. TG1 becomes maximum and Q rapidly increases to 1.0. The character of these phases can be understood in part as consequences of the reciprocal regulatory influence of p27 and cyclin E and of the rate limiting functions of p27 at the restriction point and of cyclin E at the G1 to S transition.
[Regulation of the expression of coenzyme Q-synthesis complex during ageing].
Campos-Silva, Carmen; Reyes-Torres, Iván; Rivera, Maximiliano; Meza-Torres, Catherine; Hernández-Camacho, Juan Diego; Rodríguez-Bies, Elisabet; Navas, Plácido; López-Lluch, Guillermo
Coenzyme Q is an essential component in the activity of the mitochondrial electron transport chain. Its synthesis involves, at least, a complex of ten different proteins. In this study, an attempt is made to determine the evolution of the expression of the genes involved in coenzyme Q synthesis during mouse ageing. The messenger RNA (mRNA) of different organs, such as brain, liver, kidney and skeletal muscle from young (8 months), mature (18 months), and old (24 months) mice was extracted by using Trizol and was then analysed by real time PCR (qPCR) using specific primers for all the known components of the coenzyme Q-synthesis complex (COQ genes). Liver showed the highest age-dependent changes in mRNA levels of the different components of Q-synthesis complex, affecting the extent of the variation as well as the significance of the change. In most of the cases, mRNA levels of the different components were higher in mature animals compared to young and old animals. When mRNAs of young and old animals were compared, only minor reductions of mRNA levels were found. Kidney showed a pattern similar to that found in liver as regards the changes in expression, although with lower increases in mature animals than those observed in the liver. Brain and skeletal muscle showed low variations, with muscle being the tissue with less changes, although a pattern similar to that found in liver and kidney was found, with slight increases in mature animals. The results of this study indicate that ageing is an important factor affecting COQ gene expression, but its effect depends on the organ, and that mature animals show higher levels of mRNA than young and old animals. Taken into consideration the importance of coenzyme Q in cell metabolism and ageing, a more detailed study is needed to understand the gene regulation of the coenzyme Q-synthesis mechanisms during ageing. Copyright © 2017 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.
Deregulation of versican and elastin binding protein in solar elastosis.
Knott, Anja; Reuschlein, Katja; Lucius, Ralph; Stäb, Franz; Wenck, Horst; Gallinat, Stefan
2009-04-01
Several changes in skin appearance including loss of elasticity and wrinkle formation are associated with alterations in the composition of the dermal extracellular matrix. They are induced by intrinsic aging or by environmental factors such as UV light referred to as photoaging. A general characteristic in the histology of photoaged skin is the accumulation of elastotic material suggesting impaired formation and/or massive breakdown of elastic fibres. In order to shed light on some of the underlying mechanisms we tracked two of the major players in elastic fibre formation in different skin conditions: EBP (elastin binding protein), a regulator of elastic fibre assembly and VER (versican), a component of functional elastic fibres as well as non-functional elastotic material. Using quantitative RT-PCR on skin biopsies we found that the expression levels of VER and EBP were unaltered during intrinsic skin aging. Upon acute UV stress however, VER and EBP showed different regulation patterns: VER mRNA increased after 6 h and was further up-regulated until 24 h. The EBP mRNA by contrast was reduced after 6 h but showed massive induction at 24 h after acute UV stress. In chronically sun-exposed skin, VER protein was accumulated similar to elastotic material in the extracellular space, whereas its mRNA level was consistently reduced compared to sun-protected skin. The EBP mRNA by contrast showed slightly increased expression levels in the sun-exposed area compared to its sun-protected counterpart. Based on these data we propose a model which may help to explain parts of the mechanisms leading to the formation of elastotic masses. We further hypothesize that the presence of elastotic material triggers some yet unknown feedback mechanism(s) resulting in altered expression patterns of VER and EBP in chronically sun-exposed skin.
NASA Astrophysics Data System (ADS)
Fernandes, Kelly Rossetti; Ribeiro, Daniel Araki; Rodrigues, Natália Camargo; Tim, Carla; Santos, Anderson Amaro; Parizotto, Nivaldo Antônio; de Araujo, Heloisa Selistre; Driusso, Patrícia; Rennó, Ana Claudia Muniz
2013-03-01
We evaluate the effects of low-level laser therapy (LLLT) on the histological modifications and temporal osteogenic genes expression during the initial phase of bone healing in a model of bone defect in rats. Sixty-four Wistar rats were divided into control and treated groups. Noncritical size bone defects were surgically created at the upper third of the tibia. Laser irradiation (Ga-Al-As laser 830 nm, 30 mW, 0.028 cm2, 1.071 W/cm2, 1 min and 34 s, 2.8 Joules, 100 J/cm2) was performed for 1, 2, 3, and 5 sessions. Histopathology revealed that treated animals presented higher inflammatory cells recruitment, especially 12 and 36 h postsurgery. Also, a better tissue organization at the site of the injury, with the presence of granulation tissue and new bone formation was observed on days three and five postsurgery in the treated animals. The quantitative real time polymerase chain reaction showed that LLLT produced a significantly increase in mRNA expression of Runx-2, 12 h and three days post-surgery, a significant upregulation of alkaline phosphatase mRNA expression after 36 h and three days post-surgery and a significant increase of osteocalcin mRNA expression after three and five days. We concluded that LLLT modulated the inflammatory process and accelerated bone repair, and this advanced repair pattern in the laser-treated groups may be related to the higher mRNA expression of genes presented by these animals.
Park, Ji Yeon; Li, Wencheng; Zheng, Dinghai; Zhai, Peiyong; Zhao, Yun; Matsuda, Takahisa; Vatner, Stephen F.; Sadoshima, Junichi; Tian, Bin
2011-01-01
Cardiac hypertrophy is enlargement of the heart in response to physiological or pathological stimuli, chiefly involving growth of myocytes in size rather than in number. Previous studies have shown that the expression pattern of a group of genes in hypertrophied heart induced by pressure overload resembles that at the embryonic stage of heart development, a phenomenon known as activation of the “fetal gene program”. Here, using a genome-wide approach we systematically defined genes and pathways regulated in short- and long-term cardiac hypertrophy conditions using mice with transverse aortic constriction (TAC), and compared them with those regulated at different stages of embryonic and postnatal development. In addition, exon-level analysis revealed widespread mRNA isoform changes during cardiac hypertrophy resulting from alternative usage of terminal or internal exons, some of which are also developmentally regulated and may be attributable to decreased expression of Fox-1 protein in cardiac hypertrophy. Genes with functions in certain pathways, such as cell adhesion and cell morphology, are more likely to be regulated by alternative splicing. Moreover, we found 3′UTRs of mRNAs were generally shortened through alternative cleavage and polyadenylation in hypertrophy, and microRNA target genes were generally de-repressed, suggesting coordinated mechanisms to increase mRNA stability and protein production during hypertrophy. Taken together, our results comprehensively delineated gene and mRNA isoform regulation events in cardiac hypertrophy and revealed their relations to those in development, and suggested that modulation of mRNA isoform expression plays an importance role in heart remodeling under pressure overload. PMID:21799842
Li, Feixue; Jang, Hyein; Puttabyatappa, Muraly; Jo, Misung; Curry,, Thomas E.
2012-01-01
ABSTRACT FAM110C belongs to a family of proteins that regulates cell proliferation. In the present study, the spatiotemporal expression pattern of FAM110C and its potential role were examined during the periovulatory period. Immature female rats were injected with equine chorionic gonadotropin (eCG) followed by human chorionic gonadotropin (hCG) and ovaries or granulosa cells were collected at various times after hCG administration (n = 3/time point). Expression levels of Fam110c mRNA and protein were highly induced both in intact ovaries and granulosa cells at 8 to 12 h after hCG treatment. In situ hybridization analysis demonstrated Fam110c mRNA expression was induced in theca and granulosa cells at 4 h after hCG, primarily localized to granulosa cells at 8 h and 12 h, and decreased at 24 h after hCG. There was negligible Fam110c mRNA detected in newly forming corpora lutea. In rat granulosa cell cultures, hCG induced expression of Fam110c mRNA was inhibited by RU486, whereas NS398 and AG1478 had no effect, suggesting that Fam110c expression is regulated in part by the progesterone receptor pathway. Promoter activity analysis revealed that an Sp1 site was important for the induction of Fam110c expression by hCG. Overexpression of FAM110C promoted granulosa cells to arrest at the G1 phase of the cell cycle but did not change progesterone levels. In summary, hCG induces Fam110c mRNA expression in granulosa cells by activation of an Sp1-binding site and the actions of progesterone. Our findings suggest that FAM110C may control granulosa cell differentiation into luteal cells by arresting cell cycle progression. PMID:22460667
Trnecková, Lenka; Rotllant, David; Klenerová, Vera; Hynie, Sixtus; Armario, Antonio
2007-02-01
Stress-induced expression of immediate early genes (IEGs) appears to be transient even if the exposure to the stressor persists. However, there are some exceptions which suggest that particular characteristics of stressors can affect the dynamics of IEG expression. We studied in selected telencephalic, diencephalic and brainstem regions the mRNA levels of two clearly distinct IEGs (c-fos and arc) during prolonged exposure to a severe stressor such as immobilization (IMO) and after releasing the rats from the situation. Although regional differences were observed with the two IEGs, overall, c-fos mRNA levels progressively declined over the course of 4 h of continuous exposure to IMO, whereas arc mRNA levels were maintained at high levels in the brain regions that express this gene under stress (telencephalon). Levels of CRF hnRNA in the hypothalamus paraventricular nucleus only slightly declined during prolonged exposure to IMO. Surprisingly, termination of exposure to IMO did not modify CRF gene expression in the paraventricular nucleus or the pattern of IEGs expression, with the exception of c-fos in the lateral septum. Thus, putative signals associated to the termination of exposure to IMO were unable to modify either IEG expression in most brain areas or CRF gene expression in the paraventricular nucleus.
Azimi, Sayyed M; Sheridan, Steven D; Ghannad-Rezaie, Mostafa; Eimon, Peter M; Yanik, Mehmet Fatih
2018-05-01
Identification of optimal transcription-factor expression patterns to direct cellular differentiation along a desired pathway presents significant challenges. We demonstrate massively combinatorial screening of temporally-varying mRNA transcription factors to direct differentiation of neural progenitor cells using a dynamically-reconfigurable magnetically-guided spotting technology for localizing mRNA, enabling experiments on millimetre size spots. In addition, we present a time-interleaved delivery method that dramatically reduces fluctuations in the delivered transcription-factor copy-numbers per cell. We screened combinatorial and temporal delivery of a pool of midbrain-specific transcription factors to augment the generation of dopaminergic neurons. We show that the combinatorial delivery of LMX1A, FOXA2 and PITX3 is highly effective in generating dopaminergic neurons from midbrain progenitors. We show that LMX1A significantly increases TH -expression levels when delivered to neural progenitor cells either during proliferation or after induction of neural differentiation, while FOXA2 and PITX3 increase expression only when delivered prior to induction, demonstrating temporal dependence of factor addition. © 2018, Azimi et al.
Bonin, L R; Madden, K; Shera, K; Ihle, J; Matthews, C; Aziz, S; Perez-Reyes, N; McDougall, J K; Conroy, S C
1999-03-01
The study of atherogenesis in humans has been restricted by the limited availability and brief in vitro life span of plaque smooth muscle cells (SMCs). We describe plaque SMC lines with extended life spans generated by the expression of the human papillomavirus (HPV)-16 E6 and E7 genes, which has been shown to extend the life span of normal adult human aortic SMCs. Resulting cell lines (pdSMC1A and 2) demonstrated at least 10-fold increases in life span; pdSMC1A became immortal. The SMC identity of both pdSMC lines was confirmed by SM22 mRNA expression. pdSMC2 were generally diploid but with various structural and numerical alterations; pdSMC1A demonstrated several chromosomal abnormalities, most commonly -Y, +7, -13, anomalies previously reported in both primary pdSMCs and atherosclerotic tissue. Confluent pdSMC2 appeared grossly similar to HPV-16 E6/E7-expressing normal adult aortic SMCs (AASMCs), exhibiting typical SMC morphology/growth patterns; pdSMC1A displayed irregular cell shape/organization with numerous mitotic figures. Dedifferentiation to a synthetic/proliferative phenotype has been hypothesized as a critical step in atherogenesis, because rat neonatal SMCs and adult intimal SMCs exhibit similar gene expression patterns. To confirm that our pdSMC lines likewise express this apparent plaque phenotype, osteopontin, platelet-derived growth factor B, and elastin mRNA levels were determined in pdSMC1A, pdSMC2, and AASMCs. However, no significant increases in osteopontin or platelet-derived growth factor B expression levels were observed in either pdSMC compared with AASMCs. pdSMC2 alone expressed high levels of elastin mRNA. Lower levels of SM22 mRNA in pdSMC1A suggested greater dedifferentiation and/or additional population doublings in pdSMC1A relative to pdSMC2. Both pdSMC lines (particularly 1A) demonstrated high message levels for matrix Gla protein, previously reported to be highly expressed by human neointimal SMCs in vitro. These results describe 2 novel plaque cell lines exhibiting various features of plaque SMC biology; pdSMC2 may represent an earlier plaque SMC phenotype, whereas pdSMC1A may be representative of cells comprising an advanced atherosclerotic lesion.
Biologically relevant effects of mRNA amplification on gene expression profiles.
van Haaften, Rachel I M; Schroen, Blanche; Janssen, Ben J A; van Erk, Arie; Debets, Jacques J M; Smeets, Hubert J M; Smits, Jos F M; van den Wijngaard, Arthur; Pinto, Yigal M; Evelo, Chris T A
2006-04-11
Gene expression microarray technology permits the analysis of global gene expression profiles. The amount of sample needed limits the use of small excision biopsies and/or needle biopsies from human or animal tissues. Linear amplification techniques have been developed to increase the amount of sample derived cDNA. These amplified samples can be hybridised on microarrays. However, little information is available whether microarrays based on amplified and unamplified material yield comparable results. In the present study we compared microarray data obtained from amplified mRNA derived from biopsies of rat cardiac left ventricle and non-amplified mRNA derived from the same organ. Biopsies were linearly amplified to acquire enough material for a microarray experiment. Both amplified and unamplified samples were hybridized to the Rat Expression Set 230 Array of Affymetrix. Analysis of the microarray data showed that unamplified material of two different left ventricles had 99.6% identical gene expression. Gene expression patterns of two biopsies obtained from the same parental organ were 96.3% identical. Similarly, gene expression pattern of two biopsies from dissimilar organs were 92.8% identical to each other.Twenty-one percent of reporters called present in parental left ventricular tissue disappeared after amplification in the biopsies. Those reporters were predominantly seen in the low intensity range. Sequence analysis showed that reporters that disappeared after amplification had a GC-content of 53.7+/-4.0%, while reporters called present in biopsy- and whole LV-samples had an average GC content of 47.8+/-5.5% (P <0.001). Those reporters were also predicted to form significantly more (0.76+/-0.07 versus 0.38+/-0.1) and longer (9.4+/-0.3 versus 8.4+/-0.4) hairpins as compared to representative control reporters present before and after amplification. This study establishes that the gene expression profile obtained after amplification of mRNA of left ventricular biopsies is representative for the whole left ventricle of the rat heart. However, specific gene transcripts present in parental tissues were undetectable in the minute left ventricular biopsies. Transcripts that were lost due to the amplification process were not randomly distributed, but had higher GC-content and hairpins in the sequence and were mainly found in the lower intensity range which includes many transcription factors from specific signalling pathways.
Biologically relevant effects of mRNA amplification on gene expression profiles
van Haaften, Rachel IM; Schroen, Blanche; Janssen, Ben JA; van Erk, Arie; Debets, Jacques JM; Smeets, Hubert JM; Smits, Jos FM; van den Wijngaard, Arthur; Pinto, Yigal M; Evelo, Chris TA
2006-01-01
Background Gene expression microarray technology permits the analysis of global gene expression profiles. The amount of sample needed limits the use of small excision biopsies and/or needle biopsies from human or animal tissues. Linear amplification techniques have been developed to increase the amount of sample derived cDNA. These amplified samples can be hybridised on microarrays. However, little information is available whether microarrays based on amplified and unamplified material yield comparable results. In the present study we compared microarray data obtained from amplified mRNA derived from biopsies of rat cardiac left ventricle and non-amplified mRNA derived from the same organ. Biopsies were linearly amplified to acquire enough material for a microarray experiment. Both amplified and unamplified samples were hybridized to the Rat Expression Set 230 Array of Affymetrix. Results Analysis of the microarray data showed that unamplified material of two different left ventricles had 99.6% identical gene expression. Gene expression patterns of two biopsies obtained from the same parental organ were 96.3% identical. Similarly, gene expression pattern of two biopsies from dissimilar organs were 92.8% identical to each other. Twenty-one percent of reporters called present in parental left ventricular tissue disappeared after amplification in the biopsies. Those reporters were predominantly seen in the low intensity range. Sequence analysis showed that reporters that disappeared after amplification had a GC-content of 53.7+/-4.0%, while reporters called present in biopsy- and whole LV-samples had an average GC content of 47.8+/-5.5% (P <0.001). Those reporters were also predicted to form significantly more (0.76+/-0.07 versus 0.38+/-0.1) and longer (9.4+/-0.3 versus 8.4+/-0.4) hairpins as compared to representative control reporters present before and after amplification. Conclusion This study establishes that the gene expression profile obtained after amplification of mRNA of left ventricular biopsies is representative for the whole left ventricle of the rat heart. However, specific gene transcripts present in parental tissues were undetectable in the minute left ventricular biopsies. Transcripts that were lost due to the amplification process were not randomly distributed, but had higher GC-content and hairpins in the sequence and were mainly found in the lower intensity range which includes many transcription factors from specific signalling pathways. PMID:16608515
Effects of simulated microgravity on microRNA and mRNA expression profile of rat soleus
NASA Astrophysics Data System (ADS)
Xu, Hongjie; Wu, Feng; Cao, Hongqing; Kan, Guanghan; Zhang, Hongyu; Yeung, Ella W.; Shang, Peng; Dai, Zhongquan; Li, Yinghui
2015-02-01
Spaceflight induces muscle atrophy but mechanism is not well understood. Here, we quantified microRNAs (miRNAs) and mRNA shifts of rat soleus in response to microgravity. MiRNAs and mRNA microarray of soleus after tail suspension (TS) for 7 and 14 days were performed followed by target gene and function annotation analysis and qRT-PCR. Relative muscle mass lost by 37.0% in TS-7 but less than 10% in the following three weeks. TS altered 23 miRNAs and 1313 mRNAs with at least 2-fold. QRT-PCR confirmed some of these changes. MiR-214, miR-486-5p and miR-221 continuously decreased. MiR-674 and Let-7e decreased only in TS-7, while miR-320b and miR-187 decreased only in TS-14. But there was no alteration of miR-320 and miR-206 in both time point. For mRNA detection, actn3 (5.1-fold and 13.8-fold) and myh4 (38-fold and 51.6-fold) increased abundantly and a3galt2 decreased. Predicted targeted genes (whyz, ywhaz and SFRP2) of altered miRNAs decreased. GO terms and cellular pathway of these alteration showed enrichment in regulation of muscle metabolism. Integration analysis of the miRNA and mRNA expression profiles confirmed that eleven genes were differently regulated by four miRNAs. This is the first study that showed expression pattern and synergistical regulation of miRNA and mRNA in rat soleus of TS for up to 14 days.
Polysome Fractionation to Analyze mRNA Distribution Profiles.
Panda, Amaresh C; Martindale, Jennifer L; Gorospe, Myriam
2017-02-05
Eukaryotic cells adapt to changes in external or internal signals by precisely modulating the expression of specific gene products. The expression of protein-coding genes is controlled at the transcriptional and post-transcriptional levels. Among the latter steps, the regulation of translation is particularly important in cellular processes that require rapid changes in protein expression patterns. The translational efficiency of mRNAs is altered by RNA-binding proteins (RBPs) and noncoding (nc)RNAs such as microRNAs (Panda et al. , 2014a and 2014b; Abdelmohsen et al. , 2014). The impact of factors that regulate selective mRNA translation is a critical question in RNA biology. Polyribosome (polysome) fractionation analysis is a powerful method to assess the association of ribosomes with a given mRNA. It provides valuable information about the translational status of that mRNA, depending on the number of ribosomes with which they are associated, and identifies mRNAs that are not translated (Panda et al. , 2016). mRNAs associated with many ribosomes form large polysomes that are predicted to be actively translated, while mRNAs associated with few or no ribosomes are expected to be translated poorly if at all. In sum, polysome fractionation analysis allows the direct determination of translation efficiencies at the level of the whole transcriptome as well as individual mRNAs.
Xing, Jinyi; Kang, Li; Jiang, Yunliang
2011-03-01
Experiments were conducted to investigate the effect of betaine supplementation on mRNA expression levels of lipogenesis genes and CpG methylation of lipoprotein lipase gene (LPL) in broilers. From 22 days of age, 78 broilers were feed basal diet without betaine and basal diet supplemented with 0.1% betaine, respectively, and at 56 and 66 days of age, the traits of 15 chickens (7 males and 8 females) of each group were recorded and abdominal fat pads were collected. The mRNA expression levels of several lipogenesis gene were analyzed by semi-quantitative RT-PCR and real-time quantitative RT-PCR (qPCR), respectively. The CpG methylation profile at the promoter region of LPL gene in 66-day-old broilers was determined by bisulfite sequencing. The average daily gain and percent abdominal fat traits were slightly improved in 56-day-old and 66-day-old broilers after dietary supplementation of betaine to diet. After adding 0.1% betaine to diet, the mRNA levels of fatty acid synthase (FAS) and adipocyte-type fatty acid-binding protein genes in abdominal adipose were significantly decreased in 56-day-old broilers, and those of LPL and FAS genes in abdominal adipose were significantly decreased in 66-day-old broilers comparing with the control group (P < 0.05 and P < 0.001). Moreover, in 66-day-old broilers fed 0.1% betaine diet, a different CpG methylation pattern was observed: the CpG dinucleotides of 1st, 6th, 7th, 8th and from 10th to 50th were less methylated; however, those of 2nd, 5th and 9th were more heavily methylated. The results suggest that transcription of some lipogenesis genes was decreased by betaine supplementation and betaine may decrease LPL mRNA expression by altering CpG methylation pattern on LPL promoter region.
Vignesh, A R; Dhanasekaran, S; Raj, G Dhinakar; Balachandran, C; Pazhanivel, N; Sreekumar, C; Tirumurugaan, K G; Raja, A; Kumanan, K
2012-06-15
The primary objective of this study was to assess the expression profile and levels of toll-like receptor (TLR) mRNAs in the spleen, lung, mediastinal lymph node (MLN), jejunum, rectum, skin and peripheral blood mononuclear cells (PBMC) of Toda and Murrah buffalos. Spleen and PBMC had increased expression of TLR mRNAs 2, 4, 5, 6, 8, 9 and 10; lung had increased expression of TLR mRNAs 2, 4, 5, 6 and 8, MLN TLR mRNA 6, 9, 10 and decrease in TLR 3 and 7 mRNAs in skin. No significant differences were observed in the expression levels of any of the TLR mRNA in jejunum and rectum. Toda buffaloes showed significantly higher expression levels of TLR 9 mRNA in MLN, TLR mRNAs 1, 5, 6, 9 and 10 in skin and TLR mRNAs 2, 4, 7 and 9 in PBMC than Murrah buffaloes living in the vicinity. Toda and Murrah buffaloes were inoculated with TLR5 (flagellin) and TLR9 (CpG ODN) ligands in vivo and expression levels of the respective TLRs analyzed 12h later. Following CpG inoculation, Toda buffaloes had significantly higher levels of TLR 9 mRNA expression but not in Murrah. However, flagellin induction did not increase TLR 5 mRNA expression in both these breeds. Histological sections of the skin were made and infiltrating cell clusters were graded and quantified. Following CpG inoculation, Toda buffaloes showed higher numbers of infiltrating grade 1 and grade 3 cell clusters while Murrah showed lower numbers of infiltrating grade 1 cells as compared to mock-inoculated skin sections. Flagellin treatment revealed no significant differences in infiltrating cell clusters in both the breeds. The results have shown differential expression of TLR mRNAs in various tissues between two divergent buffalo breeds with the highest difference in TLR expression profile seen in the skin, the largest portal of entry of pathogens, of Toda. Copyright © 2012 Elsevier B.V. All rights reserved.
Blancas-Velazquez, Aurea Susana; Unmehopa, Unga A; Eggels, Leslie; Koekkoek, Laura; Kalsbeek, Andries; Mendoza, Jorge; la Fleur, Susanne E
2018-01-01
Under normal light-dark conditions, nocturnal rodents consume most of their food during the dark period. Diets high in fat and sugar, however, may affect the day-night feeding rhythm resulting in a higher light phase intake. In vitro and in vivo studies showed that nutrients affect clock-gene expression. We therefore hypothesized that overconsuming fat and sugar alters clock-gene expression in brain structures important for feeding behavior. We determined the effects of a free-choice high-fat high-sugar (fcHFHS) diet on clock-gene expression in rat brain areas related to feeding and reward and compared them with chow-fed rats. Consuming a fcHFHS diet for 6 weeks disrupted day-night differences in Per2 mRNA expression in the nucleus accumbens (NAc) and lateral hypothalamus but not in the suprachiasmatic nucleus, habenula, and ventral tegmental area. Furthermore, short-term sugar drinking, but not fat feeding, upregulates Per2 mRNA expression in the NAc. The disruptions in day-night differences in NAc Per2 gene expression were not accompanied by altered day-night differences in the mRNA expression of peptides related to food intake. We conclude that the fcHFHS diet and acute sugar drinking affect Per2 gene expression in areas involved in food reward; however, this is not sufficient to alter the day-night pattern of food intake.
Blancas-Velazquez, Aurea Susana; Unmehopa, Unga A.; Eggels, Leslie; Koekkoek, Laura; Kalsbeek, Andries; Mendoza, Jorge; la Fleur, Susanne E.
2018-01-01
Under normal light–dark conditions, nocturnal rodents consume most of their food during the dark period. Diets high in fat and sugar, however, may affect the day–night feeding rhythm resulting in a higher light phase intake. In vitro and in vivo studies showed that nutrients affect clock-gene expression. We therefore hypothesized that overconsuming fat and sugar alters clock-gene expression in brain structures important for feeding behavior. We determined the effects of a free-choice high-fat high-sugar (fcHFHS) diet on clock-gene expression in rat brain areas related to feeding and reward and compared them with chow-fed rats. Consuming a fcHFHS diet for 6 weeks disrupted day–night differences in Per2 mRNA expression in the nucleus accumbens (NAc) and lateral hypothalamus but not in the suprachiasmatic nucleus, habenula, and ventral tegmental area. Furthermore, short-term sugar drinking, but not fat feeding, upregulates Per2 mRNA expression in the NAc. The disruptions in day–night differences in NAc Per2 gene expression were not accompanied by altered day–night differences in the mRNA expression of peptides related to food intake. We conclude that the fcHFHS diet and acute sugar drinking affect Per2 gene expression in areas involved in food reward; however, this is not sufficient to alter the day–night pattern of food intake. PMID:29686649
Cirelli, C; Tononi, G
1999-06-01
The consequences of sleep and sleep deprivation at the molecular level are largely unexplored. Knowledge of such molecular events is essential to understand the restorative processes occurring during sleep as well as the cellular mechanisms of sleep regulation. Here we review the available data about changes in neural gene expression across different behavioural states using candidate gene approaches such as in situ hybridization and immunocytochemistry. We then describe new techniques for systematic screening of gene expression in the brain, such as subtractive hybridization, mRNA differential display, and cDNA microarray technology, outlining advantages and disadvantages of these methods. Finally, we summarize our initial results of a systematic screening of gene expression in the rat brain across behavioural states using mRNA differential display and cDNA microarray technology. The expression pattern of approximately 7000 genes was analysed in the cerebral cortex of rats after 3 h of spontaneous sleep, 3 h of spontaneous waking, or 3 h of sleep deprivation. While the majority of transcripts were expressed at the same level among these three conditions, 14 mRNAs were modulated by sleep and waking. Six transcripts, four more expressed in waking and two more expressed in sleep, corresponded to novel genes. The eight known transcripts were all expressed at higher levels in waking than in sleep and included transcription factors and mitochondrial genes. A possible role for these known transcripts in mediating neural plasticity during waking is discussed.
Dual RNA regulatory control of a Staphylococcus aureus virulence factor.
Chabelskaya, Svetlana; Bordeau, Valérie; Felden, Brice
2014-04-01
In pathogens, the accurate programming of virulence gene expression is essential for infection. It is achieved by sophisticated arrays of regulatory proteins and ribonucleic acids (sRNAs), but in many cases their contributions and connections are not yet known. Based on genetic, biochemical and structural evidence, we report that the expression pattern of a Staphylococcus aureus host immune evasion protein is enabled by the collaborative actions of RNAIII and small pathogenicity island RNA D (SprD). Their combined expression profiles during bacterial growth permit early and transient synthesis of Sbi to avoid host immune responses. Together, these two sRNAs use antisense mechanisms to monitor Sbi expression at the translational level. Deletion analysis combined with structural analysis of RNAIII in complex with its novel messenger RNA (mRNA) target indicate that three distant RNAIII domains interact with distinct sites of the sbi mRNA and that two locations are deep in the sbi coding region. Through distinct domains, RNAIII lowers production of two proteins required for avoiding innate host immunity, staphylococcal protein A and Sbi. Toeprints and in vivo mutational analysis reveal a novel regulatory module within RNAIII essential for attenuation of Sbi translation. The sophisticated translational control of mRNA by two differentially expressed sRNAs ensures supervision of host immune escape by a major pathogen.
Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1.
Gawantka, V; Delius, H; Hirschfeld, K; Blumenstock, C; Niehrs, C
1995-01-01
We have identified a novel homeobox gene, Xvent-1, that is differentially expressed in the ventral marginal zone of the early Xenopus gastrula. Evidence is presented from mRNA microinjection experiments for a role for this gene in dorsoventral patterning of mesoderm. First, Xvent-1 is induced by BMP-4, a gene known to be a key regulator of ventral mesoderm development. Second, Xvent-1 and the organizer-specific gene goosecoid are able to interact, directly or indirectly, in a cross-regulatory loop suppressing each other's expression, consistent with their mutually exclusive expression in the marginal zone. Third, microinjection of Xvent-1 mRNA ventralizes dorsal mesoderm. The results suggest that Xvent-1 functions in a ventral signaling pathway that maintains the ventral mesodermal state and antagonizes the Spemann organizer. Images PMID:8557046
Neuronal expression of fibroblast growth factor receptors in zebrafish.
Rohs, Patricia; Ebert, Alicia M; Zuba, Ania; McFarlane, Sarah
2013-12-01
Fibroblast growth factor (FGF) signaling is important for a host of developmental processes such as proliferation, differentiation, tissue patterning, and morphogenesis. In vertebrates, FGFs signal through a family of four fibroblast growth factor receptors (FGFR 1-4), one of which is duplicated in zebrafish (FGFR1). Here we report the mRNA expression of the five known zebrafish fibroblast growth factor receptors at five developmental time points (24, 36, 48, 60, and 72h postfertilization), focusing on expression within the central nervous system. We show that the receptors have distinct and dynamic expression in the developing zebrafish brain, eye, inner ear, lateral line, and pharynx. In many cases, the expression patterns are similar to those of homologous FGFRs in mouse, chicken, amphibians, and other teleosts. Copyright © 2013 Elsevier B.V. All rights reserved.
Demidyuk, Ilya V; Shubin, Andrey V; Gasanov, Eugene V; Kurinov, Alexander M; Demkin, Vladimir V; Vinogradova, Tatyana V; Zinovyeva, Marina V; Sass, Alexander V; Zborovskaya, Irina B; Kostrov, Sergey V
2013-01-01
Proprotein convertases (PCs) is a protein family which includes nine highly specific subtilisin-like serine endopeptidases in mammals. The system of PCs is involved in carcinogenesis and levels of PC mRNAs alter in cancer, which suggests expression status of PCs as a possible marker for cancer typing and prognosis. The goal of this work was to assess the information value of expression profiling of PC genes. Quantitative polymerase chain reaction was used for the first time to analyze mRNA levels of all PC genes as well as matrix metalloproteinase genes MMP2 and MMP14, which are substrates of PCs, in 30 matched pairs of samples of human lung cancer tumor and adjacent tissues without pathology. Significant changes in the expression of PCs have been revealed in tumor tissues: increased FURIN mRNA level (p<0.00005) and decreased mRNA levels of PCSK2 (p<0.007), PCSK5 (p<0.0002), PCSK7 (p<0.002), PCSK9 (p<0.00008), and MBTPS1 (p<0.00004) as well as a tendency to increase in the level of PCSK1 mRNA. Four distinct groups of samples have been identified by cluster analysis of the expression patterns of PC genes in tumor vs. normal tissue. Three of these groups covering 80% of samples feature a strong elevation in the expression of a single gene in cancer: FURIN, PCSK1, or PCSK6. Thus, the changes in the expression of PC genes have a limited number of scenarios, which may reflect different pathways of tumor development and cryptic features of tumors. This finding allows to consider the mRNAs of PC genes as potentially important tumor markers.
Llewellyn, S; Fitzpatrick, R; Kenny, D A; Patton, J; Wathes, D C
2008-05-01
Rapid uterine involution in the postpartum period of dairy cows is important to achieve a short interval to conception. Expression patterns for members of the insulin-like growth factor (IGF) family were determined by in situ hybridisation at day 14+/-0.4 postpartum (n=12 cows) to investigate a potential role for IGFs in modulating uterine involution. Expression in each uterine tissue region was measured as optical density units and data were analysed according to region and horn. IGF-I mRNA was localized to the sub-epithelial stroma (SES) of inter-caruncular and caruncular endometrium. Both IGF-II and IGF-1R expression was detected in the deep endometrial stroma (DES), the caruncular stroma and myometrium. IGFBP-2, IGFBP-4 and IGFBP-6 mRNAs were all localised to the SES of inter-caruncular and caruncular uterine tissue, and in the DES and caruncular stroma, with IGFBP-4 mRNA additionally expressed in myometrium. IGFBP-3 mRNA was only detectable in luminal epithelium. IGFBP-5 mRNA was found in myometrium, inter-caruncular and caruncular SES and caruncular stroma. These data support a role for IGF-I and IGF-II in the extensive tissue remodelling and repair which the postpartum uterus undergoes to return to its non-pregnant state. The differential expression of binding proteins between tissues (IGFBP-3 in epithelium, IGFBP-2, -4, -5 and -6 in stroma and IGFBP-4 and -5 in myometrium) suggest tight control of IGF activity within each compartment. Differential expression of many members of the IGF family between the significantly larger previously gravid horn and the previously non-gravid horn may relate to differences in their rate of tissue remodelling.
Llewellyn, S.; Fitzpatrick, R.; Kenny, D.A.; Patton, J.; Wathes, D.C.
2008-01-01
Rapid uterine involution in the postpartum period of dairy cows is important to achieve a short interval to conception. Expression patterns for members of the insulin-like growth factor (IGF) family were determined by in situ hybridisation at day 14 ± 0.4 postpartum (n = 12 cows) to investigate a potential role for IGFs in modulating uterine involution. Expression in each uterine tissue region was measured as optical density units and data were analysed according to region and horn. IGF-I mRNA was localized to the sub-epithelial stroma (SES) of inter-caruncular and caruncular endometrium. Both IGF-II and IGF-1R expression was detected in the deep endometrial stroma (DES), the caruncular stroma and myometrium. IGFBP-2, IGFBP-4 and IGFBP-6 mRNAs were all localised to the SES of inter-caruncular and caruncular uterine tissue, and in the DES and caruncular stroma, with IGFBP-4 mRNA additionally expressed in myometrium. IGFBP-3 mRNA was only detectable in luminal epithelium. IGFBP-5 mRNA was found in myometrium, inter-caruncular and caruncular SES and caruncular stroma. These data support a role for IGF-I and IGF-II in the extensive tissue remodelling and repair which the postpartum uterus undergoes to return to its non-pregnant state. The differential expression of binding proteins between tissues (IGFBP-3 in epithelium, IGFBP-2, -4, -5 and -6 in stroma and IGFBP-4 and -5 in myometrium) suggest tight control of IGF activity within each compartment. Differential expression of many members of the IGF family between the significantly larger previously gravid horn and the previously non-gravid horn may relate to differences in their rate of tissue remodelling. PMID:18258405
The enteric serotonergic system is altered in patients with diverticular disease.
Böttner, Martina; Barrenschee, Martina; Hellwig, Ines; Harde, Jonas; Egberts, Jan-Hendrik; Becker, Thomas; Zorenkov, Dimitri; Wedel, Thilo
2013-12-01
Disturbances of the enteric serotonergic system have been implicated in several intestinal motility disorders. Patients with diverticular disease (DD) have been reported to exhibit abnormal intestinal motility and innervation patterns. Gene expression profiles of the serotonergic system and distribution of the serotonin type 4 receptor (5HT-4R) were thus studied in patients with DD. Colonic specimens from patients with DD and controls were subjected to quantitative PCR for serotonin receptors 2B, 3A, 4, serotonin transporter and synthesising enzyme tryptophan hydroxylase. Localisation of 5HT-4R was determined by dual-label immunocytochemistry using smooth muscle actin (α-SMA) and pan-neuronal markers (PGP 9.5) and quantitative analysis was carried out. Site-specific gene expression analysis of 5HT-4R was assessed within myenteric ganglia and muscle layers. Correlation of 5HT-4R with muscarinic receptors 2 and 3 (M2R, M3R) messenger RNA expression was determined. 5HT-4R mRNA expression was downregulated in the tunica muscularis and upregulated in the mucosa of patients with DD, whereas the other components of the serotonergic system remained unchanged. 5HT-4R was detected in ganglia and muscle layers, but was decreased in the circular muscle layer and myenteric ganglia of patients with DD. 5HT-4R mRNA expression correlated with M2R/M3R mRNA expression in controls, but not in patients with DD. The serotonergic system is compromised in DD. Altered expression of 5HT-4R at mRNA and protein levels may contribute to intestinal motor disturbances reported in patients with DD. The findings support the hypothesis that DD is associated and possibly promoted by an enteric neuromuscular pathology.
Ola, M. Shamsul; Moore, Pamela; Maddox, Dennis; El-Sherbeny, Amira; Huang, Wei; Roon, Penny; Agarwal, Neeraj; Ganapathy, Vadivel; Smith, Sylvia B.
2013-01-01
Summary The type 1 sigma receptor (σR1) is a nonopiate and nonphencyclidine binding site that has numerous pharmacological and physiological functions. In some studies, agonists for σR1 have been shown to afford neuroprotective against overstimulation of the NMDA receptor. σR1 expression has been demonstrated recently in retinal ganglion cells (RGC). RGCs undergo apoptosis early in diabetic retinopathy via NMDA receptor overstimulation. In the present study we asked whether RGCs cultured under hyperglycemic conditions and RGCs of diabetic mice continue to express σ1. RGCs were cultured 48 h in RPMI medium containing either 45 mM glucose or 11 mM glucose plus 34 mM mannitol (osmolar control). C57BL/6 mice were made diabetic using streptozotocin. The retina was dissected from normal and streptozotocin-induced diabetic mice 3, 6 and 12 weeks post-onset of diabetes. σR1 was analyzed in cells using semiquantitative RT-PCR and in tissues σR1 by semiquantitative RT-PCR, in situ hybridization, western blot analysis and immunolocalization. The RT-PCR analysis of cultured RGCs showed that σR1 mRNA is expressed under hyperglycemic conditions at levels similar to control cells. Similarly, analysis of retinas of diabetic mice showed no difference in levels of mRNA encoding σR1 compared to retinas of control mice. In situ hybridization analysis showed that expression patterns of σR1 mRNA in the ganglion cell layer were similar between diabetic and control mice. Western blot analysis suggested that levels of σR1 in retina were similar between diabetic and control retinas. Immunohistochemical analysis of σR1 showed a similar pattern of σR1 protein expression between control and diabetic retina. These studies demonstrate that σR1 is expressed under hyperglycemic conditions in vitro and in vivo. PMID:12425939
Ola, M Shamsul; Moore, Pamela; Maddox, Dennis; El-Sherbeny, Amira; Huang, Wei; Roon, Penny; Agarwal, Neeraj; Ganapathy, Vadivel; Smith, Sylvia B
2002-11-15
The type 1 sigma receptor (sigmaR1) is a nonopiate and nonphencyclidine binding site that has numerous pharmacological and physiological functions. In some studies, agonists for sigmaR1 have been shown to afford neuroprotection against overstimulation of the NMDA receptor. sigmaR1 expression has been demonstrated recently in retinal ganglion cells (RGC). RGCs undergo apoptosis early in diabetic retinopathy via NMDA receptor overstimulation. In the present study we asked whether RGCs cultured under hyperglycemic conditions and RGCs of diabetic mice continue to express sigmaR1. RGCs were cultured 48 h in RPMI medium containing either 45 mM glucose or 11 mM glucose plus 34 mM mannitol (osmolar control). C57BL/6 mice were made diabetic using streptozotocin. The retina was dissected from normal and streptozotocin-induced diabetic mice 3, 6 and 12 weeks post-onset of diabetes. sigmaR1 was analyzed in cells using semiquantitative RT-PCR and in tissues by semiquantitative RT-PCR, in situ hybridization, Western blot analysis and immunolocalization. The RT-PCR analysis of cultured RGCs showed that sigmaR1 mRNA is expressed under hyperglycemic conditions at levels similar to control cells. Similarly, analysis of retinas of diabetic mice showed no difference in levels of mRNA encoding sigmaR1 compared to retinas of control mice. In situ hybridization analysis showed that expression patterns of sigmaR1 mRNA in the ganglion cell layer were similar between diabetic and control mice. Western blot analysis suggested that levels of sigmaR1 in retina were similar between diabetic and control retinas. Immunohistochemical analysis of sigmaR1 showed a similar pattern of sigmaR1 protein expression between control and diabetic retina. These studies demonstrate that sigmaR1 is expressed under hyperglycemic conditions in vitro and in vivo.
Altered peroxisome-proliferator activated receptors expression in human endometrial cancer.
Knapp, Paweł; Chabowski, Adrian; Błachnio-Zabielska, Agnieszka; Jarząbek, Katarzyna; Wołczyński, Sławomir
2012-01-01
Peroxisome proliferator-activated receptors (PPARs) belong to a family of nuclear hormone receptors acting as transcriptional factors, recently involved also in carcinogenesis. Present study was undertaken to evaluate the presence and subcellular localization of different PPAR isoforms (α, β, γ) in healthy endometrial tissue (n = 10) and endometrial carcinoma (FIGO I, endometrioides type, G1, n = 35). We sought to analyze PPARs mRNA content as well as protein immunohistochemical expression that was further quantified by Western Blot technique. For both PPARα and PPARβ, protein expression was significantly higher in endometrial cancers compared to normal endometrial mucosa. In opposite, PPARγ protein expression was lower in endometrial cancer cells. In each case, immunohistochemical reaction was confined to the perinuclear and/or nuclear region. At the transcriptional level, the content of mRNA of all PPAR subunits did not follow the protein pattern of changes. These results provide evidence for altered PPAR's protein expression and disregulation of posttranslational processes in endometrial cancers.
Miller, L; Qureshi, M A
1992-03-01
The induction of heat-shock protein (HSP) synthesis in avian cells of the mononuclear phagocytic system (MPS) and lymphoid system (LS) lineage was investigated by exposure to in vitro heat-shock conditions. In addition, the kinetics of HSP90 mRNA expression was examined in chicken peritoneal macrophages (PM) as well as heat-shock-induced HSP synthesis in PM from chickens, turkeys, quail, and ducks. Each MPS and LS cell type expressed three major (23, 70, and 90 kDa) HSP following a 1-h heat shock at 45 C. However, a unique heat-induced 32-kDa protein (P32) was expressed only by cells of MPS lineage. The expression of HSP90 mRNA in chicken PM was temperature- and time-dependent. These findings imply that avian PM undergo molecular changes in response to elevated environmental temperatures and that the pattern of HSP expression appears to be distinct for cells of the MPS and LS lineages in chickens.
Embryonic expression of the transforming growth factor beta ligand and receptor genes in chicken.
Cooley, James R; Yatskievych, Tatiana A; Antin, Parker B
2014-03-01
Transforming growth factor-beta (TGFβ) signaling regulates a myriad of biological processes during embryogenesis, in the adult, and during the manifestation of disease. TGFβ signaling is propagated through one of three TGFβ ligands interacting with Type I and Type II receptors, and Type III co-receptors. Although TGFβ signaling is regulated partly by the combinatorial expression patterns of TGFβ receptors and ligands, a comprehensive gene expression analysis has not been published. Here we report the embryonic mRNA expression patterns in chicken embryos of the canonical TGFβ ligands (TGFB1, TGFB2, and TGFB3) and receptors (TGFBR1, TGFBR2, TGFBR3), plus the Activin A receptor, type 1 (ACVR1) and co receptor Endoglin (ENG) that also transduce TGFβ signaling. TGFB ligands and receptors show dynamic and frequently overlapping expression patterns in numerous embryonic cell layers and structures. Integrating expression information identifies combinations of ligands and receptors that are involved in specific developmental processes including somitogenesis, cardiogenesis and vasculogenesis. Copyright © 2013 Wiley Periodicals, Inc.
Bouchekioua, Selma; Hur, Sung-Pyo; Takeuchi, Yuki; Lee, Young-Don; Takemura, Akihiro
2018-06-01
Most wrasses are protogynous species that swim to feed, reproduce during the daytime, and bury themselves under the sandy bottom at night. In temperate and subtropical wrasses, low temperature influences emergence from the sandy bottom in the morning, and induces a hibernation-like state in winter. We cloned and characterized the prohormone complementary DNAs (cDNAs) of arginine vasotocin (AVT) and isotocin (IT) in a temperate wrasse (Halichoeres tenuispinis) and examined the effects of day/night and temperature on their expression in the diencephalon, because these neurohypophysial peptides are related to the sex behavior of wrasses. The full-length cDNAs of pro-AVT and pro-IT were 938 base pairs (154 amino acids) and 759 base pairs (156 amino acids) in length, respectively. Both pro-peptides contained a signal sequence followed by the respective hormones and neurophysin connected by a Gly-Lys-Arg bridge. Reverse-transcription polymerase chain reaction (RT-PCR) revealed that pro-AVT mRNA expression was specifically observed in the diencephalon, whereas pro-IT mRNA expression was seen in the whole brain. Quantitative RT-PCR revealed that the mRNA abundance of pro-AVT and pro-IT was higher at midday (zeitgeber time 6; ZT6) than at midnight (ZT18) under 12 h light and 12 h darkness (LD 12:12) conditions, but not under constant light. Intraperitoneal injection of melatonin decreased the mRNA abundance of pro-AVT, but not of pro-IT. When fish were reared under LD 12:12 conditions at 25, 20, and 15 °C, day high and night low mRNA expressions of pro-AVT and pro-IT were maintained. A field survey revealed seasonal variation in the number of swimming fish at observatory sites; many fish emerged from the sandy bottom in summer, but not in winter, suggesting a hibernation-like state under the sandy bottom under low temperature conditions. We conclude that the day-night fluctuation of pro-AVT and pro-IT mRNA abundance in the brain is not affected by temperature and repeated under the sandy bottom in winter.
Cao, Hong-Ying; Wu, Qing-He; Huang, Ping; He, Jin-Yang
2009-06-01
To observe the impacts of the formula of Suoquanwan (SQW) on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency. The model rats were induced by adenine (250 mg/kg) for 4 weeks, then treated respectively with SQW or dDAVP. The expression of AQP-2 mRNA and AVPR-V2 mRNA in kidney of Yang-deficiency model by realtime fluorescence quantitative PCR method were investigated. In model rats, the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney decreased, dDAVP and SQW high dose could increased the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. The others had no influence on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. SQW can increase the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otani, Kosuke; Okada, Muneyoshi; Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp
Tyrosine receptor kinaseB (TrkB) is a high affinity receptor for brain-derived neurotrophic factor (BDNF). TrkB isoforms involve full length TrkB (TrkB FL) and truncated TrkB type1 (TrkB T1) and type 2 (TrkB T2) in rats. The aim of present study was to explore their expression pattern and function in mesenteric arterial smooth muscle cells (MASMCs). The expression of TrkB isoform protein and mRNA was examined by Western blotting, immunofluorescence and quantitative RT-PCR analyses. Cell proliferation was measured by a bromodeoxyuridine (BrdU) incorporation assay. Cell migration was measured by a Boyden chamber assay. Cell morphology was observed with a phase-contrast microscope.more » Protein and mRNA expression of BDNF and TrkB isoforms was confirmed in MASMCs. Expression level of TrkB FL was less, while that of TrkB T1 was the highest in MASMCs. Although BDNF increased phosphorylation of ERK, it had no influence on migration and proliferation of MASMCs. TrkB T1 gene knockdown by a RNA interference induced morphological changes and reduced expression level of α-smooth muscle actin (α-SMA) in MASMCs. Similar morphological changes and reduced α-SMA expression were induced in MASMCs by a Rho kinase inhibitor, Y-27632. In conclusion, we for the first time demonstrate that TrkB T1 expressed highly in MASMCs contributes to maintain normal cell morphology possibly via regulation of Rho activity. This study firstly defined expression level of TrkB isoforms and partly revealed their functions in peripheral vascular cells. - Highlights: • BDNF-TrkB axis mediates neurogenesis, growth, differentiation and survival. • Expression pattern and function of TrkB in vascular smooth muscle remain unclear. • Expression of TrkB FL is low, while that of TrkB T1 is the highest. • TrkB T1 contributes to maintain normal morphology possibly via activating Rho.« less
Jia, Changkai; Zhang, Feng; Zhu, Ying; Qi, Xia; Wang, Yiqiang
2017-10-20
Matrix-remodeling associated 7 (MXRA7) gene was first reported in 2002 and named so for its co-expression with several genes known to relate with matrix-remodeling. However, not any studies had been intentionally performed to characterize this gene. We started defining the functions of MXRA7 by integrating bioinformatics analysis and experimental study. Data mining of MXRA7 expression in BioGPS, Gene Expression Omnibus and EurExpress platforms highlighted high level expression of Mxra7 in murine ocular tissues. Real-time PCR was employed to measure Mxra7 mRNA in tissues of adult C57BL/6 mice and demonstrated that Mxra7 was preferentially expressed at higher level in retina, corneas and lens than in other tissues. Then the inflammatory corneal neovascularization (CorNV) model and fungal corneal infections were induced in Balb/c mice, and mRNA levels of Mxra7 as well as several matrix-remodeling related genes (Mmp3, Mmp13, Ecm1, Timp1) were monitored with RT-PCR. The results demonstrated a time-dependent Mxra7 under-expression pattern (U-shape curve along timeline), while all other matrix-remodeling related genes manifested an opposite changes pattern (dome-shape curve). When limited data from BioGPS concerning human MXRA7 gene expression in human tissues were looked at, it was found that ocular tissue was also the one expressing highest level of MXRA7. To conclude, integrative assay of MXRA7 gene expression in public databank as well as domestic animal models revealed a selective high expression MXRA7 in murine and human ocular tissues, and its change patterns in two corneal disease models implied that MXRA7 might play a role in pathological processes or diseases involving injury, neovascularization and would healing. Copyright © 2017 Elsevier B.V. All rights reserved.
Identification of a phorbol ester-repressible v-src-inducible gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, D.L.; Levy, D.B.; Yannoni, Y.
1989-02-01
Chicken embryo fibroblasts (CEF) infected with a temperature-sensitive Rous sarcoma virus (RSV) mutant, tsNY72-4, express a set of pp60{sup v-src}-induced RNAs soon after shift to the permissive temperature. By subtractive and differential screening, the authors have cloned 12 of these sequences, 2 of which were c-fos and krox-24. Serum induced all the v-src-inducible genes tested, suggesting that these genes serve roles in normal cell division and are not specific to transformation per se. Significantly, however, v-src produced prolonged, and in some cases kinetically complex, patterns of induction compared to serum. For most of the clones, phorbol 12-tetradecanoate 13-acetate (TPA) inducedmore » mRNAs with kinetics similar to that of serum. However, one clone (CEF-4) was expressed in a biphasic manner. Another (CEF-10) was repressed by TPA at 1 hr, after which this mRNA was permanently induced. The pattern of repression-induction of CEF-10 mRNA is the inverse of protein kinase C (PKC) activity in the cell, suggesting that PKC actively represses this gene. In vivo expression of CEF-10 mRNA is restricted predominantly to the lung. A full-length CEF-10 cDNA encodes a 41-kDa protein that has an amino-terminal signal peptide for secretion, contains a markedly high number of cysteine residues, and shows no sequence similarity to known proteins.« less
Identification and expression analysis of cDNA encoding insulin-like growth factor 2 in horses
KIKUCHI, Kohta; SASAKI, Keisuke; AKIZAWA, Hiroki; TSUKAHARA, Hayato; BAI, Hanako; TAKAHASHI, Masashi; NAMBO, Yasuo; HATA, Hiroshi; KAWAHARA, Manabu
2017-01-01
Insulin-like growth factor 2 (IGF2) is responsible for a broad range of physiological processes during fetal development and adulthood, but genomic analyses of IGF2 containing the 5ʹ- and 3ʹ-untranslated regions (UTRs) in equines have been limited. In this study, we characterized the IGF2 mRNA containing the UTRs, and determined its expression pattern in the fetal tissues of horses. The complete equine IGF2 mRNA sequence harboring another exon approximately 2.8 kb upstream from the canonical transcription start site was identified as a new transcript variant. As this upstream exon did not contain the start codon, the amino acid sequence was identical to the canonical variant. Analysis of the deduced amino acid sequence revealed that the protein possessed two major domains, IlGF and IGF2_C, and analysis of IGF2 sequence polymorphism in fetal tissues of Hokkaido native horse and Thoroughbreds revealed a single nucleotide polymorphism (T to C transition) at position 398 in Thoroughbreds, which caused an amino acid substitution at position 133 in the IGF2 sequence. Furthermore, the expression pattern of the IGF2 mRNA in the fetal tissues of horses was determined for the first time, and was found to be consistent with those of other species. Taken together, these results suggested that the transcriptional and translational products of the IGF2 gene have conserved functions in the fetal development of mammals, including horses. PMID:29151450
Pánek, Josef; Kolář, Michal; Vohradský, Jiří; Shivaya Valášek, Leoš
2013-01-01
There are several key mechanisms regulating eukaryotic gene expression at the level of protein synthesis. Interestingly, the least explored mechanisms of translational control are those that involve the translating ribosome per se, mediated for example via predicted interactions between the ribosomal RNAs (rRNAs) and mRNAs. Here, we took advantage of robustly growing large-scale data sets of mRNA sequences for numerous organisms, solved ribosomal structures and computational power to computationally explore the mRNA–rRNA complementarity that is statistically significant across the species. Our predictions reveal highly specific sequence complementarity of 18S rRNA sequences with mRNA 5′ untranslated regions (UTRs) forming a well-defined 3D pattern on the rRNA sequence of the 40S subunit. Broader evolutionary conservation of this pattern may imply that 5′ UTRs of eukaryotic mRNAs, which have already emerged from the mRNA-binding channel, may contact several complementary spots on 18S rRNA situated near the exit of the mRNA binding channel and on the middle-to-lower body of the solvent-exposed 40S ribosome including its left foot. We discuss physiological significance of this structurally conserved pattern and, in the context of previously published experimental results, propose that it modulates scanning of the 40S subunit through 5′ UTRs of mRNAs. PMID:23804757
From wild wolf to domestic dog: gene expression changes in the brain.
Saetre, Peter; Lindberg, Julia; Leonard, Jennifer A; Olsson, Kerstin; Pettersson, Ulf; Ellegren, Hans; Bergström, Tomas F; Vilà, Carles; Jazin, Elena
2004-07-26
Despite the relatively recent divergence time between domestic dogs (Canis familiaris) and gray wolves (Canis lupus), the two species show remarkable behavioral differences. Since dogs and wolves are nearly identical at the level of DNA sequence, we hypothesize that the two species may differ in patterns of gene expression. We compare gene expression patterns in dogs, wolves and a close relative, the coyote (Canis latrans), in three parts of the brain: hypothalamus, amygdala and frontal cortex, with microarray technology. Additionally, we identify genes with region-specific expression patterns in all three species. Among the wild canids, the hypothalamus has a highly conserved expression profile. This contrasts with a marked divergence in domestic dogs. Real-time PCR experiments confirm the altered expression of two neuropeptides, CALCB and NPY. Our results suggest that strong selection on dogs for behavior during domestication may have resulted in modifications of mRNA expression patterns in a few hypothalamic genes with multiple functions. This study indicates that rapid changes in brain gene expression may not be exclusive to the development of human brains. Instead, they may provide a common mechanism for rapid adaptive changes during speciation, particularly in cases that present strong selective pressures on behavioral characters.
Alternative splicing of the tyrosinase gene transcript in normal human melanocytes and lymphocytes.
Fryer, J P; Oetting, W S; Brott, M J; King, R A
2001-11-01
We have identified and isolated ectopically expressed tyrosinase transcripts in normal human melanocytes and lymphocytes and in a human melanoma (MNT-1) cell line to establish a baseline for the expression pattern of this gene in normal tissue. Tyrosinase mRNA from human lymphoblastoid cell lines was reverse transcribed and amplified using specific "nested" primers. This amplification yielded eight identifiable transcripts; five that resulted from alternative splicing patterns arising from the utilization of normal and alternative splice sequences. Identical splicing patterns were found in transcripts from human primary melanocytes in culture and a melanoma cell line, indicating that lymphoblastoid cell lines provide an accurate reflection of transcript processing in melanocytes. Similar splicing patterns have also been found with murine melanocyte tyrosinase transcripts. Our results demonstrate that alternative splicing of human tyrosinase gene transcript produces a number of predictable and identifiable transcripts, and that human lymphoblastoid cell lines provide a source of ectopically expressed transcripts that can be used to study the biology of tyrosinase gene expression in humans.
Meegalla, Rupalie L; Billheimer, Jeffrey T; Cheng, Dong
2002-11-01
Glucose and insulin are anabolic signals which upregulate the transcriptions of a series of lipogenic enzymes to convert excess carbohydrate into triglycerides for efficient energy storage. These enzymes include ATP-citrate lyase (ACL), acetyl-coenzyme A carboxylase (ACC), fatty acid synthase (FAS), and glycerol-3-phosphate acyltransferase (G3PA). Acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) is important to synthesize fatty acids into triglycerides. Two DGATs from different gene families have recently been identified. In the current study, we report that glucose preferentially enhances DGAT1 mRNA expression, whereas insulin specifically increases the level of DGAT2 mRNA. Treatment of adipocytes with glucose and insulin together results in higher DGAT activity in the membrane than cells treated with either of the agents alone, indicating that glucose and insulin have additive effect on DGAT activation. In mice treated with fast/refeeding protocol, DGAT2 mRNA decreased upon fasting and was replenished upon refeeding in adipose tissue and liver. This pattern of change was not observed for DGAT1. Inasmuch as DGAT1 mRNA is less abundant in liver, we suggest that DGAT1 is more involved in fat absorption in the intestine and in basal level triglyceride synthesis in adipose tissue where it is more highly expressed. In contrast, DGAT2 is more likely to play important roles in assembly of de novo synthesized fatty acids into VLDL particles in the liver.
Löffler, T; Al-Robaiy, S; Bigl, M; Eschrich, K; Schliebs, R
2001-06-01
Fructose-1,6-bisphosphatase is one of the key enzymes in the gluconeogenic pathway predominantly occurring in liver, kidney and muscle. In the brain, fructose-1,6-bisphosphatase has been suggested to be an astrocyte-specific enzyme but the functional importance of glyconeogenesis in the brain is still unclear. To further elucidate the cellular source of fructose-1,6-bisphosphatase in the brain, non-radioactive in situ hybridizations were performed using digoxigenin-labeled RNA probes based on the sequence of recently cloned rat liver and muscle fructose-1,6-bisphosphatase cDNAs. In situ hybridization using a riboprobe for the liver isoform revealed a location of the hybridization signal mainly in neurons, while rat muscle fructose-1,6-bisphosphatase mRNA was detected in both neurons and astrocytes in the hippocampal formation and in layer I of the cerebral cortex.RT-PCR using RNA preparations of rat astrocytes, neurons, and adult whole brain demonstrated a localization of liver fructose-1,6-bisphosphatase mRNA isoform in neurons but not in astrocytes. The muscle fructose-1,6-bisphosphatase mRNA isoform could be detected by RT-PCR in total rat brain, astrocytic, and neuronal mRNA preparations. The isoforms of fructose-1,6-bisphosphatase mRNA seemingly demonstrate a distinct cellular expression pattern in rat brain suggesting a role of glyconeogenesis in both neurons and glial cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasid, A.; Morecki, S.; Aebersold, P.
Tumor-infiltrating lymphocytes (TILs) are cells generated from tumor suspensions cultured in interleukin 2 that can mediate cancer regression when adoptively transferred into mice or humans. Since TILs proliferate rapidly in vitro, recirculate, and preferentially localize at the tumor site in vivo, they provide an attractive model for delivery of exogenous genetic material into man. To determine whether efficient gene transfer into TILs is feasible. The authors transduced human TILs with the bacterial gene for neomycin-resistance (Neo{sup R}) using the retroviral vector N2. The transduced TIL populations were stable and polyclonal with respect to the intact Neo{sup R} gene integration andmore » expressed high levels of neomycin phosphotransferase activity. The Neo{sup R} gene insertion did not alter the in vitro growth pattern and interleukin 2 dependence of the transduced TILs. Analyses of T-cell receptor gene rearrangement for {beta}- and {gamma}-chain genes revealed the oligoclonal nature of the TIL populations with no major change in the DNA rearrangement patterns or the levels of mRNA expression of the {beta} and {gamma} chains following transduction and selection of TILs in the neomycin analog G418. Human TILs expressed mRNA for tumor necrosis factors ({alpha} and {beta}) and interleukin 2 receptor P55. This pattern of cytokine-mRNA expression was not significantly altered following the transduction of TILs. The studies demonstrate the feasibility of TILs as suitable cellular vehicles for the introduction of therapeutic genes into patients receiving autologous TILs.« less
Takeoka, Yuichi; Kenny, Thomas P.; Yago, Hisashi; Naiki, Mitsuru; Gershwin, M. Eric; Robbins, Dick L.
2002-01-01
Rheumatoid arthritis (RA) is an autoimmune disease characterized by proliferative synovial tissue. We used mRNA differential display and library subtraction to compare mRNA expression in RA and osteoarthritis (OA) synoviocytes. We initially compared the mRNA expression patterns in 1 female RA and 1 OA synovia and found a differentially expressed 350 bp transcript in the RA synoviocytes which was, by sequence analysis, 100% homologous to sperm protein 17 (Sp17). Moreover, the Sp17 transcript was found differentially expressed in a RA synovial library that was subtracted with an OA synovial library. Using specific primers for full length Sp17, a 1.1 kb transcript was amplified from the synoviocytes of 7 additional female RA patients, sequenced and found to 100% homologous to Sp17. Thus, we found the unexpected expression of Sp17, a thought to be gamete-specific protein, in the synoviocytes of 8/8 female RA patients in contrast to control OA synoviocytes. Interestingly, Sp17's structural relationship with cell-binding and recognition proteins, suggests that Sp17 may function in cell-cell recognition and signaling in the RA synoviocyte. Further, Sp17 could have a significant regulatory role in RA synoviocyte gene transcription and/or signal transduction. Thus, Sp17 could have an important role in RA synoviocyte proliferation or defective apoptosis. Finally, the presence of Sp17 in synoviocytes has interesting developmental considerations. PMID:12739786
Longitudinal monitoring of bottlenose dolphins leukocyte cytokine mRNA responsiveness by qPCR
USDA-ARS?s Scientific Manuscript database
Both veterinarians caring for bottlenose dolphins (Tursiops truncatus) in managed populations and researchers monitoring wild populations use blood-based diagnostics to monitor bottlenose dolphin health. Quantitative PCR (qPCR) can be used to assess cytokine expression patterns of peripheral blood m...
Longitudinal monitoring of bottlenose dolphin leukocyte cytokine mRNA responsiveness by qPCR
USDA-ARS?s Scientific Manuscript database
Both veterinarians caring for bottlenose dolphins (Tursiops truncatus) in managed populations and researchers monitoring wild populations use blood-based diagnostics to monitor bottlenose dolphin health. Quantitative PCR (qPCR) can be used to assess cytokine expression patterns of peripheral blood m...
Bruzzoni-Giovanelli, Heriberto; Fernandez, Plinio; Veiga, Lucía; Podgorniak, Marie-Pierre; Powell, Darren J; Candeias, Marco M; Mourah, Samia; Calvo, Fabien; Marín, Mónica
2010-02-09
SIAH proteins are the human members of an highly conserved family of E3 ubiquitin ligases. Several data suggest that SIAH proteins may have a role in tumor suppression and apoptosis. Previously, we reported that SIAH-1 induces the degradation of Kid (KIF22), a chromokinesin protein implicated in the normal progression of mitosis and meiosis, by the ubiquitin proteasome pathway. In human breast cancer cells stably transfected with SIAH-1, Kid/KIF22 protein level was markedly reduced whereas, the Kid/KIF22 mRNA level was increased. This interaction has been further elucidated through analyzing SIAH and Kid/KIF22 expression in both paired normal and tumor tissues and cell lines. It was observed that SIAH-1 protein is widely expressed in different normal tissues, and in cells lines but showing some differences in western blotting profiles. Immunofluorescence microscopy shows that the intracellular distribution of SIAH-1 and Kid/KIF22 appears to be modified in human tumor tissues compared to normal controls. When mRNA expression of SIAH-1 and Kid/KIF22 was analyzed by real-time PCR in normal and cancer breast tissues from the same patient, a large variation in the number of mRNA copies was detected between the different samples. In most cases, SIAH-1 mRNA is decreased in tumor tissues compared to their normal counterparts. Interestingly, in all breast tumor tissues analyzed, variations in the Kid/KIF22 mRNA levels mirrored those seen with SIAH-1 mRNAs. This concerted variation of SIAH-1 and Kid/KIF22 messengers suggests the existence of an additional level of control than the previously described protein-protein interaction and protein stability regulation. Our observations also underline the need to re-evaluate the results of gene expression obtained by qRT-PCR and relate it to the protein expression and cellular localization when matched normal and tumoral tissues are analyzed.
Valdés, Francisco; Pásaro, Eduardo; Díaz, Inmaculada; Centeno, Alberto; López, Eduardo; García-Doval, Sandra; González-Roces, Severino; Alba, Alfonso; Laffon, Blanca
2008-06-01
Studies in rats with bilateral clamping of renal arteries showed transient Bcl-2, Bcl-xL and Bax expression in renal tubular epithelium following ischemia-reperfusion. However, current data on the preferential localization of specific mRNAs or proteins are limited because gene expression was not analysed at segmental level. This study analyses the mRNA expression of Bcl-2, Bcl-xL and Bax in four segments of proximal and distal tubules localized in the renal cortex and outer medulla in rat kidneys with bilateral renal clamping for 30 min and seven reperfusion times versus control animals without clamp. Proximal convoluted tubule (PCT), distal convoluted tubule (DCT), proximal straight tubule (PST) and medullary thick ascending limb (MTAL) were obtained by manual microdissection. RT-PCR was used to analyse mRNA expression at segmental level. Proximal convoluted tubule and MTAL showed early, persistent and balanced up-regulation of Bcl-2, Bcl-xL and Bax, while PST and DCT revealed only Bcl-2 and Bcl-xL, when only Bax was detected in PST. DCT expressed Bcl-xL initially, and persistent Bcl-2 later. These patterns suggest a heterogeneous apoptosis regulatory response in rat renal tubules after ischemia-reperfusion, independently of cortical or medullary location. This heterogeneity of the expression patterns of Bcl-2 genes could explain the different susceptibility to undergo apoptosis, the different threshold to ischemic damage and the different adaptive capacity to injury among these tubular segments.
The expression analysis of Sfrs10 and Celf4 during mouse retinal development
Karunakaran, Devi Krishna Priya; Congdon, Sean; Guerrette, Thomas; Banday, Abdul Rouf; Lemoine, Christopher; Chhaya, Nisarg; Kanadia, Rahul
2013-01-01
Processing of mRNAs including, alternative splicing (AS), mRNA transport and translation regulation are crucial to eukaryotic gene expression. For example, >90% of the gene in the human genome are known to undergo alternative splicing thereby expanding the proteome production capacity of a limited number of genes. Similarly, mRNA export and translation regulation plays a vital role in regulating protein production. Thus, it is important to understand how these RNA binding proteins including alternative splicing factors (ASFs) and mRNA transport and translation factors regulate these processes. Here we report the expression of an ASF, Serine-arginine rich splicing factor 10 (Sfrs10) and a mRNA translation regulation factor, CUGBP, elav like family member 4 (Celf4) in the developing mouse retina. Sfrs10 was expressed throughout postnatal (P) retinal development and was observed progressively in newly differentiating neurons. Immunofluorescence (IF) showed Sfrs10 in retinal ganglion cells (RGCs) at P0, followed by amacrine and bipolar cells, and at P8 it was enriched in red/green cone photoreceptor cells. By P22, Sfrs10 was observed in rod photoreceptors in a peri-nuclear pattern. Like Sfrs10, Celf4 was also observed in the developing retina, but with two distinct retinal isoforms. In situ hybridization (ISH) showed progressive expression of Celf4 in differentiating neurons, which was confirmed by IF that showed a dynamic shift in Celf4 localization. Early in development Celf4 expression was restricted to the nuclei of newly differentiating RGCs and later (E16 onwards) it was observed in the initial segments of RGC axons. Later, during postnatal development, Celf4 was observed in amacrine and bipolar cells, but here it was predominantly cytoplasmic and enriched in the two synaptic layers. Specifically, at P14, Celf4 was observed in the synaptic boutons of rod bipolar cells marked by Pkc-α. Thus, Celf4 might be regulating AS early in development besides its known role of regulating mRNA localization/translation. In all, our data suggests an important role for AS and mRNA localization/translation in retinal neuron differentiation. PMID:23932931
Fischer, Stephan; Loncar, Jovica; Zaja, Roko; Schnell, Sabine; Schirmer, Kristin; Smital, Tvrtko; Luckenbach, Till
2011-01-25
Permanent fish cell lines have become common model systems for determining ecotoxicological effects of pollutants. For these cell lines little is known on the cellular active transport mechanisms that control the amount of a compound entering the cell, such as the MXR (multixenobiotic resistance) system mediated by ATP binding cassette (ABC) transport proteins. Therefore, for toxic evaluation of chemicals with those cells information on MXR is important. We here present data on constitutive mRNA expression and protein activity levels of a series of ABC efflux transporters in seven permanent cell lines derived from liver (RTL-W1; R1) and liver hepatoma (RTH-149), gill (RTgill-W1), gonad (RTG-2), gut (RTgutGC) and brain (RTbrain) of rainbow trout (Oncorhynchus mykiss). In addition to known transporters abcb1 (designated here abcb1a), abcb11, abcc1-3, abcc5 and abcg2, we quantified expression levels of a newly identified abcb1 isoform (abcb1b) and abcc4, previously unknown in trout. Quantitative real time PCR (qPCR) indicated that mRNA of the examined ABC transporters was constitutively expressed in all cell lines. Transporter mRNA expression patterns were similar in all cell lines, with expression levels of abcc transporters being 80 to over 1000 fold higher than for abcg2, abcb1a/b and abcb11 (abcc1-5>abcg2>abcb1a/b, 11). Transporter activity in the cell lines was determined by measuring uptake of transporter type specific fluorescent substrates in the presence of activity inhibitors. The combination of the ABCB1 and ABCC transporter substrate calcein-AM with inhibitors cyclosporine A, PSC833 and MK571 resulted in a concentration-dependent fluorescence increase of up to 3-fold, whereas reversin 205 caused a slight, but not concentration-dependent fluorescence increase. Accumulation of the dyes Hoechst 33342 and 2',7'-dichlorodihydrofluorescein diacetate was basically unchanged in the presence of Ko134 and taurocholate, respectively, indicating low Abcg2 and Abcb11 activities, in accordance with low abcg2 and abcb11 transcript levels. Our data indicate that transporter expression and activity patterns in the different trout cell lines are irrespective of the tissue of origin, but are determined by factors of cell cultivation. 2010 Elsevier B.V. All rights reserved.
Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers.
Domínguez-Sánchez, María S; Sáez, Carmen; Japón, Miguel A; Aguilera, Andrés; Luna, Rosa
2011-02-17
One key step in gene expression is the biogenesis of mRNA ribonucleoparticle complexes (mRNPs). Formation of the mRNP requires the participation of a number of conserved factors such as the THO complex. THO interacts physically and functionally with the Sub2/UAP56 RNA-dependent ATPase, and the Yra1/REF1/ALY RNA-binding protein linking transcription, mRNA export and genome integrity. Given the link between genome instability and cancer, we have performed a comparative analysis of the expression patterns of THOC1, a THO complex subunit, and ALY in tumor samples. The mRNA levels were measured by quantitative real-time PCR and hybridization of a tumor tissue cDNA array; and the protein levels and distribution by immunostaining of a custom tissue array containing a set of paraffin-embedded samples of different tumor and normal tissues followed by statistical analysis. We show that the expression of two mRNP factors, THOC1 and ALY are altered in several tumor tissues. THOC1 mRNA and protein levels are up-regulated in ovarian and lung tumors and down-regulated in those of testis and skin, whereas ALY is altered in a wide variety of tumors. In contrast to THOC1, ALY protein is highly detected in normal proliferative cells, but poorly in high-grade cancers. These results suggest a differential connection between tumorogenesis and the expression levels of human THO and ALY. This study opens the possibility of defining mRNP biogenesis factors as putative players in cell proliferation that could contribute to tumor development.
Pérez-Fernández, Juan; Megías, Manuel; Pombal, Manuel A
2014-04-01
The NPY receptors known as Y receptors are classified into three subfamilies, Y1, Y2, and Y5, and are involved in different physiological functions. The Y5 receptor is the only member of the Y5 subfamily, and it is present in all vertebrate groups, except for teleosts. Both molecular and pharmacological studies show that Y5 receptor is highly conserved during vertebrate evolution. Furthermore, this receptor is widely expressed in the mammalian brain, including the hypothalamus, where it is thought to take part in feeding and homeostasis regulation. Lampreys belong to the agnathan lineage, and they are thought to have branched out between the two whole-genome duplications that occurred in vertebrates. Therefore, they are in a key position for studies on the evolution of gene families in vertebrates. Here we report the cloning, phylogeny, and brain expression pattern of the sea lamprey Y5 receptor. In phylogenetic studies, the lamprey Y5 receptor clusters in a basal position, together with Y5 receptors of other vertebrates. The mRNA of this receptor is broadly expressed in the lamprey brain, being especially abundant in hypothalamic areas. Its expression pattern is roughly similar to that reported for other vertebrates and parallels the expression pattern of the Y1 receptor subtype previously described by our group, as it occurs in mammals. Altogether, these results confirm that a Y5 receptor is present in lampreys, thus being highly conserved during the evolution of vertebrates, and suggest that it is involved in many brain functions, the only known exception being teleosts. Copyright © 2013 Wiley Periodicals, Inc.
Gene expression signatures in tree shrew choroid in response to three myopiagenic conditions
He, Li; Frost, Michael R.; Siegwart, John T.; Norton, Thomas T.
2014-01-01
We examined gene expression in tree shrew choroid in response to three different myopiagenic conditions: minus lens (ML) wear, form deprivation (FD), and continuous darkness (DK). Four groups of tree shrews (n = 7 per group) were used. Starting 24 days after normal eye opening (days of visual experience [DVE]), the ML group wore a monocular −5 D lens for 2 days. The FD group wore a monocular translucent diffuser for 2 days. The DK group experienced continuous darkness binocularly for 11 days, starting at 17 DVE. An age-matched normal group was examined at 26 DVE. Quantitative PCR was used to measure the relative (treated eye vs. control eye) differences in mRNA levels in the choroid for 77 candidate genes. Small myopic changes were observed in the treated eyes (relative to the control eyes) of the ML group (−1.0 ± 0.2 D; mean ± SEM) and FD group (−1.9 ± 0.2 D). A larger myopia developed in the DK group (−4.4 ± 1.0 D) relative to Normal eyes (both groups, mean of right and left eyes). In the ML group, 28 genes showed significant differential mRNA expression; eighteen were down-regulated. A very similar pattern occurred in the FD group; twenty-seven of the same genes were similarly regulated, along with five additional genes. Fewer expression differences in the DK group were significant compared to normal or the control eyes of the ML and FD groups, but the pattern was similar to that of the ML and FD differential expression patterns. These data suggest that, at the level of the choroid, the gene expression signatures produced by “GO” emmetropization signals are highly similar despite the different visual conditions. PMID:25072854
DNA methyl transferases are differentially expressed in the human anterior eye segment.
Bonnin, Nicolas; Belville, Corinne; Chiambaretta, Frédéric; Sapin, Vincent; Blanchon, Loïc
2014-08-01
DNA methylation is an epigenetic mark involved in the control of genes expression. Abnormal epigenetic events have been reported in human pathologies but weakly documented in eye diseases. The purpose of this study was to establish DNMT mRNA and protein expression levels in the anterior eye segment tissues and their related (primary or immortalized) cell cultures as a first step towards future in vivo and in vitro methylomic studies. Total mRNA was extracted from human cornea, conjunctiva, anterior lens capsule, trabeculum and related cell cultures (cornea epithelial, trabecular meshwork, keratocytes for primary cells; and HCE, Chang, B-3 for immortalized cells). cDNA was quantified by real-time PCR using specific primers for DNMT1, 2, 3A, 3B and 3L. Immunolocalization assays were carried out on human cornea using specific primary antibodies for DNMT1, 2 and 3A, 3B and 3L. All DNMT transcripts were detected in human cornea, conjunctiva, anterior lens capsule, trabeculum and related cells but showed statistically different expression patterns between tissues and cells. DNMT2 protein presented a specific and singular expression pattern in corneal endothelium. This study produced the first inventory of the expression patterns of DNMTs in human adult anterior eye segment. Our research highlights that DNA methylation cannot be ruled out as a way to bring new insights into well-known ocular diseases. In addition, future DNA methylation studies using various cells as experimental models need to be conducted with attention to approach the results analysis from a global tissue perspective. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
A Modified Consumer Inkjet for Spatiotemporal Control of Gene Expression
Cohen, Daniel J.; Morfino, Roberto C.; Maharbiz, Michel M.
2009-01-01
This paper presents a low-cost inkjet dosing system capable of continuous, two-dimensional spatiotemporal regulation of gene expression via delivery of diffusible regulators to a custom-mounted gel culture of E. coli. A consumer-grade, inkjet printer was adapted for chemical printing; E. coli cultures were grown on 750 µm thick agar embedded in micro-wells machined into commercial compact discs. Spatio-temporal regulation of the lac operon was demonstrated via the printing of patterns of lactose and glucose directly into the cultures; X-Gal blue patterns were used for visual feedback. We demonstrate how the bistable nature of the lac operon's feedback, when perturbed by patterning lactose (inducer) and glucose (inhibitor), can lead to coordination of cell expression patterns across a field in ways that mimic motifs seen in developmental biology. Examples of this include sharp boundaries and the generation of traveling waves of mRNA expression. To our knowledge, this is the first demonstration of reaction-diffusion effects in the well-studied lac operon. A finite element reaction-diffusion model of the lac operon is also presented which predicts pattern formation with good fidelity. PMID:19763256
Spool, Jeremy A.; Stevenson, Sharon A.; Angyal, Caroline S.; Riters, Lauren V.
2016-01-01
Animals integrate social information with their internal endocrine state to control the timing of behavior, but how these signals are integrated in the brain is not understood. The medial preoptic area (mPOA) may play an integrative role in the control of courtship behavior, as it receives projections from multiple sensory systems, and is central to the hormonal control of courtship behavior across vertebrates. Additionally, data from many species implicate opioid and dopaminergic systems in the mPOA in the control of male courtship behavior. We used European starlings to test the hypothesis that testosterone (T) and social status (in the form of territory possession) interact to control the timing of courtship behavior by modulating steroid hormone-, opioid- and dopaminergic-related gene expression in the mPOA. We found that only males given both T and a nesting territory produced high rates of courtship behavior in response to a female. T treatment altered patterns of gene expression in the mPOA by increasing androgen receptor, aromatase, mu-opioid receptor and preproenkephalin mRNA and decreasing tyrosine hydroxylase mRNA expression. Territory possession did not alter mRNA expression in the mPOA, despite the finding that only birds with both T and a nesting territory produced courtship behavior. We propose that T prepares the mPOA to respond to the presence of a female with high rates of courtship song by altering gene expression, but that activity in the mPOA is under a continuous (i.e. tonic) inhibition until a male starling obtains a nesting territory. PMID:27633459
Spool, Jeremy A; Stevenson, Sharon A; Angyal, Caroline S; Riters, Lauren V
2016-11-01
Animals integrate social information with their internal endocrine state to control the timing of behavior, but how these signals are integrated in the brain is not understood. The medial preoptic area (mPOA) may play an integrative role in the control of courtship behavior, as it receives projections from multiple sensory systems, and is central to the hormonal control of courtship behavior across vertebrates. Additionally, data from many species implicate opioid and dopaminergic systems in the mPOA in the control of male courtship behavior. We used European starlings to test the hypothesis that testosterone (T) and social status (in the form of territory possession) interact to control the timing of courtship behavior by modulating steroid hormone-, opioid- and dopaminergic-related gene expression in the mPOA. We found that only males given both T and a nesting territory produced high rates of courtship behavior in response to a female. T treatment altered patterns of gene expression in the mPOA by increasing androgen receptor, aromatase, mu-opioid receptor and preproenkephalin mRNA and decreasing tyrosine hydroxylase mRNA expression. Territory possession did not alter mRNA expression in the mPOA, despite the finding that only birds with both T and a nesting territory produced courtship behavior. We propose that T prepares the mPOA to respond to the presence of a female with high rates of courtship song by altering gene expression, but that activity in the mPOA is under a continuous (i.e. tonic) inhibition until a male starling obtains a nesting territory. Copyright © 2016 Elsevier Inc. All rights reserved.
Donald, John A; Hamid, Noor Khalidah Abdul; McLeod, Janet L
2017-04-01
Water deprivation of the Spinifex hopping mouse, Notomys alexis, induced a biphasic pattern of food intake with an initial hypophagia that was followed by an increased, and then sustained food intake. The mice lost approximately 20% of their body mass and there was a loss of white adipose tissue. Stomach ghrelin mRNA was significantly higher at day 2 of water deprivation but then returned to the same levels as water-replete (day 0) mice for the duration of the experiment. Plasma ghrelin was unaffected by water deprivation except at day 10 where it was significantly increased. Plasma leptin levels decreased at day 2 and day 5 of water deprivation, and then increased significantly by the end of the water deprivation period. Water deprivation caused a significant decrease in skeletal muscle leptin mRNA expression at days 2 and 5, but then it returned to day 0 levels by day 29. In the hypothalamus, water deprivation caused a significant up-regulation in both ghrelin and neuropeptide Y mRNA expression, respectively. In contrast, hypothalamic GHSR1a mRNA expression was significantly down-regulated. A significant increase in LepRb mRNA expression was observed at days 17 and 29 of water deprivation. This study demonstrated that the sustained food intake in N. alexis during water deprivation was uncoupled from peripheral appetite-regulating signals, and that the hypothalamus appears to play an important role in regulating food intake; this may contribute to the maintenance of fluid balance in the absence of free water. Copyright © 2016 Elsevier Inc. All rights reserved.
A Drosophila heat shock response represents an exception rather than a rule amongst Diptera species.
Zatsepina, O G; Przhiboro, A A; Yushenova, I A; Shilova, V; Zelentsova, E S; Shostak, N G; Evgen'ev, M B; Garbuz, D G
2016-08-01
Heat shock protein 70 (Hsp70) is the major player that underlies adaptive response to hyperthermia in all organisms studied to date. We investigated patterns of Hsp70 expression in larvae of dipteran species collected from natural populations of species belonging to four families from different evolutionary lineages of the order Diptera: Stratiomyidae, Tabanidae, Chironomidae and Ceratopogonidae. All investigated species showed a Hsp70 expression pattern that was different from the pattern in Drosophila. In contrast to Drosophila, all of the species in the families studied were characterized by high constitutive levels of Hsp70, which was more stable than that in Drosophila. When Stratiomyidae Hsp70 proteins were expressed in Drosophila cells, they became as short-lived as the endogenous Hsp70. Interestingly, three species of Ceratopogonidae and a cold-water species of Chironomidae exhibited high constitutive levels of Hsp70 mRNA and high basal levels of Hsp70. Furthermore, two species of Tabanidae were characterized by significant constitutive levels of Hsp70 and highly stable Hsp70 mRNA. In most cases, heat-resistant species were characterized by a higher basal level of Hsp70 than more thermosensitive species. These data suggest that different trends were realized during the evolution of the molecular mechanisms underlying the regulation of the responses of Hsp70 genes to temperature fluctuations in the studied families. © 2016 The Royal Entomological Society.
BERISHA, Bajram; SCHAMS, Dieter; RODLER, Daniela; SINOWATZ, Fred; PFAFFL, Michael W.
2016-01-01
The aim of this study was to characterize the expression patterns and localization of the thrombospondin family members (THBS1, THBS2) and their receptors (CD36 and CD47) in bovine ovaries. First, the antral follicles were classified into 5 groups based on the follicle size and estradiol-17beta (E2) concentration in the follicular fluid (< 0.5, 0.5–5, 5–40, 40–180 and >180 E2 ng/ml). Second, the corpus luteum (CL) was assigned to the following stages: days 1–2, 3–4, 5–7, 8–12, 13–16 and >18 of the estrous cycle and of pregnancy (month 1–2, 3–4, 6–7 and > 8). Third, the corpora lutea were collected by transvaginal ovariectomy before and 0.5, 2, 4, 12, 24, 48 and 64 h after inducing luteolysis by injecting a prostaglandin F2alpha analog. The mRNA expression of examined factors was measured by RT-qPCR, steroid hormone concentration by EIA, and localization by immunohistochemistry. The mRNA expression of THBS1, THBS2, CD36, and CD47 in the granulosa cells and theca interna was high in the small follicles and reduced in the preovulatory follicles. The mRNA expression of THBS1, THBS2, and CD47 in the CL during the estrous cycle was high, but decreased significantly during pregnancy. After induced luteolysis, thrombospondins increased significantly to reach the maximum level at 12 h for THBS1, 24 h for THBS2, and 48 h for CD36. The temporal expression and localization pattern of the thrombospondins and their specific receptors in the antral follicles and corpora lutea during the different physiological phases of the estrous cycle and induced luteolysis appear to be compatible with their inhibitory role in the control of ovarian angiogenesis. PMID:27396384
Zubakov, Dmitry; Hanekamp, Eline; Kokshoorn, Mieke; van IJcken, Wilfred
2007-01-01
Human body fluids such as blood and saliva represent the most common source of biological material found at a crime scene. Reliable tissue identification in forensic science can reveal significant insights into crime scene reconstruction and can thus contribute toward solving crimes. Limitations of existing presumptive tests for body fluid identification in forensics, which are usually based on chemoluminescence or protein analysis, are expected to be overcome by RNA-based methods, provided that stable RNA markers with tissue-specific expression patterns are available. To generate sets of stable RNA markers for reliable identification of blood and saliva stains we (1) performed whole-genome gene expression analyses on a series of time-wise degraded blood and saliva stain samples using the Affymetrix U133 plus2 GeneChip, (2) consulted expression databases to obtain additional information on tissue specificity, and (3) confirmed expression patterns of the most promising candidate genes by quantitative real-time polymerase chain reaction including additional forensically relevant tissues such as semen and vaginal secretion. Overall, we identified nine stable mRNA markers for blood and five stable mRNA markers for saliva detection showing tissue-specific expression signals in stains aged up to 180 days of age, expectedly older. Although, all of the markers were able to differentiate blood/saliva from semen samples, none of them could differentiate vaginal secretion because of the complex nature of vaginal secretion and the biological similarity of buccal and vaginal mucosa. We propose the use of these 14 stable mRNA markers for identification of blood and saliva stains in future forensic practice. Electronic supplementary material The online version of this article (doi:10.1007/s00414-007-0182-6) contains supplementary material, which is available to authorized users. PMID:17579879
Brain Activation Patterns at Exhaustion in Rats That Differ in Inherent Exercise Capacity
Foley, Teresa E.; Brooks, Leah R.; Gilligan, Lori J.; Burghardt, Paul R.; Koch, Lauren G.; Britton, Steven L.; Fleshner, Monika
2012-01-01
In order to further understand the genetic basis for variation in inherent (untrained) exercise capacity, we examined the brains of 32 male rats selectively bred for high or low running capacity (HCR and LCR, respectively). The aim was to characterize the activation patterns of brain regions potentially involved in differences in inherent running capacity between HCR and LCR. Using quantitative in situ hybridization techniques, we measured messenger ribonuclease (mRNA) levels of c-Fos, a marker of neuronal activation, in the brains of HCR and LCR rats after a single bout of acute treadmill running (7.5–15 minutes, 15° slope, 10 m/min) or after treadmill running to exhaustion (15–51 minutes, 15° slope, initial velocity 10 m/min). During verification of trait differences, HCR rats ran six times farther and three times longer prior to exhaustion than LCR rats. Running to exhaustion significantly increased c-Fos mRNA activation of several brain areas in HCR, but LCR failed to show significant elevations of c-Fos mRNA at exhaustion in the majority of areas examined compared to acutely run controls. Results from these studies suggest that there are differences in central c-Fos mRNA expression, and potential brain activation patterns, between HCR and LCR rats during treadmill running to exhaustion and these differences could be involved in the variation in inherent running capacity between lines. PMID:23028992
Shen, Xiao-Ming; Zhou, Chong; Lian, Lian; Li, Li-Qun; Li, Wei; Tao, Min
2015-04-01
The aim was to determine changes in dihydropyrimidine dehydrogenase (DPD) and thymidylate synthase (TS) mRNAs in the blood of advanced gastric cancer (AGC) patients to see whether these enzymes affected the patients' response to S-1-based chemotherapy and prognosis. For this purpose, pretreatment DPD/TS mRNA expressions were determined in 40 AGC patients using RT-PCR. The patients were then administered with S-1-based regimen (S-1 + cisplatin) and toxicities were recorded. The relationship between the DPD/TS mRNA expressions and the chemotherapy response, drug resistance, and prognosis was analyzed. The data show that DPD mRNA expression correlated significantly with Lauren type while TS mRNA expression correlated with distant metastasis. Patients with higher DPD and/or TS mRNA expression(s) showed poor response, while those with low DPD mRNA expression showed better response to the chemotherapy. Pooled analysis showed that the patients with low DPD/TS mRNA expressions had better therapeutic response. The incidence of bone marrow suppression, diarrhea, and oral mucositis was high in patients with low DPD mRNA expression. Median overall survival (OS) in 40 patients was 13.5 months. It was 17 months for low and 10 months for high DPD (P = 0.044) and TS mRNA expression (P = 0.047). Pooled analysis showed that the patients with both low DPD/TS mRNA expressions had longer OS (P = 0.001). In conclusion, the detection of DPD and/or TS mRNA expression can be used to predict the response to S-1-based chemotherapy, drug resistance, and prognosis in AGC patients as well as to help guide the individualized treatment of gastric cancer.
Physiological Challenges of Bone Repair
2012-12-01
expression, in general, followed the same pattern in both groups, but significantly, lower levels of mRNA for Indian Hedgehog (ihh) and BMP-2 were detected in...the fracture calluses of the older rats. Indian Hedgehog is thought to be involved in chondrogenesis and bone repair, whereas BMP-2 stimulates bone
Kumar, Dinesh; Hassan, Md. Khurshidul; Pattnaik, Niharika; Mohapatra, Nachiketa
2017-01-01
IQGAPs is a family of proteins which comprises three members, in humans. The expression pattern and role of IQGAP1 has been well established in many cancers, whereas those of IQGAP2 and IQGAP3, have mostly remained unexplored. We used available large datasets, to explore the pan-cancer status of these two genes in-silico. Here we have analysed their mRNA expression and correlation with survivability in eight different cancers, including lung, breast, gastric, brain, colorectal, prostate, liver and kidney cancers and, their subtypes. The mRNA expression of IQGAP2 and IQGAP3 in individual cancers were analysed in two different publicly available databases viz. Oncomine and TCGA. The prognostic value of these genes in lung, breast and gastric cancer was analysed using Kaplan-Meier Plotter database, whereas for brain, colorectal, liver, prostate and kidney cancers, SurvExpress database was used. These results were validated by immunohistochemistry in cancer tissues (stomach, prostate, brain, colorectal). Moreover, we did IQGAP2 and IQGAP3 genomic alteration and, promoter methylation analysis using cBioportal and Wanderer web tool, respectively. Most of the cancer types (lung, breast, prostate, brain, gastric, liver, kidney and colorectal) showed increased IQGAP3 mRNA expression. In contrast, the IQGAP2 transcript levels were reduced across different cancers viz. lung, breast, gastric, liver, kidney and colorectal cancer. IQGAP2 expression correlated positively with survivability, on the contrary, IQGAP3 expression levels correlated inversely with survivability, in most of the cancers. Collectively, enhanced IQGAP3 and reduced IQGAP2 levels were frequently observed in multiple cancers with the former predicting poor survivability and the later opposite. Methylation pattern was significantly altered in most of the cancer types. We found copy no. variation and mutations in specific cancers, for IQGAP2 and IQGAP3. Our in-vivo (IHC) data confirmed the in-silico findings completely. Hence, IQGAP2 and IQGAP3 have potential to be used as prognostic markers or therapeutic targets in specific cancers. PMID:29073199
Kumar, Dinesh; Hassan, Md Khurshidul; Pattnaik, Niharika; Mohapatra, Nachiketa; Dixit, Manjusha
2017-01-01
IQGAPs is a family of proteins which comprises three members, in humans. The expression pattern and role of IQGAP1 has been well established in many cancers, whereas those of IQGAP2 and IQGAP3, have mostly remained unexplored. We used available large datasets, to explore the pan-cancer status of these two genes in-silico. Here we have analysed their mRNA expression and correlation with survivability in eight different cancers, including lung, breast, gastric, brain, colorectal, prostate, liver and kidney cancers and, their subtypes. The mRNA expression of IQGAP2 and IQGAP3 in individual cancers were analysed in two different publicly available databases viz. Oncomine and TCGA. The prognostic value of these genes in lung, breast and gastric cancer was analysed using Kaplan-Meier Plotter database, whereas for brain, colorectal, liver, prostate and kidney cancers, SurvExpress database was used. These results were validated by immunohistochemistry in cancer tissues (stomach, prostate, brain, colorectal). Moreover, we did IQGAP2 and IQGAP3 genomic alteration and, promoter methylation analysis using cBioportal and Wanderer web tool, respectively. Most of the cancer types (lung, breast, prostate, brain, gastric, liver, kidney and colorectal) showed increased IQGAP3 mRNA expression. In contrast, the IQGAP2 transcript levels were reduced across different cancers viz. lung, breast, gastric, liver, kidney and colorectal cancer. IQGAP2 expression correlated positively with survivability, on the contrary, IQGAP3 expression levels correlated inversely with survivability, in most of the cancers. Collectively, enhanced IQGAP3 and reduced IQGAP2 levels were frequently observed in multiple cancers with the former predicting poor survivability and the later opposite. Methylation pattern was significantly altered in most of the cancer types. We found copy no. variation and mutations in specific cancers, for IQGAP2 and IQGAP3. Our in-vivo (IHC) data confirmed the in-silico findings completely. Hence, IQGAP2 and IQGAP3 have potential to be used as prognostic markers or therapeutic targets in specific cancers.
An endogenous RNA transcript antisense to CNG(alpha)1 cation channel mRNA.
Cheng, Chin-Hung; Yew, David Tai-Wai; Kwan, Hiu-Yee; Zhou, Qing; Huang, Yu; Liu, Yong; Chan, Wing-Yee; Yao, Xiaoqiang
2002-10-01
CNG channels are cyclic nucleotide-gated Ca(2+)-permeable channels that are suggested to be involved in the activity-dependent alterations of synaptic strength that are thought to underlie information storage in the CNS. In this study, we isolated an endogenous RNA transcript antisense to CNG(alpha)1 mRNA. This transcript was capable of down-regulating the expression of sense CNG(alpha)1 in the Xenopus oocyte expression system. RT-PCR, Northern blot, and in situ hybridization analyses showed that the transcript was coexpressed with CNG(alpha)1 mRNA in many regions of human brain, notably in those regions that were involved in long-term potentiation and long-term depression, such as hippocampal CA1 and CA3, dentate gyrus, and cerebellar Purkinje layer. Comparison of expression patterns between adult and fetal cerebral cortex revealed that there were concurrent developmental changes in the expression levels of anti-CNG1 and CNG(alpha)1. Treatment of human glioma cell T98 with thyroid hormone T(3) caused a significant increase in anti-CNG1 expression and a parallel decrease in sense CNG(alpha)1 expression. These data suggest that the suppression of CNG(alpha)1 expression by anti-CNG1 may play an important role in neuronal functions, especially in synaptic plasticity and cortical development. Endogenous antisense RNA-mediated regulation may represent a new mechanism through which the activity of ion channels can be regulated in the human CNS.
NASA Astrophysics Data System (ADS)
Park, Ho-Ra; Kim, Yong; Yeo, Won-Jun; Kim, Ji-Hye; Han, Kyung-Nam
2017-09-01
The DNA-damage defense mechanism was studied in black seabreams after oxidative stress caused by exposure to sodium hypochlorite (NaOCl). Liver, muscle, and brain tissues were obtained after different NaOCl-exposure times (0, 24, 48, 72, and 96 h) and concentrations (0.5, 1, 1.5, 2, and 3 mg/L), after which oxoguanine glycosylase (OGG1) and superoxide dismutase (SOD) mRNA-expression levels were analyzed. At all NaOCl concentrations tested, liver OGG1 expression increased to a maximum in a time-dependent manner after NaOCl exposure and then decreased. In muscles, OGG1 expression increased over time following exposure to a low concentration of NaOCl (0.5, 1, and 1.5 mg/L), whereas it showed a mixed pattern (both increases and decreases observed) in the high-concentration groups (2 and 3 mg/L). SOD mRNA expression increased over time, both in the liver and muscles. In the brain, both OGG1 and SOD mRNA expression levels were highest after exposure to the lowest NaOCl concentration (0.5 mg/L), whereas basal levels were maintained over time at higher concentrations. These results indicate that OGG1 and SOD provide resistance to oxidative stress in black seabreams. In addition, continuous exposure to oxidative stress can suppress enzyme expression, suggesting a risk for long-term exposure to NaOCl.
Rout, P K; Kaushik, R; Ramachandran, N
2016-07-01
It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36-89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at -70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5-2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5.29 and 2.63-fold higher expression than control. Liver and brain tissues showed the highest gene expression at mRNA levels as compared to kidney, spleen and heart. HST individuals had higher levels of mRNA level expression than HSS individuals in all breeds. The Sirohi breed showed the highest (6.3-fold) mRNA expression levels as compared to the other three breeds, indicating the better heat stress regulation activity in the breed.
Wang, Z; Gleichmann, H
1998-01-01
In mice, diabetes can be induced by multiple low doses of streptozotocin (MLD-STZ), i.e., 40 mg/kg body wt on each of 5 consecutive days. In this model, diabetes develops only when STZ induces both beta-cell toxicity and T-cell-dependent immune reactions. The target molecule(s) of MLD-STZ-induced beta-cell toxicity are not known, however. In this study, we report that GLUT2 is a target molecule for MLD-STZ toxicity. Ex vivo, a gradual decrement of both GLUT2 protein and mRNA expression was found in pancreatic islets isolated from MLD-STZ-treated C57BL/6 male mice, whereas mRNA expression of beta-actin, glucokinase, and proinsulin remained unaffected. Significant reduction of both GLUT2 protein and mRNA expression was first noted 1 day after the third STZ injection, clearly preceding the onset of hyperglycemia. The extent of reduction increased with the number of STZ injections administered and increased over time, after the last, i.e., fifth, STZ injection. The STZ-induced reduction of GLUT2 protein and mRNA was not due to an essential loss of beta-cells, because ex vivo, not only the total RNA yield and protein content in isolated islets, but also proinsulin mRNA expression, failed to differ significantly in the differently treated groups. Furthermore, islets isolated from MLD-STZ-treated donors responded to the nonglucose secretagogue arginine in a pattern similar to that of solvent-treated donors. Interestingly, the MLD-STZ-induced reduction of both GLUT2 protein and mRNA was prevented by preinjecting mice with 5-thio-D-glucose before each STZ injection. Apparently, GLUT2 is a crucial target molecule of MLD-STZ toxicity, and this toxicity seems to precede the immune reactions against beta-cells.
Sanchez-Marin, Laura; Pavon, Francisco J.; Decara, Juan; Suarez, Juan; Gavito, Ana; Castilla-Ortega, Estela; Rodriguez de Fonseca, Fernando; Serrano, Antonia
2017-01-01
Intermittent alcohol exposure is a common pattern of adolescent alcohol use that can lead to binge drinking episodes. Alcohol use is known to modulate the endocannabinoid system (ECS), which is involved in neuronal communication, neuroplasticity, neuroinflammation and behavior. Adolescent male Wistar rats were exposed to 4-week intermittent alcohol intoxication (3 g/kg injections for 4 days/week) or saline (N = 12 per group). After alcohol deprivation, adult rats were assessed for emotionality and cognition and the gene expression of the ECS and other factors related to behavior and neuroinflammation was examined in the brain. Alcohol-exposed rats exhibited anxiogenic-like responses and impaired recognition memory but no motor alterations. There were brain region-dependent changes in the mRNA levels of the ECS and molecular signals compared with control rats. Thus, overall, alcohol-exposed rats expressed higher mRNA levels of endocannabinoid synthetic enzymes (N-acyl-phosphatidylethanolamine phospholipase D and diacylglycerol lipases) in the medial-prefrontal cortex (mPFC) but lower mRNA levels in the amygdala. Furthermore, we observed lower mRNA levels of receptors CB1 CB2 and peroxisome proliferator-activated receptor-α in the striatum. Regarding neuropeptide signaling, alcohol-exposed rats displayed lower mRNA levels of the neuropeptide Y signaling, particularly NPY receptor-2, in the amygdala and hippocampus and higher mRNA levels of corticotropin-releasing factor in the hippocampus. Additionally, we observed changes of several neuroinflammation-related factors. Whereas, the mRNA levels of toll-like receptor-4, tumor necrosis factor-α, cyclooxygenase-2 and glial fibrillary acidic protein were significantly increased in the mPFC, the mRNA levels of cyclooxygenase-2 and glial fibrillary acidic protein were decreased in the striatum and hippocampus. However, nuclear factor-κβ mRNA levels were lower in the mPFC and striatum and allograft inflammatory factor-1 levels were differentially expressed in the amygdala and hippocampus. In conclusion, rats exposed to adolescent intermittent alcohol displayed anxiety-like behavior and cognitive deficits in adulthood and these alterations were accompanied by brain region-dependent changes in the gene expression of the ECS and other signals associated with neuroinflammation and behavior. An intermittent adolescent alcohol exposure has behavioral and molecular consequences in the adult brain, which might be linked to higher vulnerability to addictive behaviors and psychopathologies. PMID:28223925
LEFPS1, a Tomato Farnesyl Pyrophosphate Gene Highly Expressed during Early Fruit Development1
Gaffe, Joel; Bru, Jean-Philippe; Causse, Mathilde; Vidal, Alain; Stamitti-Bert, Linda; Carde, Jean-Pierre; Gallusci, Philippe
2000-01-01
Farnesyl pyrophosphate synthase (FPS) catalyzes the synthesis of farnesyl pyrophosphate, a key intermediate in sterol and sesquiterpene biosynthesis. Using a polymerase chain reaction-based approach, we have characterized LeFPS1, a tomato (Lycoperscion esculentum cv Wva 106) fruit cDNA, which encodes a functional FPS. We demonstrate that tomato FPSs are encoded by a small multigenic family with genes located on chromosomes 10 and 12. Consistent with farnesyl pyrophosphate requirement in sterol biosynthesis, FPS genes are ubiquitously expressed in tomato plants. Using an LeFPS1 specific probe, we show that the corresponding gene can account for most of FPS mRNA in most plant organs, but not during young seedling development, indicating a differential regulation of FPS genes in tomato. FPS gene expression is also under strict developmental control: FPS mRNA was mainly abundant in young organs and decreased as organs matured with the exception of fruits that presented a biphasic accumulation pattern. In this latter case in situ hybridization studies have shown that FPS mRNA is similarly abundant in all tissues of young fruit. Taken together our results suggest that several FPS isoforms are involved in tomato farnesyl pyrophosphate metabolism and that FPS genes are mostly expressed in relation to cell division and enlargement. PMID:10938353
Nesprin-2 epsilon: A novel nesprin isoform expressed in human ovary and Ntera-2 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Le Thanh; Boehm, Sabrina V.; Roberts, Roland G.
2011-08-26
Highlights: {yields} A novel epsilon isoform of nesprin-2 has been discovered. {yields} This 120 kDa protein was predicted by bioinformatic analysis, but has not previously been observed. {yields} It is the main isoform expressed in a teratocarcinoma cell line and is also found in ovary. {yields} Like other nesprins, it is located at the nuclear envelope. {yields} We suggest it may have a role in very early development or in some ovary-specific function. -- Abstract: The nuclear envelope-associated cytoskeletal protein, nesprin-2, is encoded by a large gene containing several internal promoters that produce shorter isoforms. In a study of Ntera-2more » teratocarcinoma cells, a novel isoform, nesprin-2-epsilon, was found to be the major mRNA and protein product of the nesprin-2 gene. Its existence was predicted by bioinformatic analysis, but this is the first direct demonstration of both the mRNA and the 120 kDa protein which is located at the nuclear envelope. In a panel of 21 adult and foetal human tissues, the nesprin-2-epsilon mRNA was strongly expressed in ovary but was a minor isoform elsewhere. The expression pattern suggests a possible link with very early development and a likely physiological role in ovary.« less
Nguyen, P L; Niehans, G A; Cherwitz, D L; Kim, Y S; Ho, S B
1996-01-01
Abnormalities of mucin-type glycoproteins have been described in lung cancers, but their molecular basis is unknown. In this study, mucin-core-peptide-specific antibodies and cDNA probes were used to determine the relative expression of mucin genes corresponding to one membrane-bound mucin (MUC1), two intestinal mucins (MUC2 and MUC3), and one tracheobronchial mucin (MUC4) in normal (nonneoplastic) lung, and in lung neoplasms. Normal lung tissues exhibited a distinct pattern of mucin gene expression, with high levels of MUC1 and MUC4 mRNA and low to absent levels of MUC2 and MUC3 mucin immunoreactivity and mRNA. In contrast, lung adenocarcinomas, especially well-differentiated cancers, exhibited increased MUC1, MUC3, and MUC4 mRNA levels. Lung squamous-cell, adenosquamous, and large-cell carcinomas were characterized by increased levels of MUC4 mucin only. We conclude that the expression of one membrane-bound and several secretory-type mucins is independently regulated and markedly altered in lung neoplasms. The frequent occurrence of increased MUC4 transcripts in a variety of non-small-cell lung cancers indicates the potential importance of this type of mucin in lung cancer biology.
Laoong-u-thai, Yanisa; Zhao, Baoping; Phongdara, Amornrat; Ako, Harry; Yang, Jinzeng
2009-01-01
Small ubiquitin-like modifiers (SUMO) work in a similar way as ubiquitin to alter the biological properties of a target protein by conjugation. A shrimp SUMO cDNA named LvSUMO-1 was identified in Litopenaeus vannamei. LvSUMO-1 cDNA contains a coding sequence of 282 nucleotides with untranslated regions of 37 bp at 5'-end and 347 bp at 3'-end, respectively. The deduced 93 amino acids exhibit 83% identity with the Western Honeybee SUMO-1, and more than 65% homologies with human and mouse SUMO-1. LvSUMO-1 mRNA is expressed in most L. vannamei tissues with the highest level in hepatopancrease. The mRNA expression of LvSUMO-1 over development stages in L. Vammamei is distinguished by a low level in nauplius stage and relatively high level in postlarva stage with continuous expression until juvenile stage. The LvSUMO-1 protein and its conjugated proteins are detected in both cytoplasm and nucleus in several tissues. Interestingly, LvSUMO-1 mRNA levels are high in abdominal muscle during the premolt stage, wherein it has significant activities of protein degradation, suggesting its possible role in the regulation of shrimp muscle protein degradation. PMID:19240809
2013-01-01
Background Plants that utilize the highly efficient C4 pathway of photosynthesis typically possess kranz-type leaf anatomy that consists of two morphologically and functionally distinct photosynthetic cell types, the bundle sheath (BS) and mesophyll (M) cells. These two cell types differentially express many genes that are required for C4 capability and function. In mature C4 leaves, the plastidic rbcL gene, encoding the large subunit of the primary CO2 fixation enzyme Rubisco, is expressed specifically within BS cells. Numerous studies have demonstrated that BS-specific rbcL gene expression is regulated predominantly at post-transcriptional levels, through the control of translation and mRNA stability. The identification of regulatory factors associated with C4 patterns of rbcL gene expression has been an elusive goal for many years. Results RLSB, encoded by the nuclear RLSB gene, is an S1-domain RNA binding protein purified from C4 chloroplasts based on its specific binding to plastid-encoded rbcL mRNA in vitro. Co-localized with LSU to chloroplasts, RLSB is highly conserved across many plant species. Most significantly, RLSB localizes specifically to leaf bundle sheath (BS) cells in C4 plants. Comparative analysis using maize (C4) and Arabidopsis (C3) reveals its tight association with rbcL gene expression in both plants. Reduced RLSB expression (through insertion mutation or RNA silencing, respectively) led to reductions in rbcL mRNA accumulation and LSU production. Additional developmental effects, such as virescent/yellow leaves, were likely associated with decreased photosynthetic function and disruption of associated signaling networks. Conclusions Reductions in RLSB expression, due to insertion mutation or gene silencing, are strictly correlated with reductions in rbcL gene expression in both maize and Arabidopsis. In both plants, accumulation of rbcL mRNA as well as synthesis of LSU protein were affected. These findings suggest that specific accumulation and binding of the RLSB binding protein to rbcL mRNA within BS chloroplasts may be one determinant leading to the characteristic cell type-specific localization of Rubisco in C4 plants. Evolutionary modification of RLSB expression, from a C3 “default” state to BS cell-specificity, could represent one mechanism by which rbcL expression has become restricted to only one cell type in C4 plants. PMID:24053212
In silico analysis of stomach lineage specific gene set expression pattern in gastric cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandi, Narayanan Sathiya, E-mail: sathiyapandi@gmail.com; Suganya, Sivagurunathan; Rajendran, Suriliyandi
Highlights: •Identified stomach lineage specific gene set (SLSGS) was found to be under expressed in gastric tumors. •Elevated expression of SLSGS in gastric tumor is a molecular predictor of metabolic type gastric cancer. •In silico pathway scanning identified estrogen-α signaling is a putative regulator of SLSGS in gastric cancer. •Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. -- Abstract: Stomach lineage specific gene products act as a protective barrier in the normal stomach and their expression maintains the normal physiological processes, cellular integrity and morphology of the gastric wall. However,more » the regulation of stomach lineage specific genes in gastric cancer (GC) is far less clear. In the present study, we sought to investigate the role and regulation of stomach lineage specific gene set (SLSGS) in GC. SLSGS was identified by comparing the mRNA expression profiles of normal stomach tissue with other organ tissue. The obtained SLSGS was found to be under expressed in gastric tumors. Functional annotation analysis revealed that the SLSGS was enriched for digestive function and gastric epithelial maintenance. Employing a single sample prediction method across GC mRNA expression profiles identified the under expression of SLSGS in proliferative type and invasive type gastric tumors compared to the metabolic type gastric tumors. Integrative pathway activation prediction analysis revealed a close association between estrogen-α signaling and SLSGS expression pattern in GC. Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. In conclusion, our results highlight that estrogen mediated regulation of SLSGS in gastric tumor is a molecular predictor of metabolic type GC and prognostic factor in GC.« less
Genomics of Mature and Immature Olfactory Sensory Neurons
Nickell, Melissa D.; Breheny, Patrick; Stromberg, Arnold J.; McClintock, Timothy S.
2014-01-01
The continuous replacement of neurons in the olfactory epithelium provides an advantageous model for investigating neuronal differentiation and maturation. By calculating the relative enrichment of every mRNA detected in samples of mature mouse olfactory sensory neurons (OSNs), immature OSNs, and the residual population of neighboring cell types, and then comparing these ratios against the known expression patterns of >300 genes, enrichment criteria that accurately predicted the OSN expression patterns of nearly all genes were determined. We identified 847 immature OSN-specific and 691 mature OSN-specific genes. The control of gene expression by chromatin modification and transcription factors, and neurite growth, protein transport, RNA processing, cholesterol biosynthesis, and apoptosis via death domain receptors, were overrepresented biological processes in immature OSNs. Ion transport (ion channels), presynaptic functions, and cilia-specific processes were overrepresented in mature OSNs. Processes overrepresented among the genes expressed by all OSNs were protein and ion transport, ER overload response, protein catabolism, and the electron transport chain. To more accurately represent gradations in mRNA abundance and identify all genes expressed in each cell type, classification methods were used to produce probabilities of expression in each cell type for every gene. These probabilities, which identified 9,300 genes expressed in OSNs, were 96% accurate at identifying genes expressed in OSNs and 86% accurate at discriminating genes specific to mature and immature OSNs. This OSN gene database not only predicts the genes responsible for the major biological processes active in OSNs, but also identifies thousands of never before studied genes that support OSN phenotypes. PMID:22252456
Su, Lina; Zhou, Fengjuan; Ding, Zhujin; Gao, Zexia; Wen, Jiufu; Wei, Wei; Wang, Qijun; Wang, Weimin; Liu, Hong
2015-12-01
Doublesex and Mab3 related transcription factor (DMRT), characterized by a conserved DM domain, function as sex-related transcription factors and also play critical roles in ontogenesis. In this study, 4 Dmrt genes in the blunt snout bream, Megalobrama amblycephala, were identified, characterized and their mRNA expression in different adult organs, during embryogenesis and gonadal development in larvae were determined by quantitative real time PCR. There are 4 Dmrt1 isoforms in the M. amblycephala genome, which were expressed highly in the testis and weakly in the ovary. The complete cDNAs of the M. amblycephala Dmrt2a, Dmrt2b and Dmrt3 were predicted to encode 510, 328 and 449 amino acids, respectively. The M. amblycephala Dmrt2a mRNA peaked at 11hpf (hour post fertilizing) during early embryonic stages, while Dmrt2b was highly expressed during late embryonic stages. Both the M. amblycephala Dmrt2a and Dmrt2b were expressed highly in the gill and exhibited a sexually dimorphic expression pattern. The M. amblycephala Dmrt3 was expressed highly in the gill, muscle and brain, at 40dph (day post hatching) during early development and at stage V in the testis during gonadal development. All fish Dmrts except Dmrt5 were found in the M. amblycephala genome. The observed expression patterns of these Dmrts in developing embryos and larvae, as well as different adult organs indicate conserved sexual or extragonadal functions of the Dmrts through evolution. Copyright © 2015 Elsevier B.V. All rights reserved.
Lu, Yanhui; Bai, Qi; Zheng, Xusong; Lu, Zhongxian
2017-08-01
Catalase (CAT) is an important antioxidant enzyme that protects organisms against oxidative stresses by eliminating hydrogen peroxide. In this study, we cloned and characterized a full-length cDNA of CAT from Chilo suppressalis (CsCAT) and examined the influence of environmental stresses on CsCAT expression and enzyme activity. The cDNA contains a 1659-bp open reading frame encoding a polypeptide of 553 amino acids most closely related (90.14%) to Papilio polytes catalases. The CsCAT was expressed in all developmental stages with the highest expression in the fat body, and the CsCAT enzyme activity closely mirrored its observed mRNA expression patterns. The CsCAT mRNA was up-regulated when the larvae were exposed to high temperature (≥30 °C), insecticides (abamectin and chlorantraniliprole), chemicals (H2O2, CHP, CdCl2, and CuSO4), and a dead-end trap plant (vetiver grass), and the CsCAT enzyme activity again mirrored the observed CsCAT expression patterns. These results suggest that up-regulation of CsCAT may enhance the defense response of C. suppressalis by weakening the effects of environmental stresses, and provide insight into the role of CsCAT during development of C. suppressalis. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Transcription factor-dependent chromatin remodeling of Il18r1 during Th1 and Th2 differentiation 1
Yu, Qing; Chang, Hua-Chen; Ahyi, Ayele-Nati N.; Kaplan, Mark H.
2008-01-01
The IL-18Rα chain is expressed on Th1 but not Th2 cells. We have recently shown that Stat4 is an important component of programming the Il18r1 locus (encoding IL-18Rα) for maximal expression in Th1 cells. Il18r1 is reciprocally repressed during Th2 development. In this report we demonstrate that the establishment of DNase hypersensitivity patterns that are distinct among undifferentiated CD4 T cells, Th1 and Th2 cells. Stat6 is required for the repression of Il18r1 expression and in Stat6-deficient Th2 cultures, mRNA levels, histone acetylation and H3K4 methylation levels are intermediate between levels observed in Th1 and Th2 cells. Despite the repressive effects of IL-4 during Th2 differentiation, we observed only modest binding of Stat6 to the Il18r1 locus. In contrast, we observed robust GATA-3 binding to a central region of the locus where DNase hypersensitivity sites overlapped with conserved non-coding sequences in Il18r1 introns. Ectopic expression of GATA-3 in differentiated Th1 cells repressed Il18r1 mRNA and surface expression of IL-18Rα. These data provide further mechanistic insight into transcription factor dependent establishment of Th subset-specific patterns of gene expression. PMID:18714006
Liu, Yan-Xia; Li, Fen-Xiang; Liu, Zhuan-Zhuan; Jia, Zhi-Rong; Zhou, Yan-He; Zhang, Hao; Yan, Hui; Zhou, Xian-Qiang; Chen, Xiao-Guang
2016-06-01
Mosquito microRNAs (miRNAs) are involved in host-virus interaction, and have been reported to be altered by dengue virus (DENV) infection in Aedes albopictus (Diptera: Culicidae). However, little is known about the molecular mechanisms of Aedes albopictus midgut-the first organ to interact with DENV-involved in its resistance to DENV. Here we used high-throughput sequencing to characterize miRNA and messenger RNA (mRNA) expression patterns in Aedes albopictus midgut in response to dengue virus serotype 2. A total of three miRNAs and 777 mRNAs were identified to be differentially expressed upon DENV infection. For the mRNAs, we identified 198 immune-related genes and 31 of them were differentially expressed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses also showed that the differentially expressed immune-related genes were involved in immune response. Then the differential expression patterns of six immune-related genes and three miRNAs were confirmed by real-time reverse transcription polymerase chain reaction. Furthermore, seven known miRNA-mRNA interaction pairs were identified by aligning our two datasets. These analyses of miRNA and mRNA transcriptomes provide valuable information for uncovering the DENV response genes and provide a basis for future study of the resistance mechanisms in Aedes albopictus midgut. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Goff, Loyal A.; Boucher, Shayne; Ricupero, Christopher L.; Fenstermacher, Sara; Swerdel, Mavis; Chase, Lucas; Adams, Christopher; Chesnut, Jonathan; Lakshmipathy, Uma; Hart, Ronald P.
2009-01-01
Objective Human multipotent mesenchymal stromal cells (MSC) have the potential to differentiate into multiple cell types, although little is known about factors that control their fate. Differentiation-specific microRNAs may play a key role in stem cell self renewal and differentiation. We propose that specific intracellular signalling pathways modulate gene expression during differentiation by regulating microRNA expression. Methods Illumina mRNA and NCode microRNA expression analyses were performed on MSC and their differentiated progeny. A combination of bioinformatic prediction and pathway inhibition was used to identify microRNAs associated with PDGF signalling. Results The pattern of microRNA expression in MSC is distinct from that in pluripotent stem cells such as human embryonic stem cells. Specific populations of microRNAs are regulated in MSC during differentiation targeted towards specific cell types. Complementary mRNA expression analysis increases the pool of markers characteristic of MSC or differentiated progeny. To identify microRNA expression patterns affected by signalling pathways, we examined the PDGF pathway found to be regulated during osteogenesis by microarray studies. A set of microRNAs bioinformatically predicted to respond to PDGF signalling was experimentally confirmed by direct PDGF inhibition. Conclusion Our results demonstrate that a subset of microRNAs regulated during osteogenic differentiation of MSCs is responsive to perturbation of the PDGF pathway. This approach not only identifies characteristic classes of differentiation-specific mRNAs and microRNAs, but begins to link regulated molecules with specific cellular pathways. PMID:18657893
NASA Astrophysics Data System (ADS)
Kozlova, Olga; Gusev, Oleg; Levinskikh, Margarita; Sychev, Vladimir; Poddubko, Svetlana
The current study is addressed to the complex analysis of whole genome mRNA expression profile and properties of splicing variants formation in different organs of medaka fish exposed to prolonged space flight in the frame of joint Russia-Japan research program “Aquarium-AQH”. The fish were kept in the AQH joint-aquariums system in October-December 2013, followed by fixation in RNA-preserving buffers and freezing during the space flight. The samples we returned to the Earth frozen in March 2013 and mRNAs from four fish were sequenced in organ-specific manner using HiSeq Illumina sequencing platform. The ground group fish treated in the same way was used as a control. The comparison between the groups revealed space group-specific specific mRNA expression pattern. More than 50 genes (including several types of myosins) were down-regulated in the space group. Moreover, we found an evidence for formation of space group-specific splicing variants of mRNA. Taking together, the data suggest that in spite of aquatic environment, space flight-associated factors have a strong effect on the activity of fish genome. This work was supported in part by subsidy of the Russian Government to support the Program of competitive growth of Kazan Federal University among world class academic centres and universities.
Li, Yinsheng; Zhao, Chun; Lu, Xiaoxu; Ai, Xiaojie; Qiu, Jiangping
2018-04-15
Cytochrome P450 (CYP450) enzymes are a family of hemoproteins primarily responsible for detoxification functions. Earthworms have been used as a bioindicator of soil pollution in numerous studies, but no CYP450 gene has so far been cloned. RT-PCR and RACE-PCR were employed to construct and sequence the CYP450 gene DNA from the extracted mRNA in the earthworm Eisenia fetida. The cloned gene (EW1) has an open reading frame of 477bp. The 3'-terminal region contained both the consensus and the signature sequences characteristic of CYP450. It was closely related to the CYP450 gene from the flatworm genus Opisthorchis felineus with 87% homology. The predicted structure of the putative protein was 97% homologous to human CYP450 family 27. This gene has been deposited in GenBank (accession no. KM881474). Earthworms (E. fetida) were then exposed to 1, 10, 100, and 500mgkg -1 enrofloxacin in soils to explore the mRNA expression by real time qPCR. The effect of enrofloxacin on mRNA expression levels of EW1 exhibited a marked hormesis pattern across the enrofloxacin dose range tested. This is believed to be the first reported CYP450 gene in earthworms, with reference value for molecular studies on detoxification processes in earthworms. Copyright © 2017 Elsevier Inc. All rights reserved.
Kim, Kyung Hoon; Kim, Jung; Choi, Jong Seob; Bae, Sunwoong; Kwon, Donguk; Park, Inkyu; Kim, Do Hyun; Seo, Tae Seok
2015-12-01
Tracking and monitoring the intracellular behavior of mRNA is of paramount importance for understanding real-time gene expression in cell biology. To detect specific mRNA sequences, molecular beacons (MBs) have been widely employed as sensing probes. Although numerous strategies for MB delivery into the target cells have been reported, many issues such as the cytotoxicity of the carriers, dependence on the random probability of MB transfer, and critical cellular damage still need to be overcome. Herein, we have developed a nanowire-incorporated and pneumatic pressure-driven microdevice for rapid, high-throughput, and direct MB delivery to human breast cancer MCF-7 cells to monitor survivin mRNA expression. The proposed microdevice is composed of three layers: a pump-associated glass manifold layer, a monolithic polydimethylsiloxane (PDMS) membrane, and a ZnO nanowire-patterned microchannel layer. The MB is immobilized on the ZnO nanowires by disulfide bonding, and the glass manifold and PDMS membrane serve as a microvalve, so that the cellular attachment and detachment on the MB-coated nanowire array can be manipulated. The combination of the nanowire-mediated MB delivery and the microvalve function enable the transfer of MB into the cells in a controllable way with high cell viability and to detect survivin mRNA expression quantitatively after docetaxel treatment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Selenium regulates gene expression of selenoprotein W in chicken skeletal muscle system.
Ruan, Hongfeng; Zhang, Ziwei; Wu, Qiong; Yao, Haidong; Li, Jinlong; Li, Shu; Xu, Shiwen
2012-01-01
Selenoprotein W (SelW) is abundantly expressed in skeletal muscles of mammals and necessary for the metabolism of skeletal muscles. However, its expression pattern in skeletal muscle system of birds is still uncovered. Herein, to investigate the distribution of SelW mRNA in chicken skeletal muscle system and its response to different selenium (Se) status, 1-day-old chickens were exposed to various concentrations of Se as sodium selenite in the feed for 35 days. In addition, myoblasts were treated with different concentrations of Se in the medium for 72 h. Then the levels of SelW mRNA in skeletal muscles (wing muscle, pectoral muscle, thigh muscle) and myoblasts were determined on days 1, 15, 25, and 35 and at 0, 24, 48, and 72 h, respectively. The results showed that SelW was detected in all these muscle components and it increased both along with the growth of organism and the differentiation process of myoblasts. The thigh muscle is more responsive to Se intake than the other two skeletal muscle tissues while the optimal Se supplementation for SelW mRNA expression in chicken myoblasts was 10(-7) M. In summary, Se plays important roles in the development of chicken skeletal muscles. To effect optimal SelW gene expression, Se must be provided in the diet and the media in adequate amounts and neither at excessive nor deficient levels.
MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain
Somel, Mehmet; Guo, Song; Fu, Ning; Yan, Zheng; Hu, Hai Yang; Xu, Ying; Yuan, Yuan; Ning, Zhibin; Hu, Yuhui; Menzel, Corinna; Hu, Hao; Lachmann, Michael; Zeng, Rong; Chen, Wei; Khaitovich, Philipp
2010-01-01
Changes in gene expression levels determine differentiation of tissues involved in development and are associated with functional decline in aging. Although development is tightly regulated, the transition between development and aging, as well as regulation of post-developmental changes, are not well understood. Here, we measured messenger RNA (mRNA), microRNA (miRNA), and protein expression in the prefrontal cortex of humans and rhesus macaques over the species' life spans. We find that few gene expression changes are unique to aging. Instead, the vast majority of miRNA and gene expression changes that occur in aging represent reversals or extensions of developmental patterns. Surprisingly, many gene expression changes previously attributed to aging, such as down-regulation of neural genes, initiate in early childhood. Our results indicate that miRNA and transcription factors regulate not only developmental but also post-developmental expression changes, with a number of regulatory processes continuing throughout the entire life span. Differential evolutionary conservation of the corresponding genomic regions implies that these regulatory processes, although beneficial in development, might be detrimental in aging. These results suggest a direct link between developmental regulation and expression changes taking place in aging. PMID:20647238
Yan, Wusheng; Shih, Joanna; Rodriguez-Canales, Jaime; Tangrea, Michael A.; Player, Audrey; Diao, Lixia; Hu, Nan; Goldstein, Alisa M.; Wang, Jing; Taylor, Philip R.; Lippman, Scott M.; Wistuba, Ignacio I.; Emmert-Buck, Michael R.; Erickson, Heidi S.
2014-01-01
The classic tumor clonal evolution theory postulates that cancers change over time to produce unique molecular subclones within a parent neoplasm, presumably including regional differences in gene expression. More recently, however, this notion has been challenged by studies showing that tumors maintain a relatively stable transcript profile. To examine these competing hypotheses, we microdissected discrete subregions containing approximately 3000 to 8000 cells (500 to 1500 μm in diameter) from ex vivo esophageal squamous cell carcinoma (ESCC) specimens and analyzed transcriptomes throughout three-dimensional tumor space. Overall mRNA profiles were highly similar in all 59 intratumor comparisons, in distinct contrast to the markedly different global expression patterns observed in other dissected cell populations. For example, normal esophageal basal cells contained 1918 and 624 differentially expressed genes at a greater than twofold level (95% confidence level of <5% false positives), compared with normal differentiated esophageal cells and ESCC, respectively. In contrast, intratumor regions had only zero to four gene changes at a greater than twofold level, with most tumor comparisons showing none. The present data indicate that, when analyzed using a standard array-based method at this level of histological resolution, ESCC contains little regional mRNA heterogeneity. PMID:23219752
Mortensen, Anne Skjetne; Arukwe, Augustine
2007-04-01
Multiple biological effects of tributyltin (TBT) on juvenile salmon have been investigated. Fish were exposed for 7 days to waterborne TBT at nominal concentrations of 50 and 250 microg/L dissolved in dimethyl sulfoxide (DMSO). Hepatic samples were analyzed for gene expression patterns in the hormonal and xenobiotic biotransformation pathways using validated real-time PCR method. Immunochemical and several cytochrome P450 (CYP)-mediated enzyme activity (ethoxyresorufin: EROD, benzyloxyresorufin: BROD, methoxyresorufin: MROD and pentoxyresorufin: PROD) assays were analyzed. Our data show that TBT produced concentration-specific decrease of estrogen receptor-alpha (ERalpha), vitellogenin (Vtg), zona radiata protein (Zr-protein) and increase of estrogen receptor-beta (ERbeta) and androgen receptor-beta (ARbeta) in the hormonal pathway. In the xenobiotic biotransformation pathway, TBT produced apparent increase and decrease at respective low and high concentration, on aryl hydrocarbon receptor-alpha (AhRalpha), AhR nuclear translocator (ARNT) and AhR repressor (AhRR) mRNA. The expression of CYP1A1 and GST showed a TBT concentration-dependent decrease. The AhRbeta, CYP3A and uridine diphosphoglucuronosyl transferase (UGT) mRNA expressions were significantly induced after exposure to TBT. Immunochemical analysis of CYP3A and CYP1A1 protein levels confirmed the TBT effects observed at the transcriptional levels. The effect of TBT on the biotransformation enzyme gene expressions partially co-related but did not directly parallel enzyme activity levels for EROD, BROD, MROD and PROD. In general, these findings confirm previous reports on the endocrine effects of TBT, in addition to effects on hepatic CYP1A isoenzyme at the transcriptional level that transcends to protein and enzymatic levels. The induced expression patterns of CYP3A and UGT mRNA after TBT exposure, suggest the involvement of CYP3A and UGT in TBT metabolism in fish. The effect of TBT on CYP3A is proposed to represent another hormonal effect of TBT not previously reported in any fish or lower vertebrate. The proposed androgenic effect is supported by the observation that TBT also induced ARbeta mRNA expression in a concentration-specific manner. To our knowledge, this is the first study that has simultaneously studied multiple responses after exposure to TBT in fish.
Mishra, Birendra; Park, Ji Yeon; Wilson, Kalin; Jo, Misung
2015-01-01
Progesterone (P4), acting through its nuclear receptor (PGR), plays an essential role in ovulation by mediating the expression of genes involved in ovulation and/or luteal formation. To identify ovulatory specific PGR-regulated genes, a preliminary microarray analysis was performed using rat granulosa cells treated with hCG ± RU486 (PGR antagonist). The transcript most highly down-regulated by RU486 was an EST (Expressed Sequence Tag) sequence (gb: BI289578.1) that matches with predicted sequence for Xlr5c-like mRNA. Since nothing is known about Xlr5c-like, we first characterized the expression pattern of Xlr5c-like mRNA in the rat ovary. The level of mRNA for Xlr5c-like is transiently up-regulated in granulosa cells of periovulatory follicles after hCG stimulation in PMSG-primed rat ovaries. The transient induction of Xlr5c-like mRNA was mimicked by hCG treatment in cultured granulosa cells from preovulatory ovaries. We further demonstrated that the LH-activated PKA, MEK, PI3K, and p38 signaling is involved in the increase in Xlr5c-like mRNA. The increase in Xlr5c-like mRNA was abolished by RU486. The inhibitory effect of RU486 was reversed by MPA (synthetic progestin), but not by dexamethasone (synthetic glucocorticoid). Furthermore, mutation of SP1/SP3 and PGR response element sites in the promoter region of Xlr5c-like decreased Xlr5c-like reporter activity. RU486 also inhibited Xlr5c-like reporter activity. ChIP assay verified the binding of PGR and SP3 to the Xlr5c-like promoter in periovulatory granulosa cells. Functionally, siRNA-mediated Xlr5c-like knockdown in granulosa cell cultures resulted in reduced levels of mRNA for Snap25, Cxcr4, and Adamts1. Recombinant Xlr5c-like protein expressed using an adenoviral approach was localized predominantly to the nucleus and to a lesser extent to the cytoplasm of rat granulosa cells. In conclusion, this is the first report showing the spatiotemporally regulated expression of Xlr5c-like mRNA by hCG in rat periovulatory ovaries. P4/PGR mediates the LH-induced increase in Xlr5c-like mRNA. In turn, Xlr5c-like is involved in regulating the expression of specific ovulatory genes such as Snap25, Cxcr4, and Adamts1, possibly acting in the nucleus of periovulatory granulosa cells. PMID:26004213
Regulation of neuropeptide Y gene expression in rat brain.
Lindefors, N; Brené, S; Herrera-Marschitz, M; Persson, H
1990-01-01
NPY mRNA expression was studied in rat brain using in situ hybridization and RNA blot analysis. Transsynaptic regulation of NPY gene expression was specifically studied in caudate-putamen and frontoparietal (somatosensory) cortex of rats with unilateral lesion of midbrain dopamine neurons and in sham-injected animals. NPY mRNA expression in these two brain regions and the regulation of midbrain dopamine neurons were compared with that of SOM, PPT, CCK and GAD mRNA expression. Neurons expressing NPY and SOM mRNA showed a similar distribution and the expression of both NPY and SOM appears to be regulated by dopamine in a similar fashion. Following a unilateral dopamine deafferentation, the numerical density of both NPY and SOM mRNA expressing neurons almost doubled in the lesioned rat caudate-putamen with no change in the average grain density over positive neurons. Hence, in the intact caudate-putamen dopamine appears to normally suppress expression of these two neuropeptide genes. An activation of both NPY and SOM mRNA expression in many non- or low-expressing neurons is seen when the level of dopamine is decreased. In the frontoparietal cortex, on the other hand, dopamine appears to stimulate NPY and SOM gene expression. RNA blot analysis shows clear-cut changes of NPY mRNA levels in both caudate-putamen and frontoparietal cortex consistent with the changes observed using in situ hybridization. No evidence was found for a change in CCK mRNA expression by the dopamine deafferentation, while PPT mRNA expression decreased in the deafferented caudate-putamen. Consequently, dopamine exerts dissimilar effects on the expression of different neuropeptide genes, that in turn do not respond in the same way in different brain regions. Indirect evidence is also presented indicating that dopamine regulates NPY mRNA expression in a subpopulation of neurons that possibly also express GAD mRNA, both in caudate-putamen and in frontoparietal cortex.
Riesle, E; Friess, H; Zhao, L; Wagner, M; Uhl, W; Baczako, K; Gold, L I; Korc, M; Büchler, M W
1997-01-01
BACKGROUND: Transforming growth factor beta isoforms (TGF beta s) belong to a family of multifunctional regulators of cellular growth and differentiation. They are mitogenic and chemotactic for fibroblasts and are potent stimulators of extracellular matrix production (collagen) and deposition. Upregulation of TGF beta transcription has been reported for several in vivo systems during repair after injury. AIMS: To study the expression of the three mammalian isoforms of TGF beta (TGF beta 1-3) and their relation to collagen expression as a marker for fibroblast response in acute oedematous pancreatitis in rats. METHODS: Using northern blot analysis and immunohistochemistry, the expression and localisation of TGF beta isoforms, collagen, and amylase were analysed during the course of acute oedematous pancreatitis in rats, experimentally induced by intravenous caerulein infusion. RESULTS: Induction of acute pancreatitis resulted in a biphasic peak pattern of expression of TGF beta 1, beta 2, and beta 3 mRNA, with a pronounced increase from day 1 to day 3 (sixfold, 2.5-fold, fivefold, respectively) and again from day 5 to day 7 (three-fold, 2.3-fold, 3.5-fold, respectively). The temporal changes in TGF beta mRNA identically paralleled the expression in collagen mRNA. In contrast, amylase mRNA expression, used as a general indicator of acinar cell integrity, was slightly decreased after induction of acute pancreatitis. Immunohistochemical analysis of pancreatitis tissue showed that increased expression of TGF beta s was mainly present in the pancreatic acinar and ductal cells; this was evident within one day after pancreatitis induction. CONCLUSION: Overexpression of TGF beta s after induction of acute pancreatitis suggests a role for these proteins in pancreatic repair and remodelling. The increased levels of TGF beta s may help suppress immune activation, and may contribute to the increase in the extracellular matrix including collagen and to the repair of the pancreatic parenchyma. Images PMID:9155579
Liu, Cheng; Blaecher, Caroline; Flahou, Bram; Ducatelle, Richard; Linden, Sara; Haesebrouck, Freddy
2014-01-01
Helicobacter heilmannii is a zoonotic bacterium that has been associated with gastric disease in humans. In this study, the mRNA expression of mucins in the stomach of BALB/c mice was analyzed at several time points during a 1-year infection with this bacterium, during which gastric disease progressed in severity. Markers for acid production by parietal cells and mucous metaplasia were also examined. In the first 9 weeks postinfection, the mRNA expression of Muc6 was clearly upregulated in both the antrum and fundus of the stomach of H. heilmannii-infected mice. Interestingly, Muc13 was upregulated already at 1 day postinfection in the fundus of the stomach. Its expression level remained high in the stomach over the course of the infection. This mucin is, however, not expressed in a healthy stomach, and high expression of this mucin has so far only been described in gastric cancer. In the later stages of infection, mRNA expression of H+/K+-ATPase α/β and KCNQ1 decreased, whereas the expression of Muc4, Tff2, Dmbt1, and polymeric immunoglobulin receptor (pIgR) increased starting at 16 weeks postinfection onwards, suggesting the existence of spasmolytic polypeptide-expressing metaplasia in the fundus of the stomach. Mucous metaplasia present in the mucosa surrounding low-grade mucosa-associated lymphoid tissue (MALT) lymphoma-like lesions was also histologically confirmed. Our findings indicate that H. heilmannii infection causes severe gastric pathologies and alterations in the expression pattern of gastric mucins, such as Muc6 and Muc13, as well as disrupting gastric homeostasis by inducing the loss of parietal cells, resulting in the development of mucous metaplasia. PMID:24866791
Le, Hoang T. M. D.; Angotzi, Anna Rita; Ebbesson, Lars O. E.; Karlsen, Ørjan
2016-01-01
Similar to many marine teleost species, Atlantic cod undergo remarkable physiological changes during the early life stages with concurrent and profound changes in feeding biology and ecology. In contrast to the digestive system, very little is known about the ontogeny and the localization of the centers that control appetite and feed ingestion in the developing brain of fish. We examined the expression patterns of three appetite regulating factors (orexigenic: neuropeptide Y, NPY; prepro-orexin, pOX and anorexigenic: cocaine- and amphetamine-regulated transcript, CART) in discrete brain regions of developing Atlantic cod using chromogenic and double fluorescent in situ hybridization. Differential temporal and spatial expression patterns for each appetite regulator were found from first feeding (4 days post hatch; dph) to juvenile stage (76 dph). Neurons expressing NPY mRNA were detected in the telencephalon (highest expression), diencephalon, and optic tectum from 4 dph onward. CART mRNA expression had a wider distribution along the anterior-posterior brain axis, including both telencephalon and diencephalon from 4 dph. From 46 dph, CART transcripts were also detected in the olfactory bulb, region of the nucleus of medial longitudinal fascicle, optic tectum and midbrain tegmentum. At 4 and 20 dph, pOX mRNA expression was exclusively found in the preoptic region, but extended to the hypothalamus at 46 and 76 dph. Co-expression of both CART and pOX genes were also observed in several hypothalamic neurons throughout larval development. Our results show that both orexigenic and anorexigenic factors are present in the telencephalon, diencephalon and mesencephalon in cod larvae. The telencephalon mostly contains key factors of hunger control (NPY), while the diencephalon, and particularly the hypothalamus may have a more complex role in modulating the multifunctional control of appetite in this species. As the larvae develop, the overall progression in temporal and spatial complexity of NPY, CART and pOX mRNAs expression might be correlated to the maturation of appetite control regulation. These observations suggest that teleost larvae continue to develop the regulatory networks underlying appetite control after onset of exogenous feeding. PMID:27100086
Le, Hoang T M D; Angotzi, Anna Rita; Ebbesson, Lars O E; Karlsen, Ørjan; Rønnestad, Ivar
2016-01-01
Similar to many marine teleost species, Atlantic cod undergo remarkable physiological changes during the early life stages with concurrent and profound changes in feeding biology and ecology. In contrast to the digestive system, very little is known about the ontogeny and the localization of the centers that control appetite and feed ingestion in the developing brain of fish. We examined the expression patterns of three appetite regulating factors (orexigenic: neuropeptide Y, NPY; prepro-orexin, pOX and anorexigenic: cocaine- and amphetamine-regulated transcript, CART) in discrete brain regions of developing Atlantic cod using chromogenic and double fluorescent in situ hybridization. Differential temporal and spatial expression patterns for each appetite regulator were found from first feeding (4 days post hatch; dph) to juvenile stage (76 dph). Neurons expressing NPY mRNA were detected in the telencephalon (highest expression), diencephalon, and optic tectum from 4 dph onward. CART mRNA expression had a wider distribution along the anterior-posterior brain axis, including both telencephalon and diencephalon from 4 dph. From 46 dph, CART transcripts were also detected in the olfactory bulb, region of the nucleus of medial longitudinal fascicle, optic tectum and midbrain tegmentum. At 4 and 20 dph, pOX mRNA expression was exclusively found in the preoptic region, but extended to the hypothalamus at 46 and 76 dph. Co-expression of both CART and pOX genes were also observed in several hypothalamic neurons throughout larval development. Our results show that both orexigenic and anorexigenic factors are present in the telencephalon, diencephalon and mesencephalon in cod larvae. The telencephalon mostly contains key factors of hunger control (NPY), while the diencephalon, and particularly the hypothalamus may have a more complex role in modulating the multifunctional control of appetite in this species. As the larvae develop, the overall progression in temporal and spatial complexity of NPY, CART and pOX mRNAs expression might be correlated to the maturation of appetite control regulation. These observations suggest that teleost larvae continue to develop the regulatory networks underlying appetite control after onset of exogenous feeding.
Larsen, Janice K; Mitchell, Jennifer W; Best, Philip M
2002-05-01
Two distinct calcium currents are present in mammalian cardiac myocytes. Utilizing quantitative RT-PCR methods, we have analysed the expression patterns and abundance of four calcium channel alpha 1 subunit mRNAs in different regions of the rat heart and compared them to the known density of calcium currents recorded from rat atria. Our results show that Ca(V)1.2 is the most abundant of the four alpha 1 subunit transcripts in the rat heart. The Ca(V)1.2 message is more abundant in ventricle than in atria and does not vary in expression as a function of developmental age. Ca(V)2.3, Ca(V)3.1 and Ca(V)3.2 mRNAs are 10-100 times less abundant than Ca(V)1.2. Interestingly, Ca(V)2.3, Ca(V)3.1 and Ca(V)3.2 are expressed in both atria and ventricle. The abundance of atrial Ca(V)3.1 mRNA does not change significantly during development and remains high in older animals. In contrast, levels of atrial Ca(V)3.2 mRNA are high in embryonic tissue and at 3- and 4-weeks postnatal but become undetectable at 5 weeks. Expression of atrial Ca(V)2.3 mRNA is highest at 4-weeks postnatal and then declines gradually. We have previously documented that the LVA calcium current density is highest within 4-5 weeks after birth and then declines gradually reaching less than 30% of its maximal value at 12-14 weeks. The complex relationship between atrial LVA current density and the abundance of Ca(V)2.3, Ca(V)3.1 and Ca(V)3.2 mRNA suggests that their contribution to the cardiac LVA current may vary as a function of postnatal age. Copyright 2002 Academic Press.
Zhu, Huaping; Liu, Zhigang; Gao, Fengying; Lu, Maixin; Liu, Yujiao; Su, Huanhuan; Ma, Dongmei; Ke, Xiaoli; Wang, Miao; Cao, Jianmeng; Yi, Mengmeng
2018-05-28
Tilapia (Oreochromis mossambicus, O. urolepis hornorum, their hybrids O. mossambicus♀ × O. hornorum♂ and O. hornorum♀ × O. mossambicus♂) were exposed to a high salinity environment to evaluate their osmoregulatory responses. The plasma osmolality of all the tilapia species were elevated with the salinity challenge. The activities of Na + /K + -ATPase (NKA) in both the gill and kidney showed a similar increased change tendency compared with the control. The distribution of NKA α1 mRNA in all the examined tissues suggested that NKA α1 has a possible housekeeping role for this isoform. The amount of NKA α1 mRNA in the gill and kidney was elevated in the four fishes with similar expression patterns after transfer from freshwater to seawater. The NKAα1 mRNA expression levels in the gill reached their peak level at 24 h after transfer (P < 0.01) compared to the freshwater group, following decreases in the pretreatment level at 48 h (P > 0.05). However, the NKAα1 mRNA expression levels in the kidney were not significantly affected with increasing environmental salinity (P > 0.05). The differences in the responses to saltwater challenge may be associated with differences in saltwater tolerance between the four tilapia. The drastic increase in the plasma osmolality, NKA activities and mRNA expression suggested that the hybrids (O. mossambicus♀ × O. hornorum♂) possess heterosis in salinity responsiveness compared to that of both the parents, indicating a maternal effect on the salinity tolerance of the tilapia hybrids. This study provides a theoretical basis to further study the mechanism of fish osmoregulation response to salinity challenge. Copyright © 2018 Elsevier Inc. All rights reserved.
Gentili, Sheridan; Morrison, Janna L; McMillen, I Caroline
2009-06-01
Fetal adaptations to periods of substrate deprivation can result in the programming of glucose intolerance, insulin resistance, and metabolic dysfunction in later life. Placental insufficiency can be associated with either sparing or sacrifice of fetal liver growth, and these different responses may have different metabolic consequences. It is unclear what intrahepatic mechanisms determine the differential responses of the fetal liver to substrate restriction. We investigated the effects of placental restriction (PR) on liver growth and the hepatic expression of SLC2A1, IGF1, IGF2, IGF1R, IGF2R, PPARGC1A, PPARA, PRKAA1, PRKAA2, PCK2, and HSDL1 mRNA in fetal sheep at 140-145 days of gestation. A mean gestational arterial partial pressure of oxygen less than 17 mmHg was defined as hypoxic, and a relative liver of weight more than 2 SD below the mean liver weight of controls was defined as reduced liver growth. Fetuses therefore were defined as control-normoxic (C-N; n = 9), PR-normoxic (PR-N; n = 7), PR-hypoxic (PR-H; n = 8), or PR-hypoxic reduced liver growth (PR-H RLG; n = 4). Hepatic SLC2A1 mRNA expression was highest (P < 0.05) in the PR-H fetuses, in which liver growth was maintained. Expression of IGF1 mRNA was decreased (P < 0.05) only in the PR-H RLG group. Hepatic expression of HSDL1, PPARGC1A, and PCK2 mRNA also were increased (P < 0.05) in the PR-H RLG fetuses. The present study highlights that intrahepatic responses to fetal substrate restriction may exist that protect the liver from decreased growth and, potentially, from a decreased responsiveness to the actions of insulin in postnatal life.
Fung, Samantha J.; Joshi, Dipesh; Allen, Katherine M.; Sivagnanasundaram, Sinthuja; Rothmond, Debora A.; Saunders, Richard; Noble, Pamela L.; Webster, Maree J.; Shannon Weickert, Cynthia
2011-01-01
Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37) and matched controls (n = 37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia. PMID:21966452
Long-distance transport of Gibberellic Acid Insensitive mRNA in Nicotiana benthamiana
2013-01-01
Background The Gibberellic Acid (GA) signal is governed by the GAI (Gibberellic Acid Insensitive) repressor, which is characterized by a highly conserved N-terminal DELLA domain. Deletion of the DELLA domain results in constitutive suppression of GA signaling. As the GAI transcript is transportable in phloem elements, a Δ-DELLA GAI (gai) transgenic stock plant can reduce the stature of a scion through transport of gai mRNA from the stock. However, little is known about the characteristics of a scion on a gai stock. Results Arabidopsis Δ-DELLA GAI (gai) was fused with a T7 epitope tag and expressed under the control of a companion cell-specific expression promoter, Commelina yellow mottle virus promoter (CoYMVp), to enhance transport in the phloem. The CoYMVp:Atgai-T7 (CgT) transgenic Nicotiana benthamiana exhibited a dwarf phenotype and lower sensitivity to GA enhancement of shoot stature. A wild-type (WT) scion on a CgT stock contained both Atgai-T7 mRNA and the translated product. Microarray analysis to clarify the effect of the CgT stock on the gene expression pattern in the scion clearly revealed that the WT scions on CgT stocks had fewer genes whose expression was altered in response to GA treatment. An apple rootstock variety, Malus prunifolia, integrating CoYMVp:Atgai moderately reduced the tree height of the apple cultivar scion. Conclusions Our results demonstrate that Atgai mRNA can move from companion cells to sieve tubes and that the translated product remains at the sites to which it is transported, resulting in attenuation of GA responses by reducing the expression of many genes. The induction of semi-dwarfism in an apple cultivar on root stock harbouring Atgai suggests that long-distance transport of mRNA from grafts would be applicable to horticulture crops. PMID:24144190
2012-01-01
Background Esophageal squamous cell carcinoma (ESCC), the predominant histological subtype of esophageal cancer, is characterized by high mortality. Previous work identified important mRNA expression differences between normal and tumor cells; however, to date there are limited ex vivo studies examining expression changes occurring during normal esophageal squamous cell differentiation versus those associated with tumorigenesis. In this study, we used a unique tissue microdissection strategy and microarrays to measure gene expression profiles associated with cell differentiation versus tumorigenesis in twelve cases of patient-matched normal basal squamous epithelial cells (NB), normal differentiated squamous epithelium (ND), and squamous cell cancer. Class comparison and pathway analysis were used to compare NB versus tumor in a search for unique therapeutic targets. Results As a first step towards this goal, gene expression profiles and pathways were evaluated. Overall, ND expression patterns were markedly different from NB and tumor; whereas, tumor and NB were more closely related. Tumor showed a general decrease in differentially expressed genes relative to NB as opposed to ND that exhibited the opposite trend. FSH and IgG networks were most highly dysregulated in normal differentiation and tumorigenesis, respectively. DNA repair pathways were generally elevated in NB and tumor relative to ND indicating involvement in both normal and pathological growth. PDGF signaling pathway and 12 individual genes unique to the tumor/NB comparison were identified as therapeutic targets, and 10 associated ESCC gene-drug pairs were identified. We further examined the protein expression level and the distribution patterns of four genes: ODC1, POSTN, ASPA and IGF2BP3. Ultimately, three genes (ODC1, POSTN, ASPA) were verified to be dysregulated in the same pattern at both the mRNA and protein levels. Conclusions These data reveal insight into genes and molecular pathways mediating ESCC development and provide information potentially useful in designing novel therapeutic interventions for this tumor type. PMID:22280838
A transgenic approach to study argininosuccinate synthetase gene expression
2014-01-01
Background Argininosuccinate synthetase (ASS) participates in urea, nitric oxide and arginine production. Besides transcriptional regulation, a post-transcriptional regulation affecting nuclear precursor RNA stability has been reported. To study whether such post-transcriptional regulation underlines particular temporal and spatial ASS expression, and to investigate how human ASS gene behaves in a mouse background, a transgenic mouse system using a modified bacterial artificial chromosome carrying the human ASS gene tagged with EGFP was employed. Results Two lines of ASS-EGFP transgenic mice were generated: one with EGFP under transcriptional control similar to that of the endogenous ASS gene, another with EGFP under both transcriptional and post-transcriptional regulation as that of the endogenous ASS mRNA. EGFP expression in the liver, the organ for urea production, and in the intestine and kidney that are responsible for arginine biosynthesis, was examined. Organs taken from embryos E14.5 stage to young adult were examined under a fluorescence microscope either directly or after cryosectioning. The levels of EGFP and endogenous mouse Ass mRNAs were also quantified by S1 nuclease mapping. EGFP fluorescence and EGFP mRNA levels in both the liver and kidney were found to increase progressively from embryonic stage toward birth. In contrast, EGFP expression in the intestine was higher in neonates and started to decline at about 3 weeks after birth. Comparison between the EGFP profiles of the two transgenic lines indicated the developmental and tissue-specific regulation was mainly controlled at the transcriptional level. The ASS transgene was of human origin. EGFP expression in the liver followed essentially the mouse Ass pattern as evidenced by zonation distribution of fluorescence and the level of EGFP mRNA at birth. However, in the small intestine, Ass mRNA level declined sharply at 3 week of age, and yet substantial EGFP mRNA was still detectable at this stage. Thus, the time course of EGFP expression in the transgenic mice resembled that of the human ASS gene. Conclusions We demonstrate that the transgenic mouse system reported here has the merit of sensitivity and direct visualization advantage, and is ideal for annotating temporal and spatial expression profiles and the regulation mode of the ASS gene. PMID:24884799
Overexpression of peptide deformylase in breast, colon, and lung cancers.
Randhawa, Harsharan; Chikara, Shireen; Gehring, Drew; Yildirim, Tuba; Menon, Jyotsana; Reindl, Katie M
2013-07-01
Human mitochondrial peptide deformylase (PDF) has been proposed as a novel cancer therapeutic target. However, very little is known about its expression and regulation in human tissues. The purpose of this study was to characterize the expression pattern of PDF in cancerous tissues and to identify mechanisms that regulate its expression. The mRNA expression levels of PDF and methionine aminopeptidase 1D (MAP1D), an enzyme involved in a related pathway with PDF, were determined using tissue panels containing cDNA from patients with various types of cancer (breast, colon, kidney, liver, lung, ovarian, prostate, or thyroid) and human cell lines. Protein levels of PDF were also determined in 2 colon cancer patients via western blotting. Colon cancer cells were treated with inhibitors of ERK, Akt, and mTOR signaling pathways and the resulting effects on PDF and MAP1D mRNA levels were determined by qPCR for colon and lung cancer cell lines. Finally, the effects of a PDF inhibitor, actinonin, on the proliferation of breast, colon, and prostate cell lines were determined using the CyQUANT assay. PDF and MAP1D mRNA levels were elevated in cancer cell lines compared to non-cancer lines. PDF mRNA levels were significantly increased in breast, colon, and lung cancer samples while MAP1D mRNA levels were increased in just colon cancers. The expression of PDF and MAP1D varied with stage in these cancers. Further, PDF protein expression was elevated in colon cancer tissue samples. Inhibition of the MEK/ERK, but not PI3K or mTOR, pathway reduced the expression of PDF and MAP1D in both colon and lung cancer cell lines. Further, inhibition of PDF with actinonin resulted in greater reduction of breast, colon, and prostate cancer cell proliferation than non-cancer cell lines. This is the first report showing that PDF is over-expressed in breast, colon, and lung cancers, and the first evidence that the MEK/ERK pathway plays a role in regulating the expression of PDF and MAP1D. The over-expression of PDF in several cancers and the inhibition of cancer cell growth by a PDF inhibitor suggest this enzyme may act as an oncogene to promote cancer cell proliferation.
Overexpression of peptide deformylase in breast, colon, and lung cancers
2013-01-01
Background Human mitochondrial peptide deformylase (PDF) has been proposed as a novel cancer therapeutic target. However, very little is known about its expression and regulation in human tissues. The purpose of this study was to characterize the expression pattern of PDF in cancerous tissues and to identify mechanisms that regulate its expression. Methods The mRNA expression levels of PDF and methionine aminopeptidase 1D (MAP1D), an enzyme involved in a related pathway with PDF, were determined using tissue panels containing cDNA from patients with various types of cancer (breast, colon, kidney, liver, lung, ovarian, prostate, or thyroid) and human cell lines. Protein levels of PDF were also determined in 2 colon cancer patients via western blotting. Colon cancer cells were treated with inhibitors of ERK, Akt, and mTOR signaling pathways and the resulting effects on PDF and MAP1D mRNA levels were determined by qPCR for colon and lung cancer cell lines. Finally, the effects of a PDF inhibitor, actinonin, on the proliferation of breast, colon, and prostate cell lines were determined using the CyQUANT assay. Results PDF and MAP1D mRNA levels were elevated in cancer cell lines compared to non-cancer lines. PDF mRNA levels were significantly increased in breast, colon, and lung cancer samples while MAP1D mRNA levels were increased in just colon cancers. The expression of PDF and MAP1D varied with stage in these cancers. Further, PDF protein expression was elevated in colon cancer tissue samples. Inhibition of the MEK/ERK, but not PI3K or mTOR, pathway reduced the expression of PDF and MAP1D in both colon and lung cancer cell lines. Further, inhibition of PDF with actinonin resulted in greater reduction of breast, colon, and prostate cancer cell proliferation than non-cancer cell lines. Conclusions This is the first report showing that PDF is over-expressed in breast, colon, and lung cancers, and the first evidence that the MEK/ERK pathway plays a role in regulating the expression of PDF and MAP1D. The over-expression of PDF in several cancers and the inhibition of cancer cell growth by a PDF inhibitor suggest this enzyme may act as an oncogene to promote cancer cell proliferation. PMID:23815882
Smith, R L; Lin, J; Trindade, M C; Shida, J; Kajiyama, G; Vu, T; Hoffman, A R; van der Meulen, M C; Goodman, S B; Schurman, D J; Carter, D R
2000-01-01
The normal loading of joints during daily activities causes the articular cartilage to be exposed to high levels of intermittent hydrostatic pressure. This study quantified effects of intermittent hydrostatic pressure on expression of mRNA for important extracellular matrix constituents. Normal adult bovine articular chondrocytes were isolated and tested in primary culture, either as high-density monolayers or formed aggregates. Loaded cells were exposed to 10 MPa of intermittent hydrostatic pressure at a frequency of 1 Hz for periods of 2, 4, 8, 12, and 24 hrs. Other cells were intermittently loaded for a period of 4 hrs per day for 4 days. Semiquantitative reverse transcription polymerase chain reaction assays were used to assess mRNA signal levels for collagen types II and I and aggrecan. The results showed that type II collagen mRNA signal levels exhibited a biphasic pattern, with an initial increase of approximately five-fold at 4 and 8 hrs that subsequently decreased by 24 hrs. In contrast, aggrecan mRNA signal increased progressively up to three-fold throughout the loading period. Changing the loading profile to 4 hrs per day for 4 days increased the mRNA signal levels for type II collagen nine-fold and for aggrecan twenty-fold when compared to unloaded cultures. These data suggest that specific mechanical loading protocols may be required to optimally promote repair and regeneration of diseased joints.
Trivedi, Amit Kumar; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod
2015-06-01
Eukaryotic cells produce chemical energy in the form of ATP by oxidative phosphorylation of metabolic fuels via a series of enzyme mediated biochemical reactions. We propose that the rates of these reactions are altered, as per energy needs of the seasonal metabolic states in avian migrants. To investigate this, blackheaded buntings were photoperiodically induced with non-migratory, premigratory, migratory and post-migratory phenotypes. High plasma levels of free fatty acids, citrate (an intermediate that begins the TCA cycle) and malate dehydrogenase (mdh, an enzyme involved at the end of the TCA cycle) confirmed increased availability of metabolic reserves and substrates to the TCA cycle during the premigratory and migratory states, respectively. Further, daily expression pattern of genes coding for enzymes involved in the oxidative decarboxylation of pyruvate to acetyl-CoA (pdc and pdk) and oxidative phosphorylation in the TCA cycle (cs, odgh, sdhd and mdh) was monitored in the hypothalamus and liver. Reciprocal relationship between pdc and pdk expressions conformed with the altered requirements of acetyl-CoA for the TCA cycle in different metabolic states. Except for pdk, all genes had a daily expression pattern, with high mRNA expression during the day in the premigratory/migratory phenotypes, and at night (cs, odhg, sdhd and mdh) in the nonmigratory phenotype. Differences in mRNA expression patterns of pdc, sdhd and mdh, but not of pdk, cs and odgh, between the hypothalamus and liver indicated a tissue dependent metabolism in buntings. These results suggest the adaptation of oxidative phosphorylation pathway(s) at gene levels to the seasonal alternations in metabolism in migratory songbirds. Copyright © 2015 Elsevier Inc. All rights reserved.
Whitelaw, Christine Margaret; Robinson, Jane Elizabeth; Hastie, Peter Mark; Padmanabhan, Vasantha; Evans, Neil Price
2012-03-01
The neurotransmitter galanin has been implicated in the steroidogenic regulation of reproduction based on work mainly conducted in rodents. This study investigated the temporal changes in the expression of galanin and its three receptor isoforms and GNRH and GNRHR mRNA in specific hypothalamic nuclei known to be involved in the regulation of reproductive cyclicity, namely the medial pre-optic area (mPOA), the rostral mPOA/organum vasculosum of the lamina terminalis, the paraventricular nucleus and the arcuate nucleus using an ovine model. Following synchronisation of their oestrous cycles, tissues were collected from ewes at five time points: the early follicular, mid follicular (MF) and late follicular phases and the early luteal and mid luteal phases. The results indicated significant differences in regional expression of most of the genes studied, with galanin mRNA expression being highest during the MF phase at the start of the GNRH/LH surge and the expression of the three galanin receptor (GalR) isoforms and GNRH and its receptor highest during the luteal phase. These findings are consistent with a role for galanin in the positive feedback effects of oestradiol (E(2)) on GNRH secretion and a role for progesterone induced changes in the pattern of expression of GalRs in the regulation of the timing of E(2)'s positive feedback through increased sensitivity of galanin-sensitive systems to secreted galanin.
Olesen, Mikkel Vestergaard; Gøtzsche, Casper René; Christiansen, Søren Hofman; Woldbye, David Paul Drucker
2018-03-21
Electroconvulsive therapy (ECT) is regularly used to treat patients with severe major depression, but the mechanisms underlying the beneficial effects remain uncertain. Electroconvulsive stimulation (ECS) regulates diverse neurotransmitter systems and induces anticonvulsant effects, properties implicated in mediating therapeutic effects of ECT. Somatostatin (SST) is a candidate for mediating these effects because it is upregulated by ECS and exerts seizure-suppressant effects. However, little is known about how ECS might affect the SST receptor system. The present study examined effects of single and repeated ECS on the synthesis of SST receptors (SSTR1-4) and SST, and SST receptor binding ([125I]LTT-SST28) in mouse hippocampal regions and piriform/parietal cortices. A complex pattern of plastic changes was observed. In the dentate gyrus, SST and SSTR1 expression and the number of hilar SST immunoreactive cells were significantly increased at 1 week after repeated ECS while SSTR2 expression was downregulated by single ECS, and SSTR3 mRNA and SST binding were elevated 24 h after repeated ECS. In hippocampal CA1 and parietal/piriform cortices, we found elevated SST mRNA levels 1 week after repeated ECS and elevated SST binding after single ECS and 24 h after repeated ECS. In hippocampal CA3, repeated ECS increased SST expression 1 week after and SST binding 24 h after. In the parietal cortex, SSTR2 mRNA expression was downregulated after single ECS while SSTR4 mRNA expression was upregulated 24 h after repeated ECS. Considering the known anticonvulsant effects of SST, it is likely that these ECS-induced neuroplastic changes in the SST system could participate in modulating neuronal excitability and potentially contribute to therapeutic effects of ECT.
Giantin, M; Aresu, L; Aricò, A; Gelain, M E; Riondato, F; Martini, V; Comazzi, S; Dacasto, M
2013-04-15
The tyrosine-kinase receptor c-KIT (c-KIT) plays an important role in proliferation, survival and differentiation of progenitor cells in normal hematopoietic cells. In human hematological malignancies, c-KIT is mostly expressed by progenitor cell neoplasia and seldom by those involving mature cells. Tyrosine kinase inhibitors (TKIs) are actually licensed for the first- and second-line treatment of human hematologic disorders. Aim of the present study was to evaluate c-KIT mRNA and protein expression and complementary DNA (cDNA) mutations in canine leukemia. Eleven acute lymphoblastic leukemia (ALL) and acute undifferentiated leukemia (AUL) and 12 chronic lymphocytic leukemia (CLL) were enrolled in this study. The amounts of c-KIT mRNA and protein were determined, in peripheral blood samples, by using quantitative real time RT-PCR, flow cytometry and immunocytochemistry, respectively. The presence of mutations on c-KIT exons 8-11 and 17 were investigated by cDNA sequencing. Higher amounts of c-KIT mRNA were found in ALL/AUL compared to CLL, and this latter showed a lower pattern of gene expression. Transcriptional data were confirmed at the protein level. No significant gain-of-function mutations were ever observed in both ALL/AUL and CLL. Among canine hematological malignancies, ALL/AUL typically show a very aggressive biological behavior, partly being attributable to the lack of efficacious therapeutic options. The high level of c-KIT expression found in canine ALL/AUL might represent the rationale for using TKIs in future clinical trials. Copyright © 2013 Elsevier B.V. All rights reserved.
Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers
2011-01-01
Background One key step in gene expression is the biogenesis of mRNA ribonucleoparticle complexes (mRNPs). Formation of the mRNP requires the participation of a number of conserved factors such as the THO complex. THO interacts physically and functionally with the Sub2/UAP56 RNA-dependent ATPase, and the Yra1/REF1/ALY RNA-binding protein linking transcription, mRNA export and genome integrity. Given the link between genome instability and cancer, we have performed a comparative analysis of the expression patterns of THOC1, a THO complex subunit, and ALY in tumor samples. Methods The mRNA levels were measured by quantitative real-time PCR and hybridization of a tumor tissue cDNA array; and the protein levels and distribution by immunostaining of a custom tissue array containing a set of paraffin-embedded samples of different tumor and normal tissues followed by statistical analysis. Results We show that the expression of two mRNP factors, THOC1 and ALY are altered in several tumor tissues. THOC1 mRNA and protein levels are up-regulated in ovarian and lung tumors and down-regulated in those of testis and skin, whereas ALY is altered in a wide variety of tumors. In contrast to THOC1, ALY protein is highly detected in normal proliferative cells, but poorly in high-grade cancers. Conclusions These results suggest a differential connection between tumorogenesis and the expression levels of human THO and ALY. This study opens the possibility of defining mRNP biogenesis factors as putative players in cell proliferation that could contribute to tumor development. PMID:21329510
Mallbris, Lotus; Carlén, Lina; Wei, Tianling; Heilborn, Johan; Nilsson, Margareta Frohm; Granath, Fredrik; Ståhle, Mona
2010-05-01
Reduced production of antimicrobial peptides was proposed to contribute to susceptibility for skin infections in atopic dermatitis (AD). Focusing on the human cathelicidin protein, hCAP18, the aim of the present study was to explore whether reduced hCAP18 expression is a constitutive trait in AD and if established inducers affect the expression of hCAP18 in the skin of AD. First, we compared levels of hCAP18 mRNA between lesional skin in AD and psoriasis and verified significantly lower expression of hCAP18 mRNA in AD. In non-lesional skin, however, there was no difference between AD, psoriasis and healthy, indicating that there is no constitutive defect in the production of hCAP18 in AD patients. In healthy skin, hCAP18 was reported to be rapidly induced following wounding and here we verified this pattern in healthy controls and in psoriasis. In AD lesions, however, the expression of hCAP18 mRNA was markedly suppressed following wounding. Obviously, the inflammation in AD lesions neutralizes the expected induction of hCAP18 and even induces suppression. Notably, the mechanism to upregulate hCAP18 following vitamin D treatment was functional in lesional as well as in non-lesional AD indicating that the CAMP gene is normally regulated in this respect. In addition, cultured primary keratinocytes from non-lesional skin of psoriasis, AD and healthy skin, upregulated hCAP18mRNA following treatment with vitamin D. Itching is a hallmark of AD and scratching inevitably injures the skin. Failure to upregulate hCAP18 in eczema following injury is likely to affect antimicrobial protection and tissue repair in AD.
Sequence and expression analyses of porcine ISG15 and ISG43 genes.
Huang, Jiangnan; Zhao, Shuhong; Zhu, Mengjin; Wu, Zhenfang; Yu, Mei
2009-08-01
The coding sequences of porcine interferon-stimulated gene 15 (ISG15) and the interferon-stimulated gene (ISG43) were cloned from swine spleen mRNA. The amino acid sequences deduced from porcine ISG15 and ISG43 genes coding sequence shared 24-75% and 29-83% similarity with ISG15s and ISG43s from other vertebrates, respectively. Structural analyses revealed that porcine ISG15 comprises two ubiquitin homologues motifs (UBQ) domain and a conserved C-terminal LRLRGG conjugating motif. Porcine ISG43 contains an ubiquitin-processing proteases-like domain. Phylogenetic analyses showed that porcine ISG15 and ISG43 were mostly related to rat ISG15 and cattle ISG43, respectively. Using quantitative real-time PCR assay, significant increased expression levels of porcine ISG15 and ISG43 genes were detected in porcine kidney endothelial cells (PK15) cells treated with poly I:C. We also observed the enhanced mRNA expression of three members of dsRNA pattern-recognition receptors (PRR), TLR3, DDX58 and IFIH1, which have been reported to act as critical receptors in inducing the mRNA expression of ISG15 and ISG43 genes. However, we did not detect any induced mRNA expression of IFNalpha and IFNbeta, suggesting that transcriptional activations of ISG15 and ISG43 were mediated through IFN-independent signaling pathway in the poly I:C treated PK15 cells. Association analyses in a Landrace pig population revealed that ISG15 c.347T>C (BstUI) polymorphism and the ISG43 c.953T>G (BccI) polymorphism were significantly associated with hematological parameters and immune-related traits.
Sooranna, S R; Engineer, N; Liang, Z; Bennett, P R; Johnson, M R
2007-07-01
IL-1beta and stretch increase uterine smooth muscle cell (USMC) prostaglandin H synthase 2 (PGHS-2) and interleukin (IL)-8 mRNA expression in a mitogen-activated protein kinase (MAPK) dependent mechanism. We have tested our hypothesis that stretch and IL-1beta activate different components of the MAPK cascade in USMC and investigated the effects of specific MAPK inhibitors on these components. Further, we have used a Jun N-terminal kinase (JNK) and p38 activator, anisomycin, to compare the effect of differential MAPK activation on the expression of PGHS-2, IL-8 and oxytocin receptor (OTR) mRNA with that seen in response to stretch and IL-1beta. Stretch, IL-1beta and anisomycin activated similar components of the MAPK cascade and specific inhibitors of MAPK altered phosphorylation of MAPK and downstream cascade components as expected. Expression of OTR mRNA was increased by stretch and anisomycin in a MAPK-independent manner. All three stimuli increased PGHS-2 and IL-8 mRNA expression in a MAPK-dependent manner, but while the MAPK inhibitors reduced the IL-1beta-induced activation of activating transcription factor (ATF)-2, liver activating protein (LAP) and c-jun, the stretch-induced increase in LAP was unaffected by MAPK-inhibition and only JNK inhibition appeared to reduce c-jun activation. These observations show that stretch, IL-1beta and anisomycin activate the same components of the MAPK cascade, but differentially activate LAP and liver inhibitory protein (LIP) perhaps accounting for the increase in OTR by stretch and anisomycin but not IL-1beta observed in this study.
Spary, E J; Maqbool, A; Batten, T F C
2010-06-01
Oestrogen is capable of modulating autonomic outflow and baroreflex function via actions on groups of neurones in the brainstem. We investigated the presence of oestrogen receptor (ER) alpha in a part of the nucleus of the solitary tract (NTS) associated with central cardiovascular control, aiming to determine whether ERalpha mRNA and protein expression is correlated with levels of circulating oestrogen during the oestrous cycle. Polymerase chain reaction (PCR) detected ERalpha mRNA in the NTS at each stage of the oestrous cycle, from ovariectomised, sham-operated and male rats. Real-time PCR showed variations in ERalpha mRNA expression during the oestrous cycle, with the highest levels seen in oestrus, and lowest levels in metoestrus (P < 0.05 versus oestrus) and proestrus (P < 0.05 versus oestrus). Expression in males was lower than in dioestrus and oestrus females (P < 0.05). After ovariectomy, ERalpha mRNA levels were decreased compared to sham-operated animals (P < 0.01). Confocal fluorescence immunohistochemistry with stereological analysis showed that numbers of ERalpha immunoreactive cell nuclei per mm(3) of tissue in the caudal NTS were significantly greater in proestrus than in other groups of rats (P < 0.05). There were also differences among the groups in the extent of colocalisation of ERalpha in neurones immunoreactive for tyrosine hydroxylase and nitric oxide synthase. These results imply a complex pattern of region-specific oestrogen signalling in the NTS and suggest that ERalpha expression in this important autonomic nucleus may be related to circulating oestrogen levels. This may have consequences for the regulation of autonomic tone and baroreflex sensitivity when oestrogen levels decline, for example following menopause.
RNA-sequencing quantification of hepatic ontogeny of phase-I enzymes in mice.
Peng, Lai; Cui, Julia Y; Yoo, Byunggil; Gunewardena, Sumedha S; Lu, Hong; Klaassen, Curtis D; Zhong, Xiao-Bo
2013-12-01
Phase-I drug metabolizing enzymes catalyze reactions of hydrolysis, reduction, and oxidation of drugs and play a critical role in drug metabolism. However, the functions of most phase-I enzymes are not mature at birth, which markedly affects drug metabolism in newborns. Therefore, characterization of the expression profiles of phase-I enzymes and the underlying regulatory mechanisms during liver maturation is needed for better estimation of using drugs in pediatric patients. The mouse is an animal model widely used for studying the mechanisms in the regulation of developmental expression of phase-I genes. Therefore, we applied RNA sequencing to provide a "true quantification" of the mRNA expression of phase-I genes in the mouse liver during development. Liver samples of male C57BL/6 mice at 12 different ages from prenatal to adulthood were used for defining the ontogenic mRNA profiles of phase-I families, including hydrolysis: carboxylesterase (Ces), paraoxonase (Pon), and epoxide hydrolase (Ephx); reduction: aldo-keto reductase (Akr), quinone oxidoreductase (Nqo), and dihydropyrimidine dehydrogenase (Dpyd); and oxidation: alcohol dehydrogenase (Adh), aldehyde dehydrogenase (Aldh), flavin monooxygenases (Fmo), molybdenum hydroxylase (Aox and Xdh), cytochrome P450 (P450), and cytochrome P450 oxidoreductase (Por). Two rapidly increasing stages of total phase-I gene expression after birth reflect functional transition of the liver during development. Diverse expression patterns were identified, and some large gene families contained the mRNA of genes that are enriched at different stages of development. Our study reveals the mRNA abundance of phase-I genes in the mouse liver during development and provides a valuable foundation for mechanistic studies in the future.
Moutsimilli, Larissa; Farley, Severine; El Khoury, Marie-Anne; Chamot, Christophe; Sibarita, Jean-Baptiste; Racine, Victor; El Mestikawy, Salah; Mathieu, Flavie; Dumas, Sylvie; Giros, Bruno; Tzavara, Eleni T
2008-03-01
Recently the two vesicular-glutamate-transporters VGLUT1 and VGLUT2 have been cloned and characterized. VGLUT1 and VGLUT2 together label all glutamatergic neurons, but because of their distinct expression patterns in the brain they facilitate our ability to define between a VGLUT1-positive cortical and a VGLUT2-positive subcortical glutamatergic systems. We have previously demonstrated an increased cortical VGLUT1 expression as marker of antidepressant activity. Here, we assessed the effects of different psychotropic drugs on brain VGLUT2 mRNA and protein expression. The typical antipsychotic haloperidol, and the atypicals clozapine and risperidone increased VGLUT2 mRNA selectively in the central medial/medial parafascicular, paraventricular and intermediodorsal thalamic nuclei; VGLUT2 protein was accordingly amplified in paraventricular and ventral striatum and in prefrontal cortex. The antidepressants fluoxetine and desipramine and the sedative anxiolytic diazepam had no effect. These results highlight the implication of thalamo-limbic glutamatergic pathways in the action of antipsychotics. Increased VGLUT2 expression in these neurons might constitute a marker for antipsychotic activity and subcortical glutamate neurotransmission might be a possible novel target for future generation antipsychotics.
Methylation pattern of IFNG in periapical granulomas and radicular cysts.
Campos, Kelma; Gomes, Carolina Cavaliéri; de Fátima Correia-Silva, Jeane; Farias, Lucyana Conceição; Fonseca-Silva, Thiago; Bernardes, Vanessa Fátima; Pereira, Cláudia Maria; Gomez, Ricardo Santiago
2013-04-01
Interferon-γ plays an important role in the pathogenesis of periapical lesions, and the methylation of IFNG has been associated with transcriptional inactivation. The purpose of the present study was to investigate IFNG promoter methylation in association with gene transcription and protein levels in periapical granulomas and radicular cysts. Methylation-specific polymerase chain reaction was used to assess the DNA methylation pattern of the IFNG gene in 16 periapical granulomas and 13 radicular cyst samples. The transcription levels of IFNG mRNA were verified by quantitative real-time polymerase chain reaction, and protein expression was evaluated by immunohistochemistry. All the periapical lesion samples exhibited partial or total methylation of the IFNG gene. In addition, an increased methylation profile was found in radicular cysts compared with periapical granulomas. Increased IFNG mRNA expression was observed in the partially methylated periapical lesion samples relative to the samples that were completely methylated. The present study provides the first evidence of the possible impact of IFNG methylation on IFNG transcription in periapical lesions. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Kilwinski, J; Berger, T; Mpalaskas, J; Reuter, S; Flick, W; Kern, P
1999-01-01
It has been proposed that CD30, a member of the tumour necrosis factor (TNF) receptor superfamily, is preferentially up-regulated on Th2-type human T cells. In order to investigate a correlation between infection with Echinococcus multilocularis and CD30 expression, we analysed regulation of CD30 mRNA, a variant form of CD30 mRNA (CD30v) and CD30 ligand (CD30L) mRNA expression on PBMC from patients with alveolar echinococcosis (AE) using reverse transcriptase-polymerase chain reaction (RT-PCR). In PBMC of patients with AE as well as healthy donors, spontaneous expression of CD30L mRNA and the CD30v mRNA could be detected. However, the intact form of CD30 mRNA could be detected neither in freshly isolated PBMC of patients nor in PBMC of healthy individuals. Expression of CD30L mRNA and the variant form of CD30 mRNA was frequently detected at individual time points during 72 h of culture of PBMC stimulated with crude Echinococcus antigen. In contrast to CD30v or CD30L mRNA expression, induction of CD30 mRNA expression was detected only in three out of six (50%) healthy donors and in 10 out of 21 (48%) patients with alveolar echinococcosis after 72 h of incubation. As a control, mitogenic stimulation of PBMC of both healthy individuals and infected patients led to expression of intact CD30 mRNA within 24 h of culture. These data demonstrate the different expression of two different forms of CD30 mRNA in PBMC of human individuals. The specific induction of CD30 expression is correlated only in rare cases with the clinical status of patients with AE, indicating the lack of a general induction of CD30 mRNA in this Th2-type-dominated helminthic disease. The data provide further evidence that the CD30 receptor is not an exclusive marker for a Th2-type response. PMID:9933429
Ehrlich, Stefan; Weiss, Deike; Burghardt, Roland; Infante-Duarte, Carmen; Brockhaus, Simone; Muschler, Marc A; Bleich, Stefan; Lehmkuhl, Ulrike; Frieling, Helge
2010-10-01
Proopiomelanocortin (POMC) and its derived peptides, in particular alpha-MSH, have been shown to play a crucial role in the regulation of hunger, satiety and energy homeostasis. Studies in patients with anorexia nervosa (AN) suggest an abnormal expression of appetite-regulating hormones. Hormone expression levels may be modulated by epigenetic mechanisms, which were recently shown to be implicated in the pathophysiology of eating disorders. We hypothesised that POMC promoter specific DNA methylation and gene expression will be affected by malnutrition and therefore differ in AN patients at distinct stages of the disorder. Promoter specific DNA methylation of the POMC gene and expression of POMC mRNA variants were determined in peripheral blood mononuclear cells (PBMC) of 30 healthy control women (HCW), 31 underweight (acAN) and 30 weight-recovered patients with AN (recAN). Malnutrition was characterized by plasma leptin. Expression of the functionally relevant long POMC mRNA transcript was significantly correlated with leptin levels and higher in acAN compared to recAN and HCW. Expression of the truncated form and mean promoter DNA methylation was similar in all three subgroups. Methylation of single CpG residues in the E2F binding site was inversely related to POMC expression. Our preliminary data on pattern of POMC regulation suggests an association with the underweight state rather than with persisting trait markers of AN. In contrast to POMC expression in the central nervous system, peripheral POMC mRNA expression decreased with malnutrition and hypoleptinemia. This may represent a counterregulatory mechanism as part of the crosstalk between the immune and neuroendocrine systems.
Hami, Javad; Sadr-Nabavi, Ariane; Sankian, Mojtaba; Haghir, Hossein
2012-04-01
Sex differences and laterality of rat hippocampus with respect to insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (InsR) expression as two important contributors to/regulators of developmental and cognitive functions were examined using real-time PCR and western blot analysis at P0, P7 and P14. Expression of the IGF-1R gene was lowest at P0 in all studied hippocampi. In males, we found the highest expression at P7 in the right hippocampus, and at P14 in the left one. In contrast, the peaked IGF-1R expression occurred at P7 in female hippocampi independent of laterality. Hippocampal InsR expression in males decreased significantly between P0 and P7, followed by a marked upregulation at P14. Conversely, the expression of InsR in females peaked at P7 and then decreased again significantly at P14. We found significant interhemispheric differences in IGF-1R mRNA levels in both male and female hippocampi at different time points. In contrast, we only found significant interhemispheric differences in InsR mRNA expression in P14 male rats, with higher values in the left hippocampus. Interestingly, changes in mRNA expression and in protein levels followed the same developmental pattern, indicating that IGF-1R and InsR transcription is not subject to modulatory effects during the first two weeks of development. These findings indicate that there are prominent interhemispheric and sex differences in IGF-1R and InsR expression in the developing rat hippocampus, suggesting a probable mechanism for the control of gender and laterality differences in development and function of the hippocampus.
Kaplan, Marielle; Shur, Anna; Tendler, Yvgeny
2018-04-23
Arterial macrophages comprise a heterogeneous population: pro-inflammatory (M1) and anti-inflammatory (M2). Since C-reactive protein (CRP) is produced by macrophages in atherosclerotic lesions, understanding of CRP regulation in macrophages could be crucial to decipher inflammatory patterns in atherogenesis. We aimed to analyze CRP expression in M1/M2 macrophages and to question whether it involves NFκB signaling pathway. Furthermore, we questioned whether oxidative stress affect macrophage phenotype and modulate macrophage CRP expression. M1/M2 macrophage polarization was validated using THP-1 macrophages. CRP mRNA and protein expression were determined using real-time PCR and immunohistochemistry. Involvement of NFκB was determined by nuclear translocation of p50 subunit and the use of NFκB inhibitor. Involvement of oxidative stress in macrophage phenotypes induction was studied using oxidized-LDL (Ox-LDL) and antioxidants. M1 macrophages were characterized by elevated CRP mRNA expression (by 67%), CRP protein levels (by 108%), and upregulation of NFκB activation compared to control, but these features were not shared by M2 macrophages. Macrophages incubation with Ox-LDL led to a moderate M1 phenotype combined with a M2 phenotype, correlated with increased CRP mRNA expression. Antioxidants inhibited by up to 86% IL6 expression but did not significantly affect IL10 secretion. Antioxidants significantly inhibited CRP expression in M1 macrophages, but not in M2 macrophages. Elevated expression of CRP was characteristic of M1 macrophages rather than M2 through NFκB activation. Oxidative stress could be one of the endogenous triggers for macrophage activation to a mixed M1 and M2 phenotype, in association with increased expression of CRP.
Nanci, A; Zalzal, S; Lavoie, P; Kunikata, M; Chen, W; Krebsbach, P H; Yamada, Y; Hammarström, L; Simmer, J P; Fincham, A G; Snead, M L; Smith, C E
1998-08-01
Mineralized tissues are unique in using proteins to attract and organize calcium and phosphate ions into a structured mineral phase. A precise knowledge of the expression and extracellular distribution of matrix proteins is therefore very important in understanding their function. The purpose of this investigation was to obtain comparative information on the expression, intracellular and extracellular distribution, and dynamics of proteins representative of the two main classes of enamel matrix proteins. Amelogenins were visualized using an antibody and an mRNA probe prepared against the major alternatively spliced isoform in rodents, and nonamelogenins by antibodies and mRNA probes specific to one enamel protein referred to by three names: ameloblastin, amelin, and sheathlin. Qualitative and quantitative immunocytochemistry, in combination with immunoblotting and in situ hybridization, indicated a correlation between mRNA signal and sites of protein secretion for amelogenin, but not for ameloblastin, during the early presecretory and mid- to late maturation stages, during which mRNA signals were detected but no proteins appeared to be secreted. Extracellular amelogenin immunoreactivity was generally weak near secretory surfaces, increasing over a distance of about 1.25 microm to reach a level slightly above an amount expected if the protein were being deposited evenly across the enamel layer. Immunolabeling for ameloblastin showed an inverse pattern, with relatively more gold particles near secretory surfaces and much fewer deeper into the enamel layer. Administration of brefeldin A and cycloheximide to stop protein secretion revealed that the immunoblotting pattern of amelogenin was relatively stable, whereas ameloblastin broke down rapidly into lower molecular weight fragments. The distance from the cell surface at which immunolabeling for amelogenin stabilized generally corresponded to the point at which that for ameloblastin started to show a net reduction. These data suggest a correlation between the distribution of amelogenin and ameloblastin and that intact ameloblastin has a transient role in promoting/stabilizing crystal elongation. (J Histochem Cytochem 46:911-934, 1998)
Lane, E L; Cheetham, S; Jenner, P
2008-01-01
The monoamine uptake inhibitor BTS 74 398 induces ipsilateral circling in 6-hydroxydopamine (6-OHDA) lesioned rats without induction of abnormal motor behaviours associated with L-dopa administration. We examined whether this was reflected in the expression of peptide mRNA in the direct and indirect striatal output pathways.6-OHDA lesioning of the nigrostriatal pathway increased striatal expression of PPE-A mRNA and decreased levels of PPT mRNA with PPE-B mRNA expression remaining unchanged. Acute L-dopa administration normalised PPE-A mRNA and elevated PPT mRNA while PPE-B mRNA expression remained unchanged. Acute administration of BTS 74 398 did not alter striatal peptide mRNA levels. Following chronic treatment with L-dopa, PPE-A mRNA expression in the lesioned striatum continued to be normalised and PPT mRNA was increased compared to the intact side. PPE-B mRNA expression was also markedly increased relative to the non-lesioned striatum. Chronic BTS 74 398 administration did not alter mRNA expression in the 6-OHDA lesioned striatum although small increases in PPT mRNA expression in the intact and sham lesioned striatum were observed. The failure of BTS 74 398 to induce changes in striatal neuropeptide mRNA correlated with its failure to induce abnormal motor behaviours or behavioural sensitisation but does not explain how it produces a reversal of motor deficits. An action in another area of the brain appears likely and may explain the subsequent failure of BTS 74 398 and related compounds to exert anti-parkinsonian actions in man.
Caminos, J E; Nogueiras, R; Blanco, M; Seoane, L M; Bravo, S; Alvarez, C V; García-Caballero, T; Casanueva, F F; Diéguez, C
2003-11-01
Ghrelin, a 28-amino-acid acylated peptide, strongly stimulates GH release and food intake. In the present study, we found that ghrelin is expressed in somatotrophs, lactotrophs, and thyrotrophs but not in corticotrophs or gonadotrophs of rat pituitary. Persistent expression of the ghrelin gene is found during postnatal development in male and female rats, although the levels significantly decrease in both cases from pituitaries of 20-d-old rats onward, but at 60 d old, the levels were higher in male than female rats. This sexually dimorphic pattern appears to be mediated by estrogens because ovariectomy, but not orchidectomy, increases pituitary ghrelin mRNA levels. Taking into account that somatotroph cell function is markedly influenced by thyroid hormones, glucocorticoids, GH, and metabolic status, we also assessed such influence. We found that ghrelin mRNA levels decrease in hypothyroid- and glucocorticoid-treated rats, increase in GH-deficient rats (dwarf rats), and remain unaffected by food deprivation. In conclusion, we have defined the specific cell types that express ghrelin in the rat anterior pituitary gland. These data provide direct morphological evidence that ghrelin may well be acting in a paracrine-like fashion in the regulation of anterior pituitary cell function. In addition, we clearly demonstrate that pituitary ghrelin mRNA levels are age and gender dependent. Finally, we show that pituitary ghrelin mRNA levels are influenced by alteration on thyroid hormone, glucocorticoids, and GH levels but not by fasting, which indicates that the regulation of ghrelin gene expression is tissue specific.
Maize Opaque Endosperm Mutations Create Extensive Changes in Patterns of Gene ExpressionW⃞
Hunter, Brenda G.; Beatty, Mary K.; Singletary, George W.; Hamaker, Bruce R.; Dilkes, Brian P.; Larkins, Brian A.; Jung, Rudolf
2002-01-01
Maize starchy endosperm mutants have kernel phenotypes that include a brittle texture, susceptibility to insect pests, and inferior functional characteristics of products made from their flour. At least 18 such mutants have been identified, but only in the cases of opaque2 (o2) and floury2 (fl2), which affect different aspects of storage protein synthesis, is the molecular basis of the mutation known. To better understand the relationship between the phenotypes of these mutants and their biochemical bases, we characterized the protein and amino acid composition, as well as the mRNA transcript profiles, of nearly isogenic inbred lines of W64A o1, o2, o5, o9, o11, Mucuronate (Mc), Defective endosperm B30 (DeB30), and fl2. The largest reductions in zein protein synthesis occur in the W64A o2, DeB30, and fl2 mutants, which have ∼35 to 55% of the wild-type level of storage proteins. Zeins in W64A o5, o9, o11, and Mc are within 80 to 90% of the amount found in the wild type. Only in the cases of o5 and Mc were significant qualitative changes in zein synthesis observed. The pattern of gene expression in normal and mutant genotypes was assayed by profiling endosperm mRNA transcripts at 18 days after pollination with an Affymetrix GeneChip containing >1400 selected maize gene sequences. Compared with W64A sugary1, a mutant defective in starch synthesis, alterations in the gene expression patterns of the opaque mutants are very pleiotropic. Increased expression of genes associated with physiological stress, and the unfolded protein response, are common features of the opaque mutants. Based on global patterns of gene expression, these mutants were categorized in four phenotypic groups as follows: W64A+ and o1; o2; o5/o9/o11; and Mc and fl2. PMID:12368507
ZHANG, H. N.; KO, M. C.
2009-01-01
Chemical-induced seizures up-regulated brain-derived neurotrophic factor (BDNF) mRNA expression. Intracerebroventricular (i.c.v.) administration of endogenous opioids preferentially activating μ opioid receptor (MOR) could also increase BDNF mRNA expression. The aim of this study was to determine to what extent i.c.v. administration of synthetic MOR-selective agonists in rats can modulate both seizure activity and up-regulation of BDNF mRNA expression. Effects and potencies of i.c.v. administration of morphine and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO), were directly investigated by scoring behavioral seizures and measuring BDNF mRNA expression. In addition, effects of the opioid receptor antagonist naloxone and antiepileptic drugs, diazepam, phenobarbital, and valproate, on i.c.v. MOR agonist-induced behavioral seizures and up-regulation of BDNF mRNA expression were determined. A single i.c.v. administration of morphine (10–100 μg) or DAMGO (0.15–1.5 μg) dose-dependently elicited behavioral seizures and increased BDNF mRNA expression in the widespread brain regions. However, subcutaneous administration of MOR agonists neither produced behavioral seizures nor increased BDNF mRNA expression. Pretreatment with naloxone 1 mg/kg significantly reduced behavioral seizure scores and the up-regulation of BDNF mRNA expression elicited by i.c.v. morphine or DAMGO. Similarly, diazepam 10 mg/kg and phenobarbital 40 mg/kg significantly blocked i.c.v. MOR agonist-induced actions. Pretreatment with valproate 300 mg/kg only attenuated behavioral seizures, but it did not affect morphine-induced increase of BDNF mRNA expression. This study provides supporting evidence that seizure activity plays an important role in the up-regulation of BDNF mRNA expression elicited by central MOR activation and that decreased inhibitory action of GABAergic system through the modulation on GABA receptor synaptic function by central MOR activation is involved in its regulation of BDNF mRNA expression. PMID:19303919
YKL-40 expression in CD14+ liver cells in acute and chronic injury
Pizano-Martínez, Oscar; Yañez-Sánchez, Irinea; Alatorre-Carranza, Pilar; Miranda-Díaz, Alejandra; Ortiz-Lazareno, Pablo C; García-Iglesias, Trinidad; Daneri-Navarro, Adrian; Mercado, Mónica Vázquez-Del; Fafutis-Morris, Mary; Delgado-Rizo, Vidal
2011-01-01
AIM: To demonstrate that CD14+ cells are an important source of the growth factor YKL-40 in acute and chronic liver damage. METHODS: Rats were inoculated with one dose of CCl4 to induce acute damage. Liver biopsies were obtained at 0, 6, 12, 24, 48 and 72 h. For chronic damage, CCl4 was administered three days per week for 6 or 8 wk. Tissue samples were collected, and cellular populations were isolated by liver digestion and purified by cell sorting. YKL-40 mRNA and protein expression were evaluated by real-time polymerase chain reaction and western blot. RESULTS: Acute liver damage induced a rapid increase of YKL-40 mRNA beginning at 12 h. Expression peaked at 24 h, with a 26-fold increase over basal levels. By 72 h however, YKL-40 expression levels had nearly returned to control levels. On the other hand, chronic damage induced a sustained increase in YKL-40 expression, with 7- and 9-fold higher levels at 6 and 8 wk, respectively. The pattern of YKL-40 expression in different subpopulations showed that CD14+ cells, which include Kupffer cells, are a source of YKL-40 after acute damage at 72 h [0.09 relative expression units (REU)] as well as after chronic injury at 6 wk (0.11 REU). Hepatocytes, in turn, accounted for 0.06 and 0.01 REU after 72 h (acute) or 6 wk (chronic), respectively. The rest of the CD14- cells (including T lymphocytes, B lymphocytes, natural killer and natural killer T cells) yielded 0.07 and 0.15 REU at 72 h and 6 wk, respectively. YKL-40 protein expression in liver was detected at 72 h as well as 6 and 8 wk, with the highest expression relative to controls (11-fold; P ≤ 0.05) seen at 6 wk. Macrophages were stimulated by lipopolysaccharide. We demonstrate that under these conditions, these cells showed maximum expression of YKL-40 at 12 h, with P < 0.05 compared with controls. CONCLUSION: Hepatic CD14+ cells are an YKL-40 mRNA and protein source in acute and chronic liver injury, with expression patterns similar to growth factors implicated in inflammation-fibrogenesis. PMID:21987626
Ons, Sheila; Martí, Octavi; Armario, Antonio
2004-06-01
Arc is an effector immediate early gene whose expression is induced in situations of increased neuronal activity. However, there is no report on the influence of stress on Arc expression. Here, we compared the induction of both c-fos and Arc mRNAs in the brain of rats exposed to one of three different stressful situations: novel environment, forced swimming and immobilization. An absent or weak c-fos mRNA signal was observed in control rats, whereas those exposed to one of three stressors showed enhanced c-fos expression in a wide range of brain areas. Constitutive Arc expression was observed in some areas such as cortex, striatum, hippocampus, reticular thalamic nucleus and cerebellar cortex. In response to stressors, a strong induction of Arc was observed, but the pattern was different from that of c-fos. For instance, activation of Arc but not c-fos was observed in the nucleus accumbens after immobilization and in the hippocampus after novel environment. No Arc induction was observed in diencephalic and brainstem areas. The present data show that Arc has a neuroanatomically restricted pattern of induction in the brain after emotional stress. Telencephalic activation suggests that a more intense induction of synaptic plasticity is occurring in this area after exposure to emotional stressors.
Štefanić, Mario; Tokić, Stana; Suver-Stević, Mirjana; Glavaš-Obrovac, Ljubica
2018-06-11
Co-inhibitory receptors (IR), such as TIGIT and FCRL3, provide a checkpoint against highly destructive immune responses. Co-expression of TIGIT and FCRL3, in particular, has been linked to the HELIOS + subset of regulatory CD4 + FOXP3 + T-cells. Of these, CD4 + FOXP3-exon(E)2 + cells have higher expression of IR and exhibit strongest suppressive properties. Nevertheless, how the expression of TIGIT, FCRL3, HELIOS, and FOXP3E2 is regulated in chronic autoimmune thyroiditis (AT), is not known. Thirty patients with AT [encompassing spontaneously euthyroid (euAT), hypothyroid-untreated and L-thyroxine-treated cases)] and 10 healthy controls (HC) were recruited. FCRL3, TIGIT, HELIOS and FOXP3E2 mRNA expression levels in peripheral blood (PB) T cells were measured via quantitative real-time PCR and compared to clinicopathological factors. The TIGIT and FCRL3 expression levels from T cells of AT cases were inversely related to the thyroid volume, and were significantly increased in hypothyroid patients (on+off L-thyroxine), but not euAT cases. The FCRL3 expression in PB T cells positively correlated with thyroid-peroxidase autoantibody levels; by contrast, T cells from aged AT patients and combined samples (AT+HC) accumulated more TIGIT mRNA. The patients with higher TIGIT mRNA levels had a greater prevalence of hypothyroidism, showing higher peak thyrotropin levels at diagnosis or at follow-up. Multiple IR, namely FCRL3 and TIGIT, but not the transcription factors HELIOS and FOXP3E2, showed increased mRNA levels in PB T cells from end-stage, long-standing and/or more aggressive AT, in proportion to disease severity. A relation with major clinical subphenotypes was observed, thereby identifying IR as potentially important players in AT. © Georg Thieme Verlag KG Stuttgart · New York.
Lee, Y L; Lee, K F; Xu, J S; Kwok, K L; Luk, J M; Lee, W M; Yeung, W S B
2003-02-01
Our previous results showed that embryotrophic factor-3 (ETF-3) from human oviductal cells increased the size and hatching rate of mouse blastocysts in vitro. The present study investigated the production of ETF-3 by an immortalized human oviductal cell line (OE-E6/E7) and the effects of ETF-3 on the mRNA expression of mouse embryos. The ETF-3 was purified from primary oviductal cell conditioned media using sequential liquid chromatographic systems, and antiserum against ETF-3 was raised. The ETF-3-supplemented Chatot-Ziomek-Bavister medium was used to culture Day 1 MF1 x BALB/c mouse embryos for 4 days. The ETF-3 treatment significantly enhanced the mouse embryo blastulation and hatching rate. The antiserum, at concentrations of 0.03-3%, abolished the embryotrophic effect of ETF-3. Positive ETF-3 immunoreactivity was detected in the primary oviductal cells, OE-E6/E7, and blastocysts derived from ETF-3 treatment. Vero cells (African Green Monkey kidney cell line), fibroblasts, and embryos cultured in control medium did not possess ETF-3 immunoreactivity. The mRNA expression patterns of the treated embryos were studied at the blastocyst stage by mRNA differential display reverse transcription-polymerase chain reaction (DDRT-PCR). The DDRT-PCR showed that some of the mRNAs were differentially expressed after ETF-3 treatment. Twelve of the differentially expressed mRNAs that had high homology with cDNA sequences in the GenBank were selected for further characterization. The differential expression of seven of these mRNAs (ezrin, heat shock 70-kDa protein, cytochrome c oxidase subunit VIIa-L precursor, proteinase-activated receptor 2, eukaryotic translation initiation factor 2beta, cullin 1, and proliferating cell nuclear antigen) was confirmed by semiquantitative RT-PCR. In conclusion, immortalized oviductal cells produce ETF-3, which influences mRNA expression of mouse blastocyst.
StAR protein and steroidogenic enzyme expressions in the rat Harderian gland.
Falvo, Sara; Chieffi Baccaria, Gabriella; Spaziano, Giuseppe; Rosati, Luigi; Venditti, Massimo; Di Fiore, Maria Maddalena; Santillo, Alessandra
2018-03-01
The Harderian gland (HG) of the rat (Rattus norvegicus) secretes copious amounts of lipids, such as cholesterol. Here we report a study of the expressions of the StAR protein and key steroidogenic enzymes in the HG of male and female rats. The objective of the present investigation was to ascertain (a) whether the rat HG is involved in steroid production starting with cholesterol, and (b) whether the pattern of gene and protein expressions together with the enzymatic activities display sexual dimorphism. The results demonstrate, for the first time, the expression of StAR gene and protein, and Cyp11a1, Hsd3b1, Hsd17b3, Srd5a1, Srd5a2 and Cyp19a1 genes in the rat HG. StAR mRNA and protein expressions were much greater in males than in females. Immunohistochemical analysis demonstrated a non-homogeneous StAR distribution among glandular cells. Hsd17b3 and Cyp19a1 mRNA levels were higher in males than in females, whereas Srd5a1 mRNA levels were higher in females than in males. No significant differences were observed in mRNA levels of Cyp11a1, Hsd3b1 and Srd5a2 between sexes. Furthermore, the in vitro experiments demonstrated a higher 5α-reductase activity in the female as compared to the male HG vice versa a higher P450 aro activity in males as compared to females. These results suggest that the Harderian gland can be classified as a steroidogenic tissue because it synthesizes cholesterol, expresses StAR and steroidogenic enzymes involved in both androgen and estrogen synthesis. The dimorphic expression and activity of the steroidogenic enzymes may suggest sex-specific hormonal effects into the HG physiology. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Gualtieri, Fabio; Brégère, Catherine; Laws, Grace C; Armstrong, Elena A; Wylie, Nicholas J; Moxham, Theo T; Guzman, Raphael; Boswell, Timothy; Smulders, Tom V
2017-01-01
Adult hippocampal neurogenesis (AHN) in the dentate gyrus is known to respond to environmental enrichment, chronic stress, and many other factors. The function of AHN may vary across the septo-temporal axis of the hippocampus, as different subdivisions are responsible for different functions. The dorsal pole regulates cognitive-related behaviors, while the ventral pole mediates mood-related responses through the hypothalamic-pituitary-adrenal (HPA) axis. In this study, we investigate different methods of quantifying the effect of environmental enrichment on AHN in the dorsal and ventral parts of the dentate gyrus (dDG and vDG). To this purpose, 11-week-old female CD-1 mice were assigned for 8 days to one of two conditions: the Environmental Enrichment (E) group received (i) running wheels, (ii) larger cages, (iii) plastic tunnels, and (iv) bedding with male urine, while the Control (C) group received standard housing. Dorsal CA ( Cornu Ammonis ) and DG regions were larger in the E than the C animals. Distance run linearly predicted the volume of the dorsal hippocampus, as well as of the intermediate and ventral CA regions. In the dDG, the amount of Doublecortin (DCX) immunoreactivity was significantly higher in E than in C mice. Surprisingly, this pattern was the opposite in the vDG (C > E). Real-time PCR measurement of Dcx mRNA and DCX protein analysis using ELISA showed the same pattern. Brain Derived Neurotrophic Factor (BDNF) immunoreactivity and mRNA displayed no difference between E and C, suggesting that upregulation of DCX was not caused by changes in BDNF levels. BDNF levels were higher in vDG than in dDG, as measured by both methods. Bdnf expression in vDG correlated positively with the distance run by individual E mice. The similarity in the patterns of immunoreactivity, mRNA and protein for differential DCX expression and for BDNF distribution suggests that the latter two methods might be effective tools for more rapid quantification of AHN.
Bijangi-Vishehsaraei, Khadijeh; Blum, Kevin; Zhang, Hongji; Safa, Ahmad R; Halum, Stacey L
2016-03-01
The pathophysiology of recurrent laryngeal nerve (RLN) transection injury is rare in that it is characteristically followed by a high degree of spontaneous reinnervation, with reinnervation of the laryngeal adductor complex (AC) preceding that of the abducting posterior cricoarytenoid (PCA) muscle. Here, we aim to elucidate the differentially expressed myogenic factors following RLN injury that may be at least partially responsible for the spontaneous reinnervation. F344 male rats underwent RLN injury (n = 12) or sham surgery (n = 12). One week after RLN injury, larynges were harvested following euthanasia. The mRNA was extracted from PCA and AC muscles bilaterally, and microarray analysis was performed using a full rat genome array. Microarray analysis of denervated AC and PCA muscles demonstrated dramatic differences in gene expression profiles, with 205 individual probes that were differentially expressed between the denervated AC and PCA muscles and only 14 genes with similar expression patterns. The differential expression patterns of the AC and PCA suggest different mechanisms of reinnervation. The PCA showed the gene patterns of Wallerian degeneration, while the AC expressed the gene patterns of reinnervation by adjacent axonal sprouting. This finding may reveal important therapeutic targets applicable to RLN and other peripheral nerve injuries. © The Author(s) 2015.
Rhen, Turk; Jangula, Adam; Schroeder, Anthony; Woodward-Bosh, Rikki
2009-05-01
The platelet-derived growth factor (Pdgf) signaling system is known to play a significant role during embryonic and postnatal development of testes in mammals and birds. In contrast, genes that comprise the Pdgf system in reptiles have never been cloned or studied in any tissue, let alone developing gonads. To explore the potential role of PDGF ligands and their receptors during embryogenesis, we cloned cDNA fragments of Pdgf-A, Pdgf-B, and receptors PdgfR-alpha and PdgfR-beta in the snapping turtle, a reptile with temperature-dependent sex determination (TSD). We then compared gene expression profiles in gonads from embryos incubated at a male-producing temperature to those from embryos at a female-producing temperature, as well as between hatchling testes and ovaries. Expression of Pdgf-B mRNA in embryonic gonads was significantly higher at a male temperature than at a female temperature, but there was no difference between hatchling testes and ovaries. This developmental pattern was reversed for Pdgf-A and PdgfR-alpha mRNA: expression of these genes did not differ in embryos, but diverged in hatchling testes and ovaries. Levels of PdgfR-beta mRNA in embryonic gonads were not affected by temperature and did not differ between testes and ovaries. However, expression of both receptors increased at least an order of magnitude from the embryonic to the post-hatching period. Finally, we characterized expression of these genes in several other embryonic tissues. The brain, heart, and liver displayed unique expression patterns that distinguished these tissues from each other and from intestine, lung, and muscle. Incubation temperature had a significant effect on expression of PdgfR-alpha and PdgfR-beta in the heart but not other tissues. Together, these findings demonstrate that temperature has tissue specific effects on the Pdgf system and suggest that Pdgf signaling is involved in sex determination and the ensuing differentiation of testes in the snapping turtle.
Rhen, Turk; Jangula, Adam; Schroeder, Anthony; Woodward-Bosh, Rikki
2009-01-01
The platelet-derived growth factor (Pdgf) signaling system is known to play a significant role during embryonic and postnatal development of testes in mammals and birds. In contrast, genes that comprise the Pdgf system in reptiles have never been cloned or studied in any tissue, let alone developing gonads. To explore the potential role of PDGF ligands and their receptors during embryogenesis, we cloned cDNA fragments of Pdgf-A, Pdgf-B, and receptors PdgfR-α and PdgfR-β in the snapping turtle, a reptile with temperature-dependent sex determination (TSD). We then compared gene expression profiles in gonads from embryos incubated at a male-producing temperature to those from embryos at a female-producing temperature, as well as between hatchling testes and ovaries. Expression of Pdgf-B mRNA in embryonic gonads was significantly higher at a male temperature than at a female temperature, but there was no difference between hatchling testes and ovaries. This developmental pattern was reversed for Pdgf-A and PdgfR-α mRNA: expression of these genes did not differ in embryos, but diverged in hatchling testes and ovaries. Levels of PdgfR-β mRNA in embryonic gonads were not affected by temperature and did not differ between testes and ovaries. However, expression of both receptors increased at least an order of magnitude from the embryonic to the post-hatching period. Finally, we characterized expression of these genes in several other embryonic tissues. The brain, heart, and liver displayed unique expression patterns that distinguished these tissues from each other and from intestine, lung, and muscle. Incubation temperature had a significant effect on expression of PdgfR-α and PdgfR-β in the heart but not other tissues. Together, these findings demonstrate that temperature has tissue specific effects on the Pdgf system and suggest that Pdgf signaling is involved in sex determination and the ensuing differentiation of testes in the snapping turtle. PMID:19523392
Tao, Wenjing; Sun, Lina; Shi, Hongjuan; Cheng, Yunying; Jiang, Dongneng; Fu, Beide; Conte, Matthew A; Gammerdinger, William J; Kocher, Thomas D; Wang, Deshou
2016-05-04
MicroRNAs (miRNAs) represent a second regulatory network that has important effects on gene expression and protein translation during biological process. However, the possible role of miRNAs in the early stages of fish sex differentiation is not well understood. In this study, we carried an integrated analysis of miRNA and mRNA expression profiles to explore their possibly regulatory patterns at the critical stage of sex differentiation in tilapia. We identified 279 pre-miRNA genes in tilapia genome, which were highly conserved in other fish species. Based on small RNA library sequencing, we identified 635 mature miRNAs in tilapia gonads, in which 62 and 49 miRNAs showed higher expression in XX and XY gonads, respectively. The predicted targets of these sex-biased miRNAs (e.g., miR-9, miR-21, miR-30a, miR-96, miR-200b, miR-212 and miR-7977) included genes encoding key enzymes in steroidogenic pathways (Cyp11a1, Hsd3b, Cyp19a1a, Hsd11b) and key molecules involved in vertebrate sex differentiation (Foxl2, Amh, Star1, Sf1, Dmrt1, and Gsdf). These genes also showed sex-biased expression in tilapia gonads at 5 dah. Some miRNAs (e.g., miR-96 and miR-737) targeted multiple genes involved in steroid synthesis, suggesting a complex miRNA regulatory network during early sex differentiation in this fish. The sequence and expression patterns of most miRNAs in tilapia are conserved in fishes, indicating the basic functions of vertebrate miRNAs might share a common evolutionary origin. This comprehensive analysis of miRNA and mRNA at the early stage of molecular sex differentiation in tilapia XX and XY gonads lead to the discovery of differentially expressed miRNAs and their putative targets, which will facilitate studies of the regulatory network of molecular sex determination and differentiation in fishes.
Wu, Jun; Yang, Xiao; Zhang, Yun-Fang; Wang, Ya-Ning; Liu, Mei; Dong, Xiu-Qing; Fan, Jin-Jin; Yu, Xue-Qing
2010-01-01
The objective of this study was to investigate the effects of glucose-based peritoneal dialysis (PD) fluids and icodextrin-based PD fluids on the expression of Toll-like receptor 2 (TLR2)/TLR4 and subsequent ligand-induced mitogen-activated protein kinase (MAPK) and NF-κB signaling and tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) mRNA expression in human peritoneal mesothelial cells (HPMCs). A human peritoneal mesothelial cell line (HMrSV5) was stimulated with glucose-based and icodextrin-based peritoneal dialysis fluids. Cell viability was assessed using MTT [3-(4,5-dimethylthiazolyl)-2,5-diphenyl-2H-tetrazolium bromide]. TLR2/TLR4 expression was determined by real-time PCR, Western blotting, and an immunofluorescence assay. In addition, cells were pretreated with different PD solutions and then incubated with Pam3CSK4 or lipopolysaccharide (LPS), and the degrees of MAPK and NF-κB activation were reflected by detecting the phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38, and p65, using a Western blot method. TNF-α and IL-1β mRNA expression was measured by real-time PCR. Glucose-based peritoneal dialysis fluids suppressed the expression of TLR2 and TLR4 proteins in HPMCs. Challenge of cells with either Pam3CSK4 or LPS resulted in impaired TNF-α and IL-1β production. Moreover, reduced TLR2 and TLR4 levels in glucose-based peritoneal dialysis solution-treated mesothelial cells were accompanied by reduced p42/44 (ERK1/2), JNK, p38 MAPK, and NF-κB p65 phosphorylation upon TLR ligand engagement. No significant changes in MAPK and NF-κB signaling and TNF-α and IL-1β mRNA expression were observed in icodextrin-based PD solution-treated mesothelial cells. Glucose-based PD solution, but not icodextrin-based PD solution, downregulates expression of TLR2/TLR4 by human peritoneal mesothelial cells and triggers hyporesponsiveness to pathogen-associated molecular patterns. PMID:20200188
miRNA-216 and miRNA-499 target cyb561d2 in zebrafish in response to fipronil exposure.
Zhou, Yongyong; Huang, Hannian; Zhang, Kai; Ding, Xianfeng; Jia, Longlue; Yu, Liang; Zhu, Guonian; Guo, Jiangfeng
2016-07-01
MicroRNA (miRNA) can regulate the expression of its target gene by mediating mRNA cleavage or by translational repression at a post-transcriptional level. Usually, one miRNA may regulate many genes as its targets, while one gene may also be targeted by many miRNAs. We previously demonstrated that cyb561d2, whose protein product is involved in cell defense, and chemical stress, is targeted by miR-155 in adult zebrafish (Danio rerio) when exposed to fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl) sulphinyl]-1H-pyrazole-3-carbonitrile). Microcosm Targets prediction showed that the cyb561d2 gene is also highly possibly targeted by miR-194a, miR-216b, miR-429, and miR-499. These interactions need to be further validated experimentally. In this study, we evaluated the effects of fipronil on miR-194a, miR-216b, miR-429, miR-499 and cyb561d2 in zebrafish and investigated whether these four miRNAs could regulate the expression of cyb561d2 in both mRNA and protein levels. The expression of cyb561d2 was upregulated in both mRNA and protein level in a dose-dependent manner upon stimulation of fipronil, and miR-216b and miR-499 were downregulated concurrently, whereas there was no significant changes were observed in the expression level of miR-194a and miR-429. The dual luciferase report assay demonstrated that miR-216b and miR-499 interacted with cyb561d2 3'-untranslated regions (3'-UTR), miR-194a and miR-429 did not stimulate degradation of cyb561d2 mRNA. The expression of cyb561d2 was reduced in both mRNA and protein level when ZF4 cells were transfected with miR-499 mimic, whereas expression level of both mRNA and protein was increased when endogenous miR-499 was inhibited by transfection with miR-499 inhibitor. Likewise, the mRNA and protein level of cyb561d2 was affected by treatment with the mimics and the inhibitor of miR-216b. In contrast, when ZF4 cells were transfected with a mimic of miR-194a or miR-429, the expression of cyb561d2 mRNA was not significantly changed. As a result, cyb561d2 is targeted by miR-155, miR-216b and miR-499 upon fipronil exposure, and miR-194a and miR-429 can not target cyb561d2. The expression pattern of these 3 miRNAs presents novel fipronil responses that could be used as a toxicological biomarker. Copyright © 2016 Elsevier B.V. All rights reserved.
Palani, Mahalakshmi; Arunkumar, R; Vanisree, Arrambakam Janardhanam
2014-09-01
Tropomyosin-related kinase family (NTRK1, NTRK2 and NTRK3) is well known to play an important role in the pathogenesis of brain tumour, which exhibit heterogeneity in its biological and clinical behaviour. However, the mechanism that regulates NTRKs in glioma is not well understood. The present study investigates the epigenetic status (methylation) of NTRKs and their expression in different grades of glioma. Promoter methylation and structural relationship of NTRKs was assessed using methylation-specific PCR followed by chromatin immunoprecipitation in brain tissue samples from 220 subjects with different grades of glioma. Control brain samples were also assessed similarly. Reverse transcriptase PCR was performed to analyse the expressions of NTRK mRNAs in the grades of glioma. In addition, the expression level of p75(NTR) protein was analysed using immunofluorescent technique in all of the samples. The overall percentage of NTRK3 gene methylation frequency with subsequent loss of mRNA expression was significantly higher in glioma compared with control samples (p < 0.05). No such significance was observed in other NTRK1 and NTRK2 genes. Further, mRNA expression pattern of NTRK1 and NTRK2 genes was found to be significantly higher in low grades as compared with high grades (HG) and control samples (p < 0.05). Survival rate of HG patients with negative expressions of NTRK1 and NTRK2 was poor than those with the positive expressions of both NTRK1 and NTRK2. Further, a significant correlation was observed with reduced expression of p75(NTR) and the expression pattern of NTRK family in glioma as compared with the control samples (p < 0.05). There exists a correlation between the expression of NTRK family and different grades of glioma with a significant suggestion that the promoter methylation does not play role in the regulation of these genes in glioma. Further, poor survival could be associated with NTRK mRNAs 1 and 2. Hence, NTRKs are potential probes for assessing the behaviour of different grades of glioma, which could also function as significant prognostic factors and thus deserve wider attention for an effective management of the grades.
Phang, Y L; Soga, T; Kitahashi, T; Parhar, I S
2012-02-17
In addition to reproduction, gonadotropin-releasing hormone (GnRH) has been postulated to control cholesterol metabolism via cholesterol transport, which is carried out partly by the members of ATP-binding cassette (ABC) transporters G1 (ABCG1) and G4 (ABCG4). However, there is yet to be evidence demonstrating the relationship between these transporters with reference to GnRH neurons. In the present study, we cloned two ABCG1 messenger RNA (mRNA) variants and one ABCG4 mRNA and examined their expression in the brain including GnRH neurons (GnRH1, GnRH2, and GnRH3) in the cichlid tilapia (Oreochromis niloticus). Comparison of nucleotide sequences of the tilapia ABCG1 and ABCG4 with that of other fish species showed that both of these genes are evolutionarily conserved among fishes. ABCG1 and ABCG4 were shown to have high mRNA expressions in the CNS, pituitary, and gonads. In the brain, real-time polymerase chain reaction (PCR) showed that ABCG4 mRNA was higher than ABCG1a in all brain regions including the olfactory bulb (ABCG1=13.34, ABCG4=6796.35; P<0.001), dorsal telencephalon (ABCG1=8.64, ABCG4=10149.13; P=0.001), optic tectum (ABCG1=22.12, ABCG4=13931.04; P<0.01), cerebellum (ABCG1=8.68, ABCG4=12382.90; P<0.01), and preoptic area-midbrain-hypothalamus (ABCG1=21.36, ABCG4=13255.41; P=0.001). Similarly, although ABCG1 mRNA level is much higher in the pituitary compared with the brain, it was still significantly lower compared with ABCG4 (ABCG1=337.73, ABCG4=1157.87; P=0.01). The differential pattern of expression of ABCG1 and ABCG4 in the brain versus pituitary suggests that the two transporters are regulated by different mechanisms. Furthermore, ABCG1 and ABCG4 mRNA expressions were found in all three types of laser-captured GnRH neurons with highly similar percentage of expressions, suggesting that cholesterol efflux from GnRH neurons may require heterodimerization of both ABCG1 and ABCG4. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Pezeshki, A; Muench, G P; Chelikani, P K
2012-09-01
The role of distal gut signals in control of feed intake and metabolism in cattle has received scant attention. Peptide YY (PYY) and glucagon-like peptide-1, which are secreted from enteroendocrine cells of the distal gut in monogastrics have several functions, including regulation of energy balance. However, little is known of the tissue expression of these peptides and their receptors in cattle. The aim of the current study was to characterize the tissue distribution of PYY, neuropeptide Y receptor Y2 (Y2), proglucagon (GCG), and glucagon-like peptide-1 receptor (GLP1R) in various peripheral tissues of cattle. Four male 7-wk-old dairy calves were euthanized and 16 peripheral tissues were collected. Conventional PCR and quantitative real-time PCR were performed to confirm tissue expression and quantify the transcript abundance in various tissues. The results of conventional PCR revealed that mRNA for both PYY and Y2 was detectable in the rumen, abomasum, duodenum, jejunum, ileum, and colon but not in other tissues. Quantitative real-time PCR data demonstrated that PYY mRNA was 2- to 3-fold greater in the pancreas, kidney, and heart relative to the liver. By conventional PCR, GCG mRNA was detected in the abomasum, duodenum, jejunum, ileum, and colon and GLP1R mRNA was expressed in all gut segments, pancreas, spleen, and kidney. Quantitative real-time PCR data demonstrated that, relative to transcript abundance in the liver, GCG mRNA was 4- to 40-fold higher from abomasum to colon, and GLP1R mRNA was 50- to 300-fold higher from the rumen to colon, 14-fold greater in the pancreas, 18-fold higher in the spleen, and 166-fold greater in the kidney. The tissue distribution of PYY, GCG, and their receptors observed in the current study is, in general, consistent with expression patterns in monogastrics. The predominant expression of PYY, Y2, and GCG in the gut, and the presence of GLP1R in multiple peripheral tissues suggest a role for PYY in controlling gut functions and for GLP-1 in regulating multiple physiological functions in cattle. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Diametrical clustering for identifying anti-correlated gene clusters.
Dhillon, Inderjit S; Marcotte, Edward M; Roshan, Usman
2003-09-01
Clustering genes based upon their expression patterns allows us to predict gene function. Most existing clustering algorithms cluster genes together when their expression patterns show high positive correlation. However, it has been observed that genes whose expression patterns are strongly anti-correlated can also be functionally similar. Biologically, this is not unintuitive-genes responding to the same stimuli, regardless of the nature of the response, are more likely to operate in the same pathways. We present a new diametrical clustering algorithm that explicitly identifies anti-correlated clusters of genes. Our algorithm proceeds by iteratively (i). re-partitioning the genes and (ii). computing the dominant singular vector of each gene cluster; each singular vector serving as the prototype of a 'diametric' cluster. We empirically show the effectiveness of the algorithm in identifying diametrical or anti-correlated clusters. Testing the algorithm on yeast cell cycle data, fibroblast gene expression data, and DNA microarray data from yeast mutants reveals that opposed cellular pathways can be discovered with this method. We present systems whose mRNA expression patterns, and likely their functions, oppose the yeast ribosome and proteosome, along with evidence for the inverse transcriptional regulation of a number of cellular systems.
Glucocorticoids Affect 24 h Clock Genes Expression in Human Adipose Tissue Explant Cultures
Gómez-Abellán, Purificación; Díez-Noguera, Antoni; Madrid, Juan A.; Luján, Juan A.; Ordovás, José M.; Garaulet, Marta
2012-01-01
Aims to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V) and subcutaneous (S) adipose tissue (AT) in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX) on positive and negative clock genes expression. Subjects and Methods VAT and SAT biopsies were obtained from morbid obese women (body mass index≥40 kg/m2) (n = 6). In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX) and AT explants treated with DEX (2 hours) were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR. Results CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element) was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements) in the SAT (situation not present in VAT). A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues. Conclusions 24 h patterns in CLOCK and BMAL1 (positive clock elements) and PER2 (negative element) mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure. PMID:23251369
Expression analysis of G Protein-Coupled Receptors in mouse macrophages.
Lattin, Jane E; Schroder, Kate; Su, Andrew I; Walker, John R; Zhang, Jie; Wiltshire, Tim; Saijo, Kaoru; Glass, Christopher K; Hume, David A; Kellie, Stuart; Sweet, Matthew J
2008-04-29
Monocytes and macrophages express an extensive repertoire of G Protein-Coupled Receptors (GPCRs) that regulate inflammation and immunity. In this study we performed a systematic micro-array analysis of GPCR expression in primary mouse macrophages to identify family members that are either enriched in macrophages compared to a panel of other cell types, or are regulated by an inflammatory stimulus, the bacterial product lipopolysaccharide (LPS). Several members of the P2RY family had striking expression patterns in macrophages; P2ry6 mRNA was essentially expressed in a macrophage-specific fashion, whilst P2ry1 and P2ry5 mRNA levels were strongly down-regulated by LPS. Expression of several other GPCRs was either restricted to macrophages (e.g. Gpr84) or to both macrophages and neural tissues (e.g. P2ry12, Gpr85). The GPCR repertoire expressed by bone marrow-derived macrophages and thioglycollate-elicited peritoneal macrophages had some commonality, but there were also several GPCRs preferentially expressed by either cell population. The constitutive or regulated expression in macrophages of several GPCRs identified in this study has not previously been described. Future studies on such GPCRs and their agonists are likely to provide important insights into macrophage biology, as well as novel inflammatory pathways that could be future targets for drug discovery.
2010-01-01
SIAH proteins are the human members of an highly conserved family of E3 ubiquitin ligases. Several data suggest that SIAH proteins may have a role in tumor suppression and apoptosis. Previously, we reported that SIAH-1 induces the degradation of Kid (KIF22), a chromokinesin protein implicated in the normal progression of mitosis and meiosis, by the ubiquitin proteasome pathway. In human breast cancer cells stably transfected with SIAH-1, Kid/KIF22 protein level was markedly reduced whereas, the Kid/KIF22 mRNA level was increased. This interaction has been further elucidated through analyzing SIAH and Kid/KIF22 expression in both paired normal and tumor tissues and cell lines. It was observed that SIAH-1 protein is widely expressed in different normal tissues, and in cells lines but showing some differences in western blotting profiles. Immunofluorescence microscopy shows that the intracellular distribution of SIAH-1 and Kid/KIF22 appears to be modified in human tumor tissues compared to normal controls. When mRNA expression of SIAH-1 and Kid/KIF22 was analyzed by real-time PCR in normal and cancer breast tissues from the same patient, a large variation in the number of mRNA copies was detected between the different samples. In most cases, SIAH-1 mRNA is decreased in tumor tissues compared to their normal counterparts. Interestingly, in all breast tumor tissues analyzed, variations in the Kid/KIF22 mRNA levels mirrored those seen with SIAH-1 mRNAs. This concerted variation of SIAH-1 and Kid/KIF22 messengers suggests the existence of an additional level of control than the previously described protein-protein interaction and protein stability regulation. Our observations also underline the need to re-evaluate the results of gene expression obtained by qRT-PCR and relate it to the protein expression and cellular localization when matched normal and tumoral tissues are analyzed. PMID:20144232
Nakagawa, Tateo; Shimada, Mitsuo; Kurita, Nobuhiro; Iwata, Takashi; Nishioka, Masanori; Yoshikawa, Kozo; Higashijima, Jun; Utsunomiya, Tohru
2012-06-01
The role of intratumoral thymidylate synthase (TS) mRNA or protein expression is still controversial and little has been reported regarding relation of them in colorectal cancer. Forty-six patients with advanced colorectal cancer who underwent surgical resection were included. TS mRNA expression was determined by the Danenberg tumor profile method based on laser-captured micro-dissection of the tumor cells. TS protein expression was evaluated using immunohistochemical staining. TS mRNA expression tended to relate TS protein expression. Statistical significance was not found in overall survival between the TS mRNA high group and low group regardless of performing adjuvant chemotherapy. The overall survival in the TS protein negative group was significantly higher than that in positive group in all and the patients without adjuvant chemotherapy. Multivariate analysis showed TS protein expression was as an independent prognostic factor. TS protein expression tends to be related TS mRNA expression and is an independent prognostic factor in advanced colorectal cancer.
Huang, Hao; Li, Ruohan; Yuan, Jinxian; Zhou, Xin; Liu, Xi; Ou, Shu; Xu, Tao; Chen, Yangmei
2016-05-15
EphB family receptor tyrosine kinases, in cooperation with cell surface-bound ephrinB ligands, play a critical role in maintenance of dendritic spine morphogenesis, axons guidance, synaptogenesis, synaptic reorganization and plasticity in the central nervous system (CNS). However, the expression pattern of ephrinB/EphB in intractable temporal lobe epilepsy (TLE) and the underlying molecular mechanisms during epileptogenesis remain poorly understood. Here we investigated the expression pattern and cellular distribution of ephrinB/EphB in intractable TLE patients and lithium chloride-pilocarpine induced TLE rats using real-time quantitative polymerase chain reaction (RT-qPCR), immunohistochemistry, double-labeled immunofluorescence and Western blot analysis. Compared to control groups, ephrinB3 and EphB3 mRNA expression were significantly up-regulated in intractable TLE patients and TLE rats, while the mRNA expression trend of ephrinB1/2 and EphB1/2/4/6 in intractable TLE patients and TLE rats were inconsistent. Western blot analysis and semi-quantitative immunohistochemistry confirmed that ephrinB3 and EphB3 protein level were up-regulated in intractable TLE patients and TLE rats. At the same time, double-labeled immunofluorescence indicate that ephrinB3 was expressed mainly in the cytoplasm and protrusions of glia and neurons, while EphB3 was expressed mainly in the cytoplasm of neurons. Taken together, up-regulated expression of ephrinB3/EphB3 in intractable TLE patients and experimental TLE rats suggested that ephrinB3/EphB3 might be involved in the pathogenesis of TLE. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Mao Xiang; Gorman, Shelby A; Benson, Bill; Singh, Kuljit; Hieble, J Paul; Michel, Martin C; Tate, Simon N; Trezise, Derek J
2004-06-01
The SK/IK family of small and intermediate conductance calcium-activated potassium channels contains four members, SK1, SK2, SK3 and IK1, and is important for the regulation of a variety of neuronal and non-neuronal functions. In this study we have analysed the distribution of these channels in human tissues and their cellular localisation in samples of colon and corpus cavernosum. SK1 mRNA was detected almost exclusively in neuronal tissues. SK2 mRNA distribution was restricted but more widespread than SK1, and was detected in adrenal gland, brain, prostate, bladder, liver and heart. SK3 mRNA was detected in almost every tissue examined. It was highly expressed in brain and in smooth muscle-rich tissues including the clitoris and the corpus cavernosum, and expression in the corpus cavernosum was upregulated up to 5-fold in patients undergoing sex-change operations. IK1 mRNA was present in surface-rich, secretory and inflammatory cell-rich tissues, highest in the trachea, prostate, placenta and salivary glands. In detailed immunohistochemical studies of the colon and the corpus cavernosum, SK1-like immunoreactivity was observed in the enteric neurons. SK3-like immunoreactivity was observed strongly in smooth muscle and vascular endothelium. IK1-like immunoreactivity was mainly observed in inflammatory cells and enteric neurons of the colon, but absent in corpus cavernosum. These distinctive patterns of distribution suggest that these channels are likely to have different biological functions and could be specifically targeted for a number of human diseases, such as irritable bowel syndrome, hypertension and erectile dysfunction.
TP53 and ATM mRNA expression in skin and skeletal muscle after low-level laser exposure.
Guedes de Almeida, Luciana; Sergio, Luiz Philippe da Silva; de Paoli, Flavia; Mencalha, Andre Luiz; da Fonseca, Adenilson de Souza
2017-08-01
Low-level lasers are widespread in regenerative medicine, but the molecular mechanisms involved in their biological effects are not fully understood, particularly those on DNA stability. Therefore, this study aimed to investigate mRNA expression of genes related to DNA genomic stability in skin and skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. For this, TP53 (Tumor Protein 53) and ATM (Ataxia Telangiectasia Mutated gene) mRNA expressions were evaluated by real-time quantitative PCR (RT-qPCR) technique 24 hours after low-level red and infrared laser exposure. Our data showed that relative TP53 mRNA expression was not significantly altered in both tissues exposed to lasers. For ATM, relative mRNA expression in skin tissue was not significantly altered, but in muscle tissue, laser exposure increased relative ATM mRNA expression. Low-level red and infrared laser radiations alter ATM mRNA expression related to DNA stability in skeletal muscle tissue.
Baby, Santhosh M; Bogdanovich, Sasha; Willmann, Gabriel; Basu, Utpal; Lozynska, Olga; Khurana, Tejvir S
2010-03-01
Utrophin (Utrn) is the autosomal homolog of dystrophin, the Duchene Muscular Dystrophy (DMD) locus product and of therapeutic interest, as its overexpression can compensate dystrophin's absence. Utrn is transcribed by Utrn-A and -B promoters with mRNAs differing at their 5' ends. However, previous central nervous system (CNS) studies used C-terminal antibodies recognizing both isoforms. As this distinction may impact upregulation strategies, we generated Utrn-A and -B promoter-specific antibodies, Taqman Polymerase chain reaction (PCR)-based absolute copy number assays, and luciferase-reporter constructs to study CNS of normal and dystrophic mdx mice. Differential expression of Utrn-A and -B was noted in microdissected and capillary-enriched fractions. At the protein level, Utrn-B was predominantly expressed in vasculature and ependymal lining, whereas Utrn-A was expressed in neurons, astrocytes, choroid plexus and pia mater. mRNA quantification demonstrated matching patterns of differential expression; however, transcription-translation mismatch was noted for Utrn-B in caudal brain regions. Utrn-A and Utrn-B proteins were significantly upregulated in olfactory bulb and cerebellum of mdx brain. Differential promoter activity, mRNA and protein expressions were studied in cultured C2C12, bEnd3, neurons and astrocytes. Promoter activity ranking for Utrn-A and -B was neurons > astrocytes > C2C12 > bEnd3 and bEnd3 > astrocytes > neurons > C2C12, respectively. Our results identify promoter usage patterns for therapeutic targeting and define promoter-specific differential distribution of Utrn isoforms in normal and dystrophic CNS.
Douros, Jonathan D; Baltzegar, David A; Mankiewicz, Jamie; Taylor, Jordan; Yamaguchi, Yoko; Lerner, Darren T; Seale, Andre P; Grau, E Gordon; Breves, Jason P; Borski, Russell J
2017-01-01
Leptin is an important cytokine for regulating energy homeostasis, however, relatively little is known about its function and control in teleost fishes or other ectotherms, particularly with regard to interactions with the growth hormone (GH)/insulin-like growth factors (IGFs) growth regulatory axis. Here we assessed the regulation of LepA, the dominant paralog in tilapia (Oreochromis mossambicus) and other teleosts under altered nutritional state, and evaluated how LepA might alter pituitary growth hormone (GH) and hepatic insulin-like growth factors (IGFs) that are known to be disparately regulated by metabolic state. Circulating LepA, and lepa and lepr gene expression increased after 3-weeks fasting and declined to control levels 10days following refeeding. This pattern of leptin regulation by metabolic state is similar to that previously observed for pituitary GH and opposite that of hepatic GHR and/or IGF dynamics in tilapia and other fishes. We therefore evaluated if LepA might differentially regulate pituitary GH, and hepatic GH receptors (GHRs) and IGFs. Recombinant tilapia LepA (rtLepA) increased hepatic gene expression of igf-1, igf-2, ghr-1, and ghr-2 from isolated hepatocytes following 24h incubation. Intraperitoneal rtLepA injection, on the other hand, stimulated hepatic igf-1, but had little effect on hepatic igf-2, ghr1, or ghr2 mRNA abundance. LepA suppressed GH accumulation and gh mRNA in pituitaries in vitro, but had no effect on GH release. We next sought to test if abolition of pituitary GH via hypophysectomy (Hx) affects the expression of hepatic lepa and lepr. Hypophysectomy significantly increases hepatic lepa mRNA abundance, while GH replacement in Hx fish restores lepa mRNA levels to that of sham controls. Leptin receptor (lepr) mRNA was unchanged by Hx. In in vitro hepatocyte incubations, GH inhibits lepa and lepr mRNA expression at low concentrations, while higher concentration stimulates lepa expression. Taken together, these findings indicate LepA gene expression and secretion increases with fasting, consistent with the hormones function in promoting energy expenditure during catabolic stress. It would also appear that LepA might play an important role in stimulating GHR and IGFs to potentially spare declines in these factors during catabolism. Evidence also suggests for the first time in teleosts that GH may exert important regulatory effects on hepatic LepA production, insofar as physiological levels (0.05-1 nM) suppresse lepa mRNA accumulation. Leptin A, may in turn exert negative feedback effects on basal GH mRNA abundance, but not secretion. Copyright © 2016 Elsevier Inc. All rights reserved.
Expression of mRNAs encoding ARPP-16/19, ARPP-21, and DARPP-32 in human brain tissue.
Brené, S; Lindefors, N; Ehrlich, M; Taubes, T; Horiuchi, A; Kopp, J; Hall, H; Sedvall, G; Greengard, P; Persson, H
1994-03-01
In this study we have isolated and sequenced human cDNAs for the phosphoproteins DARPP-32, ARPP-21, and ARPP-16/19, and have compared these sequences to previously characterized bovine and rat cDNAs. In situ hybridization and Northern blot analysis with the human cDNA probes were used to study the expression of mRNAs encoding ARPP-16/19, ARPP-21, and DARPP-32 in human postmortem brain tissue. In situ hybridization was performed using horizontal whole hemisphere sections. Five representative levels of the brain ranging from 71 mm to 104 mm ventral to vertex were examined. All three probes showed distinct hybridization patterns in the caudate nucleus, putamen, nucleus accumbens, and the amygdaloid complex. For ARPP-16/19 mRNA, a hybridization signal comparable to the signal in caudate nucleus, putamen, and nucleus accumbens was also detected in the neocortex. ARPP-21 and DARPP-32 mRNA, on the other hand, were present in lower levels in neocortical regions. DARPP-32 mRNA was abundant in the cerebellar cortex at the level of the Purkinje cell layer. High levels of ARPP-16/19 and ARPP-21 mRNA were also found in the cerebellar cortex, where they were confined to deeper layers. The present result demonstrate that mRNAs for the three phosphoproteins are expressed in overlapping, but also distinct, areas of the human brain that in many cases coincide with previously described distribution of the dopamine D1 receptor.
Shimano, Koichi; Satake, Makoto; Okaya, Atsuhito; Kitanaka, Junichi; Kitanaka, Nobue; Takemura, Motohiko; Sakagami, Masafumi; Terada, Nobuyuki; Tsujimura, Tohru
2003-01-01
Organ-specific stem cells can be identified by the side population (SP) phenotype, which is defined by the property to effectively exclude the Hoechst 33342 dye. The ATP-binding cassette transporter ABCG2/BCRP1 mediates the SP phenotype. Because hepatic oval cells possess several characteristics of stem cells, we examined whether they have the SP phenotype using the 2-acetylaminofluorene/partial hepatectomy (PH) model. Fluorescence-activated cell sorting analysis showed that a population of non-parenchymal cells containing oval cells, prepared on day 7 after PH, carried a significant number of SP cells, whereas that of non-parenchymal cells without oval cells, prepared on day 0 after PH, did not. Northern blot analysis using total liver RNA obtained on various days after PH showed that the expression of ABCG2/BCRP1 mRNA increased after PH, reaching the highest level on day 7, and then gradually decreased. This pattern of changes in the ABCG2/BCRP1 mRNA level was well correlated to that in the number of oval cells. Furthermore, in situ hybridization revealed that oval cells were the sites of expression of ABCG2/BCRP1 mRNA. These results indicate that oval cells have the SP phenotype defined by expression of ABCG2/BCRP1, suggesting that oval cells may represent stem cells in the liver. PMID:12819005
NASA Astrophysics Data System (ADS)
Li, Jiaqi; He, Qingguo; Sun, Hui; Liu, Xiao
2012-01-01
Heat shock protein 70 (Hsp70) is one important member of heat shock protein (Hsp) family that is responsible for various stresses, especially thermal stress. Here we examined the response of Hsp70 gene to both chronic and acute thermal exposure in Pacific abalone ( Haliotis discus hannai Ino). For the chronic exposure, abalones were maintained at 8, 12, 20, and 30°C for four months and their mRNA levels were measured. The highest mRNA level of Hsp70 gene relative to actin gene was detected in the 30°C-acclimated group, followed by the 8°C-acclimated group and then the 12°C- and 20°C-acclimated groups. After the long-term acclimation, gills from each of the above acclimation groups were dissected and exposed to different temperatures between 8°C and 38°C for 30 min. Hsp70 expression in gills acclimated to different temperatures responded differentially to the same temperature exposure. The incubation temperature that induced maximum Hsp70 mRNA expression was higher in the higher temperature acclimation groups than lower temperature groups. Pacific abalones could alter the expression pattern of Hsp70 gene according to environmental thermal conditions, through which they deal with the stress of thermal variations.
Allogeneic T cell responses are regulated by a specific miRNA-mRNA network
Sun, Yaping; Tawara, Isao; Zhao, Meng; Qin, Zhaohui S.; Toubai, Tomomi; Mathewson, Nathan; Tamaki, Hiroya; Nieves, Evelyn; Chinnaiyan, Arul M.; Reddy, Pavan
2013-01-01
Donor T cells that respond to host alloantigens following allogeneic bone marrow transplantation (BMT) induce graft-versus-host (GVH) responses, but their molecular landscape is not well understood. MicroRNAs (miRNAs) regulate gene (mRNA) expression and fine-tune the molecular responses of T cells. We stimulated naive T cells with either allogeneic or nonspecific stimuli and used argonaute cross-linked immunoprecipitation (CLIP) with subsequent ChIP microarray analyses to profile miR responses and their direct mRNA targets. We identified a unique expression pattern of miRs and mRNAs following the allostimulation of T cells and a high correlation between the expression of the identified miRs and a reduction of their mRNA targets. miRs and mRNAs that were predicted to be differentially regulated in allogeneic T cells compared with nonspecifically stimulated T cells were validated in vitro. These analyses identified wings apart-like homolog (Wapal) and synaptojanin 1 (Synj1) as potential regulators of allogeneic T cell responses. The expression of these molecular targets in vivo was confirmed in MHC-mismatched experimental BMT. Targeted silencing of either Wapal or Synj1 prevented the development of GVH response, confirming a role for these regulators in allogeneic T cell responses. Thus, this genome-wide analysis of miRNA-mRNA interactions identifies previously unrecognized molecular regulators of T cell responses. PMID:24216511
Fischer, Alexandra; Gaedicke, Sonja; Frank, Jan; Döring, Frank; Rimbach, Gerald
2010-10-01
The aim of the present study was to determine the effects of a 6-month dietary vitamin E (VE) deficiency on DNA methylation and gene expression in rat liver. Two enzymes, 5-α-steroid reductase type 1 (SRD5A1) and the regulatory subunit of γ-glutamylcysteinyl synthetase (GCLM), which are differentially expressed on the mRNA level, were analysed for promoter methylation in putative cytosine-phospho-guanine (CpG) island regions located at the 5' end using base-specific cleavage and matrix-assisted laser desorption ionisation time-of-flight MS. A twofold increase in the mRNA level of SRD5A1 gene and a twofold decrease in the mRNA level of GCLM gene in VE-deficient animals were not associated with different CpG methylation of the analysed promoter region. Furthermore, global DNA methylation was not significantly different in these two groups. Thus, the present results indicate that the VE-induced regulation of SRD5A1 and GCLM in rat liver is not directly mediated by changes in promoter DNA methylation.
Mustroph, Angelika; Bailey-Serres, Julia
2010-03-01
Plants consist of distinct cell types distinguished by position, morphological features and metabolic activities. We recently developed a method to extract cell-type specific mRNA populations by immunopurification of ribosome-associated mRNAs. Microarray profiles of 21 cell-specific mRNA populations from seedling roots and shoots comprise the Arabidopsis Translatome dataset. This gene expression atlas provides a new tool for the study of cell-specific processes. Here we provide an example of how genes involved in a pathway limited to one or few cell-types can be further characterized and new candidate genes can be predicted. Cells of the root endodermis produce suberin as an inner barrier between the cortex and stele, whereas the shoot epidermal cells form cutin as a barrier to the external environment. Both polymers consist of fatty acid derivates, and share biosynthetic origins. We use the Arabidopsis Translatome dataset to demonstrate the significant cell-specific expression patterns of genes involved in those biosynthetic processes and suggest new candidate genes in the biosynthesis of suberin and cutin.
Hu, Guangwei; Li, Guang; Wang, Hui; Wang, Yiquan
2017-12-15
Correct patterning of left-right (LR) asymmetry is essential during the embryonic development of bilaterians. Hedgehog (Hh) signaling is known to play a role in LR asymmetry development of mouse, chicken and sea urchin embryos by regulating Nodal expression. In this study, we report a novel regulatory mechanism for Hh in LR asymmetry development of amphioxus embryos. Our results revealed that Hh -/- embryos abolish Cerberus ( Cer ) transcription, with bilaterally symmetric expression of Nodal , Lefty and Pitx In consequence, Hh -/- mutants duplicated left-side structures and lost right-side characters, displaying an abnormal bilaterally symmetric body plan. These LR defects in morphology and gene expression could be rescued by Hh mRNA injection. Our results indicate that Hh participates in amphioxus LR patterning by controlling Cer gene expression. Curiously, however, upregulation of Hh signaling failed to alter the Cer expression pattern or LR morphology in amphioxus embryos, indicating that Hh might not provide an asymmetric cue for Cer expression. In addition, Hh is required for mouth opening in amphioxus, hinting at a homologous relationship between amphioxus and vertebrate mouth development. © 2017. Published by The Company of Biologists Ltd.
2012-01-01
Background Kangaroos and wallabies have specialised limbs that allow for their hopping mode of locomotion. The hindlimbs differentiate much later in development but become much larger than the forelimbs. The hindlimb autopod has only four digits, the fourth of which is greatly elongated, while digits two and three are syndactylous. We investigated the expression of two genes, HOXA13 and HOXD13, that are crucial for digit patterning in mice during formation of the limbs of the tammar wallaby. Results We describe the development of the tammar limbs at key stages before birth. There was marked heterochrony and the hindlimb developed more slowly than the forelimb. Both tammar HOXA13 and HOXD13 have two exons as in humans, mice and chickens. HOXA13 had an early and distal mRNA distribution in the tammar limb bud as in the mouse, but forelimb expression preceded that in the hindlimb. HOXD13 mRNA was expressed earlier in the forelimb than the hindlimb and was predominantly detected in the interdigital tissues of the forelimb. In contrast, the hindlimb had a more restricted expression pattern that appeared to be expressed at discrete points at both posterior and anterior margins of the limb bud, and was unlike expression seen in the mouse and the chicken. Conclusions This is the first examination of HOXA and HOXD gene expression in a marsupial. The gene structure and predicted proteins were highly conserved with their eutherian orthologues. Interestingly, despite the morphological differences in hindlimb patterning, there were no modifications to the polyalanine tract of either HOXA13 or HOXD13 when compared to those of the mouse and bat but there was a marked difference between the tammar and the other mammals in the region of the first polyserine tract of HOXD13. There were also altered expression domains for both genes in the developing tammar limbs compared to the chicken and mouse. Together these findings suggest that the timing of HOX gene expression may contribute to the heterochrony of the forelimb and hindlimb and that alteration to HOX domains may influence phenotypic differences that lead to the development of marsupial syndactylous digits. PMID:22235805
Chowdhury, Tamjid A; Koceja, Chris; Eisa-Beygi, Shahram; Kleinstiver, Benjamin P; Kumar, Suresh N; Lin, Chien-Wei; Li, Keguo; Prabhudesai, Shubhangi; Joung, J Keith; Ramchandran, Ramani
2018-05-03
Tie1 (tyrosine kinase containing immunoglobulin and epidermal growth factor homology 1), an endothelial and hematopoietic cell-specific receptor tyrosine kinase, is an important regulator of angiogenesis and critical for maintaining vascular integrity. The post-transcriptional regulation of tie1 mRNA expression is not understood, but it might partly explain Tie1's differential expression pattern in endothelium. Following up on our previous work that identified natural antisense transcripts from the tie1 locus- tie1 antisense ( tie1AS ), which regulates tie1 mRNA levels in zebrafish-we attempted to identify the mechanism of this regulation. Through in vitro and in vivo ribonucleoprotein binding studies, we demonstrated that tie1AS long noncoding RNA interacts with an RNA binding protein-embryonic lethal and abnormal vision Drosophila-like 1 (Elavl1)-that regulates tie1 mRNA levels. When we disrupted the interaction between tie1AS and Elavl1 by using constitutively active antisense morpholino oligonucleotides or photoactivatable morpholino oligonucleotides, tie1 mRNA levels increased between 26 and 31 hours post-fertilization, particularly in the head. This increase correlated with dilation of primordial midbrain channels, smaller eyes, and reduced ventricular space. We also observed these phenotypes when we used CRISPR (clustered regularly interspaced short palindromic repeats)-mediated CRISPRi (CRISPR-mediated interference) to knock down tie1AS . Treatment of the morpholino oligonucleotide-injected embryos with a small molecule that decreased tie1 mRNA levels rescued all 3 abnormal phenotypes. We identified a novel mode of temporal and spatial post-transcriptional regulation of tie1 mRNA. It involves long noncoding RNA, tie1AS, and Elavl1 (an interactor of tie1AS ). © 2018 American Heart Association, Inc.
Brand, Christine; Burkhardt, Eva; Schaeffel, Frank; Choi, Jeong Won; Feldkaemper, Marita Pauline
2005-04-28
To analyze mRNA expression changes of Egr-1, VIP, and Shh under different light and treatment conditions in mice. The mRNA expression levels of the three genes and additionally the Egr-1 protein expression were compared in form deprived eyes and eyes with normal vision. Moreover, the influence of dark to light and light to dark transitions and of changes in retinal illumination on mRNA levels was investigated. Form deprivation of mice was induced by fitting frosted diffusers over one eye and an attentuation matched neutral density (ND) filter over the other eye. To measure the effects of retinal illumination changes on mRNA expression, animals were bilaterally fitted with different ND filters. Semiquantitative real-time RT-PCR was used to measure the mRNA levels and immunohistochemistry was applied to localize and detect Egr-1 protein. The expression levels of both Egr-1 mRNA and protein were reduced in form deprived eyes compared to their fellow eyes after 30 min and 1 h, respectively. Egr-1 mRNA was strikingly upregulated both after dark to light and light to dark transitions, whereas minor changes in retinal illumination by covering the eyes with neutral density filters did not alter Egr-1 mRNA expression. In mice, the mRNA levels of VIP and Shh were not affected by form deprivation, but they were found to be regulated depending on the time of day. Both Egr-1 mRNA and protein expression levels were strongly regulated by light, especially by transitions between light and darkness. Image contrast may exert an additional influence on mRNA and protein expression of Egr-1, particularly in the cells in the ganglion cell layer and in bipolar cells.
Miyazato, Takako; Ishikawa, Takaki; Michiue, Tomomi; Maeda, Hitoshi
2012-07-01
Drowning involves complex fatal factors, including asphyxiation and electrolyte/osmotic disturbances, as well as hypothermia in cold water. The present study investigated the molecular pathology of pulmonary injury due to drowning, using lung specimens from forensic autopsy cases of drowning (n = 21), acute mechanical asphyxia due to neck compression and smothering (n = 24), and hypothermia (cold exposure, n = 11), as well as those of injury (n = 23), intoxication (n = 13), fire fatality (n = 18), and acute cardiac death (n = 9) for comparison. TaqMan real-time reverse transcription polymerase chain reaction was used to quantify messenger RNA (mRNA) expressions of pulmonary surfactant-associated proteins A and D (SP-A and SP-D), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-10. SP-A and SP-D mRNA levels were lower for drowning, mechanical asphyxiation, fire fatality, and acute cardiac deaths than for hypothermia and injury. TNF-α, IL-1β, and IL-10 mRNA levels were higher for drowning or for drowning and injury than for other groups; there was no significant difference between fire fatality, involving airway injury due to inhalation of hot/irritant gases, and other control groups. These observations suggest characteristic molecular biological patterns of pulmonary injury involving suppression of pulmonary surfactants and activation of early-phase mediators of inflammation in drowning, with high mRNA expression levels of pulmonary surfactants in fatal hypothermia; however, there was no significant difference among these markers in immunohistochemical detection, except for SP-A. These mRNA expressions can be used as markers of pulmonary injury to assist in investigations of the pathophysiology of drowning and fatal hypothermia in combination with other biochemical and biological markers.
Genomic Expression Patterns in Menstrually-Related Migraine in Adolescents
Hershey, Andrew; Horn, Paul; Kabbouche, Marielle; O'Brien, Hope; Powers, Scott
2011-01-01
Background Exacerbation of migraine with menses is common in adolescent girls and women with migraine, occurring in up to 60% of females with migraine. These migraines are oftentimes longer and more disabling and may be related to estrogen levels and hormonal fluctuations. Objective This study identifies the unique genomic expression pattern of menstrually-related migraine (MRM) in comparison to migraine occurring outside the menstrual period and headache free controls. Methods Whole blood samples were obtained from female subjects having an acute migraine during their menstrual period (MRM) or outside of their menstrual period (nonMRM) and controls (C) – females having a menstrual period without any history of headache. The mRNA was isolated from these samples and genomic profile was assessed. Affymetrix Human Exon ST 1.0 arrays were used to examine the genomic expression pattern differences between these three groups. Results Blood genomic expression patterns were obtained on 56 subjects (MRM = 18, nonMRM = 18 and C = 20). Unique genomic expression patterns were observed for both MRM and nonMRM. For MRM, 77 genes were identified that were unique to MRM, while 61 genes were commonly expressed for MRM and nonMRM and 127 genes appeared to have a unique expression pattern for nonMRM. In addition, there were 279 genes that differentially expressed for MRM compared to nonMRM that were not differentially expressed for nonMRM. Gene ontology of these samples indicated many of these groups of genes were functionally related and included categories of immunomodulation/inflammation, mitochondrial function and DNA homeostasis. Conclusions Blood genomic patterns can accurately differentiate MRM from nonMRM. These results indicate that MRM involves a unique molecular biology pathway that can be identified with a specific biomarker and suggest that individuals with MRM have a different underlying genetic etiology. PMID:22220971
Adams, M B; McMillen, I C
2000-01-01
We have investigated adrenal mRNA expression of the catecholamine synthetic enzymes tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) following acute hypoxia in fetal sheep before (< 105 days gestation, n = 20) and after (> 125 days gestation, n = 20) the development of adrenal innervation and following pretreatment with the nicotinic receptor anatgonist hexamethonium (n = 12). Total RNA was extracted from fetal adrenal glands collected at specific time points at 3-20 h after the onset of either hypoxia (∼50% reduction in fetal arterial oxygen saturation (SO2) for 30 min), or normoxia. Before 105 days, there was a decrease in adrenal TH mRNA expression at 20 h after hypoxia and adrenal TH mRNA expression was directly related to the changes in arterial PO2 measured during normoxia and hypoxia. After 125 days, adrenal TH mRNA levels were suppressed for up to 12 h following hypoxia. In both age groups, adrenal PNMT mRNA expression increased at 3-5 h after hypoxia and was inversely related to the changes in fetal arterial PO2 during normoxia or hypoxia. After 125 days, the administration of hexamethonium (25 mg kg−1, I. V.) reduced TH mRNA but not PNMT mRNA expression after normoxia. After hexamethonium pretreatment, there was no significant change in either adrenal TH or PNMT mRNA expression following hypoxia. We conclude that acute hypoxia differentially regulates adrenal TH and PNMT mRNA expression in the fetal sheep both before and after the development of adrenal innervation. After the development of adrenal innervation, however, the effect of acute hypoxia upon adrenal TH and PNMT mRNA expression is dependent upon neurogenic input acting via nicotinic receptors. PMID:11118487
Itoh, Kazuko; Izumi, Yuichiro; Inoue, Takeaki; Inoue, Hideki; Nakayama, Yushi; Uematsu, Takayuki; Fukuyama, Takashi; Yamazaki, Taiga; Yasuoka, Yukiko; Makino, Takeshi; Nagaba, Yasushi; Tomita, Kimio; Kobayashi, Noritada; Kawahara, Katsumasa; Mukoyama, Masashi; Nonoguchi, Hiroshi
2014-10-24
Sodium reabsorption via Na-K-2Cl cotransporter 2 (NKCC2) in the thick ascending limbs has a major role for medullary osmotic gradient and subsequent water reabsorption in the collecting ducts. We investigated intrarenal localization of three isoforms of NKCC2 mRNA expressions and the effects of dehydration on them in rats. To further examine the mechanisms of dehydration, the effects of hyperosmolality on NKCC2 mRNA expression in microdissected renal tubules was studied. RT-PCR and RT-competitive PCR were employed. The expressions of NKCC2a and b mRNA were observed in the cortical thick ascending limbs (CAL) and the distal convoluted tubules (DCT) but not in the medullary thick ascending limbs (MAL), whereas NKCC2f mRNA expression was seen in MAL and CAL. Two-day dehydration did not affect these mRNA expressions. In contrast, hyperosmolality increased NKCC2 mRNA expression in MAL in vitro. Bradykinin dose-dependently decreased NKCC2 mRNA expression in MAL. However, dehydration did not change NKCC2 protein expression in membrane fraction from cortex and outer medulla and in microdissected MAL. These data show that NKCC2a/b and f types are mainly present in CAL and MAL, respectively. Although NKCC2 mRNA expression was stimulated by hyperosmolality in vitro, NKCC2 mRNA and protein expressions were not stimulated by dehydration in vivo. These data suggest the presence of the inhibitory factors for NKCC2 expression in dehydration. Considering the role of NKCC2 for the countercurrent multiplier system, NKCC2f expressed in MAL might be more important than NKCC2a/b. Copyright © 2014 Elsevier Inc. All rights reserved.
Park, Kiyun
2014-01-01
Objectives Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone important in the maturation of a broad spectrum of protein. In this study, an HSP90 gene was isolated from Asian paddle crab, Charybdis japonica, as a bio-indicator to monitor the marine ecosystem. Methods This work reports the responses of C. japonica HSP90 mRNA expression to cellular stress by endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA) and 4-nonylphenol (NP) using real-time. reverse transcription polymerase chain reaction. Results The deduced amino acid sequence of HSP90 from C. japonica shared a high degree of homology with their homologues in other species. In a phylogenetic analysis, C. japonica HSP90 is evolutionally related with an ortholog of the other crustacean species. The expression of HSP90 gene was almost distributed in all the examined tissues of the C. japonica crab but expression levels varied among the different body parts of the crabs. We examined HSP90 mRNA expression pattern in C. japonica crabs exposed to EDCs for various exposure times. The expression of HSP90 transcripts was significantly increased in C. japonica crabs exposed to BPA and NP at different concentrations for 12, 24, 48 and 96 hours. The mRNA expression of HSP90 gene was significantly induced in a concentration- and time-dependent manner after BPA or NP exposures for 96 hours. Conclusions Taken together, expression analysis of Asian paddle crab HSP90 gene provided useful molecular information about crab responses in stress conditions and potential ways to monitor the EDCs stressors in marine environments. PMID:24955332
Park, Kiyun; Kwak, Ihn-Sil
2014-01-01
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone important in the maturation of a broad spectrum of protein. In this study, an HSP90 gene was isolated from Asian paddle crab, Charybdis japonica, as a bio-indicator to monitor the marine ecosystem. This work reports the responses of C. japonica HSP90 mRNA expression to cellular stress by endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA) and 4-nonylphenol (NP) using real-time. reverse transcription polymerase chain reaction. The deduced amino acid sequence of HSP90 from C. japonica shared a high degree of homology with their homologues in other species. In a phylogenetic analysis, C. japonica HSP90 is evolutionally related with an ortholog of the other crustacean species. The expression of HSP90 gene was almost distributed in all the examined tissues of the C. japonica crab but expression levels varied among the different body parts of the crabs. We examined HSP90 mRNA expression pattern in C. japonica crabs exposed to EDCs for various exposure times. The expression of HSP90 transcripts was significantly increased in C. japonica crabs exposed to BPA and NP at different concentrations for 12, 24, 48 and 96 hours. The mRNA expression of HSP90 gene was significantly induced in a concentration- and time-dependent manner after BPA or NP exposures for 96 hours. Taken together, expression analysis of Asian paddle crab HSP90 gene provided useful molecular information about crab responses in stress conditions and potential ways to monitor the EDCs stressors in marine environments.
Li, Changlin; Wang, Yibing; Gao, Li; Zhang, Jingsong; Shao, Jie; Wang, Shengnian; Feng, Weiguo; Wang, Xingyu; Li, Minglie; Chang, Zongliang
2002-01-01
Macrophages form a crucial bridge between the innate and adaptive immune response. One of their most important functions is to recognize infectious microorganisms. Toll-like receptors (TLRs) are key elements in pathogen recognition, and among them, TLR2 and TLR4 are most discussed. However, expression patterns of TLRs during myeloid cell differentiation to macrophage are unknown. In this study, we examined differentiation in the model human myeloid cell line, HL-60, treated with phorbol 12-myristate 13-acetate (PMA) or VitD(3). Expression of TLR2, TLR4, and CD14 were measured by reverse transcription-PCR, RNase protection assay, and fluorescence-activated cell sorter assays. After treatment by PMA (1, 10, and 100 nM) for 12, 24, and 48 h, expression of TLR2 and CD14 mRNA was increased in a time- and dose-dependent manner. However, VitD(3) only induced expression of CD14 but not TLR2 in HL-60 cells. TLR4 was expressed constitutively before differentiation and increased slightly after that. Thus, PMA-mediated differentiation of HL-60 cells to macrophages is associated largely with TLR2 expression and, to a much lesser extent, with TLR4. Furthermore, up-regulation of TLR2 and CD14 mRNA expression by PMA was abrogated by a protein kinase C inhibitor, Calphostine C, suggesting the up-regulation of TLR2 and CD14 mRNA is dependent on the activation of protein kinase C. Coexpression of CD14/TLR2 and/or CD14/TLR4 may be essential but not sufficient for the production of tumor necrosis factor-alpha in response to lipopolysaccharide in our system.
Gonsebatt, M E; Del Razo, L M; Cerbon, M A; Zúñiga, O; Sanchez-Peña, L C; Ramírez, P
2007-09-01
Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 microM of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function.
Hollingsworth, M A; Strawhecker, J M; Caffrey, T C; Mack, D R
1994-04-15
We examined the steady-state expression levels of mRNA for the MUC1, MUC2, MUC3 and MUC4 gene products in 12 pancreatic tumor cell lines, 6 colon tumor cell lines, and one ileocecal tumor cell line. The results showed that 10 of 12 pancreatic tumor cell lines expressed MUC1 mRNA and that 7 of these 12 lines also expressed relatively high levels of MUC4 mRNA. In contrast, MUC2 mRNA was expressed at only low levels and MUC3 was not detected in the pancreatic tumor cell lines. All 7 intestinal tumor cell lines examined expressed MUC2, and 5 of 7 expressed MUC3; however only one expressed significant levels of MUC1 and 2 expressed low levels of MUC4 mRNA. This report of high levels of MUC4 mRNA expression by pancreatic tumor cells raises the possibility that mucin carbohydrate epitopes defined by antibodies such as DuPan 2 may be expressed on a second mucin core protein produced by pancreatic tumor cells.
[Expression and antagonist role of endothelin and nitric oxide synthase in atherosclerotic plaque].
Song, L; Wang, D; Wang, T
1997-02-01
To study the pathogenetic mechanism of atherosclerotic plaque, the action of mediation and antagonism of endothelin (ET) and nitric oxide synthase (NOS) was investigated. In situ hybridization, RT-PCR on endothelin and NOS, cytochemistry on NOS were measured using the rabbit atherosclerosis model and cultured vascular smooth muscle cells (VSMC) from normal rabbit. Transcription of endothelin mRNA increased and transcription of NOS mRNA decreased in astherosclerotic plaque: compared with normal aorta, expression of ET gene in plaque was increased by 1.2 times and the expression of NOS gene was decreased by 22.2%; cytochemistry combined with image pattern analysis showed that ET could inhibit NOS protien synthesis in VSMC; type A receptor antagonist of ET could inhibit the role of ET which causes a decrease of NOS protein in VSMC. The imbalance between NOS and ET, namely abnormal increase of ET and/or obvious decrease of NOS, is related to atherosclerotic plaque formation.
Yang, Yung-Hun; Kim, Ji-Nu; Song, Eunjung; Kim, Eunjung; Oh, Min-Kyu; Kim, Byung-Gee
2008-09-01
In order to identify the regulators involved in antibiotic production or time-specific cellular events, the messenger ribonucleic acid (mRNA) expression data of the two gene clusters, actinorhodin (ACT) and undecylprodigiosin (RED) biosynthetic genes, were clustered with known mRNA expression data of regulators from S. coelicolor using a filtering method based on standard deviation and clustering analysis. The result identified five regulators including two well-known regulators namely, SCO3579 (WlbA) and SCO6722 (SsgD). Using overexpression and deletion of the regulator genes, we were able to identify two regulators, i.e., SCO0608 and SCO6808, playing roles as repressors in antibiotics production and sporulation. This approach can be easily applied to mapping out new regulators related to any interesting target gene clusters showing characteristic expression patterns. The result can also be used to provide insightful information on the selection rules among a large number of regulators.
Wong-Goodrich, Sarah J. E.; Mellott, Tiffany J.; Glenn, Melissa J.; Blusztajn, Jan K.; Williams, Christina L.
2008-01-01
Prenatal choline supplementation (SUP) protects adult rats against spatial memory deficits observed after excitotoxin-induced status epilepticus (SE). To examine the mechanism underlying this neuroprotection, we determined the effects of SUP on a variety of hippocampal markers known to change in response to SE and thought to underlie ensuing cognitive deficits. Adult offspring from rat dams that received either a Control or SUP diet on embryonic days 12–17 were administered saline or kainic acid (i.p.) to induce SE and were euthanized 16 days later. SUP markedly attenuated seizure-induced hippocampal neurodegeneration, dentate cell proliferation, hippocampal GFAP mRNA expression levels, prevented the loss of hippocampal GAD65 protein and mRNA expression, and altered growth factor expression patterns. SUP also enhanced pre-seizure hippocampal levels of BDNF, NGF, and IGF-1, which may confer a neuroprotective hippocampal microenvironment that dampens the neuropathological response to and/or helps facilitate recovery from SE to protect cognitive function. PMID:18353663
Huang, Liping; Van Renne, Nicolaas; Liu, Changming; Nauwynck, Hans J
2015-12-01
Porcine circovirus type 2 (PCV2) encodes two major proteins: the replication protein (Rep) and the capsid protein (Cap). Cap displays a conserved stretch of basic residues situated on the inside of the capsid, whose role is so far unknown. We used a reverse-genetics approach to investigate its function and found that mutations in these amino acids hindered Cap mRNA translation and hampered Cap/Rep co-localization, yielding unfit viruses. Intriguingly, co-transfection with a WT PCV2 of a different genotype partially rescued mutant Cap expression, showing the importance of this basic pattern for efficient translation of Cap mRNA into protein. Our results show that Cap and Rep are expressed independently of each other, and that this amino acid sequence of Cap is vital for virus propagation. This study provides a method for studying unfit PCV2 virions and offers new insights into the intracellular modus vivendi of PCV2.
2011-01-01
Background Abiotic stresses, such as water deficit and soil salinity, result in changes in physiology, nutrient use, and vegetative growth in vines, and ultimately, yield and flavor in berries of wine grape, Vitis vinifera L. Large-scale expressed sequence tags (ESTs) were generated, curated, and analyzed to identify major genetic determinants responsible for stress-adaptive responses. Although roots serve as the first site of perception and/or injury for many types of abiotic stress, EST sequencing in root tissues of wine grape exposed to abiotic stresses has been extremely limited to date. To overcome this limitation, large-scale EST sequencing was conducted from root tissues exposed to multiple abiotic stresses. Results A total of 62,236 expressed sequence tags (ESTs) were generated from leaf, berry, and root tissues from vines subjected to abiotic stresses and compared with 32,286 ESTs sequenced from 20 public cDNA libraries. Curation to correct annotation errors, clustering and assembly of the berry and leaf ESTs with currently available V. vinifera full-length transcripts and ESTs yielded a total of 13,278 unique sequences, with 2302 singletons and 10,976 mapped to V. vinifera gene models. Of these, 739 transcripts were found to have significant differential expression in stressed leaves and berries including 250 genes not described previously as being abiotic stress responsive. In a second analysis of 16,452 ESTs from a normalized root cDNA library derived from roots exposed to multiple, short-term, abiotic stresses, 135 genes with root-enriched expression patterns were identified on the basis of their relative EST abundance in roots relative to other tissues. Conclusions The large-scale analysis of relative EST frequency counts among a diverse collection of 23 different cDNA libraries from leaf, berry, and root tissues of wine grape exposed to a variety of abiotic stress conditions revealed distinct, tissue-specific expression patterns, previously unrecognized stress-induced genes, and many novel genes with root-enriched mRNA expression for improving our understanding of root biology and manipulation of rootstock traits in wine grape. mRNA abundance estimates based on EST library-enriched expression patterns showed only modest correlations between microarray and quantitative, real-time reverse transcription-polymerase chain reaction (qRT-PCR) methods highlighting the need for deep-sequencing expression profiling methods. PMID:21592389
Yang, Di; Li, Ren; Qiu, Li-Hong; Li, Chen
2009-04-01
To quantify the IL-1 beta mRNA and IL-6 mRNA expression induced by lipopolysaccharides (LPS)extracted from Porphyromonas endodontalis(P.e) in osteoblasts, and to relate P.e-LPS to bone absorption pathogenesis in lesions of chronical apical periodontitis. MG63 was treated with different concentrations of P.e-LPS(0-50 microg/mL) for different hours(0-24h). The expression of IL-1 beta mRNA and IL-6 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR).Statistical analysis was performed using one- way ANOVA and Dunnett t test with SPSS11.0 software package. The level of IL-1 beta mRNA and IL-6 mRNA increased significantly after treatment with P.e-LPS at more than 5 microg/mL (P<0.01)and for more than 1 hour (P<0.01), which indicated that P.e-LPS induced osteoblasts to express IL-1 beta mRNA and IL-6 mRNA in dose and time dependent manners. P.e-LPS may promote bone resorption in lesions of chronical apical periodontitis by inducing IL-1 beta mRNA and IL-6 mRNA expression in osteoblasts.
de Araujo, G G; Gobatto, C A; de Barros Manchado-Gobatto, F; Teixeira, L Fm; Dos Reis, I Gm; Caperuto, L C; Papoti, M; Bordin, S; Cavaglieri, C R; Verlengia, R
2015-01-01
We evaluate the mRNA expression of monocarboxylate transporters 1 and 4 (MCT1 and MCT4) in skeletal muscle (soleus, red and white gastrocnemius), heart and liver tissues in mice submitted to a single bout of swimming exercise at the maximal lactate steady state workload (MLSSw). After 72 h of MLSS test, the animals were submitted to a swimming exercise session for 25 min at individual MLSSw. Tissues and muscle samples were obtained at rest (control, n=5), immediately (n=5), 5 h (n=5) and 10 h (n=5) after exercise for determination of the MCT1 and MCT4 mRNA expression (RT-PCR). The MCT1 mRNA expression in liver increased after 10 h in relation to the control, immediate and 5 h groups, but the MCT4 remained unchanged. The MCT1 mRNA expression in heart increased by 31 % after 10 h when compared to immediate, but no differences were observed in relation to the control group. No significant differences were observed for red gastrocnemius in MCT1 and MCT4 mRNA expression. However, white gastrocnemius increased MCT1 mRNA expression immediately when compared to rest, 5 and 10 h test groups. In soleus muscle, the MCT1 mRNA expression increased immediately, 5 and 10 h after exercise when compared to the control. In relation to MCT4 mRNA expression, the soleus increased immediately and 10 h after acute exercise when compared to the control group. The soleus, liver and heart were the main tissues that showed improved the MCT1 mRNA expression, indicating its important role in controlling MLSS concentration in mice.
Gottipati, Srinivas
2008-01-01
Purpose 17 β-estradiol (17β-E2) protects human lens epithelial cells against oxidative stress by preserving mitochondrial function in part via the non-genomic rapid activation of prosurvival signal transduction pathways. The study described herein examined whether 17β-E2 also elicits genomic protection by influencing the expression (and activity) of mitochondrial-associated manganese superoxide dismutase (MnSOD) as a possible parallel mechanism by which 17β-E2 protects against oxidative stress. Methods Virally-transformed human lens epithelial cells (HLE-B3) were pre-incubated with 17β-E2, and mRNA or protein lysates were collected over a time course ranging from 90 min to 24 h. Positive expression of lens epithelial cell MnSOD mRNA was determined by semi-quantitative reverse transcriptase polymerase chain reaction (RT–PCR), and its levels were monitored by real-time PCR up to 24 h after 17β-E2 administration. Western blot analysis was used to examine the pattern of protein expression as influenced by 17β-E2 treatment. MnSOD activity as influenced by 17β-E2 was determined by measuring enzymatic activity. Results A significant rapid increase in the activity of MnSOD was observed with HLE-B3 cells by 90 min post-bolus addition of 17β-E2, which returned to control level by 240 min. Neither an increase in MnSOD mRNA nor in protein expression was detected up through 24 h. Conclusions These data demonstrate that 17β-E2 rapidly and transiently increases the activity of MnSOD but influences neither its mRNA expression nor its protein expression. The results suggest that (estrogen-activated) MnSOD plays an important role against mitochondrial oxidative stress by diminishing reactive oxygen species, thus promoting cell survival. PMID:18490963
Li, Qiu; Li, Xiu; Tang, Hao; Jiang, Bin; Dou, Yali; Gorospe, Myriam; Wang, Wengong
2017-09-01
N6-methyladenosine (m6A) and m5C methylation are two major types of RNA methylation, but the impact of joint modifications on the same mRNA is unknown. Here, we show that in p21 3'UTR, NSUN2 catalyzes m5C modification and METTL3/METTL14 catalyzes m6A modification. Interestingly, methylation at m6A by METTL3/METTL14 facilitates the methylation of m5C by NSUN2, and vice versa. NSUN2-mediated m5C and METTL3/METTL14-mediated m6A methylation synergistically enhance p21 expression at the translational level, leading to elevated expression of p21 in oxidative stress-induced cellular senescence. Our findings on p21 mRNA methylation and expression reveal that joint m6A and m5C modification of the same RNA may influence each other, coordinately affecting protein expression patterns. J. Cell. Biochem. 118: 2587-2598, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
EMMPRIN (basigin/CD147) is involved in the morphogenesis of tooth germ in mouse molars.
Xie, Ming; Jiao, Ting; Chen, Yuqin; Xu, Chun; Li, Jing; Jiang, Xinquan; Zhang, Fuqiang
2010-05-01
The pattern of gene expression for extracellular matrix metalloproteinase inducer (EMMPRIN) was revealed in the tooth germ of mouse mandibular molars using quantitative real-time PCR. In situ hybridization and immunohistochemical study demonstrated the characteristic distribution of EMMPRIN in the different stages of tooth germ development. To investigate the functional role played by EMMPRIN in tooth germ development, EMMPRIN siRNA interference approach was carried out in cultured mouse mandibles at embryonic day 11.0 (E11.0). The results showed that EMMPRIN siRNA-treated explants exhibited a marked growth inhibition of tooth germ compared to the control and scrambled siRNA-treated explants. Meanwhile, a significant increase in MT1-MMP mRNA expression and a reduction in MMP-2, MMP-3, MMP-9, MMP-13 and MT2-MMP mRNA expression were observed in the mouse mandibles following EMMPRIN abrogation. The current results indicate that EMMPRIN could thus be involved in the early stage of tooth germ development and morphogenesis, possibly by regulating the expression of MMP genes.
Myostatin, follistatin and activin type II receptors are highly expressed in adenomyosis.
Carrarelli, Patrizia; Yen, Chih-Fen; Arcuri, Felice; Funghi, Lucia; Tosti, Claudia; Wang, Tzu-Hao; Huang, Joseph S; Petraglia, Felice
2015-09-01
To evaluate the expression pattern of activins and related growth factor messenger RNA (mRNA) levels in adenomyotic nodules and in their endometrium. Prospective study. University hospital. Symptomatic premenopausal women scheduled to undergo hysterectomy for adenomyosis. Samples from adenomyotic nodules and homologous endometria were collected. Endometrial tissue was also obtained from a control group. Quantitative real-time polymerase chain reaction (PCR) analysis and immunohistochemical localization of activin-related growth factors (activin A, activin B, and myostatin), binding protein (follistatin), antagonists (inhibin-α, cripto), and receptors (ActRIIa, ActRIIb) were performed. Myostatin mRNA levels in adenomyotic nodule were higher than in eutopic endometrium and myostatin, activin A, and follistatin concentrations were higher than in control endometrium. No difference was observed for inhibin-α, activin B, and cripto mRNA levels. Increased mRNA levels of ActRIIa and ActRIIb were observed in adenomyotic nodules compared with eutopic endometrium and control endometrium. Immunofluorescent staining for myostatin and follistatin confirmed higher protein expression in both glands and stroma of patients with adenomyosis than in controls. The present study showed for the first time that adenomyotic tissues express high levels of myostatin, follistatin, and activin A (growth factors involved in proliferation, apoptosis, and angiogenesis). Increased expression of their receptors supports the hypothesis of a possible local effect of these growth factors in adenomyosis. The augmented expression of ActRIIa, ActRIIb, and follistatin in the endometrium of these patients may play a role in adenomyosis-related infertility. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Shalhoub, V; Jackson, M E; Lian, J B; Stein, G S; Marks, S C
1991-05-25
Osteopetrosis is a group of metabolic bone diseases characterized by reductions in osteoclast development and/or function. These aspects of osteoclast biology are known to be influenced by osteoblasts and their products. To ascertain whether osteoblast dysfunction contributes to aberrations in the structural and functional properties of osteoclasts in osteopetrosis, we systematically examined gene expression as reflected by mRNA levels for a series of cell growth- and tissue-related genes associated with the osteoblast phenotype during skeletal development in normal and mutant rats of three different osteopetrotic stocks. We show that the methods used permit the reproducible isolation of undegraded total cellular RNA from bone and that mRNA levels can be reliably quantitated in these preparations. Each osteopetrotic mutation exhibits a distinct aberrant pattern of osteoblast gene expression that may be correlated with and explain some abnormalities in extracellular matrix composition, mineralization, osteoclast development, and effects of elevated serum levels of 1 alpha,25-dihydroxyvitamin D3, depending upon the mutation. Normal rats show minor variations in gene expression that reflect the genetic background (stock). This, the first comprehensive molecular analysis of osteoblast gene expression in osteopetrosis, suggests that some osteopetroses, particularly in the toothless rat, are associated with and potentially related to mechanisms associated with aberrations in osteoblast function. More generally, the present studies demonstrate alterations in gene expression as reflected by mRNA levels that are associated with functional properties of the osteoblast, particularly those contributing to the recruitment and/or differentiation of osteoclasts, thereby influencing skeletal modeling.
The distribution of the orphan bombesin receptor subtype-3 in the rat CNS.
Jennings, C A; Harrison, D C; Maycox, P R; Crook, B; Smart, D; Hervieu, G J
2003-01-01
Bombesin receptor subtype 3 (BRS-3) is an orphan G-protein coupled receptor that shares between 47 and 51% homology with other known bombesin receptors. The natural ligand for BRS-3 is currently unknown and little is known about the mechanisms regulating BRS-3 gene expression. Unlike other mammalian bombesin receptors that have been shown to be predominantly expressed in the CNS and gastrointestinal tract, expression of the BRS-3 receptor in the rat brain has previously not been observed. To gain further understanding of the biology of BRS-3, we have studied the distribution of BRS-3 mRNA and protein in the rat CNS. The mRNA expression pattern was studied using reverse transcription followed by quantitative polymerase chain reaction. Using immunohistological techniques, the distribution of BRS-3 protein in the rat brain was investigated using a rabbit affinity-purified polyclonal antiserum raised against an N-terminal peptide. The BRS-3 receptor was found to be widely expressed in the rat brain at both mRNA and protein levels. Particularly strong immunosignals were observed in the cerebral cortex, hippocampal formation, hypothalamus and thalamus. Other regions of the brain such as the basal ganglia, midbrain and reticular formation were also immunopositive for BRS-3. In conclusion, our neuroanatomical data provide evidence that BRS-3 is as widely expressed in the rat brain as other bombesin-like peptide receptors and suggest that this receptor may also have important roles in the CNS, mediating the functions of a so far unidentified ligand.
The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum.
Niño-Sánchez, Jonathan; Casado-Del Castillo, Virginia; Tello, Vega; De Vega-Bartol, José J; Ramos, Brisa; Sukno, Serenella A; Díaz Mínguez, José María
2016-09-01
The FTF (Fusarium transcription factor) gene family comprises a single copy gene, FTF2, which is present in all the filamentous ascomycetes analysed, and several copies of a close relative, FTF1, which is exclusive to Fusarium oxysporum. An RNA-mediated gene silencing system was developed to target mRNA produced by all the FTF genes, and tested in two formae speciales: F. oxysporum f. sp. phaseoli (whose host is common bean) and F. oxysporum f. sp. lycopersici (whose host is tomato). Quantification of the mRNA levels showed knockdown of FTF1 and FTF2 in randomly isolated transformants of both formae speciales. The attenuation of FTF expression resulted in a marked reduction in virulence, a reduced expression of several SIX (Secreted In Xylem) genes, the best studied family of effectors in F. oxysporum, and lower levels of SGE1 (Six Gene Expression 1) mRNA, the presumptive regulator of SIX expression. Moreover, the knockdown mutants showed a pattern of colonization of the host plant similar to that displayed by strains devoid of FTF1 copies (weakly virulent strains). Gene knockout of FTF2 also resulted in a reduction in virulence, but to a lesser extent. These results demonstrate the role of the FTF gene expansion, mostly the FTF1 paralogues, as a regulator of virulence in F. oxysporum and suggest that the control of effector expression is the mechanism involved. © 2016 The Authors Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.
Cabiati, Manuela; Raucci, Serena; Caselli, Chiara; Guzzardi, Maria Angela; D'Amico, Andrea; Prescimone, Tommaso; Giannessi, Daniela; Del Ry, Silvia
2012-06-01
Obesity is a complex pathology with interacting and confounding causes due to the environment, hormonal signaling patterns, and genetic predisposition. At present, the Zucker rat is an eligible genetic model for research on obesity and metabolic syndrome, allowing scrutiny of gene expression profiles. Real-time PCR is the benchmark method for measuring mRNA expressions, but the accuracy and reproducibility of its data greatly depend on appropriate normalization strategies. In the Zucker rat model, no specific reference genes have been identified in myocardium, kidney, and lung, the main organs involved in this syndrome. The aim of this study was to select among ten candidates (Actb, Gapdh, Polr2a, Ywhag, Rpl13a, Sdha, Ppia, Tbp, Hprt1 and Tfrc) a set of reference genes that can be used for the normalization of mRNA expression data obtained by real-time PCR in obese and lean Zucker rats both at fasting and during acute hyperglycemia. The most stable genes in the heart were Sdha, Tbp, and Hprt1; in kidney, Tbp, Actb, and Gapdh were chosen, while Actb, Ywhag, and Sdha were selected as the most stably expressed set for pulmonary tissue. The normalization strategy was used to analyze mRNA expression of tumor necrosis factor α, the main inflammatory mediator in obesity, whose variations were more significant when normalized with the appropriately selected reference genes. The findings obtained in this study underline the importance of having three stably expressed reference gene sets for use in the cardiac, renal, and pulmonary tissues of an experimental model of obese and hyperglycemic Zucker rats.
Gao, H; Liu, C P; Song, S Q; Fu, J
2016-07-01
The interactions between the essential element selenium (Se) and the toxic element lead (Pb) have been reported extensively; however, little is known about the effect of Se on Pb toxicity and the expression pattern of selenoproteins in the cartilage of chicken. To investigate the effects of Se on Pb toxicity and the messenger RNA (mRNA) expressions of selenoproteins in cartilage tissue, an in vitro study was performed on 1-day-old broiler chickens (randomly allocated into four groups) with diet of different concentration of Se and Pb. After 90 days, the meniscus cartilage and sword cartilage tissue were examined for the mRNA levels of 25 selenoprotein genes. The results showed that Se and Pb influenced the expression of selenoprotein genes in the chicken cartilage tissue. In detail, Se could alleviate the downtrend of the expression of Gpx1, Gpx2, Gpx4, Txnrd2, Txnrd3, Dio1, Dio2, Seli, Selu, Sepx1, Selk, Selw, Selo, Selm, Sep15, Sepnn1, Sels, and Selt induced by Pb exposure in the meniscus cartilage. In the sword cartilage, Se alleviated the downtrend of the expression of Gpx2, Gpx3, Gpx4, Txnrd1, Txnrd2, Dio2, Dio3, Seli, Selh, SPS2, Sepx1, Selk, Selw, Selo, Selm, Sep15, Selpb, Sepn1, and Selt induced by Pb exposure. The present study provided some compensated data about the roles of Se against Pb toxicity in the regulation of selenoprotein expression.
Cellular localization of thrombopoietin mRNA in the liver by in situ hybridization.
Nomura, S; Ogami, K; Kawamura, K; Tsukamoto, I; Kudo, Y; Kanakura, Y; Kitamura, Y; Miyazaki, H; Kato, T
1997-07-01
The expression of thrombopoietin (TPO) mRNA is observed in several tissues, including liver, kidney, brain, skeletal muscle, intestine, spleen, and bone marrow. Among these organs, the highest expression of TPO mRNA is detected in the liver. We identified cells producing TPO by means of in situ hybridization of adult rat liver using digoxigenin-11-UTP-labeled cRNA probes. We found that the cells expressing TPO mRNA also expressed serum albumin mRNA. TPO mRNA was detected in parenchymal cells (hepatocytes) but not in non-parenchymal cells (including endothelial cells, epithelial cells, and so forth). To determine the location of TPO expression in embryogenesis, sections of fetal mice were further analyzed by in situ hybridization. TPO mRNA was detected only in hepatocytes of fetal liver, which was also the major site of hematopoiesis. The expression of TPO mRNA in fetal liver was observed from 12.5 days postcoitus. Northern blot analysis showed that mouse liver transcribed the same size of TPO mRNA in the fetus and in the adult. These results clearly demonstrate that hepatocytes are the primary site of TPO production in the liver from fetus to adult.
Expression of the Diabetes-Associated Gene TCF7L2 in Adult Mouse Brain
LEE, SYANN; LEE, CHARLOTTE E.; ELIAS, CAROL F.; ELMQUIST, JOEL K.
2014-01-01
Polymorphisms of the gene TCF7L2 (transcription factor 7-like 2) are strongly associated with the development and progression of type 2 diabetes. TCF7L2 is important in the development of peripheral organs such as adipocytes, pancreas, and the intestine. However, very little is known about its expression elsewhere. In this study we used in situ hybridization histochemistry to show that TCF7L2 has a unique expression pattern in the mouse brain. TCF7L2 is expressed in two distinct populations. First, it is highly ex pressed in thalamic and tectal structures. Additionally, TCF7L2 mRNA is expressed at moderate to low levels in specific cells of the hypothalamus, preoptic nucleus, and circumventricular organs. Collectively, these patterns of expression suggest that TCF7L2 has distinct functions within the brain, with a general role in the development and maintenance of thalamic and midbrain neurons, and then a distinct role in autonomic homeostasis. PMID:19845015
Jiang, Guangli; Qi, Yuxia
2015-05-01
The aim of the present study was to investigate the correlation of matrix metalloproteinase (MMP)-9 and tissue inhibitor of matrix metalloproteinase inhibitor (TIMP)-3 expression with spontaneous abortion (SA) during early pregnancy. The villus tissues of 30 SA cases and 20 requested abortion cases were collected during surgery and constituted the SA and normal abortion (NA) groups, respectively. The total villous RNA was extracted and the expression levels of MMP -9 and TIMP-3 mRNA were detected by reverse transcription-polymerase chain reaction (RT-PCR) assay to calculate the MMP-9/TIMP-3 mRNA ratio. The MMP-9 mRNA expression level and MMP-9/TIMP-3 mRNA ratio of the SA group were significantly higher than those of the NA group (P<0.01), while the TIMP-3 mRNA levels of the two groups were similar (P>0.05). The MMP-9 mRNA expression level of the SA group was higher than that of the NA group; thus, the MMP-9/TIMP-3 mRNA ratio was higher. These results suggest that the expression level of MMP-9 mRNA and the MMP-9/TIMP-3 mRNA ratio are associated with SA.
Stress-resistant Translation of Cathepsin L mRNA in Breast Cancer Progression*
Tholen, Martina; Wolanski, Julia; Stolze, Britta; Chiabudini, Marco; Gajda, Mieczyslaw; Bronsert, Peter; Stickeler, Elmar; Rospert, Sabine; Reinheckel, Thomas
2015-01-01
The cysteine protease cathepsin L (CTSL) is often thought to act as a tumor promoter by enhancing tumor progression and metastasis. This goes along with increased CTSL activity in various tumor entities; however, the mechanisms leading to high CTSL levels are incompletely understood. With the help of the polyoma middle T oncogene driven breast cancer mouse model expressing a human CTSL genomic transgene, we show that CTSL indeed promotes breast cancer metastasis to the lung. During tumor formation and progression high expression levels of CTSL are maintained by enduring translation of CTSL mRNA. Interestingly, human breast cancer specimens expressed the same pattern of 5′ untranslated region (UTR) splice variants as the transgenic mice and the human cancer cell line MDA-MB 321. By polyribosome profiling of tumor tissues and human breast cancer cells, we observe an intrinsic resistance of CTSL to stress-induced shutdown of translation. This ability can be attributed to all 5′ UTR variants of CTSL and is not dependent on a previously described internal ribosomal entry site motif. In conclusion, we provide in vivo functional evidence for overexpressed CTSL as a promoter of lung metastasis, whereas high CTSL levels are maintained during tumor progression due to stress-resistant mRNA translation. PMID:25957406
Shibata, Mami; Mekuchi, Miyuki; Mori, Kazuki; Muta, Shigeru; Chowdhury, Vishwajit Sur; Nakamura, Yoji; Ojima, Nobuhiko; Saitoh, Kenji; Kobayashi, Takanori; Wada, Tokio; Inouye, Kiyoshi; Kuhara, Satoru; Tashiro, Kosuke
2016-06-01
Bluefin tuna are high-performance swimmers and top predators in the open ocean. Their swimming is grounded by unique features including an exceptional glycolytic potential in white muscle, which is supported by high enzymatic activities. Here we performed high-throughput RNA sequencing (RNA-Seq) in muscles of the Pacific bluefin tuna (Thunnus orientalis) and Pacific cod (Gadus macrocephalus) and conducted a comparative transcriptomic analysis of genes related to energy production. We found that the total expression of glycolytic genes was much higher in the white muscle of tuna than in the other muscles, and that the expression of only six genes for glycolytic enzymes accounted for 83.4% of the total. These expression patterns were in good agreement with the patterns of enzyme activity previously reported. The findings suggest that the mRNA expression of glycolytic genes may contribute directly to the enzymatic activities in the muscles of tuna.
Insulin Response Genes in Different Stages of Periodontal Disease
Yu, N.; Barros, S.P.; Zhang, S.; Moss, K.L.; Phillips, S.T.; Offenbacher, S.
2015-01-01
Bacterial infections are known to alter glucose metabolism within tissues via mechanisms of inflammation. We conducted this study to examine whether insulin response genes are differentially expressed in gingival tissues, comparing samples from experimental gingivitis and periodontitis subjects to those from healthy individuals. Total RNA was extracted from gingival biopsies from 26 participants: 8 periodontally healthy, 9 experimental gingivitis, and 9 periodontitis subjects. Gene expression patterns were evaluated with a polymerase chain reaction array panel to examine 84 candidate genes involved with glucose metabolism, insulin resistance, and obesity. Array data were evaluated with a t test adjusted by the false discover rate (P < 0.05), and ingenuity pathway analysis was performed for statistical testing of pathways. Although tissue samples were not sufficient to enable protein quantification, we confirmed the upregulation of the key gene using lipopolysaccharide-stimulated primary gingival epithelial cells by Western blot. The mRNA expression patterns of genes that are associated with insulin response and glucose metabolism are markedly different in experimental gingivitis subjects compared with healthy controls. Thirty-two genes are upregulated significantly by at least 2-fold, adjusted for false discover rate (P < 0.05). Periodontitis subjects show similar but attenuated changes in gene expression patterns, and no genes meet the significance criteria. Ingenuity pathway analysis demonstrates significant activation of the carbohydrate metabolism network in experimental gingivitis but not in periodontitis. G6PD protein increases in response to lipopolysaccharide stimulation in primary gingival epithelial cells, which is in the same direction as upregulated mRNA in tissues. Acute gingival inflammation may be associated with tissue metabolism changes, but these changes are not evident in chronic periodontitis. This study suggests that acute gingival inflammation may induce localized changes that modify tissue insulin/glucose metabolism. PMID:25924856
Mesquita, Fernando S; Machado, Sergio A; Drnevich, Jenny; Borowicz, Pawel; Wang, Zhongde; Nowak, Romana A
2013-01-30
Poor success rates in somatic cell cloning are often attributed to abnormal early embryonic development as well as late abnormal fetal growth and placental development. Although promising results have been reported following chromatin transfer (CT), a novel cloning method that includes the remodeling of the donor nuclei in vitro prior to their transfer into enucleated oocytes, animals cloned by CT show placental abnormalities similar to those observed following conventional nuclear transfer. We hypothesized that the placental gene expression pattern from cloned fetuses was ontologically related to the frequently observed placental phenotype. The aim of the present study was to compare global gene expression by microarray analysis of Day 44-47 cattle placentas derived from CT cloned fetuses with those derived from in vitro fertilization (i.e. control), and confirm the altered mRNA and protein expression of selected molecules by qRT-PCR and immunohistochemistry, respectively. The differentially expressed genes identified in the present study are known to be involved in a range of activities associated with cell adhesion, cell cycle control, intracellular transport and proteolysis. Specifically, an imprinted gene, involved with cell proliferation and placentomegaly in humans (CDKN1C) and a peptidase that serves as a marker for non-invasive trophoblast cells in human placentas (DPP4), had mRNA and protein altered in CT placentas. It was concluded that the altered pattern of gene expression observed in CT samples may contribute to the abnormal placental development phenotypes commonly identified in cloned offspring, and that expression of imprinted as well as trophoblast invasiveness-related genes is altered in cattle cloned by CT. Copyright © 2012 Elsevier B.V. All rights reserved.
Quantification of multiple gene expression in individual cells.
Peixoto, António; Monteiro, Marta; Rocha, Benedita; Veiga-Fernandes, Henrique
2004-10-01
Quantitative gene expression analysis aims to define the gene expression patterns determining cell behavior. So far, these assessments can only be performed at the population level. Therefore, they determine the average gene expression within a population, overlooking possible cell-to-cell heterogeneity that could lead to different cell behaviors/cell fates. Understanding individual cell behavior requires multiple gene expression analyses of single cells, and may be fundamental for the understanding of all types of biological events and/or differentiation processes. We here describe a new reverse transcription-polymerase chain reaction (RT-PCR) approach allowing the simultaneous quantification of the expression of 20 genes in the same single cell. This method has broad application, in different species and any type of gene combination. RT efficiency is evaluated. Uniform and maximized amplification conditions for all genes are provided. Abundance relationships are maintained, allowing the precise quantification of the absolute number of mRNA molecules per cell, ranging from 2 to 1.28 x 10(9) for each individual gene. We evaluated the impact of this approach on functional genetic read-outs by studying an apparently homogeneous population (monoclonal T cells recovered 4 d after antigen stimulation), using either this method or conventional real-time RT-PCR. Single-cell studies revealed considerable cell-to-cell variation: All T cells did not express all individual genes. Gene coexpression patterns were very heterogeneous. mRNA copy numbers varied between different transcripts and in different cells. As a consequence, this single-cell assay introduces new and fundamental information regarding functional genomic read-outs. By comparison, we also show that conventional quantitative assays determining population averages supply insufficient information, and may even be highly misleading.
Huang, Yajuan; Wen, Haishen; Zhang, Meizhao; Hu, Nan; Si, Yufeng; Li, Siping; He, Feng
2018-05-01
Many genes related to muscle growth modulate myoblast proliferation and differentiation and promote muscle hypertrophy. MyoD is a myogenic determinant that contributes to myoblast determination, and insulin-like growth factor 1 (IGF-I) interacts with MyoD to regulate muscle hypertrophy and muscle mass. In this study, we aimed to assess DNA methylation and mRNA expression patterns of MyoD and IGF-I during different developmental stages of Japanese flounder, and to examine the relationship between MyoD and IGF-I gene. DNA and RNA were extracted from muscles, and DNA methylation of MyoD and IGF-I promoter and exons was detected by bisulfite sequencing. The relative expression of MyoD and IGF-I was measured by quantitative polymerase chain reaction. IGF-I was measured by radioimmunoassay. Interestingly, the lowest expression of MyoD and IGF-I emerged at larva stage, and the mRNA expression was negatively associated with methylation. We hypothesized that many skeletal muscle were required to complete metamorphosis; thus, the expression levels of MyoD and IGF-I genes increased from larva stage and then decreased. The relative expression levels of MyoD and IGF-I exhibited similar patterns, suggesting that MyoD and IGF-I regulated muscle growth through combined effects. Changes in the concentrations of IGF-I hormone were similar to those of IGF-I gene expression. Our results the mechanism through which MyoD and IGF-I regulate muscle development and demonstrated that MyoD interacted with IGF-I to regulate muscle growth during different developmental stages. Copyright © 2018 Elsevier Inc. All rights reserved.
Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids.
Gauer, Julia S; Tumova, Sarka; Lippiat, Jonathan D; Kerimi, Asimina; Williamson, Gary
2018-06-01
Only limited data are available on the inhibition of the sugar transporter GLUT5 by flavonoids or other classes of bioactives. Intestinal GLUT7 is poorly characterised and no information exists concerning its inhibition. We aimed to study the expression of GLUT7 in Caco-2/TC7 intestinal cells, and evaluate inhibition of glucose transport by GLUT2 and GLUT7, and of fructose transport by GLUT2, GLUT5 and GLUT7, by flavonoids. Differentiated Caco-2/TC7 cell monolayers were used to investigate GLUT7 expression, as well as biotinylation and immunofluorescence to assess GLUT7 location. For mechanistic sugar transport studies, X. laevis oocytes were injected with individual mRNA, and GLUT protein expression on oocyte membranes was confirmed. Oocytes were incubated with D-[ 14 C(U)]-glucose or D-[ 14 C(U)]-fructose in the presence of flavonoids, and uptake was estimated by liquid scintilation counting. In differentiated Caco-2/TC7 cell monolayers, GLUT7 was mostly expressed apically. When applied apically, or to both compartments, sorbitol, galactose, L-glucose or sucrose did not affect GLUT7 mRNA expression. Fructose applied to both sides increased GLUT7 mRNA (13%, p ≤ 0.001) and total GLUT7 protein (2.7-fold, p ≤ 0.05), while the ratio between apical, basolateral and total GLUT7 protein was unchanged. In the X. laevis oocyte model, GLUT2-mediated glucose and fructose transport were inhibited by quercetin, (-)-epigallocatechin gallate (EGCG) and apigenin, GLUT5-mediated fructose transport was inhibited by apigenin and EGCG, but not by quercetin, and GLUT7-mediated uptake of both glucose and fructose was inhibited by apigenin, but not by quercetin nor EGCG. Expression of GLUT7 was increased by fructose, but only when applied to Caco-2/TC7 cells both apically and basolaterally. Since GLUT2, GLUT5 and GLUT7 show different patterns of inhibition by the tested flavonoids, we suggest that they have the potential to be used as investigational tools to distinguish sugar transporter activity in different biological settings. Copyright © 2018 Elsevier Inc. All rights reserved.
Ma, L; Swalla, B J; Zhou, J; Dobias, S L; Bell, J R; Chen, J; Maxson, R E; Jeffery, W R
1996-03-01
The Msx homeobox genes are expressed in complex patterns during vertebrate development in conjunction with inductive tissue interactions. As a means of understanding the archetypal role of Msx genes in chordates, we have isolated and characterized an Msx gene in ascidians, protochordates with a relatively simple body plan. The Mocu Msx-a and McMsx-a genes, isolated from the ascidians Molgula oculata and Molgula citrina, respectively, have homeodomains that place them in the msh-like subclass of Msx genes. Therefore, the Molgula Msx-a genes are most closely related to the msh genes previously identified in a number of invertebrates. Southern blot analysis suggests that there are one or two copies of the Msx-a gene in the Molgula genome. Northern blot and RNase protection analysis indicate that Msx-a transcripts are restricted to the developmental stages of the life cycle. In situ hybridization showed that Msx-a mRNA first appears just before gastrulation in the mesoderm (presumptive notochord and muscle) and ectoderm (neural plate) cells. Transcript levels decline in mesoderm cells after the completion of gastrulation, but are enhanced in the folding neural plate during neurulation. Later, Msx-a mRNA is also expressed in the posterior ectoderm and in a subset of the tail muscle cells. The ectoderm and mesoderm cells that express Msx-a are undergoing morphogenetic movements during gastrulation, neurulation, and tail formation. Msx-a expression ceases after these cells stop migrating. The ascidian M. citrina, in which adult tissues and organs begin to develop precociously in the larva, was used to study Msx-a expression during adult development. Msx-a transcripts are expressed in the heart primordium and the rudiments of the ampullae, epidermal protrusions with diverse functions in the juvenile. The heart and ampullae develop in regions where mesenchyme cells interact with endodermal or epidermal epithelia. A comparison of the expression patterns of the Molgula genes with those of their vertebrate congeners suggests that the archetypal roles of the Msx genes may be in morphogenetic movements during embryogenesis and in mesenchymal-epithelial interactions during organogenesis.
Differential expression of CART in ewes with differing ovulation rates.
Juengel, Jennifer L; French, Michelle C; Quirke, Laurel D; Kauff, Alexia; Smith, George W; Johnstone, Peter D
2017-04-01
We hypothesised that cocaine- and amphetamine-regulated transcript ( CARTPT ) would be differentially expressed in ewes with differing ovulation rates. Expression of mRNA for CARTPT , as well as LHCGR , FSHR , CYP19A1 and CYP17A1 was determined in antral follicles ≥1 mm in diameter collected during the follicular phase in ewes heterozygous for the Booroola and Inverdale genes (I+B+; average ovulation rate 4) and ++ contemporaries (++; average ovulation rate 1.8). In ++ ewes ( n = 6), CARTPT was expressed in small follicles (1 to <3 mm diameter), where 18.8 ± 2.5% follicles expressed CARTPT CART peptide was also detected in follicular fluid of some follicles of ++ ewes. In I+B+ ewes, 5/6 ewes did not have any follicles that expressed CARTPT , and no CART peptide was detected in any follicle examined. Expression pattern of CYP19A1 differed between I+B+ and ++ ewes with an increased percentage of small and medium follicles (3 to <4.5 mm diameter) but decreased percentage of large follicles (≥4.5 mm diameter) expressing CYP19A1 in the I+B+ ewes. Many of the large follicles from the I+B+ ewes appeared non-functional and expression of LHCGR , FSHR , CYP17A1 and CYP19A1 was less than that observed in ++ ewes. Expression of FSHR and CYP17A1 was not different between groups in small and medium follicles, but LHCGR expression was approximately double in I+B+ ewes compared to that in ++ ewes. Thus, ewes with high ovulation rates had a distinct pattern of expression of CARTPT mRNA and protein compared to ewes with normal ovulation rates, providing evidence for CART being important in the regulation of ovulation rate. © 2017 Society for Reproduction and Fertility.
2004-01-01
Numerous invertebrate species belonging to several phyla cannot synthesize sterols de novo and rely on a dietary source of the compound. SCPx (sterol carrier protein 2/3-oxoacyl-CoA thiolase) is a protein involved in the trafficking of sterols and oxidation of branched-chain fatty acids. We have isolated SCPx protein from Spodoptera littoralis (cotton leafworm) and have subjected it to limited amino acid sequencing. A reverse-transcriptase PCR-based approach has been used to clone the cDNA (1.9 kb), which encodes a 57 kDa protein. Northern blotting detected two mRNA transcripts, one of 1.9 kb, encoding SCPx, and one of 0.95 kb, presumably encoding SCP2 (sterol carrier protein 2). The former mRNA was highly expressed in midgut and Malpighian tubules during the last larval instar. Furthermore, constitutive expression of the gene was detected in the prothoracic glands, which are the main tissue producing the insect moulting hormone. There was no significant change in the 1.9 kb mRNA in midgut throughout development, but slightly higher expression in the early stages. Conceptual translation of the cDNA and a database search revealed that the gene includes the SCP2 sequence and a putative peroxisomal targeting signal in the C-terminal region. Also a cysteine residue at the putative active site for the 3-oxoacyl-CoA thiolase is conserved. Southern blotting showed that SCPx is likely to be encoded by a single-copy gene. The mRNA expression pattern and the gene structure suggest that SCPx from S. littoralis (a lepidopteran) is evolutionarily closer to that of mammals than to that of dipterans. PMID:15149283
Taylor, Julia A; Shioda, Keiko; Mitsunaga, Shino; Yawata, Shiomi; Angle, Brittany M; Nagel, Susan C; Vom Saal, Frederick S; Shioda, Toshi
2018-02-01
Exposure of mammalian fetuses to endocrine disruptors can increase the risk of adult-onset diseases. We previously showed that exposure of mouse fetuses to bisphenol A (BPA) caused adult-onset obesity. To examine roles of epigenetic changes in this delayed toxicity, we determined the effects of fetal mouse exposure to BPA on genome-wide DNA methylation and messenger RNA (mRNA) expression in gonadal white adipose tissues (WATs) by deep sequencing, bisulfite pyrosequencing, and real-time quantitative polymerase chain reaction. Pregnant CD-1 mice (F0) were dosed daily with 0, 5, or 500 μg/kg/d BPA during gestational days 9 to 18, and the weaned F1 animals were fed ad libitum with standard chow until they were euthanized at 19 weeks old. In the vehicle-exposed F1 animals, fggy promoter showed a clear bimodal pattern of very strong (55% to 95%) or very weak (5% to 30%) DNA methylation occurring at nearly equal incidence with no intermediate strength. Promoter hypermethylation completely suppressed mRNA expression. BPA exposure eliminated this naturally occurring dichotomy, shifting fggy promoter toward the hypomethylation state to release transcriptional suppression. The strength of Fggy mRNA expression significantly correlated with increased whole body weight and gonadal fat weight of males but not females. Bioinformatics studies showed that expression of Fggy mRNA is stronger in mouse WATs than in brown adipose tissues and enhanced in gonadal fat by diet-induced obesity. These observations suggest that prenatal exposure to BPA may disrupt the physiological bimodal nature of epigenetic regulation of fggy in mouse WATs, possibly contributing to the adult-onset obesity phenotype. Copyright © 2018 Endocrine Society.
Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P
2016-08-01
The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. Copyright © 2016 Elsevier Inc. All rights reserved.
Ons, Sheila; Rotllant, David; Marín-Blasco, Ignacio J; Armario, Antonio
2010-06-01
Stress exposure resulted in brain induction of immediate-early genes (IEGs), considered as markers of neuronal activation. Upon repeated exposure to the same stressor, reduction of IEG response (adaptation) has been often observed, but there are important discrepancies in literature that may be in part related to the particular IEG and methodology used. We studied the differential pattern of adaptation of the IEGs c-fos and arc (activity-regulated cytoskeleton-associated protein) after repeated exposure to a severe stressor: immobilization on wooden boards (IMO). Rats repeatedly exposed to IMO showed reduced c-fos mRNA levels in response to acute IMO in most brain areas studied: the medial prefrontal cortex (mPFC), lateral septum (LS), medial amygdala (MeA), paraventricular nucleus of the hypothalamus (PVN) and locus coeruleus. In contrast, the number of neurons showing Fos-like immunoreactivity was only reduced in the MeA and the various subregions of the PVN. IMO-induced increases in arc gene expression were restricted to telencephalic regions and reduced by repeated IMO only in the mPFC. Double-labelling in the LS of IMO-exposed rats revealed that arc was expressed in only one-third of Fos+ neurons, suggesting two populations of Fos+ neurons. These data suggest that c-fos mRNA levels are more affected by repeated IMO than corresponding protein, and that arc gene expression does not reflect adaptation in most brain regions, which may be related to its constitutive expression. Therefore, the choice of a particular IEG and the method of measurement are important for proper interpretation of the impact of chronic repeated stress on brain activation.
Effect of carbohydrate supplementation on postexercise GLUT-4 protein expression in skeletal muscle.
Kuo, C H; Hunt, D G; Ding, Z; Ivy, J L
1999-12-01
The effect of carbohydrate supplementation on skeletal muscle glucose transporter GLUT-4 protein expression was studied in fast-twitch red and white gastrocnemius muscle of Sprague-Dawley rats before and after glycogen depletion by swimming. Exercise significantly reduced fast-twitch red muscle glycogen by 50%. During a 16-h exercise recovery period, muscle glycogen returned to control levels (25.0 +/- 1.4 micromol/g) in exercise-fasted rats (24.2 +/- 0. 3 micro). However, when carbohydrate supplementation was provided during and immediately postexercise by intubation, muscle glycogen increased 77% above control (44.4 +/- 2.1 micromol/g). Exercise-fasting resulted in an 80% increase in fast-twitch red muscle GLUT-4 mRNA but only a 43% increase in GLUT-4 protein concentration. Conversely, exercise plus carbohydrate supplementation elevated fast-twitch red muscle GLUT-4 protein concentration by 88% above control, whereas GLUT-4 mRNA was increased by only 40%. Neither a 16-h fast nor carbohydrate supplementation had an effect on fast-twitch red muscle GLUT-4 protein concentration or on GLUT-4 mRNA in sedentary rats, although carbohydrate supplementation increased muscle glycogen concentration by 40% (35.0 +/- 0.9 micromol/g). GLUT-4 protein in fast-twitch white muscle followed a pattern similar to fast-twitch red muscle. These results indicate that carbohydrate supplementation, provided with exercise, will enhance GLUT-4 protein expression by increasing translational efficiency. Conversely, postexercise fasting appears to upregulate GLUT-4 mRNA, possibly to amplify GLUT-4 protein expression on an increase in glucose availability. These regulatory mechanisms may help control muscle glucose uptake in accordance with glucose availability and protect against postexercise hypoglycemia.
Son, Seung-Myoung; Ha, Sang-Yun; Yoo, Hae-Yong; Oh, Dongryul; Kim, Seok-Jin; Kim, Won-Seog; Ko, Young-Hyeh
2017-01-01
The prognostic role of MYC has been well documented in non-central nervous system diffuse large B-cell lymphoma; however, it remains controversial in central nervous system diffuse large B-cell lymphoma. To investigate the prognostic value of MYC, we analyzed the MYC protein expression by immunohistochemistry, mRNA expression by RNA in situ hybridization, and gene status by fluorescence in situ hybridization in 74 cases of central nervous system diffuse large B-cell lymphoma. Moreover, we examined the correlation between MYC translocation, mRNA expression, and protein expression. The mean percentage of MYC immunopositive cells was 49%. Using a 44% cutoff value, 49 (66%) cases showed MYC protein overexpression. The result of mRNA in situ hybridization using the RNA scope technology was obtained using the H-scoring system; the median value was 34.2. Using the cutoff value of 63.5, 16 (22%) cases showed MYC mRNA overexpression. MYC gene rearrangement was detected in five out of 68 (7%) cases. MYC translocation showed no statistically significant correlation with mRNA expression; however, all MYC translocation-positive cases showed MYC protein overexpression, with a higher mean percentage of MYC protein expression than that of translocation-negative cases (78 vs 48%, P=0.001). The level of MYC mRNA expression was moderately correlated with the level of MYC protein expression (P<0.001). The mean percentage of MYC protein expression in the high MYC mRNA group was higher than that in the low MYC mRNA group (70 vs 47%, P<0.001). A univariate analysis showed that age over 60 years, Eastern Cooperative Oncology Group (ECOG) performance status ≥2 and MYC protein overexpression were significantly associated with an increased risk of death. MYC translocation and MYC mRNA expression had no prognostic significance. On multivariate analysis, MYC protein overexpression and ECOG score retained prognostic significance.
RNA-Seq Reveals an Integrated Immune Response in Nucleated Erythrocytes
Morera, Davinia; Roher, Nerea; Ribas, Laia; Balasch, Joan Carles; Doñate, Carmen; Callol, Agnes; Boltaña, Sebastian; Roberts, Steven; Goetz, Giles; Goetz, Frederick W.; MacKenzie, Simon A.
2011-01-01
Background Throughout the primary literature and within textbooks, the erythrocyte has been tacitly accepted to have maintained a unique physiological role; namely gas transport and exchange. In non-mammalian vertebrates, nucleated erythrocytes are present in circulation throughout the life cycle and a fragmented series of observations in mammals support a potential role in non-respiratory biological processes. We hypothesised that nucleated erythrocytes could actively participate via ligand-induced transcriptional re-programming in the immune response. Methodology/Principal Findings Nucleated erythrocytes from both fish and birds express and regulate specific pattern recognition receptor (PRR) mRNAs and, thus, are capable of specific pathogen associated molecular pattern (PAMP) detection that is central to the innate immune response. In vitro challenge with diverse PAMPs led to de novo specific mRNA synthesis of both receptors and response factors including interferon-alpha (IFNα) that exhibit a stimulus-specific polysomal shift supporting active translation. RNA-Seq analysis of the PAMP (Poly (I∶C), polyinosinic∶polycytidylic acid)-erythrocyte response uncovered diverse cohorts of differentially expressed mRNA transcripts related to multiple physiological systems including the endocrine, reproductive and immune. Moreover, erythrocyte-derived conditioned mediums induced a type-1 interferon response in macrophages thus supporting an integrative role for the erythrocytes in the immune response. Conclusions/Significance We demonstrate that nucleated erythrocytes in non-mammalian vertebrates spanning significant phylogenetic distance participate in the immune response. RNA-Seq studies highlight a mRNA repertoire that suggests a previously unrecognized integrative role for the erythrocytes in other physiological systems. PMID:22046430
Kidane, Fana Alem; Mitra, Taniya; Wernsdorf, Patricia; Hess, Michael; Liebhart, Dieter
2018-01-01
Histomonosis is a parasitic disease of gallinaceous birds characterized by necrotic lesions in cacum and liver that usually turns fatal in turkeys while it is less severe in chickens. Vaccination using in vitro attenuated Histomonas meleagridis has been experimentally shown to confer protection against histomonosis. The protective mechanisms that underpin the vaccine-induced immune response are not resolved so far. Therefore, the actual study aimed to evaluate the location and quantitative distribution patterns of signature cytokines of type 1 [interferon gamma (IFN-γ)] or type 2 [interleukin (IL)-13] immune responses in vaccinated or infected hosts. An intergroup and interspecies difference in the spatial and temporal distribution patterns of cytokine mRNA positive cells was evident. Quantification of cells showed a significantly decreased percentage of IFN-γ mRNA positive cells at 4 days post-inoculation (DPI) in caeca of turkeys inoculated exclusively with the attenuated or the virulent inocula, compared to control birds. The decrement was followed by a surge of cells expressing mRNA for IFN-γ or IL-13, reaching a peak of increment at 10 DPI. By contrast, turkeys challenged following vaccination showed a slight increment of cecal IFN-γ mRNA positive cells at 4 DPI after which positive cell counts became comparable to control birds. The increase in infected birds was accompanied by an extensive distribution of positively stained cells up to the muscularis layer of cecal tissue whereas the vaccine group maintained an intact mucosal structure. In chickens, the level of changes of positive cells was generally lower compared to turkeys. However, control chickens were found with a higher percentage of IFN-γ mRNA positive cells in cecum compared to their turkey counterparts indicating a higher resistance to histomonosis, similar to the observation in immunized turkeys. In chickens, it could be shown that the changes of cytokine-positive cells were related to variations of mononuclear cells quantified by immunofluorescence. Furthermore, gene expression measured by reverse transcription quantitative real time PCR confirmed variations in organs between the different groups of both bird species. Overall, it can be concluded that a proportionally increased, yet controlled, allocation of IFN-γ mRNA positive cells in caeca hallmarks a protective trait against histomonosis.
NONOates regulate KCl cotransporter-1 and -3 mRNA expression in vascular smooth muscle cells.
Di Fulvio, Mauricio; Lauf, Peter K; Shah, Shalin; Adragna, Norma C
2003-05-01
Nitric oxide (NO) donors regulate KCl cotransport (KCC) activity and cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in sheep erythrocytes and in primary cultures of rat vascular smooth muscle cells (VSMCs), respectively. In this study, we used NONOates as rapid and slow NO releasers to provide direct evidence implicating NO as a regulator of KCC3 gene expression at the mRNA level. In addition, we used the expression of KCC3 mRNA to further investigate the mechanism of action of these NO donors at the cellular level. Treatment of VSMCs with rapid NO releasers, like NOC-5 and NOC-9, as well as with the direct NO-independent soluble guanylyl cyclase (sGC) stimulator YC-1, acutely increased KCC3 mRNA expression in a concentration- and time-dependent manner. The slow NO releaser NOC-18 had no effect on KCC3 gene expression. A specific NO scavenger completely prevented the NONOate-induced KCC3 mRNA expression. Inhibition of sGC with LY-83583 blocked the NONOate- and YC-1-induced KCC3 mRNA expression. This study shows that in primary cultures of rat VSMCs, the fast NO releasers NOC-9 and NOC-5, but not the slow NO releaser NOC-18, acutely upregulate KCC3 mRNA expression in a NO/sGC-dependent manner.
Machado, Maiaro Cabral Rosa; Octacilio-Silva, Shirlei; Costa, Mara Silvia A.; Ramos, Ricardo Guelerman P.
2011-01-01
Background Drosophila retinal architecture is laid down between 24–48 hours after puparium formation, when some of the still uncommitted interommatidial cells (IOCs) are recruited to become secondary and tertiary pigment cells while the remaining ones undergo apoptosis. This choice between survival and death requires the product of the roughest (rst) gene, an immunoglobulin superfamily transmembrane glycoprotein involved in a wide range of developmental processes. Both temporal misexpression of Rst and truncation of the protein intracytoplasmic domain, lead to severe defects in which IOCs either remain mostly undifferentiated and die late and erratically or, instead, differentiate into extra pigment cells. Intriguingly, mutants not expressing wild type protein often have normal or very mild rough eyes. Methodology/Principal Findings By using quantitative real time PCR to examine rst transcriptional dynamics in the pupal retina, both in wild type and mutant alleles we showed that tightly regulated temporal changes in rst transcriptional rate underlie its proper function during the final steps of eye patterning. Furthermore we demonstrated that the unexpected wild type eye phenotype of mutants with low or no rst expression correlates with an upregulation in the mRNA levels of the rst paralogue kin-of-irre (kirre), which seems able to substitute for rst function in this process, similarly to their role in myoblast fusion. This compensatory upregulation of kirre mRNA levels could be directly induced in wild type pupa upon RNAi-mediated silencing of rst, indicating that expression of both genes is also coordinately regulated in physiological conditions. Conclusions/Significance These findings suggest a general mechanism by which rst and kirre expression could be fine tuned to optimize their redundant roles during development and provide a clearer picture of how the specification of survival and apoptotic fates by differential cell adhesion during the final steps of retinal morphogenesis in insects are controlled at the transcriptional level. PMID:21857931
α-Synuclein Activates Innate Immunity but Suppresses Interferon-γ Expression in Murine Astrocytes.
Wang, Jintang; Chen, Zheng; Walston, Jeremy; Gao, Peisong; Gao, Maolong; Leng, Sean X
2018-05-19
Glial activation and neuroinflammation contribute to pathogenesis of neurodegenerative diseases, linked to neuron loss and dysfunction. α-Synuclein (α-syn), as a metabolite of neuron, can induce microglia activation to trigger innate immune response. However, whether α-syn, as well as its mutants (A53T, A30P and E46K), induces astrocyte activation and inflammatory response is not fully elucidated. In this study, we used A53T mutant and wildtype α-syns to stimulate primary astrocytes in dose- and time-dependent manners (0.5, 2, 8 and 20 μg/mL for 24 hour or 3, 12, 24 and 48 hour at 2 μg/mL), and evaluated activation of several canonical inflammatory pathway components. The results showed that A53T mutant or wildtype α-syn significantly upregulated mRNA expression of toll-like receptor (TLR)2, TLR3, nuclear factor-κB and interleukin (IL)-1β, displaying a pattern of positive dose-effect correlation or negative time-effect correlation. Such upregulation was confirmed at protein levels of TLR2 (at 20 μg/mL), TLR3 (at most doses) and IL-1β (at 3 hour) by western blotting. Blockage of TLR2 other than TLR4 inhibited TLR3 and IL-1β mRNA expressions. By contrast, interferon (IFN)-γ was significantly downregulated at mRNA, protein and protein release levels, especially at high concentrations of α-syns or early time-points. These findings indicate that α-syn was a TLRs-mediated immunogenic agent (A53T mutant stronger than wildtype α-syn). The stimulation patterns suggest that persistent release and accumulation of α-syn is required for maintenance of innate immunity activation, and IFN-γ expression inhibition by α-syn suggests a novel immune molecule interaction mechanism underlying pathogenesis of neurodegenerative diseases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Lange, Christine; Fernandez, Jolene; Shim, David; Spurr-Michaud, Sandra; Tisdale, Ann; Gipson, Ilene K
2003-07-01
Dry eye syndrome is prevalent in post-menopausal women, and post-menopausal women secrete less mucus in their reproductive tracts. Using a mouse model, the purpose of this study was to determine if estrogen and/or progesterone regulates Muc4 and Muc5AC gene expression in the ocular surface epithelia, as the hormones do in reproductive tract epithelia. Adult C57BL/6 mice were ovariectomized, and 19 days later, pellets containing estrogen, progesterone, or a combination were inserted subcutaneously. Ocular surface and reproductive tract tissues were harvested following seven days of hormone treatment. A control group consisted of ovariectomized mice that received no hormone treatment. Real-time reverse transcription-polymerase chain reaction was used to determine the tissue expression levels of mucin mRNA of each treatment group relative to the control. Muc4 mRNA expression levels were determined for the reproductive tract, and both Muc4 and Muc5AC expression levels were determined for the ocular surface epithelia. Muc4 and Muc5AC gene expression in ocular surface and Muc4 in reproductive tract epithelia was demonstrated by In Situ hybridization, and Muc4 and Muc5AC protein was demonstrated in the epithelia of animals in the experimental groups. The mRNA expression levels of Muc4 and Muc5AC and the immunofluorescence localization pattern in the ocular surface epithelia were not significantly different in any hormone treatment group when compared to the control ovariectomized group. By comparison, mice that were administered estrogen had a significant increase of Muc4 mRNA in the reproductive tract epithelia, progesterone given in combination with estrogen antagonized the upregulatory effects of estrogen in the reproductive tract, and the amount of Muc4 mRNA in the reproductive tract of progesterone-treated animals was not different from ovariectomized controls. Immunofluorescence localization of Muc4 in the reproductive tract epithelia of the experimental groups correlated to message levels, with lack of Muc4 protein detected in the control and progesterone groups. In comparison to reproductive tract epithelia, Muc4 and Muc5AC are not hormonally regulated by estrogen or progesterone in the ocular surface epithelia of mice. These data demonstrate that regulation of epithelial mucin genes is tissue specific.
Proszkowiec-Weglarz, M; Richards, M P
2009-01-01
The 5'-adenosine monophosphate-activated protein kinase (AMPK) is a highly conserved serine-threonine protein kinase and a key part of a kinase-signaling cascade that senses cellular energy status (adenosine monophosphate:adenosine triphosphate ratio) and acts to maintain energy homeostasis by coordinately regulating energy-consuming and energy-generating metabolic pathways. The objective of this study was to investigate aspects of the AMPK pathway in the liver, brain, breast muscle, and heart from d 12 of incubation through hatch in chickens. We first determined mRNA and protein expression profiles for a major upstream AMPK kinase, LKB1, which is known to activate (phosphorylate) AMPK in response to increases in the adenosine monophosphate:adenosine triphosphate ratio. Expression of LKB1 protein was greatest in the brain, which demonstrated tissue-specific patterns for phosphorylation. Next, AMPK subunit mRNA and protein expression profiles were determined. Significant changes in AMPK subunit mRNA expression occurred in all tissues from d 12 of incubation to hatch. Differences in the levels of active (phosphorylated) AMPK as well as alpha and beta subunit proteins were observed in all 4 tissues during embryonic development. Finally, we determined the protein level and phosphorylation status of an important downstream target for AMPK, acetyl-coenzyme A carboxylase. The expression of acetyl-co-enzyme A carboxylase and phosphorylated acetyl-coenzyme A was greater in the brain than the liver, but was undetectable by Western blotting in the breast muscle and heart throughout the period of study. Together, our results are the first to demonstrate the expression and activity of the AMPK pathway in key tissues during the transition from embryonic to posthatch development in chickens.
Sánchez-Lemus, Enrique; Honda, Masaru; Saavedra, Juan M.
2012-01-01
Centrally acting Angiotensin II AT1 receptor blockers (ARBs) protect from stress-induced disorders and decrease anxiety in a model of inflammatory stress, the systemic injection of bacterial endotoxin lipopolysaccharide (LPS). In order to better understand the anxiolytic effect of ARBs, we treated rats with LPS (50 µg/kg) with or without three days of pretreatment with the ARB candesartan (1 mg/kg/day), and studied cortical benzodiazepine (BZ) and corticotrophin-releasing factor (CRF) receptors. We compared the cortical BZ and CRF receptors expression pattern induced by LPS with that produced in restraint stress. Inflammation stress produced a generalized increase in cortical BZ1 receptors and reduced mRNA expression of the GABAA receptor γ2 subunit in cingulate cortex; changes were prevented by candesartan pretreatment. Moreover, restraint stress produced similar increases in cortical BZ1 receptor binding, and candesartan prevented these changes. Treatment with candesartan alone increased cortical BZ1 binding, and decreased γ2 subunit mRNA expression in the cingulate cortex. Conversely, we did not find changes in CRF1 receptor expression in any of the cortical areas studied, either after inflammation or restraint stress. Cortical CRF2 receptor binding was undetectable, but CRF2 mRNA expression was decreased by inflammation stress, a change prevented by candesartan. We conclude that stress promotes rapid and widespread changes in cortical BZ1 receptor expression; and that the stress-induced BZ1 receptor expression is under the control of AT1 receptor activity. The results suggest that the anti-anxiety effect of ARBs may be associated with their capacity to regulate stress-induced alterations in cortical BZ1 receptors. PMID:22503782
Pang, Wanyong; Earley, Bernadette; Sweeney, Torres; Gath, Vivian; Crowe, Mark A
2009-01-01
Background Castration of male cattle has been shown to elicit inflammatory reactions and acute inflammation is initiated and sustained by the participation of cytokines. Methods Sixty continental × beef bulls (Mean age 12 ± (s.e.) 0.2 months; Mean weight 341 ± (s.e.) 3.0 kg) were blocked by weight and randomly assigned to one of three treatments (n = 20 animals per treatment): 1) untreated control (Con); 2) banding castration at 0 min (Band); 3) Burdizzo castration at 0 min (Burd). Samples of the testis, epididymis and scrotal skin were collected surgically from 5 animals from each group at 12 h, 24 h, 7 d, and 14 d post-treatment, and analysed using real-time PCR. A repeated measurement analysis (Proc GLM) was performed using SAS. If there was no treatment and time interaction, main effects of treatment by time were tested by ANOVA. Results Electrophoresis data showed that by 7 d post-castration RNA isolated from all the testicle samples of the Burd castrated animals, the epididymis and middle scrotum samples from Band castrates were degraded. Transitory effects were observed in the gene expression of IFN-γ, IL-6, IL-8 and TNF-α at 12 h and 24 h post treatment. Burd castrates had greater (P < 0.05) testicular IFN-γ mRNA levels compared with Band and Con animals, but lower (P < 0.05) testicular TNF-α mRNA levels compared with Con animals. Band castrates had greater (P < 0.05) testicular IL-6 mRNA levels than Burd castrates at 12 h post-castration. Burd castrates had greater (P < 0.05) testicular IL-8 mRNA levels than Band and Con animals at 24 h post-castration. In the epididymis, Burd castrates had greater (P < 0.05) IL-6 mRNA (both at 12 h and 24 h post treatment) and IL-8 mRNA (12 h post treatment) levels compared with Band and Con animals; Burd castrates had greater (P = 0.049) IL-10 mRNA levels than Band castrates at 12 h post-castration. Conclusion Banding castration caused more inflammatory associated gene expression changes to the epididymis and scrotum than burdizzo. Burdizzo caused more severe acute inflammatory responses, in terms of pro-inflammatory cytokine gene expression, in the testis and epididymis than banding. PMID:19775432
Pang, Wanyong; Earley, Bernadette; Sweeney, Torres; Gath, Vivian; Crowe, Mark A
2009-09-23
Castration of male cattle has been shown to elicit inflammatory reactions and acute inflammation is initiated and sustained by the participation of cytokines. Sixty continental x beef bulls (Mean age 12 +/- (s.e.) 0.2 months; Mean weight 341 +/- (s.e.) 3.0 kg) were blocked by weight and randomly assigned to one of three treatments (n = 20 animals per treatment): 1) untreated control (Con); 2) banding castration at 0 min (Band); 3) Burdizzo castration at 0 min (Burd). Samples of the testis, epididymis and scrotal skin were collected surgically from 5 animals from each group at 12 h, 24 h, 7 d, and 14 d post-treatment, and analysed using real-time PCR. A repeated measurement analysis (Proc GLM) was performed using SAS. If there was no treatment and time interaction, main effects of treatment by time were tested by ANOVA. Electrophoresis data showed that by 7 d post-castration RNA isolated from all the testicle samples of the Burd castrated animals, the epididymis and middle scrotum samples from Band castrates were degraded. Transitory effects were observed in the gene expression of IFN-gamma, IL-6, IL-8 and TNF-alpha at 12 h and 24 h post treatment. Burd castrates had greater (P < 0.05) testicular IFN-gamma mRNA levels compared with Band and Con animals, but lower (P < 0.05) testicular TNF-alpha mRNA levels compared with Con animals. Band castrates had greater (P < 0.05) testicular IL-6 mRNA levels than Burd castrates at 12 h post-castration. Burd castrates had greater (P < 0.05) testicular IL-8 mRNA levels than Band and Con animals at 24 h post-castration. In the epididymis, Burd castrates had greater (P < 0.05) IL-6 mRNA (both at 12 h and 24 h post treatment) and IL-8 mRNA (12 h post treatment) levels compared with Band and Con animals; Burd castrates had greater (P = 0.049) IL-10 mRNA levels than Band castrates at 12 h post-castration. Banding castration caused more inflammatory associated gene expression changes to the epididymis and scrotum than burdizzo. Burdizzo caused more severe acute inflammatory responses, in terms of pro-inflammatory cytokine gene expression, in the testis and epididymis than banding.
Tomar, Swati; Graves, Christian A; Altomare, Diego; Kowli, Sangeeta; Kassler, Susannah; Sutkowski, Natalie; Gillespie, M Boyd; Creek, Kim E; Pirisi, Lucia
2016-04-01
Disparities in prevalence, human papillomavirus (HPV) status, and mortality rates for head and neck cancer have been described between African American and European American patients. We studied the HPV status and gene expression profiles in 56 oropharyngeal/oral cavity tumors and 9 normal tissue samples from European American and African American patients treated in South Carolina between 2010 and 2012. Overall, 59% of tumors were HPV DNA-positive, but only 48% of those expressed E7 mRNA (HPV-active). The prevalence of HPV-active tumors was 10% in African American patients and 39% in European American patients. Tumors positive for HPV DNA but negative for HPV mRNA exhibited gene expression profiles distinct from those of both HPV-active and HPV-negative cancers, suggesting that HPV DNA-positive/RNA-negative tumors may constitute a unique group. This study provides a direct assessment of differential expression patterns in HPV-related oropharyngeal cancer arising from African American and European American patients, for which there is a paucity of data. © 2015 Wiley Periodicals, Inc. Head Neck 00: 000-000, 2015. © 2015 Wiley Periodicals, Inc.
Expression of calmodulin mRNA in rat olfactory neuroepithelium.
Biffo, S; Goren, T; Khew-Goodall, Y S; Miara, J; Margolis, F L
1991-04-01
A calmodulin (CaM) cDNA was isolated by differential hybridization screening of a lambda gt10 library prepared from rat olfactory mucosa. This cDNA fragment, containing most of the open reading frame of the rat CaMI gene, was subcloned and used to characterize steady-state expression of CaM mRNA in rat olfactory neuroepithelium and bulb. Within the bulb mitral cells are the primary neuronal population expressing CaM mRNA. The major CaM mRNA expressed in the olfactory mucosa is 1.7 kb with smaller contributions from mRNAs of 4.0 and 1.4 kb. CaM mRNA was primarily associated with the olfactory neurons and, despite the cellular complexity of the tissue and the known involvement of CaM in diverse cellular processes, was only minimally evident in sustentacular cells, gland cells or respiratory epithelium. Following bulbectomy CaM mRNA declines in the olfactory neuroepithelium as does olfactory marker protein (OMP) mRNA. In contrast to the latter, CaM mRNA makes a partial recovery by one month after surgery. These results, coupled with those from in situ hybridization, indicate that CaM mRNA is expressed in both mature and immature olfactory neurons. The program regulating CaM gene expression in olfactory neurons is distinct from those controlling expression of B50/GAP43 in immature, or OMP in mature, neurons respectively.
Expression profiling of genes modulated by minocycline in a rat model of neuropathic pain
2014-01-01
Background The molecular mechanisms underlying neuropathic pain are constantly being studied to create new opportunities to prevent or alleviate neuropathic pain. The aim of our study was to determine the gene expression changes induced by sciatic nerve chronic constriction injury (CCI) that are modulated by minocycline, which can effectively diminish neuropathic pain in animal studies. The genes associated with minocycline efficacy in neuropathic pain should provide insight into the etiology of neuropathic pain and identify novel therapeutic targets. Results We screened the ipsilateral dorsal part of the lumbar spinal cord of the rat CCI model for differentially expressed genes. Out of 22,500 studied transcripts, the abundance levels of 93 transcripts were altered following sciatic nerve ligation. Percentage analysis revealed that 54 transcripts were not affected by the repeated administration of minocycline (30 mg/kg, i.p.), but the levels of 39 transcripts were modulated following minocycline treatment. We then selected two gene expression patterns, B1 and B2. The first transcription pattern, B1, consisted of 10 mRNA transcripts that increased in abundance after injury, and minocycline treatment reversed or inhibited the effect of the injury; the B2 transcription pattern consisted of 7 mRNA transcripts whose abundance decreased following sciatic nerve ligation, and minocycline treatment reversed the effect of the injury. Based on the literature, we selected seven genes for further analysis: Cd40, Clec7a, Apobec3b, Slc7a7, and Fam22f from pattern B1 and Rwdd3 and Gimap5 from pattern B2. Additionally, these genes were analyzed using quantitative PCR to determine the transcriptional changes strongly related to the development of neuropathic pain; the ipsilateral DRGs (L4-L6) were also collected and analyzed in these rats using qPCR. Conclusion In this work, we confirmed gene expression alterations previously identified by microarray analysis in the spinal cord and analyzed the expression of selected genes in the DRG. Moreover, we reviewed the literature to illustrate the relevance of these findings for neuropathic pain development and therapy. Further studies are needed to elucidate the roles of the individual genes in neuropathic pain and to determine the therapeutic role of minocycline in the rat neuropathic pain model. PMID:25038616
Schreiber, Fernanda; Lynn, David J.; Houston, Angela; Peters, Joanna; Mwafulirwa, Gershom; Finlay, Brett B.; Brinkman, Fiona S. L.; Hancock, Robert E. W.; Heyderman, Robert S.; Dougan, Gordon
2011-01-01
Background. Invasive nontyphoid Salmonella (iNTS) disease is common and severe in adults with human immunodeficiency virus (HIV) infection in Africa. We previously observed that ex vivo macrophages from HIV-infected subjects challenged with Salmonella Typhimurium exhibit dysregulated proinflammatory cytokine responses. Methods. We studied the transcriptional response in whole blood from HIV-positive patients during acute and convalescent iNTS disease compared to other invasive bacterial diseases, and to HIV-positive and -negative controls. Results. During iNTS disease, there was a remarkable lack of a coordinated inflammatory or innate immune signaling response. Few interferon γ (IFNγ)--induced genes or Toll-like receptor/transcription factor nuclear factor κB (TLR/NFκB) gene pathways were upregulated in expression. Ex vivo lipopolysacharide (LPS) or flagellin stimulation of whole blood, however, showed that convalescent iNTS subjects and controls were competent to mount prominent TLR/NFκB-associated patterns of mRNA expression. In contrast, HIV-positive patients with other invasive bacterial infections (Escherichia coli and Streptococcus pneumoniae) displayed a pronounced proinflammatory innate immune transcriptional response. There was also upregulated mRNA expression in cell cycle, DNA replication, translation and repair, and viral replication pathways during iNTS. These patterns persisted for up to 2 months into convalescence. Conclusions. Attenuation of NFκB-mediated inflammation and dysregulation of cell cycle and DNA-function gene pathway expression are key features of the interplay between iNTS and HIV. PMID:21917897
Patnaik, Bharat Bhusan; Kang, Seong Min; Seo, Gi Won; Lee, Hyo Jeong; Patnaik, Hongray Howrelia; Jo, Yong Hun; Tindwa, Hamisi; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung; Bang, In Seok; Han, Yeon Soo
2013-10-15
CD63, a member of the tetraspanin membrane protein family, plays a pivotal role in cell growth, motility, signal transduction, host-pathogen interactions and cancer. In this work, the cDNA encoding CD63 homologue (TmCD63) was cloned from larvae of a coleopteran beetle, Tenebrio molitor. The cDNA is comprised of an open reading frame of 705 bp, encoding putative protein of 235 amino acid residues. In silico analysis shows that the protein has four putative transmembrane domains and one large extracellular loop. The characteristic "Cys-Cys-Gly" motif and "Cys188" residues are highly conserved in the large extracellular loop. Phylogenetic analysis of TmCD63 revealed that they belong to the insect cluster with 50%-56% identity. Analysis of spatial expression patterns demonstrated that TmCD63 mRNA is mainly expressed in gut and Malphigian tubules of larvae and the testis of the adult. Developmental expression patterns of CD63 mRNA showed that TmCD63 transcripts are detected in late larval, pupal and adult stages. Interestingly, TmCD63 transcripts are upregulated to the maximum level of 4.5 fold, in response to DAP-type peptidoglycan during the first 6 h, although other immune elicitors also caused significant increase to the transcript level at later time-points. These results suggest that CD63 might contribute to T. molitor immune response against various microbial pathogens.
Patnaik, Bharat Bhusan; Kang, Seong Min; Seo, Gi Won; Lee, Hyo Jeong; Patnaik, Hongray Howrelia; Jo, Yong Hun; Tindwa, Hamisi; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung; Bang, In Seok; Han, Yeon Soo
2013-01-01
CD63, a member of the tetraspanin membrane protein family, plays a pivotal role in cell growth, motility, signal transduction, host-pathogen interactions and cancer. In this work, the cDNA encoding CD63 homologue (TmCD63) was cloned from larvae of a coleopteran beetle, Tenebrio molitor. The cDNA is comprised of an open reading frame of 705 bp, encoding putative protein of 235 amino acid residues. In silico analysis shows that the protein has four putative transmembrane domains and one large extracellular loop. The characteristic “Cys-Cys-Gly” motif and “Cys188” residues are highly conserved in the large extracellular loop. Phylogenetic analysis of TmCD63 revealed that they belong to the insect cluster with 50%–56% identity. Analysis of spatial expression patterns demonstrated that TmCD63 mRNA is mainly expressed in gut and Malphigian tubules of larvae and the testis of the adult. Developmental expression patterns of CD63 mRNA showed that TmCD63 transcripts are detected in late larval, pupal and adult stages. Interestingly, TmCD63 transcripts are upregulated to the maximum level of 4.5 fold, in response to DAP-type peptidoglycan during the first 6 h, although other immune elicitors also caused significant increase to the transcript level at later time-points. These results suggest that CD63 might contribute to T. molitor immune response against various microbial pathogens. PMID:24132157
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morioka, Norimitsu, E-mail: mnori@hiroshima-u.ac.jp; Tomori, Mizuki; Zhang, Fang Fang
Under physiological conditions, astrocytes maintain homeostasis in the CNS. Following inflammation and injury to the CNS, however, activated astrocytes produce neurotoxic molecules such as cytokines and chemokines, amplifying the initial molecular-cellular events evoked by inflammation and injury. Nuclear receptors REV-ERBα and REV-ERBβ (REV-ERBs) are crucial in the regulation of inflammation- and metabolism-related gene transcription. The current study sought to elucidate a role of REV-ERBs in rat C6 astroglial cells on the expression of inflammatory molecules following stimulation with the neuroinflammatory cytokine tumor necrosis factor (TNF). Stimulation of C6 cells with TNF (10 ng/ml) significantly increased the mRNA expression of CCL2, interleukin-6more » (IL-6), inducible nitric oxide synthase (iNOS), and matrix metalloprotease (MMP)-9, but not fibroblast growth factor-2 (FGF-2), cyclooxygenase-2 (COX-2) and MMP-2. Treatment with either REV-ERB agonists GSK4112 or SR9009 significantly blocked TNF-induced upregulation of CCL2 mRNA and MMP-9 mRNA, but not IL-6 mRNA and iNOS mRNA expression. Furthermore, treatment with RGFP966, a selective histone deacetylase 3 (HDAC3) inhibitor, potently reversed the inhibitory effects of GSK4112 on TNF-induced expression of MMP-9 mRNA, but not CCL2 mRNA. Expression of Rev-erbs mRNA in C6 astroglial cells, primary cultured rat cortical and spinal astrocytes was confirmed by reverse transcription polymerase chain reaction. Together, the findings demonstrate an anti-inflammatory effect, downregulating of MMP-9 and CCL2 transcription, of astroglial REV-ERBs activation through HDAC3-dependent and HDAC3-independent mechanisms. - Highlights: • Rev-erbα mRNA and Rev-erbβ mRNA are expressed in C6 astroglial cells. • TNF increases the expression of CCL2, IL-6, MMP-9 and iNOS mRNA. • REV-ERB activation inhibits CCL2 mRNA and MMP-9 mRNA expression. • HDAC3 activity is involved in the inhibitory effect of REV-ERB on MMP-9 induction.« less
Basila, Megan; Kelley, Melissa L.
2017-01-01
Since its initial application in mammalian cells, CRISPR-Cas9 has rapidly become a preferred method for genome engineering experiments. The Cas9 nuclease is targeted to genomic DNA using guide RNAs (gRNA), either as the native dual RNA system consisting of a DNA-targeting CRISPR RNA (crRNA) and a trans-activating crRNA (tracrRNA), or as a chimeric single guide RNA (sgRNA). Entirely DNA-free CRISPR-Cas9 systems using either Cas9 protein or Cas9 mRNA and chemically synthesized gRNAs allow for transient expression of CRISPR-Cas9 components, thereby reducing the potential for off-targeting, which is a significant advantage in therapeutic applications. In addition, the use of synthetic gRNA allows for the incorporation of chemical modifications for enhanced properties including improved stability. Previous studies have demonstrated the utility of chemically modified gRNAs, but have focused on one pattern with multiple modifications in co-electroporation with Cas9 mRNA or multiple modifications and patterns with Cas9 plasmid lipid co-transfections. Here we present gene editing results using a series of chemically modified synthetic sgRNA molecules and chemically modified crRNA:tracrRNA molecules in both electroporation and lipid transfection assessing indel formation and/or phenotypic gene knockout. We show that while modifications are required for co-electroporation with Cas9 mRNA, some modification patterns of the gRNA are toxic to cells compared to the unmodified gRNA and most modification patterns do not significantly improve gene editing efficiency. We also present modification patterns of the gRNA that can modestly improve Cas9 gene editing efficiency when co-transfected with Cas9 mRNA or Cas9 protein (> 1.5-fold difference). These results indicate that for certain applications, including those relevant to primary cells, the incorporation of some, but not all chemical modification patterns on synthetic crRNA:tracrRNA or sgRNA can be beneficial to CRISPR-Cas9 gene editing. PMID:29176845
Basila, Megan; Kelley, Melissa L; Smith, Anja van Brabant
2017-01-01
Since its initial application in mammalian cells, CRISPR-Cas9 has rapidly become a preferred method for genome engineering experiments. The Cas9 nuclease is targeted to genomic DNA using guide RNAs (gRNA), either as the native dual RNA system consisting of a DNA-targeting CRISPR RNA (crRNA) and a trans-activating crRNA (tracrRNA), or as a chimeric single guide RNA (sgRNA). Entirely DNA-free CRISPR-Cas9 systems using either Cas9 protein or Cas9 mRNA and chemically synthesized gRNAs allow for transient expression of CRISPR-Cas9 components, thereby reducing the potential for off-targeting, which is a significant advantage in therapeutic applications. In addition, the use of synthetic gRNA allows for the incorporation of chemical modifications for enhanced properties including improved stability. Previous studies have demonstrated the utility of chemically modified gRNAs, but have focused on one pattern with multiple modifications in co-electroporation with Cas9 mRNA or multiple modifications and patterns with Cas9 plasmid lipid co-transfections. Here we present gene editing results using a series of chemically modified synthetic sgRNA molecules and chemically modified crRNA:tracrRNA molecules in both electroporation and lipid transfection assessing indel formation and/or phenotypic gene knockout. We show that while modifications are required for co-electroporation with Cas9 mRNA, some modification patterns of the gRNA are toxic to cells compared to the unmodified gRNA and most modification patterns do not significantly improve gene editing efficiency. We also present modification patterns of the gRNA that can modestly improve Cas9 gene editing efficiency when co-transfected with Cas9 mRNA or Cas9 protein (> 1.5-fold difference). These results indicate that for certain applications, including those relevant to primary cells, the incorporation of some, but not all chemical modification patterns on synthetic crRNA:tracrRNA or sgRNA can be beneficial to CRISPR-Cas9 gene editing.
Mellott, Tiffany J; Kowall, Neil W; Lopez-Coviella, Ignacio; Blusztajn, Jan Krzysztof
2007-06-02
Supplementation of maternal diet with the essential nutrient, choline, during the second half of pregnancy in rats causes long-lasting improvements in spatial memory in the offspring and protects them from the memory decline characteristic of old age. In contrast, prenatal choline deficiency is associated with poor performance in certain cognitive tasks. The mechanism by which choline influences learning and memory remains unclear; however, it may involve changes to the hippocampal cholinergic system. Previously, we showed that the hippocampi of prenatally [embryonic days (E) 11-17] choline-deficient animals have increased synthesis of acetylcholine (ACh) from choline transported by the high-affinity choline transporter (CHT) and reduced ACh content relative to the control and to the E11-17 choline-supplemented rats. In the current study, we found that, during postnatal period [postnatal days (P) 18-480], prenatal choline deficiency increased the expression of CHT mRNA in the septum and CHT mRNA and protein levels in the hippocampus and altered the pattern of CHT immunoreactivity in the dentate gyrus. CHT immunoreactivity was more prominent in the inner molecular layer in prenatally choline-deficient rats compared to controls and prenatally choline-supplemented animals. In addition, in all groups, we observed a population of hilar interneurons that were CHT-immunoreactive. These neurons are the likely source of the hippocampal CHT mRNA as their number correlated with the levels of this mRNA. The abundance of hippocampal CHT mRNA rose between P1 and P24 and then declined reaching 60% of the P1 value by P90. These data show that prenatal availability of choline alters its own metabolism (i.e., CHT expression). While the upregulated CHT expression during the period of prenatal choline deficiency may be considered as a compensatory mechanism that could enhance ACh synthesis when choline supply is low, the persistent upregulation of CHT expression subsequent to the brief period of prenatal deprivation of choline in utero might be beneficial during choline deficiency in adulthood.
HOX genes in human lung: altered expression in primary pulmonary hypertension and emphysema.
Golpon, H A; Geraci, M W; Moore, M D; Miller, H L; Miller, G J; Tuder, R M; Voelkel, N F
2001-03-01
HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3' end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases.
Gupta, Rajaneesh Kumar; Kanungo, Madhusudan
2013-02-01
Glial cells, besides participating as passive supporting matrix, are also proposed to be involved in the optimization of the interstitial space for synaptic transmission by tight control of ionic and water homeostasis. In adult mouse brain, inwardly rectifying K+ (Kir4.1) and aquaporin-4 (AQP4) channels localize to astroglial endfeets in contact with brain microvessels and glutamate synapses, optimizing clearance of extracellular K(+) and water from the synaptic layers. However, it is still unclear whether there is an age-dependent difference in the expressions of Kir4.1 and AQP4 channels specifically during postnatal development and aging when various marked changes occur in brain and if these changes region specific. RT-PCR and immunoblotting was conducted to compare the relative expression of Kir4.1 and AQP4 mRNA and protein in the early and mature postnatal (0-, 15-, 45-day), adult (20-week), and old age (70-week) mice cerebral and cerebellar cortices. Expressions of Kir4.1 and AQP4 mRNA and protein are very low at 0-day. A pronounced and continuous increase was observed by mature postnatal ages (15-, 45-days). However, in the 70-week-old mice, expressions are significantly up-regulated as compared to 20-week-old mice. Both genes follow the same age-related pattern in both cerebral and cerebellar cortices. The time course and expression pattern suggests that Kir4.1 and AQP4 channels may play an important role in brain K(+) and water homeostasis in early postnatal weeks after birth and during aging.
Hidaka, Yoshie; Suzuki, Masakazu
2004-06-01
Four types of calcitonin are produced in salmonid fish, although their functional diversity is almost unknown. To explore the significance of these isoforms, we have characterized salmon-type calcitonin (sCT) mRNAs in the rainbow trout (Oncorhynchus mykiss), and examined their tissue distribution. In addition to the previously isolated sCT-I cDNAs, two new forms of sCT cDNA were cloned from the ultimobranchial gland, and one of them (sCT-IV cDNA) was predicted to encode an N-terminal peptide of 80 amino acid residues, a putative cleavage site Lys-Arg, sCT-IV, a cleavage and amidation sequence Gly-Lys-Lys-Arg, and a C-terminal peptide of 18 amino acids. The sCT-IV precursor was 78% identical with the rainbow trout sCT-I precursors. The other cloned cDNA encoded a precursor for a novel CT, sCT-V. The sCT-V peptide was different from sCT-IV by only one amino acid residue: Val at position 8 in the latter was replaced by Met. The sCT-V precursor had 80 and 90% identity with the sCT-I and -IV precursors respectively. No cDNA clones were obtained for sCTs-II or -III.Tissue distribution of sCT-I, -IV and -V mRNAs was examined by RT-PCR and specific cleavage with restriction enzymes. An amplified fragment from sCT-I mRNA was detected not only in the ultimobranchial gland, but also in the gills, testis and ovary. RT-PCR analysis coupled to restriction digestion further revealed that sCT-IV mRNA was expressed in both the testis and the ultimobranchial gland. The expression sites of sCT-IV mRNA were localized to the Leydig cells of the testis and to the parenchymal cells of the ultimobranchial gland, by in situ hybridization histochemistry. Although the amino acid sequence of sCT-V peptide was nearly the same as that of sCT-IV, the sCT-V gene showed a much wider pattern of expression: the band amplified by RT-PCR was detected in all the tissues examined except the kidney, gills and blood cells. The sCT-V mRNA was shown to be localized in the parenchymal cells of the ultimobranchial gland, but not in other tissues at the cellular level, suggesting very low expression of sCT-V mRNA in those tissues. Our results show different patterns of tissue expression of three types of sCT genes in the rainbow trout, suggesting that sCTs-I, -IV and -V might differ in their local actions.
Choi, Young Jae; Habibi, Hamid R; Choi, Cheol Young
2016-06-24
The present study aimed to determine the relationship between melatonin and gonadotropin-inhibitory hormone (GnIH) and their effect on reproduction in cinnamon clownfish, Amphiprion melanopus. Accordingly, we investigated the expression pattern of GnIH, GnIH receptor (GnIH-R), and melatonin receptor (MT-R1) mRNA and protein, as well as the plasma levels of melatonin, during sex change in cinnamon clownfish. We found that GnIH and MT-R1 mRNA and melatonin activity were higher in fish with mature brain than in fish with developing gonads, and using double immunofluorescence staining, we found that both GnIH and MT-R1 proteins were co-expressed in the hypothalamus of cinnamon clownfish. These findings support the hypothesis that melatonin plays an important role in the negative regulation of maturation and GnIH regulation during reproduction. Copyright © 2016 Elsevier Inc. All rights reserved.
A role for a rat homolog of staufen in the transport of RNA to neuronal dendrites.
Tang, S J; Meulemans, D; Vazquez, L; Colaco, N; Schuman, E
2001-11-08
RNAs are present in dendrites and may be used for local protein synthesis in response to synaptic activity. To begin to understand dendritic RNA targeting, we cloned a rat homolog of staufen, a Drosophila gene that participates in mRNA targeting during development. In hippocampal neurons, rat staufen protein displays a microtubule-dependent somatodendritic distribution pattern that overlaps with dendritic RNAs. To determine whether r-staufen is required for dendritic RNA targeting, we constructed a mutant version containing the RNA binding domains (stau-RBD) but lacking the C-terminal portion potentially involved in dendritic targeting. Stau-RBD expression was restricted to the cell bodies and proximal dendrites. Expression of stau-RBD significantly decreased, while overexpression of wild-type r-staufen increased, the amount of dendritic mRNA. Taken together, these results suggest that the rat staufen protein plays an important role in the delivery of RNA to dendrites.
Atlas of Wnt and R-spondin gene expression in the developing male mouse lower urogenital tract.
Mehta, Vatsal; Abler, Lisa L; Keil, Kimberly P; Schmitz, Christopher T; Joshi, Pinak S; Vezina, Chad M
2011-11-01
Prostate development is influenced by β-catenin signaling, but it is unclear which β-catenin activators are involved, where they are synthesized, and whether their mRNA abundance is influenced by androgens. We identified WNT/β-catenin-responsive β-galactosidase activity in the lower urogenital tract (LUT) of transgenic reporter mice, but β-galactosidase activity differed among the four mouse strains we examined. We used in situ hybridization to compare patterns of Wnts, r-spondins (Rspos, co-activators of β-catenin signaling), β-catenin-responsive mRNAs, and an androgen receptor-responsive mRNA in wild type fetal male, fetal female, and neonatal male LUT. Most Wnt and Rspo mRNAs were present in LUT during prostate development. Sexually dimorphic expression patterns were observed for WNT/β-catenin-responsive genes, and for Wnt2b, Wnt4, Wnt7a, Wnt9b, Wnt10b, Wnt11, Wnt16, and Rspo3 mRNAs. These results reveal sexual differences in WNT/β-catenin signaling in fetal LUT, supporting the idea that this pathway may be directly or indirectly responsive to androgens during prostate ductal development. Copyright © 2011 Wiley-Liss, Inc.
Lindefors, N; Brene, S; Herrera-Marschitz, M; Persson, H
1989-01-01
In situ hybridization histochemistry and RNA blots were used to study the expression of glutamic acid decarboxylase (GAD) mRNA in rats with or without a unilateral lesion of midbrain dopamine neurons. Two populations of GAD mRNA positive neurons were found in the intact caudate-putamen, substantia nigra and fronto-parietal cortex. In caudate-putamen, only one out of ten of the GAD mRNA positive neurons expressed high levels, while in substantia nigra every second of the positive neurons expressed high levels of GAD mRNA. Relatively few, but intensively labelled neurons were found in the intact fronto-parietal cerebral cortex. In addition, one out of six of the GAD mRNA positive neurons in the fronto-parietal cortex showed a low labeling. On the ipsilateral side, the forebrain dopamine deafferentation induced an increase in the number of neurons expressing high levels of GAD mRNA in caudate-putamen, and a decrease in fronto-parietal cortex. A smaller decrease was also seen in substantia nigra. However, the total number of GAD mRNA positive neurons were not significantly changed in any of these brain regions. The changes in the levels of GAD mRNA after the dopamine lesion were confirmed by RNA blot analysis. Hence, midbrain dopamine neurons appear to control neuronal expression of GAD mRNA by a tonic down-regulation in a fraction of GAD mRNA positive neurons in caudate-putamen, and a tonic up-regulation in a fraction of GAD mRNA positive neurons in fronto-parietal cortex and substantia nigra.
Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.
Béziau, Delphine M; Toussaint, Fanny; Blanchette, Alexandre; Dayeh, Nour R; Charbel, Chimène; Tardif, Jean-Claude; Dupuis, Jocelyn; Ledoux, Jonathan
2015-01-01
Phospholipase C (PLC) comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η) based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs) remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA), pulmonary (PA) and middle cerebral arteries (MCA). mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA), δ4 (only expressed in MCA), η1 (expressed in all but MA) and ζ (not detected in any vascular beds tested). The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1) in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found in the native endothelium.
Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Data Analysis and Visualization; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,'' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
2008-05-12
The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii)more » evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.« less
Kargaran, Parichehr; Lenglet, Sébastien; Montecucco, Fabrizio; Mach, François; Copin, Jean-Christophe; Vutskits, Laszlo
2015-05-01
Recent experimental data indicate that volatile anaesthetics can induce a neuroinflammatory response in the central nervous system. The questions of to what extent this occurs in the developing brain and whether nonvolatile anaesthetics are also involved remain unanswered. The objective of this study is to investigate the impact of propofol anaesthesia on cytokine mRNA expression profiles in the neonatal brain at defined stages of the brain growth spurt. A randomised placebo-controlled experimental in-vivo study. Translational research laboratories at the University of Geneva Medical School. Wistar rats received 6-h propofol anaesthesia at postnatal day 10 or 20. A quantitative real-time PCR was used to evaluate the impact of this treatment paradigm on mRNA expression profiles of selected members of the cytokine family in the prefrontal cortex and hippocampus. Propofol anaesthesia induced a transient 1.8-fold (interquartile range, IQR 1.7 to 2.2) increase (P = 0.004) in prefrontal but not hippocampal tumour necrosis factor mRNA concentrations in 10-day-old animals. No such effect was detected in 20-day-old animals. No changes in mRNA concentrations of two other pro-inflammatory cytokines, interleukins IL-6 and IL-1β, were detected following drug exposure at any developmental stages or in any studied brain regions. In contrast, propofol anaesthesia at postnatal day 10 induced a transient increase in the mRNA expression patterns of two chemokines: Ccl2 and Ccl3 [for Ccl2 mRNA: 4.4-fold (3.8 to 5.6) increase in the prefrontal cortex, P = 0.0002 and a 3.5-fold (2.8 to 5.3) increase in the hippocampus, P = 0.0001; for Ccl3 mRNA: 2.9-fold (2.6 to 4.31) increase in the prefrontal cortex, P = 0.0001, and a 2.7-fold (2.2 to 3.6) increase in the hippocampus, P = 0.0003]. Propofol did not affect Ccl2 and Ccl3 mRNA concentrations in 20-day-old animals. In addition, it did not impact on two other members of the chemokine family, Cxcl1 and Cx3cl1, at any time points or in any brain regions investigated. This study suggests that propofol anaesthesia does not have a major impact on pro-inflammatory cytokine expression profiles in the developing central nervous system during the brain growth spurt. These results raise arguments against the involvement of neuroinflammatory pathways in propofol-related neurotoxicity observed following the administration of this drug in the early postnatal period.
Expression analysis of G Protein-Coupled Receptors in mouse macrophages
Lattin, Jane E; Schroder, Kate; Su, Andrew I; Walker, John R; Zhang, Jie; Wiltshire, Tim; Saijo, Kaoru; Glass, Christopher K; Hume, David A; Kellie, Stuart; Sweet, Matthew J
2008-01-01
Background Monocytes and macrophages express an extensive repertoire of G Protein-Coupled Receptors (GPCRs) that regulate inflammation and immunity. In this study we performed a systematic micro-array analysis of GPCR expression in primary mouse macrophages to identify family members that are either enriched in macrophages compared to a panel of other cell types, or are regulated by an inflammatory stimulus, the bacterial product lipopolysaccharide (LPS). Results Several members of the P2RY family had striking expression patterns in macrophages; P2ry6 mRNA was essentially expressed in a macrophage-specific fashion, whilst P2ry1 and P2ry5 mRNA levels were strongly down-regulated by LPS. Expression of several other GPCRs was either restricted to macrophages (e.g. Gpr84) or to both macrophages and neural tissues (e.g. P2ry12, Gpr85). The GPCR repertoire expressed by bone marrow-derived macrophages and thioglycollate-elicited peritoneal macrophages had some commonality, but there were also several GPCRs preferentially expressed by either cell population. Conclusion The constitutive or regulated expression in macrophages of several GPCRs identified in this study has not previously been described. Future studies on such GPCRs and their agonists are likely to provide important insights into macrophage biology, as well as novel inflammatory pathways that could be future targets for drug discovery. PMID:18442421
Pleiotrophin Expression during Odontogenesis
Ames, Jennifer E.; Tamkenath, Amena; Mamaeva, Olga; Stidham, Katherine; Wilson, Mary E.; Perez-Pinera, Pablo; Deuel, Thomas F.; MacDougall, Mary
2012-01-01
Pleiotrophin (PTN) is an extracellular matrix–associated growth factor and chemokine expressed in mesodermal and ectodermal cells. It plays an important role in osteoblast recruitment and differentiation. There is limited information currently available about PTN expression during odontoblast differentiation and tooth formation, and thus the authors aimed to establish the spatiotemporal expression pattern of PTN during mouse odontogenesis. Immortalized mouse dental pulp (MD10-D3, MD10-A11) and odontoblast-like (M06-G3) and ameloblast-like (EOE-3M) cell lines were grown and samples prepared for immunocytochemistry, Western blot, and conventional and quantitative PCR analysis. Effects of BMP2, BMP4, and BMP7 treatment on PTN expression in odontoblast-like M06-G3 cells were tested by quantitative PCR. Finally, immunohistochemistry of sectioned mice mandibles and maxillaries at developmental stages E16, E18, P1, P6, P10, and P28 was performed. The experiments showed that PTN, at both the mRNA and protein level, was expressed in all tested epithelial and mesenchymal dental cell lines and that the level of PTN mRNA was influenced differentially by the bone morphogenetic proteins. The authors observed initial expression of PTN in the inner enamel epithelium with prolonged expression in the ameloblasts and odontoblasts throughout their stages of maturation and strong expression in the terminally differentiated and enamel matrix–secreting ameloblasts and odontoblasts of the adult mouse incisors and molars. PMID:22382872
Omland, Silje Haukali; Wettergren, Erika Elgstrand; Mollerup, Sarah; Asplund, Maria; Mourier, Tobias; Hansen, Anders Johannes; Gniadecki, Robert
2017-10-07
Cutaneous basal cell carcinoma (BCC) is the commonest cancer worldwide. BCC is locally invasive and the surrounding stromal microenvironment is pivotal for tumourigenesis. Cancer associated fibroblasts (CAFs) in the microenvironment are essential for tumour growth in a variety of neoplasms but their role in BCC is poorly understood. Material included facial BCC and control skin from the peritumoural area and from the buttocks. With next-generation sequencing (NGS) we compared mRNA expression between BCC and peritumoural skin. qRT-PCR, immunohistochemical and immunofluorescent staining were performed to validate the NGS results and to investigate CAF-related cyto-and chemokines. NGS revealed upregulation of 65 genes in BCC coding for extracellular matrix components pointing at CAF-related matrix remodeling. qRT-PCR showed increased mRNA expression of CAF markers FAP-α, PDGFR-β and prolyl-4-hydroxylase in BCC. Peritumoural skin (but not buttock skin) also exhibited high expression of PDGFR-β and prolyl-4-hydroxylase but not FAP-α. We found a similar pattern for the CAF-associated chemokines CCL17, CCL18, CCL22, CCL25, CXCL12 and IL6 with high expression in BCC and peritumoural skin but absence in buttock skin. Immunofluorescence revealed correlation between FAP-α and PDGFR-β and CXCL12 and CCL17. Matrix remodeling is the most prominent molecular feature of BCC. CAFs are present within BCC stroma and associated with increased expression of chemokines involved in tumour progression and immunosuppression (CXCL12, CCL17). Fibroblasts from chronically sun-exposed skin near tumours show gene expression patterns resembling that of CAFs, indicating that stromal fibroblasts in cancer-free surgical BCC margins exhibit a tumour promoting phenotype.
Chen, Qianqian; Heston, Jonathan B; Burkett, Zachary D; White, Stephanie A
2013-10-01
Humans and songbirds are among the rare animal groups that exhibit socially learned vocalizations: speech and song, respectively. These vocal-learning capacities share a reliance on audition and cortico-basal ganglia circuitry, as well as neurogenetic mechanisms. Notably, the transcription factors Forkhead box proteins 1 and 2 (FoxP1, FoxP2) exhibit similar expression patterns in the cortex and basal ganglia of humans and the zebra finch species of songbird, among other brain regions. Mutations in either gene are associated with language disorders in humans. Experimental knock-down of FoxP2 in the basal ganglia song control region Area X during song development leads to imprecise copying of tutor songs. Moreover, FoxP2 levels decrease naturally within Area X when zebra finches sing. Here, we examined neural expression patterns of FoxP1 and FoxP2 mRNA in adult Bengalese finches, a songbird species whose songs exhibit greater sequence complexity and increased reliance on audition for maintaining their quality. We found that FoxP1 and FoxP2 expression in Bengalese finches is similar to that in zebra finches, including strong mRNA signals for both factors in multiple song control nuclei and enhancement of FoxP1 in these regions relative to surrounding brain tissue. As with zebra finches, when Bengalese finches sing, FoxP2 is behaviorally downregulated within basal ganglia Area X over a similar time course, and expression negatively correlates with the amount of singing. This study confirms that in multiple songbird species, FoxP1 expression highlights song control regions, and regulation of FoxP2 is associated with motor control of song.
Navigatore-Fonzo, Lorena S; Delgado, Silvia M; Gimenez, Maria Sofia; Anzulovich, Ana C
2014-01-01
Alterations in enzymatic antioxidant defense systems lead to a deficit of cognitive functions and altered hippocampal synaptic plasticity. The objectives of this study were to investigate endogenous rhythms of catalase (CAT) and glutathione peroxidase (GPx) expression and activity, as well as CREB1 mRNA, in the rat hippocampus, and to evaluate to which extent the vitamin A deficiency could affect those temporal patterns. Rats from control and vitamin A-deficient (VAD) groups received a diet containing 4000 IU of vitamin A/kg diet, or the same diet devoid of vitamin A, respectively, during 3 months. Rats were maintained under 12-hour-dark conditions, during 10 days before the sacrifice. Circadian rhythms of CAT, GPx, RXRγ, and CREB1 mRNA levels were determined by reverse transcriptrase polymerase chain reaction in hippocampus samples isolated every 4 hours during a 24-hour period. CAT and GPx enzymatic activities were also determined by kinetic assays. Regulatory regions of clock and antioxidant enzymes genes were scanned for E-box, RXRE, and CRE sites. E-box, RXRE, and CRE sites were found on regulatory regions of GPx and CAT genes, which display a circadian expression in the rat hippocampus. VAD phase shifted CAT, GPx, and RXRγ endogenous rhythms without affecting circadian expression of CREB1. CAT and GPx expression and enzymatic activity are circadian in the rat hippocampus. The VAD affected the temporal patterns antioxidant genes expression, probably by altering circadian rhythms of its RXR receptors and clock factors; thus, it would impair the temporal orchestration of hippocampal daily cognitive performance.
Chen, Qianqian; Heston, Jonathan B.; Burkett, Zachary D.; White, Stephanie A.
2013-01-01
SUMMARY Humans and songbirds are among the rare animal groups that exhibit socially learned vocalizations: speech and song, respectively. These vocal-learning capacities share a reliance on audition and cortico-basal ganglia circuitry, as well as neurogenetic mechanisms. Notably, the transcription factors Forkhead box proteins 1 and 2 (FoxP1, FoxP2) exhibit similar expression patterns in the cortex and basal ganglia of humans and the zebra finch species of songbird, among other brain regions. Mutations in either gene are associated with language disorders in humans. Experimental knock-down of FoxP2 in the basal ganglia song control region Area X during song development leads to imprecise copying of tutor songs. Moreover, FoxP2 levels decrease naturally within Area X when zebra finches sing. Here, we examined neural expression patterns of FoxP1 and FoxP2 mRNA in adult Bengalese finches, a songbird species whose songs exhibit greater sequence complexity and increased reliance on audition for maintaining their quality. We found that FoxP1 and FoxP2 expression in Bengalese finches is similar to that in zebra finches, including strong mRNA signals for both factors in multiple song control nuclei and enhancement of FoxP1 in these regions relative to surrounding brain tissue. As with zebra finches, when Bengalese finches sing, FoxP2 is behaviorally downregulated within basal ganglia Area X over a similar time course, and expression negatively correlates with the amount of singing. This study confirms that in multiple songbird species, FoxP1 expression highlights song control regions, and regulation of FoxP2 is associated with motor control of song. PMID:24006346
Radulović, Željko; Porter, Lindsay M.; Kim, Tae K.; Mulenga, Albert
2015-01-01
Organic anion-transporting polypeptides (Oatps) are an integral part of the detoxification mechanism in vertebrates and invertebrates. These cell surface proteins are involved in mediating the sodium-independent uptake and/or distribution of a broad array of organic amphipathic compounds and xenobiotic drugs. This study describes bioinformatics and biological characterization of 9 Oatp sequences in the Ixodes scapularis genome. These sequences have been annotated on the basis of 12 transmembrane domains, consensus motif D-X-RW-(I,V)-GAWW-X-G-(F,L)-L, and 11 conserved cysteine amino acid residues in the large extracellular loop 5 that characterize the Oatp superfamily. Ixodes scapularis Oatps may regulate non-redundant cross-tick species conserved functions in that they did not cluster as a monolithic group on the phylogeny tree and that they have orthologs in other ticks. Phylogeny clustering patterns also suggest that some tick Oatp sequences transport substrates that are similar to those of body louse, mosquito, eye worm, and filarial worm Oatps. Semi-quantitative RT-PCR analysis demonstrated that all 9 I. scapularis Oatp sequences were expressed during tick feeding. Ixodes scapularis Oatp genes potentially regulate functions during early and/or late-stage tick feeding as revealed by normalized mRNA profiles. Normalized transcript abundance indicates that I. scapularis Oatp genes are strongly expressed in unfed ticks during the first 24 h of feeding and/or at the end of the tick feeding process. Except for 2 I. scapularis Oatps, which were expressed in the salivary glands and ovaries, all other genes were expressed in all tested organs, suggesting the significance of I. scapularis Oatps in maintaining tick homeostasis. Different I. scapularis Oatp mRNA expression patterns were detected and discussed with reference to different physiological states of unfed and feeding ticks. PMID:24582512
Lim, Whasun; Kim, Jinyoung; Bazer, Fuller W.; Han, Jae Yong; Song, Gwonhwa
2012-01-01
Pleiotrophin (PTN) is a developmentally-regulated growth factor which is widely distributed in various tissues and also detected in many kinds of carcinomas. However, little is known about the PTN gene in chickens. In the present study, we found chicken PTN to be highly conserved with respect to mammalian PTN genes (91–92.6%) and its mRNA was most abundant in brain, heart and oviduct. This study focused on the PTN gene in the oviduct where it was detected in the glandular (GE) and luminal (LE) epithelial cells. Treatment of young chicks with diethylstilbesterol induced PTN mRNA and protein in GE and LE, but not in other cell types of the oviduct. Further, several microRNAs, specifically miR-499 and miR-1709 were discovered to influence PTN expression via its 3′-UTR which suggests that post-transcriptional regulation influences PTN expression in chickens. We also compared expression patterns and CpG methylation status of the PTN gene in normal and cancerous ovaries from chickens. Our results indicated that PTN is most abundant in the GE of adenocarcinoma of cancerous, but not normal ovaries of hens. Bisulfite sequencing revealed that 30- and 40% of −1311 and −1339 CpG sites are demethylated in ovarian cancer cells, respectively. Collectively, these results indicate that chicken PTN is a novel estrogen-induced gene expressed mainly in the oviductal epithelia implicating PTN regulation of oviduct development and egg formation, and also suggest that PTN is a biomarker for epithelial ovarian carcinoma that could be used for diagnosis and monitoring effects of therapies for the disease. PMID:22496782
Expression and clinical significance of ATM and PUMA gene in patients with colorectal cancer.
Xiong, Hui; Zhang, Jiangnan
2017-12-01
The expression of ataxia-telangiectasia mutated (ATM) and p53 upregulated modulator of apoptosis (PUMA) genes in patients with colorectal cancer were investigated, to explore the correlation between the expression of ATM and PUMA and tumor development, to evaluate the clinical significance of ATM and PUMA in the treatment of colorectal cancer. Quantitative real-time PCR was used to detect the expression of ATM and PUMA in tumor tissue and adjacent healthy tissue of 67 patients with colorectal cancer and in normal colorectal tissue of 33 patients with colorectal polyps at mRNA level. The expression level of ATM mRNA in colorectal cancer tissues was significantly higher than that in normal mucosa tissues and adjacent non-cancerous tissue (P≤0.05), while no significant differences in expression level of ATM mRNA were found between normal mucosa tissues and adjacent noncancerous tissue (P=0.07). There was a negative correlation between the expression of ATM mRNA and the degree of differentiation of colorectal cancer (r= -0.312, P=0.013), while expression level of ATM mRNA was not significantly correlated with the age, sex, tumor invasion, lymph node metastasis or clinical stage (P>0.05). Expression levels of PUMA mRNA in colorectal cancer tissues, adjacent noncancerous tissue and normal tissues were 0.68±0.07, 0.88±0.04 and 1.76±0.06, respectively. Expression level of PUMA mRNA in colorectal cancer tissues and adjacent noncancerous tissue was significantly lower than that in normal colorectal tissues (P<0.05). The results showed that ATM mRNA is expressed abnormally in colorectal cancer tissues. Expression of PUMA gene in colorectal carcinoma is downregulated, and is negatively correlated with the occurrence of cancer.
Ibrahim, M; Peter, S; Gärtner, M A; Michel, G; Jung, M; Einspanier, R; Gabler, C
2016-11-01
In the uterus, the first pathogen confrontations take place at the luminal endometrial epithelium. Therefore, it is required that these cells have the potential to recognize and respond to a bacterial infection. Antimicrobial peptides (AMP), part of the innate immune system in addition to cytokines, are principal effector molecules of mucosal immunity against pathogens. One important family of AMP that can permeabilize bacterial membranes is the beta-defensin (DEFB) family, which includes the following members: DEFB1, DEFB4A, and DEFB5, lingual AMP, and tracheal AMP. The bactericidal/permeability-increasing protein is also a cationic AMP that results in the death of bacteria. Another AMP family is the S100 calcium-binding protein (S100A) family including the following members: S100A8, S100A9, S100A11, and S100A12. These AMP exert their antimicrobial action through chelation of several ions. The aim of the present study was to evaluate mRNA expression patterns of selected AMP in bovine endometrial cells collected (1) at different stages of the estrous cycle (postovulatory, early-to-mid luteal, late luteal, and pre-ovulatory phase); (2) during the puerperium depending on uterine health status (healthy, subclinical, or clinical endometritis) starting on Day 24 to 30 postpartum for 3 weeks on a weekly basis; and (3) in vitro after co-culturing with Bacillus pumilus at three different multiplicities of infection (MOI 1, 5, and 10) up to 6 hours. The results reported that the mRNA expression of all candidate AMP, except DEFB1, S100A8, and S100A9, was estrous cycle dependent. In particular, around the time of ovulation, the transcription level of most AMP was higher (P < 0.05) compared with the luteal phase. Almost all candidate AMP mRNA expression was dependent on uterine health status, with a higher transcription level (P < 0.05) in inflamed endometrial tissues, especially during the late stage of the puerperium (Day 45-51 postpartum). Members of the DEFB family were nearly unaffected in their mRNA expression in primary endometrial cells co-incubated with B. pumilus. However, S100A8 and S100A9 mRNA contents were higher after 4 and 6 hours of co-incubation with B. pumilus compared with untreated controls. In conclusion, higher mRNA expression of the candidate AMP around ovulation or in inflamed endometrial tissue during the puerperium suggests their crucial role in uterine innate immunity in the defense against invading bacteria. Copyright © 2016 Elsevier Inc. All rights reserved.
Calcaterra, Roberta; Di Girolamo, Michele; Mirisola, Concetta; Baggi, Luigi
2016-06-01
Gingival epithelial cells have a pivotal role in the recognition of microorganisms and damage-associated molecular pattern molecules and in the regulation of the immune response. The investigation of the behavior of Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD) like receptors (NLRs) around a healthy implant may help to address the first step of periimplantitis pathogenesis. To investigate by quantitative real-time polymerase chain reaction, the mRNA expressions of TLR2, TLR3, TLR4, TLR5, TLR6, TLR9, NOD1, NOD2, and NLRP3 from gingival epithelial cells of the sulcus around healthy implants and around healthy teeth. Two types of implant-abutment systems with tube-in-tube interface were tested. After 6 months of implant restoration, gingival epithelial cells were obtained from the gingival sulcus around the implants and around the adjacent teeth of 10 patients. Our results did not reach statistical significance among the mRNA expressions of TLR2, TLR3, TLR4, TLR5, TLR6, TLR9, NOD1, NOD2, and NLRP3 in epithelial cells around the implant versus around natural teeth. This study shows that the implant-abutment systems tested did not induce an immune response by the surrounding epithelial cells at 6 months since their positioning, as well as in the adjacent clincally healthy teeth.
Wang, Ye; Liu, Min; Cheng, Wei-bo; He, Gui-qiong; Li, Fan; Liao, Zhi-gang
2008-08-01
To study the changes of HSP 70 mRNA and c-fos mRNA expression and to find a method to differentiate antemortem from postmortem electrocution. Fifteen New Zealand rabbits were randomly divided into three groups, the antemortem electrocution group, the postmortem electrocution group, and the control group. Each group consists of five rabbits. The levels of HSP 70 mRNA and c-fos mRNA in skeletal muscle and cardiac muscle were examined with quantitative fluorescent RT-PCR. The levels of HSP 70 mRNA and c-fos mRNA in the antemortem electrocution group increased significantly (P<0.05), compared with that of the postmortem electrocution group. The changes of HSP 70 mRNA and c-fos mRNA expression in skeletal muscle and cardiac muscle can be used as an indicator to distinguish antemortem from postmortem electrocution.
Zhang, Junling; Shi, Zhiyi; Cheng, Qi; Chen, Xiaowu
2011-08-01
Insulin-like growth factor I (IGF-I) is an important regulator of fish growth and development, and its biological actions are initiated by binding to IGF-I receptor (IGF-IR). Our previous study has revealed that IGF-I could play an important role during metamorphosis of Japanese flounder, Paralichthys olivaceus. The analysis of IGF-IR expression thus helps further elucidate the IGF-I regulation of metamorphic processes. In this study, the spatial-temporal expression of two distinct IGF-IR mRNAs was investigated by real-time RT-PCR. The spatial distribution of two IGF-IR mRNAs in adult tissues is largely overlapped, but they exhibit distinct temporal expression patterns during larval development. A remarkable decrease in IGF-IR-2 mRNA was detected during metamorphosis. In contrast, a significant increase in IGF-IR-1 mRNA was determined from pre-metamorphosis to metamorphic completion. These indicate that they may play different function roles during the flounder metamorphosis. The levels and localization of IGF-IR proteins during larval development were further studied by Western blotting and immunohistochemistry. Immunoreactive IGF-IRs were detected throughout larval development, and the IGF-IR proteins displayed a relatively abundant expression during metamorphosis. Moreover, the IGF-IR proteins appeared in key tissues, such as thickened skin beneath the migrating eye, developing intestine, gills and kidney during metamorphosis. These results further suggest that the IGF-I system may be involved in metamorphic development of Japanese flounder. Copyright © 2011 Elsevier Inc. All rights reserved.
Bui, Anhthu Q.; Neill, Sharman D. O'
1998-01-01
The temporal and spatial expression patterns of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes were investigated in pollinated orchid (Phalaenopsis spp.) flowers. Pollination signals initiate a cascade of development events in multiple floral organs, including the induction of ethylene biosynthesis, which coordinates several postpollination developmental responses. The initiation and propagation of ethylene biosynthesis is regulated by the coordinated expression of three distinct ACC synthase genes in orchid flowers. One ACC synthase gene (Phal-ACS1) is regulated by ethylene and participates in amplification and interorgan transmission of the pollination signal, as we have previously described in a related orchid genus. Two additional ACC synthase genes (Phal-ACS2 and Phal-ACS3) are expressed primarily in the stigma and ovary of pollinated orchid flowers. Phal-ACS2 mRNA accumulated in the stigma within 1 h after pollination, whereas Phal-ACS1 mRNA was not detected until 6 h after pollination. Similar to the expression of Phal-ACS2, the Phal-ACS3 gene was expressed within 2 h after pollination in the ovary. Exogenous application of auxin, but not ACC, mimicked pollination by stimulating a rapid increase in ACC synthase activity in the stigma and ovary and inducing Phal-ACS2 and Phal-ACS3 mRNA accumulation in the stigma and ovary, respectively. These results provide the basis for an expanded model of interorgan regulation of three ACC synthase genes that respond to both primary (Phal-ACS2 and Phal-ACS3) and secondary (Phal-ACS1) pollination signals. PMID:9449850
Dron, M; Tartare, X; Guillo, F; Haik, S; Barbin, G; Maury, C; Tovey, M; Dandoy-Dron, F
2000-11-15
We have previously reported a transcript of a novel mouse gene (Scrg1) with increased expression in transmissible spongiform encephalopathies and the cloning of the human mRNA analogue. In this paper, we present the genomic organization of the mouse and human SCRG1 loci, which exhibit a high degree of conservation. The genes are composed of three exons; the two downstream exons contain the protein coding region. The mouse gene is expressed in brain tissue essentially as a 0.7-kb message but also as a minor 2.6-kb mRNA. We have sequenced 20 kb of DNA at the mouse Scrg1 locus and found that the longer transcript is the prolongation of the 0.7-kb mRNA to a polyadenylation site located about 2 kb further downstream. Sequencing revealed that the mouse Scrg1 gene is physically linked to Sap30, a gene that encodes a protein of the histone deacetylase complex, and genetic linkage mapping assigned the localization of Scrg1 to chromosome 8 between Ant1 and Hmg2. Northern blot analysis showed that Scrg1 is under strict developmental control in mouse embryo and is expressed by cells of neuronal origin in vitro. Comparison of the rat, mouse, and human SCRG1 proteins identified a box of 35 identical contiguous amino acids and a characteristic cysteine distribution pattern defining a new protein signature. Copyright 2000 Academic Press.
Vakulskas, Christopher A.; Pannuri, Archana; Cortés-Selva, Diana; Zere, Tesfalem R.; Ahmer, Brian M.; Babitzke, Paul; Romeo, Tony
2014-01-01
Summary In Escherichia coli, activity of the global regulatory RNA binding protein CsrA is antagonized by two noncoding sRNAs, CsrB and CsrC, which sequester it away from its lower affinity mRNA targets. Transcription of csrB/C requires the BarA-UvrY two component signal transduction system, which responds to short chain carboxylates. We show that two DEAD-box RNA helicases, DeaD and SrmB, activate csrB/C expression by different pathways. DeaD facilitates uvrY translation by counteracting the inhibitory effect of long distance basepairing between the uvrY mRNA leader and coding region, while SrmB does not affect UvrY or UvrY-phosphate levels. Contrary to the prevailing notion that these helicases act primarily at low temperatures, DeaD and SrmB activated csrB expression over a wide temperature range. High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) revealed in vivo interactions of DeaD with 39 mRNAs, including those of uvrY and 9 other regulatory genes. Studies on the expression of several of the identified genes revealed regulatory effects of DeaD in all cases and diverse temperature response patterns. Our findings uncover an expanded regulatory role for DeaD, which is mediated through novel mRNA targets, important global regulators and under physiological conditions that were considered to be incompatible with its function. PMID:24708042
NASA Astrophysics Data System (ADS)
Mobley, William C.; Neve, Rachael L.; Prusiner, Stanley B.; McKinley, Michael P.
1988-12-01
Deposition of amyloid filaments serves as a pathologic hallmark for some neurodegenerative disorders. The prion protein (PrP) is found in amyloid of animals with scrapie and humans with Creutzfeldt-Jakob disease; the β protein is present in amyloid deposits in Alzheimer disease and Down syndrome patients. These two proteins are derived from precursors that in the brain are expressed primarily in neurons and are membrane bound. We found that gene expression for PrP and the β -protein precursor (β -PP) is regulated in developing hamster brain. Specific brain regions showed distinct patterns of ontogenesis for PrP and β -PP mRNAs. The increases in PrP and β -PP mRNAs in developing basal forebrain coincided with an increase in choline acetyltransferase activity, raising the possibility that these markers might be coordinately controlled in cholinergic neurons and regulated by nerve growth factor (NGF). Injections of NGF into the brains of neonatal hamsters increased both PrP and β -PP mRNA levels. Increased PrP and β -PP mRNA levels induced by NGF were confined to regions that contain NGF-responsive cholinergic neurons and were accompanied by elevations in choline acetyltransferase. It remains to be established whether or not exogenous NGF acts to increase PrP and β -PP gene expression selectively in forebrain cholinergic neurons in the developing hamster and endogenous NGF regulates expression of these genes.
Central and peripheral effects of chronic food restriction and weight restoration in the rat.
Kinzig, Kimberly P; Hargrave, Sara L; Tao, Erin E
2009-02-01
Previous studies have demonstrated that some endocrine consequences of long-term caloric restriction persist after weight restoration in human subjects. Here we evaluate effects of chronic food restriction in rats that were restricted to 70% of control kcal for 4 wk and subsequently weight restored. Measures were taken from rats at 80% (chronically restricted; CR), 90% (partially weight restored; PR), 100% (fully weight restored; FR), and after 4 wk at 100% body weight of controls (extended weight restored; ER). Plasma insulin and leptin were decreased, and ghrelin was increased in CR compared with controls. Leptin and ghrelin normalized with weight restoration at PR, FR, and ER; however, baseline insulin was not normalized until the ER state. Hypothalamic mRNA expression levels for proopiomelanocortin (POMC), agouti-related protein (AgRP), and neuropeptide Y (NPY) revealed significantly less POMC mRNA expression in CR and PR rats, and significantly less arcuate NPY mRNA in PR and FR. In the dorsomedial hypothalamus, CR, PR, and FR rats had significantly increased NPY expression that was not normalized until the ER state. In response to a test meal, insulin and ghrelin release patterns were altered through the FR stage, and ghrelin remained affected at ER. Collectively, these data demonstrate that mere weight restoration is not sufficient to normalize hypothalamic gene expression levels and endocrine responses to a meal, and that meal-related ghrelin responses persist despite weight restoration for up to 4 wk.
Chi, Liang; Liu, Qinghua; Xu, Shihong; Xiao, Zhizhong; Ma, Daoyuan; Li, Jun
2015-10-01
Trypsin is an important serine protease that is considered to be involved in digestion of protein in teleost fish. Nevertheless, studies on trypsin/trypsinogen in fish embryos are very limited. In this study, the trypsinogen of turbot (Scophthalmus maximus) (tTG) was identified and the expression patterns and activity of trypsinogen/trypsin were investigated. The results showed that the tTG mRNA was evenly distributed in the oocytes and was also expressed along the yolk periphery in early embryos. At later embryo stages and 1 days after hatching (dph), the tTG mRNA concentrated at the alimentary tract and head. Quantitative expression analysis showed that the tTG transcripts decreased after fertilization until the gastrula stage, then increased with the embryo and larvae development. This result was also confirmed by the specific activity analysis of trypsin and in-situ-hybridization (ISH). All of the results indicated that tTG in early embryo stages was maternally derived and expressed by itself after gastrula stages. Additionally, location of tTG mRNA in embryos and larvae was investigated; we considered that trypsin may have multiple functions during the embryo development process. Based on our results regarding trypsinogen in embryos and early development, we concluded that the trypsin/trypsinogen in turbot embryos was inherited from a maternal source and we suggested that trypsin in early development has multiple functions in the process of development. Copyright © 2015 Elsevier Inc. All rights reserved.
Brain region-specific effects of immobilization stress on cholinesterases in mice.
Valuskova, Paulina; Farar, Vladimir; Janisova, Katerina; Ondicova, Katarina; Mravec, Boris; Kvetnansky, Richard; Myslivecek, Jaromir
2017-01-01
Brain acetylcholinesterase (AChE) variant AChE R expression increases with acute stress, and this persists for an extended period, although the timing, strain and laterality differences, have not been explored previously. Acute stress transiently increases acetylcholine release, which in turn may increase activity of cholinesterases. Also the AChE gene contains a glucocorticoid response element (GRE), and stress-inducible AChE transcription and activity changes are linked to increased glucocorticoid levels. Corticotropin-releasing hormone knockout (CRH-KO) mice have basal glucocorticoid levels similar to wild type (WT) mice, but much lower levels during stress. Hence we hypothesized that CRH is important for the cholinesterase stress responses, including butyrylcholinesterase (BChE). We used immobilization stress, acute (30 or 120 min) and repeated (120 min daily × 7) in 48 male mice (24 WT and 24 CRH-KO) and determined AChE R , AChE and BChE mRNA expression and AChE and BChE activities in left and right brain areas (as cholinergic signaling shows laterality). Immobilization decreased BChE mRNA expression (right amygdala, to 0.5, 0.3 and 0.4, × control respectively) and AChE R mRNA expression (to 0.5, 0.4 and 0.4, × control respectively). AChE mRNA expression increased (1.3, 1.4 and 1.8-fold, respectively) in the left striatum (Str). The AChE activity increased in left Str (after 30 min, 1.2-fold), decreased in right parietal cortex with repeated stress (to 0.5 × control). BChE activity decreased after 30 min in the right CA3 region (to 0.4 × control) but increased (3.8-fold) after 120 min in the left CA3 region. The pattern of changes in CRH-KO differed from that in WT mice.
Bauhofer, Artur; Tischer, Bjirn; Middeke, Martin; Plaul, Ulrike; Lorenz, Wilfried; Torossian, Alexander
2003-10-01
Hypertension is proposed as a risk factor among others (high age, diabetes mellitus, and pre- and intraoperative bleeding) for adverse outcomes, such as severe infections, leading to sepsis and to multiple organ failure as the most deleterious complication. Hypertension was modeled with spontaneous hypertensive rats (SHR) and Dahl salt-sensitive (DS) rats and the infective complication by polymicrobial, peritoneal contamination, and infection (PCI). The concept of clinic modeling randomized trials was used to simulate clinical complexity, including a relevant antibiotic prophylaxis in combination with granulocyte-colony stimulating factor (G-CSF) and clinical trial conditions. Outcome parameters were: survival, systemic cytokines (protein), and organ-specific cytokine levels (mRNA). With low complexity (no prophylaxis), 28% of the animals in the Wistar and 50% in the SHR group survived (P=0.17). Tumor necrosis factor-alpha levels were lower in the liver of SHR vs. Wistar rats with PCI (P<0.01). The anti-inflammatory cytokine interleukin (IL)-10 was expressed on a higher level in SHR with PCI compared with Wistar rats (P<0.01). With increased complexity (antibiotic and G-CSF prophylaxis) the survival rate was increased from 50% in Wistar rats to 89% in SHR (P<0.01) and the mRNA expression of IL-6 was decreased in the kidney of SHR (P<0.05). Survival rate was 44% in the DS rats vs. 67% of the Wistar rats (P=0.18). The mRNA expression of tumor necrosis factor-alpha and IL-10 was reduced (P<0.01) by pretreatment in the liver of DS rats with PCI. The hypertensive, genetically distinct SHR and DS rats express different patterns of pro- and anti-inflammatory cytokine levels after PCI. G-CSF and antibiotic prophylaxis increases only in SHR survival and decreases IL-6 mRNA expression in the kidney significantly.
Zhu, Yongfei; Ren, Chuanlu; Wan, Xuying; Zhu, Yuping; Zhu, Jiangbo; Zhou, Hongyuan; Zhang, Tianbao
2013-11-01
Most previous studies focused on a small number of heat shock proteins (Hsps) and their relationships with embryogenesis, and the actual roles of these Hsps in normal and abnormal embryonic development remain unclear. It was found in the present systemic study that except for Grp170, whose expression was not detectable at GD18, all 19 Hsps of Hsp70, Hsp90 and Hsp110 families were expressed in the normal development of embryonic palate tissue in mice, but their expression patterns varied with different Hsps, presenting as a correlation with the developmental phases. In the treatment group by all-trans retinoic acid (atRA), the messenger RNA (mRNA) abundance of HspA1A, HspA1L, HspA8, HspA9, HspA12A, HspA12B, HspA13, HspA14, Hsp90AA1, Hsp90AB1, Grp94, Trap1, Hsp105, Hsp110 and Grp170 was higher in the palates at GD11 (the beginning of palate development), the mRNA abundance of HspA1A, HspA12A and HspA12B was higher at GD18 (before birth) and an mRNA expression peak of HspA1L, HspA8, HspA9, Hsp90AA1, Grp94, Hsp110 and Grp170 was observed at GD17. The mRNA abundance of most genes in atRA-induced cleft palates of the treatment group was different from that of the control group. Grp78, HspA14 and Hsp105 were closely associated with the normal palate development and cleft palate in mouse embryo, possibly as palate development-related genes. Except Grp170, the other genes may be closely associated with the development of mouse palates through participating in the stress response process and/or the antiapoptosis process.
Yoshida, S; Ina, A; Konno, J; Wu, T; Shutoh, F; Nogami, H; Hisano, S
2008-03-18
The pineal gland expresses vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2), which are thought to transport glutamate into synaptic-like microvesicles in the pinealocytes. Recently, we reported that the rat pineal gland also expresses VGLUT1v which is a novel variant of VGLUT1 during the perinatal period. To explore the biological significance of these VGLUT expressions in pineal development, we studied the ontogeny of VGLUT in this gland by in situ hybridization, immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-PCR) using rats. Histological analysis revealed that intensities of VGLUT1 hybridization signal and immunostaining drastically increase by postnatal day (P) 7, whereas VGLUT2 expression exhibits high levels of mRNA and protein at birth and decreases gradually from P7 onward. Quantitative RT-PCR analysis supported these histological observations, showing that expressions of VGLUT1 and VGLUT2 exhibit opposite patterns to each other. Coinciding with VGLUT1-upregulation, RT-PCR data showed that expressions of dynamin 1 and endophilin 1, which are factors predictably involved in the endocytotic recovery of VGLUT1-associated vesicle, are also increased by P7. Quantitative RT-PCR analysis of VGLUT1v demonstrated that its mRNA expression is upregulated by P7, kept at the same level until P14, and apparently decreased at P21, suggesting its functional property required for a certain developmental event. Moreover, a comparison of mRNA expressions at daytime and nighttime revealed that neither VGLUT1 nor VGLUT1v shows any difference in both P7 and P21 glands, whereas VGLUT2 is significantly lower at daytime than at nighttime at P21 but not P7, the time point at which the melatonin rhythm is not yet generated. The present study shows that expressions of these VGLUT types are differentially regulated during postnatal pineal development, each presumably participating in physiologically distinct glutamatergic functions.
2015-01-01
Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions. PMID:25494492
Wang, Zhe; Zhang, Ruili; Wang, Zhongliang; Wang, He-Fang; Wang, Yu; Zhao, Jun; Wang, Fu; Li, Weitao; Niu, Gang; Kiesewetter, Dale O; Chen, Xiaoyuan
2014-12-23
Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions.
Sugihara, T; Kobori, A; Imaeda, H; Tsujikawa, T; Amagase, K; Takeuchi, K; Fujiyama, Y; Andoh, A
2010-01-01
Recent studies have demonstrated that the complement system participates in the regulation of T cell functions. To address the local biosynthesis of complement components in inflammatory bowel disease (IBD) mucosa, we investigated C3 and interleukin (IL)-17 mRNA expression in mucosal samples obtained from patients with IBD. The molecular mechanisms underlying C3 induction were investigated in human colonic subepithelial myofibroblasts (SEMFs). IL-17 and C3 mRNA expressions in the IBD mucosa were evaluated by real-time polymerase chain reaction. The C3 levels in the supernatant were determined by enzyme-linked immunosorbent assay. IL-17 and C3 mRNA expressions were elevated significantly in the active lesions from ulcerative colitis (UC) and Crohn's disease (CD) patients. There was a significant positive correlation between IL-17 and C3 mRNA expression in the IBD mucosa. IL-17 stimulated a dose- and time-dependent increase in C3 mRNA expression and C3 secretion in colonic SEMFs. The C3 molecules secreted by colonic SEMFs were a 115-kDa α-chain linked to a 70-kDa β-chain by disulphide bonds, which was identical to serum C3. The IL-17-induced C3 mRNA expression was blocked by p42/44 mitogen-activated protein kinase (MAPK) inhibitors (PD98059 and U0216) and a p38 MAPK inhibitor (SB203580). Furthermore, IL-17-induced C3 mRNA expression was inhibited by an adenovirus containing a stable mutant form of IκBα. C3 and IL-17 mRNA expressions are enhanced, with a strong correlation, in the inflamed mucosa of IBD patients. Part of these clinical findings was considered to be mediated by the colonic SEMF response to IL-17. PMID:20089077
Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.
Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A
2010-01-01
Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues. Copyright 2009 Elsevier Inc. All rights reserved.
Giebler, Maria; Greither, Thomas; Müller, Lisa; Mösinger, Carina; Behre, Hermann M
2018-01-01
In about half the cases of involuntary childlessness, a male infertility factor is involved. The PIWI-LIKE genes, a subclade of the Argonaute protein family, are involved in RNA silencing and transposon control in the germline. Knockout of murine Piwi-like 1 and 2 homologs results in complete infertility in males. The aim of this study was to analyze whether the mRNA expression of human PIWI-LIKE 1-4 genes is altered in ejaculated spermatozoa of men with impaired sperm characteristics. Ninety male participants were included in the study, among which 47 were with normozoospermia, 36 with impaired semen characteristics according to the World Health Organization (WHO) manual, 5 th edition, and 7 with azoospermia serving as negative control for the PIWI-LIKE 1-4 mRNA expression in somatic cells in the ejaculate. PIWI-LIKE 1-4 mRNA expression in the ejaculated spermatozoa of the participants was measured by quantitative real-time PCR. In nonazoospermic men, PIWI-LIKE 1-4 mRNA was measurable in ejaculated spermatozoa in different proportions. PIWI-LIKE 1 (100.0%) and PIWI-LIKE 2 (49.4%) were more frequently expressed than PIWI-LIKE 3 (9.6%) and PIWI-LIKE 4 (15.7%). Furthermore, a decreased PIWI-LIKE 2 mRNA expression showed a significant correlation with a decreased sperm count (P = 0.022) and an increased PIWI-LIKE 1 mRNA expression with a decreased progressive motility (P = 0.048). PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression exhibited a significant association with impaired sperm characteristics and may be a useful candidate for the evaluation of the impact of PIWI-LIKE 1-4 mRNA expression on male infertility.
Ni, Haifeng; Zhou, Zhen; Jiang, Bo; Yuan, Xiaoyang; Cao, Xiaolin; Huang, Guangwu; Li, Yong
2017-03-01
This study aimed to investigate the inactivation of the parkin gene by promoter methylation and its relationship with genome instability in nasopharyngeal carcinoma. Parkin was considered as a tumor suppressor gene in various types of cancers. However, its role in nasopharyngeal carcinoma is unexplored. Genomic instabilities were detected in nasopharyngeal carcinoma tissues by the random amplified polymorphic DNA. The methylation-specific polymerase chain reaction, semi-quantitative reverse transcription polymerase chain reaction, and immunohistochemical analysis were used to detect methylation and mRNA and protein expression of parkin in 54 cases of nasopharyngeal carcinoma tissues and 16 cases of normal nasopharyngeal epithelia tissues, and in 5 nasopharyngeal carcinoma cell lines (CNE1, CNE2, TWO3, C666, and HONE1) and 1 normal nasopharyngeal epithelia cell line (NP69). mRNA expression of parkin in CNE1 and CNE2 was analyzed before and after methyltransferase inhibitor 5-aza-2-deoxycytidine treatment. The relationship between promoter methylation and mRNA expression, demethylation and mRNA expression, and mRNA and protein expression of the gene and clinical factors and genomic instabilities were analyzed. The mRNA and protein expression levels were significantly reduced in 54 cases of human nasopharyngeal carcinoma compared with 16 cases of normal nasopharyngeal epithelia. Parkin-methylated cases showed significantly lower mRNA and protein expression levels compared with unmethylated cases. After 5-aza-2-deoxycytidine treatment, parkin mRNA expression was restored in CNE1 and CNE2; 92.59% (50/54) of nasopharyngeal carcinoma demonstrated genomic instability. Parkin is frequently inactivated by promoter methylation, and its mRNA and protein expression correlate with lymph node metastasis and genomic instability. Parkin deficiency probably promotes tumorigenesis in nasopharyngeal carcinoma.
Novel expression of the stanniocalcin gene in fish.
McCudden, C R; Kogon, M R; DiMattia, G E; Wagner, G F
2001-10-01
It is currently accepted that the fish stanniocalcin (STC) gene is expressed exclusively in the corpuscles of Stannius (CS), unique endocrine glands on the kidneys of bony fishes. In this study, we have re-examined the pattern of fish STC gene expression in the light of the recent evidence for widespread expression of the gene in mammals. Surprisingly, we found by Northern blotting that the fish gene was also expressed in the kidneys and gonads, in addition to the CS glands. Moreover, Southern blotting of RT-PCR products revealed STC mRNA transcripts in all tissues assayed, including brain, heart, gill, muscle and intestine. In situ hybridization studies using digoxigenin-labeled riboprobes localized STC mRNA to chondrocytes, and both mature and developing nephritic tubules. Immunocytochemical staining indicated that the STC protein was widespread in cells of the gill, kidney, brain, eye, pseudobranch and skin. We also characterized the salmon STC gene, establishing that it was comprised of five exons as opposed to four in mammals. A single transcription start site was identified by primer extension 99 bp upstream of the start codon. This is the first evidence of STC gene expression in fish tissues other than the CS glands and suggests that, as in mammals, fish STC operates via both local and endocrine pathways.