Science.gov

Sample records for mrna expression profiling

  1. mRNA expression profiling of neonatal rats after 16-day spaceflight

    NASA Astrophysics Data System (ADS)

    Miyake, M.; Ijiri, K.

    Some studies pointed out that postnatal development is the key to realize generation change of mammalians in space. For example, functional changes and hypoplasia in some organs after spaceflight during postnatal development were reported. Though profiling mRNA expression is useful to evaluate what happened in animals, these studies after spaceflight are limited to specific organs for understanding the relationship between phenotype and gene. The organ-wide analysis of mRNA expression is important to evaluate the condition of each animal, and it can find new phenomenon and help precise understanding for effect induced by spaceflight. In this experiment, we analyzed mRNA expression of liver, spleen and intestine in neonatal rats after 16-day spaceflight by Space Shuttle Columbia (STS-90).

  2. Tissue-specific mRNA expression profiling in grape berry tissues

    PubMed Central

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and

  3. Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes

    PubMed Central

    Ludwig, Nicole; Werner, Tamara V.; Backes, Christina; Trampert, Patrick; Gessler, Manfred; Keller, Andreas; Lenhof, Hans-Peter; Graf, Norbert; Meese, Eckart

    2016-01-01

    Wilms tumor (WT) is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA) processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA) differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT. PMID:27043538

  4. Integrated analysis of microRNA and mRNA expression profiles in HBx-expressing hepatic cells

    PubMed Central

    Chen, Ruo-Chan; Wang, Juan; Kuang, Xu-Yuan; Peng, Fang; Fu, Yong-Ming; Huang, Yan; Li, Ning; Fan, Xue-Gong

    2017-01-01

    AIM To identify the miRNA-mRNA regulatory network in hepatitis B virus X (HBx)-expressing hepatic cells. METHODS A stable HBx-expressing human liver cell line L02 was established. The mRNA and miRNA expression profiles of L02/HBx and L02/pcDNA liver cells were identified by RNA-sequencing analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed to investigate the function of candidate biomarkers, and the relationship between miRNA and mRNA was studied by network analysis. RESULTS Compared with L02/pcDNA cells, 742 unregulated genes and 501 downregulated genes were determined as differentially expressed in L02/HBx cells. Gene ontology analysis suggested that the differentially expressed genes were relevant to different biological processes. Concurrently, 22 differential miRNAs were also determined in L02/HBx cells. Furthermore, integrated analysis of miRNA and mRNA expression profiles identified a core miRNA-mRNA regulatory network that is correlated with the carcinogenic role of HBx. CONCLUSION Collectively, the miRNA-mRNA network-based analysis could be useful to elucidate the potential role of HBx in liver cell malignant transformation and shed light on the underlying molecular mechanism and novel therapy targets for hepatocellular carcinoma. PMID:28348484

  5. Bacteria and Toll-like receptor and cytokine mRNA expression profiles associated with canine arthritis.

    PubMed

    Riggio, Marcello P; Lappin, David F; Bennett, David

    2014-08-15

    The major forms of inflammatory canine arthritis are immune-mediated arthritis (IMA) and septic arthritis (SA), although some cases of cruciate disease (CD) are associated with significant levels of synovitis. In this study, the bacteria associated with canine arthritis were identified and mRNA expression levels of Toll-like receptors (TLRs) and pro-inflammatory cytokines determined. Of the 40 synovial fluid samples analysed, bacteria were isolated from 12 samples by culture (2 CD, 10 SA) and detected in 4 samples (3 CD, 1 SA) using culture-independent methods. Statistically significant increases in TLR2, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-12 mRNA expression were seen in all disease groups compared to normal controls. All disease groups had decreased mRNA expression of other TLRs compared to normal controls, but this did not reach statistical significance. Synovial fluid cell counts revealed that the highest number and proportion of mononuclear cells and neutrophils were found in the IMA and SA samples, respectively. Age had an effect on the TLR and cytokine mRNA expression profiles: TNF-α (p=0.043) and IL-12 (p=0.025) mRNA expression was increased and TLR4 mRNA expression was reduced (p=0.033) in dogs up to 4 years of age compared to older animals. In the 10 SA samples from which bacteria were isolated, statistically significant increases in TLR2, TLR7, TNF-α and IL-6 mRNA expression were observed. It is concluded that canine arthritis is associated with increased mRNA levels of pro-inflammatory cytokines, which could in some cases be mediated by bacteria through activation of TLR2.

  6. Olive Leaf Extract Elevates Hepatic PPAR α mRNA Expression and Improves Serum Lipid Profiles in Ovariectomized Rats.

    PubMed

    Yoon, Leena; Liu, Ya-Nan; Park, Hyunjin; Kim, Hyun-Sook

    2015-07-01

    We hypothesized that olive leaf extract might alleviate dyslipidemia resulting from estrogen deficiency. Serum lipid profile and mRNA expression of the related genes in the liver and adipose tissue were analyzed after providing olive leaf extract (200 or 400 mg/kg body weight; n=7 for each group) to ovariectomized rats for 10 weeks. After 10 weeks' administration, the rats in the olive leaf extract-administered groups showed significantly lower levels of serum triglyceride and very-low-density lipoprotein (VLDL)-cholesterol compared with the rats in the control group, whereas the administration of olive leaf extract did not significantly change the elevated low-density lipoprotein cholesterol levels. In addition, administration of high dose of olive leaf extract significantly decreased the liver triglyceride and increased serum estradiol levels. mRNA expressions of peroxisome proliferator-activated receptor alpha (PPAR α) and acyl-CoA oxidase (ACO) were not affected by ovariectomy, however, administration of olive leaf extract significantly increased both PPAR α and ACO mRNA expression. Expression of adiponectin mRNA in adipose tissue was significantly decreased in the ovariectomized control group. Rats administered low-dose olive leaf extract showed significantly elevated adiponectin mRNA expression compared with rats in the ovariectomized control group. Even though dose-dependent effects were not observed in most of the measurements, these results suggest that genes involved in lipid metabolism may be regulated by olive leaf extract administration in ovariectomized rats.

  7. Local Context Finder (LCF) reveals multidimensional relationships among mRNA expression profiles of Arabidopsis responding to pathogen infection.

    PubMed

    Katagiri, Fumiaki; Glazebrook, Jane

    2003-09-16

    A major task in computational analysis of mRNA expression profiles is definition of relationships among profiles on the basis of similarities among them. This is generally achieved by pattern recognition in the distribution of data points representing each profile in a high-dimensional space. Some drawbacks of commonly used pattern recognition algorithms stem from their use of a globally linear space and/or limited degrees of freedom. A pattern recognition method called Local Context Finder (LCF) is described here. LCF uses nonlinear dimensionality reduction for pattern recognition. Then it builds a network of profiles based on the nonlinear dimensionality reduction results. LCF was used to analyze mRNA expression profiles of the plant host Arabidopsis interacting with the bacterial pathogen Pseudomonas syringae. In one case, LCF revealed two dimensions essential to explain the effects of the NahG transgene and the ndr1 mutation on resistant and susceptible responses. In another case, plant mutants deficient in responses to pathogen infection were classified on the basis of LCF analysis of their profiles. The classification by LCF was consistent with the results of biological characterization of the mutants. Thus, LCF is a powerful method for extracting information from expression profile data.

  8. mRNA expression profiling of laser microbeam microdissected cells from slender embryonic structures.

    PubMed

    Scheidl, Stefan J; Nilsson, Sven; Kalén, Mattias; Hellström, Mats; Takemoto, Minoru; Håkansson, Joakim; Lindahl, Per

    2002-03-01

    Microarray hybridization has rapidly evolved as an important tool for genomic studies and studies of gene regulation at the transcriptome level. Expression profiles from homogenous samples such as yeast and mammalian cell cultures are currently extending our understanding of biology, whereas analyses of multicellular organisms are more difficult because of tissue complexity. The combination of laser microdissection, RNA amplification, and microarray hybridization has the potential to provide expression profiles from selected populations of cells in vivo. In this article, we present and evaluate an experimental procedure for global gene expression analysis of slender embryonic structures using laser microbeam microdissection and laser pressure catapulting. As a proof of principle, expression profiles from 1000 cells in the mouse embryonic (E9.5) dorsal aorta were generated and compared with profiles for captured mesenchymal cells located one cell diameter further away from the aortic lumen. A number of genes were overexpressed in the aorta, including 11 previously known markers for blood vessels. Among the blood vessel markers were endoglin, tie-2, PDGFB, and integrin-beta1, that are important regulators of blood vessel formation. This demonstrates that microarray analysis of laser microbeam micro-dissected cells is sufficiently sensitive for identifying genes with regulative functions.

  9. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles.

    PubMed

    Plomgaard, Peter; Penkowa, Milena; Leick, Lotte; Pedersen, Bente K; Saltin, Bengt; Pilegaard, Henriette

    2006-09-01

    The metabolic profile of rodent muscle is generally reflected in the myosin heavy chain (MHC) fiber-type composition. The present study was conducted to test the hypothesis that metabolic gene expression is not tightly coupled with MHC fiber-type composition for all genes in human skeletal muscle. Triceps brachii, vastus lateralis quadriceps, and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers, because these muscles are characterized by different fiber-type compositions. As expected, citrate synthase and 3-hydroxyacyl dehydrogenase activity was more than twofold higher in soleus and vastus than in triceps. Contrary, phosphofructokinase and total lactate dehydrogenase (LDH) activity was approximately three- and twofold higher in triceps than in both soleus and vastus. Expression of metabolic genes was assessed by determining the mRNA content of a broad range of metabolic genes. The triceps muscle had two- to fivefold higher MHC IIa, phosphofructokinase, and LDH A mRNA content and two- to fourfold lower MHC I, lipoprotein lipase, CD36, hormone-sensitive lipase, and LDH B and hexokinase II mRNA than vastus lateralis or soleus. Interestingly, such mRNA differences were not evident for any of the genes encoding mitochondrial oxidative proteins, 3-hydroxyacyl dehydrogenase, carnitine palmitoyl transferase I, citrate synthase, alpha-ketogluterate dehydrogenase, and cytochrome c, nor for the transcriptional regulators peroxisome proliferator activator receptor gamma coactivator-1alpha, forkhead box O1, or peroxisome proliferator activator receptor-alpha. Thus the mRNA expression of genes encoding mitochondrial proteins and transcriptional regulators does not seem to be fiber type specific as the genes encoding glycolytic and lipid metabolism genes, which suggests that basal mRNA regulation of genes encoding mitochondrial proteins does not match the wide differences in mitochondrial content of these muscles.

  10. Integrated Analysis of Dysregulated ncRNA and mRNA Expression Profiles in Humans Exposed to Carbon Nanotubes

    PubMed Central

    Shvedova, Anna A.; Yanamala, Naveena; Kisin, Elena R.; Khailullin, Timur O.; Birch, M. Eileen; Fatkhutdinova, Liliya M.

    2016-01-01

    Background As the application of carbon nanotubes (CNT) in consumer products continues to rise, studies have expanded to determine the associated risks of exposure on human and environmental health. In particular, several lines of evidence indicate that exposure to multi-walled carbon nanotubes (MWCNT) could pose a carcinogenic risk similar to asbestos fibers. However, to date the potential markers of MWCNT exposure are not yet explored in humans. Methods In the present study, global mRNA and ncRNA expression profiles in the blood of exposed workers, having direct contact with MWCNT aerosol for at least 6 months (n = 8), were compared with expression profiles of non-exposed (n = 7) workers (e.g., professional and/or technical staff) from the same manufacturing facility. Results Significant changes in the ncRNA and mRNA expression profiles were observed between exposed and non-exposed worker groups. An integrative analysis of ncRNA-mRNA correlations was performed to identify target genes, functional relationships, and regulatory networks in MWCNT-exposed workers. The coordinated changes in ncRNA and mRNA expression profiles revealed a set of miRNAs and their target genes with roles in cell cycle regulation/progression/control, apoptosis and proliferation. Further, the identified pathways and signaling networks also revealed MWCNT potential to trigger pulmonary and cardiovascular effects as well as carcinogenic outcomes in humans, similar to those previously described in rodents exposed to MWCNTs. Conclusion This study is the first to investigate aberrant changes in mRNA and ncRNA expression profiles in the blood of humans exposed to MWCNT. The significant changes in several miRNAs and mRNAs expression as well as their regulatory networks are important for getting molecular insights into the MWCNT-induced toxicity and pathogenesis in humans. Further large-scale prospective studies are necessary to validate the potential applicability of such changes in mRNAs and mi

  11. Effect of infliximab on mRNA expression profiles in synovial tissue of rheumatoid arthritis patients

    PubMed Central

    Lindberg, Johan; af Klint, Erik; Catrina, Anca Irinel; Nilsson, Peter; Klareskog, Lars; Ulfgren, Ann-Kristin; Lundeberg, Joakim

    2006-01-01

    We examined the gene expression profiles in arthroscopic biopsies retrieved from 10 rheumatoid arthritis patients before and after anti-TNF treatment with infliximab to investigate whether such profiles can be used to predict responses to the therapy, and to study effects of the therapy on the profiles. Responses to treatment were assessed using European League Against Rheumatism response criteria. Three patients were found to be good responders, five patients to be moderate responders and two patients to be nonresponders. The TNF-α status of the biopsies from each of the patients before treatment was also investigated immunohistochemically, and it was detected in biopsies from four of the patients, including all three of the good responders. The gene expression data demonstrate that all patients had unique gene expression signatures, with low intrapatient variability between biopsies. The data also revealed significant differences between the good responding and nonresponding patients (279 differentially expressed genes were detected, with a false discovery rate < 0.025). Among the identified genes we found that MMP-3 was significantly upregulated in good responders (log2 fold change, 2.95) compared with nonresponders, providing further support for the potential of MMP-3 as a marker for good responses to therapy. An even more extensive list of 685 significantly differentially expressed genes was found between patients in whom TNF-α was found and nonresponders, indicating that TNF-α could be an important biomarker for successful infliximab treatment. Significant differences were also observed between biopsies taken before and after anti-TNF treatment, including 115 differentially expressed genes in the good responding group. Interestingly, the effect was even stronger in the group in which TNF-α was immunohistochemically detected before therapy. Here, 1,058 genes were differentially expressed, including many that were novel in this context (for example, CXCL3

  12. Effects of simulated microgravity on microRNA and mRNA expression profile of rat soleus

    NASA Astrophysics Data System (ADS)

    Xu, Hongjie; Wu, Feng; Cao, Hongqing; Kan, Guanghan; Zhang, Hongyu; Yeung, Ella W.; Shang, Peng; Dai, Zhongquan; Li, Yinghui

    2015-02-01

    Spaceflight induces muscle atrophy but mechanism is not well understood. Here, we quantified microRNAs (miRNAs) and mRNA shifts of rat soleus in response to microgravity. MiRNAs and mRNA microarray of soleus after tail suspension (TS) for 7 and 14 days were performed followed by target gene and function annotation analysis and qRT-PCR. Relative muscle mass lost by 37.0% in TS-7 but less than 10% in the following three weeks. TS altered 23 miRNAs and 1313 mRNAs with at least 2-fold. QRT-PCR confirmed some of these changes. MiR-214, miR-486-5p and miR-221 continuously decreased. MiR-674 and Let-7e decreased only in TS-7, while miR-320b and miR-187 decreased only in TS-14. But there was no alteration of miR-320 and miR-206 in both time point. For mRNA detection, actn3 (5.1-fold and 13.8-fold) and myh4 (38-fold and 51.6-fold) increased abundantly and a3galt2 decreased. Predicted targeted genes (whyz, ywhaz and SFRP2) of altered miRNAs decreased. GO terms and cellular pathway of these alteration showed enrichment in regulation of muscle metabolism. Integration analysis of the miRNA and mRNA expression profiles confirmed that eleven genes were differently regulated by four miRNAs. This is the first study that showed expression pattern and synergistical regulation of miRNA and mRNA in rat soleus of TS for up to 14 days.

  13. Single-Cell mRNA Profiling Reveals Cell-Type Specific Expression of Neurexin Isoforms

    PubMed Central

    Fuccillo, Marc V.; Földy, Csaba; Gökce, Özgün; Rothwell, Patrick E.; Sun, Gordon L.; Malenka, Robert C.; Südhof, Thomas C.

    2016-01-01

    Summary Neurexins are considered central organizers of synapse architecture that are implicated in neuropsychiatric disorders. Expression of neurexins in hundreds of alternatively spliced isoforms suggested that individual neurons might exhibit a cell type-specific neurexin expression pattern (a neurexin code). To test this hypothesis, we quantified the single-cell levels of neurexin isoforms and other trans-synaptic cell-adhesion molecules by microfluidics-based RT-PCR. We show that the neurexin repertoire displays pronounced cell-type specificity that is remarkably consistent within each type of neuron. Furthermore, we uncovered region-specific regulation of neurexin transcription and splice-site usage. Finally, we demonstrate that the transcriptional profiles of neurexins can be altered in an experience-dependent fashion by exposure to a drug of abuse. Our data provide evidence of cell type-specific expression patterns of multiple neurexins at the single-cell level, and suggest that expression of synaptic cell-adhesion molecules overlaps with other key features of cellular identity and diversity. PMID:26182417

  14. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles

    PubMed Central

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Objectives: Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. Methods: MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. Results: A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. Conclusions: We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may

  15. Correlation analysis of the mRNA and miRNA expression profiles in the nascent synthetic allotetraploid Raphanobrassica

    PubMed Central

    Ye, Bingyuan; Wang, Ruihua; Wang, Jianbo

    2016-01-01

    Raphanobrassica is an allopolyploid species derived from inter-generic hybridization that combines the R genome from R. sativus and the C genome from B. oleracea var. alboglabra. In the present study, we used a high-throughput sequencing method to identify the mRNA and miRNA profiles in Raphanobrassica and its parents. A total of 33,561 mRNAs and 283 miRNAs were detected, 9,209 mRNAs and 134 miRNAs were differentially expressed respectively, 7,633 mRNAs and 39 miRNAs showed ELD expression, 5,219 mRNAs and 57 miRNAs were non-additively expressed in Raphanobrassica. Remarkably, differentially expressed genes (DEGs) were up-regulated and maternal bias was detected in Raphanobrassica. In addition, a miRNA-mRNA interaction network was constructed based on reverse regulated miRNA-mRNAs, which included 75 miRNAs and 178 mRNAs, 31 miRNAs were non-additively expressed target by 13 miRNAs. The related target genes were significantly enriched in the GO term ‘metabolic processes’. Non-additive related target genes regulation is involved in a range of biological pathways, like providing a driving force for variation and adaption in this allopolyploid. The integrative analysis of mRNA and miRNA profiling provides more information to elucidate gene expression mechanism and may supply a comprehensive and corresponding method to study genetic and transcription variation of allopolyploid. PMID:27874043

  16. Biological analysis of chronic lymphocytic leukemia: integration of mRNA and microRNA expression profiles.

    PubMed

    Dong, L; Bi, K H; Huang, N; Chen, C Y

    2016-01-08

    Chronic lymphocytic leukemia (CLL) is a disease that involves progressive accumulation of nonfunctioning lymphocytes and has a low cure rate. There is an urgent requirement to determine the molecular mechanism underlying this disease in order to improve the early diagnosis and treatment of CLL. In this study, genes differentially expressed between CLL samples and age-matched controls were identified using microRNA (miRNA) and mRNA expression profiles. Differentially expressed (DE) miRNA targets were predicted by combining five algorithms. Common genes were obtained on overlapping the DE mRNA and DE miRNA targets. Then, network and module analyses were performed. A total of 239 miRNA targets were predicted and 357 DE mRNAs were obtained. On intersecting miRNA targets and DE mRNAs, 33 common genes were obtained. The protein-protein interaction network and module analysis identified several crucial genes and modules that might be associated with the development of CLL. These DE mRNAs were significantly enriched in the hematopoietic cell lineage (P = 2.58E-4), mitogen-activated protein kinase signaling pathway (P = 0.0025), and leukocyte transendothelial migration pathway (P = 0.0026). Thus, we conducted biological analysis on integration of DE mRNAs and DE miRNAs in CLL, determined gene expression patterns, and screened out several important genes that might be related to CLL.

  17. Integrated Analysis of Long Noncoding RNA and mRNA Expression Profile in Advanced Laryngeal Squamous Cell Carcinoma

    PubMed Central

    Lian, Meng; Ma, Hongzhi; He, Ning; Liu, Honggang; Wang, Haizhou; Fang, Jugao

    2016-01-01

    Long non-coding RNA (lncRNA) plays an important role in tumorigenesis. However, the expression pattern and function of lncRNAs in laryngeal squamous cell carcinoma (LSCC) are still unclear. To investigate the aberrantly expressed lncRNAs and mRNAs in advanced LSCC, we screened lncRNA and mRNA expression profiles in 9 pairs of primary Stage IVA LSCC tissues and adjacent non-neoplastic tissues by lncRNA and mRNA integrated microarrays. Gene Ontology and pathway analysis were performed to find out the significant function and pathway of the differentially expressed mRNAs, gene-gene functional interaction network and ceRNA network were constructed to select core mRNAs, and lncRNA-mRNA expression correlation network was built to identify the interactions between lncRNA and mRNA. qRT-PCR was performed to further validate the expressions of selected lncRNAs and mRNAs in advanced LSCC. We found 1459 differentially expressed lncRNAs and 2381 differentially expressed mRNAs, including 846 up-regulated lncRNAs and 613 down-regulated lncRNAs, 1542 up-regulated mRNAs and 839 down-regulated mRNAs. The mRNAs ITGB1, HIF1A, and DDIT4 were selected as core mRNAs, which are mainly involved in biological processes, such as matrix organization, cell cycle, adhesion, and metabolic pathway. LncRNA-mRNA expression correlation network showed LncRNA NR_027340, MIR31HG were positively correlated with ITGB1, HIF1A respectively. LncRNA SOX2-OT was negatively correlated with DDIT4. qRT-PCR further validated the expression of these lncRNAs and mRNAs. The work provides convincing evidence that the identified lncRNAs and mRNAs are potential biomarkers in advanced LSCC for further future studies. PMID:28033431

  18. Gene expression profiling by mRNA array reveals different pattern in Chinese glioblastoma patients between Uygur and Han populations

    PubMed Central

    Liu, Liang; Xia, Haichen; Luan, Xinping; Dun, Zhiping; Zhu, Zhengquan; Dushan, Bieke; Li, Wenting

    2015-01-01

    Objective: To identify differentially expressed genes in Chinese glioblastoma patients of Uygur and Han populations, and investigate their potential clinical value for pathogenesis determination and progress prediction. Methods: Gene expression profiling was obtained from three patients of each Uygur and Han nationalities, respectively, by mRNA expression array. Data were processed by the GenomeStudio software and language R of the Lumi package, followed by GO (Gene Ontology) term and KEGG pathway annotation analysis by the Web Gestalt software. Results: The comparative analysis of genome-scale gene expression in glioblastomas revealed 1,475 differentially expressed genes, with 669 and 807 genes up-regulated and down-regulated, respectively. These included the STRC gene, which has two transcripts, one up-regulated and one down-regulated. GO term analysis suggested that 1,175 out of 1,475 key genes were involved in small GTPase mediated signal transduction, Ras protein signal transduction, bioprocess of neuronal response regulation, and central nervous system myelination. The KEGG pathway enrichment analysis showed that the differentially expressed genes were covered by 28 signaling pathways associated with tumorigenesis, including metabolic pathways, tumor suppressor pathways, MAP kinase signaling pathways, TGF-β signaling pathway, neurotrophin signaling pathways, and mTOR signaling pathway. Conclusion: The comparative study of gene expression profiling in glioblastomas between Uygur and Han nationalities revealed differentially expressed genes, whose functions and expression localization were analyzed by GO term analysis and KEGG pathway enrichment analysis. Different pathogenesis mechanisms were proposed for glioblastomas in Chinese patients of Uygur and Han nationalities from a molecular biology perspective. PMID:26309555

  19. In Vivo mRNA Profiling of Uropathogenic Escherichia coli from Diverse Phylogroups Reveals Common and Group-Specific Gene Expression Profiles

    PubMed Central

    Bielecki, Piotr; Muthukumarasamy, Uthayakumar; Eckweiler, Denitsa; Bielecka, Agata; Pohl, Sarah; Schanz, Ansgar; Niemeyer, Ute; Oumeraci, Tonio; von Neuhoff, Nils; Ghigo, Jean-Marc

    2014-01-01

    ABSTRACT mRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression of Escherichia coli pathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associated E. coli isolates to different phylogenetic groups. Whereas the in vivo gene expression profiles of the majority of genes were conserved among 21 E. coli strains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribed in vivo relative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease. PMID:25096872

  20. Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition.

    PubMed

    Cava, Claudia; Bertoli, Gloria; Ripamonti, Marilena; Mauri, Giancarlo; Zoppis, Italo; Della Rosa, Pasquale Anthony; Gilardi, Maria Carla; Castiglioni, Isabella

    2014-01-01

    Defining the aggressiveness and growth rate of a malignant cell population is a key step in the clinical approach to treating tumor disease. The correct grading of breast cancer (BC) is a fundamental part in determining the appropriate treatment. Biological variables can make it difficult to elucidate the mechanisms underlying BC development. To identify potential markers that can be used for BC classification, we analyzed mRNAs expression profiles, gene copy numbers, microRNAs expression and their association with tumor grade in BC microarray-derived datasets. From mRNA expression results, we found that grade 2 BC is most likely a mixture of grade 1 and grade 3 that have been misclassified, being described by the gene signature of either grade 1 or grade 3. We assessed the potential of the new approach of integrating mRNA expression profile, copy number alterations, and microRNA expression levels to select a limited number of genomic BC biomarkers. The combination of mRNA profile analysis and copy number data with microRNA expression levels led to the identification of two gene signatures of 42 and 4 altered genes (FOXM1, KPNA4, H2AFV and DDX19A) respectively, the latter obtained through a meta-analytical procedure. The 42-based gene signature identifies 4 classes of up- or down-regulated microRNAs (17 microRNAs) and of their 17 target mRNA, and the 4-based genes signature identified 4 microRNAs (Hsa-miR-320d, Hsa-miR-139-5p, Hsa-miR-567 and Hsa-let-7c). These results are discussed from a biological point of view with respect to pathological features of BC. Our identified mRNAs and microRNAs were validated as prognostic factors of BC disease progression, and could potentially facilitate the implementation of assays for laboratory validation, due to their reduced number.

  1. Tissue-specific mRNA expression profiles of porcine Toll-like receptors at different ages in germ-free and conventional pigs

    PubMed Central

    Shao, Lulu; Fischer, David D.; Kandasamy, Sukumar; Saif, Linda J.; Vlasova, Anastasia N.

    2016-01-01

    Toll-like receptors (TLRs), key initiators of innate immune responses, recognize antigens and are essential in linking innate and adaptive immune responses. Misrecognition and over-stimulation/expression of TLRs may contribute to the development of chronic inflammatory diseases and autoimmune diseases. However, appropriate and mature TLR responses are associated with the establishment of resistance against some infectious diseases. In this study, we assessed the mRNA expression profile of TLRs 1-10 in splenic and ileal mononuclear cells (MNCs) and dendritic cells (DCs) of germ-free (GF) and conventional pigs at different ages. We found that the TLR mRNA expression profiles were distinct between GF and conventional pigs. The expression profiles were also significantly different between splenic and ileal MNCs/DCs. Comparison of the TLR expression profiles in GF and conventional newborn and young pigs demonstrated that exposure to commensal microbiota may play a more important role than age in TLR mRNA expression profiles. To our knowledge, this is the first report that systematically assesses porcine TLRs 1-10 mRNA expression profiles in MNCs and DCs from GF and conventional pigs at different ages. These results further highlighted that the commensal microbiota of neonates play a critical role through TLR signaling in the development of systemic and mucosal immune systems. PMID:26964712

  2. Gene microarray analysis of lncRNA and mRNA expression profiles in patients with hypopharyngeal squamous cell carcinoma

    PubMed Central

    Zhou, Jieyu; Li, Wenming; Jin, Tong; Xiang, Xuan; Li, Maocai; Wang, Juan; Li, Guojun; Pan, Xinliang; Lei, Dapeng

    2015-01-01

    Background: Studies have shown that long noncoding RNAs (lncRNAs) are involved in the development and progression of many types of cancer. However, the mechanisms by which lncRNAs influence development and progression of hypopharyngeal squamous cell carcinoma (HSCC) are unclear. Method: We investigated differences in lncRNA and mRNA expression profiles between 3 pairs of HSCC tissues and adjacent nontumor tissues by microarray analysis. Results: In HSCC tissues, 1299 lncRNAs were significantly upregulated (n=669) or downregulated (n=630) compared to levels in adjacent nontumor tissues. Moreover, 1432 mRNAs were significantly upregulated (n=684) or downregulated (n=748) in HSCC tissues. We randomly selected 2 differentially expressed lncRNAs (AB209630, AB019562) and 2 differentially expressed mRNAs (SPP1, TJP2) for confirmation of microarray results using qRT-PCR. The qRT-PCR results matched well with the microarray data. The differentially expressed lncRNAs and mRNAs were distributed on each of the chromosomes, including the X and Y chromosomes. Pathway analysis indicated that the biological functions of differentially expressed mRNAs were related to 48 cellular pathways that may be associated with HSCC development. GO analysis revealed that 593 mRNAs involved in biological processes, 50 mRNAs involved in cellular components, and 46 mRNAs involved in molecular functions were upregulated in the carcinomas; 280 mRNAs involved in biological processes, 58 mRNAs involved in cellular components, and 71 mRNAs involved in molecular functions were downregulated in the carcinomas. In addition, 8 enhancer-like lncRNAs and 21 intergenic lncRNAs with their adjacent mRNA pairs were identified as coregulated transcripts. Conclusion: These findings provide insight into the mechanisms underlying HSCC tumorigenesis and will facilitate identification of new therapeutic targets and diagnostic biomarkers for this disease. PMID:26131061

  3. In vivo mRNA profiling of uropathogenic Escherichia coli from diverse phylogroups reveals common and group-specific gene expression profiles.

    PubMed

    Bielecki, Piotr; Muthukumarasamy, Uthayakumar; Eckweiler, Denitsa; Bielecka, Agata; Pohl, Sarah; Schanz, Ansgar; Niemeyer, Ute; Oumeraci, Tonio; von Neuhoff, Nils; Ghigo, Jean-Marc; Häussler, Susanne

    2014-08-05

    mRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression of Escherichia coli pathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associated E. coli isolates to different phylogenetic groups. Whereas the in vivo gene expression profiles of the majority of genes were conserved among 21 E. coli strains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribed in vivo relative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease. Importance: Urinary tract infections (UTI) are very common; at least half of all women experience UTI, most of which are caused by pathogenic Escherichia coli strains. In this study, we applied massive parallel cDNA sequencing (RNA-seq) to provide unbiased, deep, and accurate insight into the nature and the dimension of the uropathogenic E. coli gene expression profile during an acute UTI within the human host. This work was undertaken to identify key players in physiological adaptation processes and, hence, potential targets for new infection prevention and therapy interventions specifically aimed at sabotaging bacterial adaptation to the human host.

  4. Integrated Analysis of DNA Methylation and mRNA Expression Profiles Data to Identify Key Genes in Lung Adenocarcinoma

    PubMed Central

    Jin, Xiang; Li, Xiaodan; Guan, Yinghui

    2016-01-01

    Introduction. Lung adenocarcinoma (LAC) is the most frequent type of lung cancer and has a high metastatic rate at an early stage. This study is aimed at identifying LAC-associated genes. Materials and Methods. GSE62950 downloaded from Gene Expression Omnibus included a DNA methylation dataset and an mRNA expression profiles dataset, both of which included 28 LAC tissue samples and 28 adjacent normal tissue samples. The differentially expressed genes (DEGs) were screened by Limma package in R, and their functions were predicted by enrichment analysis using TargetMine online tool. Then, protein-protein interaction (PPI) network was constructed using STRING and Cytoscape. Finally, LAC-associated methylation sites were identified by CpGassoc package in R and mapped to the DEGs to obtain LAC-associated DEGs. Results. Total 913 DEGs were identified in LAC tissues. In the PPI networks, MAD2L1, AURKB, CCNB2, CDC20, and WNT3A had higher degrees, and the first four genes might be involved in LAC through interaction. Total 8856 LAC-associated methylation sites were identified and mapped to the DEGs. And there were 29 LAC-associated methylation sites located in 27 DEGs (e.g., SH3GL2, BAI3, CDH13, JAM2, MT1A, LHX6, and IGFBP3). Conclusions. These key genes might play a role in pathogenesis of LAC. PMID:27610375

  5. Microarray analysis of long noncoding RNA and mRNA expression profiles in human macrophages infected with Mycobacterium tuberculosis

    PubMed Central

    Yang, Xiaofan; Yang, Jiahui; Wang, Jinli; Wen, Qian; Wang, Hui; He, Jianchun; Hu, Shengfeng; He, Wenting; Du, Xialin; Liu, Sudong; Ma, Li

    2016-01-01

    Macrophages play a crucial role in the control and elimination of invading Mycobacterium tuberculosis (Mtb), and also serve as the major residence for Mtb. However, the interaction between macrophages and Mtb remains to be clearly determined. Although long noncoding RNAs (lncRNAs) have emerged as key regulators in many biological processes, their roles in anti-mycobacterial responses of macrophages remain to be elucidated. Here, we applied microarray analysis to examine lncRNA and mRNA expression profiles in human primary macrophages after 72 h of infection with H37Ra or H37Rv. Our results revealed that many lncRNAs were differentially expressed in macrophages after H37Ra or H37Rv infection, indicating a possible role for lncRNAs in immune responses induced by Mtb infection and providing important cues for further functional studies. Furthermore, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analysis of the differentially expressed mRNAs showed the potential functions and pathways related to the pathogenesis of Mtb infection. Finally, two lncRNAs, MIR3945HG V1 and MIR3945HG V2, were identified as novel candidate diagnostic markers for tuberculosis. Our results provide novel insight into the mechanisms of the pivotal Mtb-macrophage interactions, and reveal potential targets for diagnostics and the treatment of tuberculosis. PMID:27966580

  6. Transcriptional Profiling of mRNA Expression in the Mouse Distal Colon

    PubMed Central

    HOOGERWERF, WILLEMIJNTJE A.; SINHA, MALA; CONESA, ANA; LUXON, BRUCE A.; SHAHINIAN, VAHAKN B.; CORNÉLISSEN, GERMAINE; HALBERG, FRANZ; BOSTWICK, JONATHON; TIMM, JOHN; CASSONE, VINCENT M.

    2009-01-01

    Background & Aims Intestinal epithelial cells and the myenteric plexus of the mouse gastrointestinal tract contain a circadian clock–based intrinsic timekeeping system. Because disruption of the biological clock has been associated with increased susceptibility to colon cancer and gastrointestinal symptoms, we aimed to identify rhythmically expressed genes in the mouse distal colon. Methods Microarray analysis was used to identify genes that were rhythmically expressed over a 24-hour light/dark cycle. The transcripts were then classified according to expression pattern, function, and association with physiologic and pathophysiologic processes of the colon. Results A circadian gene expression pattern was detected in approximately 3.7% of distal colonic genes. A large percentage of these genes were involved in cell signaling, differentiation, and proliferation and cell death. Of all the rhythmically expressed genes in the mouse colon, approximately 7% (64/906) have been associated with colorectal cancer formation (eg, B-cell leukemia/lymphoma-2 [Bcl2]) and 1.8% (18/906) with various colonic functions such as motility and secretion (eg, vasoactive intestinal polypeptide, cystic fibrosis transmembrane conductance regulator). Conclusions A subset of genes in the murine colon follows a rhythmic expression pattern. These findings may have significant implications for colonic physiology and pathophysiology. PMID:18848557

  7. Impact of nonsense-mediated mRNA decay on the global expression profile of budding yeast.

    PubMed

    Guan, Qiaoning; Zheng, Wei; Tang, Shijie; Liu, Xiaosong; Zinkel, Robert A; Tsui, Kam-Wah; Yandell, Brian S; Culbertson, Michael R

    2006-11-24

    Nonsense-mediated mRNA decay (NMD) is a eukaryotic mechanism of RNA surveillance that selectively eliminates aberrant transcripts coding for potentially deleterious proteins. NMD also functions in the normal repertoire of gene expression. In Saccharomyces cerevisiae, hundreds of endogenous RNA Polymerase II transcripts achieve steady-state levels that depend on NMD. For some, the decay rate is directly influenced by NMD (direct targets). For others, abundance is NMD-sensitive but without any effect on the decay rate (indirect targets). To distinguish between direct and indirect targets, total RNA from wild-type (Nmd(+)) and mutant (Nmd(-)) strains was probed with high-density arrays across a 1-h time window following transcription inhibition. Statistical models were developed to describe the kinetics of RNA decay. 45% +/- 5% of RNAs targeted by NMD were predicted to be direct targets with altered decay rates in Nmd(-) strains. Parallel experiments using conventional methods were conducted to empirically test predictions from the global experiment. The results show that the global assay reliably distinguished direct versus indirect targets. Different types of targets were investigated, including transcripts containing adjacent, disabled open reading frames, upstream open reading frames, and those prone to out-of-frame initiation of translation. Known targeting mechanisms fail to account for all of the direct targets of NMD, suggesting that additional targeting mechanisms remain to be elucidated. 30% of the protein-coding targets of NMD fell into two broadly defined functional themes: those affecting chromosome structure and behavior and those affecting cell surface dynamics. Overall, the results provide a preview for how expression profiles in multi-cellular eukaryotes might be impacted by NMD. Furthermore, the methods for analyzing decay rates on a global scale offer a blueprint for new ways to study mRNA decay pathways in any organism where cultured cell lines are

  8. mRNA expression profile of serotonin receptor subtypes and distribution of serotonergic terminations in marmoset brain

    PubMed Central

    Shukla, Rammohan; Watakabe, Akiya; Yamamori, Tetsuo

    2014-01-01

    To better understand serotonin function in the primate brain, we examined the mRNA expression patterns of all the 13 members of the serotonin receptor (5HTR) family, by in situ hybridization (ISH) and the distribution of serotonergic terminations by serotonin transporter (SERT) protein immunohistochemical analysis. Ten of the 13 5HTRs showed significant mRNA expressions in the marmoset brain. Our study shows several new features of the organization of serotonergic systems in the marmoset brain. (1) The thalamus expressed only a limited number of receptor subtypes compared with the cortex, hippocampus, and other subcortical regions. (2) In the cortex, there are layer-selective and area-selective mRNA expressions of 5HTRs. (3) Highly localized mRNA expressions of 5HT1F and 5HT3A were observed. (4) There was a conspicuous overlap of the mRNA expressions of receptor subtypes known to have somatodendritic localization of receptor proteins with dense serotonergic terminations in the visual cortex, the central lateral (CL) nucleus of the thalamus, the presubiculum, and the medial mammillary nucleus of the hypothalamus. This suggests a high correlation between serotonin availability and receptor expression at these locations. (5) The 5HTRs show differences in mRNA expression pattern between the marmoset and mouse cortices whereas the patterns of both the species were much similar in the hippocampus. We discuss the possible roles of 5HTRs in the marmoset brain revealed by the analysis of their overall mRNA expression patterns. PMID:24904298

  9. Integration of microRNA and mRNA expression profiles in the skin of systemic sclerosis patients

    PubMed Central

    Zhou, Bin; Zuo, Xiao Xia; Li, Yi Sha; Gao, Si Ming; Dai, Xiao Dan; Zhu, Hong Lin; Luo, Hui

    2017-01-01

    MicroRNAs (miRNAs) play important roles in the fibrosis of systemic sclerosis (SSc). However, the underlying miRNA-mRNA regulatory network is not fully understood. A systemic investigation of the role of miRNAs would be very valuable for increasing our knowledge of the pathogenesis of SSc. Here, we combined miRNA and mRNA expression profiles and bioinformatics analyses and then performed validation experiments. we identified 21 miRNAs and 2698 mRNAs that were differentially expressed in SSc. Among these, 17 miRNAs and their 33 target mRNAs (55 miRNA-mRNA pairs) were involved in Toll-like receptor, transforming growth factor β and Wnt signalling pathways. Validation experiments revealed that miR-146b, miR-130b, miR-21, miR-31 and miR-34a levels were higher whereas miR-145 levels were lower in SSc skin tissues and fibroblasts, normal fibroblasts and endothelial cells that were stimulated with SSc serum. ACVR2B, FZD2, FZD5 and SOX2 levels were increased in SSc skin fibroblasts, normal fibroblasts and endothelial cells that were stimulated with SSc serum. We did not identify any negative correlations among these miRNA-mRNA pairs. miR-21 was specifically expressed at higher levels in SSc serum. Six miRNAs and 4 mRNAs appear to play important roles in the pathogenesis of SSc are worth investigating in future functional studies. PMID:28211533

  10. Comparative mRNA Expression Profiles of Riboflavin Biosynthesis Genes in Lactobacilli Isolated from Human Feces and Fermented Bamboo Shoots

    PubMed Central

    Thakur, Kiran; Tomar, Sudhir K.; Wei, Zhao-Jun

    2017-01-01

    With the aim to bioprospect potent riboflavin producing lactobacilli, the present study was carried out to evaluate the relative mRNA expression of riboflavin biosynthesis genes namely Rib 1, Rib 2, Rib 3, and Rib 4 from potent riboflavin producers obtained from our previous studies. All the four genes were successfully cloned and sequenced for further analysis by in silico procedures. As studied by non-denaturing Polyacrylamide gel electrophoresis, no difference in size of all the four genes among those of various lactobacilli was observed. The relative fold increase in mRNA expression in Rib 1, Rib 2, Rib 3, and Rib 4 genes has been observed to be 10-, 1-, 0.7-, and 8.5-fold, respectively. Due to increase in relative mRNA expression for all the Rib genes as well as phenotypic production attribute, KTLF1 strain was used further for expression studies in milk and whey. The fold increase in mRNA expression for all the four Rib genes was higher at 12 and 18 h in milk and whey respectively. After exposure to roseoflavin, resistant variant of KTLF1 showed considerable increase in expression of all the targets genes. This is the first ever study to compare the mRNA expression of riboflavin biosynthesis pathway genes in lactobacilli and it also under lines the effect of media and harvesting time which significantly affect the expression of rib genes. The use of roseoflavin-resistant strains capable of synthesizing riboflavin in milk and whey paves a way for an exciting and economically viable biotechnological approach to develop novel riboflavin bio-enriched functional foods. PMID:28367143

  11. Behaviorally activated mRNA expression profiles produce signatures of learning and enhanced inhibition in aged rats with preserved memory.

    PubMed

    Haberman, Rebecca P; Colantuoni, Carlo; Koh, Ming Teng; Gallagher, Michela

    2013-01-01

    Aging is often associated with cognitive decline, but many elderly individuals maintain a high level of function throughout life. Here we studied outbred rats, which also exhibit individual differences across a spectrum of outcomes that includes both preserved and impaired spatial memory. Previous work in this model identified the CA3 subfield of the hippocampus as a region critically affected by age and integral to differing cognitive outcomes. Earlier microarray profiling revealed distinct gene expression profiles in the CA3 region, under basal conditions, for aged rats with intact memory and those with impairment. Because prominent age-related deficits within the CA3 occur during neural encoding of new information, here we used microarray analysis to gain a broad perspective of the aged CA3 transcriptome under activated conditions. Behaviorally-induced CA3 expression profiles differentiated aged rats with intact memory from those with impaired memory. In the activated profile, we observed substantial numbers of genes (greater than 1000) exhibiting increased expression in aged unimpaired rats relative to aged impaired, including many involved in synaptic plasticity and memory mechanisms. This unimpaired aged profile also overlapped significantly with a learning induced gene profile previously acquired in young adults. Alongside the increased transcripts common to both young learning and aged rats with preserved memory, many transcripts behaviorally-activated in the current study had previously been identified as repressed in the aged unimpaired phenotype in basal expression. A further distinct feature of the activated profile of aged rats with intact memory is the increased expression of an ensemble of genes involved in inhibitory synapse function, which could control the phenotype of neural hyperexcitability found in the CA3 region of aged impaired rats. These data support the conclusion that aged subjects with preserved memory recruit adaptive mechanisms to

  12. An Integrated Analysis of MicroRNA and mRNA Expression Profiles to Identify RNA Expression Signatures in Lambskin Hair Follicles in Hu Sheep

    PubMed Central

    Lv, Xiaoyang; Sun, Wei; Yin, Jinfeng; Ni, Rong; Su, Rui; Wang, Qingzeng; Gao, Wen; Bao, Jianjun; Yu, Jiarui; Wang, Lihong; Chen, Ling

    2016-01-01

    Wave patterns in lambskin hair follicles are an important factor determining the quality of sheep’s wool. Hair follicles in lambskin from Hu sheep, a breed unique to China, have 3 types of waves, designated as large, medium, and small. The quality of wool from small wave follicles is excellent, while the quality of large waves is considered poor. Because no molecular and biological studies on hair follicles of these sheep have been conducted to date, the molecular mechanisms underlying the formation of different wave patterns is currently unknown. The aim of this article was to screen the candidate microRNAs (miRNA) and genes for the development of hair follicles in Hu sheep. Two-day-old Hu lambs were selected from full-sib individuals that showed large, medium, and small waves. Integrated analysis of microRNA and mRNA expression profiles employed high-throughout sequencing technology. Approximately 13, 24, and 18 differentially expressed miRNAs were found between small and large waves, small and medium waves, and medium and large waves, respectively. A total of 54, 190, and 81 differentially expressed genes were found between small and large waves, small and medium waves, and medium and large waves, respectively, by RNA sequencing (RNA-seq) analysis. Differentially expressed genes were classified using gene ontology and pathway analyses. They were found to be mainly involved in cell differentiation, proliferation, apoptosis, growth, immune response, and ion transport, and were associated with MAPK and the Notch signaling pathway. Reverse transcription-polymerase chain reaction (RT-PCR) analyses of differentially-expressed miRNA and genes were consistent with sequencing results. Integrated analysis of miRNA and mRNA expression indicated that, compared to small waves, large waves included 4 downregulated miRNAs that had regulatory effects on 8 upregulated genes and 3 upregulated miRNAs, which in turn influenced 13 downregulated genes. Compared to small waves

  13. Profiles of oxidative stress-related microRNA and mRNA expression in auditory cells.

    PubMed

    Wang, Zhi; Liu, Yimin; Han, Ning; Chen, Xuemei; Yu, Wei; Zhang, Weisen; Zou, Fei

    2010-07-30

    Oxidative stress and high levels of reactive oxygen species (ROS) are risk factors of auditory cell injury and hearing impairment. MicroRNAs (miRNAs) are critical for the post-transcriptional regulation of gene expression and cell proliferation and survival. However, little is known about the impact of oxidative stress on the expression of miRNAs and their targeted mRNAs in auditory cells. We employed a cell model of oxidative stress by treatment of House Ear Institute-Organ of Corti 1 (HEI-OC1) cells with different concentrations of tert-butyl hydroperoxide (t-BHP) to examine the t-BHP-induced production of ROS and to determine the impact of t-BHP treatment on the relative levels of miRNA and mRNA transcripts in HEI-OC1 cells. We found that treatment with different concentrations of t-BHP promoted the production of ROS, but inhibited the proliferation of HEI-OC1 cells in a dose- and time-dependent manner. Furthermore, treatment with t-BHP induced HEI-OC1 cell apoptosis. Further microarray analyses revealed that treatment with t-BHP increased the transcription of 35 miRNAs, but decreased the expression of 40 miRNAs. In addition, treatment with t-BHP up-regulated the transcription of 2076 mRNAs, but down-regulated the levels of 580 mRNA transcripts. Notably, the up-regulated (or down-regulated) miRNAs were associated with the decreased (or increased) expression of predicted targeted mRNAs. Importantly, these differentially expressed mRNAs belonged to different functional categories, forming a network participating in the oxidative stress-related process in HEI-OC1 cells. Therefore, our findings may provide new insights into understanding the regulation of miRNAs on the oxidative stress-related gene expression and function in auditory cells.

  14. Effects of simulated microgravity on microRNA and mRNA expression profile of rat soleus

    NASA Astrophysics Data System (ADS)

    Dai, Zhongquan; Wu, Feng; Qu, Lina

    Abstract Spaceflight induces muscle atrophy but mechanism is not well understood. Here, we quantified microRNAs (miRNAs) and mRNA shifts of rat soleus after 7, 14 and 28 days tail suspension (TS). Microarray data revealed that TS altered 23 miRNAs and 1313 mRNAs at least 2-fold change. QRT-PCR confirmed changes of miRNAs and mRNAs related to muscle atrophy. MiR-214, miR-486-5p and miR-320 family decreased, but Let-7e increased. Actn3 and myh4 displayed abundant upregulation and a3galt2 downregulated. Predicted targeted genes (whyz, ywhaz and SFRP2) of altered miRNAs decreased. Further analysis of gene functional annotation confirmed consistency of alteration profile between miRNAs and mRNA and enrichment of main clusters in regulation of muscle metabolism. Our results highlight the importance of miR-214, miR-486-5p, miR-320 and Let-7e in muscle atrophy process induced by microgravity.

  15. Integrated mRNA and lncRNA expression profiling for exploring metastatic biomarkers of human intrahepatic cholangiocarcinoma

    PubMed Central

    Lv, Lisheng; Wei, Miaoyan; Lin, Peiyi; Chen, Zhisheng; Gong, Peng; Quan, Zhiwei; Tang, Zhaohui

    2017-01-01

    Long noncoding RNAs (lncRNAs) is crucial for various human cancers, but the function and mechanism of lncRNAs is largely unknown in human intrahepatic cholangiocarcinoma (ICC), the second most common liver cancer. In this study, we performed transcriptomic profiling of ICC and normal tissues, and found 2148 lncRNAs and 474 mRNAs were significantly upregulated, whereas 568 lncRNAs and 409 mRNAs were downregulated in ICC tissues. Enrichment analysis suggests these differentially expressed genes mainly focus on response to stimulus, development, and cell proliferation. Further, potential lncRNAs involved in five signaling pathways (ERBB, JAK/STAT, MAPK, VEGF and WNT) were constructed by highly co-expressed with mRNAs in these signaling pathways. The differentially expressed lncRNA-mRNA co-regulated signaling pathways in ICC were further confirmed by lncRNA target prediction. Finally, the differentially expressed lncRNAs were confirmed by quantitative real-time PCR in 32 paired ICC and adjacent tissues. The correlation analysis between the expression levels of lncRNAs and clinicopathologic characteristics showed that EMP1-008, ATF3-008, and RCOR3-013 were observed significantly downregulated in ICC with tumor metastasis. These findings suggested that lncRNA expression profiling in ICC is profoundly different from that in noncancerous tissues, and lncRNA may be used as a potential diagnostic and prognostic biomarker for ICC metastasis.

  16. Integrated analysis of miRNA and mRNA paired expression profiling of prenatal skeletal muscle development in three genotype pigs.

    PubMed

    Tang, Zhonglin; Yang, Yalan; Wang, Zishuai; Zhao, Shuanping; Mu, Yulian; Li, Kui

    2015-10-26

    MicroRNAs (miRNAs) play a vital role in muscle development by binding to messenger RNAs (mRNAs). Based on prenatal skeletal muscle at 33, 65 and 90 days post-coitus (dpc) from Landrace, Tongcheng and Wuzhishan pigs, we carried out integrated analysis of miRNA and mRNA expression profiling. We identified 33, 18 and 67 differentially expressed miRNAs and 290, 91 and 502 mRNA targets in Landrace, Tongcheng and Wuzhishan pigs, respectively. Subsequently, 12 mRNAs and 3 miRNAs differentially expressed were validated using quantitative real-time PCR (qPCR), and 5 predicted miRNA targets were confirmed via dual luciferase reporter or western blot assays. We identified a set of miRNAs and mRNA genes differentially expressed in muscle development. Gene ontology (GO) enrichment analysis suggests that the miRNA targets are primarily involved in muscle contraction, muscle development and negative regulation of cell proliferation. Our data indicated that more mRNAs are regulated by miRNAs at earlier stages than at later stages of muscle development. Landrace and Tongcheng pigs also had longer phases of myoblast proliferation than Wuzhishan pigs. This study will be helpful to further explore miRNA-mRNA interactions in myogenesis and aid to uncover the molecular mechanisms of muscle development and phenotype variance in pigs.

  17. Integrative investigation on breast cancer in ER, PR and HER2-defined subgroups using mRNA and miRNA expression profiling

    NASA Astrophysics Data System (ADS)

    Dai, Xiaofeng; Chen, Ana; Bai, Zhonghu

    2014-10-01

    Exploring the molecular difference among breast cancer subtypes is of crucial importance in understanding its heterogeneity and seeking its effective clinical treatment. For this, several layers of information including immunohistochemical markers and a variety of high-throughput genomics approaches have been intensively used. Here we have explored the intrinsic differences among breast cancer subgroups defined by immunohistochemical expression (IHC) of hormone receptors ER and PR as well as human epidermal growth factor receptor 2 (HER2) using the mRNA and miRNA expression profiles of 115 tumors. A core basal group was further defined by epidermal growth factor receptor and cytokeratin 5/6 IHC expression and compared to triple negative group. A set of differentially expressed genes including 1015 mRNAs and 69 miRNAs was found to distinguish tumor subtypes whose generality was demonstrated using two independent data sets. The network was explored for each subtype and biomass synthesis signaling was found to play an important role in the core basal subgroup. This study contributes to elucidating the intrinsic relations among breast cancer subgroups defined by ER, PR and HER2 expression via integrating mRNA and miRNA expression. The results can avail functional studies of breast cancer with translational potential for clinical use.

  18. Fed and fasted chicks from lines divergently selected for low or high body weight have differential hypothalamic appetite-associated factor mRNA expression profiles.

    PubMed

    Yi, Jiaqing; Gilbert, Elizabeth R; Siegel, Paul B; Cline, Mark A

    2015-06-01

    We have demonstrated that chicken lines which have undergone intense divergent selection for either low (LWS) or high (HWS) body weight (anorexic and obese containing, respectively) have differential food intake threshold responses to a range of intracerebroventricular injected neurotransmitters. The study reported herein was designed to measure endogenous appetite-associated factor mRNA profiles between these lines in an effort to further understand the molecular mechanisms involved in their differential eating patterns. Whole hypothalamus was collected from 5 day-old chicks that had been fasted for 180 min or had free access to food. Total RNA was isolated, reverse transcribed, and real-time PCR performed. Although mRNAs encoding orexigenic neuropeptides including agouti-related peptide, neuropeptide Y (NPY), prolactin-releasing peptide, and visfatin did not differ in expression between the lines, NPY receptor 5 mRNA was greater in fed LWS than HWS chicks, but fasting decreased the magnitude of difference. Anorexigenic factors including amylin, corticotropin releasing factor (CRF) and ghrelin were not differentially expressed between lines, while mRNA abundance of calcitonin, CRF receptor 1, leptin receptor, neuropeptide S, melanocortin receptor 3, and oxytocin were greater in LWS than HWS chicks. Pro-opiomelanocortin mRNA was lower in LWS than HWS chicks, while fasting decreased its expression in both lines. These results suggest that there are differences in gene expression of appetite-associated factors between LWS and HWS lines that might be associated with their differential food intake and thus contribute to differences in severity of anorexia, body weight, adiposity, and development of obesity.

  19. Integration Analysis of MicroRNA and mRNA Expression Profiles in Human Peripheral Blood Lymphocytes Cultured in Modeled Microgravity

    PubMed Central

    Girardi, C.; De Pittà, C.; Casara, S.; Calura, E.; Romualdi, C.; Celotti, L.; Mognato, M.

    2014-01-01

    We analyzed miRNA and mRNA expression profiles in human peripheral blood lymphocytes (PBLs) incubated in microgravity condition, simulated by a ground-based rotating wall vessel (RWV) bioreactor. Our results show that 42 miRNAs were differentially expressed in MMG-incubated PBLs compared with 1 g incubated ones. Among these, miR-9-5p, miR-9-3p, miR-155-5p, miR-150-3p, and miR-378-3p were the most dysregulated. To improve the detection of functional miRNA-mRNA pairs, we performed gene expression profiles on the same samples assayed for miRNA profiling and we integrated miRNA and mRNA expression data. The functional classification of miRNA-correlated genes evidenced significant enrichment in the biological processes of immune/inflammatory response, signal transduction, regulation of response to stress, regulation of programmed cell death, and regulation of cell proliferation. We identified the correlation of miR-9-3p, miR-155-5p, miR-150-3p, and miR-378-3p expression with that of genes involved in immune/inflammatory response (e.g., IFNG and IL17F), apoptosis (e.g., PDCD4 and PTEN), and cell proliferation (e.g., NKX3-1 and GADD45A). Experimental assays of cell viability and apoptosis induction validated the results obtained by bioinformatics analyses demonstrating that in human PBLs the exposure to reduced gravitational force increases the frequency of apoptosis and decreases cell proliferation. PMID:25045661

  20. Integrated analysis miRNA and mRNA profiling in patients with severe oligozoospermia reveals miR-34c-3p downregulates PLCXD3 expression

    PubMed Central

    Li, Zhiming; Zheng, Zaozao; Ruan, Jun; Li, Zhi; Zhuang, Xuan; Tzeng, Chi-Meng

    2016-01-01

    Our previous research suggested that an integrated analysis of microRNA (miRNA) and messenger RNA (mRNA) expression is helpful to explore miRNA-mRNA interactions and to uncover the molecular mechanisms of male infertility. In this study, microarrays were used to compare the differences in the miRNA and mRNA expression profiles in the testicular tissues of severe oligozoospermia (SO) patients with obstructive azoospermia (OA) controls with normal spermatogenesis. Four miRNAs (miR-1246, miR-375, miR-410, and miR-758) and six mRNAs (SLC1A3, PRKAR2B, HYDIN, WDR65, PRDX1, and ADATMS5) were selected to validate the microarray data using quantitative real-time PCR. Using statistical calculations and bioinformatics predictions, we identified 33 differentially expressed miRNAs and 1,239 differentially expressed mRNAs, among which one potential miRNA-target gene pair, miR-34c-3p and PLCXD3 (Phosphatidylinositol-Specific Phospholipase C, X Domain Containing 3), was identified. Immunohistochemical analysis indicated that PLCXD3 was located within the germ cells of the mouse and human testis. Moreover, we found that miR-34c-3p was able to decrease PLCXD3 expression in mouse (GC-1 and TM4) and human (NCM460) cell lines, presumably indicating the possibility that miR-34c-3p acts as an intracellular mediator in germinal lineage differentiation. Notably, we reported the expression of the PLCXD3 protein in a man with normal spermatogenesis and the lack of the PLCXD3 protein in a man with SO. Therefore, the identified miRNA and mRNA may represent a potentially novel molecular regulatory network and therapeutic targets for the study or treatment of SO, which might provide a better understanding of the molecular basis of spermatogenesis dysfunction. PMID:27486773

  1. mRNA expression profile of multidrug-resistant genes in acute lymphoblastic leukemia of children, a prognostic value for ABCA3 and ABCA2.

    PubMed

    Rahgozar, Soheila; Moafi, Alireza; Abedi, Marjan; Entezar-E-Ghaem, Mansureh; Moshtaghian, Jamal; Ghaedi, Kamran; Esmaeili, Abolghasem; Montazeri, Fatemeh

    2014-01-01

    Multidrug resistance (MDR) is an important cause of treatment failure in acute lymphoblastic leukemia (ALL). The ABC family of membrane transporters is proposed, albeit with controversy, to be involved in this process. The present study aims to investigate the mRNA expression profile of several genes of this family, including ABCA2, ABCA3, ABCB1/MDR1, MRP1/ABCC1, MRP3/ABCC3, ABCG2/BCRP, and the intracellular transporter MVP/LRP, in childhood ALL, and to evaluate their association with response to therapy. Some genes in the present research are being studied for the first time in Iran. Using quantitative real-time PCR, we evaluated 27 children with ALL at diagnosis and 15 children with normal bone marrow. The status of response to therapy was assessed one year after the onset of therapy through investigating the IgH/TCRγ gene rearrangements. Our findings indicate a considerable and direct relationship between mRNA expression levels of ABCA2, ABCA3, MDR1, and MRP1 genes and positive minimal residual disease (MRD) measured after one year of treatment. Statistical analysis revealed that expression of these genes higher than the cutoff point will raise the risk of MRD by 15-, 6.25-, 12-, and 9-fold, respectively. No relationship was found between of MVP/LRP, MRP3 and ABCG2 genes expression and ALL prognoses. Considering the direct and significant relationship between the increased expression of ABCA2, ABCA3, MDR1, and MRP1 genes and positive risk of MRD in children with ALL, evaluating the expression profile of these genes on diagnosis may identify high risk individuals and help plan a more efficient treatment strategy.

  2. mRNA expression profile of multidrug-resistant genes in acute lymphoblastic leukemia of children, a prognostic value for ABCA3 and ABCA2

    PubMed Central

    Rahgozar, Soheila; Moafi, Alireza; Abedi, Marjan; Entezar-e-ghaem, Mansureh; Moshtaghian, Jamal; Ghaedi, Kamran; Esmaeili, Abolghasem; Montazeri, Fatemeh

    2014-01-01

    Multidrug resistance (MDR) is an important cause of treatment failure in acute lymphoblastic leukemia (ALL). The ABC family of membrane transporters is proposed, albeit with controversy, to be involved in this process. The present study aims to investigate the mRNA expression profile of several genes of this family, including ABCA2, ABCA3, ABCB1/MDR1, MRP1/ABCC1, MRP3/ABCC3, ABCG2/BCRP, and the intracellular transporter MVP/LRP, in childhood ALL, and to evaluate their association with response to therapy. Some genes in the present research are being studied for the first time in Iran. Using quantitative real-time PCR, we evaluated 27 children with ALL at diagnosis and 15 children with normal bone marrow. The status of response to therapy was assessed one year after the onset of therapy through investigating the IgH/TCRγ gene rearrangements. Our findings indicate a considerable and direct relationship between mRNA expression levels of ABCA2, ABCA3, MDR1, and MRP1 genes and positive minimal residual disease (MRD) measured after one year of treatment. Statistical analysis revealed that expression of these genes higher than the cutoff point will raise the risk of MRD by 15-, 6.25-, 12-, and 9-fold, respectively. No relationship was found between of MVP/LRP, MRP3 and ABCG2 genes expression and ALL prognoses. Considering the direct and significant relationship between the increased expression of ABCA2, ABCA3, MDR1, and MRP1 genes and positive risk of MRD in children with ALL, evaluating the expression profile of these genes on diagnosis may identify high risk individuals and help plan a more efficient treatment strategy. PMID:24145140

  3. Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals

    PubMed Central

    2013-01-01

    Background Animal and plant genomes produce numerous small RNAs (smRNAs) that regulate gene expression post-transcriptionally affecting metabolism, development, and epigenetic inheritance. In order to characterize the repertoire of endogenous smRNAs and potential gene targets in dinoflagellates, we conducted smRNA and mRNA expression profiling over 9 experimental treatments of cultures from Symbiodinium microadriaticum, a photosynthetic symbiont of scleractinian corals. Results We identified a set of 21 novel smRNAs that share stringent key features with functional microRNAs from other model organisms. smRNAs were predicted independently over all 9 treatments and their putative gene targets were identified. We found 1,720 animal-like target sites in the 3'UTRs of 12,858 mRNAs and 19 plant-like target sites in 51,917 genes. We assembled a transcriptome of 58,649 genes and determined differentially expressed genes (DEGs) between treatments. Heat stress was found to produce a much larger number of DEGs than other treatments that yielded only few DEGs. Analysis of DEGs also revealed that minicircle-encoded photosynthesis proteins seem to be common targets of transcriptional regulation. Furthermore, we identified the core RNAi protein machinery in Symbiodinium. Conclusions Integration of smRNA and mRNA expression profiling identified a variety of processes that could be under microRNA control, e.g. protein modification, signaling, gene expression, and response to DNA damage. Given that Symbiodinium seems to have a paucity of transcription factors and differentially expressed genes, identification and characterization of its smRNA repertoire establishes the possibility of a range of gene regulatory mechanisms in dinoflagellates acting post-transcriptionally. PMID:24119094

  4. Imbalanced Expression of Vcan mRNA Splice Form Proteins Alters Heart Morphology and Cellular Protein Profiles

    PubMed Central

    Burns, Tara A.; Dours-Zimmermann, Maria T.; Zimmermann, Dieter R.; Krug, Edward L.; Comte-Walters, Susana; Reyes, Leticia; Davis, Monica A.; Schey, Kevin L.; Schwacke, John H.; Kern, Christine B.; Mjaatvedt, Corey H.

    2014-01-01

    The fundamental importance of the proteoglycan versican to early heart formation was clearly demonstrated by the Vcan null mouse called heart defect (hdf). Total absence of the Vcan gene halts heart development at a stage prior to the heart’s pulmonary/aortic outlet segment growth. This creates a problem for determining the significance of versican’s expression in the forming valve precursors and vascular wall of the pulmonary and aortic roots. This study presents data from a mouse model, Vcan(tm1Zim), of heart defects that results from deletion of exon 7 in the Vcan gene. Loss of exon 7 prevents expression of two of the four alternative splice forms of the Vcan gene. Mice homozygous for the exon 7 deletion survive into adulthood, however, the inability to express the V2 or V0 forms of versican results in ventricular septal defects, smaller cushions/valve leaflets with diminished myocardialization and altered pulmonary and aortic outflow tracts. We correlate these phenotypic findings with a large-scale differential protein expression profiling to identify compensatory alterations in cardiac protein expression at E13.5 post coitus that result from the absence of Vcan exon 7. The Vcan(tm1Zim) hearts show significant changes in the relative abundance of several cytoskeletal and muscle contraction proteins including some previously associated with heart disease. These alterations define a protein fingerprint that provides insight to the observed deficiencies in pre-valvular/septal cushion mesenchyme and the stability of the myocardial phenotype required for alignment of the outflow tract with the heart ventricles. PMID:24586547

  5. Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells.

    PubMed

    Rumbo-Feal, Soraya; Gómez, Manuel J; Gayoso, Carmen; Álvarez-Fraga, Laura; Cabral, María P; Aransay, Ana M; Rodríguez-Ezpeleta, Naiara; Fullaondo, Ane; Valle, Jaione; Tomás, María; Bou, Germán; Poza, Margarita

    2013-01-01

    Acinetobacterbaumannii has emerged as a dangerous opportunistic pathogen, with many strains able to form biofilms and thus cause persistent infections. The aim of the present study was to use high-throughput sequencing techniques to establish complete transcriptome profiles of planktonic (free-living) and sessile (biofilm) forms of A. baumannii ATCC 17978 and thereby identify differences in their gene expression patterns. Collections of mRNA from planktonic (both exponential and stationary phase cultures) and sessile (biofilm) cells were sequenced. Six mRNA libraries were prepared following the mRNA-Seq protocols from Illumina. Reads were obtained in a HiScanSQ platform and mapped against the complete genome to describe the complete mRNA transcriptomes of planktonic and sessile cells. The results showed that the gene expression pattern of A. baumannii biofilm cells was distinct from that of planktonic cells, including 1621 genes over-expressed in biofilms relative to stationary phase cells and 55 genes expressed only in biofilms. These differences suggested important changes in amino acid and fatty acid metabolism, motility, active transport, DNA-methylation, iron acquisition, transcriptional regulation, and quorum sensing, among other processes. Disruption or deletion of five of these genes caused a significant decrease in biofilm formation ability in the corresponding mutant strains. Among the genes over-expressed in biofilm cells were those in an operon involved in quorum sensing. One of them, encoding an acyl carrier protein, was shown to be involved in biofilm formation as demonstrated by the significant decrease in biofilm formation by the corresponding knockout strain. The present work serves as a basis for future studies examining the complex network systems that regulate bacterial biofilm formation and maintenance.

  6. Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin

    PubMed Central

    Jin, Jing; Cheng, Yong; Zhang, Yongqing; Wood, William; Peng, Qi; Hutchison, Emmette; Mattson, Mark P.; Becker, Kevin G.; Duan, Wenzhen

    2012-01-01

    Emerging evidence indicates that microRNAs (miRNAs) may play an important role in the pathogenesis of Huntington’s disease (HD). To identify the individual miRNAs that are altered in HD and may therefore regulate a gene network underlying mutant huntingtin-induced neuronal dysfunction in HD, we performed miRNA array analysis combined with mRNA profiling in the cerebral cortex from N171-82Q HD mice. Expression profiles of miRNAs as well as mRNAs in HD mouse cerebral cortex were analyzed and confirmed at different stages of disease progression; the most significant changes of miRNAs in the cerebral cortex were also detected in the striatum of HD mice. Our results revealed a significant alteration of miR-200 family members, miR-200a and miR-200c in the cerebral cortex and the striatum, at the early stage of disease progression in N171-82Q HD mice. We used a coordinated approach to integrate miRNA and mRNA profiling, and applied bioinformatics to predict a target gene network potentially regulated by these significantly altered miRNAs that might be involved in HD disease progression. Interestingly, miR-200a and miR-200c are predicted to target genes regulating synaptic function, neurodevelopment and neuronal survival. Our results suggest that altered expression of miR-200a and miR-200c may interrupt the production of proteins involved in neuronal plasticity and survival, and further investigation of the involvement of perturbed miRNA expression in HD pathogenesis is warranted, and may lead to reveal novel approaches for HD therapy. PMID:22906125

  7. Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin.

    PubMed

    Jin, Jing; Cheng, Yong; Zhang, Yongqing; Wood, William; Peng, Qi; Hutchison, Emmette; Mattson, Mark P; Becker, Kevin G; Duan, Wenzhen

    2012-11-01

    Emerging evidence indicates that microRNAs (miRNAs) may play an important role in the pathogenesis of Huntington's disease (HD). To identify the individual miRNAs that are altered in HD and may therefore regulate a gene network underlying mutant huntingtin-induced neuronal dysfunction in HD, we performed miRNA array analysis combined with mRNA profiling in the cerebral cortex from N171-82Q HD mice. Expression profiles of miRNAs as well as mRNAs in HD mouse cerebral cortex were analyzed and confirmed at different stages of disease progression; the most significant changes of miRNAs in the cerebral cortex were also detected in the striatum of HD mice. Our results revealed a significant alteration of miR-200 family members, miR-200a, and miR-200c in the cerebral cortex and the striatum, at the early stage of disease progression in N171-82Q HD mice. We used a coordinated approach to integrate miRNA and mRNA profiling, and applied bioinformatics to predict a target gene network potentially regulated by these significantly altered miRNAs that might be involved in HD disease progression. Interestingly, miR-200a and miR-200c are predicted to target genes regulating synaptic function, neurodevelopment, and neuronal survival. Our results suggest that altered expression of miR-200a and miR-200c may interrupt the production of proteins involved in neuronal plasticity and survival, and further investigation of the involvement of perturbed miRNA expression in HD pathogenesis is warranted, and may lead to reveal novel approaches for HD therapy.

  8. The Effect of Wenxin Keli on the mRNA Expression Profile of Rabbits with Myocardial Infarction

    PubMed Central

    Zheng, Min; Liu, Zhouying; Liu, Nana; Hou, Cuihong; Zhang, Shu

    2016-01-01

    Aims. The molecular mechanisms of Chinese traditional medicine Wenxin Keli (WXKL) were unknown. This study was aimed at exploring the effects of WXKL on the gene expression profile and pathological alteration of rabbits with myocardial infarction. Methods. Twenty male adult rabbits were randomly divided into 4 groups: sham, model, WXKL, and captopril groups. Model, WXKL, and captopril groups underwent the ligation of the left anterior descending coronary artery while sham group went through an identical procedure without ligation. WXKL (817 mg/kg/d), captopril (8 mg/kg/d), and distilled water (to model and sham groups) were administered orally to each group. After 4 weeks, the rabbits were examined with echocardiography and the hearts were taken for expression chip and pathological staining (H&E, Masson, and Tunel) studies. Results. The data revealed that WXKL downregulated genes associated with inflammation (CX3CR1, MRC1, and FPR1), apoptosis (CTSC and TTC5), and neurohumoral system (ACE and EDN1) and upregulated angiogenesis promoting genes such as RSPO3. Moreover, the results also showed that WXKL improved cardiac function and prevented histopathological injury and apoptosis. Conclusion. The present study demonstrated that WXKL might play an important role in inhibiting inflammation, renin-angiotensin system, and apoptosis. It might be a promising Chinese medicine in the treatment of patients with myocardial infarction. PMID:27843475

  9. The Effect of Wenxin Keli on the mRNA Expression Profile of Rabbits with Myocardial Infarction.

    PubMed

    Zheng, Min; Liu, Zhouying; Liu, Nana; Hou, Cuihong; Pu, Jielin; Zhang, Shu

    2016-01-01

    Aims. The molecular mechanisms of Chinese traditional medicine Wenxin Keli (WXKL) were unknown. This study was aimed at exploring the effects of WXKL on the gene expression profile and pathological alteration of rabbits with myocardial infarction. Methods. Twenty male adult rabbits were randomly divided into 4 groups: sham, model, WXKL, and captopril groups. Model, WXKL, and captopril groups underwent the ligation of the left anterior descending coronary artery while sham group went through an identical procedure without ligation. WXKL (817 mg/kg/d), captopril (8 mg/kg/d), and distilled water (to model and sham groups) were administered orally to each group. After 4 weeks, the rabbits were examined with echocardiography and the hearts were taken for expression chip and pathological staining (H&E, Masson, and Tunel) studies. Results. The data revealed that WXKL downregulated genes associated with inflammation (CX3CR1, MRC1, and FPR1), apoptosis (CTSC and TTC5), and neurohumoral system (ACE and EDN1) and upregulated angiogenesis promoting genes such as RSPO3. Moreover, the results also showed that WXKL improved cardiac function and prevented histopathological injury and apoptosis. Conclusion. The present study demonstrated that WXKL might play an important role in inhibiting inflammation, renin-angiotensin system, and apoptosis. It might be a promising Chinese medicine in the treatment of patients with myocardial infarction.

  10. Comparative Anterior Pituitary miRNA and mRNA Expression Profiles of Bama Minipigs and Landrace Pigs Reveal Potential Molecular Network Involved in Animal Postnatal Growth.

    PubMed

    Ye, Rui-Song; Li, Meng; Qi, Qi-En; Cheng, Xiao; Chen, Ting; Li, Chao-Yun; Wang, Song-Bo; Shu, Gang; Wang, Li-Na; Zhu, Xiao-Tong; Jiang, Qing-Yan; Xi, Qian-Yun; Zhang, Yong-Liang

    2015-01-01

    The anterior pituitary is the most important endocrine organ modulating animal postnatal growth, mainly by controlling growth hormone (GH) gene transcription, synthesis, and secretion. As an ideal model for animal postnatal growth studies, the Bama minipig is characterized as having a lower growth performance and fewer individual differences compared with larger pig breeds. In this study, anterior pituitaries from Bama minipig and Landrace pig were used for miRNA and mRNA expression profile analysis using miRNA microarrays and mRNA-seq. Consequently, a total of 222 miRNAs and 12,909 transcripts were detected, and both miRNAs and mRNAs in the two breeds showed high correlation (r > 0.97). Additionally, 41 differentially expressed miRNAs and 2,254 transcripts were identified. Pathways analysis indicated that 32 pathways significantly differed in the two breeds. Importantly, two GH-regulation-signalling pathways, cAMP and inositol 1, 4, 5-triphosphate (IP3), and multiple GH-secretion-related transcripts were significantly down-regulated in Bama minipigs. Moreover, TargetScan and RNAHybrid algorithms were used for predicting differentially expressed miRNAs (DE miRNAs) and differentially expressed mRNAs (DE mRNAs) interaction. By examining their fold-changes, interestingly, most DE miRNA-DE mRNA target pairs (63.68-71.33%) presented negatively correlated expression pattern. A possible network among miRNAs, mRNAs, and GH-regulation pathways was also proposed. Among them, two miRNA-mRNA interactions (Y-47 targets FSHB; ssc-miR-133a-3p targets GNAI3) were validated by dual-luciferase assay. These data will be helpful in understanding the possible molecular mechanisms involved in animal postnatal growth.

  11. Comparative Anterior Pituitary miRNA and mRNA Expression Profiles of Bama Minipigs and Landrace Pigs Reveal Potential Molecular Network Involved in Animal Postnatal Growth

    PubMed Central

    Qi, Qi-En; Cheng, Xiao; Chen, Ting; Li, Chao-Yun; Wang, Song-Bo; Shu, Gang; Wang, Li-Na; Zhu, Xiao-Tong; Jiang, Qing-Yan; Xi, Qian-Yun; Zhang, Yong-Liang

    2015-01-01

    The anterior pituitary is the most important endocrine organ modulating animal postnatal growth, mainly by controlling growth hormone (GH) gene transcription, synthesis, and secretion. As an ideal model for animal postnatal growth studies, the Bama minipig is characterized as having a lower growth performance and fewer individual differences compared with larger pig breeds. In this study, anterior pituitaries from Bama minipig and Landrace pig were used for miRNA and mRNA expression profile analysis using miRNA microarrays and mRNA-seq. Consequently, a total of 222 miRNAs and 12,909 transcripts were detected, and both miRNAs and mRNAs in the two breeds showed high correlation (r > 0.97). Additionally, 41 differentially expressed miRNAs and 2,254 transcripts were identified. Pathways analysis indicated that 32 pathways significantly differed in the two breeds. Importantly, two GH-regulation-signalling pathways, cAMP and inositol 1, 4, 5-triphosphate (IP3), and multiple GH-secretion-related transcripts were significantly down-regulated in Bama minipigs. Moreover, TargetScan and RNAHybrid algorithms were used for predicting differentially expressed miRNAs (DE miRNAs) and differentially expressed mRNAs (DE mRNAs) interaction. By examining their fold-changes, interestingly, most DE miRNA–DE mRNA target pairs (63.68–71.33%) presented negatively correlated expression pattern. A possible network among miRNAs, mRNAs, and GH-regulation pathways was also proposed. Among them, two miRNA-mRNA interactions (Y-47 targets FSHB; ssc-miR-133a-3p targets GNAI3) were validated by dual-luciferase assay. These data will be helpful in understanding the possible molecular mechanisms involved in animal postnatal growth. PMID:26134288

  12. Profiles of mRNA expression for prolactin, growth hormone, and somatolactin in Japanese eels, Anguilla japonica: The effect of salinity, silvering and seasonal change.

    PubMed

    Sudo, Ryusuke; Suetake, Hiroaki; Suzuki, Yuzuru; Aoyama, Jun; Tsukamoto, Katsumi

    2013-01-01

    For understanding the functions of the growth hormone (GH)/prolactin (PRL)/somatolactin (SL) family of hormones, we examined pituitary mRNA expression of these hormones in anguillid eels in relation to salinity difference, silvering, and seasonal change. Female Japanese eels (Anguilla japonica) were collected in the brackish Hamana Lake and its freshwater rivers from July to December. To clarify the effect of salinity, the habitat use history of the eels were determined using otolith microchemistry. Expression levels of mRNA of each hormone were determined using real time PCR. Although GH and PRL have been known to be osmoregulatory hormones, there were no consistent differences in expression levels of these hormones between different salinity habitats. In contrast, SL mRNA expression was higher in eels from freshwater rivers than from the brackish lake. GH mRNA expression clearly decreased during silvering, whereas PRL and SL mRNA expression did not change. We also showed that PRL mRNA and SL mRNA decreased in the brackish lake and PRL mRNA increased in freshwater rivers from autumn to early winter. These findings provide basic knowledge for a further understanding of the role of these hormones.

  13. Integrating microRNA and mRNA expression profiles of acute promyelocytic leukemia cells to explore the occurrence mechanisms of differentiation syndrome

    PubMed Central

    Ge, Fei; Cao, Fenglin; Li, Haitao; Wang, Ping; Xu, Mengyuan; Song, Peng; Li, Xiaoxia; Wang, Shuye; Li, Jinmei; Han, Xueying; Zhao, Yanhong; Su, Yanhua; Li, Yinghua; Fan, Shengjin; Li, Limin; Zhou, Jin

    2016-01-01

    The pathogenesis of therapy-induced differentiation syndrome (DS) in patients with acute promyelocytic leukemia (APL) remains unclear. In this study, mRNA and microRNA (miRNA) expression profiling of peripheral blood APL cells from patients complicated with vs. without DS were integratively analyzed to explore the mechanisms underlying arsenic trioxide treatment-associated DS. By integrating the differentially expressed data with the data of differentially expressed microRNAs and their computationally predicted target genes, as well as the data of transcription factors and differentially expressed target microRNAs obtained from a literature search, a DS-related genetic regulatory network was constructed. Then using an EAGLE algorithm in clusterViz, the network was subdivided into 10 modules. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database the modules were annotated functionally, and three functionally active modules were recognized. The further in-depth analyses on the annotated functions of the three modules and the expression and roles of the related genes revealed that proliferation, differentiation, apoptosis and infiltration capability of APL cells might play important roles in the DS pathogenesis. The results could improve our understanding of DS pathogenesis from a more overall perspective, and could provide new clues for future research. PMID:27634874

  14. Integrative analysis of miRNA and mRNA paired expression profiling of primary fibroblast derived from diabetic foot ulcers reveals multiple impaired cellular functions.

    PubMed

    Liang, Liang; Stone, Rivka C; Stojadinovic, Olivera; Ramirez, Horacio; Pastar, Irena; Maione, Anna G; Smith, Avi; Yanez, Vanessa; Veves, Aristides; Kirsner, Robert S; Garlick, Jonathan A; Tomic-Canic, Marjana

    2016-11-01

    Diabetic foot ulcers (DFUs) are one of the major complications of diabetes. Its molecular pathology remains poorly understood, impeding the development of effective treatments. Although it has been established that multiple cell types, including fibroblasts, keratinocytes, macrophages, and endothelial cells, all contribute to inhibition of healing, less is known regarding contributions of individual cell type. Thus, we generated primary fibroblasts from nonhealing DFUs and evaluated their cellular and molecular properties in comparison to nondiabetic foot fibroblasts (NFFs). Specifically, we analyzed both micro-RNA and mRNA expression profiles of primary DFU fibroblasts. Paired genomic analyses identified a total of 331 reciprocal miRNA-mRNA pairs including 21 miRNAs (FC > 2.0) along with 239 predicted target genes (FC > 1.5) that are significantly and differentially expressed. Of these, we focused on three miRNAs (miR-21-5p, miR-34a-5p, miR-145-5p) that were induced in DFU fibroblasts as most differentially regulated. The involvement of these microRNAs in wound healing was investigated by testing the expression of their downstream targets as well as by quantifying cellular behaviors in prospectively collected and generated cell lines from 15 patients (seven DFUF and eight NFF samples). We found large number of downstream targets of miR-21-5p, miR-34a-5p, miR-145-5p to be coordinately regulated in mRNA profiles, which was confirmed by quantitative real-time PCR. Pathway analysis on paired miRNA-mRNA profiles predicted inhibition of cell movement and cell proliferation, as well as activation of cell differentiation and senescence in DFU fibroblasts, which was confirmed by cellular assays. We concluded that induction of miR-21-5p, miR-34a-5p, miR-145-5p in DFU dermal fibroblasts plays an important role in impairing multiple cellular functions, thus contributing to overall inhibition of healing in DFUs.

  15. Profiles of mRNA expression of related genes in the duck hypothalamus-pituitary growth axis during embryonic and early post-hatch development.

    PubMed

    Hu, Yan; Liu, Hongxiang; Song, Chi; Xu, Wenjuan; Ji, Gaige; Zhu, Chunhong; Shu, Jingting; Li, Huifang

    2015-03-15

    In this study, the ontogeny of body and liver weight and the pattern of related gene mRNA expression in the hypothalamus-pituitary growth axis (HPGA) of two different duck breeds (Anas platyrhynchos domestica) were compared during embryonic and post-hatch development. Duck hypothalamic growth hormone release hormone (GHRH), somatostatin (SS), pituitary growth hormone (GH), liver growth hormone receptor (GHR) and insulin-like growth factor-I (IGF-1) mRNA were first detected on the 13th embryonic day. During early duck development, SS maintained a lower expression status, whereas the other four genes exhibited highly significant variations in an age-specific manner. Highly significant breed specificity was observed with respect to hepatic IGF-1 mRNA expression, which showed a significant breed-age interaction effect. Compared with previous studies on chickens, significant species differences were observed regarding the mRNA expression of bird embryonic HPGA-related genes. During early development, highly significant breed and age specificity were observed with respect to developmental changes in body and liver weight, and varying degrees of significant linear correlation were found between these performances and the mRNA expression of HPGA-related genes in the duck HPGA. These results suggest that different genetic backgrounds may lead to differences in duck growth and HPGA-related gene mRNA expression, and the differential mRNA expression of related genes in the duck HPGA may be particularly important in the early growth of ducks. Furthermore, hepatic IGF-1 mRNA expression presented highly significant breed specificity, and evidence suggests the involvement of hepatic IGF-1 in mediating genetic effects on embryo and offspring growth in ducks.

  16. A Genome-Wide mRNA Expression Profile in Caenorhabditis elegans under Prolonged Exposure to 1750MHz Radiofrequency Fields

    PubMed Central

    Gao, Dawen; Yu, Zhoulong; Wu, Tongning; Zhang, Chenggang

    2016-01-01

    Objective C. elegans has been used as a biomonitor for microwave-induced stress. However, the RF (radiofrequency) fields that have been used in previous studies were weak (≤1.8W/kg), and the bio-effects on C. elegans were mostly negative or ambiguous. Therefore, this study used more intense RF fields (SAR = 3W/kg) and longer time course of exposure (60h at 25°C, L1 stage through adult stage) to investigate the biological consequences of 1750 MHz RF fields in wild-type worms. Methods The growth rates and lifespans of RF-exposure group and the control group were carefully recorded. RNA samples were collected at L4 (35h) and gravid adult (50h) stages for further high-throughput sequencing, focusing on differences between the RF-exposure and the sham control groups. Results The RF-exposed and sham control groups developed at almost the same rate and had similar longevity curves. In L4 stage worms, 94 up-regulated and 17 down-regulated genes were identified, while 186 up-regulated and 3 down-regulated genes were identified in adult stage worms. GO analysis showed that the differentially expressed genes at 35h were associated with growth, body morphogenesis and collagen and cuticle-based development. Genes that were linked to growth rate and reproductive development were differentially expressed at 50h. Some embryonic and larval development genes in the offspring were also differentially expressed at 50h. Ten genes were differentially expressed at both 35h and 50h, most of which were involved in both embryonic and larval developmental processes. Although prolonged RF fields did not induce significant temperature increase in RF exposure groups, the temperature inside worms during exposure was unknown. Conclusions No harmful effects were observed in prolonged exposure to 1750 MHz RF fields at SAR of 3W/kg on development and longevity of C. elegans. Although some differentially expressed genes were found after prolonged RF exposure, these differences were ascribed to

  17. Integrating miRNA and mRNA Expression Profiling Uncovers miRNAs Underlying Fat Deposition in Sheep

    PubMed Central

    Zhou, Guangxian; Wang, Xiaolong; Yuan, Chao; Kang, Danju; Xu, Xiaochun; Zhou, Jiping; Geng, Rongqing; Yang, Yuxin; Yang, Zhaoxia

    2017-01-01

    MicroRNAs (miRNAs) are endogenous, noncoding RNAs that regulate various biological processes including adipogenesis and fat metabolism. Here, we adopted a deep sequencing approach to determine the identity and abundance of miRNAs involved in fat deposition in adipose tissues from fat-tailed (Kazakhstan sheep, KS) and thin-tailed (Tibetan sheep, TS) sheep breeds. By comparing HiSeq data of these two breeds, 539 miRNAs were shared in both breeds, whereas 179 and 97 miRNAs were uniquely expressed in KS and TS, respectively. We also identified 35 miRNAs that are considered to be putative novel miRNAs. The integration of miRNA-mRNA analysis revealed that miRNA-associated targets were mainly involved in the gene ontology (GO) biological processes concerning cellular process and metabolic process, and miRNAs play critical roles in fat deposition through their ability to regulate fundamental pathways. These pathways included the MAPK signaling pathway, FoxO and Wnt signaling pathway, and focal adhesion. Taken together, our results define miRNA expression signatures that may contribute to fat deposition and lipid metabolism in sheep. PMID:28293627

  18. Integrating miRNA and mRNA Expression Profiling Uncovers miRNAs Underlying Fat Deposition in Sheep.

    PubMed

    Zhou, Guangxian; Wang, Xiaolong; Yuan, Chao; Kang, Danju; Xu, Xiaochun; Zhou, Jiping; Geng, Rongqing; Yang, Yuxin; Yang, Zhaoxia; Chen, Yulin

    2017-01-01

    MicroRNAs (miRNAs) are endogenous, noncoding RNAs that regulate various biological processes including adipogenesis and fat metabolism. Here, we adopted a deep sequencing approach to determine the identity and abundance of miRNAs involved in fat deposition in adipose tissues from fat-tailed (Kazakhstan sheep, KS) and thin-tailed (Tibetan sheep, TS) sheep breeds. By comparing HiSeq data of these two breeds, 539 miRNAs were shared in both breeds, whereas 179 and 97 miRNAs were uniquely expressed in KS and TS, respectively. We also identified 35 miRNAs that are considered to be putative novel miRNAs. The integration of miRNA-mRNA analysis revealed that miRNA-associated targets were mainly involved in the gene ontology (GO) biological processes concerning cellular process and metabolic process, and miRNAs play critical roles in fat deposition through their ability to regulate fundamental pathways. These pathways included the MAPK signaling pathway, FoxO and Wnt signaling pathway, and focal adhesion. Taken together, our results define miRNA expression signatures that may contribute to fat deposition and lipid metabolism in sheep.

  19. Identification, mRNA expression profiling and activity characterization of cathepsin L from red drum (Sciaenops ocellatus).

    PubMed

    Sun, Bo-guang; Hu, Yong-hua

    2015-12-01

    Cathepsin L is a cysteine protease with a papain-like structure. It is known to be implicated in multiple processes of mammalian immune response to pathogen infection. In teleost fish, the functionality of cathepsin L is less understood. In this work, we characterized a cathepsin L homologue (designated as SoCatL) from red drum Sciaenops ocellatus, an important farmed fish species in China. SoCatL possesses a typical domain arrangement characteristic of cathepsin L, which comprises a proregion and a protease domain with four catalytically essential residues (Gln137, Cys143, His282 and Asn302) conserved in various organisms. SoCatL shares moderate sequence identities with mammalian cathepsin L and relatively high sequence identities with teleost cathepsin L. Phylogenetic analysis revealed that SoCatL is evolutionally close to fish cathepsin L, especially those belonging to the Perciformes order. The homology model of SoCatL was discovered to exhibit a structure resembling human cathepsin L. Transcriptional expression of SoCatL was found ubiquitous in tissues and enhanced after experimental infection with a bacterial pathogen. Recombinant SoCatL purified from Escherichia coli (designated as rSoCatL) displayed apparent proteolytic activity, which was optimal at 50 °C and pH 7.0. The activity of rSoCatL required the catalytic residue Cys143 and was severely reduced by cathepsin inhibitor. These results suggest that SoCatL is a teleost cathepsin L homologue which functions as a cysteine protease and is likely to participate in the host immune response against bacterial infection.

  20. Molecular characterization, tissue distribution, and mRNA expression profiles of two Kiss genes in the adult male and female chub mackerel (Scomber japonicus) during different gonadal stages.

    PubMed

    Selvaraj, Sethu; Kitano, Hajime; Fujinaga, Yoichiro; Ohga, Hirofumi; Yoneda, Michio; Yamaguchi, Akihiko; Shimizu, Akio; Matsuyama, Michiya

    2010-10-01

    Kisspeptins, encoded by the Kiss1 gene, have emerged as key modulators of reproduction in mammals. In contrast to the placental mammals, some teleosts express two Kiss genes, Kiss1 and Kiss2. In the present study, full-length cDNAs of Kiss1 and Kiss2 in the chub mackerel were cloned and sequenced. Chub mackerel Kiss1 and Kiss2 cDNAs encode 105 and 123 amino acids, respectively. A comparison of the deduced amino acid sequences of chub mackerel Kiss1 and Kiss2 with those of other vertebrate species showed a high degree of conservation only in the kisspeptin-10 region (Kp-10). The Kp-10 of chub mackerel Kiss1 (YNFNSFGLRY) and Kiss2 (FNFNPFGLRF) showed variations at three amino acids. Tissue distribution analysis using quantitative real-time PCR (qRT-PCR) revealed that the Kiss1 and Kiss2 transcripts were expressed in different tissues of adult chub mackerel. In addition, their levels in the adipose tissue exhibited sexually dimorphic expression. Further, to have a basic understanding on the involvement of Kiss1 and Kiss2 in the seasonal gonadal development, their relative mRNA expression profiles in the brain, pituitary, and gonads at different gonadal stages were analyzed using qRT-PCR. Kiss1 and Kiss2 levels in the brain showed a differential expression profile between male and female fish. In males, Kiss1 and Kiss2 levels gradually decreased from the immature stage to spermiation and reached a minimal level during the post-spawning period. In contrast, Kiss1 levels in the brain of females did not vary significantly among the different gonadal stages. However, Kiss2 levels fluctuated as that of males, gradually declining from the immature stage to the post-spawning period. The pituitary Kiss1 levels did not show significant fluctuations. However, Kiss1 levels in the gonads were highly elevated during spermiation and late vitellogenesis compared to the immature and post-spawning period. These results suggest the possible involvement of two Kiss genes in the brain and

  1. Cytokine and chemokine mRNA expression profiles in tracheobronchial lymph nodes from pigs singularly infected or coinfected with porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (MHYO)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine cytokine and chemokine mRNA expression profiles in tracheobronchial lymph nodes from pigs singularly infected with porcine circovirus type 2 (PCV2), Mycoplasma hyopneumoniae (MHYO), or coinfected with both. Twenty-eight pigs were randomly assigned to one ...

  2. Gene expression profiling by mRNA sequencing reveals increased expression of immune/inflammation-related genes in the hippocampus of individuals with schizophrenia.

    PubMed

    Hwang, Y; Kim, J; Shin, J Y; Kim, J Ii; Seo, J S; Webster, M J; Lee, D; Kim, S

    2013-10-29

    Whole-genome expression profiling in postmortem brain tissue has recently provided insight into the pathophysiology of schizophrenia. Previous microarray and RNA-Seq studies identified several biological processes including synaptic function, mitochondrial function and immune/inflammation response as altered in the cortex of subjects with schizophrenia. Now using RNA-Seq data from the hippocampus, we have identified 144 differentially expressed genes in schizophrenia cases as compared with unaffected controls. Immune/inflammation response was the main biological process over-represented in these genes. The upregulation of several of these genes, IFITM1, IFITM2, IFITM3, APOL1 (Apolipoprotein L1), ADORA2A (adenosine receptor 2A), IGFBP4 and CD163 were validated in the schizophrenia subjects using data from the SNCID database and with quantitative RT-PCR. We identified a co-expression module associated with schizophrenia that includes the majority of differentially expressed genes related to immune/inflammation response as well as with the density of parvalbumin-containing neurons in the hippocampus. The results indicate that abnormal immune/inflammation response in the hippocampus may underlie the pathophysiology of schizophrenia and may be associated with abnormalities in the parvalbumin-containing neurons that lead to the cognitive deficits of the disease.

  3. miRNA and mRNA expression profiling identifies members of the miR-200 family as potential regulators of epithelial-mesenchymal transition in pterygium

    PubMed Central

    Engelsvold, David H.; Utheim, Tor P.; Olstad, Ole K.; Gonzalez, Pedro; Eidet, Jon R.; Lyberg, Torstein; Trøseid, Anne-Marie S.; Dartt, Darlene A.; Raeder, Sten

    2014-01-01

    The current study investigates whether microRNA (miRNA) regulators of epithelial-mesenchymal transition (EMT), tissue fibrosis, and angiogenesis are differentially expressed in human primary pterygium. Genome-wide miRNA and mRNA expression profiling of paired pterygium and normal conjunctiva was performed in the context of conventional excision of pterygium with autotransplantation of conjunctiva (n=8). Quantitative real time polymerase chain reaction (qRT-PCR) was used to validate the expression of key molecules previously detected by microarray. In pterygium, 25 miRNAs and 31 mRNAs were significantly differentially expressed by more than two-fold compared to normal conjunctiva. 14 miRNAs were up-regulated (miR-1246, −486, −451, −3172, −3175, −1308, −1972, −143, −211, −665, −1973, −18a, 143, and −663b), whereas 11 were down-regulated (miR-675, −200b-star, −200a-star, −29b, −200b, −210, −141, −31, −200a, −934, and −375). Unsupervised hierarchical cluster analysis demonstrated that members of the miR-200 family were coexpressed and down-regulated in pterygium. The molecular and cellular functions that were most significant to the miRNA data sets were cellular development, cellular growth and proliferation, and cellular movement. qRT-PCR confirmed the expression of 15 of the 16 genes tested and revealed that miR-429 was down-regulated by more than two-fold in pterygium. The concerted down-regulation of four members from both clusters of the miR-200 family (miR-200a/−200b/−429 and miR-200c/−141), which are known to regulate EMT, and up-regulation of the predicted target and mesenchymal marker fibronectin (FN1), suggest that EMT could potentially play a role in the pathogenesis of pterygium and might constitute promising new targets for therapeutic intervention in pterygium. PMID:23872359

  4. Breed-specific expression of GR exon 1 mRNA variants and profile of GR promoter CpG methylation in the hippocampus of newborn piglets.

    PubMed

    Sun, Q; Jia, Y; Li, R; Li, X; Yang, X; Zhao, R

    2014-11-01

    Glucocorticoid receptor (GR) transcription is driven by alternative promoters to produce different exon 1 mRNA variants. CpG methylation on GR promoters profoundly affects GR transcription. GR in hippocampus is critical for energy homeostasis and stress responses, yet it remains unclear whether hippocampal expression of GR exon 1 mRNA variants and the methylation status of GR promoters differ between Large White (LW) and Erhualian (EHL) pigs showing distinct metabolic and stress-coping characteristics. EHL pigs had higher hippocampus weight relative to BW (P<0.01), which was associated with higher serum cortisol level compared with LW pigs. Hippocampal expression of brain-derived neurotrophic factor (P<0.05) was significantly higher, while Bax, a pro-apoptotic gene, was significantly lower in EHL pigs (P<0.05). Hippocampal expression of total GR did not differ between breeds, yet GR exon 1 to 11 mRNA was significantly higher (P<0.01) in EHL pigs, which was associated with a trend of increase (P=0.057) in GR protein content. No significant breed difference was detected for the methylation status across the whole region of the proximal GR promoter, while CpG334 and CpG266.267 were differentially methylated, in a reversed manner, between breeds. The methylation status of CpGs 248, 259, 260, 268 and 271 was negatively correlated (P<0.05) with GR exon 1 to 11 mRNA abundance. Our results provide fundamental information on the breed-specific characteristics of GR and its mRNA variants expression and the status of DNA methylation on the proximal GR promoter in the pig hippocampus.

  5. Expression Profile of Cytokines and Enzymes mRNA in Blood Leukocytes of Dogs with Leptospirosis and Its Associated Pulmonary Hemorrhage Syndrome

    PubMed Central

    Maissen-Villiger, Carla A.; Schweighauser, Ariane; van Dorland, H. Anette; Morel, Claudine; Bruckmaier, Rupert M.; Zurbriggen, Andreas; Francey, Thierry

    2016-01-01

    Background Dogs with leptospirosis show similar organ manifestations and disease course as human patients, including acute kidney injury and pulmonary hemorrhage, making this naturally-occurring infection a good animal model for human leptospirosis. Expression patterns of cytokines and enzymes have been correlated with disease manifestations and clinical outcome in humans and animals. The aim of this study was to describe mRNA expression of pro- and anti-inflammatory mediators in canine leptospirosis and to compare it with other renal diseases to identify patterns characterizing the disease and especially its pulmonary form. Methodology and Principal Findings The mRNA abundance of cytokines (IL-1α, IL-1β, IL-8, IL-10, TNF-α, TGF-β) and enzymes (5-LO, iNOS) was measured prospectively in blood leukocytes from 34 dogs with severe leptospirosis and acute kidney injury, including 22 dogs with leptospirosis-associated pulmonary hemorrhages. Dogs with leptospirosis were compared to 14 dogs with acute kidney injury of other origin than leptospirosis, 8 dogs with chronic kidney disease, and 10 healthy control dogs. Canine leptospirosis was characterized by high 5-LO and low TNF-α expression compared to other causes of acute kidney injury, although the decreased TNF-α expression was also seen in chronic kidney disease. Leptospirosis-associated pulmonary hemorrhage was not characterized by a specific pattern, with only mild changes noted, including increased IL-10 and decreased 5-LO expression on some days in affected dogs. Fatal outcome from pulmonary hemorrhages was associated with low TNF-α, high IL-1β, and high iNOS expression, a pattern possibly expressed also in dogs with other forms of acute kidney injury. Conclusion The patterns of cytokine and enzyme expression observed in the present study indicate a complex pro- and anti-inflammatory response to the infection with leptospires. The recognition of these signatures may be of diagnostic and prognostic relevance

  6. Integrated analysis of microRNA and mRNA expression profiles highlights the complex and dynamic behavior of toosendanin-induced liver injury in mice

    PubMed Central

    Lu, Xiaoyan; Ji, Cai; Tong, Wei; Lian, Xueping; Wu, Ying; Fan, Xiaohui; Gao, Yue

    2016-01-01

    Triterpenoid Toosendanin (TSN) exhibits a plenty of pharmacological effects in human and great values in agriculture. However, the hepatotoxicity caused by TSN or Melia-family plants containing TSN used in traditional Chinese medicine has been reported, and the mechanisms of TSN-induced liver injury (TILI) still remain largely unknown. In this study, the dose- and time-dependent effects of TSN on mice liver were investigated by an integrated microRNA-mRNA approach as well as the general toxicological assessments. As the results, the dose- and time-dependent liver injury and alterations in global microRNA and mRNA expressions were detected. Particularly, 9-days 80 mg/kg TSN exposure caused most serious liver injury in mice, and the hepatic adaptation to TILI was unexpectedly observed after 21-days 80 mg/kg TSN administration. Based on the pathway analysis of the intersections between predicted targets of differentially expressed microRNAs and differentially expressed mRNAs at three time points, it revealed that TILI may be caused by glutathione depletion, mitochondrial dysfunction and lipid dysmetabolism, ultimately leading to hepatocytes necrosis in liver, while liver regeneration may play an important role in the hepatic adaptation to TILI. Our results demonstrated that the integrated microRNA−mRNA approach could provide new insight into the complex and dynamic behavior of TILI. PMID:27703232

  7. Kinetic mRNA Profiling in a Rat Model of Left-Ventricular Hypertrophy Reveals Early Expression of Chemokines and Their Receptors

    PubMed Central

    Nemska, Simona; Monassier, Laurent; Gassmann, Max; Frossard, Nelly; Tavakoli, Reza

    2016-01-01

    Left-ventricular hypertrophy (LVH), a risk factor for heart failure and death, is characterized by cardiomyocyte hypertrophy, interstitial cell proliferation, and leukocyte infiltration. Chemokines interacting with G protein-coupled chemokine receptors may play a role in LVH development by promoting recruitment of activated leukocytes or modulating left-ventricular remodeling. Using a pressure overload-induced kinetic model of LVH in rats, we examined during 14 days the expression over time of chemokine and chemokine receptor mRNAs in left ventricles from aortic-banded vs sham-operated animals. Two phases were clearly distinguished: an inflammatory phase (D3-D5) with overexpression of inflammatory genes such as il-1ß, tnfa, nlrp3, and the rela subunit of nf-kb, and a hypertrophic phase (D7-D14) where anp overexpression was accompanied by a heart weight/body weight ratio that increased by more than 20% at D14. No cardiac dysfunction was detectable by echocardiography at the latter time point. Of the 36 chemokines and 20 chemokine receptors analyzed by a Taqman Low Density Array panel, we identified at D3 (the early inflammatory phase) overexpression of mRNAs for the monocyte chemotactic proteins CCL2 (12-fold increase), CCL7 (7-fold increase), and CCL12 (3-fold increase), for the macrophage inflammatory proteins CCL3 (4-fold increase), CCL4 (2-fold increase), and CCL9 (2-fold increase), for their receptors CCR2 (4-fold increase), CCR1 (3-fold increase), and CCR5 (3-fold increase), and for CXCL1 (8-fold increase) and CXCL16 (2-fold increase). During the hypertrophic phase mRNA expression of chemokines and receptors returned to the baseline levels observed at D0. Hence, this first exhaustive study of chemokine and chemokine receptor mRNA expression kinetics reports early expression of monocyte/macrophage-related chemokines and their receptors during the development of LVH in rats, followed by regulation of inflammation as LVH progresses. PMID:27525724

  8. Analysis of mRNA expression profiles of carotenogenesis and astaxanthin production of Haematococcus pluvialis under exogenous 2, 4-epibrassinolide (EBR).

    PubMed

    Gao, Zhengquan; Meng, Chunxiao; Gao, Hongzheng; Zhang, Xiaowen; Xu, Dong; Su, Yuanfeng; Wang, Yuanyuan; Zhao, Yuren; Ye, Naihao

    2013-01-01

    The fresh-water green unicellular alga Haematococcus pluvialis is known to accumulate astaxanthin under stress conditions. In the present study, transcriptional expression of eight genes involved in astaxanthin biosynthesis exposed to EBR (25 and 50 mg/L) was analyzed using qRT-PCR. The results demonstrated that both 25 and 50 mg/L EBR could increase astaxanthin productivity and the eight carotenogenic genes were up-regulated by EBR with different expression profiles. Moreover, EBR25 induction had a greater influence on the transcriptional expression of ipi-1, ipi-2, crtR-B, lyc and crtO (> 5- fold up-regulation) than on psy, pds, bkt; EBR50 treatment had a greater effect on the transcriptional expression of ipi-2, pds, lyc, crtR-B, bkt and crtO than on ipi-1 and psy. Furthermore, astaxanthin biosynthesis under EBR was up-regulated mainly by ipi1־ and psy at the post-transcriptional level, pds, lyc, crtR-B, bkt and crtO at the transcriptional level and ipi-2 at both levels.

  9. The effect of two endogenous retinoids on the mRNA expression profile in human primary keratinocytes, focusing on genes causing autosomal recessive congenital ichthyosis.

    PubMed

    Törmä, H; Bergström, A; Ghiasifarahani, G; Berne, B

    2014-10-01

    Retinoids (natural forms and synthetic derivatives of vitamin A) are used as therapeutic agents for numerous skin diseases such as keratinization disorders (e.g. ichthyoses) and psoriasis. Two endogenous ligands for retinoic acid receptors exist, retinoic acid (atRA) and 3,4-didehydroretinoic acid (ddRA). In primary human epidermal keratinocytes many transcriptional targets for atRA are known, whereas the targets for ddRA are unknown. In an attempt to determine the targets, we compared the effect of atRA and ddRA on transcriptional profiles in undifferentiated and differentiating human primary keratinocytes. First, as expected, many genes were induced or suppressed in response to keratinocyte differentiation. Furthermore, the two retinoids affected substantially more genes in differentiated keratinocytes (>350) than in proliferating keratinocytes (≈20). In differentiating keratinocytes markers of cornification were suppressed suggesting a de-differentiating effect by the two retinoids. When comparing the expression profile of atRA to that of ddRA, no differently regulated genes were found. The array analysis also found that a minor number of miRNAs and a large number of non-coding transcripts were changed during differentiation and in response to the two retinoids. Furthermore, the expression of all, except one, genes known to cause autosomal recessive congenital ichthyosis (ARCI) were found to be induced by differentiation. These results comprehensively document that atRA and ddRA exert similar transcriptional changes in keratinocytes and also add new insights into the molecular mechanism influenced by retinoids in the epidermis. Furthermore, it suggests which ARCI patients could benefit from therapy with retinoids.

  10. mRNA expression profile of the TNF-α system in LH-induced bovine preovulatory follicles and effects of TNF-α on gene expression, ultrastructure and expansion of cumulus-oocyte complexes cultured in vitro.

    PubMed

    Silva, A W B; Bezerra, F T G; Glanzner, W G; Dos Santos, J T; Dau, A M P; Rovani, M T; Ilha, G F; Costa, J J N; Cunha, E V; Donato, M A M; Peixoto, C A; Gonçalves, P B D; Bordignon, V; Silva, J R V

    2017-03-01

    This study evaluated (1) the effects of in vivo GnRH treatment on mRNA expression of TNF-α system (TNF-α, TNFR1 and TNFR2) in granulosa cells of bovine preovulatory follicles, (2) the in vitro influence of gonadotropins on mRNA expression of TNF-α system in cultured cumulus cells, (3) the protein expression of the TNF-α system in late antral follicles and, (4) the influence of TNF-α on cumulus cells expansion, ultrastructure and on expression of HAS2, CASP3 and CASP6 in follicular cells cultured for 24 h. An increased expression of TNF-α and TNFR1 was observed after 3, 6 and 12 h of GnRH treatment when compared to 0 and 24h. Higher TNFR2 mRNA levels were observed 3, 6 and 12 h after GnRH, when compared to 0 and 24 h. Proteins of TNF-α system were also expressed in late antral follicles. In vitro, TNF-α did not affect cumulus cells expansion, but reduced the HAS2, CASP3 and CASP6 mRNA levels in cumulus cells after 12 h. After 24 h of culture, TNF-α increased the mRNA levels for CASP6 in mural granulosa cells, while the TNF-α, TNFR1 and TNFR2 mRNA levels were increased in cumulus-oocyte complexes (COCs) cultured for 12 h with gonadotropins, but not after 24 h. Ultrastructural analysis confirmed the integrity of COCs cultured in presence of TNF-α. In conclusion, TNF-α system members are present in bovine antral follicles and expression of TNF-α is influenced by gonadotropins in vivo and in vitro. In vitro, TNF-α maintained cumulus cells ultrastructure during COC culture.

  11. Vibrational force alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  12. Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in Moso bamboo

    PubMed Central

    2013-01-01

    Background As one of the fastest-growing lignocellulose-abundant plants on Earth, bamboos can reach their final height quickly due to the expansion of individual internodes already present in the buds; however, the molecular processes underlying this phenomenon remain unclear. Moso bamboo (Phyllostachys heterocycla cv. Pubescens) internodes from four different developmental stages and three different internodes within the same stage were used in our study to investigate the molecular processes at the transcriptome and post-transcriptome level. Results Our anatomical observations indicated the development of culms was dominated by cell division in the initial stages and by cell elongation in the middle and late stages. The four major endogenous hormones appeared to actively promote culm development. Using next-generation sequencing-based RNA-Seq, mRNA and microRNA expression profiling technology, we produced a transcriptome and post-transcriptome in possession of a large fraction of annotated Moso bamboo genes, and provided a molecular basis underlying the phenomenon of sequentially elongated internodes from the base to the top. Several key pathways such as environmental adaptation, signal transduction, translation, transport and many metabolisms were identified as involved in the rapid elongation of bamboo culms. Conclusions This is the first report on the temporal and spatial transcriptome and gene expression and microRNA profiling in a developing bamboo culms. In addition to gaining more insight into the unique growth characteristics of bamboo, we provide a good case study to analyze gene, microRNA expression and profiling of non-model plant species using high-throughput short-read sequencing. Also, we demonstrate that the integrated analysis of our multi-omics data, including transcriptome, post-transcriptome, proteome, yield more complete representations and additional biological insights, especially the complex dynamic processes occurring in Moso bamboo culms

  13. Integrated mRNA and miRNA expression profiling in blood reveals candidate biomarkers associated with endurance exercise in the horse.

    PubMed

    Mach, Núria; Plancade, Sandra; Pacholewska, Alicja; Lecardonnel, Jérôme; Rivière, Julie; Moroldo, Marco; Vaiman, Anne; Morgenthaler, Caroline; Beinat, Marine; Nevot, Alizée; Robert, Céline; Barrey, Eric

    2016-03-10

    The adaptive response to extreme endurance exercise might involve transcriptional and translational regulation by microRNAs (miRNAs). Therefore, the objective of the present study was to perform an integrated analysis of the blood transcriptome and miRNome (using microarrays) in the horse before and after a 160 km endurance competition. A total of 2,453 differentially expressed genes and 167 differentially expressed microRNAs were identified when comparing pre- and post-ride samples. We used a hypergeometric test and its generalization to gain a better understanding of the biological functions regulated by the differentially expressed microRNA. In particular, 44 differentially expressed microRNAs putatively regulated a total of 351 depleted differentially expressed genes involved variously in glucose metabolism, fatty acid oxidation, mitochondrion biogenesis, and immune response pathways. In an independent validation set of animals, graphical Gaussian models confirmed that miR-21-5p, miR-181b-5p and miR-505-5p are candidate regulatory molecules for the adaptation to endurance exercise in the horse. To the best of our knowledge, the present study is the first to provide a comprehensive, integrated overview of the microRNA-mRNA co-regulation networks that may have a key role in controlling post-transcriptomic regulation during endurance exercise.

  14. Integrated mRNA and miRNA expression profiling in blood reveals candidate biomarkers associated with endurance exercise in the horse

    PubMed Central

    Mach, Núria; Plancade, Sandra; Pacholewska, Alicja; Lecardonnel, Jérôme; Rivière, Julie; Moroldo, Marco; Vaiman, Anne; Morgenthaler, Caroline; Beinat, Marine; Nevot, Alizée; Robert, Céline; Barrey, Eric

    2016-01-01

    The adaptive response to extreme endurance exercise might involve transcriptional and translational regulation by microRNAs (miRNAs). Therefore, the objective of the present study was to perform an integrated analysis of the blood transcriptome and miRNome (using microarrays) in the horse before and after a 160 km endurance competition. A total of 2,453 differentially expressed genes and 167 differentially expressed microRNAs were identified when comparing pre- and post-ride samples. We used a hypergeometric test and its generalization to gain a better understanding of the biological functions regulated by the differentially expressed microRNA. In particular, 44 differentially expressed microRNAs putatively regulated a total of 351 depleted differentially expressed genes involved variously in glucose metabolism, fatty acid oxidation, mitochondrion biogenesis, and immune response pathways. In an independent validation set of animals, graphical Gaussian models confirmed that miR-21-5p, miR-181b-5p and miR-505-5p are candidate regulatory molecules for the adaptation to endurance exercise in the horse. To the best of our knowledge, the present study is the first to provide a comprehensive, integrated overview of the microRNA-mRNA co-regulation networks that may have a key role in controlling post-transcriptomic regulation during endurance exercise. PMID:26960911

  15. mRNA and microRNA expression profiles of radioresistant NCI-H520 non-small cell lung cancer cells

    PubMed Central

    GUO, WEI; XIE, LI; ZHAO, LONG; ZHAO, YUEHUAN

    2015-01-01

    To elucidate the mechanism of radioresistance in non-small cell lung cancer (NSCLC) cells and to identify key molecules conferring radioresistance, the radioresistant subclone NCI-H520/R, derived from the NCI-H520 NSCLC cell line, was established with eight rounds of sublethal irradiation. The radioresistant features were subsequently assessed using a clonogenic assay, analysis of apoptosis and an MTT assay, the gene expression levels were examined using an Agilent Whole Human Genome 4×44 k Oligo microarray and Agilent Human miRCURY™ LNA array, and confirmed by reverse transcription-quantitative polymerase chain reaction. Pathway analysis and Gene Ontology (GO) analysis were performed to determine the biological functions of the subset of differentially expressed genes. miRNA-mRNA correlation analysis between the expression levels of each miRNA and all its predicted target genes was performed to further understand the radioresistance in the NCI-H520 cells. Following eight rounds of sublethal irradiation, a total of 2,862 mRNAs were significantly differentially expressed in the NCI-H520/R cells, including 893 upregulated genes and 1,969 downregulated genes. A total of 162 upregulated miRNAs and 274 downregulated miRNAs were significantly deregulated in the NCI-H520/R cells. Multiple core regulatory processes and signaling pathways were identified as being of likely relevance to radioresistance in NCI-H520/R cells, including the mitogen-activated protein kinase signaling pathway and neurotrophin signaling pathway. The expression of genes associated with radioresistance reflects the complex biological processes involved in clinical cancer cell eradication and requires further investigation for future enhancement of therapy. PMID:25873351

  16. Long Noncoding RNA and mRNA Expression Profiles in the Thyroid Gland of Two Phenotypically Extreme Pig Breeds Using Ribo-Zero RNA Sequencing

    PubMed Central

    Shen, Yifei; Mao, Haiguang; Huang, Minjie; Chen, Lixing; Chen, Jiucheng; Cai, Zhaowei; Wang, Ying; Xu, Ningying

    2016-01-01

    The thyroid gland is an important endocrine organ modulating development, growth, and metabolism, mainly by controlling the synthesis and secretion of thyroid hormones (THs). However, little is known about the pig thyroid transcriptome. Long non-coding RNAs (lncRNAs) regulate gene expression and play critical roles in many cellular processes. Yorkshire pigs have a higher growth rate but lower fat deposition than that of Jinhua pigs, and thus, these species are ideal models for studying growth and lipid metabolism. This study revealed higher levels of THs in the serum of Yorkshire pigs than in the serum of Jinhua pigs. By using Ribo-zero RNA sequencing—which can capture both polyA and non-polyA transcripts—the thyroid transcriptome of both breeds were analyzed and 22,435 known mRNAs were found to be expressed in the pig thyroid. In addition, 1189 novel mRNAs and 1018 candidate lncRNA transcripts were detected. Multiple TH-synthesis-related genes were identified among the 455 differentially-expressed known mRNAs, 37 novel mRNAs, and 52 lncRNA transcripts. Bioinformatics analysis revealed that differentially-expressed genes were enriched in the microtubule-based process, which contributes to THs secretion. Moreover, integrating analysis predicted 13 potential lncRNA-mRNA gene pairs. These data expanded the repertoire of porcine lncRNAs and mRNAs and contribute to understanding the possible molecular mechanisms involved in animal growth and lipid metabolism. PMID:27409639

  17. Digital mRNA profiling of N-glycosylation gene expression in recombinant Chinese hamster ovary cells treated with sodium butyrate.

    PubMed

    Lee, Sang Min; Kim, Yeon-Gu; Lee, Eun Gyo; Lee, Gyun Min

    2014-02-10

    To understand the effects of sodium butyrate (NaBu) on protein glycosylation, recombinant Chinese hamster ovary (rCHO) cells producing Fc-fusion glycoprotein were subjected to 3mM NaBu. The addition of NaBu to the cultures reduced the relative proportion of acidic isoforms and sialic acid content of the glycoprotein. Fifty-two N-glycosylation-related gene expressions were also assessed by the NanoString nCounter system, which can provide a direct digital readout using custom-designed color-coded probes. Among them, ten genes (ugp, slc35a2, ganc, man1a, man1c, mgat5a, st3gal5, glb1, neu1, and neu3) were up-regulated and three genes (b4galt2, st3gal3, and neu2) were down-regulated significantly. Altered expression patterns in st3gal3, neu1, and neu3, which have roles in the sialic acid biosynthesis pathway, correlated with reduced sialic acid content of the glycoprotein by NaBu. Taken together, the results obtained in this study provide a better understanding of the detrimental effect of NaBu on N-glycosylation in rCHO cells.

  18. Integrated Analysis of Long Non-coding RNAs (LncRNAs) and mRNA Expression Profiles Reveals the Potential Role of LncRNAs in Skeletal Muscle Development of the Chicken

    PubMed Central

    Li, Zhenhui; Ouyang, Hongjia; Zheng, Ming; Cai, Bolin; Han, Peigong; Abdalla, Bahareldin A.; Nie, Qinghua; Zhang, Xiquan

    2017-01-01

    Long non-coding RNAs (lncRNAs) play important roles in transcriptional and post-transcriptional regulation. However, little is currently known about the mechanisms by which they regulate skeletal muscle development in the chicken. In this study, we used RNA sequencing to profile the leg muscle transcriptome (lncRNA and mRNA) at three stages of skeletal muscle development in the chicken: embryonic day 11 (E11), embryonic day 16 (E16), and 1 day after hatching (D1). In total, 129, 132, and 45 differentially expressed lncRNAs, and 1798, 3072, and 1211 differentially expressed mRNAs were identified in comparisons of E11 vs. E16, E11 vs. D1, and E16 vs. D1, respectively. Moreover, we identified the cis- and trans-regulatory target genes of differentially expressed lncRNAs, and constructed lncRNA-gene interaction networks. In total, 126 and 200 cis-targets, and two and three trans-targets were involved in lncRNA-gene interaction networks that were constructed based on the E11 vs. E16, and E11 vs. D1 comparisons, respectively. The comparison of the E16 vs. D1 lncRNA-gene network comprised 25 cis-targets. We determined that lncRNA target genes are potentially involved in cellular development, and cellular growth and proliferation using Ingenuity Pathway Analysis. The gene networks identified for the E11 vs. D1 comparison were involved in embryonic development, organismal development and tissue development. The present study provides an RNA sequencing based evaluation of lncRNA function during skeletal muscle development in the chicken. Comprehensive analysis facilitated the identification of lncRNAs and target genes that might contribute to the regulation of different stages of skeletal muscle development. PMID:28119630

  19. Cytokine mRNA expression in hepatitis C virus infection: TH1 predominance in patients with chronic hepatitis C and TH1-TH2 cytokine profile in subjects with self-limited disease.

    PubMed

    Gigi, E; Raptopoulou-Gigi, M; Kalogeridis, A; Masiou, S; Orphanou, E; Vrettou, E; Lalla, T H; Sinakos, E; Tsapas, V

    2008-02-01

    Many determinants of the immune response have been implied in the pathogenesis of chronic hepatitis C. TH1 and TH2 cytokines play a prominent role in viral infections and a dysregulation of these cytokines could account for viral persistence and evolution of chronic disease. To explore a possible TH1 and TH2 cytokine dysregulation resulting in the inability to terminate hepatitis C virus (HCV) infection, we studied TH1 [interferon (IFN)-gamma, interleukin (IL)-2] and TH2 (IL-4, IL-10) mRNA expression of peripheral blood mononuclear cells (PBMC) in response to NS3 HCV antigen stimulation, in 31 untreated patients with chronic hepatitis C and 29 subjects with self-limited disease. After a 48 h culture of PBMC, total RNA isolation was performed and complementary DNA was prepared by reverse transcription. mRNA levels were quantified by real-time polymerase chain reaction using a standard curve formed after cloning each cytokine gene and a reference gene using recombinant DNA technology in a specific plasmid vector. In the patients group, mRNA expression of IFN-gamma, IL-2 and IL-4 but not IL-10 was detected, IFN-gamma being the predominant cytokine expressed. All four cytokines were expressed in subjects with self limited disease, however levels of IFN-gamma were lower and a significant higher expression of IL-10 compared to patients was found. There was a significant correlation between IFN-gamma mRNA expression levels and stage of fibrosis. Our findings show that in chronic hepatitis C, TH1 cytokines predominate and correlate to liver immunopathology. Furthermore, subjects with self-limited disease, maintain the ability to respond to HCV antigens for a long time after disease resolution.

  20. Effect of taurine on mRNA expression of thioredoxin interacting protein in Caco-2 cells.

    PubMed

    Gondo, Yusuke; Satsu, Hideo; Ishimoto, Yoko; Iwamoto, Taku; Shimizu, Makoto

    2012-09-28

    Taurine (2-aminoethanesulfonic acid), a sulfur-containing β-amino acid, plays an important role in several essential biological processes; although, the underlying mechanisms for these regulatory functions remain to be elucidated, especially at the genetic level. We investigated the effects of taurine on the gene expression profile in Caco-2 cells using DNA microarray. Taurine increased the mRNA expression of thioredoxin interacting protein (TXNIP), which is involved in various metabolisms and diseases. β-Alanine or γ-aminobutyric acid (GABA), which are structurally or functionally related to taurine, did not increase TXNIP mRNA expression. These suggest the expression of TXNIP mRNA is induced specifically by taurine. β-Alanine is also known to be a substrate of taurine transporter (TAUT) and competitively inhibits taurine uptake. Inhibition of taurine uptake by β-alanine eliminated the up-regulation of TXNIP, which suggests TAUT is involved in inducing TXNIP mRNA expression. The up-regulation of TXNIP mRNA expression by taurine was also observed at the protein level. Furthermore, taurine significantly increased TXNIP promoter activity. Our present study demonstrated the taurine-specific phenomenon of TXNIP up-regulation, which sheds light on the physiological function of taurine.

  1. Selecting Reliable mRNA Expression Measurements Across Platforms Improves Downstream Analysis

    PubMed Central

    Tong, Pan; Diao, Lixia; Shen, Li; Li, Lerong; Heymach, John Victor; Girard, Luc; Minna, John D.; Coombes, Kevin R.; Byers, Lauren Averett; Wang, Jing

    2016-01-01

    With increasing use of publicly available gene expression data sets, the quality of the expression data is a critical issue for downstream analysis, gene signature development, and cross-validation of data sets. Thus, identifying reliable expression measurements by leveraging multiple mRNA expression platforms is an important analytical task. In this study, we propose a statistical framework for selecting reliable measurements between platforms by modeling the correlations of mRNA expression levels using a beta-mixture model. The model-based selection provides an effective and objective way to separate good probes from probes with low quality, thereby improving the efficiency and accuracy of the analysis. The proposed method can be used to compare two microarray technologies or microarray and RNA sequencing measurements. We tested the approach in two matched profiling data sets, using microarray gene expression measurements from the same samples profiled on both Affymetrix and Illumina platforms. We also applied the algorithm to mRNA expression data to compare Affymetrix microarray data with RNA sequencing measurements. The algorithm successfully identified probes/genes with reliable measurements. Removing the unreliable measurements resulted in significant improvements for gene signature development and functional annotations. PMID:27199546

  2. High lib mRNA expression in breast carcinomas.

    PubMed

    Satoh, Kazuki; Hata, Mitsumi; Yokota, Hiroshi

    2004-06-30

    Lib, first identified as a novel beta-amyloid responsive gene in rat astrocytes, has an extracellular domain of 15 leucine-rich repeats (LRRs) followed by a transmembrane domain and a short cytoplasmic region. It is a distinctly inducible gene and is thought to play a key role in inflammatory states via the LRR extracellular motif, an ideal structural framework for protein-protein and protein-matrix interactions. To evaluate potential roles of Lib, we screened various tumors for Lib expression. Lib mRNA expression was high and uniquely expressed in breast tumor tissues, compared to paired normal breast tissues. Lib mRNA was localized in the ductal carcinoma cells and Lib protein displayed a homophilic association on the surface of cultured cells. These data suggest that Lib may play a role in the progression of breast carcinomas and may be a diagnostic marker for breast tumors.

  3. Analysis of Microarray and RNA-seq Expression Profiling Data.

    PubMed

    Hung, Jui-Hung; Weng, Zhiping

    2017-03-01

    Gene expression profiling refers to the simultaneous measurement of the expression levels of a large number of genes (often all genes in a genome), typically in multiple experiments spanning a variety of cell types, treatments, or environmental conditions. Expression profiling is accomplished by assaying mRNA levels with microarrays or next-generation sequencing technologies (RNA-seq). This introduction describes normalization and analysis of data generated from microarray or RNA-seq experiments.

  4. Prolyl carboxypeptidase mRNA expression in the mouse brain.

    PubMed

    Jeong, Jin Kwon; Diano, Sabrina

    2014-01-13

    Prolyl carboxypeptidase (PRCP), a serine protease, is widely expressed in the body including liver, lung, kidney and brain, with a variety of known substrates such as plasma prekallikrein, bradykinin, angiotensins II and III, and α-MSH, suggesting its role in the processing of tissue-specific substrates. In the brain, PRCP has been shown to inactivate hypothalamic α-MSH, thus modulating melanocortin signaling in the control of energy metabolism. While its expression pattern has been reported in the hypothalamus, little is known on the distribution of PRCP throughout the mouse brain. This study was undertaken to determine PRCP expression in the mouse brain. Radioactive in situ hybridization was performed to determine endogenous PRCP mRNA expression. In addition, using a gene-trap mouse model for PRCP deletion, X-gal staining was performed to further determine PRCP distribution. Results from both approaches showed that PRCP gene is broadly expressed in the brain.

  5. Cytokine mRNA expression in postischemic/reperfused myocardium.

    PubMed Central

    Herskowitz, A.; Choi, S.; Ansari, A. A.; Wesselingh, S.

    1995-01-01

    While the role of cytokines in mediating injury during hind limb skeletal muscle ischemia followed by reperfusion has recently been described, the role of cytokines in myocardial infarction and ischemia/reperfusion have remained relatively unexplored. We hypothesize that cytokines play an important role in the regulation of postischemic myocardial inflammation. This study reports the temporal sequence of proinflammatory cytokine gene expression in postischemic/reperfused myocardium and localizes interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha)-protein by immunostaining. Rats were subjected to either permanent left anterior descending (LAD) occlusion or to 35 minutes of LAD occlusion followed by reperfusion and sacrificed up to 7 days later. Rat-specific oligonucleotide probes were used to semiquantitatively assess the relative expression of mRNA for TNF-alpha, IL-1 beta, IL-2, IL-6, interferon-gamma (IFN-gamma), and transforming growth factor-beta 1 (TGF-beta 1) utilizing the reverse transcriptase-polymerase chain reaction amplification technique. Increased cardiac mRNA levels for all cytokines except IL-6 and IFN-gamma were measurable within 15 to 30 minutes of LAD occlusion and increased levels were generally sustained for 3 hours. During early reperfusion, mRNA levels for IL-6 and TGF-beta 1 were significantly reduced compared with permanent LAD occlusion. In both groups, cytokine mRNA levels all returned to baseline levels at 24 hours, while IL-1 beta, TNF-alpha, and TGF-beta 1 mRNA levels again rose significantly at 7 days only in animals with permanent LAD occlusion. Immunostaining for IL-1 beta and TNF-alpha protein revealed two patterns of reactivity: 1) microvascular staining for both IL-1 beta and TNF-alpha protein only in postischemic reperfused myocardium in early post-reperfusion time points; and 2) staining of infiltrating macrophages in healing infarct zones which was most prominent at 7 days after permanent LAD occlusion

  6. An integrated analysis of differential miRNA and mRNA expressions in human gallstones.

    PubMed

    Yang, Bin; Liu, Bin; Bi, Pinduan; Wu, Tao; Wang, Qiang; Zhang, Jie

    2015-04-01

    Gallstone disease, including cholesterol precipitation in bile, increased bile salt hydrophobicity and gallbladder inflammation. Here, we investigated miRNA and mRNA involved in the formation of gallstones, and explored the molecular mechanisms in the development of gallstones. Differentially expressed 17 miRNAs and 525 mRNA were identified based on Illumina sequencing from gallbladder mucosa of patients with or without gallstones, and were validated by randomly selected 6 miRNAs and 8 genes using quantitative RT-PCR. 114 miRNA target genes were identified, whose functions and regulating pathways were related to gallstones. The differentially expressed genes were enriched upon lipoprotein binding and some metabolic pathways, and differentially expressed miRNAs enriched upon ABC transportation and cancer related pathways. A molecular regulatory network consisting of 17 differentially expressed miRNAs, inclusive of their target genes, was constructed. miR-210 and its potential target gene ATP11A were found to be differentially expressed in both miRNA and mRNA profiles. ATP11A was a direct target of miR-210, which was predicted to regulate the ABC-transporters pathway. The expression levels of ATP11A in the gallstone showed inverse correlation with miR-210 expression, and up-regulation of miR-210 could reduce ATP11A expression in HGBEC. This is the first report that indicates the existence of differences in miRNA and mRNA expression in patients with or without gallstones. Our data shed light on further investigating the mechanisms of gallstone formation.

  7. Sequence and expression of ferredoxin mRNA in barley

    SciTech Connect

    Zielinski, R.; Funder, P.M.; Ling, V. )

    1990-05-01

    We have isolated and structurally characterized a full-length cDNA clone encoding ferredoxin from a {lambda}gt10 cDNA library prepared from barley leaf mRNA. The ferredoxin clone (pBFD-1) was fused head-to-head with a partial-length cDNA clone encoding calmodulin, and was fortuitously isolated by screening the library with a calmodulin-specific oligonucleotide probe. The mRNA sequence from which pBFD-1 was derived is expressed exclusively in the leaf tissues of 7-d old barley seedlings. Barley pre-ferredoxin has a predicted size of 15.3 kDal, of which 4.6 kDal are accounted for by the transit peptide. The polypeptide encoded by pBFD-1 is identical to wheat ferredoxin, and shares slightly more amino acid sequence similarity with spinach ferredoxin I than with ferredoxin II. Ferredoxin mRNA levels are rapidly increased 10-fold by white light in etiolated barley leaves.

  8. Cytokine mRNA Expression in Lesions in Cats with Chronic Gingivostomatitis

    PubMed Central

    Harley, R.; Helps, C. R.; Harbour, D. A.; Gruffydd-Jones, T. J.; Day, M. J.

    1999-01-01

    Semiquantitative reverse transcription-PCR assays were developed to measure feline interleukin-2 (IL-2), IL-4, IL-5, IL-6, IL-10, and IL-12 (p35 & p40); gamma interferon (IFN-γ); and glyceraldehyde-3-phosphate dehydrogenase mRNA concentrations in biopsies of feline oral mucosa. Biopsies were collected from 30 cats with chronic gingivostomatitis (diseased) prior to each cat receiving one of four treatments. In 23 cases replicate biopsies were collected 3 months after treatment commenced. Biopsies were also analyzed from 11 cats without clinical disease (nondiseased). Expression of IL-2, IL-10, IL-12 (p35 and p40), and IFN-γ was detected in most nondiseased biopsies, while IL-6 was detected in a minority, and IL-4 and IL-5 were both undetectable. Compared to nondiseased cats, the diseased population showed a significant increase in the relative mRNA expression of IL-2, IL-4, IL-6, IL-10, IL-12 (p35 and p40), and IFN-γ. In contrast, IL-5 mRNA expression was unchanged and was only detected in one case. No significant relationship was demonstrable between the change in relative expression of specific cytokine mRNA and the change in clinical severity of the local mucosal lesions over the treatment period. The results demonstrate that the normal feline oral mucosa is biased towards a predominantly (Th) type 1 profile of cytokine expression and that during the development of lesions seen in feline chronic gingivostomatitis there is a shift in the cytokine profile from a type 1 to a mixed type 1 and type 2 response. PMID:10391845

  9. Cytokine mRNA expression in lesions in cats with chronic gingivostomatitis.

    PubMed

    Harley, R; Helps, C R; Harbour, D A; Gruffydd-Jones, T J; Day, M J

    1999-07-01

    Semiquantitative reverse transcription-PCR assays were developed to measure feline interleukin-2 (IL-2), IL-4, IL-5, IL-6, IL-10, and IL-12 (p35 & p40); gamma interferon (IFN-gamma); and glyceraldehyde-3-phosphate dehydrogenase mRNA concentrations in biopsies of feline oral mucosa. Biopsies were collected from 30 cats with chronic gingivostomatitis (diseased) prior to each cat receiving one of four treatments. In 23 cases replicate biopsies were collected 3 months after treatment commenced. Biopsies were also analyzed from 11 cats without clinical disease (nondiseased). Expression of IL-2, IL-10, IL-12 (p35 and p40), and IFN-gamma was detected in most nondiseased biopsies, while IL-6 was detected in a minority, and IL-4 and IL-5 were both undetectable. Compared to nondiseased cats, the diseased population showed a significant increase in the relative mRNA expression of IL-2, IL-4, IL-6, IL-10, IL-12 (p35 and p40), and IFN-gamma. In contrast, IL-5 mRNA expression was unchanged and was only detected in one case. No significant relationship was demonstrable between the change in relative expression of specific cytokine mRNA and the change in clinical severity of the local mucosal lesions over the treatment period. The results demonstrate that the normal feline oral mucosa is biased towards a predominantly (Th) type 1 profile of cytokine expression and that during the development of lesions seen in feline chronic gingivostomatitis there is a shift in the cytokine profile from a type 1 to a mixed type 1 and type 2 response.

  10. Genome-wide analysis of microRNA and mRNA expression signatures in cancer

    PubMed Central

    Li, Ming-hui; Fu, Sheng-bo; Xiao, Hua-sheng

    2015-01-01

    Cancer is an extremely diverse and complex disease that results from various genetic and epigenetic changes such as DNA copy-number variations, mutations, and aberrant mRNA and/or protein expression caused by abnormal transcriptional regulation. The expression profiles of certain microRNAs (miRNAs) and messenger RNAs (mRNAs) are closely related to cancer progression stages. In the past few decades, DNA microarray and next-generation sequencing techniques have been widely applied to identify miRNA and mRNA signatures for cancers on a genome-wide scale and have provided meaningful insights into cancer diagnosis, prognosis and personalized medicine. In this review, we summarize the progress in genome-wide analysis of miRNAs and mRNAs as cancer biomarkers, highlighting their diagnostic and prognostic roles. PMID:26299954

  11. Expression of c-Kit receptor mRNA and protein in the developing, adult and irradiated rodent testis.

    PubMed

    Prabhu, Sridurga Mithra; Meistrich, Marvin L; McLaughlin, Eileen A; Roman, Shaun D; Warne, Sam; Mendis, Sirisha; Itman, Catherine; Loveland, Kate Lakoski

    2006-03-01

    Germ cell proliferation, migration and survival during all stages of spermatogenesis are affected by stem cell factor signalling through the c-Kit receptor, the expression and function of which are vital for normal male reproductive function. The present study comprehensively describes the c-Kit mRNA and protein cellular expression profiles in germ cells of the postnatal and adult rodent testis, revealing their significant elevation in synthesis at the onset of spermatogenesis. Real-time PCR analysis for both mice and rats matched the cellular mRNA expression profile where examined. Localization studies in normal mouse testes indicated that both c-Kit mRNA and protein are first detectable in differentiating spermatogonia. In addition, all spermatogonia isolated from 8-day-old mice displayed detectable c-Kit mRNA, but 30-50% of these lacked protein expression. The c-Kit mRNA and protein profile in normal rat testes indicated expression in gonocytes, in addition to differentiating spermatogonia. However, in the irradiated adult rat testes, in which undifferentiated spermatogonia are the only germ cell type, mRNA was also detected in the absence of protein. This persisted at 3 days and 1 and 2 weeks following treatment with gonadotrophin-releasing hormone (GnRH) antagonist to stimulate spermatogenesis recovery. By 4 weeks of GnRH antagonist treatment, accompanying the emergence of differentiating spermatogonia, both mRNA and protein were detected. Based on these observations, we propose that c-Kit mRNA and protein synthesis are regulated separately, possibly by influences linked to testis maturation and circulating hormone levels.

  12. mRNA profiling in forensic genetics I: Possibilities and limitations.

    PubMed

    Vennemann, Marielle; Koppelkamm, Antje

    2010-12-15

    Molecular investigations gain increasing interest in forensic medicine. Examination of gene expression levels at the time point of death might have the power to become a complementing tool to the current methods for the determination of cause and circumstances of death. This includes pathophysiological conditions of disease and injury as well as the duration of agony or other premortem factors. Additionally, recent developments in forensic genetics revealed that tissue specific mRNAs can be used to determine the type of body fluid present in a crime scene stain. Although RNA is known to be rather instable, RNA could be extracted in adequate quality from tissue samples collected during medico-legal autopsy. Nevertheless, working with human postmortem tissue means to deal with highly variable RNA integrities. This review aims to give a brief overview of the possible advantages of postmortem mRNA profiling and to shed further light into the limitations of this method arising from reduced RNA integrities.

  13. Gene expression profiles in irradiated cancer cells

    NASA Astrophysics Data System (ADS)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  14. Gene expression profiles in irradiated cancer cells

    SciTech Connect

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  15. mRNA and methylation profiling of radioresistant esophageal cancer cells: the involvement of Sall2 in acquired aggressive phenotypes

    PubMed Central

    Luo, Judong; Wang, Wenjie; Tang, Yiting; Zhou, Dandan; Gao, Yi; Zhang, Qi; Zhou, Xifa; Zhu, Hui; Xing, Ligang; Yu, Jinming

    2017-01-01

    Esophageal squamous cell carcinoma (ESCC) is one of the deadliest malignancies worldwide. Radiotherapy plays a critical role in the curative management of inoperable ESCC patients. However, radioresistance restricts the efficacy of radiotherapy for ESCC patients. The molecules involved in radioresistance remain largely unknown, and new approaches to sensitize cells to irradiation are in demand. Technical advances in analysis of mRNA and methylation have enabled the exploration of the etiology of diseases and have the potential to broaden our understanding of the molecular pathways of ESCC radioresistance. In this study, we constructed radioresistant TE-1 and Eca-109 cell lines (TE-1/R and Eca-109/R, respectively). The radioresistant cells showed an increased migration ability but reduced apoptosis and cisplatin sensitivity compared with their parent cells. mRNA and methylation profiling by microarray revealed 1192 preferentially expressed mRNAs and 8841 aberrantly methylated regions between TE-1/R and TE-1 cells. By integrating the mRNA and methylation profiles, we related the decreased expression of transcription factor Sall2 with a corresponding increase in its methylation in TE-1/R cells, indicating its involvement in radioresistance. Upregulation of Sall2 decreased the growth and migration advantage of radioresistant ESCC cells. Taken together, our present findings illustrate the mRNA and DNA methylation changes during the radioresistance of ESCC and the important role of Sall2 in esophageal cancer malignancy. PMID:28367244

  16. Fidelity and enhanced sensitivity of differential transcription profiles following linear amplification of nanogram amounts of endothelial mRNA

    NASA Technical Reports Server (NTRS)

    Polacek, Denise C.; Passerini, Anthony G.; Shi, Congzhu; Francesco, Nadeene M.; Manduchi, Elisabetta; Grant, Gregory R.; Powell, Steven; Bischof, Helen; Winkler, Hans; Stoeckert, Christian J Jr; Davies, Peter F.

    2003-01-01

    Although mRNA amplification is necessary for microarray analyses from limited amounts of cells and tissues, the accuracy of transcription profiles following amplification has not been well characterized. We tested the fidelity of differential gene expression following linear amplification by T7-mediated transcription in a well-established in vitro model of cytokine [tumor necrosis factor alpha (TNFalpha)]-stimulated human endothelial cells using filter arrays of 13,824 human cDNAs. Transcriptional profiles generated from amplified antisense RNA (aRNA) (from 100 ng total RNA, approximately 1 ng mRNA) were compared with profiles generated from unamplified RNA originating from the same homogeneous pool. Amplification accurately identified TNFalpha-induced differential expression in 94% of the genes detected using unamplified samples. Furthermore, an additional 1,150 genes were identified as putatively differentially expressed using amplified RNA which remained undetected using unamplified RNA. Of genes sampled from this set, 67% were validated by quantitative real-time PCR as truly differentially expressed. Thus, in addition to demonstrating fidelity in gene expression relative to unamplified samples, linear amplification results in improved sensitivity of detection and enhances the discovery potential of high-throughput screening by microarrays.

  17. Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum

    PubMed Central

    Staudacher, Jonas J.; Naarmann-de Vries, Isabel S.; Ujvari, Stefanie J.; Klinger, Bertram; Kasim, Mumtaz; Benko, Edgar; Ostareck-Lederer, Antje; Ostareck, Dirk H.; Bondke Persson, Anja; Lorenzen, Stephan; Meier, Jochen C.; Blüthgen, Nils; Persson, Pontus B.; Henrion-Caude, Alexandra; Mrowka, Ralf; Fähling, Michael

    2015-01-01

    Protein synthesis is a primary energy-consuming process in the cell. Therefore, under hypoxic conditions, rapid inhibition of global mRNA translation represents a major protective strategy to maintain energy metabolism. How some mRNAs, especially those that encode crucial survival factors, continue to be efficiently translated in hypoxia is not completely understood. By comparing specific transcript levels in ribonucleoprotein complexes, cytoplasmic polysomes and endoplasmic reticulum (ER)-bound ribosomes, we show that the synthesis of proteins encoded by hypoxia marker genes is favoured at the ER in hypoxia. Gene expression profiling revealed that transcripts particularly increased by the HIF-1 transcription factor network show hypoxia-induced enrichment at the ER. We found that mRNAs favourably translated at the ER have higher conservation scores for both the 5′- and 3′-untranslated regions (UTRs) and contain less upstream initiation codons (uAUGs), indicating the significance of these sequence elements for sustained mRNA translation under hypoxic conditions. Furthermore, we found enrichment of specific cis-elements in mRNA 5′- as well as 3′-UTRs that mediate transcript localization to the ER in hypoxia. We conclude that transcriptome partitioning between the cytoplasm and the ER permits selective mRNA translation under conditions of energy shortage. PMID:25753659

  18. Monitoring cell physiology by expression profiles and discovering cell type-specific genes by compiled expression profiles

    SciTech Connect

    Okubo, Kousaku; Itoh, Kouichi; Fukushima, Atsushi; Yoshii, Junji; Matsubara, Kenichi

    1995-11-20

    A gene expression profile is the list showing the expressed gene species and the abundance of their transcripts in a given cell or tissue. This list is made by constructing 3{prime}-directed cDNA libraries consisting of only the 3{prime}-termini of mRNA and sequencing randomly selected clones from such libraries: genes are identified by the sequences, and the composition of mRNA, which reflects gene activities, is measured from the frequency of appearance of the gene transcripts. For practical reasons, the number of sequenced clones has been limited to approximately 1000 per library at present, but the resulting profile covers almost all highly or moderately expressed genes, along with many less active genes. We constructed expression profiles from the HL60 human promyelocytic cell line and two of its derivatives, granulocytoids induced by DMSO and monocytoids induced by TPA. In HL60, a significant fraction of the abundantly expressed genes was for protein synthesis. Upon induction, these genes were partially or totally silenced; transcripts for proteins that characterize the granulocytes and monocyte-macrophages became abundant. By compiling and comparing different expression profiles, genes can be categorized into those expressed in diverse cell types and those active only in limited cell types. Although at present, the number of expression profiles that can be compiled is limited and this categorization is applicable only to abundantly expressed genes, 13 novel genes that may represent granulocyte- or monocyte-specific functions have been discovered. 37 refs., 1 fig., 2 tabs.

  19. Postmortem mRNA profiling II: Practical considerations.

    PubMed

    Vennemann, Marielle; Koppelkamm, Antje

    2010-12-15

    Using human postmortem tissues for gene expression studies is particularly challenging. Besides the problem of impaired RNA one has to face a very high degree of biological variance within a sample set. Variations of individual parameters like age, body mass, health, but also the cause and circumstances of death and the postmortem interval lead to a rather inhomogeneous collection of samples. To meet these problems it is necessary to consider certain precautions before starting a gene expression project. These precautions include the sample collection and the determination of the RNA integrity, the number of replicates needed and the methods used for reverse transcription and quantitative polymerase chain reaction, but also the strategy for data normalisation and data interpretation. In this article practical issues are discussed to address some of the problems occurring in the work with postmortem human samples obtained during medico-legal autopsy.

  20. Highest trkB mRNA expression in the entorhinal cortex among hippocampal subregions in the adult rat: contrasting pattern with BDNF mRNA expression.

    PubMed

    Tokuyama, W; Hashimoto, T; Li, Y X; Okuno, H; Miyashita, Y

    1998-11-20

    Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, regulate synaptic functions in the hippocampus of the adult rodent. In previous studies, in situ hybridization methods have been used to evaluate regional differences in BDNF and trkB mRNA expression levels in hippocampal subregions. However, these studies have failed to reach consensus regarding the regional differences in the mRNA expression levels. In the present study, we quantitated mRNA expression levels using two different methods, ribonuclease protection assays and a quantitative reverse-transcription polymerase chain reaction technique, in four hippocampal subregions: the entorhinal cortex, dentate gyrus (DG), CA3 and CA1. These two methods yielded the same results. We found that BDNF and trkB mRNA expression levels did not covary in the four subregions. BDNF and full length trkB (trkB FL) mRNA in the entorhinal cortex and the DG show contrasting expression patterns. The expression level of BDNF mRNA was highest in the DG among the hippocampal subregions and low in the entorhinal cortex and the CA1, whereas the trkB FL mRNA expression level was highest in the entorhinal cortex, low in the DG and lowest in the CA3. These results suggest regional differences in BDNF/TrkB signaling for maintenance and modifiability of neuronal connections in the hippocampal formation.

  1. MRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects.

    PubMed

    Martínez-Pacheco, M; Hidalgo-Miranda, A; Romero-Córdoba, S; Valverde, M; Rojas, E

    2014-01-10

    Metals are a threat to human health by increasing disease risk. Experimental data have linked altered miRNA expression with exposure to some metals. MiRNAs comprise a large family of non-coding single-stranded molecules that primarily function to negatively regulate gene expression post-transcriptionally. Although several human populations are exposed to low concentrations of As, Cd and Pb as a mixture, most toxicology research focuses on the individual effects that these metals exert. Thus, this study aims to evaluate global miRNA and mRNA expression changes induced by a metal mixture containing NaAsO2, CdCl2, Pb(C2H3O2)2·3H2O and to predict possible metal-associated disease development under these conditions. Our results show that this metal mixture results in a miRNA expression profile that may be responsible for the mRNA expression changes observed under experimental conditions in which coding proteins are involved in cellular processes, including cell death, growth and proliferation related to the metal-associated inflammatory response and cancer.

  2. Genome-wide mRNA profiling and multiplex quantitative RT-PCR for forensic body fluid identification.

    PubMed

    Park, Seong-Min; Park, Seong-Yeon; Kim, Jeong-Hwan; Kang, Tae-Wook; Park, Jong-Lyul; Woo, Kwang-Man; Kim, Jong-Sik; Lee, Han-Chul; Kim, Seon-Young; Lee, Seung-Hwan

    2013-01-01

    In forensic science, identifying a tissue where a forensic specimen was originated is one of the principal challenges. Messenger RNA (mRNA) profile clearly reveals tissue-specific gene expression patterns that many attempts have been made to use RNA for forensic tissue identification. To systematically investigate the body-fluid-specific expression of mRNAs and find novel mRNA markers for forensic body fluid identification, we performed DNA microarray experiment with 24 Korean body fluid samples. Shannon entropy and Q-values were calculated for each gene, and 137 body-fluid-specific candidate genes were selected. By applying more stringent criteria, we further selected 28 candidate genes and validated them by RT-PCR and qRT-PCR. As a result, we suggest a novel combination of four body-fluid-specific mRNA makers: PPBP for blood, FDCSP for saliva, MSMB for semen and MSLN for vaginal secretion. Multiplex qRT-PCR assay was designed using the four mRNA markers and DNA/RNA co-extraction method was tested for forensic use. This study will provide a thorough examination of body-fluid-specifically expressed mRNAs, which will enlarge the possibility of practical use of RNA for forensic purpose.

  3. Identify signature regulatory network for glioblastoma prognosis by integrative mRNA and miRNA co-expression analysis.

    PubMed

    Bing, Zhi-Tong; Yang, Guang-Hui; Xiong, Jie; Guo, Ling; Yang, Lei

    2016-12-01

    Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor in adults. Patients with this disease have a poor prognosis. The objective of this study is to identify survival-related individual genes (or miRNAs) and miRNA -mRNA pairs in GBM using a multi-step approach. First, the weighted gene co-expression network analysis and survival analysis are applied to identify survival-related modules from mRNA and miRNA expression profiles, respectively. Subsequently, the role of individual genes (or miRNAs) within these modules in GBM prognosis are highlighted using survival analysis. Finally, the integration analysis of miRNA and mRNA expression as well as miRNA target prediction is used to identify survival-related miRNA -mRNA regulatory network. In this study, five genes and two miRNA modules that significantly correlated to patient's survival. In addition, many individual genes (or miRNAs) assigned to these modules were found to be closely linked with survival. For instance, increased expression of neuropilin-1 gene (a member of module turquoise) indicated poor prognosis for patients and a group of miRNA -mRNA regulatory networks that comprised 38 survival-related miRNA -mRNA pairs. These findings provide a new insight into the underlying molecular regulatory mechanisms of GBM.

  4. Chronic social subordination stress modulates glutamic acid decarboxylase (GAD) 67 mRNA expression in central stress circuits

    PubMed Central

    Makinson, Ryan; Lundgren, Kerstin H.; Seroogy, Kim B.; Herman, James P.

    2015-01-01

    Chronic social subordination is a well-known precipitant of numerous psychiatric and physiological health concerns. In this study, we examine the effects of chronic social stress in the visible burrow system (VBS) on the expression of glutamic acid decarboxylase (GAD) 67 and brain-derived neurotropic factor (BDNF) mRNA in forebrain stress circuitry. Male rats in the VBS system form a dominance hierarchy, whereby subordinate males exhibit neuroendocrine and physiological profiles characteristic of chronic exposure to stress. We found that social subordination decreases GAD67 mRNA in the peri-paraventricular nucleus region of the hypothalamus and the interfascicular nucleus of the bed nucleus of the stria terminalis (BNST), and increases in GAD67 mRNA in the hippocampus, medial prefrontal cortex, and dorsal medial hypothalamus. Expression of BDNF mRNA increased in the dorsal region of the BNST, but remained unchanged in all other regions examined. Results from this study indicate that social subordination is associated with several region-specific alterations in GAD67 mRNA expression in central stress circuits, whereas changes in the expression of BDNF mRNA are limited to the BNST. PMID:26066725

  5. miRNA and mRNA expression analysis reveals potential sex-biased miRNA expression

    PubMed Central

    Guo, Li; Zhang, Qiang; Ma, Xiao; Wang, Jun; Liang, Tingming

    2017-01-01

    Recent studies suggest that mRNAs may be differentially expressed between males and females. This study aimed to perform expression analysis of mRNA and its main regulatory molecule, microRNA (miRNA), to discuss the potential sex-specific expression patterns using abnormal expression profiles from The Cancer Genome Atlas database. Generally, deregulated miRNAs and mRNAs had consistent expression between males and females, but some miRNAs may be oppositely expressed in specific diseases: up-regulated in one group and down-regulated in another. Studies of miRNA gene families and clusters further confirmed that these sequence or location related miRNAs might have opposing expression between sexes. The specific miRNA might have greater expression divergence across different groups, suggesting flexible expression across different individuals, especially in tumor samples. The typical analysis regardless of the sex will ignore or balance these sex-specific deregulated miRNAs. Compared with flexible miRNAs, their targets of mRNAs showed relative stable expression between males and females. These relevant results provide new insights into miRNA-mRNA interaction and sex difference. PMID:28045090

  6. Gene expression profile in pelvic organ prolapse†

    PubMed Central

    Brizzolara, S.S.; Killeen, J.; Urschitz, J.

    2009-01-01

    It was hypothesized that the processes contributing to pelvic organ prolapse (POP) may be identified by transcriptional profiling of pelvic connective tissue in conjunction with light microscopy. In order to test this, we performed a frequency-matched case–control study of women undergoing hysterectomy for POP and controls. Total RNA, extracted from uterosacral and round ligament samples used to generate labeled cRNA, was hybridized to microarrays and analyzed for the expression of 32 878 genes. Significance Analysis of Microarrays (Stanford University, CA, USA) identified differentially expressed genes used for ontoanalysis. Quantitative PCR (qPCR) confirmed results. Light microscopy confirmed the tissue type and assessed inflammatory infiltration. The analysis of 34 arrays revealed 249 differentially expressed genes with fold changes (FC) larger than 1.5 and false discovery rates ≤5.2%. Immunity and defense was the most significant biological process differentially expressed in POP. qPCR confirmed the elevated steady-state mRNA levels for four genes: interleukin-6 (FC 9.8), thrombospondin 1 (FC 3.5) and prostaglandin-endoperoxide synthase 2 (FC 2.4) and activating transcription factor 3 (FC 2.6). Light microscopy showed all the samples were composed of fibromuscular connective tissue with no inflammatory infiltrates. In conclusion, genes enriched for ‘immunity and defense’ contribute to POP independent of inflammatory infiltrates. PMID:19056808

  7. CYTOKINE MRNA PROFILES FOR ISOCYANATES WITH KNOWN AND UNKNOWN POTENTIAL TO INDUCE RESPIRATORY SENSITIZATION

    EPA Science Inventory

    Cytokine mRNA Profiles for Isocyanates with Known and Unknown Potential to Induce Respiratory Sensitization. Plitnick, L.M., Loveless, S.E., Ladics, G.S., Holsapple, M.P., Smialowicz, R.J., Woolhiser, M.R., Anderson, P.K., Smith, C., Sailstad, D.M. and Selgrade, M.J.K (2002) Tox...

  8. Exercise and adrenaline increase PGC-1α mRNA expression in rat adipose tissue

    PubMed Central

    Sutherland, Lindsey N; Bomhof, Marc R; Capozzi, Lauren C; Basaraba, Susan A U; Wright, David C

    2009-01-01

    The purpose of the present investigation was to explore the effects of exercise and adrenaline on the mRNA expression of PGC-1α, a master regulator of mitochondrial biogenesis, in rat abdominal adipose tissue. We hypothesized that (1) exercise training would increase PGC-1α mRNA expression in association with increases in mitochondrial marker enzymes, (2) adrenaline would increase PGC-1α mRNA expression and (3) the effect of exercise on PGC-1α mRNA expression in white adipose tissue would be attenuated by a β-blocker. Two hours of daily swim training for 4 weeks led to increases in mitochondrial marker proteins and PGC-1α mRNA expression in epididymal and retroperitoneal fat depots. Additionally, a single 2 h bout of exercise led to increases in PGC-1α mRNA expression immediately following exercise cessation. Adrenaline treatment of adipose tissue organ cultures led to dose-dependent increases in PGC-1α mRNA expression. A supra-physiological concentration of adrenaline increased PGC-1α mRNA expression in epididymal but not retroperitoneal adipose tissue. β-Blockade attenuated the effects of an acute bout of exercise on PGC-1α mRNA expression in epididymal but not retroperitoneal fat pads. In summary, this is the first investigation to demonstrate that exercise training, an acute bout of exercise and adrenaline all increase PGC-1α mRNA expression in rat white adipose tissue. Furthermore it would appear that increases in circulating catecholamine levels may be one potential mechanism mediating exercise induced increases in PGC-1α mRNA expression in rat abdominal adipose tissue. PMID:19221126

  9. Transfection efficiency and transgene expression kinetics of mRNA delivered in naked and nanoparticle format.

    PubMed

    Phua, Kyle K L; Leong, Kam W; Nair, Smita K

    2013-03-28

    Transfection efficiencies and transgene expression kinetics of messenger RNA (mRNA), an emerging class of nucleic acid-based therapeutics, have been poorly characterized. In this study, we evaluated transfection efficiencies of mRNA delivered in naked and nanoparticle format in vitro and in vivo using GFP and luciferase as reporters. While mRNA nanoparticles transfect primary human and mouse dendritic cells (DCs) efficiently in vitro, naked mRNA could not produce any detectable gene product. The protein expression of nanoparticle-mediated transfection in vitro peaks rapidly within 5-7h and decays in a biphasic manner. In vivo, naked mRNA is more efficient than mRNA nanoparticles when administered subcutaneously. In contrast, mRNA nanoparticle performs better when administered intranasally and intravenously. Gene expression is most transient when delivered intravenously in nanoparticle format with an apparent half-life of 1.4h and lasts less than 24h, and most sustained when delivered in the naked format subcutaneously at the base of tail with an apparent half-life of 18h and persists for at least 6days. Notably, exponential decreases in protein expression are consistently observed post-delivery of mRNA in vivo regardless of the mode of delivery (naked or nanoparticle) or the site of administration. This study elucidates the performance of mRNA transfection and suggests a niche for mRNA therapeutics when predictable in vivo transgene expression kinetics is imperative.

  10. Pyruvate dehydrogenase complex: mRNA and protein expression patterns of E1α subunit genes in human spermatogenesis.

    PubMed

    Pinheiro, Ana; Silva, Maria João; Graça, Inês; Silva, Joaquina; Sá, Rosália; Sousa, Mário; Barros, Alberto; Tavares de Almeida, Isabel; Rivera, Isabel

    2012-09-10

    During spermatogenesis, germ cells undergo a complex process of cell differentiation and morphological restructuring, which depends on the coordinated expression of different genes. Some vital examples are those involved in cell energy metabolism, namely the genes encoding the E1α subunit of pyruvate dehydrogenase complex: the somatic PDHA1 (X-linked) and the testis-specific PDHA2 (autosomal). There are no data related to the study at the RNA and protein levels of PDHA genes during human spermatogenesis. The present study aimed to describe the mRNA and protein expression patterns of the human PDHA genes during spermatogenesis. Expression profiles of the PDHA1 and PDHA2 genes were characterized using different human tissues and cells. Diploid and haploid germ cells fractions were obtained from testis tissues. The mRNA profiles were analyzed by quantitative RT-PCR, whereas the protein profiles were evaluated by immunohistochemistry, western blotting and two-dimensional electrophoresis. Expression of the PDHA1 gene was found in all somatic cells, whereas expression of PDHA2 gene was restricted to germ cells. The switch from X-linked to autosomic gene expression occurred in spermatocytes. Data suggest the activation of PDHA2 gene expression is most probably a mechanism to ensure the continued expression of the protein, thus allowing germ cell viability and functionality.

  11. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion.

    PubMed

    Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W; Kulozik, Andreas E

    2016-09-01

    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells.

  12. Expression of APOBEC3B mRNA in Primary Breast Cancer of Japanese Women

    PubMed Central

    Tokunaga, Eriko; Yamashita, Nami; Tanaka, Kimihiro; Inoue, Yuka; Akiyoshi, Sayuri; Saeki, Hiroshi; Oki, Eiji; Kitao, Hiroyuki; Maehara, Yoshihiko

    2016-01-01

    Recent studies have identified the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3B (APOBEC3B) as a source of mutations in various malignancies. APOBEC3B is overexpressed in several human cancer types, including breast cancer. In this study, we analyzed APOBEC3B mRNA expression in 305 primary breast cancers of Japanese women using quantitative reverse transcription-PCR, and investigated the relationships between the APOBEC3B mRNA expression and clinicopathological characteristics, prognosis, and TP53 mutations. The expression of APOBEC3B mRNA was detected in 277 tumors and not detected in 28 tumors. High APOBEC3B mRNA expression was significantly correlated with ER- and PR-negativity, high grade and high Ki67 index. The APOBEC3B mRNA expression was highest in the triple-negative and lowest in the hormone receptor-positive/HER2-negative subtypes. The TP53 gene was more frequently mutated in the tumors with high APOBEC3B mRNA expression. High APOBEC3B mRNA expression was significantly associated with poor recurrence-free survival in all cases and the ER-positive cases. These findings were almost consistent with the previous reports from the Western countries. In conclusion, high APOBEC3B mRNA expression was related to the aggressive phenotypes of breast cancer, high frequency of TP53 mutation and poor prognosis, especially in ER-positive tumors. PMID:27977754

  13. Assessment of potential biomarkers, metallothionein and vitellogenin mRNA expressions in various chemically exposed benthic Chironomus riparius larvae

    NASA Astrophysics Data System (ADS)

    Park, Kiyun; Kwak, Inn-Sil

    2012-12-01

    The objective of this study was conducted to identify the possibility of using Chironomus metallothionein (MT) and vitellogenin (VTG) as biomarkers of stress caused by endocrinedisrupting chemicals (EDCs), heavy metals, herbicides and veterinary antibiotics. We characterized the MT and VTG cDNA in Chironomus riparius and evaluated their mRNA expression profiles following exposure to different environmental pollutants. The gene expression analysis showed that the MT mRNA levels increased significantly after long-term exposure to cadmium (Cd), copper (Cu), Lead (Pb), di(2-ethylhexyl) phthalate (DEHP), and 2,4-dichlorophenoxyacetic acid (2,4-D). Moreover, the VTG mRNA expression increased significantly in C. riparius larvae exposed to BPA, NP, DEHP, Cd, 2,4-D and fenbendazole. Evaluation of the long-term effects of environmental pollutants revealed up regulation of Chironomus MT mRNA in response to DEHP exposure among EDCs, and the level of the VTG mRNA was increased significantly following treatment with Cd and herbicide 2,4-D at all concentrations in a dose-dependent manner. These results indicate that VTG could be used as a potential biomarker of herbicide and Cd as well as EDCs, while MT was a potential biomarker of heavy metals such as Cd, Cu, and Pb in aquatic environments.

  14. Propionate induces mRNA expression of gluconeogenic genes in bovine calf hepatocytes.

    PubMed

    Zhang, Qian; Koser, Stephanie L; Donkin, Shawn S

    2016-05-01

    Hepatocytes monolayers from neonatal calves were used to determine the responses of the cytosolic phosphoenolpyruvate carboxykinase (PCK1) mRNA expression to propionate and direct hormonal cues including cyclic AMP (cAMP), dexamethasone, and insulin. The responses of other key gluconeogenic genes, including mitochondrial phosphoenolpyruvate carboxykinase (PCK2), pyruvate carboxylase (PC), and glucose-6-phosphotase (G6PC), were also measured. Expression of PCK1 was linearly induced with increasing propionate concentrations in media and 2.5 mM propionate increased PCK1 mRNA at 3 and 6h of incubation; however, the induction disappeared at 12 and 24 h. The induction of PCK1 mRNA by propionate was mimicked by 1 mM cAMP, or in combination with 5 µM dexamethasone, but not by dexamethasone alone. The induction of PCK1 mRNA by propionate or cAMP was eliminated by addition of 100 nM insulin. Additionally, expression of PCK2 and PC mRNA was also induced by propionate in a concentration-dependent manner. Consistent with PCK1, propionate-stimulated PCK2 and PC mRNA expression was inhibited by insulin. Expression of G6PC mRNA was neither affected by propionate nor cAMP, dexamethasone, insulin, or their combinations. These findings demonstrate that propionate can directly regulate its own metabolism in bovine calf hepatocytes through upregulation of PCK1, PCK2, and PC mRNA expression.

  15. Bioinspired Nanocomplex for Spatiotemporal Imaging of Sequential mRNA Expression in Differentiating Neural Stem Cells

    PubMed Central

    2015-01-01

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions. PMID:25494492

  16. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain.

  17. COX-2 mRNA expression in esophageal squamous cell carcinoma (ESCC) and effect by NSAID.

    PubMed

    Liu, X; Li, P; Zhang, S-T; You, H; Jia, J-D; Yu, Z-L

    2008-01-01

    To investigate cyclooxygenase-2 (COX-2) mRNA expression in human esophageal squamous cell carcinoma and the effect of a non-steroidal anti-inflammatory drug (NSAID) on it, in order to explore the mechanism of COX-2 in esophageal squamous cell carcinoma (ESCC) carcinogenesis and the ability of NSAID to prevent or treat ESCC. Frozen specimens of human ESCC and adjacent normal esophageal squamous epithelium pairs (n = 22) were examined for COX-2 mRNA expression by reverse-transcription polymerase chain reaction (RT-PCR). After incubation with aspirin (a non-selective COX inhibitor) or Nimesulide (a selective COX-2 inhibitor), the proliferation status of two human esophageal squamous cancer cell lines, EC-9706 and EC-109, was quantified by 3-(4,5-dimethyl-thiazol-2yl)-2,5-diphenyltetrazolium bromide assay. The expression of COX-2 mRNA in these cells was detected by RT-PCR. COX-2 mRNA was expressed in 12 of 22 (54.5%) ESCC tissue samples, but it was undetectable in all the specimens of adjacent normal esophageal squamous epithelium COX-2 mRNA expression. Both aspirin (5-20 mmol/L) and Nimesulide (0.1-0.8 mmol/L) inhibited EC-9706 cell line proliferation and suppressed its COX-2 mRNA expression dose-dependently. However, only aspirin (5-20 mmol/L) could inhibit proliferation in the EC-109 cell line and suppress COX-2 mRNA expression. Nimesulide (0.1-0.8 mmol/L) could neither inhibit EC-109 cell growth nor suppress COX-2 mRNA expression. COX-2 mRNA expression is a frequent phenomenon in human ESCC tissue samples and plays an important role in the carcinogenesis of ESCC. NSAID may be useful in the chemoprevention and therapy of human ESCC and its effects are likely to be mediated by modulating COX-2 activity.

  18. LncSubpathway: a novel approach for identifying dysfunctional subpathways associated with risk lncRNAs by integrating lncRNA and mRNA expression profiles and pathway topologies.

    PubMed

    Xu, Yanjun; Li, Feng; Wu, Tan; Xu, Yingqi; Yang, Haixiu; Dong, Qun; Zheng, Meiyu; Shang, Desi; Zhang, Chunlong; Zhang, Yunpeng; Li, Xia

    2017-02-01

    Long non-coding RNAs (lncRNAs) play important roles in various biological processes, including the development of many diseases. Pathway analysis is a valuable aid for understanding the cellular functions of these transcripts. We have developed and characterized LncSubpathway, a novel method that integrates lncRNA and protein coding gene (PCG) expression with interactome data to identify disease risk subpathways that functionally associated with risk lncRNAs. LncSubpathway identifies the most relevance regions which are related with risk lncRNA set and implicated with study conditions through simultaneously considering the dysregulation extent of lncRNAs, PCGs and their correlations. Simulation studies demonstrated that the sensitivity and false positive rates of LncSubpathway were within acceptable ranges, and that LncSubpathway could accurately identify dysregulated regions that related with disease risk lncRNAs within pathways. When LncSubpathway was applied to colorectal carcinoma and breast cancer subtype datasets, it identified cancer type- and breast cancer subtype-related meaningful subpathways. Further, analysis of its robustness and reproducibility indicated that LncSubpathway was a reliable means of identifying subpathways that functionally associated with lncRNAs. LncSubpathway is freely available at http://www.bio-bigdata.com/lncSubpathway/.

  19. Dietary oils mediate cortisol kinetics and the hepatic mRNA expression profile of stress-responsive genes in gilthead sea bream (Sparus aurata) exposed to crowding stress. Implications on energy homeostasis and stress susceptibility.

    PubMed

    Pérez-Sánchez, Jaume; Borrel, Míriam; Bermejo-Nogales, Azucena; Benedito-Palos, Laura; Saera-Vila, Alfonso; Calduch-Giner, Josep A; Kaushik, Sadasivam

    2013-06-01

    Juveniles of gilthead sea bream were fed with plant protein-based diets with fish oil (FO diet) or vegetable oils (66VO diet) as dietary lipid sources. No differences in growth performance were found between both groups, and fish with an average body mass of 65-70 g were crowded (90-100 kg/m(3)) to assess the stress response within the 72 h after the onset of stressor. The rise in plasma cortisol and glucose levels was higher in stressed fish of group 66VO (66VO-S) than in FO group (FO-S), but the former stressed group regained more quickly the cortisol resting values of the corresponding non-stressed diet group. The cell-tissue repair response represented by derlin-1, 75 kDa glucose-regulated protein and 170 kDa glucose-regulated protein was triggered at a lower level in 66VO-S than in FO-S fish. This occurred in concert with a long-lasting up-regulation of glucocorticoid receptors, antioxidant enzymes, enzyme subunits of the mitochondrial respiratory chain, and enzymes involved in tissue fatty acid uptake and β-oxidation. This gene expression pattern allows a metabolic phenotype that is prone to "high power" mitochondria, which would support the replacement of fish oil with vegetable oils when theoretical requirements in essential fatty acids for normal growth are met by diet.

  20. Dietary glycerol for quail: association between productive performance and COX III mRNA expression.

    PubMed

    Silva, S C C; Gasparino, E; Batista, E; Tanamati, F; Vesco, A P D; Lala, B; de Oliveira, D P

    2016-05-25

    This study was carry out to evaluate mRNA expression of mitochondrial cytochrome c oxidase III in the Pectoralis superficialis muscle of 28-day-old quails fed diets containing 0, 8, and 12% glycerol. Total RNA was extracted (N = 10) and cDNA was amplified using specifics primers for qRT-PCR. Feed efficiency and feed intake were evaluated. COX III mRNA expression in breast muscle was higher in the group fed with 12% glycerol (0.863 AU); no differences were observed in the expression of this gene between the muscle of animals fed diets without glycerol (0.357 AU) and 8% glycerol (0.415 AU). Quails that showed greater COX III mRNA expression also showed the lowest feed efficiency. These results show that there is a difference in COX III mRNA expression in breast muscle of 28-day-old quail fed diets different concentrations of glycerol.

  1. Transcription Expression and Clinical Significance of Dishevelled-3 mRNA and δ-Catenin mRNA in Pleural Effusions from Patients with Lung Cancer

    PubMed Central

    Li, Xiao-Yan; Liu, Shu-Li; Cha, Na; Zhao, Yu-Jie; Wang, Shao-Cheng; Li, Wei-Nan; Wang, En-Hua; Wu, Guang-Ping

    2012-01-01

    Objective. To evaluate diagnostic utility of Dishevelled-3 (DVL-3) mRNA and δ-catenin mRNA expression in pleural effusions of patients with lung cancer. Methods. DVL-3 mRNA and δ-catenin mRNA levels were assessed by performing RT-PCR on pleural effusion specimens from patients with lung cancer (n = 75) and with lung benign disease (n = 51). Results. The expressions of DVL-3 mRNA and δ-catenin mRNA were significantly higher in malignant than in benign lung disease (P < 0.01) and were obviously higher than cytology in adenocarcinoma (P < 0.01). In single use, DVL-3 mRNA had the highest specificity (94.1%) and PPV (95.7%), whereas δ-catenin mRNA had the highest sensitivity (92.0%) and NPV (88.5%). When combinations of markers were evaluated together, DVL-3 mRNA and δ-catenin mRNA gave a high-diagnostic performance: sensitivity of 100.0%, NPV of 100.0%, and accuracy of 96.0%, respectively. Conclusion. As molecular markers of detecting pleural micrometastasis, DVL-3 mRNA and δ-catenin mRNA are helpful to diagnose the cancer cells in pleural effusions of patients with lung cancer. PMID:22461838

  2. Reduced beta 2-microglobulin mRNA levels in transgenic mice expressing a designed hammerhead ribozyme.

    PubMed Central

    Larsson, S; Hotchkiss, G; Andäng, M; Nyholm, T; Inzunza, J; Jansson, I; Ahrlund-Richter, L

    1994-01-01

    We have generated three artificial hammerhead ribozymes, denoted 'Rz-b', 'Rz-c' and 'Rz-d', with different specificities for exon II of the mouse beta-2-microglobulin (beta 2M) mRNA. In this study we tested for ribozyme mediated reduction of beta 2M mRNA in a cell line and in transgenic mice. Transfections of either of the Rz-b, Rz-c or Rz-d plasmids into a mouse cell-line (NIH/3T3) revealed reductions of beta 2M mRNA substrate in each case. Ribozyme expression in individual transfected clones was accompanied with an up to 80% reduction of beta 2M mRNA levels. Rz-c was selected for a transgenic study. Seven Rz-c transgenic founder animals were identified from which three ribozyme expressing families were established and analysed. Expression of the ribozyme transgene was tested for and detected in lung, kidney and spleen. Expression was accompanied with reduction of the beta 2M mRNA levels of heterozygous (Rz+/-) animals compared to non-transgenic litter mates. The effect was most pronounced in lung with more than 90% beta 2M mRNA reduction in individual mice. In summary, expression of our ribozymes in a cell free system, in a cell-line and in transgenic mice were all accompanied with reductions of beta 2M mRNA levels. Images PMID:8036151

  3. CDKN2A (p16) mRNA decreased expression is a marker of poor prognosis in malignant high-grade glioma.

    PubMed

    Sibin, M K; Bhat, Dhananjaya I; Narasingarao, K V L; Lavanya, Ch; Chetan, G K

    2015-09-01

    Human high-grade glioma is heterogeneous in nature based on pathological and genetic profiling. Various tumour suppressor gene alterations are considered as prognostic markers in high-grade glioma. Gene expression of CDKN2A (p16) is used in various cancers as a prognostic biomarker along with methylation and deletion status of this gene. Expression levels of p16 mRNA were not studied as a biomarker in gliomas before. In this study, we have performed mRNA quantification analysis on 48 high-grade glioma tissues and checked for a possible prognostic role. The decreased expression of p16 mRNA in majority of the tumour tissues (57.1 %) was observed when compared to control tissues (P = 0.02). mRNA expression level was correlated with clinical variables also. p16 deletion status and BMI1 mRNA expression were also considered for comparison. p16 mRNA was negatively correlated with the BMI1 mRNA (P = <0.0001) but not with p16 deletion. p16 mRNA expression, midline shift in MRI and tumour type were able to predict patient survival in overall survival (OS) and progression-free survival (PFS). p16 mRNA could independently predict prognosis of OS (P = 0.0146) and PFS (P = 0.0305) in multivariate analysis. We have shown that p16 mRNA expression can act as an independent prognostic biomarker in high-grade glioma.

  4. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    SciTech Connect

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M. )

    1990-08-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures.

  5. A circadian neuropeptide PDF in the honeybee, Apis mellifera: cDNA cloning and expression of mRNA.

    PubMed

    Sumiyoshi, Miho; Sato, Seiji; Takeda, Yukimasa; Sumida, Kazunori; Koga, Keita; Itoh, Tsunao; Nakagawa, Hiroyuki; Shimohigashi, Yasuyuki; Shimohigashi, Miki

    2011-12-01

    Pigment-dispersing factor (PDF) is a pacemaker hormone regulating the locomotor rhythm in insects. In the present study, we cloned the cDNAs encoding the Apis PDF precursor protein, and found that there are at least seven different pdf mRNAs yielded by an alternative splicing site and five alternative polyadenylation sites in the 5'UTR and 3'UTR regions. The amino acid sequence of Apis PDF peptide has a characteristic novel amino acid residue, aspargine (Asn), at position 17. Quantitative real-time PCR of total and 5'UTR insertion-type pdf mRNAs revealed, for the first time, that the expression levels change in a circadian manner with a distinct trough at the beginning of night in LD conditions, and at the subjective night under DD conditions. In contrast, the expression level of 5'UTR deletion-type pdf mRNAs was about half of that of the insertion type, and the expression profile failed to show a circadian rhythm. As the expression profile of the total pdf mRNA exhibited a circadian rhythm, transcription regulated at the promoter region was supposed to be controlled by some of the clock components. Whole mount in situ hybridization revealed that 14 lateral neurons at the frontal margin of the optic lobe express these mRNA isoforms. PDF expressing cells examined with a newly produced antibody raised against Apis PDF were also found to have a dense supply of axon terminals in the optic lobes and the central brain.

  6. Differential expression of IGF-1 mRNA isoforms in colorectal carcinoma and normal colon tissue.

    PubMed

    Kasprzak, Aldona; Szaflarski, Witold; Szmeja, Jacek; Andrzejewska, Małgorzata; Przybyszewska, Wiesława; Kaczmarek, Elżbieta; Koczorowska, Maria; Kościński, Tomasz; Zabel, Maciej; Drews, Michał

    2013-01-01

    The insulin-like growth factor (IGF)-1 gene consists of 6 exons resulting in the expression of 6 variant forms of mRNA (IA, IB, IC, IIA, IIB and IIC) due to an alternative splicing. The mechanisms of IGF-1 gene splicing and the role of local expression manifested by IGF-1 mRNA variants in colorectal carcinoma (CRC) have not been extensively investigated. Therefore, the aim of our study was to analyse the expression of IGF-1 mRNA isoforms [A, B, C, P1 (class I) and P2 (class II)], as well as the protein expression in CRC and control samples isolated from 28 patients. The expression of Ki-67 was also analysed and clinical data were obtained. For this purpose, we used quantitative real-time PCR (qPCR) and immunocytochemistry. The expression of mRNAs coding for all splicing isoforms of IGF-1 was observed in every tissue sample studied, with a significantly lower expression noted in the CRC as compared to the control samples. The cytoplasmic expression of IGF-1 protein was found in 50% of the CRC and in ~40% of the non-tumor tissues; however, no significant quantitative inter-group differences were observed. The expression of the IGF-1 gene in the 2 groups of tissues was controlled by the P1 and P2 promoters in a similar manner. No significant differences were detected in the expression of the IGF-1 A and B isoforms; however, their expression was significantly higher compared to that of isoform C. No significant differences were observed between the expression of Ki-67 mRNA in the CRC and control tissue even though the expression of the Ki-67 protein was higher in the CRC compared to the control samples. Ki-67 protein expression was associated with the macroscopic and microscopic aspects of CRC. A significant positive correlation was found between the local production of total mRNA and isoform A and the expression of Ki-67 mRNA, although only in the non-tumor tissues. In CRC samples, the local expression of the total IGF-1 mRNA and all splicing isoforms of IGF-1 mRNA

  7. Unique expression features of cancer-type organic anion transporting polypeptide 1B3 mRNA expression in human colon and lung cancers

    PubMed Central

    2014-01-01

    Background We have previously identified the cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3) mRNA in several human colon and lung cancer tissues. Ct-OATP1B3 is a variant of the liver-type OATP1B3 (Lt-OATP1B3) mRNA, which is a hepatocyte plasma membrane transporter with broad substrate specificity. However, in cancer tissues, both the detailed characteristics of Ct-OATP1B3 mRNA expression and its biological functions remain unclear. With this point in mind, we sought to characterize Ct-OATP1B3 mRNA expression in colon and lung cancer tissues. In addition, we attempted to obtain functional implication of Ct-OATP1B3 in cancer cells. Methods Matched pairs of cancer and normal tissues were collected from 39 colon cancer and 28 lung cancer patients. The OATP1B3 mRNA expression levels in each of these tissues were separately determined by quantitative real-time polymerase chain reaction. Mann–Whitney U test and Fisher’s exact test were used in statistical analysis. The Ct-OATP1B3 functional expression in colon cancer cells was then examined by Western blotting and transport analyses. Results Ct-OATP1B3 mRNA, but not Lt-OATP1B3 mRNA, was abundantly expressed in colon cancer tissues at a higher detection frequency (87.2%) than that of the adjacent normal tissues (2.6%). Furthermore, it was found that Ct-OATP1B3 mRNA expression was often detected in early colon cancer stages (88.9%, n = 18), and that its expression was associated with well-differentiated colon cancer statuses. On the other hand, Ct-OATP1B3 mRNA also showed a predominant and cancer-associated expression profile in lung tissues, although at frequencies and expression levels that were lower than those obtained from colon cancer. As for attempts to clarify the Ct-OATP1B3 functions, neither protein expression nor transport activity could be observed in any of the cell lines examined. Conclusions Based on the unique characteristics of the Ct-OATP1B3 mRNA expression profile identified in

  8. Localization and differential regulation of angiotensinogen mRNA expression in the vessel wall.

    PubMed Central

    Naftilan, A J; Zuo, W M; Inglefinger, J; Ryan, T J; Pratt, R E; Dzau, V J

    1991-01-01

    Recent data demonstrate the existence of a vascular renin angiotensin system. In this study we examine the localization of angiotensinogen mRNA in the blood vessel wall of two rat strains, the Wistar and Wistar Kyoto (WKY), as well as the regulation of vascular angiotensinogen mRNA expression by dietary sodium. Northern blot analysis and in situ hybridization histochemistry demonstrate that in both strains angiotensinogen mRNA is detected in the aortic medial smooth muscle layer as well as the periaortic fat. In WKY rats fed a 1.6% sodium diet, angiotensinogen mRNA concentration is 2.6-fold higher in the periaortic fat than in the smooth muscle, as analyzed by quantitative slot blot hybridization. Angiotensinogen mRNA expression in the medial smooth muscle layer is sodium regulated. After 5 d of a low (0.02%) sodium diet, smooth muscle angiotensinogen mRNA levels increase 3.2-fold (P less than 0.005) as compared with the 1.6% sodium diet. In contrast, angiotensinogen mRNA level in the periaortic fat is not influenced by sodium diet. In summary, our data demonstrate regional (smooth muscle vs. periaortic fat) differential regulation of angiotensinogen mRNA levels in the blood vessel wall by sodium. This regional differential regulation by sodium may have important physiological implications. Images PMID:2010543

  9. Hypothalamic expression of NPY mRNA, vasopressin mRNA and CRF mRNA in response to food restriction and central administration of the orexigenic peptide GHRP-6.

    PubMed

    Johnstone, Louise E; Srisawat, Rungrudee; Kumarnsit, Ekkasit; Leng, Gareth

    2005-03-01

    In this study, we examined the effects of restricted feeding and of central administration of an orexigenic ghrelin agonist GHRP-6 on peptide mRNA expression in the hypothalamus. We compared rats fed ad libitum with rats that were allowed food for only 2?h every day, and treated with a continuous chronic i.c.v. infusion of GHRP-6 or vehicle. Ad libitum fed rats exposed to GHRP-6 increased their food intake and body weight over 6 days, but, at the end of this period, neuropeptide Y mRNA expression in the arcuate nucleus was not different to that in control rats. By contrast, expression of neuropeptide Y mRNA in the arcuate nucleus was elevated in food-restricted rats, consistent with the interpretation that increased expression reflects increased hunger. However, neuropeptide Y mRNA expression was no greater in food-restricted rats infused with GHRP-6 than in food-restricted rats infused with vehicle; thus if the drive to eat was stronger in rats infused with GHRP-6, this was not reflected by higher levels of neuropeptide Y mRNA expression. Expression of vasopressin mRNA and corticotrophin releasing factor (CRF) mRNA in the paraventricular nucleus (PVN) was not changed by food restriction. GHRP-6 infusion increased CRF mRNA expression in ad libitum rats only.

  10. Gene-environment interaction signatures by quantitative mRNA profiling in exfoliated buccal mucosal cells.

    PubMed

    Spivack, Simon D; Hurteau, Gregory J; Jain, Ritu; Kumar, Shalini V; Aldous, Kenneth M; Gierthy, John F; Kaminsky, Laurence S

    2004-09-15

    Exfoliated cytologic specimens from mouth (buccal) epithelium may contain viable cells, permitting assay of gene expression for direct and noninvasive measurement of gene-environment interactions, such as for inhalation (e.g., tobacco smoke) exposures. We determined specific mRNA levels in exfoliated buccal cells collected by cytologic brush, using a recently developed RNA-specific real-time quantitative reverse transcription-PCR strategy. In a pilot study, metabolic activity of exfoliated buccal cells was verified by 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium assay in vitro. Transcriptional activity was observed, after timed in vivo exposure to mainstream tobacco smoke resulted in induction of CYP1B1 in serially collected buccal samples from the one subject examined. For a set of 11 subjects, mRNA expression of nine genes encoding carcinogen- and oxidant-metabolizing enzymes qualitatively detected in buccal cells was then shown to correlate with that in laser-microdissected lung from the same individuals (Chi2 = 52.91, P < 0.001). Finally, quantitative real-time reverse transcription-PCR assays for seven target gene (AhR, CYP1A1, CYP1B1, GSTM1, GSTM3, GSTP1, and GSTT1) and three reference gene [glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-actin, and 36B4] transcripts were performed on buccal specimens from 42 subjects. In multivariate analyses, gender, tobacco smoke exposure, and other factors were associated with the level of expression of CYP1B1, GSTP1, and other transcripts on a gene-specific basis, but substantial interindividual variability in mRNA expression remained unexplained. Within the power limits of this pilot study, gene expression signature was not clearly predictive of lung cancer case or control status. This noninvasive and quantitative method may be incorporated into high-throughput human applications for probing gene-environment interactions associated with cancer.

  11. Assessment of cathepsin mRNA expression and enzymatic activity during early embryonic development in the yellowtail kingfish Seriola lalandi.

    PubMed

    Palomino, Jaime; Herrera, Giannina; Torres-Fuentes, Jorge; Dettleff, Phillip; Patel, Alok; Martínez, Víctor

    2017-02-21

    In pelagic species such as Seriola lalandi, survival of both the eggs and embryos depends on yolk processing during oocyte maturation and embryo development. The main enzymes involved in these processes are the cathepsins, which are essential for the hydration process, acquiring buoyancy and nutrition of the embryo before hatching. This study aimed to investigate the mRNA expression profiles of cathepsins B, D and L (catb, catd and catl) and the activity of these enzymes during early development in S. lalandi. We included previtellogenic oocytes (PO). All three enzymes were highly expressed in PO, but the expression was reduced throughout development. Between PO and recently spawned eggs (E1) the transcript to catb and catd decreased, unlike catl. Cathepsin B activity, showed stable levels between PO until blastula stage (E4). High activities levels of cathepsins D and L were observed in E1 in comparison with later developmental stages. Cathepsin L activity remained constant until E1, consistent with observations in other pelagic spawners, where its participation in a second protolithic cleavage of the yolk proteins, has been proposed for this enzyme. Their profiles of both mRNA expression and enzymatic activity indicate the importance of these enzymes during early development and suggest different roles in egg yolk processing for the hydration process and nutrition in early embryos in this species.

  12. Sodium regulation of angiotensinogen mRNA expression in rat kidney cortex and medulla.

    PubMed Central

    Ingelfinger, J R; Pratt, R E; Ellison, K; Dzau, V J

    1986-01-01

    Rat liver angiotensinogen cDNA (pRang 3) and mouse renin cDNA (pDD-1D2) were used to identify angiotensinogen and renin mRNA sequences in rat kidney cortex and medulla in rats on high and low salt diet. Angiotensinogen mRNA sequences were present in renal cortex and medulla in apparently equal proportions, whereas renin mRNA sequences were found primarily in renal cortex. Average relative signal of rat liver to whole kidney angiotensinogen mRNA was 100:3. Densitometric analysis of Northern blots demonstrated that renal cortical angiotensinogen mRNA concentrations increased 3.5-fold (P less than 0.001) and medulla, 1.5-fold (P less than 0.005) on low sodium compared with high sodium diet, whereas renal cortex renin mRNA levels increased 6.8-fold (P less than 0.0005). Dietary sodium did not significantly influence liver angiotensinogen mRNA levels. These findings provide evidence for sodium regulation of renal renin and angiotensinogen mRNA expressions, which supports potential existence of an intrarenally regulated RAS and suggest that different factors regulate renal and hepatic angiotensinogen. Images PMID:3533999

  13. Seasonal changes in peptide, receptor and ion channel mRNA expression in the caudal neurosecretory system of the European flounder (Platichthys flesus).

    PubMed

    Lu, Weiqun; Worthington, Jonathan; Riccardi, Daniela; Balment, Richard J; McCrohan, Catherine R

    2007-01-01

    The caudal neurosecretory system (CNSS) of the euryhaline flounder Platichthys flesus has suggested roles in osmoregulatory, reproductive and nutritional adaptation, as fish migrate between seawater (winter) and brackish/freshwater (summer) environments. This study examined seasonal changes in mRNA expression profile of functionally important genes in the CNSS. cDNAs encoding neuropeptides, receptors and ion channels were cloned by reverse transcriptase polymerase chain reaction (RT-PCR) and screening of a flounder CNSS cDNA library. The expression profile of cloned genes was determined by real-time RT-PCR at 2-month intervals throughout the year in CNSS from seawater-adapted fish. Plasma cortisol (measured by radioimmunoassay) showed a peak in April, the time of spawning. Expression levels of mRNA for peptides urotensins I and II (UI, UII) and corticotropin releasing factor (CRF) all showed a seasonal cycle, with lowest expression in April and highest in August-October. The expression of CRF2(UI), UT(UII) and CRF1 receptors was not correlated with corresponding peptide expression. Receptors for potential neuromodulators of CNSS activity also displayed a seasonal mRNA expression profile. Glucocorticoid, 5-hydroxytryptamine, kappa-opioid and glutamate receptor expression peaked around April, suggesting that modulation of electrical activity of the neurosecretory Dahlgren cells is of particular importance at this time. Expression of mRNA for L-type Ca(2+) and Ca-activated K(+) channels was lower during the summer months. These channels underlie electrical bursting activity in Dahlgren cells. Ion channel mRNA expression was also lower in CNSS from flounder fully adapted to freshwater as opposed to seawater, consistent with previously reported observations of reduced bursting activity in Dahlgren cells from freshwater-adapted CNSS. These findings support the hypothesis that the CNSS is functionally reprogrammed to cope with changes in physiological challenge as fish

  14. [The expression of human telomerase reverse transcriptase mRNA and its significance in acute leukemia].

    PubMed

    Meng, Xiao-Li; Lin, Mao-Fang; Jin, Jie

    2003-02-01

    To investigate the expression of hTERT mRNA in bone marrow mononuclear cells (MNCs) from acute leukemia patients, the method of semi-quntitative RT-PCR was used to examine the expression of hTERT mRNA in marrow MNCs, and the telomerase activity of marrow MNCs was determined with the method of TRAP-PCR-ELISA by using a commercial kit. The results indicated that the expression of hTERT mRNA of marrow MNCs in 30 untreated AL patients was markedly higher than that in 12 CR cases (0.71 +/- 0.34 vs 0.43 +/- 0.25, P < 0.05) and 6 normal volunteers (0.71 +/- 0.34 vs 0.22 +/- 0.21, P < 0.01), respectively. Telomerase activity of marrow MNCs in 30 untreated AL patients was significantly higher than that in 12 CR cases (0.235 +/- 0.395 vs 0.012 +/- 0.015, P = 0.007). Moreover, there was a positive correlation between the hTERT mRNA synthesis and telomerase activity in AL cells (r = 0.421, P < 0.01). The pencentage of blast cells in marrow smear of the untreated AL patients was positively correlated with both the expression of hTERT mRNA and the telomerase activity of bone marrow MNCs (r = 0.457, P < 0.05 and r = 0.411, P < 0.05), respectively. It is concluded that the expression of hTERT mRNA in bone marrow MNCs from untreated AL patients was correlated with their telomerase activity. It is suggested that the expression of hTERT mRNA leukemic cells indicates their higher proliferation ability.

  15. Expression of a streptomycete leaderless mRNA encoding chloramphenicol acetyltransferase in Escherichia coli.

    PubMed Central

    Wu, C J; Janssen, G R

    1997-01-01

    The chloramphenicol acetyltransferase (cat) gene from Streptomyces acrimycini encodes a leaderless mRNA. Expression of the cat coding sequence as a leaderless mRNA from a modified lac promoter resulted in chloramphenicol resistance in Escherichia coli. Transcript mapping with nuclease S1 confirmed that the 5' end of the cat message initiated at the A of the AUG translational start codon. Site-directed mutagenesis of the lac promoter or the cat start codon abolished chloramphenicol resistance, indicating that E. coli initiated translation at the 5' terminal AUG of the cat leaderless mRNA. Addition of 5'-AUGC-3' to the 5' end of the cat mRNA resulted in translation occurring also from the reading frame defined by the added AUG triplet, suggesting that a 5'-terminal start codon is an important recognition feature for initiation and establishing reading frame during translation of leaderless mRNA. Addition of an untranslated leader and Shine-Dalgarno sequence to the cat coding sequence increased cat expression in a cat:lacZ fusion; however, the level of expression was significantly lower than when a fragment of the bacteriophage lambda cI gene, also encoding a leaderless mRNA, was fused to lacZ. These results indicate that in the absence of an untranslated leader and Shine-Dalgarno sequence, the streptomycete cat mRNA is translated by E. coli; however, the cat translation signals, or other features of the cat mRNA, provide for only a low level of expression in E. coli. PMID:9352935

  16. Neuropeptide Y mRNA expression levels following chronic olanzapine, clozapine and haloperidol administration in rats.

    PubMed

    Huang, X-F; Deng, Chao; Zavitsanou, Katerina

    2006-06-01

    Using quantitative in situ hybridization, this study examined regional changes in rat brain mRNA levels encoding neuropeptide Y (NPY) following olanzapine, clozapine and haloperidol administration (1.2, 1.5 and 2.0 mg/kg, oral) for 36 days. The NPY mRNA expression levels and patterns were examined after the last drug administration at both time points enabling the measurement of immediate effect at 2h and the effects after 48 h of drug administration. It was found that all these drugs had an immediate effect on NPY mRNA expression, while virtually all these changes normalized 48 h after the drug treatments. A similarity in altered NPY mRNA expression patterns was seen between the olanzapine and clozapine groups; however, haloperidol was very different. Olanzapine and clozapine administration decreased NPY mRNA levels in the nucleus accumbens, striatum and anterior cingulate cortex (from -60% to -77%, p<0.05). Haloperidol decreased NPY mRNA expression in the amygdala and hippocampus (-69%, -64%, p<0.05). In the lateral septal nucleus, NPY mRNA levels significantly decreased in the olanzapine group (-66%, p<0.05), a trend toward a decrease was observed in the clozapine group, and no change was found in the haloperidol treated group. These results suggest that the different effects of atypical and typical antipsychotics on NPY systems may reflect the neural chemical mechanisms responsible for the differences between these drugs in their effects in treating positive and negative symptoms of schizophrenia. The immediate decrease of NPY mRNA levels suggests an immediate reduction of NPY biosynthesis in response to these drugs.

  17. Cytochrome P450IA mRNA expression in feral Hudson River tomcod

    SciTech Connect

    Kreamer, G.L.; Squibb, K.; Gioeli, D.; Garte, S.J.; Wirgin, I. )

    1991-06-01

    The authors sought to determine if levels of cytochrome P450IA gene expression are environmentally induced in feral populations of Hudson River tomcod, a cancer prone fish, and whether laboratory exposure of tomcod to artificially spiked and naturally contaminated Hudson sediments can elicit a significant response. Using Northern blot analysis, they found levels of P450IA mRNA in tomcod collected from two Hudson River sites higher than those in tomcod from a river in Maine. Depuration of environmentally induced Hudson tomcod P450IA mRNA was rapid, with an initial detectable decline in P450 gene expression by 8 hr and basal levels reached by 5 days. Intraperitoneal injection of {beta}-napthoflavone in depurated Hudson tomcod resulted in a 15-fold induction of P450 gene expression within 26 hr. Exposure of depurated Hudson tomcod to natural sediment spiked with two PAHs resulted in a 7-fold induction of P450 gene expression. Exposure of depurated tomcod to sediment from a contaminated Hudson site also resulted in a 7- to 15-fold induction of P450IA mRNA expression. Northern blot analysis revealed a second polymorphic cytochrome P450IA mRNA band in some tomcod which was also detected by Southern blot analysis. Induction of cytochrome P450IA mRNA in Atlantic tomcod may provide a sensitive biomarker of environmentally relevant concentrations of some pollutants in the Hudson and other northeastern tidal rivers.

  18. Eosinophil cationic protein mRNA expression in children with bronchial asthma.

    PubMed

    Yu, H Y; Li, X Y; Cai, Z F; Li, L; Shi, X Z; Song, H X; Liu, X J

    2015-11-13

    Studies have shown that eosinophils are closely related to pathogenesis of bronchial asthma. Eosinophils release eosinophil cationic protein (ECP), which plays an important role in infection and allergic reactions. Serum ECP mRNA expression in children with bronchial asthma has not been adequately investigated. We analyzed serum ECP mRNA expression in 63 children with bronchial asthma and 21 healthy children by using reverse-transcriptase polymerase chain reaction to understand the role of ECP in children with bronchial asthma. The children with bronchial asthma were segregated into acute-phase and stable-phase groups, based on the severity of the illness. Serum ECP mRNA expression in children with bronchial asthma (0.375 ± 0.04) was significantly higher than that in healthy controls (0.20 ± 0.02; P < 0.05). Additionally, children in the acute-phase group showed higher ECP mRNA expression level (0.44 ± 0.06) than those in the stable-phase (0.31 ± 0.03) and healthy control groups (0.20 ± 0.02; P < 0.05), while the level in the stable-phase (0.31 ± 0.03) was markedly higher than that in the healthy control group (0.20 ± 0.02; P < 0.05). Detection of serum ECP mRNA expression level has possible applications in the diagnosis and treatment of children with bronchial asthma.

  19. Chemokines mRNA expression in relation to the Macrophage Migration Inhibitory Factor (MIF) mRNA and Vascular Endothelial Growth Factor (VEGF) mRNA expression in the microenvironment of endometrial cancer tissue and normal endometrium: a pilot study.

    PubMed

    Giannice, Raffaella; Erreni, Marco; Allavena, Paola; Buscaglia, Mauro; Tozzi, Roberto

    2013-11-01

    Tumor microenvironment inflammatory cells play a major role in cancer progression. Among these, the Tumor Associated Macrophages (TAMs) infiltration depends on the kind of chemokine, cytokines and growth factors secreted by the tumor cells and by the stroma in response to the cancer invasion. TAMs have been found to promote anti-tumor response in early stages and to stimulate neovascularization and metastases in advanced disease. In the microenvironment chemo-attractants of many human cancers, MIF and VEGF correlate with an increased TAMs recruitment. In addition, MIF enhances tumor cells metastases by modulating the immune responses and by promoting the angiogenesis related to VEGF. On the contrary the inhibition of MIF can lead to cell cycle arrest and apoptosis. Some chemokines (e.g. CXCL12, CXCL11, CXCL8) and their receptors, thanks to their ability to modulate migration and proliferation, are involved in the angiogenetic process. In this study we compared the expression of MIF mRNA with VEGF mRNA expression and with mRNA expression of other chemokines related to neo-angiogenesis, such as CXCL12, CXCL11, CXCL8 and CXCR4, in human endometrial cancer tissue (EC) and normal endometrium (NE). Fresh samples of EC tissue and NE were extracted from 15 patients with FIGO stage I-III undergoing primary surgery. Some of the tissue was sent for histology and part of it was treated with RNA later and stored at -80°C. Four patients dropped out. A significant up-regulation of MIF mRNA in EC tissue versus NE samples (P=0.01) was observed in all 11 patients. The MIF mRNA over-expression was coincident with a VEGF mRNA overexpression in 54% of patients (P=NS). MIF mRNA was inversely related to CXCL12 mRNA expression (P=0.01). MIF over-expression was significantly related to low grading G1-2 (P=0.01), endometrial type I (P=0.05), no lymphovascular spaces invasion (P=0.01) and 3years DFS (P=0.01). As reported in previous studies on patients with breast cancer, our data suggest

  20. Developmental expression of parvalbumin mRNA in the cerebral cortex and hippocampus of the rat.

    PubMed

    de Lecea, L; del Río, J A; Soriano, E

    1995-08-01

    Parvalbumin (PARV) belongs to the family of calcium-binding proteins bearing the EF hand domain. Immunocytochemical studies in the cerebral cortex have demonstrated that neurons containing PARV include two types of GABAergic interneurons, namely, basket and axo-axonic chandelier cells. The present study examines the onset and pattern of PARV mRNA expression during the development of rat neocortex and hippocampus by means of 'in situ' hybridization with an oligonucleotide probe corresponding to rat PARV cDNA. In animals aged P0-P6 no signal was detected above background in neocortex or hippocampus. At P8, a few cortical cells displayed a number of silver grains just above background levels. By P10 PARV mRNA-expressing cells in the neocortex were detected almost exclusively in layer V of somatosensory, frontal and cingulate cortices. At P12 PARV mRNA was mainly detected in layers IV, V and VIa. By P14 there was a marked overall increase in the entire neocortex, including layer II-III, both in the number of cells and in their intensity of labelling. Further maturation in the pattern of PARV mRNA concentration was observed between P16 and P21. In the hippocampus low hybridization was observed at P10-P12. In subsequent stages both the number of positive cells and the intensity of labelling increased steadily. No clear-cut radial gradients for the expression of PARV mRNA were observed in the hippocampal region. Our results show that the developmental radial gradient followed by PARV mRNA expression in the neocortex does not follow an 'inside-out' gradient, consistent with previous immunocytochemical findings. Taken together, these data indicate that the developmental sequence followed by the PARV protein directly reflects mRNA abundance and suggest that PARV mRNA expression correlates with the functional maturation of cortical interneurons.

  1. Myxovirus Resistance Protein A mRNA Expression Kinetics in Multiple Sclerosis Patients Treated with IFNβ

    PubMed Central

    Libertinova, Jana; Meluzinova, Eva; Tomek, Ales; Horakova, Dana; Kovarova, Ivana; Matoska, Vaclav; Kumstyrova, Simona; Zajac, Miroslav; Hyncicova, Eva; Liskova, Petra; Houzvickova, Eva; Martinkovic, Lukas; Bojar, Martin; Havrdova, Eva; Marusic, Petr

    2017-01-01

    Introduction Interferon-β (IFNß) is the first-line treatment for relapsing-remitting multiple sclerosis. Myxovirus resistance protein A (MxA) is a marker of IFNß bioactivity, which may be reduced by neutralizing antibodies (NAbs) against IFNß. The aim of the study was to analyze the kinetics of MxA mRNA expression during long-term IFNβ treatment and assess its predictive value. Methods A prospective, observational, open-label, non-randomized study was designed in multiple sclerosis patients starting IFNß treatment. MxA mRNA was assessed prior to initiation of IFNß therapy and every three months subsequently. NAbs were assessed every six months. Assessment of relapses was scheduled every three months during 24 months of follow up. The disease activity was correlated to the pretreatment baseline MxA mRNA value. In NAb negative patients, clinical status was correlated to MxA mRNA values. Results 119 patients were consecutively enrolled and 107 were included in the final analysis. There was no correlation of MxA mRNA expression levels between baseline and month three. Using survival analysis, none of the selected baseline MxA mRNA cut off points allowed prediction of time to first relapse on the treatment. In NAb negative patients, mean MxA mRNA levels did not significantly differ in patients irrespective of relapse status. Conclusion Baseline MxA mRNA does not predict the response to IFNß treatment or the clinical status of the disease and the level of MxA mRNA does not correlate with disease activity in NAb negative patients. PMID:28081207

  2. Ribosome profiling-guided depletion of an mRNA increases cell growth rate and protein secretion

    NASA Astrophysics Data System (ADS)

    Kallehauge, Thomas Beuchert; Li, Shangzhong; Pedersen, Lasse Ebdrup; Ha, Tae Kwang; Ley, Daniel; Andersen, Mikael Rørdam; Kildegaard, Helene Faustrup; Lee, Gyun Min; Lewis, Nathan E.

    2017-01-01

    Recombinant protein production coopts the host cell machinery to provide high protein yields of industrial enzymes or biotherapeutics. However, since protein translation is energetically expensive and tightly controlled, it is unclear if highly expressed recombinant genes are translated as efficiently as host genes. Furthermore, it is unclear how the high expression impacts global translation. Here, we present the first genome-wide view of protein translation in an IgG-producing CHO cell line, measured with ribosome profiling. Through this we found that our recombinant mRNAs were translated as efficiently as the host cell transcriptome, and sequestered up to 15% of the total ribosome occupancy. During cell culture, changes in recombinant mRNA translation were consistent with changes in transcription, demonstrating that transcript levels influence specific productivity. Using this information, we identified the unnecessary resistance marker NeoR to be a highly transcribed and translated gene. Through siRNA knock-down of NeoR, we improved the production- and growth capacity of the host cell. Thus, ribosomal profiling provides valuable insights into translation in CHO cells and can guide efforts to enhance protein production.

  3. Ribosome profiling-guided depletion of an mRNA increases cell growth rate and protein secretion

    PubMed Central

    Kallehauge, Thomas Beuchert; Li, Shangzhong; Pedersen, Lasse Ebdrup; Ha, Tae Kwang; Ley, Daniel; Andersen, Mikael Rørdam; Kildegaard, Helene Faustrup; Lee, Gyun Min; Lewis, Nathan E.

    2017-01-01

    Recombinant protein production coopts the host cell machinery to provide high protein yields of industrial enzymes or biotherapeutics. However, since protein translation is energetically expensive and tightly controlled, it is unclear if highly expressed recombinant genes are translated as efficiently as host genes. Furthermore, it is unclear how the high expression impacts global translation. Here, we present the first genome-wide view of protein translation in an IgG-producing CHO cell line, measured with ribosome profiling. Through this we found that our recombinant mRNAs were translated as efficiently as the host cell transcriptome, and sequestered up to 15% of the total ribosome occupancy. During cell culture, changes in recombinant mRNA translation were consistent with changes in transcription, demonstrating that transcript levels influence specific productivity. Using this information, we identified the unnecessary resistance marker NeoR to be a highly transcribed and translated gene. Through siRNA knock-down of NeoR, we improved the production- and growth capacity of the host cell. Thus, ribosomal profiling provides valuable insights into translation in CHO cells and can guide efforts to enhance protein production. PMID:28091612

  4. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  5. OPIATE EXPOSURE AND WITHDRAWAL DYNAMICALLY REGULATE mRNA EXPRESSION IN THE SEROTONERGIC DORSAL RAPHE NUCLEUS

    PubMed Central

    Lunden, Jason; Kirby, Lynn G.

    2013-01-01

    Previous results from our lab suggest that hypofunctioning of the serotonergic (5-HT) dorsal raphe nucleus (DRN) is involved in stress-induced opiate reinstatement. To further investigate the effects of morphine dependence and withdrawal on the 5-HT DRN system, we measured gene expression at the level of mRNA in the DRN during a model of morphine dependence, withdrawal and post withdrawal stress exposure in rats. Morphine pellets were implanted for 72h and then either removed or animals were injected with naloxone to produce spontaneous or precipitated withdrawal, respectively. Animals exposed to these conditions exhibited withdrawal symptoms including weight loss, wet dog shakes and jumping behavior. Gene expression for brain-derived neurotrophic factor (BDNF), TrkB, corticotrophin releasing-factor (CRF)-R1, CRF-R2, GABAA-α1, μ-opioid receptor (MOR), 5-HT1A, tryptophan hydroxylase2 and the 5-HT transporter was then measured using quantitative real-time PCR at multiple time-points across the model of morphine exposure, withdrawal and post withdrawal stress. Expression levels of BDNF, TrkB and CRF-R1 mRNA were decreased during both morphine exposure and following seven days of withdrawal. CRF-R2 mRNA expression was elevated after seven days of withdrawal. 5-HT1A receptor mRNA expression was decreased following 3 hours of morphine exposure, while TPH2 mRNA expression was decreased after seven days of withdrawal with swim stress. There were no changes in the expression of GABAA-α1, MOR or 5-HT transporter mRNA. Collectively these results suggest that alterations in neurotrophin support, CRF-dependent stress signaling, 5-HT synthesis and release may underlie 5-HT DRN hypofunction that can potentially lead to stress-induced opiate relapse. PMID:24055683

  6. Detection of MDR1 mRNA expression with optimized gold nanoparticle beacon

    NASA Astrophysics Data System (ADS)

    Zhou, Qiumei; Qian, Zhiyu; Gu, Yueqing

    2016-03-01

    MDR1 (multidrug resistance gene) mRNA expression is a promising biomarker for the prediction of doxorubicin resistance in clinic. However, the traditional technical process in clinic is complicated and cannot perform the real-time detection mRNA in living single cells. In this study, the expression of MDR1 mRNA was analyzed based on optimized gold nanoparticle beacon in tumor cells. Firstly, gold nanoparticle (AuNP) was modified by thiol-PEG, and the MDR1 beacon sequence was screened and optimized using a BLAST bioinformatics strategy. Then, optimized MDR1 molecular beacons were characterized by transmission electron microscope, UV-vis and fluorescence spectroscopies. The cytotoxicity of MDR1 molecular beacon on L-02, K562 and K562/Adr cells were investigated by MTT assay, suggesting that MDR1 molecular beacon was low inherent cytotoxicity. Dark field microscope was used to investigate the cellular uptake of hDAuNP beacon assisted with ultrasound. Finally, laser scanning confocal microscope images showed that there was a significant difference in MDR1 mRNA expression in K562 and K562/Adr cells, which was consistent with the results of q-PCR measurement. In summary, optimized MDR1 molecular beacon designed in this study is a reliable strategy for detection MDR1 mRNA expression in living tumor cells, and will be a promising strategy for in guiding patient treatment and management in individualized medication.

  7. Promoter methylation and mRNA expression of HLA-G in relation to HLA-G protein expression in colorectal cancer.

    PubMed

    Swets, Marloes; Seneby, Lina; Boot, Arnoud; van Wezel, Tom; Gelderblom, Hans; van de Velde, Cornelis J H; van den Elsen, Peter J; Kuppen, Peter J K

    2016-09-01

    Expression of human leukocyte antigen-G (HLA-G) is a suggested mechanism used by tumor cells to escape from host immune recognition and destruction. Advances in the field have made it evident that HLA-G is expressed in different types of malignancies including colorectal cancer (CRC). We analyzed HLA-G expression in 21 low passage CRC cell lines. The level of DNA methylation of the HLA-G gene and the presence of mRNA encoding HLA-G was measured. Moreover, HLA-G protein expression was determined by flow cytometry and immunohistochemistry (IHC). IHC was performed with three different monoclonal antibodies (mAbs) (4H84, MEM-G/1 and MEM-G/2). In addition, HLA-G protein expression was measured in matching primary tumor tissues. RNA analysis using RT-PCR followed by sequencing in 6 samples indicated strong homology of the PCR product with HLA-G3 in 5 samples. In accordance, in none of the cell lines, HLA-G1 expression was detected by flow-cytometry. Furthermore, no association between HLA-G DNA methylation patterns and HLA-G mRNA expression was observed. In addition, different immunohistochemical staining profiles among various anti-HLA-G mAbs were observed. In conclusion, the results of this study show that the HLA-G3 isoform was expressed in some of the CRC cell lines irrespective of the level of DNA methylation of HLA-G.

  8. Cytochrome p450 mRNA expression in the rodent brain: species-, sex-, and region-dependent differences.

    PubMed

    Stamou, Marianna; Wu, Xianai; Kania-Korwel, Izabela; Lehmler, Hans-Joachim; Lein, Pamela J

    2014-02-01

    Cytochrome P450 (P450) enzymes play a critical role in the activation and detoxication of many neurotoxic chemicals. Although research has largely focused on P450-mediated metabolism in the liver, emerging evidence suggests that brain P450s influence neurotoxicity by modulating local metabolite levels. As a first step toward better understanding the relative role of brain P450s in determining neurotoxic outcome, we characterized mRNA expression of specific P450 isoforms in the rodent brain. Adult mice (male and female) and rats (male) were treated with vehicle, phenobarbital, or dexamethasone. Transcripts for CYP2B, CYP3A, CYP1A2, and the orphan CYP4X1 and CYP2S1 were quantified in the liver, hippocampus, cortex, and cerebellum by quantitative (real-time) polymerase chain reaction. These P450s were all detected in the liver with the exception of CYP4X1, which was detected in rat but not mouse liver. P450 expression profiles in the brain varied regionally. With the exception of the hippocampus, there were no sex differences in regional brain P450 expression profiles in mice; however, there were marked species differences. In the liver, phenobarbital induced CYP2B expression in both species. Dexamethasone induced hepatic CYP2B and CYP3A in mice but not rats. In contrast, brain P450s did not respond to these classic hepatic P450 inducers. Our findings demonstrate that P450 mRNA expression in the brain varies by region, regional brain P450 profiles vary between species, and their induction varies from that of hepatic P450s. These novel data will be useful for designing mechanistic studies to examine the relative role of P450-mediated brain metabolism in neurotoxicity.

  9. microRNA expression in autonomous thyroid adenomas: Correlation with mRNA regulation.

    PubMed

    Floor, Sébastien L; Trésallet, Christophe; Hébrant, Aline; Desbuleux, Alice; Libert, Frédérick; Hoang, Catherine; Capello, Matteo; Andry, Guy; van Staveren, Wilma C G; Maenhaut, Carine

    2015-08-15

    The objective of the study was to identify the deregulated miRNA in autonomous adenoma and to correlate the data with mRNA regulation. Seven autonomous adenoma with adjacent healthy thyroid tissues were investigated. Twelve miRNAs were downregulated and one was upregulated in the tumors. Combining bioinformatic mRNA target prediction and microarray data on mRNA regulations allowed to identify mRNA targets of our deregulated miRNAs. A large enrichment in mRNA encoding proteins involved in extracellular matrix organization and different phosphodiesterases were identified among these putative targets. The direct interaction between miR-101-3p and miR-144-3p and PDE4D mRNA was experimentally validated. The global miRNA profiles were not greatly modified, confirming the definition of these tumors as minimal deviation tumors. These results support a role for miRNA in the regulation of extracellular matrix proteins and tissue remodeling occurring during tumor development, and in the important negative feedback of the cAMP pathway, which limits the consequences of its constitutive activation in these tumors.

  10. MRNA expression of genes regulating lipid metabolism in ringed seals (Pusa hispida) from differently polluted areas.

    PubMed

    Castelli, Martina Galatea; Rusten, Marte; Goksøyr, Anders; Routti, Heli

    2014-01-01

    There is a growing concern about the ability of persistent organic pollutants (POPs) to influence lipid metabolism. Although POPs are found at high concentrations in some populations of marine mammals, for example in the ringed seal (Pusa hispida) from the Baltic Sea, little is known about the effects of POPs on their lipid metabolism. An optimal regulation of lipid metabolism is crucial for ringed seals during the fasting/molting season. This is a physiologically stressful period, during which they rely on the energy stored in their fat reserves. The mRNA expression levels for seven genes involved in lipid metabolism were analyzed in liver and/or blubber tissue from molting ringed seals from the polluted Baltic Sea and a less polluted reference location, Svalbard (Norway). mRNA expression of genes encoding peroxisome proliferator-activated receptors (PPAR) α and γ and their target genes acyl-coenzyme A oxidase 1 (ACOX1) and cluster of differentiation 36 (CD36) were analyzed in liver. mRNA expression level of genes encoding PPARβ, PPARγ and their target genes encoding fatty acid binding protein 4 (FABP4) and adiponectin (ADIPOQ) were measured in inner and middle blubber layers. In addition, we evaluated the influence of molting status on hepatic mRNA expression of genes encoding PPARs and their target genes in ringed seals from Svalbard. Our results show higher mRNA expression of genes encoding hepatic PPARγ and adipose PPARβ, FABP4, and ADIPOQ in the Baltic seals compared to the Svalbard seals. A positive relationship between mRNA expressions of genes encoding hepatic PPARγ, adipose FABP4, adipose ADIPOQ and ΣPOP concentrations was observed. These findings suggest that lipid metabolism may be affected by contaminant exposure in the Baltic population. mRNA expression of genes encoding PPARβ, PPARγ, FABP4 and ADIPOQ were similar between the mid and inner adipose layer. Hepatic mRNA expression of genes encoding PPARα and PPARγ was higher in the pre

  11. mRNA Distribution and Heterologous Expression of Orphan Cytochrome P450 20A1

    PubMed Central

    Stark, Katarina; Wu, Zhong-Liu; Bartleson, Cheryl J.; Guengerich, F. Peter

    2015-01-01

    Cytochrome P450 (P450) 20A1 is one of the so-called “orphan” P450s without assigned biological function. mRNA expression was detected in human liver and extrahepatic expression was noted in several human brain regions, including substantia nigra, hippocampus, and amygdala, using conventional polymerase chain reaction and RNA dot blot analysis. Adult human liver contained 3-fold higher overall mRNA levels than whole brain, although specific regions (i.e., hippocampus and substantia nigra) exhibited higher mRNA expression levels than liver. Orthologous full-length and truncated transcripts of P450 20A1 were transcribed and sequenced from rat liver, heart, and brain. In rat, the concentrations of full-length transcripts were 3–4 fold higher in brain and heart than liver. In situ hybridization of rat whole brain sections showed a similar mRNA expression pattern as observed for human P450 20A1, indicating expression in substantia nigra, hippocampus, and amygdala. A number of N-terminal modifications of the codon-optimized human P450 20A1 sequence were prepared and expressed in Escherichia coli, and two of the truncated derivatives showed characteristic P450 spectra (200–280 nmol P450/l). Although the recombinant enzyme system oxidized NADPH, no catalytic activity was observed with the heterologously expressed protein when a number of potential steroids and biogenic amines were surveyed as potential substrates. The function of P450 20A1 remains unknown; however, the sites of mRNA expression in human brain and the conservation among species may suggest possible neurophysiological function. PMID:18541694

  12. Effect of long real space flight on the whole genome mRNA expression properties in medaka Oryzias latipes

    NASA Astrophysics Data System (ADS)

    Kozlova, Olga; Gusev, Oleg; Levinskikh, Margarita; Sychev, Vladimir; Poddubko, Svetlana

    The current study is addressed to the complex analysis of whole genome mRNA expression profile and properties of splicing variants formation in different organs of medaka fish exposed to prolonged space flight in the frame of joint Russia-Japan research program “Aquarium-AQH”. The fish were kept in the AQH joint-aquariums system in October-December 2013, followed by fixation in RNA-preserving buffers and freezing during the space flight. The samples we returned to the Earth frozen in March 2013 and mRNAs from four fish were sequenced in organ-specific manner using HiSeq Illumina sequencing platform. The ground group fish treated in the same way was used as a control. The comparison between the groups revealed space group-specific specific mRNA expression pattern. More than 50 genes (including several types of myosins) were down-regulated in the space group. Moreover, we found an evidence for formation of space group-specific splicing variants of mRNA. Taking together, the data suggest that in spite of aquatic environment, space flight-associated factors have a strong effect on the activity of fish genome. This work was supported in part by subsidy of the Russian Government to support the Program of competitive growth of Kazan Federal University among world class academic centres and universities.

  13. Prediction of flocculation ability of brewing yeast inoculates by flow cytometry, proteome analysis, and mRNA profiling.

    PubMed

    Heine, Franziska; Stahl, Frank; Sträuber, Heike; Wiacek, Claudia; Benndorf, Dirk; Repenning, Cornelia; Schmidt, Frank; Scheper, Thomas; von Bergen, Martin; Harms, Hauke; Müller, Susann

    2009-02-01

    The ability of brewing yeast to flocculate is an important feature for brewing of qualitatively good beer. Flocculation involves two main cell wall structures, which are the flocculation proteins (flocculins) and mannans, to which these flocculins bind. Unfortunately, in practice, the flocculation ability may get lost after several repitches. Flow cytometry was employed to analyze glucose and mannose structures of the cell surface by application of fluorescent lectins. Validation of the expression of the flocculin genes Lg-FLO1, FLO1, FLO5, and FLO9 was carried out using microarray techniques. SDS-PAGE, western blot, and ESI-MS/MS analyses served to isolate and determine yeast cell flocculins. Mannose and glucose labeling with fluorescent lectins allowed differentiating powdery and flocculent yeast cells under laboratory conditions. Using microarray techniques and proteomics, the four flocculation genes Lg-FLO1, FLO1, FLO5, FLO9, and the protein Lg-Flo1p were identified as factors of major importance for flocculation. The expression of the genes was several times higher in flocculent yeast cells than in powdery ones. Flow cytometry is a fast and simple method to quantify the proportions of powdery and flocculent yeast cells in suspensions under defined cultivation conditions. However, differentiation under industrial conditions will require mRNA and protein expression profiling.

  14. Deregulated expression of VHL mRNA variants in papillary thyroid cancer.

    PubMed

    Baldini, Enke; Tuccilli, Chiara; Arlot-Bonnemains, Yannick; Chesnel, Frank; Sorrenti, Salvatore; De Vito, Corrado; Catania, Antonio; D'Armiento, Eleonora; Antonelli, Alessandro; Fallahi, Poupak; Watutantrige-Fernando, Sara; Tartaglia, Francesco; Barollo, Susi; Mian, Caterina; Bononi, Marco; Arceri, Stefano; Mascagni, Domenico; Vergine, Massimo; Pironi, Daniele; Monti, Massimo; Filippini, Angelo; Ulisse, Salvatore

    2017-03-05

    Recent findings demonstrated that a subset of papillary thyroid cancers (PTCs) is characterized by reduced expression of the von Hippel-Lindau (VHL) tumor suppressor gene, and that lowest levels associated with more aggressive PTCs. In the present study, the levels of the two VHL mRNA splicing variants, VHL-213 (V1) and VHL-172 (V2), were measured in a series of 96 PTC and corresponding normal matched tissues by means of quantitative RT-PCR. Variations in the mRNA levels were correlated with patients' clinicopathological parameters and disease-free interval (DFI). The analysis of VHL mRNA in tumor tissues, compared to normal matched tissues, revealed that its expression was either up- or down-regulated in the majority of PTC. In particular, V1 and V2 mRNA levels were altered, respectively, in 78 (81.3%) and 65 (67.7%) out of the 96 PTCs analyzed. A significant positive correlation between the two mRNA variants was observed (p < 0.001). Univariate analysis documented the lack of association between each variant and clinicopathological parameters such as age, tumor size, histology, TNM stage, lymph node metastases, and BRAF mutational status. However, a strong correlation was found between altered V1 or V2 mRNA levels and DFI. Multivariate regression analysis indicated higher V1 mRNA values, along with lymph node metastases at diagnosis, as independent prognostic factors predicting DFI. In conclusion, the data reported demonstrate that VHL gene expression is deregulated in the majority of PTC tissues. Of particular interest is the apparent protective role exerted by VHL transcripts against PTC recurrences.

  15. Effects of long-term smoking on the activity and mRNA expression of CYP isozymes in rats

    PubMed Central

    He, Xiao-Meng; Zhou, Ying; Xu, Ming-Zhen; Li, Yang; Li, Hu-Qun

    2015-01-01

    Background To investigate the effect of long-term smoking on the activity and mRNA expression of cytochrome P450 (CYP) enzymes. Methods Sprague-Dawley rats were exposed to passive smoking 6 cigarettes per day for 180 days. A cocktail solution which contained phenacetin (20 mg/kg), tolbutamide (5 mg/kg), chlorzoxazone (20 mg/kg) and midazolam (10 mg/kg) was given orally to rats. Blood samples were collected at pre-specified time points and the concentrations of probe drugs in plasma were determined by HPLC-MS/MS. The corresponding pharmacokinetic parameters were calculated by DAS 3.0. In addition, real-time RT-PCR was used to analyze the mRNA expression of CYP1A2, CYP2C11, CYP2E1 and CYP3A1 in rat liver. Results There were no significant influences of pharmacokinetic profiles of chlorzoxazone in long-term smoking pretreated rats. But many pharmacokinetic profiles of phenacetin, tolbutamide, and midazolam in long-term smoking pretreated rats were affected significantly (P<0.05). The results suggested that long-term smoking had significant inhibition effects on CYP2C11 and CYP3A1 while CYP1A2 enzyme activity was induced. Furthermore, Long-term smoking had no effects on rat CYP2E1. The mRNA expression results were consistent with the pharmacokinetic results. Conclusions Alterations of CYP450 enzyme activities may fasten or slow down excretion with corresponding influence on drug efficacy or toxicity in smokers compared to nonsmokers, which may lead to clinical failures of lung cancer therapy or toxicity in smokers. PMID:26623094

  16. Expression Profiling of Cell Lines Expressing Regulated NP2 Transcripts

    DTIC Science & Technology

    2004-09-01

    EGF in the presence or absence of exogenous HRS . The results will provide a framework fo r the interpretation of future gene expression studies in...e studies require further verification. Small sam- ple size, tissue heterogeneity, and inter-indivi- dual variations among human patients may result ... studies we proposed using gene expression profiling to determine change s in gene expression as a function of expression of the neurofibromatosis-2 (NF2

  17. CYP1A mRNA expression in redeye mullets (Liza haematocheila) from Bohai Bay, China.

    PubMed

    An, Lihui; Hu, Jianying; Yang, Min; Zheng, Binghui; Wei, An; Shang, Jingjing; Zhao, Xingru

    2011-04-01

    Induction of cytochrome P4501A (CYP1A) has been used as a biomarker in fish for monitoring aromatic and organic contaminants. In this study, a partial of CYP1A gene in redeye mullet (Liza haematocheila) was isolated and sequenced, and then a real-time quantitative reverse-transcription polymerase chain reaction assay was developed for quantification of CYP1A mRNA normalized to β-actin. The developed method was applied to detect CYP1A mRNA expression in redeye mullets collected from Nandaihe (reference site) and Dashentang (impacted site) in Bohai Bay, China. CYP1A mRNA expression values were significantly elevated in redeye mullets from Dashentang compared to a reference site--Nandaihe, which was correlated with the contents of different environmentally relevant pollutants in tissues, particularly with PCBs and PBDEs.

  18. Gene expression profile of pulpitis

    PubMed Central

    Galicia, Johnah C.; Henson, Brett R.; Parker, Joel S.; Khan, Asma A.

    2016-01-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the Significance Analysis of Microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (≥30mm on VAS) compared to those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  19. Gene expression profile of pulpitis.

    PubMed

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology.

  20. Altered expression of hyaluronan synthase and hyaluronidase mRNA may affect hyaluronic acid distribution in keloid disease compared with normal skin.

    PubMed

    Sidgwick, Gary P; Iqbal, Syed A; Bayat, Ardeshir

    2013-05-01

    Keloid disease (KD) is a fibroproliferative disorder characterised partly by an altered extracellular matrix (ECM) profile. In fetal scarring, hyaluronic acid (HA) expression is increased, but is reduced in KD tissue compared with normal skin (NS). The expression of Hyaluronan Synthase (HAS) and hyaluronidase (HYAL) in KD and NS tissue were investigated for the first time using a range of techniques. Hyaluronan synthase and HYAL mRNA expression were significantly increased in NS tissue compared with KD tissue (P < 0.05). Immunohistological analysis of tissue indicated an accumulation of HAS and HYAL protein expression in KD compared with NS due to the thicker epidermis. No differences were observed in mRNA or protein expression in KD and NS fibroblasts. Reduced expression of HAS and HYAL may alter HA synthesis, degradation and accumulation in KD. Better understanding of the role of HA in KD may lead to novel therapeutic approaches to address the resulting ECM imbalance.

  1. Predicting gene targets of perturbations via network-based filtering of mRNA expression compendia

    PubMed Central

    Cosgrove, Elissa J.; Zhou, Yingchun; Gardner, Timothy S.; Kolaczyk, Eric D.

    2008-01-01

    Motivation: DNA microarrays are routinely applied to study diseased or drug-treated cell populations. A critical challenge is distinguishing the genes directly affected by these perturbations from the hundreds of genes that are indirectly affected. Here, we developed a sparse simultaneous equation model (SSEM) of mRNA expression data and applied Lasso regression to estimate the model parameters, thus constructing a network model of gene interaction effects. This inferred network model was then used to filter data from a given experimental condition of interest and predict the genes directly targeted by that perturbation. Results: Our proposed SSEM–Lasso method demonstrated substantial improvement in sensitivity compared with other tested methods for predicting the targets of perturbations in both simulated datasets and microarray compendia. In simulated data, for two different network types, and over a wide range of signal-to-noise ratios, our algorithm demonstrated a 167% increase in sensitivity on average for the top 100 ranked genes, compared with the next best method. Our method also performed well in identifying targets of genetic perturbations in microarray compendia, with up to a 24% improvement in sensitivity on average for the top 100 ranked genes. The overall performance of our network-filtering method shows promise for identifying the direct targets of genetic dysregulation in cancer and disease from expression profiles. Availability: Microarray data are available at the Many Microbe Microarrays Database (M3D, http://m3d.bu.edu). Algorithm scripts are available at the Gardner Lab website (http://gardnerlab.bu.edu/SSEMLasso). Contact: kolaczyk@math.bu.edu Supplementary information: Supplementary Data are available at Bioinformatics on line. PMID:18779235

  2. Integration of MicroRNA, mRNA, and Protein Expression Data for the Identification of Cancer-Related MicroRNAs

    PubMed Central

    Seo, Jiyoun; Jin, Daeyong; Choi, Chan-Hun; Lee, Hyunju

    2017-01-01

    MicroRNAs (miRNAs) are responsible for the regulation of target genes involved in various biological processes, and may play oncogenic or tumor suppressive roles. Many studies have investigated the relationships between miRNAs and their target genes, using mRNA and miRNA expression data. However, mRNA expression levels do not necessarily represent the exact gene expression profiles, since protein translation may be regulated in several different ways. Despite this, large-scale protein expression data have been integrated rarely when predicting gene-miRNA relationships. This study explores two approaches for the investigation of gene-miRNA relationships by integrating mRNA expression and protein expression data. First, miRNAs were ranked according to their effects on cancer development. We calculated influence scores for each miRNA, based on the number of significant mRNA-miRNA and protein-miRNA correlations. Furthermore, we constructed modules containing mRNAs, proteins, and miRNAs, in which these three molecular types are highly correlated. The regulatory interactions between miRNA and genes in these modules have been validated based on the direct regulations, indirect regulations, and co-regulations through transcription factors. We applied our approaches to glioblastomas (GBMs), ranked miRNAs depending on their effects on GBM, and obtained 52 GBM-related modules. Compared with the miRNA rankings and modules constructed using only mRNA expression data, the rankings and modules constructed using mRNA and protein expression data were shown to have better performance. Additionally, we experimentally verified that miR-504, highly ranked and included in the identified modules, plays a suppressive role in GBM development. We demonstrated that the integration of both expression profiles allows a more precise analysis of gene-miRNA interactions and the identification of a higher number of cancer-related miRNAs and regulatory mechanisms. PMID:28056026

  3. The influence of eccentric exercise on mRNA expression of skeletal muscle regulators.

    PubMed

    Jensky, Nicole E; Sims, Jennifer K; Rice, Judd C; Dreyer, Hans C; Schroeder, E Todd

    2007-11-01

    To evaluate change in myostatin, follistatin, MyoD and SGT mRNA gene expression using eccentric exercise to study mechanisms of skeletal muscle hypertrophy. Young (28+/-5 years) and older (68+/-6 years) men participated in a bout of maximal single-leg eccentric knee extension on an isokinetic dynamometer at 60 degrees /s: six sets, 12-16 maximal eccentric repetitions. Muscle biopsies of the vastus lateralis were obtained from the dominant leg before exercise and 24 h after exercise. Paired t tests were used to compare change (pre versus post-exercise) for normalized gene expression in all variables. Independent t tests were performed to test group differences (young vs. older). A probability level of PmRNA expression in young subjects 24 h after eccentric exercise. Similarly, we did not observe significant change in myostatin (-3.83+/-8.8; P=0.23), follistatin (-2.66+/-5.2; P=0.17), MyoD (-0.13+/-3.1; P=0.90), or SGT (-1.6+/-3.5; P=0.19) mRNA expression in older subjects. Furthermore, the non-significant changes in mRNA expression were not different between young and older subjects, P>0.23 for all variables. Our data suggests that a single bout of maximal eccentric exercise does not alter myostatin, follistatin, MyoD or SGT mRNA gene expression in young or older subjects.

  4. Differences in expression of retinal pigment epithelium mRNA between normal canines

    PubMed Central

    2004-01-01

    Abstract A reference database of differences in mRNA expression in normal healthy canine retinal pigment epithelium (RPE) has been established. This database identifies non-informative differences in mRNA expression that can be used in screening canine RPE for mutations associated with clinical effects on vision. Complementary DNA (cDNA) pools were prepared from mRNA harvested from RPE, amplified by PCR, and used in a subtractive hybridization protocol (representational differential analysis) to identify differences in RPE mRNA expression between canines. The effect of relatedness of the test canines on the frequency of occurrence of differences was evaluated by using 2 unrelated canines for comparison with 2 female sibling canines of blue heeler/bull terrier lineage. Differentially expressed cDNA species were cloned, sequenced, and identified by comparison to public database entries. The most frequently observed differentially expressed sequence from the unrelated canine comparison was cDNA with 21 base pairs (bp) identical to the human epithelial membrane protein 1 gene (present in 8 of 20 clones). Different clones from the same-sex sibling RPE contained repetitions of several short sequence motifs including the human epithelial membrane protein 1 (4 of 25 clones). Other prevalent differences between sibling RPE included sequences similar to a chicken genetic marker sequence motif (5 of 25), and 6 clones with homology to porcine major histocompatibility loci. In addition to identifying several repetitively occurring, noninformative, differentially expressed RPE mRNA species, the findings confirm that fewer differences occurred between siblings, highlighting the importance of using closely related subjects in representational difference analysis studies. PMID:15352545

  5. A retrospective study on TS mRNA expression and prediction of the effects of adjuvant oral 5-fluorouracil in breast cancer

    PubMed Central

    AKI, FUMINORI; BANDO, YOSHIMI; TAKAHASHI, TETSUYUKI; UEHARA, HISANORI; NUMOTO, SATOSHI; ITO, SUEYOSHI; SASA, MITSUNORI; IZUMI, KEISUKE

    2010-01-01

    Nucleic acid-metabolizing enzymes, such as thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), thymidine phosphorylase (TP) and orotate phosphoribosyl transferase (OPRT), have attracted attention as candidates for response determinants of 5-fluorouracil (5-FU). Whether the expression levels of these enzymes can be adopted as valuable parameters for 5-FU sensitivity in breast cancer has yet to be elucidated. In the present study, intratumoral mRNA expression of TS, DPD, TP and OPRT were determined in formalin-fixed paraffin-embedded surgical specimens collected from 217 breast cancer patients, using the Danenberg Tumor Profile method, which combines microdissection and real-time-polymerase chain reaction. The significance of these enzymes as prognostic and 5-FU efficacy-predicting factors was evaluated. Our data showed that a low DPD expression is related to a high nuclear grade and other factors including hormone receptor-negativity. Low expression levels of TP were found in hormone receptor-negative tumors. TS and OPRT expression were not related to various clinicopathological factors, but patients with a high TS mRNA expression showed a significantly poorer prognosis in cases where 5-FU was not administered. The efficacy of 5-FU was more significant when administered for more than 6 months in the group with a high TS mRNA expression. These data suggest that TS mRNA expression in breast cancer tissue is an ideal predictor of outcomes for patients with no administration of 5-FU, and of the efficacy of 5-FU. PMID:22870098

  6. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments

    PubMed Central

    Ingolia, Nicholas T.; Brar, Gloria A.; Rouskin, Silvia; McGeachy, Anna M.; Weissman, Jonathan S.

    2012-01-01

    Recent studies highlight the importance of translational control in determining protein abundance, underscoring the value of measuring gene expression at the level of translation. We present a protocol for genome-wide, quantitative analysis of in vivo translation by deep sequencing. This ribosome profiling approach maps the exact positions of ribosomes on transcripts by nuclease footprinting. The nuclease-protected mRNA fragments are converted into a DNA library suitable for deep sequencing using a strategy that minimizes bias. The abundance of different footprint fragments in deep sequencing data reports on the amount of translation of a gene. Additionally, footprints reveal the exact regions of the transcriptome that are translated. To better define translated reading frames, we describe an adaptation that reveals the sites of translation initiation by pre-treating cells with harringtonine to immobilize initiating ribosomes. The protocol we describe requires 5–7 days to generate a completed ribosome profiling sequencing library. Sequencing and data analysis requires a further 4 – 5 days. PMID:22836135

  7. EXPRESSION OF AHR AND ARNT MRNA IN CULTURED HUMAN ENDOMETRIAL EXPLANTS EXPOSED TO TCDD

    EPA Science Inventory

    Expression of AhR and ARNT mRNA in cultured human endometrial explants exposed to TCDD.

    Pitt JA, Feng L, Abbott BD, Schmid J, Batt RE, Costich TG, Koury ST, Bofinger DP.

    Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599, USA.

    Endom...

  8. Development of a mRNA profiling multiplex for the inference of organ tissues.

    PubMed

    Lindenbergh, Alexander; van den Berge, Margreet; Oostra, Roelof-Jan; Cleypool, Cindy; Bruggink, Annette; Kloosterman, Ate; Sijen, Titia

    2013-09-01

    Forensic characterisation of organ tissue generally occurs through histological and immunological assays of limited sensitivity. Here, we explore an alternative approach and examine a total of 41 candidate mRNA markers for their ability to differentiate between brain, lung, liver, skeletal muscle, heart, kidney and skin. Various selection rounds are applied involving 85 organ tissues (36 excised autopsy specimens and 49 frozen tissue sections, with at least ten specimens for each organ type), 20 commercially available RNAs from different human tissues and at least two specimens of blood, saliva, semen, vaginal mucosa, menstrual secretion or touch samples. Finally, 14 markers are regarded tissue-specific and included in an endpoint RT-PCR multiplex together with one general muscle, one blood and one housekeeping marker. This 17-plex is successfully used to analyse a blind test set of 20 specimens including mixtures, and samples derived from stabbing of organ tissues. With the blind test set samples, it is shown that an earlier described interpretation strategy for RNA cell typing results [1] is also effective for tissue inference. As organ-typing is embedded in a procedure of combined DNA/RNA extraction and analysis, both donor and organ type information is derived from the same sample. Some autopsy specimens presented DNA profiles characteristic for degraded DNA. Nevertheless, the organ-typing multiplex could generate full RNA profiles, which is probably due to small sizes of the amplicons. This assay provides a novel tool for analysis of samples from violent crimes.

  9. Molecular cloning of the SMAD4 gene and its mRNA expression analysis in ovarian follicles of the Yangzhou goose (Anser cygnoides).

    PubMed

    Huang, Z; Yuan, X; Wang, M; Wu, N; Song, Y; Chen, Y; Zhang, Y; Xu, Q; Chen, G; Zhao, W

    2016-08-01

    Mothers against decapentaplegic homolog 4 (SMAD4) is an important protein in animal reproduction. It plays pivotal roles in cellular pathways, including apoptosis. The expression profile of the SMAD4 gene in goose ovarian follicles has not been reported. In this study, the SMAD4 coding sequence was cloned from the Yangzhou goose. A phylogenetic analysis was performed and mRNA expression was examined in various tissues using quantitative real-time PCR. An alternative splice form of SMAD4, SMAD4-b having 1656 bp, was identified. SMAD4-a mRNA was widely expressed in various healthy tissues, whereas SMAD4-b was very weakly expressed. SMAD4 mRNA in the ovary and oviduct was significantly higher than that in the pituitary and hypothalamus. SMAD4 mRNA expression analysis in hierarchical follicles showed that the level of SMAD4 mRNA was higher in large white follicles and post-ovulatory follicles than in the other follicles. The results indicate that SMAD4 might be involved in the recruitment of hierarchical follicles.

  10. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    SciTech Connect

    Dalgaard, Louise T.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. Black-Right-Pointing-Pointer UCP2 mRNA up-regulation by glucose is dependent on glucokinase. Black-Right-Pointing-Pointer Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. Black-Right-Pointing-Pointer This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic {beta}-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  11. Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability

    PubMed Central

    Dudek, Sabine Eva; Nitzsche, Katja; Ludwig, Stephan; Ehrhardt, Christina

    2016-01-01

    Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication. PMID:27265729

  12. Cistanches Herba aqueous extract affecting serum BGP and TRAP and bone marrow Smad1 mRNA, Smad5 mRNA, TGF-β1 mRNA and TIEG1 mRNA expression levels in osteoporosis disease.

    PubMed

    Liang, Hai-Dong; Yu, Fang; Tong, Zhi-Hong; Zhang, Hong-Quan; Liang, Wu

    2013-02-01

    We studied molecular mechanism of Cistanches Herba aqueous extract (CHAE) in ovariectomized (OVX) rats, as an experimental model of postmenopausal osteoporosis. Female rats were either sham-operated or bilaterally OVX; and at 60 days postoperatively. The OVX group (n = 8) received an ovariectomy and treatment with normal saline for 90 days commencing from 20th post ovariectomy day. The ovariectomized +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy and were treated with Cistanches Herba aqueous extract of 100 mg/kg body weight daily for 90 days commencing from 22nd post ovariectomy day. The ovariectomy +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy, and were treated with the of 200 mg/kg body weight daily for 90 days commencing from 20th post ovariectomy day. Serum BGP and TRAP, E2, FSH and LH level, bone marrow Smad1, Smad5, TGF-β1 and TIEG1 mRNA expression levels were examined. Results showed that serum BGP and TRAP, FSH and LH levels were significantly increased, whereas E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels were significantly decreased in OVX rats compared to sham rats. 90 days of CHAE treatment could significantly decrease serum BGP and TRAP, FSH and LH levels, and increase E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels in OVX rats. It can be concluded that CHAE play its protective effect against OVX-induced bone degeneration partly by regulating some bone metabolism related genes, e.g. Smad1, Smad5, TGF-β1 and TIEG1.

  13. Expression of statherin mRNA and protein in nasal and vaginal secretions.

    PubMed

    Sakurada, Koichi; Akutsu, Tomoko; Watanabe, Ken; Fujinami, Yoshihito; Yoshino, Mineo

    2011-11-01

    Nasal secretion has been regarded as one of the most difficult body fluids to identify and is especially difficult to discriminate from vaginal secretions and saliva. At present, few specific markers are known for nasal secretions. The aim of this study is to find a new approach for the identification of nasal secretions. We examined expression levels of statherin and histatin, peptides which are commonly found in saliva, in nasal and vaginal secretions by real-time RT-PCR and ELISA assays. Statherin mRNA was highly expressed in all nasal samples (dCt value=-1.49±1.10, n=8) and was detected even in 1-day-old 0.1-μL stains. However, the stability of mRNA in nasal stains was significantly (P<0.01) lower than in saliva. Low levels of statherin mRNA were detected in 4 of the 17 vaginal samples (dCt value=11.65-14.72). Histatin mRNA was not detected in any nasal or vaginal samples, although it was highly expressed in all saliva samples. ELISA assays with anti-statherin goat polyclonal antibody showed that statherin peptide was detected in all nasal and saliva samples even after dilution of more than 1000-fold. The statherin peptide was not detected in any vaginal samples, including samples that expressed low levels of statherin mRNA. The amount of statherin peptide in vaginal samples might be less than the limit of detection of this assay. In the present study, statherin was highly expressed in nasal secretions, but histatin was not. These markers may be useful for discriminating nasal secretions from vaginal secretions and saliva. However, the usefulness of these markers in practical forensic case samples has not yet been examined. Therefore, further research is required to establish the utility of these assays for identification of nasal secretions.

  14. Moisturizers change the mRNA expression of enzymes synthesizing skin barrier lipids.

    PubMed

    Buraczewska, Izabela; Berne, Berit; Lindberg, Magnus; Lodén, Marie; Törmä, Hans

    2009-09-01

    In a previous study, 7-week treatment of normal human skin with two test moisturizers, Complex cream and Hydrocarbon cream, was shown to affect mRNA expression of certain genes involved in keratinocyte differentiation. Moreover, the treatment altered transepidermal water loss (TEWL) in opposite directions. In the present study, the mRNA expression of genes important for formation of barrier lipids, i.e., cholesterol, free fatty acids and ceramides, was examined. Treatment with Hydrocarbon cream, which increased TEWL, also elevated the gene expression of GBA, SPTLC2, SMPD1, ALOX12B, ALOXE3, and HMGCS1. In addition, the expression of PPARG was decreased. On the other hand, Complex cream, which decreased TEWL, induced only the expression of PPARG, although not confirmed at the protein level. Furthermore, in the untreated skin, a correlation between the mRNA expression of PPARG and ACACB, and TEWL was found, suggesting that these genes are important for the skin barrier homeostasis. The observed changes further demonstrate that long-term treatment with certain moisturizers may induce dysfunctional skin barrier, and as a consequence several signaling pathways are altered.

  15. Gastrointestinal hormone mRNA expression in human colonic adenocarcinomas, hepatic metastases and cell lines

    PubMed Central

    Monges, G; Biagini, P; Cantaloube, J F; De Micco, P; Parriaux, D; Seitz, J F; Delpero, J R; Hassoun, J

    1996-01-01

    Aims—(1) To investigate the expression of the four main hormones of the digestive tract by performing reverse transcription polymerase chain reaction (RT-PCR) on a series of samples, comprising tumoral and healthy colonic tissues, hepatic metastases and colonic cell line samples; and (2) to study the patterns of labelling obtained with serological and morphological markers. Methods—After extraction and reverse transcription, gastrin, somatostatin, cholecystokinin (CCK) and transforming growth factor α (TGFα) mRNAs were detected by PCR and nested PCR using specific primers. The corresponding proteins were detected by immunohistochemistry. Results—The cell lines expressed all four mRNAs. Gastrin mRNA was present in most tumoral and metastatic samples, while the somatostatin transcript was detected in all samples and was frequently overexpressed in the normal colon. TGFα mRNA was expressed systematically in tumours of the right and transverse colon, but not in those located in the left colon; the expression of CCK mRNA was systematically absent in the left colon. Conclusions—The data presented here shed some light on the transcriptional events involved in the production of the various hormones present in the gastrointestinal tract, in both healthy and tumoral tissues. The various mRNAs expressed in cell lines are therefore not systematically expressed in the human pathology. Images PMID:16696065

  16. Regulation of bovine pyruvate carboxylase mRNA and promoter expression by thermal stress.

    PubMed

    White, H M; Koser, S L; Donkin, S S

    2012-09-01

    Pyruvate carboxylase (PC) catalyzes the rate-limiting step in gluconeogenesis from lactate and is a determinant of tricarboxylic acid cycle carbon flux. Bovine PC 5' untranslated region (UTR) mRNA variants are the products of a single PC gene containing 3 promoter regions (P3, P2, and P1, 5' to 3') that are responsive to physiological and nutritional stressors. The objective of this study was to determine the direct effects of thermal stress on PC mRNA and gene expression in bovine hepatocyte monolayer cultures, rat hepatoma (H4IIE) cells, and Madin-Darby bovine kidney epithelial (MDBK) cells. Hepatocytes were isolated from 3 Holstein bull calves and used to prepare monolayer cultures. Rat hepatoma cells and MDBK cells were obtained from American Type Culture Collection, Manassas, VA. Beginning 24 h after initial seeding, cells were subjected to either 37°C (control) or 42°C (thermal stress) for 24 h. Treatments were applied in triplicate in a minimum of 3 independent cell preparations. For bovine primary hepatocytes, endogenous expression of bovine PC mRNA increased (P < 0.1) with 24 h of thermal stress (1.31 vs. 2.79 ± 0.49, arbitrary units, control vs. thermal stress, respectively), but there was no change (P ≥ 0.1) in cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) mRNA expression. Similarly, exposure of MDBK cells to thermal stress increased (P < 0.1) expression of bovine PC mRNA without altering (P ≥ 0.1) PEPCK-C mRNA expression. Conversely, there was no effect (P ≥ 0.1) of thermal stress on endogenous rat PC (0.47 vs. 0.30 ± 0.08, control vs. thermal stress) or PEPCK-C (1.61 vs. 1.20 ± 0.48, arbitrary units, control vs. thermal stress, respectively) mRNA expressions in H4IIE cells. To further investigate the regulation of PC, H4IIE cells were transiently transfected with bovine promoter-luciferase constructs containing either P1, P2, or P3, and exposed to thermal stress for 23 h. Activity of P1 was suppressed (P < 0.1) 5-fold, activity of P2

  17. Change of dopamine receptor mRNA expression in lymphocyte of schizophrenic patients

    PubMed Central

    Kwak, Yong T; Koo, Min-Seong; Choi, Chul-Hee; Sunwoo, IN

    2001-01-01

    Background Though the dysfunction of central dopaminergic system has been proposed, the etiology or pathogenesis of schizophrenia is still uncertain partly due to limited accessibility to dopamine receptor. The purpose of this study was to define whether or not the easily accessible dopamine receptors of peripheral lymphocytes can be the peripheral markers of schizophrenia. Results 44 drug-medicated schizophrenics for more than 3 years, 28 drug-free schizophrenics for more than 3 months, 15 drug-naïve schizophrenic patients, and 31 healthy persons were enrolled. Sequential reverse transcription and quantitative polymerase chain reaction of the mRNA were used to investigate the expression of D3 and D5 dopamine receptors in peripheral lymphocytes. The gene expression of dopamine receptors was compared in each group. After taking antipsychotics in drug-free and drug-naïve patients, the dopamine receptors of peripheral lymphocytes were sequentially studied 2nd week and 8th week after medication. In drug-free schizophrenics, D3 dopamine receptor mRNA expression of peripheral lymphocytes significantly increased compared to that of controls and drug-medicated schizophrenics, and D5 dopamine receptor mRNA expression increased compared to that of drug-medicated schizophrenics. After taking antipsychotics, mRNA of dopamine receptors peaked at 2nd week, after which it decreases but the level was above baseline one at 8th week. Drug-free and drug-naïve patients were divided into two groups according to dopamine receptor expression before medications, and the group of patients with increased dopamine receptor expression had more severe psychiatric symptoms. Conclusions These results reveal that the molecular biologically-determined dopamine receptors of peripheral lymphocytes are reactive, and that increased expression of dopamine receptor in peripheral lymphocyte has possible clinical significance for subgrouping of schizophrenis. PMID:11252158

  18. Epigenetic Regulation of Dopamine Transporter mRNA Expression in Human Neuroblastoma Cells

    PubMed Central

    Green, Ashley L.; Hossain, Muhammad M.; Tee, Siew C.; Zarbl, Helmut; Guo, Grace L.; Richardson, Jason R.

    2016-01-01

    The dopamine transporter (DAT) is a key regulator of dopaminergic neurotransmission. As such, proper regulation of DAT expression is important to maintain homeostasis, and disruption of DAT expression can lead to neurobehavioral dysfunction. Based on genomic features within the promoter of the DAT gene, there is potential for DAT expression to be regulated through epigenetic mechanisms, including DNA methylation and histone acetylation. However, the relative contribution of these mechanisms to DAT expression has not been empirically determined. Using pharmacologic and genetic approaches, we demonstrate that inhibition of DNA methyltransferase (DNMT) activity increased DAT mRNA approximately 1.5–2 fold. This effect was confirmed by siRNA knockdown of DNMT1. Likewise, the histone deacetylase (HDAC) inhibitors valproate and butyrate also increased DAT mRNA expression, but the response was much more robust with expression increasing over tenfold. Genetic knockdown of HDAC1 by siRNA also increased DAT expression, but not to the extent seen with pharmacological inhibition, suggesting additional isoforms of HDAC or other targets may contribute to the observed effect. Together, these data identify the relative contribution of DNMTs and HDACs in regulating expression. These finding may aid in understanding the mechanistic basis for changes in DAT expression in normal and pathophysiological states. PMID:25963949

  19. Expression of SART-1 mRNA in canine squamous cell carcinomas.

    PubMed

    Takaishi, Yumi; Yoshida, Yukari; Nakagaki, Kazuhide; Fujita, Michio; Taniguchi, Akiko; Orima, Hiromitsu

    2008-12-01

    SART-1, a squamous cell carcinoma (SCC) antigen recognized by cytotoxic T lymphocytes, has been useful in human cancer therapy. The SART-1(259) peptide is a potential candidate for vaccine. The present study examined an orthologue of the mRNA coding this peptide in canine SCCs. Specimens were obtained from seven canine patients with SCC, and the mRNA was isolated from the samples. The SART-1 and beta-actin genes were amplified by reverse-transcription polymerase chain reaction, using the isolated mRNA as a template. Canine SART-1 was amplified in six of the seven specimens, while beta-actin was detected in all the samples. In dogs, carcinomas expressing SART-1 could be a target for cytotoxic T lymphocyte mediated immunotherapy.

  20. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    PubMed

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration.

  1. Sprouty4 mRNA variants and protein expressions in breast and lung-derived cells

    PubMed Central

    Doriguzzi, Angelina; Salhi, Jihen; Sutterlüty-Fall, Hedwig

    2016-01-01

    Sprouty proteins are modulators of mitogen-induced signalling processes and are therefore hypothesized to affect malignant diseases. As a member of the Sprouty family, Sprouty4 has been previously shown to function as a tumour suppressor in lung and breast cancer. The present study analysed the expression of two known Sprouty4 splice variants in cells established from malignant and normal lung and breast tissues using semi-quantitative reverse transcription-polymerase chain reaction and immunoblotting. The results indicated that the expression of the two messenger RNA (mRNA) variants was reduced in the cells derived from malignant tissue in comparison to the normal counterparts. Although the expression of the two splice variants were associated in both tissue types, on average, the relative expression of the longer variant was slightly increased in malignant cells compared with normal tissues. Notably, the protein levels reflected the expression observed at the mRNA level only in breast-derived cells. Contrarily, with regards to the measured mRNA levels, Sprouty4 protein was disproportional augmented in lung cells known to harbour the mutated K-Ras gene. PMID:27895786

  2. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice

    SciTech Connect

    Fu, Zidong Donna; Klaassen, Curtis D.

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. - Highlights: • Utilized a graded CR model in male mice • The mRNA profiles of xenobiotic processing genes (XPGs) in liver were investigated. • CR up-regulates many phase-II enzymes. • CR tends to feminize the mRNA profiles of XPGs.

  3. Gallium nitrate regulates rat osteoblast expression of osteocalcin protein and mRNA levels.

    PubMed

    Guidon, P T; Salvatori, R; Bockman, R S

    1993-01-01

    Gallium nitrate, a group IIIa metal salt, has been found to be clinically effective for the treatment of accelerated bone resorption in cancer-related hypercalcemia and Paget's disease. Here we report the effects of gallium nitrate on osteocalcin mRNA and protein levels on the rat osteoblast-like cell line ROS 17/2.8. Gallium nitrate reduced both constitutive and vitamin D3-stimulated osteocalcin protein levels in culture medium by one-half and osteocalcin mRNA levels to one-third to one-tenth of control. Gallium nitrate also inhibited vitamin D3 stimulation of osteocalcin and osteopontin mRNA levels but did not affect constitutive osteopontin mRNA levels. Among several different metals examined, gallium was unique in its ability to reduce osteocalcin mRNA levels without decreasing levels of other mRNAs synthesized by ROS 17/2.8 cells. The effects of gallium nitrate on osteocalcin mRNA and protein synthesis mimic those seen when ROS 17/2.8 cells are exposed to transforming growth factor beta 1 (TGF beta 1); however, TGF-beta 1 was not detected in gallium nitrate-treated ROS 17/2.8 cell media. Use of the RNA polymerase II inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that gallium nitrate did not alter the stability of osteocalcin mRNA. Transient transfection assays using the rat osteocalcin promoter linked to the bacterial reporter gene chloramphenicol acetyltransferase indicated that gallium nitrate blocked reporter gene expression stimulated by the osteocalcin promoter. This is the first reported effect of gallium nitrate on isolated osteoblast cells.

  4. Embryonic and Postnatal Expression of Aryl Hydrocarbon Receptor mRNA in Mouse Brain

    PubMed Central

    Kimura, Eiki; Tohyama, Chiharu

    2017-01-01

    Aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix-Per-Arnt-Sim transcription factor family, plays a critical role in the developing nervous system of invertebrates and vertebrates. Dioxin, a ubiquitous environmental pollutant, avidly binds to this receptor, and maternal exposure to dioxin has been shown to impair higher brain functions and dendritic morphogenesis, possibly via an AhR-dependent mechanism. However, there is little information on AhR expression in the developing mammalian brain. To address this issue, the present study analyzed AhR mRNA expression in the brains of embryonic, juvenile, and adult mice by reverse transcription (RT)-PCR and in situ hybridization. In early brain development (embryonic day 12.5), AhR transcript was detected in the innermost cortical layer. The mRNA was also expressed in the hippocampus, cerebral cortex, cerebellum, olfactory bulb, and rostral migratory stream on embryonic day 18.5, postnatal days 3, 7, and 14, and in 12-week-old (adult) mice. Hippocampal expression was abundant in the CA1 and CA3 pyramidal and dentate gyrus granule cell layers, where expression level of AhR mRNA in 12-week old is higher than that in 7-day old. These results reveal temporal and spatial patterns of AhR mRNA expression in the mouse brain, providing the information that may contribute to the elucidation of the physiologic and toxicologic significance of AhR in the developing brain. PMID:28223923

  5. Alpha-synuclein mRNA expression in oligodendrocytes in MSA.

    PubMed

    Asi, Yasmine T; Simpson, Julie E; Heath, Paul R; Wharton, Stephen B; Lees, Andrew J; Revesz, Tamas; Houlden, Henry; Holton, Janice L

    2014-06-01

    Multiple system atrophy (MSA) is a progressive neurodegenerative disease presenting clinically with parkinsonian, cerebellar, and autonomic features. α-Synuclein (αsyn), encoded by the gene SNCA, is the main constituent of glial cytoplasmic inclusion (GCI) found in oligodendrocytes in MSA, but the methods of its accumulation have not been established. The aim of this study is to investigate alterations in regional and cellular SNCA mRNA expression in MSA as a possible substrate for GCI formation. Quantitative reverse transcription polymerase chain reaction (qPCR) was performed on postmortem brain samples from 15 MSA, 5 IPD, and 5 control cases to investigate regional expression in the frontal and occipital regions, dorsal putamen, pontine base, and cerebellum. For cellular expression analysis, neurons and oligodendrocytes were isolated by laser-capture microdissection from five MSA and five control cases. SNCA mRNA expression was not significantly different between the MSA, IPD and control cases in all regions (multilevel model, P = 0.14). After adjusting for group effect, the highest expression was found in the occipital cortex while the lowest was in the putamen (multilevel model, P < 0.0001). At the cellular level, MSA oligodendrocytes expressed more SNCA than control oligodendrocytes and expression in MSA neurons was slightly lower than that in controls, however, these results did not reach statistical significance. We have demonstrated regional variations in SNCA expression, which is higher in cortical than subcortical regions. This study is the first to demonstrate SNCA mRNA expression by oligodendrocytes in human postmortem tissue using qPCR and, although not statistically significant, could suggest that this may be increased in MSA compared to controls.

  6. Abnormal expression of mRNA, microRNA alteration and aberrant DNA methylation patterns in rectal adenocarcinoma

    PubMed Central

    Liu, Xianglong; Yuan, Xiangfei; Qin, Hai; Zhang, Xipeng

    2017-01-01

    Aim Rectal adenocarcinoma (READ) is a malignancy cancer with the high morbidity and motility worldwide. Our study aimed to explore the potential pathogenesis of READ through integrated analysis of gene expression profiling and DNA methylation data. Methods The miRNA, mRNA expression profiling and corresponding DNA methylation data were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed mRNAs/ miRNAs/methylated regions (DEmRNA/DEmiRNAs) were identified in READ. The negatively correlation of DEmiRNA-DEmRNAs and DNA methylation-DEmRNAs were obtained. DEmRNAs expression was validated through quantitative real-time polymerase chain reaction (qRT-PCR) and microarray expression profiling analyses. Results 1192 dysregulated DEmRNAs, 27 dysregulated DEmiRNAs and 6403 aberrant methylation CpG sites were screened in READ compared to normal controls. 1987 negative interaction pairs among 27 DEmiRNAs and 668 DEmRNAs were predicted. 446 genes with aberrant methylation were annotated. Eventually, 50 DEmRNAs (39 down- and 11 up-regulated DEmRNAs) with hypermethylation, synchronously negatively targeted by DEmiRNAs, were identified through the correlation analysis among 446 genes with aberrant methylation and 668 DEmRNAs. 50 DEmRNAs were significantly enriched in cAMP signaling pathway, circadian entrainment and glutamatergic synapse. The validation results of expression levels of DEmRNAs through qRT-PCR and microarray analyses were compatible with our study. Conclusion 7 genes of SORCS1, PDZRN4, LONRF2, CNGA3, HAND2, RSPO2 and GNAO1 with hypermethylation and negatively regulation by DEmiRNAs might contribute to the tumorigenesis of READ. Our work might provide valuable foundation for the READ in mechanism elucidation, early diagnosis and therapeutic target identification. PMID:28350845

  7. Dysregulation of mRNA profile in cisplatin-resistant gastric cancer cell line SGC7901

    PubMed Central

    Xie, Xiao-Que; Zhao, Qi-Hong; Wang, Hua; Gu, Kang-Sheng

    2017-01-01

    AIM To explore novel therapeutic target of cisplatin resistance in human gastric cancer. METHODS The sensitivity of SGC7901 cells and cisplatin-resistant SGC7901 cells (SGC7901/DDP) for cisplatin were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. High-quality total RNA which isolated from SGC7901/DDP cells and SGC7901 cells were used for mRNA microarray analysis. Results were analyzed bioinformatically to predict their roles in the development of cisplatin resistance and the expression of 13 dysregulated mRNAs we selected were validated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS SGC7901/DDP cells highly resistant to cisplatin demonstrated by MTT assay. A total of 1308 mRNAs (578 upregulated and 730 downregulated) were differentially expressed (fold change ≥ 2 and P-value < 0.05) in the SGC7901/DDP cells compared with SGC7901 cells. The expression of mRNAs detected by qRT-PCR were consistent with the microarray results. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway and protein-protein interaction analysis demonstrated that the differentially expressed mRNAs were enriched in PI3K-Akt, Notch, MAPK, ErbB, Jak-STAT, NF-kappaB signaling pathways which may be involved in cisplatin resistance. Several genes such as PDE3B, VEGFC, IGFBP3, TLR4, HIPK2 and EGF may associated with drug resistance of gastric cancer cells to cisplatin. CONCLUSION Exploration of those altered mRNAs may provide more promising strategy in diagnosis and therapy for gastric cancer with cisplatin resistance. PMID:28275299

  8. TLR2 and TLR4 polymorphisms influence mRNA and protein expression in colorectal cancer

    PubMed Central

    Proença, Marcela Alcântara; de Oliveira, Juliana Garcia; Cadamuro, Aline Cristina Targa; Succi, Maysa; Netinho, João Gomes; Goloni-Bertolo, Eny Maria; Pavarino, Érika Cristina; Silva, Ana Elizabete

    2015-01-01

    AIM: To evaluate the effect of promoter region polymorphisms of toll-like receptor (TLR)2-196 to -174del and TLR4-1607T/C (rs10759932) on mRNA and protein expression in tumor tissue and of TLR4+896A/G (rs4986790) on colorectal cancer (CRC) risk. METHODS: The TLR2-196 to -174del polymorphism was investigated using allele-specific polymerase chain reaction (PCR) and the TLR4-1607T/C and TLR4+896A/G by PCR-restriction fragment length polymorphism (RFLP). We genotyped 434 DNA samples from 194 CRC patients and 240 healthy individuals. The mRNA relative quantification (RQ) was performed in 40 tumor tissue samples by quantitative PCR TaqMan assay, using specific probes for TLR2 and TLR4 genes, and ACTB and GAPDH reference genes were used as endogenous controls. Protein expression was analyzed by immunohistochemistry with specific primary antibodies. RESULTS: No association was found for TLR4-1607T/C and TLR4+896A/G by three statistical models (log-additive, dominant and recessive). However, based on dominant and log-additive models, the polymorphic variant TLR2-196 to -174del was associated with increased CRC risk [dominant: odds ratio (OR) = 1.72, 95%CI: 1.03-2.89; P = 0.038 and log-additive: OR =1.59, 95%CI: 1.02-2.48; P = 0.039]. TLR2 mRNA expression was increased in tumor tissue (RQ = 2.36) when compared to adjacent normal tissue (RQ = 1; P < 0.0001), whereas the TLR4 mRNA showed a basal expression (RQ = 0.74 vs RQ = 1, P = 0.452). Immunohistochemistry analysis of TLR2 and TLR4 protein expression was concordant with the findings of mRNA expression. In addition, the TLR2-196 to -174del variant carriers showed mRNA relative expression 2.19 times higher than wild-genotype carriers. The TLR2 protein expression was also higher for the TLR2-196 to -174del variant carriers [117 ± 10 arbitrary unit (a.u.) vs 95 ± 4 a.u., P = 0.03]. However, for the TLR4 -1607T/C polymorphism no significant difference was found for both mRNA (P = 0.56) and protein expression (P = 0

  9. The mRNA Decay Pathway Regulates the Expression of the Flo11 Adhesin and Biofilm Formation in Saccharomyces cerevisiae

    PubMed Central

    Lo, Tricia L.; Qu, Yue; Uwamahoro, Nathalie; Quenault, Tara; Beilharz, Traude H.; Traven, Ana

    2012-01-01

    Regulation of the FLO11 adhesin is a model for gene expression control by extracellular signals and developmental switches. We establish that the major mRNA decay pathway regulates FLO11 expression. mRNA deadenylation of transcriptional repressors of FLO11 by the exonuclease Ccr4 keeps their levels low, thereby allowing FLO11 transcription. PMID:22595243

  10. Transcriptomic Biomarkers for Tuberculosis: Evaluation of DOCK9. EPHA4, and NPC2 mRNA Expression in Peripheral Blood

    PubMed Central

    de Araujo, Leonardo S.; Vaas, Lea A. I.; Ribeiro-Alves, Marcelo; Geffers, Robert; Mello, Fernanda C. Q.; de Almeida, Alexandre S.; Moreira, Adriana da S. R.; Kritski, Afrânio L.; Lapa e Silva, José R.; Moraes, Milton O.; Pessler, Frank; Saad, Maria H. F.

    2016-01-01

    Lately, much effort has been made to find mRNA biomarkers for tuberculosis (TB) disease/infection with microarray-based approaches. In a pilot investigation, through RNA sequencing technology, we observed a prominent modulation of DOCK9, EPHA4, and NPC2 mRNA abundance in the blood of TB patients. To corroborate these findings, independent validations were performed in cohorts from different areas. Gene expression levels in blood were evaluated by quantitative real-time PCR (Brazil, n = 129) or reanalysis of public microarray data (UK: n = 96; South Africa: n = 51; Germany: n = 26; and UK/France: n = 63). In the Brazilian cohort, significant modulation of all target-genes was observed comparing TB vs. healthy recent close TB contacts (rCt). With a 92% specificity, NPC2 mRNA high expression (NPC2high) showed the highest sensitivity (85%, 95% CI 65%–96%; area under the ROC curve [AUROC] = 0.88), followed by EPHA4 (53%, 95% CI 33%–73%, AUROC = 0.73) and DOCK9 (19%, 95% CI 7%–40%; AUROC = 0.66). All the other reanalyzed cohorts corroborated the potential of NPC2high as a biomarker for TB (sensitivity: 82–100%; specificity: 94–97%). An NPC2high profile was also observed in 60% (29/48) of the tuberculin skin test positive rCt, and additional follow-up evaluation revealed changes in the expression levels of NPC2 during the different stages of Mycobacterium tuberculosis infection, suggesting that further studies are needed to evaluate modulation of this gene during latent TB and/or progression to active disease. Considering its high specificity, our data indicate, for the first time, that NPC2high might serve as an accurate single-gene biomarker for TB. PMID:27826286

  11. Constitutive and allergen-induced expression of eotaxin mRNA in the guinea pig lung

    PubMed Central

    1995-01-01

    Eotaxin is a member of the C-C family of chemokines and is related during antigen challenge in a guinea pig model of allergic airway inflammation (asthma). Consistent with its putative role in eosinophilic inflammation, eotaxin induces the selective infiltration of eosinophils when injected into the lung and skin. Using a guinea pig lung cDNA library, we have cloned full-length eotaxin cDNA. The cDNA encodes a protein of 96 amino acids, including a putative 23-amino acid hydrophobic leader sequence, followed by 73 amino acids composing the mature active eotaxin protein. The protein-coding region of this cDNA is 73, 71, 50, and 48% identical in nucleic acid sequence to those of human macrophage chemoattractant protein (MCP) 3, MCP-1, macrophage inflammatory protein (MIP) 1 alpha, and RANTES, respectively. Analysis of genomic DNA suggested that there is a single eotaxin gene in guinea pig which is apparently conserved in mice. High constitutive levels of eotaxin mRNA expression were observed in the lung, while the intestines, stomach, spleen, liver, heart, thymus, testes, and kidney expressed lower levels. To determine if eotaxin mRNA levels are elevated during allergen-induced eosinophilic airway inflammation, ovalbumin (OVA)-sensitized guinea pigs were challenged with aerosolized antigen. Compared with the lungs from saline-challenged animals, eotaxin mRNA levels increased sixfold within 3 h and returned to baseline by 6 h. Thus, eotaxin mRNA levels are increased in response to allergen challenge during the late phase response. The identification of constitutive eotaxin mRNA expression in multiple tissues suggests that in addition to regulating airway eosinophilia, eotaxin is likely to be involved in eosinophil recruitment into other tissues as well as in baseline tissue homing. PMID:7869037

  12. Unmasking Upstream Gene Expression Regulators with miRNA-corrected mRNA Data

    PubMed Central

    Bollmann, Stephanie; Bu, Dengpan; Wang, Jiaqi; Bionaz, Massimo

    2015-01-01

    Expressed micro-RNA (miRNA) affects messenger RNA (mRNA) abundance, hindering the accuracy of upstream regulator analysis. Our objective was to provide an algorithm to correct such bias. Large mRNA and miRNA analyses were performed on RNA extracted from bovine liver and mammary tissue. Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%). Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%) and four levels of the magnitude of miRNA effect (ME) on mRNA expression (30%, 50%, 75%, and 83% mRNA reduction), we generated 17 different datasets (including the original dataset). For each dataset, we performed upstream regulator analysis using two bioinformatics tools. We detected an increased effect on the upstream regulator analysis with larger miRNA:mRNA pair bins and higher ME. The miRNA correction allowed identification of several upstream regulators not present in the analysis of the original dataset. Thus, the proposed algorithm improved the prediction of upstream regulators. PMID:27279737

  13. Control of Cytokine mRNA Expression by RNA-binding Proteins and microRNAs

    PubMed Central

    Palanisamy, V.; Jakymiw, A.; Van Tubergen, E.A.; D’Silva, N.J.; Kirkwood, K.L.

    2012-01-01

    Cytokines are critical mediators of inflammation and host defenses. Regulation of cytokines can occur at various stages of gene expression, including transcription, mRNA export, and post- transcriptional and translational levels. Among these modes of regulation, post-transcriptional regulation has been shown to play a vital role in controlling the expression of cytokines by modulating mRNA stability. The stability of cytokine mRNAs, including TNFα, IL-6, and IL-8, has been reported to be altered by the presence of AU-rich elements (AREs) located in the 3′-untranslated regions (3′UTRs) of the mRNAs. Numerous RNA-binding proteins and microRNAs bind to these 3′UTRs to regulate the stability and/or translation of the mRNAs. Thus, this paper describes the cooperative function between RNA-binding proteins and miRNAs and how they regulate AU-rich elements containing cytokine mRNA stability/degradation and translation. These mRNA control mechanisms can potentially influence inflammation as it relates to oral biology, including periodontal diseases and oral pharyngeal cancer progression. PMID:22302144

  14. Cellular glutathione content modulates the effect of andrographolide on β-naphthoflavone-induced CYP1A1 mRNA expression in mouse hepatocytes.

    PubMed

    Kondo, Sachiko; Chatuphonprasert, Waranya; Jaruchotikamol, Atika; Sakuma, Tsutomu; Nemoto, Nobuo

    2011-02-04

    We previously reported that andrographolide (Andro), a major bioactive constituent of Andrographis paniculata, synergistically enhanced the inducible expression of CYP1A1 mRNA. In this study, although the synergism was confirmed at 24h after the start of treatment with Andro and β-naphthoflavone (βNF), a CYP1A inducer, the expression was profoundly suppressed at an earlier phase, namely at 6-12h, when the βNF-induced expression peaked. Although oxidized glutathione (GSSG) levels were higher in co-treated cells at 6 and 24h, levels of reactive oxygen species varied depending on the treatment period and species, indicating no relation to the synergistic expression of CYP1A1 mRNA. Glutathione (GSH) and N-acetyl-l-cysteine (NAC) significantly enhanced the βNF-induced expression, and partly reversed the suppressive effect of Andro in the early phase. At 24h, the addition of GSH or NAC had no effect on βNF-induced CYP1A1 mRNA expression, but significantly reduced the synergistic effect of Andro. The synergistic effect was enhanced by l-buthionine-(S,R)-sulfoximine, a GSH depleter. Furthermore, H(2)O(2) and ascorbic acid further modified the profile of synergism of Andro on βNF-inducible CYP1A1 mRNA expression. These results suggest that GSH status might be involved in βNF-induced CYP1A1 mRNA expression, and the interaction of Andro with GSH might modulate the expression.

  15. Rift Valley fever virus NSS gene expression correlates with a defect in nuclear mRNA export.

    PubMed

    Copeland, Anna Maria; Van Deusen, Nicole M; Schmaljohn, Connie S

    2015-12-01

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NSS gene, but not the N, GN or NSM genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NSS, confirming that expression of NSS is likely responsible for this phenomenon.

  16. A Systematic Analysis on mRNA and MicroRNA Expression in Runting and Stunting Chickens.

    PubMed

    Zhang, Li; Li, Ying; Xie, Xiujuan; Xu, Haiping; Xu, Zhenqiang; Ma, Jinge; Li, Bixiao; Lin, Shudai; Nie, Qinghua; Luo, Qingbin; Zhang, Xiquan

    2015-01-01

    Runting and stunting syndrome (RSS), which is characterized by lower body weight, widely occurs in broilers. Some RSS chickens simply exhibit slow growth without pathological changes. An increasing number of studies indicate that broiler strains differ in susceptibility to infectious diseases, most likely due to their genetic differences. The objective of this study was to detect the differentially expressed miRNAs and mRNAs in RSS and normal chickens. By integrating miRNA with mRNA expression profiling, potential molecular mechanisms involved in RSS could be further explored. Twenty-two known miRNAs and 1,159 genes were differentially expressed in RSS chickens compared with normal chickens (P < 0.05). qPCR validation results displayed similar patterns. The differentially expressed genes were primarily involved in energy metabolism pathways. The antisense transcripts were extensively expressed in chicken liver albeit with reduced abundance. Dual-luciferase reporter assay indicated that gga-miR-30b/c directly target CARS through binding to its 3'UTR. The miR-30b/c: CARS regulation mainly occurred in liver. In thigh muscle and the hypothalamus, miR-30b/c are expressed at higher levels in RSS chickens compared with normal chickens from 2 to 6 w of age, and notably significant differences are observed at 4 w of age.

  17. Temporal expression of brain-derived neurotrophic factor (BDNF) mRNA in the rat hippocampus after treatment with selective and mixed monoaminergic antidepressants.

    PubMed

    Larsen, Marianne H; Hay-Schmidt, Anders; Rønn, Lars C B; Mikkelsen, Jens D

    2008-01-14

    Strong evidence suggests that antidepressants work by induction of neuroplastic changes mediated through regulation of brain-derived neurotrophic factor (BDNF). This study was undertaken to investigate the time-course of the effect of three antidepressants; fluoxetine, imipramine and venlafaxine, which differentially affect monoamine reuptake, on BDNF mRNA expression in the hippocampus. The consequences of increased BDNF in the hippocampus are still indefinite. Here, we also determined the effects on the expression of two other genes (synaptophysin and growth-associated protein-43 (GAP-43)) known to be involved in synapse formation and axonal growth and likely regulated by BDNF. The effects were determined in rats after sub-chronic (7 days) and chronic (14 and 21 days) treatment using semi-quantitative in situ hybridisation. BDNF mRNA levels in the dentate gyrus (DG) were increased after treatment with venlafaxine (7, 14 and 21 days) and imipramine (14 and 21 days), but not after treatment with fluoxetine, indicating that stimulation of BDNF mRNA expression is dependent on the pharmacological profile and on the time-course of drug treatment. A transient increase in synaptophysin mRNA was observed after treatment with venlafaxine and fluoxetine whereas imipramine had no effect. In the CA3 region a reduction of GAP-43 mRNA was observed after treatment with imipramine (21 days) and fluoxetine (7 and 14 days). These results suggest that venlafaxine and imipramine, but not fluoxetine, induce neuroplastic effects in the hippocampus through stimulation of BDNF mRNA expression, and that the effect on BDNF is not directly translated into regulation of synaptophysin and GAP-43 mRNA.

  18. Anesthesia for Euthanasia Influences mRNA Expression in Healthy Mice and after Traumatic Brain Injury

    PubMed Central

    Staib-Lasarzik, Irina; Kriege, Oliver; Timaru-Kast, Ralph; Pieter, Dana; Werner, Christian; Engelhard, Kristin

    2014-01-01

    Abstract Tissue sampling for gene expression analysis is usually performed under general anesthesia. Anesthetics are known to modulate hemodynamics, receptor-mediated signaling cascades, and outcome parameters. The present study determined the influence of anesthetic paradigms typically used for euthanization and tissue sampling on cerebral mRNA expression in mice. Naïve mice and animals with acute traumatic brain injury induced by controlled cortical impact (CCI) were randomized to the following euthanasia protocols (n=10–11/group): no anesthesia (NA), 1 min of 4 vol% isoflurane in room air (ISO), 3 min of a combination of 5 mg/kg midazolam, 0.05 mg/kg fentanyl, and 0.5 mg/kg medetomidine intraperitoneally (COMB), or 3 min of 360 mg/kg chloral hydrate intraperitoneally (CH). mRNA expression of actin-1-related gene (Act1), FBJ murine osteosarcoma viral oncogene homolog B (FosB), tumor necrosis factor alpha (TNFα), heat shock protein beta-1 (HspB1), interleukin (IL)-6, tight junction protein 1 (ZO-1), IL-1ß, cyclophilin A, micro RNA 497 (miR497), and small cajal body-specific RNA 17 were determined by real-time polymerase chain reaction (PCR) in hippocampus samples. In naïve animals, Act1 expression was downregulated in the CH group compared with NA. FosB expression was downregulated in COMB and CH groups compared with NA. CCI reduced Act1 and FosB expression, whereas HspB1 and TNFα expression increased. After CCI, HspB1 expression was significantly higher in ISO, COMB, and CH groups, and TNFα expression was elevated in ISO and COMB groups. MiR497, IL-6, and IL-1ß were upregulated after CCI but not affected by anesthetics. Effects were independent of absolute mRNA copy numbers. The data demonstrate that a few minutes of anesthesia before tissue sampling are sufficient to induce immediate mRNA changes, which seem to predominate in the early-regulated gene cluster. Anesthesia-related effects on gene expression might explain limited

  19. Anesthesia for euthanasia influences mRNA expression in healthy mice and after traumatic brain injury.

    PubMed

    Staib-Lasarzik, Irina; Kriege, Oliver; Timaru-Kast, Ralph; Pieter, Dana; Werner, Christian; Engelhard, Kristin; Thal, Serge C

    2014-10-01

    Tissue sampling for gene expression analysis is usually performed under general anesthesia. Anesthetics are known to modulate hemodynamics, receptor-mediated signaling cascades, and outcome parameters. The present study determined the influence of anesthetic paradigms typically used for euthanization and tissue sampling on cerebral mRNA expression in mice. Naïve mice and animals with acute traumatic brain injury induced by controlled cortical impact (CCI) were randomized to the following euthanasia protocols (n=10-11/group): no anesthesia (NA), 1 min of 4 vol% isoflurane in room air (ISO), 3 min of a combination of 5 mg/kg midazolam, 0.05 mg/kg fentanyl, and 0.5 mg/kg medetomidine intraperitoneally (COMB), or 3 min of 360 mg/kg chloral hydrate intraperitoneally (CH). mRNA expression of actin-1-related gene (Act1), FBJ murine osteosarcoma viral oncogene homolog B (FosB), tumor necrosis factor alpha (TNFα), heat shock protein beta-1 (HspB1), interleukin (IL)-6, tight junction protein 1 (ZO-1), IL-1ß, cyclophilin A, micro RNA 497 (miR497), and small cajal body-specific RNA 17 were determined by real-time polymerase chain reaction (PCR) in hippocampus samples. In naïve animals, Act1 expression was downregulated in the CH group compared with NA. FosB expression was downregulated in COMB and CH groups compared with NA. CCI reduced Act1 and FosB expression, whereas HspB1 and TNFα expression increased. After CCI, HspB1 expression was significantly higher in ISO, COMB, and CH groups, and TNFα expression was elevated in ISO and COMB groups. MiR497, IL-6, and IL-1ß were upregulated after CCI but not affected by anesthetics. Effects were independent of absolute mRNA copy numbers. The data demonstrate that a few minutes of anesthesia before tissue sampling are sufficient to induce immediate mRNA changes, which seem to predominate in the early-regulated gene cluster. Anesthesia-related effects on gene expression might explain limited reproduciblity of real

  20. Analysis of myosin heavy chain mRNA expression by RT-PCR

    NASA Technical Reports Server (NTRS)

    Wright, C.; Haddad, F.; Qin, A. X.; Baldwin, K. M.

    1997-01-01

    An assay was developed for rapid and sensitive analysis of myosin heavy chain (MHC) mRNA expression in rodent skeletal muscle. Only 2 microg of total RNA were necessary for the simultaneous analysis of relative mRNA expression of six different MHC genes. We designed synthetic DNA fragments as internal standards, which contained the relevant primer sequences for the adult MHC mRNAs type I, IIa, IIx, IIb as well as the embryonic and neonatal MHC mRNAs. A known amount of the synthetic fragment was added to each polymerase chain reaction (PCR) and yielded a product of different size than the amplified MHC mRNA fragment. The ratio of amplified MHC fragment to synthetic fragment allowed us to calculate percentages of the gene expression of the different MHC genes in a given muscle sample. Comparison with the traditional Northern blot analysis demonstrated that our reverse transcriptase-PCR-based assay was reliable, fast, and quantitative over a wide range of relative MHC mRNA expression in a spectrum of adult and neonatal rat skeletal muscles. Furthermore, the high sensitivity of the assay made it very useful when only small quantities of tissue were available. Statistical analysis of the signals for each MHC isoform across the analyzed samples showed a highly significant correlation between the PCR and the Northern signals as Pearson correlation coefficients ranged between 0.77 and 0.96 (P < 0.005). This assay has potential use in analyzing small muscle samples such as biopsies and samples from pre- and/or neonatal stages of development.

  1. Progressive APOBEC3B mRNA expression in distant breast cancer metastases

    PubMed Central

    Dalm, Simone U.; de Weerd, Vanja; Moelans, Cathy B.; ter Hoeve, Natalie; van Diest, Paul J.; Martens, John W. M.; van Deurzen, Carolien H. M.

    2017-01-01

    Background APOBEC3B was recently identified as a gain-of-function enzymatic source of mutagenesis, which may offer novel therapeutic options with molecules that specifically target this enzyme. In primary breast cancer, APOBEC3B mRNA is deregulated in a substantial proportion of cases and its expression is associated with poor prognosis. However, its expression in breast cancer metastases, which are the main causes of breast cancer-related death, remained to be elucidated. Patients and methods RNA was isolated from 55 primary breast cancers and paired metastases, including regional lymph node (N = 20) and distant metastases (N = 35). APOBEC3B mRNA levels were measured by RT-qPCR. Expression levels of the primary tumors and corresponding metastases were compared, including subgroup analysis by estrogen receptor (ER/ESR1) status. Results Overall, APOBEC3B mRNA levels of distant metastases were significantly higher as compared to the corresponding primary breast tumor (P = 0.0015), an effect that was not seen for loco-regional lymph node metastases (P = 0.23). Subgroup analysis by ER-status showed that increased APOBEC3B levels in distant metastases were restricted to metastases arising from ER-positive primary breast cancers (P = 0.002). However, regarding ER-negative primary tumors, only loco-regional lymph node metastases showed increased APOBEC3B expression when compared to the corresponding primary tumor (P = 0.028). Conclusion APOBEC3B mRNA levels are significantly higher in breast cancer metastases as compared to the corresponding ER-positive primary tumors. This suggests a potential role for APOBEC3B in luminal breast cancer progression, and consequently, a promising role for anti-APOBEC3B therapies in advanced stages of this frequent form of breast cancer. PMID:28141868

  2. Developmental and tissue-specific expression of prosaposin mRNA in murine tissues.

    PubMed Central

    Sun, Y.; Witte, D. P.; Grabowski, G. A.

    1994-01-01

    Prosaposin is a multifunctional locus in humans and mice that encodes in tandem and in the same reading frame four glycoprotein activators, or saposins, of lysosomal hydrolases. These ubiquitously expressed glycoproteins and the precursor, prosaposin, have been proposed to function in glycosphingolipid catabolic pathways and glycolipid transport. To characterize the temporal and spatial expression of the prosaposin locus, prenatal and postnatal mouse tissues were screened by in situ hybridization with a mouse antisense riboprobe for prosaposin. Prenatally, prosaposin mRNA was expressed differentially in the placenta and prominently in the decidua basalis and capsularis where expression was gestational age dependent. No other region of high-level expression was detectable in the prenatal mouse. In comparison, high-level differential expression of prosaposin was clearly evident postnatally in a variety of organs, including secretory epithelial cells of the choroid plexus, ependymal lining, upper trachea, esophagus, cortical tubules of the kidney, sertoli cells of the testes and epididymis. Discrete localization of prosaposin mRNA expression was also found in neurons of the cerebral cortex, cerebellar cortex, and lateral columns of the spinal cord as well as in hepatocytes of the mature liver. Very high levels of expression were found in specialized tissues including the Harderian glands and macrophages of lymph nodes, lungs, splenic tissue, and thymus. These studies indicate that the expression of the prosaposin locus, a presumed "housekeeping" gene, is under tissue- and cell-specific differential control. The spatial organization of expression suggests a role for this locus in the expression of glycosphingolipid-storage diseases. Images Figure 2 PMID:7992842

  3. Nutritional control of mRNA isoform expression during developmental arrest and recovery in C. elegans.

    PubMed

    Maxwell, Colin S; Antoshechkin, Igor; Kurhanewicz, Nicole; Belsky, Jason A; Baugh, L Ryan

    2012-10-01

    Nutrient availability profoundly influences gene expression. Many animal genes encode multiple transcript isoforms, yet the effect of nutrient availability on transcript isoform expression has not been studied in genome-wide fashion. When Caenorhabditis elegans larvae hatch without food, they arrest development in the first larval stage (L1 arrest). Starved larvae can survive L1 arrest for weeks, but growth and post-embryonic development are rapidly initiated in response to feeding. We used RNA-seq to characterize the transcriptome during L1 arrest and over time after feeding. Twenty-seven percent of detectable protein-coding genes were differentially expressed during recovery from L1 arrest, with the majority of changes initiating within the first hour, demonstrating widespread, acute effects of nutrient availability on gene expression. We used two independent approaches to track expression of individual exons and mRNA isoforms, and we connected changes in expression to functional consequences by mining a variety of databases. These two approaches identified an overlapping set of genes with alternative isoform expression, and they converged on common functional patterns. Genes affecting mRNA splicing and translation are regulated by alternative isoform expression, revealing post-transcriptional consequences of nutrient availability on gene regulation. We also found that phosphorylation sites are often alternatively expressed, revealing a common mode by which alternative isoform expression modifies protein function and signal transduction. Our results detail rich changes in C. elegans gene expression as larvae initiate growth and post-embryonic development, and they provide an excellent resource for ongoing investigation of transcriptional regulation and developmental physiology.

  4. Expression of connexin 43 mRNA and protein in developing follicles of prepubertal porcine ovaries

    USGS Publications Warehouse

    Melton, C.M.; Zaunbrecher, G.M.; Yoshizaki, G.; Patio, R.; Whisnant, S.; Rendon, A.; Lee, V.H.

    2001-01-01

    A major form of cell-cell communication is mediated by gap junctions, aggregations of intercellular channels composed of connexins (Cxs), which are responsible for exchange of low molecular weight (< 1200 Da) cytosolic materials. These channels are a growing family of related proteins. This study was designed to determine the ontogeny of connexin 43 (Cx43) during early stages of follicular development in prepubertal porcine ovaries. A partial-length (412 base) cDNA clone was obtained from mature porcine ovaries and determined to have 98% identity with published porcine Cx43. Northern blot analysis demonstrated a 4.3-kb mRNA in total RNA isolated from prepubertal and adult porcine ovaries. In-situ hybridization revealed that Cx43 mRNA was detectable in granulosa cells of primary follicles but undetectable in dormant primordial follicles. The intensity of the signal increased with follicular growth and was greatest in the large antral follicles. Immunohistochemical evaluation indicated that Cx43 protein expression correlated with the presence of Cx43 mRNA. These results indicate that substantial amounts of Cx43 are first expressed in granulosa cells following activation of follicular development and that this expression increases throughout follicular growth and maturation. These findings suggest an association between the enhancement of intercellular gap-junctional communication and onset of follicular growth. ?? 2001 Elsevier Science Inc. All rights reserved.

  5. Hormone and metabolic factors associated with leptin mRNA expression in pre- and postmenopausal women.

    PubMed

    Fajardo, Martha E; Malacara, Juan M; Martínez-Rodríguez, Herminia G; Barrera-Saldaña, Hugo A

    2004-06-01

    Recent information has extended leptin's action, beyond the control of appetite, to various sites of metabolic regulation. To better understand leptin's role we studied its production in subcutaneous and visceral fat compartments before and after menopause. During elective abdominal surgery, biopsies of subcutaneous and omental tissues were taken from 20 women at pre- (BMI 28.4 +/- 4.5 kg/m2) and 10 at postmenopause (BMI 30.6 +/- 7.7 kg/m2). In both groups serum leptin levels were similar, and highly correlated with BMI. In subcutaneous adipose tissue, leptin mRNA expression was significantly higher in pre- than in postmenopausal women (50.4 +/- 20.5 amol/microg total RNA versus 34.5 +/- 24.9 amol/microg total RNA, respectively). Leptin mRNA expression in subcutaneous tissue was independently correlated with fasting glucose (R = 0.89, P < 0.006) at premenopause, and with serum estradiol (R = 0.77, P < 0.04) at postmenopause. Leptin mRNA expression in visceral fat was correlated with DHEAS (R = 0.86, P < 0.001), at premenopause. These results indicate that in both compartments, leptin production is sensitive to different but overlapping stimuli, conveying information about energy availability to central and peripheral sites under different conditions of estrogen exposure.

  6. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1.

    PubMed

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem-loop structure containing the branch site near its apical loop and the 3' splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing.

  7. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1

    PubMed Central

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem–loop structure containing the branch site near its apical loop and the 3′ splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing. PMID:26546116

  8. Use of RNA-seq to determine variation in canine cytochrome P450 mRNA expression between blood, liver, lung, kidney and duodenum in healthy beagles.

    PubMed

    Visser, M; Weber, K; Rincon, G; Merritt, D

    2017-03-19

    RNA sequencing (RNA-seq) is a powerful tool for the evaluation and quantification of transcriptomes and expression patterns in animals, tissues, or pathological conditions. The purpose of this study was to determine the physiologic expression of cytochrome P450 (CYP) mRNA transcripts in whole blood, kidney, duodenum, liver, and lung in healthy, adult male (n = 4) and female (n = 4) beagles via RNA-seq. mRNA expression was above background (transcripts per million) for 45 canine CYPs, with liver, duodenum, and lung expressing a high number of xenobiotic metabolizing CYPs, while prominent endogenous metabolizing CYP expression was present in blood and kidney. The relative expression pattern of CYP2A13, 2B11, 2C21, 2D15, 2E1, 3A12, and 27A1 in liver, lung, and duodenum was verified through qPCR. This is the first global profiling of physiologic CYP mRNA expression in multiple canine tissues, providing a platform for further studies characterizing canine CYPs and changes in gene expression in disease states.

  9. Distinct prognostic values of four-Notch-receptor mRNA expression in ovarian cancer.

    PubMed

    Zhou, Xinling; Teng, Lingling; Wang, Min

    2016-05-01

    Notch signaling pathway includes ligands and Notch receptors, which are frequently deregulated in several human malignancies including ovarian cancer. Aberrant activation of Notch signaling has been linked to ovarian carcinogenesis and progression. In the current study, we used the "Kaplan-Meier plotter" (KM plotter) database, in which updated gene expression data and survival information from a total of 1306 ovarian cancer patients were used to access the prognostic value of four Notch receptors in ovarian cancer patients. Hazard ratio (HR), 95 % confidence intervals, and log-rank P were calculated. Notch1 messenger RNA (mRNA) high expression was not found to be correlated to overall survival (OS) for all ovarian cancer, as well as in serous and endometrioid cancer patients followed for 20 years. However, Notch1 mRNA high expression is significantly associated with worsen OS in TP53 wild-type ovarian cancer patients, while it is significantly associated with better OS in TP53 mutation-type ovarian cancer patients. Notch2 mRNA high expression was found to be significantly correlated to worsen OS for all ovarian cancer patients, as well as in grade II ovarian cancer patients. Notch3 mRNA high expression was found to be significantly correlated to better OS for all ovarian cancer patients, but not in serous cancer patients and endometrioid cancer patients. Notch4 mRNA high expression was not found to be significantly correlated to OS for all ovarian cancer patients, serous cancer patients, and endometrioid cancer patients. These results indicate that there are distinct prognostic values of four Notch receptors in ovarian cancer. This information will be useful for better understanding of the heterogeneity and complexity in the molecular biology of ovarian cancer and for developing tools to more accurately predict their prognosis. Based on our results, Notch1 could be a potential drug target of TP53 wild-type ovarian cancer and Notch2 could be a potential drug

  10. Translatome profiling: methods for genome-scale analysis of mRNA translation.

    PubMed

    King, Helen A; Gerber, André P

    2016-01-01

    During the past decade, there has been a rapidly increased appreciation of the role of translation as a key regulatory node in gene expression. Thereby, the development of methods to infer the translatome, which refers to the entirety of mRNAs associated with ribosomes for protein synthesis, has facilitated the discovery of new principles and mechanisms of translation and expanded our view of the underlying logic of protein synthesis. Here, we review the three main methodologies for translatome analysis, and we highlight some of the recent discoveries made using each technique. We first discuss polysomal profiling, a classical technique that involves the separation of mRNAs depending on the number of bound ribosomes using a sucrose gradient, and which has been combined with global analysis tools such as DNA microarrays or high-throughput RNA sequencing to identify the RNAs in polysomal fractions. We then introduce ribosomal profiling, a recently established technique that enables the mapping of ribosomes along mRNAs at near-nucleotide resolution on a global scale. We finally refer to ribosome affinity purification techniques that are based on the cell-type-specific expression of tagged ribosomal proteins, allowing the capture of translatomes from specialized cells in organisms. We discuss the advantages and disadvantages of these three main techniques in the pursuit of defining the translatome, and we speculate about future developments.

  11. Antisense oligodeoxynucleotides targeted to MAG mRNA profoundly alter BP and PLP mRNA expression in differentiating oligodendrocytes: a caution.

    PubMed

    Laszkiewicz, I; Wiggins, R C; Konat, G W

    1999-09-01

    The applicability of antisense technology to suppress the expression of myelin associated glycoprotein (MAG) in cultured oligodendrocytes was evaluated. Differentiating oligodendrocyte precursor cells obtained by the shake-off method were exposed to nine unmodified antisense oligodeoxynucleotides (ODNs) targeted to the first seven exons of MAG mRNA. After four days, steady-state levels of MAG, proteolipid protein (PLP) and basic protein (BP) mRNAs were determined by Northern blot analysis. Only ODN annealing to 599-618 nt of the MAG mRNA (the junction of exon 5 and 6) resulted in a significant, 75% decrease in the MAG mRNA level. Unexpectedly, six other anti-MAG ODNs which had no significant effect on the MAG message, greatly increased the level of BP mRNA. The highest upregulation of approximately 12 fold was observed with ODN annealing to 139-168 nt (junction of exon 3 and 4). On the other hand, the 997-1016 ODN decreased the levels of BP and PLP messages by 70-80%. The 599-618 ODN also decreased the PLP mRNA by 85%. The results demonstrate that antisense ODNs targeted to one gene may profoundly alter the expression of other genes, and hence, complicate functional analysis of the targeted protein.

  12. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice.

    PubMed

    Fu, Zidong Donna; Klaassen, Curtis D

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver.

  13. DDR2 polymorphisms and mRNA expression in lung cancers of Japanese patients.

    PubMed

    Sasaki, Hidefumi; Shitara, Masayuki; Yokota, Keisuke; Okuda, Katsuhiro; Hikosaka, Yu; Moriyama, Satoru; Yano, Motoki; Fujii, Yoshitaka

    2012-07-01

    Discoidin domain receptor 2, DDR2, is a tyrosine kinase receptor for fibrillar collagen that is involved in postnatal development, tissue repair and primary and metastatic cancer progression. Recently, mutations in the DDR2 kinase gene were identified in squamous cell lung cancer from large-scale Sanger sequencing. The present study investigated the DDR2 gene mutations and mRNA expression in surgically treated non-small cell lung cancer (NSCLC) of squamous histology cases. The presence or absence of DDR2 mutations at the kinase and discoidin domain was analyzed by direct sequencing. In this cohort, DDR2 mutations were not observed in the 166 patients with lung cancer, although DDR2 polymorphisms were observed (H136H, n=14) at the discoidin domain. mRNA levels of DDR2 in lung tumor samples and the adjacent normal lung samples were simultaneously analyzed. DDR2 mRNA levels were significantly decreased in tumor samples compared with normal lung samples. However, the DDR2 mRNA levels were elevated in the DDR2 polymorphism cases.

  14. Heterogeneous expression of protein and mRNA in pyruvate dehydrogenase deficiency.

    PubMed Central

    Wexler, I D; Kerr, D S; Ho, L; Lusk, M M; Pepin, R A; Javed, A A; Mole, J E; Jesse, B W; Thekkumkara, T J; Pons, G

    1988-01-01

    Deficiency of pyruvate dehydrogenase [pyruvate:lipoamide 2-oxidoreductase (decarboxylating and acceptor-acetylating), EC 1.2.4.1], the first component of the pyruvate dehydrogenase complex, is associated with lactic acidosis and central nervous system dysfunction. Using both specific antibodies to pyruvate dehydrogenase and cDNAs coding for its two alpha and beta subunits, we characterized pyruvate dehydrogenase deficiency in 11 patients. Three different patterns were found on immunologic and RNA blot analyses. (i) Seven patients had immunologically detectable crossreactive material for the alpha and beta proteins of pyruvate dehydrogenase. (ii) Two patients had no detectable crossreactive protein for either the alpha or beta subunit but had normal amounts of mRNA for both alpha and beta subunits. (iii) The remaining two patients also had no detectable crossreactive protein but had diminished amounts of mRNA for the alpha subunit of pyruvate dehydrogenase only. These results indicate that loss of pyruvate dehydrogenase activity may be associated with either absent or catalytically inactive proteins, and in those cases in which this enzyme is absent, mRNA for one of the subunits may also be missing. When mRNA for one of the subunits is lacking, both protein subunits are absent, suggesting that a mutation affecting the expression of one of the subunit proteins causes the remaining uncomplexed subunit to be unstable. The results show that several different mutations account for the molecular heterogeneity of pyruvate dehydrogenase deficiency. Images PMID:3140238

  15. Optimization of mRNA design for protein expression in the crustacean Daphnia magna.

    PubMed

    Törner, Kerstin; Nakanishi, Takashi; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime

    2014-08-01

    The water flea Daphnia is a new model organism for ecological, evolutionary, and toxicological genomics. Detailed functional analysis of genes newly discovered through genomic approaches often requires overexpression of the identified protein. In the present study, we report the microinjection of in vitro-synthesized RNAs into the eggs as a method for overexpressing ubiquitous proteins in Daphnia magna. We injected a 1.3-kb mRNA that coded for the red fluorescent protein (DsRed2) flanked by UTRs from the ubiquitously expressed elongation factor 1α-1 (EF1α-1) into D. magna embryos. DsRed2 fluorescence in the embryos was measured 24 h after microinjection. Unexpectedly, the reporter RNA containing the 522-bp full-length EF1α-1 3' UTR failed to induce fluorescence. To assess reporter expression, the length of the 3' UTR that potentially contained negative regulatory elements of protein expression, including AU-rich regions and Musashi binding elements, was serially reduced from the 3' end. Assessing all injected RNA alternatives, mRNA containing the first 60 bp of the 3' UTR gave rise to the highest fluorescence, 14 times the Daphnia auto-fluorescence. In contrast, mRNA lacking the entire 3' UTR hardly induced any change in fluorescence intensity. This is the first evaluation of UTRs of mRNAs delivered into Daphnia embryos by microinjection for overexpressing proteins. The mRNA with truncated 3' UTRs of Daphnia EF1α-1 will be useful not only for gain-of-function analyses but also for labeling proteins and organelles with fluorescent proteins in Daphnia.

  16. The Role of Neuropeptide Y mRNA Expression Level in Distinguishing Different Types of Depression

    PubMed Central

    Yue, Yingying; Jiang, Haitang; Yin, Yingying; Zhang, Yuqun; Liang, Jinfeng; Li, Shenghua; Wang, Jun; Lu, Jianxin; Geng, Deqin; Wu, Aiqin; Yuan, Yonggui

    2016-01-01

    Previous studies demonstrate that the protein of neuropeptide Y (NPY) is abnormal in depression patients, but the changes of NPY in different types of depression are unclear. This study was aimed to examine protein and mRNA expression levels of NPY in 159 cases with four groups including post-stroke depression (PSD) group, stroke without depression (Non-PSD) group, major depressive disorder (MDD) group and normal control (NC) group. The protein and gene expression analysis were performed by enzyme-linked immunosorbent assay (ELISA) and quantitative polymerase chain reaction-based methods. One way analysis of variance (ANOVA), chi-square tests and nonparametric test were used to evaluate general characteristics, clinical and biological materials. In order to explore the role of NPY in different types of depression, the partial correlations, binary logistic regression analysis and receiver operating characteristic (ROC) curve were calculated for PSD and MDD groups. There are significant differences of NPY protein (Fdf(3) = 5.167, P = 0.002) and mRNA expression levels (χKruskal2-Wallis, df(3) = 20.541, P < 0.001) among four groups. Bonferroni multiple comparisons found that the NPY protein was significantly decreased in PSD (FBonferroni = −7.133, P = 0.002) and Non-PSD group (FBonferroni = −5.612, P = 0.018) compared with NC group. However, contrasted with MDD group, the mRNA expression was increased in PSD and Non-PSD group by nonparametric test (all P < 0.05). In binary logistic analyses, NPY mRNA expression was independent predictors of PSD (odds ratio: 1.452, 95% CI, 1.081–1.951, P = 0.013). The ROC curve showed NPY mRNA had a general prognostic accuracy (area under the curve: 0.766, 95% CI, 0.656–0.876, P < 0.001). This is the first study to explore the distinguishing function of NPY in different types of depression. It will provide help in the identification of different subtypes of depression. PMID:28082897

  17. The Role of Neuropeptide Y mRNA Expression Level in Distinguishing Different Types of Depression.

    PubMed

    Yue, Yingying; Jiang, Haitang; Yin, Yingying; Zhang, Yuqun; Liang, Jinfeng; Li, Shenghua; Wang, Jun; Lu, Jianxin; Geng, Deqin; Wu, Aiqin; Yuan, Yonggui

    2016-01-01

    Previous studies demonstrate that the protein of neuropeptide Y (NPY) is abnormal in depression patients, but the changes of NPY in different types of depression are unclear. This study was aimed to examine protein and mRNA expression levels of NPY in 159 cases with four groups including post-stroke depression (PSD) group, stroke without depression (Non-PSD) group, major depressive disorder (MDD) group and normal control (NC) group. The protein and gene expression analysis were performed by enzyme-linked immunosorbent assay (ELISA) and quantitative polymerase chain reaction-based methods. One way analysis of variance (ANOVA), chi-square tests and nonparametric test were used to evaluate general characteristics, clinical and biological materials. In order to explore the role of NPY in different types of depression, the partial correlations, binary logistic regression analysis and receiver operating characteristic (ROC) curve were calculated for PSD and MDD groups. There are significant differences of NPY protein (Fdf(3) = 5.167, P = 0.002) and mRNA expression levels ([Formula: see text] = 20.541, P < 0.001) among four groups. Bonferroni multiple comparisons found that the NPY protein was significantly decreased in PSD (FBonferroni = -7.133, P = 0.002) and Non-PSD group (FBonferroni = -5.612, P = 0.018) compared with NC group. However, contrasted with MDD group, the mRNA expression was increased in PSD and Non-PSD group by nonparametric test (all P < 0.05). In binary logistic analyses, NPY mRNA expression was independent predictors of PSD (odds ratio: 1.452, 95% CI, 1.081-1.951, P = 0.013). The ROC curve showed NPY mRNA had a general prognostic accuracy (area under the curve: 0.766, 95% CI, 0.656-0.876, P < 0.001). This is the first study to explore the distinguishing function of NPY in different types of depression. It will provide help in the identification of different subtypes of depression.

  18. DNA methylation and mRNA expression of HLA-DQA1 alleles in type 1 diabetes mellitus.

    PubMed

    Cepek, Pavel; Zajacova, Marta; Kotrbova-Kozak, Anna; Silhova, Elena; Cerna, Marie

    2016-06-01

    Type 1 diabetes (T1D) belongs among polygenic multifactorial autoimmune diseases. The highest risk is associated with human leucocyte antigen (HLA) class II genes, including HLA-DQA1 gene. Our aim was to investigate DNA methylation of HLA-DQA1 promoter alleles (QAP) and correlate methylation status with individual HLA-DQA1 allele expression of patients with T1D and healthy controls. DNA methylation is one of the epigenetic modifications that regulate gene expression and is known to be shaped by the environment.Sixty one patients with T1D and 39 healthy controls were involved in this study. Isolated DNA was treated with sodium bisulphite and HLA-DQA1 promoter sequence was amplified using nested PCR. After sequencing, DNA methylation of HLA-DQA1 promoter alleles was analysed. Individual mRNA HLA-DQA1 relative allele expression was assessed using two different endogenous controls (PPIA, DRA). We have found statistically significant differences in HLA-DQA1 allele 02:01 expression (PPIA normalization, Pcorr = 0·041; DRA normalization, Pcorr = 0·052) between healthy controls and patients with T1D. The complete methylation profile of the HLA-DQA1 promoter was gained with the most methylated allele DQA1*02:01 and the least methylated DQA1*05:01 in both studied groups. Methylation profile observed in patients with T1D and healthy controls was similar, and no correlation between HLA-DQA1 allele expression and DNA methylation was found. Although we have not proved significant methylation differences between the two groups, detailed DNA methylation status and its correlation with expression of each HLA-DQA1 allele in patients with T1D have been described for the first time.

  19. Prognostic value of amphiregulin and epiregulin mRNA expression in metastatic colorectal cancer patients

    PubMed Central

    You, Zhai; Qiong, Qian; Jun, Zhou

    2016-01-01

    Epidermal growth factor receptor (EGFR) and its ligands amphiregulin (AREG) and epiregulin (EREG) play a central role in the development of colorectal cancer, but the prognostic values of AREG and EREG are controversial. We conducted a meta-analysis of studies that investigated AREG and/or EREG mRNA levels in primary tumors to determine their prognostic value in metastatic colorectal cancer (mCRC). In addition, RAS status was assessed. Relevant articles were identified by searching the EMBASE, PubMed, and Cochrane Library databases. Hazard ratios (HR) with 95% confidence intervals (CIs) were calculated using a random-effects model. Nine studies involving 2167 patients were included in this meta-analysis. High AREG expression was associated with longer overall survival (OS) and progression-free survival (PFS). High EREG expression was also associated with prolonged OS and PFS. In RAS wild-type (WT) patients who received anti-EGFR therapy, high AREG and EREG expression was associated with longer OS. Our results indicate that high AREG and EREG mRNA expression are independent favorable prognostic biomarkers in mCRC. The expression of these ligands should be considered when evaluating prognoses in RAS-WT patients receiving anti-EGFR therapy. PMID:27344184

  20. Effects of mRNA amplification on gene expression ratios in cDNA experiments estimated by analysis of variance

    PubMed Central

    Nygaard, Vigdis; Løland, Anders; Holden, Marit; Langaas, Mette; Rue, Håvard; Liu, Fang; Myklebost, Ola; Fodstad, Øystein; Hovig, Eivind; Smith-Sørensen, Birgitte

    2003-01-01

    Background A limiting factor of cDNA microarray technology is the need for a substantial amount of RNA per labeling reaction. Thus, 20–200 micro-grams total RNA or 0.5–2 micro-grams poly (A) RNA is typically required for monitoring gene expression. In addition, gene expression profiles from large, heterogeneous cell populations provide complex patterns from which biological data for the target cells may be difficult to extract. In this study, we chose to investigate a widely used mRNA amplification protocol that allows gene expression studies to be performed on samples with limited starting material. We present a quantitative study of the variation and noise present in our data set obtained from experiments with either amplified or non-amplified material. Results Using analysis of variance (ANOVA) and multiple hypothesis testing, we estimated the impact of amplification on the preservation of gene expression ratios. Both methods showed that the gene expression ratios were not completely preserved between amplified and non-amplified material. We also compared the expression ratios between the two cell lines for the amplified material with expression ratios between the two cell lines for the non-amplified material for each gene. With the aid of multiple t-testing with a false discovery rate of 5%, we found that 10% of the genes investigated showed significantly different expression ratios. Conclusion Although the ratios were not fully preserved, amplification may prove to be extremely useful with respect to characterizing low expressing genes. PMID:12659661

  1. Gene expression profiling of human ovarian tumours

    PubMed Central

    Biade, S; Marinucci, M; Schick, J; Roberts, D; Workman, G; Sage, E H; O'Dwyer, P J; LiVolsi, V A; Johnson, S W

    2006-01-01

    There is currently a lack of reliable diagnostic and prognostic markers for ovarian cancer. We established gene expression profiles for 120 human ovarian tumours to identify determinants of histologic subtype, grade and degree of malignancy. Unsupervised cluster analysis of the most variable set of expression data resulted in three major tumour groups. One consisted predominantly of benign tumours, one contained mostly malignant tumours, and one was comprised of a mixture of borderline and malignant tumours. Using two supervised approaches, we identified a set of genes that distinguished the benign, borderline and malignant phenotypes. These algorithms were unable to establish profiles for histologic subtype or grade. To validate these findings, the expression of 21 candidate genes selected from these analyses was measured by quantitative RT–PCR using an independent set of tumour samples. Hierarchical clustering of these data resulted in two major groups, one benign and one malignant, with the borderline tumours interspersed between the two groups. These results indicate that borderline ovarian tumours may be classified as either benign or malignant, and that this classifier could be useful for predicting the clinical course of borderline tumours. Immunohistochemical analysis also demonstrated increased expression of CD24 antigen in malignant versus benign tumour tissue. The data that we have generated will contribute to a growing body of expression data that more accurately define the biologic and clinical characteristics of ovarian cancers. PMID:16969345

  2. Gene expression profiling of human ovarian tumours.

    PubMed

    Biade, S; Marinucci, M; Schick, J; Roberts, D; Workman, G; Sage, E H; O'Dwyer, P J; Livolsi, V A; Johnson, S W

    2006-10-23

    There is currently a lack of reliable diagnostic and prognostic markers for ovarian cancer. We established gene expression profiles for 120 human ovarian tumours to identify determinants of histologic subtype, grade and degree of malignancy. Unsupervised cluster analysis of the most variable set of expression data resulted in three major tumour groups. One consisted predominantly of benign tumours, one contained mostly malignant tumours, and one was comprised of a mixture of borderline and malignant tumours. Using two supervised approaches, we identified a set of genes that distinguished the benign, borderline and malignant phenotypes. These algorithms were unable to establish profiles for histologic subtype or grade. To validate these findings, the expression of 21 candidate genes selected from these analyses was measured by quantitative RT-PCR using an independent set of tumour samples. Hierarchical clustering of these data resulted in two major groups, one benign and one malignant, with the borderline tumours interspersed between the two groups. These results indicate that borderline ovarian tumours may be classified as either benign or malignant, and that this classifier could be useful for predicting the clinical course of borderline tumours. Immunohistochemical analysis also demonstrated increased expression of CD24 antigen in malignant versus benign tumour tissue. The data that we have generated will contribute to a growing body of expression data that more accurately define the biologic and clinical characteristics of ovarian cancers.

  3. Apigenin prevents UVB-induced cyclooxygenase 2 expression: coupled mRNA stabilization and translational inhibition.

    PubMed

    Tong, Xin; Van Dross, Rukiyah T; Abu-Yousif, Adnan; Morrison, Aubrey R; Pelling, Jill C

    2007-01-01

    Cyclooxygenase 2 (COX-2) is a key enzyme in the conversion of arachidonic acid to prostaglandins, and COX-2 overexpression plays an important role in carcinogenesis. Exposure to UVB strongly increased COX-2 protein expression in mouse 308 keratinocytes, and this induction was inhibited by apigenin, a nonmutagenic bioflavonoid that has been shown to prevent mouse skin carcinogenesis induced by both chemical carcinogens and UV exposure. Our previous study suggested that one pathway by which apigenin inhibits UV-induced and basal COX-2 expression is through modulation of USF transcriptional activity in the 5' upstream region of the COX-2 gene. Here, we found that apigenin treatment also increased COX-2 mRNA stability, and the inhibitory effect of apigenin on UVB-induced luciferase reporter gene activity was dependent on the AU-rich element of the COX-2 3'-untranslated region. Furthermore, we identified two RNA-binding proteins, HuR and the T-cell-restricted intracellular antigen 1-related protein (TIAR), which were associated with endogenous COX-2 mRNA in 308 keratinocytes, and apigenin treatment increased their localization to cell cytoplasm. More importantly, reduction of HuR levels by small interfering RNA inhibited apigenin-mediated stabilization of COX-2 mRNA. Cells expressing reduced TIAR showed marked resistance to apigenin's ability to inhibit UVB-induced COX-2 expression. Taken together, these results indicate that in addition to transcriptional regulation, another mechanism by which apigenin prevents COX-2 expression is through mediating TIAR suppression of translation.

  4. Genomic Analysis and mRNA Expression of Equine Type I Interferon Genes

    PubMed Central

    Detournay, Olivier; Morrison, David A.; Wagner, Bettina; Zarnegar, Behdad

    2013-01-01

    This study aimed at identifying all of the type I interferon (IFN) genes of the horse and at monitoring their expression in equine cells on in vitro induction. We identified 32 putative type I IFN loci on horse chromosome 23 and an unplaced genomic scaffold. A phylogentic analysis characterized these into 8 different type I IFN classes, that is, putative functional genes for 6 IFN-α, 4 IFN-β, 8 IFN-ω (plus 4 pseudogenes), 3 IFN-δ (plus 1 pseudogene), 1 IFN-κ and 1 IFN-ɛ, plus 1 IFN-ν pseudogene, and 3 loci belonging to what has previously been called IFN-αω. Our analyses indicate that the IFN-αω genes are quite distinct from both IFN-α and IFN-ω, and we refer to this type I IFN as IFN-μ. Results from cell cultures showed that leukocytes readily expressed IFN-α, IFN-β, IFN-δ, IFN-μ, and IFN-ω mRNA on induction with, for example, live virus; while fibroblasts only expressed IFN-β mRNA on stimulation. IFN-κ or IFN-ɛ expression was not consistently induced in these cell cultures. Thus, the equine type I IFN family comprised 8 classes, 7 of which had putative functional genes, and mRNA expression of 5 was induced in vitro. Moreover, a relatively low number of IFN-α subtypes was found in the horse compared with other eutherian mammals. PMID:23772953

  5. Distinct prognostic values of S100 mRNA expression in breast cancer

    PubMed Central

    Zhang, Shizhen; Wang, Zhen; Liu, Weiwei; Lei, Rui; Shan, Jinlan; Li, Ling; Wang, Xiaochen

    2017-01-01

    S100 family genes encode low molecular weight, acidic-Ca2+ binding proteins implicating in a wide spectrum of biological processes. S100 family contains at least 20 members, most of which are frequently dysregulated in human malignancies including breast cancer. However, the prognostic roles of each individual S100, especially the mRNA level, in breast cancer patients remain elusive. In the current study, we used “The Kaplan-Meier plotter” (KM plotter) database to investigate the prognostic values of S100 mRNA expression in breast cancer. Our results indicated that high mRNA expression of S100A8, S100A9, S100A11 and S100P were found to be significantly correlated to worse outcome, while S100A1 and S100A6 were associated with better prognosis in all breast cancer patients. We further assessed the prognostic value of S100 in different intrinsic subtypes and clinicopathological features of breast cancer. The associated results will elucidate the role of S100 in breast cancer and may further lead the research to explore the S100-targeting reagents for treating breast cancer patients. PMID:28051137

  6. Combinatorial analysis of mRNA expression patterns in mouse embryos using hybridization chain reaction.

    PubMed

    Huss, David; Choi, Harry M T; Readhead, Carol; Fraser, Scott E; Pierce, Niles A; Lansford, Rusty

    2015-03-02

    Multiplexed fluorescent hybridization chain reaction (HCR) and advanced imaging techniques can be used to evaluate combinatorial gene expression patterns in whole mouse embryos with unprecedented spatial resolution. Using HCR, DNA probes complementary to mRNA targets trigger chain reactions in which metastable fluorophore-labeled DNA HCR hairpins self-assemble into tethered fluorescent amplification polymers. Each target mRNA is detected by a probe set containing one or more DNA probes, with each probe carrying two HCR initiators. For multiplexed experiments, probe sets for different target mRNAs carry orthogonal initiators that trigger orthogonal DNA HCR amplification cascades labeled by spectrally distinct fluorophores. As a result, in situ amplification is performed for all targets simultaneously, and the duration of the experiment is independent of the number of target mRNAs. We have used multiplexed fluorescent in situ HCR and advanced imaging technologies to address questions of cell heterogeneity and tissue complexity in craniofacial patterning and anterior neural development. In the sample protocol presented here, we detect three different mRNA targets: Tg(egfp), encoding the enhanced green fluorescent protein (GFP) transgene (typically used as a control); Twist1, encoding a transcription factor involved in cell lineage determination and differentiation; and Pax2, encoding a transcription factor expressed in the mid-hindbrain region of the mouse embryo.

  7. Cloning of the growth hormone receptor and its muscle-specific mRNA expression in black Muscovy duck (Cairina moschata).

    PubMed

    Ji, W; Sun, G; Duan, X; Dong, B; Bian, Y

    2016-04-01

    The cDNA sequence of the growth hormone receptor (GHR) from the black Muscovy duck was obtained and compared to the mRNA expression of growth hormone (GH) in the breast and leg muscles during 2-13 weeks of age using quantitative RT-PCR. The cDNA sequence of the Muscovy duck GHR gene is 1903 bp in length, with an 1830 bp coding region that encodes 609 amino acids. It exhibits > 92.9% homology with the poultry GHR cDNA and amino acid sequences. Overall, GHR mRNA expression was the highest at 2 weeks and the lowest at 13 weeks of age, exhibiting different profiles in different muscles. In the breast muscles, the GHR mRNA level declined sharply at 2-4 weeks, maintained at a plateau at 4-10 weeks and decreased slightly at 10-13 weeks. In the leg muscles, a gradual and slow decrease was observed during the whole period of 2-13 weeks. Robust extra-pituitary GH mRNA expression was detected in the muscles and the expression profile was highly correlated with that of GHR mRNA, in contrast to the inverse correlation between the pituitary GH and tissue GHR levels shown previously. These data suggest that the locally synthesised GH in the muscles, rather than the pituitary GH, is more closely associated with GHR and may be more critical for the regulation of muscle growth and contribute to the tissue-specific effects of GH.

  8. Functional genomic mRNA profiling of a large cancer data base demonstrates mesothelin overexpression in a broad range of tumor types.

    PubMed

    Lamberts, Laetitia E; de Groot, Derk Jan A; Bense, Rico D; de Vries, Elisabeth G E; Fehrmann, Rudolf S N

    2015-09-29

    The membrane bound glycoprotein mesothelin (MSLN) is a highly specific tumor marker, which is currently exploited as target for drugs. There are only limited data available on MSLN expression by human tumors. Therefore we determined overexpression of MSLN across different tumor types with Functional Genomic mRNA (FGM) profiling of a large cancer database. Results were compared with data in articles reporting immunohistochemical (IHC) MSLN tumor expression. FGM profiling is a technique that allows prediction of biologically relevant overexpression of proteins from a robust data set of mRNA microarrays. This technique was used in a database comprising 19,746 tumors to identify for 41 tumor types the percentage of samples with an overexpression of MSLN compared to a normal background. A literature search was performed to compare the FGM profiling data with studies reporting IHC MSLN tumor expression. FGM profiling showed MSLN overexpression in gastrointestinal (12-36%) and gynecological tumors (20-66%), non-small cell lung cancer (21%) and synovial sarcomas (30%). The overexpression found in thyroid cancers (5%) and renal cell cancers (10%) was not yet reported with IHC analyses. We observed that MSLN amplification rate within esophageal cancer depends on the histotype (31% for adenocarcinomas versus 3% for squamous-cell carcinomas). Subset analysis in breast cancer showed MSLN amplification rates of 28% in triple-negative breast cancer (TNBC) and 33% in basal-like breast cancer. Further subtype analysis of TNBCs showed the highest amplification rate (42%) in the basal-like 1 subtype and the lowest amplification rate (9%) in the luminal androgen receptor subtype.

  9. Induction of Ski protein expression upon luteinization in rat granulosa cells without a change in its mRNA expression.

    PubMed

    Kim, Hyun; Yamanouchi, Keitaro; Matsuwaki, Takashi; Nishihara, Masugi

    2012-01-01

    The Ski protein is implicated in the proliferation/differentiation of a variety of cells. We previously reported that the Ski protein is present in granulosa cells of atretic follicles, but not in preovulatory follicles, suggesting that Ski has a role in apoptosis of granulosa cells. However, granulosa cells cannot only undergo apoptosis but can alternatively differentiate into luteal cells. It is unknown whether Ski is expressed and has a role in granulosa cells undergoing luteinization. Thus, the aim of the present study was to determine the localization of the Ski protein in the rat ovary during luteinization to examine if Ski might play a role in this process. In order to examine the Ski protein expression during the progression of luteinization, follicular growth was induced in immature female rats by administration of equine chorionic gonadotropin, and luteinization was induced by human chorionic gonadotropin treatment to mimic the luteinizing hormone (LH) surge. While no Ski-positive granulosa cells were present in the preovulatory follicle, Ski protein expression was induced in response to the LH surge and was maintained after formation of the corpus luteum (CL). Although the Ski protein is absent from the granulosa cells of the preovulatory follicle, its mRNA (c-ski) was expressed, and the level of c-ski mRNA was unchanged even after the LH surge. The combined results demonstrated that Ski protein expression is induced in granulosa cells upon luteinization, and suggested that its expression is regulated posttranscriptionally.

  10. Cloning and expression analysis of prohibitin mRNA in canine mammary tumors

    PubMed Central

    MATSUYAMA, Satoshi; NAKANO, Yuko; NAKAMURA, Mieko; YAMAMOTO, Ryohei; SHIMADA, Terumasa; OHASHI, Fumihito; KUBO, Kihei

    2014-01-01

    Prohibitin is an antiproliferative protein that is a product of a putative tumor suppressor gene. However, there is little information on prohibitins in companion animals. In this study, we cloned canine prohibitin mRNA using RT-PCR and 3′-RACE (Rapid Amplification of cDNA Ends). The sequence was well conserved compared with those of other mammals, including human. The deduced amino acid sequence translated from the open reading frame completely corresponded to the human sequence. Canine prohibitin mRNA was expressed in all normal mammary and tumor samples examined. These results suggest that this protein plays a vital role in cell growth mechanisms and may be related to the occurrence of canine mammary tumors. PMID:25312047

  11. Effect of running training on uncoupling protein mRNA expression in rat brown adipose tissue

    NASA Astrophysics Data System (ADS)

    Yamashita, Hitoshi; Yamamoto, Mikio; Sato, Yuzo; Izawa, Tetsuya; Komabayashi, Takao; Saito, Daizo; Ohno, Hideki

    1993-03-01

    The effect was investigated of endurance training on the expression of uncoupling protein (UCP) mRNA in brown adipose tissue (BAT) of rats. The exercised rats were trained on a rodent treadmill for 5 days per week and a total of 9 weeks. After the training programme, a marked decrease in BAT mass was found in terms of weight or weight per unit body weight; there was a corresponding decrease in DNA content and a downward trend in RNA and glycogen levels. The UCP mRNA was present at a markedly decreased level in BAT of trained animals. In consideration of the reduced levels of mRNAs for hormone-sensitive lipase and acylCoA synthetase, the brown adipose tissue investigated appeared to be in a relatively atrophied and thermogenically quiescent state.

  12. Deciphering Poxvirus Gene Expression by RNA Sequencing and Ribosome Profiling

    PubMed Central

    Cao, Shuai; Martens, Craig A.; Porcella, Stephen F.; Xie, Zhi; Ma, Ming; Shen, Ben

    2015-01-01

    ABSTRACT The more than 200 closely spaced annotated open reading frames, extensive transcriptional read-through, and numerous unpredicted RNA start sites have made the analysis of vaccinia virus gene expression challenging. Genome-wide ribosome profiling provided an unprecedented assessment of poxvirus gene expression. By 4 h after infection, approximately 80% of the ribosome-associated mRNA was viral. Ribosome-associated mRNAs were detected for most annotated early genes at 2 h and for most intermediate and late genes at 4 and 8 h. Cluster analysis identified a subset of early mRNAs that continued to be translated at the later times. At 2 h, there was excellent correlation between the abundance of individual mRNAs and the numbers of associated ribosomes, indicating that expression was primarily transcriptionally regulated. However, extensive transcriptional read-through invalidated similar correlations at later times. The mRNAs with the highest density of ribosomes had host response, DNA replication, and transcription roles at early times and were virion components at late times. Translation inhibitors were used to map initiation sites at single-nucleotide resolution at the start of most annotated open reading frames although in some cases a downstream methionine was used instead. Additional putative translational initiation sites with AUG or alternative codons occurred mostly within open reading frames, and fewer occurred in untranslated leader sequences, antisense strands, and intergenic regions. However, most open reading frames associated with these additional translation initiation sites were short, raising questions regarding their biological roles. The data were used to construct a high-resolution genome-wide map of the vaccinia virus translatome. IMPORTANCE This report contains the first genome-wide, high-resolution analysis of poxvirus gene expression at both transcriptional and translational levels. The study was made possible by recent methodological

  13. Zinc transporter mRNA expression in the RWPE-1 human prostate epithelial cell line.

    PubMed

    Albrecht, Amy L; Somji, Seema; Sens, Mary Ann; Sens, Donald A; Garrett, Scott H

    2008-08-01

    The human prostate gland undergoes a prominent alteration in Zn+2 homeostasis during the development of prostate cancer. The goal of the present study was to determine if the immortalized human prostate cell line (RWPE-1) could serve as a model system to study the role of zinc in prostate cancer. The study examined the expression of mRNA for 19 members of the zinc transporter gene family in normal prostate tissue, the prostate RWPE-1 cell line, and the LNCaP, DU-145 and PC-3 prostate cancer cell lines. The study demonstrated that the expression of the 19 zinc transporters was similar between the RWPE-1 cell line and the in situ prostate gland. Of the 19 zinc transporters, only 5 had levels that were different between the RWPE-1 cells and the tissue samples; all five being increased (ZnT-6, Zip-1, Zip-3A, Zip-10, and Zip-14). The response of the 19 transporters was also determined when the cell lines were exposed to 75 microM Zn+2 for 24 h. It was shown for the RWPE-1 cells that only 5 transporters responded to Zn+2 with mRNA for ZnT-1 and ZnT-2 being increased while mRNA for ZnT-7, Zip-7 and Zip-10 transporters were decreased. It was shown for the LNCaP, DU-145 and PC-3 cells that Zn+2 had no effect on the mRNA levels of all 19 transporters except for an induction of ZnT-1 in PC-3 cells. Overall, the study suggests that the RWPE-1 cells could be a valuable model for the study of the zinc transporter gene family in the prostate.

  14. Chondrogenic mRNA expression in prechondrogenic cells after blue laser irradiation.

    PubMed

    Kushibiki, Toshihiro; Tajiri, Takako; Ninomiya, Yoshihisa; Awazu, Kunio

    2010-03-08

    Low-level laser therapy (LLLT) has been used as a method for biostimulation. Cartilage develops through the differentiation of mesenchymal cells into chondrocytes, and differentiated chondrocytes in articular cartilage maintain cartilage homeostasis by synthesizing cartilage-specific extracellular matrix. The aim of this study is to evaluate the enhancement of chondrocyte differentiation and the expression levels of chondrogenic mRNA in prechondrogenic ATDC5 cells after laser irradiation. For chondrogenic induction, ATDC5 cells were irradiated with a blue laser (405 nm, continuous wave) at 100 mW/cm(2) for 180 s following incubation in chondrogenic differentiation medium. Differentiation after laser irradiation was quantitatively evaluated by the measurement of total collagen contents and chondrogenesis-related mRNAs. The total amount of collagen and mRNA levels of aggrecan, collagen type II, SOX-9, and DEC-1 were increased relative to those of a non-laser irradiated group after 14 days of laser irradiation. On the other hand, Ap-2alpha mRNA, a negative transcription factor of chondrogenesis, was dramatically decreased after laser irradiation. In addition, intracellular reactive oxygen species (ROS) were generated after laser irradiation. These results, for the first time, provide functional evidence that mRNA expression relating to chondrogenesis is increased, and Ap-2alpha is decreased immediately after laser irradiation. As this technique could readily be applied in situ to control the differentiation of cells at an implanted site within the body, this approach may have therapeutic potential for the restoration of damaged or diseased tissue.

  15. Localization and mRNA expression of CYP3A and P-glycoprotein in human duodenum as a function of age.

    PubMed

    Fakhoury, May; Litalien, Catherine; Medard, Yves; Cavé, Hélène; Ezzahir, Nadia; Peuchmaur, Michel; Jacqz-Aigrain, Evelyne

    2005-11-01

    Cytochromes P450 3A (CYP3A) and P-glycoprotein (P-gp) are mainly located in enterocytes and hepatocytes. The CYP3A/P-gp system contributes to the first-pass metabolism of many drugs, resulting in a limited bioavailability. During the neonatal period, a shift between CYP3A7, the fetal form, and CYP3A4 occurs in the liver, but data on the expression of the CYP3A/P-gp complex in the intestine are very limited. A total of 59 normal duodenal biopsies from white children aged 1 month to 17 years were studied. Localization of the proteins by immunohistochemistry analysis was performed using a polyclonal antibody, Nuage anti-CYP3A, and a monoclonal antibody, C494 anti-P-gp. The mRNA quantification was performed using highly specific real-time reverse transcription-polymerase chain reaction. Villin mRNA quantification was used for normalization. CYP3A protein was detected in all enterocytes in the samples from patients over 6 months of age, whereas it was not in younger samples. P-gp protein was expressed at the apical and upper lateral surfaces of the enterocytes. CYP3A isoforms and P-gp mRNA levels were highly variable. CYP3A4 and CYP3A5 mRNA levels were high during the first year of life and decreased with age, whereas CYP3A7 was detected at a low level in 64% of samples, whatever the age. P-gp mRNA expression level was also highly variable. Our results showed that neonates and infants had a significant expression of CYP3A and P-gp mRNA in the intestine, suggesting a different maturation profile of CYP3A and P-gp with age in the liver and the intestine.

  16. mRNA expression of dopamine receptors in peripheral blood lymphocytes of computer game addicts.

    PubMed

    Vousooghi, Nasim; Zarei, Seyed Zeinolabedin; Sadat-Shirazi, Mitra-Sadat; Eghbali, Fatemeh; Zarrindast, Mohammad Reza

    2015-10-01

    Excessive playing of computer games like some other behaviors could lead to addiction. Addictive behaviors may induce their reinforcing effects through stimulation of the brain dopaminergic mesolimbic pathway. The status of dopamine receptors in the brain may be parallel to their homologous receptors in peripheral blood lymphocytes (PBLs). Here, we have investigated the mRNA expression of dopamine D3, D4 and D5 receptors in PBLs of computer game addicts (n = 20) in comparison to normal subjects (n = 20), using a real-time PCR method. The results showed that the expression level of D3 and D4 dopamine receptors in computer game addicts were not statistically different from the control group. However, the expression of the mRNA of D5 dopamine receptor was significantly down-regulated in PBLs of computer game addicts and reached 0.42 the amount of the control group. It is concluded that unlike with drug addiction, the expression levels of the D3 and D4 dopamine receptors in computer game addicts are not altered compared to the control group. However, reduced level of the D5 dopamine receptor in computer game addicts may serve as a peripheral marker in studies where the confounding effects of abused drugs are unwanted.

  17. The relative expression levels of insulin-like growth factor 1 and myostatin mRNA in the asynchronous development of skeletal muscle in ducks during early development.

    PubMed

    Hu, Yan; Liu, Hongxiang; Shan, Yanju; Ji, Gaige; Xu, Wenjuan; Shu, Jingting; Li, Huifang

    2015-08-10

    Genetic selection is a powerful tool for modifying poultry muscle yield. Insulin-like growth factor I (IGF-I) and myostatin (MSTN) are important regulators of muscle growth, especially in the myogenesis stage. This study compared the developmental pattern of the pectoralis major (PM) and lateral gastrocnemius (LM) muscles, mRNA expression characterization of IGF-I and MSTN-A and their correlation between 14 days in ovo and 1 week post-hatch in two Chinese local duck breeds. During early development, the growth of duck PM and LM followed an asynchronous pattern. Variations in PM growth rate observed with development followed the relative variations of MSTN and IGF-I expression; however, the same behavior was not observed in LM. Moreover, the profile of IGF-I expression in duck skeletal muscles indicated that genetic selection for high meat-yield poultry has altered the temporal expression of IGF-I and affected cellular characteristics and mass by hatch in a PM-specific manner. The MSTN-A expression profile showed synchronization with the growth of skeletal muscle and peaks of myofiber proliferation. The expression patterns of IGF-I and MSTN suggest that duck pectoralis fibers are prioritized for proliferation in embryogenesis. The IGF-1/MSTN-A mRNA ratios in PM and LM presented very similar trends in the changes of myofiber characteristics, and differences in the IGF-1/MSTN-A mRNA ratio in PM between the two breeds corresponded to the timing of differences in PM mass between the varieties. Our results support the hypothesis that relative levels of IGF-I and MSTN mRNA may participate in ordering muscle growth rates with selected development.

  18. Identification of prostate cancer mRNA markers by averaged differential expression and their detection in biopsies, blood, and urine

    PubMed Central

    Bai, V. Uma; Kaseb, Ahmed; Tejwani, Sheela; Divine, George W.; Barrack, Evelyn R.; Menon, Mani; Pardee, Arthur B.; Reddy, G. Prem-Veer

    2007-01-01

    The advent of serum prostate-specific antigen (PSA) as a biomarker has enabled early detection of prostate cancer and, hence, improved clinical outcome. However, a low PSA is not a guarantee of disease-free status, and an elevated PSA is frequently associated with a negative biopsy. Therefore, our goal is to identify molecular markers that can detect prostate cancer with greater specificity in body fluids such as urine or blood. We used the RT-PCR differential display method to first identify mRNA transcripts differentially expressed in tumor vs. patient-matched nontumor prostate tissue. This analysis led to the identification of 44 mRNA transcripts that were expressed differentially in some but not all tumor specimens examined. To identify mRNA transcripts that are differentially expressed in most tumor specimens, we turned to differential display of pooled tissue samples, a technique we name averaged differential expression (ADE). We performed differential display of mRNA from patient-matched nontumor vs. tumor tissue, each pooled from 10 patients with various Gleason scores. Differentially expressed mRNA transcripts identified by ADE were fewer in number, but were expressed in a greater percentage of tumors (>75%) than those identified by differential display of mRNA from individual patient samples. Differential expression of these mRNA transcripts was also detected by RT-PCR in mRNA isolated from urine and blood samples of prostate cancer patients. Our findings demonstrate the principle that specific cDNA probes of frequently differentially expressed mRNA transcripts identified by ADE can be used for the detection of prostate cancer in urine and blood samples. PMID:17283334

  19. Pattern-Recognition Receptor Signaling Regulator mRNA Expression in Humans and Mice, and in Transient Inflammation or Progressive Fibrosis

    PubMed Central

    Günthner, Roman; Kumar, Vankayala Ramaiah Santhosh; Lorenz, Georg; Anders, Hans-Joachim; Lech, Maciej

    2013-01-01

    The cell type-, organ-, and species-specific expression of the pattern-recognition receptors (PRRs) are well described but little is known about the respective expression profiles of their negative regulators. We therefore determined the mRNA expression levels of A20, CYLD, DUBA, ST2, CD180, SIGIRR, TANK, SOCS1, SOCS3, SHIP, IRAK-M, DOK1, DOK2, SHP1, SHP2, TOLLIP, IRF4, SIKE, NLRX1, ERBIN, CENTB1, and Clec4a2 in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. Additionally, we characterized their expression profiles in mononuclear blood cells upon bacterial endotoxin, which showed a consistent induction of A20, SOCS3, IRAK-M, and Clec4a2 in human and murine cells. Furthermore, we studied the expression pattern in transient kidney ischemia-reperfusion injury versus post-ischemic atrophy and fibrosis in mice. A20, CD180, ST2, SOCS1, SOCS3, SHIP, IRAK-M, DOK1, DOK2, IRF4, CENTB1, and Clec4a2 were all induced, albeit at different times of injury and repair. Progressive fibrosis was associated with a persistent induction of these factors. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to PRR-mediated innate immunity, which seems to be involved in tissue injury, tissue regeneration and in progressive tissue scarring. PMID:24009023

  20. Isoeugenol destabilizes IL-8 mRNA expression in THP-1 cells through induction of the negative regulator of mRNA stability tristetraprolin.

    PubMed

    Galbiati, Valentina; Carne, Alice; Mitjans, Montserrat; Galli, Corrado Lodovico; Marinovich, Marina; Corsini, Emanuela

    2012-02-01

    We previously demonstrated in the human promyelocytic cell line THP-1 that all allergens tested, with the exception of the prohapten isoeugenol, induced a dose-related release of interleukin-8 (IL-8). In the present study, we investigated whether this abnormal behavior was regulated by the AU-rich element-binding proteins HuR and tristetraprolin (TTP) or by the downstream molecule suppressor of cytokine signaling (SOCS)-3. The contact allergens isoeugenol, diethylmaleate (DEM), and 2,4-dinitrochlorobenzene (DNCB), and the irritant salicylic acid were used as reference compounds. Chemicals were used at concentrations that induced a 20% decrease in cell viability as assessed by propidium iodide staining, namely 100 μg/ml (0.61 mM) for isoeugenol, 100 μg/ml (0.58 mM) for DEM, 3 μg/ml (14.8 μM) for DNCB, and 250 μg/ml (1.81 mM) for salicylic acid. Time course experiments of IL-8 mRNA expression and assessment of IL-8 mRNA half-life, indicated a decreased IL-8 mRNA stability in isoeugenol-treated cells. We could demonstrate that a combination and regulation of HuR and TTP following exposure to contact allergens resulted in a different modulation of IL-8 mRNA half-life and release. The increased expression of TTP in THP-1 cells treated with isoeugenol results in destabilization of the IL-8 mRNA, which can account for the lack of IL-8 release. In contrast, the strong allergen DNCB failing to up-regulate TTP, while inducing HuR, resulted in longer IL-8 mRNA half-life and protein release. SOCS-3 was induced only in isoeugenol-treated cells; however, its modulation did not rescue the lack of IL-8 release, indicating that it is unlikely to be involved in the lack of IL-8 production. Finally, the destabilization effect of isoeugenol on IL-8 mRNA expression together with SOCS-3 expression resulted in an anti-inflammatory effect, as demonstrated by the ability of isoeugenol to modulate LPS or ionomycin-induced cytokine release.

  1. Dicer1-mediated miRNA processing shapes the mRNA profile and function of murine platelets.

    PubMed

    Rowley, Jesse W; Chappaz, Stéphane; Corduan, Aurélie; Chong, Mark M W; Campbell, Robert; Khoury, Amanda; Manne, Bhanu Kanth; Wurtzel, Jeremy G T; Michael, James V; Goldfinger, Lawrence E; Mumaw, Michele M; Nieman, Marvin T; Kile, Benjamin T; Provost, Patrick; Weyrich, Andrew S

    2016-04-07

    Human platelets contain microRNAs (miRNAs) and miRNA processing machinery, but their contribution to platelet function remains incompletely understood. Here, we show that murine megakaryocyte (MK)-specific knockdown of Dicer1, the ribonuclease that cleaves miRNA precursors into mature miRNAs, reduces the level of the majority of miRNAs in platelets. This leads to altered platelet messenger RNA (mRNA) expression profiles and mild thrombocytopenia. Fibrinogen receptor subunits Itga2b (αIIb) and Itgb3 (β3) mRNAs were among the differentially expressed transcripts that are increased in platelets lacking Dicer1. Argonaute 2 (Ago2), a member of the miRNA silencing complex, co-immunoprecipitated with αIIband β3mRNAs in wild-type platelets. Furthermore, co-immunoprecipitation experiments suggested reduced αIIb/β3/Ago2 complexes in miRNA-deficient platelets. These results suggested that miRNAs regulate both integrin subunits. Subsequent 3' untranslated region luciferase reporter assays confirmed that the translation of both αIIband β3mRNAs can be regulated by miRNAs miR-326, miR-128, miR-331, and miR-500. Consistent with these molecular changes, the deletion ofDicer1resulted in increased surface expression of integrins αIIband β3, and enhanced platelet binding to fibrinogen in vivo and in vitro. Heightened platelet reactivity, shortened tail-bleeding time, and reduced survival following collagen/epinephrine-induced pulmonary embolism were also observed in Dicer1-deficient animals. CombinedPf4-cre-mediated deletion of Drosha and Dicer1 did not significantly exacerbate phenotypes observed in single Dicer1 knockout mice. In summary, these findings indicate that Dicer1-dependent generation of mature miRNAs in late-stage MKs and platelets modulates the expression of target mRNAs important for the hemostatic and thrombotic function of platelets.

  2. Dicer1-mediated miRNA processing shapes the mRNA profile and function of murine platelets

    PubMed Central

    Chappaz, Stéphane; Corduan, Aurélie; Chong, Mark M. W.; Campbell, Robert; Khoury, Amanda; Manne, Bhanu Kanth; Wurtzel, Jeremy G. T.; Michael, James V.; Goldfinger, Lawrence E.; Mumaw, Michele M.; Nieman, Marvin T.; Kile, Benjamin T.; Provost, Patrick; Weyrich, Andrew S.

    2016-01-01

    Human platelets contain microRNAs (miRNAs) and miRNA processing machinery, but their contribution to platelet function remains incompletely understood. Here, we show that murine megakaryocyte (MK)-specific knockdown of Dicer1, the ribonuclease that cleaves miRNA precursors into mature miRNAs, reduces the level of the majority of miRNAs in platelets. This leads to altered platelet messenger RNA (mRNA) expression profiles and mild thrombocytopenia. Fibrinogen receptor subunits Itga2b (αIIb) and Itgb3 (β3) mRNAs were among the differentially expressed transcripts that are increased in platelets lacking Dicer1. Argonaute 2 (Ago2), a member of the miRNA silencing complex, co-immunoprecipitated with αIIb and β3 mRNAs in wild-type platelets. Furthermore, co-immunoprecipitation experiments suggested reduced αIIb/β3/Ago2 complexes in miRNA-deficient platelets. These results suggested that miRNAs regulate both integrin subunits. Subsequent 3′ untranslated region luciferase reporter assays confirmed that the translation of both αIIb and β3 mRNAs can be regulated by miRNAs miR-326, miR-128, miR-331, and miR-500. Consistent with these molecular changes, the deletion of Dicer1 resulted in increased surface expression of integrins αIIb and β3, and enhanced platelet binding to fibrinogen in vivo and in vitro. Heightened platelet reactivity, shortened tail-bleeding time, and reduced survival following collagen/epinephrine-induced pulmonary embolism were also observed in Dicer1-deficient animals. Combined Pf4-cre–mediated deletion of Drosha and Dicer1 did not significantly exacerbate phenotypes observed in single Dicer1 knockout mice. In summary, these findings indicate that Dicer1-dependent generation of mature miRNAs in late-stage MKs and platelets modulates the expression of target mRNAs important for the hemostatic and thrombotic function of platelets. PMID:26773046

  3. Robust Transgene Expression from Bicistronic mRNA in the Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Onishi, Masayuki; Pringle, John R.

    2016-01-01

    The unicellular green alga Chlamydomonas reinhardtii is a model organism that provides an opportunity to understand the evolution and functional biology of the lineage that includes the land plants, as well as aspects of the fundamental core biology conserved throughout the eukaryotic phylogeny. Although many tools are available to facilitate genetic, molecular biological, biochemical, and cell biological studies in Chlamydomonas, expression of unselected transgenes of interest (GOIs) has been challenging. In most methods used previously, the GOI and a selectable marker are expressed from two separate mRNAs, so that their concomitant expression is not guaranteed. In this study, we developed constructs that allow expression of an upstream GOI and downstream selectable marker from a single bicistronic mRNA. Although this approach in other systems has typically required a translation-enhancing element such as an internal ribosome entry site for the downstream marker, we found that a short stretch of unstructured junction sequence was sufficient to obtain adequate expression of the downstream gene, presumably through post-termination reinitiation. With this system, we obtained robust expression of both endogenous and heterologous GOIs, including fluorescent proteins and tagged fusion proteins, in the vast majority of transformants, thus eliminating the need for tedious secondary screening for GOI-expressing transformants. This improved efficiency should greatly facilitate a variety of genetic and cell-biological studies in Chlamydomonas and also enable new applications such as expression-based screens and large-scale production of foreign proteins. PMID:27770025

  4. FKBP5, SERT and COMT mRNA expressions in the peripheral leukocytes during menstruation cycle in healthy reproductive females.

    PubMed

    Kinouchi, Sawako; Iga, Jun-Ichi; Ueno, Shu-Ichi; Yamauchi, Ken; Numata, Shusuke; Song, Hongwei; Sumitani, Satsuki; Shibuya-Tayoshi, Sumiko; Haku, Mari; Yasui, Toshiyuki; Irahara, Minoru; Morita, Kyoko; Rokutan, Kazuhito; Ohmori, Tetsuro

    2008-03-21

    There have been several evidences that the mRNA expressions in the peripheral leukocytes may indicate not only physical but also psychological states. The purpose of this study is whether the mRNA expressional changes in the leukocytes are related to the mental states across the menstrual cycle in reproductive healthy female subjects. Thirty-eight female subjects (22.4+/-1.4 year-old) were participated in this study at three menstruation cycle periods (menstrual, follicular and luteal phase). The FKBP5 (FK506-binding protein gene), SERT (serotonin transporter gene) and COMT (catechol-o-methyltransferase gene) mRNA expressions in the leukocytes were determined with hormonal data. The psychological changes were assessed with self-rating hospital anxiety and depression scale (HADS). Only one thirds of subjects (n=12) had regular menstrual cycles during the experiment. So we analyzed the data from these 12 subjects. The anxiety score of each subject was changed across the menstrual cycle (Friedman test: P<0.05). The FKBP5 mRNA expression was significantly lower in the follicular phase than in the other phases but no changes were seen in either SERT or COMT mRNA expressions among the phases. In conclusion, there are differences of HADS anxiety score and FKBP5 mRNA expression in the leukocytes across the menstrual cycle but there is no correlation between anxiety scores and FKBP5 mRNA.

  5. Changes in superoxide dismutase mRNA expression by streptozotocin-induced diabetes.

    PubMed Central

    Kamata, K.; Kobayashi, T.

    1996-01-01

    1. Experiments were designed to investigate the involvement of superoxide anions in the attenuated endothelium-dependent relaxation of the rat aorta from streptozotocin (STZ)-induced diabetic rats. 2. The endothelium-dependent relaxation responses to acetylcholine (ACh, 10(-7) M) in helical strips of the aorta precontracted with noradrenaline (NA, 5 x 10(-3) approximately 3 x 10(-7) M) were significantly decreased in STZ-induced diabetic rats. The recovery phase of the relaxation after single administration of ACh in the STZ-induced diabetic rats was more rapid than those in control vessels. 3. Preincubation of aortic strips with superoxide dismutase (SOD, 60 u ml-1) normalized the recovery phase of the relaxation of diabetic aorta after single administration of ACh, whereas catalase (150 u ml-1) or indomethacin (10(-5) M) had no effects on the relaxation. 4. SOD (180 u ml-1) caused relaxation in NA precontracted aortic strips and the degree of the SOD-induced relaxation was significantly greater in diabetic aorta as compared with age-matched control vessels. 5. When the changes in mRNA expressions of Mn-SOD or Cu-Zn-SOD were observed, Mn-SOD mRNA expression was markedly decreased, and Cu-Zn-SOD was slightly decreased in diabetic aorta. 6. These results suggest that the rapid destruction of NO by superoxide anions may occur in the STZ-induced diabetic rats, and this may be due to a decrease in mRNA expression of Mn-SOD or Cu-Zn-SOD. Images Figure 4 PMID:8894182

  6. GABAergic mRNA expression is upregulated in the prefrontal cortex of rats sensitized to methamphetamine.

    PubMed

    Wearne, Travis A; Parker, Lindsay M; Franklin, Jane L; Goodchild, Ann K; Cornish, Jennifer L

    2016-01-15

    Inhibitory gamma-aminobutyric acid (GABA)-mediated neurotransmission plays an important role in the regulation of the prefrontal cortex (PFC), with increasing evidence suggesting that dysfunctional GABAergic processing of the PFC may underlie certain deficits reported across psychotic disorders. Methamphetamine (METH) is a psychostimulant that induces chronic psychosis in a subset of users, with repeat administration producing a progressively increased vulnerability to psychotic relapse following subsequent drug administration (sensitization). The aim here was to investigate changes to GABAergic mRNA expression in the PFC of rats sensitized to METH using quantitative polymerase chain reaction (qPCR). Male Sprague-Dawley rats (n=12) underwent repeated methamphetamine (intraperitoneal (i.p.) or saline injections for 7 days. Following 14 days of withdrawal, rats were challenged with acute methamphetamine (1mg/kg i.p.) and RNA was isolated from the PFC to compare the relative mRNA expression of a range of GABA enzymes, transporters and receptors subunits. METH challenge resulted in a significant sensitized behavioral (locomotor) response in METH pre-treated animals compared with saline pre-treated controls. The mRNAs of transporters (GAT1 and GAT3), ionotropic GABAA receptor subunits (α3 and β1), together with the metabotropic GABAB1 receptor, were upregulated in the PFC of sensitized rats compared with saline controls. These findings indicate that GABAergic mRNA expression is significantly altered at the pre and postsynaptic level following sensitization to METH, with sensitization resulting in the transcriptional upregulation of several inhibitory genes. These changes likely have significant consequences on GABA-mediated neurotransmission in the PFC and may underlie certain symptoms conserved across psychotic disorders, such as executive dysfunction.

  7. BCL6 mRNA Expression Level in Invasive Duct Carcinoma not otherwise Specified

    PubMed Central

    Badr, Eman; Masoud, Eman; Eldien, Marwa Serag

    2016-01-01

    Introduction B-Cell Lymphoma 6 (BCL6) has an oncogenic role in tumourigenesis of various malignancies. It represses genes involved in terminal differentiation and plays complementary role with Signal Transducer and Activator of Transcription 3 (STAT3) in triple-negative breast cancer cellular function. Aim To evaluate the expression of BCL6 in cancer breast and determine its correlation with the clinico-pathological features including the molecular subtype of breast carcinoma. Materials and Methods This prospective case control study was carried out on 150 patients, divided into 100 cases of invasive duct carcinoma not otherwise specified and 50 benign breast lesions including fibroadenoma and fibrocystic disease. Fresh tissues were excised, which were then subjected to RNA extraction. The BCL6 mRNA level was assessed using real-time reverse transcription Polymerase Chain Reaction (PCR). Results There was a significant higher levels of BCL6 mRNA in malignant cases compared to benign ones (p<0.001). The level of BCL6 mRNA was higher in cases showing advanced tumor stage (p<0.04), triple negative subtype and associated in situ component (p<0.001) compared to cases with an early stage, luminal or Her 2-neu positive subtypes and those lacking in situ component. Conclusion BCL6 is up-regulated in breast cancer and is associated with poor prognostic features such as advanced stage and triple negative molecular subtype. BCL6 inhibitors might be considered as targeted therapy for breast cancer. PMID:28208987

  8. Keratin14 mRNA expression in human pneumocytes during quiescence, repair and disease

    PubMed Central

    Confalonieri, Marco; Buratti, Emanuele; Grassi, Gabriele; Bussani, Rossana; Chilosi, Marco; Farra, Rossella; Abrami, Michela; Stuani, Cristiana; Salton, Francesco; Ficial, Miriam; Confalonieri, Paola; Zandonà, Lorenzo; Romano, Maurizio

    2017-01-01

    The lung alveoli slowly self-renew pneumocytes, but their facultative regeneration capacity is rapidly efficient after an injury, so fibrosis infrequently occurs. We recently observed Keratin 14 (KRT14) expression during diffuse alveolar damage (DAD), but not in controls. We wonder if KRT14 may be a marker of pneumocyte transition from quiescence to regeneration. Quantitative PCR and Western blot analyses highlighted the presence of KRT14 (mRNA and protein) only in human lung samples with DAD or interstitial lung disease (ILD). In the exponentially growing cell lines A549 and H441, the mRNA and protein levels of KRT14 peaked at day one after cell seeding and decreased at day two, opposite to what observed for the proliferation marker E2F1. The inverse relation of KRT14 versus E2F1 expression holds true also for other proliferative markers, such as cyclin E1 and cyclin D1. Of interest, we also found that E2F1 silencing caused cell cycle arrest and increased KRT14 expression, whilst E2F1 stimulation induced cell cycle progression and decreased KRT14. KRT14 also increased in proliferative pneumocytes (HPAEpiC) just before transdifferentiation. Overall, our results suggest that KRT14 is a viable biomarker of pneumocyte activation, and repair/regeneration. The involvement of KRT14 in regenerative process may suggest a novel pharmaceutical target to accelerate lung repair. PMID:28199407

  9. On a stochastic gene expression with pre-mRNA, mRNA and protein contribution.

    PubMed

    Rudnicki, Ryszard; Tomski, Andrzej

    2015-12-21

    In this paper we develop a model of stochastic gene expression, which is an extension of the model investigated in the paper [T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A.R. Brasier, M. Kimmel, Transcriptional stochasticity in gene expression, J. Theor. Biol. 238 (2006) 348-367]. In our model, stochastic effects still originate from random fluctuations in gene activity status, but we precede mRNA production by the formation of pre-mRNA, which enriches classical transcription phase. We obtain a stochastically regulated system of ordinary differential equations (ODEs) describing evolution of pre-mRNA, mRNA and protein levels. We perform mathematical analysis of a long-time behavior of this stochastic process, identified as a piece-wise deterministic Markov process (PDMP). We check exact results using numerical simulations for the distributions of all three types of particles. Moreover, we investigate the deterministic (adiabatic) limit state of the process, when depending on parameters it can exhibit two specific types of behavior: bistability and the existence of the limit cycle. The latter one is not present when only two kinds of gene expression products are considered.

  10. Analysis of the sequence and embryonic expression of chicken neurofibromin mRNA.

    PubMed

    Schafer, G L; Ciment, G; Stocker, K M; Baizer, L

    1993-04-01

    Neurofibromatosis type 1 (NF1) is a common inherited disorder that primarily affects tissues derived from the neural crest. Recent identification and characterization of the human NF1 gene has revealed that it encodes a protein (now called neurofibromin) that is similar in sequence to the ras-GTPase activator protein (or ras-GAP), suggesting that neurofibromin may be a component of cellular signal transduction pathways regulating cellular proliferation and/or differentiation. To initiate investigations on the role of the NF1 gene product in embryonic development, we have isolated a partial cDNA for chicken neurofibromin. Sequence analysis reveals that the predicted amino acid sequence is highly conserved between chick and human. The chicken cDNA hybridizes to a 12.5-kb transcript on RNA blots, a mol wt similar to that reported for the human and murine mRNAs. Ribonuclease protection assays indicate that NF1 mRNA is expressed in a variety of tissues in the chick embryo; this is confirmed by in situ hybridization analysis. NF1 mRNA expression is detectable as early as embryonic stage 18 in the neural plate. This pattern of expression may suggest a role for neurofibromin during normal development, including that of the nervous system.

  11. Ustilago maydis natural antisense transcript expression alters mRNA stability and pathogenesis

    PubMed Central

    Donaldson, Michael E; Saville, Barry J

    2013-01-01

    Ustilago maydis infection of Zea mays leads to the production of thick-walled diploid teliospores that are the dispersal agent for this pathogen. Transcriptome analyses of this model biotrophic basidiomycete fungus identified natural antisense transcripts (NATs) complementary to 247 open reading frames. The U. maydis NAT cDNAs were fully sequenced and annotated. Strand-specific RT-PCR screens confirmed expression and identified NATs preferentially expressed in the teliospore. Targeted screens revealed four U. maydis NATs that are conserved in a related fungus. Expression of NATs in haploid cells, where they are not naturally occurring, resulted in increased steady-state levels of some complementary mRNAs. The expression of one NAT, as-um02151, in haploid cells resulted in a twofold increase in complementary mRNA levels, the formation of sense–antisense double-stranded RNAs, and unchanged Um02151 protein levels. This led to a model for NAT function in the maintenance and expression of stored teliospore mRNAs. In testing this model by deletion of the regulatory region, it was determined that alteration in NAT expression resulted in decreased pathogenesis in both cob and seedling infections. This annotation and functional analysis supports multiple roles for U. maydis NATs in controlling gene expression and influencing pathogenesis. PMID:23650872

  12. Developed and evaluated a multiplex mRNA profiling system for body fluid identification in Chinese Han population.

    PubMed

    Song, Feng; Luo, Haibo; Hou, Yiping

    2015-10-01

    In forensic casework, identification the cellular origin from a biological sample is crucial to the case investigation and reconstruction in crime scene. DNA/RNA co-extraction for STR typing and human body fluids identification has been proposed as an efficient and comprehensive assay for forensic analysis. Several cell-specific messenger RNA (mRNA) markers for identification of the body fluids have been proposed by previous studies. In this study, a novel multiplex mRNA profiling system included 19 markers was developed and performed by reverse transcription endpoint polymerase chain reaction (RT-PCR). The multiplex combined 3 housekeeping gene markers and 16 cell-specific markers that have been used to identify five types of human body fluids: peripheral blood, semen, saliva, vaginal secretions and menstrual blood. The specificity, sensitivity, stability and detectability of the mixture were explored in our study. Majority of the cell-specific mRNA markers showed high specificity, although cross-reactivity was observed sporadically. Specific profiling for per body fluid was obtained. Moreover, the interpretation guidelines for inference of body fluid types were performed according to the A. Lindenbergh et al. The scoring guidelines can be applied to any RNA multiplex, which was based on six different scoring categories (observed, observed and fits, sporadically observed and fits, not observed, sporadically observed, not reliable, and non-specific due to high input). The simultaneous extraction of DNA showed positive full or partial profiling results of all samples. It demonstrated that the approach of combined STR-profiling and RNA profiling was suitable and reliable to detect the donor and origin of human body fluids in Chinese Han population.

  13. Toll-Like Receptor and Accessory Molecule mRNA Expression in Humans and Mice as Well as in Murine Autoimmunity, Transient Inflammation, and Progressive Fibrosis

    PubMed Central

    Ramaiah, Santhosh Kumar Vankayala; Günthner, Roman; Lech, Maciej; Anders, Hans-Joachim

    2013-01-01

    The cell type-, organ-, and species-specific expression of the Toll-like receptors (TLRs) are well described, but little is known about the respective expression profiles of their accessory molecules. We therefore determined the mRNA expression levels of LBP, MD2, CD36, CD14, granulin, HMGB1, LL37, GRP94, UNC93b1, TRIL, PRAT4A, AP3B1, AEP and the respective TLRs in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. In addition, the expression profiles in transient tissue inflammation upon renal ischemia-reperfusion injury, in spleens and kidneys from mice with lupus-like systemic autoimmunity, and in progressive tissue fibrosis upon unilateral ureteral obstruction were studied. Several TLR co-factors were specifically regulated during the different phases of these disease entities, suggesting a functional involvement in the disease process. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to TLR-mediated innate immunity, which seems to be involved in the tissue injury phase, in the phase of tissue regeneration, and in progressive tissue remodelling. PMID:23803655

  14. Chronic unpredictive mild stress leads to altered hepatic metabolic profile and gene expression

    PubMed Central

    Jia, Hong-mei; Li, Qi; Zhou, Chao; Yu, Meng; Yang, Yong; Zhang, Hong-wu; Ding, Gang; Shang, Hai; Zou, Zhong-mei

    2016-01-01

    Depression is a complex disease characterized by a series of pathological changes. Research on depression is mainly focused on the changes in brain, but not on liver. Therefore, we initially explored the metabolic profiles of hepatic extracts from rats treated with chronic unpredictive mild stress (CUMS) by UPLC-Q-TOF/MS. Using multivariate statistical analysis, a total of 26 altered metabolites distinguishing CUMS-induced depression from normal control were identified. Using two-stage receiver operating characteristic (ROC) analysis, 18 metabolites were recognized as potential biomarkers related to CUMS-induced depression via 12 metabolic pathways. Subsequently, we detected the mRNA expressions levels of apoptosis-associated genes such as Bax and Bcl-2 and four key enzymes including Pla2g15, Pnpla6, Baat and Gad1 involved in phospholipid and primary bile acid biosynthesis in liver tissues of CUMS rats by real-time qRT-PCR assay. The expression levels of Bax, Bcl-2, Pla2g15, Pnpla6 and Gad1 mRNA were 1.43,1.68, 1.74, 1.67 and 1.42-fold higher, and those of Baat, Bax/Bcl-2 ratio mRNA were 0.83, 0.85-fold lower in CUMS rats compared with normal control. Results of liver-targeted metabonomics and mRNA expression demonstrated that CUMS-induced depression leads to variations in hepatic metabolic profile and gene expression, and ultimately results in liver injury. PMID:27006086

  15. Chronic unpredictive mild stress leads to altered hepatic metabolic profile and gene expression.

    PubMed

    Jia, Hong-Mei; Li, Qi; Zhou, Chao; Yu, Meng; Yang, Yong; Zhang, Hong-Wu; Ding, Gang; Shang, Hai; Zou, Zhong-Mei

    2016-03-23

    Depression is a complex disease characterized by a series of pathological changes. Research on depression is mainly focused on the changes in brain, but not on liver. Therefore, we initially explored the metabolic profiles of hepatic extracts from rats treated with chronic unpredictive mild stress (CUMS) by UPLC-Q-TOF/MS. Using multivariate statistical analysis, a total of 26 altered metabolites distinguishing CUMS-induced depression from normal control were identified. Using two-stage receiver operating characteristic (ROC) analysis, 18 metabolites were recognized as potential biomarkers related to CUMS-induced depression via 12 metabolic pathways. Subsequently, we detected the mRNA expressions levels of apoptosis-associated genes such as Bax and Bcl-2 and four key enzymes including Pla2g15, Pnpla6, Baat and Gad1 involved in phospholipid and primary bile acid biosynthesis in liver tissues of CUMS rats by real-time qRT-PCR assay. The expression levels of Bax, Bcl-2, Pla2g15, Pnpla6 and Gad1 mRNA were 1.43,1.68, 1.74, 1.67 and 1.42-fold higher, and those of Baat, Bax/Bcl-2 ratio mRNA were 0.83, 0.85-fold lower in CUMS rats compared with normal control. Results of liver-targeted metabonomics and mRNA expression demonstrated that CUMS-induced depression leads to variations in hepatic metabolic profile and gene expression, and ultimately results in liver injury.

  16. The Allergic Airway Inflammation Repository--a user-friendly, curated resource of mRNA expression levels in studies of allergic airways.

    PubMed

    Gawel, D R; Rani James, A; Benson, M; Liljenström, R; Muraro, A; Nestor, C E; Zhang, H; Gustafsson, M

    2014-08-01

    Public microarray databases allow analysis of expression levels of candidate genes in different contexts. However, finding relevant microarray data is complicated by the large number of available studies. We have compiled a user-friendly, open-access database of mRNA microarray experiments relevant to allergic airway inflammation, the Allergic Airway Inflammation Repository (AAIR, http://aair.cimed.ike.liu.se/). The aim is to allow allergy researchers to determine the expression profile of their genes of interest in multiple clinical data sets and several experimental systems quickly and intuitively. AAIR also provides quick links to other relevant information such as experimental protocols, related literature and raw data files.

  17. Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.

    PubMed

    Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A

    2010-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues.

  18. Mycobacterium tuberculosis ESAT6 and CPF10 Induce Adenosine Deaminase 2 mRNA Expression in Monocyte-Derived Macrophages

    PubMed Central

    Bae, Mi Jung; Ryu, Suyeon; Kim, Ha-Jeong; Cha, Seung Ick

    2017-01-01

    Background Delayed hypersensitivity plays a large role in the pathogenesis of tuberculous pleural effusion (TPE). Macrophages infected with live Mycobacterium tuberculosis (MTB) increase the levels of adenosine deaminase2 (ADA2) in the pleural fluid of TPE patients. However, it is as yet unclear whether ADA2 can be produced by macrophages when challenged with MTB antigens alone. This study therefore evaluated the levels of ADA2 mRNA expression, using monocyte-derived macrophages (MDMs) stimulated with MTB antigens. Methods Purified monocytes from the peripheral blood mononuclear cells of healthy volunteers were differentiated into macrophages using granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF). The MDMs were stimulated with early secretory antigenic target protein 6 (ESAT6) and culture filtrate protein 10 (CFP10). The mRNA expression levels for the cat eye syndrome chromosome region, candidate 1 (CECR1) gene encoding ADA2 were then measured. Results CECR1 mRNA expression levels were significantly higher in MDMs stimulated with ESAT6 and CFP10, than in the unstimulated MDMs. When stimulated with ESAT6, M-CSF-treated MDMs showed more pronounced CECR1 mRNA expression than GM-CSF-treated MDMs. Interferon-γ decreased the ESAT6- and CFP10-induced CECR1 mRNA expression in MDMs. CECR1 mRNA expression levels were positively correlated with mRNA expression of tumor necrosis factor α and interleukin 10, respectively. Conclusion ADA2 mRNA expression increased when MDMs were stimulated with MTB antigens alone. This partly indicates that pleural fluid ADA levels could increase in patients with culture-negative TPE. Our results may be helpful in improving the understanding of TPE pathogenesis. PMID:28119750

  19. Analyses of mRNA Profiling through RNA Sequencing on a SAMP8 Mouse Model in Response to Ginsenoside Rg1 and Rb1 Treatment

    PubMed Central

    Zhang, Shuai; Zhu, Dina; Li, Hong; Zhang, Haijing; Feng, Chengqiang; Zhang, Wensheng

    2017-01-01

    Ginsenoside Rg1 and Rb1 are the major ingredients in two medicines called QiShengLi (Z20027165) and QiShengJing (Z20027164) approved by China. These ingredients are believed to mitigate forgetfulness. Numerous studies have confirmed that GRg1 and GRb1 offer protection against Alzheimer's disease (AD), and our morris water maze (MWM) experiment also indicated that GRg1 and GRb1 may attenuate memory deficits in the 7-month-old SAMP8 mice; however, comprehensive understanding of their roles in AD remains limited. This study systematically explored the mechanism at the genome level of the anti-AD effects of GRg1 and GRb1 in a senescence-accelerated mouse prone 8 (SAMP8) model through deep RNA sequencing. A total of 74,885 mRNA transcripts were obtained. Expression analysis showed that 1,780 mRNA transcripts were differentially expressed in SAMP8 mice compared with the SAMP8+GRg1 mice. Moreover, 1,066 significantly dysregulated mRNA transcripts were identified between SAMP8 and SAMP8+GRb1 mice. Analyses according to gene ontology and the Kyoto Encyclopedia of Genes and Genomes revealed that oral administration of GRg1 and GRb1 improved the learning performance of the SAMP8 mouse model from various aspects, such as nervous system development and mitogen-activated protein kinase signaling pathway. The most probable AD-related transcriptional responses after medication were predicted and discussed in detail. This study is the first to provide a systematic dissection of mRNA profiling in SAMP8 mouse brain in response to GRg1 and GRb1 treatment. We explained their efficacy thoroughly from the source (gene-level explanation). The findings serve as a theoretical basis for the exploration of GRg1 and GRb1 as functional drugs with anti-AD activity. PMID:28289387

  20. Solid state nanopores for gene expression profiling

    NASA Astrophysics Data System (ADS)

    Mussi, V.; Fanzio, P.; Repetto, L.; Firpo, G.; Valbusa, U.; Scaruffi, P.; Stigliani, S.; Tonini, G. P.

    2009-07-01

    Recently, nanopore technology has been introduced for genome analysis. Here we show results related to the possibility of preparing "engineered solid state nanopores". The nanopores were fabricated on a suspended Si 3N 4 membrane by Focused Ion Beam (FIB) drilling and chemically functionalized in order to covalently bind oligonucleotides (probes) on their surface. Our data show the stable effect of DNA attachment on the ionic current measured through the nanopore, making it possible to conceive and develop a selective biosensor for gene expression profiling.

  1. The integrative analysis of microRNA and mRNA expression in Apis mellifera following maze-based visual pattern learning.

    PubMed

    Qin, Qiu-Hong; Wang, Zi-Long; Tian, Liu-Qing; Gan, Hai-Yan; Zhang, Shao-Wu; Zeng, Zhi-Jiang

    2014-10-01

    The honeybee (Apis mellifera) is a social insect with strong sensory capacity and diverse behavioral repertoire and is recognized as a good model organism for studying the neurobiological basis of learning and memory. In this study, we analyzed the changes in microRNA (miRNA) and messenger RNA (mRNA) following maze-based visual learning using next-generation small RNA sequencing and Solexa/lllumina Digital Gene Expression tag profiling (DGE). For small RNA sequencing, we obtained 13 367 770 and 13 132 655 clean tags from the maze and control groups, respectively. A total of 40 differentially expressed known miRNAs were detected between these two samples, and all of them were up-regulated in the maze group compared to the control group. For DGE, 5 681 320 and 5 939 855 clean tags were detected from the maze and control groups, respectively. There were a total of 388 differentially expressed genes between these two samples, with 45 genes up-regulated and 343 genes down-regulated in the maze group, compared to the control group. Additionally, the expression levels of 10 differentially expressed genes were confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and the expression trends of eight of them were consistent with the DGE result, although the degree of change was lower in amplitude. The integrative analysis of miRNA and mRNA expression showed that, among the 40 differentially expressed known miRNAs and 388 differentially expressed genes, 60 pairs of miRNA/mRNA were identified as co-expressed in our present study. These results suggest that both miRNA and mRNA may play a pivotal role in the process of learning and memory in honeybees. Our sequencing data provide comprehensive miRNA and gene expression information for maze-based visual learning, which will facilitate understanding of the molecular mechanisms of honeybee learning and memory.

  2. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines.

    PubMed Central

    Nørgaard, P.; Spang-Thomsen, M.; Poulsen, H. S.

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II mRNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF-beta receptor proteins beta-glycan mRNA was rapidly down-regulated and this effect was sustained throughout the 24 h observation period. RI and RII mRNAs were slightly increased 24 h after treatment. In one cell line sensitive to growth inhibition by TGF-beta, 1 but lacking beta-glycan expression, and one cell line expressing only beta-glycan and thus TGF-beta 1 -resistant, no autoregulation of mRNA of either TGF-beta receptor was demonstrated. The results suggest that TGF-beta 1 regulates the expression of its receptors, in particular beta-glycan, and that this effect is dependent on co-expression of beta-glycan, RI and RII. Images Figure 1 Figure 2 Figure 4 PMID:8624260

  3. TP53 and ATM mRNA expression in skin and skeletal muscle after low-level laser exposure.

    PubMed

    Guedes de Almeida, Luciana; Silva Sergio, Luiz Philippe da; de Paoli, Flavia; Mencalha, Andre Luiz; da Fonseca, Adenilson de Souza

    2017-02-16

    Low-level lasers are widespread in regenerative medicine, but the molecular mechanisms involved in their biological effects are not fully understood, particularly those on DNA stability. Therefore, this study aimed to investigate mRNA expression of genes related to DNA genomic stability in skin and skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. For this, TP53 (Tumor Protein 53) and ATM (Ataxia Telangiectasia Mutated gene) mRNA expressions were evaluated by real-time quantitative PCR (RT-qPCR) technique 24 hours after low-level red and infrared laser exposure. Our data showed that relative TP53 mRNA expression was not significantly altered in both tissues exposed to lasers. For ATM, relative mRNA expression in skin tissue was not significantly altered, but in muscle tissue, laser exposure increased relative ATM mRNA expression. Low-level red and infrared laser radiations alter ATM mRNA expression related to DNA stability in skeletal muscle tissue.

  4. Correlation of Apobec Mrna Expression with overall Survival and pd-l1 Expression in Urothelial Carcinoma

    PubMed Central

    Mullane, Stephanie A.; Werner, Lillian; Rosenberg, Jonathan; Signoretti, Sabina; Callea, Marcella; Choueiri, Toni K.; Freeman, Gordon J.; Bellmunt, Joaquim

    2016-01-01

    Metastatic urothelial carcinoma (mUC) has a very high mutational rate and is associated with an APOBEC mutation signature. We examined the correlation of APOBEC expression with overall survival (OS) and PD-L1 expression in a cohort of 73 mUC patients. mRNA expression of APOBEC3 family of genes (A3A, A3B, A3C, A3F_a, A3F_b, A3G, A3H) was measured using Nanostring. PD-L1 expression, evaluated by immunohistochemistry, on tumor infiltrating mononuclear cells (TIMCs) and tumor cells was scored from 0 to 4, with 2–4 being positive. Wilcoxon’s non-parametric tests assessed the association of APOBEC and PD-L1. The Cox regression model assessed the association of APOBEC with OS. All APOBEC genes were expressed in mUC. Increased A3A, A3D, and A3H expression associates with PD-L1 positive TIMCs (p = 0.0009, 0.009, 0.06). Decreased A3B expression was marginally associated with PD-L1 positive TIMCs expression (p = 0.05). Increased A3F_a and A3F_b expression was associated with increased expression of PD-L1 on tumor cells (p = 0.05). Increased expression of A3D and A3H was associated with longer OS (p = 0.0009). Specific APOBEC genes have different effects on mUC in terms of survival and PD-L1 expression. A3D and A3H may have the most important role in mUC as they are associated with OS and PD-L1 TIMC expression. PMID:27283319

  5. Molecular cloning and mRNA expression analysis of antizyme inhibitor 1 in the ovarian follicles of the Sichuan white goose.

    PubMed

    Ma, Rong; Jiang, Dongmei; Kang, Bo; Bai, Lin; He, Hui; Chen, Ziyu; Yi, Zhixin

    2015-08-15

    Antizyme inhibitor 1 (Azin1) plays critical roles in various cellular pathways, including ornithine decarboxylase regulation, polyamine anabolism and uptake and cell proliferation. However, the molecular characteristics of the AZIN1 gene and its expression profile in goose tissues and ovarian follicles have not been reported. In this study, the AZIN1 cDNA of the Sichuan white goose (Anser cygnoides) was cloned, and analyzed for its phylogenetic and physiochemical properties. The expression profile of AZIN1 mRNA in geese tissues and ovarian follicles were examined using quantitative real-time PCR. The results showed that the open reading frame of the AZIN1 cDNA is 1,353 bp in length, encoding a 450 amino acid protein with a molecular weight of 50 kDa. Out of all tissues examined, AZIN1 expression was highest in the adrenal gland and lowest in breast muscle. There was also a high expression of AZIN1 in the cerebellum and isthmus of oviduct. With follicular development, AZIN1 gene expression gradually increased, and its expression in F1 was significantly higher than in F5 (P<0.05). AZIN1 expression was also significantly higher in the POF1 than in the other follicles (P<0.05), and there was a low mRNA expression of AZIN1 in atretic follicles. The results of AZIN1 expression profiling in ovarian follicles suggest that AZIN1 may play an important role in the progression of follicular development, potentially through regulating polyamine levels.

  6. Decline in c-myc mRNA expression but not the induction of c-fos mRNA expression is associated with differentiation of SH-SY5Y human neuroblastoma cells

    SciTech Connect

    Jalava, A.M.; Heikkilae, J.E.; Akerman, K.E.O. )

    1988-11-01

    The induction of differentiation in SH-SY5Y human neuroblastoma cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is accompanied by a rapid and a transient expression of c-fos mRNA and a down-regulation of c-myc RNA. The TPA-induced expression of c-fos mRNA was inhibited by H-7, a specific inhibitor of protein kinase C (PK-C). Dioctanoylglycerol (DiC{sub 8}) failed to induce differentiation of SH-SY5Y cells or to down-regulate c-myc mRNA but it did induce the expression of c-fos mRNA. Treatment of IMR-32 human neuroblastoma cells with TPA did not cause differentiation although c-fos mRNA was induced. Since PK-C in SH-SY5Y cells was activated by both TPA and DiC{sub 8} it is suggested that the activation of PK-C alone is not sufficient to induce differentiation in SH-SY5Y cells. The down-regulation of c-myc mRNA rather than the induction of c-fos mRNA seems to be associated with differentiation process in SH-SY5Y cells.

  7. Expression of cytokine mRNA in lentivirus-induced arthritis.

    PubMed Central

    Lechner, F.; Vogt, H. R.; Seow, H. F.; Bertoni, G.; Cheevers, W. P.; von Bodungen, U.; Zurbriggen, A.; Peterhans, E.

    1997-01-01

    Infection of goats with the lentivirus caprine arthritis encephalitis virus (CAEV) leads to persistent infection and development of chronic arthritis. We analyzed the expression of cytokines and viral RNA in the joints of goats at early time points after experimental infection with CAEV and in those of animals suffering from chronic arthritis as a result of natural infection. In situ hybridization experiments showed that the pattern of cytokine expression in caprine arthritis was similar to that found in rheumatoid arthritis (RA), with a few cells expressing the lymphocyte-derived cytokines interferon (IFN)-gamma and interleukin (IL)-2 and rather more cells expressing monocyte chemoattractant protein (MCP)-1, IL-6, and tumor necrosis factor (TNF)-alpha. IFN-gamma mRNA expression in experimentally infected joints peaked at day 12 and was mostly detected in areas containing viral RNA. At later time points, no IFN-gamma- or virus-expressing cells were found in inflamed joints but both were again detected in goats with severe arthritis. Interestingly, at the clinical stage of arthritis reflecting the chronic stage of infection, the inflammatory lesion was found to be immunologically compartmentalized. Humoral immune responses and cell-mediated immune responses appeared to concurrently occur in distinct areas of the synovial membrane. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9327739

  8. The Expression of Antibiotic Resistance Methyltransferase Correlates with mRNA Stability Independently of Ribosome Stalling

    PubMed Central

    Dzyubak, Ekaterina

    2016-01-01

    Members of the Erm methyltransferase family modify 23S rRNA of the bacterial ribosome and render cross-resistance to macrolides and multiple distantly related antibiotics. Previous studies have shown that the expression of erm is activated when a macrolide-bound ribosome stalls the translation of the leader peptide preceding the cotranscribed erm. Ribosome stalling is thought to destabilize the inhibitory stem-loop mRNA structure and exposes the erm Shine-Dalgarno (SD) sequence for translational initiation. Paradoxically, mutations that abolish ribosome stalling are routinely found in hyper-resistant clinical isolates; however, the significance of the stalling-dead leader sequence is largely unknown. Here, we show that nonsense mutations in the Staphylococcus aureus ErmB leader peptide (ErmBL) lead to high basal and induced expression of downstream ErmB in the absence or presence of macrolide concomitantly with elevated ribosome methylation and resistance. The overexpression of ErmB is associated with the reduced turnover of the ermBL-ermB transcript, and the macrolide appears to mitigate mRNA cleavage at a site immediately downstream of the ermBL SD sequence. The stabilizing effect of antibiotics on mRNA is not limited to ermBL-ermB; cationic antibiotics representing a ribosome-stalling inducer and a noninducer increase the half-life of specific transcripts. These data unveil a new layer of ermB regulation and imply that ErmBL translation or ribosome stalling serves as a “tuner” to suppress aberrant production of ErmB because methylated ribosome may impose a fitness cost on the bacterium as a result of misregulated translation. PMID:27645242

  9. mRNA Expression Signature of Gleason Grade Predicts Lethal Prostate Cancer

    PubMed Central

    Penney, Kathryn L.; Sinnott, Jennifer A.; Fall, Katja; Pawitan, Yudi; Hoshida, Yujin; Kraft, Peter; Stark, Jennifer R.; Fiorentino, Michelangelo; Perner, Sven; Finn, Stephen; Calza, Stefano; Flavin, Richard; Freedman, Matthew L.; Setlur, Sunita; Sesso, Howard D.; Andersson, Swen-Olof; Martin, Neil; Kantoff, Philip W.; Johansson, Jan-Erik; Adami, Hans-Olov; Rubin, Mark A.; Loda, Massimo; Golub, Todd R.; Andrén, Ove; Stampfer, Meir J.; Mucci, Lorelei A.

    2011-01-01

    Purpose Prostate-specific antigen screening has led to enormous overtreatment of prostate cancer because of the inability to distinguish potentially lethal disease at diagnosis. We reasoned that by identifying an mRNA signature of Gleason grade, the best predictor of prognosis, we could improve prediction of lethal disease among men with moderate Gleason 7 tumors, the most common grade, and the most indeterminate in terms of prognosis. Patients and Methods Using the complementary DNA–mediated annealing, selection, extension, and ligation assay, we measured the mRNA expression of 6,100 genes in prostate tumor tissue in the Swedish Watchful Waiting cohort (n = 358) and Physicians' Health Study (PHS; n = 109). We developed an mRNA signature of Gleason grade comparing individuals with Gleason ≤ 6 to those with Gleason ≥ 8 tumors and applied the model among patients with Gleason 7 to discriminate lethal cases. Results We built a 157-gene signature using the Swedish data that predicted Gleason with low misclassification (area under the curve [AUC] = 0.91); when this signature was tested in the PHS, the discriminatory ability remained high (AUC = 0.94). In men with Gleason 7 tumors, who were excluded from the model building, the signature significantly improved the prediction of lethal disease beyond knowing whether the Gleason score was 4 + 3 or 3 + 4 (P = .006). Conclusion Our expression signature and the genes identified may improve our understanding of the de-differentiation process of prostate tumors. Additionally, the signature may have clinical applications among men with Gleason 7, by further estimating their risk of lethal prostate cancer and thereby guiding therapy decisions to improve outcomes and reduce overtreatment. PMID:21537050

  10. Regional expression of inducible heat shock protein-70 mRNA in the rat brain following administration of convulsant drugs.

    PubMed

    Planas, A M; Soriano, M A; Ferrer, I; Rodríguez Farré, E

    1994-11-01

    Expression of inducible heat shock protein-70 mRNA (hsp-70 mRNA) was studied in the rat brain following systemic administration of different convulsant agents: an L-type voltage-dependent calcium channel agonist, (+/-)-BAY K 8644 (BAY-K); the excitotoxic glutamate agonists kainic acid and N-methyl-D-aspartic acid (NMDA); and the GABAA receptor complex antagonists pentylenetetrazole (PTZ) and lindane (gamma-hexaclorocyclohexane). BAY-K induced minimal hsp-70 mRNA expression in the hippocampus of convulsant rats, localized in the dentate gyrus and the pyramidal cell layer of Ammon's horn. Kainic acid treatment in rats, showing severe limbic convulsions, caused intense expression of hsp-70 mRNA and protein (HSP-70). Expression was localized in select cerebral regions, notably the pyramidal cell layer of the hippocampal CA3 field of Ammon's horn and the piriform cortex, and also the subicular complex and the amygdala, and, to a lesser extent, the entorhinal cortex, the pyramidal cell layer of CA1, several thalamic nuclei, and the parietal cortex. In contrast, systemic administration of NMDA, PTZ or lindane led to no detectable induction of hsp-70 mRNA in the rat brain, despite producing convulsions. Histological examination revealed cell injury only following kainic acid treatment. Damage was most apparent in the piriform and entorhinal cortices, pyramidal cell layer of the CA1 field, and cortical amygdaloid nuclei. BAY-K, NMDA, PTZ and lindane did not lead to any observable histopathological changes. These results show that convulsions of different aetiology do not inevitably induce hsp-70 mRNA expression or cell damage. Intense expression of hsp-70 mRNA was generally associated with regions that later showed variable degrees of nerve cell damage, although hsp-70 mRNA expression was not always predictive of subsequent cell death or survival.

  11. The vitamin D receptor localization and mRNA expression in ram testis and epididymis.

    PubMed

    Jin, Hui; Huang, Yang; Jin, Guang; Xue, Yanrong; Qin, Xiaowei; Yao, Xiaolei; Yue, Wenbing

    2015-02-01

    The objectives of present study were to investigate the presence of vitamin D receptor (VDR) in testis and epididymis of ram by polymerase chain reaction (PCR), to locate VDR in testis and epididymis by immunohistochemistry and to compare difference of VDR expression between testis and epididymis before and after sexual maturation by Real time-PCR and Western blot. The results showed that VDR exists in the testis and epididymis of ram while VDR protein in testis and epididymis was localized in Leydig cells, spermatogonial stem cells, spermatocytes, Sertoli cells and principal cells. For the adult ram, the amounts of VDR mRNA and VDR protein were less (p < 0.01) in testis than compared with caput, corpus and cauda epididymis. For prepubertal ram, the result showed the same trend (p < 0.01). However, the expression levels of VDR mRNA and VDR protein in caput, corpus, cauda epididymis and testis showed no significant difference (p > 0.05) between adult and prepubertal. In conclusion, VDR exists in testis and epididymis of ram, suggesting 1α,25-(OH)(2)VD(3) may play a role in ram reproduction.

  12. Evolution of Steroid-Inducible RP2 mRNA Expression in the Mouse Kidney

    PubMed Central

    Tseng-Crank, Julie; Berger, Franklin G.

    1987-01-01

    We have examined the structure and expression of mRNAs encoded by the androgen-inducible RP2 gene in the kidneys of nine mouse species within the genus Mus. There is considerable interspecies variation in the lengths of the major RP2 transcripts; some of this variation is due to the presence or absence of a B1 repetitive element in the 3'-untranslated region of the gene. In addition, the extent of RP2 mRNA induction by testosterone differs among the species. Two species show 10-20-fold induction, while others display a reduced response or none at all. Analysis of an interspecific hybrid indicates that the inducibility phenotype is inherited in an additive fashion. A correlation between RP2 inducibility and the time of formation of lineages within the Mus genus suggests that induction evolved in a stepwise fashion, with the acquisition of a modest hormonal response being followed by the appearance of a greater response. The interspecies variations in RP2 mRNA structure and regulation provide a useful model for the identification and study of genetic elements that elicit evolutionary alterations in steroid-modulated gene expression. PMID:3623081

  13. Streamlining gene expression analysis: integration of co-culture and mRNA purification.

    PubMed

    Berry, Scott M; Singh, Chandresh; Lang, Jessica D; Strotman, Lindsay N; Alarid, Elaine T; Beebe, David J

    2014-02-01

    Co-culture of multiple cell types within a single device enables the study of paracrine signaling events. However, extracting gene expression endpoints from co-culture experiments is laborious, due in part to pre-PCR processing of the sample (i.e., post-culture cell sorting and nucleic acid purification). Also, a significant loss of nucleic acid may occur during these steps, especially with microfluidic cell culture where lysate volumes are small and difficult to access. Here, we describe an integrated platform for performing microfluidic cell culture and extraction of mRNA for gene expression analysis. This platform was able to recover 30-fold more mRNA than a similar, non-integrated system. Additionally, using a breast cancer/bone marrow stroma co-culture, we recapitulated stromal-dependent, estrogen-independent growth of the breast cancer cells, coincident with transcriptional changes. We anticipate that this platform will be used for streamlined analysis of paracrine signaling events as well as for screening potential drugs and/or patient samples.

  14. Circulating irisin levels and muscle FNDC5 mRNA expression are independent of IL-15 levels in mice.

    PubMed

    Quinn, LeBris S; Anderson, Barbara G; Conner, Jennifer D; Wolden-Hanson, Tami

    2015-11-01

    Interleukin-15 (IL-15) and irisin are exercise-induced myokines that exert favorable effects on energy expenditure and metabolism. IL-15 can induce PGC-1α expression, which in turn induces expression of irisin and its precursor, FNDC5. Therefore, the present study tested the hypothesis that increases in circulating irisin levels and muscle FNDC5 mRNA expression are dependent on IL-15. Circulating irisin levels and gastrocnemius muscle FNDC5 mRNA expression were examined following acute exercise in control and IL-15-deleted (IL-15 KO) mice, following injection of IL-15 into IL-15 KO mice, and in transgenic mice with elevated circulating IL-15 levels (IL-15 Tg mice). Circulating IL-15 levels and muscle PGC-1α and PPARδ mRNA expressions were determined as positive controls. No effect of IL-15 deletion on post-exercise serum irisin levels or muscle FNDC5 mRNA expression was detected. While serum IL-15 levels and muscle PGC-1α expression were elevated post-exercise in control mice, both serum irisin levels and muscle FNDC5 expression decreased shortly after exercise in both control and IL-15 KO mice. A single injection of recombinant IL-15 into IL-15 KO mice that significantly increased muscle PPARδ and PGC-1α mRNA expressions had no effect on circulating irisin release, but modestly induced muscle FNDC5 expression. Additionally, serum irisin and gastrocnemius muscle FNDC5 expression in IL-15 Tg mice were similar to those of control mice. Muscle FNDC5 mRNA expression and irisin release are not IL-15-dependent in mice.

  15. Molecular cloning and mRNA expression analysis of ornithine decarboxylase antizyme 2 in ovarian follicles of the Sichuan white goose (Anser cygnoides).

    PubMed

    He, Hui; Kang, Bo; Jiang, Dongmei; Ma, Rong; Bai, Lin

    2014-07-25

    The ornithine decarboxylase antizyme 2 (OAZ2) gene is a member of the antizyme gene family. Antizymes play pivotal roles in various cellular pathways, including polyamine anabolism and apoptosis. The molecular structure and expression profile of the OAZ2 in goose ovarian follicles have not been reported. In this study, the OAZ2 cDNA sequence of the Sichuan white goose was cloned (Anser cygnoides), and phylogenetic and structural analyses of the OAZ2 were performed. The expression profiling of OAZ2 mRNA in goose ovarian follicles was examined using quantitative real-time PCR. The sequence analysis showed that the 756 bp OAZ2 sequence contained two overlapping open reading frames (ORF). ORF1 was 99 bp in length, and encoded a 32 aa polypeptide. ORF2 was 477 bp in length, and encoded a 158 aa polypeptide. The frameshift site that initiates the translation of ORF2 was located at nucleotide position 97 in the OAZ2. The analysis of OAZ2 mRNA expression in hierarchical follicles showed that the level of OAZ2 mRNA was higher in the SWF and F2 follicular stages than that in the ovarian stroma (P<0.05). The lowest level of OAZ2 expression was detected in the ovarian stroma. These results suggest that the highly conserved frameshift region plays an important role in sustaining the function of OAZs. Furthermore, the significantly higher level of OAZ2 mRNA in the SWF stage indicates that OAZ2 may be involved in recruiting hierarchical follicles. Our results also suggest that OAZ2 may augment the effects of OAZ1 in follicle development.

  16. Imipramine induces brain-derived neurotrophic factor mRNA expression in cultured astrocytes.

    PubMed

    Takano, Katsura; Yamasaki, Hiroshi; Kawabe, Kenji; Moriyama, Mitsuaki; Nakamura, Yoichi

    2012-01-01

    Depression is one of the most prevalent and livelihood-threatening forms of mental illnesses and the neural circuitry underlying depression remains incompletely understood. Recent studies suggest that the neuronal plasticity involved with brain-derived neurotrophic factor (BDNF) plays an important role in the recovery from depression. Some antidepressants are reported to induce BDNF expression in vivo; however, the mechanisms have been considered solely in neurons and not fully elucidated. In the present study, we evaluated the effects of imipramine, a classic tricyclic antidepressant drug, on BDNF expression in cultured rat brain astrocytes. Imipramine dose-dependently increased BDNF mRNA expression in astrocytes. The imipramine-induced BDNF increase was suppressed with inhibitors for protein kinase A (PKA) or MEK/ERK. Moreover, imipramine exposure activated transcription factor cAMP response element binding protein (CREB) in a dose-dependent manner. These results suggested that imipramine induced BDNF expression through CREB activation via PKA and/or ERK pathways. Imipramine treatment in depression might exert antidepressant action through BDNF production from astrocytes, and glial BDNF expression might be a target of developing novel antidepressants.

  17. Differential expression of tyrosine hydroxylase mRNA in the developing rat mesencephalon.

    PubMed

    Solberg, Y; Pollack, Y; Silverman, W F

    1992-12-01

    1. With respect to the mesostriatal projection, the mesencephalon is composed of two dopaminergic (DA) cell populations, called dorsal tier and ventral tier. Strong evidence suggests differences in both the spatial and the temporal sequence of the innervation of the striatum between the two groups, with the ventral tier neurons innervating striatal patches prenatally and dorsal tier cells innervating striatal matrix postnatally. 2. Using in situ hybridization, we have examined the expression of the gene coding for tyrosine hydroxylase (TH) in mesencephalic DA neurons with respect to their postnatal development. Two ontogenic patterns of expression were observed: (a) dorsal tier neurons of the medial mesencephalon exhibited a sharp increase in expression beginning after birth, peaking on day 14, then decreasing and, finally, stabilizing; and (b) ventral tier neurons and dorsal tier cells from the lateral and the medial-dorsal mesencephalon showed only a slight increase in TH mRNA, reaching a plateau at P10. 3. The time course of the observed increase in TH gene expression in the first group, generally parallels the innervation of their target cells in the striatal matrix, suggesting that TH gene expression in these cells may be influenced by their postsynaptic cells or by the innervation process.

  18. In situ hybridization analysis of leucomyosuppressin mRNA expression in the cockroach, Diploptera punctata.

    PubMed

    Fusé, M; Bendena, W G; Donly, B C; Tobe, S S; Orchard, I

    1998-06-08

    In the cockroach Diploptera punctata, sequencing of the cDNA for the insect myoinhibitory neuropeptide, leucomyosuppressin (LMS), has demonstrated that LMS is the only Phe-Met-Arg-Phe-amide (NH2) (FMRFamide)-related peptide to be encoded by this gene (Donly et al. [1996] Insect Biochem. Mol. Biol. 26:627-637). However, in the present study, high performance liquid chromatography analysis of brain extracts showed six discrete FMRFamide-like immunoreactive fractions, one of which co-eluted with LMS. This study compared the distribution of FMRFamide-related peptides visualized by immunohistochemistry with LMS mRNA expression demonstrated by in situ hybridization in D. punctata. Immunohistochemistry with a polyclonal antiserum generated against FMRFamide, but which recognizes extended RFamide peptides, demonstrated numerous RFamide-like immunoreactive cells and processes in both nervous and nonnervous tissues. RFamide-like immunoreactivity was found in cells and processes of the brain and optic lobes, the stomatogastric nervous system, including the frontal and ingluvial ganglia, and the suboesophageal ganglion. Immunoreactivity was also present in all ganglia of the ventral nerve cord and in the alimentary canal. Within the alimentary canal, positively stained processes were found in the crop, midgut, and hindgut, and immunoreactive endocrinelike cells were located in the midgut. In situ hybridization with a digoxigenin-labeled RNA probe spanning the entire LMS coding region showed cell bodies containing LMS mRNA in all ganglia studied, other than the ingluvial ganglion. Expression was most abundant in the brain and optic lobes and in the frontal and suboesophageal ganglia. LMS mRNA was also apparent, although less intensely, in all other ganglia of the ventral nerve cord. Within the alimentary canal, LMS mRNA-positive cells were only visible in the anterior portion of the midgut, in the endocrinelike cells. The appearance of LMS mRNA in the central nervous system

  19. p73 expression is regulated by ribosomal protein RPL26 through mRNA translation and protein stability

    PubMed Central

    Yan, Wensheng; Chen, Xinbin

    2016-01-01

    p73, a p53 family tumor suppressor, is regulated by multiple mechanisms, including transcription and mRNA and protein stability. However, whether p73 expression is regulated via mRNA translation has not been explored. To test this, we examined whether ribosomal protein 26 (RPL26) plays a role in p73 expression. Here, we showed that p73 expression is controlled by RPL26 via protein stability and mRNA translation. To examine whether MDM2 mediates RPL26 to regulate p73 protein stability, we generated multiple MDM2-knockout cell lines by CRISPR-cas9. We found that in the absence of MDM2, the half-life of p73 protein is markedly increased. Interestingly, we also found that RPL26 is still capable of regulating p73 expression, albeit to a lesser extent, in MDM2-KO cells compared to that in isogenic control cells, suggesting that RPL26 regulates p73 expression via multiple mechanisms. Indeed, we found that RPL26 is necessary for efficient assembly of polysomes on p73 mRNA and de novo synthesis of p73 protein. Consistently, we found that RPL26 directly binds to p73 3′ untranslated region (3′UTR) and that RPL26 is necessary for efficient expression of an eGFP reporter that carries p73 3′UTR. We also found that RPL26 interacts with cap-binding protein eIF4E and enhances the association of eIF4E with p73 mRNA, leading to increased p73 mRNA translation. Finally, we showed that knockdown of RPL26 promotes, whereas ectopic expression of RPL26 inhibits, cell growth in a TAp73-dependent manner. Together, our data indicate that RPL26 regulates p73 expression via two distinct mechanisms: protein stability and mRNA translation. PMID:27825141

  20. BENZO(A)PYRENE DECREASES BRAIN AND OVARIAN AROMATASE mRNA EXPRESSION IN FUNDULUS HETEROCLITUS

    PubMed Central

    Dong, Wu; Wang, Lu; Thornton, Cammi; Scheffler, Brian E.; Willett, Kristine L.

    2008-01-01

    The higher molecular weight polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BaP) are typically associated with genotoxicity, however, newer evidence suggests that these compounds may also act as endocrine system disruptors. We hypothesized that altered expression of the P450 enzyme aromatase genes could be a target for reproductive or developmental dysfunction caused by BaP exposure. Aromatase is at least partially responsible for estrogen homeostasis by converting androgens into estrogens. In fish, there are two isoforms of aromatase, a predominantly ovarian form, CYP19A1, and a brain form, CYP19A2. CYP19 mRNA expression was measured following BaP exposure (0, 10, 100 µg/L waterborne for 10 or 15 days) in Fundulus adults, juveniles and embryos by in situ hybridization. The CYP19A1 expression was significantly decreased after BaP exposure in the 3 month old Fundulus immature oocytes, but BaP did not affect CYP19A1 expression at any stage in adult oocytes. In embryo brains, BaP significantly decreased CYP19A2 compared to controls by 3.6-fold at 14 days post-fertilization. In adults, CYP19A2 expression was decreased significantly in the pituitary and hypothalamus (81% and 85% of controls, respectively). Promoter regions of Fundulus CYP19s were cloned, and putative response elements in the CYP19A1 and CYP19A2 promoters such as CRE, AhR and ERE may be involved in BaP-mediated changes in CYP19 expression. In order to compare the mechanism of BaP-mediated inhibition with that of a known aromatase inhibitor, fish were also exposed to fadrozole (20 and 100 µg/L). Fadrozole did not significantly decrease the mRNA expression in embryos or adult Fundulus. However, aromatase enzyme activity was significantly decreased in adult ovary and brain tissues. These studies provide a greater molecular understanding of the mechanisms of action of BaP and its potential to impact reproduction or development. PMID:18571745

  1. Pattern of expression of transforming growth factor-beta 4 mRNA and protein in the developing chicken embryo.

    PubMed

    Jakowlew, S B; Ciment, G; Tuan, R S; Sporn, M B; Roberts, A B

    1992-12-01

    Expression of TGF-beta 4 mRNA and protein was studied in the developing chicken embryo using specific cDNA probes and antibodies for chicken TGF-beta 4. Expression of TGF-beta 4 mRNA was detected by day 4 of incubation (Hamburger and Hamilton stage 22, E4) by RNA Northern blot analysis and increased with developmental age until day 12 of incubation (stage 38, E12) where it was detected in every embryonic tissue examined, with expression being highest in smooth muscle and lowest in the kidney. The steady-state level of expression of TGF-beta 4 mRNA remained relatively constant in most embryonic tissues through day 19 (stage 45, E19). In situ hybridization analysis detected TGF-beta 4 mRNA as early as the "definitive primitive streak" stage (stage 4); during neurulation (stage 10), TGF-beta 4 mRNA was detected in all three germ layers, including neuroectoderm. Following neurulation, TGF-beta 4 mRNA was detected in the neural tube, notochord, ectoderm, endoderm, sclerotome, and myotome, but not dermotome at stage 16. By day 6 of incubation (stage 29, E6), TGF-beta 4 mRNA was localized in several tissues including heart, lung, and gizzard. Immunohistochemical staining analysis also showed expression of TGF-beta 4 protein in all three germ layers as early as stage 4 in various cell types in qualitatively similar locations as TGF-beta 4 mRNA. These results suggest that TGF-beta 4 may play an important role in the development of many tissues in the chicken.

  2. Gene Expression Profiles of Chlamydophila pneumoniae during the Developmental Cycle and Iron Depletion–Mediated Persistence

    PubMed Central

    Mäurer, André P; Mehlitz, Adrian; Mollenkopf, Hans J; Meyer, Thomas F

    2007-01-01

    The obligate intracellular, gram-negative bacterium Chlamydophila pneumoniae (Cpn) has impact as a human pathogen. Little is known about changes in the Cpn transcriptome during its biphasic developmental cycle (the acute infection) and persistence. The latter stage has been linked to chronic diseases. To analyze Cpn CWL029 gene expression, we designed a pathogen-specific oligo microarray and optimized the extraction method for pathogen RNA. Throughout the acute infection, ratio expression profiles for each gene were generated using 48 h post infection as a reference. Based on these profiles, significantly expressed genes were separated into 12 expression clusters using self-organizing map clustering and manual sorting into the “early”, “mid”, “late”, and “tardy” cluster classes. The latter two were differentiated because the “tardy” class showed steadily increasing expression at the end of the cycle. The transcriptome of the Cpn elementary body (EB) and published EB proteomics data were compared to the cluster profile of the acute infection. We found an intriguing association between “late” genes and genes coding for EB proteins, whereas “tardy” genes were mainly associated with genes coding for EB mRNA. It has been published that iron depletion leads to Cpn persistence. We compared the gene expression profiles during iron depletion–mediated persistence with the expression clusters of the acute infection. This led to the finding that establishment of iron depletion–mediated persistence is more likely a mid-cycle arrest in development rather than a completely distinct gene expression pattern. Here, we describe the Cpn transcriptome during the acute infection, differentiating “late” genes, which correlate to EB proteins, and “tardy” genes, which lead to EB mRNA. Expression profiles during iron mediated–persistence led us to propose the hypothesis that the transcriptomic “clock” is arrested during acute mid-cycle. PMID

  3. Myocardial alternative RNA splicing and gene expression profiling in early stage hypoplastic left heart syndrome.

    PubMed

    Ricci, Marco; Xu, Yanji; Hammond, Harriet L; Willoughby, David A; Nathanson, Lubov; Rodriguez, Maria M; Vatta, Matteo; Lipshultz, Steven E; Lincoln, Joy

    2012-01-01

    Hypoplastic Left Heart Syndrome (HLHS) is a congenital defect characterized by underdevelopment of the left ventricle and pathological compensation of the right ventricle. If untreated, HLHS is invariably lethal due to the extensive increase in right ventricular workload and eventual failure. Despite the clinical significance, little is known about the molecular pathobiological state of HLHS. Splicing of mRNA transcripts is an important regulatory mechanism of gene expression. Tissue specific alterations of this process have been associated with several cardiac diseases, however, transcriptional signature profiles related to HLHS are unknown. In this study, we performed genome-wide exon array analysis to determine differentially expressed genes and alternatively spliced transcripts in the right ventricle (RV) of six neonates with HLHS, compared to the RV and left ventricle (LV) from non-diseased control subjects. In HLHS, over 180 genes were differentially expressed and 1800 were differentially spliced, leading to changes in a variety of biological processes involving cell metabolism, cytoskeleton, and cell adherence. Additional hierarchical clustering analysis revealed that differential gene expression and mRNA splicing patterns identified in HLHS are unique compared to non-diseased tissue. Our findings suggest that gene expression and mRNA splicing are broadly dysregulated in the RV myocardium of HLHS neonates. In addition, our analysis identified transcriptome profiles representative of molecular biomarkers of HLHS that could be used in the future for diagnostic and prognostic stratification to improve patient outcome.

  4. Effect of Radix Isatidis on the expression of moesin mRNA induced by LPS in the tissues of mice.

    PubMed

    Li, Jing; Liu, Yunhai; Fang, Jianguo; Chen, Xin; Xie, Wei

    2007-04-01

    To investigate the effect of the anti-endotoxic part of Radix Isatidis on the expression of moesin mRNA in murine tissues induced by lipopolysaccharide (LPS), the sample solution of F(022) part from Radix Isatidis was intraperitoneally administered to experimental mice, and the lipopoly-saccharide (LPS) were injected into the tail vein, and then the tissues of liver, kidney and spleen were colleted and cut into slices. The mRNA was detected by moesin mRNA hybridization in situ. The staining results were observed under microscope. It was found that moesin mRNA expression was increased in the tissues of liver, kidndy and spleen in mice treated with LPS, while in the mice pre-treated with F(022) part from Radix Isatidis, the LPS-induced moesin mRNA expressions in these tissues were inhibited in a dose-dependant manner. Our study showed that F(022) part from Radix Isatidis can inhibit the LPS-induced expression of moesin mRNA in the tissues of liver, kidney and spleen in mice.

  5. Increased ceramide synthase 2 and 6 mRNA levels in breast cancer tissues and correlation with sphingosine kinase expression.

    PubMed

    Erez-Roman, Racheli; Pienik, Reut; Futerman, Anthony H

    2010-01-01

    Intervention in the ceramide metabolic pathway is emerging as a novel means to regulate cancer and to modify the activity of chemotherapeutic drugs. We now study mRNA expression levels of the six ceramide synthase (CerS) genes in breast cancer tissue. CerS2 and CerS6 mRNA was significantly elevated in breast cancer tissue compared to paired normal tissue, with approximately half of the individuals showing elevated CerS2 and CerS6 mRNA. A significant correlation was found between CerS2 and CerS6 expression, and between CerS4 and CerS2/CerS6 expression. Moreover, patients that expressed higher CerS2 or 4 mRNA levels tended to show no changes in sphingosine kinase 1 levels, and likewise patients that expressed no change in CerS2 or CerS4 mRNA levels tended to express higher levels of sphingosine kinase 1. Together these results suggest an important role for the CerS genes in breast cancer etiology or diagnosis.

  6. A study on mRNA expressions of fibronectin in dermal and cerebral wound healing for wound age estimation.

    PubMed

    Takamiya, Masataka; Kumagai, Reiko; Nakayashiki, Nori; Aoki, Yasuhiro

    2006-07-01

    We investigated mRNA expressions of fibronectin for wound age estimation during dermal and cerebral wound healing. Fibronectin mRNA expressions in the injured skin peaked at 8h post-injury. The expressions were detected in endothelial cells before and after injury, whereas they were detectable in the epidermal cells at 1-240 h, in fibroblasts at 1-72 h, in neutrophils and macrophages at 8-72 h, respectively. However, the expressions in epidermal cells became relatively weak in the subacute phase. Fibronectin mRNA expressions of the injured cerebrum increased after the intervention and peaked at 48 h, whereas there was a slight decrease during 24h post-injury. Although fibronectin mRNA was seen exclusively in the endothelial cells of the intact cerebrum, it was also detected in astrocytes during wound healing. From these findings, it was considered that fibronectin played an important role in dermal and cerebral wound healing. Expression of fibronectin mRNA was considered to indicate the acute phase of dermal wound healing, and the subacute phase of cerebral wound healing.

  7. Heat stress stimulates hepcidin mRNA expression and C/EBPα protein expression in aged rodent liver.

    PubMed

    Bloomer, Steven A; Kregel, Kevin C; Brown, Kyle E

    2014-01-01

    Elevations in hepatic iron content occur with aging and physiological stressors, which may promote oxidative injury to the liver. Since dysregulation of the iron regulatory hormone, hepcidin, can cause iron accumulation, our goal was to characterize the regulation of hepcidin in young (6 mo) and old (24 mo) Fischer 344 rats exposed to environmental heat stress. Liver and blood samples were taken in the control condition and after heating. Hepcidin expression did not differ between young and old rats in the control condition, despite higher levels of hepatic iron and IL-6 mRNA in the latter. Following heat stress, pSTAT3 increased in both groups, but C/EBPα and hepcidin mRNA increased only in old rats. Despite this, serum iron decreased in both age groups 2 h after heat stress, suggesting hepcidin-independent hypoferremia in the young rats. The differential regulation of hepcidin between young and old rats after hyperthermia may be due to the enhanced expression of C/EBPα protein in old rats. These data support the concept of "inflammaging" and suggest that repeated exposures to stressors may contribute to the development of anemia in older individuals.

  8. The mRNA expression of SATB1 and SATB2 in human breast cancer

    PubMed Central

    Patani, Neill; Jiang, Wen; Mansel, Robert; Newbold, Robert; Mokbel, Kefah

    2009-01-01

    Background SATB1 is a nuclear protein that has been recently reported to be a 'genome organizer' which delineates specific epigenetic modifications at target gene loci, directly up-regulating metastasis-associated genes while down-regulating tumor-suppressor genes. In this study, the level of mRNA expression of SATB1 and SATB2 were assessed in normal and malignant breast tissue in a cohort of women with breast cancer and correlated to conventional clinico-pathological parameters. Materials and methods Breast cancer tissues (n = 115) and normal background tissues (n = 31) were collected immediately after excision during surgery. Following RNA extraction, reverse transcription was carried out and transcript levels were determined using real-time quantitative PCR and normalized against β-actin expression. Transcript levels within the breast cancer specimens were compared to the normal background tissues and analyzed against TNM stage, nodal involvement, tumour grade and clinical outcome over a 10 year follow-up period. Results The levels of SATB1 were higher in malignant compared with normal breast tissue (p = 0.0167). SATB1 expression increased with increasing TNM stage (TNM1 vs. TNM2 p = 0.0264), increasing tumour grade (grade1 vs. grade 3 p = 0.017; grade 2 vs. grade 3 p = 0.0437; grade 1 vs. grade 2&3 p = 0.021) and Nottingham Prognostic Index (NPI) (NPI-1 vs. NPI-3 p = 0.0614; NPI-2 vs. NPI-3 p = 0.0495). Transcript levels were associated with oestrogen receptor (ER) positivity (ER(-) vs. ER(+) p = 0.046). SABT1 expression was also significantly correlated with downstream regulated genes IL-4 and MAF-1 (Pearson's correlation coefficient r = 0.21 and r = 0.162) and SATB2 (r = 0.506). After a median follow up of 10 years, there was a trend for higher SATB1 expression to be associated with shorter overall survival (OS). Higher levels of SATB2 were also found in malignant compared to background tissue (p = 0.049). SATB2 expression increased with increasing tumour

  9. Tobamovirus infection is independent of HSP101 mRNA induction and protein expression.

    PubMed

    Carr, Tyrell; Wang, Yongzeng; Huang, Zhonglian; Yeakley, Joanne M; Fan, Jian-Bing; Whitham, Steven A

    2006-10-01

    Heat shock protein 101 (HSP101) has been implicated in tobamovirus infections by virtue of its ability to enhance translation of mRNAs possessing the 5'Omega-leader of Tobacco mosaic virus (TMV). Enhanced translation is mediated by HSP101 binding to a CAA-repeat motif in TMV Omega leader. CAA repeat sequences are present in the 5' leaders of other tobamoviruses including Oilseed rape mosaic virus (ORMV), which infects Arabidopsis thaliana. HSP101 is one of eight HSP100 gene family members encoded by the A. thaliana genome, and of these, HSP101 and HSP98.7 are predicted to encode proteins localized to the cytoplasm where they could potentially interact with TMV RNA. Analysis of the expression of the HSP100s showed that only HSP101 mRNA transcripts were induced significantly by ORMV in A. thaliana. The induction of HSP101 mRNA was also correlated with an increase in its protein levels and was independent of defense-related signaling pathways involving salicylic acid, jasmonic acid, or ethylene. A. thaliana mutants lacking HSP101, HSP98.7, or both supported wild-type levels of ORMV replication and movement. Similar results were obtained for TMV infection in Nicotiana benthamiana plants silenced for HSP101, demonstrating that HSP101 is not necessary for efficient tobamovirus infection.

  10. Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology.

    PubMed

    Sui, Weiguo; Shi, Zhoufang; Xue, Wen; Ou, Minglin; Zhu, Ying; Chen, Jiejing; Lin, Hua; Liu, Fuhua; Dai, Yong

    2017-03-01

    The aim of the present study was to screen gastric cancer (GC) tissue and adjacent tissue for differences in mRNA and circular (circRNA) expression, to analyze the differences in circRNA and mRNA expression, and to investigate the circRNA expression in gastric carcinoma and its mechanism. circRNA and mRNA differential expression profiles generated using Agilent microarray technology were analyzed in the GC tissues and adjacent tissues. qRT-PCR was used to verify the differential expression of circRNAs and mRNAs according to the interactions between circRNAs and miRNAs as well as the possible existence of miRNA and mRNA interactions. We found that: i) the circRNA expression profile revealed 1,285 significant differences in circRNA expression, with circRNA expression downregulated in 594 samples and upregulated in 691 samples via interactions with miRNAs. The qRT-PCR validation experiments showed that hsa_circRNA_400071, hsa_circRNA_000543 and hsa_circRNA_001959 expression was consistent with the microarray analysis results. ii) 29,112 genes were found in the GC tissues and adjacent tissues, including 5,460 differentially expressed genes. Among them, 2,390 differentially expressed genes were upregulated and 3,070 genes were downregulated. Gene Ontology (GO) analysis of the differentially expressed genes revealed these genes involved in biological process classification, cellular component classification and molecular function classification. Pathway analysis of the differentially expressed genes identified 83 significantly enriched genes, including 28 upregulated genes and 55 downregulated genes. iii) 69 differentially expressed circRNAs were found that might adsorb specific miRNAs to regulate the expression of their target gene mRNAs. The conclusions are: i) differentially expressed circRNAs had corresponding miRNA binding sites. These circRNAs regulated the expression of target genes through interactions with miRNAs and might become new molecular biomarkers for GC

  11. Rift Valley fever virus NS{sub S} gene expression correlates with a defect in nuclear mRNA export

    SciTech Connect

    Copeland, Anna Maria; Van Deusen, Nicole M.; Schmaljohn, Connie S.

    2015-12-15

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NS{sub S} gene, but not the N, G{sub N} or NS{sub M} genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NS{sub S}, confirming that expression of NS{sub S} is likely responsible for this phenomenon. - Highlights: • Rift Valley fever virus (RVFV) infection alters the localization of host mRNA. • mRNA accumulates in the nuclei of RVFV-infected but not mock-infected cells. • NS{sub S} is likely responsible for mRNA relocalization to the nucleus.

  12. Analysis of xanthine dehydrogenase mRNA levels in mutants affecting the expression of the rosy locus.

    PubMed Central

    Covington, M; Fleenor, D; Devlin, R B

    1984-01-01

    Xanthine dehydrogenase (XDH) mRNA levels were measured in a number of mutants and natural variants affecting XDH gene expression. Two variants, ry+4 and ry+10, contain cis-acting elements which map to a region flanking the 5' end of the XDH gene. Ry+4, which has 2-3 times more XDH protein than a wild type strain, has 3.2 times more XDH mRNA. Ry+10 has 50% of the wild type XDH level and 54% of the wild type XDH mRNA level. Three rosy mutants which map within the structural gene were also examined. Two of these had little if any XDH mRNA, but the third mutant had 1.3 times more XDH mRNA than wild type flies. Another mutant, ry2 , which contains no XDH protein and has a 9KB transposable element inserted into the XDH gene, has normal levels of XDH mRNA transcripts which are also the same size as those found in the wild type strain. Changes in XDH mRNA levels were measured during Drosophila development and found to parallel changes in the amount of XDH protein. In addition, there were no large changes in the size of XDH mRNA during development. Images PMID:6588363

  13. mRNA Expression and DNA Methylation Analysis of Serotonin Receptor 2A (HTR2A) in the Human Schizophrenic Brain

    PubMed Central

    Cheah, Sern-Yih; Lawford, Bruce R.; Young, Ross McD.; Morris, Charles P.; Voisey, Joanne

    2017-01-01

    Serotonin receptor 2A (HTR2A) is an important signalling factor implicated in cognitive functions and known to be associated with schizophrenia. The biological significance of HTR2A in schizophrenia remains unclear as molecular analyses including genetic association, mRNA expression and methylation studies have reported inconsistent results. In this study, we examine HTR2A expression and methylation and the interaction with HTR2A polymorphisms to identify their biological significance in schizophrenia. Subjects included 25 schizophrenia and 25 control post-mortem brain samples. Genotype and mRNA data was generated by transcriptome sequencing. DNA methylation profiles were generated for CpG sites within promoter-exon I region. Expression, genotype and methylation data were examined for association with schizophrenia. HTR2A mRNA levels were reduced by 14% (p = 0.006) in schizophrenia compared to controls. Three CpG sites were hypermethylated in schizophrenia (cg5 p = 0.028, cg7 p = 0.021, cg10 p = 0.017) and HTR2A polymorphisms rs6314 (p = 0.008) and rs6313 (p = 0.026) showed genetic association with schizophrenia. Differential DNA methylation was associated with rs6314 and rs6313. There was a strong correlation between HTR2A DNA methylation and mRNA expression. The results were nominally significant but did not survive the rigorous Benjamini-Hochberg correction for multiple testing. Differential HTR2A expression in schizophrenia in our study may be the result of the combined effect of multiple differentially methylated CpG sites. Epigenetic HTR2A regulation may alter brain function, which contributes to the development of schizophrenia. PMID:28054990

  14. mRNA Expression and DNA Methylation Analysis of Serotonin Receptor 2A (HTR2A) in the Human Schizophrenic Brain.

    PubMed

    Cheah, Sern-Yih; Lawford, Bruce R; Young, Ross McD; Morris, Charles P; Voisey, Joanne

    2017-01-04

    Serotonin receptor 2A (HTR2A) is an important signalling factor implicated in cognitive functions and known to be associated with schizophrenia. The biological significance of HTR2A in schizophrenia remains unclear as molecular analyses including genetic association, mRNA expression and methylation studies have reported inconsistent results. In this study, we examine HTR2A expression and methylation and the interaction with HTR2A polymorphisms to identify their biological significance in schizophrenia. Subjects included 25 schizophrenia and 25 control post-mortem brain samples. Genotype and mRNA data was generated by transcriptome sequencing. DNA methylation profiles were generated for CpG sites within promoter-exon I region. Expression, genotype and methylation data were examined for association with schizophrenia. HTR2A mRNA levels were reduced by 14% (p = 0.006) in schizophrenia compared to controls. Three CpG sites were hypermethylated in schizophrenia (cg5 p = 0.028, cg7 p = 0.021, cg10 p = 0.017) and HTR2A polymorphisms rs6314 (p = 0.008) and rs6313 (p = 0.026) showed genetic association with schizophrenia. Differential DNA methylation was associated with rs6314 and rs6313. There was a strong correlation between HTR2A DNA methylation and mRNA expression. The results were nominally significant but did not survive the rigorous Benjamini-Hochberg correction for multiple testing. Differential HTR2A expression in schizophrenia in our study may be the result of the combined effect of multiple differentially methylated CpG sites. Epigenetic HTR2A regulation may alter brain function, which contributes to the development of schizophrenia.

  15. The mRNA expression of amino acid transporters, aminopeptidase N, and the di- and tri- peptide transporter PepT1 in the embryo of the domesticated chicken (Gallus gallus) shows developmental regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mRNA expression profile for ten amino acid transporters (AAT), the di-and tri- peptide transporter (Pept1), and aminopeptidase N (APN) during chick embryogenesis was determined. Fertilized eggs were sampled at days 9, 11, 15, 17, 19, and 20, post fertilization. Three to four embryos were sampl...

  16. Changes of expression of stretch-activated potassium channel TREK-1 mRNA and protein in hypertrophic myocardium.

    PubMed

    Cheng, Longxian; Su, Fengcheng; Ripen, Nsenga; Fan, Hong; Huang, Kai; Wang, Min; Peng, Hongyu; Mei, Chunli; Zhao, Fang; Liao, Yuhua

    2006-01-01

    The expression of stretch-activated potassium channel TREK-1 mRNA and protein of hypertrophic myocardium was measured. Using a model of hypertrophy induced by coarctation of abdominal aorta in male Wistar rats, the expression of TREK-1 mRNA and protein was detected by using semi-quantitative RT PCR and Western blot respectively. At 4th and 8th week after constriction of the abdominal aorta, rats developed significant left ventricular hypertrophy. As compared to sham-operated group, stretch-activated potassium channel TREK-1 mRNA was strongly expressed and protein was up-regulated in operation groups (P < 0.05). It was concluded that the expression of TREK-1 was up-regulated in hypertrophic myocardium induced by chronic pressure overload in Wistar rats.

  17. Low force contractions induce fatigue consistent with muscle mRNA expression in people with spinal cord injury

    PubMed Central

    Petrie, Michael A.; Suneja, Manish; Faidley, Elizabeth; Shields, Richard K.

    2014-01-01

    Abstract Spinal cord injury (SCI) is associated with muscle atrophy, transformation of muscle fibers to a fast fatigable phenotype, metabolic inflexibility (diabetes), and neurogenic osteoporosis. Electrical stimulation of paralyzed muscle may mitigate muscle metabolic abnormalities after SCI, but there is a risk for a fracture to the osteoporotic skeletal system. The goal of this study was to determine if low force stimulation (3 Hz) causes fatigue of chronically paralyzed muscle consistent with selected muscle gene expression profiles. We tested 29 subjects, nine with a SCI and 20 without and SCI, during low force fatigue protocol. Three SCI and three non‐SCI subjects were muscle biopsied for gene and protein expression analysis. The fatigue index (FI) was 0.21 ± 0.27 and 0.91 ± 0.01 for the SCI and non‐SCI groups, respectively, supporting that the low force protocol physiologically fatigued the chronically paralyzed muscle. The post fatigue potentiation index (PI) for the SCI group was increased to 1.60 ± 0.06 (P <0.001), while the non‐SCI group was 1.26 ± 0.02 supporting that calcium handling was compromised with the low force stimulation. The mRNA expression from genes that regulate atrophy and fast properties (MSTN, ANKRD1, MYH8, and MYCBP2) was up regulated, while genes that regulate oxidative and slow muscle properties (MYL3, SDHB, PDK2, and RyR1) were repressed in the chronic SCI muscle. MSTN, ANKRD1, MYH8, MYCBP2 gene expression was also repressed 3 h after the low force stimulation protocol. Taken together, these findings support that a low force single twitch activation protocol induces paralyzed muscle fatigue and subsequent gene regulation. These findings suggest that training with a low force protocol may elicit skeletal muscle adaptations in people with SCI. PMID:24744911

  18. An international comparability study on quantification of mRNA gene expression ratios: CCQM-P103.1.

    PubMed

    Devonshire, Alison S; Sanders, Rebecca; Whale, Alexandra S; Nixon, Gavin J; Cowen, Simon; Ellison, Stephen L R; Parkes, Helen; Pine, P Scott; Salit, Marc; McDaniel, Jennifer; Munro, Sarah; Lund, Steve; Matsukura, Satoko; Sekiguchi, Yuji; Kawaharasaki, Mamoru; Granjeiro, José Mauro; Falagan-Lotsch, Priscila; Saraiva, Antonio Marcos; Couto, Paulo; Yang, Inchul; Kwon, Hyerim; Park, Sang-Ryoul; Demšar, Tina; Žel, Jana; Blejec, Andrej; Milavec, Mojca; Dong, Lianhua; Zhang, Ling; Sui, Zhiwei; Wang, Jing; Viroonudomphol, Duangkamol; Prawettongsopon, Chaiwat; Partis, Lina; Baoutina, Anna; Emslie, Kerry; Takatsu, Akiko; Akyurek, Sema; Akgoz, Muslum; Vonsky, Maxim; Konopelko, L A; Cundapi, Edna Matus; Urquiza, Melina Pérez; Huggett, Jim F; Foy, Carole A

    2016-06-01

    Measurement of RNA can be used to study and monitor a range of infectious and non-communicable diseases, with profiling of multiple gene expression mRNA transcripts being increasingly applied to cancer stratification and prognosis. An international comparison study (Consultative Committee for Amount of Substance (CCQM)-P103.1) was performed in order to evaluate the comparability of measurements of RNA copy number ratio for multiple gene targets between two samples. Six exogenous synthetic targets comprising of External RNA Control Consortium (ERCC) standards were measured alongside transcripts for three endogenous gene targets present in the background of human cell line RNA. The study was carried out under the auspices of the Nucleic Acids (formerly Bioanalysis) Working Group of the CCQM. It was coordinated by LGC (United Kingdom) with the support of National Institute of Standards and Technology (USA) and results were submitted from thirteen National Metrology Institutes and Designated Institutes. The majority of laboratories performed RNA measurements using RT-qPCR, with datasets also being submitted by two laboratories based on reverse transcription digital polymerase chain reaction and one laboratory using a next-generation sequencing method. In RT-qPCR analysis, the RNA copy number ratios between the two samples were quantified using either a standard curve or a relative quantification approach. In general, good agreement was observed between the reported results of ERCC RNA copy number ratio measurements. Measurements of the RNA copy number ratios for endogenous genes between the two samples were also consistent between the majority of laboratories. Some differences in the reported values and confidence intervals ('measurement uncertainties') were noted which may be attributable to choice of measurement method or quantification approach. This highlights the need for standardised practices for the calculation of fold change ratios and uncertainties in the

  19. Expression of vascular endothelial growth factor mRNA in non-small-cell lung carcinomas

    PubMed Central

    Fontanini, G; Boldrini, L; Chinè, S; Pisaturo, F; Basolo, F; Calcinai, A; Lucchi, M; Mussi, A; Angeletti, C A; Bevilacqua, G

    1999-01-01

    The vascular endothelial growth factor (VEGF) has been shown to be strictly related to vascular permeability and endothelial cell growth under physiological and pathological conditions. In tumour development and progression, VEGF plays a pivotal role in the development of the tumoral vascular network, and useful information in the progression of human cancer can be obtained by analysing the vascular endothelial growth factor expression of the tumours. In this study, we investigated the vascular endothelial growth factor transcript expression in non-small-cell lung carcinomas to evaluate the significance of this factor in a group of cancers in which the vascular pattern has been shown to significantly affect progression. Surgical samples of 42 patients with NSCLC were studied using reverse transcription polymerase chain reaction (PCR) analysis and in situ hybridization. Thirty-three out of 42 cases (78.6%) showed VEGF transcript expression predominantly as transcripts for the secretory forms of VEGF (isoforms 121 and 165). In situ hybridization, performed on 24 out of 42 samples, showed that the VEGF transcript expression was in several cases present in the cytoplasm both of neoplastic and normal cells, even if the VEGF mRNA was less expressed in the corresponding non-tumoral part. The VEGF 121 expression was associated with hilar and/or mediastinal nodal involvement (P = 0.02), and, taken together, the VEGF isoforms were shown to significantly influence overall (P = 0.02) and disease-free survival (P = 0.03). As a regulator of tumour angiogenesis, VEGF may represent a useful indicator of progression and poor prognosis in non-small-cell lung carcinomas. © 1999 Cancer Research Campaign PMID:9888482

  20. Comprehensive expression analysis of FSHD candidate genes at the mRNA and protein level.

    PubMed

    Klooster, Rinse; Straasheijm, Kirsten; Shah, Bharati; Sowden, Janet; Frants, Rune; Thornton, Charles; Tawil, Rabi; van der Maarel, Silvère

    2009-12-01

    In facioscapulohumeral muscular dystrophy (FSHD) the majority of patients carry a D4Z4 macrosatellite repeat contraction in the subtelomere of chromosome 4q. Several disease mechanisms have been proposed to explain how repeat contraction causes muscular dystrophy. All proposed mechanisms foresee a change from a closed to a more open chromatin structure followed by loss of control over expression of genes in or proximal to D4Z4. Initially, a distance and residual repeat size-dependent upregulation of the candidate genes FRG2, FRG1 and ANT1 was observed, but most successive expression studies failed to support transcriptional upregulation of 4qter genes. Moreover, chromatin studies do not provide evidence for a cis-spreading mechanism operating at 4qter in FSHD. In part, this inconsistency may be explained by differences in the techniques used, and the use of RNA samples obtained from different muscle groups. The aim of this study is to comprehensively and uniformly study the expression of the FSHD candidate genes FRG1, FRG2, CRYM, ANT1, ALP, PITX1 and LRP2BP at the RNA and protein level in identically processed primary myoblasts, myotubes and quadriceps muscle. Expression was compared between samples obtained from FSHD patients and normal controls with samples from myotonic dystrophy type 1 patients as disease controls. No consistent changes in RNA or protein expression levels were observed between the samples. The one exception was a selective increase in FRG2 mRNA expression in FSHD myotubes. This study provides further evidence that there is no demonstrable consistent, large magnitude, overexpression of any of the FSHD candidate genes.

  1. OIL FLY ASH AND VANADIUM DIMINISH NRAMP-2MRNA AND PROTEIN EXPRESSION IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    The capacity of Nramp2 to transport iron and its ubiquitous expression make it a likely candidate for transferrin-independent uptake of iron in peripheral tissues. Airway epithelial cells increase both mRNA and expression of that isoform of Nramp-2 without an iron response ele...

  2. Metallothionein mRNA expression and cadmium tolerance in metal-stressed and reference populations of the springtail Orchesella cincta.

    PubMed

    Timmermans, Martijn J T N; Ellers, Jacintha; Roelofs, Dick; van Straalen, Nico M

    2005-10-01

    Metal contamination in soil ecosystems is a permanent and often strong selection pressure. The present study investigates metal tolerance in 17 Orchesella cincta (Collembola) populations from metal-contaminated and reference sites, and combines analyses at the phenotypic and molecular level. Metal tolerance was phenotypically assayed by measuring survival times of laboratory cultures during exposure to cadmium. Comparisons of survival curves showed that five out of eight metal-stressed populations tested evolved increased cadmium tolerance (Stolberg, Plombieres, Hoboken, Hygum and Gusum). In addition, the role of the metallothionein (MT) gene in cadmium tolerance of O. cincta was studied by means of quantitative RT-PCR. The constitutive and Cd-induced MT mRNA expression of the laboratory cultures was measured. Results show that the mean constitutive MT mRNA expression of populations from polluted sites was significantly higher than of populations from reference sites. However, no correlation between MT mRNA expression levels after laboratory exposure to cadmium and field cadmium concentrations was observed. Furthermore, no relation between survival rate during exposure to cadmium and MT mRNA expression was detected. Our results suggest that constitutive MT mRNA expression plays a role in early protection against cadmium toxicity, and indicate that mechanisms other then MT up-regulation are involved in tolerance to prolonged exposure to cadmium.

  3. Brain and heart sodium channel subtype mRNA expression in rat cerebral cortex.

    PubMed Central

    Yarowsky, P J; Krueger, B K; Olson, C E; Clevinger, E C; Koos, R D

    1991-01-01

    The expression of mRNAs coding for the alpha subunit of rat brain and rat heart sodium channels has been studied in adult and neonatal rat cerebral cortex using the reverse transcription-polymerase chain reaction (RT-PCR). Rat brain sodium channel subtype I, II, IIA, and III sequences were simultaneously amplified in the same PCR using a single oligonucleotide primer pair matched to all four subtype sequences. Identification of each subtype-specific product was inferred from the appearance of unique fragments when the product was digested with specific restriction enzymes. By using this RT-PCR method, products arising from mRNAs for all four brain sodium channel subtypes were identified in RNA extracted from adult rat cerebral cortex. The predominant component was type IIA with lesser levels of types I, II, and III. In contrast, the type II and IIA sequences were the predominant RT-PCR products in neonatal rat cortex, with slightly lower levels of type III and undetectable levels of type I. Thus, from neonate to adult, type II mRNA levels decrease relative to type IIA levels. Using a similar approach, we detected mRNA coding for the rat heart sodium channel in neonatal and adult rat cerebral cortex and in adult rat heart. These results reveal that mRNAs coding for the heart sodium channel and all four previously sequenced rat brain sodium channel subtypes are expressed in cerebral cortex and that type II and IIA channels may be differentially regulated during development. Images PMID:1658783

  4. DISSECTING COLONY DEVELOPMENT OF NEUROSPORA CRASSA USING mRNA PROFILING AND COMPARTATIVE GENOMICS APPROACHES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colony development, which includes hyphal extension, branching, anastomosis and asexual sporulation are fundamental aspects of the lifecycle of filamentous fungi; genetic mechanisms underlying these phenomena are poorly understood. We conducted transcriptional profiling during colony development of...

  5. Profiling of differentially expressed genes in human gingival epithelial cells and fibroblasts by DNA microarray.

    PubMed

    Abiko, Yoshimitsu; Hiratsuka, Koichi; Kiyama-Kishikawa, Michiko; Tsushima, Katsumasa; Ohta, Mitsuhiro; Sasahara, Hiroshige

    2004-03-01

    Gingival epithelial cells and fibroblasts play important roles and have a harmonious relationship under normal and disease conditions, but the precise differences between theses cells remain unknown. To study the differences in gene expression between human gingival epithelial cells (HGE) and human gingival fibroblasts (HGF), mRNA was recovered from primary cultured cells and analyzed using cDNA microarray technology. The cDNA retro-transcribed from equal quantities of mRNA was labeled with the fluorescent dyes Cy5 and Cy3. The mixed probes were then hybridized with 7276 genes on the DNA microarray, after which fluorescence signals were scanned and further analyzed using GeneSpring software. Of the 7276 genes screened, 469 showed expression levels that were more than 2-fold greater in HGE than in HGF, while 293 showed expression levels that were more than 2-fold greater in HGF than in HGE. To confirm the reliability of the microarray results, keratin K5 and desmocolin, and vimentin and gp130, which showed higher mRNA levels in HGE and HGF, respectively, were selected and their mRNA levels were further analyzed by RT-PCR. The results of RT-PCR correlated well with those of microarray analysis. The present findings using a DNA microarray to detect differences in the gene expression profiles of HGE and HGF may be beneficial for genetic diagnosis of periodontal tissue metabolism and periodontal diseases.

  6. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    SciTech Connect

    Ramakrishnan, Sathiya N.; Lau, Patrick; Crowther, Lisa M.; Cleasby, Mark E.; Millard, Susan; Leong, Gary M.; Cooney, Gregory J.; Muscat, George E.O.

    2009-10-30

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb{beta}{Delta}E in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb{beta}{Delta}E expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb{beta} siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb{beta} expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb{beta} was recruited to the Srebp-1c promoter. Moreover, Rev-erb{beta} trans-activated the Srebp-1c promoter, in contrast, Rev-erb{beta} efficiently repressed the Rev-erb{alpha} promoter, a previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb{beta}; and (ii) increased Rev-erb{beta} and Srebp-1c mRNA expression. These data suggest that Rev-erb{beta} has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.

  7. Development × environment interactions control tph2 mRNA expression.

    PubMed

    Lukkes, J L; Kopelman, J M; Donner, N C; Hale, M W; Lowry, C A

    2013-05-01

    Adverse early life experience is thought to increase an individual's susceptibility to mental health disorders, including anxiety and affective disorders, later in life. Our previous studies have shown that post-weaning social isolation of female rats during a critical period of development sensitizes an anxiety-related serotonergic dorsal raphe nucleus (DR) system in adulthood. Therefore, we investigated how post-weaning social isolation, in combination with a challenge with the anxiogenic drug, N-methyl-beta-carboline-3-carboxamide (FG-7142; a partial inverse agonist at the benzodiazepine allosteric site on the GABAA receptor), affects home cage behavior and serotonergic gene expression in the DR of female rats using in situ hybridization histochemistry. Juvenile female rats were reared in isolation or groups of three for a 3-week period from weaning (postnatal day (PD) 21 to mid-adolescence (PD42)), after which all rats were group-reared for an additional 16 days until adulthood. Among vehicle-treated rats, isolation-reared rats had decreased rodent tryptophan hydroxylase 2 (tph2) mRNA expression in ventral and ventrolateral subdivisions of the DR, a pattern observed previously in a rat model of panic disorder. Isolation-reared rats, but not group-reared rats, responded to FG-7142 with increased duration of vigilance and arousal behaviors. In addition, FG-7142 decreased tph2 expression, measured 4h following treatment, in multiple subregions of the DR of group-reared rats but had no effect in isolation-reared rats. No treatment effects were observed on 5-HT1A receptor or serotonin transporter gene expression. These data suggest that adolescent social isolation alters tph2 expression in specific subregions of the DR and alters the effects of stress-related stimuli on behavior and serotonergic systems.

  8. Development x environment interactions control tph2 mRNA expression

    PubMed Central

    Lukkes, Jodi L.; Kopelman, Jared M.; Donner, Nina C.; Hale, Matthew W.; Lowry, Christopher A.

    2013-01-01

    Adverse early life experience is thought to increase an individual's susceptibility to mental health disorders, including anxiety and affective disorders, later in life. Our previous studies have shown that post-weaning social isolation of female rats during a critical period of development sensitizes an anxiety-related serotonergic dorsal raphe nucleus (DR) system in adulthood. Therefore, we investigated how post-weaning social isolation, in combination with a challenge with the anxiogenic drug, N-methyl-beta-carboline-3-carboxamide (FG-7142; a partial inverse agonist at the benzodiazepine allosteric site on the GABAA receptor), affects home cage behavior and serotonergic gene expression in the DR of female rats using in situ hybridization histochemistry. Juvenile female rats were reared in isolation or groups of three for a 3-week period from weaning (postnatal day (PD) 21 to mid-adolescence (PD42)), after which all rats were group-reared for an additional 16 days until adulthood. Among vehicle-treated rats, isolation-reared rats had decreased tryptophan hydroxylase 2 (tph2) mRNA expression in ventral and ventrolateral subdivisions of the DR, a pattern observed previously in a rat model of panic disorder. Isolation-reared rats, but not group-reared rats, responded to FG-7142 with increased duration of vigilance and arousal behaviors. In addition, FG-7142 decreased tph2 expression, measured 4 h following treatment, in multiple subregions of the DR of group-reared rats but had no effect in isolation-reared rats. No treatment effects were observed on 5-HT1A receptor or serotonin transporter gene expression. These data suggest that adolescent social isolation alters tph2 expression in specific subregions of the DR and alters the effects of stress-related stimuli on behavior and serotonergic systems. PMID:23403177

  9. CTCF and CTCFL mRNA expression in 17β-estradiol-treated MCF7 cells

    PubMed Central

    DEL CAMPO, EDUARDO PORTILLO; MÁRQUEZ, JOSÉ JORGE TALAMÁS; REYES-VARGAS, FRANCIANELLA; INTRIAGO-ORTEGA, MARÍA DEL PILAR; QUINTANAR-ESCORZA, MARTHA ANGÉLICA; BURCIAGA-NAVA, JORGE ALBERTO; SIFUENTES-ALVAREZ, ANTONIO; REYES-ROMERO, MIGUEL

    2014-01-01

    Estrogens play a key role in breast cancer, with 60–70% of the cases expressing estrogen receptors (ERs), which are encoded by the ESR1 gene. CTCFL, a paralogue of the chromatin organizer CTCF, is a potential biomarker of breast cancer, but its expression in this disease is currently controversial. A positive correlation has been reported between CTCFL and ERs in breast tumors and there also exists a coordinated interaction between CTCF and ERs in breast cancer cells. Therefore, there appears to be an association between CTCF, CTCFL and estrogens in breast cancer; however, there has been no report on the effects of estrogens on CTCF and CTCFL expression. The aim of this study was to determine the effect of 17β-estradiol (E2) on the CTCF and CTCFL mRNA expression in the MCF7 breast cancer cell line. The promoter methylation status of CTCFL and data mining for estrogen response elements in promoters of the CTCF and CTCFL genes were also determined. The transcription of CTCF and CTCFL was performed by quantitative polymerase chain reaction (qPCR) and the promoter methylation status of CTCFL was determined by methylation-specific PCR. The MCF7 cells exhibited basal transcription of CTCF, which was significantly downregulated to 0.68 by 1 μM E2; basal or E2-regulated transcription of CTCFL was not detected. Under basal conditions, the CTCFL promoter was methylated. Through data mining, an estrogen response element was identified in the CTCF promoter, but no such element was found in CTCFL. These results suggested that estrogens may modulate CTCF expression, although there was no apparent association between ERs and CTCFL. PMID:24649078

  10. Specific responses in rat small intestinal epithelial mRNA expression and protein levels during chemotherapeutic damage and regeneration.

    PubMed

    Verburg, Melissa; Renes, Ingrid B; Van Nispen, Danielle J P M; Ferdinandusse, Sacha; Jorritsma, Marieke; Büller, Hans A; Einerhand, Alexandra W C; Dekker, Jan

    2002-11-01

    The rapidly dividing small intestinal epithelium is very sensitive to the cytostatic drug methotrexate. We investigated the regulation of epithelial gene expression in rat jejunum during methotrexate-induced damage and regeneration. Ten differentiation markers were localized on tissue sections and quantified at mRNA and protein levels relative to control levels. We analyzed correlations in temporal expression patterns between markers. mRNA expression of enterocyte and goblet cell markers decreased significantly during damage for a specific period. Of these, sucrase-isomaltase (-62%) and CPS (-82%) were correlated. Correlations were also found between lactase (-76%) and SGLT1 (-77%) and between I-FABP (-52%) and L-FABP (-45%). Decreases in GLUT5 (-53%), MUC2 (-43%), and TFF3 (-54%) mRNAs occurred independently of any of the other markers. In contrast, lysozyme mRNA present in Paneth cells increased (+76%). At the protein level, qualitative and quantitative changes were in agreement with mRNA expression, except for Muc2 (+115%) and TFF3 (+81%), which increased significantly during damage, following independent patterns. During regeneration, expression of each marker returned to control levels. The enhanced expression of cytoprotective molecules (Muc2, TFF3, lysozyme) during damage represents maintenance of goblet cell and Paneth cell functions, most likely to protect the epithelium. Decreased expression of enterocyte-specific markers represents decreased enterocyte function, of which fatty acid transporters were least affected.

  11. Expression of klotho mRNA and protein in rat brain parenchyma from early postnatal development into adulthood.

    PubMed

    Clinton, Sarah M; Glover, Matthew E; Maltare, Astha; Laszczyk, Ann M; Mehi, Stephen J; Simmons, Rebecca K; King, Gwendalyn D

    2013-08-21

    Without the age-regulating protein klotho, mouse lifespan is shortened and the rapid onset of age-related disorders occurs. Conversely, overexpression of klotho extends mouse lifespan. Klotho is most abundant in kidney and expressed in a limited number of other organs, including the brain, where klotho levels are highest in choroid plexus. Reports vary on where klotho is expressed within the brain parenchyma, and no data is available as to whether klotho levels change across postnatal development. We used in situ hybridization to map klotho mRNA expression in the developing and adult rat brain and report moderate, widespread expression across grey matter regions. mRNA expression levels in cortex, hippocampus, caudate putamen, and amygdala decreased during the second week of life and then gradually rose to adult levels by postnatal day 21. Immunohistochemistry revealed a protein expression pattern similar to the mRNA results, with klotho protein expressed widely throughout the brain. Klotho protein co-localized with both the neuronal marker NeuN, as well as, oligodendrocyte marker olig2. These results provide the first anatomical localization of klotho mRNA and protein in rat brain parenchyma and demonstrate that klotho levels vary during early postnatal development.

  12. Quantitative tissue-specific dynamics of in vivo GILZ mRNA expression and regulation by endogenous and exogenous glucocorticoids

    PubMed Central

    Ayyar, Vivaswath S; Almon, Richard R; Jusko, William J; DuBois, Debra C

    2015-01-01

    Glucocorticoids (GC) are steroid hormones, which regulate metabolism and immune function. Synthetic GCs, or corticosteroids (CS), have appreciable clinical utility via their ability to suppress inflammation in immune-mediated diseases like asthma and rheumatoid arthritis. Recent work has provided insight to novel GC-induced genes that mediate their anti-inflammatory effects, including glucocorticoid-induced leucine zipper (GILZ). Since GILZ comprises an important part of GC action, its regulation by both drug and hormone will influence CS therapy. In addition, GILZ expression is often employed as a biomarker of GC action, which requires judicious selection of sampling time. Understanding the in vivo regulation of GILZ mRNA expression over time will provide insight into both the physiological regulation of GILZ by endogenous GC and the dynamics of its enhancement by CS. A highly quantitative qRT-PCR assay was developed for measuring GILZ mRNA expression in tissues obtained from normal and CS-treated rats. This assay was applied to measure GILZ mRNA expression in eight tissues; to determine its endogenous regulation over time; and to characterize its dynamics in adipose tissue, muscle, and liver following treatment with CS. We demonstrate that GILZ mRNA is expressed in several tissues. GILZ mRNA expression in adipose tissue displayed a robust circadian rhythm that was entrained with the circadian oscillation of endogenous corticosterone; and is strongly enhanced by acute and chronic dosing. Single dosing also enhanced GILZ mRNA in muscle and liver, but the dynamics varied. In conclusion, GILZ is widely expressed in the rat and highly regulated by endogenous and exogenous GCs. PMID:26056061

  13. Differential mRNA expression of acetylcholinesterase in the central nervous system of rats with acute and chronic exposure of sarin & physostigmine.

    PubMed

    Bansal, Iti; Waghmare, C K; Anand, T; Gupta, A K; Bhattacharya, B K

    2009-07-01

    A time-course study was carried out to measure the acetylcholinesterase (AChE) gene expression in the brain of female rats exposed to different doses of sarin and physostigmine. Short-term effects were studied with an acute single subcutaneous dose (s.c.) of 80 microg kg(-1) (0.5 x LD(50)) sarin. Cortex and cerebellum showed a significant decline in AChE mRNA expression at 2.5, 24 and 72 h. Biochemical studies showed that plasma butrylcholinesterase (BChE) and brain AChE activities were significantly decreased at 2.5 h, which came back to near control values by 24 h in both cases. For long-term chronic studies, three groups of female rats received daily doses of physostigmine (0.1 mg kg(-1) day(-1)) intramuscularly (i.m.), sarin (15 microg kg(-1) day(-1)) s.c. independently and a combined dose of physostigmine (i.m.) (0.1 mg kg(-1) day(-1)) followed by sarin (s.c.) (15 microg kg(-1) day(-1)) continuously for 30 days. Differential AChE mRNA levels in cortex and cerebellum of rat brain were observed after 30 days and after a lag period of another 30 days with no further administration. Plasma (BChE) and brain (AChE) showed irregular inhibition profile in biochemical studies at 30 days and returned to control levels after 60 days. The acute single subcutaneous administration of sarin for short-term as well as chronic long-term studies showed that AChE inhibition alone does not lead to observed changes in mRNA expression of AChE gene. These observations further suggest that route of administration as well as dose exposure regimen also contributes to the regulation of AChE mRNA expression.

  14. CXCR4 mRNA expression in colon, esophageal and gastric cancers and hepatitis C infected liver.

    PubMed

    Mitra, P; Shibuta, K; Mathai, J; Shimoda, K; Banner, B F; Mori, M; Barnard, G F

    1999-05-01

    We have recently demonstrated by Northern blot and RT-PCR that the mRNA expression of the alpha-chemokine hIRH/SDF-1alpha is reduced in hepatocellular carcinoma (HCC), several digestive tract cancers and premalignant colon adenomas, and that its receptor CXCR4 mRNA expression is reduced in HCC. Here we investigate the expression of CXCR4 mRNA expression in several digestive tract cancers and hepatitis C viral (HCV) infected liver, a premalignant condition. There was no difference in the CXCR4 mRNA expression in colon, esophageal or gastric cancers compared to non-cancerous tissues. This is significantly different from the reduced expression we have seen with hepatocellular carcinoma (p<0.05). To better refine regional tumor or hepatic cytokine mRNA analysis within a biopsy sample we describe a micro-isolation technique for RNA extraction from portal and triad areas of liver biopsies or other small malignant or non-malignant biopsy samples suitable for use in RT-PCR and differential display reactions. In HCV liver biopsies, the expression of hIRH and its receptor CXCR4 mRNA, corrected for G3PDH, was not significantly different from that of control non-HCV (steatosis) biopsies. CXCR4 is expressed on leukocytes and its expression was predicted to correlate with hepatic inflammation. CXCR4 receptor mRNA expression did correlate significantly with that of its ligand hIRH/SDF-1alpha (p=0.001), and with the severity of fibrosis (p<0.05), but not with portal inflammation (p<0.10), piecemeal necrosis (p<0.10), lobular inflammation (p>0.10), the presence of lymphoid aggregates (p>0.10), or the total histological activity index (p=0.07). There was no difference in expression of hIRH or CXCR4 between responders and non-responders to interferon (IFN) treatment, while as a control, the responder group of patients did show a higher expression of IFNalpha receptor than the non-responder group (p=0.05).

  15. Predominant expression of Fas ligand mRNA in CD8+ T lymphocytes in patients with HTLV-1 associated myelopathy.

    PubMed

    Kawahigashi, N; Furukawa, Y; Saito, M; Usuku, K; Osame, M

    1998-10-01

    To determine if Fas ligand (FasL) mediated apoptosis is involved in the pathogenesis of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), we examined the expression of FasL mRNA in fresh uncultured peripheral blood mononuclear cells (PBMC) from 17 Japanese patients with HAM/TSP, four adult T-cell leukemia/lymphoma (ATL) patients, three asymptomatic HTLV-1 carriers and three normal individuals. Using competitive PCR with primers specific for FasL mRNA, we demonstrated that nine of 17 HAM/TSP and one of four ATL patients expressed significant levels of FasL mRNA, whereas asymptomatic carriers, normal controls and both HTLV-1 infected and uninfected T-cell lines did not. Cell separation analysis following PCR revealed that FasL mRNA was expressed in CD8 + T lymphocytes. FasL mRNA was preferentially expressed in patients with increased proviral load and longer duration of clinical illness. These results suggest that FasL mediated mechanisms contribute to the pathogenesis of HAM/TSP.

  16. Effects of social isolation on mRNA expression for corticotrophin-releasing hormone receptors in prairie voles.

    PubMed

    Pournajafi-Nazarloo, Hossein; Partoo, Leila; Yee, Jason; Stevenson, Jennifer; Sanzenbacher, Lisa; Kenkel, William; Mohsenpour, Seyed Ramezan; Hashimoto, Kozo; Carter, C Sue

    2011-07-01

    Previous studies have demonstrated that various type of stressors modulate messenger ribonucleic acid (mRNA) for type 1 corticotropin-releasing hormone (CRH) receptor (CRH-R1 mRNA) and type 2 CRH receptor (CRH-R2 mRNA). The purpose of this study was to explore the effect of social isolation stress of varying durations on the CRH, CRH-R1 and CRH-R2 mRNAs expression in the hypothalamus, hippocampus and pituitary of socially monogamous female and male prairie voles (Microtus ochrogaster). Isolation for 1h (single isolation) or 1h of isolation every day for 4 weeks (repeated isolation) was followed by a significant increase in plasma corticosterone levels. Single or repeated isolation increased hypothalamic CRH mRNA expression, but no changes in CRH-R1 mRNA in the hypothalamus were observed. Continuous isolation for 4 weeks (chronic isolation) showed no effect on hypothalamic CRH or CRH-R1 mRNAs in female or male animals. However, hypothalamic CRH-R2 mRNA was significantly reduced in voles exposed to chronic isolation. Single or repeated isolation, but not chronic isolation, significantly increased CRH-R1 mRNA and decreased CRH-R2 mRNA in the pituitary. Despite elevated CRH mRNA expression, CRH-R1 and CRH-R2 mRNAs were not modulated in the hippocampus following single or repeated isolation. Although, chronic isolation did not affect hippocampal CRH or CRH-R1 mRNAs, it did increase CRH-R2 mRNA expression in females and males. The results of the present study in prairie voles suggest that social isolation has receptor subtype and species-specific consequences for the modulation of gene expression for CRH and its receptors in brain and pituitary. Previous studies have revealed a female-biased increase in oxytocin in response to chronic isolation; however, we did not find a sex difference in CRH or its receptors following single, repeated or chronic social isolation, suggesting that sexually dimorphic processes beyond the CRH system, possibly involving vasopressin, might

  17. FOXA2 mRNA expression is associated with relapse in patients with Triple-Negative/Basal-like breast carcinoma.

    PubMed

    Perez-Balaguer, Ariadna; Ortiz-Martínez, Fernando; García-Martínez, Araceli; Pomares-Navarro, Critina; Lerma, Enrique; Peiró, Gloria

    2015-09-01

    The FOXA family of transcription factors regulates chromatin structure and gene expression especially during embryonic development. In normal breast tissue FOXA1 acts throughout mammary development; whereas in breast carcinoma its expression promotes luminal phenotype and correlates with good prognosis. However, the role of FOXA2 has not been previously studied in breast cancer. Our purpose was to analyze the expression of FOXA2 in breast cancer cells, to explore its role in breast cancer stem cells, and to correlate its mRNA expression with clinicopathological features and outcome in a series of patients diagnosed with breast carcinoma. We analyzed FOXA2 mRNA expression in a retrospective cohort of 230 breast cancer patients and in cell lines. We also knocked down FOXA2 mRNA expression by siRNA to determine the impact on cell proliferation and mammospheres formation using a cancer stem cells culture assay. In vitro studies demonstrated higher FOXA2 mRNA expression in Triple-Negative/Basal-like cells. Further, when it was knocked down, cells decreased proliferation and its capability of forming mammospheres. Similarly, FOXA2 mRNA expression was detected in 10% (23/230) of the tumors, especially in Triple-Negative/Basal-like phenotype (p < 0.001, Fisher's test). Patients whose tumors expressed FOXA2 had increased relapses (59 vs. 79%, p = 0.024, log-rank test) that revealed an independent prognostic value (HR = 3.29, C.I.95% = 1.45-7.45, p = 0.004, Cox regression). Our results suggest that FOXA2 promotes cell proliferation, maintains cancer stem cells, favors the development of Triple-Negative/Basal-like tumors, and is associated with increase relapses.

  18. Gene expression profiling of breast cancer in Lebanese women

    PubMed Central

    Makoukji, Joelle; Makhoul, Nadine J.; Khalil, Maya; El-Sitt, Sally; Aldin, Ehab Saad; Jabbour, Mark; Boulos, Fouad; Gadaleta, Emanuela; Sangaralingam, Ajanthah; Chelala, Claude; Boustany, Rose-Mary; Tfayli, Arafat

    2016-01-01

    Breast cancer is commonest cancer in women worldwide. Elucidation of underlying biology and molecular pathways is necessary for improving therapeutic options and clinical outcomes. Molecular alterations in breast cancer are complex and involve cross-talk between multiple signaling pathways. The aim of this study is to extract a unique mRNA fingerprint of breast cancer in Lebanese women using microarray technologies. Gene-expression profiles of 94 fresh breast tissue samples (84 cancerous/10 non-tumor adjacent samples) were analyzed using GeneChip Human Genome U133 Plus 2.0 arrays. Quantitative real-time PCR was employed to validate candidate genes. Differentially expressed genes between breast cancer and non-tumor tissues were screened. Significant differences in gene expression were established for COL11A1/COL10A1/MMP1/COL6A6/DLK1/S100P/CXCL11/SOX11/LEP/ADIPOQ/OXTR/FOSL1/ACSBG1 and C21orf37. Pathways/diseases representing these genes were retrieved and linked using PANTHER®/Pathway Studio®. Many of the deregulated genes are associated with extracellular matrix, inflammation, angiogenesis, metastasis, differentiation, cell proliferation and tumorigenesis. Characteristics of breast cancers in Lebanese were compared to those of women from Western populations to explain why breast cancer is more aggressive and presents a decade earlier in Lebanese victims. Delineating molecular mechanisms of breast cancer in Lebanese women led to key genes which could serve as potential biomarkers and/or novel drug targets for breast cancer. PMID:27857161

  19. Gene expression profiling of breast cancer in Lebanese women.

    PubMed

    Makoukji, Joelle; Makhoul, Nadine J; Khalil, Maya; El-Sitt, Sally; Aldin, Ehab Saad; Jabbour, Mark; Boulos, Fouad; Gadaleta, Emanuela; Sangaralingam, Ajanthah; Chelala, Claude; Boustany, Rose-Mary; Tfayli, Arafat

    2016-11-18

    Breast cancer is commonest cancer in women worldwide. Elucidation of underlying biology and molecular pathways is necessary for improving therapeutic options and clinical outcomes. Molecular alterations in breast cancer are complex and involve cross-talk between multiple signaling pathways. The aim of this study is to extract a unique mRNA fingerprint of breast cancer in Lebanese women using microarray technologies. Gene-expression profiles of 94 fresh breast tissue samples (84 cancerous/10 non-tumor adjacent samples) were analyzed using GeneChip Human Genome U133 Plus 2.0 arrays. Quantitative real-time PCR was employed to validate candidate genes. Differentially expressed genes between breast cancer and non-tumor tissues were screened. Significant differences in gene expression were established for COL11A1/COL10A1/MMP1/COL6A6/DLK1/S100P/CXCL11/SOX11/LEP/ADIPOQ/OXTR/FOSL1/ACSBG1 and C21orf37. Pathways/diseases representing these genes were retrieved and linked using PANTHER(®)/Pathway Studio(®). Many of the deregulated genes are associated with extracellular matrix, inflammation, angiogenesis, metastasis, differentiation, cell proliferation and tumorigenesis. Characteristics of breast cancers in Lebanese were compared to those of women from Western populations to explain why breast cancer is more aggressive and presents a decade earlier in Lebanese victims. Delineating molecular mechanisms of breast cancer in Lebanese women led to key genes which could serve as potential biomarkers and/or novel drug targets for breast cancer.

  20. Cavernous nerve injury elicits GAP-43 mRNA expression but not regeneration of injured pelvic ganglion neurons.

    PubMed

    Kato, Ryuichi; Kiryu-Seo, Sumiko; Sato, Yoshikazu; Hisasue, Shinichi; Tsukamoto, Taiji; Kiyama, Hiroshi

    2003-10-03

    Recovery of erectile dysfunction after cavernous nerve injury takes a long period. To elucidate this mechanism, unilateral cavernous nerve of male rat was cut, and the expression level of a nerve regeneration marker, the growth associated protein-43 (GAP-43) mRNA was evaluated by in situ hybridization and RT-PCR. While GAP-43 mRNA expression was transiently increased in the injured neurons of the major pelvic ganglion (MPG) at 7 days after nerve injury, continuous increase of GAP-43 mRNA was observed in the contralateral MPG from 7 days to 6 months after the nerve injury. Histochemical double-labeling studies for either neuronal NOS (nNOS) or tyrosine hydroxylase (TH) and the GAP-43 mRNA expression demonstrated that in injured MPG the transient up-regulation of GAP-43 mRNA was mainly seen in nNOS negative and/or TH positive neurons, suggesting non-parasympathetic post-ganglionic neurons, and also demonstrated that in contralateral MPG GAP-43 mRNA positive neurons were gradually increased in nNOS positive but TH negative neurons, suggesting parasympathetic post-ganglionic neurons. When a retrograde tracer Fluorogold (FG) was injected into the penile crus 7 days before histological experiments, FG-positive neurons were, if any, hardly seen in nNOS-positive neurons of the injured MPG for at least 6 months, whereas numerous FG-positive cells were seen in nNOS-positive neurons of the contralateral MPG. These results suggest that post-ganglionic projecting neurons of the intact side, which express increased GAP-43 mRNA, would be most likely to contribute to the recovery of the erectile function after unilateral cavernous nerve injury possibly by a plastic change such as nerve sprouting.

  1. The Drosophila Tis11 Protein and Its Effects on mRNA Expression in Flies*

    PubMed Central

    Choi, Youn-Jeong; Lai, Wi S.; Fedic, Robert; Stumpo, Deborah J.; Huang, Weichun; Li, Leping; Perera, Lalith; Brewer, Brandy Y.; Wilson, Gerald M.; Mason, James M.; Blackshear, Perry J.

    2014-01-01

    Members of the mammalian tristetraprolin family of CCCH tandem zinc finger proteins can bind to certain AU-rich elements (AREs) in mRNAs, leading to their deadenylation and destabilization. Mammals express three or four members of this family, but Drosophila melanogaster and other insects appear to contain a single gene, Tis11. We found that recombinant Drosophila Tis11 protein could bind to ARE-containing RNA oligonucleotides with low nanomolar affinity. Remarkably, co-expression in mammalian cells with “target” RNAs demonstrated that Tis11 could promote destabilization of ARE-containing mRNAs and that this was partially dependent on a conserved C-terminal sequence resembling the mammalian NOT1 binding domain. Drosophila Tis11 promoted both deadenylation and decay of a target transcript in this heterologous cell system. We used chromosome deletion/duplication and P element insertion to produce two types of Tis11 deficiency in adult flies, both of which were viable and fertile. To address the hypothesis that Tis11 deficiency would lead to the abnormal accumulation of potential target transcripts, we analyzed gene expression in adult flies by deep mRNA sequencing. We identified 69 transcripts from 56 genes that were significantly up-regulated more than 1.5-fold in both types of Tis11-deficient flies. Ten of the up-regulated transcripts encoded probable proteases, but many other functional classes of proteins were represented. Many of the up-regulated transcripts contained potential binding sites for tristetraprolin family member proteins that were conserved in other Drosophila species. Tis11 is thus an ARE-binding, mRNA-destabilizing protein that may play a role in post-transcriptional gene expression in Drosophila and other insects. PMID:25342740

  2. Expression of brain-derived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs.

    PubMed

    Bai, Ou; Chlan-Fourney, Jennifer; Bowen, Rudy; Keegan, David; Li, Xin-Min

    2003-01-01

    Typical and atypical antipsychotic drugs, though both effective, act on different neurotransmitter receptors and are dissimilar in some clinical effects and side effects. The typical antipsychotic drug haloperidol has been shown to cause a decrease in the expression of brain-derived neurotrophic factor (BDNF), which plays an important role in neuronal cell survival, differentiation, and neuronal connectivity. However, it is still unknown whether atypical antipsychotic drugs similarly regulate BDNF expression. We examined the effects of chronic (28 days) administration of typical and atypical antipsychotic drugs on BDNF mRNA expression in the rat hippocampus using in situ hybridization. Quantitative analysis revealed that the typical antipsychotic drug haloperidol (1 mg/kg) down-regulated BDNF mRNA expression in both CA1 (P < 0.05) and dentate gyrus (P < 0.01) regions compared with vehicle control. In contrast, the atypical antipsychotic agents clozapine (10 mg/kg) and olanzapine (2.7 mg/kg) up-regulated BDNF mRNA expression in CA1, CA3, and dentate gyrus regions of the rat hippocampus compared with their respective controls (P < 0.01). These findings demonstrate that the typical and atypical antipsychotic drugs differentially regulate BDNF mRNA expression in rat hippocampus.

  3. [Expression pattern of myeloid differentiation-related transcription factor mRNA in differentiation of NB4 and HL-60 cells induced by all-trans retinoic acid].

    PubMed

    Wu, Yong; Li, Xian-Fang; Yang, Jing-Hui; Liao, Xiao-Ying; Huang, Hui-Fang; Chen, Yuan-Zhong

    2011-08-01

    Hematopoiesis is coordinated by a complex regulatory network of transcription factors that involves proliferation, differentiation and maturation of a very small population of pluripotent hematopoietic stem cells with self-renewing and differentiating into various specialized and distinct blood cell types. Malfunction of transcription factors may lead to diseases such as acute myeloid leukemia (AML). The purpose of this study was to investigate the expression pattern of transcription factor mRNA in acute myeloid leukemia (AML) cells during in vitro differentiation. The 2 human leukemic cell lines HL-60 and NB4 had been used as model cell lines. Differentiation of HL-60 and NB4 cells was induced by all-trans retinoic acid (ATRA) for 4 days. Morphological changes were observed by May-Grunwald Giemsa stainings, the CD11b expression level was detected by flow cytometry. Transcription factor mRNA profiles (PU.1, C/EBPα, ε, γ, GATA-1, GATA-2) were determined by real time RT-PCR during in vitro HL-60 and NB4 differentiation; The expression level of transcription factor mRNA was relatively quantitatively analyzed by using 2(-ΔΔCT) and compared with control group. The results showed that the expression levels of PU.1 and C/EBP ε mRNA in NB4 differentiation group were 5.75 and 6.16, respectively, which were significantly higher than those in untreated group; while the expression level of C/EBPα, γ, GATA-1, GATA-2 mRNA in NB4 differentiation group were 62%, 31%, 63% and 8.7% respectively, which were significantly lower than those in untreated group; In HL-60 differentiation group, the expression levels of PU.1, C/EBPα, ε were 1.97, 1.95 and 2.35 respectively, which were significantly higher than those in untreated group; while the expression levels of C/EBPγ, GATA-1, GATA-2 in HL-60 differentiation group were 20%, 21% and 18% respectively, which were significantly lower than those in untreated group. It is concluded that dysregulation of transcription factors is a

  4. Selenium Deficiency Influences the mRNA Expression of Selenoproteins and Cytokines in Chicken Erythrocytes.

    PubMed

    Luan, Yilin; Zhao, Jinxin; Yao, Haidong; Zhao, Xia; Fan, Ruifeng; Zhao, Wenchao; Zhang, Ziwei; Xu, Shiwen

    2016-06-01

    Selenium (Se) deficiency induces hemolysis in chickens, but the molecular mechanism for this effect remains unclear. Se primarily elicits its function through the activity of selenoproteins, which contain the unique amino acid selenocysteine (Sec). In this study, we aimed to investigate the effect of Se deficiency on the expression of 24 selenoproteins and 10 cytokines. One hundred eighty chickens were randomly divided into 2 groups (90 chickens per group). During the entire experimental period, chickens were allowed ad libitum consumption of feed and water. The chickens were fed either a Se-deficient diet (0.008 mg Se/kg; produced in the Se-deficient area of Heilongjiang, China) or a Se-supplemented diet (as sodium selenite) at 0.2 mg/kg for 35 days. At the 35th day, the messenger RNA (mRNA) levels of 24 selenoproteins and 10 cytokines were examined in erythrocytes of 5 chickens per group, and the correlation was analyzed. The results showed that the expression of 24 selenoproteins and 7 cytokines (IL-2, IL-4, IL-8, IL-10, IL-12β, TGF-β4, and IFN-γ) decreased (P < 0.05), and the expression of 3 cytokines (IL-1γ, IL-6 and IL-7) was higher in the Se-deficient group. In both groups, glutathione peroxidase (GPX), thioredoxin 1 (Txnrd1), selenoprotein P1 (SELP), and selenoprotein synthetase (SPS2) were highly expressed compared to the other selenoproteins in chicken erythrocytes (P < 0.05). These data suggest that GPXs, Txnrd1, SELP, and SPS2 possibly play a more important role than the other selenoproteins. The increase of pro-inflammatory cytokines (IL-1γ, IL-6, and IL-7) suggested that the immune system of chickens was damaged by the Se deficiency. Correlation analysis suggested that although the expression of 24 selenoproteins and 7 cytokines decreased and that of 3 cytokines increased, there was a close correlation between their expression levels and a Se diet. These results suggested that Se deficiency influenced the expressions of 24 selenoproteins

  5. Relationship between IL-4 and IL-5 mRNA expression and disease severity in atopic asthma.

    PubMed

    Humbert, M; Corrigan, C J; Kimmitt, P; Till, S J; Kay, A B; Durham, S R

    1997-09-01

    Atopic asthma is characterized by chronic inflammation of the bronchial mucosa in which eosinophil- and immunoglobulin E (IgE)-dependent mechanisms are believed to be prominent. Therefore, specific proeosinophilic mediators such as interleukin (IL)-5 and essential cofactors for IgE switching in B-lymphocytes such as IL-4 could play a pivotal role in asthma. However, the exact role that individual inflammatory mediators play in the development of the disease in humans is still unknown. Using semiquantitative reverse transcriptase-polymerase chain reaction amplification in bronchial biopsies from 10 atopic asthmatics, we have tested the hypothesis that IL-4 and IL-5 mRNA expression relative to beta-actin mRNA correlates with validated indicators of disease severity. IL-4 and IL-5 mRNA copies relative to beta-actin mRNA were detected in bronchial biopsies from atopic asthmatics. The numbers of IL-5 mRNA copies relative to beta-actin mRNA correlated with disease severity assessed by the Aas asthma score (r = 0.70, p = 0.01), baseline FEV1 (r = -0.94, p = 0.001), baseline peak expiratory flow rate (r = -0.77, p = 0.01), peak expiratory flow rate variability over 2 wk (r = 0.69, p = 0.028), and the histamine PC20 (r = -0.72, p = 0.018). Conversely, the numbers of IL-4 mRNA copies relative to beta-actin mRNA did not correlate with asthma severity, but they positively correlated with total serum IgE concentrations (r = -0.90, p = 0.001). Our present results support the concept that IL-5 may determine asthma clinical expression and severity, and by inference they support the development of IL-5 targeted therapies.

  6. Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice.

    PubMed

    Hosokawa, Masashi; Miyashita, Tatsuya; Nishikawa, Sho; Emi, Shingo; Tsukui, Takayuki; Beppu, Fumiaki; Okada, Tomoko; Miyashita, Kazuo

    2010-12-01

    Fucoxanthin, a marine carotenoid found in edible brown seaweeds, attenuates white adipose tissue (WAT) weight gain and hyperglycemia in diabetic/obese KK-A(y) mice, although it does not affect these parameters in lean C57BL/6J mice. In perigonadal and mesenteric WATs of KK-A(y) mice fed fucoxanthin, mRNA expression levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α), which are considered to induce insulin resistance, were markedly reduced compared to control mice. In contrast to KK-A(y) mice, fucoxanthin did not alter MCP-1 and TNF-α mRNA expression levels in the WAT of lean C57BL/6J mice. Interleukin-6 (IL-6) and plasminogen activator inhibitor-1 mRNA expression levels in WAT were also decreased by fucoxanthin in KK-A(y) mice. In differentiating 3T3-F442A adipocytes, fucoxanthinol, which is a fucoxanthin metabolite found in WAT, attenuated TNF-α-induced MCP-1 and IL-6 mRNA overexpression and protein secretion into the culture medium. In addition, fucoxanthinol decreased TNF-α, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) mRNA expression in RAW264.7 macrophage-like cells stimulated by palmitic acid. These findings indicate that fucoxanthin regulates mRNA expression of inflammatory adipocytokines involved in insulin resistance, iNOS, and COX-2 in WAT and has specific effects on diabetic/obese KK-A(y) mice, but not on lean C57BL/6J mice.

  7. Antioxidant enzyme activity and mRNA expression in reproductive tract of adult male European Bison (Bison bonasus, Linnaeus 1758).

    PubMed

    Koziorowska-Gilun, M; Gilun, P; Fraser, L; Koziorowski, M; Kordan, W; Stefanczyk-Krzymowska, S

    2013-02-01

    Antioxidants in the male reproductive tract are the main defence factors against oxidative stress caused by reactive oxygen species production, which compromises sperm function and male fertility. This study was designed to determine the activity of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the testicular and epididymidal tissues of adult male European bison (Bison bonasus). The reproductive tract tissues were subjected to real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis to quantify mRNA expression levels of five antioxidant enzymes: copper/zinc SOD (Cu/Zn SOD), secretory extracellular SOD (Ec-SOD), CAT, phospholipid hydroperoxide glutathione peroxidase (PHGPx) and GPx5. The corpus and cauda epididymidal tissues displayed greater (p < 0.05) SOD activity compared with the testicular tissue. It was found that CAT activity was lowest (p < 0.05) in the cauda epididymidis, whereas negligible GPx activity was detected in the reproductive tract tissues. There were no detectable differences in the mRNA expression level of Cu/Zn SOD among the different reproductive tract tissues. Small amounts of Ec-SOD mRNA were found in the reproductive tract, particularly in the epididymides. The caput and cauda epididymides exhibited greater (p < 0.05) level of CAT mRNA expression, whereas PHGPx mRNA was more (p < 0.05) expressed in the testis. Furthermore, extremely large amounts of GPx5 mRNA were detected in the caput epididymidal tissue compared with other tissues of the reproductive tract. It can be suggested that the activity of the antioxidant enzymes and the relative gene expression of the enzymes confirm the presence of tissue-specific antioxidant defence systems in the bison reproductive tract, which are required for spermatogenesis, epididymal maturation and storage of spermatozoa.

  8. Triptolide inhibits COX-2 expression by regulating mRNA stability in TNF-{alpha}-treated A549 cells

    SciTech Connect

    Sun, Lixin; Zhang, Shuang; Jiang, Zhenzhou; Huang, Xin; Wang, Tao; Huang, Xiao; Li, Han; Zhang, Luyong

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Triptolide inhibited COX-2 expression and the half-life of COX-2 mRNA is decreased. Black-Right-Pointing-Pointer The HuR protein shuttling from nucleus to cytoplasm is inhibited by triptolide. Black-Right-Pointing-Pointer Triptolide inhibited 3 Prime -UTR fluorescence reporter gene activity. Black-Right-Pointing-Pointer COX-2 mRNA binding to HuR is decreased by triptolide in pull-down experiments. -- Abstract: Cyclooxygenase-2 (COX-2) over-expression is frequently associated with human non-small-cell lung cancer (NSCLC) and involved in tumor proliferation, invasion, angiogenesis and resistance to apoptosis. In the present study, the effects of triptolide on COX-2 expression in A549 cells were investigated and triptolide was found to inhibit TNF-{alpha}-induced COX-2 expression. In our further studies, it was found that triptolide decreased the half-life of COX-2 mRNA dramatically and that it inhibited 3 Prime -untranslated region (3 Prime -UTR) fluorescence reporter gene activity. Meanwhile, triptolide inhibited the HuR shuttling from nucleus to cytoplasm. After triptolide treatment, decreased COX-2 mRNA in pull-down experiments with anti-HuR antibodies was observed, indicating that the decreased cytoplasmic HuR is responsible for the decreased COX-2 mRNA. Taken together, our results provided evidence for the first time that triptolide inhibited COX-2 expression by COX-2 mRNA stability modulation and post-transcriptional regulation. These results provide a novel mechanism of action for triptolide which may be important in the treatment of lung cancer.

  9. Dietary sunflower oil modulates milk fatty acid composition without major changes in adipose and mammary tissue fatty acid profile or related gene mRNA abundance in sheep.

    PubMed

    Castro-Carrera, T; Frutos, P; Leroux, C; Chilliard, Y; Hervás, G; Belenguer, A; Bernard, L; Toral, P G

    2015-04-01

    There are very few studies in ruminants characterizing mammary and adipose tissue (AT) expression of genes and gene networks for diets causing variations in milk fatty acid (FA) composition without altering milk fat secretion, and even less complementing this information with data on tissue FA profiles. This work was conducted in sheep in order to investigate the response of the mammary gland and the subcutaneous and perirenal AT, in terms of FA profile and mRNA abundance of genes involved in lipid metabolism, to a diet known to modify milk FA composition. Ten lactating Assaf ewes were randomly assigned to two treatments consisting of a total mixed ration based on alfalfa hay and a concentrate (60 : 40) supplemented with 0 (control diet) or 25 (SO diet) g of sunflower oil/kg of diet dry matter for 7 weeks. Milk composition, including FA profile, was analysed after 48 days on treatments. On day 49, the animals were euthanized and tissue samples were collected to analyse FA and mRNA abundance of 16 candidate genes. Feeding SO did not affect animal performance but modified milk FA composition. Major changes included decreases in the concentration of FA derived from de novo synthesis (e.g. 12:0, 14:0 and 16:0) and increases in that of long-chain FA (e.g. 18:0, c9-18:1, trans-18:1 isomers and c9,t11-CLA); however, they were not accompanied by significant variations in the mRNA abundance of the studied lipogenic genes (i.e. ACACA, FASN, LPL, CD36, FABP3, SCD1 and SCD5) and transcription factors (SREBF1 and PPARG), or in the constituent FA of mammary tissue. Regarding the FA composition of AT, the little influence of SO did not appear to be linked to changes in gene mRNA abundance (decreases of GPAM and SREBF1 in both tissues, and of PPARG in the subcutaneous depot). Similarly, the great variation between AT (higher contents of saturated FA and trans-18:1 isomers in the perirenal, and of cis-18:1, c9,t11-CLA and n-3 PUFA in the subcutaneous AT) could not be related to

  10. Maternal overnutrition enhances mRNA expression of adipogenic markers and collagen deposition in skeletal muscle of beef cattle fetuses.

    PubMed

    Duarte, M S; Gionbelli, M P; Paulino, P V R; Serão, N V L; Nascimento, C S; Botelho, M E; Martins, T S; Filho, S C V; Dodson, M V; Guimarães, S E F; Du, M

    2014-09-01

    Twenty-four pregnant Nellore cows were randomly assigned into 2 feeding level groups (control [CTL]; fed 1.0 times the maintenance requirement; n = 12; and overnourished [ON]; fed at 1.5 times the maintenance requirement; n = 12) to evaluate effects of maternal overnutrition on fetal skeletal muscle development. Cows were slaughtered at 135, 190, and 240 d of gestation and samples of fetal LM were collected for analysis of mRNA expression analysis and for histological evaluation of collagen content and number of muscle cells. There was no interaction between gestational period and maternal nutrition for the variables evaluated (P > 0.05). The mRNA expression of Cadherin-associated protein, β 1 (β-catenin) tended to be greater in fetuses from ON cows (P = 0.08), while myogenic differentiation 1 (MyoD; P = 0.56), myogenin (MyoG; P = 0.70), and the number of muscle cells (P = 0.90) were not affected by maternal overnutrition. Gestational period did not affect the mRNA expression of β-catenin (P = 0.60) and MyoG (P = 0.21). The mRNA expression of MyoD tended to increase with days of gestation (P = 0.06). The mRNA expression of zinc finger protein 423 (Zfp423; P < 0.0001), C/EBPα (P = 0.01), and PPARγ (P < 0.0001) were enhanced in ON fetuses. No effects of days of gestation were observed for mRNA expression of Zfp423 (P = 0.75) and C/EBPα (P = 0.48). The mRNA expression of PPARγ in fetuses at 190 d of gestation tended to be greater than those at 135 and 240 d of gestation (P = 0.06). The mRNA expression of transforming growth factor β (TGF-β; P < 0.0001), collagen type III, α I (COL3A1; P < 0.0001), and collagen content (P = 0.01) were increased in ON fetuses. Gestational period did not affect the mRNA expression of collagen type I, α I (COL1A1; P = 0.65). The mRNA expression of COL3A1 (P = 0.09) in fetuses at 190 d of gestation tended to be greater than fetuses at 135 and 240 d of gestation. The mRNA expression of TGF-β in fetuses at 190 d of gestation was

  11. Expression of RANTES mRNA in skin lesions of feline eosinophilic plaque.

    PubMed

    Kimura, Tomoe; Kano, Rui; Maeda, Sadatoshi; Tsujimoto, Hajime; Nagata, Masahiko; Hasegawa, Atsuhiko

    2003-10-01

    One of the mechanisms of eosinophil infiltration is its induction by chemoattractants such as regulated upon activation, normal T-expressed and secreted (RANTES) which is a cysteine-cysteine chemokine that mediates chemotaxis and activation of eosinophils in humans and mice. Skin lesions of feline eosinophilic plaque are characterized by a predominant infiltration of eosinophils. The mechanism(s) of eosinophilic infiltration in the skin and/or mucosa of cats is unknown. It is possible that RANTES is involved. To investigate the presence of RANTES in the skin of cats with eosinophilic plaques and nonaffected skin, we cloned and sequenced the full-length feline RANTES cDNA gene, in order to determine whether it is present in the skin of cats with eosinophilic plaques and/or if it is present in normal adjacent skin. We were able to document the the expression of RANTES mRNAs in skin with feline eosinophilic plaque as well as in normal cat skin. The full-length cDNA sequence of the RANTES gene (742 bp) contained a single open reading frame of 276 bp encoding a protein of 92 amino acids. The amino acid sequence of feline RANTES shared 67 and 74% sequence identity with that of bovine and mouse RANTES genes, respectively. RT-PCR analysis on RANTES mRNA in the skin of cats with eosinophilic plaque revealed that its expression was higher in the eosinophilic plaque skin lesions than in the normal skin. The result suggested that RANTES might play a role to induce eosinophil infiltration in feline eosinophilic plaque lesions.

  12. Differential expression of hypothalamic CART mRNA in response to body weight change following different dietary interventions.

    PubMed

    Yu, Yinghua; South, Tim; Wang, Qing; Huang, Xu-Feng

    2008-06-01

    Cocaine- and amphetamine-regulated transcript (CART) peptide is widely expressed in the hypothalamus and is involved in the central regulation of energy balance. Using in situ hybridization, this study examined the roles of CART peptide in the hypothalamus of diet-induced obese (DIO) or diet-resistant (DR) mice under different dietary interventions including high-fat (HF), low-fat (LF) and pair-feeding (PF) diet for 6 weeks. Pair feeding the energy intake of the DIO and DR mice was used to determine whether there is an inherent difference in baseline CART expression that may cause the DIO and DR phenotypes. The results demonstrated that CART mRNA expression in the hypothalamus of the DIO mice responded differently on the high-fat diet compared to DR mice. The arcuate nucleus and paraventricular nucleus showed a significant reduction in CART mRNA expression in DIO mice compared to DR mice on the HF diet (-19.6%, p=0.019; -26.1%, p=0.003); whilst a profound increase in CART mRNA expression was observed in the dorsomedial nucleus and lateral hypothalamic area (+44.5%, p=0.007; +37.4%, p=0.033). Our study suggests that the decrease of CART mRNA expression in Arc and PVN regions of DIO mice may contribute to the development of high-fat diet-induced obesity. In addition, CART in the dorsomedial nucleus (DM) of hypothalamus and lateral hypothalamus (LH) may be involved in the activation of an orexigenic effect. Since pair feeding of the high-fat diet eliminated both the body weight and CART mRNA differences between the DIO and DR mice, it is likely that their alterations in gene expression were a consequence of their dissimilar body weight levels.

  13. Expression of progesterone receptor membrane component 1, serpine mRNA binding protein 1 and nuclear progesterone receptor isoforms A and B in the bovine myometrium during the estrous cycle and early pregnancy.

    PubMed

    Slonina, Dominika; Kowalik, Magdalena K; Kotwica, Jan

    2012-01-01

    The aim of this study was to investigate the (1) expression of progesterone membrane component 1 (PGRMC1), serpine mRNA binding protein 1 (SERBP1) and progesterone receptor (PR) mRNA and (2) protein expression levels of PGRMC1, SERBP1 and PR isoforms A and B in the bovine myometrium during the estrous cycle and early pregnancy. Uteri from cows on days 1-5, 6-10, 11-16 and 17-21 of the estrous cycle and weeks 3-5, 6-8 and 9-12 of pregnancy were used (n=5-6 per period). There were no changes (P>0.05) in PGRMC1 mRNA expression during the estrous cycle, while expression of SERBP1 and PR mRNA was the lowest (P<0.05) on days 11-16 relative to other days of the cycle. The highest mRNA expression of PGRMC1, SERBP1 and PR was found during pregnancy. There were no changes (P>0.05) in SERBP1 protein expression in cycling and pregnant cows, while the highest (P<0.05) PGRMC1 protein expression was found during weeks 3-5 of pregnancy. Similar protein expression profiles for PRA and PRB were found, and protein levels were highest on days 1-5 of the estrous cycle. From day 6 of the cycle, PRA and PRB protein expression decreased and were maintained at this lower level during pregnancy. In conclusion, our study assessed mRNA and protein expression levels of PGRMC1, SERBP1 and PR in the bovine myometrium during the estrous cycle and the first trimester of pregnancy. It is possible that progesterone (P4) affects myometrial function in a genomic and nongenomic manner.

  14. You can't judge a book by its cover or a tumor by its expression profile.

    PubMed

    Sorscher, Steven M; Thomas, Theodore

    2012-01-01

    Expression profiling has shown great promise in matching cancers of unknown primary to likely primary tumors of origin based on patterns of mRNA expression. However, it remains uncertain as to whether even well matched tumors will demonstrate the clinical features, such as rate of progression, of their matched counterparts. In this case report, we note that based on histology, immunohistochemistry and expression profile this patient's poorly differentiated neuroendocrine tumor would have been expected to grow very rapidly on no therapy. Instead, this cancer was very indolent, with only very little radiographic progression over several years. We believe this report represents a remarkable case of a tumor where features, including expression profile, would not at all have accurately predicted the clinical course seen. While some series have suggested that matching by expression profiling predicts outcome, this case shows a dramatically different result.

  15. Differential regulation of amyloid-. beta. -protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease

    SciTech Connect

    Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.; Goldgaber, D.; Gajdusek, D.C.; Young, W.G.; Morrison, J.H.; Wilson, M.C.

    1988-02-01

    The authors have mapped the neuroanatomical distribution of amyloid-..beta..-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-..beta..-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-..beta..-protein mRNA in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-..beta..-protein gene expression may be altered in Alzheimer disease.

  16. Comparative analyses of gene copy number and mRNA expression in GBM tumors and GBM xenografts

    SciTech Connect

    Hodgson, J. Graeme; Yeh, Ru-Fang; Ray, Amrita; Wang, Nicholas J.; Smirnov, Ivan; Yu, Mamie; Hariono, Sujatmi; Silber, Joachim; Feiler, Heidi S.; Gray, Joe W.; Spellman, Paul T.; Vandenberg, Scott R.; Berger, Mitchel S.; James, C. David

    2009-04-03

    Development of model systems that recapitulate the molecular heterogeneity observed among glioblastoma multiforme (GBM) tumors will expedite the testing of targeted molecular therapeutic strategies for GBM treatment. In this study, we profiled DNA copy number and mRNA expression in 21 independent GBM tumor lines maintained as subcutaneous xenografts (GBMX), and compared GBMX molecular signatures to those observed in GBM clinical specimens derived from the Cancer Genome Atlas (TCGA). The predominant copy number signature in both tumor groups was defined by chromosome-7 gain/chromosome-10 loss, a poor-prognosis genetic signature. We also observed, at frequencies similar to that detected in TCGA GBM tumors, genomic amplification and overexpression of known GBM oncogenes, such as EGFR, MDM2, CDK6, and MYCN, and novel genes, including NUP107, SLC35E3, MMP1, MMP13, and DDX1. The transcriptional signature of GBMX tumors, which was stable over multiple subcutaneous passages, was defined by overexpression of genes involved in M phase, DNA replication, and chromosome organization (MRC) and was highly similar to the poor-prognosis mitosis and cell-cycle module (MCM) in GBM. Assessment of gene expression in TCGA-derived GBMs revealed overexpression of MRC cancer genes AURKB, BIRC5, CCNB1, CCNB2, CDC2, CDK2, and FOXM1, which form a transcriptional network important for G2/M progression and/or checkpoint activation. Our study supports propagation of GBM tumors as subcutaneous xenografts as a useful approach for sustaining key molecular characteristics of patient tumors, and highlights therapeutic opportunities conferred by this GBMX tumor panel for testing targeted therapeutic strategies for GBM treatment.

  17. Changes in GABA(B) receptor mRNA expression in the rodent basal ganglia and thalamus following lesion of the nigrostriatal pathway.

    PubMed

    Johnston, T; Duty, S

    2003-01-01

    Loss of striatal dopaminergic innervation in Parkinson's disease (PD) is accompanied by widespread alterations in GABAergic activity within the basal ganglia and thalamus. Accompanying changes in GABA(B) receptor binding have been noted in some basal ganglia regions in parkinsonian primates, suggesting that plasticity of this receptor may also occur in PD. However, the molecular mechanisms underlying the changes in receptor binding and the manner and extent to which different GABA(B) receptor mRNA subunits and splice-variants are affected remain unknown. This study used in situ hybridisation to examine the full profile of changes in expression of the known rat GABA(B) receptor genes and gene variants in the basal ganglia and thalamus of rats, brought about by degeneration of the nigrostriatal tract. All of the GABA(B) mRNA species examined showed unique expression patterns throughout the basal ganglia and thalamus. In addition, all exhibited a marked loss of expression (between 46 and 80%) in the substantia nigra pars compacta of animals bearing a complete 6-hydroxydopamine-induced lesion of the nigrostriatal tract, confirming the presence of these variants in dopaminergic neurones in this region. Further analysis of autoradioagrams revealed additional changes only in GABA(B(1a)) mRNA in discrete anatomical regions. Expression of the GABA(B(1a)) variant was significantly increased in the substantia nigra pars reticulata (33+/-2%), entopeduncular nucleus (26+/-1%) and the subthalamic nucleus (16+/-1%). Since these regions all receive reduced GABAergic innervation following nigrostriatal tract lesioning, it is possible that the increased expression occurs as a compensatory measure. In conclusion, these data demonstrate that GABA(B) receptor genes exhibit regional- and subunit/variant-specific plasticity at the molecular level under parkinsonian conditions.

  18. Recognizing the importance of exposure-dose-response dynamics for ecotoxicity assessment: nitrofurazone-induced antioxidase activity and mRNA expression in model protozoan Euplotes vannus.

    PubMed

    Hong, Yazhen; Liu, Shuxing; Lin, Xiaofeng; Li, Jiqiu; Yi, Zhenzhen; Al-Rasheid, Khaled A S

    2015-06-01

    The equivocality of dose-response relationships has, in practice, hampered the application of biomarkers as a means to evaluate environmental risk, yet this important issue has not yet been fully recognized or explored. This paper evaluates the potential of antioxidant enzymes in the ciliated protozoan Euplotes vannus for use as biomarkers. Dose-response dynamics, together with both the enzyme activity and the gene expression of the antioxidant enzymes, superoxide dismutase, and glutathione peroxidase, were investigated when E. vannus were exposed to graded doses of nitrofurazone for several discrete durations. Mathematical models were explored to characterize the dose-response profiles and, specifically, to identify any equivocality in terms of endpoint. Significant differences were found in both enzyme activity and messenger RNA (mRNA) expression in the E. vannus treated with nitrofurazone, and the interactions between exposure dosage and duration were significant. Correlations between enzyme activity, mRNA expression, and nitrofurazone dose varied with exposure duration. Particularly, the dose-responses showed different dynamics depending on either endpoint or exposure duration. Our findings suggest that both the enzyme activity and the gene expression of the tested antioxidant enzymes can be used as biomarkers for ecotoxicological assessment on the premise of ascertaining appropriate dosage scope, exposure duration, endpoint, etc., which can be achieved by using dose-response dynamics.

  19. Aberrant hypomethylated STAT3 was identified as a biomarker of chronic benzene poisoning through integrating DNA methylation and mRNA expression data.

    PubMed

    Yang, Jing; Bai, Wenlin; Niu, Piye; Tian, Lin; Gao, Ai

    2014-06-01

    Chronic occupational benzene exposure is associated with an increased risk of hematological malignancies such as aplastic anemia and leukemia. The new biomarker and action mechanisms of chronic benzene poisoning are still required to be explored. Aberrant DNA methylation, which may lead to genomic instability and the altered gene expression, is frequently observed in hematological cancers. To gain an insight into the new biomarkers and molecular mechanisms of chronic benzene poisoning, DNA methylation profiles and mRNA expression pattern from the peripheral blood mononuclear cells of four chronic benzene poisoning patients and four health controls that matched age and gender without benzene exposure were performed using the high resolution Infinium 450K methylation array and Gene Chip Human Gene 2.0ST Arrays, respectively. By integrating DNA methylation and mRNA expression data, we identified 3 hypermethylated genes showing concurrent down-regulation (PRKG1, PARD3, EPHA8) and 2 hypomethylated genes showing increased expression (STAT3, IFNGR1). Signal net analysis of differential methylation genes associated with chronic benzene poisoning showed that two key hypomethylated STAT3 and hypermethylated GNAI1 were identified. Further GO analysis and pathway analysis indicated that hypomethylated STAT3 played central roles through regulation of transcription, DNA-dependent, positive regulation of transcription from RNA polymerase II promoter, JAK-STAT cascade and adipocytokine signaling pathway, Acute myeloid leukemia, and JAK-STAT signaling pathway. In conclusion, the aberrant hypomethylated STAT3 might be a potential biomarker of chronic benzene poisoning.

  20. mRNA Profiling Reveals Determinants of Trastuzumab Efficiency in HER2-Positive Breast Cancer

    PubMed Central

    von der Heyde, Silvia; Wagner, Steve; Czerny, Alexander; Nietert, Manuel; Ludewig, Fabian; Salinas-Riester, Gabriela; Arlt, Dorit; Beißbarth, Tim

    2015-01-01

    Intrinsic and acquired resistance to the monoclonal antibody drug trastuzumab is a major problem in the treatment of HER2-positive breast cancer. A deeper understanding of the underlying mechanisms could help to develop new agents. Our intention was to detect genes and single nucleotide polymorphisms (SNPs) affecting trastuzumab efficiency in cell culture. Three HER2-positive breast cancer cell lines with different resistance phenotypes were analyzed. We chose BT474 as model of trastuzumab sensitivity, HCC1954 as model of intrinsic resistance, and BTR50, derived from BT474, as model of acquired resistance. Based on RNA-Seq data, we performed differential expression analyses on these cell lines with and without trastuzumab treatment. Differentially expressed genes between the resistant cell lines and BT474 are expected to contribute to resistance. Differentially expressed genes between untreated and trastuzumab treated BT474 are expected to contribute to drug efficacy. To exclude false positives from the candidate gene set, we removed genes that were also differentially expressed between untreated and trastuzumab treated BTR50. We further searched for SNPs in the untreated cell lines which could contribute to trastuzumab resistance. The analysis resulted in 54 differentially expressed candidate genes that might be connected to trastuzumab efficiency. 90% of 40 selected candidates were validated by RT-qPCR. ALPP, CALCOCO1, CAV1, CYP1A2 and IGFBP3 were significantly higher expressed in the trastuzumab treated than in the untreated BT474 cell line. GDF15, IL8, LCN2, PTGS2 and 20 other genes were significantly higher expressed in HCC1954 than in BT474, while NCAM2, COLEC12, AFF3, TFF3, NRCAM, GREB1 and TFF1 were significantly lower expressed. Additionally, we inferred SNPs in HCC1954 for CAV1, PTGS2, IL8 and IGFBP3. The latter also had a variation in BTR50. 20% of the validated subset have already been mentioned in literature. For half of them we called and analyzed

  1. Systematic Expression Profiling of the Mouse Transcriptome Using RIKEN cDNA Microarrays

    PubMed Central

    Bono, Hidemasa; Yagi, Ken; Kasukawa, Takeya; Nikaido, Itoshi; Tominaga, Naoko; Miki, Rika; Mizuno, Yosuke; Tomaru, Yasuhiro; Goto, Hitoshi; Nitanda, Hiroyuki; Shimizu, Daisuke; Makino, Hirochika; Morita, Tomoyuki; Fujiyama, Junshin; Sakai, Takehito; Shimoji, Takashi; Hume, David A.; Hayashizaki, Yoshihide; Okazaki, Yasushi

    2003-01-01

    The number of known mRNA transcripts in the mouse has been greatly expanded by the RIKEN Mouse Gene Encyclopedia project. Validation of their reproducible expression in a tissue is an important contribution to the study of functional genomics. In this report, we determine the expression profile of 57,931 clones on 20 mouse tissues using cDNA microarrays. Of these 57,931 clones, 22,928 clones correspond to the FANTOM2 clone set. The set represents 20,234 transcriptional units (TUs) out of 33,409 TUs in the FANTOM2 set. We identified 7206 separate clones that satisfied stringent criteria for tissue-specific expression. Gene Ontology terms were assigned for these 7206 clones, and the proportion of `molecular function' ontology for each tissue-specific clone was examined. These data will provide insights into the function of each tissue. Tissue-specific gene expression profiles obtained using our cDNA microarrays were also compared with the data extracted from the GNF Expression Atlas based on Affymetrix microarrays. One major outcome of the RIKEN transcriptome analysis is the identification of numerous nonprotein-coding mRNAs. The expression profile was also used to obtain evidence of expression for putative noncoding RNAs. In addition, 1926 clones (70%) of 2768 clones that were categorized as “unknown EST,” and 1969 (58%) clones of 3388 clones that were categorized as “unclassifiable” were also shown to be reproducibly expressed. PMID:12819129

  2. Diurnal expression of Dnmt3b mRNA in mouse liver is regulated by feeding and hepatic clockwork.

    PubMed

    Maekawa, Fumihiko; Shimba, Shigeki; Takumi, Shota; Sano, Tomoharu; Suzuki, Takehiro; Bao, Jinhua; Ohwada, Mika; Ehara, Tatsuya; Ogawa, Yoshihiro; Nohara, Keiko

    2012-09-01

    DNA methyltransferase 3B (DNMT3B) is critically involved in de novo DNA methylation and genomic stability, while the regulatory mechanism in liver is largely unknown. We previously reported that diurnal variation occurs in the mRNA expression of Dnmt3b in adult mouse liver. The aim of this study was to determine the mechanism underlying the diurnal expression pattern. The highest level and the lowest level of Dnmt3b mRNA expression were confirmed to occur at dawn and in the afternoon, respectively, and the expression pattern of Dnmt3b closely coincided with that of Bmal1. Since the diurnal pattern of Dnmt3b mRNA expression developed at weaning and scheduled feeding to separate the feeding cycle from the light/dark cycle led to a phase-shift in the expression, it could be assumed that feeding plays a critical role as an entrainment signal. In liver-specific Bmal1 knockout (L-Bmal1 KO) mice, L-Bmal1 deficiency resulted in significantly higher levels of Dnmt3b at all measured time points, and the time when the expression was the lowest in wild-type mice was shifted to earlier. Investigation of global DNA methylation revealed a temporal decrease of 5-methyl-cytosine percentage in the genome of wild-type mice in late afternoon. By contrast, no such decrease in 5-methyl-cytosine percentage was detected in L-Bmal1 KO mice, suggesting that altered Dnmt3b expression affects the DNA methylation state. Taken together, the results suggest that the feeding and hepatic clockwork generated by the clock genes, including Bmal1, regulate the diurnal variation in Dnmt3b mRNA expression and the consequent dynamic changes in global DNA methylation.

  3. Ya-fish (Schizothorax prenanti) spexin: identification, tissue distribution and mRNA expression responses to periprandial and fasting.

    PubMed

    Wu, Hongwei; Lin, Fangjun; Chen, Hu; Liu, Ju; Gao, Yundi; Zhang, Xin; Hao, Jin; Chen, Defang; Yuan, Dengyue; Wang, Tao; Li, Zhiqiong

    2016-02-01

    Spexin (SPX) is a novel peptide which was known for its role in physiological homeostasis. A recent study has confirmed that SPX plays an important role in the feeding regulation. However, the reports about SPX are very limited. In the present study, we characterized the structure, distribution and mRNA expression responses to feeding status of SPX in Ya-fish (Schizothorax prenanti). The full-length cDNA of Ya-fish SPX was 1330 base pairs (bp), which encoded 106 amino acid residues. These residues contained a 31-amino acid signal peptide region and a 14-amino acid mature peptide. The sequence alignment demonstrated that the Ya-fish SPX showed high conservation with other species. Our data revealed that SPX was widely expressed in all test tissues. The highest expression of SPX mRNA was observed in Ya-fish forebrain. Compared with the Ya-fish SPX mRNA expression in the forebrain between the preprandial and postprandial groups, the fed group was prominently increased than unfed groups after a meal, while the unfed group at 1 and 3 h substantially decreased than preprandial groups (P < 0.01). In addition, SPX mRNA expression in forebrain was significantly decreased (P < 0.01) during fasting for a week and sharply increased (P < 0.01) after refeeding on the 7th day, and then return to normal level on the 9th day. These results point toward that SPX mRNA expression is regulated by metabolic status or feeding conditions in Ya-fish.

  4. Long form leptin receptor mRNA expression in the brain, pituitary, and other tissues in the pig.

    PubMed

    Lin, J; Barb, C R; Matteri, R L; Kraeling, R R; Chen, X; Meinersmann, R J; Rampacek, G B

    2000-07-01

    Much effort has focused recently on understanding the role of leptin, the obese gene product secreted by adipocytes, in regulating growth and reproduction in rodents, humans and domestic animals. We previously demonstrated that leptin inhibited feed intake and stimulated growth hormone (GH) and luteinizing hormone (LH) secretion in the pig. This study was conducted to determine the location of long form leptin receptor (Ob-Rl) mRNA in various tissues of the pig. The leptin receptor has several splice variants in the human and mouse, but Ob-Rl is the major form capable of signal transduction. The Ob-Rl is expressed primarily in the hypothalamus of the human and rodents, but has been located in other tissues as well. In the present study, a partial porcine Ob-Rl cDNA, cloned in our laboratory and specific to the intracellular domain, was used to evaluate the Ob-Rl mRNA expression by RT-PCR in the brain and other tissues in three 105 d-old prepuberal gilts and in a 50 d-old fetus. In 105 d-old gilts, Ob-Rl mRNA was expressed in the hypothalamus, cerebral cortex, amygdala, thalamus, cerebellum, area postrema and anterior pituitary. In addition, Ob-Rl mRNA was expressed in ovary, uterine body, liver, kidney, pancreas, adrenal gland, heart, spleen, lung, intestine, bone marrow, muscle and adipose tissue. However, expression was absent in the thyroid, thymus, superior vena cava, aorta, spinal cord, uterine horn and oviduct. In the 50 d-old fetus, Ob-Rl mRNA was expressed in brain, intestine, muscle, fat, heart, liver and umbilical cord. These results support the idea that leptin might play a role in regulating numerous physiological functions.

  5. TP53 Promoter Methylation in Primary Glioblastoma: Relationship with TP53 mRNA and Protein Expression and Mutation Status

    PubMed Central

    Szybka, Malgorzata; Malachowska, Beata; Fendler, Wojciech; Potemski, Piotr; Piaskowski, Sylwester; Jaskolski, Dariusz; Papierz, Wielislaw; Skowronski, Wieslaw; Och, Waldemar; Kordek, Radzislaw

    2014-01-01

    Reduced expression of TP53 by promoter methylation has been reported in several neoplasms. It remains unclear whether TP53 promoter methylation is associated with reduced transcriptional and protein expression in glioblastoma (GB). The aim of our work was to study the impact of TP53 methylation and mutations on TP53 mRNA level and protein expression in 42 molecularly characterized primary GB tumors. We also evaluate the impact of all molecular alterations on the overall patient survival. The frequency of TP53 promoter methylation was found in 21.4%. To the best of our knowledge, this is the first report showing such high frequency of TP53 promoter methylation in primary GB. There was no relation between TP53 promoter methylation and TP53 mRNA level (p=0.5722) and between TP53 promoter methylation and TP53 protein expression (p=0.2045). No significant associations were found between TP53 mRNA expression and mutation of TP53 gene (p=0.9076). However, significant association between TP53 mutation and TP53 protein expression was found (p=0.0016). Our data suggest that in primary GB TP53 promoter methylation does not play a role in silencing of TP53 transcriptional and protein expression and is probably regulated by other genetic and epigenetic mechanisms associated with genes involved in the TP53 pathway. PMID:24506545

  6. Changes in mRNA expression of arcuate nucleus appetite-regulating peptides during lactation in rats.

    PubMed

    Suzuki, Yoshihiro; Nakahara, Keiko; Maruyama, Keisuke; Okame, Rieko; Ensho, Takuya; Inoue, Yoshiyuki; Murakami, Noboru

    2014-04-01

    The contribution of hypothalamic appetite-regulating peptides to further hyperphagia accompanying the course of lactation in rats was investigated by using PCR array and real-time PCR. Furthermore, changes in the mRNA expression for appetite-regulating peptides in the hypothalamic arcuate nucleus (ARC) were analyzed at all stages of pregnancy and lactation, and also after weaning. Food intake was significantly higher during pregnancy, lactation, and after weaning than during non-lactation periods. During lactation, ARC expression of mRNAs for agouti-related protein (AgRP) and peptide YY was increased, whereas that of mRNAs for proopiomelanocortin (POMC) and cholecystokinin (CCK) was decreased, in comparison with non-lactation periods. The increase in AgRP mRNA expression during lactation was especially marked. The plasma level of leptin was significantly decreased during the course of lactation, whereas that of acyl-ghrelin was unchanged. In addition, food intake was negatively correlated with the plasma leptin level during lactation. This study has clarified synchronous changes in the expression of many appetite-regulating peptides in ARC of rats during lactation. Our results suggest that hyperphagia during lactation in rats is caused by decreases in POMC and CCK expression and increases in AgRP expression in ARC, the latter being most notable. Together with the decrease in the blood leptin level, such changes in mRNA expression may explain the further hyperphagia accompanying the course of lactation.

  7. Expression of synaptophysin and its mRNA in bovine corpus lutea during different stages of pregnancy.

    PubMed

    Zhang, Wenhua; Chen, Shulin; Wang, Zhonghui; Tang, Caiyan; Meng, Xia; Li, Feihu; Zhao, Shanting

    2013-06-01

    In order to investigate the expression of mRNA and protein for synaptophysin (SYP) in bovine corpus luteum (CL) during different stages of pregnancy, we chose Holstein cows during various pregnancy stages. The CL was divided into two parts, then immunohistochemical streptavidin-perosidase and RT-PCR were used to determine the levels of protein and mRNA for SYP respectively. SYP immunoreactive products mainly located in large luteal cells; much less or no immunoreactivity was found in small luteal cells. The expression levels of SYP were different in various stages of pregnancy. In the CL of mid pregnancy, the levels of protein and mRNA for SYP were both significantly higher than those in early and late stage of pregnancy (P<0.05). After parturition, compared with late stage of pregnancy, the protein level of SYP decreased (P<0.05), but its mRNA increased (P<0.05). In conclusion, SYP has the strongest expression in mid stage of pregnancy, and its regular expression in bovine CL indicates that SYP may play important roles in maintaining the function of bovine CL and in the regulation of production.

  8. Type VII and XVII Collagen mRNA Expressions in Regenerated Epidermal Laminae in Chronic Equine Laminitis.

    PubMed

    Kuwano, Atsutoshi; Hasegawa, Telhisa; Arai, Katsuhiko

    2008-01-01

    To confirm ability forming the basement membrane of the regenerated laminar epidermis (rLE) in chronic laminitis, expression of type VII and type XVII collagen mRNAs in the rLE was studied applying sequences of two type of murine collagens. On northern blot analysis, complement DNA (cDNA) probes adjusted from the murine type VII and type XVII collagen could hybridize with the equine mRNAs, and each signal was detected as single-bands at approximately 9.5 kb and 5.6 kb, respectively. Contrasting with the expression level of equine glyceraldehyde-3-phosphate dehydrogenease mRNA, the band of type VII collagen mRNA in laminitis was stronger than normal, but the type XVII collagen mRNA in laminitis was less than normal. By in situ hybridization, positive signals in response to the murine type VII and type XVII collagen mRNA probes could be detected in the equine laminitic rLE region. From these results, it is concluded that the keratinocytes constructing the rLE in chronic stage of laminitis can express type VII and type XVII collagen mRNAs and these expression patterns were different from the normal.

  9. Regulation of adeno-associated virus gene expression in 293 cells: control of mRNA abundance and translation

    SciTech Connect

    Trempe, J.P.; Carter, B.J.

    1988-01-01

    The authors studied the effects of the adeno-associated virus (AAV) rep gene on the control of gene expression from the AAV p/sub 40/ promoter in 293 cells in the absence of an adenovirus coinfection. AAV vectors containing the chloramphenicol acetyltransferase (cat) gene were used to measure the levels of cat expression and steady-state mRNA from p/sub 40/. When the rep gene was present in cis or in trans, cat expression from p/sub 40/ was decreased 3- to 10-fold, but there was a 2- to 10-fold increase in the level of p/sub 40/ mRNA. Conversely, cat expression increased and the p/sub 40/ mRNA level decreased in the absence of the rep gene. Both wild-type and carboxyl-terminal truncated Rep proteins were capable of eliciting both effects. These data suggest two roles for the pleiotropic AAV rep gene: as a translational inhibitor and as a positive regulator of p/sub 40/ mRNA levels. They also provide additional evidence for a cis-acting negative regulatory region which decreases RNA from the AAV p/sub 5/ promoter in a fashion independent of rep.

  10. Serum leptin concentrations, leptin mRNA expression, and food intake during the estrous cycle in rats.

    PubMed

    Fungfuang, Wirasak; Nakada, Tomoaki; Nakao, Nobuhiro; Terada, Misao; Yokosuka, Makoto; Gizurarson, Sveinbjorn; Hau, Jann; Moon, Changjong; Saito, Toru R

    2013-03-01

    The aim of this study was to investigate food intake, serum leptin levels, and leptin mRNA expression during the sexual cycle in rats. Female Wistar-Imamichi rats aged 8-10 weeks were used in this experiment. Food intake was measured during the light and dark phases (light on at 07:00 and off at 19:00) of the 4-day estrous cycle in female rats. Serum leptin levels were measured by ELISA, and leptin mRNA expression levels were analyzed using real-time PCR on diestrous- and proestrous-stage rats. Our results revealed that during the sexual cycle, food intake was significantly higher in the dark phase compared with the light phase. Food intake in proestrous females was significantly lower in the light and dark phases compared with the other groups. Serum leptin concentrations were significantly higher in both phases in proestrous rats compared with diestrous rats. There was a significant increase in leptin mRNA expression in adipose tissue during the proestrous period compared with the diestrous period. These findings suggest that increased leptin mRNA expression and serum leptin levels, which are induced by estrogen during the proestrous stage, may play a role in regulating appetitive behavior.

  11. TAK1 mRNA expression in the tumor tissue of locally advanced head and neck cancer patients.

    PubMed

    Honorato, Beatriz; Alcalde, Juan; Martinez-Monge, Rafael; Zabalegui, Natalia; Garcia-Foncillas, Jesús

    2008-02-14

    Resistance to radio and chemotherapy is one of the major drawbacks in the progression of head and neck squamous cell cancer (HNSCC) patients, evidencing the importance of finding optimum molecular prognosis markers to develop personalized treatment schedules. TGF-beta effector TAK1 activity has been related to a greater aggressiveness in several types of cancer (Kondo et al. 1998; Edlund et al. 2003; Kaur et al. 2005) and, although there has been described no significant implication of TAK1 in HNSCC development, we have further examined the role of its mRNA expression as a marker of prognosis in HNSCC. Fifty-nine advanced HNSCC patients were recruited for the study. The tumor expression of TAK1 mRNA was analyzed with RT-PCR using Taqman technology and its relationship with the clinical outcome of the patients studied. TAK1 mRNA expression was lower in patients that relapsed than in those that did not, but the difference was only significant between the patients that showed response to treatment (p < 0.001). ROC curve analyses pointed a 0.5 expression ratio TAK1/B2M value as an optimum cut-off point for relapse and response. Our data suggest the TAK1 mRNA analysis by Taqman RT-PCR can predict the risk of relapse in HNSCC patients.

  12. TAK1 mRNA Expression in the Tumor Tissue of Locally Advanced Head and Neck Cancer Patients

    PubMed Central

    Honorato, Beatriz; Alcalde, Juan; Martinez-Monge, Rafael; Zabalegui, Natalia; Garcia-Foncillas, Jesús

    2008-01-01

    Resistance to radio and chemotherapy is one of the major drawbacks in the progression of head and neck squamous cell cancer (HNSCC) patients, evidencing the importance of finding optimum molecular prognosis markers to develop personalized treatment schedules. TGF-β effector TAK1 activity has been related to a greater aggressiveness in several types of cancer (Kondo et al. 1998; Edlund et al. 2003; Kaur et al. 2005) and, although there has been described no significant implication of TAK1 in HNSCC development, we have further examined the role of its mRNA expression as a marker of prognosis in HNSCC. Fifty-nine advanced HNSCC patients were recruited for the study. The tumor expression of TAK1 mRNA was analyzed with RT-PCR using Taqman technology and its relationship with the clinical outcome of the patients studied. TAK1 mRNA expression was lower in patients that relapsed than in those that did not, but the difference was only significant between the patients that showed response to treatment (p < 0.001). ROC curve analyses pointed a 0.5 expression ratio TAK1/B2M value as an optimum cut-off point for relapse and response. Our data suggest the TAK1 mRNA analysis by Taqman RT-PCR can predict the risk of relapse in HNSCC patients. PMID:19787075

  13. cAMP analogs and their metabolites enhance TREK-1 mRNA and K+ current expression in adrenocortical cells.

    PubMed

    Enyeart, Judith A; Liu, Haiyan; Enyeart, John J

    2010-03-01

    bTREK-1 K(+) channels set the resting membrane potential of bovine adrenal zona fasciculata (AZF) cells and function pivotally in the physiology of cortisol secretion. Adrenocorticotropic hormone controls the function and expression of bTREK-1 channels through signaling mechanisms that may involve cAMP and downstream effectors including protein kinase A (PKA) and exchange protein 2 directly activated by cAMP (Epac2). Using patch-clamp and Northern blot analysis, we explored the regulation of bTREK-1 mRNA and K(+) current expression by cAMP analogs and several of their putative metabolites in bovine AZF cells. At concentrations sufficient to activate both PKA and Epac2, 8-bromoadenosine-cAMP enhanced the expression of both bTREK-1 mRNA and K(+) current. N(6)-Benzoyladenosine-cAMP, which activates PKA but not Epac, also enhanced the expression of bTREK-1 mRNA and K(+) current measured at times from 24 to 96 h. An Epac-selective cAMP analog, 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (8CPT-2'-OMe-cAMP), potently stimulated bTREK-1 mRNA and K(+) current expression, whereas the nonhydrolyzable Epac activator 8-(4-chlorophenylthio)-2'-O-methyl-cAMP, Sp-isomer was ineffective. Metabolites of 8CPT-2'-OMe-cAMP, including 8-(4-chlorophenylthio)-2'-O-methyladenosine-5'-O-monophosphate and 8CPT-2'-OMe-adenosine, promoted the expression of bTREK-1 transcripts and ion current with a temporal pattern, potency, and effectiveness resembling that of the parent compound. Likewise, at low concentrations, 8-(4-chlorophenylthio)-cAMP (8CPT-cAMP; 30 microM) but not its nonhydrolyzable analog 8-(4-chlorophenylthio)-cAMP, Sp-isomer, enhanced the expression of bTREK-1 mRNA and current. 8CPT-cAMP metabolites, including 8CPT-adenosine and 8CPT-adenine, also increased bTREK-1 expression. These results indicate that cAMP increases the expression of bTREK-1 mRNA and K(+) current through a cAMP-dependent but Epac2-independent mechanism. They further demonstrate that one or more metabolites of 8

  14. Genome-Wide Screening of mRNA Expression in Leprosy Patients

    PubMed Central

    Belone, Andrea de Faria F.; Rosa, Patrícia S.; Trombone, Ana P. F.; Fachin, Luciana R. V.; Guidella, Cássio C.; Ura, Somei; Barreto, Jaison A.; Pinilla, Mabel G.; de Carvalho, Alex F.; Carraro, Dirce M.; Soares, Fernando A.; Soares, Cleverson T.

    2015-01-01

    Leprosy, an infectious disease caused by Mycobacterium leprae, affects millions of people worldwide. However, little is known regarding its molecular pathophysiological mechanisms. In this study, a comprehensive assessment of human mRNA was performed on leprosy skin lesions by using DNA chip microarrays, which included the entire spectrum of the disease along with its reactional states. Sixty-six samples from leprotic lesions (10TT, 10BT, 10BB, 10BL, 4LL, 14R1, and 10R2) and nine skin biopsies from healthy individuals were used as controls (CC) (ages ranged from 06 to 83 years, 48 were male and 29 female). The evaluation identified 1580 differentially expressed mRNAs [Fold Change (FC) ≥ 2.0, p ≤ 0.05] in diseased lesions vs. healthy controls. Some of these genes were observed in all forms of the disease (CD2, CD27, chit1, FA2H, FAM26F, GZMB, MMP9, SLAMF7, UBD) and others were exclusive to reactional forms (Type “1” reaction: GPNMB, IL1B, MICAL2, FOXQ1; Type “2” reaction: AKR1B10, FAM180B, FOXQ1, NNMT, NR1D1, PTX3, TNFRSF25). In literature, these mRNAs have been associated with numerous pathophysiological processes and signaling pathways and are present in a large number of diseases. The role of these mRNAs maybe studied in the context of developing new diagnostic markers and therapeutic targets for leprosy. PMID:26635870

  15. Lifelong ethanol consumption and brain regional GABAA receptor subunit mRNA expression in alcohol-preferring rats.

    PubMed

    Sarviharju, Maija; Hyytiä, Petri; Hervonen, Antti; Jaatinen, Pia; Kiianmaa, Kalervo; Korpi, Esa R

    2006-11-01

    Brain regional gamma-aminobutyric acid type A (GABAA) receptor subunit mRNA expression was studied in ethanol-preferring AA (Alko, Alcohol) rats after moderate ethanol drinking for up to 2 years of age. In situ hybridization with oligonucleotide probes specific for 13 different subunits was used with coronal cryostat sections of the brains. Selective alterations were observed by ethanol exposure and/or aging in signals for several subunits. Most interestingly, the putative highly ethanol-sensitive alpha4 and beta3 subunit mRNAs were significantly decreased in several brain regions. The age-related alterations in alpha4 subunit expression were parallel to those caused by lifelong ethanol drinking, whereas aging had no significant effect on beta3 subunit expression. The results suggest that prolonged ethanol consumption leading to blood concentrations of about 10 mM may downregulate the mRNA expression of selected GABAA receptor subunits and that aging might have partly similar effects.

  16. Increased litter size and suckling intensity inhibit KiSS-1 mRNA expression in rat arcuate nucleus

    PubMed Central

    Noroozi, Atefeh; Shirazi, Mohammad Reza Jafarzadeh; Zamiri, Mohammad Javad; Tamadon, Amin; Akhlaghi, Amir; Tanideh, Nader; Niazi, Ali; Moghadam, Ali

    2014-01-01

    Objective(s): The effect of litter size and suckling intensity on the expression of KiSS-1 mRNA in the arcuate nucleus (ARC) of rats were evaluated. Materials and Methods: Thirty two pregnant and four non-lactating ovariectomized (as control group) rats were used in this experiment. Lactating rats were allotted to eight equal groups. In three groups, litter size was adjusted to 5, 10, or 15 pups upon parturition and allowed to suckle their pups continuously by 8 days postpartum. In the other three groups, litter size was adjusted to five upon birth; the pups were separated from the dams for 6 hr on day 8 postpartum, after which the pups were allowed to suckle their dams for 2.5, 5, or 7.5 min prior to killing the dams. Two groups of lactating rats with either 10 or 15 pups were separated from their pups for 6 hr on day 8 postpartum, after which the pups were allowed to suckle their dams for 5 min before the dams were killed on day 8 postpartum. The ARC was removed and the expression of KiSS-1 mRNA was evaluated, using real-time PCR. Results: The expression of KiSS-1 mRNA in the ARC was decreased as the litter size and intensity of suckling stimulus were increased. The effect of suckling intensity on the expression of KiSS-1 mRNA was more pronounced than that of litter size. Conclusion: Increased litter size and suckling intensity decreased KiSS-1 mRNA expression in the ARC which may contribute to lactation anestrus in rat. PMID:25422754

  17. Altered EphA5 mRNA expression in rat brain with a single methamphetamine treatment.

    PubMed

    Numachi, Yohtaro; Yoshida, Sumiko; Yamashita, Motoyasu; Fujiyama, Ko; Toda, Shigenobu; Matsuoka, Hiroo; Kajii, Yasushi; Nishikawa, Toru

    2007-09-07

    Methamphetamine is a potent and indirect dopaminergic agonist which can cause chronic brain dysfunctions including drug abuse, drug dependence and drug-induced psychosis. Methamphetamine is known to trigger molecular mechanisms involved in associative learning and memory, and thereby alter patterns of synaptic connectivity. The persistent risk of relapse in methamphetamine abuse, dependence and psychosis may be caused by such alterations in synaptic connectivity. EphA5 receptors constitute large families of tyrosine kinase receptor and are expressed almost exclusively in the nervous system, especially in the limbic structures. Recent studies suggest EphA5 to be important in the topographic projection, development, and plasticity of limbic structures, and to be involved in dopaminergic neurotransmission. We used in situ hybridization to examine whether methamphetamine alters EphA5 mRNA expression in the brains of adult male Wister rats. EphA5 mRNA was widely distributed in the medial frontal cortex, cingulate cortex, piriform cortex, hippocampus, habenular nucleus and amygdala. Compared to baseline expression at 0h, EphA5 mRNA was significantly decreased (by 20%) in the medial frontal cortex at 24h, significantly increased (by 30%) in the amygdala at 9 and 24h, significantly but transiently decreased (by 30%) in the habenular nucleus at 1h after a single injection of methamphetamine. Methamphetamine did not change EphA5 mRNA expression in the cingulate cortex, piriform cortex or hippocampus. Our results that methamphetamine altered EphA5 mRNA expression in rat brain suggest methamphetamine could affect patterns of synaptic connectivity, which might be responsible for methamphetamine-induced chronic brain dysfunctions.

  18. Breast Cancer Resistance Protein Abundance, but Not mRNA Expression, Correlates With Estrone-3-Sulfate Transport in Caco-2.

    PubMed

    Harwood, Matthew D; Neuhoff, Sibylle; Rostami-Hodjegan, Amin; Warhurst, Geoffrey

    2016-04-01

    Transporter mRNA and protein expression data are used to extrapolate in vitro transporter kinetics to in vivo drug disposition predictions. Breast cancer resistance protein (BCRP) possesses broad substrate specificity; therefore, understanding BCRP expression-activity relationships are necessary for the translation to in vivo. Bidirectional transport of estrone-3-sulfate (E-3-S), a BCRP probe, was evaluated with respect to relative BCRP mRNA expression and absolute protein abundance in 10- and 29-day cultured Caco-2 cells. BCRP mRNA expression was quantified by real-time PCR against a housekeeper gene, Cyclophilin A. The BCRP protein abundance in total membrane fractions was quantified by targeted proteomics, and [(3)H]-E-3-S bidirectional transport was determined in the presence or absence of Ko143, a potent BCRP inhibitor. BCRP mRNA expression was 1.5-fold higher in 29- versus 10-day cultured cells (n = 3), whereas a 2.4-fold lower (p < 0.001) BCRP protein abundance was observed in 29- versus 10-day cultured cells (1.28 ± 0.33 and 3.06 ± 0.22 fmol/μg protein, n = 6, respectively). This correlated to a 2.45-fold lower (p < 0.01) efflux ratio for E-3-S in 29- versus 10-day cultured cells (8.97 ± 2.51 and 3.32 ± 0.66, n = 6, respectively). Caco-2 cell BCRP protein abundance, but not mRNA levels, correlates with BCRP activity, suggesting that extrapolation strategies incorporating BCRP protein abundance-activity relationships may be more successful.

  19. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading

    NASA Technical Reports Server (NTRS)

    Carlson, C. J.; Booth, F. W.; Gordon, S. E.

    1999-01-01

    Transgenic mice lacking a functional myostatin (MSTN) gene demonstrate greater skeletal muscle mass resulting from muscle fiber hypertrophy and hyperplasia (McPherron, A. C., A. M. Lawler, and S. -J. Lee. Nature 387: 83-90, 1997). Therefore, we hypothesized that, in normal mice, MSTN may act as a negative regulator of muscle mass. Specifically, we hypothesized that the predominately slow (type I) soleus muscle, which demonstrates greater atrophy than the fast (type II) gastrocnemius-plantaris complex (Gast/PLT), would show more elevation in MSTN mRNA abundance during hindlimb unloading (HU). Surprisingly, MSTN mRNA was not detectable in weight-bearing or HU soleus muscle, which atrophied 42% by the 7th day of HU in female ICR mice. In contrast, MSTN mRNA was present in weight-bearing Gast/PLT muscle and was significantly elevated (67%) at 1 day but not at 3 or 7 days of HU. However, the Gast/PLT muscle had only atrophied 17% by the 7th day of HU. Because the soleus is composed only of type I and IIa fibers, whereas the Gast/PLT expresses type IId/x and IIb in addition to type I and IIa, it was necessary to perform a more careful analysis of the relationship between MSTN mRNA levels and myosin heavy-chain (MHC) isoform expression (as a marker of fiber type). A significant correlation (r = 0.725, P < 0. 0005) was noted between the percentage of MHC isoform IIb expression and MSTN mRNA abundance in several muscles of the mouse hindlimb. These results indicate that MSTN expression is not strongly associated with muscle atrophy induced by HU; however, it is strongly associated with MHC isoform IIb expression in normal muscle.

  20. Detection of full-length and truncated neurokinin-1 receptor mRNA expression in human brain regions.

    PubMed

    Lai, Jian-Ping; Cnaan, Avital; Zhao, Huaqing; Douglas, Steven D

    2008-02-15

    We have applied a newly developed SYBR green-based real-time RT-PCR assay for quantification of full-length and truncated neurokinin-1 receptor (NK1R) mRNA expression in nine regions of human brain tissues obtained from 23 subjects who died with no evidence of neurological or neurodegenerative disease. The following brain regions were examined: cingulate cortex, cerebellum, nucleus accumbens, caudate nucleus, putamen, pons, hippocampus, locus coeruleus, and basal ganglia. The SYBR green-based real-time PCR was more sensitive than TaqMan probe-based real-time PCR in amplifying both full-length and truncated NK1R mRNA. The real-time RT-PCR assay had excellent specificity and sensitivity, with a dynamic range of detection between 100 and 1,000,000 copies of the NK1R cDNA per reaction. The truncated NK1R mRNA levels were more abundant than those of the full-length NK1R in most of the regions examined and there was no significant difference in the truncated NK1R mRNA levels among the nine regions studied. There was, however, a significant difference in the expression of full-length NK1R mRNA levels among the nine regions (P=0.0024), and the putamen region expressed the highest full-length NK1R mRNA. Further studies are needed in order to examine the differences between full-length and truncated NK1R in signal transduction and functional consequences in order to delineate the significance of the co-presence of the two forms of NK1R in the human brain.

  1. Detection of Full-Length and Truncated Neurokinin-1 Receptor mRNA Expression in Human Brain Regions

    PubMed Central

    Lai, Jian-Ping; Cnaan, Avital; Zhao, Huaqing; Douglas, Steven D.

    2008-01-01

    We have applied a newly developed SYBR green based real-time RT-PCR assay for quantification of full-length and truncated neurokinin-1 receptor (NK1R) mRNA expression in 9 regions of human brain tissues obtained from 23 subjects who died with no evidence of neurological or neurodegenerative disease. The following brain regions were examined: cingulate cortex, cerebellum, nucleus accumbens, caudate nucleus, putamen, pons, hippocampus, locus coeruleus, and basal ganglia. The SYBR green based-real-time PCR was more sensitive than TaqMan probe based real-time PCR in amplifying both full-length and truncated NK1R mRNA. The real-time RT-PCR assay had excellent specificity and sensitivity, with a dynamic range of detection between 100 and 1000,000 copies of the NK1R cDNA per reaction. The truncated NK1R mRNA levels were more abundant than those of the full-length NK1R in most of the regions examined and there was no significant difference in the truncated NK1R mRNA levels among the nine regions studied. There was, however, a significant difference in the expression of full-length NK1R mRNA levels among the nine regions (P=0.0024), and the putamen region expressed the highest full-length NK1R mRNA. Further studies are needed in order to examine the differences between full-length and truncated NK1R in signal transduction and functional consequences in order to delineate the significance of the copresence of the two forms of NK1R in the human brain. PMID:18035424

  2. A case of cervical cancer expressed three mRNA variant of Hyaluronan-mediated motility receptor

    PubMed Central

    Villegas-Ruíz, Vanessa; Salcedo, Mauricio; Zentella-Dehesa, Alejandro; de Oca, Edén V Montes; Román-Basaure, Edgar; Mantilla-Morales, Alejandra; Dávila-Borja, Víctor M; Juárez-Méndez, Sergio

    2014-01-01

    Cervical cancer is the second malignancy in Mexico, little is known about the prognostic factors associated with this disease. Several cellular components are important in their transformation and progression. Alternative mRNA splice is an important mechanism for generating protein diversity, nevertheless, in cancer unknown mRNA diversity is expressed. Hyaluronan-mediated motility receptor (HMMR, RHAMM, CD168) is a family member of proteins, hyaluronan acid dependent, and has been associated with different malignant processes such as: angiogenesis, cell invasiveness, proliferation, metastasis and poor outcome in some tumors. In the present study we identified expression of HMMR in cervical cancer by means of RT-PCR and sequencing. Our results indicate co-expression of two HMMR variants in all samples, and one case expressed three alternative HMMR splice transcripts. These results showed the heterogeneity of mRNA transcripts of HMMR that could express in cancer and the expression of HMMR could be marker of malignancy in CC. PMID:24966934

  3. Molecular cloning and mRNA tissue expression of thyroid hormone receptors in yellow catfish Pelteobagrus fulvidraco and Javelin goby Synechogobius hasta.

    PubMed

    Chen, Qi-Liang; Luo, Zhi; Tan, Xiao-Ying; Pan, Ya-Xiong; Zheng, Jia-Lang; Zou, Ming

    2014-02-25

    Thyroid hormones (THs) play a pivotal role in many physiological functions in vertebrates, including fish. Their effects are mediated by thyroid hormone receptors (TRs), which are members of the nuclear hormone receptor superfamily. In this study, full-length cDNA sequences of TRs from yellow catfish Pelteobagrus fulvidraco and Javelin goby Synechogobius hasta were cloned and their mRNA tissue expression profiles were determined. In P. fulvidraco, the validated cDNAs encoding for TRα and TRβ were 1789 and 1848 bp in length, encoding peptides of 401 and 378 amino acid residues, respectively. In addition, a TRβ spliced variant (named P. fulvidraco-TRβv), containing a 60-bp insertion, was detected. In S. hasta, cDNAs encoding for TRαA, TRαB and TRβ were 1827, 2295 and 2258 bp in length, encoding peptides of 401, 409 and 393 amino acid residues, respectively. The phylogenetic analysis revealed that TRα and TRβ cDNAs grouped into two separate clusters with other vertebrate counterparts and two TRα sequences grouped separately, suggesting that the two TRαs derived from paralogous genes that might arise during a teleost-specific genome duplication event. All TR mRNAs were detected in various tissues sampled. The mRNA levels of both TRα and TRβ from P. fulvidraco were the highest in brain, followed by liver, and lowest in heart, intestine, muscle, gill and spleen. However, in S. hasta, TRαA, TRαB and TRβ showed the highest mRNA levels in brain and lowest in muscle. Identification and mRNA tissue expression of TR genes from P. fulvidraco and S. hasta provide an initial step towards understanding their biological roles in the two fish species.

  4. Dose-dependent effects of morphine exposure on mRNA and microRNA (miR) expression in hippocampus of stressed neonatal mice.

    PubMed

    McAdams, Ryan M; McPherson, Ronald J; Beyer, Richard P; Bammler, Theo K; Farin, Frederico M; Juul, Sandra E

    2015-01-01

    Morphine is used to sedate critically ill infants to treat painful or stressful conditions associated with intensive care. Whether neonatal morphine exposure affects microRNA (miR) expression and thereby alters mRNA regulation is unknown. We tested the hypothesis that repeated morphine treatment in stress-exposed neonatal mice alters hippocampal mRNA and miR expression. C57BL/6 male mice were treated from postnatal day (P) 5 to P9 with morphine sulfate at 2 or 5 mg/kg ip twice daily and then exposed to stress consisting of hypoxia (100% N2 1 min and 100% O2 5 min) followed by 2h maternal separation. Control mice were untreated and dam-reared. mRNA and miR expression profiling was performed on hippocampal tissues at P9. Overall, 2 and 5 mg/kg morphine treatment altered expression of a total of 150 transcripts (>1.5 fold change, P<0.05) from which 100 unique mRNAs were recognized (21 genes were up- and 79 genes were down-regulated), and 5 mg/kg morphine affected 63 mRNAs exclusively. The most upregulated mRNAs were fidgetin, arginine vasopressin, and resistin-like alpha, and the most down-regulated were defensin beta 11, aquaporin 1, calmodulin-like 4, chloride intracellular channel 6, and claudin 2. Gene Set Enrichment Analysis revealed that morphine treatment affected pathways related to cell cycle, membrane function, signaling, metabolism, cell death, transcriptional regulation, and immune response. Morphine decreased expression of miR-204-5p, miR-455-3p, miR-448-5p, and miR-574-3p. Nine morphine-responsive mRNAs that are involved in neurodevelopment, neurotransmission, and inflammation are predicted targets of the aforementioned differentially expressed miRs. These data establish that morphine produces dose-dependent changes in both hippocampal mRNA and miR expression in stressed neonatal mice. If permanent, morphine-mediated neuroepigenetic effects may affect long-term hippocampal function, and this provides a mechanism for the neonatal morphine

  5. Knockdown of BC200 RNA expression reduces cell migration and invasion by destabilizing mRNA for calcium-binding protein S100A11.

    PubMed

    Shin, Heegwon; Lee, Jungmin; Kim, Youngmi; Jang, Seonghui; Lee, Yunhee; Kim, Semi; Lee, Younghoon

    2017-03-01

    Although BC200 RNA is best known as a neuron-specific non-coding RNA, it is overexpressed in various cancer cells. BC200 RNA was recently shown to contribute to metastasis in several cancer cell lines, but the underlying mechanism was not understood in detail. To examine this mechanism, we knocked down BC200 RNA in cancer cells, which overexpress the RNA, and examined cell motility, profiling of ribosome footprints, and the correlation between cell motility changes and genes exhibiting altered ribosome profiles. We found that BC200 RNA knockdown reduced cell migration and invasion, suggesting that BC200 RNA promotes cell motility. Our ribosome profiling analysis identified 29 genes whose ribosomal occupations were altered more than 2-fold by BC200 RNA knockdown. Many (> 30%) of them were directly or indirectly related to cancer progression. Among them, we focused on S100A11 (which showed a reduced ribosome footprint) because its expression was previously shown to increase cellular motility. S100A11 was decreased at both the mRNA and protein levels following knockdown of BC200 RNA. An actinomycin-chase experiment showed that BC200 RNA knockdown significantly decreased the stability of the S100A11 mRNA without changing its transcription rate, suggesting that the down-regulation of S100A11 was mainly caused by destabilization of its mRNA. Finally, we showed that the BC200 RNA-knockdown-induced decrease in cell motility was mainly mediated by S100A11. Together, our results show that BC200 RNA promotes cell motility by stabilizing S100A11 transcripts.

  6. Relationship Between the DPD and TS mRNA Expression and the Response to S-1-Based Chemotherapy and Prognosis in Patients with Advanced Gastric Cancer.

    PubMed

    Shen, Xiao-Ming; Zhou, Chong; Lian, Lian; Li, Li-Qun; Li, Wei; Tao, Min

    2015-04-01

    The aim was to determine changes in dihydropyrimidine dehydrogenase (DPD) and thymidylate synthase (TS) mRNAs in the blood of advanced gastric cancer (AGC) patients to see whether these enzymes affected the patients' response to S-1-based chemotherapy and prognosis. For this purpose, pretreatment DPD/TS mRNA expressions were determined in 40 AGC patients using RT-PCR. The patients were then administered with S-1-based regimen (S-1 + cisplatin) and toxicities were recorded. The relationship between the DPD/TS mRNA expressions and the chemotherapy response, drug resistance, and prognosis was analyzed. The data show that DPD mRNA expression correlated significantly with Lauren type while TS mRNA expression correlated with distant metastasis. Patients with higher DPD and/or TS mRNA expression(s) showed poor response, while those with low DPD mRNA expression showed better response to the chemotherapy. Pooled analysis showed that the patients with low DPD/TS mRNA expressions had better therapeutic response. The incidence of bone marrow suppression, diarrhea, and oral mucositis was high in patients with low DPD mRNA expression. Median overall survival (OS) in 40 patients was 13.5 months. It was 17 months for low and 10 months for high DPD (P = 0.044) and TS mRNA expression (P = 0.047). Pooled analysis showed that the patients with both low DPD/TS mRNA expressions had longer OS (P = 0.001). In conclusion, the detection of DPD and/or TS mRNA expression can be used to predict the response to S-1-based chemotherapy, drug resistance, and prognosis in AGC patients as well as to help guide the individualized treatment of gastric cancer.

  7. Acute Heat Stress and Reduced Nutrient Intake Alter Intestinal Proteomic Profile and Gene Expression in Pigs

    PubMed Central

    Pearce, Sarah C.; Lonergan, Steven M.; Huff-Lonergan, Elisabeth; Baumgard, Lance H.; Gabler, Nicholas K.

    2015-01-01

    Heat stress and reduced feed intake negatively affect intestinal integrity and barrier function. Our objective was to compare ileum protein profiles of pigs subjected to 12 hours of HS, thermal neutral ad libitum feed intake, or pair-fed to heat stress feed intake under thermal neutral conditions (pair-fed thermal neutral). 2D-Differential In Gel Electrophoresis and gene expression were performed. Relative abundance of 281 and 138 spots differed due to heat stress, compared to thermal neutral and pair-fed thermal neutral pigs, respectively. However, only 20 proteins were different due to feed intake (thermal neutral versus pair-fed thermal neutral). Heat stress increased mRNA expression of heat shock proteins and protein abundance of heat shock proteins 27, 70, 90-α and β were also increased. Heat stress reduced ileum abundance of several metabolic enzymes, many of which are involved in the glycolytic or TCA pathways, indicating a change in metabolic priorities. Stress response enzymes peroxiredoxin-1 and peptidyl-prolyl cis-trans isomerase A were decreased in pair-fed thermal neutral and thermal neutral pigs compared to heat stress. Heat stress increased mRNA abundance markers of ileum hypoxia. Altogether, these data show that heat stress directly alters intestinal protein and mRNA profiles largely independent of reduced feed intake. These changes may be related to the reduced intestinal integrity associated with heat stress. PMID:26575181

  8. Gene expression profiling in glomeruli of diabetic nephropathy rat.

    PubMed

    Zhang, Qian; Xiao, Xinhua; Li, Ming; Li, Wenhui; Yu, Miao; Zhang, Huabing; Sun, Xiaofang; Mao, Lili; Xiang, Hongding

    2012-08-01

    Diabetic nephropathy (DN) remains the most common cause of end-stage renal disease (ESRD) as the burden of diabetes increases worldwide. To find improved intervention strategies for this disease, it is necessary to investigate the molecular mechanisms involved. To obtain more insight into processes that lead to DN, mRNA expression profiles of diabetic and normal glomeruli from rat kidneys were compared. Rats were divided into a control group and a DN group randomly. The DN group was injected with streptozotocin. Fasting blood glucose (FBG) and weight were measured monthly. On the 12th week, blood samples were collected and analyzed for plasma creatinine and blood urea nitrogen (BUN). Glomeruli were isolated and Illumina Rat Ref-12 V1.0 Expression Beadchip gene array was performed. Quantitative realtime polymerase chain reaction (Q-RT-PCR) was used to confirm the results of gene array for a selected number of genes. We found FBG, 24-h urinary albumin, serum creatinine and BUN were significantly increased, while urinary creatinine and body weight were significantly decreased in the DN group. Glomeruli from the DN group had 624 genes with differential expression. DAVID (Database for Annotation, Visualization and integrated Discovery) analysis showed that the three most enriched terms were 'cytosol' (GO:0005829), 'translational elongation' (GO:0006414) and 'mitochondion' (GO:0005739). Those genes could be mapped to eight pathways. The most common type of enriched pathway was related to 'extracellular matrix (ECM)-receptor interaction'. Other pathways included those for 'ribosome', 'focal adhesion', 'oxidative phosphorylation', 'transforming growth factor (TGF)-beta signaling pathway', 'Parkinson's disease', 'Alzheimer's disease' and 'renin-angiotensin system'. Q-RT-PCR verified that Atp5b (F1-ATPase beta subunit), Col1a1 (collagen type 1 alpha 1), Cox6c (cytochrome c oxidase subunit VIc), Ndufs3 (NADH dehydrogenase [ubiquinone] Fe-S protein 3) and Tgfb1 (transforming

  9. Myoglobin expression: early induction and subsequent modulation of myoglobin and myoglobin mRNA during myogenesis.

    PubMed Central

    Weller, P A; Price, M; Isenberg, H; Edwards, Y H; Jeffreys, A J

    1986-01-01

    We showed that myoglobin gene transcription and the appearance of myoglobin occur very early in myogenesis, in both humans and mice. In contrast to the contractile protein genes, there is a subsequent increase of 50- to 100-fold in myoglobin mRNA and protein levels during later muscle development. Myoglobin and myoglobin mRNA are present at elevated levels in fetal heart and are also detectable at low levels in adult smooth muscle. The absolute level of myoglobin mRNA in highly myoglobinized seal muscle is very high [2.8% of the total population of poly(A)+ RNAs]. Levels of myoglobin in seal skeletal muscle and in various human muscle types appear to be determined by the size of the myoglobin mRNA pool. In contrast, low levels of myoglobin in mouse skeletal muscle are not apparently correlated with low levels of myoglobin mRNA. As expected from the early appearance of myoglobin mRNA in embryonic skeletal muscle, both rat and mouse embryonic myoblasts accumulate myoglobin mRNA on fusion and differentiation in vitro. Images PMID:3796609

  10. Expression and stability of c-sis mRNA in human glioblastoma cells

    SciTech Connect

    Press, R.D.; Samols, D.; Goldthwait, D.A.

    1988-07-26

    The production of platelet-derived growth factor like (PDGF-like) material by glioblastomas may be involved in the conversion of normal cells to tumor cells. In an investigation of this problem, the authors have examined some of the properties of the platelet-derived growth factor B-chain mRNA (c-sis mRNA) by a sensitive and quantitative RNA-RNA solution hybridization method. In 5 out of 8 human glioblastoma cell lines, c-sis mRNA was present, and in the line with the highest level, there were approximately 4-10 molecules per cell. The half-lives of the c-sis mRNA in two glioblastoma cell lines were 2.6 and 3.4 h, while in human umbilical vein endothelial (HUVE) and bladder carcinoma (T24) cells they were 1.6 and 2.5 h, respectively. Inhibiting protein synthesis produced no significant alteration of the c-sis mRNA half-lives in the glioblastoma or HUVE cells. The A-U-rich sequence at the 3' end of the c-sis mRNA therefore does not appear to affect the mRNA stability in the presence of cycloheximide as it does in other transcripts. The similarity of the c-sis mRNA half-lives in normal and tumor cells suggests that regulation of stability of c-sis mRNA is not a major factor in tumorigenesis in the glioblastoma cell lines examined.

  11. Characterization of Functional Reprogramming during Osteoclast Development Using Quantitative Proteomics and mRNA Profiling*

    PubMed Central

    An, Eunkyung; Narayanan, Manikandan; Manes, Nathan P.; Nita-Lazar, Aleksandra

    2014-01-01

    In addition to forming macrophages and dendritic cells, monocytes in adult peripheral blood retain the ability to develop into osteoclasts, mature bone-resorbing cells. The extensive morphological and functional transformations that occur during osteoclast differentiation require substantial reprogramming of gene and protein expression. Here we employ -omic-scale technologies to examine in detail the molecular changes at discrete developmental stages in this process (precursor cells, intermediate osteoclasts, and multinuclear osteoclasts), quantitatively comparing their transcriptomes and proteomes. The data have been deposited to the ProteomeXchange with identifier PXD000471. Our analysis identified mitochondrial changes, along with several alterations in signaling pathways, as central to the development of mature osteoclasts, while also confirming changes in pathways previously implicated in osteoclast biology. In particular, changes in the expression of proteins involved in metabolism and redirection of energy flow from basic cellular function toward bone resorption appeared to play a key role in the switch from monocytic immune system function to specialized bone-turnover function. These findings provide new insight into the differentiation program involved in the generation of functional osteoclasts. PMID:25044017

  12. Expression of fragile X mental retardation protein and Fmr1 mRNA during folliculogenesis in the rat.

    PubMed

    Ferder, Ianina; Parborell, Fernanda; Sundblad, Victoria; Chiauzzi, Violeta; Gómez, Karina; Charreau, Eduardo H; Tesone, Marta; Dain, Liliana

    2013-04-01

    Fragile X mental retardation protein (FMRP) belongs to a small family of RNA-binding proteins. Its absence or inactivity is responsible for fragile X syndrome, the most common cause of inherited mental retardation. Despite its ubiquitous expression, FMRP function and expression remain almost understudied in non-neuronal tissues, though previous studies on germline development during oogenesis may suggest a special function of this protein also in ovarian tissue. In addition, the well-documented association of FMR1 premutation state with fragile X-related premature ovarian insufficiency adds interest to the role of FMRP in ovarian physiology. The aim of the present work was to investigate the expression of Fmr1 mRNA and its protein, FMRP, at different stages of rat follicular development. By immunohistochemical studies we demonstrated FMRP expression in granulosa, theca and germ cells in all stages of follicular development. In addition, changes in Fmr1 expression, both at the protein and mRNA levels, were observed. FMRP levels increased upon follicular development while preantral and early antral follicles presented similar levels of Fmr1 transcripts with decreased expression in preovulatory follicles. These observations suggest that Fmr1 expression in the ovary is regulated at different and perhaps independent levels. In addition, our results show expression of at least four different isoforms of FMRP during all stages of follicular growth with expression patterns that differ from those observed in brain and testis. Our study shows a regulated expression of Fmr1, both at mRNA and protein levels, during rat follicular development.

  13. Amphotericin B severely affects expression and activity of the endothelial constitutive nitric oxide synthase involving altered mRNA stability

    PubMed Central

    Suschek, Christoph Viktor; Bonmann, Eckhard; Kleinert, Hartmut; Wenzel, Michael; Mahotka, Csaba; Kolb, Hubert; Förstermann, Ulrich; Gerharz, Claus-Dieter; Kolb-Bachofen, Victoria

    2000-01-01

    The therapeutic use of the antifungal drug amphotericin B (AmB) is limited due to severe side effects like glomerular vasoconstriction and risk of renal failure during AmB administration. As nitric oxide (NO) has substantial functions in renal autoregulation, we have determined the effects of AmB on endothelial constitutive NO synthase (ecNOS) expression and activity in human and rat endothelial cell cultures.AmB used at concentrations of 0.6 to 1.25 μg ml−1 led to increases in ecNOS mRNA and protein expression as well as NO production. This was the result of an increased ecNOS mRNA half-life. In contrast, incubation of cells with higher albeit subtoxic concentrations of AmB (2.5–5.0 μg ml−1) resulted in a decrease or respectively in completely abolished ecNOS mRNA and protein expression with a strongly reduced or inhibited ecNOS activity, due to a decrease of ecNOS mRNA half-life. None of the AmB concentrations affected promoter activity as found with a reporter gene construct stably transfected into ECV304 cells.Thus, our experiments show a concentration-dependent biphasic effect of AmB on expression and activity of ecNOS, an effect best explained by AmB influencing ecNOS mRNA stability. In view of the known renal accumulation of this drug the results reported here could help to elucidate its renal toxicity. PMID:11015297

  14. Effect of a transpositional muscle flap on VEGF mRNA expression in a canine fracture model.

    PubMed

    Khodaparast, Omeed; Coberly, Dana M; Mathey, Jonathon; Rohrich, Rod J; Levin, L Scott; Brown, Spencer A

    2003-07-01

    The effect of sepsis on neovascularization in fractures that follows open fractures is important to the understanding of bone and soft-tissue healing. An animal model was designed that mimics the open fracture and the clinical repair of the human, high-energy open fracture. Vascular endothelial growth factor (VEGF) mRNA levels in canine bone samples were determined in samples from days 0 and 7. Canine right tibiae were fractured with a penetrating, captive-bolt device and then repaired in a standard clinical fashion using an interlocking intramedullary nail. Animals were subject to one of the following experimental protocols: tibial fracture (group I, n = 3); tibial fracture and Staphylococcus aureus inoculation at the fracture site (group II, n = 3); and tibial fracture and S. aureus inoculation with a rotational gastrocnemius muscle flap (group III, n = 3). Bone samples were harvested on days 0 and 7 and prepared for reverse transcriptase polymerase chain reaction assay. Primers for VEGF were commercially prepared and assay products were sequenced. The assay products were associated with Genebank VEGF mRNA sequences. VEGF mRNA levels increased significantly in the fracture-alone group from day 0 to day 7 (n = 3, p < 0.05). In the fracture and S. aureus group (group I), VEGF mRNA expression decreased 79 percent (p < 0.05). In animals with fractures inoculated with S. aureus and a transpositional muscle flap (group III), VEGF mRNA expression was increased 38 percent from day 0 to day 7 (p < 0.05) and was similar to the increase observed in the fracture-alone group. These results demonstrate that S. aureus decreased the normal increase of VEGF mRNA expression during bone wound healing. Use of the transpositional muscle flap in the presence of S. aureus increased VEGF mRNA expression over time to the expression pattern observed in the fracture-alone group. This experimental model demonstrates that specific biological signals and cellular pathways are influenced by

  15. Expression and localization of the cystic fibrosis transmembrane conductance regulator mRNA and its protein in rat brain.

    PubMed

    Mulberg, A E; Resta, L P; Wiedner, E B; Altschuler, S M; Jefferson, D M; Broussard, D L

    1995-07-01

    In previous studies we have characterized the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) protein in clathrin-coated vesicles derived from bovine brain and in neurons of rat brain. In this study we have further characterized the expression of the CFTR protein mRNA and protein in rat brain with reverse transcriptase polymerase chain reaction amplification (RT-PCR), in situ hybridization, and immunocytochemistry. The expression of CFTR mRNA and protein in discrete areas of brain, including the hypothalamus, thalamus, and amygdaloid nuclei, which are involved in regulation of appetite and resting energy expenditure, is identical. The presence of CFTR in neurons localized to these regions of brain controlling homeostasis and energy expenditure may elucidate the pathogenesis of other nonpulmonary and gastrointestinal manifestations which commonly are observed in children with cystic fibrosis. Dysregulation of normal neuropeptide vesicle trafficking by mutant CFTR in brain may serve as a pathogenic mechanism for disruption of homeostasis.

  16. Expression and localization of the cystic fibrosis transmembrane conductance regulator mRNA and its protein in rat brain.

    PubMed Central

    Mulberg, A E; Resta, L P; Wiedner, E B; Altschuler, S M; Jefferson, D M; Broussard, D L

    1995-01-01

    In previous studies we have characterized the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) protein in clathrin-coated vesicles derived from bovine brain and in neurons of rat brain. In this study we have further characterized the expression of the CFTR protein mRNA and protein in rat brain with reverse transcriptase polymerase chain reaction amplification (RT-PCR), in situ hybridization, and immunocytochemistry. The expression of CFTR mRNA and protein in discrete areas of brain, including the hypothalamus, thalamus, and amygdaloid nuclei, which are involved in regulation of appetite and resting energy expenditure, is identical. The presence of CFTR in neurons localized to these regions of brain controlling homeostasis and energy expenditure may elucidate the pathogenesis of other nonpulmonary and gastrointestinal manifestations which commonly are observed in children with cystic fibrosis. Dysregulation of normal neuropeptide vesicle trafficking by mutant CFTR in brain may serve as a pathogenic mechanism for disruption of homeostasis. Images PMID:7542288

  17. Local anesthetics inhibit tissue factor expression in activated monocytes via inhibition of tissue factor mRNA synthesis.

    PubMed

    Kim, Ji-Eun; Kim, Ki Jun; Ahn, Wonsik; Han, Kyou-Sup; Kim, Hyun Kyung

    2011-01-01

    Local anesthetics have been reported to have anticoagulant properties, but the mechanisms responsible for this action are poorly understood. Here, we evaluated the in vitro effects of 3 local anesthetics--lidocaine, ropivacaine, and bupivacaine--on the tissue factor expression by monocytes. Monocytes from peripheral blood were stimulated with lipopolysaccharide (LPS) in the presence or absence of local anesthetics. All 3 local anesthetics inhibited the expression of tissue factor antigen and tissue factor activity in LPS-stimulated monocytes in a dose- and time-dependent manner and reduced tissue factor messenger RNA (mRNA) expression in endothelial cells and a monocytic cell line. None of the 3 drugs induced apoptosis or affected the viability of monocytes. Our findings that local anesthetics inhibited the tissue factor induction in activated monocytes by inhibiting tissue factor mRNA level may demonstrate the feasibility of using local anesthetics in hypercoagulable and inflammatory conditions.

  18. An mRNA expression analysis of stimulation and blockade of 5-HT7 receptors during memory consolidation.

    PubMed

    Pérez-García, Georgina; Gonzalez-Espinosa, Claudia; Meneses, Alfredo

    2006-04-25

    Despite the compelling support for 5-hydroxytryptamine (5-HT) receptors participation in learning and memory in mammal species, the molecular basis had been largely absent from any discussion of its mechanistic underpinnings. Here, we report that reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that there was a higher level of expression of the investigated 5-HT receptor mRNAs in autoshaping-trained relative to untrained groups. Actually, pharmacological naïve untrained and autoshaping-trained rats showed significant differences, the latter groups expressing, in decreasing order, 5-HT1A < 5-HT6 < 5-HT4 < or = 5-HT7 receptors mRNA in prefrontal cortex and hippocampus. In order to determine more precisely mRNA expression and memory consolidation, we combined selective 5-HT7 receptors stimulation or blockade in the same animals, and brain areas individually analyzed. 5-HT7 receptors were strongly expressed in all the three brain areas of vehicle-trained rats relative to untrained group. The potential selective 5-HT7 receptor agonist AS 19 enhanced memory consolidation, attenuated mRNA receptors expression, and the facilitatory memory effect was reversed by SB-269970. Finally, pharmacological stimulation of 5-HT7 receptors reversed scopolamine- or dizocilpine-induced amnesia and receptor down-regulation.

  19. Dopamine receptor D3 mRNA expression in human lymphocytes is negatively correlated with the personality trait of persistence.

    PubMed

    Czermak, Christoph; Lehofer, Michael; Renger, Helmut; Wagner, Elke M; Lemonis, Leonidas; Rohrhofer, Alfred; Schauenstein, Konrad; Liebmann, Peter M

    2004-05-01

    It has been proposed that neurotransmitter receptor expression in peripheral immune cells reflects expression of these receptors in the brain. To test this "peripheral marker hypothesis", we compared mRNA expression of the dopamine receptors D3 (DRD3) and D4 (DRD4) in peripheral blood lymphocytes (PBL) to personality traits assessed with the Temperament and Character Inventory (TCI) in 50 healthy and unmedicated Caucasian individuals. A shared variance of at least 17% (p=0.016) between DRD3 mRNA expression in PBL and the personality trait of persistence was found. As personality traits have been generally assumed polygenic with a single gene accounting for rarely more than 1-2% of observed variance in a trait, this result lends further support to the peripheral marker hypothesis for DRD3 mRNA expression in PBL. It may also suggest a significant role for the DRD3 in the neurobiology of persistence and point to an interesting link between personality and functioning of the immune system.

  20. Distinct Gene Expression Profiles of Proximal and Distal Colorectal Cancer: Implications for Cytotoxic and Targeted Therapy

    PubMed Central

    Maus, Martin K.H.; Hanna, Diana L.; Stephens, Craig L.; Astrow, Stephanie H.; Yang, Dongyun; Grimminger, Peter P.; Loupakis, Fotios; Hsiang, Jack H.; Zeger, Gary; Wakatsuki, Takeru; Barzi, Afsaneh; Lenz, Heinz-Josef

    2014-01-01

    Colorectal cancer (CRC) is a heterogeneous disease with genetic profiles and clinical outcomes dependent on the anatomic location of the primary tumor. How location impacts the molecular makeup of a tumor and how prognostic and predictive biomarkers differ between proximal versus distal colon cancers is not well established. We investigated the associations between tumor location, KRAS and BRAF mutation status, and the mRNA expression of proteins involved in major signaling pathways, including tumor growth (EGFR), angiogenesis (VEGFR2), DNA repair (ERCC1) and fluoropyrimidine metabolism (TS). FFPE tumor specimens from 431 advanced CRC patients were analyzed. The presence of 7 different KRAS base substitutions and the BRAF V600E mutation was determined. ERCC1, TS, EGFR and VEGFR2 mRNA expression levels were detected by RT-PCR. BRAF mutations were significantly more common in the proximal colon (p<0.001), whereas KRAS mutations occurred at similar frequencies throughout the colorectum. Rectal cancers had significantly higher ERCC1 and VEGFR2 mRNA levels compared to distal and proximal colon tumors (p=0.001), and increased TS levels compared to distal colon cancers (p=0.02). Mutant KRAS status was associated with lower ERCC1, TS, EGFR, and VEGFR2 gene expression in multivariate analysis. In a subgroup analysis, this association remained significant for all genes in the proximal colon and for VEGFR2 expression in rectal cancers. The mRNA expression patterns of predictive and prognostic biomarkers as well as associations with KRAS and BRAF mutation status depend on primary tumor location. Prospective studies are warranted to confirm these findings and determine the underlying mechanisms. PMID:25532759

  1. BDNF and trkB mRNA expression in the rat hippocampus following entorhinal cortex lesions.

    PubMed

    Lapchak, P A; Araujo, D M; Hefti, F

    1993-02-01

    Quantitative in situ hybridization was used to determine whether the prevalence or topographical distribution of brain-derived neurotrophic factor (BDNF) or tyrosine receptor kinase (trk) B mRNA is altered in the hippocampal formation following lesions of excitatory afferents from the entorhinal cortex which provides an external source of innervation for the hippocampal formation. BDNF mRNA levels were not altered in the hippocampal formation up to 10 days following entorhinal cortex lesions (ECLs). The levels of mRNA coding for all known forms of trkB receptors also remained unchanged. The prevalence of the synaptic plasticity marker SNAP-25 mRNA was increased in the CA2 and CA3 pyramidal cell layers and the dentate gyrus by 6 days following ECLs and remained elevated at 10 days following ECLs. Our findings indicate that hippocampal neuron sprouting which occurs in response to ECLs is not the result of changes in the expression of the BDNF or trkB mRNA.

  2. Gravitational loading of a simulated launch alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Hughes-Fulford, M.

    1996-01-01

    Serum-deprived mouse osteoblastic cells (MC3T3-E1a) were centrifuged under a regime designed to simulate a space shuttle launch (maximum of 3g). Messenger RNA levels for eight genes involved in bone growth and maintenance were determined using RT-PCR. Following 30 min of centrifugation, mRNA level for early response gene c-fos was significantly increased 89% (P < 0.05). The c-fos induction was transient and returned to control levels after 3 h. The mRNA level for the mineralization marker gene osteocalcin was significantly decreased to 44% of control level (P < 0.005) 3 h after centrifugation. No changes in mRNA levels were detected for c-myc, TGFbeta1, TGFbeta2, cyclophilin A, or actin. No basal mRNA level for TGFbeta3 was detected. In addition, no change in the steady-state synthesis of prostaglandin E2 was detected, possibly due to lack of lipid substrates in serum-deprived cells, suggesting that the increase in c-fos mRNA in response to gravitational loading is a result of mechanical stimulation. These results indicate that a small magnitude mechanical loading, such as that experienced during a shuttle launch, can alter mRNA levels in quiescent osteoblastic cells.

  3. A Systematic Analysis on DNA Methylation and the Expression of Both mRNA and microRNA in Bladder Cancer

    PubMed Central

    Zhou, Liang; Chen, Jiahao; Luo, Huijuan; Sun, Jihua; Wu, Song; Han, Yonghua; Yin, Guangliang; Chen, Maoshan; Han, Zujing; Li, Xianxin; Huang, Yi; Zhang, Weixing; Zhou, Fangjian; Chen, Tong; Fa, Pingping; Wang, Yong; Sun, Liang; Leng, Huimin; Sun, Fenghao; Liu, Yuchen; Ye, Mingzhi; Yang, Huanming; Cai, Zhiming; Gui, Yaoting; Zhang, Xiuqing

    2011-01-01

    Background DNA methylation aberration and microRNA (miRNA) deregulation have been observed in many types of cancers. A systematic study of methylome and transcriptome in bladder urothelial carcinoma has never been reported. Methodology/Principal Findings The DNA methylation was profiled by modified methylation-specific digital karyotyping (MMSDK) and the expression of mRNAs and miRNAs was analyzed by digital gene expression (DGE) sequencing in tumors and matched normal adjacent tissues obtained from 9 bladder urothelial carcinoma patients. We found that a set of significantly enriched pathways disrupted in bladder urothelial carcinoma primarily related to “neurogenesis” and “cell differentiation” by integrated analysis of -omics data. Furthermore, we identified an intriguing collection of cancer-related genes that were deregulated at the levels of DNA methylation and mRNA expression, and we validated several of these genes (HIC1, SLIT2, RASAL1, and KRT17) by Bisulfite Sequencing PCR and Reverse Transcription qPCR in a panel of 33 bladder cancer samples. Conclusions/Significance We characterized the profiles between methylome and transcriptome in bladder urothelial carcinoma, identified a set of significantly enriched key pathways, and screened four aberrantly methylated and expressed genes. Conclusively, our findings shed light on a new avenue for basic bladder cancer research. PMID:22140553

  4. Electrical activation and c-fos mRNA expression in rat neurosecretory neurones after systemic administration of cholecystokinin.

    PubMed Central

    Hamamura, M; Leng, G; Emson, P C; Kiyama, H

    1991-01-01

    1. The expression of c-fos mRNA in the rat hypothalamus was examined by in situ hybridization following systemic administration of cholecystokinin (CCK), a procedure known to activate magnocellular oxytocin neurons but not magnocellular vasopressin neurones. 2. Conscious male rats were given a single I.P. injection of 50 micrograms/kg CCK, c-fos mRNA signal was apparent in the supraoptic and paraventricular nuclei in rats killed 10 min after injection but not in uninjected or saline-(vehicle) injected rats. The density of c-fos mRNA at both sites was further elevated in rats killed 30 min or 60 min following injection, and was absent in rats killed 4 h after injection. 3. In the paraventricular nucleus the most dense expression of c-fos mRNA following CCK administration was in the medial, mainly parvocellular portion of the nucleus, in an area corresponding to the distribution of corticotrophin-releasing factor mRNA determined by in situ hybridization in adjacent sections. 4. The I.P. injection of CCK increased plasma oxytocin concentrations, measured by specific radioimmunoassay from 13 +/- 5 pg/ml in control rats to 107 +/- 9 pg/ml in the rats killed 10 min after injection, a similar response to that observed previously in urethane-anaesthetized rats. 5. In each of six urethane-anaesthetized rats, recordings were made from single neurones in the supraoptic nucleus, identified antidronomically as projecting to the posterior pituitary and identified electrophysiologically as putative oxytocin neurones. Following I.P. injection of 50 micrograms/kg CCK, the neurones increased their firing rate by a mean of 1.3 +/- 0.2 spikes/s averaged over the 10 min following injection. 6. From the appearance of c-fos mRNA in supraoptic neurones following CCK administration we conclude that this message is expressed in magnocellular oxytocin neurones, since vasopressin neuronal activity and vasopressin release is known to be unaffected by this stimulus, and since the supraoptic

  5. Luteotropic and luteolytic factors regulate mRNA and protein expression of progesterone receptor isoforms A and B in the bovine endometrium.

    PubMed

    Rekawiecki, Robert; Kowalik, Magdalena Karolina; Kotwica, Jan

    2014-12-17

    The aim of the present study was to examine the effects of luteotropic and luteolytic factors on the mRNA and protein levels of progesterone receptor isoforms A (PGRA) and B (PGRB) in the bovine endometrium. Endometrial slices from Days 6-10 and 17-20 of the oestrous cycle were treated with LH (100ngmL-1), oestradiol (E2; 1×10-8M), prostaglandin (PG) E2 (1×10-6M) and PGF2? (1×10-6M) and the nitric oxide donor NONOate (1×10-4M); these treatments lasted for 6h for mRNA expression analysis and 24h for protein expression analysis. On Days 6-10 of the oestrous cycle PGRAB (PGRAB; the entire PGRA mRNA sequence is common to the PGRB mRNA sequence) mRNA expression in endometrial slices was enhanced by E2 treatment (PPGRB mRNA expression was increased by LH (PPPPGRAB mRNA expression increased after E2 (P2 (PPGRB mRNA expression was increased by PGE2 (P2? (PPPPPP2? (P2 (P2? (P<0.001). These data suggest that luteotropic and luteolytic factors affect PGRA and PGRB mRNA and protein levels, and this may regulate the effects of progesterone on endometrial cells.

  6. Appetite regulating peptides in red-bellied piranha, Pygocentrus nattereri: cloning, tissue distribution and effect of fasting on mRNA expression levels.

    PubMed

    Volkoff, Hélène

    2014-06-01

    cDNAs encoding the appetite regulating peptides apelin, cocaine and amphetamine regulated transcript (CART), cholecystokinin (CCK), peptide YY (PYY) and orexin were isolated in red-bellied piranha and their mRNA tissue and brain distributions examined. When compared to other fish, the sequences obtained for all peptides were most similar to that of other Characiforme fish, as well as to Cypriniformes. All peptides were widely expressed within the brain and in several peripheral tissues, including gastrointestinal tract. In order to assess the role of these peptides in the regulation of feeding of red-bellied piranha, we compared the brain mRNA expression levels of these peptides, as well as the gut mRNA expression of CCK and PYY, between fed and 7-day fasted fish. Within the brain, fasting induced a significant increase in both apelin and orexin mRNA expressions and a decrease in CART mRNA expression, but there where were no significant differences for either PYY or CCK brain mRNA expressions between fed and fasted fish. Within the intestine, PYY mRNA expression was lower in fasted fish compared to fed fish but there was no significant difference for CCK intestine mRNA expression between fed and fasted fish. Our results suggest that these peptides, perhaps with the exception of CCK, play a major role in the regulation of feeding of red-bellied piranha.

  7. Effect of gamma radiation on the expression of mRNA growth factors in glycerol cryopreserved human amniotic membrane.

    PubMed

    Yatim, Rusidah Mat; Kannan, Thirumulu Ponnuraj; Ab Hamid, Suzina Sheikh

    2016-12-01

    Human amniotic membrane (HAM) due to its high biocompatibility, low immunogenicity, anti-microbial, anti-viral properties as well as the presence of growth factors has been used in various clinical applications. The growth factors play an important role in wound healing. The current study aimed to explore the effect of 15 kGy gamma radiation dose on selected growth factors and receptors mRNA present in HAM. Eight growth factors, namely, EGF, HGF, KGF, TGF-α, TGF-β1, TGF-β2, TGF-β3 and bFGF and two growth factor receptors, HGFR and KGFR were evaluated in this study. The total RNA was extracted and converted to complimentary DNA using commercial kits. Subsequently, the mRNA expressions of these growth factors were evaluated using real-time PCR and the results were statistically analyzed using REST-MCS software. This study confirmed the presence of these mRNA growth factors and receptors in fresh, glycerol cryopreserved and irradiated glycerol cryopreserved HAM. In glycerol cryopreserved HAM, the results showed up-regulation of HGF and bFGF and down-regulation of EGF, HGFR, KGF, KGFR, TGF-α, TGF-β1, TGF-β2 and TGF-β3 relative to the fresh HAM which acted as the control, whereas in irradiated glycerol cryopreserved HAM, the results showed up-regulation of EGF, HGF, KGF, KGFR, TGF-β1, TGF-β2 and TGF-β3 and down-regulation of HGFR, TGF-α and bFGF relative to the glycerol cryopreserved HAM which acted as the control. However, these mRNA expressions did not show any statistical significant difference compared to the control groups. This study concluded that a dose of 15 kGy of gamma radiation did not affect the mRNA expression for the growth factors' and receptors' in the glycerol cryopreserved HAM.

  8. Parallel mRNA and MicroRNA Profiling of HEV71-Infected Human Neuroblastoma Cells Reveal the Up-Regulation of miR-1246 in Association with DLG3 Repression

    PubMed Central

    Han, Jian-Feng; Liu, Juan; Deng, Yong-Qiang; Zhu, Shun-Ya; Li, Yue-Xiang; Nian, Qing-Gong; Zhang, Yu; Wu, Xiao-Yan; Qin, E-De; Qin, Cheng-Feng

    2014-01-01

    Human enterovirus 71 (HEV71) has emerged as the leading cause of viral encephalitis in children in most Asian countries. The roles of host miRNAs in the neurological pathogenesis of HEV71 infection remain unknown. In the present study, comprehensive miRNA expression profiling in HEV71-infected human neuroblastoma SH-SY5Y cells was performed using the Affymetrix Gene Chip microarray assay and was validated using real-time RT-PCR. Among the 69 differentially expressed miRNAs, miR-1246 was specifically induced by HEV71 infection in human neuroblastoma cells, but inhibition of miR-1246 failed to affect HEV71 replication. Parallel mRNA and microRNA profiling based on the 35 K Human Genome Array identified 182 differentially regulated genes. Target prediction of miR-1246 and network modeling revealed 14 potential target genes involved in cell death and cell signaling. Finally, a combined analysis of the results from mRNA profiling and miR-1246 target predication led to the identification of disc-large homolog 3 (DLG3), which is associated with neurological disorders, for further validation. Sequence alignment and luciferase reporter assay showed that miR-1246 directly bound with the 3′-UTR of DLG3 gene. Down-regulation of miR-1246 induced significant changes in DLG3 expression levels in HEV71-infected SHSY5Y cells. Together, these results suggested that miR-1246 might play a role in neurological pathogenesis of HEV71 by regulating DLG3 gene in infected cells. These findings provide new information on the miRNA and mRNA profiles of HEV71-infected neuroblastoma cells. The biological significance of miR-1246 and DLG3 during the course of HEV71 infection deserves further investigation. PMID:24739954

  9. Identification of novel pancreatic adenocarcinoma cell-surface targets by gene expression profiling and tissue microarray

    PubMed Central

    Morse, David L.; Balagurunathan, Yoga; Hostetter, Galen; Trissal, Maria; Tafreshi, Narges K.; Burke, Nancy; Lloyd, Mark; Enkemann, Steven; Coppola, Domenico; Hruby, Victor; Gillies, Robert J.; Han, Haiyong

    2010-01-01

    Pancreatic cancer has a high mortality rate, which is generally related to the initial diagnosis coming at late stage disease combined with a lack of effective treatment options. Novel agents that selectively detect pancreatic cancer have potential for use in the molecular imaging of cancer, allowing for non-invasive determination of tumor therapeutic response and molecular characterization of the disease. Such agents may also be used for the targeted delivery of therapy to tumor cells while decreasing systemic effects. Using complementary assays of mRNA expression profiling to determine elevated expression in pancreatic cancer tissues relative to normal pancreas tissues, and validation of protein expression by immunohistochemistry on tissue microarray, we have identified cell-surface targets with potential for imaging and therapeutic agent development. Expression profiles of 2177 cell-surface genes for 28 pancreatic tumor specimens and 4 normal pancreas tissue samples were evaluated. Expression in normal tissues was evaluated using array data from 103 samples representing 28 organ sites as well as mining published data. One-hundred seventy unique targets were highly expressed in 2 or more of the pancreatic tumor specimens and were not expressed in the normal pancreas samples. Two targets (TLR2 and ABCC3) were further validated for protein expression by tissue microarray (TMA) based immunohistochemistry. These validated targets have potential for the development of diagnostic imaging and therapeutic agents for pancreatic cancer. PMID:20510208

  10. Despite differential gene expression profiles pediatric MDS derived mesenchymal stromal cells display functionality in vitro.

    PubMed

    Calkoen, F G J; Vervat, C; van Pel, M; de Haas, V; Vijfhuizen, L S; Eising, E; Kroes, W G M; 't Hoen, P A C; van den Heuvel-Eibrink, M M; Egeler, R M; van Tol, M J D; Ball, L M

    2015-03-01

    Pediatric myelodysplastic syndrome (MDS) is a heterogeneous disease covering a spectrum ranging from aplasia (RCC) to myeloproliferation (RAEB(t)). In adult-type MDS there is increasing evidence for abnormal function of the bone-marrow microenvironment. Here, we extensively studied the mesenchymal stromal cells (MSCs) derived from children with MDS. MSCs were expanded from the bone-marrow of 17 MDS patients (RCC: n=10 and advanced MDS: n=7) and pediatric controls (n=10). No differences were observed with respect to phenotype, differentiation capacity, immunomodulatory capacity or hematopoietic support. mRNA expression analysis by Deep-SAGE revealed increased IL-6 expression in RCC- and RAEB(t)-MDS. RCC-MDS MSC expressed increased levels of DKK3, a protein associated with decreased apoptosis. RAEB(t)-MDS revealed increased CRLF1 and decreased DAPK1 expressions. This pattern has been associated with transformation in hematopoietic malignancies. Genes reported to be differentially expressed in adult MDS-MSC did not differ between MSC of pediatric MDS and controls. An altered mRNA expression profile, associated with cell survival and malignant transformation, of MSC derived from children with MDS strengthens the hypothesis that the micro-environment is of importance in this disease. Our data support the understanding that pediatric and adult MDS are two different diseases. Further evaluation of the pathways involved might reveal additional therapy targets.

  11. Immunohistochemical study and mRNA cytokine profile of the local immune response in cattle naturally infected with Calicophoron daubneyi.

    PubMed

    Fuertes, Miguel; Manga-González, Yolanda; Benavides, Julio; González-Lanza, M Camino; Giráldez, Francisco Javier; Mezo, Mercedes; González-Warleta, Marta; Fernández, Miguel; Regidor-Cerrillo, Javier; Castaño, Pablo; Royo, Marcos; Ortega-Mora, Luis M; Pérez, Valentín; Ferreras, M Carmen

    2015-11-30

    In order to recognize the local immune response of the definitive host to Calicophoron daubneyi natural infection, an immunohistochemical study was carried out in the reticulum and rumen in 49 naturally infected cattle. The role of cytokines (IL-4 and IL-10 interleukins and IFN-γ) in the activation of specific defence mechanisms was evaluated by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays to study cytokine mRNA expression. In all infected animals, CD3+ T lymphocytes seemed to be the main element of the inflammatory infiltrate in the reticular and ruminal lamina propria at the point of the parasite adhesion. Intraepithelial globule leukocytes also showed immunolabelling for CD3. Most CD3+ cells also expressed CD4 (T cell helper) antigen although sporadic CD8+-cytotoxic lymphocytes were observed. Local expression of IFN-γ was observed in damaged papillae at the site of parasite attachment and in scattered cells in the lamina propria. B cells (CD79αcy+, CD45+ and IgG+) were found constantly in relation to lymphoid aggregates. MAC387 was expressed in squamous epithelium and in macrophages of the lamina propria of affected papillae. Macrophages in this location also stained positively for CD163 and CD68. Intraepithelial Langerhans cells and macrophages located in the lamina propria showed immunopositivity for MHCII in the affected areas. RT-qPCR analysis confirmed a statistical significant increase of IFN-γ, and IL-10 expression (p<0.01) in the rumen associated with the presence of flukes. These findings suggest a predominant Th1 polarized local immune response with the probable involvement of Th regulatory cells in cattle C. daubneyi natural infection.

  12. Effects of AFP gene silencing on Survivin mRNA expression inhibition in HepG2 cells.

    PubMed

    Fang, Z L; Fang, N; Han, X N; Huang, G; Fu, X J; Xie, G S; Wang, N R; Xiong, J P

    2015-04-10

    We investigated the effects of alpha-fetoprotein (AFP) gene silencing on Survivin expression in HepG2 cells. Small interfering RNA technology was used to downregulate AFP expression in HepG2 cells. An enzyme-linked immunosorbent assay was used to measure AFP concentration in the supernatant before and after transfection. An MTT assay was used to detect cell proliferation activity before and after transfection. We performed flow cytometric analysis to detect the cell apoptosis rate, and reverse transcription-polymerase chain reaction to detect Survivin mRNA levels before and after transfection. Forty-eight hours after transfection, AFP concentration in the supernatant of the experimental group significantly decreased, hepatocellular carcinoma cell growth was inhibited by 43.1%, and the apoptosis rate increased by 24.3%. Survivin mRNA expression was reduced by 78.0% in HepG2 cells. These indicators in the control group and in the blank group did not change significantly. Silencing of AFP expression in HepG2 cells can effectively inhibit the growth of hepatoma cells and promote apoptosis, which may be useful for reducing intracellular Survivin mRNA levels.

  13. Effect of acute resistance exercise and sex on human patellar tendon structural and regulatory mRNA expression.

    PubMed

    Sullivan, Bridget E; Carroll, Chad C; Jemiolo, Bozena; Trappe, Scott W; Magnusson, S Peter; Døssing, Simon; Kjaer, Michael; Trappe, Todd A

    2009-02-01

    Tendon is mainly composed of collagen and an aqueous matrix of proteoglycans that are regulated by enzymes called matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Although it is known that resistance exercise (RE) and sex influence tendon metabolism and mechanical properties, it is uncertain what structural and regulatory components contribute to these responses. We measured the mRNA expression of tendon's main fibrillar collagens (type I and type III) and the main proteoglycans (decorin, biglycan, fibromodulin, and versican) and the regulatory enzymes MMP-2, MMP-9, MMP-3, and TIMP-1 at rest and after RE. Patellar tendon biopsy samples were taken from six individuals (3 men and 3 women) before and 4 h after a bout of RE and from a another six individuals (3 men and 3 women) before and 24 h after RE. Resting mRNA expression was used for sex comparisons (6 men and 6 women). Collagen type I, collagen type III, and MMP-2 were downregulated (P < 0.05) 4 h after RE but were unchanged (P > 0.05) 24 h after RE. All other genes remained unchanged (P > 0.05) after RE. Women had higher resting mRNA expression (P < 0.05) of collagen type III and a trend (P = 0.08) toward lower resting expression of MMP-3 than men. All other genes were not influenced (P > 0.05) by sex. Acute RE appears to stimulate a change in collagen type I, collagen type III, and MMP-2 gene regulation in the human patellar tendon. Sex influences the structural and regulatory mRNA expression of tendon.

  14. Genetic Background Modulates Gene Expression Profile Induced by Skin Irradiation in Ptch1 Mice

    SciTech Connect

    Galvan, Antonella; Noci, Sara; Mancuso, Mariateresa; Pazzaglia, Simonetta; Saran, Anna; Dragani, Tommaso A.

    2008-12-01

    Purpose: Ptch1 germ-line mutations in mice predispose to radiation-induced basal cell carcinoma of the skin, with tumor incidence modulated by the genetic background. Here, we examined the possible mechanisms underlying skin response to radiation in F1 progeny of Ptch1{sup neo67/+} mice crossed with either skin tumor-susceptible (Car-S) or -resistant (Car-R) mice and X-irradiated (3 Gy) at 2 days of age or left untreated. Methods and Materials: We conducted a gene expression profile analysis in mRNA samples extracted from the skin of irradiated or control mice, using Affymetrix whole mouse genome expression array. Confirmation of the results was done using real-time reverse-transcriptase polymerase chain reaction. Results: Analysis of the gene expression profile of normal skin of F1 mice at 4 weeks of age revealed a similar basal profile in the nonirradiated mice, but alterations in levels of 71 transcripts in irradiated Ptch1{sup neo67/+} mice of the Car-R cross and modulation of only eight genes in irradiated Ptch1{sup neo67/+} mice of the Car-S cross. Conclusions: These results indicate that neonatal irradiation causes a persistent change in the gene expression profile of the skin. The tendency of mice genetically resistant to skin tumorigenesis to show a more complex pattern of transcriptional response to radiation than do genetically susceptible mice suggests a role for this response in genetic resistance to basal cell tumorigenesis.

  15. Pulmonary Gene Expression Profiling of Inhaled Ricin

    DTIC Science & Technology

    2007-11-02

    in which 34 genes had statistically significant changes in gene expression. Transcripts identified by the assay included those that facilitate...gene expression. Transcripts identified by the assay included those that facilitate tissue healing (early growth response gene (egr)-1), regulate...impingement to determine aerosol concentration. Ricin concentrations from impinger samples were measured by protein assay (Pierce, MicroBCA, Rockford

  16. GENE EXPRESSION PROFILING TO IDENTIFY BIOMARKERS OF REPRODUCTIVE TOXICITY

    EPA Science Inventory

    SOT 2005 SESSION ABSTRACT

    GENE EXPRESSION PROFILING TO IDENTIFY BIOMARKERS OF REPRODUCTIVE TOXICITY

    David J. Dix. National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle...

  17. Oxidative Stress Alters miRNA and Gene Expression Profiles in Villous First Trimester Trophoblasts

    PubMed Central

    Cross, Courtney E.; Tolba, Mai F.; Rondelli, Catherine M.; Xu, Meixiang; Abdel-Rahman, Sherif Z.

    2015-01-01

    The relationship between oxidative stress and miRNA changes in placenta as a potential mechanism involved in preeclampsia (PE) is not fully elucidated. We investigated the impact of oxidative stress on miRNAs and mRNA expression profiles of genes associated with PE in villous 3A first trimester trophoblast cells exposed to H2O2 at 12 different concentrations (0-1 mM) for 0.5, 4, 24, and 48 h. Cytotoxicity, determined using the SRB assay, was used to calculate the IC50 of H2O2. RNA was extracted after 4 h exposure to H2O2 for miRNA and gene expression profiling. H2O2 exerted a concentration- and time-dependent cytotoxicity on 3A trophoblast cells. Short-term exposure of 3A cells to low concentration of H2O2 (5% of IC50) significantly altered miRNA profile as evidenced by significant changes in 195 out of 595 evaluable miRNAs. Tool for annotations of microRNAs (TAM) analysis indicated that these altered miRNAs fall into 43 clusters and 34 families, with 41 functions identified. Exposure to H2O2 altered mRNA expression of 22 out of 84 key genes involved in dysregulation of placental development. In conclusion, short-term exposure of villous first trimester trophoblasts to low concentrations of H2O2 significantly alters miRNA profile and expression of genes implicated in placental development. PMID:26339600

  18. Functional Genomic mRNA Profiling of Colorectal Adenomas: Identification and in vivo Validation of CD44 and Splice Variant CD44v6 as Molecular Imaging Targets.

    PubMed

    Hartmans, Elmire; Orian-Rousseau, Veronique; Matzke-Ogi, Alexandra; Karrenbeld, Arend; de Groot, Derk Jan A; de Jong, Steven; van Dam, Gooitzen M; Fehrmann, Rudolf S N; Nagengast, Wouter B

    2017-01-01

    Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. High adenoma miss rates, especially seen in high-risk patients, demand for better endoscopic detection. By fluorescently 'highlighting' specific molecular characteristics, endoscopic molecular imaging has great potential to fulfill this need. To implement this technique effectively, target proteins that distinguish adenomas from normal tissue must be identified. In this study we applied in silico Functional Genomic mRNA (FGmRNA) profiling, which is a recently developed method that results in an enhanced view on the downstream effects of genomic alterations occurring in adenomas on gene expression levels. FGmRNA profiles of sporadic adenomas were compared to normal colon tissue to identify overexpressed genes. We validated the protein expression of the top identified genes, AXIN2, CEMIP, CD44 and JUN, in sporadic adenoma patient samples via immunohistochemistry (IHC). CD44 was identified as the most attractive target protein for imaging purposes and we proved its relevance in high-risk patients by demonstrating CD44 protein overexpression in Lynch lesions. Subsequently, we show that the epithelial splice variant CD44V6 is highly overexpressed in our patient samples and we demonstrated the feasibility of visualizing adenomas in Apc(Min/+) mice in vivo by using a fluorescently labeled CD44v6 targeting peptide. In conclusion, via in silico functional genomics and ex vivo protein validation, this study identified CD44 as an attractive molecular target for both sporadic and high-risk Lynch adenomas, and demonstrates the in vivo applicability of a small peptide drug directed against splice variant CD44v6 for adenoma imaging.

  19. Functional Genomic mRNA Profiling of Colorectal Adenomas: Identification and in vivo Validation of CD44 and Splice Variant CD44v6 as Molecular Imaging Targets

    PubMed Central

    Hartmans, Elmire; Orian-Rousseau, Veronique; Matzke-Ogi, Alexandra; Karrenbeld, Arend; de Groot, Derk Jan A.; de Jong, Steven; van Dam, Gooitzen M.; Fehrmann, Rudolf S.N.; Nagengast, Wouter B.

    2017-01-01

    Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. High adenoma miss rates, especially seen in high-risk patients, demand for better endoscopic detection. By fluorescently 'highlighting' specific molecular characteristics, endoscopic molecular imaging has great potential to fulfill this need. To implement this technique effectively, target proteins that distinguish adenomas from normal tissue must be identified. In this study we applied in silico Functional Genomic mRNA (FGmRNA) profiling, which is a recently developed method that results in an enhanced view on the downstream effects of genomic alterations occurring in adenomas on gene expression levels. FGmRNA profiles of sporadic adenomas were compared to normal colon tissue to identify overexpressed genes. We validated the protein expression of the top identified genes, AXIN2, CEMIP, CD44 and JUN, in sporadic adenoma patient samples via immunohistochemistry (IHC). CD44 was identified as the most attractive target protein for imaging purposes and we proved its relevance in high-risk patients by demonstrating CD44 protein overexpression in Lynch lesions. Subsequently, we show that the epithelial splice variant CD44V6 is highly overexpressed in our patient samples and we demonstrated the feasibility of visualizing adenomas in ApcMin/+ mice in vivo by using a fluorescently labeled CD44v6 targeting peptide. In conclusion, via in silico functional genomics and ex vivo protein validation, this study identified CD44 as an attractive molecular target for both sporadic and high-risk Lynch adenomas, and demonstrates the in vivo applicability of a small peptide drug directed against splice variant CD44v6 for adenoma imaging. PMID:28255344

  20. LDOC1 mRNA is differentially expressed in chronic lymphocytic leukemia and predicts overall survival in untreated patients

    PubMed Central

    Duzkale, Hatice; Schweighofer, Carmen D.; Coombes, Kevin R.; Barron, Lynn L.; Ferrajoli, Alessandra; O'Brien, Susan; Wierda, William G.; Pfeifer, John; Majewski, Tadeusz; Czerniak, Bogdan A.; Jorgensen, Jeffrey L.; Medeiros, L. Jeffrey; Freireich, Emil J; Keating, Michael J.

    2011-01-01

    We previously identified LDOC1 as one of the most significantly differentially expressed genes in untreated chronic lymphocytic leukemia (CLL) patients with respect to the somatic mutation status of the immunoglobulin heavy-chain variable region genes. However, little is known about the normal function of LDOC1, its contribution to the pathophysiology of CLL, or its prognostic significance. In this study, we have investigated LDOC1 mRNA expression in a large cohort of untreated CLL patients, as well as in normal peripheral blood B-cell (NBC) subsets and primary B-cell lymphoma samples. We have confirmed that LDOC1 is dramatically down-regulated in mutated CLL cases compared with unmutated cases, and have identified a new splice variant, LDOC1S. We show that LDOC1 is expressed in NBC subsets (naive > memory), suggesting that it may play a role in normal B-cell development. It is also expressed in primary B-cell lymphoma samples, in which its expression is associated with somatic mutation status. In CLL, we show that high levels of LDOC1 correlate with biomarkers of poor prognosis, including cytogenetic markers, unmutated somatic mutation status, and ZAP70 expression. Finally, we demonstrate that LDOC1 mRNA expression is an excellent predictor of overall survival in untreated CLL patients. PMID:21310924

  1. Differential effects of binge methamphetamine injections on the mRNA expression of histone deacetylases (HDACs) in the rat striatum

    PubMed Central

    Omonijo, Oluwaseyi; Wongprayoon, Pawaris; Ladenheim, Bruce; McCoy, Michael T.; Govitrapong, Piyarat; Jayanthi, Subramaniam; Cadet, Jean Lud

    2014-01-01

    Methamphetamine use disorder is characterized by recurrent binge episodes. Humans addicted to methamphetamine experience various degrees of cognitive deficits and show evidence of neurodegenerative processes in the brain. Binge injections of METH to rodents also cause significant toxic changes in the brain. In addition, this pattern of METH injections can alter gene expression in the dorsal striatum. Gene expression is regulated, in part, by histone deacetylation. We thus tested the possibility that METH toxic doses might cause changes in the mRNA levels of histone deacetylases (HDACs). We found that METH did produce significant decreases in the mRNA expression of HDAC8, which is a class I HDAC. METH also decreased expression of HDAC6, HDAC9, and HDAC10 that are class II HDACs. The expression of the class IV HDAC, HDAC11, was also suppressed by METH. The expression of Sirt2, Sirt5, and Sirt6 that are members of class III HDACs was also downregulated by METH injections. Our findings implicate changes in HDAC expression may be an early indicator of impending METH-induced neurotoxicity in the striatum. This idea is consistent with the accumulated evidence that some HDACs are involved in neurodegenerative processes in the brain. PMID:25452209

  2. Electroacupuncture-regulated neurotrophic factor mRNA expression in the substantia nigra of Parkinson's disease rats.

    PubMed

    Wang, Shuju; Fang, Jianqiao; Ma, Jun; Wang, Yanchun; Liang, Shaorong; Zhou, Dan; Sun, Guojie

    2013-02-25

    Acupuncture for the treatment of Parkinson's disease has a precise clinical outcome. This study investigated the effect of electroacupuncture at Fengfu (GV16) and Taichong (LR3) acupoints in rat models of Parkinson's disease induced by subcutaneous injection of rotenone into rat neck and back. Reverse transcription-PCR demonstrated that brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression was significantly increased in the substantia nigra of rat models of Parkinson's disease, and that abnormal behavior of rats was significantly improved following electroacupuncture treatment. These results indicated that electroacupuncture treatment upregulated brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression in the substantia nigra of rat models of Parkinson's disease. Thus, electroacupuncture may be useful in the treatment of Parkinson's disease.

  3. Calcium CaV1 channel subtype mRNA expression in Parkinson's disease examined by in situ hybridization.

    PubMed

    Hurley, Michael J; Gentleman, Steve M; Dexter, David T

    2015-03-01

    The factors which make some neurons vulnerable to neurodegeneration in Parkinson's disease while others remain resistant are not fully understood. Studies in animal models of Parkinson's disease suggest that preferential use of CaV1.3 subtypes by neurons may contribute to the neurodegenerative process by increasing mitochondrial oxidant stress. This study quantified the level of mRNA for the CaV1 subtypes found in the brain by in situ hybridization using CaV1 subtype-specific [(35)S]-radiolabelled oligonucleotide probes. In normal brain, the greatest amount of messenger RNA (mRNA) for each CaV1 subtype was found in the midbrain (substantia nigra), with a moderate level in the pons (locus coeruleus) and lower quantities in cerebral cortex (cingulate and primary motor). In Parkinson's disease, the level of CaV1 subtype mRNA was maintained in the midbrain and pons, despite cell loss in these areas. In cingulate cortex, CaV1.2 and CaV1.3 mRNA increased in cases with late-stage Parkinson's disease. In primary motor cortex, the level of CaV1.2 mRNA increased in late-stage Parkinson's disease. The level of CaV1.3 mRNA increased in primary motor cortex of cases with early-stage Parkinson's disease and normalized to near the control level in cases from late-stage Parkinson's disease. The finding of elevated CaV1 subtype expression in cortical brain regions supports the view that disturbed calcium homeostasis is a feature of Parkinson's disease throughout brain and not only a compensatory consequence to the neurodegenerative process in areas of cell loss.

  4. Dynamic gene expression profiles during postnatal development of porcine subcutaneous adipose

    PubMed Central

    Jin, Long; Liu, Yihui; Zhou, Chaowei; Tian, Shilin; Chen, Lei; Luo, Zonggang; Tang, Qianzi; Jiang, An’an; Wang, Xun; Wang, Dawei; Jiang, Zhi; Wang, Jinyong

    2016-01-01

    A better understanding of the control of lipogenesis is of critical importance for both human and animal physiology. This requires a better knowledge of the changes of gene expression during the process of adipose tissue development. Thus, the objective of the current study was to determine the effects of development on subcutaneous adipose tissue gene expression in growing and adult pigs. Here, we present a comprehensive investigation of mRNA transcriptomes in porcine subcutaneous adipose tissue across four developmental stages using digital gene expression profiling. We identified 3,274 differential expressed genes associated with oxidative stress, immune processes, apoptosis, energy metabolism, insulin stimulus, cell cycle, angiogenesis and translation. A set of universally abundant genes (ATP8, COX2, COX3, ND1, ND2, SCD and TUBA1B) was found across all four developmental stages. This set of genes may play important roles in lipogenesis and development. We also identified development-related gene expression patterns that are linked to the different adipose phenotypes. We showed that genes enriched in significantly up-regulated profiles were associated with phosphorylation and angiogenesis. In contrast, genes enriched in significantly down-regulated profiles were related to cell cycle and cytoskeleton organization, suggesting an important role for these biological processes in adipose growth and development. These results provide a resource for studying adipose development and promote the pig as a model organism for researching the development of human obesity, as well as being used in the pig industry. PMID:26989614

  5. Decreased HLA-DR antigen-associated invariant chain (CD74) mRNA expression predicts mortality after septic shock

    PubMed Central

    2013-01-01

    Introduction Septic syndromes remain the leading cause of mortality in intensive care units (ICU). Septic patients rapidly develop immune dysfunctions, the intensity and duration of which have been linked with deleterious outcomes. Decreased mRNA expressions of major histocompatibility complex (MHC) class II-related genes have been reported after sepsis. We investigated whether their mRNA levels in whole blood could predict mortality in septic shock patients. Methods A total of 93 septic shock patients were included. On the third day after shock, the mRNA expressions of five MHC class II-related genes (CD74, HLA-DRA, HLA-DMB, HLA-DMA, CIITA) were measured by qRT-PCR and monocyte human leukocyte antigen-DR (mHLA-DR) by flow cytometry. Results A significant correlation was found among MHC class II related gene expressions. Among mRNA markers, the best prognostic value was obtained for CD74 (HLA-DR antigen-associated invariant chain). For this parameter, the area under the receiver operating characteristic curve (AUC) was calculated (AUC = 0.67, 95% confidence interval (CI) = 0.55 to 0.79; P = 0.01) as well as the optimal cut-off value. After stratification based on this threshold, survival curves showed that a decreased CD74 mRNA level was associated with increased mortality after septic shock (Log rank test, P = 0.0043, Hazard Ratio = 3.0, 95% CI: 1.4 to 6.5). Importantly, this association remained significant after multivariate logistic regression analysis including usual clinical confounders (that is, severity scores, P = 0.026, Odds Ratio = 3.4, 95% CI: 1.2 to 9.8). Conclusion Decreased CD74 mRNA expression significantly predicts 28-day mortality after septic shock. After validation in a larger multicentric study, this biomarker could become a robust predictor of death in septic patients. PMID:24321376

  6. FLT3-ITD and MLL-PTD influence the expression of MDR-1, MRP-1, and BCRP mRNA but not LRP mRNA assessed with RQ-PCR method in adult acute myeloid leukemia.

    PubMed

    Nasilowska-Adamska, Barbara; Solarska, Iwona; Paluszewska, Monika; Malinowska, Iwona; Jedrzejczak, Wieslaw W; Warzocha, Krzysztof

    2014-04-01

    Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) and mixed-lineage leukemia gene-partial tandem duplication (MLL-PTD) are aberrations associated with leukemia which indicate unsatisfactory prognosis. Downstream regulatory targets of FLT3-ITD and MLL-PTD are not well defined. We have analyzed the expression of MDR-1, multidrug resistant protein-1 (MRP-1), breast cancer resistance protein (BCRP), and lung resistance protein (LRP) messenger RNA (mRNA) in relation to the mutational status of FLT3-ITD and MLL-PTD in 185 acute myeloid leukemia (AML) adult patients. The real-time quantitative polymerase chain reaction method was performed to assess the expression of the MDR-1, MRP-1, BCRP, and LRP mRNA, and the results were presented as coefficients calculated using an intermediate method according to Pfaffl's rule. Significantly higher expressions of MDR-1 mRNA were found in patients who did not harbor FLT3-ITD (0.20 vs. 0.05; p = 0.0001) and MRP-1 mRNA in patients with this mutation (0.96 vs. 0.70; p = 0.002) and of BCRP mRNA in patients with MLL-PTD (0.61 vs. 0.38; p = 0.03). In univariate analysis, the high expression of MDR-1 mRNA (≥0.1317) negatively influenced the outcome of induction therapy (p = 0.05), whereas the high expression of BCRP mRNA (≥1.1487) was associated with a high relapse rate (RR) (p = 0.013). We found that the high expression of MDR-1 (≥0.1317), MRP-1 (≥0.8409), and BCRP mRNA (≥1.1487) significantly influenced disease-free survival (DFS; p = 0.059, 0.032, and 0.009, respectively) and overall survival (0.048, 0.014, and 0.059, respectively). Moreover, a high expression of BCRP mRNA (≥1.1487) proved to be an independent prognostic factor for RR (p = 0.01) and DFS (p = 0.002) in multivariate analysis. The significant correlation between the expression of MDR-1, MRP-1, and BCRP mRNA and FLT3-ITD or MLL-PTD in AML patients requires further investigation.

  7. Expression of trkB mRNA is altered in rat hippocampus after experimental brain trauma.

    PubMed

    Hicks, R R; Zhang, L; Dhillon, H S; Prasad, M R; Seroogy, K B

    1998-08-31

    Recent investigations have shown that expression of mRNAs for the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) is differentially altered in the hippocampus following traumatic brain injury. In the present study, modulation of neurotrophin receptor expression was examined in the hippocampus in a rat model of traumatic brain injury using in situ hybridization. Messenger RNA for trkB, the high-affinity receptor for BDNF and neurotrophin-4 (NT-4), was increased between 3 and 6 h bilaterally in the dentate gyrus following a lateral fluid-percussion brain injury of moderate severity (2.0-2.1 atm). No time-dependent alterations were observed for trkB mRNA in hippocampal subfields CA1 and CA3. Levels of mRNA for trkC, the high-affinity receptor for NT-3, did not change in any region of the hippocampus. These data demonstrate that lateral fluid-percussion injury modulates expression of trkB mRNA in the hippocampus and support a role for BDNF/trkB signalling mechanisms in secondary events associated with traumatic brain injury.

  8. Human skeletal muscle creatine transporter mRNA and protein expression in healthy, young males and females.

    PubMed

    Murphy, Robyn M; Tunstall, Rebecca J; Mehan, Kate A; Cameron-Smith, David; McKenna, Michael J; Spriet, Lawrence L; Hargreaves, Mark; Snow, Rodney J

    2003-02-01

    The present study investigated whether there were any differences between males and females in respect to creatine transporter (CreaT) gene expression and/or total creatine (TCr) content in human vastus lateralis muscle. Skeletal muscle obtained from young healthy male (n = 13, age: 23.2 +/- 5.0 years) and female subjects (n = 12, age: 21.7 +/- 4.3 years) was analyzed for CreaT mRNA, CreaT protein and TCr content. Total CreaT protein content in the muscle was similar (p > 0.05) between the sexes. Two bands (approximately 55 and 73 kDa) of the CreaT protein were detected in all muscle samples. Both the 55 and the 73 kDa bands were present in similar (p > 0.05) amounts in males compared with females. The 73 kDa band was in greater abundance (p < 0.05) than the 55 kDa band, irrespective of gender. In addition, CreaT mRNA expression relative to beta-actin mRNA and the TCr content (males: 117.8 +/- 2.2, females: 125.3 +/- 4.3 mmol.kg(-1) dry mass) were also unaffected (p > 0.05) by gender. These data demonstrate that gender does not influence skeletal muscle TCr content and CreaT gene expression in young human subjects.

  9. Differential expression of equine myosin heavy-chain mRNA and protein isoforms in a limb muscle.

    PubMed

    Eizema, Karin; van den Burg, Maarten; Kiri, Arpna; Dingboom, Elizabeth G; van Oudheusden, Hans; Goldspink, Geoffrey; Weijs, Wim A

    2003-09-01

    The horse is one of the few animals kept and bred for its athletic performance and is therefore an interesting model for human sports performance. The regulation of the development of equine locomotion in the first year of life, and the influence of early training on later performance, are largely unknown. The major structural protein in skeletal muscle, myosin heavy-chain (MyHC), is believed to be primarily transcriptionally controlled. To investigate the expression of the MyHC genes at the transcriptional level, we isolated cDNAs encoding the equine MyHC isoforms type 1 (slow), type 2a (fast oxidative), and type 2d/x (fast glycolytic). cDNAs encoding the 2b gene were not identified. The mRNA expression was compared to the protein expression on a fiber-to-fiber basis using in situ hybridization (non-radioactive) and immunohistochemistry. Marked differences were detected between the expression of MyHC transcripts and MyHC protein isoforms in adult equine gluteus medius muscle. Mismatches were primarily due to the presence of hybrid fibers expressing two fast (2ad) MyHC protein isoforms, but only one fast (mainly 2a) MyHC RNA isoform. This discrepancy was most likely not due to differential mRNA expression of myonuclei.

  10. PD-1 mRNA expression in peripheral blood cells and its modulation characteristics in cancer patients.

    PubMed

    Wang, Wei; Shen, Ge; Wu, Shikai; Song, Shiping; Ni, Yanli; Suo, Zhuoyao; Meng, Xiangying; Li, Dan; Zhou, Lin; Hao, Rimin; Zhao, Yaowei; Bai, Li; Hou, Lili; Liu, Bing; Liu, Guangxian

    2017-02-02

    Immune checkpoint inhibitors that block the PD-1/PD-L1 signaling pathway have been used to treat a wide variety of cancers. Although results have been promising, significant inter-individual and inter-tumor variability has been observed. It is believed that better clinical outcome could be achieved if the treatment was individually designed based on the functional status of the PD-1/PD-L1 signaling and the cellular immunity. In this study, we analyzed the mRNA expression of PD-1 and other immunomodulatory genes in peripheral blood from cancer patients, and immunomodulatory gene expression during radiotherapy and immunomodulation therapy with cytokines. Our results show that the PD-1 mRNA expression is significantly increased in peripheral blood in cancer patients. Anti-cancer treatments can significantly modulate the PD-1 expression, but this is largely dependent on the initial immune status. Moreover, the PD-1 expression on peripheral lymphocytes can be immunoactivation-derived. These results suggest that the regulation and expression pattern of PD-1/PD-L1 signal is complicated which will influence the effect of blockade of the PD-1/PD-L1 signaling pathway for cancer treatment. Through combined analysis of PD-1, CTLA-4, and other immune markers in peripheral blood, we may accurately evaluate the functional status of PD-1/PD-L1 signaling and cellular immunity, thereby providing clues for guiding anti-PD-1 or anti-PD-L1 treatment.

  11. Optimization of Translation Profiles Enhances Protein Expression and Solubility

    PubMed Central

    Hess, Anne-Katrin; Saffert, Paul; Liebeton, Klaus; Ignatova, Zoya

    2015-01-01

    mRNA is translated with a non-uniform speed that actively coordinates co-translational folding of protein domains. Using structure-based homology we identified the structural domains in epoxide hydrolases (EHs) and introduced slow-translating codons to delineate the translation of single domains. These changes in translation speed dramatically improved the solubility of two EHs of metagenomic origin in Escherichia coli. Conversely, the importance of transient attenuation for the folding, and consequently solubility, of EH was evidenced with a member of the EH family from Agrobacterium radiobacter, which partitions in the soluble fraction when expressed in E. coli. Synonymous substitutions of codons shaping the slow-transiting regions to fast-translating codons render this protein insoluble. Furthermore, we show that low protein yield can be enhanced by decreasing the free folding energy of the initial 5’-coding region, which can disrupt mRNA secondary structure and enhance ribosomal loading. This study provides direct experimental evidence that mRNA is not a mere messenger for translation of codons into amino acids but bears an additional layer of information for folding, solubility and expression level of the encoded protein. Furthermore, it provides a general frame on how to modulate and fine-tune gene expression of a target protein. PMID:25965266

  12. Optimization of translation profiles enhances protein expression and solubility.

    PubMed

    Hess, Anne-Katrin; Saffert, Paul; Liebeton, Klaus; Ignatova, Zoya

    2015-01-01

    mRNA is translated with a non-uniform speed that actively coordinates co-translational folding of protein domains. Using structure-based homology we identified the structural domains in epoxide hydrolases (EHs) and introduced slow-translating codons to delineate the translation of single domains. These changes in translation speed dramatically improved the solubility of two EHs of metagenomic origin in Escherichia coli. Conversely, the importance of transient attenuation for the folding, and consequently solubility, of EH was evidenced with a member of the EH family from Agrobacterium radiobacter, which partitions in the soluble fraction when expressed in E. coli. Synonymous substitutions of codons shaping the slow-transiting regions to fast-translating codons render this protein insoluble. Furthermore, we show that low protein yield can be enhanced by decreasing the free folding energy of the initial 5'-coding region, which can disrupt mRNA secondary structure and enhance ribosomal loading. This study provides direct experimental evidence that mRNA is not a mere messenger for translation of codons into amino acids but bears an additional layer of information for folding, solubility and expression level of the encoded protein. Furthermore, it provides a general frame on how to modulate and fine-tune gene expression of a target protein.

  13. Strain differences in cytochrome P450 mRNA and protein expression, and enzymatic activity among Sprague Dawley, Wistar, Brown Norway and Dark Agouti rats.

    PubMed

    Nishiyama, Yoshihiro; Nakayama, Shouta M M; Watanabe, Kensuke P; Kawai, Yusuke K; Ohno, Marumi; Ikenaka, Yoshinori; Ishizuka, Mayumi

    2016-05-03

    Rat cytochrome P450 (CYP) exhibits inter-strain differences, but their analysis has been scattered across studies under different conditions. To identify these strain differences in CYP more comprehensively, mRNA expression, protein expression and metabolic activity among Wistar (WI), Sprague Dawley (SD), Dark Agouti (DA) and Brown Norway (BN) rats were compared. The mRNA level and enzymatic activity of CYP1A1 were highest in SD rats. The rank order of Cyp3a2 mRNA expression mirrored its protein expression, i.e., DA>BN>SD>WI, and was similar to the CYP3A2-dependent warfarin metabolic activity, i.e., DA>SD>BN>WI. These results suggest that the strain differences in CYP3A2 enzymatic activity are caused by differences in mRNA expression. Cyp2b1 mRNA levels, which were higher in DA rats, did not correlate with its protein expression or enzymatic activity. This suggests that the strain differences in enzymatic activity are not related to Cyp2b1 mRNA expression. In conclusion, WI rats tended to have the lowest CYP1A1, 2B1 and 3A2 mRNA expression, protein expression and enzymatic activity among the strains. In addition, SD rats had the highest CYP1A1 mRNA expression and activity, while DA rats had higher CYP2B1 and CYP3A2 mRNA and protein expression. These inter-strain differences in CYP could influence pharmacokinetic considerations in preclinical toxicological studies.

  14. Leptin and cholecystokinin in Schizothorax prenanti: molecular cloning, tissue expression, and mRNA expression responses to periprandial changes and fasting.

    PubMed

    Yuan, Dengyue; Wang, Tao; Zhou, Chaowei; Lin, Fangjun; Chen, Hu; Wu, Hongwei; Wei, Rongbin; Xin, Zhiming; Li, Zhiqiong

    2014-08-01

    In the present study, full-length cDNA sequences of leptin and cholecystokinin (CCK) were cloned from Schizothorax prenanti (S. prenanti), and applied real-time quantitative PCR to characterize the tissue distribution, and appetite regulatory effects of leptin and CCK in S. prenanti. The S. prenanti leptin and CCK full-length cDNA sequences were 1121 bp and 776 bp in length, encoding the peptide of 171 and 123 amino acid residues, respectively. Tissue distribution analysis showed that leptin mRNA was mainly expressed in the liver of S. prenanti. CCK was widely expressed, with the highest levels of expression in the hypothalamus, myelencephalon, telencephalon and foregut of S. prenanti. The CCK mRNA expression was highly elevated after feeding, whereas the leptin mRNA expression was not affected by single meal. These results suggested that CCK is a postprandial satiety signal in S. prenanti, but leptin might not be. In present study, leptin and CCK gene expression were both decreased after fasting and increased after refeeding, which suggested leptin and CCK might be involved in regulation of appetite in S. prenanti. This study provides an essential groundwork to further elucidate the appetite regulatory systems of leptin and CCK in S. prenanti as well as in other teleosts.

  15. Effect of water accommodated fraction of 0# diesel oil and crude oil on EROD activity of liver of Sparus macrocephlus and its mRNA expression.

    PubMed

    Lei, Li; Shen, Xinqiang; Jiang, Mei

    2016-12-01

    We studied the effect of water accommodated fractions (WAF) of 0# diesel and crude oil on ethoxy resorufin o-deethylase (EROD) activity and CYP1A1 mRNA expression quantity in the liver of Sparus macrocephlus. We found that there were some differences in the EROD activity and CYP1A1 mRNA induction between these two petroleum hydrocarbons. Both the EROD activity and CYP1A1 mRNA expression of fish exposed to 0# diesel WAF were higher than those of crude oil WAF fish. The EROD activities and CYP1A1 mRNA expressions in the livers 0# diesel WAF exposed group declined faster than those of crude oil WAF and the recovery of EROD activity and CYP1A1 mRNA expression in the crude oil group was higher than that of 0# diesel group.

  16. Relation between mRNA expression and sequence information in Desulfovibrio vulgaris: Combinatorial contributions of upstream regulatory motifs and coding sequence features to variations in mRNA abundance

    SciTech Connect

    Wu, Gang; Nie, Lei; Zhang, Weiwen

    2006-05-26

    ABSTRACT-The context-dependent expression of genes is the core for biological activities, and significant attention has been given to identification of various factors contributing to gene expression at genomic scale. However, so far this type of analysis has been focused whether on relation between mRNA expression and non-coding sequence features such as upstream regulatory motifs or on correlation between mRN abundance and non-random features in coding sequences (e.g. codon usage and amino acid usage). In this study multiple regression analyses of the mRNA abundance and all sequence information in Desulfovibrio vulgaris were performed, with the goal to investigate how much coding and non-coding sequence features contribute to the variations in mRNA expression, and in what manner they act together...

  17. A Candida albicans gene expressed in Saccharomyces cerevisiae results in a distinct pattern of mRNA processing.

    PubMed

    Iborra, A; Sentandreu, R; Gozalbo, D

    1996-09-01

    Two plasmids (derived from YCplac22 and YEplac112) carrying a Candida albicans gene (including the 5' non-coding promoter sequences) coding for a 30 kDa membrane-bound protein, were used to transform Saccharomyces cerevisiae cells. A 30 kDa protein was immunodetected by Western blot in the membrane fraction of transformants. Northern analysis showed the presence of three mRNA species (of about 1.1, 0.7 and 0.5 kb) hybridizing with the C. albicans gene as a probe. The same result was obtained using the 5' and 3' regions of the gene as probes, whereas only a 1.1 kb mRNA was found in C. albicans and none was detected in S. cerevisiae control transformants. Thus, heterologous expression of this gene in S. cerevisiae results in a distinct pattern of mRNA processing, either due to the location on plasmid vectors and/or to differences in the mRNA processing systems in the two microorganisms.

  18. Expression Profile of Developmentally Important Genes in preand peri-Implantation Goat Embryos Produced In Vitro

    PubMed Central

    Tahmoorespur, Mojtaba; Hosseini, Sayyed Morteza; Ostadhosseini, Somayyeh; Nasiri, Mohammad Reza; Nasr-Esfahani, Mohammad Hossein

    2016-01-01

    Background: Little is understood about the regulation of gene expression during early goat embryo development. This study investigated the expression profile of 19 genes, known to be critical for early embryo development in mouse and human, at five different stages of goat in vitro embryo development (oocyte, 8-16 cell, morula, day-7 blastocyst, and day 14 blastocyst). Materials and Methods: In this experimental study, stage-specific profiling using real time-quantitative polymerase chain reaction (RT-qPCR) revealed robust and dynamic patterns of stage-specific gene activity that fall into four major clusters depending on their respective mRNA profiles. Results: The gradual pattern of reduction in the maternally stored transcripts without renewal thereafter (cluster-1: Lifr1, Bmpr1, Alk4, Id3, Ctnnb, Akt, Oct4, Rex1, Erk1, Smad1 and 5) implies that their protein products are essential during early cleavages when the goat embryo is silent and reliant to the maternal legacy of mRNA. The potential importance of transcription augment at day-3 (cluster-2: Fzd, c-Myc, Cdc25a, Sox2) or day- 14 (cluster-3: Fgfr4, Nanog) suggests that they are nascent embryonic mRNAs which intimately involved in the overriding of MET or regulation of blastocyst formation, respectively. The observation of two expression peaks at both day-3 and day-14 (cluster-4: Gata4, Cdx2) would imply their potential importance during these two critical stages of preand periimplantation development. Conclusion: Evolutionary comparison revealed that the selected subset of genes has been rewired in goat and human/goat similarity is greater than the mouse/goat or bovine/goat similarities. The developed profiles provide a resource for comprehensive understanding of goat preimplantation development and pluripotent stem cell engineering as well. PMID:27695614

  19. Towards a multi protein and mRNA expression of biological predictive and distinguish model for post stroke depression

    PubMed Central

    Yue, Yingying; Jiang, Haitang; Liu, Rui; Yin, Yingying; Zhang, Yuqun; Liang, Jinfeng; Li, Shenghua; Wang, Jun; Lu, Jianxin; Geng, Deqin; Wu, Aiqin; Yuan, Yonggui

    2016-01-01

    Previous studies suggest that neurotrophic factors participate in the development of stroke and depression. So we investigated the utility of these biomarkers as predictive and distinguish model for post stroke depression (PSD). 159 individuals including PSD, stroke without depression (Non-PSD), major depressive disorder (MDD) and normal control groups were recruited and examined the protein and mRNA expression levels of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptors (VEGFR2), placental growth factor (PIGF), insulin-like growth factor (IGF-1) and insulin-like growth factor receptors (IGF-1R). The chi-square test was used to evaluate categorical variable, while nonparametric test and one-way analysis of variance were applied to continuous variables of general characteristics, clinical and biological changes. In order to explore the predictive and distinguish role of these factors in PSD, discriminant analysis and receiver operating characteristic curve were calculated. The four groups had statistical differences in these neurotrophic factors (all P < 0.05) except VEGF concentration and IGF-1R mRNA (P = 0.776, P = 0.102 respectively). We identified these mRNA expression and protein analytes with general predictive performance for PSD and Non-PSD groups [area under the curve (AUC): 0.805, 95% CI, 0.704-0.907, P < 0.001]. Importantly, there is an excellent predictive performance (AUC: 0.984, 95% CI, 0.964-1.000, P < 0.001) to differentiate PSD patients from MDD patients. This was the first study to explore the changes of neurotrophic factors family in PSD patients, the results intriguingly demonstrated that the combination of protein and mRNA expression of biological factors could use as a predictive and discriminant model for PSD. PMID:27527872

  20. Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure

    SciTech Connect

    Tin-Tin-Win-Shwe Mitsushima, Dai; Yamamoto, Shoji; Fukushima, Atsushi; Funabashi, Toshiya; Kobayashi, Takahiro; Fujimaki, Hidekazu

    2008-01-15

    Recently, there have been increasing reports that nano-sized component of particulate matter can reach the brain and may be associated with neurodegenerative diseases. Previously, our laboratory has studied the effect of intranasal instillation of nano-sized carbon black (CB) (14 nm and 95 nm) on brain cytokine and chemokine mRNA expressions and found that 14-nm CB increased IL-1{beta}, TNF-{alpha}, CCL2 and CCL3 mRNA expressions in the olfactory bulb, not in the hippocampus of mice. To investigate the effect of a single administration of nanoparticles on neurotransmitters and proinflammatory cytokines in a mouse olfactory bulb, we performed in vivo microdialysis and real-time PCR methods. Ten-week-old male BALB/c mice were implanted with guide cannula in the right olfactory bulb and, 1 week later, were instilled vehicle or CB (14 nm, 250 {mu}g) intranasally. Six hours after the nanoparticle instillation, the mice were intraperitoneally injected with normal saline or 50 {mu}g of bacteria cell wall component lipoteichoic acid (LTA), which may potentiate CB-induced neurologic effect. Extracellular glutamate and glycine levels were significantly increased in the olfactory bulb of CB-instilled mice when compared with vehicle-instilled control mice. Moreover, we found that LTA further increased glutamate and glycine levels. However, no alteration of taurine and GABA levels was observed in the olfactory bulb of the same mice. We also detected immunological changes in the olfactory bulb 11 h after vehicle or CB instillation and found that IL-1{beta} mRNA expression was significantly increased in CB- and LTA-treated mice when compared with control group