TP53 and ATM mRNA expression in skin and skeletal muscle after low-level laser exposure.
Guedes de Almeida, Luciana; Sergio, Luiz Philippe da Silva; de Paoli, Flavia; Mencalha, Andre Luiz; da Fonseca, Adenilson de Souza
2017-08-01
Low-level lasers are widespread in regenerative medicine, but the molecular mechanisms involved in their biological effects are not fully understood, particularly those on DNA stability. Therefore, this study aimed to investigate mRNA expression of genes related to DNA genomic stability in skin and skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. For this, TP53 (Tumor Protein 53) and ATM (Ataxia Telangiectasia Mutated gene) mRNA expressions were evaluated by real-time quantitative PCR (RT-qPCR) technique 24 hours after low-level red and infrared laser exposure. Our data showed that relative TP53 mRNA expression was not significantly altered in both tissues exposed to lasers. For ATM, relative mRNA expression in skin tissue was not significantly altered, but in muscle tissue, laser exposure increased relative ATM mRNA expression. Low-level red and infrared laser radiations alter ATM mRNA expression related to DNA stability in skeletal muscle tissue.
mRNA stability in mammalian cells.
Ross, J
1995-01-01
This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413
Zybura-Broda, Katarzyna; Wolder-Gontarek, Malgorzata; Ambrozek-Latecka, Magdalena; Choros, Artur; Bogusz, Agnieszka; Wilemska-Dziaduszycka, Joanna; Rylski, Marcin
2018-01-01
Matrix metalloproteinase-9 (Mmp-9) is involved in different general and cell-type–specific processes, both in neuronal and non-neuronal cells. Moreover, it is implicated in an induction or progression of various human disorders, including diseases of the central nervous system. Mechanisms regulating activity-driven Mmp-9 expression in neurons are still not fully understood. Here, we show that stabilization of Mmp-9 mRNA is one of the factors responsible for the neuronal activity-evoked upregulation of Mmp-9 mRNA expression in hippocampal neurons. Furthermore, we demonstrate that the molecular mechanism related to this stabilization is dependent on the neuronal seizure-triggered transiently increased binding of the mRNA stability-inducing protein, HuR, to ARE1 and ARE4 motifs of the 3′UTR for Mmp-9 mRNA as well as the stably augmented association of another mRNA-stabilizing protein, HuB, to the ARE1 element of the 3′UTR. Intriguingly, we demonstrate further that both HuR and HuB are crucial for an incidence of Mmp-9 mRNA stabilization after neuronal activation. This study identifies Mmp-9 mRNA as the first HuB target regulated by mRNA stabilization in neurons. Moreover, these results are the first to describe an existence of HuR-dependent mRNA stabilization in neurons of the brain. PMID:29686606
Tsuruta, Lilian Rumi; Lopes Dos Santos, Mariana; Yeda, Fernanda Perez; Okamoto, Oswaldo Keith; Moro, Ana Maria
2016-12-01
Genetic characterization of protein-producing clones represents additional value to cell line development. In the present study, ten Per.C6 clones producing a Rebmab100 monoclonal antibody were selected using two cloning methods: six clones originated from limiting dilution cloning and four by the automated colony picker ClonePix FL. A stability program was performed for 50 generations, including 4 batches distributed along the timeframe to determine specific productivity (Qp) maintenance. Four stable clones (two from limiting dilution and two from ClonePix FL) were further evaluated. The relative mRNA expression levels of both heavy chain (HC) and light chain (LC) genes were verified at generations 0, 30-35, and 50-55 of the stability program. At generations 0 and 30-35, LC gene expression level was higher than HC gene, whereas at generation 50-55, the opposite prevailed. A high correlation was observed between Qp and HC or LC mRNA expression level for all clones at each generation analyzed along the continuous culture. The mRNA stability study was performed at steady-state culture. The LC gene displayed a higher half-life and lower decay constant than HC gene, accounting for the higher observed expression level of LC mRNA in comparison to HC mRNA. Clone R6 was highlighted due its high Qp, mRNA expression levels, and mRNA stability. Besides the benefits of applying genetic characterization for the selection of stable and high-producing clones, the present study shows for the first time the correlation between Qp and HC or LC expression levels and also mRNA stability in clones derived from human cell line Per.C6(®).
Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazarus, Kyren A.; Environmental and Biotechnology Centre, Swinburne University, Hawthorn, Victoria 3122; Zhao, Zhe
2013-08-30
Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels highermore » in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.« less
Basler, Tina; Holtmann, Helmut; Abel, Jens; Eckstein, Torsten; Baumer, Wolfgang; Valentin-Weigand, Peter; Goethe, Ralph
2010-01-01
Despite the critical role that TNF-alpha plays in the containment of mycobacterial infection, the mechanisms involved in regulation of its expression by mycobacteria are poorly defined. We addressed this question by studying MAP, which causes a chronic enteritis in ruminants and is linked to human Crohn's disease. We found that in MAP infected macrophages, TNF-alpha gene expression was substantially lower than in macrophages infected with nonpathogenic MS or stimulated with LPS. TNF-alpha transcriptional one could not fully explain the differential TNF-alpha mRNA expression, suggesting that there must be a substantial contribution by post-transcriptional mechanisms.Accordingly, we found reduced TNF-alpha mRNA stability in MAP-infected macrophages. Further comparison of MAP- and MS-infected macrophages revealed that lower TNF-alpha mRNA stability combined with lower mRNA and protein expression in MAP-infected macrophages correlated with lower p38 MAPK phosphorylation. These findings were independent of viability of MAP and MS. We demonstrate that the major mycobacterial cell-wall lipoglycan LM of MAP and MS induced TNF-alpha mRNA transcription,but only the MS-LM induced p38 MAPK-dependent transcript stabilization. Overall, our data suggest that pathogenic mycobacteria cause weak p38 and TNF-alpha mRNA stabilization as a result of their structural cell-wall components such as LM and thereby, restrict TNF-alpha expression in macrophages.
Vumbaca, Frank; Phoenix, Kathryn N.; Rodriguez-Pinto, Daniel; Han, David K.; Claffey, Kevin P.
2008-01-01
Vascular endothelial growth factor (VEGF) is a key angiogenic factor expressed under restricted nutrient and oxygen conditions in most solid tumors. The expression of VEGF under hypoxic conditions requires transcription through activated hypoxia-inducible factor 1 (HIF-1), increased mRNA stability, and facilitated translation. This study identified double-stranded RNA-binding protein 76/NF90 (DRBP76/NF90), a specific isoform of the DRBP family, as a VEGF mRNA-binding protein which plays a key role in VEGF mRNA stability and protein synthesis under hypoxia. The DRBP76/NF90 protein binds to a human VEGF 3′ untranslated mRNA stability element. RNA interference targeting the DRBP76/NF90 isoform limited hypoxia-inducible VEGF mRNA and protein expression with no change in HIF-1-dependent transcriptional activity. Stable repression of DRBP76/NF90 in MDA-MB-435 breast cancer cells demonstrated reduced polysome-associated VEGF mRNA levels under hypoxic conditions and reduced mRNA stability. Transient overexpression of the DRBP76/NF90 protein increased both VEGF mRNA and protein levels synthesized under normoxic and hypoxic conditions. Cells with stable repression of the DRBP76/NF90 isoform showed reduced tumorigenic and angiogenic potential in an orthotopic breast tumor model. These data demonstrate that the DRBP76/NF90 isoform facilitates VEGF expression by promoting VEGF mRNA loading onto polysomes and translation under hypoxic conditions, thus promoting breast cancer growth and angiogenesis in vivo. PMID:18039850
Connections Underlying Translation and mRNA Stability.
Radhakrishnan, Aditya; Green, Rachel
2016-09-11
Gene expression and regulation in organisms minimally depends on transcription by RNA polymerase and on the stability of the RNA product (for both coding and non-coding RNAs). For coding RNAs, gene expression is further influenced by the amount of translation by the ribosome and by the stability of the protein product. The stabilities of these two classes of RNA, non-coding and coding, vary considerably: tRNAs and rRNAs tend to be long lived while mRNAs tend to be more short lived. Even among mRNAs, however, there is a considerable range in stability (ranging from seconds to hours in bacteria and up to days in metazoans), suggesting a significant role for stability in the regulation of gene expression. Here, we review recent experiments from bacteria, yeast and metazoans indicating that the stability of most mRNAs is broadly impacted by the actions of ribosomes that translate them. Ribosomal recognition of defective mRNAs triggers "mRNA surveillance" pathways that target the mRNA for degradation [Shoemaker and Green (2012) ]. More generally, even the stability of perfectly functional mRNAs appears to be dictated by overall rates of translation by the ribosome [Herrick et al. (1990), Presnyak et al. (2015) ]. Given that mRNAs are synthesized for the purpose of being translated into proteins, it is reassuring that such intimate connections between mRNA and the ribosome can drive biological regulation. In closing, we consider the likelihood that these connections between protein synthesis and mRNA stability are widespread or whether other modes of regulation dominate the mRNA stability landscape in higher organisms. Copyright © 2016. Published by Elsevier Ltd.
Ferron, Laurent; Davies, Anthony; Page, Karen M.; Cox, David J.; Leroy, Jerôme; Waithe, Dominic; Butcher, Adrian J.; Sellaturay, Priya; Bolsover, Steven; Pratt, Wendy S.; Moss, Fraser J.; Dolphin, Annette C.
2009-01-01
The role(s) of the novel stargazin-like γ-subunit proteins remain controversial. We have shown previously that the neuron-specific γ7 suppresses the expression of certain calcium channels, particularly CaV2.2, and is therefore unlikely to operate as a calcium channel subunit. We now show that the effect of γ7 on CaV2.2 expression is via an increase in the degradation rate of CaV2.2 mRNA, and hence a reduction of CaV2.2 protein level. Furthermore, exogenous expression of γ7 in PC12 cells also decreased the endogenous CaV2.2 mRNA level. Conversely, knockdown of endogenous γ7 with short-hairpin RNAs produced a reciprocal enhancement of CaV2.2 mRNA stability and an increase in endogenous calcium currents in PC12 cells. Moreover, both endogenous and expressed γ7 are present on intracellular membranes, rather than the plasma membrane. The cytoplasmic C-terminus of γ7 is essential for all its effects, and we show that γ7 binds directly via its C-terminus to a ribonucleoprotein (hnRNP A2), which also binds to a motif in CaV2.2 mRNA, and is associated with native CaV2.2 mRNA in PC12 cells. The expression of hnRNP A2 enhances CaV2.2 IBa and this enhancement is prevented by a concentration of γ7 that alone has no effect on IBa. The effect of γ7 is selective for certain mRNAs as it had no effect on α2δ-2 mRNA stability, but it decreased the mRNA stability for the potassium-chloride co-transporter, KCC1, which contains a similar hnRNP A2 binding motif to that in CaV2.2 mRNA. Our results indicate that γ7 plays a role in stabilizing CaV2.2 mRNA. PMID:18923037
Tristetraprolin regulates the expression of the human inducible nitric-oxide synthase gene.
Fechir, Marcel; Linker, Katrin; Pautz, Andrea; Hubrich, Thomas; Förstermann, Ulrich; Rodriguez-Pascual, Fernando; Kleinert, Hartmut
2005-06-01
The expression of human inducible NO synthase (iNOS) is regulated both by transcriptional and post-transcriptional mechanisms. Stabilization of mRNAs often depends on activation of p38 mitogen-activated protein kinase (p38 MAPK). In human DLD-1 cells, inhibition of p38 MAPK by the compound 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580) or by overexpression of a dominant-negative p38 MAPKalpha protein resulted in a reduction of human iNOS mRNA and protein expression, whereas human iNOS promoter activity was not affected. An important RNA binding protein regulated by the p38 MAPK pathway and involved in the regulation of the stability of several mRNAs is tristetraprolin. RNase protection, quantitative real-time polymerase chain reaction, and Western blot experiments showed that cytokines used to induce iNOS expression in DLD-1 cells also enhanced tristetraprolin expression. SB203580 incubation reduced cytokine-mediated enhancement of tristetraprolin expression. Overexpression or down-regulation of tristetraprolin in stably transfected DLD-1- or A549/8 cells consistently resulted in enhanced or reduced iNOS expression by modulating iNOS-mRNA stability. In UV cross-linking experiments, recombinant tristetraprolin did not interact with the human iNOS mRNA. However, coimmunoprecipitation experiments showed interaction of tristetraprolin with the KH-type splicing regulatory protein (KSRP), which is known to recruit mRNAs containing AU-rich elements to the exosome for degradation. This tristetraprolin-KSRP interaction was enhanced by cytokines and reduced by SB203580 treatment. We conclude that tristetraprolin positively regulates human iNOS expression by enhancing the stability of human iNOS mRNA. Because tristetraprolin does not directly bind to the human iNOS mRNA but interacts with KSRP, tristetraprolin is likely to stabilize iNOS mRNA by capturing the KSRP-exosome complex.
Maternal Nanos-Dependent RNA Stabilization in the Primordial Germ Cells of Drosophila Embryos.
Sugimori, Seiko; Kumata, Yuji; Kobayashi, Satoru
2018-01-01
Nanos (Nos) is an evolutionary conserved protein expressed in the germline of various animal species. In Drosophila, maternal Nos protein is essential for germline development. In the germline progenitors, or the primordial germ cells (PGCs), Nos binds to the 3' UTR of target mRNAs to repress their translation. In contrast to this prevailing role of Nos, here we report that the 3' UTR of CG32425 mRNA mediates Nos-dependent RNA stabilization in PGCs. We found that the level of mRNA expressed from a reporter gene fused to the CG32425 3' UTR was significantly reduced in PGCs lacking maternal Nos (nos PGCs) as compared with normal PGCs. By deleting the CG32425 3' UTR, we identified the region required for mRNA stabilization, which includes Nos-binding sites. In normal embryos, CG32425 mRNA was maternally supplied into PGCs and remained in this cell type during embryogenesis. However, as expected from our reporter assay, the levels of CG32425 mRNA and its protein product expressed in nos PGCs were lower than in normal PGCs. Thus, we propose that Nos protein has dual functions in translational repression and stabilization of specific RNAs to ensure proper germline development. © 2017 Japanese Society of Developmental Biologists.
Li, Jinming
2017-01-01
Cyclin D1 is a critical regulator of cell cycle progression and works at the G1 to S-phase transition. Here, we report the isolation and characterization of the novel c-Myc-regulated lncRNA LAST (LncRNA-Assisted Stabilization of Transcripts), which acts as a CCND1 mRNA stabilizer. Mechanistically, LAST was shown to cooperate with CNBP to bind to the 5′UTR of CCND1 mRNA to protect against possible nuclease targeting. In addition, data from CNBP RIP-seq and LAST RNA-seq showed that CCND1 mRNA might not be the only target of LAST and CNBP; three additional mRNAs were shown to be post-transcriptional targets of LAST and CNBP. In a xenograft model, depletion of LAST diminished and ectopic expression of LAST induced tumor formation, which are suggestive of its oncogenic function. We thus report a previously unknown lncRNA involved in the fine-tuned regulation of CCND1 mRNA stability, without which CCND1 exhibits, at most, partial expression. PMID:29199958
[Effect of Bushen Huoxue Compound on Retinal Müller Cells in High Glucose or AGEs Conditions].
Xie, Xue-jun; Song, Ming-xia; Zhang, Mei; Qin, Wei; Wan, Li; Fang, Yang
2015-06-01
To explore the effect of Bushen Huoxue Compound (BHC) on lactate dehydrogenase (LDH) leakage, expressions of vascular endothelial growth factor (VEGF) and VEGF mRNA in retinal Muller cells under high glucose condition or advanced glycosylation end products (AGEs) condition by using serum pharmacological method. The retinal Müller cells of 5-7 days post-natal Sprague Dawley (SD) rats were cultured with modified enzyme-digestion method. Purified retinal Muller cells were cultured in normal conditions, high glucose condition (50 mmol/L) or AGEs (50 mg/L and 100 mg/L) conditions, and BHC-containing serum was added to culture medium. The LDH leakage and VEGF expressions were measured by enzyme-linked immunosorbent assay (ELISA). In addition, the relative expression of VEGF mRNA was tested by reverse transcription polymerase chain reaction (RT-PCR). Compared with the normal control group, expressions of VEGF and VEGF mRNA were significantly increased in the high glucose group, the low dose AGEs group and the high dose AGEs group (all P < 0.01). The LDH leakage was obviously increased in the high dose AGEs group, when compared with the normal control group and the high glucose group (P < 0.01). The LDH leakage, expressions of VEGF and VEGF mRNA were obviously decreased by BHC-containing serum both in high glucose and AGEs conditions (P < 0.05, P < 0.01). BHC-containing serum had no significant effect on the LDH leakage and expressions of VEGF and VEGF mRNA in normal conditions (P > 0.05). AGEs intervention could obviously lower the stability of Müller cell membrane. Up-regulated expressions of VEGF and VEGF mRNA in cultured Müller cells could be induced by AGEs or high glucose. BHC-containing serum could stabilize the stability of Müller cell membrane, inhibit the transcription of VEGF mRNA and decrease the protein expression of VEGF, which might be one of important mechanisms for preventing and treating diabetic retinopathy.
Lee, Jee Hoon; Kim, Hyunmi; Woo, Joo Hong; Joe, Eun-hye; Jou, Ilo
2012-02-18
The peroxisome proliferator-activated receptor (PPAR)-α activator, 5,8,11,14-eicosatetraynoic acid (ETYA), is an arachidonic acid analog. It is reported to inhibit up-regulation of pro-inflammatory genes; however, its underlying mechanism of action is largely unknown. In the present study, we focused on the inhibitory action of ETYA on the expression of the chemokine, CCL2/MCP-1, which plays a key role in the initiation and progression of inflammation. To determine the effect of ETYA, primary cultured rat astrocytes and microglia were stimulated with IFN-γ in the presence of ETYA and then, expression of CCL2/MCP-1 and MAPK phosphatase (MKP-1) were determined using RT-PCR and ELISA. MKP-1 mRNA stability was evaluated by treating actinomycin D. The effect of MKP-1 and human antigen R (HuR) was analyzed by using specific siRNA transfection system. The localization of HuR was analyzed by immunocytochemistry and subcellular fractionation experiment. We found that ETYA suppressed CCL2/MCP-1 transcription and secretion of CCL2/MCP-1 protein through up-regulation of MKP-1mRNA levels, resulting in suppression of c-Jun N-terminal kinase (JNK) phosphorylation and activator protein 1 (AP1) activity in IFN-γ-stimulated brain glial cells. Moreover, these effects of ETYA were independent of PPAR-α. Experiments using actinomycin D revealed that the ETYA-induced increase in MKP-1 mRNA levels reflected an increase in transcript stability. Knockdown experiments using small interfering RNA demonstrated that this increase in MKP-1 mRNA stability depended on HuR, an RNA-binding protein known to promote enhanced mRNA stability. Furthermore, ETYA-induced, HuR-mediated mRNA stabilization resulted from HuR-MKP-1 nucleocytoplasmic translocation, which served to protect MKP-1 mRNA from the mRNA degradation machinery. ETYA induces MKP-1 through HuR at the post-transcriptional level in a receptor-independent manner. The mechanism revealed here suggests eicosanoids as potential therapeutic modulators of inflammation that act through a novel target.
Perron, Gabrielle; Jandaghi, Pouria; Solanki, Shraddha; Safisamghabadi, Maryam; Storoz, Cristina; Karimzadeh, Mehran; Papadakis, Andreas I; Arseneault, Madeleine; Scelo, Ghislaine; Banks, Rosamonde E; Tost, Jorg; Lathrop, Mark; Tanguay, Simon; Brazma, Alvis; Huang, Sidong; Brimo, Fadi; Najafabadi, Hamed S; Riazalhosseini, Yasser
2018-05-08
Widespread remodeling of the transcriptome is a signature of cancer; however, little is known about the post-transcriptional regulatory factors, including RNA-binding proteins (RBPs) that regulate mRNA stability, and the extent to which RBPs contribute to cancer-associated pathways. Here, by modeling the global change in gene expression based on the effect of sequence-specific RBPs on mRNA stability, we show that RBP-mediated stability programs are recurrently deregulated in cancerous tissues. Particularly, we uncovered several RBPs that contribute to the abnormal transcriptome of renal cell carcinoma (RCC), including PCBP2, ESRP2, and MBNL2. Modulation of these proteins in cancer cell lines alters the expression of pathways that are central to the disease and highlights RBPs as driving master regulators of RCC transcriptome. This study presents a framework for the screening of RBP activities based on computational modeling of mRNA stability programs in cancer and highlights the role of post-transcriptional gene dysregulation in RCC. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Farnell, Yuhua Z; Ing, Nancy H
2003-03-01
The purpose of this study was to identify an endometrial cell line that maintained the E2 up-regulation of estrogen receptor (ER) mRNA by enhanced message stability and to assess its dependence on ER protein. Estradiol (E2) effects on gene expression were measured in three cell lines: one immortalized from sheep endometrial stroma (ST) and two from human endometrial adenocarcinomas (Ishikawa and ECC-1). E2 up-regulated ER mRNA levels in ST and Ishikawa cells, but down-regulated ER mRNA levels in ECC-1 cells. E2 up-regulated progesterone receptor (PR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and transforming growth factor-alpha (TGF-alpha) in both Ishikawa and ECC-1 cells. The selective estrogen receptor modulator ICI 182,780 antagonized the E2-induced up-regulation of ER and/or PR mRNA levels in all three cells, while another, GW 5638, antagonized the up-regulation of PR mRNA in Ishikawa and ECC-1 cells. In mechanistic studies, E2 had no effect on ER mRNA stability in ST cells and it destabilized ER mRNA in ECC-1 cells. Thus, Ishikawa cells appear to be the most physiologically relevant cell line in which to study the up-regulation of ER mRNA levels by enhanced mRNA stability. Its antagonism by ICI 182,780 reveals that ER protein is involved in this E2 response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ji-Yeon; Chung, Tae-Wook; Choi, Hee-Jung
2014-05-02
Highlights: • We examined the inhibition of N-Benzylcantharidinamide on MMP-9-mediated invasion. • Unlike cantharidin, N-Benzylcantharidinamide has very low toxicity on Hep3B cells. • The reduced MMP-9 expression was due to HuR-mediated decrease of mRNA stability. • We suggest N-Benzylcantharidinamide as a novel inhibitor of MMP-9-related invasion. - Abstract: Invasion and metastasis are major causes of malignant tumor-associated mortality. The present study aimed to investigate the molecular events underlying inhibitory effect of N-Benzylcantharidinamide, a novel synthetic analog of cantharidin, on matrix metalloproteinase-9 (MMP-9)-mediated invasion in highly metastatic hepatocellular carcinoma Hep3B cells. In this investigation, among six analogs of cantharidin, only N-Benzylcantharidinamidemore » has the inhibitory action on MMP-9 expression at non-toxic dose. The MMP-9 expression and invasion of Hep3B cells were significantly suppressed by treatment of N-Benzylcantharidinamide in a dose-dependent manner. On the other hand, the transcriptional activity of MMP-9 promoter and nuclear levels of NF-κB and AP-1 as the main transcriptional factors inducing MMP-9 expression were not affected by it although the level of MMP-9 mRNA was reduced by treatment of N-Benzylcantharidinamide. Interestingly, the stability of MMP-9 mRNA was significantly reduced by N-Benzylcantharidinamide-treatment. In addition, the cytosolic translocation of human antigen R (HuR), which results in the increase of MMP-9 mRNA stability through interaction of HuR with 3′-untranslated region of MMP-9 mRNA, was suppressed by treatment of N-Benzylcantharidinamide, in a dose-dependent manner. Taken together, it was demonstrated, for the first time, that N-Benzylcantharidinamide suppresses MMP-9 expression by reducing HuR-mediated MMP-9 mRNA stability for the inhibition of invasive potential in highly metastatic Hep3B cells.« less
Balkrishna, Sarojini; Bröer, Angelika; Welford, Scott M.; Hatzoglou, Maria; Bröer, Stefan
2015-01-01
Background Despite homeostatic pH regulation, systemic and cellular pH changes take place and strongly influence metabolic processes. Transcription of the glutamine transporter SNAT3 (Slc38a3) for instance is highly up-regulated in the kidney during metabolic acidosis to provide glutamine for ammonia production. Methods Slc38a3 promoter activity and messenger RNA stability were measured in cultured cells in response to different extracellular pH values. Results Up-regulation of SNAT3 mRNA was mediated both by the stabilization of its mRNA and by the up-regulation of gene transcription. Stabilisation of the mRNA involved a pH-response element, while enhanced transcription made use of a second pH-sensitive Sp1 binding site in addition to a constitutive Sp1 binding site. Transcriptional regulation dominated the early response to acidosis, while mRNA stability was more important for chronic adaptation. Tissue-specific expression of SNAT3, by contrast, appeared to be controlled by promoter methylation and histone modifications. Conclusions Regulation of SNAT3 gene expression by extracellular pH involves post-transcriptional and transcriptional mechanisms, the latter being distinct from the mechanisms that control the tissue-specific expression of the gene. PMID:24854847
Obana, Nozomu; Shirahama, Yu; Abe, Kimihiro; Nakamura, Kouji
2010-09-01
The small RNA (sRNA), VR-RNA that is directly regulated by the VirR/VirS two-component system, regulates many genes including toxin genes such as collagenase (colA) and phospholipase C (plc) in Clostridium perfringens. Although the VR-RNA 3' region is sufficient to regulate the colA and plc genes, the molecular mechanism of toxin gene regulation by VR-RNA remains unclear. Here, we found that colA mRNA is cleaved at position -79 and -78 from the A of the first codon (ATG) in the presence of VR-RNA. The processed transcripts were stable compared with longer intact transcripts. On the other hand, colA mRNA was labile in a VR-RNA-deficient strain, and processed transcripts were undetectable. The stability and processing of colA mRNA were restored by transformation of the 3' region of VR-RNA-expression vector. The 3' region of VR-RNA and colA mRNA had significant complementation and interacted in vitro. These results show that VR-RNA base pairs with colA mRNA and induces cleavage in the 5' untranslated region (UTR) of colA mRNA, which leads to the stabilization of colA mRNA and the activation of colA expression. © 2010 Blackwell Publishing Ltd.
Shin, Young C.; Desrosiers, Ronald C.
2011-01-01
Open reading frame 57 (ORF57) of gamma-2 herpesviruses is a key regulator of viral gene expression. It has been reported to enhance the expression of viral genes by transcriptional, posttranscriptional, or translational activation mechanisms. Previously we have shown that the expression of gH and gL of rhesus monkey rhadinovirus (RRV), a close relative of the human Kaposi's sarcoma-associated herpesvirus (KSHV), could be dramatically rescued by codon optimization as well as by ORF57 coexpression (J. P. Bilello, J. S. Morgan, and R. C. Desrosiers, J. Virol. 82:7231–7237, 2008). We show here that ORF57 coexpression and codon optimization had similar effects, except that the rescue of expression by codon optimization was temporally delayed relative to that of ORF57 coexpression. The transfection of gL mRNA directly into cells with or without ORF57 coexpression and with or without codon optimization recapitulated the effects of these modes of induction on transfected DNA. These findings suggested an important role for the enhancement of mRNA stability and/or the translation of mRNA for these very different modes of induced expression. This conclusion was confirmed by several different measures of gH and gL mRNA stability and accumulation with or without ORF57 coexpression and with or without codon optimization. Our results indicate that RRV gH and gL expression is severely limited by the stability of the mRNA and that ORF57 coexpression and codon optimization independently induce gH and gL expression principally by allowing accumulation and translation of these mRNAs. PMID:21613403
Morita, Miyo Terao; Tanaka, Yoshiyuki; Kodama, Takashi S.; Kyogoku, Yoshimasa; Yanagi, Hideki; Yura, Takashi
1999-01-01
Induction of heat shock proteins in Escherichia coli is primarily caused by increased cellular levels of the heat shock σ-factor σ32 encoded by the rpoH gene. Increased σ32 levels result from both enhanced synthesis and stabilization. Previous work indicated that σ32 synthesis is induced at the translational level and is mediated by the mRNA secondary structure formed within the 5′-coding sequence of rpoH, including the translation initiation region. To understand the mechanism of heat induction of σ32 synthesis further, we analyzed expression of rpoH–lacZ gene fusions with altered stability of mRNA structure before and after heat shock. A clear correlation was found between the stability and expression or the extent of heat induction. Temperature-melting profiles of mRNAs with or without mutations correlated well with the expression patterns of fusion genes carrying the corresponding mutations in vivo. Furthermore, temperature dependence of mRNA–30S ribosome–tRNAfMet complex formation with wild-type or mutant mRNAs in vitro agreed well with that of the expression of gene fusions in vivo. Our results support a novel mechanism in which partial melting of mRNA secondary structure at high temperature enhances ribosome entry and translational initiation without involvement of other cellular components, that is, intrinsic mRNA stability controls synthesis of a transcriptional regulator. PMID:10090722
Urokinase receptor expression involves tyrosine phosphorylation of phosphoglycerate kinase.
Shetty, Praveenkumar; Velusamy, Thirunavukkarasu; Bhandary, Yashodhar P; Liu, Ming C; Shetty, Sreerama
2010-02-01
The interaction of urokinase-type plasminogen activator (uPA) with its receptor, uPAR, plays a central role in several pathophysiological processes, including cancer. uPA induces its own cell surface receptor expression through stabilization of uPAR mRNA. The mechanism involves binding of a 51 nt uPAR mRNA coding sequence with phosphoglycerate kinase (PGK) to down regulate cell surface uPAR expression. Tyrosine phosphorylation of PGK mediated by uPA treatment enhances uPAR mRNA stabilization. In contrast, inhibition of tyrosine phosphorylation augments PGK binding to uPAR mRNA and attenuates uPA-induced uPAR expression. Mapping the specific peptide region of PGK indicated that its first quarter (amino acids 1-100) interacts with uPAR mRNA. To determine if uPAR expression by uPA is regulated through activation of tyrosine residues of PGK, we mutated the specific tyrosine residue and tested mutant PGK for its ability to interfere with uPAR expression. Inhibition of tyrosine phosphorylation by mutating Y76 residue abolished uPAR expression induced by uPA treatment. These findings collectively demonstrate that Y76 residue present in the first quarter of the PGK molecule is involved in lung epithelial cell surface uPAR expression. This region can effectively mimic the function of a whole PGK molecule in inhibiting tumor cell growth.
Prostacyclin synthase expression and epigenetic regulation in nonsmall cell lung cancer.
Cathcart, Mary-Clare; Gray, Steven G; Baird, Anne-Marie; Boyle, Elaine; Gately, Kathy; Kay, Elaine; Cummins, Robert; Pidgeon, Graham P; O'Byrne, Kenneth J
2011-11-15
Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. PGIS expression was reduced/absent in human NSCLC protein samples (P < .0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P = .004) and in male patients (P < .05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P < .001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC. Copyright © 2011 American Cancer Society.
Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel
2016-04-26
Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.
Wilson, G M; Vasa, M Z; Deeley, R G
1998-05-01
The mRNA encoding the human low density lipoprotein (LDL) receptor is transiently stabilized after phorbol ester treatment of HepG2 cells and has been shown to associate with components of the cytoskeleton in this cell line (G. M. Wilson, E. A. Roberts, and R. G. Deeley, J. Lipid Res. 1997. 38: 437-446). Using an episomal expression system, fragments of the 3' untranslated region (3'UTR) of LDL receptor mRNA were transcribed in fusion with the coding region of beta-globin mRNA in HepG2 cells. Analyses of the decay kinetics of these beta-globin-LDL receptor fusion mRNA deletion mutants showed that sequences in the proximal 3'UTR of LDL receptor mRNA including several AU-rich elements (AREs) were sufficient to confer short constitutive mRNA half-life in the heterologous system. Stabilization of LDL receptor mRNA in the presence of PMA required sequences in the distal 3'UTR, at or near three Alu-like repetitive elements. Furthermore, the 3'UTR of LDL receptor mRNA conferred cytoskeletal association on the otherwise unassociated beta-globin mRNA, by a mechanism involving at least two distinct RNA elements. Comparisons of decay kinetics and subcellular localization of endogenous LDL receptor mRNA and beta-globin-LDL receptor mRNA fusions in HepG2 cells have demonstrated that several cis-acting elements in the receptor 3'UTR contribute to post-transcriptional regulation of receptor expression, and provide further support for involvement of the cytoskeleton in the regulation of LDL receptor mRNA turnover.
Huch, Susanne; Müller, Maren; Muppavarapu, Mridula; Gommlich, Jessie; Balagopal, Vidya; Nissan, Tracy
2016-10-15
The rate and regulation of mRNA decay are major elements in the proper control of gene expression. Edc3 and Lsm4 are two decapping activator proteins that have previously been shown to function in the assembly of RNA granules termed P bodies. Here, we show that deletion of edc3, when combined with a removal of the glutamine/asparagine rich region of Lsm4 (edc3Δ lsm4ΔC) reduces mRNA stability and alters pathways of mRNA degradation. Multiple tested mRNAs exhibited reduced stability in the edc3Δ lsm4ΔC mutant. The destabilization was linked to an increased dependence on Ccr4-mediated deadenylation and mRNA decapping. Unlike characterized mutations in decapping factors that either are neutral or are able to stabilize mRNA, the combined edc3Δ lsm4ΔC mutant reduced mRNA stability. We characterized the growth and activity of the major mRNA decay systems and translation in double mutant and wild-type yeast. In the edc3Δ lsm4ΔC mutant, we observed alterations in the levels of specific mRNA decay factors as well as nuclear accumulation of the catalytic subunit of the decapping enzyme Dcp2. Hence, we suggest that the effects on mRNA stability in the edc3Δ lsm4ΔC mutant may originate from mRNA decay protein abundance or changes in mRNPs, or alternatively may imply a role for P bodies in mRNA stabilization. © 2016. Published by The Company of Biologists Ltd.
Huch, Susanne; Müller, Maren; Muppavarapu, Mridula; Gommlich, Jessie; Balagopal, Vidya; Nissan, Tracy
2016-01-01
ABSTRACT The rate and regulation of mRNA decay are major elements in the proper control of gene expression. Edc3 and Lsm4 are two decapping activator proteins that have previously been shown to function in the assembly of RNA granules termed P bodies. Here, we show that deletion of edc3, when combined with a removal of the glutamine/asparagine rich region of Lsm4 (edc3Δ lsm4ΔC) reduces mRNA stability and alters pathways of mRNA degradation. Multiple tested mRNAs exhibited reduced stability in the edc3Δ lsm4ΔC mutant. The destabilization was linked to an increased dependence on Ccr4-mediated deadenylation and mRNA decapping. Unlike characterized mutations in decapping factors that either are neutral or are able to stabilize mRNA, the combined edc3Δ lsm4ΔC mutant reduced mRNA stability. We characterized the growth and activity of the major mRNA decay systems and translation in double mutant and wild-type yeast. In the edc3Δ lsm4ΔC mutant, we observed alterations in the levels of specific mRNA decay factors as well as nuclear accumulation of the catalytic subunit of the decapping enzyme Dcp2. Hence, we suggest that the effects on mRNA stability in the edc3Δ lsm4ΔC mutant may originate from mRNA decay protein abundance or changes in mRNPs, or alternatively may imply a role for P bodies in mRNA stabilization. PMID:27543059
p62/SQSTM1 enhances breast cancer stem-like properties by stabilizing MYC mRNA
Xu, L-Z; Li, S-S; Zhou, W; Kang, Z-J; Zhang, Q-X; Kamran, M; Xu, J; Liang, D-P; Wang, C-L; Hou, Z-J; Wan, X-B; Wang, H-J; Lam, E W-F; Zhao, Z-W; Liu, Q
2017-01-01
Aberrant p62 overexpression has been implicated in breast cancer development. Here, we found that p62 expression was elevated in breast cancer stem cells (BCSCs), including CD44+CD24− fractions, mammospheres, ALDH1+ populations and side population cells. Indeed, short-hairpin RNA (shRNA)-mediated knockdown of p62 impaired breast cancer cells from self-renewing under anchorage-independent conditions, whereas ectopic overexpression of p62 enhanced the self-renewal ability of breast cancer cells in vitro. Genetic depletion of p62 robustly inhibited tumor-initiating frequencies, as well as growth rates of BCSC-derived tumor xenografts in immunodeficient mice. Consistently, immunohistochemical analysis of clinical breast tumor tissues showed that high p62 expression levels were linked to poorer clinical outcome. Further gene expression profiling analysis revealed that p62 was positively correlated with MYC expression level, which mediated the function of p62 in promoting breast cancer stem-like properties. MYC mRNA level was reduced upon p62 deletion by siRNA and increased with p62 overexpression in breast cancer cells, suggesting that p62 positively regulated MYC mRNA. Interestingly, p62 did not transactivate MYC promoter. Instead, p62 delayed the degradation of MYC mRNA by repressing the expression of let-7a and let-7b, thus promoting MYC mRNA stabilization at the post-transcriptional level. Consistently, let-7a and let-7b mimics attenuated p62-mediated MYC mRNA stabilization. Together, these findings unveiled a previously unappreciated role of p62 in the regulation of BCSCs, assigning p62 as a promising therapeutic target for breast cancer treatments. PMID:27345399
Collu-Marchese, Melania; Shuen, Michael; Pauly, Marion; Saleem, Ayesha; Hood, David A
2015-05-19
The ATP demand required for muscle development is accommodated by elevations in mitochondrial biogenesis, through the co-ordinated activities of the nuclear and mitochondrial genomes. The most important transcriptional activator of the mitochondrial genome is mitochondrial transcription factor A (Tfam); however, the regulation of Tfam expression during muscle differentiation is not known. Thus, we measured Tfam mRNA levels, mRNA stability, protein expression and localization and Tfam transcription during the progression of muscle differentiation. Parallel 2-fold increases in Tfam protein and mRNA were observed, corresponding with 2-3-fold increases in mitochondrial content. Transcriptional activity of a 2051 bp promoter increased during this differentiation period and this was accompanied by a 3-fold greater Tfam mRNA stabilization. Interestingly, truncations of the promoter at 1706 bp, 978 bp and 393 bp promoter all exhibited 2-3-fold higher transcriptional activity than the 2051 bp construct, indicating the presence of negative regulatory elements within the distal 350 bp of the promoter. Activation of AMP kinase augmented Tfam transcription within the proximal promoter, suggesting the presence of binding sites for transcription factors that are responsive to cellular energy state. During differentiation, the accumulating Tfam protein was progressively distributed to the mitochondrial matrix where it augmented the expression of mtDNA and COX (cytochrome c oxidase) subunit I, an mtDNA gene product. Our data suggest that, during muscle differentiation, Tfam protein levels are regulated by the availability of Tfam mRNA, which is controlled by both transcription and mRNA stability. Changes in energy state and Tfam localization also affect Tfam expression and action in differentiating myotubes. © 2015 Authors.
Strategies for Protein Overproduction in Escherichia coli.
ERIC Educational Resources Information Center
Mott, John E.
1984-01-01
Examines heterologous expression in Escherichia coli and the role of regulatory sequences which control gene expression at transcription resulting in abundant production of messenger RNA and regulatory sequences in mRNA which promote efficient translation. Also examines the role of E. coli cells in stabilizing mRNA and protein that is…
Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo
2017-05-04
Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
NASA Astrophysics Data System (ADS)
Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.
2016-07-01
Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.
Post-transcriptional inducible gene regulation by natural antisense RNA.
Nishizawa, Mikio; Ikeya, Yukinobu; Okumura, Tadayoshi; Kimura, Tominori
2015-01-01
Accumulating data indicate the existence of natural antisense transcripts (asRNAs), frequently transcribed from eukaryotic genes and do not encode proteins in many cases. However, their importance has been overlooked due to their heterogeneity, low expression level, and unknown function. Genes induced in responses to various stimuli are transcriptionally regulated by the activation of a gene promoter and post-transcriptionally regulated by controlling mRNA stability and translatability. A low-copy-number asRNA may post-transcriptionally regulate gene expression with cis-controlling elements on the mRNA. The asRNA itself may act as regulatory RNA in concert with trans-acting factors, including various RNA-binding proteins that bind to cis-controlling elements, microRNAs, and drugs. A novel mechanism that regulates mRNA stability includes the interaction of asRNA with mRNA by hybridization to loops in secondary structures. Furthermore, recent studies have shown that the functional network of mRNAs, asRNAs, and microRNAs finely tunes the levels of mRNA expression. The post-transcriptional mechanisms via these RNA-RNA interactions may play pivotal roles to regulate inducible gene expression and present the possibility of the involvement of asRNAs in various diseases.
Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts.
da Silva Neto Trajano, Larissa Alexsandra; Stumbo, Ana Carolina; da Silva, Camila Luna; Mencalha, Andre Luiz; Fonseca, Adenilson S
2016-08-01
Infrared laser therapy is used for skeletal muscle repair based on its biostimulative effect on satellite cells. However, shortening of telomere length limits regenerative potential in satellite cells, which occurs after each cell division cycle. Also, laser therapy could be more effective on non-physiologic tissues. This study evaluated low-level infrared laser exposure effects on mRNA expression from muscle injury repair and telomere stabilization genes in myoblasts in normal and stressful conditions. Laser fluences were those used in clinical protocols. C2C12 myoblast cultures were exposed to low-level infrared laser (10, 35, and 70 J/cm(2)) in standard or normal (10 %) and reduced (2 %) fetal bovine serum concentrations; total RNA was extracted for mRNA expression evaluation from muscle injury repair (MyoD and Pax7) and chromosome stabilization (TRF1 and TRF2) genes by real time quantitative polymerization chain reaction. Data show that low-level infrared laser increases the expression of MyoD and Pax7 in 10 J/cm(2) fluence, TRF1 expression in all fluences, and TRF2 expression in 70 J/cm(2) fluence in both 10 and 2 % fetal bovine serum. Low-level infrared laser increases mRNA expression from genes related to muscle repair and telomere stabilization in myoblasts in standard or normal and stressful conditions.
Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M.; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea
2014-01-01
Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548
An, Ming-Xin; Li, Si; Yao, Han-Bing; Li, Chao; Wang, Jia-Mei; Sun, Jia; Li, Xin-Yu; Meng, Xiao-Na; Wang, Hua-Qin
2017-12-04
Aerobic glycolysis, a phenomenon known historically as the Warburg effect, is one of the hallmarks of cancer cells. In this study, we characterized the role of BAG3 in aerobic glycolysis of pancreatic ductal adenocarcinoma (PDAC) and its molecular mechanisms. Our data show that aberrant expression of BAG3 significantly contributes to the reprogramming of glucose metabolism in PDAC cells. Mechanistically, BAG3 increased Hexokinase 2 (HK2) expression, the first key enzyme involved in glycolysis, at the posttranscriptional level. BAG3 interacted with HK2 mRNA, and the degree of BAG3 expression altered recruitment of the RNA-binding proteins Roquin and IMP3 to the HK2 mRNA. BAG3 knockdown destabilized HK2 mRNA via promotion of Roquin recruitment, whereas BAG3 overexpression stabilized HK2 mRNA via promotion of IMP3 recruitment. Collectively, our results show that BAG3 promotes reprogramming of glucose metabolism via interaction with HK2 mRNA in PDAC cells, suggesting that BAG3 may be a potential target in the aerobic glycolysis pathway for developing novel anticancer agents. © 2017 An et al.
c-fms mRNA is regulated posttranscriptionally by 1,25(OH)2D3 in HL-60 cells.
Biskobing, D M; Fan, D; Rubin, J
1997-09-01
Macrophage colony-stimulating factor (MCSF) is required for normal osteoclast and macrophage development. The receptor for MCSF (c-fms) is expressed on the pluripotent precursor and mature osteoclasts and macrophages. We have previously shown in myelomonocytic HL-60 cells that phorbol myristate acetate (PMA) upregulates c-fms mRNA expression. This induction of c-fms is inhibited by 1,25(OH)2D3. The major regulatory control of c-fms mRNA levels by PMA has been identified as posttranscriptional. However, a role of transcript elongation in controlling levels of c-fms mRNA has also been suggested. To better understand the 1,25(OH)2D3 regulation of c-fms mRNA expression we studied nuclear run on, mRNA stability, and transcript elongation in HL-60 cells treated with 10 ng/ml phorbol myristate acetate, 10 nM 1,25(OH)2D3 alone or combined. We demonstrated by nuclear run on that c-fms was constitutively transcribed in 1,25(OH)2D3 as well as control and PMA-treated cells. Transcript elongation was evaluated by RT-PCR for exon 2 or exon 3. Both exons were minimally expressed in control and 1,25(OH)2D3-treated cells, and increased in PMA-treated cells; this increased expression was inhibited by the addition of 1,25(OH)2D3. These results fail to show differential transcript elongation. Measurement of mRNA stability demonstrated decreased mRNA half-life to 5 hours in cells treated with PMA and 1,25(OH)2D3 compared with a half-life of 8 hours in cells treated with PMA alone. Our findings demonstrate that c-fms is regulated by 1,25(OH)2D3 at the posttranscriptional level by changes in mRNA stability. This gives the cell the ability to respond to local signals with rapid changes in c-fms levels altering the ability of the cell to respond to MCSF.
2004-01-01
The oxidation of polyamines induced by antitumour polyamine analogues has been associated with tumour response to specific agents. The human spermine oxidase, SMO(PAOh1), is one enzyme that may play a direct role in the cellular response to the antitumour polyamine analogues. In the present study, the induction of SMO(PAOh1) enzyme activity by CPENSpm [N1-ethyl-N11-(cyclopropyl)methyl-4,8,diazaundecane] is demonstrated to be a result of newly synthesized mRNA and protein. Inhibition of new RNA synthesis by actinomycin D inhibits both the appearance of SMO(PAOh1) mRNA and enzyme activity. Similarly, inhibition of newly synthesized protein with cycloheximide prevents analogue-induced enzyme activity. Half-life determinations indicate that stabilization of SMO(PAOh1) protein does not play a significant role in analogue-induced activity. However, half-life experiments using actinomycin D indicate that CPENSpm treatment not only increases mRNA expression, but also leads to a significant increase in mRNA half-life (17.1 and 8.8 h for CPENSpm-treated cells and control respectively). Using reporter constructs encompassing the SMO(PAOh1) promoter region, a 30–90% increase in transcription is observed after exposure to CPENSpm. The present results are consistent with the hypothesis that analogue-induced expression of SMO(PAOh1) is a result of increased transcription and stabilization of SMO(PAOh1) mRNA, leading to increased protein production and enzyme activity. These data indicate that the major level of control of SMO(PAOh1) expression in response to polyamine analogues exposure is at the level of mRNA. PMID:15496143
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Akinori; Kikuguchi, Chisato; Morita, Masahiro
Highlights: Black-Right-Pointing-Pointer CNOT3 depletion increases the mitotic index. Black-Right-Pointing-Pointer CNOT3 inhibits the expression of MAD1. Black-Right-Pointing-Pointer CNOT3 destabilizes the MAD1 mRNA. Black-Right-Pointing-Pointer MAD1 knockdown attenuates the CNOT3 depletion-induced mitotic arrest. -- Abstract: The stability of mRNA influences the dynamics of gene expression. The CCR4-NOT complex, the major deadenylase in mammalian cells, shortens the mRNA poly(A) tail and contributes to the destabilization of mRNAs. The CCR4-NOT complex plays pivotal roles in various physiological functions, including cell proliferation, apoptosis, and metabolism. Here, we show that CNOT3, a subunit of the CCR4-NOT complex, is involved in the regulation of the spindle assembly checkpoint,more » suggesting that the CCR4-NOT complex also plays a part in the regulation of mitosis. CNOT3 depletion increases the population of mitotic-arrested cells and specifically increases the expression of MAD1 mRNA and its protein product that plays a part in the spindle assembly checkpoint. We showed that CNOT3 depletion stabilizes the MAD1 mRNA, and that MAD1 knockdown attenuates the CNOT3 depletion-induced increase of the mitotic index. Basing on these observations, we propose that CNOT3 is involved in the regulation of the spindle assembly checkpoint through its ability to regulate the stability of MAD1 mRNA.« less
Triptolide inhibits COX-2 expression by regulating mRNA stability in TNF-{alpha}-treated A549 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Lixin; Zhang, Shuang; Jiang, Zhenzhou
2011-12-09
Highlights: Black-Right-Pointing-Pointer Triptolide inhibited COX-2 expression and the half-life of COX-2 mRNA is decreased. Black-Right-Pointing-Pointer The HuR protein shuttling from nucleus to cytoplasm is inhibited by triptolide. Black-Right-Pointing-Pointer Triptolide inhibited 3 Prime -UTR fluorescence reporter gene activity. Black-Right-Pointing-Pointer COX-2 mRNA binding to HuR is decreased by triptolide in pull-down experiments. -- Abstract: Cyclooxygenase-2 (COX-2) over-expression is frequently associated with human non-small-cell lung cancer (NSCLC) and involved in tumor proliferation, invasion, angiogenesis and resistance to apoptosis. In the present study, the effects of triptolide on COX-2 expression in A549 cells were investigated and triptolide was found to inhibit TNF-{alpha}-induced COX-2 expression.more » In our further studies, it was found that triptolide decreased the half-life of COX-2 mRNA dramatically and that it inhibited 3 Prime -untranslated region (3 Prime -UTR) fluorescence reporter gene activity. Meanwhile, triptolide inhibited the HuR shuttling from nucleus to cytoplasm. After triptolide treatment, decreased COX-2 mRNA in pull-down experiments with anti-HuR antibodies was observed, indicating that the decreased cytoplasmic HuR is responsible for the decreased COX-2 mRNA. Taken together, our results provided evidence for the first time that triptolide inhibited COX-2 expression by COX-2 mRNA stability modulation and post-transcriptional regulation. These results provide a novel mechanism of action for triptolide which may be important in the treatment of lung cancer.« less
Akool, El-Sayed; Kleinert, Hartmut; Hamada, Farid M. A.; Abdelwahab, Mohamed H.; Förstermann, Ulrich; Pfeilschifter, Josef; Eberhardt, Wolfgang
2003-01-01
Dysregulation of extracellular matrix turnover is an important feature of many inflammatory processes. Rat renal mesangial cells express high levels of matrix metalloproteinase 9 (MMP-9) in response to inflammatory cytokines such as interleukin-1 beta. We demonstrate that NO does strongly destabilize MMP-9 mRNA, since different luciferase reporter gene constructs containing the MMP-9 3′ untranslated region (UTR) displayed significant reduced luciferase activity in response to the presence of NO. Moreover, by use of an in vitro degradation assay we found that the cytoplasmic fractions of NO-treated cells contained a higher capacity to degrade MMP-9 transcripts than those obtained from control cells. An RNA electrophoretic mobility shift assay demonstrated that three of four putative AU-rich elements present in the 3′ UTR of MMP-9 were constitutively occupied by the mRNA-stabilizing factor HuR and that the RNA binding was strongly attenuated by the presence of NO. The addition of recombinant glutathione transferase-HuR prevented the rapid decay of MMP-9 mRNA, whereas the addition of a neutralizing anti-HuR antibody caused an acceleration of MMP-9 mRNA degradation. Furthermore, the expression of HuR mRNA and protein was significantly reduced by exogenously and endogenously produced NO. These inhibitory effects were mimicked by the cGMP analog 8-bromo-cGMP and reversed by LY-83583, an inhibitor of soluble guanylyl cyclase. These results demonstrate that NO acts in a cGMP-dependent mechanism to inhibit the expression level of HuR, thereby reducing the stability of MMP-9 mRNA. PMID:12832476
Investigation of mRNA quadruplex formation in Escherichia coli.
Wieland, Markus; Hartig, Jörg S
2009-01-01
The protocol presented here allows for the investigation of the formation of unusual nucleic acid structures in the 5'-untranslated region (UTR) of bacteria by correlating gene expression levels to the in vitro stability of the respective structure. In particular, we describe the introduction of G-quadruplex forming sequences close to the ribosome-binding site (RBS) on the mRNA of a reporter gene and the subsequent read-out of the expression levels. Insertion of a stable secondary structure results in the cloaking of RBS and eventually reduced gene expression levels. The structures and stability of the introduced sequences are further characterized by circular dichroism (CD) spectroscopy and thermal melting experiments. The extent of inhibition is then correlated to the stability of the respective quadruplex structure, allowing judgement of whether factors other than thermodynamic stability affect the formation of a given quadruplex sequence in vivo. Measuring gene expression levels takes 2 d including cloning; CD experiments take 5 hours per experiment.
Interrelations between translation and general mRNA degradation in yeast
Huch, Susanne; Nissan, Tracy
2014-01-01
Messenger RNA (mRNA) degradation is an important element of gene expression that can be modulated by alterations in translation, such as reductions in initiation or elongation rates. Reducing translation initiation strongly affects mRNA degradation by driving mRNA toward the assembly of a decapping complex, leading to decapping. While mRNA stability decreases as a consequence of translational inhibition, in apparent contradiction several external stresses both inhibit translation initiation and stabilize mRNA. A key difference in these processes is that stresses induce multiple responses, one of which stabilizes mRNAs at the initial and rate-limiting step of general mRNA decay. Because this increase in mRNA stability is directly induced by stress, it is independent of the translational effects of stress, which provide the cell with an opportunity to assess its response to changing environmental conditions. After assessment, the cell can store mRNAs, reinitiate their translation or, alternatively, embark on a program of enhanced mRNA decay en masse. Finally, recent results suggest that mRNA decay is not limited to non-translating messages and can occur when ribosomes are not initiating but are still elongating on mRNA. This review will discuss the models for the mechanisms of these processes and recent developments in understanding the relationship between translation and general mRNA degradation, with a focus on yeast as a model system. How to cite this article: WIREs RNA 2014, 5:747–763. doi: 10.1002/wrna.1244 PMID:24944158
Interrelations between translation and general mRNA degradation in yeast.
Huch, Susanne; Nissan, Tracy
2014-01-01
Messenger RNA (mRNA) degradation is an important element of gene expression that can be modulated by alterations in translation, such as reductions in initiation or elongation rates. Reducing translation initiation strongly affects mRNA degradation by driving mRNA toward the assembly of a decapping complex, leading to decapping. While mRNA stability decreases as a consequence of translational inhibition, in apparent contradiction several external stresses both inhibit translation initiation and stabilize mRNA. A key difference in these processes is that stresses induce multiple responses, one of which stabilizes mRNAs at the initial and rate-limiting step of general mRNA decay. Because this increase in mRNA stability is directly induced by stress, it is independent of the translational effects of stress, which provide the cell with an opportunity to assess its response to changing environmental conditions. After assessment, the cell can store mRNAs, reinitiate their translation or, alternatively, embark on a program of enhanced mRNA decay en masse. Finally, recent results suggest that mRNA decay is not limited to non-translating messages and can occur when ribosomes are not initiating but are still elongating on mRNA. This review will discuss the models for the mechanisms of these processes and recent developments in understanding the relationship between translation and general mRNA degradation, with a focus on yeast as a model system. © 2014 The Authors. WIREs RNA published by John Wiley & Sons, Ltd.
Ouhara, K; Munenaga, S; Kajiya, M; Takeda, K; Matsuda, S; Sato, Y; Hamamoto, Y; Iwata, T; Yamasaki, S; Akutagawa, K; Mizuno, N; Fujita, T; Sugiyama, E; Kurihara, H
2018-06-01
RNA-binding proteins (RBPs) regulate mRNA stability by binding to the 3'-untranslated region (UTR) region of mRNA. Human antigen-R (HuR), one of the RBPs, is involved in the progression of diseases, such as rheumatoid arthritis, diabetes mellitus and some inflammatory diseases. Interleukin (IL)-6 is a major inflammatory cytokine regulated by HuR binding to mRNA. Periodontal disease (PD) is also an inflammatory disease caused by elevations in IL-6 following an infection by periodontopathogenic bacteria. The involvement of HuR in the progression of PD was assessed using in-vitro and in-vivo experiments. Immunohistochemistry of inflamed periodontal tissue showed strong staining of HuR in the epithelium and connective tissue. HuR mRNA and protein level was increased following stimulation with Porphyromonas gingivalis (Pg), one of the periodontopathogenic bacteria, lipopolysacchride (LPS)-derived from Pg (PgLPS) and tumour necrosis factor (TNF)-α in OBA-9, an immortalized human gingival epithelial cell. The luciferase activity of 3'-UTR of IL-6 mRNA was increased by TNF-α, Pg and PgLPS in OBA-9. Luciferase activity was also increased in HuR-over-expressing OBA-9 following a bacterial stimulation. Down-regulation of HuR by siRNA resulted in a decrease in mRNA expression and production of IL-6. In contrast, the over-expression of HuR increased IL-6 mRNA expression and production in OBA-9. The HuR inhibitor, quercetin, suppressed Pg-induced HuR mRNA expression and IL-6 production in OBA-9. An oral inoculation with quercetin also inhibited bone resorption in ligature-induced periodontitis model mice as a result of down-regulation of IL-6. These results show that HuR modulates inflammatory responses by regulating IL-6. © 2018 British Society for Immunology.
RNA-binding Protein Quaking Stabilizes Sirt2 mRNA during Oligodendroglial Differentiation*
Thangaraj, Merlin P.; Furber, Kendra L.; Gan, Jotham K.; Ji, Shaoping; Sobchishin, Larhonda; Doucette, J. Ronald; Nazarali, Adil J.
2017-01-01
Myelination is controlled by timely expression of genes involved in the differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes (OLs). Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, plays a critical role in OL differentiation by promoting both arborization and downstream expression of myelin-specific genes. However, the mechanisms involved in regulating SIRT2 expression during OL development are largely unknown. The RNA-binding protein quaking (QKI) plays an important role in myelination by post-transcriptionally regulating the expression of several myelin specific genes. In quaking viable (qkv/qkv) mutant mice, SIRT2 protein is severely reduced; however, it is not known whether these genes interact to regulate OL differentiation. Here, we report for the first time that QKI directly binds to Sirt2 mRNA via a common quaking response element (QRE) located in the 3′ untranslated region (UTR) to control SIRT2 expression in OL lineage cells. This interaction is associated with increased stability and longer half-lives of Sirt2.1 and Sirt2.2 transcripts leading to increased accumulation of Sirt2 transcripts. Consistent with this, overexpression of qkI promoted the expression of Sirt2 mRNA and protein. However, overexpression of the nuclear isoform qkI-5 promoted the expression of Sirt2 mRNA, but not SIRT2 protein, and delayed OL differentiation. These results suggest that the balance in the subcellular distribution and temporal expression of QKI isoforms control the availability of Sirt2 mRNA for translation. Collectively, our study demonstrates that QKI directly plays a crucial role in the post-transcriptional regulation and expression of Sirt2 to facilitate OL differentiation. PMID:28188285
Kishor, Aparna; Tandukar, Bishal; Ly, Yann V.; Toth, Eric A.; Suarez, Yvelisse; Brewer, Gary
2013-01-01
The AU-rich elements (AREs) encoded within many mRNA 3′ untranslated regions (3′UTRs) are targets for factors that control transcript longevity and translational efficiency. Hsp70, best known as a protein chaperone with well-defined peptide-refolding properties, is known to interact with ARE-like RNA substrates in vitro. Here, we show that cofactor-free preparations of Hsp70 form direct, high-affinity complexes with ARE substrates based on specific recognition of U-rich sequences by both the ATP- and peptide-binding domains. Suppressing Hsp70 in HeLa cells destabilized an ARE reporter mRNA, indicating a novel ARE-directed mRNA-stabilizing role for this protein. Hsp70 also bound and stabilized endogenous ARE-containing mRNAs encoding vascular endothelial growth factor (VEGF) and Cox-2, which involved a mechanism that was unaffected by an inhibitor of its protein chaperone function. Hsp70 recognition and stabilization of VEGF mRNA was mediated by an ARE-like sequence in the proximal 3′UTR. Finally, stabilization of VEGF mRNA coincided with the accumulation of Hsp70 protein in HL60 promyelocytic leukemia cells recovering from acute thermal stress. We propose that the binding and stabilization of selected ARE-containing mRNAs may contribute to the cytoprotective effects of Hsp70 following cellular stress but may also provide a novel mechanism linking constitutively elevated Hsp70 expression to the development of aggressive neoplastic phenotypes. PMID:23109422
Basler, Tina; Jeckstadt, Sabine; Valentin-Weigand, Peter; Goethe, Ralph
2006-03-01
Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic enteritis in ruminants. In addition, MAP is presently the most favored pathogen linked to Crohn's disease. In this study, we were interested in dissecting the molecular mechanisms of macrophage activation or deactivation after infection with MAP. By subtractive hybridization of cDNAs, we identified the immune-responsive gene 1 (IRG1), which was expressed substantially higher in lipopolysaccharide (LPS)-stimulated than in MAP-infected murine macrophage cell lines. A nuclear run-on transcription assay revealed that the IRG1 gene was activated transcriptionally in LPS-stimulated and MAP-infected macrophages with higher expression in LPS-stimulated cells. Analysis of post-transcriptional regulation demonstrated that IRG1 mRNA stability was increased in LPS-stimulated but not in MAP-infected macrophages. Furthermore, IRG1 gene expression of macrophages infected with the nonpathogenic Mycobacterium smegmatis differed from those of LPS-stimulated and MAP-infected macrophages. At 2 h postinfection, M. smegmatis-induced IRG1 gene expression was as low as in MAP-infected, and 8 h postinfection, it increased nearly to the level in LPS-stimulated macrophages. Transient transfection experiments revealed similar IRG1 promoter activities in MAP- and M. smegmatis-infected cells. Northern analysis demonstrated increased IRG1 mRNA stability in M. smegmatis-infected macrophages. IRG1 mRNA stabilization was p38 mitogen-activated protein kinase-independent. Inhibition of protein synthesis revealed that constitutively expressed factors seemed to be responsible for IRG1 mRNA destabilization. Thus, our data demonstrate that transcriptional and post-transcriptional mechanisms are responsible for a differential IRG1 gene expression in murine macrophages treated with LPS, MAP, and M. smegmatis.
Russell, J. Eric; Morales, Julia; Makeyev, Aleksandr V.; Liebhaber, Stephen A.
1998-01-01
The developmental stage-specific expression of human globin proteins is characterized by a switch from the coexpression of ζ- and α-globin in the embryonic yolk sac to exclusive expression of α-globin during fetal and adult life. Recent studies with transgenic mice demonstrate that in addition to transcriptional control elements, full developmental silencing of the human ζ-globin gene requires elements encoded within the transcribed region. In the current work, we establish that these latter elements operate posttranscriptionally by reducing the relative stability of ζ-globin mRNA. Using a transgenic mouse model system, we demonstrate that human ζ-globin mRNA is unstable in adult erythroid cells relative to the highly stable human α-globin mRNA. A critical determinant of the difference between α- and ζ-globin mRNA stability is mapped by in vivo expression studies to their respective 3′ untranslated regions (3′UTRs). In vitro messenger ribonucleoprotein (mRNP) assembly assays demonstrate that the α- and ζ-globin 3′UTRs assemble a previously described mRNP stability-determining complex, the α-complex, with distinctly different affinities. The diminished efficiency of α-complex assembly on the ζ 3′UTR results from a single C→G nucleotide substitution in a crucial polypyrimidine tract contained by both the human α- and ζ-globin mRNA 3′UTRs. A potential pathway for accelerated ζ-globin mRNA decay is suggested by the observation that its 3′UTR encodes a shortened poly(A) tail. Based upon these data, we propose a model for ζ-globin gene silencing in fetal and adult erythroid cells in which posttranscriptional controls play a central role by providing for accelerated clearance of ζ-globin transcripts. PMID:9528789
2015-01-01
Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions. PMID:25494492
Wang, Zhe; Zhang, Ruili; Wang, Zhongliang; Wang, He-Fang; Wang, Yu; Zhao, Jun; Wang, Fu; Li, Weitao; Niu, Gang; Kiesewetter, Dale O; Chen, Xiaoyuan
2014-12-23
Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions.
Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability.
Dudek, Sabine Eva; Nitzsche, Katja; Ludwig, Stephan; Ehrhardt, Christina
2016-06-06
Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication.
Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability.
Min, Kyung-Won; Zealy, Richard W; Davila, Sylvia; Fomin, Mikhail; Cummings, James C; Makowsky, Daniel; Mcdowell, Catherine H; Thigpen, Haley; Hafner, Markus; Kwon, Sang-Ho; Georgescu, Constantin; Wren, Jonathan D; Yoon, Je-Hyun
2018-06-01
Gene expression is dynamically regulated in a variety of mammalian physiologies. During mammalian aging, there are changes that occur in protein expression that are highly controlled by the regulatory steps in transcription, post-transcription, and post-translation. Although there are global profiles of human transcripts during the aging processes available, the mechanism(s) by which transcripts are differentially expressed between young and old cohorts remains unclear. Here, we report on N6-methyladenosine (m6A) RNA modification profiles of human peripheral blood mononuclear cells (PBMCs) from young and old cohorts. An m6A RNA profile identified a decrease in overall RNA methylation during the aging process as well as the predominant modification on proteincoding mRNAs. The m6A-modified transcripts tend to be more highly expressed than nonmodified ones. Among the many methylated mRNAs, those of DROSHA and AGO2 were heavily methylated in young PBMCs which coincided with a decreased steady-state level of AGO2 mRNA in the old PBMC cohort. Similarly, downregulation of AGO2 in proliferating human diploid fibroblasts (HDFs) also correlated with a decrease in AGO2 mRNA modifications and steady-state levels. In addition, the overexpression of RNA methyltransferases stabilized AGO2 mRNA but not DROSHA and DICER1 mRNA in HDFs. Moreover, the abundance of miRNAs also changed in the young and old PBMCs which are possibly due to a correlation with AGO2 expression as observed in AGO2-depleted HDFs. Taken together, we uncovered the role of mRNA methylation on the abundance of AGO2 mRNA resulting in the repression of miRNA expression during the process of human aging. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Shukla, Smita; Elson, Genie; Blackshear, Perry J.; Lutz, Carol S.; Leibovich, S. Joseph
2017-01-01
We have shown previously that bacterial lipopolysaccharide (LPS)-mediated suppression of Phospholipase-Cβ-2 (PLCβ-2) expression is involved in M1 (inflammatory) to M2-like (wound healing) phenotypic switching of macrophages triggered by adenosine. This suppression is mediated post-transcriptionally by destabilization of PLCβ-2 mRNA. To investigate the mechanism of this LPS-mediated destabilization, we examined the roles of RNA-binding agents including microRNAs and RNA-binding proteins that are involved in regulating stability of mRNAs encoding growth factors, inflammatory mediators and proto-oncogenes. Adenylate and Uridylate (AU)-rich elements (AREs) in 3′UTRs are specific recognition sites for RNA-binding proteins including Tristetraprolin (TTP), HuR and AUF1, and for microRNAs that are involved in regulating mRNA stability. In this study, we investigated the role of TTP and AREs in regulating PLCβ-2 mRNA stability. The 3′UTR of the PLCβ-2 gene was inserted into the pLightswitch luciferase reporter plasmid and transfected into RAW264.7 cells. LPS suppressed Luciferase expression from this reporter. Luciferase expression from mutant 3′UTR constructs lacking AREs was similarly down-regulated, suggesting that these regions are not required for LPS-mediated suppression of PLCβ-2. TTP was rapidly upregulated in both primary murine macrophages and RAW264.7 cells in response to LPS. Suppression of PLCβ-2 by LPS was examined using macrophages from mice lacking TTP. LPS suppressed PLCβ-2 expression to the same extent in wild type and TTP−/− macrophages. Also, the rate of decay of PLCβ-2 mRNA in LPS-treated macrophages following transcriptional blockade was similar in wild type and TTP−/− macrophages, clearly indicating that TTP is not involved in LPS-mediated destabilization of PLCβ-2 mRNA in macrophages. PMID:28124257
Shukla, Smita; Elson, Genie; Blackshear, Perry J; Lutz, Carol S; Leibovich, S Joseph
2017-04-01
We have shown previously that bacterial lipopolysaccharide (LPS)-mediated suppression of phospholipase-Cβ-2 (PLCβ-2) expression is involved in M1 (inflammatory) to M2-like (wound healing) phenotypic switching of macrophages triggered by adenosine. This suppression is mediated post-transcriptionally by destabilization of PLCβ-2 mRNA (messenger ribonucleic acid). To investigate the mechanism of this LPS-mediated destabilization, we examined the roles of RNA-binding agents including microRNAs and RNA-binding proteins that are involved in regulating stability of mRNAs encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenylate and uridylate (AU)-rich elements (AREs) in 3'UTRs are specific recognition sites for RNA-binding proteins including tristetraprolin (TTP), HuR, and AUF1 and for microRNAs that are involved in regulating mRNA stability. In this study, we investigated the role of TTP and AREs in regulating PLCβ-2 mRNA stability. The 3'UTR of the PLCβ-2 gene was inserted into the pLightswitch luciferase reporter plasmid and transfected into RAW264.7 cells. LPS suppressed luciferase expression from this reporter. Luciferase expression from mutant 3'UTR constructs lacking AREs was similarly downregulated, suggesting that these regions are not required for LPS-mediated suppression of PLCβ-2. TTP was rapidly upregulated in both primary murine macrophages and RAW264.7 cells in response to LPS. Suppression of PLCβ-2 by LPS was examined using macrophages from mice lacking TTP (TTP -/- ). LPS suppressed PLCβ-2 expression to the same extent in wild type (WT) and TTP -/- macrophages. Also, the rate of decay of PLCβ-2 mRNA in LPS-treated macrophages following transcriptional blockade was similar in WT and TTP -/- macrophages, clearly indicating that TTP is not involved in LPS-mediated destabilization of PLCβ-2 mRNA in macrophages.
Ruvolo, Vivian; Wang, Eryu; Boyle, Sarah; Swaminathan, Sankar
1998-01-01
The Epstein–Barr virus (EBV) nuclear protein BS-MLF1 (SM) is expressed early after entry of EBV into the lytic cycle. SM transactivates reporter gene constructs driven by a wide variety of promoters, but the mechanism of SM action is poorly understood. In this study, we demonstrate that the SM protein inhibits expression of intron-containing genes and activates expression of intron-less genes. We demonstrate that SM has the predicted inhibitory effect on expression of a spliced EBV gene but activates an unspliced early EBV gene. SM inhibited gene expression at the post-transcriptional level by preventing the accumulation of nuclear and cytoplasmic RNA transcripts. Conversely, SM led to increased accumulation of nuclear mRNA from intron-less genes without affecting the rate of transcription, indicating that SM enhances nuclear RNA stability. The ratio of cytoplasmic to nuclear polyadenylated mRNA was increased in the presence of SM, suggesting that SM also enhances nucleo-cytoplasmic mRNA transport. The degree of transactivation by SM was dependent on the sequence of the 3′-untranslated region of the target mRNA. Finally, we demonstrate that the amino-terminal portion of SM fused to glutathione-S-transferase binds radioactively labeled RNA in vitro, indicating that SM is a single-stranded RNA binding protein. Importantly, the latent and immediate-early genes of EBV contain introns whereas many early and late genes do not. Thus, SM may down-regulate synthesis of host cell proteins and latent EBV proteins while simultaneously enhancing expression of specific lytic EBV genes by binding to mRNA and modulating its stability and transport. PMID:9671768
Ruvolo, V; Wang, E; Boyle, S; Swaminathan, S
1998-07-21
The Epstein-Barr virus (EBV) nuclear protein BS-MLF1 (SM) is expressed early after entry of EBV into the lytic cycle. SM transactivates reporter gene constructs driven by a wide variety of promoters, but the mechanism of SM action is poorly understood. In this study, we demonstrate that the SM protein inhibits expression of intron-containing genes and activates expression of intron-less genes. We demonstrate that SM has the predicted inhibitory effect on expression of a spliced EBV gene but activates an unspliced early EBV gene. SM inhibited gene expression at the post-transcriptional level by preventing the accumulation of nuclear and cytoplasmic RNA transcripts. Conversely, SM led to increased accumulation of nuclear mRNA from intron-less genes without affecting the rate of transcription, indicating that SM enhances nuclear RNA stability. The ratio of cytoplasmic to nuclear polyadenylated mRNA was increased in the presence of SM, suggesting that SM also enhances nucleo-cytoplasmic mRNA transport. The degree of transactivation by SM was dependent on the sequence of the 3'-untranslated region of the target mRNA. Finally, we demonstrate that the amino-terminal portion of SM fused to glutathione-S-transferase binds radioactively labeled RNA in vitro, indicating that SM is a single-stranded RNA binding protein. Importantly, the latent and immediate-early genes of EBV contain introns whereas many early and late genes do not. Thus, SM may down-regulate synthesis of host cell proteins and latent EBV proteins while simultaneously enhancing expression of specific lytic EBV genes by binding to mRNA and modulating its stability and transport.
On Relevance of Codon Usage to Expression of Synthetic and Natural Genes in Escherichia coli
Supek, Fran; Šmuc, Tomislav
2010-01-01
A recent investigation concluded that codon bias did not affect expression of green fluorescent protein (GFP) variants in Escherichia coli, while stability of an mRNA secondary structure near the 5′ end played a dominant role. We demonstrate that combining the two variables using regression trees or support vector regression yields a biologically plausible model with better support in the GFP data set and in other experimental data: codon usage is relevant for protein levels if the 5′ mRNA structures are not strong. Natural E. coli genes had weaker 5′ mRNA structures than the examined set of GFP variants and did not exhibit a correlation between the folding free energy of 5′ mRNA structures and protein expression. PMID:20421604
Yu, Jia; Russell, J. Eric
2001-01-01
Human globins are encoded by mRNAs exhibiting high stabilities in transcriptionally silenced erythrocyte progenitors. Unlike α-globin mRNA, whose stability is enhanced by assembly of a specific messenger RNP (mRNP) α complex on its 3′ untranslated region (UTR), neither the structure(s) nor the mechanism(s) that effects the high-level stability of human β-globin mRNA has been identified. The present work describes an mRNP complex assembling on the 3′ UTR of the β-globin mRNA that exhibits many of the properties of the stability-enhancing α complex. The β-globin mRNP complex is shown to contain one or more factors homologous to αCP, a 39-kDa RNA-binding protein that is integral to α-complex assembly. Sequence analysis implicates a specific 14-nucleotide pyrimidine-rich track within its 3′ UTR as the site of β-globin mRNP assembly. The importance of this track to mRNA stability is subsequently verified in vivo using mice expressing human β-globin transgenes that contain informative mutations in this region. In combination, the in vitro and in vivo analyses indicate that the high stabilities of the α- and β-globin mRNAs are maintained through related mRNP complexes that may share a common regulatory pathway. PMID:11486027
Nie, Mei; Balda, Maria S.; Matter, Karl
2012-01-01
A central component of the cellular stress response is p21WAF1/CIP1, which regulates cell proliferation, survival, and differentiation. Inflammation and cell stress often up-regulate p21 posttranscriptionally by regulatory mechanisms that are poorly understood. ZO-1–associated nucleic acid binding protein (ZONAB)/DbpA is a Y-box transcription factor that is regulated by components of intercellular junctions that are affected by cytokines and tissue damage. We therefore asked whether ZONAB activation is part of the cellular stress response. Here, we demonstrate that ZONAB promotes cell survival in response to proinflammatory, hyperosmotic, and cytotoxic stress and that stress-induced ZONAB activation involves the Rho regulator GEF-H1. Unexpectedly, stress-induced ZONAB activation does not stimulate ZONAB’s activity as a transcription factor but leads to the posttranscriptional up-regulation of p21 protein and mRNA. Up-regulation is mediated by ZONAB binding to specific sites in the 3′-untranslated region of the p21 mRNA, resulting in mRNA stabilization and enhanced translation. Binding of ZONAB to mRNA is activated by GEF-H1 via Rho stimulation and also mediates Ras-induced p21 expression. We thus identify a unique type of stress and Rho signaling activated pathway that drives mRNA stabilization and translation and links the cellular stress response to p21 expression and cell survival. PMID:22711822
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamidian, Arash; Stedingk, Kristoffer von; Munksgaard Thorén, Matilda
2015-06-05
Hypoxia-inducible factors (HIFs) are differentially regulated in tumor cells. While the current paradigm supports post-translational regulation of the HIF-α subunits, we recently showed that hypoxic HIF-2α is also transcriptionally regulated via insulin-like growth factor (IGF)-II in the childhood tumor neuroblastoma. Here, we demonstrate that transcriptional regulation of HIF-2α seems to be restricted to neural cell-derived tumors, while HIF-1α is canonically regulated at the post-translational level uniformly across different tumor forms. Enhanced expression of HIF2A mRNA at hypoxia is due to de novo transcription rather than increased mRNA stability, and chemical stabilization of the HIF-α proteins at oxygen-rich conditions unexpectedly leadsmore » to increased HIF2A transcription. The enhanced HIF2A levels do not seem to be dependent on active HIF-1. Using a transcriptome array approach, we identified members of the Peroxisome proliferator-activated receptor gamma coactivator (PGC)/Estrogen-related receptor (ERR) complex families as potential regulators of HIF2A. Knockdown or inhibition of one of the members, ERRα, leads to decreased expression of HIF2A, and high expression of the ERRα gene ESRRA correlates with poor overall and progression-free survival in a clinical neuroblastoma material consisting of 88 tumors. Thus, targeting of ERRα and pathways regulating transcriptional HIF-2α are promising therapeutic avenues in neuroblastoma. - Highlights: • Transcriptional control of HIF-2α is restricted to neural cell-derived tumors. • Enhanced transcription of HIF2A is not due to increased mRNA stability. • Chemical stabilization of the HIF-α subunits leads to increased HIF2A transcription. • ERRα regulates HIF2A mRNA expression in neuroblastoma. • High expression of ESRRA correlates to poor outcome in neuroblastoma.« less
Interleukin-1β induces tumor necrosis factor-α secretion from rat hepatocytes.
Yoshigai, Emi; Hara, Takafumi; Inaba, Hiroyuki; Hashimoto, Iwao; Tanaka, Yoshito; Kaibori, Masaki; Kimura, Tominori; Okumura, Tadayoshi; Kwon, A-Hon; Nishizawa, Mikio
2014-05-01
Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine involved in various inflammatory diseases. The only production of TNF-α in the liver is thought to be from hepatic macrophages known as Kupffer cells, predominantly in response to bacterial lipopolysaccharide (LPS). Primary cultured rat hepatocytes were used to analyze TNF-α expression in response to the pro-inflammatory cytokine, interleukin-1β (IL-1β). Livers of rats subjected to LPS-induced endotoxemia were analyzed. Immunocytochemistry and enzyme-linked immunosorbent assays demonstrated that IL-1β-treated rat hepatocytes secreted TNF-α, and RNA analyses indicated that TNF-α mRNA was induced specifically by IL-1β. Northern blot analysis showed that not only mRNA, but also a natural antisense transcript (asRNA), was transcribed from the rat Tnf gene in IL-1β-treated hepatocytes. TNF-α was detected in the hepatocytes of LPS-treated rats. Both TNF-α mRNA and asRNA were expressed in the hepatocytes of LPS-treated rats, human hepatocellular carcinoma and human monocyte/macrophage cells. To disrupt the interaction between TNF-α asRNA and TNF-α mRNA, sense oligonucleotides corresponding to TNF-α mRNA were introduced into rat hepatocytes resulting in significantly increased levels of TNF-α mRNA. One of these sense oligonucleotides increased a half-life of TNF-α mRNA, suggesting that the TNF-α asRNA may reduce the stability of TNF-α mRNA. IL-1β-stimulated rat hepatocytes are a newly identified source of TNF-α in the liver. TNF-α mRNA and asRNA are expressed in rats and humans, and the TNF-α asRNA reduces the stability of the TNF-α mRNA. Hepatocytes and TNF-α asRNA may be therapeutic targets to regulate levels of TNF-α mRNA. © 2013 The Japan Society of Hepatology.
Aguiar, A F; Vechetti-Júnior, I J; Alves de Souza, R W; Castan, E P; Milanezi-Aguiar, R C; Padovani, C R; Carvalho, R F; Silva, M D P
2013-04-01
The purpose of this study was to test the hypothesis that skeletal muscle adaptations induced by long-term resistance training (RT) are associated with increased myogenic regulatory factors (MRF) and insulin-like growth factor-I (IGF-I) mRNA expression in rats skeletal muscle. Male Wistar rats were divided into 4 groups: 8-week control (C8), 8-week trained (T8), 12-week control (C12) and 12-week trained (T12). Trained rats were submitted to a progressive RT program (4 sets of 10-12 repetitions at 65-75% of the 1RM, 3 day/week), using a squat-training apparatus with electric stimulation. Muscle hypertrophy was determined by measurement of muscle fiber cross-sectional area (CSA) of the muscle fibers, and myogenin, MyoD and IGF-I mRNA expression were measured by RT-qPCR. A hypertrophic stabilization occurred between 8 and 12 weeks of RT (control-relative % area increase, T8: 29% vs. T12: 35%; p>0.05) and was accompanied by the stabilization of myogenin (control-relative % increase, T8: 44.8% vs. T12: 37.7%, p>0.05) and MyoD (control-relative % increase, T8: 22.9% vs. T12: 22.3%, p>0.05) mRNA expression and the return of IGF-I mRNA levels to the baseline (control-relative % increase, T8: 30.1% vs. T12: 1.5%, p<0.05). Moreover, there were significant positive correlations between the muscle fiber CSA and mRNA expression for MyoD (r=0.85, p=0.0001), myogenin (r=0.87, p=0.0001), and IGF-I (r=0.88, p=0.0001). The significant (p<0.05) increase in myogenin, MyoD and IGF-I mRNA expression after 8 weeks was not associated with changes in the fiber-type frequency. In addition, there was a type IIX/D-to-IIA fiber conversion at 12 weeks, even with the stabilization of MyoD and myogenin expression and the return of IGF-I levels to baseline. These results indicate a possible interaction between MRFs and IGF-I in the control of muscle hypertrophy during long-term RT and suggest that these factors are involved more in the regulation of muscle mass than in fiber-type conversion. © Georg Thieme Verlag KG Stuttgart · New York.
Neuronal ELAV proteins enhance mRNA stability by a PKCα-dependent pathway
Pascale, Alessia; Amadio, Marialaura; Scapagnini, Giovanni; Lanni, Cristina; Racchi, Marco; Provenzani, Alessandro; Govoni, Stefano; Alkon, Daniel L.; Quattrone, Alessandro
2005-01-01
More than 1 in 20 human genes bear in the mRNA 3′ UTR a specific motif called the adenine- and uridine-rich element (ARE), which posttranscriptionally determines its expression in response to cell environmental signals. ELAV (embryonic lethal abnormal vision) proteins are the only known ARE-binding factors that are able to stabilize the bound mRNAs, thereby positively controlling gene expression. Here, we show that in human neuroblastoma SH-SY5Y cells, neuron-specific ELAV (nELAV) proteins (HuB, HuC, and HuD) are up-regulated and redistributed by 15 min of treatment with the activators of PKC phorbol esters and bryostatin-1. PKC stimulation also induces nELAV proteins to colocalize with the translocated PKCα isozyme preferentially on the cytoskeleton, with a concomitant increase of nELAV threonine phosphorylation. The same treatment promotes stabilization of growth-associated protein 43 (GAP-43) mRNA, a well known nELAV target, and induces an early increase in GAP-43 protein concentration, again only in the cytoskeletal cell fraction. Genetic or pharmacological inactivation of PKCα abolishes nELAV protein cytoskeletal up-regulation, GAP-43 mRNA stabilization, and GAP-43 protein increase, demonstrating the primary role of this specific PKC isozyme in the cascade of nELAV recruitment. Finally, in vivo PKC activation is associated with an up-regulation of nELAV proteins in the hippocampal rat brain. These findings suggest a model for gene expression regulation by nELAV proteins through a PKCα-dependent pathway that is relevant for the cellular programs in which ARE-mediated control plays a pivotal role. PMID:16099831
Capturing in vivo RNA transcriptional dynamics from the malaria parasite Plasmodium falciparum
Painter, Heather J.; Carrasquilla, Manuela; Llinás, Manuel
2017-01-01
To capture the transcriptional dynamics within proliferating cells, methods to differentiate nascent transcription from preexisting mRNAs are desired. One approach is to label newly synthesized mRNA transcripts in vivo through the incorporation of modified pyrimidines. However, the human malaria parasite, Plasmodium falciparum, is incapable of pyrimidine salvage for mRNA biogenesis. To capture cellular mRNA dynamics during Plasmodium development, we engineered parasites that can salvage pyrimidines through the expression of a single bifunctional yeast fusion gene, cytosine deaminase/uracil phosphoribosyltransferase (FCU). We show that expression of FCU allows for the direct incorporation of thiol-modified pyrimidines into nascent mRNAs. Using developmental stage-specific promoters to express FCU-GFP enables the biosynthetic capture and in-depth analysis of mRNA dynamics from subpopulations of cells undergoing differentiation. We demonstrate the utility of this method by examining the transcriptional dynamics of the sexual gametocyte stage transition, a process that is essential to malaria transmission between hosts. Using the pfs16 gametocyte-specific promoter to express FCU-GFP in 3D7 parasites, we found that sexual stage commitment is governed by transcriptional reprogramming and stabilization of a subset of essential gametocyte transcripts. We also measured mRNA dynamics in F12 gametocyte-deficient parasites and demonstrate that the transcriptional program required for sexual commitment and maturation is initiated but likely aborted due to the absence of the PfAP2-G transcriptional regulator and a lack of gametocyte-specific mRNA stabilization. Biosynthetic labeling of Plasmodium mRNAs is incredibly versatile, can be used to measure transcriptional dynamics at any stage of parasite development, and will allow for future applications to comprehensively measure RNA-protein interactions in the malaria parasite. PMID:28416533
Zhang, Dongyun; Liang, Yuguang; Xie, Qipeng; Gao, Guangxun; Wei, Jinlong; Huang, Haishan; Li, Jingxia; Gao, Jimin; Huang, Chuanshu
2015-01-01
Nucleolin is a ubiquitously expressed protein and participates in many important biological processes, such as cell cycle regulation and ribosomal biogenesis. The activity of nucleolin is regulated by intracellular localization and post-translational modifications, including phosphorylation, methylation, and ADP-ribosylation. Small ubiquitin-like modifier (SUMO) is a category of recently verified forms of post-translational modifications and exerts various effects on the target proteins. In the studies reported here, we discovered SUMOylational modification of human nucleolin protein at Lys-294, which facilitated the mRNA binding property of nucleolin by maintaining its nuclear localization. In response to arsenic exposure, nucleolin-SUMO was induced and promoted its binding with gadd45α mRNA, which increased gadd45α mRNA stability and protein expression, subsequently causing GADD45α-mediated cell death. On the other hand, ectopic expression of Mn-SOD attenuated the arsenite-generated superoxide radical level, abrogated nucleolin-SUMO, and in turn inhibited arsenite-induced apoptosis by reducing GADD45α expression. Collectively, our results for the first time demonstrate that nucleolin-SUMO at K294R plays a critical role in its nucleus sequestration and gadd45α mRNA binding activity. This novel biological function of nucleolin is distinct from its conventional role as a proto-oncogene. Therefore, our findings here not only reveal a new modification of nucleolin protein and its novel functional paradigm in mRNA metabolism but also expand our understanding of the dichotomous roles of nucleolin in terms of cancer development, which are dependent on multiple intracellular conditions and consequently the appropriate regulations of its modifications, including SUMOylation. PMID:25561743
Cheng, Feng; Pan, Ying; Lu, Yi-Min; Zhu, Lei; Chen, Shuzheng
2017-01-01
RNA-binding proteins (RBPs) and miRNAs are capable of controlling processes in normal development and cancer. Both of them could determine RNA transcripts fate from synthesis to decay. One such RBP, Dead end (Dnd1), is essential for regulating germ-cell viability and suppresses the germ-cell tumors development, yet how it exerts its functions in breast cancer has remained unresolved. The level of Dnd1 was detected in 21 cancerous tissues paired with neighboring normal tissues by qRT-PCR. We further annotated TCGA (The Cancer Genome Atlas) mRNA expression profiles and found that the expression of Dnd1 and Bim is positively correlated ( p = 0.04). Patients with higher Dnd1 expression level had longer overall survival ( p = 0.0014) by KM Plotter tool. Dnd1 knockdown in MCF-7 cells decreased Bim expression levels and inhibited apoptosis. While knockdown of Dnd1 promoted the decay of Bim mRNA 3'UTR, the stability of Bim-5'UTR was not affected. In addition, mutation of miR-221-binding site in Bim-3'UTR canceled the effect of Dnd1 on Bim mRNA. Knockdown of Dnd1 in MCF-7 cells confirmed that Dnd1 antagonized miR-221-inhibitory effects on Bim expression. Overall, our findings indicate that Dnd1 facilitates apoptosis by increasing the expression of Bim via its competitive combining with miR-221 in Bim-3'UTR. The new function of Dnd1 may contribute to a vital role in breast cancer development.
[MicroRNA in neurodegenerative disorders].
Sobue, Gen
2013-01-01
MicroRNAs (miRNAs) bind to the 3'-untranslated region of mRNA, and thereby suppress the gene expression. Recent studies suggest that miRNAs modify the pathogenesis of cancer and neurodegeneration. Our study demonstrated that the expression levels of miR-196a is increased in a mouse model of spinal and bulbar muscular atrophy (SBMA), a neurodegenerative disease caused by the expansion of polyglutamine in androgen receptor (AR). In cultured neuronal cells, miR-196a decayed the mutant AR mRNA via silencing CUG triplet repeat RNA binding protein 2, a potent miR-196a targeting mRNA, which contributed to stabilize the mutant AR mRNA. Adeno-associated virus vector-mediated delivery of this miRNA attenuates the expression of the mutant AR, resulting in the mitigation of motor neuron degeneration in the SBMA mice. Introduction of miRNA appears to be a novel therapeutic strategy for devastating neurodegenerative diseases.
Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells.
Voynow, J A; Young, L R; Wang, Y; Horger, T; Rose, M C; Fischer, B M
1999-05-01
Chronic neutrophil-predominant inflammation and hypersecretion of mucus are common pathophysiological features of cystic fibrosis, chronic bronchitis, and viral- or pollution-triggered asthma. Neutrophils release elastase, a serine protease, that causes increased mucin production and secretion. The molecular mechanisms of elastase-induced mucin production are unknown. We hypothesized that as part of this mechanism, elastase upregulates expression of a major respiratory mucin gene, MUC5AC. A549, a human lung carcinoma cell line that expresses MUC5AC mRNA and protein, and normal human bronchial epithelial cells in an air-liquid interface culture were stimulated with neutrophil elastase. Neutrophil elastase increased MUC5AC mRNA levels in a time-dependent manner in both cell culture systems. Neutrophil elastase treatment also increased MUC5AC protein levels in A549 cells. The mechanism of MUC5AC gene regulation by elastase was determined in A549 cells. The induction of MUC5AC gene expression required serine protease activity; other classes of proteases had no effect on MUC5AC gene expression. Neutrophil elastase increased MUC5AC mRNA levels by enhancing mRNA stability. This is the first report of mucin gene regulation by this mechanism.
Inhibition and Avoidance of mRNA Degradation by RNA Viruses
Moon, Stephanie L.; Barnhart, Michael D.; Wilusz, Jeffrey
2012-01-01
The cellular mRNA decay machinery plays a major role in regulating the quality and quantity of gene expression in cells. This machinery involves multiple enzymes and pathways that converge to promote the exonucleolytic decay of mRNAs. The transcripts made by RNA viruses are susceptible to degradation by this machinery and, in fact, can be actively targeted. Thus, to maintain gene expression and replication, RNA viruses have evolved a number of strategies to avoid and/or inactivate aspects of the cellular mRNA decay machinery. Recent work uncovering the mechanisms used by RNA viruses to maintain the stability of their transcripts is described below. PMID:22626865
Fred, Rikard G; Mehrabi, Syrina; Adams, Christopher M; Welsh, Nils
2016-09-01
Insulin expression is highly controlled on the posttranscriptional level. The RNA binding proteins (RBPs) responsible for this result are still largely unknown. To identify RBPs that bind to insulin mRNA we performed mass spectrometry analysis on proteins that bound synthetic oligonucloetides mimicing the 5'- and the 3'-untranslated regions (UTRs) of rat and human insulin mRNA in vitro . We observed that the RBPs heterogeneous nuclear ribonucleoprotein (hnRNP) U, polypyrimidine tract binding protein (PTB), hnRNP L and T-cell restricted intracellular antigen 1-related protein (TIA-1-related protein; TIAR) bind to insulin mRNA sequences, and that the in vitro binding affinity of these RBPs changed when INS-1 cells were exposed to glucose, 3-isobutyl-1-methylxanthine (IBMX) or nitric oxide. High glucose exposure resulted in a modest increase in PTB and TIAR binding to an insulin mRNA sequence. The inducer of nitrosative stress DETAnonoate increased markedly hnRNP U and TIAR mRNA binding. An increased PTB to TIAR binding ratio in vitro correlated with higher insulin mRNA levels and insulin biosynthesis rates in INS-1 cells. To further investigate the importance of RNA-binding proteins for insulin mRNA stability, we decreased INS-1 and EndoC-βH1 cell levels of PTB and TIAR by RNAi. In both cell lines, decreased levels of PTB resulted in lowered insulin mRNA levels while decreased levels of TIAR resulted in increased insulin mRNA levels. Thapsigargin-induced stress granule formation was associated with a redistribution of TIAR from the cytosol to stress granules. These experiments indicate that alterations in insulin mRNA stability and translation correlate with differential RBP binding. We propose that the balance between PTB on one hand and TIAR on the other participates in the control of insulin mRNA stability and utilization for insulin biosynthesis.
Khoo, Nicholas K.H.; Hebbar, Sachin; Zhao, Weiling; Moore, Steven A.; Domann, Frederick E.; Robbins, Mike E.
2013-01-01
Glioma survival is dismal, in part, due to an imbalance in antioxidant expression and activity. Peroxisome proliferator-activated receptor (PPAR) agonists have antineoplastic properties which present new redox-dependent targets for glioma anticancer therapies. Herein, we demonstrate that treatment of primary cultures of normal rat astrocytes with PPAR agonists increased the expression of catalase mRNA protein, and enzymatic activity. In contrast, these same agonists had no effect on catalase expression and activity in malignant rat glioma cells. The increase in steady-state catalase mRNA observed in normal rat astrocytes was due, in part, to de novo mRNA synthesis as opposed to increased catalase mRNA stability. Moreover, pioglitazone-mediated induction of catalase activity in normal rat astrocytes was completely blocked by transfection with a PPARγ-dominant negative plasmid. These data suggest that defects in PPAR-mediated signaling and gene expression may represent a block to normal catalase expression and induction in malignant glioma. The ability of PPAR agonists to differentially increase catalase expression and activity in normal astrocytes but not glioma cells suggests that these compounds might represent novel adjuvant therapeutic agents for the treatment of gliomas. PMID:24024139
Gao, Guangxun; Chen, Liang; Li, Jingxia; Zhang, Dongyun; Fang, Yong; Huang, Haishan; Chen, Xiequn; Huang, Chuanshu
2014-05-15
The cancer chemopreventive property of Chinese herb new isolate isorhapontigenin (ISO) and mechanisms underlying its activity have never been explored. Here we demonstrated that ISO treatment with various concentrations for 3 weeks could dramatically inhibit TPA/EGF-induced cell transformation of Cl41 cells in Soft Agar assay, whereas co-incubation of cells with ISO at the same concentrations could elicit G0/G1 cell-cycle arrest without redundant cytotoxic effects on non-transformed cells. Further studies showed that ISO treatment resulted in cyclin D1 downregulation in dose- and time-dependent manner. Our results indicated that ISO regulated cyclin D1 at transcription level via targeting JNK/C-Jun/AP-1 activation. Moreover, we found that ISO-inhibited JNK/C-Jun/AP-1 activation was mediated by both upregulation of MKP-1 expression through increasing its mRNA stability and deactivating MKK7. Most importantly, MKP-1 knockdown could attenuate ISO-mediated suppression of JNK/C-Jun activation and cyclin D1 expression, as well as G0/G1 cell cycle arrest and cell transformation inhibition, while ectopic expression of FLAG-cyclin D1 T286A mutant also reversed ISO-induced G0/G1 cell-cycle arrest and inhibition of cell transformation. Our results demonstrated that ISO is a promising chemopreventive agent via upregulating mkp-1 mRNA stability, which is distinct from its cancer therapeutic effect with downregulation of XIAP and cyclin D1 expression.
Zhao, Meijuan; Tang, Dan; Lechpammer, Stanislav; Hoffman, Alexander; Asea, Alexzander; Stevenson, Mary Ann; Calderwood, Stuart K
2002-11-15
We have investigated the role of the double-stranded RNA-dependent protein kinase gene (pkr) in the regulation of the heat shock response. We show that the pkr gene is essential for efficient activation of the heat shock response and that pkr disruption profoundly inhibits heat shock protein 70 (HSP70) synthesis and blocks the development of thermotolerance. Despite these profound effects, pkr disruption did not markedly affect the activation of heat shock factor 1 by heat and did not reduce the rate of transcription of the HSP70 gene after heat shock. However, despite the lack of effect of pkr disruption on HSP70 gene transcription, we found a significant decrease in the expression of HSP70 mRNA in pkr-/- cells after heat shock. Kinetic studies of mRNA turnover suggested a block in the thermal stabilization of HSP70 mRNA in pkr-/- cells. As the thermal stabilization of HSP70 mRNA is thought to involve cis-acting A+U rich (ARE) elements in the 3'-untranslated region (UTR), we examined a potential role for pkr in this process. We found that a reporter beta-galactosidase mRNA destabilized by introduction of a functional ARE into the 3'-UTR became stabilized by heat but only in cells containing an intact pkr gene. Our studies suggest therefore that pkr plays a significant role in the stabilization of mRNA species containing ARE destruction sequences in the 3'-UTR and through this mechanism, contributes to the regulation of the heat shock response and other processes.
The mTOR kinase inhibitor rapamycin decreases iNOS mRNA stability in astrocytes
2011-01-01
Background Reactive astrocytes are capable of producing a variety of pro-inflammatory mediators and potentially neurotoxic compounds, including nitric oxide (NO). High amounts of NO are synthesized following up-regulation of inducible NO synthase (iNOS). The expression of iNOS is tightly regulated by complex molecular mechanisms, involving both transcriptional and post-transcriptional processes. The mammalian target of rapamycin (mTOR) kinase modulates the activity of some proteins directly involved in post-transcriptional processes of mRNA degradation. mTOR is a serine-threonine kinase that plays an evolutionarily conserved role in the regulation of cell growth, proliferation, survival, and metabolism. It is also a key regulator of intracellular processes in glial cells. However, with respect to iNOS expression, both stimulatory and inhibitory actions involving the mTOR pathway have been described. In this study the effects of mTOR inhibition on iNOS regulation were evaluated in astrocytes. Methods Primary cultures of rat cortical astrocytes were activated with different proinflammatory stimuli, namely a mixture of cytokines (TNFα, IFNγ, and IL-1β) or by LPS plus IFNγ. Rapamycin was used at nM concentrations to block mTOR activity and under these conditions we measured its effects on the iNOS promoter, mRNA and protein levels. Functional experiments to evaluate iNOS activity were also included. Results In this experimental paradigm mTOR activation did not significantly affect astrocyte iNOS activity, but mTOR pathway was involved in the regulation of iNOS expression. Rapamycin did not display any significant effects under basal conditions, on either iNOS activity or its expression. However, the drug significantly increased iNOS mRNA levels after 4 h incubation in presence of pro-inflammatory stimuli. This stimulatory effect was transient, since no differences in either iNOS mRNA or protein levels were detected after 24 h. Interestingly, reduced levels of iNOS mRNA were detected after 48 hours, suggesting that rapamycin can modify iNOS mRNA stability. In this regard, we found that rapamycin significantly reduced the half-life of iNOS mRNA, from 4 h to 50 min when cells were co-incubated with cytokine mixture and 10 nM rapamycin. Similarly, rapamycin induced a significant up-regulation of tristetraprolin (TTP), a protein involved in the regulation of iNOS mRNA stability. Conclusion The present findings show that mTOR controls the rate of iNOS mRNA degradation in astrocytes. Together with the marked anti-inflammatory effects that we previously observed in microglial cells, these data suggest possible beneficial effects of mTOR inhibitors in the treatment of inflammatory-based CNS pathologies. PMID:21208419
Gareau, Cristina; Fournier, Marie-Josée; Filion, Christine; Coudert, Laetitia; Martel, David; Labelle, Yves; Mazroui, Rachid
2011-01-01
Background p21WAF1/CIP1 is a well known cyclin-dependent kinase inhibitor induced by various stress stimuli. Depending on the stress applied, p21 upregulation can either promote apoptosis or prevent against apoptotic injury. The stress-mediated induction of p21 involves not only its transcriptional activation but also its posttranscriptional regulation, mainly through stabilization of p21 mRNA levels. We have previously reported that the proteasome inhibitor MG132 induces the stabilization of p21 mRNA, which correlates with the formation of cytoplasmic RNA stress granules. The mechanism underlying p21 mRNA stabilization, however, remains unknown. Methodology/Principal Findings We identified the stress granules component CUGBP1 as a factor required for p21 mRNA stabilization following treatment with bortezomib ( = PS-341/Velcade). This peptide boronate inhibitor of the 26S proteasome is very efficient for the treatment of myelomas and other hematological tumors. However, solid tumors are sometimes refractory to bortezomib treatment. We found that depleting CUGBP1 in cancer cells prevents bortezomib-mediated p21 upregulation. FISH experiments combined to mRNA stability assays show that this effect is largely due to a mistargeting of p21 mRNA in stress granules leading to its degradation. Altering the expression of p21 itself, either by depleting CUGBP1 or p21, promotes bortezomib-mediated apoptosis. Conclusions/Significance We propose that one key mechanism by which apoptosis is inhibited upon treatment with chemotherapeutic drugs might involve upregulation of the p21 protein through CUGBP1. PMID:21637851
Regulation of cytoplasmic mRNA decay
Schoenberg, Daniel R.; Maquat, Lynne E.
2012-01-01
Discoveries made over the past 20 years highlight the importance of mRNA decay as a means to modulate gene expression and thereby protein production. Up until recently, studies focused largely on identifying cis-acting sequences that serve as mRNA stability or instability elements, the proteins that bind these elements, how the process of translation influences mRNA decay, and the ribonucleases that catalyze decay. Now, current studies have begun to elucidate how the decay process is regulated. This review examines our current understanding of how mammalian-cell mRNA decay is controlled by different signaling pathways and lays out a framework for future research. PMID:22392217
NASA Technical Reports Server (NTRS)
Breault, D. T.; Lichtler, A. C.; Rowe, D. W.
1997-01-01
Collagen reporter gene constructs have be used to identify cell-specific sequences needed for transcriptional activation. The elements required for endogenous levels of COL1A1 expression, however, have not been elucidated. The human COL1A1 minigene is expressed at high levels and likely harbors sequence elements required for endogenous levels of activity. Using stably transfected osteoblastic Py1a cells, we studied a series of constructs (pOBColCAT) designed to characterize further the elements required for high level of expression. pOBColCAT, which contains the COL1A1 first intron, was expressed at 50-100-fold higher levels than ColCAT 3.6, which lacks the first intron. This difference is best explained by improved mRNA processing rather than a transcriptional effect. Furthermore, variation in activity observed with the intron deletion constructs is best explained by altered mRNA splicing. Two major regions of the human COL1A1 minigene, the 3'-flanking sequences and the minigene body, were introduced into pOBColCAT to assess both transcriptional enhancing activity and the effect on mRNA stability. Analysis of the minigene body, which includes the first five exons and introns fused with the terminal six introns and exons, revealed an orientation-independent 5-fold increase in CAT activity. In contrast the 3'-flanking sequences gave rise to a modest 61% increase in CAT activity. Neither region increased the mRNA half-life of the parent construct, suggesting that CAT-specific mRNA instability elements may serve as dominant negative regulators of stability. This study suggests that other sites within the body of the COL1A1 minigene are important for high expression, e.g. during periods of rapid extracellular matrix production.
Stimulation of GLUT-1 glucose transporter expression in response to hyperosmolarity.
Hwang, D Y; Ismail-Beigi, F
2001-10-01
Glucose transporter isoform-1 (GLUT-1) expression is stimulated in response to stressful conditions. Here we examined the mechanisms mediating the enhanced expression of GLUT-1 by hyperosmolarity. GLUT-1 mRNA, GLUT-1 protein, and glucose transport increased after exposure of Clone 9 cells to 600 mosmol/l (produced by addition of mannitol). The stimulation of glucose transport was biphasic: in the early phase (0-6 h) a approximately 2.5-fold stimulation of glucose uptake was associated with no change in the content of GLUT-1 mRNA, GLUT-1 protein, or GLUT-1 in the plasma membrane, whereas the approximately 17-fold stimulation of glucose transport during the late phase (12-24 h) was associated with increases in both GLUT-1 mRNA (approximately 7.5-fold) and GLUT-1 protein content. Cell sorbitol increased after 3 h of exposure to hyperosmolarity. The increase in GLUT-1 mRNA content was associated with an increase in the half-life of the mRNA from 2 to 8 h. A 44-bp region in the proximal GLUT-1 promoter was necessary for basal activity and for the two- to threefold increases in expression by hyperosmolarity. It is concluded that the increase in GLUT-1 mRNA content is mediated by both enhanced transcription and stabilization of GLUT-1 mRNA and is associated with increases in GLUT-1 content and glucose transport activity.
Sodium 4-phenylbutyrate downregulates HSC70 expression by facilitating mRNA degradation.
Rubenstein, R C; Lyons, B M
2001-07-01
Intracellular trafficking of the DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) is repaired by sodium 4-phenylbutyrate (4PBA) by an undetermined mechanism. 4PBA downregulates protein and mRNA expression of the heat shock cognate protein HSC70 (the constitutively expressed member of the 70-kDa heat shock protein family) by approximately 40-50% and decreases formation of a HSC70-DeltaF508 CFTR complex that may be important in the intracellular degradation of DeltaF508 CFTR. We examined the potential mechanisms by which 4PBA decreases HSC70 mRNA and protein expression. In IB3-1 cells, 1 mM 4PBA did not alter the activity of the Chinese hamster ovary HSC70 promoter or of a human HSC70 promoter fragment in luciferase reporter assays nor did it alter HSC70 mRNA synthesis in nuclear runoff assays. In contrast, preincubation with 4PBA increased the rate of HSC70 mRNA degradation by approximately 40%. The initial rate of 35S-HSC70 protein synthesis in 4PBA-treated IB3-1 cells was reduced by approximately 40%, consistent with the steady-state mRNA level, whereas its rate of degradation was unaltered by 4PBA. 4PBA also reduced the steady-state accumulation of (35)S-HSC70 by approximately 40%. These data suggest that 4PBA decreases the expression of HSC70 mRNA and protein by inducing cellular adaptations that result in the decreased stability of HSC70 mRNA.
A small RNA activates CFA synthase by isoform-specific mRNA stabilization
Fröhlich, Kathrin Sophie; Papenfort, Kai; Fekete, Agnes; Vogel, Jörg
2013-01-01
Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5′ end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5′ untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability. PMID:24141880
A small RNA activates CFA synthase by isoform-specific mRNA stabilization.
Fröhlich, Kathrin Sophie; Papenfort, Kai; Fekete, Agnes; Vogel, Jörg
2013-11-13
Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5' end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5' untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability.
Chaperone Hsp27 Modulates AUF1 Proteolysis and AU-Rich Element-Mediated mRNA Degradation▿
Knapinska, Anna M.; Gratacós, Frances M.; Krause, Christopher D.; Hernandez, Kristina; Jensen, Amber G.; Bradley, Jacquelyn J.; Wu, Xiangyue; Pestka, Sidney; Brewer, Gary
2011-01-01
AUF1 is an AU-rich element (ARE)-binding protein that recruits translation initiation factors, molecular chaperones, and mRNA degradation enzymes to the ARE for mRNA destruction. We recently found chaperone Hsp27 to be an AUF1-associated ARE-binding protein required for tumor necrosis factor alpha (TNF-α) mRNA degradation in monocytes. Hsp27 is a multifunctional protein that participates in ubiquitination of proteins for their degradation by proteasomes. A variety of extracellular stimuli promote Hsp27 phosphorylation on three serine residues—Ser15, Ser78, and Ser82—by a number of kinases, including the mitogen-activated protein (MAP) pathway kinases p38 and MK2. Activating either kinase stabilizes ARE mRNAs. Likewise, ectopic expression of phosphomimetic mutant forms of Hsp27 stabilizes reporter ARE mRNAs. Here, we continued to examine the contributions of Hsp27 to mRNA degradation. As AUF1 is ubiquitinated and degraded by proteasomes, we addressed the hypothesis that Hsp27 phosphorylation controls AUF1 levels to modulate ARE mRNA degradation. Indeed, selected phosphomimetic mutants of Hsp27 promote proteolysis of AUF1 in a proteasome-dependent fashion and render ARE mRNAs more stable. Our results suggest that the p38 MAP kinase (MAPK)-MK2–Hsp27 signaling axis may target AUF1 destruction by proteasomes, thereby promoting ARE mRNA stabilization. PMID:21245386
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yanlong; Department of Medicine, University of Louisville, Louisville, KY; Wang, Chunhong
2012-10-15
Fibroblast growth factor-21 (FGF21) is a potential metabolic regulator with multiple beneficial effects on metabolic diseases. FGF21 is mainly expressed in the liver, but is also found in other tissues including the intestine, which expresses β-klotho abundantly. The intestine is a unique organ that operates in a physiologically hypoxic environment, and is responsible for the fat absorption processes including triglyceride breakdown, re-synthesis and absorption into the portal circulation. In the present study, we investigated the effects of hypoxia and the chemical hypoxia inducer, cobalt chloride (CoCl{sub 2}), on FGF21 expression in Caco-2 cells and the consequence of fat accumulation. Physicalmore » hypoxia (1% oxygen) and CoCl{sub 2} treatment decreased both FGF21 mRNA and secreted protein levels. Gene silence and inhibition of hypoxia-inducible factor-α (HIFα) did not affect the reduction of FGF21 mRNA and protein levels by hypoxia. However, CoCl{sub 2} administration caused a significant increase in oxidative stress. The addition of n-acetylcysteine (NAC) suppressed CoCl{sub 2}-induced reactive oxygen species (ROS) formation and completely negated CoCl{sub 2}-induced FGF21 loss. mRNA stability analysis demonstrated that the CoCl{sub 2} administration caused a remarkable reduction in FGF21 mRNA stability. Furthermore, CoCl{sub 2} increased intracellular triglyceride (TG) accumulation, along with a reduction in mRNA levels of lipid lipase, hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), and an increase of sterol regulatory element-binding protein-1c (SREBP1c) and stearoyl-coenzyme A (SCD1). Addition of both NAC and recombinant FGF21 significantly attenuated the CoCl{sub 2}-induced TG accumulation. In conclusion, the decrease of FGF21 in Caco-2 cells by chemical hypoxia is independent of HIFα, but dependent on an oxidative stress-mediated mechanism. The regulation of FGF21 by hypoxia may contribute to intestinal lipid metabolism and absorption. -- Graphical abstract: Physical and chemical hypoxia decrease FGF-21 expression, which is inhibited by antioxidant, N-acetyl cysteine (NAC), in Caco-2 cells. Highlights: ► Hypoxia down-regulates FGF21 expression in Caco-2 cells. ► FGF21 down-regulation is HIF-α independent. ► FGF21 down-regulation is modulated by oxidative stress-mediated mRNA stability. ► FGF21 is involved in hypoxia‐induced triglyceride accumulation in Caco-2 cells.« less
Transcriptional activation of the lipoprotein lipase gene in macrophages by dexamethasone.
Domin, W S; Chait, A; Deeb, S S
1991-03-12
The effect of dexamethasone on lipoprotein lipase (LPL) gene expression during macrophage differentiation was investigated by using the human monocytic leukemia cell line THP-1 and human monocyte-derived macrophages. Addition of dexamethasone to THP-1 cells increased steady-state levels of LPL mRNA and LPL mass accumulation in the medium during PMA-induced differentiation by 4-fold. Studies with human monocyte-derived macrophages showed a similar effect of dexamethasone on LPL expression. Peak LPL mRNA levels were achieved 24-h post-dexamethasone addition to THP-1 cells. Optimal stimulation of LPL mRNA occurred when dexamethasone was added 24 h after induction with PMA. Thereafter, there was rapid decline in responsiveness to dexamethasone. Induction of LPL mRNA in THP-1 cells was completely blocked by actinomycin D, suggesting that induction was transcription dependent. The stability of LPL mRNA was not influenced by dexamethasone. Treatment of THP-1 cells with PMA led to a 2-fold increase in specific binding of dexamethasone and a 4-fold increase in glucocorticoid receptor mRNA within 12 h. Thus, dexamethasone stimulates LPL gene expression during differentiation of human macrophages, a process that involves induction of glucocorticoid receptor synthesis and activation.
García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E
2016-05-05
We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay.The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Unloading-induced slow-to-fast myosin shift in soleus muscle: nuclear MuRFs and calsarcin expression
NASA Astrophysics Data System (ADS)
Shenkman, Boris; Lomonosova, Yulia
Exposure to actual and simulated microgravity is known to induce decrease in slow MyHC mRNA expression and increase in fast MyHC mRNAs expression. We supposed that altered expression of the calsarcin (CS) I and II (specific for type I and type II fibers respectively) may provide the control over myosin phenotype during unloading. We found that after 3 days of hindlimb unloading (HU) the content of CSII mRNA increased two-fold in rat soleus as compared to the cage controls. This level was maintained till the 7th day of the exposure and increased by more than 5-fold (as compared to controls) after two weeks of HU. In contrast to CSII, CSI mRNA expression didn’t change after 3 days of HU, but decreased more than 2-fold by the 7th and 14th day of HU. The increase of CSII RNA (in type II fibers) may be explained as the mechanism of stabilization of fast phenotype in all, but more important, in newly transformed type II fibers. At the same time, the decrease of CSI mRNA (in type I fibers) may be understood as counteracting the slow-to-fast transformation. Morriscot et al, (2010) demonstrated that calsarcin II expression decreased only in the double knockouts MuRF1-/MuRF2-. So, we hypothesized that CSII expression in unloaded soleus muscle might be associated with the cytoplasm-nucleus translocation of MuRF1 and MuRF2. We observed significant accumulation of MuRF1 and MuRF2 in the nuclear fraction after 3 days of HU. Thus the accumulation of MuRFs in myonuclei may promote the expression of CSII, necessary for stabilization of fast phenotype in the course of slow-to-fast shift in unloaded soleus muscle. We express our gratitude to Prof. S. Labeit (Mannheim) for kind presenting us the best antibodies against MuRF1 and MuRF2.
Currier, Rachel B.; Calvete, Juan J.; Sanz, Libia; Harrison, Robert A.; Rowley, Paul D.; Wagstaff, Simon C.
2012-01-01
Venom is a critical evolutionary innovation enabling venomous snakes to become successful limbless predators; it is therefore vital that venomous snakes possess a highly efficient venom production and delivery system to maintain their predatory arsenal. Here, we exploit the unusual stability of messenger RNA in venom to conduct, for the first time, quantitative PCR to characterise the dynamics of gene expression of newly synthesised venom proteins following venom depletion. Quantitative PCR directly from venom enables real-time dynamic studies of gene expression in the same animals because it circumvents the conventional requirement to sacrifice snakes to extract mRNA from dissected venom glands. Using qPCR and proteomic analysis, we show that gene expression and protein re-synthesis triggered by venom expulsion peaks between days 3–7 of the cycle of venom replenishment, with different protein families expressed in parallel. We demonstrate that venom re-synthesis occurs very rapidly following depletion of venom stores, presumably to ensure venomous snakes retain their ability to efficiently predate and remain defended from predators. The stability of mRNA in venom is biologically fascinating, and could significantly empower venom research by expanding opportunities to produce transcriptomes from historical venom stocks and rare or endangered venomous species, for new therapeutic, diagnostic and evolutionary studies. PMID:22879897
Uncovering Hidden Layers of Cell Cycle Regulation through Integrative Multi-omic Analysis
Aviner, Ranen; Shenoy, Anjana; Elroy-Stein, Orna; Geiger, Tamar
2015-01-01
Studying the complex relationship between transcription, translation and protein degradation is essential to our understanding of biological processes in health and disease. The limited correlations observed between mRNA and protein abundance suggest pervasive regulation of post-transcriptional steps and support the importance of profiling mRNA levels in parallel to protein synthesis and degradation rates. In this work, we applied an integrative multi-omic approach to study gene expression along the mammalian cell cycle through side-by-side analysis of mRNA, translation and protein levels. Our analysis sheds new light on the significant contribution of both protein synthesis and degradation to the variance in protein expression. Furthermore, we find that translation regulation plays an important role at S-phase, while progression through mitosis is predominantly controlled by changes in either mRNA levels or protein stability. Specific molecular functions are found to be co-regulated and share similar patterns of mRNA, translation and protein expression along the cell cycle. Notably, these include genes and entire pathways not previously implicated in cell cycle progression, demonstrating the potential of this approach to identify novel regulatory mechanisms beyond those revealed by traditional expression profiling. Through this three-level analysis, we characterize different mechanisms of gene expression, discover new cycling gene products and highlight the importance and utility of combining datasets generated using different techniques that monitor distinct steps of gene expression. PMID:26439921
Karthi, Sellamuthu; Rajeshwari, Mohan; Francis, Amirtharaj; Saravanan, Matheshwaran; Varalakshmi, Perumal; Houlden, Henry; Thangaraj, Kumarasamy; Ashokkumar, Balasubramaniem
2017-08-01
The frequency of rs2229611, previously reported in Chinese, Caucasians, Japanese and Hispanics, was investigated for the first time in Indian ethnicity. We analyzed its role in the progression of Glycogen Storage Disease type-Ia (GSD-Ia) and breast cancer. Genotype data on rs2229611 revealed that the risk of GSD-Ia was higher (P=0.0195) with CC compared to TT/TC genotypes, whereas no such correlation was observed with breast cancer cases. We observed a strong linkage disequilibrium (LD) among rs2229611 and other disease causing G6PC1 variants (|D'|=1, r 2 =1). Functional validation performed in HepG2 cells using luciferase constructs showed significant (P<0.05) decrease in expression than wild-type 3'-UTR due to curtailed mRNA stability. Furthermore, AU-rich elements (AREs) mediated regulation of G6PC1 expression characterized using 3'-UTR deletion constructs showed a prominent decrease in mRNA stability. We then examined whether miRNAs are involved in controlling G6PC1 expression using pmirGLO-UTR constructs, with evidence of more distinct inhibition in the reporter function with rs2229611. These data suggests that rs2229611 is a crucial regulatory SNP which in homozygous state leads to a more aggressive disease phenotype in GSD-Ia patients. The implication of this result is significant in predicting disease onset, progression and response to disease modifying treatments in patients with GSD-Ia. Copyright © 2017 Elsevier B.V. All rights reserved.
Retinoic acid stimulates interstitial collagenase messenger ribonucleic acid in osteosarcoma cells
NASA Technical Reports Server (NTRS)
Connolly, T. J.; Clohisy, J. C.; Shilt, J. S.; Bergman, K. D.; Partridge, N. C.; Quinn, C. O.
1994-01-01
The rat osteoblastic osteosarcoma cell line UMR 106-01 secretes interstitial collagenase in response to retinoic acid (RA). The present study demonstrates by Northern blot analysis that RA causes an increase in collagenase messenger RNA (mRNA) at 6 h, which is maximal at 24 h (20.5 times basal) and declines toward basal level by 72 h. This stimulation is dose dependent, with a maximal response at 5 x 10(-7) M RA. Nuclear run-on assays show a greater than 20-fold increase in the rate of collagenase mRNA transcription between 12-24 h after RA treatment. Cycloheximide blocks RA stimulation of collagenase mRNA, demonstrating the need for de novo protein synthesis. RA not only causes an increase in collagenase secretion, but is known to decrease collagen synthesis in UMR 106-01 cells. In this study, the increase in collagenase mRNA is accompanied by a concomitant decrease in the level of alpha 1(I) procollagen mRNA, which is maximal at 24 h (70% decrease), with a return to near-control levels by 72 h. Nuclear run-on assays demonstrated that the decrease in alpha 1 (I) procollagen expression does not have a statistically significant transcriptional component. RA did not statistically decrease the stability of alpha 1 (I) procollagen mRNA (calculated t1/2 = 8.06 +/- 0.30 and 9.01 +/- 0.62 h in the presence and absence of RA, respectively). However, transcription and stability together probably contribute to the major decrease in stable alpha 1 (I) procollagen mRNA observed. Cycloheximide treatment inhibits basal level alpha 1 (I) procollagen mRNA accumulation, demonstrating the need for on-going protein synthesis to maintain basal expression of this gene.
Düvel, Katrin; Valerius, Oliver; Mangus, David A; Jacobson, Allan; Braus, Gerhard H
2002-01-01
The mRNA poly(A) tail serves different purposes, including the facilitation of nuclear export, mRNA stabilization, efficient translation, and, finally, specific degradation. The posttranscriptional addition of a poly(A) tail depends on sequence motifs in the 3' untranslated region (3' UTR) of the mRNA and a complex trans-acting protein machinery. In this study, we have replaced the 3' UTR of the yeast TRP4 gene with sequences encoding a hammerhead ribozyme that efficiently cleaves itself in vivo. Expression of the TRP4-ribozyme allele resulted in the accumulation of a nonpolyadenylated mRNA. Cells expressing the TRP4-ribozyme mRNA showed a reduced growth rate due to a reduction in Trp4p enzyme activity. The reduction in enzyme activity was not caused by inefficient mRNA export from the nucleus or mRNA destabilization. Rather, analyses of mRNA association with polyribosomes indicate that translation of the ribozyme-containing mRNA is impaired. This translational defect allows sufficient synthesis of Trp4p to support growth of trp4 cells, but is, nevertheless, of such magnitude as to activate the general control network of amino acid biosynthesis. PMID:12003493
Bringing RNA Interference (RNAi) into the High School Classroom
ERIC Educational Resources Information Center
Sengupta, Sibani
2013-01-01
RNA interference (abbreviated RNAi) is a relatively new discovery in the field of mechanisms that serve to regulate gene expression (a.k.a. protein synthesis). Gene expression can be regulated at the transcriptional level (mRNA production, processing, or stability) and at the translational level (protein synthesis). RNAi acts in a gene-specific…
Biomaterials for mRNA Delivery
Islam, Mohammad Ariful; Reesor, Emma K. G.; Xu, Yingjie; Zope, Harshal R.; Zetter, Bruce R.; Shi, Jinjun
2015-01-01
Messenger RNA (mRNA) has recently emerged with remarkable potential as an effective alternative to DNA-based therapies because of several unique advantages. mRNA does not require nuclear entry for transfection activity and has a negligible chance of integrating into the host genome which excludes the possibility of potentially detrimental genomic alternations. Chemical modification of mRNA has further enhanced its stability and decreased its activation of innate immune responses. Additionally, mRNA has been found to have rapid expression and predictable kinetics. Nevertheless, the ubiquitous application of mRNA remains challenging given its unfavorable attributes, such as large size, negative charge and susceptibility to enzymatic degradation. Further refinement of mRNA delivery modalities is therefore essential for its development as a therapeutic tool. This review provides an exclusive overview of current state-of-the-art biomaterials and nanotechnology platforms for mRNA delivery, and discusses future prospects to bring these exciting technologies into clinical practice. PMID:26280625
Calder, Michele D; Watson, Patricia H; Watson, Andrew J
2011-11-01
During oogenesis, mammalian oocytes accumulate maternal mRNAs that support the embryo until embryonic genome activation. RNA-binding proteins (RBP) may regulate the stability and turnover of maternal and embryonic mRNAs. We hypothesised that varying embryo culture conditions, such as culture medium, oxygen tension and MAPK inhibition, affects regulation of RBPs and their targets during preimplantation development. STAU1, ELAVL1, KHSRP and ZFP36 proteins and mRNAs were detected throughout mouse preimplantation development, whereas Elavl2 mRNA decreased after the two-cell stage. Potential target mRNAs of RBP regulation, Gclc, Slc2a1 and Slc7a1 were detected during mouse preimplantation development. Gclc mRNA was significantly elevated in embryos cultured in Whitten's medium compared with embryos cultured in KSOMaa, and Gclc mRNA was elevated under high-oxygen conditions. Inhibition of the p38 MAPK pathway reduced Slc7a1 mRNA expression while inhibition of ERK increased Slc2a1 mRNA expression. The half-lives of the potential RBP mRNA targets are not regulated in parallel; Slc2a1 mRNA displayed the longest half-life. Our results indicate that mRNAs and proteins encoding five RBPs are present during preimplantation development and more importantly, demonstrate that expression of RBP target mRNAs are regulated by culture medium, gas atmosphere and MAPK pathways.
Sharma, Monika; Anirudh, C R
2017-10-03
STAR proteins are evolutionary conserved mRNA-binding proteins that post-transcriptionally regulate gene expression at all stages of RNA metabolism. These proteins possess conserved STAR domain that recognizes identical RNA regulatory elements as YUAAY. Recently reported crystal structures show that STAR domain is composed of N-terminal QUA1, K-homology domain (KH) and C-terminal QUA2, and mRNA binding is mediated by KH-QUA2 domain. Here, we present simulation studies done to investigate binding of mRNA to STAR protein, mammalian Quaking protein (QKI). We carried out conventional MD simulations of STAR domain in presence and absence of mRNA, and studied the impact of mRNA on the stability, dynamics and underlying allosteric mechanism of STAR domain. Our unbiased simulations results show that presence of mRNA stabilizes the overall STAR domain by reducing the structural deviations, correlating the 'within-domain' motions, and maintaining the native contacts information. Absence of mRNA not only influenced the essential modes of motion of STAR domain, but also affected the connectivity of networks within STAR domain. We further explored the dissociation of mRNA from STAR domain using umbrella sampling simulations, and the results suggest that mRNA binding to STAR domain occurs in multi-step: first conformational selection of mRNA backbone conformations, followed by induced fit mechanism as nucleobases interact with STAR domain.
RpoS induces expression of the Vibrio anguillarum quorum-sensing regulator VanT.
Weber, Barbara; Croxatto, Antony; Chen, Chang; Milton, Debra L
2008-03-01
In vibrios, regulation of the Vibrio harveyi-like LuxR transcriptional activators occurs post-transcriptionally via small regulatory RNAs (sRNAs) that destabilize the luxR mRNA at a low cell population, eliminating expression of LuxR. Expression of the sRNAs is modulated by the vibrio quorum-sensing phosphorelay systems. However, vanT mRNA, which encodes a LuxR homologue in Vibrio anguillarum, is abundant at low and high cell density, indicating that VanT expression may be regulated via additional mechanisms. In this study, Western analyses showed that VanT was expressed throughout growth with a peak of expression during late exponential growth. VanO induced partial destabilization of vanT mRNA via activation of at least one Qrr sRNA. Interestingly, the sigma factor RpoS significantly stabilized vanT mRNA and induced VanT expression during late exponential growth. This induction was in part due to RpoS repressing expression of Hfq, an RNA chaperone. RpoS is not part of the quorum-sensing regulatory cascade since RpoS did not regulate expression or activity of VanO, and RpoS was not regulated by VanO or VanT. VanT and RpoS were needed for survival following UV irradiation and for pigment and metalloprotease production, suggesting that RpoS works with the quorum-sensing systems to modulate expression of VanT, which regulates survival and stress responses.
Essafi-Benkhadir, Khadija; Onesto, Cercina; Stebe, Emmanuelle; Moroni, Christoph
2007-01-01
Vascular endothelial growth factor (VEGF) is one of the most important regulators of physiological and pathological angiogenesis. Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway and overexpression of VEGF are common denominators of tumors from different origins. We have established a new link between these two fundamental observations converging on VEGF mRNA stability. In this complex phenomenon, tristetraprolin (TTP), an adenylate and uridylate-rich element-associated protein that binds to VEGF mRNA 3′-untranslated region, plays a key role by inducing VEGF mRNA degradation, thus maintaining basal VEGF mRNA amounts in normal cells. ERKs activation results in the accumulation of TTP mRNA. However, ERKs reduce the VEGF mRNA-destabilizing effect of TTP, leading to an increase in VEGF expression that favors the angiogenic switch. Moreover, TTP decreases RasVal12-dependent VEGF expression and development of vascularized tumors in nude mice. As a consequence, TTP might represent a novel antiangiogenic and antitumor agent acting through its destabilizing activity on VEGF mRNA. Determination of TTP and ERKs status would provide useful information for the evaluation of the angiogenic potential in human tumors. PMID:17855506
PNPase autocontrols its expression by degrading a double-stranded structure in the pnp mRNA leader
Jarrige, Anne-Charlotte; Mathy, Nathalie; Portier, Claude
2001-01-01
Polynucleotide phosphorylase synthesis is autocontrolled at a post-transcriptional level in an RNase III-dependent mechanism. RNase III cleaves a long stem–loop in the pnp leader, which triggers pnp mRNA instability, resulting in a decrease in the synthesis of polynucleotide phosphorylase. The staggered cleavage by RNase III removes the upper part of the stem–loop structure, creating a duplex with a short 3′ extension. Mutations or high temperatures, which destabilize the cleaved stem–loop, decrease expression of pnp, while mutations that stabilize the stem increase expression. We propose that the dangling 3′ end of the duplex created by RNase III constitutes a target for polynucleotide phosphorylase, which binds to and degrades the upstream half of this duplex, hence inducing pnp mRNA instability. Consistent with this interpretation, a pnp mRNA starting at the downstream RNase III processing site exhibits a very low level of expression, regardless of the presence of polynucleotide phosphorylase. Moreover, using an in vitro synthesized pnp leader transcript, it is shown that polynucleotide phosphorylase is able to digest the duplex formed after RNase III cleavage. PMID:11726520
Lou, P P; Li, C L; Xia, T S; Shi, L; Wu, J; Zhou, X J; Wang, Y; Ding, Q
2016-06-23
To investigate the regulatory mechanism of RNA binding motif protein 38 (RNPC1) on the expression of progesterone receptor (PR) in breast cancer cell line ZR-75-1. Lentiviral vector was used to induce overexpression of RNPC1 in ZR-75-1 cells. qRT-PCR and Western blot were used to assess the regulatory effect of RNPC1 on PR expression. Actinomycin was used to detect the regulatory mechanism involved. Immunohistochemical (IHC) staining was used to determine the protein expression of RNPC1 and PR in 80 breast cancer tissues. IHC staining showed that the expression of RNPC1 was significantly higher in the PR positive breast cancer tissues than that in the PR negative breast cancer tissues (P<0.05). The qRT-PCR results showed that overexpression of RNPC1 in ZR-75-1 cells significantly upregulated the mRNA level of PR (1.764±0.028 vs. 1.001±0.037, P<0.01), whereas knockdown of RNPC1 did the opposite (0.579± 0.007 vs. 1.000±0.002, P<0.01). The Western blot results also showed that overexpression of RNPC1 up-regulated PR levels, while knockdown of RNPC1 resulted in down-regulation of PR levels in the ZR-75-1 cells.The actinomycin assay showed that overexpression of RNPC1 increased the mRNA stability of PR. The half-life of PR mRNA was increased from 4.0 h to 6.5 h. Knockdown of RNPC1 decreased the mRNA stability of PR and the half-life of PR transcript was decreased from 4.1 h to 3.0 h. RNPC1 plays a crucial role in regulating the expression of PR in breast cancer ZR-75-1 cells.
Genomic analysis of wig-1 pathways.
Sedaghat, Yalda; Mazur, Curt; Sabripour, Mahyar; Hung, Gene; Monia, Brett P
2012-01-01
Wig-1 is a transcription factor regulated by p53 that can interact with hnRNP A2/B1, RNA Helicase A, and dsRNAs, which plays an important role in RNA and protein stabilization. in vitro studies have shown that wig-1 binds p53 mRNA and stabilizes it by protecting it from deadenylation. Furthermore, p53 has been implicated as a causal factor in neurodegenerative diseases based in part on its selective regulatory function on gene expression, including genes which, in turn, also possess regulatory functions on gene expression. In this study we focused on the wig-1 transcription factor as a downstream p53 regulated gene and characterized the effects of wig-1 down regulation on gene expression in mouse liver and brain. Antisense oligonucleotides (ASOs) were identified that specifically target mouse wig-1 mRNA and produce a dose-dependent reduction in wig-1 mRNA levels in cell culture. These wig-1 ASOs produced marked reductions in wig-1 levels in liver following intraperitoneal administration and in brain tissue following ASO administration through a single striatal bolus injection in FVB and BACHD mice. Wig-1 suppression was well tolerated and resulted in the reduction of mutant Htt protein levels in BACHD mouse brain but had no effect on normal Htt protein levels nor p53 mRNA or protein levels. Expression microarray analysis was employed to determine the effects of wig-1 suppression on genome-wide expression in mouse liver and brain. Reduction of wig-1 caused both down regulation and up regulation of several genes, and a number of wig-1 regulated genes were identified that potentially links wig-1 various signaling pathways and diseases. Antisense oligonucleotides can effectively reduce wig-1 levels in mouse liver and brain, which results in specific changes in gene expression for pathways relevant to both the nervous system and cancer.
Genomic Analysis of wig-1 Pathways
Sedaghat, Yalda; Mazur, Curt; Sabripour, Mahyar; Hung, Gene; Monia, Brett P.
2012-01-01
Background Wig-1 is a transcription factor regulated by p53 that can interact with hnRNP A2/B1, RNA Helicase A, and dsRNAs, which plays an important role in RNA and protein stabilization. in vitro studies have shown that wig-1 binds p53 mRNA and stabilizes it by protecting it from deadenylation. Furthermore, p53 has been implicated as a causal factor in neurodegenerative diseases based in part on its selective regulatory function on gene expression, including genes which, in turn, also possess regulatory functions on gene expression. In this study we focused on the wig-1 transcription factor as a downstream p53 regulated gene and characterized the effects of wig-1 down regulation on gene expression in mouse liver and brain. Methods and Results Antisense oligonucleotides (ASOs) were identified that specifically target mouse wig-1 mRNA and produce a dose-dependent reduction in wig-1 mRNA levels in cell culture. These wig-1 ASOs produced marked reductions in wig-1 levels in liver following intraperitoneal administration and in brain tissue following ASO administration through a single striatal bolus injection in FVB and BACHD mice. Wig-1 suppression was well tolerated and resulted in the reduction of mutant Htt protein levels in BACHD mouse brain but had no effect on normal Htt protein levels nor p53 mRNA or protein levels. Expression microarray analysis was employed to determine the effects of wig-1 suppression on genome-wide expression in mouse liver and brain. Reduction of wig-1 caused both down regulation and up regulation of several genes, and a number of wig-1 regulated genes were identified that potentially links wig-1 various signaling pathways and diseases. Conclusion Antisense oligonucleotides can effectively reduce wig-1 levels in mouse liver and brain, which results in specific changes in gene expression for pathways relevant to both the nervous system and cancer. PMID:22347364
Suppression of PTEN transcription by UVA
Zhao, Baozhong; Ming, Mei; He, Yu-Ying
2012-01-01
Although UVA has different physical and biological targets than UVB, the contribution of UVA to skin cancer susceptibility and its molecular basis remain largely unknown. Here we show that chronic UVA radiation suppresses PTEN expression at the mRNA level. Subchronic and acute UVA radiation also down-regulated PTEN in normal human epidermal keratinocytes, skin culture and mouse skin. At the molecular level, chronic UVA radiation decreased the transcriptional activity of the PTEN promoter in a methylation-independent manner, while it had no effect on the protein stability or mRNA stability of PTEN. In contrast, we found that UVA-induced activation of the Ras/ERK/AKT and NF-κB pathways plays an important role in UV-induced PTEN down-regulation. Inhibiting ERK or AKT increases PTEN expression. Our findings may provide unique insights into PTEN down-regulation as a critical component of UVA’s molecular impact during keratinocyte transformation. PMID:23129115
hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation
Williams, Kathryn R.; McAninch, Damian S.; Stefanovic, Snezana; Xing, Lei; Allen, Megan; Li, Wenqi; Feng, Yue; Mihailescu, Mihaela Rita; Bassell, Gary J.
2016-01-01
Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development. PMID:26658614
Razanajaona, D; Maroc, C; Lopez, M; Mannoni, P; Gabert, J
1992-05-01
The expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene is differentially regulated in various cell types. We investigated the mechanisms controlling its expression in 12-O-tetradecanoylphorbol-13-acetate plus phytohemagglutinin-stimulated Jurkat cells, a human T-cell line. In unstimulated cells, GM-CSF mRNA was undetectable by Northern blot. Upon activation, it was detected from 3 h onward, with a progressive increase in the levels of the transcript up to 24 h of stimulation. Whereas cycloheximide treatment at the time of stimulation blocked mRNA induction, its addition at later times resulted in a marked increase in transcript levels. Run-on analysis showed that transcription of the GM-CSF gene was low to undetectable in unstimulated cells; stimulation led to transcriptional activation, which was weak at 6 h but had increased 16-fold at 24 h. In addition, the mRNA half-life decreased during activation, from 2.5 h at 6 h down to 45 min at 24 h. Cycloheximide treatment increased GM-CSF mRNA half-life (3- and 4-fold, respectively). Our results show: (a) both transcriptional and posttranscriptional signals regulate GM-CSF mRNA levels in activated Jurkat cells, (b) de novo protein synthesis is required for mRNA induction, whereas destabilizing labile proteins control the transcript stability, and (c) a shift from a posttranscriptional to a predominant transcriptional control of GM-CSF gene expression occurs during activation.
Coppin, Lucie; Vincent, Audrey; Frénois, Frédéric; Duchêne, Belinda; Lahdaoui, Fatima; Stechly, Laurence; Renaud, Florence; Villenet, Céline; Van Seuningen, Isabelle; Leteurtre, Emmanuelle; Dion, Johann; Grandjean, Cyrille; Poirier, Françoise; Figeac, Martin; Delacour, Delphine; Porchet, Nicole; Pigny, Pascal
2017-03-06
Pancreatic cancer cells express high levels of MUC1, MUC4 and MUC16 mRNAs that encode membrane-bound mucins. These mRNAs share unusual features such as a long half-life. However, it remains unknown how mucin mRNA stability is regulated. Galectin-3 (Gal-3) is an endogenous lectin playing important biological functions in epithelial cells. Gal-3 is encoded by LGALS3 which is up-regulated in pancreatic cancer. Despite the absence of a RNA-recognition motif, Gal-3 interacts indirectly with pre-mRNAs in the nucleus and promotes constitutive splicing. However a broader role of Gal-3 in mRNA fate is unexplored. We report herein that Gal-3 increases MUC4 mRNA stability through an intermediate, hnRNP-L which binds to a conserved CA repeat element in the 3'UTR in a Gal-3 dependent manner and also controls Muc4 mRNA levels in epithelial tissues of Gal3 -/- mice. Gal-3 interacts with hnRNP-L in the cytoplasm, especially during cell mitosis, but only partly associates with protein markers of P-Bodies or Stress Granules. By RNA-IP plus RNA-seq analysis and imaging, we demonstrate that Gal-3 binds to mature spliced MUC4 mRNA in the perinuclear region, probably in hnRNP-L-containing RNA granules. Our findings highlight a new role for Gal-3 as a non-classic RNA-binding protein that regulates MUC4 mRNA post-transcriptionally.
Coppin, Lucie; Vincent, Audrey; Frénois, Frédéric; Duchêne, Belinda; Lahdaoui, Fatima; Stechly, Laurence; Renaud, Florence; Villenet, Céline; Seuningen, Isabelle Van; Leteurtre, Emmanuelle; Dion, Johann; Grandjean, Cyrille; Poirier, Françoise; Figeac, Martin; Delacour, Delphine; Porchet, Nicole; Pigny, Pascal
2017-01-01
Pancreatic cancer cells express high levels of MUC1, MUC4 and MUC16 mRNAs that encode membrane-bound mucins. These mRNAs share unusual features such as a long half-life. However, it remains unknown how mucin mRNA stability is regulated. Galectin-3 (Gal-3) is an endogenous lectin playing important biological functions in epithelial cells. Gal-3 is encoded by LGALS3 which is up-regulated in pancreatic cancer. Despite the absence of a RNA-recognition motif, Gal-3 interacts indirectly with pre-mRNAs in the nucleus and promotes constitutive splicing. However a broader role of Gal-3 in mRNA fate is unexplored. We report herein that Gal-3 increases MUC4 mRNA stability through an intermediate, hnRNP-L which binds to a conserved CA repeat element in the 3′UTR in a Gal-3 dependent manner and also controls Muc4 mRNA levels in epithelial tissues of Gal3−/− mice. Gal-3 interacts with hnRNP-L in the cytoplasm, especially during cell mitosis, but only partly associates with protein markers of P-Bodies or Stress Granules. By RNA-IP plus RNA-seq analysis and imaging, we demonstrate that Gal-3 binds to mature spliced MUC4 mRNA in the perinuclear region, probably in hnRNP-L-containing RNA granules. Our findings highlight a new role for Gal-3 as a non-classic RNA-binding protein that regulates MUC4 mRNA post-transcriptionally. PMID:28262838
KSRP Modulation of GAP-43 mRNA Stability Restricts Axonal Outgrowth in Embryonic Hippocampal Neurons
Bird, Clark W.; Gardiner, Amy S.; Bolognani, Federico; Tanner, Daniel C.; Chen, Ching-Yi; Lin, Wei-Jye; Yoo, Soonmoon; Twiss, Jeffery L.; Perrone- Bizzozero, Nora
2013-01-01
The KH-type splicing regulatory protein (KSRP) promotes the decay of AU-rich element (ARE)-containing mRNAs. Although KSRP is expressed in the nervous system, very little is known about its role in neurons. In this study, we examined whether KSRP regulates the stability of the ARE-containing GAP-43 mRNA. We found that KSRP destabilizes this mRNA by binding to its ARE, a process that requires the presence of its fourth KH domain (KH4). Furthermore, KSRP competed with the stabilizing factor HuD for binding to these sequences. We also examined the functional consequences of KSRP overexpression and knockdown on the differentiation of primary hippocampal neurons in culture. Overexpression of full length KSRP or KSRP without its nuclear localization signal hindered axonal outgrowth in these cultures, while overexpression of a mutant protein without the KH4 domain that has less affinity for binding to GAP-43′s ARE had no effect. In contrast, depletion of KSRP led to a rise in GAP-43 mRNA levels and a dramatic increase in axonal length, both in KSRP shRNA transfected cells and neurons cultured from Ksrp+/− and Ksrp −/−embryos. Finally we found that overexpression of GAP-43 rescued the axonal outgrowth deficits seen with KSRP overexpression, but only when cells were transfected with GAP-43 constructs containing 3′ UTR sequences targeting the transport of this mRNA to axons. Together, our results suggest that KSRP is an important regulator of mRNA stability and axonal length that works in direct opposition to HuD to regulate the levels of GAP-43 and other ARE-containing neuronal mRNAs. PMID:24244461
Li, H; Chen, C; Yao, H; Li, X; Yang, N; Qiao, J; Xu, K; Zeng, L
2016-10-01
Bone marrow micro-environment changes during hematopoietic stem cell transplantation (HSCT) with subsequent alteration of genes expression. Quantitative polymerase chain reaction (q-PCR) is a reliable and reproducible technique for the analysis of gene expression. To obtain more accurate results, it is essential to find a reference during HSCT. However, which gene is suitable during HSCT remains unclear. This study aimed to identify suitable reference genes for mRNA studies in bone marrow after HSCT. C57BL/6 mice were treated with either total body irradiation (group T) or busulfan/cyclophosphamide (BU/CY) (group B) followed by infusion of bone marrow cells. Normal mice without treatments were served as a control. All samples (group T + group B + control) were defined as group G. On days 7, 14, and 21 after transplantation, transcription levels of 7 candidate genes, ACTB, B2M, GAPDH, HMBS, HPRT, SDHA, and YWHAZ, in bone marrow cells were measured by use of real-time quantitative PCR. The expression stability of these 7 candidate reference genes were analyzed by 2 statistical software programs, GeNorm and NormFinder. Our results showed that ACTB displayed the highest expression in group G, with lowest expression of PSDHA in group T and HPRT in groups B and G. Analysis of expression stability by use of GeNorm or NormFinder demonstrated that expression of B2M in bone marrow were much more stable during HSCT, compared with other candidate genes including commonly used reference genes GAPDH and ACTB. ACTB could be used as a suitable reference gene for mRNA studies in bone marrow after HSCT. Copyright © 2016 Elsevier Inc. All rights reserved.
Gallagher, Thomas L; Tietz, Kiel T; Morrow, Zachary T; McCammon, Jasmine M; Goldrich, Michael L; Derr, Nicolas L; Amacher, Sharon L
2017-09-01
Vertebrate segmentation is controlled by the segmentation clock, a molecular oscillator that regulates gene expression and cycles rapidly. The expression of many genes oscillates during segmentation, including hairy/Enhancer of split-related (her or Hes) genes, which encode transcriptional repressors that auto-inhibit their own expression, and deltaC (dlc), which encodes a Notch ligand. We previously identified the tortuga (tor) locus in a zebrafish forward genetic screen for genes involved in cyclic transcript regulation and showed that cyclic transcripts accumulate post-splicing in tor mutants. Here we show that cyclic mRNA accumulation in tor mutants is due to loss of pnrc2, which encodes a proline-rich nuclear receptor co-activator implicated in mRNA decay. Using an inducible in vivo reporter system to analyze transcript stability, we find that the her1 3'UTR confers Pnrc2-dependent instability to a heterologous transcript. her1 mRNA decay is Dicer-independent and likely employs a Pnrc2-Upf1-containing mRNA decay complex. Surprisingly, despite accumulation of cyclic transcripts in pnrc2-deficient embryos, we find that cyclic protein is expressed normally. Overall, we show that Pnrc2 promotes 3'UTR-mediated decay of developmentally-regulated segmentation clock transcripts and we uncover an additional post-transcriptional regulatory layer that ensures oscillatory protein expression in the absence of cyclic mRNA decay. Copyright © 2017 Elsevier Inc. All rights reserved.
Regulation of tyrosine hydroxylase gene expression during differentiation of neuroblastoma cells.
Summerhill, E M; Wood, K; Fishman, M C
1987-07-01
Differentiation of N1E-115 neuroblastoma cells into neuron-like cells, with extension of neurites and acquisition of excitable membranes, can be induced by dimethyl sulfoxide (DMSO). We have found this differentiation to be accompanied by an increase in tyrosine hydroxylase (TH) mRNA, an increase disproportionate to changes in mRNAs for other measured, non-neuron-specific genes. The mRNA increases slowly over several days and falls gradually after removal of DMSO. Nuclear run-on studies suggest that a change in the rate of transcription cannot explain the increase in steady-state mRNA levels. TH mRNA half-life does, however, increase. This suggests that regulation is exerted in this case not at the level of transcription but rather at that of mRNA stability.
A U-Rich Element in the 5′ Untranslated Region Is Necessary for the Translation of p27 mRNA
Millard, S. Sean; Vidal, Anxo; Markus, Maurice; Koff, Andrew
2000-01-01
Increased translation of p27 mRNA correlates with withdrawal of cells from the cell cycle. This raised the possibility that antimitogenic signals might mediate their effects on p27 expression by altering complexes that formed on p27 mRNA, regulating its translation. In this report, we identify a U-rich sequence in the 5′ untranslated region (5′UTR) of p27 mRNA that is necessary for efficient translation in proliferating and nonproliferating cells. We show that a number of factors bind to the 5′UTR in vitro in a manner dependent on the U-rich element, and their availability in the cytosol is controlled in a growth- and cell cycle-dependent fashion. One of these factors is HuR, a protein previously implicated in mRNA stability, transport, and translation. Another is hnRNP C1 and C2, proteins implicated in mRNA processing and the translation of a specific subset of mRNAs expressed in differentiated cells. In lovastatin-treated MDA468 cells, the mobility of the associated hnRNP C1 and C2 proteins changed, and this correlated with increased p27 expression. Together, these data suggest that the U-rich dependent RNP complex on the 5′UTR may regulate the translation of p27 mRNA and may be a target of antimitogenic signals. PMID:10913178
Expression of FSH receptor in the hamster ovary during perinatal development
Chakraborty, Prabuddha; Roy, Shyamal K.
2014-01-01
FSH plays an important role in ovarian follicular development, and it functions via the G-protein coupled FSH receptor. The objectives of the present study were to determine if full-length FSHR mRNA and corresponding protein were expressed in fetal through postnatal hamster ovaries to explain the FSH-induced primordial follicle formation, and if FSH or estrogen (E) would affect the expression. A full-length and two alternately spliced FSHR transcripts were expressed from E14 through P20. The level of the full-length FSHR mRNA increased markedly through P7 before stabilizing at a lower level with the formation and activation of primordial follicles. A predicted 87kDa FSHR protein band was detected in fetal through P4 ovaries, but additional bands appeared as ovary developed. FSHR immunosignal was present in undifferentiated somatic cells and oocytes in early postnatal ovaries, but was granulosa cells specific after follicles formed. Both eCG and E significantly up-regulated full-length FSHR mRNA levels. Therefore, FSHR is expressed in the hamster ovary from the fetal life to account for FSH-induced primordial follicle formation and cAMP production. Further, FSH or E regulates the receptor expression. PMID:25462586
miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Hung; Department of Medicine, Veterans Affair Greater Los Angeles Healthcare System, Los Angeles, CA 90073; Ekaterina Rodriguez, C.
2013-09-13
Highlights: •Pancreatic cancer cells express low miR-143 levels and elevated p-MEK, p-MAPK and RREB1. •MEK inhibitors U0126 and PD98059 increase miR-143 expression. •miR-143 decreases COX-2 mRNA stability and expression and PGE{sub 2}. •miR-143 decreases p-p38MAPK, p-MEK, p-MAPK and RREB1 expression. -- Abstract: Small non-coding RNAs, microRNAs (miRNA), inhibit the translation or accelerate the degradation of message RNA (mRNA) by targeting the 3′-untranslated region (3′-UTR) in regulating growth and survival through gene suppression. Deregulated miRNA expression contributes to disease progression in several cancers types, including pancreatic cancers (PaCa). PaCa tissues and cells exhibit decreased miRNA, elevated cyclooxygenase (COX)-2 and increased prostaglandinmore » E{sub 2} (PGE{sub 2}) resulting in increased cancer growth and metastases. Human PaCa cell lines were used to demonstrate that restoration of miRNA-143 (miR-143) regulates COX-2 and inhibits cell proliferation. miR-143 were detected at fold levels of 0.41 ± 0.06 in AsPC-1, 0.20 ± 0.05 in Capan-2 and 0.10 ± 0.02 in MIA PaCa-2. miR-143 was not detected in BxPC-3, HPAF-II and Panc-1 which correlated with elevated mitogen-activated kinase (MAPK) and MAPK kinase (MEK) activation. Treatment with 10 μM of MEK inhibitor U0126 or PD98059 increased miR-143, respectively, by 187 ± 18 and 152 ± 26-fold in BxPC-3 and 182 ± 7 and 136 ± 9-fold in HPAF-II. miR-143 transfection diminished COX-2 mRNA stability at 60 min by 2.6 ± 0.3-fold in BxPC-3 and 2.5 ± 0.2-fold in HPAF-II. COX-2 expression and cellular proliferation in BxPC-3 and HPAF-II inversely correlated with increasing miR-143. PGE{sub 2} levels decreased by 39.3 ± 5.0% in BxPC-3 and 48.0 ± 3.0% in HPAF-II transfected with miR-143. Restoration of miR-143 in PaCa cells suppressed of COX-2, PGE{sub 2}, cellular proliferation and MEK/MAPK activation, implicating this pathway in regulating miR-143 expression.« less
Zago, Michela; Sheridan, Jared A.; Traboulsi, Hussein; Hecht, Emelia; Zhang, Yelu; Guerrina, Necola; Matthews, Jason; Nair, Parameswaran; Eidelman, David H.; Hamid, Qutayba
2017-01-01
Heightened inflammation, including expression of COX-2, is associated with chronic obstructive pulmonary disease (COPD) pathogenesis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is reduced in COPD-derived lung fibroblasts. The AhR also suppresses COX-2 in response to cigarette smoke, the main risk factor for COPD, by destabilizing the Cox-2 transcript by mechanisms that may involve the regulation of microRNA (miRNA). Whether reduced AhR expression is responsible for heightened COX-2 in COPD is not known. Here, we investigated the expression of COX-2 as well as the expression of miR-146a, a miRNA known to regulate COX-2 levels, in primary lung fibroblasts derived from non-smokers (Normal) and smokers (At Risk) with and without COPD. To confirm the involvement of the AhR, AhR knock-down via siRNA in Normal lung fibroblasts and MLE-12 cells was employed as were A549-AhRko cells. Basal expression of COX-2 protein was higher in COPD lung fibroblasts compared to Normal or Smoker fibroblasts but there was no difference in Cox-2 mRNA. Knockdown of AhR in lung structural cells increased COX-2 protein by stabilizing the Cox-2 transcript. There was less induction of miR-146a in COPD-derived lung fibroblasts but this was not due to the AhR. Instead, we found that RelB, an NF-κB protein, was required for transcriptional induction of both Cox-2 and miR-146a. Therefore, we conclude that the AhR controls COX-2 protein via mRNA stability by a mechanism independent of miR-146a. Low levels of the AhR may therefore contribute to the heightened inflammation common in COPD patients. PMID:28749959
Zago, Michela; Sheridan, Jared A; Traboulsi, Hussein; Hecht, Emelia; Zhang, Yelu; Guerrina, Necola; Matthews, Jason; Nair, Parameswaran; Eidelman, David H; Hamid, Qutayba; Baglole, Carolyn J
2017-01-01
Heightened inflammation, including expression of COX-2, is associated with chronic obstructive pulmonary disease (COPD) pathogenesis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is reduced in COPD-derived lung fibroblasts. The AhR also suppresses COX-2 in response to cigarette smoke, the main risk factor for COPD, by destabilizing the Cox-2 transcript by mechanisms that may involve the regulation of microRNA (miRNA). Whether reduced AhR expression is responsible for heightened COX-2 in COPD is not known. Here, we investigated the expression of COX-2 as well as the expression of miR-146a, a miRNA known to regulate COX-2 levels, in primary lung fibroblasts derived from non-smokers (Normal) and smokers (At Risk) with and without COPD. To confirm the involvement of the AhR, AhR knock-down via siRNA in Normal lung fibroblasts and MLE-12 cells was employed as were A549-AhRko cells. Basal expression of COX-2 protein was higher in COPD lung fibroblasts compared to Normal or Smoker fibroblasts but there was no difference in Cox-2 mRNA. Knockdown of AhR in lung structural cells increased COX-2 protein by stabilizing the Cox-2 transcript. There was less induction of miR-146a in COPD-derived lung fibroblasts but this was not due to the AhR. Instead, we found that RelB, an NF-κB protein, was required for transcriptional induction of both Cox-2 and miR-146a. Therefore, we conclude that the AhR controls COX-2 protein via mRNA stability by a mechanism independent of miR-146a. Low levels of the AhR may therefore contribute to the heightened inflammation common in COPD patients.
Dilling, Christina; Roewer, Norbert; Förster, Carola Y; Burek, Malgorzata
2017-10-01
Protocadherins (Pcdhs) are a large family of cadherin-related molecules. They play a role in cell adhesion, cellular interactions, and development of the central nervous system. However, their expression and role in endothelial cells has not yet been characterized. Here, we examined the expression of selected clustered Pcdhs in endothelial cells from several vascular beds. We analyzed human and mouse brain microvascular endothelial cell (BMEC) lines and primary cells, mouse myocardial microvascular endothelial cell line, and human umbilical vein endothelial cells. We examined the mRNA and protein expression of selected Pcdhs using RT-PCR, Western blot, and immunostaining. A strong mRNA expression of Pcdhs was observed in all endothelial cells tested. At the protein level, Pcdhs-gamma were detected using an antibody against the conserved C-terminal domain of Pcdhs-gamma or an antibody against PcdhgC3. Deletion of highly expressed PcdhgC3 led to differences in the tight junction protein expression and mRNA expression of Wnt/mTOR (mechanistic target of rapamycin) pathway genes as well as lower transendothelial electrical resistance. Staining of PcdhgC3 showed diffused cytoplasmic localization in mouse BMEC. Our results suggest that Pcdhs may play a critical role in the barrier-stabilizing pathways at the blood-brain barrier.
Transgenic Expression of ZBP1 in Neurons Suppresses Cocaine-Associated Conditioning
ERIC Educational Resources Information Center
Lapidus, Kyle A. B.; Nwokafor, Chiso; Scott, Daniel; Baroni, Timothy E.; Tenenbaum, Scott A.; Hiroi, Noboru; Singer, Robert H.; Czaplinski, Kevin
2012-01-01
To directly address whether regulating mRNA localization can influence animal behavior, we created transgenic mice that conditionally express Zipcode Binding Protein 1 (ZBP1) in a subset of neurons in the brain. ZBP1 is an RNA-binding protein that regulates the localization, as well as translation and stability of target mRNAs in the cytoplasm. We…
Seo, Eunjoo; Yu, Jihyeon; Ryu, Kook Hui; Lee, Myeong Min; Lee, Ilha
2011-01-01
A key floral activator, FT, integrates stimuli from long-day, vernalization, and autonomous pathways and triggers flowering by directly regulating floral meristem identity genes in Arabidopsis (Arabidopsis thaliana). Since a small amount of FT transcript is sufficient for flowering, the FT level is strictly regulated by diverse genes. In this study, we show that WEREWOLF (WER), a MYB transcription factor regulating root hair pattern, is another regulator of FT. The mutant wer flowers late in long days but normal in short days and shows a weak sensitivity to vernalization, which indicates that WER controls flowering time through the photoperiod pathway. The expression and double mutant analyses showed that WER modulates FT transcript level independent of CONSTANS and FLOWERING LOCUS C. The histological analysis of WER shows that it is expressed in the epidermis of leaves, where FT is not expressed. Consistently, WER regulates not the transcription but the stability of FT mRNA. Our results reveal a novel regulatory mechanism of FT that is non cell autonomous. PMID:21653190
Seo, Eunjoo; Yu, Jihyeon; Ryu, Kook Hui; Lee, Myeong Min; Lee, Ilha
2011-08-01
A key floral activator, FT, integrates stimuli from long-day, vernalization, and autonomous pathways and triggers flowering by directly regulating floral meristem identity genes in Arabidopsis (Arabidopsis thaliana). Since a small amount of FT transcript is sufficient for flowering, the FT level is strictly regulated by diverse genes. In this study, we show that WEREWOLF (WER), a MYB transcription factor regulating root hair pattern, is another regulator of FT. The mutant wer flowers late in long days but normal in short days and shows a weak sensitivity to vernalization, which indicates that WER controls flowering time through the photoperiod pathway. The expression and double mutant analyses showed that WER modulates FT transcript level independent of CONSTANS and FLOWERING LOCUS C. The histological analysis of WER shows that it is expressed in the epidermis of leaves, where FT is not expressed. Consistently, WER regulates not the transcription but the stability of FT mRNA. Our results reveal a novel regulatory mechanism of FT that is non cell autonomous.
Jeon, Younmi; Song, Siyoung; Kim, Hagju; Cheon, Yong-Pil
2013-01-01
Although, one of the etiologies of localized lipodystrophy of the subcutaneous connective tissue (cellulite) is the histological alternation of adipose tissue, the characteristics of expression of the components of extracellular matrix (ECM) components during adipogenesis are not uncovered. In this study, the effects of caffeine and Ishige okamurae originated diphlorethohydroxycarmalol (DPHC) on the expression of extracellualr fibers was analyzed with quantitative RT-PCR during differentiation induction of mouse subcutaneous adipose derived stem cells (msADSC) into adipocyte. The expression levels of Col1a, Col3a1, and Col61a were decreased by the adipogenci induction in a time-dependent manners. However, Col2a mRNA and Col4a1 mRNA expressions were oposit to them. Caffeine and DPHC stimulated the changes of the expression of these collagens. Eln mRNA expression was increased by induction. DPHC stimulated the expression of it. Mfap5 mRNA expression was deceased in both adipogenic cell and matured adipocytes. Caffeine suppressed the expression of Mfap5 but the effect of DPHC was different by the concentration. The expression of bioglycan, decorin, and lumican were also modified by caffeine and DPHC in a concentration-dependent manner. Based on this study, we revealed firstly the effects of caffeine and DPHC on the expression of collagens, elastin, and glycoproteins during adipogenesis of msADSCs. Those results suggest that DPHC may have antiadipogenic effect and has more positive effets on normal adipose tissue generation and work as suppressor the abnormality of ECM structure. Such results indicate that DPHC can be applied in keeping the stability of the ECM of adipogenic tissues. PMID:25949143
Shen, Yun; Ruan, Qingxia; Chai, Haoxi; Yuan, Yongze; Yang, Wannian; Chen, Junping; Xin, Zhanguo; Shi, Huazhong
2016-12-01
Polyamines involve in gene regulation by interacting with and modulating the functions of various anionic macromolecules such as DNA, RNA and proteins. In this study, we identified an important function of the polyamine transporter LHR1 (LOWER EXPRESSION OF HEAT RESPONSIVE GENE1) in heat-inducible gene expression in Arabidopsis thaliana. The lhr1 mutant was isolated through a forward genetic screening for altered expression of the luciferase reporter gene driven by the promoter from the heat-inducible gene AtHSP18.2. The lhr1 mutant showed reduced induction of the luciferase gene in response to heat stress and was more sensitive to high temperature than the wild type. Map-based cloning identified that the LHR1 gene encodes the polyamine transporter PUT3 (POLYAMINE UPTAKE TRANSPORTER 3) localized in the plasma membrane. The LHR1/PUT3 is required for the uptake of extracellular polyamines and plays an important role in stabilizing the mRNAs of several crucial heat stress responsive genes under high temperature. Genome-wide gene expression analysis using RNA-seq identified an array of differentially expressed genes, among which the transcript levels of some of the heat shock protein genes significantly reduced in response to prolonged heat stress in the lhr1 mutant. Our findings revealed an important heat stress response and tolerance mechanism involving polyamine influx which modulates mRNA stability of heat-inducible genes under heat stress conditions. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Safina, Alfiya; Garcia, Henry; Commane, Mairead; Guryanova, Olga; Degan, Seamus; Kolesnikova, Kateryna; Gurova, Katerina V
2013-08-01
Facilitates chromatin transcription (FACT) is a chromatin remodeling complex with two subunits: SSRP1 and SPT16. Mechanisms controlling FACT levels are of interest, since the complex is not expressed in most differentiated cells, but is frequently upregulated in cancer, particularly in poorly differentiated, aggressive tumors. Moreover, inhibition of FACT expression or function in tumor cells interferes with their survival. Here we demonstrate that SSRP1 and SPT16 protein levels decline upon induction of cellular differentiation or senescence in vitro and that similar declines in protein levels for both SSRP1 and SPT16 occur upon RNAi-mediated knockdown of either SSRP1 or SPT16. The interdependence of SSRP1 and SPT16 protein levels was found to be due to their association with SSRP1 and SPT16 mRNAs, which stabilizes the proteins. In particular, presence of SSRP1 mRNA is critical for SPT16 protein stability. In addition, binding of SSRP1 and SPT16 mRNAs to the FACT complex increases the stability and efficiency of translation of the mRNAs. These data support a model in which the FACT complex is stable when SSRP1 mRNA is present, but quickly degrades when SSRP1 mRNA levels drop. In the absence of FACT complex, SSRP1 and SPT16 mRNAs are unstable and inefficiently translated, making reactivation of FACT function unlikely in normal cells. Thus, we have described a complex and unusual mode of regulation controlling cellular FACT levels that results in amplified and stringent control of FACT activity. The FACT dependence of tumor cells suggests that mechanisms controlling FACT levels could be targeted for anticancer therapy.
Bertin, Marine; Château, Alice; Fouet, Agnès
2010-05-01
Bacillus anthracis toxin gene expression requires AtxA, a virulence regulator that also activates capsule gene transcription and controls expression of more than a hundred genes. Here we report that atxA mRNA is 2.7-kb-long and ends, after a 500 nt-long 3' untranslated region, with a stem loop structure followed by a run of U's. The presence of this structure stabilizes atxA mRNA and is necessary for AtxA maximal accumulation, full expression of the PA toxin gene, pagA and optimal PA accumulation. This structure displays terminator activity independently of its orientation when cloned between an inducible promoter and a reporter gene. The 3.6-kb-long DNA fragment carrying both AtxA promoters and the terminator is sufficient for full expression of pagA in the presence of bicarbonate. No pXO1-encoded element other than the DNA fragment encompassing the 2.7 kb atxA transcript and the pagA promoter is required for bicarbonate induction of pagA transcription. (c) 2010 Elsevier Masson SAS. All rights reserved.
Sun, Shuhong; Zhang, Xiaotian; Lyu, Lin; Li, Xixi; Yao, Siliang; Zhang, Junjie
2016-12-09
Autotaxin (ATX) is a key enzyme that converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), a lysophospholipid mediator that regulates cellular activities through its specific G protein-coupled receptors. The ATX-LPA axis plays an important role in various physiological and pathological processes, especially in inflammation and cancer development. Although the transcriptional regulation of ATX has been widely studied, the post-transcriptional regulation of ATX is largely unknown. In this study, we identified conserved adenylate-uridylate (AU)-rich elements in the ATX mRNA 3'-untranslated region (3'UTR). The RNA-binding proteins HuR and AUF1 directly bound to the ATX mRNA 3'UTR and had antagonistic functions in ATX expression. HuR enhanced ATX expression by increasing ATX mRNA stability, whereas AUF1 suppressed ATX expression by promoting ATX mRNA decay. HuR and AUF1 were involved in ATX regulation in Colo320 human colon cancer cells and the LPS-stimulated human monocytic THP-1 cells. HuR knockdown suppressed ATX expression in B16 mouse melanoma cells, leading to inhibition of cell migration. This effect was reversed by AUF1 knockdown to recover ATX expression or by the addition of LPA. These results suggest that the post-transcriptional regulation of ATX expression by HuR and AUF1 modulates cancer cell migration. In summary, we identified HuR and AUF1 as novel post-transcriptional regulators of ATX expression, thereby elucidating a novel mechanism regulating the ATX-LPA axis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Sakuma, Keiichiro; Sasaki, Eiichi; Kimura, Kenya; Komori, Koji; Shimizu, Yasuhiro; Yatabe, Yasushi; Aoki, Masahiro
2018-06-05
HNRNPLL (heterogeneous nuclear ribonucleoprotein L-like), an RNA-binding protein that regulates alternative splicing of pre-mRNAs, has been shown to regulate differentiation of lymphocytes, as well as metastasis of colorectal cancer cells. Here we show that HNRNPLL promotes cell cycle progression and hence proliferation of colorectal cancer cells. Functional annotation analysis of those genes whose expression levels were changed by three-fold or more in RNA sequencing analysis between SW480 cells overexpressing HNRNPLL and those knocked down for HNRNPLL revealed enrichment of DNA replication-related genes by HNRNPLL overexpression. Among 13 genes detected in the DNA replication pathway, PCNA, RFC3, and FEN1 showed reproducible upregulation by HNRNPLL overexpression both at mRNA and protein levels in SW480 and HT29 cells. Importantly, knockdown of any of these genes alone suppressed the proliferation promoting effect induced by HNRNPLL overexpression. RNA-immunoprecipitation assay presented a binding of FLAG-tagged HNRNPLL to mRNA of these genes, and HNRNPLL overexpression significantly suppressed the downregulation of these genes during 12 hours of actinomycin D treatment, suggesting a role of HNRNPLL in mRNA stability. Finally, analysis of a public RNA sequencing dataset of clinical samples suggested a link between overexpression of HNRNPLL and that of PCNA, RFC3, and FEN1. This link was further supported by immunohistochemistry of colorectal cancer clinical samples, whereas expression of CDKN1A, which is known to inhibit the cooperative function of PCNA, RFC3, and FEN1, was negatively associated with HNRNPLL expression. These results indicate that HNRNPLL stabilizes mRNAs encoding regulators of DNA replication and promotes colorectal cancer cell proliferation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Coleman, John W; Wright, Kevin J; Wallace, Olivia L; Sharma, Palka; Arendt, Heather; Martinez, Jennifer; DeStefano, Joanne; Zamb, Timothy P; Zhang, Xinsheng; Parks, Christopher L
2015-03-01
Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert. Copyright © 2014 Elsevier B.V. All rights reserved.
Molle, Céline; Zhang, Tong; Ysebrant de Lendonck, Laure; Gueydan, Cyril; Andrianne, Mathieu; Sherer, Félicie; Van Simaeys, Gaetan; Blackshear, Perry J.; Leo, Oberdan
2013-01-01
Interleukin (IL) 12 and IL23 are two related heterodimeric cytokines produced by antigen-presenting cells. The balance between these two cytokines plays a crucial role in the control of Th1/Th17 responses and autoimmune inflammation. Most studies focused on their transcriptional regulation. Herein, we explored the role of the adenine and uridine–rich element (ARE)–binding protein tristetraprolin (TTP) in influencing mRNA stability of IL12p35, IL12/23p40, and IL23p19 subunits. LPS-stimulated bone marrow–derived dendritic cells (BMDCs) from TTP−/− mice produced normal levels of IL12/23p40. Production of IL12p70 was modestly increased in these conditions. In contrast, we observed a strong impact of TTP on IL23 production and IL23p19 mRNA stability through several AREs in the 3′ untranslated region. TTP−/− mice spontaneously develop an inflammatory syndrome characterized by cachexia, myeloid hyperplasia, dermatitis, and erosive arthritis. We observed IL23p19 expression within skin lesions associated with exacerbated IL17A and IL22 production by infiltrating γδ T cells and draining lymph node CD4 T cells. We demonstrate that the clinical and immunological parameters associated with TTP deficiency were completely dependent on the IL23–IL17A axis. We conclude that tight control of IL23 mRNA stability by TTP is critical to avoid severe inflammation. PMID:23940256
Molle, Céline; Zhang, Tong; Ysebrant de Lendonck, Laure; Gueydan, Cyril; Andrianne, Mathieu; Sherer, Félicie; Van Simaeys, Gaetan; Blackshear, Perry J; Leo, Oberdan; Goriely, Stanislas
2013-08-26
Interleukin (IL) 12 and IL23 are two related heterodimeric cytokines produced by antigen-presenting cells. The balance between these two cytokines plays a crucial role in the control of Th1/Th17 responses and autoimmune inflammation. Most studies focused on their transcriptional regulation. Herein, we explored the role of the adenine and uridine-rich element (ARE)-binding protein tristetraprolin (TTP) in influencing mRNA stability of IL12p35, IL12/23p40, and IL23p19 subunits. LPS-stimulated bone marrow-derived dendritic cells (BMDCs) from TTP(-/-) mice produced normal levels of IL12/23p40. Production of IL12p70 was modestly increased in these conditions. In contrast, we observed a strong impact of TTP on IL23 production and IL23p19 mRNA stability through several AREs in the 3' untranslated region. TTP(-/-) mice spontaneously develop an inflammatory syndrome characterized by cachexia, myeloid hyperplasia, dermatitis, and erosive arthritis. We observed IL23p19 expression within skin lesions associated with exacerbated IL17A and IL22 production by infiltrating γδ T cells and draining lymph node CD4 T cells. We demonstrate that the clinical and immunological parameters associated with TTP deficiency were completely dependent on the IL23-IL17A axis. We conclude that tight control of IL23 mRNA stability by TTP is critical to avoid severe inflammation.
Effect of interferon-gamma on complement gene expression in different cell types.
Lappin, D F; Guc, D; Hill, A; McShane, T; Whaley, K
1992-01-15
We have studied the expression of the complement components C2, C3, factor B, C1 inhibitor (C1-inh), C4-binding protein (C4-bp) and factor H in human peripheral blood monocytes, skin fibroblasts, umbilical vein endothelial cells (HUVEC) and the human hepatoma cell line G2 (Hep G2) in the absence and the presence of interferon-gamma (IFN-gamma). E.l.i.s.a. performed on culture fluids, run-on transcription assays, Northern blot and double-dilution dot-blot techniques confirmed that monocytes expressed all six components, whereas fibroblasts, HUVEC and HepG2 each expressed five of the six components. Fibroblasts and HUVEC did not synthesize C4-bp, and Hep G2 did not produce factor H. In addition to these differences, the synthesis rates of C3, C1-inh and factor H were not the same in all cell types. However, the synthesis rates of C2 and factor B were similar in all four cell types. The half-lives of the mRNAs were shorter in monocytes than in other cell types. Monocyte factor H mRNA had a half-life of 12 min in monocytes, compared with over 3 h in fibroblasts and HUVEC. The instability of factor H mRNA in monocytes may contribute to their low factor H secretion rate. IFN-gamma produced dose-dependent stimulation of C2, factor B, C1-inh, C4-bp and factor H synthesis by all cell types expressing these proteins, but decreased C3 synthesis in all four cell types. Cell-specific differences in the response to IFN-gamma were observed. The increased rates of transcription of the C1-inh and factor H genes in HUVEC were greater than in other cell types, while the increased rate of transcription of the C2, factor B and C1-inh genes in Hep G2 cells was less than in other cell types. IFN-gamma did not affect the stability of C3, factor H or C4 bp mRNAs, but increased the stability of factor B and C1-inh mRNAs and decreased the stability of C2 mRNA. Although these changes occurred in all four cell types studied, the half-life of C1-inh mRNA in monocytes was increased almost 4-fold, whereas the increases in the other cell types were less than 30%. These data show that the constitutive synthesis rates of complement components may vary in the different cell types. They also show that the degree of change in synthesis rates in response to IFN-gamma in each of the cell types often varies due to differences in transcriptional response, sometimes in association with changes in mRNA stability.
Emerging functions of alternative splicing coupled with nonsense-mediated decay.
Hamid, Fursham M; Makeyev, Eugene V
2014-08-01
Higher eukaryotes rely on AS (alternative splicing) of pre-mRNAs (mRNA precursors) to generate more than one protein product from a single gene and to regulate mRNA stability and translational activity. An important example of the latter function involves an interplay between AS and NMD (nonsense-mediated decay), a cytoplasmic quality control mechanism eliminating mRNAs containing PTCs (premature translation termination codons). Although originally identified as an error surveillance process, AS-NMD additionally provides an efficient strategy for deterministic regulation of gene expression outputs. In this review, we discuss recently published examples of AS-NMD and delineate functional contexts where recurrent use of this mechanism orchestrates expression of important genes.
Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie
2016-04-15
Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Djurisic, S; Teiblum, S; Tolstrup, C K; Christiansen, O B; Hviid, T V F
2015-03-01
The HLA-G molecule is expressed on trophoblast cells at the feto-maternal interface, where it interacts with local immune cells, and upholds tolerance against the semi-allogeneic fetus. Aberrant HLA-G expression in the placenta and reduced soluble HLA-G levels are observed in pregnancy complications, partly explained by HLA-G polymorphisms which are associated with differences in the alternative splicing pattern and of the stability of HLA-G mRNA. Of special importance is a 14 bp insertion/deletion polymorphism located in the 3'-untranslated region of the HLA-G gene. In the current study, we present novel evidence for allelic imbalance of the 14 bp insertion/deletion polymorphism, using a very accurate and sensitive Digital droplet PCR technique. Allelic imbalance in heterozygous samples was observed as differential expression levels of 14 bp insertion/deletion allele-specific mRNA transcripts, which was further associated with low levels of HLA-G surface expression on primary trophoblast cells. Full gene sequencing of HLA-G allowed us to study correlations between HLA-G extended haplotypes and single-nucleotide polymorphisms and HLA-G surface expression. We found that a 1:1 expression (allelic balance) of the 14 bp insertion/deletion mRNA alleles was associated with high surface expression of HLA-G and with a specific HLA-G extended haplotype. The 14 bp del/del genotype was associated with a significantly lower abundance of the G1 mRNA isoform, and a higher abundance of the G3 mRNA isoform. Overall, the present study provides original evidence for allelic imbalance of the 14 bp insertion/deletion polymorphism, which influences HLA-G surface expression on primary trophoblast cells, considered to be important in the pathogenesis of pre-eclampsia and other pregnancy complications. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Weber, Barbara; Lindell, Kristoffer; El Qaidi, Samir; Hjerde, Erik; Willassen, Nils-Peder
2011-01-01
Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ54 and the σ54-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment. PMID:21948044
Weber, Barbara; Lindell, Kristoffer; El Qaidi, Samir; Hjerde, Erik; Willassen, Nils-Peder; Milton, Debra L
2011-12-01
Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ(54) and the σ(54)-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment.
Zago, Michela; Sheridan, Jared A.; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.
2013-01-01
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR−/−) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR−/− mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR−/− mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target. PMID:24086407
Zago, Michela; Sheridan, Jared A; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J
2013-01-01
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR(-/-) ) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR(-/-) mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR(-/-) mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target.
Visualization of RNA–protein interactions in living cells: FMRP and IMP1 interact on mRNAs
Rackham, Oliver; Brown, Chris M
2004-01-01
Protein expression depends significantly on the stability, translation efficiency and localization of mRNA. These qualities are largely dictated by the RNA-binding proteins associated with an mRNA. Here, we report a method to visualize and localize RNA–protein interactions in living mammalian cells. Using this method, we found that the fragile X mental retardation protein (FMRP) isoform 18 and the human zipcode-binding protein 1 ortholog IMP1, an RNA transport factor, were present on common mRNAs. These interactions occurred predominantly in the cytoplasm, in granular structures. In addition, FMRP and IMP1 interacted independently of RNA. Tethering of FMRP to an mRNA caused IMP1 to be recruited to the same mRNA and resulted in granule formation. The intimate association of FMRP and IMP1 suggests a link between mRNA transport and translational repression in mammalian cells. PMID:15282548
Lim, Boram
2015-01-01
ABSTRACT The enzymatic activity of Escherichia coli endo-RNase III determines the stability of a subgroup of mRNA species, including bdm, betT, and proU, whose protein products are associated with the cellular response to osmotic stress. Here, we report that the stability of proP mRNA, which encodes a transporter of osmoprotectants, is controlled by RNase III in response to osmotic stress. We observed that steady-state levels of proP mRNA and ProP protein are inversely correlated with cellular RNase III activity and, in turn, affect the proline uptake capacity of the cell. In vitro and in vivo analyses of proP mRNA revealed RNase III cleavage sites in a stem-loop within the 5′ untranslated region present only in proP mRNA species synthesized from the osmoregulated P1 promoter. Introduction of nucleotide substitutions in the cleavage site identified inhibited the ribonucleolytic activity of RNase III on proP mRNA, increasing the steady-state levels and half-life of the mRNA. In addition, decreased RNase III activity coincided with a significant increase in both the half-life and abundance of proP mRNA under hyperosmotic stress conditions. Analysis of the RNA bound to RNase III via in vivo cross-linking and immunoprecipitation indicated that this phenomenon is related to the decreased RNA binding capacity of RNase III. Our findings suggest the existence of an RNase III-mediated osmoregulatory network that rapidly balances the expression levels of factors associated with the cellular response to osmotic stress in E. coli. IMPORTANCE Our results demonstrate that RNase III activity on proP mRNA degradation is downregulated in Escherichia coli cells under osmotic stress. In addition, we show that the downregulation of RNase III activity is associated with decreased RNA binding capacity of RNase III under hyperosmotic conditions. In particular, our findings demonstrate a link between osmotic stress and RNase III activity, underscoring the growing importance of posttranscriptional regulation in modulating rapid physiological adjustment to environmental changes. PMID:25645556
Li, Dan; Gaedigk, Roger; Hart, Steven N.; Leeder, J. Steven
2012-01-01
Cytochrome P450 3A4 (CYP3A4) metabolizes more than 50% of prescribed drugs. The expression of CYP3A4 changes during liver development and may be affected by the administration of some drugs. Alternative mRNA transcripts occur in more than 90% of human genes and are frequently observed in cells responding to developmental and environmental signals. Different mRNA transcripts may encode functionally distinct proteins or contribute to variability of mRNA stability or protein translation efficiency. The purpose of this study was to examine expression of alternative CYP3A4 mRNA transcripts in hepatocytes in response to developmental signals and drugs. cDNA cloning and RNA sequencing (RNA-Seq) were used to identify CYP3A4 mRNA transcripts. Three transcripts were found in HepaRG cells and liver tissues: one represented a canonical mRNA with full-length 3′-untranslated region (UTR), one had a shorter 3′-UTR, and one contained partial intron-6 retention. The alternative mRNA transcripts were validated by either rapid amplification of cDNA 3′-end or endpoint polymerase chain reaction (PCR). Quantification of the transcripts by RNA-Seq and real time quantitative PCR revealed that the CYP3A4 transcript with shorter 3′-UTR was preferentially expressed in developed livers, differentiated hepatocytes, and in rifampicin- and phenobarbital-induced hepatocytes. The CYP3A4 transcript with shorter 3′-UTR was more stable and produced more protein compared with the CYP3A4 transcript with canonical 3′-UTR. We conclude that the 3′-end processing of CYP3A4 contributes to the quantitative regulation of CYP3A4 gene expression through alternative polyadenylation, which may serve as a regulatory mechanism explaining changes of CYP3A4 expression and activity during hepatocyte differentiation and liver development and in response to drug induction. PMID:21998292
Tong, X; Kono, T; Evans-Molina, C
2015-06-18
The sarcoendoplasmic reticulum Ca(2+) ATPase 2b (SERCA2b) pump maintains a steep Ca(2+) concentration gradient between the cytosol and ER lumen in the pancreatic β-cell, and the integrity of this gradient has a central role in regulated insulin production and secretion, maintenance of ER function and β-cell survival. We have previously demonstrated loss of β-cell SERCA2b expression under diabetic conditions. To define the mechanisms underlying this, INS-1 cells and rat islets were treated with the proinflammatory cytokine interleukin-1β (IL-1β) combined with or without cycloheximide or actinomycin D. IL-1β treatment led to increased inducible nitric oxide synthase (iNOS) gene and protein expression, which occurred concurrently with the activation of AMP-activated protein kinase (AMPK). IL-1β led to decreased SERCA2b mRNA and protein expression, whereas time-course experiments revealed a reduction in protein half-life with no change in mRNA stability. Moreover, SERCA2b protein but not mRNA levels were rescued by treatment with the NOS inhibitor l-NMMA (NG-monomethyl L-arginine), whereas the NO donor SNAP (S-nitroso-N-acetyl-D,L-penicillamine) and the AMPK activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) recapitulated the effects of IL-1β on SERCA2b protein stability. Similarly, IL-1β-induced reductions in SERCA2b expression were rescued by pharmacological inhibition of AMPK with compound C or by transduction of a dominant-negative form of AMPK, whereas β-cell death was prevented in parallel. Finally, to determine a functional relationship between NO and AMPK signaling and SERCA2b activity, fura-2/AM (fura-2-acetoxymethylester) Ca(2+) imaging experiments were performed in INS-1 cells. Consistent with observed changes in SERCA2b expression, IL-1β, SNAP and AICAR increased cytosolic Ca(2+) and decreased ER Ca(2+) levels, suggesting congruent modulation of SERCA activity under these conditions. In aggregate, these results show that SERCA2b protein stability is decreased under inflammatory conditions through NO- and AMPK-dependent pathways and provide novel insight into pathways leading to altered β-cell calcium homeostasis and reduced β-cell survival in diabetes.
Prakash, Thazha P.; Johnston, Joseph F.; Graham, Mark J.; Condon, Thomas P.; Manoharan, Muthiah
2004-01-01
Synthesis and antisense activity of oligonucleotides modified with 2′-O-[2-[(N,N-dimethylamino)oxy] ethyl] (2′-O-DMAOE) are described. The 2′-O-DMAOE-modified oligonucleotides showed superior metabolic stability in mice. The phosphorothioate oligonucleotide ‘gapmers’, with 2′-O-DMAOE- modified nucleoside residues at the ends and 2′-deoxy nucleosides residues in the central region, showed dose-dependent inhibition of mRNA expression in cell culture for two targets. ‘Gapmer’ oligonucleotides have one or two 2′-O-modified regions and a 2′-deoxyoligonucleotide phosphorothioate region that allows RNase H digestion of target mRNA. To determine the in vivo potency and efficacy, BalbC mice were treated with 2′-O-DMAOE gapmers and a dose-dependent reduction in the targeted C-raf mRNA expression was observed. Oligonucleotides with 2′-O-DMAOE modifications throughout the sequences reduced the intercellular adhesion molecule-1 (ICAM-1) protein expression very efficiently in HUVEC cells with an IC50 of 1.8 nM. The inhibition of ICAM-1 protein expression by these uniformly modified 2′-O-DMAOE oligonucleotides may be due to selective interference with the formation of the translational initiation complex. These results demonstrate that 2′-O-DMAOE- modified oligonucleotides are useful for antisense-based therapeutics when either RNase H-dependent or RNase H-independent target reduction mechanisms are employed. PMID:14762210
Yau, Edwin H.; Butler, Mark C.; Sullivan, Jack M.
2016-01-01
Major bottlenecks in development of therapeutic post transcriptional gene silencing (PTGS) agents (e.g. ribozymes, RNA interference, antisense) include the challenge of mapping rare accessible regions of the mRNA target that are open for annealing and cleavage, testing and optimization of agents in human cells to identify lead agents, testing for cellular toxicity, and preclinical evaluation in appropriate animal models of disease. Methods for rapid and reliable cellular testing of PTGS agents are needed to identify potent lead candidates for optimization. Our goal was to develop a means of rapid assessment of many RNA agents to identify a lead candidate for a given mRNA associated with a disease state. We developed a rapid human cell-based screening platform to test efficacy of hammerhead ribozyme (hhRz) or RNA interference (RNAi) constructs, using a model retinal degeneration target, human rod opsin (RHO) mRNA. The focus is on RNA Drug Discovery for diverse retinal degeneration targets. To validate the approach, candidate hhRzs were tested against NUH↓ cleavage sites (N=G,C,A,U; H=C,A,U) within the target mRNA of secreted alkaline phosphatase (SEAP), a model gene expression reporter, based upon in silico predictions of mRNA accessibility. HhRzs were embedded in a larger stable adenoviral VAI RNA scaffold for high cellular expression, cytoplasmic trafficking, and stability. Most hhRz expression plasmids exerted statistically significant knockdown of extracellular SEAP enzyme activity when readily assayed by a fluorescence enzyme assay intended for high throughput screening (HTS). Kinetics of PTGS knockdown of cellular targets is measureable in live cells with the SEAP reporter. The validated SEAP HTS platform was transposed to identify lead PTGS agents against a model hereditary retinal degeneration target, RHO mRNA. Two approaches were used to physically fuse the model retinal gene target mRNA to the SEAP reporter mRNA. The most expedient way to evaluate a large set of potential VAI-hhRz expression plasmids against diverse NUH↓ cleavage sites uses cultured human HEK293S cells stably expressing a dicistronic Target-IRES-SEAP target fusion mRNA. Broad utility of this rational RNA drug discovery approach is feasible for any ophthalmological disease-relevant mRNA targets and any disease mRNA targets in general. The approach will permit rank ordering of PTGS agents based on potency to identify a lead therapeutic compound for further optimization. PMID:27233447
Riese, Cornelia; Michaelis, Marten; Mentrup, Birgit; Götz, Franziska; Köhrle, Josef; Schweizer, Ulrich; Schomburg, Lutz
2006-12-01
Important enzymes for thyroid hormone metabolism, antioxidative defense, and intracellular redox control contain selenocysteine (Sec) in their active centers. Expression of these selenoproteins is tightly controlled, and a sex-specific phenotype is observed on disturbance of selenium (Se) transport in mice. Therefore, we analyzed Se concentrations and expression levels of several selenoproteins including type I iodothyronine deiodinase (Dio1) and glutathione peroxidase (GPx) isozymes in male and female mice. On regular lab chow, serum Se levels were comparable, but serum GPx3 activity was higher in females than males (1.3-fold). Selenoprotein P (SePP) mRNA levels were higher in livers (1.3-fold) and lower in kidneys (to 31%) in female compared with male mice. Orchidectomy alleviated the sex-specific differences in SePP mRNA amounts, indicating modulatory effects of androgens on SePP expression. Female mice expressed higher levels of Dio1 mRNA in kidney (2.6-fold) and liver (1.4-fold) in comparison with male mice. This sexual dimorphic expression of Dio1 mRNA was paralleled by increased Dio1 activity in female kidney (1.8-fold) but not in liver in which males expressed higher Dio1 activity (2.8-fold). Interestingly, Se deficiency decreased Dio1 activity more effectively in males than females, and resulting hepatic enzyme levels were then comparable between the sexes. At the same time, the sex-specific difference of Dio1 activity widened in kidney. Orchidectomy or estradiol treatment of ovariectomized females impacted stronger on renal than hepatic Dio1 expression. Thus, we conclude that Se-dependent posttranscriptional mechanisms are operational that affect either translational efficiency or Dio1 stability in a sex- and tissue-specific manner.
Ways and means of eukaryotic mRNA decay.
Balagopal, Vidya; Fluch, Lydia; Nissan, Tracy
2012-06-01
Messenger RNA degradation is an important point of control for gene expression. Genome-wide studies on mRNA stability have demonstrated its importance in adaptation and stress response. Most of the key players in mRNA decay appear to have been identified. The study of these proteins brings insight into the mechanism of general and specific targeting of transcripts for degradation. Recruitment and assembly of mRNP complexes enhance and bring specificity to mRNA decay. mRNP complexes can form larger structures that have been found to be ubiquitous in nature. Discovery of P-Bodies, an archetype of this sort of aggregates, has generated interest in the question of where mRNA degrades. This is currently an open question under extensive investigation. This review will discuss in detail the recent developments in the regulation of mRNA decay focusing on yeast as a model system. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing. Copyright © 2012 Elsevier B.V. All rights reserved.
Influence of Xylella fastidiosa cold shock proteins on pathogenesis in grapevine.
USDA-ARS?s Scientific Manuscript database
Cold shock proteins (CSPs), a family of nucleic acid binding proteins are an essential part of microbial adaptation to temperature changes. Bacterial CSPs are often expressed in a temperature-dependent manner, and act as chaperones, facilitating translation at low temperature by stabilizing mRNA. In...
Park, Ji Yeon; Li, Wencheng; Zheng, Dinghai; Zhai, Peiyong; Zhao, Yun; Matsuda, Takahisa; Vatner, Stephen F.; Sadoshima, Junichi; Tian, Bin
2011-01-01
Cardiac hypertrophy is enlargement of the heart in response to physiological or pathological stimuli, chiefly involving growth of myocytes in size rather than in number. Previous studies have shown that the expression pattern of a group of genes in hypertrophied heart induced by pressure overload resembles that at the embryonic stage of heart development, a phenomenon known as activation of the “fetal gene program”. Here, using a genome-wide approach we systematically defined genes and pathways regulated in short- and long-term cardiac hypertrophy conditions using mice with transverse aortic constriction (TAC), and compared them with those regulated at different stages of embryonic and postnatal development. In addition, exon-level analysis revealed widespread mRNA isoform changes during cardiac hypertrophy resulting from alternative usage of terminal or internal exons, some of which are also developmentally regulated and may be attributable to decreased expression of Fox-1 protein in cardiac hypertrophy. Genes with functions in certain pathways, such as cell adhesion and cell morphology, are more likely to be regulated by alternative splicing. Moreover, we found 3′UTRs of mRNAs were generally shortened through alternative cleavage and polyadenylation in hypertrophy, and microRNA target genes were generally de-repressed, suggesting coordinated mechanisms to increase mRNA stability and protein production during hypertrophy. Taken together, our results comprehensively delineated gene and mRNA isoform regulation events in cardiac hypertrophy and revealed their relations to those in development, and suggested that modulation of mRNA isoform expression plays an importance role in heart remodeling under pressure overload. PMID:21799842
Marchetto, G S; Henry, H L
1997-02-01
The heat-stable protein kinase inhibitor (PKI) protein is a specific and potent competitive inhibitor of the catalytic subunit of cAMP-dependent protein kinase (PKA). Previously, it has been shown that vitamin D status affects chick kidney PKI activity: a 5- to 10-fold increase in PKI activity was observed in kidneys of chronically vitamin D-deficient chicks and treatment with 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) in cultured kidney cells resulted in a 95% decrease in PKI activity. The authors have recently cloned the cDNA for chick kidney PKI and have used the coding sequence to study the regulation of PKI mRNA. Northern analysis showed the expression of two PKI messages, which are 2.7 and 3.3 kb in size. These mRNAs are expressed in brain, muscle, testis, and kidney, but not in pancreas, liver, or intestine. PKI mRNA steady-state levels are downregulated by 47% in kidneys from vitamin D-replete chicks as compared to vitamin D-deficient chicks. PKI mRNA levels in brain, muscle, and testis are not affected by vitamin D status. Treatment of primary chick kidney cultures treated with 10(-7) M 1,25(OH)2D3 for 24h resulted in a 20-30% decrease in PKI mRNA. 1,25(OH)2D3 treatment does not affect the stability of PKI mRNA as determined by treatment of cell cultures with actinomycin D. This study shows that 1,25(OH)2D3 directly and tissue-specifically downregulates PKI mRNA in the chick kidney.
Smad4-Mediated Signaling Inhibits Intestinal Neoplasia by Inhibiting Expression of β-Catenin
Freeman, Tanner J.; Smith, J. Joshua; Chen, Xi; Washington, M. Kay; Roland, Joseph T.; Means, Anna L.; Eschrich, Steven A.; Yeatman, Timothy J.; Deane, Natasha G.; Beauchamp, R. Daniel
2012-01-01
Background & Aims Mutational inactivation of APC is an early event in colorectal cancer (CRC) progression that affects the stability and increases the activity of β-catenin, a mediator of Wnt signaling. CRC progression also involves inactivation of signaling via transforming growth factor (TGF)β and bone morphenogenic protein (BMP), which are tumor suppressors. However, the interactions between these pathways are not clear. We investigated the effects of loss of the transcription factor Smad4 loss on levels of β-catenin mRNA and Wnt signaling. Methods We used microarray analysis to associate levels of Smad4 and β-catenin mRNA in colorectal tumor samples from 250 patients. We performed oligonucleotide-mediated knockdown of Smad4 in human embryonic kidney (HEK293T) and in HCT116 colon cancer cells and transgenically expressed Smad4 in SW480 colon cancer cells. We analyzed adenomas from (APCΔ1638/+) and (APCΔ1638/+)x(K19CreERT2Smad4lox/lox) mice using laser-capture microdissection. Results In human CRC samples, reduced levels of Smad4 correlated with increased levels of β-catenin mRNA. In Smad4-depleted cell lines, levels of β-catenin mRNA and Wnt signaling increased. Inhibition of BMP or depletion of Smad4 in HEK293T cells increased binding of RNA polymerase II to the β-catenin gene. Expression of Smad4 in SW480 cells reduced Wnt signaling and levels of β-catenin mRNA. In mice with heterozygous disruption of Apc(APCΔ1638/+), Smad4-deficient intestinal adenomas had increased levels of β-catenin mRNA and expression of Wnt target genes, compared with adenomas from APCΔ1638/+mice that expressed Smad4. Conclusions Transcription of β-catenin is inhibited by BMP signaling to Smad4. These findings provide important information about the interaction among TGF-β, BMP, and Wnt signaling pathways in CRC progression. PMID:22115830
Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse.
Jurado, Juan; Prieto-Alamo, María-José; Madrid-Rísquez, José; Pueyo, Carmen
2003-11-14
This work provides the first absolute expression patterns of genes coding for all known components of both thioredoxin (Trx) and glutaredoxin (Grx) systems in mouse: Trx1, Trx2, Grx1, Grx2, TrxR1, TrxR2, thioredoxin/glutathione reductase, and glutathione reductase. We devised a novel assay that, combining the advantages of multiplex and real-time PCR, streamlines the quantitation of the actual mRNA copy numbers in whole-animal experiments. Quantitations reported establish differences among adult organs and embryonic stages, compare mRNA decay rates, explore the significance of alternative mRNA isoforms derived from TrxR1 and Grx2 genes, and examine the time-course expression upon superoxide stress promoted by paraquat. Collectively, these quantitations show: i) unique expression profiles for each transcript and mouse organ examined, yet with some general trends like the higher amounts of mRNA species coding for thioredoxins than those coding for the reductases that control their redox states and activities; ii) continuous expression during embryogenesis with outstanding up-regulations of Trx1 and TrxR1 mRNAs in specific temporal sequences; iii) drastic differences in mRNA stability, liver decay rates range from 2.8 h (thioredoxin/glutathione reductase) to >/= 35 h (Trx1 and Trx2), and directly correlate with mRNA steady-state values; iv) testis-specific differences in the amounts (relative to total isoforms) of transcripts yielding the mitochondrial Grx2a and 67-kDa TrxR1 variants; and v) coordinated up-regulation of TrxR1 and glutathione reductase mRNAs in response to superoxide stress in an organ-specific manner. Further insights into in vivo roles of these redox systems should be gained from more focused studies of the mechanisms underlying the vast differences reported here at the transcript level.
Huch, Susanne; Nissan, Tracy
2017-03-14
Yeast is exposed to changing environmental conditions and must adapt its genetic program to provide a homeostatic intracellular environment. An important stress for yeast in the wild is high osmolarity. A key response to this stress is increased mRNA stability primarily by the inhibition of deadenylation. We previously demonstrated that mutations in decapping activators (edc3∆ lsm4∆C), which result in defects in P body assembly, can destabilize mRNA under unstressed conditions. We wished to examine whether mRNA would be destabilized in the edc3∆ lsm4∆C mutant as compared to the wild-type in response to osmotic stress, when P bodies are intense and numerous. Our results show that the edc3∆ lsm4∆C mutant limits the mRNA stability in response to osmotic stress, while the magnitude of stabilization was similar as compared to the wild-type. The reduced mRNA stability in the edc3∆ lsm4∆C mutant was correlated with a shorter PGK1 poly(A) tail. Similarly, the MFA2 mRNA was more rapidly deadenylated as well as significantly stabilized in the ccr4∆ deadenylation mutant in the edc3∆ lsm4∆C background. These results suggest a role for these decapping factors in stabilizing mRNA and may implicate P bodies as sites of reduced mRNA degradation.
Rao, Velidi H.; Rai, Vikrant; Stoupa, Samantha; Subramanian, Saravanan; Agrawal, Devendra K
2016-01-01
Objective To determine the relationship between increased triggering receptor expressed on myeloid cells (TREM)-1 and plaque stability in atherosclerotic carotid stenosis. Methods The mRNA transcripts and protein for TREM-1, MMP-1, MMP-9, collagen type I (COL1A1) and collagen type III (COL3A1) were analyzed by qPCR and immunofluorescence in both tissues and VSMCs isolated from atherosclerotic carotid plaques of symptomatic and asymptomatic patients with carotid stenosis. Results The TREM-1, MMP-1 and MMP-9 mRNA transcripts were significantly increased (TREM-1, p<0.01; MMP-1, p<0.01 and MMP-9, p<0.001) while COL1A1 and COL3A1 mRNA transcripts were decreased (p<0.001) in VSMCs isolated from carotid plaques of symptomatic (S) than asymptomatic (AS) patients. Stimulation of cells with TNF-α further increased the mRNA transcripts of TREM-1, MMPs, COL1A1 and COL3A1. Modulation of TREM-1 by treatment with TREM-1 decoy receptor rTREM-1/Fc, and either TREM-1 antibodies or TREM-1 siRNA attenuated the TNF-α induced expression of MMP-1 and MMP-9 (p<0.01) and COL1A1 and COL3A1 (p<0.01) in S compared to AS VSMCs isolated from carotid plaques. Inhibition of NF-kB (BAY 11-7085), JNK (SP600125) and PI3K (LY294002) signaling pathways decreased the expression of TREM-1 (p<0.01), MMP-1 (p<0.001) and MMP-9 (p<0.01) in TNF-α treated VSMCs isolated from S carotid plaques compared to AS patients. Conclusion Increased expression of TREM-1 in S compared to AS patients involving MMP-1 and MMP-9 suggest a potential role of TREM-1 in plaque destabilization. Selective blockade of TREM-1 may contribute to the development of new therapies and promising targets for stabilizing vulnerable atherosclerotic plaques. PMID:27017522
Amyloid Precursor Protein Translation Is Regulated by a 3’UTR Guanine Quadruplex
Sharoni, Michal; Olson, Kalee; Sebastian, Neeraj P.; Ansaloni, Sara; Schweitzer-Stenner, Reinhard; Akins, Michael R.; Bevilacqua, Philip C.; Saunders, Aleister J.
2015-01-01
A central event in Alzheimer’s disease is the accumulation of amyloid β (Aβ) peptides generated by the proteolytic cleavage of the amyloid precursor protein (APP). APP overexpression leads to increased Aβ generation and Alzheimer’s disease in humans and altered neuronal migration and increased long term depression in mice. Conversely, reduction of APP expression results in decreased Aβ levels in mice as well as impaired learning and memory and decreased numbers of dendritic spines. Together these findings indicate that therapeutic interventions that aim to restore APP and Aβ levels must do so within an ideal range. To better understand the effects of modulating APP levels, we explored the mechanisms regulating APP expression focusing on post-transcriptional regulation. Such regulation can be mediated by RNA regulatory elements such as guanine quadruplexes (G-quadruplexes), non-canonical structured RNA motifs that affect RNA stability and translation. Via a bioinformatics approach, we identified a candidate G-quadruplex within the APP mRNA in its 3’UTR (untranslated region) at residues 3008–3027 (NM_201414.2). This sequence exhibited characteristics of a parallel G-quadruplex structure as revealed by circular dichroism spectrophotometry. Further, as with other G-quadruplexes, the formation of this structure was dependent on the presence of potassium ions. This G-quadruplex has no apparent role in regulating transcription or mRNA stability as wild type and mutant constructs exhibited equivalent mRNA levels as determined by real time PCR. Instead, we demonstrate that this G-quadruplex negatively regulates APP protein expression using dual luciferase reporter and Western blot analysis. Taken together, our studies reveal post-transcriptional regulation by a 3’UTR G-quadruplex as a novel mechanism regulating APP expression. PMID:26618502
Interaction of RNA-binding protein HuR and miR-466i regulates GM-CSF expression.
Chen, Jing; Adamiak, William; Huang, Ganlei; Atasoy, Ulus; Rostami, Abdolmohamad; Yu, Shiguang
2017-12-08
Granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by T helper 17 (Th17) cells plays an essential role in autoimmune diseases. Transcriptional regulation of Th17 cell differentiation has been extensively studied, but post-transcriptional regulation of Th17 cell differentiation has remained less well characterized. The RNA-binding protein HuR functions to promote the stability of target mRNAs via binding the AU-rich elements of the 3' untranslated region (3'UTR) of numerous pro-inflammatory cytokines including IL-4, IL-13, IL-17 and TNF-α. However, whether HuR regulates GM-CSF expression in Th17 cells has not been fully investigated. Here we showed that HuR conditional knockout (KO) Th17 cells have decreased GM-CSF mRNA in comparison with wild-type (WT) Th17 cells, and that HuR binds directly to GM-CSF mRNA 3'UTR. Interestingly, HuR deficiency increased the levels of certain microRNA expression in Th17 cells; for example, miR-466i functioned to mediate GM-CSF and IL-17 mRNA decay, which was confirmed by in vitro luciferase assay. Furthermore, we found that HuR promoted Mxi1 expression to inhibit certain miRNA expression. Taken together, these findings indicate that interaction of HuR and miR-466i orchestrates GM-CSF expression in Th17 cells.
NMD3 regulates both mRNA and rRNA nuclear export in African trypanosomes via an XPOI-linked pathway
Bühlmann, Melanie; Walrad, Pegine; Rico, Eva; Ivens, Alasdair; Capewell, Paul; Naguleswaran, Arunasalam; Roditi, Isabel; Matthews, Keith R.
2015-01-01
Trypanosomes mostly regulate gene expression through post-transcriptional mechanisms, particularly mRNA stability. However, much mRNA degradation is cytoplasmic such that mRNA nuclear export must represent an important level of regulation. Ribosomal RNAs must also be exported from the nucleus and the trypanosome orthologue of NMD3 has been confirmed to be involved in rRNA processing and export, matching its function in other organisms. Surprisingly, we found that TbNMD3 depletion also generates mRNA accumulation of procyclin-associated genes (PAGs), these being co-transcribed by RNA polymerase I with the procyclin surface antigen genes expressed on trypanosome insect forms. By whole transcriptome RNA-seq analysis of TbNMD3-depleted cells we confirm the regulation of the PAG transcripts by TbNMD3 and using reporter constructs reveal that PAG1 regulation is mediated by its 5′UTR. Dissection of the mechanism of regulation demonstrates that it is not dependent upon translational inhibition mediated by TbNMD3 depletion nor enhanced transcription. However, depletion of the nuclear export factors XPO1 or MEX67 recapitulates the effects of TbNMD3 depletion on PAG mRNAs and mRNAs accumulated in the nucleus of TbNMD3-depleted cells. These results invoke a novel RNA regulatory mechanism involving the NMD3-dependent nuclear export of mRNA cargos, suggesting a shared platform for mRNA and rRNA export. PMID:25873624
Zhou, Xiuxia; Hu, Haizhen; Balzar, Silvana; Trudeau, John B; Wenzel, Sally E
2012-06-15
CCL11/eotaxin-1 is a potent eosinophilic CC chemokine expressed by primary human fibroblasts. The combination of TGF-β1 and IL-13 synergistically increases CCL11 expression, but the mechanisms behind the synergy are unclear. To address this, human airway fibroblast cultures from normal and asthmatic subjects were exposed to IL-13 alone or TGF-β1 plus IL-13. Transcriptional (nuclear run-on) and posttranscriptional (mRNA stability) assays confirmed that transcriptional regulation is critical for synergistic expression of CCL11. TGF-β1 plus IL-13 synergistically increased STAT-6 phosphorylation, nuclear translocation, and binding to the CCL11 promoter as compared with IL-13 alone. STAT-6 small interfering RNA significantly knocked down both STAT-6 mRNA expression and phosphorylation and inhibited CCL11 mRNA and protein expression. Regulation of the IL-4Rα complex by TGF-β1 augmented IL-13 signaling by dampening IL-13Rα2 expression, overcoming IL-13's autoregulation of its pathway and enhancing the expression of CCL11. Our data suggest that TGF-β1 induced activation of the MEK/ERK pathway reduces IL-13Rα2 expression induced by IL-13. Thus, TGF-β1, a pleiotropic cytokine upregulated in asthmatic airways, can augment eosinophilic inflammation by interfering with IL-13's negative feedback autoregulatory loop under MEK/ERK-dependent conditions.
Vernon, Daniel M.; Ostrem, James A.; Schmitt, Juergen M.; Bohnert, Hans J.
1988-01-01
Mesembryanthemum crystallinum plants respond to water stress by changing their pathway of carbon assimilation from C3 to Crassulacean acid metabolism (CAM). Stressed plants are characterized by elevated levels of phosphoenolpyruvate carboxylase (PEPCase) mRNA, protein, and enzyme activity. We wanted to determine whether CAM is a reversible response to environmental conditions or a developmentally programmed adaptation that is irreversibly expressed once induced. Plants were osmotically stressed by irrigation with 500 millimolar NaCl for 12 days to elicit CAM. Salt was then thoroughly flushed from the soil and PEPCase protein and transcript levels were monitored. PEPCase mRNA levels dropped by 77% within 2.5 hours after salt removal. PEPCase activity and polypeptide levels declined more slowly, with a half-life of 2 to 3 days. These results show that PEPCase expression in M. crystallinum is a reversible response to stress that is regulated at the level of transcription or stability of the PEPCase mRNA. Images Fig. 2 Fig. 3 PMID:16666021
Neurotrophin-3 mRNA a putative target of miR21 following status epilepticus.
Risbud, Rashmi M; Lee, Carolyn; Porter, Brenda E
2011-11-18
Status epilepticus induces a cascade of protein expression changes contributing to the subsequent development of epilepsy. By identifying the cascade of molecular changes that contribute to the development of epilepsy we hope to be able to design therapeutics for preventing epilepsy. MicroRNAs influence gene expression by altering mRNA stability and/or translation and have been implicated in the pathology of multiple diseases. MiR21 and its co-transcript miR21, microRNAs produced from either the 5' or 3' ends of the same precursor RNA strand, are increased in the hippocampus following status epilepticus. We have identified a miR21 binding site, in the 3' UTR of neurotrophin-3 that inhibits translation. Neurotrophin-3 mRNA levels decrease in the hippocampus following SE concurrent with the increase in miR21. MiR21 levels in cultured hippocampal neurons inversely correlate with neurotrophin-3 mRNA levels. Treatment of hippocampal neuronal cultures with excess K(+)Cl(-), a depolarizing agent mimicking the episode of status epilepticus, also results in an increase in miR21 and a decrease in neurotrophin-3 mRNA. MiR21 is a candidate for regulating neurotrophin-3 signaling in the hippocampus following status epilepticus. Copyright © 2011 Elsevier B.V. All rights reserved.
Cabilla, Jimena P; Nudler, Silvana I; Ronchetti, Sonia A; Quinteros, Fernanda A; Lasaga, Mercedes; Duvilanski, Beatriz H
2011-01-01
17β-estradiol (E2) regulates hormonal release as well as proliferation and cell death in the pituitary. The main nitric oxide receptor, nitric oxide sensitive- or soluble guanylyl cyclase (sGC), is a heterodimer composed of two subunits, α and β, that catalyses cGMP formation. α1β1 is the most abundant and widely expressed heterodimer, showing the greater activity. Previously we have shown that E2 decreased sGC activity but exerts opposite effects on sGC subunits increasing α1 and decreasing β1 mRNA and protein levels. In the present work we investigate the mechanisms by which E2 differentially regulates sGC subunits' expression on rat anterior pituitary gland. Experiments were performed on primary cultures of anterior pituitary cells from adult female Wistar rats at random stages of estrous cycle. After 6 h of E2 treatment, α1 mRNA and protein expression is increased while β1 levels are down-regulated. E2 effects on sGC expression are partially dependent on de novo transcription while de novo translation is fully required. E2 treatment decreased HuR mRNA stabilization factor and increased AUF1 p37 mRNA destabilization factor. E2-elicited β1 mRNA decrease correlates with a mRNA destabilization environment in the anterior pituitary gland. On the other hand, after 6 h of treatment, E2-BSA (1 nM) and E2-dendrimer conjugate (EDC, 1 nM) were unable to modify α1 or β1 mRNA levels, showing that nuclear receptor is involved in E2 actions. However, at earlier times (3 h), 1 nM EDC causes a transient decrease of α1 in a PI3k-dependent fashion. Our results show for the first time that E2 is able to exert opposite actions in the anterior pituitary gland, depending on the activation of classical or non-classical pathways. Thus, E2 can also modify sGC expression through membrane-initiated signals bringing to light a new point of regulation in NO/sGC pathway. © 2011 Cabilla et al.
USDA-ARS?s Scientific Manuscript database
Polyamines (PA) involve in the gene regulation by interacting with various anionic macromolecules such as DNA, RNA and proteins and modulating their structure and function. Previous studies have showed that changing in polyamine biosynthesis alters plant response to different abiotic stresses. Here,...
Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional...
Staufen2 regulates neuronal target RNAs.
Heraud-Farlow, Jacki E; Sharangdhar, Tejaswini; Li, Xiao; Pfeifer, Philipp; Tauber, Stefanie; Orozco, Denise; Hörmann, Alexandra; Thomas, Sabine; Bakosova, Anetta; Farlow, Ashley R; Edbauer, Dieter; Lipshitz, Howard D; Morris, Quaid D; Bilban, Martin; Doyle, Michael; Kiebler, Michael A
2013-12-26
RNA-binding proteins play crucial roles in directing RNA translation to neuronal synapses. Staufen2 (Stau2) has been implicated in both dendritic RNA localization and synaptic plasticity in mammalian neurons. Here, we report the identification of functionally relevant Stau2 target mRNAs in neurons. The majority of Stau2-copurifying mRNAs expressed in the hippocampus are present in neuronal processes, further implicating Stau2 in dendritic mRNA regulation. Stau2 targets are enriched for secondary structures similar to those identified in the 3' UTRs of Drosophila Staufen targets. Next, we show that Stau2 regulates steady-state levels of many neuronal RNAs and that its targets are predominantly downregulated in Stau2-deficient neurons. Detailed analysis confirms that Stau2 stabilizes the expression of one synaptic signaling component, the regulator of G protein signaling 4 (Rgs4) mRNA, via its 3' UTR. This study defines the global impact of Stau2 on mRNAs in neurons, revealing a role in stabilization of the levels of synaptic targets. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Epitranscriptomic Enhancement of Influenza A Virus Gene Expression and Replication.
Courtney, David G; Kennedy, Edward M; Dumm, Rebekah E; Bogerd, Hal P; Tsai, Kevin; Heaton, Nicholas S; Cullen, Bryan R
2017-09-13
Many viral RNAs are modified by methylation of the N 6 position of adenosine (m 6 A). m 6 A is thought to regulate RNA splicing, stability, translation, and secondary structure. Influenza A virus (IAV) expresses m 6 A-modified RNAs, but the effects of m 6 A on this segmented RNA virus remain unclear. We demonstrate that global inhibition of m 6 A addition inhibits IAV gene expression and replication. In contrast, overexpression of the cellular m 6 A "reader" protein YTHDF2 increases IAV gene expression and replication. To address whether m 6 A residues modulate IAV RNA function in cis, we mapped m 6 A residues on the IAV plus (mRNA) and minus (vRNA) strands and used synonymous mutations to ablate m 6 A on both strands of the hemagglutinin (HA) segment. These mutations inhibited HA mRNA and protein expression while leaving other IAV mRNAs and proteins unaffected, and they also resulted in reduced IAV pathogenicity in mice. Thus, m 6 A residues in IAV transcripts enhance viral gene expression. Copyright © 2017 Elsevier Inc. All rights reserved.
Bruzzoni-Giovanelli, Heriberto; Fernandez, Plinio; Veiga, Lucía; Podgorniak, Marie-Pierre; Powell, Darren J; Candeias, Marco M; Mourah, Samia; Calvo, Fabien; Marín, Mónica
2010-02-09
SIAH proteins are the human members of an highly conserved family of E3 ubiquitin ligases. Several data suggest that SIAH proteins may have a role in tumor suppression and apoptosis. Previously, we reported that SIAH-1 induces the degradation of Kid (KIF22), a chromokinesin protein implicated in the normal progression of mitosis and meiosis, by the ubiquitin proteasome pathway. In human breast cancer cells stably transfected with SIAH-1, Kid/KIF22 protein level was markedly reduced whereas, the Kid/KIF22 mRNA level was increased. This interaction has been further elucidated through analyzing SIAH and Kid/KIF22 expression in both paired normal and tumor tissues and cell lines. It was observed that SIAH-1 protein is widely expressed in different normal tissues, and in cells lines but showing some differences in western blotting profiles. Immunofluorescence microscopy shows that the intracellular distribution of SIAH-1 and Kid/KIF22 appears to be modified in human tumor tissues compared to normal controls. When mRNA expression of SIAH-1 and Kid/KIF22 was analyzed by real-time PCR in normal and cancer breast tissues from the same patient, a large variation in the number of mRNA copies was detected between the different samples. In most cases, SIAH-1 mRNA is decreased in tumor tissues compared to their normal counterparts. Interestingly, in all breast tumor tissues analyzed, variations in the Kid/KIF22 mRNA levels mirrored those seen with SIAH-1 mRNAs. This concerted variation of SIAH-1 and Kid/KIF22 messengers suggests the existence of an additional level of control than the previously described protein-protein interaction and protein stability regulation. Our observations also underline the need to re-evaluate the results of gene expression obtained by qRT-PCR and relate it to the protein expression and cellular localization when matched normal and tumoral tissues are analyzed.
Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.
2016-01-01
Gene regulation at the post-transcriptional level is frequently based on cis- and trans-acting factors on target mRNAs. We found a C-rich element (CRE) in mu-opioid receptor (MOR) 3′-untranslated region (UTR) to which poly (rC) binding protein 1 (PCBP1) binds, resulting in MOR mRNA stabilization. RNA immunoprecipitation and RNA EMSA revealed the formation of PCBP1-RNA complexes at the element. Knockdown of PCBP1 decreased MOR mRNA half-life and protein expression. Stimulation by forskolin increased cytoplasmic localization of PCBP1 and PCBP1/MOR 3′-UTR interactions via increased serine phosphorylation that was blocked by protein kinase A (PKA) or (phosphatidyl inositol-3) PI3-kinase inhibitors. The forskolin treatment also enhanced serine- and tyrosine-phosphorylation of AU-rich element binding protein (AUF1), concurrent with its increased binding to the CRE, and led to an increased interaction of poly A binding protein (PABP) with the CRE and poly(A) sites. AUF1 phosphorylation also led to an increased interaction with PCBP1. These findings suggest that a single co-regulator, PCBP1, plays a crucial role in stabilizing MOR mRNA, and is induced by PKA signaling by conforming to AUF1 and PABP. PMID:27836661
Differential utilization of decapping enzymes in mammalian mRNA decay pathways
Li, You; Song, Mangen; Kiledjian, Megerditch
2011-01-01
mRNA decapping is a crucial step in the regulation of mRNA stability and gene expression. Dcp2 is an mRNA decapping enzyme that has been widely studied. We recently reported the presence of a second mammalian cytoplasmic decapping enzyme, Nudt16. Here we address the differential utilization of the two decapping enzymes in specified mRNA decay processes. Using mouse embryonic fibroblast (MEF) cell lines derived from a hypomorphic knockout of the Dcp2 gene with undetectable levels of Dcp2 or MEF cell lines harboring a Nudt16-directed shRNA to generate reduced levels of Nudt16, we demonstrate the distinct roles for Dcp2 and Nudt16 in nonsense-mediated mRNA decay (NMD), decay of ARE-containing mRNA and miRNA-mediated silencing. Our results indicated that NMD preferentially utilizes Dcp2 rather than Nudt16; Dcp2 and Nudt16 are redundant in miRNA-mediated silencing; and Dcp2 and Nudt16 are differentially utilized for ARE-mRNA decay. These data demonstrate that the two distinct decapping enzymes can uniquely function in specific mRNA decay processes in mammalian cells. PMID:21224379
Mitra, Pallabi; Audus, Kenneth L.
2009-01-01
Several cytosolic sulfotransferase enzyme isoforms are functional in placenta but there is limited information available on the utility of cultured trophoblast cells for studying sulfation. The trophoblast cell layer constitutes the rate-determining barrier for trans-placental transfer. The objective of this work was to examine the mRNA expression and enzyme activities of four sulfotransferase isoforms reported to be functional in human placenta (SULT1A1, SULT1A3, SULT1E1, and SULT2A1) in primary cytotrophoblast cells and the trophoblast-like BeWo cell line. Reverse transcription polymerase chain reaction (RT-PCR) was performed to determine mRNA expression. Enzyme activities were assessed using the following substrates: 4-nitrophenol for SULT1A1, dopamine for SULT1A3, 17β-estradiol for SULT1E1, and dehydroepiandrosterone for SULT2A1. For 4-nitrophenol and dopamine sulfation, apparent Km values, response to inhibitors (2,6-dichloro-4-nitrophenol and sodium chloride), and thermal stability profiles indicated that 4-nitrophenol and dopamine sulfation in BeWo cells were being mediated by SULT1A1 and SULT1A3, respectively. SULT1A1 and SULT1A3 were also functional in the cytotrophoblast cells. Both at the protein and at the mRNA levels, SULT1A1 was more abundant in BeWo cells in comparison to the primary cytotrophoblast cells. SULT1E1 and SULT2A1 mRNA were not detected in the cytotrophoblasts. SULT1E1 mRNA was weakly expressed in BeWo but there was negligible functional activity. Although SULT2A1 mRNA was abundantly expressed in BeWo, Western blot and enzyme activities revealed that the protein is not expressed in BeWo cells. The results suggest that the BeWo cells and the cytotrophoblast cells can be used to examine the roles of SULT1A1 and SULT1A3 in placental metabolism. PMID:19646966
Feng, Xiaomin; Shikama, Yayoi; Shichishima, Tsutomu; Noji, Hideyoshi; Ikeda, Kazuhiko; Ogawa, Kazuei; Kimura, Hideo; Takeishi, Yasuchika; Kimura, Junko
2013-01-01
Although quantitative and qualitative granulocyte defects have been described in myelodysplastic syndromes (MDS), the underlying molecular basis of granulocyte dysfunction in MDS is largely unknown. We recently found that FOS mRNA elevation under translation-inhibiting stimuli was significantly smaller in granulocytes from MDS patients than in healthy individuals. The aim of this study is to clarify the cause of the impaired FOS induction in MDS. We first examined the mechanisms of FOS mRNA elevation using granulocytes from healthy donors cultured with the translation inhibitor emetine. Emetine increased both transcription and mRNA stability of FOS. p38 MAPK inhibition abolished the emetine-induced increase of FOS transcription but did not affect FOS mRNA stabilization. The binding of an AU-rich element (ARE)-binding protein HuR to FOS mRNA containing an ARE in 3'UTR was increased by emetine, and the knockdown of HuR reduced the FOS mRNA stabilizing effect of emetine. We next compared the emetine-induced transcription and mRNA stabilization of FOS between MDS patients and healthy controls. Increased rates of FOS transcription by emetine were similar in MDS and controls. In the absence of emetine, FOS mRNA decayed to nearly 17% of initial levels in 45 min in both groups. In the presence of emetine, however, 76.7±19.8% of FOS mRNA remained after 45 min in healthy controls, versus 37.9±25.5% in MDS (P<0.01). To our knowledge, this is the first report demonstrating attenuation of stress-induced FOS mRNA stabilization in MDS granulocytes.
Post-Transcriptional Regulation of the Trypanosome Heat Shock Response by a Zinc Finger Protein
Droll, Dorothea; Minia, Igor; Fadda, Abeer; Singh, Aditi; Stewart, Mhairi; Queiroz, Rafael; Clayton, Christine
2013-01-01
In most organisms, the heat-shock response involves increased heat-shock gene transcription. In Kinetoplastid protists, however, virtually all control of gene expression is post-transcriptional. Correspondingly, Trypanosoma brucei heat-shock protein 70 (HSP70) synthesis after heat shock depends on regulation of HSP70 mRNA turnover. We here show that the T. brucei CCCH zinc finger protein ZC3H11 is a post-transcriptional regulator of trypanosome chaperone mRNAs. ZC3H11 is essential in bloodstream-form trypanosomes and for recovery of insect-form trypanosomes from heat shock. ZC3H11 binds to mRNAs encoding heat-shock protein homologues, with clear specificity for the subset of trypanosome chaperones that is required for protein refolding. In procyclic forms, ZC3H11 was required for stabilisation of target chaperone-encoding mRNAs after heat shock, and the HSP70 mRNA was also decreased upon ZC3H11 depletion in bloodstream forms. Many mRNAs bound to ZC3H11 have a consensus AUU repeat motif in the 3′-untranslated region. ZC3H11 bound preferentially to AUU repeats in vitro, and ZC3H11 regulation of HSP70 mRNA in bloodstream forms depended on its AUU repeat region. Tethering of ZC3H11 to a reporter mRNA increased reporter expression, showing that it is capable of actively stabilizing an mRNA. These results show that expression of trypanosome heat-shock genes is controlled by a specific RNA-protein interaction. They also show that heat-shock-induced chaperone expression in procyclic trypanosome enhances parasite survival at elevated temperatures. PMID:23592996
IL-17A acts via p38 MAPK to increase stability of TNF-alpha-induced IL-8 mRNA in human ASM.
Henness, Sheridan; van Thoor, Eveline; Ge, Qi; Armour, Carol L; Hughes, J Margaret; Ammit, Alaina J
2006-06-01
Human airway smooth muscle (ASM) plays an immunomodulatory role in asthma. Recently, IL-17A has become of increasing interest in asthma, being found at elevated levels in asthmatic airways and emerging as playing an important role in airway neutrophilia. IL-17A predominantly exerts its neutrophil orchestrating role indirectly via the induction of cytokines by resident airway structural cells. Here, we perform an in vitro study to show that although IL-17A did not induce secretion of the CXC chemokine IL-8 from ASM cells, IL-17A significantly potentiates TNF-alpha-induced IL-8 protein secretion and gene expression in a concentration- and time-dependent manner (P < 0.05). Levels of IL-8 protein produced after 24 h of incubation with TNF-alpha were enhanced 2.7-fold in the presence of IL-17A, and conditioned media significantly enhanced neutrophil chemotaxis in vitro. As IL-17A had no effect on the activity of NF-kappaB, a key transcriptional regulator of IL-8 gene expression, we then examined whether IL-17A acts at the posttranscriptional level. We found that IL-17A significantly augmented TNF-alpha-induced IL-8 mRNA stability. Interestingly, this enhanced stability occurred via a p38 MAPK-dependent pathway. The decay of IL-8 mRNA transcripts proceeded at a significantly faster rate when cells were pretreated with the p38 MAPK inhibitor SB-203580 (-0.05763 +/- 0.01964, t(1/2) = 12.0 h), compared with vehicle (-0.01030 +/- 0.007963, t(1/2) = 67.3 h) [results are expressed as decay constant (means +/- SE) and half-life (t(1/2) in h): P < 0.05]. Collectively, these results demonstrate that IL-17A amplifies the synthetic function of ASM cells, acting via a p38 MAPK-dependent posttranscriptional pathway to augment TNF-alpha-induced secretion of the potent neutrophil chemoattractant IL-8 from ASM cells.
NASA Technical Reports Server (NTRS)
McCarthy, T. L.; Casinghino, S.; Mittanck, D. W.; Ji, C. H.; Centrella, M.; Rotwein, P.
1996-01-01
Insulin-like growth factor (IGF) action is mediated by high affinity cell surface IGF receptors and modulated by a family of secreted IGF binding proteins (IGFBPs). IGFBP-5, the most conserved of six IGFBPs characterized to date, uniquely potentiates the anabolic actions of IGF-I for skeletal cells. In osteoblasts, IGFBP-5 production is stimulated by prostaglandin E2 (PGE2), a local factor that mediates certain effects induced by parathyroid hormone, cytokines such as interleukin-1 and transforming growth factor-beta, and mechanical strain. In this study, we show that transcriptional and post-transcriptional events initiated by PGE2 collaborate to enhance IGFBP-5 gene expression in primary fetal rat osteoblast cultures. PGE2 treatment stimulated up to a 7-fold rise in steady-state levels of IGFBP-5 mRNA throughout 32 h of incubation. Analysis of nascent IGFBP-5 mRNA suggested that PGE2 had only a modest stimulatory effect on IGFBP-5 gene transcription, and transient transfection studies with IGFBP-5 promoter-reporter genes confirmed that PGE2 enhanced promoter activity by approximately 2-fold. Similar stimulatory effects were seen with forskolin. A DNA fragment with only 51 base pairs of the 5'-flanking sequence retained hormonal responsiveness, which may be mediated by a binding site for transcription factor AP-2 located at positions -44 to -36 in the proximal IGFBP-5 promoter. Incubation of osteoblasts with the mRNA transcriptional inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that PGE2 enhanced IGFBP-5 mRNA stability by 2-fold, increasing the t1/2 from 9 to 18 h. The effects of PGE2 on steady-state IGFBP-5 transcripts were abrogated by preincubating cells with cycloheximide, indicating that the effects of PGE2 on both gene transcription and mRNA stability required ongoing protein synthesis. Therefore, both promoter-dependent and -independent pathways converge to enhance IGFBP-5 gene expression in response to PGE2 in osteoblasts.
Hopkins, Thomas G.; Mura, Manuela; Al-Ashtal, Hiba A.; Lahr, Roni M.; Abd-Latip, Normala; Sweeney, Katrina; Lu, Haonan; Weir, Justin; El-Bahrawy, Mona; Steel, Jennifer H.; Ghaem-Maghami, Sadaf; Aboagye, Eric O.; Berman, Andrea J.; Blagden, Sarah P.
2016-01-01
RNA-binding proteins (RBPs) are increasingly identified as post-transcriptional drivers of cancer progression. The RBP LARP1 is an mRNA stability regulator, and elevated expression of the protein in hepatocellular and lung cancers is correlated with adverse prognosis. LARP1 associates with an mRNA interactome that is enriched for oncogenic transcripts. Here we explore the role of LARP1 in epithelial ovarian cancer, a disease characterized by the rapid acquisition of resistance to chemotherapy through the induction of pro-survival signalling. We show, using ovarian cell lines and xenografts, that LARP1 is required for cancer cell survival and chemotherapy resistance. LARP1 promotes tumour formation in vivo and maintains cancer stem cell-like populations. Using transcriptomic analysis following LARP1 knockdown, cross-referenced against the LARP1 interactome, we identify BCL2 and BIK as LARP1 mRNA targets. We demonstrate that, through an interaction with the 3′ untranslated regions (3′ UTRs) of BCL2 and BIK, LARP1 stabilizes BCL2 but destabilizes BIK with the net effect of resisting apoptosis. Together, our data indicate that by differentially regulating the stability of a selection of mRNAs, LARP1 promotes ovarian cancer progression and chemotherapy resistance. PMID:26717985
Kinetic analysis of the effects of target structure on siRNA efficiency
NASA Astrophysics Data System (ADS)
Chen, Jiawen; Zhang, Wenbing
2012-12-01
RNAi efficiency for target cleavage and protein expression is related to the target structure. Considering the RNA-induced silencing complex (RISC) as a multiple turnover enzyme, we investigated the effect of target mRNA structure on siRNA efficiency with kinetic analysis. The 4-step model was used to study the target cleavage kinetic process: hybridization nucleation at an accessible target site, RISC-mRNA hybrid elongation along with mRNA target structure melting, target cleavage, and enzyme reactivation. At this model, the terms accounting for the target accessibility, stability, and the seed and the nucleation site effects are all included. The results are in good agreement with that of experiments which show different arguments about the structure effects on siRNA efficiency. It shows that the siRNA efficiency is influenced by the integrated factors of target's accessibility, stability, and the seed effects. To study the off-target effects, a simple model of one siRNA binding to two mRNA targets was designed. By using this model, the possibility for diminishing the off-target effects by the concentration of siRNA was discussed.
BRCA1/p220 loss triggers BRCA1-IRIS overexpression via mRNA stabilization in breast cancer cells
Shimizu, Yoshiko; Mullins, Nicole; Blanchard, Zannel; ElShamy, Wael M.
2012-01-01
BRCA1/p220-assocaited and triple negative/basal-like (TN/BL) tumors are aggressive and incurable breast cancer diseases that share among other features the no/low BRCA1/p220 expression. Here we show that BRCA1/p220 silencing in normal human mammary epithelial (HME) cells reduces expression of two RNA-destabilizing proteins, namely AUF1 and pCBP2, both proteins bind and destabilize BRCA1-IRIS mRNA. BRCA1-IRIS overexpression in HME cells triggers expression of several TN/BL markers, e.g., cytokeratins 5 and 17, p-cadherin, EGFR and cyclin E as well as expression and activation of the pro-survival proteins; AKT and survivin. BRCA1-IRIS silencing in the TN/BL cell line, SUM149 or restoration of BRCA1/p220 expression in the mutant cell line, HCC1937 reduced expression of TN/BL markers, AKT, survivin, and induced cell death. Collectively, we propose that BRCA1/p220 loss of expression or function triggers BRCA1-IRIS overexpression through a post-transcriptional mechanism, which in turn promotes formation of aggressive and invasive breast tumors by inducing expression of TN/BL and survival proteins. PMID:22431556
Nanci, A; Zalzal, S; Lavoie, P; Kunikata, M; Chen, W; Krebsbach, P H; Yamada, Y; Hammarström, L; Simmer, J P; Fincham, A G; Snead, M L; Smith, C E
1998-08-01
Mineralized tissues are unique in using proteins to attract and organize calcium and phosphate ions into a structured mineral phase. A precise knowledge of the expression and extracellular distribution of matrix proteins is therefore very important in understanding their function. The purpose of this investigation was to obtain comparative information on the expression, intracellular and extracellular distribution, and dynamics of proteins representative of the two main classes of enamel matrix proteins. Amelogenins were visualized using an antibody and an mRNA probe prepared against the major alternatively spliced isoform in rodents, and nonamelogenins by antibodies and mRNA probes specific to one enamel protein referred to by three names: ameloblastin, amelin, and sheathlin. Qualitative and quantitative immunocytochemistry, in combination with immunoblotting and in situ hybridization, indicated a correlation between mRNA signal and sites of protein secretion for amelogenin, but not for ameloblastin, during the early presecretory and mid- to late maturation stages, during which mRNA signals were detected but no proteins appeared to be secreted. Extracellular amelogenin immunoreactivity was generally weak near secretory surfaces, increasing over a distance of about 1.25 microm to reach a level slightly above an amount expected if the protein were being deposited evenly across the enamel layer. Immunolabeling for ameloblastin showed an inverse pattern, with relatively more gold particles near secretory surfaces and much fewer deeper into the enamel layer. Administration of brefeldin A and cycloheximide to stop protein secretion revealed that the immunoblotting pattern of amelogenin was relatively stable, whereas ameloblastin broke down rapidly into lower molecular weight fragments. The distance from the cell surface at which immunolabeling for amelogenin stabilized generally corresponded to the point at which that for ameloblastin started to show a net reduction. These data suggest a correlation between the distribution of amelogenin and ameloblastin and that intact ameloblastin has a transient role in promoting/stabilizing crystal elongation. (J Histochem Cytochem 46:911-934, 1998)
Role of RNase Y in Clostridium perfringens mRNA Decay and Processing.
Obana, Nozomu; Nakamura, Kouji; Nomura, Nobuhiko
2017-01-15
RNase Y is a major endoribonuclease that plays a crucial role in mRNA degradation and processing. We study the role of RNase Y in the Gram-positive anaerobic pathogen Clostridium perfringens, which until now has not been well understood. Our study implies an important role for RNase Y-mediated RNA degradation and processing in virulence gene expression and the physiological development of the organism. We began by constructing an RNase Y conditional knockdown strain in order to observe the importance of RNase Y on growth and virulence. Our resulting transcriptome analysis shows that RNase Y affects the expression of many genes, including toxin-producing genes. We provide data to show that RNase Y depletion repressed several toxin genes in C. perfringens and involved the virR-virS two-component system. We also observe evidence that RNase Y is indispensable for processing and stabilizing the transcripts of colA (encoding a major toxin collagenase) and pilA2 (encoding a major pilin component of the type IV pili). Posttranscriptional regulation of colA is known to be mediated by cleavage in the 5' untranslated region (5'UTR), and we observe that RNase Y depletion diminishes colA 5'UTR processing. We show that RNase Y is also involved in the posttranscriptional stabilization of pilA2 mRNA, which is thought to be important for host cell adherence and biofilm formation. RNases have important roles in RNA degradation and turnover in all organisms. C. perfringens is a Gram-positive anaerobic spore-forming bacterial pathogen that produces numerous extracellular enzymes and toxins, and it is linked to digestive disorders and disease. A highly conserved endoribonuclease, RNase Y, affects the expression of hundreds of genes, including toxin genes, and studying these effects is useful for understanding C. perfringens specifically and RNases generally. Moreover, RNase Y is involved in processing specific transcripts, and we observed that this processing in C. perfringens results in the stabilization of mRNAs encoding a toxin and bacterial extracellular apparatus pili. Our study shows that RNase activity is associated with gene expression, helping to determine the growth, proliferation, and virulence of C. perfringens. Copyright © 2016 American Society for Microbiology.
Zhu, Hong; Abulimiti, Muyasha; Liu, Huan; Su, Xiang-Jiang; Liu, Cai-Hong; Pei, Hai-Ping
2015-09-01
Radiation therapy is the most widely used treatment for patients with cervical cancer. Recent studies have shown that endoplasmic reticulum (ER) stress induces apoptosis and sensitizes tumor cells to radiotherapy, which reportedly induces ER stress in cells. Classical key tumor suppressor p53 is involved in the response to a variety of cellular stresses, including those incurred by ionizing irradiation. A recent study demonstrated that small-molecule RITA (reactivation of p53 and induction of tumor cell apoptosis) increased the radiosensitivity of tumor cells expressing mutant p53 (mtp53). In the present study, we explored the effects and the underlying mechanisms of RITA in regards to the radiosensitivity and ER stress in mtp53-expressing human cervix cancer cells. Treatment with 1 µM of RITA for 24 h before irradiation markedly decreased survival and increased apoptosis in C-33A and HT-3 cells; the effects were not significantly altered by knockdown of p53. In the irradiated C-33A and HT-3 cells, RITA significantly increased the expression of IRE1α, the spliced XBP1 mRNA level, as well as apoptosis; the effects were abolished by knockdown of IRE1α. Transcriptional pulse-chase assays revealed that RITA significantly increased the stability of IRE1α mRNA in the irradiated C-33A and HT-3 cells. In contrast, the same RITA treatment did not show any significant effect on sham-irradiated cells. In conclusion, the present study provides initial evidence that RITA upregulates the expression level of IRE1α by increasing the stability of IRE1α mRNA in irradiated mtp53-expressing cervical cancer cells; the effect leads to enhanced IRE1α/XBP1 ER stress signaling and increased apoptosis in the cells. The present study offers novel insight into the pharmacological potential of RITA in the radiotherapy for cervical cancer.
Yu, Shi; Pilot, Guillaume
2014-01-01
Artificial microRNAs (amiRNAs) have become an important tool to assess gene functions due to their high efficiency and specificity to decrease target gene expression. Based on the observed degree of complementarity between microRNAs (miRNAs) and their targets, it was widely accepted that plant miRNAs act at the mRNA stability level, while the animal miRNAs act at the translational level. Contrary to these canonical dogmas, recent evidence suggests that both plant and animal miRNAs act at both levels. Nevertheless, it is still impossible to predict the effect of an artificial miRNA on the stability or translation of the target mRNA in plants. Consequently, identifying and discarding inefficient amiRNAs prior to stable plant transformation would help getting suppressed mutants faster and at reduced cost. We designed and tested a method using transient expression of amiRNAs and the corresponding target genes in Nicotiana benthamiana leaves to test the efficacy of amiRNAs for suppression of the target protein accumulation. The ability of the amiRNAs to suppress the target gene expression in N. benthamiana was then compared to that in stably transformed Arabidopsis. It was found that the efficacy of 16 amiRNAs, targeting a total of four genes, varied greatly. The effects of amiRNAs on target mRNA accumulation did not always correlate with target protein accumulation or the corresponding phenotypes, while a similar trend of the silencing efficacy of amiRNAs could be observed between N. benthamiana and stably transformed Arabidopsis. Our results showed that, similar to endogenous plant miRNAs, plant amiRNAs could act at the translational level, a property needed to be taken into account when testing the efficacy of individual amiRNAs. Preliminary tests in N. benthamiana can help determine which amiRNA would be the most likely to suppress target gene expression in stably transformed plants. PMID:25477887
Krawczak, David A; Westendorf, Jennifer J; Carlson, Cathy S; Lewis, Jack L
2009-06-01
The aim of this study was to determine the effects of bone morphogenetic protein-2 (BMP-2) on articular chondrocyte tissues grown as monolayers in vitro for up to 8 weeks. Articular chondrocytes were isolated from New Zealand White rabbits and plated in monolayer cultures. The cultures were supplemented with 100 ng/mL of BMP-2 for up to 8 weeks and the extracellular matrix (ECM) composition, material properties, and messenger RNA (mRNA) expression were analyzed. mRNA expression of cartilage-specific genes, type II collagen, and aggrecan showed that BMP-2 enhanced chondrocyte stability for up to 3 weeks. After 3 weeks in culture, there was substantially more type I collagen expression and more osteopontin and runt-related transcription factor 2 expression in 5- and 8-week cultures treated with BMP-2 than in controls. Additionally, matrix metalloproteinase-13 and ADAMTS-5 (A disintegrin-like and metalloproteinase with thrombospondin 5) were upregulated in 5- and 8-week cultures treated with BMP-2, coinciding with a loss of ECM density, collagen, and proteoglycan. Eight-week tissue stimulated with BMP-2 was more fragile and tore more easily when removed from the culture dish as compared to controls, suggesting temporal limitations to the effectiveness of BMP-2 in monolayer systems and perhaps other models to enhance the generation of a cartilage-like tissue for tissue engineering purposes.
Lacroix, C; Coquillé, V; Guyomarch, J; Auffret, M; Moraga, D
2014-09-15
mRNA biomarkers are promising tools for environmental health assessment and reference genes are needed to perform relevant qPCR analyses in tissue samples of sentinel species. In the present study, potential reference genes and mRNA biomarkers were tested in the gills and digestive glands of native and caged mussels (Mytilus spp.) exposed to harbor pollution. Results highlighted the difficulty to find stable reference genes in wild, non-model species and suggested the use of normalization indices instead of single genes as they exhibit a higher stability. Several target genes were found differentially expressed between mussel groups, especially in gills where cyp32, π-gst and CuZn-sod mRNA levels could be biomarker candidates. Multivariate analyses confirmed the ability of mRNA levels to highlight site-effects and suggested the use of several combined markers instead of individual ones. These findings support the use of qPCR technology and mRNA levels as early-warning biomarkers in marine monitoring programs. Copyright © 2014 Elsevier Ltd. All rights reserved.
2013-01-01
Background Plants that utilize the highly efficient C4 pathway of photosynthesis typically possess kranz-type leaf anatomy that consists of two morphologically and functionally distinct photosynthetic cell types, the bundle sheath (BS) and mesophyll (M) cells. These two cell types differentially express many genes that are required for C4 capability and function. In mature C4 leaves, the plastidic rbcL gene, encoding the large subunit of the primary CO2 fixation enzyme Rubisco, is expressed specifically within BS cells. Numerous studies have demonstrated that BS-specific rbcL gene expression is regulated predominantly at post-transcriptional levels, through the control of translation and mRNA stability. The identification of regulatory factors associated with C4 patterns of rbcL gene expression has been an elusive goal for many years. Results RLSB, encoded by the nuclear RLSB gene, is an S1-domain RNA binding protein purified from C4 chloroplasts based on its specific binding to plastid-encoded rbcL mRNA in vitro. Co-localized with LSU to chloroplasts, RLSB is highly conserved across many plant species. Most significantly, RLSB localizes specifically to leaf bundle sheath (BS) cells in C4 plants. Comparative analysis using maize (C4) and Arabidopsis (C3) reveals its tight association with rbcL gene expression in both plants. Reduced RLSB expression (through insertion mutation or RNA silencing, respectively) led to reductions in rbcL mRNA accumulation and LSU production. Additional developmental effects, such as virescent/yellow leaves, were likely associated with decreased photosynthetic function and disruption of associated signaling networks. Conclusions Reductions in RLSB expression, due to insertion mutation or gene silencing, are strictly correlated with reductions in rbcL gene expression in both maize and Arabidopsis. In both plants, accumulation of rbcL mRNA as well as synthesis of LSU protein were affected. These findings suggest that specific accumulation and binding of the RLSB binding protein to rbcL mRNA within BS chloroplasts may be one determinant leading to the characteristic cell type-specific localization of Rubisco in C4 plants. Evolutionary modification of RLSB expression, from a C3 “default” state to BS cell-specificity, could represent one mechanism by which rbcL expression has become restricted to only one cell type in C4 plants. PMID:24053212
Zhou, Xiuxia; Hu, Haizhen; Balzar, Silvana; Trudeau, John B.; Wenzel, Sally E.
2012-01-01
CCL11/eotaxin-1 is a potent eosinophilic CC chemokine expressed by primary human fibroblasts. The combination of TGF-β1 and IL-13 synergistically increases CCL11 expression, but the mechanisms behind the synergy are unclear. To address this, human airway fibroblast cultures from normal and asthmatic subjects were exposed to IL-13 alone or TGF-β1 plus IL-13. Transcriptional (nuclear run-on) and post-transcriptional (mRNA stability) assays confirmed that transcriptional regulation is critical for synergistic expression of CCL11. TGF-β1 plus IL-13 synergistically increased STAT-6 phosphorylation, nuclear translocation and binding to the CCL11 promoter as compared to IL-13 alone. STAT-6 siRNA significantly knocked down both STAT-6 mRNA expression and phosphorylation, and inhibited CCL11 mRNA and protein expression. Regulation of the IL-4 receptor α (IL-4Rα) complex by TGF-β1 augmented IL-13 signaling by dampening IL-13 receptor α2 (IL-13Rα2) expression, overcoming IL-13's autoregulation of its pathway and enhancing the expression of CCL11. Our data suggest that TGF-β1 induced activation of the MEK-ERK pathway reduces IL-13Rα2 expression induced by IL-13. Thus, TGF-β1, a pleiotropic cytokine upregulated in asthmatic airways, can augment eosinophilic inflammation by interfering with IL-13's negative feedback autoregulatory loop under MEK/ERK dependent conditions. PMID:22573806
Jornot, L; Junod, A F
1995-01-01
We have studied the effect of selenomethionine (SeMet) and hyperoxia on the expression of glutathione peroxidase (GP) in human umbilical vein endothelial cells. Incubation of HUVEC with 1 x 10(-6) M SeMet for 24 h and 48 h caused a 65% and 86% increase in GP activity respectively. The same treatment did not result in significant changes in GP gene transcription and mRNA levels. Pactamycin, a specific inhibitor of the initiation step of translation, prevented the rise in GP activity induced by SeMet and caused an increase in GP mRNA in both cells grown in normal and SeMet-supplemented medium. Interestingly, SeMet supplementation stimulated the recruitment of GP mRNA from an untranslatable pool on to polyribosomes, so that the concentration of GP mRNA in polyribosomal translatable pools was 50% higher in cells grown in SeMet-supplemented medium than in cells grown in normal medium. On the other hand, cells exposed to 95% O2 for 3 days in normal medium showed a 60%, 394% and 81% increase in GP gene transcription rate, mRNA levels and activity respectively. Hyperoxia also stabilized GP mRNA. Hyperoxic cells grown in SeMet-supplemented medium did not show any change in GP gene transcription and mRNA levels, but expressed an 81% and 100% increase in GP activity and amount of GP mRNA associated with polyribosomes respectively, when compared with hyperoxic cells maintained in normal medium. Thus, GP appeared to be regulated post-transcriptionally, most probably co-translationally, in response to selenium availability, and transcriptionally and post-transcriptionally in response to oxygen. Images Figure 1 Figure 2 Figure 4 Figure 7 Figure 8 PMID:7887914
Xue, Jianpeng; Shan, Lingling; Chen, Haiyan; Li, Yang; Zhu, Hongyan; Deng, Dawei; Qian, Zhiyu; Achilefu, Samuel; Gu, Yueqing
2013-03-15
Signal transducer and activator of transcription 5B (STAT5B) is an important protein in JAK-STAT signaling pathway that is responsible for the metastasis and proliferation of tumor cells. Determination of the STAT5B messenger Ribonucleic Acid (mRNA) relating to the STAT5B expression provides insight into the mechanism of tumor progression. In this study, we designed and used a special hairpin deoxyribonucleic acid (DNA) for human STAT5B mRNA to functionalize gold nanoparticles, which served as a beacon for detecting human STAT5B expression. Up to 90% quenching efficiency was achieved. Upon hybridizing with the target mRNA, the hairpin DNA modified gold nanoparticle beacons (hDAuNP beacons) release the fluorophores attached at 5' end of the oligonucleotide sequence. The fluorescence properties of the beacon before and after the hybridization with the complementary DNA were confirmed in vitro. The stability of hDAuNP beacons against degradation by DNase I and GSH indicated that the prepared beacon is stable inside cells. The detected fluorescence in MCF-7 cancer cells correlates with the specific STAT5B mRNA expression, which is consistent with the result from PCR measurement. Fluorescence microscopy showed that the hDAuNP beacons internalized in cells without using transfection agents, with intracellular distribution in the cytoplasm rather than the nucleus. The results demonstrated that this beacon could directly provide quantitative measurement of the intracellular STAT5B mRNA in living cells. Compared to the previous approaches, this beacon has advantages of higher target to background ratio of detection and an increased resistance to nuclease degradation. The strategy reported in this study is a promising approach for the intracellular measurement of RNA or protein expression in living cells, and has great potential in the study of drug screening and discovery. Copyright © 2012 Elsevier B.V. All rights reserved.
A transgenic approach to study argininosuccinate synthetase gene expression
2014-01-01
Background Argininosuccinate synthetase (ASS) participates in urea, nitric oxide and arginine production. Besides transcriptional regulation, a post-transcriptional regulation affecting nuclear precursor RNA stability has been reported. To study whether such post-transcriptional regulation underlines particular temporal and spatial ASS expression, and to investigate how human ASS gene behaves in a mouse background, a transgenic mouse system using a modified bacterial artificial chromosome carrying the human ASS gene tagged with EGFP was employed. Results Two lines of ASS-EGFP transgenic mice were generated: one with EGFP under transcriptional control similar to that of the endogenous ASS gene, another with EGFP under both transcriptional and post-transcriptional regulation as that of the endogenous ASS mRNA. EGFP expression in the liver, the organ for urea production, and in the intestine and kidney that are responsible for arginine biosynthesis, was examined. Organs taken from embryos E14.5 stage to young adult were examined under a fluorescence microscope either directly or after cryosectioning. The levels of EGFP and endogenous mouse Ass mRNAs were also quantified by S1 nuclease mapping. EGFP fluorescence and EGFP mRNA levels in both the liver and kidney were found to increase progressively from embryonic stage toward birth. In contrast, EGFP expression in the intestine was higher in neonates and started to decline at about 3 weeks after birth. Comparison between the EGFP profiles of the two transgenic lines indicated the developmental and tissue-specific regulation was mainly controlled at the transcriptional level. The ASS transgene was of human origin. EGFP expression in the liver followed essentially the mouse Ass pattern as evidenced by zonation distribution of fluorescence and the level of EGFP mRNA at birth. However, in the small intestine, Ass mRNA level declined sharply at 3 week of age, and yet substantial EGFP mRNA was still detectable at this stage. Thus, the time course of EGFP expression in the transgenic mice resembled that of the human ASS gene. Conclusions We demonstrate that the transgenic mouse system reported here has the merit of sensitivity and direct visualization advantage, and is ideal for annotating temporal and spatial expression profiles and the regulation mode of the ASS gene. PMID:24884799
Natesampillai, Sekar; Kerkvliet, Jason; Leung, Peter C K; Veldhuis, Johannes D
2008-02-01
Kruppel-like factors (KLFs) are important Sp1-like eukaryotic transcriptional proteins. The LDLR, StAR, and CYP11A genes exhibit GC-rich Sp1-like sites, which have the potential to bind KLFs in multiprotein complexes. We now report that KLF4, KLF9, and KLF13 transcripts are expressed in and regulate ovarian cells. KLF4 and 13, but not KLF9, mRNA expression was induced and then repressed over time (P < 0.001). Combined LH and IGF-I stimulation increased KLF4 mRNA at 2 h (P < 0.01), whereas LH decreased KLF13 mRNA at 6 h (P < 0.05), and IGF-I reduced KLF13 at 24 h (P < 0.01) compared with untreated control. KLF9 was not regulated by either hormone. Transient transfection of KLF4, KLF9, and KLF13 suppressed LDLR/luc, StAR/luc, and CYP11A/luc by 80-90% (P < 0.001). Histone-deacetylase (HDAC) inhibitors stimulated LDLR/luc five- to sixfold and StAR/luc and CYP11A/luc activity twofold (P < 0.001) and partially reversed suppression by all three KLFs (P < 0.001). Deletion of the zinc finger domain of KLF13 abrogated repression of LDLR/luc. Lentiviral overexpression of the KLF13 gene suppressed LDLR mRNA (P < 0.001) and CYP11A mRNA (P = 0.003) but increased StAR mRNA (P = 0.007). Collectively, these data suggest that KLFs may recruit inhibitory complexes containing HDAC corepressors, thereby repressing LDLR and CYP11A transcription. Conversely, KLF13 may recruit unknown coactivators or stabilize StAR mRNA, thereby explaining enhancement of in situ StAR gene expression. These data introduce new potent gonadal transregulators of genes encoding proteins that mediate sterol uptake and steroid biosynthesis.
Park, Su-Hyun; Chung, Pil Joong; Juntawong, Piyada; Bailey-Serres, Julia; Kim, Youn Shic; Jung, Harin; Bang, Seung Woon; Kim, Yeon-Ki; Do Choi, Yang; Kim, Ju-Kon
2012-01-01
Abiotic stress, including drought, salinity, and temperature extremes, regulates gene expression at the transcriptional and posttranscriptional levels. Expression profiling of total messenger RNAs (mRNAs) from rice (Oryza sativa) leaves grown under stress conditions revealed that the transcript levels of photosynthetic genes are reduced more rapidly than others, a phenomenon referred to as stress-induced mRNA decay (SMD). By comparing RNA polymerase II engagement with the steady-state mRNA level, we show here that SMD is a posttranscriptional event. The SMD of photosynthetic genes was further verified by measuring the half-lives of the small subunit of Rubisco (RbcS1) and Chlorophyll a/b-Binding Protein1 (Cab1) mRNAs during stress conditions in the presence of the transcription inhibitor cordycepin. To discern any correlation between SMD and the process of translation, changes in total and polysome-associated mRNA levels after stress were measured. Total and polysome-associated mRNA levels of two photosynthetic (RbcS1 and Cab1) and two stress-inducible (Dehydration Stress-Inducible Protein1 and Salt-Induced Protein) genes were found to be markedly similar. This demonstrated the importance of polysome association for transcript stability under stress conditions. Microarray experiments performed on total and polysomal mRNAs indicate that approximately half of all mRNAs that undergo SMD remain polysome associated during stress treatments. To delineate the functional determinant(s) of mRNAs responsible for SMD, the RbcS1 and Cab1 transcripts were dissected into several components. The expressions of different combinations of the mRNA components were analyzed under stress conditions, revealing that both 3′ and 5′ untranslated regions are necessary for SMD. Our results, therefore, suggest that the posttranscriptional control of photosynthetic mRNA decay under stress conditions requires both 3′ and 5′ untranslated regions and correlates with differential polysome association. PMID:22566494
Jenkins, Zandra A; Hagar, Ward; Bowlus, Christopher L; Johansson, Hans E; Harmatz, Paul; Vichinsky, Elliott P; Theil, Elizabeth C
2007-06-01
Hypertransfusional (>8 transfusions/year) iron in liver biopsies collected immediately after transfusions in beta-thalassemia and sickle cell disease correlated with increased expression (RNA) for iron regulatory proteins 1 and 2 (3-, 9- to 11-fold) and hepcidin RNA: (5- to 8-fold) (each p <.01), while ferritin H and L RNA remained constant. A different H:L ferritin ratio in RNA (0.03) and protein (0.2-0.6) indicated disease-specific trends and suggests novel post-transcriptional effects. Increased iron regulatory proteins could stabilize the transferrin receptor mRNA and, thereby, iron uptake. Increased hepcidin, after correction of anemia by transfusion, likely reflects excess liver iron. Finally, the absence of a detectable change in ferritin mRNA indicates insufficient oxidative stress to significantly activate MARE/ARE promoters.
Corcoran, Jennifer A.; Khaperskyy, Denys A.; Johnston, Benjamin P.; King, Christine A.; Cyr, David P.; Olsthoorn, Alisha V.
2012-01-01
During lytic Kaposi's sarcoma-associated herpesvirus (KSHV) infection, host gene expression is severely restricted by a process of global mRNA degradation known as host shutoff, which rededicates translational machinery to the expression of viral proteins. A subset of host mRNAs is spared from shutoff, and a number of these contain cis-acting AU-rich elements (AREs) in their 3′ untranslated regions. AREs are found in labile mRNAs encoding cytokines, growth factors, and proto-oncogenes. Activation of the p38/MK2 signal transduction pathway reverses constitutive decay of ARE-mRNAs, resulting in increased protein production. The viral G-protein-coupled receptor (vGPCR) is thought to play an important role in promoting the secretion of angiogenic molecules from KSHV-infected cells during lytic replication, but to date it has not been clear how vGPCR circumvents host shutoff. Here, we demonstrate that vGPCR activates the p38/MK2 pathway and stabilizes ARE-mRNAs, augmenting the levels of their protein products. Using MK2-deficient cells, we demonstrate that MK2 is essential for maximal vGPCR-mediated ARE-mRNA stabilization. ARE-mRNAs are normally delivered to cytoplasmic ribonucleoprotein granules known as processing bodies (PBs) for translational silencing and decay. We demonstrate that PB formation is prevented during KSHV lytic replication or in response to vGPCR-mediated activation of RhoA subfamily GTPases. Together, these data show for the first time that vGPCR impacts gene expression at the posttranscriptional level, coordinating an attack on the host mRNA degradation machinery. By suppressing ARE-mRNA turnover, vGPCR may facilitate escape of certain target mRNAs from host shutoff and allow secretion of angiogenic factors from lytically infected cells. PMID:22696654
Corticosteroids reduce IL-6 in ASM cells via up-regulation of MKP-1.
Quante, Timo; Ng, Yee Ching; Ramsay, Emma E; Henness, Sheridan; Allen, Jodi C; Parmentier, Johannes; Ge, Qi; Ammit, Alaina J
2008-08-01
The mechanisms by which corticosteroids reduce airway inflammation are not completely understood. Traditionally, corticosteroids were thought to inhibit cytokines exclusively at the transcriptional level. Our recent evidence, obtained in airway smooth muscle (ASM), no longer supports this view. We have found that corticosteroids do not act at the transcriptional level to reduce TNF-alpha-induced IL-6 gene expression. Rather, corticosteroids inhibit TNF-alpha-induced IL-6 secretion by reducing the stability of the IL-6 mRNA transcript. TNF-alpha-induced IL-6 mRNA decays at a significantly faster rate in ASM cells pretreated with the corticosteroid dexamethasone (t(1/2) = 2.4 h), compared to vehicle (t(1/2) = 9.0 h; P < 0.05) (results are expressed as decay constants [k] [mean +/- SEM] and half-life [h]). Interestingly, the underlying mechanism of inhibition by corticosteroids is via the up-regulation of an endogenous mitogen-activated protein kinase (MAPK) inhibitor, MAPK phosphatase-1 (MKP-1). Corticosteroids rapidly up-regulate MKP-1 in a time-dependent manner (44.6 +/- 10.5-fold increase after 24 h treatment with dexamethasone; P < 0.05), and MKP-1 up-regulation was temporally related to the inhibition of TNF-alpha-induced p38 MAPK phosphorylation. Moreover, TNF-alpha acts via a p38 MAPK-dependent pathway to stabilize the IL-6 mRNA transcript (TNF-alpha, t(1/2) = 9.6 h; SB203580 + TNF-alpha, t(1/2) = 1.5 h), exogenous expression of MKP-1 significantly inhibits TNF-alpha-induced IL-6 secretion and MKP-1 siRNA reverses the inhibition of TNF-alpha-induced IL-6 secretion by dexamethasone. Taken together, these results suggest that corticosteroid-induced MKP-1 contributes to the repression of IL-6 secretion in ASM cells.
Examination of the expanding pathways for the regulation of p21 expression and activity.
Jung, Yong-Sam; Qian, Yingjuan; Chen, Xinbin
2010-07-01
p21(Waf1/Cip1/Sdi1) was originally identified as an inhibitor of cyclin-dependent kinases, a mediator of p53 in growth suppression and a marker of cellular senescence. p21 is required for proper cell cycle progression and plays a role in cell death, DNA repair, senescence and aging, and induced pluripotent stem cell reprogramming. Although transcriptional regulation is considered to be the initial control point for p21 expression, there is growing evidence that post-transcriptional and post-translational regulations play a critical role in p21 expression and activity. This review will briefly discuss the activity of p21 and focus on current knowledge of the determinants that control p21 transcription, mRNA stability and translation, and protein stability and activity. (c) 2010 Elsevier Inc. All rights reserved.
Cao, Hong-Ying; Wu, Qing-He; Huang, Ping; He, Jin-Yang
2009-06-01
To observe the impacts of the formula of Suoquanwan (SQW) on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency. The model rats were induced by adenine (250 mg/kg) for 4 weeks, then treated respectively with SQW or dDAVP. The expression of AQP-2 mRNA and AVPR-V2 mRNA in kidney of Yang-deficiency model by realtime fluorescence quantitative PCR method were investigated. In model rats, the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney decreased, dDAVP and SQW high dose could increased the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. The others had no influence on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. SQW can increase the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency.
Zago, Michela; Rico de Souza, Angela; Hecht, Emelia; Rousseau, Simon; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J
2014-04-21
Diseases due to cigarette smoke exposure, including chronic obstructive pulmonary disease (COPD) and lung cancer, are associated with chronic inflammation typified by the increased expression of cyclooxygenase-2 (COX-2) protein. RelB is an NF-κB family member that suppresses cigarette smoke induction of COX-2 through an unknown mechanism. The ability of RelB to regulate COX-2 expression may be via miR-146a, a miRNA that attenuates COX-2 in lung fibroblasts. In this study we tested whether RelB attenuation of cigarette smoke-induced COX-2 protein is due to miR-146a. Utilizing pulmonary fibroblasts deficient in RelB expression, together with siRNA knock-down of RelB, we show the essential role of RelB in diminishing smoke-induced COX-2 protein expression despite robust activation of the canonical NF-κB pathway and subsequent induction of Cox-2 mRNA. RelB did not regulate COX-2 protein expression at the level of mRNA stability. Basal levels of miR-146a were significantly lower in Relb-deficient cells and cigarette smoke increased miR-146a expression only in Relb-expressing cells. Inhibition of miR-146a had no effects on Relb expression or induction of Cox-2 mRNA by cigarette smoke but significantly increased COX-2 protein. These data highlight the potential of a RelB-miR-146a axis as a novel regulatory pathway that attenuates inflammation in response to respiratory toxicants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Dexamethasone enhances agonist induction of tissue factor in monocytes but not in endothelial cells.
Bottles, K D; Morrissey, J H
1993-06-01
Stimulation of monocytic cells by inflammatory agents such as bacterial lipopolysaccharide or tumour necrosis factor-alpha leads to the rapid and transient expression of tissue factor, the major cellular initiator of the extrinsic coagulation cascade in both haemostasis and tissue inflammation. In this study we investigated whether the synthetic anti-inflammatory glucocorticoid, dexamethasone, would inhibit agonist induction of tissue factor expression in both monocytes and endothelial cells. Surprisingly, dexamethasone significantly enhanced the induction of tissue factor expression by peripheral blood mononuclear cells and an established monocytic cell line, THP-1, in response to lipopolysaccharide or tumour necrosis factor-alpha. However, unlike monocytic cells, dexamethasone did not enhance agonist induction of tissue factor in endothelial cells. Synergistic enhancement of tissue factor expression by dexamethasone was also reflected in tissue factor mRNA levels in THP-1 cells, but was not the result of improved TF mRNA stability. Synergism between bacterial lipopolysaccharide and glucocorticoid in the induction of monocyte effector function is extremely unusual and may help to explain the variable outcome of glucocorticoid treatment of septic shock.
HIF-1α represses the expression of the angiogenesis inhibitor thrombospondin-2.
MacLauchlan, Susan C; Calabro, Nicole E; Huang, Yan; Krishna, Meenakshi; Bancroft, Tara; Sharma, Tanuj; Yu, Jun; Sessa, William C; Giordano, Frank; Kyriakides, Themis R
2018-01-01
Thrombospondin-2 (TSP2) is a potent inhibitor of angiogenesis whose expression is dynamically regulated following injury. In the present study, it is shown that HIF-1α represses TSP2 transcription. Specifically, in vitro studies demonstrate that the prolyl hydroxylase inhibitor DMOG or hypoxia decrease TSP2 expression in fibroblasts. This effect is shown to be via a transcriptional mechanism as hypoxia does not alter TSP2 mRNA stability and this effect requires the TSP2 promoter. In addition, the documented repressive effect of nitric oxide (NO) on TSP2 is shown to be non-canonical and involves stabilization of hypoxia inducible factor-1a (HIF-1α). The regulation of TSP2 by hypoxia is supported by the in vivo observation that TSP2 has spatiotemporal expression distinct from regions of hypoxia in gastrocnemius muscle following murine hindlimb ischemia (HLI). A role for TSP2 regulation by HIF-1α is supported by the dysregulation of TSP2 expression in SM22α-cre HIF-1α KO mice following HLI. Indeed, there is a reduction in blood flow recovery in the SM22a-cre HIF-1α KO mice compared to littermate controls following HLI surgery, associated with impaired recovery and increased TSP2 levels. Moreover, SM22α-cre HIF-1α KO smooth muscle cells mice have increased TSP2 mRNA levels that persist in hypoxia. These findings identify a novel, ischemia-induced pro-angiogenic mechanism involving the transcriptional repression of TSP2 by HIF-1α. Copyright © 2017. Published by Elsevier B.V.
Dinakar, Challabathula; Bartels, Dorothea
2012-08-01
In the present study, three closely related Linderniaceae species which differ in their sensitivity to desiccation are compared in response to light and oxidative stress defence. Lindernia brevidens, a desiccation-tolerant plant, displayed intense purple pigmentation in leaves under long-day conditions in contrast to Craterostigma plantagineum (desiccation tolerant) and Lindernia subracemosa (desiccation sensitive). The intense pigmentation in leaves does not affect the desiccation tolerance behaviour but seems to be related to oxidative stress protection. Green leaves of short-day and purple leaves of long-day plants provided suitable material for comparing basic photosynthetic parameters. An increase in non-photochemical quenching in purple leaves appears to prevent photoinhibition. Treatment with methyl viologen decreased the photochemical activities in both long-day and short-day plants but long-day plants which accumulate anthocyanins maintained a higher non-photochemical quenching than short-day plants. No differences were seen in the expression of desiccation-induced proteins and proteins involved in carbohydrate metabolism in short-day and long-day grown plants, whereas differences were observed in the expression of transcripts encoding chloroplast-localised stress proteins and transcripts encoding antioxidant enzymes. While the expression of genes encoding antioxidant enzymes were either constitutive or up-regulated during desiccation in C. plantagineum, the expression was down-regulated in L. subracemosa. RNA expression analysis indicated degradation of mRNA during desiccation in L. subracemosa but not in desiccation tolerant species. These results indicate that a better oxidative stress management and mRNA stability are correlated with desiccation tolerance.
Molecular events regulating messenger RNA stability in eukaryotes.
Saini, K S; Summerhayes, I C; Thomas, P
1990-07-17
The regulation of mRNA turnover plays a major role in the overall control of gene expression. Transcriptional control of eukaryotic gene regulation by external and/or internal stimuli has received considerable attention and the purpose of this review is to highlight recent work elucidating the mechanisms underlying the steady-state levels of mRNAs in the cytoplasm. Protection of mRNA from the action of nucleases as it passes from the nucleus to the ribosomes for translation is achieved, at least in part, by its union with mRNA binding proteins and the presence of poly(A) tail. The half-life of a message represents a balance between the transcriptional activity and intracellular degradative processes. These properties can be modulated by the presence of specific nucleotide sequences in a mRNA along with cis- and trans-acting elements and accompanied by post-translational feed back mechanisms. Presently, various regulatory mechanisms involved in the mRNA decay process are ill-defined. The work described here illustrates the complexity of this emerging field of study and outlines its contribution to our understanding of gene regulation in eukaryotes.
mTOR referees memory and disease through mRNA repression and competition.
Raab-Graham, Kimberly F; Niere, Farr
2017-06-01
Mammalian target of rapamycin (mTOR) activity is required for memory and is dysregulated in disease. Activation of mTOR promotes protein synthesis; however, new studies are demonstrating that mTOR activity also represses the translation of mRNAs. Almost three decades ago, Kandel and colleagues hypothesised that memory was due to the induction of positive regulators and removal of negative constraints. Are these negative constraints repressed mRNAs that code for proteins that block memory formation? Herein, we will discuss the mRNAs coded by putative memory suppressors, how activation/inactivation of mTOR repress protein expression at the synapse, how mTOR activity regulates RNA binding proteins, mRNA stability, and translation, and what the possible implications of mRNA repression are to memory and neurodegenerative disorders. © 2017 Federation of European Biochemical Societies.
2010-01-01
SIAH proteins are the human members of an highly conserved family of E3 ubiquitin ligases. Several data suggest that SIAH proteins may have a role in tumor suppression and apoptosis. Previously, we reported that SIAH-1 induces the degradation of Kid (KIF22), a chromokinesin protein implicated in the normal progression of mitosis and meiosis, by the ubiquitin proteasome pathway. In human breast cancer cells stably transfected with SIAH-1, Kid/KIF22 protein level was markedly reduced whereas, the Kid/KIF22 mRNA level was increased. This interaction has been further elucidated through analyzing SIAH and Kid/KIF22 expression in both paired normal and tumor tissues and cell lines. It was observed that SIAH-1 protein is widely expressed in different normal tissues, and in cells lines but showing some differences in western blotting profiles. Immunofluorescence microscopy shows that the intracellular distribution of SIAH-1 and Kid/KIF22 appears to be modified in human tumor tissues compared to normal controls. When mRNA expression of SIAH-1 and Kid/KIF22 was analyzed by real-time PCR in normal and cancer breast tissues from the same patient, a large variation in the number of mRNA copies was detected between the different samples. In most cases, SIAH-1 mRNA is decreased in tumor tissues compared to their normal counterparts. Interestingly, in all breast tumor tissues analyzed, variations in the Kid/KIF22 mRNA levels mirrored those seen with SIAH-1 mRNAs. This concerted variation of SIAH-1 and Kid/KIF22 messengers suggests the existence of an additional level of control than the previously described protein-protein interaction and protein stability regulation. Our observations also underline the need to re-evaluate the results of gene expression obtained by qRT-PCR and relate it to the protein expression and cellular localization when matched normal and tumoral tissues are analyzed. PMID:20144232
2004-01-01
IL-1F7b, a novel homologue of the IL-1 (interleukin 1) family, was discovered by computational cloning. We demonstrated that IL-1F7b shares critical amino acid residues with IL-18 and binds to the IL-18-binding protein enhancing its ability to inhibit IL-18-induced interferon-γ. We also showed that low levels of IL-1F7b are constitutively present intracellularly in human blood monocytes. In this study, we demonstrate that similar to IL-18, both mRNA and intracellular protein expression of IL-1F7b are up-regulated by LPS (lipopolysaccharide) in human monocytes. In stable transfectants of murine RAW264.7 macrophage cells, there was no IL-1F7b protein expression despite a highly active CMV promoter. We found that IL-1F7b-specific mRNA was rapidly degraded in transfected cells, via a 3′-UTR (untranslated region)-independent control of IL-1F7b transcript stability. After LPS stimulation, there was a rapid transient increase in IL-1F7b-specific mRNA and concomitant protein levels. Using sequence alignment, we found a conserved ten-nucleotide homology box within the open reading frame of IL-F7b, which is flanking the coding region instability elements of some selective genes. In-frame deletion of downstream exon 5 from the full-length IL-1F7b cDNA markedly increased the levels of IL-1F7b mRNA. A similar coding region element is located in IL-18. When transfected into RAW264.7 macrophages, IL-18 mRNA was also unstable unless treated with LPS. These results indicate that both IL-1F7b and IL-18 mRNA contain functional instability determinants within their coding region, which influence mRNA decay as a novel mechanism to regulate the expression of IL-1 family members. PMID:15046617
Bhandary, Yashodhar P.; Velusamy, Thirunavukkarasu; Shetty, Praveenkumar; Shetty, Rashmi S.; Idell, Steven; Cines, Douglas B.; Jain, Deepika; Bdeir, Khalil; Abraham, Edward; Tsuruta, Yuko; Shetty, Sreerama
2009-01-01
Rationale: Urokinase-type plasminogen activator (uPA) receptor (uPAR) is required for the recruitment of neutrophils in response to infection. uPA induces its own expression in lung epithelial cells, which involves its interaction with cell surface uPAR. Regulation of uPAR expression is therefore crucial for uPA-mediated signaling in infectious acute lung injury (ALI). Objectives: To determine the role of uPA in uPAR expression during ALI caused by sepsis. Methods: We used Western blot, Northern blot, Northwestern assay, and immunohistochemistry. Phosphate-buffered saline– and lipopolysaccharide (LPS)-treated wild-type and uPA−/− mice were used. Measurements and Main Results: Biological activities of uPA, including proteolysis, cell adhesion, migration, proliferation, and differentiation, are dependent on its association with uPAR. Bacterial endotoxin (LPS) is a major cause of pulmonary dysfunction and infection-associated mortality. The present study shows that LPS induces uPAR expression both in vitro and in vivo, and that the mechanism involves post-transcriptional stabilization of uPAR mRNA by reciprocal interaction of phosphoglycerate kinase (PGK) and heterogeneous nuclear ribonucleoprotein C (hnRNPC) with uPAR mRNA coding region and 3′ untranslated region determinants, respectively. The process involves tyrosine phosphorylation of PGK and hnRNPC. uPA−/− mice failed to induce uPAR expression after LPS treatment. In these mice, LPS treatment failed to alter the binding of PGK and hnRNPC protein with uPAR mRNA due to lack of tyrosine phosphorylation. Conclusions: Our study shows that induction of LPS-mediated uPAR expression is mediated through tyrosine phosphorylation of PGK and hnRNPC. This involves expression of uPA as an obligate intermediary. PMID:19029002
Exaptive origins of regulated mRNA decay in eukaryotes
Hamid, Fursham M.
2016-01-01
Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense‐mediated decay (NMD) and motif‐specific transcript destabilization by CCCH‐type zinc finger RNA‐binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those of RNA viruses and retrotransposable elements. We further hypothesize that the subsequent advent of “professional” innate and adaptive immunity systems allowed NMD and the motif‐triggered mechanisms to be efficiently repurposed for regulation of endogenous cellular transcripts. This scenario explains the rapid emergence of archetypical mRNA destabilization pathways in eukaryotes and argues that other aspects of post‐transcriptional gene regulation in this lineage might have been derived through a similar exaptation route. PMID:27438915
Exaptive origins of regulated mRNA decay in eukaryotes.
Hamid, Fursham M; Makeyev, Eugene V
2016-09-01
Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense-mediated decay (NMD) and motif-specific transcript destabilization by CCCH-type zinc finger RNA-binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those of RNA viruses and retrotransposable elements. We further hypothesize that the subsequent advent of "professional" innate and adaptive immunity systems allowed NMD and the motif-triggered mechanisms to be efficiently repurposed for regulation of endogenous cellular transcripts. This scenario explains the rapid emergence of archetypical mRNA destabilization pathways in eukaryotes and argues that other aspects of post-transcriptional gene regulation in this lineage might have been derived through a similar exaptation route. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.
ERRα protein is stabilized by LSD1 in a demethylation-independent manner.
Carnesecchi, Julie; Cerutti, Catherine; Vanacker, Jean-Marc; Forcet, Christelle
2017-01-01
The LSD1 histone demethylase is highly expressed in breast tumors where it constitutes a factor of poor prognosis and promotes traits of cancer aggressiveness such as cell invasiveness. Recent work has shown that the Estrogen-Related Receptor α (ERRα) induces LSD1 to demethylate the Lys 9 of histone H3. This results in the transcriptional activation of a number of common target genes, several of which being involved in cellular invasion. High expression of ERRα protein is also a factor of poor prognosis in breast tumors. Here we show that, independently of its demethylase activities, LSD1 protects ERRα from ubiquitination, resulting in overexpression of the latter protein. Our data also suggests that the elevation of LSD1 mRNA and protein in breast cancer (as compared to normal tissue) may be a key event to increase ERRα protein, independently of its corresponding mRNA.
ERRα protein is stabilized by LSD1 in a demethylation-independent manner
Carnesecchi, Julie; Cerutti, Catherine; Vanacker, Jean-Marc
2017-01-01
The LSD1 histone demethylase is highly expressed in breast tumors where it constitutes a factor of poor prognosis and promotes traits of cancer aggressiveness such as cell invasiveness. Recent work has shown that the Estrogen-Related Receptor α (ERRα) induces LSD1 to demethylate the Lys 9 of histone H3. This results in the transcriptional activation of a number of common target genes, several of which being involved in cellular invasion. High expression of ERRα protein is also a factor of poor prognosis in breast tumors. Here we show that, independently of its demethylase activities, LSD1 protects ERRα from ubiquitination, resulting in overexpression of the latter protein. Our data also suggests that the elevation of LSD1 mRNA and protein in breast cancer (as compared to normal tissue) may be a key event to increase ERRα protein, independently of its corresponding mRNA. PMID:29190800
Shen, Xiao-Ming; Zhou, Chong; Lian, Lian; Li, Li-Qun; Li, Wei; Tao, Min
2015-04-01
The aim was to determine changes in dihydropyrimidine dehydrogenase (DPD) and thymidylate synthase (TS) mRNAs in the blood of advanced gastric cancer (AGC) patients to see whether these enzymes affected the patients' response to S-1-based chemotherapy and prognosis. For this purpose, pretreatment DPD/TS mRNA expressions were determined in 40 AGC patients using RT-PCR. The patients were then administered with S-1-based regimen (S-1 + cisplatin) and toxicities were recorded. The relationship between the DPD/TS mRNA expressions and the chemotherapy response, drug resistance, and prognosis was analyzed. The data show that DPD mRNA expression correlated significantly with Lauren type while TS mRNA expression correlated with distant metastasis. Patients with higher DPD and/or TS mRNA expression(s) showed poor response, while those with low DPD mRNA expression showed better response to the chemotherapy. Pooled analysis showed that the patients with low DPD/TS mRNA expressions had better therapeutic response. The incidence of bone marrow suppression, diarrhea, and oral mucositis was high in patients with low DPD mRNA expression. Median overall survival (OS) in 40 patients was 13.5 months. It was 17 months for low and 10 months for high DPD (P = 0.044) and TS mRNA expression (P = 0.047). Pooled analysis showed that the patients with both low DPD/TS mRNA expressions had longer OS (P = 0.001). In conclusion, the detection of DPD and/or TS mRNA expression can be used to predict the response to S-1-based chemotherapy, drug resistance, and prognosis in AGC patients as well as to help guide the individualized treatment of gastric cancer.
Sikalidis, Angelos K.; Mazor, Kevin M.; Lee, Jeong-In; Roman, Heather B.; Hirschberger, Lawrence L.; Stipanuk, Martha H.
2014-01-01
Using HepG2/C3A cells and MEFs, we investigated whether induction of GSH synthesis in response to sulfur amino acid deficiency is mediated by the decrease in cysteine levels or whether it requires a decrease in GSH levels per se. Both the glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunit mRNA levels were upregulated in response to a lack of cysteine or other essential amino acids, independent of GSH levels. This upregulation did not occur in MEFs lacking GCN2 (general control non-derepressible 2, also known as eIF2α kinase 4) or in cells expressing mutant eIF2α lacking the eIF2α kinase Ser51 phosphorylation site, indicating that expression of both GCLC and GCLM was mediated by the GCN2/ATF4 stress response pathway. Only the increase in GCLM mRNA level, however, was accompanied by a parallel increase in protein expression, suggesting that the enhanced capacity for GSH synthesis depended largely on increased association of GCLC with its regulatory subunit. Upregulation of both GCLC and GLCM mRNA levels in response to cysteine deprivation was dependent on new protein synthesis, which is consistent with expression of GCLC and GCLM being mediated by proteins whose synthesis depends on activation of the GCN2/ATF4 pathway. Our data suggest that the regulation of GCLC expression may be mediated by changes in the abundance of transcriptional regulators, whereas the regulation of GCLM expression may be mediated by changes in the abundance of mRNA stabilizing or destabilizing proteins. Upregulation of GCLM levels in response to low cysteine levels may serve to protect the cell in the face of a future stress requiring GSH as an antioxidant or conjugating/detoxifying agent. PMID:24557597
Zou, Jiang; Wang, Nian; Liu, Manting; Bai, Yongping; Wang, Hao; Liu, Ke; Zhang, Huali; Xiao, Xianzhong; Wang, Kangkai
2018-05-01
Hydroxysafflor Yellow A (HSYA), a most representative ingredient of Carthamus tinctorius L., had long been used in treating ischaemic cardiovascular diseases in China and exhibited prominently anticoagulant and pro-angiogenic activities, but the underlying mechanisms remained largely unknown. This study aimed to further elucidate the pro-angiogenic effect and mechanism of HSYA on ischaemic cardiac dysfunction. A C57 mouse model of acute myocardial infarction (AMI) was firstly established, and 25 mg/kg HSYA was intraperitoneally injected immediately after operation and given once, respectively, each morning and evening for 2 weeks. It was found that HSYA significantly improved ischaemia-induced cardiac haemodynamics, enhanced the survival rate, alleviated the myocardial injury and increased the expressions of CD31, vascular endothelial growth factor-A (VEGF-A) and nucleolin in the ischaemic myocardium. In addition, HSYA promoted the migration and tube formation of human umbilical vein endothelial cells (HUVECs), enhanced the expressions of nucleolin, VEGF-A and matrix metalloproteinase-9 (MMP-9) in a dose- and time-dependent manner. However, down-regulation of nucleolin expression sharply abrogated the effect mentioned above of HSYA. Further protein-RNA coimmunoprecipitation and immunoprecipitation-RT-PCR assay showed that nucleolin binded to VEGF-A and MMP-9 mRNA and overexpression of nucleolin up-regulated the mRNA expressions of VEGF-A and MMP-9 in the HUVECs through enhancing the stability of VEGF-A and MMP-9 mRNA. Furthermore, HSYA increased the mRNA expressions of VEGF-A and MMP-9 in the extract of antinucleolin antibody-precipitated protein from the heart of AMI mice. Our data revealed that nucleolin mediated the pro-angiogenic effect of HSYA through post-transcriptional regulation of VEGF-A and MMP-9 expression, which contributed to the protective effect of HSYA on ischaemic cardiac dysfunction. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Serrano, Laetitia; Henry, Raymond P
2008-06-01
Two isoforms of the enzyme carbonic anhydrase (CA) from the gills of the euryhaline green crab were sequenced and identified; these were found to match the cytoplasmic (CAc) and membrane-associated (CAg) isoforms known from other species. The mRNA of the membrane-associated isoform is present in significantly higher levels of abundance in gills of crabs acclimated to 32 ppt, at which the crab is an osmotic and ionic conformer. Upon transfer to low salinity (15 ppt), in which the crab is an osmoregulator, however, the cytoplasmic isoform undergoes a rapid 100-fold increase in abundance in the posterior gills, becoming the dominant isoform. CAg increases 3-fold initially and then remains elevated through 14 days of low salinity acclimation. The induction of CAc mRNA is believed to be the molecular basis for the 20 fold increase in CA protein-specific activity during low salinity acclimation. The initial increase in CAc mRNA takes place at 6 h, and maximal levels of expression are achieved by 24 h; this precedes the induction of CA activity and is within the time in which hemolymph osmotic and ionic concentrations stabilize at new acclimated levels. The increase in expression of the CAg isoform is believed to be more closely related to changes in the population of branchial chloride cells. Changes in the relative abundance of mRNA for the alpha-subunit of the Na(+)/K(+)-ATPase were smaller in magnitude than those for CAc, but the timing was similar. There were no changes in expression of a control gene, arginine kinase (AK) in posterior gills, and there were no significant changes in expression in anterior gills for any of the genes measured here. These results support the use of a control tissue (anterior gills) in addition to a control gene for expression studies.
Choi, Eun-Young; Choe, So-Hui; Hyeon, Jin-Yi; Park, Hae Ryoun; Choi, In Soon; Kim, Sung-Jo
2018-06-05
Josamycin has immunomodulatory properties independent of its antibacterial actions. This study was designed to explore the influences and associated mechanisms of josamycin upon the generation of proinflammatory mediators in murine macrophages activated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogenic bacterium associated with periodontal disease. LPS was purified by employing phenol-water extraction protocol. Culture supernatants were analyzed for nitric oxide (NO) and interleukin (IL)-1β. Real-time PCR and immunoblotting were conducted to quantify mRNA and protein expression, respectively. The expression levels of IL-1β were analyzed by confocal laser scanning microscopy. NF-κB-dependent SEAP levels were estimated by reporter assay. Josamycin significantly attenuated NO production elicited by P. intermedia LPS as well as induction of iNOS protein and mRNA in RAW264.7 cells. While the release of IL-1β from cells stimulated by LPS was suppressed in the presence of josamycin, josamycin failed to reduce the degree of IL-1β mRNA expression. Josamycin did not reduce the stability of IL-1β mRNA induced by P. intermedia LPS, at the same time josamycin also failed to suppress the LPS-induced intracellular IL-1β expression. Josamycin augmented HO-1 induction in cells exposed to P. intermedia LPS, and SnPP, an inhibitor of HO-1 activity, reversed the suppressive impact of josamycin upon NO generation induced by LPS. Josamycin diminished NF-κB transcriptional activity induced by P. intermedia LPS. Further, josamycin enhanced SOCS1 mRNA level in cells activated with LPS. Josamycin suppressed P. intermedia LPS-induced generation of NO and IL-1β in RAW264.7 macrophages via the inhibition of NF-κB activation as well as HO-1 and SOCS1 induction. Josamycin may have benefits as a host modulatory agent in treating periodontal disease. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Cho, Il Je; Kim, Sang Chan; Kwon, Taeg Kyu
2014-01-01
The PI3K/Akt and mTOR signaling pathways are important for cell survival and growth, and they are highly activated in cancer cells compared with normal cells. Therefore, these signaling pathways are targets for inducing cancer cell death. The dual PI3K/Akt and mTOR inhibitor NVP-BEZ235 completely inhibited both signaling pathways. However, NVP-BEZ235 had no effect on cell death in human renal carcinoma Caki cells. We tested whether combined treatment with natural compounds and NVP-BEZ235 could induce cell death. Among several chemopreventive agents, curcumin, a natural biologically active compound that is extracted from the rhizomes of Curcuma species, markedly induced apoptosis in NVP-BEZ235-treated cells. Co-treatment with curcumin and NVP-BEZ235 led to the down-regulation of Mcl-1 protein expression but not mRNA expression. Ectopic expression of Mcl-1 completely inhibited curcumin plus NVP-NEZ235-induced apoptosis. Furthermore, the down-regulation of Bcl-2 was involved in curcumin plus NVP-BEZ235-induced apoptosis. Curcumin or NVP-BEZ235 alone did not change Bcl-2 mRNA or protein expression, but co-treatment reduced Bcl-2 mRNA and protein expression. Combined treatment with NVP-BEZ235 and curcumin reduced Bcl-2 expression in wild-type p53 HCT116 human colon carcinoma cells but not p53-null HCT116 cells. Moreover, Bcl-2 expression was completely reversed by treatment with pifithrin-α, a p53-specific inhibitor. Ectopic expression of Bcl-2 also inhibited apoptosis in NVP-BE235 plus curcumin-treated cells. In contrast, NVP-BEZ235 combined with curcumin did not have a synergistic effect on normal human skin fibroblasts and normal human mesangial cells. Taken together, combined treatment with NVP-BEZ235 and curcumin induces apoptosis through p53-dependent Bcl-2 mRNA down-regulation at the transcriptional level and Mcl-1 protein down-regulation at the post-transcriptional level. PMID:24743574
Sala, Claudia; Forti, Francesca; Magnoni, Francesca; Ghisotti, Daniela
2008-01-01
Background In Mycobacterium tuberculosis and in Mycobacterium smegmatis the furA-katG loci, encoding the FurA regulatory protein and the KatG catalase-peroxidase, are highly conserved. In M. tuberculosis furA-katG constitute a single operon, whereas in M. smegmatis a single mRNA covering both genes could not be found. In both species, specific 5' ends have been identified: the first one, located upstream of the furA gene, corresponds to transcription initiation from the furA promoter; the second one is the katG mRNA 5' end, located in the terminal part of furA. Results In this work we demonstrate by in vitro transcription and by RNA polymerase Chromatin immunoprecipitation that no promoter is present in the M. smegmatis region covering the latter 5' end, suggesting that it is produced by specific processing of longer transcripts. Several DNA fragments of M. tuberculosis and M. smegmatis were inserted in a plasmid between the sigA promoter and the lacZ reporter gene, and expression of the reporter gene was measured. A polypurine sequence, located four bp upstream of the katG translation start codon, increased beta-galactosidase activity and stabilized the lacZ transcript. Mutagenesis of this sequence led to destabilization of the mRNA. Analysis of constructs, in which the polypurine sequence of M. smegmatis was followed by an increasing number of katG codons, demonstrated that mRNA stability requires translation of at least 20 amino acids. In order to define the requirements for the 5' processing of the katG transcript, we created several mutations in this region and analyzed the 5' ends of the transcripts: the distance from the polypurine sequence does not seem to influence the processing, neither the sequence around the cutting point. Only mutations which create a double stranded region around the processing site prevented RNA processing. Conclusion This is the first reported case in mycobacteria, in which both a polypurine sequence and translation initiation are shown to contribute to mRNA stability. The furA-katG mRNA is transcribed from the furA promoter and immediately processed; this processing is prevented by a double stranded RNA at the cutting site, suggesting that the endoribonuclease responsible for the cleavage cuts single stranded RNA. PMID:18394163
Park, Hongmarn; Yakhnin, Helen; Connolly, Michael; Romeo, Tony
2015-01-01
ABSTRACT Csr is a conserved global regulatory system that represses or activates gene expression posttranscriptionally. CsrA of Escherichia coli is a homodimeric RNA binding protein that regulates transcription elongation, translation initiation, and mRNA stability by binding to the 5′ untranslated leader or initial coding sequence of target transcripts. pnp mRNA, encoding the 3′ to 5′ exoribonuclease polynucleotide phosphorylase (PNPase), was previously identified as a CsrA target by transcriptome sequencing (RNA-seq). Previous studies also showed that RNase III and PNPase participate in a pnp autoregulatory mechanism in which RNase III cleavage of the untranslated leader, followed by PNPase degradation of the resulting 5′ fragment, leads to pnp repression by an undefined translational repression mechanism. Here we demonstrate that CsrA binds to two sites in pnp leader RNA but only after the transcript is fully processed by RNase III and PNPase. In the absence of processing, both of the binding sites are sequestered in an RNA secondary structure, which prevents CsrA binding. The CsrA dimer bridges the upstream high-affinity site to the downstream site that overlaps the pnp Shine-Dalgarno sequence such that bound CsrA causes strong repression of pnp translation. CsrA-mediated translational repression also leads to a small increase in the pnp mRNA decay rate. Although CsrA has been shown to regulate translation and mRNA stability of numerous genes in a variety of organisms, this is the first example in which prior mRNA processing is required for CsrA-mediated regulation. IMPORTANCE CsrA protein represses translation of numerous mRNA targets, typically by binding to multiple sites in the untranslated leader region preceding the coding sequence. We found that CsrA represses translation of pnp by binding to two sites in the pnp leader transcript but only after it is processed by RNase III and PNPase. Processing by these two ribonucleases alters the mRNA secondary structure such that it becomes accessible to the ribosome for translation as well as to CsrA. As one of the CsrA binding sites overlaps the pnp ribosome binding site, bound CsrA prevents ribosome binding. This is the first example in which regulation by CsrA requires prior mRNA processing and should link pnp expression to conditions affecting CsrA activity. PMID:26438818
HuR binding to cytoplasmic mRNA is perturbed by heat shock
Gallouzi, Imed-Eddine; Brennan, Christopher M.; Stenberg, Myrna G.; Swanson, Maurice S.; Eversole, Ashley; Maizels, Nancy; Steitz, Joan A.
2000-01-01
AU-rich elements (AREs) located in the 3′ untranslated region target the mRNAs encoding many protooncoproteins, cytokines, and lymphokines for rapid degradation. HuR, a ubiquitously expressed member of the embryonic lethal abnormal vision (ELAV) family of RNA-binding proteins, binds ARE sequences and selectively stabilizes ARE-containing reporter mRNAs when overexpressed in transiently transfected cells. HuR appears predominantly nucleoplasmic but has been shown to shuttle between the nucleus and cytoplasm via a novel shuttling sequence HNS. We report generation of a mouse monoclonal antibody 3A2 that both immunoblots and immunoprecipitates HuR protein; it recognizes an epitope located in the first of HuR's three RNA recognition motifs. This antibody was used to probe HuR interactions with mRNA before and after heat shock, a condition that has been reported to stabilize ARE-containing mRNAs. At 37°C, approximately one-third of the cytoplasmic HuR appears polysome associated, and in vivo UV crosslinking reveals that HuR interactions with poly(A)+ RNA are predominantly cytoplasmic rather than nuclear. This comprises evidence that HuR directly interacts with mRNA in vivo. After heat shock, 12–15% of HuR accumulates in discrete foci in the cytoplasm, but surprisingly the majority of HuR crosslinks instead to nuclear poly(A)+ RNA, whose levels are dramatically increased in the stressed cells. This behavior of HuR differs from that of another ARE-binding protein, hnRNP D, which has been implicated as an effector of mRNA decay rather than mRNA stabilization and of the general pre-RNA-binding protein hnRNP A1. We interpret these differences to mean that the temporal association of HuR with ARE-containing mRNAs is different from that of these other two proteins. PMID:10737787
Alkallas, Rached; Fish, Lisa; Goodarzi, Hani; Najafabadi, Hamed S
2017-10-13
The abundance of mRNA is mainly determined by the rates of RNA transcription and decay. Here, we present a method for unbiased estimation of differential mRNA decay rate from RNA-sequencing data by modeling the kinetics of mRNA metabolism. We show that in all primary human tissues tested, and particularly in the central nervous system, many pathways are regulated at the mRNA stability level. We present a parsimonious regulatory model consisting of two RNA-binding proteins and four microRNAs that modulate the mRNA stability landscape of the brain, which suggests a new link between RBFOX proteins and Alzheimer's disease. We show that downregulation of RBFOX1 leads to destabilization of mRNAs encoding for synaptic transmission proteins, which may contribute to the loss of synaptic function in Alzheimer's disease. RBFOX1 downregulation is more likely to occur in older and female individuals, consistent with the association of Alzheimer's disease with age and gender."mRNA abundance is determined by the rates of transcription and decay. Here, the authors propose a method for estimating the rate of differential mRNA decay from RNA-seq data and model mRNA stability in the brain, suggesting a link between mRNA stability and Alzheimer's disease."
Heat Shock Response in Yeast Involves Changes in Both Transcription Rates and mRNA Stabilities
Castells-Roca, Laia; García-Martínez, José; Moreno, Joaquín; Herrero, Enrique; Bellí, Gemma; Pérez-Ortín, José E.
2011-01-01
We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25°C to 37°C. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of the yeast genes and it is particularly important in shaping the mRNA profile of the genes belonging to the environmental stress response. In most cases, changes in transcription rates and mRNA stabilities are homodirectional for both parameters, although some interesting cases of antagonist behavior are found. The statistical analysis of gene targets and sequence motifs within the clusters of genes with similar behaviors shows that both transcriptional and post-transcriptional regulons apparently contribute to the general heat stress response by means of transcriptional factors and RNA binding proteins. PMID:21364882
Regulation of neuropeptide Y gene expression in rat brain.
Lindefors, N; Brené, S; Herrera-Marschitz, M; Persson, H
1990-01-01
NPY mRNA expression was studied in rat brain using in situ hybridization and RNA blot analysis. Transsynaptic regulation of NPY gene expression was specifically studied in caudate-putamen and frontoparietal (somatosensory) cortex of rats with unilateral lesion of midbrain dopamine neurons and in sham-injected animals. NPY mRNA expression in these two brain regions and the regulation of midbrain dopamine neurons were compared with that of SOM, PPT, CCK and GAD mRNA expression. Neurons expressing NPY and SOM mRNA showed a similar distribution and the expression of both NPY and SOM appears to be regulated by dopamine in a similar fashion. Following a unilateral dopamine deafferentation, the numerical density of both NPY and SOM mRNA expressing neurons almost doubled in the lesioned rat caudate-putamen with no change in the average grain density over positive neurons. Hence, in the intact caudate-putamen dopamine appears to normally suppress expression of these two neuropeptide genes. An activation of both NPY and SOM mRNA expression in many non- or low-expressing neurons is seen when the level of dopamine is decreased. In the frontoparietal cortex, on the other hand, dopamine appears to stimulate NPY and SOM gene expression. RNA blot analysis shows clear-cut changes of NPY mRNA levels in both caudate-putamen and frontoparietal cortex consistent with the changes observed using in situ hybridization. No evidence was found for a change in CCK mRNA expression by the dopamine deafferentation, while PPT mRNA expression decreased in the deafferented caudate-putamen. Consequently, dopamine exerts dissimilar effects on the expression of different neuropeptide genes, that in turn do not respond in the same way in different brain regions. Indirect evidence is also presented indicating that dopamine regulates NPY mRNA expression in a subpopulation of neurons that possibly also express GAD mRNA, both in caudate-putamen and in frontoparietal cortex.
Wojtczak, Blazej A; Sikorski, Pawel J; Fac-Dabrowska, Kaja; Nowicka, Anna; Warminski, Marcin; Kubacka, Dorota; Nowak, Elzbieta; Nowotny, Marcin; Kowalska, Joanna; Jemielity, Jacek
2018-05-09
The 5' cap consists of 7-methylguanosine (m 7 G) linked by a 5'-5'-triphosphate bridge to messenger RNA (mRNA) and acts as the master regulator of mRNA turnover and translation initiation in eukaryotes. Cap analogues that influence mRNA translation and turnover (either as small molecules or as part of an RNA transcript) are valuable tools for studying gene expression, which is often also of therapeutic relevance. Here, we synthesized a series of 15 dinucleotide cap (m 7 GpppG) analogues containing a 5'-phosphorothiolate (5'-PSL) moiety (i.e., an O-to-S substitution within the 5'-phosphoester) and studied their biological properties in the context of three major cap-binding proteins: translation initiation factor 4E (eIF4E) and two decapping enzymes, DcpS and Dcp2. While the 5'-PSL moiety was neutral or slightly stabilizing for cap interactions with eIF4E, it significantly influenced susceptibility to decapping. Replacing the γ-phosphoester with the 5'-PSL moiety (γ-PSL) prevented β-γ-pyrophosphate bond cleavage by DcpS and conferred strong inhibitory properties. Combining the γ-PSL moiety with α-PSL and β-phosphorothioate (PS) moiety afforded first cap-derived hDcpS inhibitor with low nanomolar potency. Susceptibility to Dcp2 and translational properties were studied after incorporation of the new analogues into mRNA transcripts by RNA polymerase. Transcripts containing the γ-PSL moiety were resistant to cleavage by Dcp2. Surprisingly, superior translational properties were observed for mRNAs containing the α-PSL moiety, which were Dcp2-susceptible. The overall protein expression measured in HeLa cells for this mRNA was comparable to mRNA capped with the translation augmenting β-PS analogue reported previously. Overall, our study highlights 5'-PSL as a synthetically accessible cap modification, which, depending on the substitution site, can either reduce susceptibility to decapping or confer superior translational properties on the mRNA. The 5'-PSL-analogues may find application as reagents for the preparation of efficiently expressed mRNA or for investigation of the role of decapping enzymes in mRNA processing or neuromuscular disorders associated with decapping.
Intracellular Insulin-like Growth Factor-I Induces Bcl-2 Expression in Airway Epithelial Cells 1
Chand, Hitendra S.; Harris, Jennifer Foster; Mebratu, Yohannes; Chen, Yangde; Wright, Paul S.; Randell, Scott H.; Tesfaigzi, Yohannes
2012-01-01
Bcl-2, a prosurvival protein, regulates programmed cell death during development and repair processes, and can be oncogenic when cell proliferation is deregulated. The present study investigated what factors modulate Bcl-2 expression in airway epithelial cells and identified the pathways involved. Microarray analysis of mRNA from airway epithelial cells captured by laser microdissection showed that increased expression of IL-1β and IGF-1 coincided with induced Bcl-2 expression compared to controls. Treatment of cultured airway epithelial cells with IL-1β and IGF-1 induced Bcl-2 expression by increasing Bcl-2 mRNA stability with no discernible changes in promoter activity. Silencing the IGF-1 expression using shRNA showed that intracellular (IC)-IGF-1 was increasing Bcl-2 expression. Blocking EGFR or IGF-1R activation also suppressed IC-IGF-1, and abolished the Bcl-2 induction. Induced expression and co-localization of IC-IGF-1 and Bcl-2 were observed in airway epithelial cells of mice exposed to LPS or cigarette smoke and of patients with cystic fibrosis and chronic bronchitis but not in the respective controls. These studies demonstrate that IC-IGF-1 induces Bcl-2 expression in epithelial cells via IGF-1R and EGFR pathways, and targeting IC-IGF-1 could be beneficial to treat chronic airway diseases. PMID:22461702
Carrillo-Casas, Erika Margarita; Hernández-Castro, Rigoberto; Suárez-Güemes, Francisco; de la Peña-Moctezuma, Alejandro
2008-06-01
Analysis of gene expression requires sensitive, precise, and reproducible measurements for specific mRNA sequences. To avoid bias, real-time RT-PCR is referred to one or several internal control genes. Here, we sought to identify a gene to be used as normalizer by analyzing three functional distinct housekeeping genes (lipL41, flaB, and 16S rRNA) for their expression level and stability in temperature treated Leptospira cultures. Leptospira interrogans serovar Hardjo subtype Hardjoprajitno was cultured at 30 degrees C for 7 days until a density of 10(6) cells/ml was reached and then shifted to physiological temperatures (37 degrees C and 42 degrees C) and to environmental temperatures (25 degrees C and 30 degrees C) during a 24 h period. cDNA was amplified by quantitative PCR using SYBR Green I technology and gene-specific primers for lipL41, flaB, and 16S rRNA. Expression stability (M) was assessed by geNorm and Normfinder v.18. 16S rRNA registered an average expression stability of M = 1.1816, followed by flaB (M = 1.682) and lipL41 (M = 1.763). 16S rRNA was identified as the most stable gene and can be used as a normalizer, as it showed greater expression stability than lipL41 and flaB in the four temperature treatments. Hence, comparisons of gene expression will have a higher sensitivity and specificity.
The antagonism between MCT-1 and p53 affects the tumorigenic outcomes
2010-01-01
Background MCT-1 oncoprotein accelerates p53 protein degradation via a proteosome pathway. Synergistic promotion of the xenograft tumorigenicity has been demonstrated in circumstance of p53 loss alongside MCT-1 overexpression. However, the molecular regulation between MCT-1 and p53 in tumor development remains ambiguous. We speculate that MCT-1 may counteract p53 through the diverse mechanisms that determine the tumorigenic outcomes. Results MCT-1 has now identified as a novel target gene of p53 transcriptional regulation. MCT-1 promoter region contains the response elements reactive with wild-type p53 but not mutant p53. Functional p53 suppresses MCT-1 promoter activity and MCT-1 mRNA stability. In a negative feedback regulation, constitutively expressed MCT-1 decreases p53 promoter function and p53 mRNA stability. The apoptotic events are also significantly prevented by oncogenic MCT-1 in a p53-dependent or a p53-independent fashion, according to the genotoxic mechanism. Moreover, oncogenic MCT-1 promotes the tumorigenicity in mice xenografts of p53-null and p53-positive lung cancer cells. In support of the tumor growth are irrepressible by p53 reactivation in vivo, the inhibitors of p53 (MDM2, Pirh2, and Cop1) are constantly stimulated by MCT-1 oncoprotein. Conclusions The oppositions between MCT-1 and p53 are firstly confirmed at multistage processes that include transcription control, mRNA metabolism, and protein expression. MCT-1 oncogenicity can overcome p53 function that persistently advances the tumor development. PMID:21138557
Boehm, Erik; Zornoza, María; Jourdain, Alexis A.; Delmiro Magdalena, Aitor; García-Consuegra, Inés; Torres Merino, Rebeca; Orduña, Antonio; Martín, Miguel A.; Martinou, Jean-Claude; De la Fuente, Miguel A.; Simarro, María
2016-01-01
The Fas-activated serine/threonine kinase (FASTK) family of proteins has recently emerged as a central regulator of mitochondrial gene expression through the function of an unusual RNA-binding domain named RAP (for RNA-binding domain abundant in Apicomplexans), shared by all six members of the family. Here we describe the role of one of the less characterized members, FASTKD3, in mitochondrial RNA metabolism. First, we show that, in contrast to FASTK, FASTKD2, and FASTKD5, FASTKD3 does not localize in mitochondrial RNA granules, which are sites of processing and maturation of mtRNAs and ribosome biogenesis. Second, we generated FASTKD3 homozygous knock-out cell lines by homologous recombination and observed that the absence of FASTKD3 resulted in increased steady-state levels and half-lives of a subset of mature mitochondrial mRNAs: ND2, ND3, CYTB, COX2, and ATP8/6. No aberrant processing of RNA precursors was observed. Rescue experiments demonstrated that RAP domain is required for FASTKD3 function in mRNA stability. Besides, we describe that FASTKD3 is required for efficient COX1 mRNA translation without altering mRNA levels, which results in a decrease in the steady-state levels of COX1 protein. This finding is associated with reduced mitochondrial complex IV assembly and activity. Our observations suggest that the function of this family of proteins goes beyond RNA processing and ribosome assembly and includes RNA stability and translation regulation within mitochondria. PMID:27789713
DOE Office of Scientific and Technical Information (OSTI.GOV)
Do, Minh Truong; Kim, Hyung Gyun; Khanal, Tilak
2013-09-01
Resistance to therapy is the major obstacle to more effective cancer treatment. Heme oxygenase-1 (HO-1) is often highly up-regulated in tumor tissues, and its expression is further increased in response to therapies. It has been suggested that inhibition of HO-1 expression is a potential therapeutic approach to sensitize tumors to chemotherapy and radiotherapy. In this study, we tested the hypothesis that the anti-tumor effects of metformin are mediated by suppression of HO-1 expression in cancer cells. Our results indicate that metformin strongly suppresses HO-1 mRNA and protein expression in human hepatic carcinoma HepG2, cervical cancer HeLa, and non-small-cell lung cancermore » A549 cells. Metformin also markedly reduced Nrf2 mRNA and protein levels in whole cell lysates and suppressed tert-butylhydroquinone (tBHQ)-induced Nrf2 protein stability and antioxidant response element (ARE)-luciferase activity in HepG2 cells. We also found that metformin regulation of Nrf2 expression is mediated by a Keap1-independent mechanism and that metformin significantly attenuated Raf-ERK signaling to suppress Nrf2 expression in cancer cells. Inhibition of Raf-ERK signaling by PD98059 decreased Nrf2 mRNA expression in HepG2 cells, confirming that the inhibition of Nrf2 expression is mediated by an attenuation of Raf-ERK signaling in cancer cells. The inactivation of AMPK by siRNA, DN-AMPK or the pharmacological AMPK inhibitor compound C, revealed that metformin reduced HO-1 expression in an AMPK-independent manner. These results highlight the Raf-ERK-Nrf2 axis as a new molecular target in anticancer therapy in response to metformin treatment. - Highlights: • Metformin inhibits HO-1 expression in cancer cells. • Metformin attenuates Raf-ERK-Nrf2 signaling. • Suppression of HO-1 by metformin is independent of AMPK. • HO-1 inhibition contributes to anti-proliferative effects of metformin.« less
Cook, Jonathan M; Charlesworth, Amanda
2017-04-01
Developmentally important proteins that are crucial for fertilization and embryogenesis are synthesized through highly regulated translation of maternal mRNA. The Zygote arrest proteins, Zar1 and Zar2, are crucial for embryogenesis and have been implicated in binding mRNA and repressing mRNA translation. To investigate Zar1 and Zar2, the full-length proteins had been fused to glutathione-S-transferase (GST) or MS2 protein tags with minimal inter-domain linkers derived from multiple cloning sites; however, these fusion proteins expressed poorly and/or lacked robust function. Here, we tested the effect of inserting additional linkers between the fusion domains. Three linkers were tested, each 17 amino acids long with different physical and chemical properties: flexible hydrophilic, rigid extended or rigid helical. In the presence of any of the three linkers, GST-Zar1 and GST-Zar2 had fewer breakdown products. Moreover, in the presence of any of the linkers, MS2-Zar1 was expressed to higher levels, and in dual luciferase tethered assays, both MS2-Zar1 and MS2-Zar2 repressed luciferase translation to a greater extent. These data suggest that for Zar fusion proteins, increasing the length of linkers, regardless of their physical or chemical properties, improves stability, expression and bioactivity. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Pestina, Tamara I; Hargrove, Phillip W; Jay, Dennis; Gray, John T; Boyd, Kelli M; Persons, Derek A
2008-01-01
Increased levels of red cell fetal hemogloblin, whether due to hereditary persistence of expression or from induction with hydroxyurea therapy, effectively ameliorate sickle cell disease (SCD). Therefore, we developed erythroid-specific, γ-globin lentiviral vectors for hematopoietic stem cell (HSC)-targeted gene therapy with the goal of permanently increasing fetal hemoglobin (HbF) production in sickle red cells. We evaluated two different γ-globin lentiviral vectors for therapeutic efficacy in the BERK sickle cell mouse model. The first vector, V5, contained the γ-globin gene driven by 3.1 kb of β-globin regulatory sequences and a 130-bp β-globin promoter. The second vector, V5m3, was identical except that the γ-globin 3′-untranslated region (3′-UTR) was replaced with the β-globin 3′-UTR. Adult erythroid cells have β-globin mRNA 3′-UTR-binding proteins that enhance β-globin mRNA stability and we postulated this design might enhance γ-globin expression. Stem cell gene transfer was efficient and nearly all red cells in transplanted mice expressed human γ-globin. Both vectors demonstrated efficacy in disease correction, with the V5m3 vector producing a higher level of γ-globin mRNA which was associated with high-level correction of anemia and secondary organ pathology. These data support the rationale for a gene therapy approach to SCD by permanently enhancing HbF using a γ-globin lentiviral vector. PMID:19050697
Bischoff, D S; Zhu, J H; Makhijani, N S; Kumar, A; Yamaguchi, D T
2008-02-15
The potential role of ELR(+) CXC chemokines in early events in bone repair was studied using human mesenchymal stem cells (hMSCs). Inflammation, which occurs in the initial phase of tissue healing in general, is critical to bone repair. Release of cytokines from infiltrating immune cells and injured bone can lead to recruitment of MSCs to the region of repair. CXC chemokines bearing the Glu-Leu-Arg (ELR) motif are also released by inflammatory cells and serve as angiogenic factors stimulating chemotaxis and proliferation of endothelial cells. hMSCs, induced to differentiate with osteogenic medium (OGM) containing ascorbate, beta-glycerophosphate (beta-GP), and dexamethasone (DEX), showed an increase in mRNA and protein secretion of the ELR(+) CXC chemokines CXCL8 and CXCL1. CXCL8 mRNA half-life studies reveal an increase in mRNA stability upon OGM stimulation. Increased expression and secretion is a result of DEX in OGM and is dose-dependent. Inhibition of the glucocorticoid receptor with mifepristone only partially inhibits DEX-stimulated CXCL8 expression indicating both glucocorticoid receptor dependent and independent pathways. Treatment with signal transduction inhibitors demonstrate that this expression is due to activation of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and is mediated through the G(alphai)-coupled receptors. Angiogenesis assays demonstrate that OGM-stimulated conditioned media containing secreted CXCL8 and CXCL1 can induce angiogenesis of human microvascular endothelial cells in an in vitro Matrigel assay. Copyright 2007 Wiley-Liss, Inc.
Natural antisense transcript-targeted regulation of inducible nitric oxide synthase mRNA levels.
Yoshigai, Emi; Hara, Takafumi; Araki, Yoshiro; Tanaka, Yoshito; Oishi, Masaharu; Tokuhara, Katsuji; Kaibori, Masaki; Okumura, Tadayoshi; Kwon, A-Hon; Nishizawa, Mikio
2013-04-01
Natural antisense transcripts (asRNAs) are frequently transcribed from mammalian genes. Recently, we found that non-coding asRNAs are transcribed from the 3' untranslated region (3'UTR) of the rat and mouse genes encoding inducible nitric oxide synthase (iNOS), which catalyzes the production of the inflammatory mediator nitric oxide. The iNOS asRNA stabilizes iNOS mRNA by interacting with the mRNA 3'UTR. Furthermore, single-stranded 'sense' oligonucleotides corresponding to the iNOS mRNA sequence were found to reduce iNOS mRNA levels by interfering with mRNA-asRNA interactions in rat hepatocytes. This method was named natural antisense transcript-targeted regulation (NATRE) technology. In this study, we detected human iNOS asRNA expressed in hepatocarcinoma and colon carcinoma tissues. The human iNOS asRNA harbored a sequence complementary to an evolutionarily conserved region of the iNOS mRNA 3'UTR. When introduced into hepatocytes, iNOS sense oligonucleotides that were modified by substitution with partial phosphorothioate bonds and locked nucleic acids or 2'-O-methyl nucleic acids greatly reduced levels of iNOS mRNA and iNOS protein. Moreover, sense oligonucleotides and short interfering RNAs decreased iNOS mRNA to comparable levels. These results suggest that NATRE technology using iNOS sense oligonucleotides could potentially be used to treat human inflammatory diseases and cancers by reducing iNOS mRNA levels. Copyright © 2013 Elsevier Inc. All rights reserved.
Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries
Toro-Ascuy, Daniela; Rojas-Araya, Bárbara; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo
2016-01-01
The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A), allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries. PMID:27886048
Christmann, Martin; Friesenhagen, Judith; Westphal, Andreas; Pietsch, Daniel; Brand, Korbinian
2015-01-01
The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (pre)monocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (post)translational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation. PMID:26646662
Jayakumar, Calpurnia; Mohamed, Riyaz; Ranganathan, Punithavathi Vilapakkam; Ramesh, Ganesan
2011-01-01
Background Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS) to determine the signaling pathways that regulate netrin-1 production in response to injury. Methods and Principal Findings Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. Conclusion Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells. PMID:22046354
Kilwinski, J; Berger, T; Mpalaskas, J; Reuter, S; Flick, W; Kern, P
1999-01-01
It has been proposed that CD30, a member of the tumour necrosis factor (TNF) receptor superfamily, is preferentially up-regulated on Th2-type human T cells. In order to investigate a correlation between infection with Echinococcus multilocularis and CD30 expression, we analysed regulation of CD30 mRNA, a variant form of CD30 mRNA (CD30v) and CD30 ligand (CD30L) mRNA expression on PBMC from patients with alveolar echinococcosis (AE) using reverse transcriptase-polymerase chain reaction (RT-PCR). In PBMC of patients with AE as well as healthy donors, spontaneous expression of CD30L mRNA and the CD30v mRNA could be detected. However, the intact form of CD30 mRNA could be detected neither in freshly isolated PBMC of patients nor in PBMC of healthy individuals. Expression of CD30L mRNA and the variant form of CD30 mRNA was frequently detected at individual time points during 72 h of culture of PBMC stimulated with crude Echinococcus antigen. In contrast to CD30v or CD30L mRNA expression, induction of CD30 mRNA expression was detected only in three out of six (50%) healthy donors and in 10 out of 21 (48%) patients with alveolar echinococcosis after 72 h of incubation. As a control, mitogenic stimulation of PBMC of both healthy individuals and infected patients led to expression of intact CD30 mRNA within 24 h of culture. These data demonstrate the different expression of two different forms of CD30 mRNA in PBMC of human individuals. The specific induction of CD30 expression is correlated only in rare cases with the clinical status of patients with AE, indicating the lack of a general induction of CD30 mRNA in this Th2-type-dominated helminthic disease. The data provide further evidence that the CD30 receptor is not an exclusive marker for a Th2-type response. PMID:9933429
Lane, E L; Cheetham, S; Jenner, P
2008-01-01
The monoamine uptake inhibitor BTS 74 398 induces ipsilateral circling in 6-hydroxydopamine (6-OHDA) lesioned rats without induction of abnormal motor behaviours associated with L-dopa administration. We examined whether this was reflected in the expression of peptide mRNA in the direct and indirect striatal output pathways.6-OHDA lesioning of the nigrostriatal pathway increased striatal expression of PPE-A mRNA and decreased levels of PPT mRNA with PPE-B mRNA expression remaining unchanged. Acute L-dopa administration normalised PPE-A mRNA and elevated PPT mRNA while PPE-B mRNA expression remained unchanged. Acute administration of BTS 74 398 did not alter striatal peptide mRNA levels. Following chronic treatment with L-dopa, PPE-A mRNA expression in the lesioned striatum continued to be normalised and PPT mRNA was increased compared to the intact side. PPE-B mRNA expression was also markedly increased relative to the non-lesioned striatum. Chronic BTS 74 398 administration did not alter mRNA expression in the 6-OHDA lesioned striatum although small increases in PPT mRNA expression in the intact and sham lesioned striatum were observed. The failure of BTS 74 398 to induce changes in striatal neuropeptide mRNA correlated with its failure to induce abnormal motor behaviours or behavioural sensitisation but does not explain how it produces a reversal of motor deficits. An action in another area of the brain appears likely and may explain the subsequent failure of BTS 74 398 and related compounds to exert anti-parkinsonian actions in man.
RNActive® Technology: Generation and Testing of Stable and Immunogenic mRNA Vaccines.
Rauch, Susanne; Lutz, Johannes; Kowalczyk, Aleksandra; Schlake, Thomas; Heidenreich, Regina
2017-01-01
Developing effective mRNA vaccines poses certain challenges concerning mRNA stability and ability to induce sufficient immune stimulation and requires a specific panel of techniques for production and testing. Here, we describe the production of stabilized mRNA with enhanced immunogenicity, generated using conventional nucleotides only, by introducing changes to the mRNA sequence and by complexation with the nucleotide-binding peptide protamine (RNActive® technology). Methods described here include the synthesis, purification, and protamine complexation of mRNA vaccines as well as a comprehensive panel of in vitro and in vivo methods for evaluation of vaccine quality and immunogenicity.
Sobue, S; Murakami, M; Banno, Y; Ito, H; Kimura, A; Gao, S; Furuhata, A; Takagi, A; Kojima, T; Suzuki, M; Nozawa, Y; Murate, T
2008-10-09
Sphingosine kinase 1 (SPHK1) is overexpressed in solid tumors and leukemia. However, the mechanism of SPHK1 overexpression by oncogenes has not been defined. We found that v-Src-transformed NIH3T3 cells showed a high SPHK1 mRNA, SPHK1 protein and SPHK enzyme activity. siRNA of SPHK1 inhibited the growth of v-Src-NIH3T3, suggesting the involvement of SPHK1 in v-Src-induced oncogenesis. v-Src-NIH3T3 showed activations of protein kinase C-alpha, signal transducers and activators of transcription 3 and c-Jun NH(2)-terminal kinase. Their inhibition suppressed SPHK1 expression in v-Src-NIH3T3, whereas their overexpression increased SPHK1 mRNA in NIH3T3. Unexpectedly, the nuclear run-on assay and the promoter analysis using 5'-promoter region of mouse SPHK1 did not show any significant difference between mock- and v-Src-NIH3T3. Furthermore, the half-life of SPHK1 mRNA in mock-NIH3T3 was nearly 15 min, whereas that of v-Src-NIH3T3 was much longer. Examination of two AU-rich region-binding proteins, AUF1 and HuR, that regulate mRNA decay reciprocally, showed decreased total AUF1 protein associated with increased tyrosine-phosphorylated form and increased serine-phosphorylated HuR protein in v-Src-NIH3T3. Modulation of AUF1 and HuR by their overexpression or siRNA revealed that SPHK1 mRNA in v-Src- and mock-NIH3T3 was regulated reciprocally by these factors. Our results showed, for the first time, a novel mechanism of v-Src-induced SPHK1 overexpression.
Stazic, Damir; Lindell, Debbie; Steglich, Claudia
2011-01-01
The ecologically important cyanobacterium Prochlorococcus possesses the smallest genome among oxyphototrophs, with a reduced suite of protein regulators and a disproportionately high number of regulatory RNAs. Many of these are asRNAs, raising the question whether they modulate gene expression through the protection of mRNA from RNase E degradation. To address this question, we produced recombinant RNase E from Prochlorococcus sp. MED4, which functions optimally at 12 mM Mg2+, pH 9 and 35°C. RNase E cleavage assays were performed with this recombinant protein to assess enzyme activity in the presence of single- or double-stranded RNA substrates. We found that extraordinarily long asRNAs of 3.5 and 7 kb protect a set of mRNAs from RNase E degradation that accumulate during phage infection. These asRNA–mRNA duplex formations mask single-stranded recognition sites of RNase E, leading to increased stability of the mRNAs. Such interactions directly modulate RNA stability and provide an explanation for enhanced transcript abundance of certain mRNAs during phage infection. Protection from RNase E-triggered RNA decay may constitute a hitherto unknown regulatory function of bacterial cis-asRNAs, impacting gene expression. PMID:21325266
Stazic, Damir; Lindell, Debbie; Steglich, Claudia
2011-06-01
The ecologically important cyanobacterium Prochlorococcus possesses the smallest genome among oxyphototrophs, with a reduced suite of protein regulators and a disproportionately high number of regulatory RNAs. Many of these are asRNAs, raising the question whether they modulate gene expression through the protection of mRNA from RNase E degradation. To address this question, we produced recombinant RNase E from Prochlorococcus sp. MED4, which functions optimally at 12 mM Mg(2+), pH 9 and 35°C. RNase E cleavage assays were performed with this recombinant protein to assess enzyme activity in the presence of single- or double-stranded RNA substrates. We found that extraordinarily long asRNAs of 3.5 and 7 kb protect a set of mRNAs from RNase E degradation that accumulate during phage infection. These asRNA-mRNA duplex formations mask single-stranded recognition sites of RNase E, leading to increased stability of the mRNAs. Such interactions directly modulate RNA stability and provide an explanation for enhanced transcript abundance of certain mRNAs during phage infection. Protection from RNase E-triggered RNA decay may constitute a hitherto unknown regulatory function of bacterial cis-asRNAs, impacting gene expression.
ZHANG, H. N.; KO, M. C.
2009-01-01
Chemical-induced seizures up-regulated brain-derived neurotrophic factor (BDNF) mRNA expression. Intracerebroventricular (i.c.v.) administration of endogenous opioids preferentially activating μ opioid receptor (MOR) could also increase BDNF mRNA expression. The aim of this study was to determine to what extent i.c.v. administration of synthetic MOR-selective agonists in rats can modulate both seizure activity and up-regulation of BDNF mRNA expression. Effects and potencies of i.c.v. administration of morphine and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO), were directly investigated by scoring behavioral seizures and measuring BDNF mRNA expression. In addition, effects of the opioid receptor antagonist naloxone and antiepileptic drugs, diazepam, phenobarbital, and valproate, on i.c.v. MOR agonist-induced behavioral seizures and up-regulation of BDNF mRNA expression were determined. A single i.c.v. administration of morphine (10–100 μg) or DAMGO (0.15–1.5 μg) dose-dependently elicited behavioral seizures and increased BDNF mRNA expression in the widespread brain regions. However, subcutaneous administration of MOR agonists neither produced behavioral seizures nor increased BDNF mRNA expression. Pretreatment with naloxone 1 mg/kg significantly reduced behavioral seizure scores and the up-regulation of BDNF mRNA expression elicited by i.c.v. morphine or DAMGO. Similarly, diazepam 10 mg/kg and phenobarbital 40 mg/kg significantly blocked i.c.v. MOR agonist-induced actions. Pretreatment with valproate 300 mg/kg only attenuated behavioral seizures, but it did not affect morphine-induced increase of BDNF mRNA expression. This study provides supporting evidence that seizure activity plays an important role in the up-regulation of BDNF mRNA expression elicited by central MOR activation and that decreased inhibitory action of GABAergic system through the modulation on GABA receptor synaptic function by central MOR activation is involved in its regulation of BDNF mRNA expression. PMID:19303919
Saeed, Sadia; Tremp, Annie Z; Dessens, Johannes T
2012-10-01
Malaria parasites express a conserved family of LCCL-lectin adhesive-like domain proteins (LAPs) that have essential functions in sporozoite transmission. In Plasmodium falciparum all six family members are expressed in gametocytes and form a multi-protein complex. Intriguingly, knockout of P. falciparum LCCL proteins adversely affects expression of other family members at protein, but not at mRNA level, a phenomenon termed co-dependent expression. Here, we investigate this in Plasmodium berghei by crossing a PbLAP1 null mutant parasite with a parasite line expressing GFP-tagged PbLAP3 that displays strong fluorescence in gametocytes. Selected and validated double mutants show normal synthesis and subcellular localization of PbLAP3::GFP. However, GFP-based fluorescence is dramatically reduced without PbLAP1 present, indicating that PbLAP1 and PbLAP3 interact. Moreover, absence of PbLAP1 markedly reduces the half-life of PbLAP3, consistent with a scenario of misfolding. These findings unveil a potential mechanism of conformational interdependence that facilitates assembly and stability of the functional LCCL protein complex. Copyright © 2012 Elsevier B.V. All rights reserved.
Guo, Wen; Bachman, Eric; Li, Michelle; Roy, Cindy N.; Blusztajn, Jerzy; Wong, Siu; Chan, Stephen Y.; Serra, Carlo; Jasuja, Ravi; Travison, Thomas G.; Muckenthaler, Martina U.; Nemeth, Elizabeta; Bhasin, Shalender
2013-01-01
Testosterone administration increases hemoglobin levels and has been used to treat anemia of chronic disease. Erythrocytosis is the most frequent adverse event associated with testosterone therapy of hypogonadal men, especially older men. However, the mechanisms by which testosterone increases hemoglobin remain unknown. Testosterone administration in male and female mice was associated with a greater increase in hemoglobin and hematocrit, reticulocyte count, reticulocyte hemoglobin concentration, and serum iron and transferring saturation than placebo. Testosterone downregulated hepatic hepcidin mRNA expression, upregulated renal erythropoietin mRNA expression, and increased erythropoietin levels. Testosterone-induced suppression of hepcidin expression was independent of its effects on erythropoietin or hypoxia-sensing mechanisms. Transgenic mice with liver-specific constitutive hepcidin over-expression failed to exhibit the expected increase in hemoglobin in response to testosterone administration. Testosterone upregulated splenic ferroportin expression and reduced iron retention in spleen. After intravenous administration of transferrin-bound 58Fe, the amount of 58Fe incorporated into red blood cells was significantly greater in testosterone-treated mice than in placebo-treated mice. Serum from testosterone-treated mice stimulated hemoglobin synthesis in K562 erythroleukemia cells more than that from vehicle-treated mice. Testosterone administration promoted the association of androgen receptor (AR) with Smad1 and Smad4 to reduce their binding to BMP-response elements in hepcidin promoter in the liver. Ectopic expression of AR in hepatocytes suppressed hepcidin transcription; this effect was blocked dose-dependently by AR antagonist flutamide. Testosterone did not affect hepcidin mRNA stability. Conclusion: Testosterone inhibits hepcidin transcription through its interaction with BMP-Smad signaling. Testosterone administration is associated with increased iron incorporation into red blood cells. PMID:23399021
Regulation of mouse hepatic CYP2D9 mRNA expression by growth and adrenal hormones.
Jarukamjorn, Kanokwan; Sakuma, Tsutomu; Jaruchotikamol, Atika; Oguro, Miki; Nemoto, Nobuo
2006-02-01
The constitutive expression of CYP2D9 is sexually dimorphic, namely, strong in males, but diminutive in females. Repetition of mimic growth hormone (GH) secretion pattern impressively returned the mRNA expression level to that in intact mice: the GH secretion pattern's regulation of CYP2D9 mRNA expression has been predominantly disrupted by exogenous GH-administration. The extensive decline of CYP2D9 mRNA expression becoming a sexually non-specific P450 in 9-week-old male mice exposed as neonates to monosodium L-glutamate (MSG) suggested that the male GH secretion pattern is a key to the regulation of male-specific CYP2D9 mRNA expression in adult mice. Dexamethasone (Dex) showed possibility to induce CYP2D9 mRNA expression in adult MSG-neonatally treated mice of either sex. However, the antagonism was observed by co-administration of Dex and GH in the males. Dex-administration in adrenalectomized mice significantly elevated CYP2D9 mRNA expression levels. These findings suggest that an adrenal hormone participates in the regulatory mechanism of CYP2D9 mRNA expression in association with GH.
Rumyantsev, A M; Zakharov, G A; Zhuravlev, A V; Padkina, M V; Savvateeva-Popova, E V; Sambuk, E V
2014-06-01
The stability of mRNA and its translation efficacy in higher eukaryotes are influenced by the interaction of 3'-untranscribed regions (3'-UTRs) with microRNAs and RNA-binding proteins. Since Saccharomyces cerevisiae lack microRNAs, it is possible to evaluate the contribution of only 3'-UTRs' and RNA-binding proteins' interaction in post-transcriptional regulation. For this, the post-transcriptional regulation of Drosophila limk1 gene encoding for the key enzyme of actin remodeling was studied in yeast. Analysis of limkl mRNA 3'-UTRs revealed the potential sites of yeast transcriptional termination. Computer remodeling demonstrated the possibility of secondary structure formation in limkl mRNA 3'-UTRs. For an evaluation of the functional activity of Drosophila 3'-UTRs in yeast, the reporter gene PHO5 encoding for yeast acid phosphatase (AP) fused to different variants of Drosophila limk1 mRNA 3'-UTRs (513, 1075, 1554 bp) was used. Assessments of AP activity and RT-PCR demonstrated that Drosophila limkl gene 3'-UTRs were functionally active and recognized in yeast. Therefore, yeast might be used as an appropriate model system for studies of 3'-UTR's role in post-transcriptional regulation.
Dadzie, Isaac; Xu, Shungao; Ni, Bin; Zhang, Xiaolei; Zhang, Haifang; Sheng, Xiumei; Xu, Huaxi; Huang, Xinxiang
2013-01-01
Antisense RNAs that originate from the complementary strand of protein coding genes are involved in the regulation of gene expression in all domains of life. In bacteria, some of these antisense RNAs are transcriptional noise whiles others play a vital role to adapt the cell to changing environmental conditions. By deep sequencing analysis of transcriptome of Salmonella enterica serovar Typhi, a partial RNA sequence encoded in-cis to the dnaA gene was revealed. Northern blot and RACE analysis confirmed the transcription of this antisense RNA which was expressed mostly in the stationary phase of the bacterial growth and also under iron limitation and osmotic stress. Pulse expression analysis showed that overexpression of the antisense RNA resulted in a significant increase in the mRNA levels of dnaA, which will ultimately enhance their translation. Our findings have revealed that antisense RNA of dnaA is indeed transcribed not merely as a by-product of the cell's transcription machinery but plays a vital role as far as stability of dnaA mRNA is concerned. PMID:23637809
Hamasaki-Katagiri, Nobuko; Lin, Brian C.; Simon, Jonathan; Hunt, Ryan C.; Schiller, Tal; Russek-Cohen, Estelle; Komar, Anton A.; Bar, Haim; Kimchi-Sarfaty, Chava
2016-01-01
Introduction Mutational analysis is commonly used to support the diagnosis and management of haemophilia. This has allowed for the generation of large mutation databases which provide unparalleled insight into genotype-phenotype relationships. Haemophilia is associated with inversions, deletions, insertions, nonsense and missense mutations. Both synonymous and non-synonymous mutations influence the base pairing of messenger RNA (mRNA), which can alter mRNA structure, cellular half-life and ribosome processivity/elongation. However, the role of mRNA structure in determining the pathogenicity of point mutations in haemophilia has not been evaluated. Aim To evaluate mRNA thermodynamic stability and associated RNA prediction software as a means to distinguish between neutral and disease-associated mutations in haemophilia. Methods Five mRNA structure prediction software programs were used to assess the thermodynamic stability of mRNA fragments carrying neutral vs. disease-associated and synonymous vs. non-synonymous point mutations in F8, F9 and a third X-linked gene, DMD (dystrophin). Results In F8 and DMD, disease-associated mutations tend to occur in more structurally stable mRNA regions, represented by lower MFE (minimum free energy) levels. In comparing multiple software packages for mRNA structure prediction, a 101–151 nucleotide fragment length appears to be a feasible range for structuring future studies. Conclusion mRNA thermodynamic stability is one predictive characteristic, which when combined with other RNA and protein features, may offer significant insight when screening sequencing data for novel disease-associated mutations. Our results also suggest potential utility in evaluating the mRNA thermodynamic stability profile of a gene when determining the viability of interchanging codons for biological and therapeutic applications. PMID:27933712
Majumder, Mrinmoyee; House, Reniqua; Palanisamy, Nallasivam; Qie, Shuo; Day, Terrence A.; Neskey, David; Diehl, J. Alan
2016-01-01
RNA-binding proteins (RBP) regulate numerous aspects of co- and post-transcriptional gene expression in cancer cells. Here, we demonstrate that RBP, fragile X-related protein 1 (FXR1), plays an essential role in cellular senescence by utilizing mRNA turnover pathway. We report that overexpressed FXR1 in head and neck squamous cell carcinoma targets (G-quadruplex (G4) RNA structure within) both mRNA encoding p21 (Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A, Cip1) and the non-coding RNA Telomerase RNA Component (TERC), and regulates their turnover to avoid senescence. Silencing of FXR1 in cancer cells triggers the activation of Cyclin-Dependent Kinase Inhibitors, p53, increases DNA damage, and ultimately, cellular senescence. Overexpressed FXR1 binds and destabilizes p21 mRNA, subsequently reduces p21 protein expression in oral cancer cells. In addition, FXR1 also binds and stabilizes TERC RNA and suppresses the cellular senescence possibly through telomerase activity. Finally, we report that FXR1-regulated senescence is irreversible and FXR1-depleted cells fail to form colonies to re-enter cellular proliferation. Collectively, FXR1 displays a novel mechanism of controlling the expression of p21 through p53-dependent manner to bypass cellular senescence in oral cancer cells. PMID:27606879
Yan, Jing; Liu, Chuan; Jiang, Jing-Yi; Liu, Hans; Li, Chao; Li, Xin-Yu; Yuan, Ye; Zong, Zhi-Hong; Wang, Hua-Qin
2017-10-01
Bcl-2 associated athanogene 3 (BAG3) contains a modular structure, through which BAG3 interacts with a wide range of proteins, thereby affording its capacity to regulate multifaceted biological processes. BAG3 is often highly expressed and functions as a pro-survival factor in many cancers. However, the oncogenic potential of BAG3 remains not fully understood. The cell cycle regulator, S-phase kinase associated protein 2 (Skp2) is increased in various cancers and plays an important role in tumorigenesis. The current study demonstrated that BAG3 promoted proliferation of ovarian cancer cells via upregulation of Skp2. BAG3 stabilized Skp2 mRNA via its 3'-untranslated region (UTR). The current study demonstrated that BAG3 interacted with Skp2 mRNA. In addition, miR-21-5p suppressed Skp2 expression, which was compromised by forced BAG3 expression. These results indicated that at least some oncogenic functions of BAG3 were mediated through posttranscriptional regulation of Skp2 via antagonizing suppressive action of miR-21-5p in ovarian cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Jingkui; Yeung, Jake; Gobet, Cédric; Sobel, Jonathan; Lück, Sarah; Molina, Nacho; Naef, Felix
2018-01-01
The mammalian circadian clock coordinates physiology with environmental cycles through the regulation of daily oscillations of gene expression. Thousands of transcripts exhibit rhythmic accumulations across mouse tissues, as determined by the balance of their synthesis and degradation. While diurnally rhythmic transcription regulation is well studied and often thought to be the main factor generating rhythmic mRNA accumulation, the extent of rhythmic posttranscriptional regulation is debated, and the kinetic parameters (e.g., half-lives), as well as the underlying regulators (e.g., mRNA-binding proteins) are relatively unexplored. Here, we developed a quantitative model for cyclic accumulations of pre-mRNA and mRNA from total RNA-seq data, and applied it to mouse liver. This allowed us to identify that about 20% of mRNA rhythms were driven by rhythmic mRNA degradation, and another 15% of mRNAs regulated by both rhythmic transcription and mRNA degradation. The method could also estimate mRNA half-lives and processing times in intact mouse liver. We then showed that, depending on mRNA half-life, rhythmic mRNA degradation can either amplify or tune phases of mRNA rhythms. By comparing mRNA rhythms in wild-type and Bmal1−/− animals, we found that the rhythmic degradation of many transcripts did not depend on a functional BMAL1. Interestingly clock-dependent and -independent degradation rhythms peaked at distinct times of day. We further predicted mRNA-binding proteins (mRBPs) that were implicated in the posttranscriptional regulation of mRNAs, either through stabilizing or destabilizing activities. Together, our results demonstrate how posttranscriptional regulation temporally shapes rhythmic mRNA accumulation in mouse liver. PMID:29432155
Zhang, Yong; Shaik, Ahmad Ali; Xing, Chengguo; Chai, Yubo; Li, Li; Zhang, Jinhui; Zhang, Wei; Kim, Sung-Hoon; Lü, Junxuan; Jiang, Cheng
2012-10-01
Targeting androgen receptor (AR) signaling with agents distinct from current antagonist drugs remains a rational approach to the prevention and treatment of prostate cancer (PCa). Our previous studies have shown that decursin and isomer decursinol angelate (DA), isolated from the Korean medicinal herb Angelica gigas Nakai, interrupt AR signaling and possess anti-PCa activities in vitro. In the LNCaP PCa cell model, these pyranoccoumarin compounds exhibit properties distinct from currently used antagonists (e.g., Casodex). However, both are rapidly de-esterified to decursinol, a partial AR agonist. We report here that a synthetic decursin analog, decursinol phenylthiocarbamate (DPTC), has greater in vivo stability than the parent compounds. DPTC-decursinol conversion was undetectable in mice. Furthermore, in LNCaP cells, DPTC decreased prostate specific antigen (PSA) expression, down-regulated AR abundance and mRNA and inhibited AR nuclear translocation. The effect of DPTC on AR and PSA mRNA and protein abundance was also observed in VCaP cells expressing wild type AR. DPTC inhibited growth of both PCa cell lines through G(1) cell cycle arrest and apoptosis, as did decursin and DA. Furthermore, i.p. administration of DPTC for 3 weeks suppressed the expression of AR target genes probasin and Nkx3.1 in mouse prostate glands. Overall, our data suggest that DPTC represents a prototype lead compound for development of in vivo stable and active novel decursin analogs for the prevention or therapy of PCa.
Deneke, Carlus; Lipowsky, Reinhard; Valleriani, Angelo
2013-01-01
Experimental studies on mRNA stability have established several, qualitatively distinct decay patterns for the amount of mRNA within the living cell. Furthermore, a variety of different and complex biochemical pathways for mRNA degradation have been identified. The central aim of this paper is to bring together both the experimental evidence about the decay patterns and the biochemical knowledge about the multi-step nature of mRNA degradation in a coherent mathematical theory. We first introduce a mathematical relationship between the mRNA decay pattern and the lifetime distribution of individual mRNA molecules. This relationship reveals that the mRNA decay patterns at steady state expression level must obey a general convexity condition, which applies to any degradation mechanism. Next, we develop a theory, formulated as a Markov chain model, that recapitulates some aspects of the multi-step nature of mRNA degradation. We apply our theory to experimental data for yeast and explicitly derive the lifetime distribution of the corresponding mRNAs. Thereby, we show how to extract single-molecule properties of an mRNA, such as the age-dependent decay rate and the residual lifetime. Finally, we analyze the decay patterns of the whole translatome of yeast cells and show that yeast mRNAs can be grouped into three broad classes that exhibit three distinct decay patterns. This paper provides both a method to accurately analyze non-exponential mRNA decay patterns and a tool to validate different models of degradation using decay data. PMID:23408982
Nakagawa, Tateo; Shimada, Mitsuo; Kurita, Nobuhiro; Iwata, Takashi; Nishioka, Masanori; Yoshikawa, Kozo; Higashijima, Jun; Utsunomiya, Tohru
2012-06-01
The role of intratumoral thymidylate synthase (TS) mRNA or protein expression is still controversial and little has been reported regarding relation of them in colorectal cancer. Forty-six patients with advanced colorectal cancer who underwent surgical resection were included. TS mRNA expression was determined by the Danenberg tumor profile method based on laser-captured micro-dissection of the tumor cells. TS protein expression was evaluated using immunohistochemical staining. TS mRNA expression tended to relate TS protein expression. Statistical significance was not found in overall survival between the TS mRNA high group and low group regardless of performing adjuvant chemotherapy. The overall survival in the TS protein negative group was significantly higher than that in positive group in all and the patients without adjuvant chemotherapy. Multivariate analysis showed TS protein expression was as an independent prognostic factor. TS protein expression tends to be related TS mRNA expression and is an independent prognostic factor in advanced colorectal cancer.
In situ synthesis of protein arrays.
He, Mingyue; Stoevesandt, Oda; Taussig, Michael J
2008-02-01
In situ or on-chip protein array methods use cell free expression systems to produce proteins directly onto an immobilising surface from co-distributed or pre-arrayed DNA or RNA, enabling protein arrays to be created on demand. These methods address three issues in protein array technology: (i) efficient protein expression and availability, (ii) functional protein immobilisation and purification in a single step and (iii) protein on-chip stability over time. By simultaneously expressing and immobilising many proteins in parallel on the chip surface, the laborious and often costly processes of DNA cloning, expression and separate protein purification are avoided. Recently employed methods reviewed are PISA (protein in situ array) and NAPPA (nucleic acid programmable protein array) from DNA and puromycin-mediated immobilisation from mRNA.
Kim, Tae K.; Curran, Janet; Mulenga, Albert
2014-01-01
This study demonstrates that Amblyomma americanum (Aam) constitutively and ubiquitously expresses the long (L) and short (S) putative acidic chitinases (Ach) that are distinguished by a 210 base pair (bp) deletion in AamAch-S. Full-length AamAch-L and AamAch-S cDNA are 1959 and 1718 bp long, containing 1332 and 1104 bp open reading frames that code for 443 and 367 amino acid residues proteins with the former predicted to be extracellular and the latter intracellular. Both AamAch-L and AamAch-S mRNA are expressed in multiple organs as revealed by qualitative RT-PCR analysis. Furthermore, quantitative reverse transcription polymerase chain reaction analysis revealed that AamAch-L mRNA was downregulated in the mid-gut, but was unchanged in the salivary gland and in other organs in response to feeding. Of significant interest, AamAch-L and/or AamAch-S functions are probably associated with formation and/or maintenance of stability of A. americanum tick cement cone. Dual RNA interference silencing of AamAch-L and/or AamAch-S mRNA caused ticks to loosely attach onto host skin as suggested by bleeding around tick mouthparts and ticks detaching off host skin with a light touch. AamAch-L may apparently encode an inactive chitinase as indicated by Pichia pastoris-expressed recombinant AamAch-L failing to hydrolyse chitinase substrates. Unpublished related work in our laboratory, and published work by others that found AamAch-L in tick saliva, suggest that native AamAch-L is a non-specific immunoglobulin binding tick saliva protein in that rAamAch-L non-specifically bound rabbit, bovine and chicken non-immune sera. We discuss findings in this study with reference to advancing knowledge on tick feeding physiology. PMID:25189365
Viral and Cellular mRNA Translation in Coronavirus-Infected Cells
Nakagawa, K.; Lokugamage, K.G.; Makino, S.
2017-01-01
Coronaviruses have large positive-strand RNA genomes that are 5′ capped and 3′ polyadenylated. The 5′-terminal two-thirds of the genome contain two open reading frames (ORFs), 1a and 1b, that together make up the viral replicase gene and encode two large polyproteins that are processed by viral proteases into 15–16 nonstructural proteins, most of them being involved in viral RNA synthesis. ORFs located in the 3′-terminal one-third of the genome encode structural and accessory proteins and are expressed from a set of 5′ leader-containing subgenomic mRNAs that are synthesized by a process called discontinuous transcription. Coronavirus protein synthesis not only involves cap-dependent translation mechanisms but also employs regulatory mechanisms, such as ribosomal frameshifting. Coronavirus replication is known to affect cellular translation, involving activation of stress-induced signaling pathways, and employing viral proteins that affect cellular mRNA translation and RNA stability. This chapter describes our current understanding of the mechanisms involved in coronavirus mRNA translation and changes in host mRNA translation observed in coronavirus-infected cells. PMID:27712623
Reversible methylation of m6Am in the 5′ cap controls mRNA stability
Mauer, Jan; Luo, Xiaobing; Blanjoie, Alexandre; Jiao, Xinfu; Grozhik, Anya V.; Patil, Deepak P.; Linder, Bastian; Pickering, Brian F.; Vasseur, Jean-Jacques; Chen, Qiuying; Gross, Steven S.; Elemento, Olivier; Debart, Françoise; Kiledjian, Megerditch; Jaffrey, Samie R.
2017-01-01
Internal bases in mRNA can be subjected to modifications that influence the fate of mRNA in cells. One of the most prevalent modified bases is found at the 5′ end of mRNA, at the first encoded nucleotide adjacent to the 7-methylguanosine cap. Here we show that this nucleotide, N6,2′-O-dimethyladenosine (m6Am), is a reversible modification that influences cellular mRNA fate. Using a transcriptome-wide map of m6Am we find that m6Am-initiated transcripts are markedly more stable than mRNAs that begin with other nucleotides. We show that the enhanced stability of m6Am-initiated transcripts is due to resistance to the mRNA-decapping enzyme DCP2. Moreover, we find that m6Am is selectively demethylated by fat mass and obesity-associated protein (FTO). FTO preferentially demethylates m6Am rather than N6-methyladenosine (m6A), and reduces the stability of m6Am mRNAs. Together, these findings show that the methylation status of m6Am in the 5′ cap is a dynamic and reversible epitranscriptomic modification that determines mRNA stability. PMID:28002401
Liu, Pengliang; Jin, Long; Zhao, Lirui; Long, Keren; Song, Yang; Tang, Qianzi; Ma, Jideng; Wang, Xun; Tang, Guoqing; Jiang, Yanzhi; Zhu, Li; Li, Xuewei; Li, Mingzhou
2018-05-31
Natural antisense transcripts (NATs) are widely present in mammalian genomes and act as pivotal regulator molecules to control gene expression. However, studies on the NATs of pigs are relatively rare. Here, we identified a novel antisense transcript, designated PLA2G16-AS, transcribed from the phospholipase A2 group XVI locus (PLA2G16) in the porcine genome, which is a well-known regulatory molecule of fat deposition. PLA2G16-AS and PLA2G16 were dominantly expressed in porcine adipose tissue, and were differentially expressed between Tibetan pigs and Rongchang pigs. In addition, PLA2G16-AS has a weak sequence conservation among different vertebrates. PLA2G16-AS was also shown to form an RNA-RNA duplex with PLA2G16, and to regulate PLA2G16 expression at the mRNA level. Moreover, the overexpression of PLA2G16-AS increased the stability of PLA2G16 mRNA in porcine cells. We envision that our findings of a NAT for a regulatory gene associated with lipolysis might further our understanding of the molecular regulation of fat deposition. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Bobrowski, Adam; Lipniacki, Tomasz; Pichór, Katarzyna; Rudnicki, Ryszard
2007-09-01
The paper is devoted to a stochastic process introduced in the recent paper by Lipniacki et al. [T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A.RE Brasier, M. Kimmel, Transcriptional stochasticity in gene expression, JE Theor. Biol. 238 (2006) 348-367] in modelling gene expression in eukaryotes. Starting from the full generator of the process we show that its distributions satisfy a (Fokker-Planck-type) system of partial differential equations. Then, we construct a c0 Markov semigroup in L1 space corresponding to this system. The main result of the paper is asymptotic stability of the involved semigroup in the set of densities.
Brand, Christine; Burkhardt, Eva; Schaeffel, Frank; Choi, Jeong Won; Feldkaemper, Marita Pauline
2005-04-28
To analyze mRNA expression changes of Egr-1, VIP, and Shh under different light and treatment conditions in mice. The mRNA expression levels of the three genes and additionally the Egr-1 protein expression were compared in form deprived eyes and eyes with normal vision. Moreover, the influence of dark to light and light to dark transitions and of changes in retinal illumination on mRNA levels was investigated. Form deprivation of mice was induced by fitting frosted diffusers over one eye and an attentuation matched neutral density (ND) filter over the other eye. To measure the effects of retinal illumination changes on mRNA expression, animals were bilaterally fitted with different ND filters. Semiquantitative real-time RT-PCR was used to measure the mRNA levels and immunohistochemistry was applied to localize and detect Egr-1 protein. The expression levels of both Egr-1 mRNA and protein were reduced in form deprived eyes compared to their fellow eyes after 30 min and 1 h, respectively. Egr-1 mRNA was strikingly upregulated both after dark to light and light to dark transitions, whereas minor changes in retinal illumination by covering the eyes with neutral density filters did not alter Egr-1 mRNA expression. In mice, the mRNA levels of VIP and Shh were not affected by form deprivation, but they were found to be regulated depending on the time of day. Both Egr-1 mRNA and protein expression levels were strongly regulated by light, especially by transitions between light and darkness. Image contrast may exert an additional influence on mRNA and protein expression of Egr-1, particularly in the cells in the ganglion cell layer and in bipolar cells.
Adams, M B; McMillen, I C
2000-01-01
We have investigated adrenal mRNA expression of the catecholamine synthetic enzymes tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) following acute hypoxia in fetal sheep before (< 105 days gestation, n = 20) and after (> 125 days gestation, n = 20) the development of adrenal innervation and following pretreatment with the nicotinic receptor anatgonist hexamethonium (n = 12). Total RNA was extracted from fetal adrenal glands collected at specific time points at 3-20 h after the onset of either hypoxia (∼50% reduction in fetal arterial oxygen saturation (SO2) for 30 min), or normoxia. Before 105 days, there was a decrease in adrenal TH mRNA expression at 20 h after hypoxia and adrenal TH mRNA expression was directly related to the changes in arterial PO2 measured during normoxia and hypoxia. After 125 days, adrenal TH mRNA levels were suppressed for up to 12 h following hypoxia. In both age groups, adrenal PNMT mRNA expression increased at 3-5 h after hypoxia and was inversely related to the changes in fetal arterial PO2 during normoxia or hypoxia. After 125 days, the administration of hexamethonium (25 mg kg−1, I. V.) reduced TH mRNA but not PNMT mRNA expression after normoxia. After hexamethonium pretreatment, there was no significant change in either adrenal TH or PNMT mRNA expression following hypoxia. We conclude that acute hypoxia differentially regulates adrenal TH and PNMT mRNA expression in the fetal sheep both before and after the development of adrenal innervation. After the development of adrenal innervation, however, the effect of acute hypoxia upon adrenal TH and PNMT mRNA expression is dependent upon neurogenic input acting via nicotinic receptors. PMID:11118487
Itoh, Kazuko; Izumi, Yuichiro; Inoue, Takeaki; Inoue, Hideki; Nakayama, Yushi; Uematsu, Takayuki; Fukuyama, Takashi; Yamazaki, Taiga; Yasuoka, Yukiko; Makino, Takeshi; Nagaba, Yasushi; Tomita, Kimio; Kobayashi, Noritada; Kawahara, Katsumasa; Mukoyama, Masashi; Nonoguchi, Hiroshi
2014-10-24
Sodium reabsorption via Na-K-2Cl cotransporter 2 (NKCC2) in the thick ascending limbs has a major role for medullary osmotic gradient and subsequent water reabsorption in the collecting ducts. We investigated intrarenal localization of three isoforms of NKCC2 mRNA expressions and the effects of dehydration on them in rats. To further examine the mechanisms of dehydration, the effects of hyperosmolality on NKCC2 mRNA expression in microdissected renal tubules was studied. RT-PCR and RT-competitive PCR were employed. The expressions of NKCC2a and b mRNA were observed in the cortical thick ascending limbs (CAL) and the distal convoluted tubules (DCT) but not in the medullary thick ascending limbs (MAL), whereas NKCC2f mRNA expression was seen in MAL and CAL. Two-day dehydration did not affect these mRNA expressions. In contrast, hyperosmolality increased NKCC2 mRNA expression in MAL in vitro. Bradykinin dose-dependently decreased NKCC2 mRNA expression in MAL. However, dehydration did not change NKCC2 protein expression in membrane fraction from cortex and outer medulla and in microdissected MAL. These data show that NKCC2a/b and f types are mainly present in CAL and MAL, respectively. Although NKCC2 mRNA expression was stimulated by hyperosmolality in vitro, NKCC2 mRNA and protein expressions were not stimulated by dehydration in vivo. These data suggest the presence of the inhibitory factors for NKCC2 expression in dehydration. Considering the role of NKCC2 for the countercurrent multiplier system, NKCC2f expressed in MAL might be more important than NKCC2a/b. Copyright © 2014 Elsevier Inc. All rights reserved.
Hollingsworth, M A; Strawhecker, J M; Caffrey, T C; Mack, D R
1994-04-15
We examined the steady-state expression levels of mRNA for the MUC1, MUC2, MUC3 and MUC4 gene products in 12 pancreatic tumor cell lines, 6 colon tumor cell lines, and one ileocecal tumor cell line. The results showed that 10 of 12 pancreatic tumor cell lines expressed MUC1 mRNA and that 7 of these 12 lines also expressed relatively high levels of MUC4 mRNA. In contrast, MUC2 mRNA was expressed at only low levels and MUC3 was not detected in the pancreatic tumor cell lines. All 7 intestinal tumor cell lines examined expressed MUC2, and 5 of 7 expressed MUC3; however only one expressed significant levels of MUC1 and 2 expressed low levels of MUC4 mRNA. This report of high levels of MUC4 mRNA expression by pancreatic tumor cells raises the possibility that mucin carbohydrate epitopes defined by antibodies such as DuPan 2 may be expressed on a second mucin core protein produced by pancreatic tumor cells.
Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA
Otake, Yoko; Soundararajan, Sridharan; Sengupta, Tapas K.; Kio, Ebenezer A.; Smith, James C.; Pineda-Roman, Mauricio; Stuart, Robert K.; Spicer, Eleanor K.
2007-01-01
B-cell chronic lymphocytic leukemia (CLL) is characterized by the accumulation of clonal B cells that are resistant to apoptosis as a result of bcl2 oncogene overexpression. Studies were done to determine the mechanism for the up-regulation of bcl-2 protein observed in CD19+ CLL cells compared with CD19+ B cells from healthy volunteers. The 11-fold higher level of bcl-2 protein in CLL cells was positively correlated with a 26-fold elevation in the cytosolic level of nucleolin, a bcl2 mRNA–stabilizing protein. Measurements of the bcl2 heterogeneous nuclear/bcl2 mRNA (hnRNA)/mRNA ratios and the rates of bcl2 mRNA decay in cell extracts indicated that the 3-fold higher steady-state level of bcl2 mRNA in CLL cells was the result of increased bcl2 mRNA stability. Nucleolin was present throughout the nucleus and cytoplasm of CLL cells, whereas in normal B cells nucleolin was only detected in the nucleus. The addition of recombinant human nucleolin to extracts of normal B cells markedly slowed the rate of bcl2 mRNA decay. SiRNA knockdown of nucleolin in MCF-7 cells resulted in decreased levels of bcl2 mRNA and protein but no change in β-actin. These results indicate that bcl-2 overexpression in CLL cells is related to stabilization of bcl2 mRNA by nucleolin. PMID:17179226
ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK-RSK pathway.
Adachi, Shungo; Homoto, Masae; Tanaka, Rikou; Hioki, Yusaku; Murakami, Hiroshi; Suga, Hiroaki; Matsumoto, Masaki; Nakayama, Keiichi I; Hatta, Tomohisa; Iemura, Shun-ichiro; Natsume, Tohru
2014-09-01
Low-density lipoprotein receptor (LDLR) mRNA is unstable, but is stabilized upon extracellular signal-regulated kinase (ERK) activation, possibly through the binding of certain proteins to the LDLR mRNA 3'-untranslated region (UTR), although the detailed mechanism underlying this stability control is unclear. Here, using a proteomic approach, we show that proteins ZFP36L1 and ZFP36L2 specifically bind to the 3'-UTR of LDLR mRNA and recruit the CCR4-NOT-deadenylase complex, resulting in mRNA destabilization. We also show that the C-terminal regions of ZFP36L1 and ZFP36L2 are directly phosphorylated by p90 ribosomal S6 kinase, a kinase downstream of ERK, resulting in dissociation of the CCR4-NOT-deadenylase complex and stabilization of LDLR mRNA. We further demonstrate that targeted disruption of the interaction between LDLR mRNA and ZFP36L1 and ZFP36L2 using antisense oligonucleotides results in upregulation of LDLR mRNA and protein. These results indicate that ZFP36L1 and ZFP36L2 regulate LDLR protein levels downstream of ERK. Our results also show the usefulness of our method for identifying critical regulators of specific RNAs and the potency of antisense oligonucleotide-based therapeutics. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Yang, Di; Li, Ren; Qiu, Li-Hong; Li, Chen
2009-04-01
To quantify the IL-1 beta mRNA and IL-6 mRNA expression induced by lipopolysaccharides (LPS)extracted from Porphyromonas endodontalis(P.e) in osteoblasts, and to relate P.e-LPS to bone absorption pathogenesis in lesions of chronical apical periodontitis. MG63 was treated with different concentrations of P.e-LPS(0-50 microg/mL) for different hours(0-24h). The expression of IL-1 beta mRNA and IL-6 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR).Statistical analysis was performed using one- way ANOVA and Dunnett t test with SPSS11.0 software package. The level of IL-1 beta mRNA and IL-6 mRNA increased significantly after treatment with P.e-LPS at more than 5 microg/mL (P<0.01)and for more than 1 hour (P<0.01), which indicated that P.e-LPS induced osteoblasts to express IL-1 beta mRNA and IL-6 mRNA in dose and time dependent manners. P.e-LPS may promote bone resorption in lesions of chronical apical periodontitis by inducing IL-1 beta mRNA and IL-6 mRNA expression in osteoblasts.
Smith-Hicks, Constance L.; Cai, Peiling; Savonenko, Alena V.; Reeves, Roger H.; Worley, Paul F.
2017-01-01
Down syndrome (DS) is the leading chromosomal cause of intellectual disability, yet the neural substrates of learning and memory deficits remain poorly understood. Here, we interrogate neural networks linked to learning and memory in a well-characterized model of DS, the Ts65Dn mouse. We report that Ts65Dn mice exhibit exploratory behavior that is not different from littermate wild-type (WT) controls yet behavioral activation of Arc mRNA transcription in pyramidal neurons of the CA1 region of the hippocampus is altered in Ts65Dn mice. In WT mice, a 5 min period of exploration of a novel environment resulted in Arc mRNA transcription in 39% of CA1 neurons. By contrast, the same period of exploration resulted in only ~20% of CA1 neurons transcribing Arc mRNA in Ts65Dn mice indicating increased sparsity of the behaviorally induced ensemble. Like WT mice the CA1 pyramidal neurons of Ts65Dn mice reactivated Arc transcription during a second exposure to the same environment 20 min after the first experience, but the size of the reactivated ensemble was only ~60% of that in WT mice. After repeated daily exposures there was a further decline in the size of the reactivated ensemble in Ts65Dn and a disruption of reactivation. Together these data demonstrate reduction in the size of the behaviorally induced network that expresses Arc in Ts65Dn mice and disruption of the long-term stability of the ensemble. We propose that these deficits in network formation and stability contribute to cognitive symptoms in DS. PMID:28217086
de Araujo, G G; Gobatto, C A; de Barros Manchado-Gobatto, F; Teixeira, L Fm; Dos Reis, I Gm; Caperuto, L C; Papoti, M; Bordin, S; Cavaglieri, C R; Verlengia, R
2015-01-01
We evaluate the mRNA expression of monocarboxylate transporters 1 and 4 (MCT1 and MCT4) in skeletal muscle (soleus, red and white gastrocnemius), heart and liver tissues in mice submitted to a single bout of swimming exercise at the maximal lactate steady state workload (MLSSw). After 72 h of MLSS test, the animals were submitted to a swimming exercise session for 25 min at individual MLSSw. Tissues and muscle samples were obtained at rest (control, n=5), immediately (n=5), 5 h (n=5) and 10 h (n=5) after exercise for determination of the MCT1 and MCT4 mRNA expression (RT-PCR). The MCT1 mRNA expression in liver increased after 10 h in relation to the control, immediate and 5 h groups, but the MCT4 remained unchanged. The MCT1 mRNA expression in heart increased by 31 % after 10 h when compared to immediate, but no differences were observed in relation to the control group. No significant differences were observed for red gastrocnemius in MCT1 and MCT4 mRNA expression. However, white gastrocnemius increased MCT1 mRNA expression immediately when compared to rest, 5 and 10 h test groups. In soleus muscle, the MCT1 mRNA expression increased immediately, 5 and 10 h after exercise when compared to the control. In relation to MCT4 mRNA expression, the soleus increased immediately and 10 h after acute exercise when compared to the control group. The soleus, liver and heart were the main tissues that showed improved the MCT1 mRNA expression, indicating its important role in controlling MLSS concentration in mice.
Dai, Weijun; Li, Wencheng; Hoque, Mainul; Li, Zhuyun; Tian, Bin; Makeyev, Eugene V
2015-07-06
Nervous system (NS) development relies on coherent upregulation of extensive sets of genes in a precise spatiotemporal manner. How such transcriptome-wide effects are orchestrated at the molecular level remains an open question. Here we show that 3'-untranslated regions (3' UTRs) of multiple neural transcripts contain AU-rich cis-elements (AREs) recognized by tristetraprolin (TTP/Zfp36), an RNA-binding protein previously implicated in regulation of mRNA stability. We further demonstrate that the efficiency of ARE-dependent mRNA degradation declines in the neural lineage because of a decrease in the TTP protein expression mediated by the NS-enriched microRNA miR-9. Importantly, TTP downregulation in this context is essential for proper neuronal differentiation. On the other hand, inactivation of TTP in non-neuronal cells leads to dramatic upregulation of multiple NS-specific genes. We conclude that the newly identified miR-9/TTP circuitry limits unscheduled accumulation of neuronal mRNAs in non-neuronal cells and ensures coordinated upregulation of these transcripts in neurons.
Cellular localization of thrombopoietin mRNA in the liver by in situ hybridization.
Nomura, S; Ogami, K; Kawamura, K; Tsukamoto, I; Kudo, Y; Kanakura, Y; Kitamura, Y; Miyazaki, H; Kato, T
1997-07-01
The expression of thrombopoietin (TPO) mRNA is observed in several tissues, including liver, kidney, brain, skeletal muscle, intestine, spleen, and bone marrow. Among these organs, the highest expression of TPO mRNA is detected in the liver. We identified cells producing TPO by means of in situ hybridization of adult rat liver using digoxigenin-11-UTP-labeled cRNA probes. We found that the cells expressing TPO mRNA also expressed serum albumin mRNA. TPO mRNA was detected in parenchymal cells (hepatocytes) but not in non-parenchymal cells (including endothelial cells, epithelial cells, and so forth). To determine the location of TPO expression in embryogenesis, sections of fetal mice were further analyzed by in situ hybridization. TPO mRNA was detected only in hepatocytes of fetal liver, which was also the major site of hematopoiesis. The expression of TPO mRNA in fetal liver was observed from 12.5 days postcoitus. Northern blot analysis showed that mouse liver transcribed the same size of TPO mRNA in the fetus and in the adult. These results clearly demonstrate that hepatocytes are the primary site of TPO production in the liver from fetus to adult.
Jiang, Guangli; Qi, Yuxia
2015-05-01
The aim of the present study was to investigate the correlation of matrix metalloproteinase (MMP)-9 and tissue inhibitor of matrix metalloproteinase inhibitor (TIMP)-3 expression with spontaneous abortion (SA) during early pregnancy. The villus tissues of 30 SA cases and 20 requested abortion cases were collected during surgery and constituted the SA and normal abortion (NA) groups, respectively. The total villous RNA was extracted and the expression levels of MMP -9 and TIMP-3 mRNA were detected by reverse transcription-polymerase chain reaction (RT-PCR) assay to calculate the MMP-9/TIMP-3 mRNA ratio. The MMP-9 mRNA expression level and MMP-9/TIMP-3 mRNA ratio of the SA group were significantly higher than those of the NA group (P<0.01), while the TIMP-3 mRNA levels of the two groups were similar (P>0.05). The MMP-9 mRNA expression level of the SA group was higher than that of the NA group; thus, the MMP-9/TIMP-3 mRNA ratio was higher. These results suggest that the expression level of MMP-9 mRNA and the MMP-9/TIMP-3 mRNA ratio are associated with SA.
Bovine oocytes and early embryos express Staufen and ELAVL RNA-binding proteins.
Calder, M D; Madan, P; Watson, A J
2008-05-01
RNA-binding proteins (RBP) influence RNA editing, localization, stability and translation and may contribute to oocyte developmental competence by regulating the stability and turnover of oogenetic mRNAs. The expression of Staufen 1 and 2 and ELAVL1, ELAVL2 RNA-binding proteins during cow early development was characterized. Cumulus-oocyte complexes were collected from slaughterhouse ovaries, matured, inseminated and subjected to embryo culture in vitro. Oocyte or preimplantation embryo pools were processed for RT-PCR and whole-mount immunofluorescence analysis of mRNA expression and protein distribution. STAU1 and STAU2 and ELAVL1 mRNAs and proteins were detected throughout cow preimplantation development from the germinal vesicle (GV) oocyte to the blastocyst stage. ELAVL2 mRNAs were detectable from the GV to the morula stage, whereas ELAVL2 protein was in all stages examined and localized to both cytoplasm and nuclei. The findings provide a foundation for investigating the role of RBPs during mammalian oocyte maturation and early embryogenesis.
Serce, Nuran Bektas; Boesl, Andreas; Klaman, Irina; von Serényi, Sonja; Noetzel, Erik; Press, Michael F; Dimmler, Arno; Hartmann, Arndt; Sehouli, Jalid; Knuechel, Ruth; Beckmann, Matthias W; Fasching, Peter A; Dahl, Edgar
2012-12-13
Plasminogen activator inhibitor 1 (PAI-1) overexpression is an important prognostic and predictive biomarker in human breast cancer. SERBP1, a protein that is supposed to regulate the stability of PAI-1 mRNA, may play a role in gynaecological cancers as well, since upregulation of SERBP1 was described in ovarian cancer recently. This is the first study to present a systematic characterisation of SERBP1 expression in human breast cancer and normal breast tissue at both the mRNA and the protein level. Using semiquantitative realtime PCR we analysed SERBP1 expression in different normal human tissues (n = 25), and in matched pairs of normal (n = 7) and cancerous breast tissues (n = 7). SERBP1 protein expression was analysed in two independent cohorts on tissue microarrays (TMAs), an initial evaluation set, consisting of 193 breast carcinomas and 48 normal breast tissues, and a second large validation set, consisting of 605 breast carcinomas. In addition, a collection of benign (n = 2) and malignant (n = 6) mammary cell lines as well as breast carcinoma lysates (n = 16) were investigated for SERBP1 expression by Western blot analysis. Furthermore, applying non-radioisotopic in situ hybridisation a subset of normal (n = 10) and cancerous (n = 10) breast tissue specimens from the initial TMA were analysed for SERBP1 mRNA expression. SERBP1 is not differentially expressed in breast carcinoma compared to normal breast tissue, both at the RNA and protein level. However, recurrence-free survival analysis showed a significant correlation (P = 0.008) between abundant SERBP1 expression in breast carcinoma and favourable prognosis. Interestingly, overall survival analysis also displayed a tendency (P = 0.09) towards favourable prognosis when SERBP1 was overexpressed in breast cancer. The RNA-binding protein SERBP1 is abundantly expressed in human breast cancer and may represent a novel breast tumour marker with prognostic significance. Its potential involvement in the plasminogen activator protease cascade warrants further investigation.
Methylation of the PMEPA1 gene, a negative regulator of the androgen receptor in prostate cancer.
Sharad, Shashwat; Ravindranath, Lakshmi; Haffner, Michael C; Li, Hua; Yan, Wusheng; Sesterhenn, Isabell A; Chen, Yongmei; Ali, Amina; Srinivasan, Alagarsamy; McLeod, David G; Yegnasubramanian, Srinivasan; Srivastava, Shiv; Dobi, Albert; Petrovics, Gyorgy
2014-06-01
The prostate transmembrane protein androgen induced 1 (PMEPA1) gene is highly expressed in prostate epithelial cells and is a direct transcriptional target for the androgen receptor (AR). AR protein levels are controlled by the AR-PMEPA1 negative feedback loop through NEDD4-E3 ligase. Reduced expression of PMEPA1 observed in prostate tumors, suggests that loss of PMEPA1 may play critical roles in prostate tumorigenesis. This study focuses on epigenetic mechanisms of reduced PMEPA1 expression in the cancer of the prostate (CaP). Benign (n = 77) and matched malignant (n = 77) prostate epithelial cells were laser capture micro-dissected from optimum cutting temperature embedded frozen prostate sections from 42 Caucasian American (CA) and 35 African American (AA) cases. Purified DNA specimens were analyzed for CpG methylation of the PMEPA1 gene. PMEPA1 mRNA expression levels were evaluated by qRT-PCR. Analysis of PMEPA1 methylation and mRNA expression in the same tumor cell populations indicated a significant inverse correlation between mRNA expression and methylation in CaP (P = 0.0115). We noted higher frequency of CpG methylation within the evaluated first intronic region of the PMEPA1 gene in prostate tumors of CA men as compared with AA. In CaP cell lines, PMEPA1 expression was induced and AR protein levels were diminished in response to treatment with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (decitabine). Cell culture-based studies demonstrated that decitabine restores PMEPA1 expression in AR-positive CaP cell lines. This report reveals the potential role of PMEPA1 gene methylation in the regulation of AR stability. Thus, downregulation of PMEPA1 may result in increased AR protein levels and function in CaP cells, contributing to prostate tumorigenesis.
Methylation of the PMEPA1 gene, a negative regulator of the androgen receptor in prostate cancer
Sharad, Shashwat; Ravindranath, Lakshmi; Haffner, Michael C; Li, Hua; Yan, Wusheng; Sesterhenn, Isabell A; Chen, Yongmei; Ali, Amina; Srinivasan, Alagarsamy; McLeod, David G; Yegnasubramanian, Srinivasan; Srivastava, Shiv; Dobi, Albert; Petrovics, Gyorgy
2014-01-01
The prostate transmembrane protein androgen induced 1 (PMEPA1) gene is highly expressed in prostate epithelial cells and is a direct transcriptional target for the androgen receptor (AR). AR protein levels are controlled by the AR-PMEPA1 negative feedback loop through NEDD4-E3 ligase. Reduced expression of PMEPA1 observed in prostate tumors, suggests that loss of PMEPA1 may play critical roles in prostate tumorigenesis. This study focuses on epigenetic mechanisms of reduced PMEPA1 expression in the cancer of the prostate (CaP). Benign (n = 77) and matched malignant (n = 77) prostate epithelial cells were laser capture micro-dissected from optimum cutting temperature embedded frozen prostate sections from 42 Caucasian American (CA) and 35 African American (AA) cases. Purified DNA specimens were analyzed for CpG methylation of the PMEPA1 gene. PMEPA1 mRNA expression levels were evaluated by qRT-PCR. Analysis of PMEPA1 methylation and mRNA expression in the same tumor cell populations indicated a significant inverse correlation between mRNA expression and methylation in CaP (P = 0.0115). We noted higher frequency of CpG methylation within the evaluated first intronic region of the PMEPA1 gene in prostate tumors of CA men as compared with AA. In CaP cell lines, PMEPA1 expression was induced and AR protein levels were diminished in response to treatment with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (decitabine). Cell culture-based studies demonstrated that decitabine restores PMEPA1 expression in AR-positive CaP cell lines. This report reveals the potential role of PMEPA1 gene methylation in the regulation of AR stability. Thus, downregulation of PMEPA1 may result in increased AR protein levels and function in CaP cells, contributing to prostate tumorigenesis. PMID:24694733
Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra
2012-01-01
We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr+). The epithelial invasion of Dr+ E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by down-regulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5′-untranslated region and mapped NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5′-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3′-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. The NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. PMID:23176121
Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra
2013-02-01
We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr(+) ). The epithelial invasion of Dr(+) E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by downregulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5'-untranslated region and mapped the NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5'-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3'-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to the AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. © 2012 The Authors Journal compilation © 2012 FEBS.
Low intracellular iron increases the stability of matriptase-2.
Zhao, Ningning; Nizzi, Christopher P; Anderson, Sheila A; Wang, Jiaohong; Ueno, Akiko; Tsukamoto, Hidekazu; Eisenstein, Richard S; Enns, Caroline A; Zhang, An-Sheng
2015-02-13
Matriptase-2 (MT2) is a type II transmembrane serine protease that is predominantly expressed in hepatocytes. It suppresses the expression of hepatic hepcidin, an iron regulatory hormone, by cleaving membrane hemojuvelin into an inactive form. Hemojuvelin is a bone morphogenetic protein (BMP) co-receptor. Here, we report that MT2 is up-regulated under iron deprivation. In HepG2 cells stably expressing the coding sequence of the MT2 gene, TMPRSS6, incubation with apo-transferrin or the membrane-impermeable iron chelator, deferoxamine mesylate salt, was able to increase MT2 levels. This increase did not result from the inhibition of MT2 shedding from the cells. Rather, studies using a membrane-permeable iron chelator, salicylaldehyde isonicotinoyl hydrazone, revealed that depletion of cellular iron was able to decrease the degradation of MT2 independently of internalization. We found that lack of the putative endocytosis motif in its cytoplasmic domain largely abolished the sensitivity of MT2 to iron depletion. Neither acute nor chronic iron deficiency was able to alter the association of Tmprss6 mRNA with polyribosomes in the liver of rats indicating a lack of translational regulation by low iron levels. Studies in mice showed that Tmprss6 mRNA was not regulated by iron nor the BMP-mediated signaling with no evident correlation with either Bmp6 mRNA or Id1 mRNA, a target of BMP signaling. These results suggest that regulation of MT2 occurs at the level of protein degradation rather than by changes in the rate of internalization and translational or transcriptional mechanisms and that the cytoplasmic domain of MT2 is necessary for its regulation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Low Intracellular Iron Increases the Stability of Matriptase-2*
Zhao, Ningning; Nizzi, Christopher P.; Anderson, Sheila A.; Wang, Jiaohong; Ueno, Akiko; Tsukamoto, Hidekazu; Eisenstein, Richard S.; Enns, Caroline A.; Zhang, An-Sheng
2015-01-01
Matriptase-2 (MT2) is a type II transmembrane serine protease that is predominantly expressed in hepatocytes. It suppresses the expression of hepatic hepcidin, an iron regulatory hormone, by cleaving membrane hemojuvelin into an inactive form. Hemojuvelin is a bone morphogenetic protein (BMP) co-receptor. Here, we report that MT2 is up-regulated under iron deprivation. In HepG2 cells stably expressing the coding sequence of the MT2 gene, TMPRSS6, incubation with apo-transferrin or the membrane-impermeable iron chelator, deferoxamine mesylate salt, was able to increase MT2 levels. This increase did not result from the inhibition of MT2 shedding from the cells. Rather, studies using a membrane-permeable iron chelator, salicylaldehyde isonicotinoyl hydrazone, revealed that depletion of cellular iron was able to decrease the degradation of MT2 independently of internalization. We found that lack of the putative endocytosis motif in its cytoplasmic domain largely abolished the sensitivity of MT2 to iron depletion. Neither acute nor chronic iron deficiency was able to alter the association of Tmprss6 mRNA with polyribosomes in the liver of rats indicating a lack of translational regulation by low iron levels. Studies in mice showed that Tmprss6 mRNA was not regulated by iron nor the BMP-mediated signaling with no evident correlation with either Bmp6 mRNA or Id1 mRNA, a target of BMP signaling. These results suggest that regulation of MT2 occurs at the level of protein degradation rather than by changes in the rate of internalization and translational or transcriptional mechanisms and that the cytoplasmic domain of MT2 is necessary for its regulation. PMID:25550162
Ferreira, Rita; Borges, Vítor; Borrego, Maria José; Gomes, João Paulo
2017-07-01
Interpreting the intricate bacterial transcriptomics implies understanding the dynamic relationship established between de novo transcription and the degradation of transcripts. Here, we performed a comparative overview of gene expression levels and mRNA decay rates for different-biovar (trachoma and lymphogranuloma venereum) strains of the obligate intracellular bacterium Chlamydia trachomatis . By using RNA-sequencing to measure gene expression levels at mid developmental stage and mRNA decay rates upon rifampicin-based transcription blockage, we observed that: i ) 60-70% of the top-50 expressed genes encode proteins with unknown function and proteins involved in "Translation, ribosomal structure and biogenesis" for all strains; ii ) the expression ranking by genes' functional categories was in general concordant among different-biovar strains; iii ) the median of the half-life time (t 1/2 ) values of transcripts were 15-17 min, indicating that the degree of transcripts' stability seems to correlate with the bacterial intracellular life-style, as these values are considerably higher than the ones observed in other studies for facultative intracellular and free-living bacteria; iv ) transcript decay rates were highly heterogeneous within each C. trachomatis strain and did not correlate with steady-state expression levels; v ) only at very few instances (essentially at gene functional category level) was possible to unveil dissimilarities potentially underlying phenotypic differences between biovars. In summary, the unveiled transcriptomic scenario, marked by a general lack of correlation between transcript production and degradation and a huge inter-transcript heterogeneity in decay rates, likely reflects the challenges underlying the unique biphasic developmental cycle of C. trachomatis and its intricate interactions with the human host, which probably exacerbate the complexity of the bacterial transcription regulation.
MicroRNA-128 inhibits proliferation and invasion of glioma cells by targeting COX-2.
Lin, Yihai; Wu, Zhangyi
2018-06-05
MicroRNAs (miRNA), a class of small noncoding RNAs, regulates message RNA (mRNA) by targeting the 3'-untranslated region (3'-UTR) resulting in suppression of gene expression. In this study, we identified the expression and function of miR-128, which was found to be downregulated in glioma tissues and glioma cells by real time PCR. Overexpression of miR-128 mimics into LN229 and U251 cells could inhibit proliferation and invasion of glioma cells. However, the inhibitory effects of miR-128 mimics on the invasion and proliferation of glioma cells were reversed by overexpression of cyclooxygenase-2 (COX-2). Our data showed that COX-2 was a candidate target of miR-128. Luciferase activity of 3'-UTR of COX-2 was reduced in the presence of miR-128. Additionally, miR-128 obviously decreased COX-2 mRNA stability determined by real time PCR. Contrarily, we found that miR-128 inhibitor significantly increased the COX-2 mRNA expression, and elevated the protein expression of MMP9 and ki67, and promoted the proliferation of glioma cells. Furthermore, luciferase activity of the 3'-UTR was upregulated by miR-128 inhibitor. All of these results supported that miR-128 was a direct regulator of COX-2. Further studies proved that COX-2 was elevated in glioma tissues and its expression was negatively correlated with the levels of miR-128. These findings may establish miR-128 as a new potential target for the treatment of patients with gliomas. Copyright © 2018 Elsevier B.V. All rights reserved.
The significance of translation regulation in the stress response
2013-01-01
Background The stress response in bacteria involves the multistage control of gene expression but is not entirely understood. To identify the translational response of bacteria in stress conditions and assess its contribution to the regulation of gene expression, the translational states of all mRNAs were compared under optimal growth condition and during nutrient (isoleucine) starvation. Results A genome-scale study of the translational response to nutritional limitation was performed in the model bacterium Lactococcus lactis. Two measures were used to assess the translational status of each individual mRNA: the fraction engaged in translation (ribosome occupancy) and ribosome density (number of ribosomes per 100 nucleotides). Under isoleucine starvation, half of the mRNAs considered were translationally down-regulated mainly due to decreased ribosome density. This pattern concerned genes involved in growth-related functions such as translation, transcription, and the metabolism of fatty acids, phospholipids and bases, contributing to the slowdown of growth. Only 4% of the mRNAs were translationally up-regulated, mostly related to prophagic expression in response to stress. The remaining genes exhibited antagonistic regulations of the two markers of translation. Ribosome occupancy increased significantly for all the genes involved in the biosynthesis of isoleucine, although their ribosome density had decreased. The results revealed complex translational regulation of this pathway, essential to cope with isoleucine starvation. To elucidate the regulation of global gene expression more generally, translational regulation was compared to transcriptional regulation under isoleucine starvation and to other post-transcriptional regulations related to mRNA degradation and mRNA dilution by growth. Translational regulation appeared to accentuate the effects of transcriptional changes for down-regulated growth-related functions under isoleucine starvation although mRNA stabilization and lower dilution by growth counterbalanced this effect. Conclusions We show that the contribution of translational regulation to the control of gene expression is significant in the stress response. Post-transcriptional regulation is complex and not systematically co-directional with transcription regulation. Post-transcriptional regulation is important to the understanding of gene expression control. PMID:23985063
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagi, J.M.; Madsen, E.L.
The diversity of Rieske dioxygenase genes and short-term temporal variability in the abundance of two selected dioxygenase gene sequences were examined in a naphthalene-rich, coal tar waste-contaminated subsurface study site. Using a previously published PCR-based approach (S. M. Ni Chadhain, R. S. Norman, K. V. Pesce, J. J. Kukor, and G. J. Zylstra, Appl. Environ. Microbiol. 72: 4078-4087, 2006) a broad suite of genes was detected, ranging from dioxygenase sequences associated with Rhodococcus and Sphingomonas to 32 previously uncharacterized Rieske gene sequence clone groups. The nag genes appeared frequently (20% of the total) in two groundwater monitoring wells characterized bymore » low (similar to 10{sup 2} ppb; similar to 1 {mu} M) ambient concentrations of naphthalene. A quantitative competitive PCR assay was used to show that abundances of nag genes (and archetypal nah genes) fluctuated substantially over a 9-month period. To contrast short-term variation with long-term community stability, in situ community gene expression (dioxygenase mRNA) and biodegradation potential (community metabolism of naphthalene in microcosms) were compared to measurements from 6 years earlier. cDNA sequences amplified from total RNA extracts revealed that nah- and nag-type genes were expressed in situ, corresponding well with structural gene abundances. Despite evidence for short-term (9-month) shifts in dioxygenase gene copy number, agreement in field gene expression (dioxygenase mRNA) and biodegradation potential was observed in comparisons to equivalent assays performed 6 years earlier. Thus, stability in community biodegradation characteristics at the hemidecadal time frame has been documented for these subsurface microbial communities.« less
Son, Seung-Myoung; Ha, Sang-Yun; Yoo, Hae-Yong; Oh, Dongryul; Kim, Seok-Jin; Kim, Won-Seog; Ko, Young-Hyeh
2017-01-01
The prognostic role of MYC has been well documented in non-central nervous system diffuse large B-cell lymphoma; however, it remains controversial in central nervous system diffuse large B-cell lymphoma. To investigate the prognostic value of MYC, we analyzed the MYC protein expression by immunohistochemistry, mRNA expression by RNA in situ hybridization, and gene status by fluorescence in situ hybridization in 74 cases of central nervous system diffuse large B-cell lymphoma. Moreover, we examined the correlation between MYC translocation, mRNA expression, and protein expression. The mean percentage of MYC immunopositive cells was 49%. Using a 44% cutoff value, 49 (66%) cases showed MYC protein overexpression. The result of mRNA in situ hybridization using the RNA scope technology was obtained using the H-scoring system; the median value was 34.2. Using the cutoff value of 63.5, 16 (22%) cases showed MYC mRNA overexpression. MYC gene rearrangement was detected in five out of 68 (7%) cases. MYC translocation showed no statistically significant correlation with mRNA expression; however, all MYC translocation-positive cases showed MYC protein overexpression, with a higher mean percentage of MYC protein expression than that of translocation-negative cases (78 vs 48%, P=0.001). The level of MYC mRNA expression was moderately correlated with the level of MYC protein expression (P<0.001). The mean percentage of MYC protein expression in the high MYC mRNA group was higher than that in the low MYC mRNA group (70 vs 47%, P<0.001). A univariate analysis showed that age over 60 years, Eastern Cooperative Oncology Group (ECOG) performance status ≥2 and MYC protein overexpression were significantly associated with an increased risk of death. MYC translocation and MYC mRNA expression had no prognostic significance. On multivariate analysis, MYC protein overexpression and ECOG score retained prognostic significance.
Crooks, Daniel R.; Ghosh, Manik C.; Haller, Ronald G.; Tong, Wing-Hang
2010-01-01
Mammalian ferrochelatase, the terminal enzyme in the heme biosynthetic pathway, possesses an iron-sulfur [2Fe-2S] cluster that does not participate in catalysis. We investigated ferrochelatase expression in iron-deficient erythropoietic tissues of mice lacking iron regulatory protein 2, in iron-deficient murine erythroleukemia cells, and in human patients with ISCU myopathy. Ferrochelatase activity and protein levels were dramatically decreased in Irp2−/− spleens, whereas ferrochelatase mRNA levels were increased, demonstrating posttranscriptional regulation of ferrochelatase in vivo. Translation of ferrochelatase mRNA was unchanged in iron-depleted murine erythroleukemia cells, and the stability of mature ferrochelatase protein was also unaffected. However, the stability of newly formed ferrochelatase protein was dramatically decreased during iron deficiency. Ferrochelatase was also severely depleted in muscle biopsies and cultured myoblasts from patients with ISCU myopathy, a disease caused by deficiency of a scaffold protein required for Fe-S cluster assembly. Together, these data suggest that decreased Fe-S cluster availability because of cellular iron depletion or impaired Fe-S cluster assembly causes reduced maturation and stabilization of apo-ferrochelatase, providing a direct link between Fe-S biogenesis and completion of heme biosynthesis. We propose that decreased heme biosynthesis resulting from impaired Fe-S cluster assembly can contribute to the pathogenesis of diseases caused by defective Fe-S cluster biogenesis. PMID:19965627
Effects of bis(guanylhydrazones) on the activity and expression of ornithine decarboxylase.
Nikula, P; Alhonen-Hongisto, L; Jänne, J
1985-01-01
Derivatives of glyoxal bis(guanylhydrazone) (GBG), such as methylglyoxal bis(guanylhydrazone) and ethylglyoxal bis(guanylhydrazone), are potent inhibitors of S-adenosylmethionine decarboxylase (EC 4.1.1.50), the key enzyme required for the synthesis of spermidine and spermine. These compounds, but not the parent compound, induce a massive accumulation of putrescine, partly by blocking the conversion of putrescine into spermidine, but also by strikingly stimulating ornithine decarboxylase (ODC; EC 4.1.1.17) activity. The mechanism of the stimulation of ODC activity and enhanced accumulation of the enzyme protein apparently involved a distinct stabilization of the enzyme against intracellular degradation. However, although the parent compound GBG also stabilized ODC, it powerfully inhibited the enzyme activity and the accumulation of immunoreactive protein in cultured L1210 leukaemia cells. Kinetic considerations indicated that, in addition to the stabilization, all three compounds, GBG in particular, inhibited the expression of ODC. It is unlikely that the decreased rate of synthesis of ODC was attributable to almost unaltered amounts of mRNA in drug-treated cells, thus supporting the view that especially GBG apparently depressed the expression of ODC at some post-transcriptional level. Images PMID:4062886
NONOates regulate KCl cotransporter-1 and -3 mRNA expression in vascular smooth muscle cells.
Di Fulvio, Mauricio; Lauf, Peter K; Shah, Shalin; Adragna, Norma C
2003-05-01
Nitric oxide (NO) donors regulate KCl cotransport (KCC) activity and cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in sheep erythrocytes and in primary cultures of rat vascular smooth muscle cells (VSMCs), respectively. In this study, we used NONOates as rapid and slow NO releasers to provide direct evidence implicating NO as a regulator of KCC3 gene expression at the mRNA level. In addition, we used the expression of KCC3 mRNA to further investigate the mechanism of action of these NO donors at the cellular level. Treatment of VSMCs with rapid NO releasers, like NOC-5 and NOC-9, as well as with the direct NO-independent soluble guanylyl cyclase (sGC) stimulator YC-1, acutely increased KCC3 mRNA expression in a concentration- and time-dependent manner. The slow NO releaser NOC-18 had no effect on KCC3 gene expression. A specific NO scavenger completely prevented the NONOate-induced KCC3 mRNA expression. Inhibition of sGC with LY-83583 blocked the NONOate- and YC-1-induced KCC3 mRNA expression. This study shows that in primary cultures of rat VSMCs, the fast NO releasers NOC-9 and NOC-5, but not the slow NO releaser NOC-18, acutely upregulate KCC3 mRNA expression in a NO/sGC-dependent manner.
Local, Andrea; Zhang, Hongying; Benbatoul, Khalid D; Folger, Peter; Sheng, Xia; Tsai, Cheng-Yu; Howell, Stephen B; Rice, William G
2018-06-01
APTO-253 is a phase I clinical stage small molecule that selectively induces CDKN1A (p21), promotes G 0 -G 1 cell-cycle arrest, and triggers apoptosis in acute myeloid leukemia (AML) cells without producing myelosuppression in various animal species and humans. Differential gene expression analysis identified a pharmacodynamic effect on MYC expression, as well as induction of DNA repair and stress response pathways. APTO-253 was found to elicit a concentration- and time-dependent reduction in MYC mRNA expression and protein levels. Gene ontogeny and structural informatic analyses suggested a mechanism involving G-quadruplex (G4) stabilization. Intracellular pharmacokinetic studies in AML cells revealed that APTO-253 is converted intracellularly from a monomer to a ferrous complex [Fe(253) 3 ]. FRET assays demonstrated that both monomeric APTO-253 and Fe(253) 3 stabilize G4 structures from telomeres, MYC, and KIT promoters but do not bind to non-G4 double-stranded DNA. Although APTO-253 exerts a host of mechanistic sequelae, the effect of APTO-253 on MYC expression and its downstream target genes, on cell-cycle arrest, DNA damage, and stress responses can be explained by the action of Fe(253) 3 and APTO-253 on G-quadruplex DNA motifs. Mol Cancer Ther; 17(6); 1177-86. ©2018 AACR . ©2018 American Association for Cancer Research.
Park, Eun Jung
2011-01-01
Cyclooxygenase-2 (COX-2) is an important enzyme in inflammation. In this study, we investigated the underlying molecular mechanism of the synergistic effect of rottlerin on interleukin1β (IL-1β)-induced COX-2 expression in MDA-MB-231 human breast cancer cell line. Treatment with rottlerin enhanced IL-1β-induced COX-2 expression at both the protein and mRNA levels. Combined treatment with rottlerin and IL-1β significantly induced COX-2 expression, at least in part, through the enhancement of COX-2 mRNA stability. In addition, rottlerin and IL-1β treatment drove sustained activation of p38 Mitogen-activated protein kinase (MAPK), which is involved in induced COX-2 expression. Also, a pharmacological inhibitor of p38 MAPK (SB 203580) and transient transfection with inactive p38 MAPK inhibited rottlerin and IL-1β-induced COX-2 upregulation. However, suppression of protein kinase C δ (PKC δ) expression by siRNA or overexpression of dominant-negative PKC δ (DN-PKC-δ) did not abrogate the rottlerin plus IL-1β-induced COX-2 expression. Furthermore, rottlerin also enhanced tumor necrosis factor-α (TNF-α), phorbol myristate acetate (PMA), and lipopolysaccharide (LPS)-induced COX-2 expression. Taken together, our results suggest that rottlerin causes IL-1β-induced COX-2 upregulation through sustained p38 MAPK activation in MDA-MB-231 human breast cancer cells. PMID:21971413
Ram, P A; Waxman, D J
1992-02-15
The role of thyroid hormone in regulating the expression of the flavoprotein NADPH cytochrome P450 reductase was studied in adult rats. Depletion of circulating thyroid hormone by hypophysectomy, or more selectively, by treatment with the anti-thyroid drug methimazole led to a 75-85% depletion of hepatic microsomal P450 reductase activity and protein in both male and female rats. Thyroxine substantially restored P450 reductase activity at a dose that rendered the thyroid-depleted rats euthyroid. Microsomal P450 reductase activity in several extrahepatic tissues was also dependent on thyroid hormone, but to a lesser extent than in liver (30-50% decrease in kidney, adrenal, lung, and heart but not in testis from hypothyroid rats). Hepatic P450 reductase mRNA levels were also decreased in the hypothyroid state, indicating that the loss of P450 reductase activity is not a consequence of the associated decreased availability of the FMN and FAD cofactors of P450 reductase. Parallel analysis of S14 mRNA, which has been studied extensively as a model thyroid-regulated liver gene product, indicated that P450 reductase and S14 mRNA respond similarly to these changes in thyroid state. In contrast, while the expression of S14 and several other thyroid hormone-dependent hepatic mRNAs is stimulated by feeding a high carbohydrate, fat-free diet, hepatic P450 reductase expression was not increased by this lipogenic diet. Injection of hypothyroid rats with T3 at a supraphysiologic, receptor-saturating dose stimulated a major induction of hepatic P450 reductase mRNA that was detectable 4 h after the T3 injection, and peaked at approximately 650% of euthyroid levels by 12 h. However, this same treatment stimulated a biphasic increase in P450 reductase protein and activity that required 3 days to reach normal euthyroid levels. T3 treatment of euthyroid rats also stimulated a major induction of P450 reductase mRNA that was maximal (12-fold increase) by 12 h, but in this case no major increase in P450 reductase protein or activity was detectable over a 3-day period. Together, these studies establish that thyroid hormone regulates P450 reductase expression by pretranslational mechanisms. They also suggest that other regulatory mechanisms, which may involve changes in P450 reductase protein stability and/or changes in the translational efficiency of its mRNA, are likely to occur.
Expression of calmodulin mRNA in rat olfactory neuroepithelium.
Biffo, S; Goren, T; Khew-Goodall, Y S; Miara, J; Margolis, F L
1991-04-01
A calmodulin (CaM) cDNA was isolated by differential hybridization screening of a lambda gt10 library prepared from rat olfactory mucosa. This cDNA fragment, containing most of the open reading frame of the rat CaMI gene, was subcloned and used to characterize steady-state expression of CaM mRNA in rat olfactory neuroepithelium and bulb. Within the bulb mitral cells are the primary neuronal population expressing CaM mRNA. The major CaM mRNA expressed in the olfactory mucosa is 1.7 kb with smaller contributions from mRNAs of 4.0 and 1.4 kb. CaM mRNA was primarily associated with the olfactory neurons and, despite the cellular complexity of the tissue and the known involvement of CaM in diverse cellular processes, was only minimally evident in sustentacular cells, gland cells or respiratory epithelium. Following bulbectomy CaM mRNA declines in the olfactory neuroepithelium as does olfactory marker protein (OMP) mRNA. In contrast to the latter, CaM mRNA makes a partial recovery by one month after surgery. These results, coupled with those from in situ hybridization, indicate that CaM mRNA is expressed in both mature and immature olfactory neurons. The program regulating CaM gene expression in olfactory neurons is distinct from those controlling expression of B50/GAP43 in immature, or OMP in mature, neurons respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morioka, Norimitsu, E-mail: mnori@hiroshima-u.ac.jp; Tomori, Mizuki; Zhang, Fang Fang
Under physiological conditions, astrocytes maintain homeostasis in the CNS. Following inflammation and injury to the CNS, however, activated astrocytes produce neurotoxic molecules such as cytokines and chemokines, amplifying the initial molecular-cellular events evoked by inflammation and injury. Nuclear receptors REV-ERBα and REV-ERBβ (REV-ERBs) are crucial in the regulation of inflammation- and metabolism-related gene transcription. The current study sought to elucidate a role of REV-ERBs in rat C6 astroglial cells on the expression of inflammatory molecules following stimulation with the neuroinflammatory cytokine tumor necrosis factor (TNF). Stimulation of C6 cells with TNF (10 ng/ml) significantly increased the mRNA expression of CCL2, interleukin-6more » (IL-6), inducible nitric oxide synthase (iNOS), and matrix metalloprotease (MMP)-9, but not fibroblast growth factor-2 (FGF-2), cyclooxygenase-2 (COX-2) and MMP-2. Treatment with either REV-ERB agonists GSK4112 or SR9009 significantly blocked TNF-induced upregulation of CCL2 mRNA and MMP-9 mRNA, but not IL-6 mRNA and iNOS mRNA expression. Furthermore, treatment with RGFP966, a selective histone deacetylase 3 (HDAC3) inhibitor, potently reversed the inhibitory effects of GSK4112 on TNF-induced expression of MMP-9 mRNA, but not CCL2 mRNA. Expression of Rev-erbs mRNA in C6 astroglial cells, primary cultured rat cortical and spinal astrocytes was confirmed by reverse transcription polymerase chain reaction. Together, the findings demonstrate an anti-inflammatory effect, downregulating of MMP-9 and CCL2 transcription, of astroglial REV-ERBs activation through HDAC3-dependent and HDAC3-independent mechanisms. - Highlights: • Rev-erbα mRNA and Rev-erbβ mRNA are expressed in C6 astroglial cells. • TNF increases the expression of CCL2, IL-6, MMP-9 and iNOS mRNA. • REV-ERB activation inhibits CCL2 mRNA and MMP-9 mRNA expression. • HDAC3 activity is involved in the inhibitory effect of REV-ERB on MMP-9 induction.« less
Urinary MicroRNA as Biomarker in Renal Transplantation.
van de Vrie, M; Deegens, J K; Eikmans, M; van der Vlag, J; Hilbrands, L B
2017-05-01
Urine represents a noninvasive source in which proteins and nucleic acids can be assessed. Such analytes may function as biomarkers to monitor kidney graft pathology at every desired frequency, thereby providing a time window to prevent graft damage by therapeutic intervention. Recently, several proteins have been measured in urine as markers of graft injury. However, the specificity is limited, and measuring urinary proteins generally lacks the potential to predict early kidney graft damage. Currently, urinary mRNA and microRNA are being investigated to evaluate the prognostic value of changes in gene expression during the initial stages of graft damage. At such time point, a change in treatment regimen and dosage is expected to have maximum potency to minimize future decline in graft function. Both mRNA and microRNAs have shown promising results in both detection and prediction of graft injury. An advantage of microRNAs compared to mRNA molecules is their stability, a characteristic that is beneficial when working with urine samples. In this review, we provide the current state of urinary biomarkers in renal transplantation, with a focus on urinary microRNA. In addition, we discuss the methods used to study urinary microRNA expression. © 2016 The Authors. American Journal of Transplantation published by Wiley Periodicals, Inc. on behalf of American Society of Transplant Surgeons.
Posttranscriptional regulation of human iNOS by the NO/cGMP pathway.
Pérez-Sala, D; Cernuda-Morollón, E; Díaz-Cazorla, M; Rodríguez-Pascual, F; Lamas, S
2001-03-01
Nitric oxide (NO) and cGMP may exert positive or negative effects on inducible NO synthase (iNOS) expression. We have explored the influence of the NO/cGMP pathway on iNOS levels in human mesangial cells. Inhibition of NOS activity during an 8-h stimulation with IL-1beta plus tumor necrosis factor (TNF)-alpha reduced iNOS levels, while NO donors amplified iNOS induction threefold. However, time-course studies revealed a subsequent inhibitory effect of NO donors on iNOS protein and mRNA levels. This suggests that NO may contribute both to iNOS induction and downregulation. Soluble guanylyl cyclase (sGC) activation may be involved in these effects. Inhibition of sGC attenuated IL-1beta/TNF-alpha-elicited iNOS induction and reduced NO-driven amplification. Interestingly, cGMP analogs also modulated iNOS protein and mRNA levels in a biphasic manner. Inhibition of transcription unveiled a negative posttranscriptional modulation of the iNOS transcript by NO and cGMP at late times of induction. Supplementation with 8-bromo-cGMP (8-BrcGMP) reduced iNOS mRNA stability by 50%. These observations evidence a complex feedback regulation of iNOS expression, in which posttranscriptional mechanisms may play an important role.
RNA methylation in nuclear pre-mRNA processing.
Covelo-Molares, Helena; Bartosovic, Marek; Vanacova, Stepanka
2018-06-19
Eukaryotic RNA can carry more than 100 different types of chemical modifications. Early studies have been focused on modifications of highly abundant RNA, such as ribosomal RNA and transfer RNA, but recent technical advances have made it possible to also study messenger RNA (mRNA). Subsequently, mRNA modifications, namely methylation, have emerged as key players in eukaryotic gene expression regulation. The most abundant and widely studied internal mRNA modification is N 6 -methyladenosine (m 6 A), but the list of mRNA chemical modifications continues to grow as fast as interest in this field. Over the past decade, transcriptome-wide studies combined with advanced biochemistry and the discovery of methylation writers, readers, and erasers revealed roles for mRNA methylation in the regulation of nearly every aspect of the mRNA life cycle and in diverse cellular, developmental, and disease processes. Although large parts of mRNA function are linked to its cytoplasmic stability and regulation of its translation, a number of studies have begun to provide evidence for methylation-regulated nuclear processes. In this review, we summarize the recent advances in RNA methylation research and highlight how these new findings have contributed to our understanding of methylation-dependent RNA processing in the nucleus. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications. © 2018 The Authors. WIREs RNA published by Wiley Periodicals, Inc.
A pseudogene long noncoding RNA network regulates PTEN transcription and translation in human cells
Johnsson, Per; Ackley, Amanda; Vidarsdottir, Linda; Lui, Weng-Onn; Corcoran, Martin; Grandér, Dan; Morris, Kevin V.
2013-01-01
PTEN is a tumor suppressor gene that has been shown to be under the regulatory control of a PTEN pseudogene expressed noncoding RNA, PTENpg1. Here, we characterize a previously unidentified PTENpg1 encoded antisense RNA (asRNA), which regulates PTEN transcription and PTEN mRNA stability. We find two PTENpg1 asRNA isoforms, alpha and beta. The alpha isoform functions in trans, localizes to the PTEN promoter, and epigenetically modulates PTEN transcription by the recruitment of DNMT3a and EZH2. In contrast, the beta isoform interacts with PTENpg1 through an RNA:RNA pairing interaction, which affects PTEN protein output via changes of PTENpg1 stability and microRNA sponge activity. Disruption of this asRNA-regulated network induces cell cycle arrest and sensitizes cells to doxorubicin, suggesting a biological function for the respective PTENpg1 expressed asRNAs. PMID:23435381
A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells.
Johnsson, Per; Ackley, Amanda; Vidarsdottir, Linda; Lui, Weng-Onn; Corcoran, Martin; Grandér, Dan; Morris, Kevin V
2013-04-01
PTEN is a tumor-suppressor gene that has been shown to be under the regulatory control of a PTEN pseudogene expressed noncoding RNA, PTENpg1. Here, we characterize a previously unidentified PTENpg1-encoded antisense RNA (asRNA), which regulates PTEN transcription and PTEN mRNA stability. We find two PTENpg1 asRNA isoforms, α and β. The α isoform functions in trans, localizes to the PTEN promoter and epigenetically modulates PTEN transcription by the recruitment of DNA methyltransferase 3a and Enhancer of Zeste. In contrast, the β isoform interacts with PTENpg1 through an RNA-RNA pairing interaction, which affects PTEN protein output through changes of PTENpg1 stability and microRNA sponge activity. Disruption of this asRNA-regulated network induces cell-cycle arrest and sensitizes cells to doxorubicin, which suggests a biological function for the respective PTENpg1 expressed asRNAs.
Lindefors, N; Brene, S; Herrera-Marschitz, M; Persson, H
1989-01-01
In situ hybridization histochemistry and RNA blots were used to study the expression of glutamic acid decarboxylase (GAD) mRNA in rats with or without a unilateral lesion of midbrain dopamine neurons. Two populations of GAD mRNA positive neurons were found in the intact caudate-putamen, substantia nigra and fronto-parietal cortex. In caudate-putamen, only one out of ten of the GAD mRNA positive neurons expressed high levels, while in substantia nigra every second of the positive neurons expressed high levels of GAD mRNA. Relatively few, but intensively labelled neurons were found in the intact fronto-parietal cerebral cortex. In addition, one out of six of the GAD mRNA positive neurons in the fronto-parietal cortex showed a low labeling. On the ipsilateral side, the forebrain dopamine deafferentation induced an increase in the number of neurons expressing high levels of GAD mRNA in caudate-putamen, and a decrease in fronto-parietal cortex. A smaller decrease was also seen in substantia nigra. However, the total number of GAD mRNA positive neurons were not significantly changed in any of these brain regions. The changes in the levels of GAD mRNA after the dopamine lesion were confirmed by RNA blot analysis. Hence, midbrain dopamine neurons appear to control neuronal expression of GAD mRNA by a tonic down-regulation in a fraction of GAD mRNA positive neurons in caudate-putamen, and a tonic up-regulation in a fraction of GAD mRNA positive neurons in fronto-parietal cortex and substantia nigra.
Martinez, Renata M.; Pinho-Ribeiro, Felipe A.; Steffen, Vinicius S.; Silva, Thais C. C.; Caviglione, Carla V.; Bottura, Carolina; Fonseca, Maria J. V.; Vicentini, Fabiana T. M. C.; Vignoli, Josiane A.; Baracat, Marcela M.; Georgetti, Sandra R.; Verri, Waldiceu A.; Casagrande, Rubia
2016-01-01
Naringenin (NGN) exhibits anti-inflammatory and antioxidant activities, but it remains undetermined its topical actions against ultraviolet B (UVB)-induced inflammation and oxidative stress in vivo. The purpose of this study was to evaluate the physicochemical and functional antioxidant stability of NGN containing formulations, and the effects of selected NGN containing formulation on UVB irradiation-induced skin inflammation and oxidative damage in hairless mice. NGN presented ferric reducing power, ability to scavenge 2,2′-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) and hydroxyl radical, and inhibited iron-independent and dependent lipid peroxidation. Among the three formulations containing NGN, only the F3 kept its physicochemical and functional stability over 180 days. Topical application of F3 in mice protected from UVB-induced skin damage by inhibiting edema and cytokine production (TNF-α, IL-1β, IL-6, and IL-10). Furthermore, F3 inhibited superoxide anion and lipid hydroperoxides production and maintained ferric reducing and ABTS scavenging abilities, catalase activity, and reduced glutathione levels. In addition, F3 maintained mRNA expression of cellular antioxidants glutathione peroxidase 1, glutathione reductase and transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), and induced mRNA expression of heme oxygenase-1. In conclusion, a formulation containing NGN may be a promising approach to protecting the skin from the deleterious effects of UVB irradiation. PMID:26741806
Multiple-Targeted Graphene-based Nanocarrier for Intracellular Imaging of mRNAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ying; Li, Zhaohui; Liu, Misha
Simultaneous detection and imaging of multiple intracellular messenger RNA (mRNAs) hold great significant for early cancer diagnostics and preventive medicine development. Herein, we propose a multiple-targeted graphene oxide (GO) nanocarrier that can simultaneously detect and image different type mRNAs in living cells. First of all, in vitro detection of multiple targets have been realized successfully based on the multiple-targeted GO nanocarrier with linear relationship ranging from 3 nM to 200 nM, as well as sensitive detection limit of 1.84 nM for manganese superoxide dismutase (Mn-SOD) mRNA and 2.45 nM for β-actin mRNA. Additionally, this nanosensing platform composed of fluorescent labeledmore » single strand DNA probes and GO nanocarrier can identify Mn-SOD mRNA and endogenous mRNA of β-actin in living cancer cells, showing rapid response, high specificity, nuclease stability, and good biocompatibility during the cell imaging. Thirdly, changes of the expression levels of mRNA in living cells before or after the drug treatment can be monitored successfully. By using multiple ssDNA as probes and GO nanocarrier as the cellular delivery cargo, the proposed simultaneous multiple-targeted sensing platform will be of great potential as a powerful tool for intracellular trafficking process from basic research to clinical diagnosis.« less
Chen, Chuan; Zhang, Xu; Shang, Fei; Sun, Haipeng; Sun, Baolin; Xue, Ting
2015-08-01
Staphylococcus aureus is an important Gram-positive pathogen responsible for numerous diseases ranging from localized skin infections to life-threatening systemic infections. The virulence of S. aureus is essentially determined by a wide spectrum of factors, including cell wall-associated proteins and secreted toxins that are precisely controlled in response to environmental changes. GGDEF domain protein from Staphylococcus (GdpS) is the only conserved staphylococcal GGDEF domain protein that is involved not in c-di-GMP synthesis but in the virulence regulation of S. aureus NCTC8325. Our previous study showed that the inactivation of gdpS generates an extensive change of virulence factors together with, in particular, a major Spa (protein A) surface protein. As reported, sarS is a direct positive regulator of spa. The decreased transcript levels of sarS in the gdpS mutant compared with the parental NCTC8325 strain suggest that gdpS affects spa through interaction with sarS. In this study, site mutation and complementary experiments showed that the translation product of gdpS was not involved in the regulation of transcript levels of sarS. We found that gdpS functioned through direct RNA-RNA base pairing with the 5' untranslated region (5'UTR) of sarS mRNA and that a putative 18-nucleotide region played a significant role in the regulatory process. Furthermore, the mRNA half-life analysis of sarS in the gdpS mutant showed that gdpS positively regulates the mRNA levels of sarS by contributing to the stabilization of sarS mRNA, suggesting that gdpS mRNA may regulate spa expression in an RNA-dependent pathway. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Kreth, Simone; Thon, Niklas; Eigenbrod, Sabina; Lutz, Juergen; Ledderose, Carola; Egensperger, Rupert; Tonn, Joerg C.; Kretzschmar, Hans A.; Hinske, Ludwig C.; Kreth, Friedrich W.
2011-01-01
Background We analyzed prospectively whether MGMT (O6-methylguanine-DNA methyltransferase) mRNA expression gains prognostic/predictive impact independent of MGMT promoter methylation in malignant glioma patients undergoing radiotherapy with concomitant and adjuvant temozolomide or temozolomide alone. As DNA-methyltransferases (DNMTs) are the enzymes responsible for setting up and maintaining DNA methylation patterns in eukaryotic cells, we analyzed further, whether MGMT promoter methylation is associated with upregulation of DNMT expression. Methodology/Principal Findings Adult patients with a histologically proven malignant astrocytoma (glioblastoma: N = 53, anaplastic astrocytoma: N = 10) were included. MGMT promoter methylation was determined by methylation-specific PCR (MSP) and sequencing analysis. Expression of MGMT and DNMTs mRNA were analysed by real-time qPCR. Prognostic factors were obtained from proportional hazards models. Correlation between MGMT mRNA expression and MGMT methylation status was validated using data from the Cancer Genome Atlas (TCGA) database (N = 229 glioblastomas). Low MGMT mRNA expression was strongly predictive for prolonged time to progression, treatment response, and length of survival in univariate and multivariate models (p<0.0001); the degree of MGMT mRNA expression was highly correlated with the MGMT promoter methylation status (p<0.0001); however, discordant findings were seen in 12 glioblastoma patients: Patients with methylated tumors with high MGMT mRNA expression (N = 6) did significantly worse than those with low transcriptional activity (p<0.01). Conversely, unmethylated tumors with low MGMT mRNA expression (N = 6) did better than their counterparts. A nearly identical frequency of concordant and discordant findings was obtained by analyzing the TCGA database (p<0.0001). Expression of DNMT1 and DNMT3b was strongly upregulated in tumor tissue, but not correlated with MGMT promoter methylation and MGMT mRNA expression. Conclusions/Significance MGMT mRNA expression plays a direct role for mediating tumor sensitivity to alkylating agents. Discordant findings indicate methylation-independent pathways of MGMT expression regulation. DNMT1 and DNMT3b are likely to be involved in CGI methylation. However, their exact role yet has to be defined. PMID:21365007
De Ita-Pérez, Dalia; Vázquez-Martínez, Olivia; Villalobos-Leal, Mónica
2014-01-01
Daytime restricted feeding (DRF) is an experimental protocol that influences the circadian timing system and underlies the expression of a biological clock known as the food entrained oscillator (FEO). Liver is the organ that reacts most rapidly to food restriction by adjusting the functional relationship between the molecular circadian clock and the metabolic networks. γ-Aminobutyric acid (GABA) is a signaling molecule in the liver, and able to modulate the cell cycle and apoptosis. This study was aimed at characterizing the expression and activity of the mostly mitochondrial enzyme GABA transaminase (GABA-T) during DRF/FEO expression. We found that DRF promotes a sustained increase of GABA-T in the liver homogenate and mitochondrial fraction throughout the entire day-night cycle. The higher amount of GABA-T promoted by DRF was not associated to changes in GABA-T mRNA or GABA-T activity. The GABA-T activity in the mitochondrial fraction even tended to decrease during the light period. We concluded that DRF influences the daily variations of GABA-T mRNA levels, stability, and catalytic activity of GABA-T. These data suggest that the liver GABAergic system responds to a metabolic challenge such as DRF and the concomitant appearance of the FEO. PMID:24809054
De Ita-Pérez, Dalia; Méndez, Isabel; Vázquez-Martínez, Olivia; Villalobos-Leal, Mónica; Díaz-Muñoz, Mauricio
2014-01-01
Daytime restricted feeding (DRF) is an experimental protocol that influences the circadian timing system and underlies the expression of a biological clock known as the food entrained oscillator (FEO). Liver is the organ that reacts most rapidly to food restriction by adjusting the functional relationship between the molecular circadian clock and the metabolic networks. γ-Aminobutyric acid (GABA) is a signaling molecule in the liver, and able to modulate the cell cycle and apoptosis. This study was aimed at characterizing the expression and activity of the mostly mitochondrial enzyme GABA transaminase (GABA-T) during DRF/FEO expression. We found that DRF promotes a sustained increase of GABA-T in the liver homogenate and mitochondrial fraction throughout the entire day-night cycle. The higher amount of GABA-T promoted by DRF was not associated to changes in GABA-T mRNA or GABA-T activity. The GABA-T activity in the mitochondrial fraction even tended to decrease during the light period. We concluded that DRF influences the daily variations of GABA-T mRNA levels, stability, and catalytic activity of GABA-T. These data suggest that the liver GABAergic system responds to a metabolic challenge such as DRF and the concomitant appearance of the FEO.
Expression and clinical significance of ATM and PUMA gene in patients with colorectal cancer.
Xiong, Hui; Zhang, Jiangnan
2017-12-01
The expression of ataxia-telangiectasia mutated (ATM) and p53 upregulated modulator of apoptosis (PUMA) genes in patients with colorectal cancer were investigated, to explore the correlation between the expression of ATM and PUMA and tumor development, to evaluate the clinical significance of ATM and PUMA in the treatment of colorectal cancer. Quantitative real-time PCR was used to detect the expression of ATM and PUMA in tumor tissue and adjacent healthy tissue of 67 patients with colorectal cancer and in normal colorectal tissue of 33 patients with colorectal polyps at mRNA level. The expression level of ATM mRNA in colorectal cancer tissues was significantly higher than that in normal mucosa tissues and adjacent non-cancerous tissue (P≤0.05), while no significant differences in expression level of ATM mRNA were found between normal mucosa tissues and adjacent noncancerous tissue (P=0.07). There was a negative correlation between the expression of ATM mRNA and the degree of differentiation of colorectal cancer (r= -0.312, P=0.013), while expression level of ATM mRNA was not significantly correlated with the age, sex, tumor invasion, lymph node metastasis or clinical stage (P>0.05). Expression levels of PUMA mRNA in colorectal cancer tissues, adjacent noncancerous tissue and normal tissues were 0.68±0.07, 0.88±0.04 and 1.76±0.06, respectively. Expression level of PUMA mRNA in colorectal cancer tissues and adjacent noncancerous tissue was significantly lower than that in normal colorectal tissues (P<0.05). The results showed that ATM mRNA is expressed abnormally in colorectal cancer tissues. Expression of PUMA gene in colorectal carcinoma is downregulated, and is negatively correlated with the occurrence of cancer.
Fuentes, Eduardo N; Safian, Diego; Valdés, Juan Antonio; Molina, Alfredo
2013-08-01
In the present study, different reference genes were isolated, and their stability in the skeletal muscle of fine flounder subjected to different nutritional states was assessed using geNorm and NormFinder. The combinations between 18S and ActB; Fau and 18S; and Fau and Tubb were chosen as the most stable gene combinations in feeding, long-term fasting and refeeding, and short-term refeeding conditions, respectively. In all periods, ActB was identified as the single least stable gene. Subsequently, the expression of the myosin heavy chain (MYH) and the insulin-like growth factor-I receptor (IGF-IR) was assessed. A large variation in MYH and IGF-IR expression was found depending on the reference gene that was chosen for normalizing the expression of both genes. Using the most stable reference genes, mRNA levels of MYH decreased and IGF-IR increased during fasting, with both returning to basal levels during refeeding. However, the drop in mRNA levels for IGF-IR occurred during short-term refeeding, in contrast with the observed events in the expression of MYH, which occurred during long-term refeeding. The present study highlights the vast differences incurred when using unsuitable versus suitable reference genes for normalizing gene expression, pointing out that normalization without proper validation could result in a bias of gene expression.
Selective cortical VGLUT1 increase as a marker for antidepressant activity.
Moutsimilli, Larissa; Farley, Severine; Dumas, Sylvie; El Mestikawy, Salah; Giros, Bruno; Tzavara, Eleni T
2005-11-01
The two recently characterized vesicular glutamate transporters (VGLUT) presynaptically mark and differentiate two distinct excitatory neuronal populations and thus define a cortical and a subcortical glutamatergic system (VGLUT1 and VGLUT2 positive, respectively). These two systems might be differentially implicated in brain neuropathology. Still, little is known on the modalities of VGLUT1 and VGLUT2 regulations in response to pharmacological or physiological stimuli. Given the importance of cortical neuronal activity in psychosis we investigated VGLUT1 mRNA and protein expression in response to chronic treatment with commonly prescribed psychotropic medications. We show that agents with antidepressant activity, namely the antidepressants fluoxetine and desipramine, the atypical antipsychotic clozapine, and the mood stabilizer lithium increased VGLUT1 mRNA expression in neurons of the cerebral cortex and the hippocampus and in concert enhanced VGLUT1 protein expression in their projection fields. In contrast the typical antipsychotic haloperidol, the cognitive enhancers memantine and tacrine, and the anxiolytic diazepam were without effect. We suggest that VGLUT1 could be a useful marker for antidepressant activity. Furthermore, adaptive changes in VGLUT1 positive neurons could constitute a common functional endpoint for structurally unrelated antidepressants, representing promising antidepressant targets in tracking specificity, mechanism, and onset at action.
Wang, Ye; Liu, Min; Cheng, Wei-bo; He, Gui-qiong; Li, Fan; Liao, Zhi-gang
2008-08-01
To study the changes of HSP 70 mRNA and c-fos mRNA expression and to find a method to differentiate antemortem from postmortem electrocution. Fifteen New Zealand rabbits were randomly divided into three groups, the antemortem electrocution group, the postmortem electrocution group, and the control group. Each group consists of five rabbits. The levels of HSP 70 mRNA and c-fos mRNA in skeletal muscle and cardiac muscle were examined with quantitative fluorescent RT-PCR. The levels of HSP 70 mRNA and c-fos mRNA in the antemortem electrocution group increased significantly (P<0.05), compared with that of the postmortem electrocution group. The changes of HSP 70 mRNA and c-fos mRNA expression in skeletal muscle and cardiac muscle can be used as an indicator to distinguish antemortem from postmortem electrocution.
Sugihara, T; Kobori, A; Imaeda, H; Tsujikawa, T; Amagase, K; Takeuchi, K; Fujiyama, Y; Andoh, A
2010-01-01
Recent studies have demonstrated that the complement system participates in the regulation of T cell functions. To address the local biosynthesis of complement components in inflammatory bowel disease (IBD) mucosa, we investigated C3 and interleukin (IL)-17 mRNA expression in mucosal samples obtained from patients with IBD. The molecular mechanisms underlying C3 induction were investigated in human colonic subepithelial myofibroblasts (SEMFs). IL-17 and C3 mRNA expressions in the IBD mucosa were evaluated by real-time polymerase chain reaction. The C3 levels in the supernatant were determined by enzyme-linked immunosorbent assay. IL-17 and C3 mRNA expressions were elevated significantly in the active lesions from ulcerative colitis (UC) and Crohn's disease (CD) patients. There was a significant positive correlation between IL-17 and C3 mRNA expression in the IBD mucosa. IL-17 stimulated a dose- and time-dependent increase in C3 mRNA expression and C3 secretion in colonic SEMFs. The C3 molecules secreted by colonic SEMFs were a 115-kDa α-chain linked to a 70-kDa β-chain by disulphide bonds, which was identical to serum C3. The IL-17-induced C3 mRNA expression was blocked by p42/44 mitogen-activated protein kinase (MAPK) inhibitors (PD98059 and U0216) and a p38 MAPK inhibitor (SB203580). Furthermore, IL-17-induced C3 mRNA expression was inhibited by an adenovirus containing a stable mutant form of IκBα. C3 and IL-17 mRNA expressions are enhanced, with a strong correlation, in the inflamed mucosa of IBD patients. Part of these clinical findings was considered to be mediated by the colonic SEMF response to IL-17. PMID:20089077
Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.
Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A
2010-01-01
Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues. Copyright 2009 Elsevier Inc. All rights reserved.
Giebler, Maria; Greither, Thomas; Müller, Lisa; Mösinger, Carina; Behre, Hermann M
2018-01-01
In about half the cases of involuntary childlessness, a male infertility factor is involved. The PIWI-LIKE genes, a subclade of the Argonaute protein family, are involved in RNA silencing and transposon control in the germline. Knockout of murine Piwi-like 1 and 2 homologs results in complete infertility in males. The aim of this study was to analyze whether the mRNA expression of human PIWI-LIKE 1-4 genes is altered in ejaculated spermatozoa of men with impaired sperm characteristics. Ninety male participants were included in the study, among which 47 were with normozoospermia, 36 with impaired semen characteristics according to the World Health Organization (WHO) manual, 5 th edition, and 7 with azoospermia serving as negative control for the PIWI-LIKE 1-4 mRNA expression in somatic cells in the ejaculate. PIWI-LIKE 1-4 mRNA expression in the ejaculated spermatozoa of the participants was measured by quantitative real-time PCR. In nonazoospermic men, PIWI-LIKE 1-4 mRNA was measurable in ejaculated spermatozoa in different proportions. PIWI-LIKE 1 (100.0%) and PIWI-LIKE 2 (49.4%) were more frequently expressed than PIWI-LIKE 3 (9.6%) and PIWI-LIKE 4 (15.7%). Furthermore, a decreased PIWI-LIKE 2 mRNA expression showed a significant correlation with a decreased sperm count (P = 0.022) and an increased PIWI-LIKE 1 mRNA expression with a decreased progressive motility (P = 0.048). PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression exhibited a significant association with impaired sperm characteristics and may be a useful candidate for the evaluation of the impact of PIWI-LIKE 1-4 mRNA expression on male infertility.
Ni, Haifeng; Zhou, Zhen; Jiang, Bo; Yuan, Xiaoyang; Cao, Xiaolin; Huang, Guangwu; Li, Yong
2017-03-01
This study aimed to investigate the inactivation of the parkin gene by promoter methylation and its relationship with genome instability in nasopharyngeal carcinoma. Parkin was considered as a tumor suppressor gene in various types of cancers. However, its role in nasopharyngeal carcinoma is unexplored. Genomic instabilities were detected in nasopharyngeal carcinoma tissues by the random amplified polymorphic DNA. The methylation-specific polymerase chain reaction, semi-quantitative reverse transcription polymerase chain reaction, and immunohistochemical analysis were used to detect methylation and mRNA and protein expression of parkin in 54 cases of nasopharyngeal carcinoma tissues and 16 cases of normal nasopharyngeal epithelia tissues, and in 5 nasopharyngeal carcinoma cell lines (CNE1, CNE2, TWO3, C666, and HONE1) and 1 normal nasopharyngeal epithelia cell line (NP69). mRNA expression of parkin in CNE1 and CNE2 was analyzed before and after methyltransferase inhibitor 5-aza-2-deoxycytidine treatment. The relationship between promoter methylation and mRNA expression, demethylation and mRNA expression, and mRNA and protein expression of the gene and clinical factors and genomic instabilities were analyzed. The mRNA and protein expression levels were significantly reduced in 54 cases of human nasopharyngeal carcinoma compared with 16 cases of normal nasopharyngeal epithelia. Parkin-methylated cases showed significantly lower mRNA and protein expression levels compared with unmethylated cases. After 5-aza-2-deoxycytidine treatment, parkin mRNA expression was restored in CNE1 and CNE2; 92.59% (50/54) of nasopharyngeal carcinoma demonstrated genomic instability. Parkin is frequently inactivated by promoter methylation, and its mRNA and protein expression correlate with lymph node metastasis and genomic instability. Parkin deficiency probably promotes tumorigenesis in nasopharyngeal carcinoma.
Hu, Yan; Liu, Hongxiang; Song, Chi; Xu, Wenjuan; Ji, Gaige; Zhu, Chunhong; Shu, Jingting; Li, Huifang
2015-03-15
In this study, the ontogeny of body and liver weight and the pattern of related gene mRNA expression in the hypothalamus-pituitary growth axis (HPGA) of two different duck breeds (Anas platyrhynchos domestica) were compared during embryonic and post-hatch development. Duck hypothalamic growth hormone release hormone (GHRH), somatostatin (SS), pituitary growth hormone (GH), liver growth hormone receptor (GHR) and insulin-like growth factor-I (IGF-1) mRNA were first detected on the 13th embryonic day. During early duck development, SS maintained a lower expression status, whereas the other four genes exhibited highly significant variations in an age-specific manner. Highly significant breed specificity was observed with respect to hepatic IGF-1 mRNA expression, which showed a significant breed-age interaction effect. Compared with previous studies on chickens, significant species differences were observed regarding the mRNA expression of bird embryonic HPGA-related genes. During early development, highly significant breed and age specificity were observed with respect to developmental changes in body and liver weight, and varying degrees of significant linear correlation were found between these performances and the mRNA expression of HPGA-related genes in the duck HPGA. These results suggest that different genetic backgrounds may lead to differences in duck growth and HPGA-related gene mRNA expression, and the differential mRNA expression of related genes in the duck HPGA may be particularly important in the early growth of ducks. Furthermore, hepatic IGF-1 mRNA expression presented highly significant breed specificity, and evidence suggests the involvement of hepatic IGF-1 in mediating genetic effects on embryo and offspring growth in ducks. Copyright © 2015 Elsevier B.V. All rights reserved.
Hsp27 and F-box protein β-TrCP promote degradation of mRNA decay factor AUF1.
Li, Mei-Ling; Defren, Jennifer; Brewer, Gary
2013-06-01
Activation of the mitogen-activated protein (MAP) pathway kinases p38 and MK2 induces phosphorylation of the chaperone Hsp27 and stabilization of mRNAs containing AU-rich elements (AREs) (ARE-mRNAs). Likewise, expression of phosphomimetic mutant forms of Hsp27 also stabilizes ARE-mRNAs. It appears to perform this function by promoting degradation of the ARE-mRNA decay factor AUF1 by proteasomes. In this study, we examined the molecular mechanism linking Hsp27 phosphorylation to AUF1 degradation by proteasomes. AUF1 is a target of β-TrCP, the substrate recognition subunit of the E3 ubiquitin ligase Skp1-cullin-F-box protein complex, SCF(β-TrCP). Depletion of β-TrCP stabilized AUF1. In contrast, overexpression of β-TrCP enhanced ubiquitination and degradation of AUF1 and led to stabilization of reporter mRNAs containing cytokine AREs. Enhanced AUF1 degradation required expression of phosphomimetic mutant forms of both Hsp27 and AUF1. Our results suggest that a signaling axis composed of p38 MAP kinase-MK2-Hsp27-β-TrCP may promote AUF1 degradation by proteasomes and stabilization of cytokine ARE-mRNAs.
Martin, I; Giralt, M; Viñas, O; Iglesias, R; Mampel, T; Villarroya, F
1989-01-01
Uncoupling-protein (UCP) mRNA expression is decreased to 15% of virgin control levels between days 10 and 15 of pregnancy, and remains at these low values during late pregnancy and lactation. Abrupt weaning of mid-lactating rats causes a slight but significant increase in UCP mRNA. Expression of mRNA for subunit II of cytochrome c oxidase (COII) decreased to half that of virgin control in late pregnancy and during lactation. Whereas COII mRNA expression is in step with the known modifications of brown-fat mitochondria content during the breeding cycle of the rat, UCP mRNA expression appears to be diminished much earlier than the mitochondrial proton-conductance-pathway activity. On the other hand, the reactivity of brown fat to increase expression of UCP and COII mRNAs in response to acute cold or noradrenaline treatment is not impaired during lactation. Images Fig. 1. Fig. 2. Fig. 3. PMID:2557014
Di Fulvio, M; Lauf, P K; Adragna, N C
2001-11-30
Rat vascular smooth muscle cells (VSMCs) express at least two mRNAs for K-Cl cotransporters (KCC): KCC1 and KCC3. cGMP-dependent protein kinase I regulates KCC3 mRNA expression in these cells. Here, we show evidence implicating the nitric oxide (NO)/cGMP signaling pathway in the expression of KCC1 mRNA, considered to be the major cell volume regulator. VSMCs, expressing soluble guanylyl cyclase (sGC) and PKG-I isoforms showed a time- and concentration-dependent increase in KCC1 mRNA levels after treatment with sodium nitroprusside as demonstrated by semiquantitative RT-PCR. sGC-dependent regulation of KCC1 mRNA expression was confirmed using YC-1, a NO-independent sGC stimulator. The sGC inhibitor LY83583 blocked the effects of sodium nitroprusside and YC-1. Moreover, 8-Br-cGMP increased KCC1 mRNA expression in a concentration- and time-dependent fashion. The 8-Br-cGMP effect was partially blocked by KT5823 but not by actinomycin D. However, actinomycin D and cycloheximide increased basal KCC1 mRNA in an additive manner, suggesting different mechanisms of action for both drugs. These findings suggest that in VSMCs, the NO/cGMP-signaling pathway participates in KCC1 mRNA regulation at the post-transcriptional level.
Sparks, Janet D.; Collins, Heidi L.; Chirieac, Doru V.; Cianci, Joanne; Jokinen, Jenny; Sowden, Mark P.; Galloway, Chad A.; Sparks, Charles E.
2006-01-01
We have previously reported a positive correlation between the expression of BHMT (betaine–homocysteine S-methyltransferase) and ApoB (apolipoprotein B) in rat hepatoma McA (McArdle RH-7777) cells [Sowden, Collins, Smith, Garrow, Sparks and Sparks (1999) Biochem. J. 341, 639–645]. To examine whether a similar relationship occurs in vivo, hepatic BHMT expression was induced by feeding rats a Met (L-methionine)-restricted betaine-containing diet, and parameters of ApoB metabolism were evaluated. There were no generalized metabolic abnormalities associated with Met restriction for 7 days, as evidenced by control levels of serum glucose, ketones, alanine aminotransferase and L-homocysteine levels. Betaine plus the Met restriction resulted in lower serum insulin and non-esterified fatty acid levels. Betaine plus Met restriction induced hepatic BHMT 4-fold and ApoB mRNA 3-fold compared with Met restriction alone. No changes in percentage of edited ApoB mRNA were observed on the test diets. An increase in liver ApoB mRNA correlated with an 82% and 46% increase in ApoB and triacylglycerol production respectively using in vivo Triton WR 1339. Increased secretion of VLDL (very-low-density lipoprotein) with Met restriction plus betaine was associated with a 45% reduction in liver triacylglycerol compared with control. Nuclear run-off assays established that transcription of both bhmt and apob genes was also increased in Met-restricted plus betaine diets. No change in ApoB mRNA stability was detected in BHMT-transfected McA cells. Hepatic ApoB and BHMT mRNA levels were also increased by 1.8- and 3-fold respectively by betaine supplementation of Met-replete diets. Since dietary betaine increased ApoB mRNA, VLDL ApoB and triacylglycerol production and decreased hepatic triacylglycerol, results suggest that induction of apob transcription may provide a potential mechanism for mobilizing hepatic triacylglycerol by increasing ApoB available for VLDL assembly and secretion. PMID:16396637
Vasques, Enio Rodrigues; Cunha, José Eduardo Monteiro; Kubrusly, Marcia Saldanha; Coelho, Ana Maria; Sanpietri, Sandra N; Nader, Helena B; Tersariol, Ivarne L S; Lima, Marcelo A; Chaib, Eleazar; D'Albuquerque, Luiz Augusto Carneiro
2018-06-21
Intracellular calcium overload is known to be a precipitating factor of pancreatic cell injury in acute pancreatitis (AP). Intracellular calcium homeostasis depends of Plasmatic Membrane Calcium ATPase (PMCA), Sarcoplasmic Endothelial Reticulum Calcium ATPase 2 (SERCA 2) and the Sodium Calcium Exchanger (NCX1). The antioxidant melatonin (Mel) and Trisulfate Disaccharide (TD) that accelerates NCX1 action could reduce the cell damage determined by the AP. To evaluate m-RNA expressions of SERCA2 and NCX1 in acute pancreatitis induced by sodium taurocholate in Wistar rats pre-treated with melatonin and/or TD. Wistar rats were divided in groups: 1) without AP; 2) AP without pre-treatment; 3) AP and Melatonin; 4) AP and TD; 5) AP and Melatonin associated to TD. Pancreatic tissue samples were collected for detection of SERCA2 and NCX1 m-R NA levels by polymerase chain reaction (PCR). Increased m-RNA expression of SERCA2 in the melatonin treated group, without increase of m-RNA expression of the NCX1. The TD did not affect levels of SERCA2 and NCX1 m-RNA expressions. The combined melatonin and TD treatment reduced the m-RNA expression of SERCA2. The effect of melatonin is restricted to increased m-RNA expression of SERCA2. Although TD does not affect gene expression, its action in accelerating calcium exchanger function can explain the slightest expression of SERCA2 m-RNA when associated with Melatonin, perhaps by a joint action of drugs with different and but possibly complementary mechanisms.
Neuropeptide gene expression in brain is differentially regulated by midbrain dopamine neurons.
Lindefors, N; Brené, S; Herrera-Marschitz, M; Persson, H
1990-01-01
In situ hybridization was used to study the expression of prepro-neuropeptide Y (NPY), preprosomatostatin (SOM), preprotachykinin (PPT) and preprocholecystokinin (CCK) mRNA in caudate-putamen and frontoparietal cortex of rat brain with unilateral lesion of midbrain dopamine neurons. Neurons expressing NPY and SOM mRNA showed a similar distribution and the expression of both NPY and SOM appears to be regulated by dopamine in a similar fashion. Following a dopamine deafferentation, the numerical density of both NPY and SOM mRNA producing neurons almost doubled in the lesioned caudate-putamen with no change in the average grain density over positive neurons. Hence, in the intact caudate-putamen dopamine appears to suppress expression of these two neuropeptide genes leading to an activation of both NPY and SOM mRNA expression in many non- or low-expressing neurons when the level of dopamine is decreased. In the fronto-parietal cortex, on the other hand, dopamine appears to stimulate NPY and SOM gene expression. Thus, in the absence of dopamine about half of the NPY positive neurons disappeared. However, for SOM the number of positive neurons did not change, but rather most positive neurons appeared to have down-regulated their SOM mRNA expression. No evidence was found for a change in CCK mRNA expression by the dopamine deafferentation, while PPT mRNA expression decreased in the deafferented caudate-putamen. Consequently, dopamine exerts dissimilar effects on the expression of different neuropeptide genes, that in turn do not respond in the same way in different brain regions.
Cell-cell contact regulates gene expression in CDK4-transformed mouse podocytes.
Sakairi, Toru; Abe, Yoshifusa; Jat, Parmijit S; Kopp, Jeffrey B
2010-10-01
We transformed mouse podocytes by ectopic expression of cyclin-dependent kinase 4 (CDK4). Compared with podocytes transformed with a thermo-sensitive SV40 large T antigen mutant tsA58U19 (tsT podocytes), podocytes transformed with CDK4 (CDK4 podocytes) exhibited significantly higher expression of nephrin mRNA. Synaptopodin mRNA expression was significantly lower in CDK4 podocytes and in tsT podocytes under growth-permissive conditions (33°C) compared with tsT podocytes under growth-restricted conditions (37°C), which suggests a role for cell cycle arrest in synaptopodin mRNA expression. Confluent CDK4 podocytes showed significantly higher mRNA expression levels for nephrin, synaptopodin, Wilms tumor 1, podocalyxin, and P-cadherin compared with subconfluent cultures. We carried out experiments to clarify roles of various factors in the confluent podocyte cultures; our findings indicate that cell-cell contact promotes expression of five podocyte marker genes studied, that cellular quiescence increases synaptopodin and podocalyxin mRNA expression, and that soluble factors play a role in nephrin mRNA expression. Our findings suggest that CDK4 podocytes are useful tools to study podocyte biology. Furthermore, the role of cell-cell contact in podocyte gene expression may have relevance for podocyte function in vivo.
T-lymphocyte cytokine mRNA expression in cystic echinococcosis.
Fauser, S; Kern, P
1997-04-01
In the present study we investigated cytokine mRNA expression by peripheral blood mononuclear cells (PBMC) from patients with cystic echinococcosis (CE) after stimulation with different antigens. By using reverse transcriptase polymerase chain reaction (RT-PCR) we could demonstrate that restimulation with crude Echinococcus granulosus antigen (Eg-Ag) induced or enhanced Th2 cytokine mRNA expression, especially IL-5 (by using antigen from sheep cyst fluid) in 23 out of 26 investigated CE patients and IL-10 (by using antigen from camel cyst fluid) in 10 out of 10 investigated CE patients. In contrast, IL-5 mRNA expression was absent in PBMC of healthy controls after Eg-Ag stimulation. To determine the specificity of this reaction we stimulated PBMC from 11 CE patients with crude Echinococcus multilocularis antigen (Em-Ag) and PBMC from 8 CE patients with Toxocara canis antigen (Tc-Ag). We found that the PBMC of patients showed a similar mRNA cytokine pattern on stimulation with Em-Ag when compared with Eg-Ag stimulation. The cytokine mRNA pattern on stimulation with Tc-Ag, however, resembled the cytokine mRNA pattern of unstimulated PBMC. Furthermore, the stimulation of PBMC with crude Mycobacterium tuberculosis antigen (H37Ra) and purified protein derivative (PPD) of M. tuberculosis revealed distinct IL-5 mRNA expression in all investigated CE patients, whereas in healthy controls IL-5 mRNA expression was very weak or totally absent. Thus, our results indicate an induction of Th2 cytokine mRNA expression in CE patients, which is frequently observed in parasite infections. Interestingly, this response persists after stimulation with tuberculosis antigens, which normally induce Th1 response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalava, A.M.; Heikkilae, J.E.; Akerman, K.E.O.
1988-11-01
The induction of differentiation in SH-SY5Y human neuroblastoma cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is accompanied by a rapid and a transient expression of c-fos mRNA and a down-regulation of c-myc RNA. The TPA-induced expression of c-fos mRNA was inhibited by H-7, a specific inhibitor of protein kinase C (PK-C). Dioctanoylglycerol (DiC{sub 8}) failed to induce differentiation of SH-SY5Y cells or to down-regulate c-myc mRNA but it did induce the expression of c-fos mRNA. Treatment of IMR-32 human neuroblastoma cells with TPA did not cause differentiation although c-fos mRNA was induced. Since PK-C in SH-SY5Y cells was activated by both TPA andmore » DiC{sub 8} it is suggested that the activation of PK-C alone is not sufficient to induce differentiation in SH-SY5Y cells. The down-regulation of c-myc mRNA rather than the induction of c-fos mRNA seems to be associated with differentiation process in SH-SY5Y cells.« less
Cao, Yan; Du, Juan; Chen, Dandan; Wang, Qian; Zhang, Nana; Liu, Xiaoyun; Liu, Xiaoyu; Weng, Jing; Liang, Yuanjing; Ma, Wei
2016-01-01
ABSTRACT Staufen2 (Stau2) is a double-stranded RNA-binding protein involved in cell fate decision by regulating mRNA transport, mRNA stability, translation, and ribonucleoprotein assembly. Little is known about Stau2 expression and function in mammalian oocytes during meiosis. Herein we report the sub-cellular distribution and function of Stau2 in mouse oocyte meiosis. Western blot analysis revealed high and stable expression of Stau2 in oocytes from germinal vesicle (GV) to metaphase II (MII). Immunofluorescence showed that Stau2 was evenly distributed in oocytes at GV stage, and assembled as filaments after germinal vesicle breakdown (GVBD), particularly, colocalized with spindle at MI and MII. Stau2 was disassembled when microtubules were disrupted with nocodazole, on the other hand, when MTs were stabilized with taxol, Stau2 was not colocalized with the stabilized microtubules, but aggregated around the chromosomes array, indicating Stau2 assembly and colocalization with microtubules require both microtubule integrity and its normal dynamics. During interphase and mitosis of BHK and MEF cells, Stau2 was not distributed on microtubules, but colocalized with cis-Golgi marker GM130, implying its association with Golgi complex but not the spindle in fully differentiated somatic cells. Specific morpholino oligo-mediated Stau2 knockdown disrupted spindle formation, chromosome alignment and microtubule-kinetochore attachment in oocytes. The majority oocytes were arrested at MI stage, with bright MAD1 at kinetochores, indicating activation of spindle assembly checkpoint (SAC). Some oocytes were stranded at telophase I (TI), implying suppressed first polar body extrution. Together these data demonstrate that Stau2 is required for spindle formation and timely meiotic progression in mouse oocytes. PMID:27433972
Cao, Yan; Du, Juan; Chen, Dandan; Wang, Qian; Zhang, Nana; Liu, Xiaoyun; Liu, Xiaoyu; Weng, Jing; Liang, Yuanjing; Ma, Wei
2016-10-01
Staufen2 (Stau2) is a double-stranded RNA-binding protein involved in cell fate decision by regulating mRNA transport, mRNA stability, translation, and ribonucleoprotein assembly. Little is known about Stau2 expression and function in mammalian oocytes during meiosis. Herein we report the sub-cellular distribution and function of Stau2 in mouse oocyte meiosis. Western blot analysis revealed high and stable expression of Stau2 in oocytes from germinal vesicle (GV) to metaphase II (MII). Immunofluorescence showed that Stau2 was evenly distributed in oocytes at GV stage, and assembled as filaments after germinal vesicle breakdown (GVBD), particularly, colocalized with spindle at MI and MII. Stau2 was disassembled when microtubules were disrupted with nocodazole, on the other hand, when MTs were stabilized with taxol, Stau2 was not colocalized with the stabilized microtubules, but aggregated around the chromosomes array, indicating Stau2 assembly and colocalization with microtubules require both microtubule integrity and its normal dynamics. During interphase and mitosis of BHK and MEF cells, Stau2 was not distributed on microtubules, but colocalized with cis-Golgi marker GM130, implying its association with Golgi complex but not the spindle in fully differentiated somatic cells. Specific morpholino oligo-mediated Stau2 knockdown disrupted spindle formation, chromosome alignment and microtubule-kinetochore attachment in oocytes. The majority oocytes were arrested at MI stage, with bright MAD1 at kinetochores, indicating activation of spindle assembly checkpoint (SAC). Some oocytes were stranded at telophase I (TI), implying suppressed first polar body extrution. Together these data demonstrate that Stau2 is required for spindle formation and timely meiotic progression in mouse oocytes.
Hinkley, J Matthew; Konopka, Adam R; Suer, Miranda K; Harber, Matthew P
2017-03-01
The purpose of this investigation was to examine the influence of short-term intense endurance training on cycling performance, along with the acute and chronic signaling responses of skeletal muscle stress and stability markers. Ten recreationally active subjects (25 ± 2 yr, 79 ± 3 kg, 47 ± 2 ml·kg -1 ·min -1 ) were studied before and after a 12-day cycling protocol to examine the effects of short-term intense (70-100% V̇o 2max ) exercise training on resting and exercise-induced regulation of molecular factors related to skeletal muscle cellular stress and protein stability. Skeletal muscle biopsies were taken at rest and 3 h following a 20-km cycle time trial on days 1 and 12 to measure mRNA expression and protein content. Training improved ( P < 0.05) cycling performance by 5 ± 1%. Protein oxidation was unaltered on day 12 , while resting SAPK/JNK phosphorylation was reduced ( P < 0.05), suggesting a reduction in cellular stress. The maintenance in the myocellular environment may be due to synthesis of cytoprotective markers, along with enhanced degradation of damage proteins, as training tended ( P < 0.10) to increase resting protein content of manganese superoxide dismutase and heat shock protein 70 (HSP70), while mRNA expression of MuRF-1 was elevated ( P < 0.05). Following training ( day 12 ), the acute exercise-induced transcriptional response of TNF-α, NF-κB, MuRF-1, and PGC1α was attenuated ( P < 0.05) compared with day 1 Collectively, these data suggest that short-term intense training enhances protein stability, creating a cellular environment capable of resistance to exercise-induced stress, which may be favorable for adaptation. Copyright © 2017 the American Physiological Society.
Konopka, Adam R.; Suer, Miranda K.
2017-01-01
The purpose of this investigation was to examine the influence of short-term intense endurance training on cycling performance, along with the acute and chronic signaling responses of skeletal muscle stress and stability markers. Ten recreationally active subjects (25 ± 2 yr, 79 ± 3 kg, 47 ± 2 ml·kg−1·min−1) were studied before and after a 12-day cycling protocol to examine the effects of short-term intense (70–100% V̇o2max) exercise training on resting and exercise-induced regulation of molecular factors related to skeletal muscle cellular stress and protein stability. Skeletal muscle biopsies were taken at rest and 3 h following a 20-km cycle time trial on days 1 and 12 to measure mRNA expression and protein content. Training improved (P < 0.05) cycling performance by 5 ± 1%. Protein oxidation was unaltered on day 12, while resting SAPK/JNK phosphorylation was reduced (P < 0.05), suggesting a reduction in cellular stress. The maintenance in the myocellular environment may be due to synthesis of cytoprotective markers, along with enhanced degradation of damage proteins, as training tended (P < 0.10) to increase resting protein content of manganese superoxide dismutase and heat shock protein 70 (HSP70), while mRNA expression of MuRF-1 was elevated (P < 0.05). Following training (day 12), the acute exercise-induced transcriptional response of TNF-α, NF-κB, MuRF-1, and PGC1α was attenuated (P < 0.05) compared with day 1. Collectively, these data suggest that short-term intense training enhances protein stability, creating a cellular environment capable of resistance to exercise-induced stress, which may be favorable for adaptation. PMID:28039193
Kusuhara, H; Komatsu, H; Hisadome, M; Ikeda, Y
1996-12-01
(+/-)-3-[4-(2-Dimethylamino-1-methylethoxy)phenyl]-1H-pyrazolo[3, 4-b]pyridine-1-acetic acid (Y-25510) stimulated the mRNA expression for interleukin-1 beta (IL-1 beta), and enhanced the expression induced by lipopolysaccharide (LPS) in cultured human peripheral blood mononuclear cells (PBMC) and THP-1 cells, a cell-line derived from human monocytic leukemia. Y-25510 also stimulated the mRNA expression for IL-6 in both types of the cells, however, the stimulation required the presence of LPS. In THP-1 cells, the stimulation of IL-1 beta mRNA expression by Y-25510 was suppressed by cycloheximide, an inhibitor of protein synthesis. This phenomenon indicates that the stimulation requires de norv protein synthesis. In contrast, the stimulation of mRNA expression for IL-6 by Y-25510 was not suppressed by cycloheximide but suppressed by N alpha-p-tosyl-L-phenylalanine chloromethyl ketone (TPCK), an inhibitor of nuclear transcription factor-kappa B (NF-kappa B) activation, in the presence of LPS, suggesting that the stimulation requires NF-kappa activation. These results demonstrate that Y-25510 stimulates the mRNA expression for IL-1 beta and IL-6 by different mechanisms. Dexamethasone suppressed the LPS-induced expression of mRNA for IL-1 beta and IL-6 in THP-1 cells, whereas the drug never suppressed the mRNA expression for these cytokines in the presence of Y-25510. The result indicates that Y-25510 stimulates the mRNA expression for IL-1 beta and IL-6 by different mechanisms from those of LPS.
Ishihara, Akihiko; Fujino, Hidemi; Nagatomo, Fumiko; Takeda, Isao; Ohira, Yoshinobu
2008-12-01
Gene expression levels of heat shock proteins (HSPs) in the slow-twitch soleus and fast-twitch plantaris muscles of rats were determined after hindlimb suspension or spaceflight. Male rats were hindlimb-suspended for 14 d or exposed to microgravity for 9 d. The mRNA expression levels of HSP27, HSP70, and HSP84 in the hindlimb-suspended and microgravity-exposed groups were compared with those in the controls. The mRNA expression levels of the 3 HSPs in the soleus muscle under normal conditions were higher compared with those in the plantaris muscle. The mRNA expression levels of the 3 HSPs in the soleus muscle were inhibited by hindlimb suspension and spaceflight. The mRNA expression levels of the 3 HSPs in the plantaris muscle did not change after hindlimb suspension. It is suggested that the mRNA expression levels of the 3 HSPs are regulated by the mechanical and neural activity levels, and therefore the decreased mRNA expression levels of HSPs in the slow-twitch muscle following hindlimb suspension and spaceflight are related to a reduction in the mechanical and neural activity levels.
Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W; Kulozik, Andreas E
2016-09-01
Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. © 2016 Hollerer et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Zhang, Liang; Das, Priyabrata; Schmolke, Mirco; Manicassamy, Balaji; Wang, Yaming; Deng, Xiaoyi; Cai, Ling; Tu, Benjamin P.; Forst, Christian V.; Roth, Michael G.; Levy, David E.; García-Sastre, Adolfo; de Brabander, Jef; Phillips, Margaret A.
2012-01-01
The NS1 protein of influenza virus is a major virulence factor essential for virus replication, as it redirects the host cell to promote viral protein expression. NS1 inhibits cellular messenger ribonucleic acid (mRNA) processing and export, down-regulating host gene expression and enhancing viral gene expression. We report in this paper the identification of a nontoxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of the virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for de novo pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of vesicular stomatitis virus M (matrix) protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors. PMID:22312003
Yamaguchi, Takeshi; Kataoka, Kensuke; Watanabe, Kenji; Orii, Hidefumi
2014-02-01
DEADSouth mRNA encoding the RNA helicase DDX25 is a component of the germ plasm in Xenopus laevis. We investigated the mechanisms underlying its specific mRNA expression in primordial germ cells (PGCs). Based on our previous findings of several microRNA miR-427 recognition elements (MREs) in the 3' untranslated region of the mRNA, we first examined whether DEADSouth mRNA was degraded by miR-427 targeting in somatic cells. Injection of antisense miR-427 oligomer and reporter mRNA for mutated MREs revealed that DEADSouth mRNA was potentially degraded in somatic cells via miR-427 targeting, but not in PGCs after the mid-blastula transition (MBT). The expression level of miR-427 was very low in PGCs, which probably resulted in the lack of miR-427-mediated degradation. In addition, the DEADSouth gene was expressed zygotically after MBT. Thus, the predominant expression of DEADSouth mRNA in the PGCs is ensured by multiple mechanisms including zygotic expression and prohibition from miR-427-mediated degradation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Preprotachykinin A mRNA expression in the rat brain during development.
Brené, S; Lindefors, N; Friedman, W J; Persson, H
1990-12-15
Expression of preprotachykinin A (PPT-A) mRNA was analyzed by northern blots using mRNA prepared from rat brain at 12 different developmental stages ranging from embryonic day 15 (E15) to adult. A single PPT-A mRNA of 1.3 kb was detected throughout development. PPT-A mRNA was detected as early as E15 and an approximately 3-fold increase occurred at birth. This amount remained until 3 weeks of age when the level increased, reaching a peak at 5 weeks of age. Adult amounts were approximately 3-fold higher than the levels at birth. The distribution of PPT-A mRNA-expressing cells in rat brain was studied by in situ hybridization on sections from embryonic day 20, postnatal days 4 and 7 as well as adult. Cells expressing PPT-A mRNA were detected in the forebrain at all 4 ages analyzed. However, the hybridization pattern and the labeling intensity varied in different brain regions during development. In cingulate cortex, intense labeling was seen in numerous cells at embryonic day 20 and postnatal days 4 and 7, whereas in the adult cingulate cortex only a few scattered labeled cells were observed. In frontoparietal cortex labeled cells were found from postnatal day 4 to adult, with the highest density of labeled cells at P7. Developmental differences in both the distribution of PPT-A mRNA-expressing cells and the level of PPT-A mRNA expression were also found in caudate-putamen, lateral hypothalamus and amygdala. Thus, our results show several changes in PPT-A mRNA expression during ontogeny, indicating a region and time-specific regulation of PPT-A mRNA expression during brain maturation.
Shardonofsky, Felix R; Moore, Joan; Schwartz, Robert J; Boriek, Aladin M
2012-03-01
We hypothesized that ablation of smooth muscle α-actin (SM α-A), a contractile-cytoskeletal protein expressed in airway smooth muscle (ASM) cells, abolishes ASM shortening capacity and decreases lung stiffness. In both SM α-A knockout and wild-type (WT) mice, airway resistance (Raw) determined by the forced oscillation technique rose in response to intravenous methacholine (Mch). However, the slope of Raw (cmH(2)O·ml(-1)·s) vs. log(2) Mch dose (μg·kg(-1)·min(-1)) was lower (P = 0.007) in mutant (0.54 ± 0.14) than in WT mice (1.23 ± 0.19). RT-PCR analysis performed on lung tissues confirmed that mutant mice lacked SM α-A mRNA and showed that these mice had robust expressions of both SM γ-A mRNA and skeletal muscle (SKM) α-A mRNA, which were not expressed in WT mice, and an enhanced SM22 mRNA expression relative to that in WT mice. Compared with corresponding spontaneously breathing mice, mechanical ventilation-induced lung mechanical strain increased the expression of SM α-A mRNA in WT lungs; in mutant mice, it augmented the expressions of SM γ-A mRNA and SM22 mRNA and did not alter that of SKM α-A mRNA. In mutant mice, the expression of SM γ-A mRNA in the lung during spontaneous breathing and its enhanced expression following mechanical ventilation are consistent with the likely possibility that in the absence of SM α-A, SM γ-A underwent polymerization and interacted with smooth muscle myosin to produce ASM shortening during cholinergic stimulation. Thus our data are consistent with ASM in mutant mice experiencing compensatory mechanisms that modulated its contractile muscle capacity.
Lower FOXO3 mRNA expression in granulosa cells is involved in unexplained infertility.
Yamamoto, Hikaru; Yamashita, Yoshiki; Saito, Natsuho; Hayashi, Atsushi; Hayashi, Masami; Terai, Yoshito; Ohmichi, Masahide
2017-06-01
The aim of this study was to investigate whether FOXO1 and FOXO3 mRNA expression in granulosa cells is the cause of unexplained infertility. Thirty-one patients aged <40 years (13 with unexplained infertility and 18 with male partner infertility as a control group) whose serum anti-Müllerian hormone level was >0.5 ng/μL were enrolled in the study. All patients underwent oocyte retrieval under a short protocol from June 2012 to October 2013. Real-time PCR was carried out using mRNA extracted from granulosa cells retrieved from mature follicles. We compared FOXO1 and FOXO3 mRNA expression ratios in granulosa cells between the unexplained infertility group and the male infertility group. The relation between FOXO1 and FOXO3 mRNA expression ratios in granulosa cells and assisted reproduction technology clinical outcome was also examined. FOXO3 mRNA expression ratio was significantly lower in the unexplained infertility group than in the male infertility group. Moreover, FOXO3 mRNA expression ratio showed a positive correlation with both the number of retrieved oocytes and serum anti-Müllerian hormone level. A positive correlation was also identified between FOXO1 mRNA expression and total dose of hMG. As well, the number of retrieved oocytes in the unexplained infertility group was statistically lower than that in the male infertility group. A lower FOXO3 mRNA expression in granulosa cells leads to poor oocyte development in patients with unexplained infertility undergoing controlled ovarian stimulation for in vitro fertilization-embryo transfer. © 2017 Japan Society of Obstetrics and Gynecology.
Abbott, Barbara D.; Wood, Carmen R.; Watkins, Andrew M.; Das, Kaberi P.; Lau, Christopher S.
2010-01-01
Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examines expression of PPARα, β, and γ mRNA and protein in human fetal tissues. With increasing fetal age, mRNA expression of PPARα and β increased in liver, but PPARβ decreased in heart and intestine, and PPARγ decreased in adrenal. Adult and fetal mean expression of PPARα, β, and γ mRNA did not differ in intestine, but expression was lower in fetal stomach and heart. PPARα and β mRNA in kidney and spleen, and PPARγ mRNA in lung and adrenal were lower in fetal versus adult. PPARγ in liver and PPARβ mRNA in thymus were higher in fetal versus adult. PPARα protein increased with fetal age in intestine and decreased in lung, kidney, and adrenal. PPARβ protein in adrenal and PPARγ in kidney decreased with fetal age. This study provides new information on expression of PPAR subtypes during human development and will be important in evaluating the potential for the developing human to respond to PPAR environmental or pharmaceutical agonists. PMID:20706641
Nieminen, Petteri; Rouvinen-Watt, Kirsti; Kapiainen, Suvi; Harris, Lora; Mustonen, Anne-Mari
2010-09-15
Adiponectin is a novel adipocyte-derived hormone with low circulating concentrations and/or mRNA expression in obesity and non-alcoholic fatty liver disease (NAFLD). The adiponectin mRNA of several Carnivora species was sequenced to enable further gene expression studies in this clade with potential experimental species to examine the connections of hypoadiponectinemia to hepatic lipidosis. In addition, adiponectin mRNA expression was studied in the retroperitoneal fat of the American mink (Neovison vison), as hepatic lipidosis with close similarities to NAFLD can be rapidly induced to the species by fasting. The mRNA expression was determined after overnight-7d of food deprivation and 28d of re-feeding and correlated to the liver fat %. The homologies between the determined carnivoran mRNA sequences and that of the domestic dog were 92.2-99.1%. As the mRNA expression was not affected by short-term fasting and did not correlate with the liver fat %, there seems to be no clear connection between adiponectin and the development of lipidosis in the American mink. In the future, the obtained sequences can be utilized in further studies of adiponectin expression in comparative endocrinology. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Induction of cysteine-rich motor neuron 1 mRNA expression in vascular endothelial cells.
Nakashima, Yukiko; Takahashi, Satoru
2014-08-22
Cysteine-rich motor neuron 1 (CRIM1) is expressed in vascular endothelial cells and plays a crucial role in angiogenesis. In this study, we investigated the expression of CRIM1 mRNA in human umbilical vein endothelial cells (HUVECs). CRIM1 mRNA levels were not altered in vascular endothelial growth factor (VEGF)-stimulated monolayer HUVECs or in cells in collagen gels without VEGF. In contrast, the expression of CRIM1 mRNA was elevated in VEGF-stimulated cells in collagen gels. The increase in CRIM1 mRNA expression was observed even at 2h when HUVECs did not form tubular structures in collagen gels. Extracellular signal-regulated kinase (Erk) 1/2, Akt and focal adhesion kinase (FAK) were activated by VEGF in HUVECs. The VEGF-induced expression of CRIM1 mRNA was significantly abrogated by PD98059 or PF562271, but was not affected by LY294002. These results demonstrate that CRIM1 is an early response gene in the presence of both angiogenic stimulation (VEGF) and environmental (extracellular matrix) factors, and Erk and FAK might be involved in the upregulation of CRIM1 mRNA expression in vascular endothelial cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Dong, Liyang; Zhang, Xuebang; Xiang, Wei; Ni, Junwei; Zhou, Weizhong; Li, Haiyan
2018-04-20
Increasing evidences suggested that radiotherapy can paradoxically promote tumor invasion and metastatic processes, while its detailed mechanism is not well illustrated. Our present study found that radiation can promote the migration and invasion of hepatocellular carcinoma (HCC) cells via induction of epithelial mesenchymal transition (EMT), which was evidenced by the results that radiation induced up regulation of vimentin while down regulation of E-Cadherin. As to the EMT-related transcription factors, radiation increased the expression of Snail, while not Slug, ZEB1 or TWIST. This was confirmed by the results that radiation increased the nuclear translocation of Snail in HCC cells. However, radiation had no effect on the expression or half-life of Snail mRNA. In HCC cells treated by cycloheximide (CHX, the translation inhibitor), radiation significantly increased the half-life of Snail protein, which suggested that radiation increased the expression of Snail via up regulation of its protein stability. Radiation increased the expression of COP9 signalosome 2 (CSN2), which has been reported to block the ubiquitination and degradation of Snail. Silence of CSN2/Snail can attenuate radiation induced cell migration and EMT of HCC cells. Collectively, our data suggested that radiation can promote HCC cell invasion and EMT by stabilization of Snail via CSN2 signals. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Ortega Serrano, P V; Guzmán, A; Hernández-Coronado, C G; Castillo-Juárez, H; Rosales-Torres, A M
2016-12-01
The vascular endothelial growth factor (VEGF) is essential for follicular development by promoting follicular angiogenesis, as well as for the proliferation and survival of granulosa cells. The biological effects of VEGF are regulated by two membrane receptors, VEGFR1 and VEGFR2, and two soluble receptors, sVEGFR1 and sVEGFR2, which play an antagonistic role. Thus, the objective of this study was to identify the mRNA expression pattern of total VEGF, VEGFR1, VEGFR2, sVEGFR1 and sVEGFR2 in bovine preselected follicles (PRF) and post-selected follicles (POF). The mRNA expression of these five genes in both granulosa cells (GC) and theca cells (TC) was compared between follicles classified as PRF and POF based on their diameter and on their ratio of estradiol/progesterone (E2/P4). Results showed a lower expression of mRNA of sVEGFR1 and sVEGFR2 in POF than in PRF (p < .05). Regarding the mRNA expression of total VEGF, VEGFR1 and VEGFR2, there was no difference between POF and PRF follicles (p > .05). Our results showed that the mRNA expression of VEGFR2 and sVEGFR1 was more abundant than the expression of VEGFR1 and sVEGFR2, while GC was the main source of mRNA for total VEGF. On the other hand, TC was the follicular compartment where the receptors were most expressed. Our results suggest that non-dominant follicles maintain a greater concentration of the mRNA expression of both membrane and soluble VEGF receptors. On the other hand, follicular dominance is related to a reduction in the mRNA expression of sVEGFR1 and sVEGFR2, which may favour VEGF binding with VEGFR2 and, hence, improve the follicular health and development. © 2016 Blackwell Verlag GmbH.
Lee, Richard H; Stanczyk, Frank Z; Stolz, Andrew; Ji, Qing; Yang, Gloria; Goodwin, T Murphy
2008-10-01
We sought to determine relative mRNA expression of AKR1C1 and SRD5A1, which respectively encode for the key progesterone metabolizing enzymes, 20alpha-hydroxysteroid dehydrogenase and 5alpha-reductase type 1, in the myometrium and chorioamniotic membranes during human spontaneous or induced labor and nonlabor. Quantitative real-time reverse-transcriptase polymerase chain reaction was used to compare relative mRNA expression of AKR1C1 and SRD5A1 in the myometrium and chorioamniotic membranes from 20 subjects during three different states of labor: not in labor ( N = 10), spontaneous labor ( N = 5), or induced labor ( N = 5). Labor was defined as regular uterine contractions that resulted in cervical dilation. Myometrial AKR1C1 mRNA expression was significantly greater in spontaneously laboring subjects compared with those not in labor (2.4-fold [1.97 to 2.98], P = 0.02). There was no difference in myometrial AKR1C1 mRNA expression between those with induced labor compared with those not in labor. Regardless of labor status, no differences were observed in the chorioamniotic membrane AKR1C1 mRNA expression between the groups. SRD5A1 mRNA expression was significantly lower in the membranes of both laboring groups when compared with those not in labor (spontaneous: 0.10-fold [0.06 to 0.18], P = 0.007; induced: 0.09-fold [0.03 to 0.25], P = 0.013). Regardless of labor status, there was no difference in SRD5A1 mRNA expression in the myometrium. Our study demonstrated tissue-specific changes in progesterone metabolizing enzyme mRNA expression in human intrauterine tissue at term associated with labor status. These observed changes in mRNA expression may have important implications for progesterone metabolism at those specific sites and thereby may differentially regulate the tissue-specific progesterone concentration and/or the level of specific progesterone metabolites.
Yang, Ping; Wei, Xin; Zhang, Jian; Yi, Bing; Zhang, Guan-Xin; Yin, Litian; Yang, Xiao-Feng; Sun, Jianxin
2016-02-01
Thrombomodulin is highly expressed on the lumenal surface of vascular endothelial cells (ECs) and possesses potent anticoagulant, antifibrinolytic, and anti-inflammatory activities in the vessel wall. However, the regulation of thrombomodulin expression in ECs remains largely unknown. In this study, we characterized nuclear receptor 4A family as a novel regulator of thrombomodulin expression in vascular ECs. We demonstrated that both nuclear receptors 4A, Nur77 and Nor1, robustly increase thrombomodulin mRNA and protein levels in human vascular ECs and in mouse liver tissues after adenovirus-mediated transduction of Nur77 and Nor1 cDNAs. Moreover, Nur77 deficiency and knockdown of Nur77 and Nor1 expression markedly attenuated the basal and vascular endothelial growth factor165-stimulated thrombomodulin expression. Mechanistically, we found that Nur77 and Nor1 increase thrombomodulin expression by acting through 2 different mechanisms. We showed that Nur77 barely affects thrombomodulin promoter activity, but significantly increases thrombomodulin mRNA stability, whereas Nor1 enhances thrombomodulin expression mainly through induction of Kruppel-like factors 2 and 4 in vascular ECs. Furthermore, we demonstrated that both Nur77 and Nor1 significantly increase protein C activity and inhibit tumor necrosis factor α-induced prothrombotic effects in human ECs. Deficiency of Nur77 increases susceptibility to arterial thrombosis, whereas enhanced expression of Nur77 and Nor1 protects mice from arterial thrombus formation. Our results identified nuclear receptors 4A as novel regulators of thrombomodulin expression and function in vascular ECs and provided a proof-of-concept demonstration that targeted increasing expression of Nur77 and Nor1 in the vascular endothelium might represent a novel therapeutic approach for the treatment of thrombotic disorders. © 2015 American Heart Association, Inc.
Yamanishi, Mamoru; Ito, Yoichiro; Kintaka, Reiko; Imamura, Chie; Katahira, Satoshi; Ikeuchi, Akinori; Moriya, Hisao; Matsuyama, Takashi
2013-06-21
The terminator regions of eukaryotes encode functional elements in the 3' untranslated region (3'-UTR) that influence the 3'-end processing of mRNA, mRNA stability, and translational efficiency, which can modulate protein production. However, the contribution of these terminator regions to gene expression remains unclear, and therefore their utilization in metabolic engineering or synthetic genetic circuits has been limited. Here, we comprehensively evaluated the activity of 5302 terminator regions from a total of 5880 genes in the budding yeast Saccharomyces cerevisiae by inserting each terminator region downstream of the P TDH3 - green fluorescent protein (GFP) reporter gene and measuring the fluorescent intensity of GFP. Terminator region activities relative to that of the PGK1 standard terminator ranged from 0.036 to 2.52, with a mean of 0.87. We thus could isolate the most and least active terminator regions. The activities of the terminator regions showed a positive correlation with mRNA abundance, indicating that the terminator region is a determinant of mRNA abundance. The least active terminator regions tended to encode longer 3'-UTRs, suggesting the existence of active degradation mechanisms for those mRNAs. The terminator regions of ribosomal protein genes tended to be the most active, suggesting the existence of a common regulator of those genes. The ″terminatome″ (the genome-wide set of terminator regions) thus not only provides valuable information to understand the modulatory roles of terminator regions on gene expression but also serves as a useful toolbox for the development of metabolically and genetically engineered yeast.
Hayano, Azusa; Komohara, Yoshihiro; Takashima, Yasuo; Takeya, Hiroto; Homma, Jumpei; Fukai, Junya; Iwadate, Yasuo; Kajiwara, Koji; Ishizawa, Shin; Hondoh, Hiroaki; Yamanaka, Ryuya
2017-10-01
Programmed cell death ligand 1 (PD-L1)/programmed cell death 1 (PD-1) have been shown to predict response to PD-L1/PD-1-targeted therapy. We analyzed PD-L1 expression in primary central nervous system lymphomas (PCNSLs). PD-L1 protein and mRNA expression were evaluated in 64 PCNSL tissue samples. IFN-γ, IL-10, CD4, and CD8 mRNA expression was also evaluated. PD-L1 protein was detected in tumor cells in 2 (4.1%) cases and in tumor microenvironments in 25 (52%) cases. PD-L1 mRNA positively correlated with IFN-γ (p=0.0024) and CD4 (p=0.0005) mRNA expression. IFN-γ mRNA positively correlated with CD8 mRNA expression (p=0.0001). Furthermore, tumor cell PD-L1 expression correlated positively with overall survival (p=0.0177), whereas microenvironmental PD-L1 expression exhibited an insignificant negative trend with overall survival (p=0.188). PD-L1 was expressed on both tumor and/or tumor-infiltrating immune cells in PCNSL. The biological roles of this marker warrant further investigation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Aghaie, Fatemeh; Khazali, Homayoun; Hedayati, Mehdi; Akbarnejad, Ali
2018-01-01
Polycystic ovarian syndrome (PCOS) is the most frequent female endocrine disorder that affects 5-10% of women. PCOS is characterized by hyperandrogenism, oligo-/anovulation, and polycystic ovaries. The aim of the present research is to evaluate the expression of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) mRNA in the ovaries of an estradiol valerate (EV)-induced PCOS rat model, and the effect of treadmill and running wheel (voluntary) exercise on these parameters. In this experimental study, we divided adult female Wistar rats that weighed approximately 220 ± 20 g initially into control (n=10) and PCOS (n=30). Subsequently, PCOS group were divided to PCOS, PCOS with treadmill exercise (P-ExT), and PCOS with running wheel exercise (P-ExR) groups (n=10 per group). The expressions of StAR and CYP19 mRNA in the ovaries were determined by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). Data were analyzed by one-way ANOVA using SPSS software, version 16. The data were assessed at α=0.05. There was significantly lower mRNA expression of CYP19 in the EV-induced PCOS, running wheel and treadmill exercise rats compared to the control group (P<0.001). Treadmill exercise (P=0.972) and running wheel exercise (P=0.839) had no significant effects on CYP19 mRNA expression compared to the PCOS group. mRNA expression of StAR in the ovaries of the PCOS group indicated an increasing trend compared to the control group, however this was not statistically significant (P=0.810). We observed that 8 weeks of running wheel and treadmill exercises could not statistically decrease StAR mRNA expression compared to the PCOS group (P=0.632). EV-induced PCOS in rats decreased CYP19 mRNA expression, but had no effect on StAR mRNA expression. We demonstrated that running wheel and moderate treadmill exercise could not modify CYP19 and StAR mRNA expressions. Copyright© by Royan Institute. All rights reserved.
Liu, Lan; Ouyang, Miao; Rao, Jaladanki N.; Zou, Tongtong; Xiao, Lan; Chung, Hee Kyoung; Wu, Jing; Donahue, James M.; Gorospe, Myriam; Wang, Jian-Ying
2015-01-01
The mammalian intestinal epithelium is one of the most rapidly self-renewing tissues in the body, and its integrity is preserved through strict regulation. The RNA-binding protein (RBP) ELAV-like family member 1 (CELF1), also referred to as CUG-binding protein 1 (CUGBP1), regulates the stability and translation of target mRNAs and is implicated in many aspects of cellular physiology. We show that CELF1 competes with the RBP HuR to modulate MYC translation and regulates intestinal epithelial homeostasis. Growth inhibition of the small intestinal mucosa by fasting in mice was associated with increased CELF1/Myc mRNA association and decreased MYC expression. At the molecular level, CELF1 was found to bind the 3′-untranslated region (UTR) of Myc mRNA and repressed MYC translation without affecting total Myc mRNA levels. HuR interacted with the same Myc 3′-UTR element, and increasing the levels of HuR decreased CELF1 binding to Myc mRNA. In contrast, increasing the concentrations of CELF1 inhibited formation of the [HuR/Myc mRNA] complex. Depletion of cellular polyamines also increased CELF1 and enhanced CELF1 association with Myc mRNA, thus suppressing MYC translation. Moreover, ectopic CELF1 overexpression caused G1-phase growth arrest, whereas CELF1 silencing promoted cell proliferation. These results indicate that CELF1 represses MYC translation by decreasing Myc mRNA association with HuR and provide new insight into the molecular functions of RBPs in the regulation of intestinal mucosal growth. PMID:25808495
Technical variables in high-throughput miRNA expression profiling: much work remains to be done.
Nelson, Peter T; Wang, Wang-Xia; Wilfred, Bernard R; Tang, Guiliang
2008-11-01
MicroRNA (miRNA) gene expression profiling has provided important insights into plant and animal biology. However, there has not been ample published work about pitfalls associated with technical parameters in miRNA gene expression profiling. One source of pertinent information about technical variables in gene expression profiling is the separate and more well-established literature regarding mRNA expression profiling. However, many aspects of miRNA biochemistry are unique. For example, the cellular processing and compartmentation of miRNAs, the differential stability of specific miRNAs, and aspects of global miRNA expression regulation require specific consideration. Additional possible sources of systematic bias in miRNA expression studies include the differential impact of pre-analytical variables, substrate specificity of nucleic acid processing enzymes used in labeling and amplification, and issues regarding new miRNA discovery and annotation. We conclude that greater focus on technical parameters is required to bolster the validity, reliability, and cultural credibility of miRNA gene expression profiling studies.
Cytochrome P450-2C11 mRNA is not expressed in endothelial cells dissected from rat renal arterioles.
Heil, Sandra G; De Vriese, An S; Kluijtmans, Leo A J; Dijkman, Henry; van Strien, Denise; Akkers, Robert; Blom, Henk J
2005-01-01
Cytochrome P450 (CYP) isoenzymes (CYP2C and CYP2J) are involved in the production of epoxyeicosatrienoic acids, which are postulated as endothelium-derived hyperpolarizing factors (EDHFs). We hypothesized that if CYP2C11 is involved in the EDHF-mediated responses, its mRNA should be expressed in endothelial cells. We, therefore, examined the mRNA expression of CYP2C11 in endothelial cells of renal arterioles. Laser microdissection was applied to isolate endothelial cells from the renal arterioles of 4 male and 4 female Wistar rats. As a positive control of CYP2C11 expression, hepatocytes were also dissected from these rats. RNA was isolated and real-time quantitative polymerase chain reaction (Q-PCR) analysis was applied. Q-PCR analysis showed that CYP2C11 mRNA was not expressed in laser microdissected endothelial cells of renal arterioles of male and female rats. CYP2C11 mRNA expression was highly abundant in hepatocytes dissected from male livers, but in female livers hardly any CYP2C11 mRNA was detected. We have shown that endothelial cells can be dissected from small renal arterioles by laser microdissection to study the mRNA expression of specific genes by Q-PCR. Using this novel tool, we demonstrated that the CYP2C11 mRNA was not expressed in the endothelial cells of renal arterioles. Therefore, we speculate that CYP2C11 does not contribute to the EDHF-mediated responses in renal arterioles. Copyright (c) 2005 S. Karger AG, Basel.
Nasilowska-Adamska, Barbara; Solarska, Iwona; Paluszewska, Monika; Malinowska, Iwona; Jedrzejczak, Wieslaw W; Warzocha, Krzysztof
2014-04-01
Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) and mixed-lineage leukemia gene-partial tandem duplication (MLL-PTD) are aberrations associated with leukemia which indicate unsatisfactory prognosis. Downstream regulatory targets of FLT3-ITD and MLL-PTD are not well defined. We have analyzed the expression of MDR-1, multidrug resistant protein-1 (MRP-1), breast cancer resistance protein (BCRP), and lung resistance protein (LRP) messenger RNA (mRNA) in relation to the mutational status of FLT3-ITD and MLL-PTD in 185 acute myeloid leukemia (AML) adult patients. The real-time quantitative polymerase chain reaction method was performed to assess the expression of the MDR-1, MRP-1, BCRP, and LRP mRNA, and the results were presented as coefficients calculated using an intermediate method according to Pfaffl's rule. Significantly higher expressions of MDR-1 mRNA were found in patients who did not harbor FLT3-ITD (0.20 vs. 0.05; p = 0.0001) and MRP-1 mRNA in patients with this mutation (0.96 vs. 0.70; p = 0.002) and of BCRP mRNA in patients with MLL-PTD (0.61 vs. 0.38; p = 0.03). In univariate analysis, the high expression of MDR-1 mRNA (≥0.1317) negatively influenced the outcome of induction therapy (p = 0.05), whereas the high expression of BCRP mRNA (≥1.1487) was associated with a high relapse rate (RR) (p = 0.013). We found that the high expression of MDR-1 (≥0.1317), MRP-1 (≥0.8409), and BCRP mRNA (≥1.1487) significantly influenced disease-free survival (DFS; p = 0.059, 0.032, and 0.009, respectively) and overall survival (0.048, 0.014, and 0.059, respectively). Moreover, a high expression of BCRP mRNA (≥1.1487) proved to be an independent prognostic factor for RR (p = 0.01) and DFS (p = 0.002) in multivariate analysis. The significant correlation between the expression of MDR-1, MRP-1, and BCRP mRNA and FLT3-ITD or MLL-PTD in AML patients requires further investigation.
Heimeier, Rachel A; Davis, Belinda J; Donald, John A
2002-08-01
This study investigated the mRNA expression of the atrial natriuretic peptide (ANP) system (peptide and receptors) during water deprivation in the spinifex hopping mouse, Notomys alexis, a native of central and western Australia that is well adapted to survive in arid environments. Initially, ANP, NPR-A and NPR-C cDNAs (partial for receptors) were cloned and sequenced, and were shown to have high homology with those of rat and mouse. Using a semi-quantitative multiplex PCR technique, the expression of cardiac ANP mRNA and renal ANP, NPR-A, and NPR-C mRNA was determined in 7- and 14-day water-deprived hopping mice, in parallel with control mice (access to water). The levels of ANP mRNA expression in the heart remained unchanged, but in the kidney ANP mRNA levels were increased in the 7-day water-deprived mice, and were significantly decreased in the 14-day water-deprived mice. NPR-A mRNA levels were significantly higher in 7-day water-deprived mice while no change for NPR-A mRNA expression was observed in 14-day water-deprived mice. No variation in NPR-C mRNA levels was observed. This study shows that water deprivation differentially affects the expression of the ANP system, and that renal ANP expression is more important than cardiac ANP in the physiological adjustment to water deprivation.
Zhong, Xiang-Yang; Wang, Pingping; Han, Joonhee; Rosenfeld, Michael G.; Fu, Xiang-Dong
2009-01-01
Summary SR proteins have been studied extensively as a family of RNA binding proteins that participate in both constitutive and regulated pre-mRNA splicing in mammalian cells. However, SR proteins were first discovered as factors that interact with transcriptionally active chromatin. Recent studies have now uncovered properties that connect these once apparently disparate functions, showing that a subset of SR proteins seem to bind directly to the histone 3 tail, play an active role in transcriptional elongation, and co-localize with genes that are engaged in specific intra- and inter-chromosome interactions for coordinated regulation of gene expression in the nucleus. These transcription-related activities are also coupled with a further expansion of putative functions of specific SR protein family members in RNA metabolism downstream of mRNA splicing, from RNA export to stability control to translation. These findings therefore highlight the broader roles of SR proteins in vertical integration of gene expression and provide mechanistic insights into their contributions to genome stability and proper cell cycle progression in higher eukaryotic cells. PMID:19595711
Zhong, Xiang-Yang; Wang, Pingping; Han, Joonhee; Rosenfeld, Michael G; Fu, Xiang-Dong
2009-07-10
SR proteins have been studied extensively as a family of RNA-binding proteins that participate in both constitutive and regulated pre-mRNA splicing in mammalian cells. However, SR proteins were first discovered as factors that interact with transcriptionally active chromatin. Recent studies have now uncovered properties that connect these once apparently disparate functions, showing that a subset of SR proteins seem to bind directly to the histone 3 tail, play an active role in transcriptional elongation, and colocalize with genes that are engaged in specific intra- and interchromosome interactions for coordinated regulation of gene expression in the nucleus. These transcription-related activities are also coupled with a further expansion of putative functions of specific SR protein family members in RNA metabolism downstream of mRNA splicing, from RNA export to stability control to translation. These findings, therefore, highlight the broader roles of SR proteins in vertical integration of gene expression and provide mechanistic insights into their contributions to genome stability and proper cell-cycle progression in higher eukaryotic cells.
ICE1 promotes the link between splicing and nonsense-mediated mRNA decay
Baird, Thomas D; Cheng, Ken Chih-Chien; Chen, Yu-Chi; Buehler, Eugen; Martin, Scott E; Inglese, James
2018-01-01
The nonsense-mediated mRNA decay (NMD) pathway detects aberrant transcripts containing premature termination codons (PTCs) and regulates expression of 5–10% of non-aberrant human mRNAs. To date, most proteins involved in NMD have been identified by genetic screens in model organisms; however, the increased complexity of gene expression regulation in human cells suggests that additional proteins may participate in the human NMD pathway. To identify proteins required for NMD, we performed a genome-wide RNAi screen against >21,000 genes. Canonical members of the NMD pathway were highly enriched as top hits in the siRNA screen, along with numerous candidate NMD factors, including the conserved ICE1/KIAA0947 protein. RNAseq studies reveal that depletion of ICE1 globally enhances accumulation and stability of NMD-target mRNAs. Further, our data suggest that ICE1 uses a putative MIF4G domain to interact with exon junction complex (EJC) proteins and promotes the association of the NMD protein UPF3B with the EJC. PMID:29528287
Cinnamic acid shortens the period of the circadian clock in mice.
Oishi, Katsutaka; Yamamoto, Saori; Oike, Hideaki; Ohkura, Naoki; Taniguchi, Masahiko
2017-03-01
Cinnamic acid (CA) derivatives have recently received focus due to their anticancer, antioxidant, and antidiabetic properties. The present study aimed to determine the effects of cinnamic acid on the circadian clock, which is a cell-autonomous endogenous system that generates circadian rhythms that govern the behavior and physiology of most organisms. Cinnamic acid significantly shortened the circadian period of PER2::LUC expression in neuronal cells that differentiated from neuronal progenitor cells derived from PER2::LUC mouse embryos. Cinnamic acid did not induce the transient mRNA expression of clock genes such as Per1 and Per2 in neuronal cells, but significantly shortened the half-life of PER2::LUC protein in neuronal cells incubated with actinomycin D, suggested that CA post-transcriptionally affects the molecular clock by decreasing Per2 mRNA stability. A continuous infusion of CA into mice via an Alzet osmotic pump under constant darkness significantly shortened the free-running period of wheel-running rhythms. These findings suggest that CA shortens the circadian period of the molecular clock in mammals.
Dai, Weijun; Li, Wencheng; Hoque, Mainul; Li, Zhuyun; Tian, Bin; Makeyev, Eugene V.
2015-01-01
Nervous system (NS) development relies on coherent upregulation of extensive sets of genes in a precise spatiotemporal manner. How such transcriptome-wide effects are orchestrated at the molecular level remains an open question. Here we show that 3′-untranslated regions (3′ UTRs) of multiple neural transcripts contain AU-rich cis-elements (AREs) recognized by tristetraprolin (TTP/Zfp36), an RNA-binding protein previously implicated in regulation of mRNA stability. We further demonstrate that the efficiency of ARE-dependent mRNA degradation declines in the neural lineage because of a decrease in the TTP protein expression mediated by the NS-enriched microRNA miR-9. Importantly, TTP downregulation in this context is essential for proper neuronal differentiation. On the other hand, inactivation of TTP in non-neuronal cells leads to dramatic upregulation of multiple NS-specific genes. We conclude that the newly identified miR-9/TTP circuitry limits unscheduled accumulation of neuronal mRNAs in non-neuronal cells and ensures coordinated upregulation of these transcripts in neurons. PMID:26144867
Possible linkage of SP6 transcriptional activity with amelogenesis by protein stabilization.
Utami, Trianna W; Miyoshi, Keiko; Hagita, Hiroko; Yanuaryska, Ryna Dwi; Horiguchi, Taigo; Noma, Takafumi
2011-01-01
Ameloblasts produce enamel matrix proteins such as amelogenin, ameloblastin, and amelotin during tooth development. The molecular mechanisms of ameloblast differentiation (amelogenesis) are currently not well understood. SP6 is a transcription factor of the Sp/KLF family that was recently found to regulate cell proliferation in a cell-type-specific manner. Sp6-deficient mice demonstrate characteristic tooth anomalies such as delayed eruption of the incisors and supernumerary teeth with disorganized amelogenesis. However, it remains unclear how Sp6 controls amelogenesis. In this study, we used SP6 high producer cells to identify SP6 target genes. Based on the observations that long-term culture of SP6 high producer cells reduced SP6 protein expression but not Sp6 mRNA expression, we found that SP6 is short lived and specifically degraded through a proteasome pathway. We established an in vitro inducible SP6 expression system coupled with siRNA knockdown and found a possible linkage between SP6 and amelogenesis through the regulation of amelotin and Rock1 gene expression by microarray analysis. Our findings suggest that the regulation of SP6 protein stability is one of the crucial steps in amelogenesis.
Possible Linkage of SP6 Transcriptional Activity with Amelogenesis by Protein Stabilization
Utami, Trianna W.; Miyoshi, Keiko; Hagita, Hiroko; Yanuaryska, Ryna Dwi; Horiguchi, Taigo; Noma, Takafumi
2011-01-01
Ameloblasts produce enamel matrix proteins such as amelogenin, ameloblastin, and amelotin during tooth development. The molecular mechanisms of ameloblast differentiation (amelogenesis) are currently not well understood. SP6 is a transcription factor of the Sp/KLF family that was recently found to regulate cell proliferation in a cell-type-specific manner. Sp6-deficient mice demonstrate characteristic tooth anomalies such as delayed eruption of the incisors and supernumerary teeth with disorganized amelogenesis. However, it remains unclear how Sp6 controls amelogenesis. In this study, we used SP6 high producer cells to identify SP6 target genes. Based on the observations that long-term culture of SP6 high producer cells reduced SP6 protein expression but not Sp6 mRNA expression, we found that SP6 is short lived and specifically degraded through a proteasome pathway. We established an in vitro inducible SP6 expression system coupled with siRNA knockdown and found a possible linkage between SP6 and amelogenesis through the regulation of amelotin and Rock1 gene expression by microarray analysis. Our findings suggest that the regulation of SP6 protein stability is one of the crucial steps in amelogenesis. PMID:22046099
Impact of STAT/SOCS mRNA Expression Levels after Major Injury
Brumann, M.; Matz, M.; Kusmenkov, T.; Stegmaier, J.; Biberthaler, P.; Kanz, K.-G.; Mutschler, W.; Bogner, V.
2014-01-01
Background. Fulminant changes in cytokine receptor signalling might provoke severe pathological alterations after multiple trauma. The aim of this study was to evaluate the posttraumatic imbalance of the innate immune system with a special focus on the STAT/SOCS family. Methods. 20 polytraumatized patients were included. Blood samples were drawn 0 h–72 h after trauma; mRNA expression profiles of IL-10, STAT 3, SOCS 1, and SOCS 3 were quantified by qPCR. Results. IL-10 mRNA expression increased significantly in the early posttraumatic period. STAT 3 mRNA expressions showed a significant maximum at 6 h after trauma. SOCS 1 levels significantly decreased 6 h–72 h after trauma. SOCS 3 levels were significantly higher in nonsurvivors 6 h after trauma. Conclusion. We present a serial, sequential investigation in human neutrophil granulocytes of major trauma patients evaluating mRNA expression profiles of IL-10, STAT 3, SOCS 1, and SOCS 3. Posttraumatically, immune disorder was accompanied by a significant increase of IL-10 and STAT 3 mRNA expression, whereas SOCS 1 mRNA levels decreased after injury. We could demonstrate that death after trauma was associated with higher SOCS 3 mRNA levels already at 6 h after trauma. To support our results, further investigations have to evaluate protein levels of STAT/SOCS family in terms of posttraumatic immune imbalance. PMID:24648661
Larsson, S; Hotchkiss, G; Andäng, M; Nyholm, T; Inzunza, J; Jansson, I; Ahrlund-Richter, L
1994-01-01
We have generated three artificial hammerhead ribozymes, denoted 'Rz-b', 'Rz-c' and 'Rz-d', with different specificities for exon II of the mouse beta-2-microglobulin (beta 2M) mRNA. In this study we tested for ribozyme mediated reduction of beta 2M mRNA in a cell line and in transgenic mice. Transfections of either of the Rz-b, Rz-c or Rz-d plasmids into a mouse cell-line (NIH/3T3) revealed reductions of beta 2M mRNA substrate in each case. Ribozyme expression in individual transfected clones was accompanied with an up to 80% reduction of beta 2M mRNA levels. Rz-c was selected for a transgenic study. Seven Rz-c transgenic founder animals were identified from which three ribozyme expressing families were established and analysed. Expression of the ribozyme transgene was tested for and detected in lung, kidney and spleen. Expression was accompanied with reduction of the beta 2M mRNA levels of heterozygous (Rz+/-) animals compared to non-transgenic litter mates. The effect was most pronounced in lung with more than 90% beta 2M mRNA reduction in individual mice. In summary, expression of our ribozymes in a cell free system, in a cell-line and in transgenic mice were all accompanied with reductions of beta 2M mRNA levels. Images PMID:8036151
Overexpression of early growth response-1 as a metastasis-regulatory factor in gastric cancer.
Kobayashi, Daisuke; Yamada, Mikako; Kamagata, Chinatsu; Kaneko, Reiko; Tsuji, Naoki; Nakamura, Masashi; Yagihashi, Atsuhito; Watanabe, Naoki
2002-01-01
To investigate the potential role of a nuclear transcription factor, early growth response-1 (Egr-1), in formation and progression of gastric cancer, we compared its expression in gastric cancers with that in non-cancerous tissues. Egr-1 mRNA expression was measured using TaqMan RT-PCR. The corresponding protein expression was examined immunohistochemically. Egr-1 mRNA expression was significantly higher in gastric cancer tissues than in normal mucosa (p < 0.0005). These differences were also reflected by protein product expression. Moreover, Egr-1 mRNA expression was higher in cases with metastasis to lymph nodes or remote organs. In cultured gastric cancer cells known to have a high metastatic potential, expression of this mRNA was higher than that of parental cells. It was suggested that Egr-1 has a significant role in carcinogenesis and in cancer progression, especially metastasis. Measurement of this mRNA should be useful for evaluation of the metastatic potential of gastric cancer.
Nakazato, K; Ishibashi, T; Nagata, K; Seino, Y; Wada, Y; Sakamoto, T; Matsuoka, R; Teramoto, T; Sekimata, M; Homma, Y; Maruyama, Y
2001-04-01
Although very low density lipoprotein (VLDL) receptor expression by macrophages has been shown in the vascular wall, it is not clear whether or not circulating monocytes express the VLDL receptor. We investigated the expression of VLDL receptor mRNA in human peripheral blood monocytes and monocyte-derived macrophages by reverse transcriptase polymerase chain reaction (RT-PCR) and nucleotide sequencing after subcloning of PCR product. VLDL receptor mRNA was detected both in peripheral blood monocytes and monocyte-derived macrophages. Expression of VLDL receptor mRNA was upregulated by hypoxia in monocytes, whereas treatment with oxidized LDL, interleukin-1beta or monocyte chemoattractant protein-1 did not affect the levels of VLDL receptor mRNA in monocytes and macrophages. The present study shows a novel response of VLDL receptor mRNA to hypoxia, suggesting a role for VLDL receptor in the metabolism of lipoproteins in the vascular wall and the development of atherosclerosis.
Goppelt-Struebe, M; Reiser, C O; Schneider, N; Grell, M
1996-10-01
Regulation of tumor necrosis factor receptors by glucocorticoids was investigated during phorbol ester-induced monocytic differentiation. As model system the human monocytic cell lines U937 and THP-1, which express both types of TNF receptors (TNF-R60 and TNF-R80), were differentiated with tetradecanoyl phorbol-13-acetate (TPA, 5 x 10(-9) M) in the presence or absence of dexamethasone (10(-9) - 10(-6) M). Expression of TNF receptors was determined at the mRNA level by Northern blot analysis and at the protein level by FACS analysis. During differentiation, TNF-R60 mRNA was down-regulated, whereas TNF-R80 mRNA levels were increased. Dexamethasone had no effect on TNF-R60 mRNA expression but attenuated TNF-R80 mRNA expression in both cell lines. Cell surface expression of TNF-R60 protein remained essentially unchanged during differentiation of THP-1 cells, whereas a rapid down-regulation of TNF-R80 was observed that was followed by a slow recovery. Surface expression of TNF-R80 was not affected by dexamethasone, whereas TNF-R60 expression was reduced by about 25%. These results indicate differential regulation of the two types of TNF receptors at the mRNA and protein level during monocytic differentiation. Glucocorticoids interfered with mRNA expression of TNF-R80 and protein expression of TNF-R60, but the rather limited effect leaves the question of its functional relevance open. In contrast to other cytokine systems, TNF receptors do not appear to be major targets of glucocorticoid action.
Williams, C M; Coleman, J W
1995-10-01
We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs.
Williams, C M; Coleman, J W
1995-01-01
We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs. Images Figure 1 Figure 2 Figure 3 PMID:7490125
Iron regulatory proteins and their role in controlling iron metabolism.
Kühn, Lukas C
2015-02-01
Cellular iron homeostasis is regulated by post-transcriptional feedback mechanisms, which control the expression of proteins involved in iron uptake, release and storage. Two cytoplasmic proteins with mRNA-binding properties, iron regulatory proteins 1 and 2 (IRP1 and IRP2) play a central role in this regulation. Foremost, IRPs regulate ferritin H and ferritin L translation and thus iron storage, as well as transferrin receptor 1 (TfR1) mRNA stability, thereby adjusting receptor expression and iron uptake via receptor-mediated endocytosis of iron-loaded transferrin. In addition splice variants of iron transporters for import and export at the plasma-membrane, divalent metal transporter 1 (DMT1) and ferroportin are regulated by IRPs. These mechanisms have probably evolved to maintain the cytoplasmic labile iron pool (LIP) at an appropriate level. In certain tissues, the regulation exerted by IRPs influences iron homeostasis and utilization of the entire organism. In intestine, the control of ferritin expression limits intestinal iron absorption and, thus, whole body iron levels. In bone marrow, erythroid heme biosynthesis is coordinated with iron availability through IRP-mediated translational control of erythroid 5-aminolevulinate synthase mRNA. Moreover, the translational control of HIF2α mRNA in kidney by IRP1 coordinates erythropoietin synthesis with iron and oxygen supply. Besides IRPs, body iron absorption is negatively regulated by hepcidin. This peptide hormone, synthesized and secreted by the liver in response to high serum iron, downregulates ferroportin at the protein level and thereby limits iron absorption from the diet. Hepcidin will not be discussed in further detail here.
Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes
Arikawa, Kentaro; Iwanaga, Tomoyuki; Wakakuwa, Motohiro; Kinoshita, Michiyo
2017-01-01
Following gene duplication events, the expression patterns of the resulting gene copies can often diverge both spatially and temporally. Here we report on gene duplicates that are expressed in distinct but overlapping patterns, and which exhibit temporally divergent expression. Butterflies have sophisticated color vision and spectrally complex eyes, typically with three types of heterogeneous ommatidia. The eyes of the butterfly Papilio xuthus express two green- and one red-absorbing visual pigment, which came about via gene duplication events, in addition to one ultraviolet (UV)- and one blue-absorbing visual pigment. We localized mRNAs encoding opsins of these visual pigments in developing eye disks throughout the pupal stage. The mRNAs of the UV and blue opsin are expressed early in pupal development (pd), specifying the type of the ommatidium in which they appear. Red sensitive photoreceptors first express a green opsin mRNA, which is replaced later by the red opsin mRNA. Broadband photoreceptors (that coexpress the green and red opsins) first express the green opsin mRNA, later change to red opsin mRNA and finally re-express the green opsin mRNA in addition to the red mRNA. Such a unique temporal and spatial expression pattern of opsin mRNAs may reflect the evolution of visual pigments and provide clues toward understanding how the spectrally complex eyes of butterflies evolved. PMID:29238294
Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.
Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L
1995-02-10
Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain.
Martyniuk, Christopher J; Kroll, Kevin J.; Porak, Wesley F.; Steward, Cheree; Grier, Harry J.; Denslow, Nancy D.
2011-01-01
The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) β subunit and follicle-stimulating hormone (FSH) β subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May through August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2–3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHβ mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin β subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction. PMID:19416730
Martyniuk, Christopher J; Kroll, Kevin J; Porak, Wesley F; Steward, Cheree; Grier, Harry J; Denslow, Nancy D
2009-09-15
The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) beta subunit and follicle stimulating hormone (FSH) beta subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May to August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2-3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHbeta mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin beta subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction.
Effect of age on the expression of Pex (Phex) in the mouse.
Meyer, R A; Young, C G; Meyer, M H; Garges, P L; Price, D K
2000-04-01
Pex is a newly discovered gene (also called Phex) whose mutation is the cause of X-linked hypophosphatemia. Other members of this gene family encode endopeptidases that activate or inactivate endocrine and paracrine factors. Though embryonic bone expresses mRNA for the Pex gene at relatively high levels, we have found Pex expression to be widespread in adult organs and to be poorly expressed in adult bone. This led to the hypothesis that Pex mRNA expression changes with age. To test this, genetically normal mice of the B6C3H hybrid strain were studied at 0 (newborn), 2, 3, 10, and 72 weeks of age. Organs known to express Pex were collected, and RNA was extracted from them. Following reverse transcription, cDNA was amplified by the polymerase chain reaction with primers for Pex and G3PDH, a housekeeping gene. The amplimers were separated by electrophoresis, blotted onto nylon membranes, and hybridized with radioactively labeled internal oligonucleotide probes. The radioactivity was quantified, and the data were analyzed as the Pex/G3PDH ratio. The brain samples had high levels of Pex mRNA expression that rose slightly with age. Calvaria, kidney, and lung samples had the highest Pex mRNA expression at birth. In these organs Pex mRNA expression fell with age to undetectable or barely detectable levels. Thymus, heart, and skeletal muscle samples had low Pex mRNA expression at birth that did not change with age. Some organs showed a decline in G3PDH levels with age, but Pex expression decreased more, leading to a reduced Pex/G3PDH ratio. The widespread expression of mRNA for Pex suggests a role beyond that of phosphate homeostasis. The high level of expression in newborn animals suggests a role in growth and development. This seems to occur in addition to its role for the endocrine regulation of phosphate homeostasis by as yet unknown humoral agents that must occur throughout life. In summary, Pex mRNA expression is high in brain and bone at birth. Expression remains high in brain with age but falls with age in bone, kidney, and lung.
Wojciechowska, A; Mlynarczuk, J; Kotwica, J
2017-01-15
Disorders in the barrier function and secretory activity of the placenta can be caused by xenobiotics (XB) present in the environment and their accumulation in tissues of living organisms. Thus, the aim of this study was to investigate the effect of 1,1,1-trichloro-2,2,-bis-4-chlorophenyl-ethane (DDT) and its metabolite 1,1-dichloro-2,2-bis-4-chlorophenyl-ethene (DDE) (for 24 or 48h) at doses of 1, 10 or 100ng/ml on the function of cow placentome sections in the second trimester of pregnancy. DDT and DDE affected neither (P>0.05) the viability nor hypoxia inducible factor 1 (HIF1α) mRNA expression of the sections. XB decreased (P<0.05) connexin (Cx) 26, 32, 43 and placenta-specific 1 (PLAC-1) mRNA expression but did not affect (P>0.05) keratin 8 (KRT8) mRNA expression. DDT and DDE also reduced (P<0.05) prostaglandin F2α (PGF2α) synthase (PGFS) mRNA expression, while DDT increased (P<0.05) prostaglandin E2 (PGE2) synthase (PGES) mRNA expression. Neither cyclooxygenase 2 (COX-2) mRNA expression nor PGF2α and PGE2 secretion were affected. Both DDT and DDE increased (P<0.05) neurophysin I/oxytocin (NP1/OT) mRNA expression and oxytocin (OT), oestradiol (E2) and progesterone (P4) secretion while DDT stimulated only 3β-hydroxysteroid dehydrogenase (3βHSD) and cholesterol side-chain cleavage enzyme (CYP11A1) mRNA expression (P<0.05). In summary, DDT and DDE impaired the barrier function and secretory activity of the placenta. Thus, these compounds can disrupt trophoblast invasion, myometrium contractility and gas/nutrient exchange throughout pregnancy in cows. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Urbatzka, R; Lutz, I; Kloas, W
2007-01-01
The key enzymes involved in the production of endogenous sex steroids are steroid-5-alpha-reductase and aromatase converting testosterone (T) into dihydrotestosterone (DHT) and into estradiol (E2), respectively. To gain more insights into the molecular mechanisms of sexual differentiation of amphibians, we determined the mRNA expression of steroid-5-alpha-reductase type1 (Srd5a1), type2 (Srd5a2) and aromatase (Aro) during ontogeny starting from the egg and ending after completion of metamorphosis in Xenopus laevis. Expression of all three enzymes was measured by means of semi-quantitative RT-PCR, determining for the first time Srd5a1 and Srd5a2 mRNA expression in amphibians. mRNA was analyzed in whole body homogenates from stage 12 to 48, while brain and gonads with kidney were studied separately from stage 48 to 66. Different ontogenetic mRNA expression patterns were observed for all genes analyzed, revealing early mRNA expression of Srd5a1 already in the egg at stage 12 whereas Srd5a2 and Aro was detected at stage 39. Sex-specific mRNA expressions of Srd5a2 and of Aro were determined in the gonads with kidney but not in brain. Srd5a2 was two-fold higher expressed in testes than in ovaries while Aro mRNA was ten-fold higher in ovaries. No gender-specific mRNA expression was observed for Srd5a1 in gonads and in brain. The ontogenetic patterns of Aro, Srd5a1 and Srd5a2 suggest that these genes are involved in sexual differentiation of gonads and brain already in early developmental stages. Especially in gonads Srd5a2 seems to be important for physiological regulation of testis development while Aro is associated with the development of ovaries.
TS mRNA levels can predict pemetrexed and raltitrexed sensitivity in colorectal cancer.
Zhang, Qun; Shen, Jie; Wang, Hao; Hu, Jing; Yu, Lixia; Xie, Li; Wei, Jia; Liu, Baorui; Guan, Wenxian; Qian, Xiaoping
2014-02-01
The purpose of the study is to analyze the relationship between tumor thymidylate synthase (TS) mRNA expression levels and raltitrexed/pemetrexed/5-FU sensitivity. We collected freshly removed colorectal tumor specimens from 50 patients. Chemosensitivities to anticancer drugs were evaluated by histoculture drug response assay. We adopted quantitative reverse transcription polymerase chain reaction for TS mRNA detection and immunohistochemical staining for assessing TS expression in tumor tissues. There is a significant relationship between TS mRNA expression levels and in vitro chemosensitivity of freshly removed colorectal tumor specimens to pemetrexed (P < 0.001)/raltitrexed (P = 0.004)/5-FU (P = 0.007). TS mRNA expression levels can predict pemetrexed and raltitrexed sensitivity in colorectal cancer.
Guapillo, Mario R; Márquez, Miguel A; Benítez-Hess, María L; Alvarez-Salas, Luis M
2006-07-01
Antisense oligodeoxynucleotides (AS-ODNs) are a promising alternative for the cure of many diseases because of their in vivo specificity and stability. However, AS-ODNs have a strong dependence on the target mRNA structure making necessary extensive in vivo testing. There is, therefore, a need to develop assays to rapidly evaluate in vivo ODN performance. We report a simple and inexpensive bacterial reporter system for the rapid in vivo evaluation of AS-ODNs directed against human papillomavirus type 16 (HPV-16) based on the destruction of a chimeric CFP mRNA using the reported HPV-16 nt 410-445 target. In vitro RNaseH assays confirmed target RNA accessibility after AS-ODN treatment. Expression of CFP in Escherichia coli BL21(DE3) with pGST-TSd2-CFP plasmid containing HPV-16 nt 410-445 target linked to CFP was blocked by transformed antisense PS-ODNs but not by two different scrambled ODN controls. A correlation was observed between bacterial CFP downregulation with the HPV-16 E6/E7 mRNA downregulation and the inhibition of anchorage-independent growth of HPV-16 containing cells suggesting that inhibition of HPV-16 E6/E7 expression by AS-ODNs directed against 410-445 target in cervical tumor cells can be tested in bacterial models.
Inhibition of N-Myc down regulated gene 1 in in vitro cultured human glioblastoma cells
Said, Harun M; Polat, Buelent; Stein, Susanne; Guckenberger, Mathias; Hagemann, Carsten; Staab, Adrian; Katzer, Astrid; Anacker, Jelena; Flentje, Michael; Vordermark, Dirk
2012-01-01
AIM: To study short dsRNA oligonucleotides (siRNA) as a potent tool for artificially modulating gene expression of N-Myc down regulated gene 1 (NDRG1) gene induced under different physiological conditions (Normoxia and hypoxia) modulating NDRG1 transcription, mRNA stability and translation. METHODS: A cell line established from a patient with glioblastoma multiforme. Plasmid DNA for transfections was prepared with the Endofree Plasmid Maxi kit. From plates containing 5 × 107 cells, nuclear extracts were prepared according to previous protocols. The pSUPER-NDRG1 vectors were designed, two sequences were selected from the human NDRG1 cDNA (5’-GCATTATTGGCATGGGAAC-3’ and 5’-ATGCAGAGTAACGTGGAAG-3’. reverse transcription polymerase chain reaction was performed using primers designed using published information on β-actin and hypoxia-inducible factor (HIF)-1α mRNA sequences in GenBank. NDRG1 mRNA and protein level expression results under different conditions of hypoxia or reoxygenation were compared to aerobic control conditions using the Mann-Whitney U test. Reoxygenation values were also compared to the NDRG1 levels after 24 h of hypoxia (P < 0.05 was considered significant). RESULTS: siRNA- and iodoacetate (IAA)-mediated downregulation of NDRG1 mRNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements bound by nuclear HIF-1 in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results. CONCLUSION: NDRG1 represents an additional diagnostic marker for brain tumor detection, due to the role of hypoxia in regulating this gene, and it can represent a potential target for tumor treatment in human glioblastoma. The siRNA method can represent an elegant alternative to modulate the expression of the hypoxia induced NDRG1 gene and can help to monitor the development of the cancer disease treatment outcome through monitoring the expression of this gene in the patients undergoing the different therapeutic treatment alternatives available nowadays. PMID:22787578
Dong, Mei; Zhong, Lin; Chen, Wen Qiang; Ji, Xiao Ping; Zhang, Mei; Zhao, Yu Xia; Li, Li; Yao, Gui Hua; Zhang, Peng Fei; Zhang, Cheng; Zhang, Lei; Zhang, Yun
2012-01-01
Enhanced matrix metalloproteinases (MMPs) activity is implicated in the process of atherosclerotic plaque instability. We hypothesized that doxycycline, a broad MMPs inhibitor, was as effective as simvastatin in reducing the incidence of plaque disruption. Thirty rabbits underwent aortic balloon injury and were fed a high-fat diet for 20 weeks. At the end of week 8, the rabbits were divided into three groups for 12-week treatment: a doxycycline-treated group that received oral doxycycline at a dose of 10 mg/kg/d, a simvastatin-treated group that received oral simvastatin at a dose of 5 mg/kg/d, and a control group that received no treatment. At the end of week 20, pharmacological triggering was performed to induce plaque rupture. Biochemical, ultrasonographic, pathologic, immunohistochemical and mRNA expression studies were performed. The results showed that oral administration of doxycycline resulted in a significant increase in the thickness of the fibrous cap of the aortic plaque whereas there was a substantial reduction of MMPs expression, local and systemic inflammation, and aortic plaque vulnerability. The incidence of plaque rupture with either treatment (0% for both) was significantly lower than that for controls (56.0%, P<0.05). There was no significant difference between doxycycline-treated group and simvastatin-treated group in any serological, ultrasonographic, pathologic, immunohistochemical and mRNA expression measurement except for the serum lipid levels that were higher with doxycycline than with simvastatin treatment. In conclusion, doxycycline at a common antimicrobial dose stabilizes atherosclerotic lesions via inhibiting matrix metalloproteinases and attenuating inflammation in a rabbit model of vulnerable plaque. These effects were similar to a large dose of simvastatin and independent of serum lipid levels. PMID:22737253
2012-01-01
Background Plasminogen activator inhibitor 1 (PAI-1) overexpression is an important prognostic and predictive biomarker in human breast cancer. SERBP1, a protein that is supposed to regulate the stability of PAI-1 mRNA, may play a role in gynaecological cancers as well, since upregulation of SERBP1 was described in ovarian cancer recently. This is the first study to present a systematic characterisation of SERBP1 expression in human breast cancer and normal breast tissue at both the mRNA and the protein level. Methods Using semiquantitative realtime PCR we analysed SERBP1 expression in different normal human tissues (n = 25), and in matched pairs of normal (n = 7) and cancerous breast tissues (n = 7). SERBP1 protein expression was analysed in two independent cohorts on tissue microarrays (TMAs), an initial evaluation set, consisting of 193 breast carcinomas and 48 normal breast tissues, and a second large validation set, consisting of 605 breast carcinomas. In addition, a collection of benign (n = 2) and malignant (n = 6) mammary cell lines as well as breast carcinoma lysates (n = 16) were investigated for SERBP1 expression by Western blot analysis. Furthermore, applying non-radioisotopic in situ hybridisation a subset of normal (n = 10) and cancerous (n = 10) breast tissue specimens from the initial TMA were analysed for SERBP1 mRNA expression. Results SERBP1 is not differentially expressed in breast carcinoma compared to normal breast tissue, both at the RNA and protein level. However, recurrence-free survival analysis showed a significant correlation (P = 0.008) between abundant SERBP1 expression in breast carcinoma and favourable prognosis. Interestingly, overall survival analysis also displayed a tendency (P = 0.09) towards favourable prognosis when SERBP1 was overexpressed in breast cancer. Conclusions The RNA-binding protein SERBP1 is abundantly expressed in human breast cancer and may represent a novel breast tumour marker with prognostic significance. Its potential involvement in the plasminogen activator protease cascade warrants further investigation. PMID:23236990
Brené, S; Lindefors, N; Herrera-Marschitz, M; Persson, H
1990-01-01
In situ hybridization was used to study dopamine D2 receptor (D2R) and choline acetyltransferase (ChAT) mRNA expression in neurons of the rat forebrain, both on control animals and after a unilateral 6-hydroxydopamine (6-OHDA) lesion of midbrain dopamine neurons. D2R mRNA expressing neurons were seen in regions which are known to be heavily innervated by midbrain dopamine fibers such as caudate-putamen, nucleus accumbens and olfactory tubercle. ChAT mRNA expressing neurons were seen in caudate-putamen, nucleus accumbens and septal regions including vertical limb of the diagonal band. In caudate-putamen, approximately 55% of the medium sized neurons, which is the predominating neuronal cell-size in this region, were specifically labeled with the D2R probe. In addition, approximately 95% of the large size neurons in caudate-putamen were specifically labeled with both the D2R and ChAT probes, suggesting that most cholinergic neurons in the caudate-putamen express D2R mRNA. After a unilateral lesion of midbrain dopamine neurons, no change in the level of either D2R or ChAT mRNA were seen in the large size intrinsic cholinergic neurons in caudate-putamen. Similarly, no evidence was obtained for altered levels of D2R mRNA in medium size neurons in medial caudate-putamen, or nucleus accumbens. However, an increase in the number of medium size neurons expressing D2R mRNA was observed in the lateral part of the dopamine deafferented caudate-putamen. Thus, it appears that midbrain dopamine deafferentation causes an increase in D2R mRNA expression in a subpopulation of medium size neurons in the lateral caudate-putamen.
Yang, Y.; Hao, J.; Liu, X.; Dalkin, B.; Nagle, R. B.
1997-01-01
The expression of cytokeratin (CK) mRNA for CK5, -8, -14, -16, and -19 was investigated in normal prostate, prostatic intraepithelial neoplasia (PIN) lesions, and invasive carcinoma using in situ hybridization. Protein localization was carried out in adjacent sections using immunohistochemistry and correlated with mRNA expression. Snap-frozen human prostate samples including 22 examples of normal glands, 20 cases of PIN lesions, and 12 cases of invasive carcinoma were examined. CK5 and -14 mRNA and protein were prominently expressed only in the basal cells of normal glands and PIN lesions. CK14 mRNA was absent in the luminal cells of the most of the PIN lesions but was seen at a low level in some PIN lesions. CK14 protein was not detected in any PIN lesion, suggesting that, if the cell that makes up the PIN lesions is derived from a basal cell, CK14 translation is depressed although a low level of CK14 mRNA may persist. CK8 mRNA and protein were constitutively expressed in all epithelia of normal and abnormal prostate tissues. CK19 mRNA and protein were persistently expressed in both basal and luminal cells of the tubular portion of normal glands as well as PIN lesions, but were expressed heterogeneously in both basal and luminal cells of normal alveoli. CK16 mRNA was expressed in a similar pattern as CK19, but CK16 protein was not detected either in normal or in abnormal prostate tissues. In conclusion, the expression of CK19 in PIN lesions is similar to its tubular expression and would support an origin of PIN lesions from this structure rather than the alveolar portion of the glands. The similar cytokeratin expression between PIN lesions and invasive carcinoma further supports the concept that PIN is a precursor lesion of invasive carcinoma. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:9033282
Expression and methylation of BDNF in the human brain in schizophrenia.
Cheah, Sern-Yih; McLeay, Robert; Wockner, Leesa F; Lawford, Bruce R; Young, Ross McD; Morris, Charles P; Voisey, Joanne
2017-08-01
To examine the combined effect of the BDNF Val66Met (rs6265) polymorphism and BDNF DNA methylation on transcriptional regulation of the BDNF gene. DNA methylation profiles were generated for CpG sites proximal to Val66Met, within BDNF promoter I and exon V for prefrontal cortex samples from 25 schizophrenia and 25 control subjects. Val66Met genotypes and BDNF mRNA expression data were generated by transcriptome sequencing. Expression, methylation and genotype data were correlated and examined for association with schizophrenia. There was 43% more of the BDNF V-VIII-IX transcript in schizophrenia samples. BDNF mRNA expression and DNA methylation of seven CpG sites were not associated with schizophrenia after accounting for age and PMI effects. BDNF mRNA expression and DNA methylation were not altered by Val66Met after accounting for age and PMI effects. DNA methylation of one CpG site had a marginally significant positive correlation with mRNA expression in schizophrenia subjects. Schizophrenia risk was not associated with differential BDNF mRNA expression and DNA methylation. A larger age-matched cohort with comprehensive clinical history is required to accurately identify the effects of genotype, mRNA expression and DNA methylation on schizophrenia risk.
Increased expression of ADAM 9 and ADAM 15 mRNA in pancreatic cancer.
Yamada, Daisuke; Ohuchida, Kenoki; Mizumoto, Kazuhiro; Ohhashi, Seiji; Yu, Jun; Egami, Takuya; Fujita, Hayato; Nagai, Eishi; Tanaka, Masao
2007-01-01
A disintegrin and metalloproteases (ADAMs) comprise a multifunctional family of membrane-anchored proteins. ADAM 9 and ADAM 15 are involved in cell migration and invasion. Expression of ADAM 9 and ADAM 15 was reported to be altered in several types of cancer. Quantitative real-time reverse transcription-polymerase chain reaction was performed to measure the expression of ADAM 9 mRNA in bulk pancreatic tissues. Results showed no significant difference in the expression of ADAM 9 mRNA between pancreatic cancer and non-neoplastic pancreas. Primary cultured pancreatic fibroblasts also expressed ADAM 9 mRNA. Therefore, a laser microdissection and pressure catapulting technique was employed to isolate cancer cells from tumor tissues. The expression of ADAM 9 and ADAM 15 mRNA was measured in microdissected samples (cancer cells, n = 11; normal epithelial cells, n = 13 for ADAM 9; cancer cells, n = 9; normal epithelial cells, n = 9 for ADAM 15). Pancreatic cancer cells expressed significantly higher levels of ADAM 9 and ADAM 15 mRNA than did normal pancreatic epithelial cells (p = 0.016 for ADAM 9; p = 0.004 for ADAM 15). ADAM 9 and ADAM 15 are involved in pancreatic cancer. Microdissection-based analysis appears to be indispensable for the accurate analysis of the expression of certain ADAM family members in pancreatic cancer.
Heritage, Mandy L; Murphy, Therese L; Bridle, Kim R; Anderson, Gregory J; Crawford, Darrell H G; Fletcher, Linda M
2009-08-01
Expression of Hamp1, the gene encoding the iron regulatory peptide hepcidin, is inappropriately low in HFE-associated hereditary hemochromatosis and Hfe knockout mice (Hfe(-/-)). Since chronic alcohol consumption is also associated with disturbances in iron metabolism, we investigated the effects of alcohol consumption on hepcidin mRNA expression in Hfe(-/-) mice. Hfe(-/-) and C57BL/6 (wild-type) mice were pair-fed either an alcohol liquid diet or control diet for up to 8 weeks. The mRNA levels of hepcidin and ferroportin were measured at the mRNA level by RT-PCR and protein expression of hypoxia inducible factor-1 alpha (HIF-1alpha) was measured by western blot. Hamp1 mRNA expression was significantly decreased and duodenal ferroportin expression was increased in alcohol-fed wild-type mice at 8 weeks. Time course experiments showed that the decrease in hepcidin mRNA was not immediate, but was significant by 4 weeks. Consistent with the genetic defect, Hamp1 mRNA was decreased and duodenal ferroportin mRNA expression was increased in Hfe(-/-) mice fed on the control diet compared with wild-type animals and alcohol further exacerbated these effects. HIF-1alpha protein levels were elevated in alcohol-fed wild-type animals compared with controls. Alcohol may decrease Hamp1 gene expression independently of the HFE pathway possibly via alcohol-induced hypoxia.
Brené, S; Lindefors, N; Persson, H
1992-06-01
Intracerebroventricular 6-hydroxydopamine injections were performed at postnatal days 3 and 6 in animals pretreated with the norepinephrine uptakeblocker desimipramine in order to generate a selective lesion of dopamine neurons. In situ hybridization was then used to analyze preprotachykinin-A (PPT-A) mRNA expression in the lesioned as well as in saline-injected control animals. The midbrain dopaminergic lesion caused a 22-25% increase in the level of PPT-A mRNA in cingulate cortex and frontoparietal cortex when analysed at 2 weeks of age, compared to saline-injected control animals. In contrast, the lesion caused no change in PPT-A mRNA expression in the neonatal caudate-putamen. These results indicate that dopamine neurons downregulate the expression of PPT-A mRNA specifically in cingulate cortex and frontoparietal cortex during early postnatal brain development. In the adult rat forebrain, lesioned at P3 and P6, no change in the level of PPT-A mRNA was seen in cingulate cortex and frontoparietal cortex. However, a 29% decrease in PPT-A mRNA was seen in the lateral caudate-putamen with no significant change in neurons of medial caudate-putamen. Thus, dopamine neurons appears to exert a region specific influence on PPT-A mRNA expression during brain development.
Chapela, Patricia J; Broaddus, Russell R; Hawkins, Shannon M; Lessey, Bruce A; Carson, Daniel D
2015-11-01
MUC4, a transmembrane glycoprotein, interferes with cell adhesion, and promotes EGFR signaling in cancer. Studies in rat models have demonstrated steroid hormonal regulation of endometrial MUC4 expression. In this study, qRT-PCR screening of mouse tissues determined that Muc4 mRNA also was robustly expressed in mouse uteri. Previous studies from our labs have demonstrated MUC4 mRNA was expressed at levels <1% of MUC1 mRNA in human endometrium and endometriotic tissue. Multiple human endometrial adenocarcinoma cell lines were assayed for MUC4 mRNA expression revealing extremely low basal expression in the Ishikawa, RL-95-2, AN3CA, and KLE lines. Moderate to high expression was observed in HEC50 and HEC-1A cells. MUC4 mRNA expression was not affected by progesterone and/or estrogen treatment, but was greatly stimulated at both mRNA and protein levels by proinflammatory cytokines (IFN-γ and TNF-α), particularly when used in combination. In endometrial tissue, MUC4 mRNA levels did not change significantly between normal or cancerous samples; although, a subset of patients with grade 1 and 2 tumors displayed substantially higher expression. Likewise, immunostaining of human endometrial adenocarcinoma tissues revealed little to no staining in many patients (low MUC4), but strong staining in some patients (high MUC4) independent of cancer grade. In cases where staining was observed, it was heterogeneous with some cells displaying robust MUC4 expression and others displaying little or no staining. Collectively, these observations demonstrate that while MUC4 is highly expressed in the mouse uterus, it is not a major mucin in normal human endometrium. Rather, MUC4 is a potential marker of endometrial adenocarcinoma in a subset of patients. © 2015 Wiley Periodicals, Inc.
Meißner, Joachim D; Kubis, Hans-Peter; Scheibe, Renate J; Gros, Gerolf
2000-01-01
The adult fast character and a Ca2+-inducible reversible transition from a fast to a slow type of rabbit myotube in a primary culture were demonstrated at the mRNA level by Northern blot analysis with probes specific for different myosin heavy chain (MyHC) isoforms and enzymes of energy metabolism. No non-adult MyHC isoform mRNA was detected after 22 days of culture. After 4 weeks of culture the fast MyHCIId mRNA was strongly expressed while MyHCI mRNA was virtually absent, indicating the fast adult character of the myotubes in the primary skeletal muscle culture. The data show that a fast-to-slow transition occurred in the myotubes at the level of MyHC isoform gene expression after treatment with the Ca2+ ionophore A23187. The effects of ionophore treatment were decreased levels of fast MyHCII mRNA and an augmented expression of the slow MyHCI gene. Changes in gene expression started very rapidly 1 day after the onset of ionophore treatment. Levels of citrate synthase mRNA increased and levels of glyceraldehyde 3-phosphate dehydrogenase mRNA decreased during ionophore treatment. This points to a shift from anaerobic to oxidative energy metabolism in the primary skeletal muscle culture cells at the level of gene expression. Withdrawal of the Ca2+ ionophore led to a return to increased levels of MyHCII mRNA and decreased levels of MyHCI mRNA, indicating a slow-to-fast transition in the myotubes and the reversibility of the effect of ionophore on MyHC isoform gene expression. PMID:10673542
Okamura, Masumi; Yamanaka, Yasutaka; Shigemoto, Maki; Kitadani, Yuya; Kobayashi, Yuhko; Kambe, Taiho; Nagao, Masaya; Kobayashi, Issei; Okumura, Katsuzumi
2018-01-01
DBP5, also known as DDX19, GLE1 and inositol hexakisphosphate (IP6) function in messenger RNA (mRNA) export at the cytoplasmic surface of the nuclear pore complex in eukaryotic cells. DBP5 is a DEAD-box RNA helicase, and its activity is stimulated by interactions with GLE1 and IP6. In addition, these three factors also have unique role(s). To investigate how these factors influenced the cytoplasmic mRNA expression and cell phenotype change, we performed RNA microarray analysis to detect the effect and function of DBP5, GLE1 and IP6 on the cytoplasmic mRNA expression. The expression of some cytoplasmic mRNA subsets (e.g. cell cycle, DNA replication) was commonly suppressed by the knock-down of DBP5, GLE1 and IPPK (IP6 synthetic enzyme). The GLE1 knock-down selectively reduced the cytoplasmic mRNA expression required for mitotic progression, results in an abnormal spindle phenotype and caused the delay of mitotic process. Meanwhile, G1/S cell cycle arrest was observed in DBP5 and IPPK knock-down cells. Several factors that function in immune response were also down-regulated in DBP5 or IPPK knock-down cells. Thereby, IFNβ-1 mRNA transcription evoked by poly(I:C) treatment was suppressed. These results imply that DBP5, GLE1 and IP6 have a conserved and individual function in the cytoplasmic mRNA expression. Variations in phenotype are due to the difference in each function of DBP5, GLE1 and IPPK in intracellular mRNA metabolism. PMID:29746542
Zhang, R; Lin, Y; Zhi, L; Liao, H; Zuo, L; Li, Z; Xu, Y
2017-04-01
1. Adiponectin and its receptors (ADIPOR1 and ADIPOR2) are novel endocrine systems that act at various levels to modulate glucose and lipid metabolism. This study was designed to investigate the spatial expression of adiponectin, ADIPOR1 and ADIPOR2 genes in various tissues in Tibetan chicken. The temporal expression of adiponectin and its receptor mRNAs were also studied in adipose tissue, breast muscle and thigh muscle and the correlations of the levels of adiponectin, ADIPOR1 and ADIPOR2 mRNA with the contents of intramuscular fat in breast muscle and thigh muscle of Tibetan chicken were determined. 2. Quantitative real-time PCR detected chicken adiponectin, ADIPOR1 and ADIPOR2 mRNA transcripts in heart, liver, spleen, lung, kidney, skeletal muscle and adipose tissue. 3. Adipose tissue contained the highest amount of adiponectin mRNA followed by the kidney and liver. The expression levels of ADIPOR1 mRNA were significantly higher in adipose tissue, lung and spleen, and adipose tissue exhibited significantly higher levels of ADIPOR2 mRNA followed by the spleen and lung compared with other tissues. 4. Temporal expression profiles of adiponectin, ADIPOR1 and ADIPOR2 mRNA showed gender differences in adipose tissue and skeletal muscle at certain ages. In adipose tissue, adiponectin mRNA was higher in 154-d-old females and ADIPOR1 mRNA was higher in 154-d-old males: Adiponectin and ADIPOR2 mRNA were higher, and ADIPOR1 mRNA was lower, in thigh muscle in female compared with male chickens. 5. The correlation data showed that, except for adiponectin mRNA, the levels of ADIPOR1 and ADIPOR2 mRNA in thigh muscle of males were significantly positively correlated with IMF (r = 0.206 for the ADIPOR1 gene and r = 0.676 for the ADIPOR2 gene). 6. Taken together, it was concluded that adiponectin and the ADIPOR1 and ADIPOR2 genes are ubiquitously expressed in various tissues of Tibetan chicken and the expression of the adiponectin system is gender-dependant at certain ages in adipose tissue and skeletal muscle.
Expression of inflammation-related genes in aldosterone-producing adenomas with KCNJ5 mutation.
Murakami, Masanori; Yoshimoto, Takanobu; Nakano, Yujiro; Tsuchiya, Kyoichiro; Minami, Isao; Bouchi, Ryotaro; Fujii, Yasuhisa; Nakabayashi, Kazuhiko; Hashimoto, Koshi; Hata, Ken-Ichiro; Kihara, Kazunori; Ogawa, Yoshihiro
2016-08-05
The adrenocortical cells have been shown to produce various inflammatory cytokines such as TNFα and IL-6, which could modulate steroidogenesis. However, the role of inflammatory cytokines in aldosterone-producing adenomas (APAs) is not fully understood. In the present study, we examined the relationships between mRNA expression levels of the inflammation-related genes and somatic mutations in APA tissues. We evaluated mRNA expression levels of TNFA, IL6, and NFKB1 in APA tissues obtained from 44 Japanese APA patients. We revealed that mRNA expression patterns of the inflammation-related genes depended on a KCNJ5 somatic mutation. In addition, we showed that mRNA expression levels of the inflammation-related genes correlated with those of the steroidogenic enzyme CYP11B1 in the patients with APAs. The present study documented for the first time the expression of inflammation-related genes in APAs and the correlation of their expression levels with the KCNJ5 mutation status and mRNA expression levels of steroidogenic enzymes, indicating the pathophysiological relevance of inflammation-related genes in APAs. Copyright © 2016 Elsevier Inc. All rights reserved.
Lachgar, S; Charveron, M; Gall, Y; Bonafe, J L
1998-03-01
The hair follicle dermal papilla which controls hair growth, is characterized in the anagen phase by a highly developed vascular network. We have demonstrated in a previous study that the expression of an angiogenic growth factor called vascular endothelial growth factor (VEGF) mRNA varied during the hair cycle. VEGF mRNA is strongly expressed in dermal papilla cells (DPC) in the anagen phase, but during the catagen and telogen phases. VEGF mRNA is less strongly expressed. This involvement of VEGF during the hair cycle allowed us to determine whether VEGF mRNA expression by DPC was regulated by minoxidil. In addition, the effect of minoxidil on VEGF protein synthesis in both cell extracts and DPC-conditioned medium, was investigated immunoenzymatically. Both VEGF mRNA and protein were significantly elevated in treated DPC compared with controls. DPC incubated with increasing minoxidil concentrations (0.2, 2, 6, 12 and 24 mumol/L) induced a dose-dependent expression of VEGF mRNA. Quantification of transcripts showed that DPC stimulated with 24 mumol/L minoxidil express six times more VEGF mRNA than controls. Similarly, VEGF protein production increases in cell extracts and conditioned media following minoxidil stimulation. These studies strongly support the likely involvement of minoxidil in the development of dermal papilla vascularization via a stimulation of VEGF expression, and support the hypothesis that minoxidil has a physiological role in maintaining a good vascularization of hair follicles in androgenetic alopecia.
Stool metatranscriptomics: A technical guideline for mRNA stabilisation and isolation.
Reck, Michael; Tomasch, Jürgen; Deng, Zhiluo; Jarek, Michael; Husemann, Peter; Wagner-Döbler, Irene
2015-07-04
The complex microbiome of the gut has an enormous impact on human health. Analysis of the transcriptional activity of microorganisms through mRNA sequencing (metatranscriptomics) opens a completely new window into their activity in vivo, but it is highly challenging due to numerous technical and bioinformatical obstacles. Here we present an optimized pipeline for extraction of high quality mRNA from stool samples. Comparison of three commercially available RNA extraction kits with the method of Zoetendal revealed that the Powermicrobiome Kit (MoBio) performed best with respect to RNA yield and purity. Next, the influence of the stabilization reagent during sample storage for up to 15 days was studied. RIN analysis and qRT-PCR of spiked-in and indigenous genes revealed that RNA Later preserved mRNA integrity most efficiently, while samples conserved in RNA Protect showed substantial mRNA decay. Using the optimized pipeline developed here, recovery rates for spiked-in E.coli cells expressing fluorescing proteins were 8.7-9.7% for SuperfolderGFP and 14.7-17.8% for mCherry. The mRNA of stabilized stool samples as well as of snap-frozen controls was sequenced with Illumina Hiseq, yielding on average 74 million reads per sample. PCoA analysis, taxonomic classification using Kraken and functional classification using bwa showed that the transcriptomes of samples conserved in RNA Later were unchanged for up to 6 days even at room temperature, while RNA Protect was inefficient for storage durations exceeding 24 h. However, our data indicate that RNA Later introduces a bias which is then maintained throughout storage, while RNA Protect conserved samples are initially more similar to the snap frozen controls. RNA Later conserved samples had a reduced abundance of e.g. Prevotellaceae transcripts and were depleted for e.g. COG category "Carbohydrate transport and metabolism". Since the overall similarity between all stool transcriptional profiles studied here was >0.92, these differences are unlikely to affect global comparisons, but should be taken into account when rare but critically important members of the stool microbiome are being studied.
Fumuso, Elida; Giguère, Steeve; Wade, José; Rogan, Dragan; Videla-Dorna, Ignacio; Bowden, Raúl A
2003-11-15
Endometrial mRNA expression of the pro-inflammatory cytokines interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) was assessed in mares resistant (RM) or susceptible (SM) to persistent post-breeding endometritis (PPBE). Eight RM and eight SM, were selected based on reproductive records and functional tests out of a herd of 2,000 light cross-type mares. Three experiments were done to study transcription patterns in (i) basal conditions; (ii) after artificial insemination (AI); and (iii) after administration of an immunomodulator at time of artificial insemination. Endometrial biopsies were taken during consecutive cycles: (i) at estrus, when follicles reached 35 mm and at diestrus (7 +/- 1 days after ovulation); (ii) at 24 h post-AI, with dead semen (estrus) and in diestrus; (iii) at 24 h after treatment with a Mycobacterium phlei cell-wall extract (MCWE) preparation and AI (with dead semen), and at diestrus. mRNA expression was quantitated by real time PCR. Under basal conditions, SM had significantly higher mRNA expression of all cytokines in estrus and of IL-1beta and TNF-alpha in diestrus, compared to RM. After AI, there were no differences between RM and SM in estrus; however, mRNA expression for all three pro-inflammatory cytokines was higher than under basal conditions. In diestrus, RM showed significantly lower IL-1beta and TNF-alpha mRNA expression than SM. When MCWE was administered at time of AI, no differences between cytokine induction from RM and SM were found. Globally, mRNA expression for all three cytokines correlated well among themselves when expression was high. The present study showed that (i) in basal conditions RM had lower mRNA expression of pro-inflammatory cytokines than SM with no effect of estrous cycle; (ii) AI upregulated mRNA expression for all three cytokines in both RM and SM, with persistance in diestrus in the latter; (iii) treatment with MCWE at time of AI down-regulated mRNA expression of IL-1 with significant effects in SM which behaved like RM. Immunomodulation with MCWE could be of help in restoring homeostatic local inflammatory mechanisms, thus assisting in the prophylaxis of post-breeding endometritis in mares.
Differentially-Expressed Pseudogenes in HIV-1 Infection.
Gupta, Aditi; Brown, C Titus; Zheng, Yong-Hui; Adami, Christoph
2015-09-29
Not all pseudogenes are transcriptionally silent as previously thought. Pseudogene transcripts, although not translated, contribute to the non-coding RNA pool of the cell that regulates the expression of other genes. Pseudogene transcripts can also directly compete with the parent gene transcripts for mRNA stability and other cell factors, modulating their expression levels. Tissue-specific and cancer-specific differential expression of these "functional" pseudogenes has been reported. To ascertain potential pseudogene:gene interactions in HIV-1 infection, we analyzed transcriptomes from infected and uninfected T-cells and found that 21 pseudogenes are differentially expressed in HIV-1 infection. This is interesting because parent genes of one-third of these differentially-expressed pseudogenes are implicated in HIV-1 life cycle, and parent genes of half of these pseudogenes are involved in different viral infections. Our bioinformatics analysis identifies candidate pseudogene:gene interactions that may be of significance in HIV-1 infection. Experimental validation of these interactions would establish that retroviruses exploit this newly-discovered layer of host gene expression regulation for their own benefit.
Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis.
Yin, Kaifeng; Hacia, Joseph G; Zhong, Zhe; Paine, Michael L
2014-11-19
In the rodent incisor during amelogenesis, as ameloblast cells transition from secretory stage to maturation stage, their morphology and transcriptome profiles change dramatically. Prior whole genome transcriptome analysis has given a broad picture of the molecular activities dominating both stages of amelogenesis, but this type of analysis has not included miRNA transcript profiling. In this study, we set out to document which miRNAs and corresponding target genes change significantly as ameloblasts transition from secretory- to maturation-stage amelogenesis. Total RNA samples from both secretory- and maturation-stage rat enamel organs were subjected to genome-wide miRNA and mRNA transcript profiling. We identified 59 miRNAs that were differentially expressed at the maturation stage relative to the secretory stage of enamel development (False Discovery Rate (FDR)<0.05, fold change (FC)≥1.8). In parallel, transcriptome profiling experiments identified 1,729 mRNA transcripts that were differentially expressed in the maturation stage compared to the secretory stage (FDR<0.05, FC≥1.8). Based on bioinformatics analyses, 5.8% (629 total) of these differentially expressed genes (DEGS) were highlighted as being the potential targets of 59 miRNAs that were differentially expressed in the opposite direction, in the same tissue samples. Although the number of predicted target DEGs was not higher than baseline expectations generated by examination of stably expressed miRNAs, Gene Ontology (GO) analysis showed that these 629 DEGS were enriched for ion transport, pH regulation, calcium handling, endocytotic, and apoptotic activities. Seven differentially expressed miRNAs (miR-21, miR-31, miR-488, miR-153, miR-135b, miR-135a and miR298) in secretory- and/or maturation-stage enamel organs were confirmed by in situ hybridization. Further, we used luciferase reporter assays to provide evidence that two of these differentially expressed miRNAs, miR-153 and miR-31, are potential regulators for their predicated target mRNAs, Lamp1 (miR-153) and Tfrc (miR-31). In conclusion, these data indicate that miRNAs exhibit a dynamic expression pattern during the transition from secretory-stage to maturation-stage tooth enamel formation. Although they represent only one of numerous mechanisms influencing gene activities, miRNAs specific to the maturation stage could be involved in regulating several key processes of enamel maturation by influencing mRNA stability and translation.
Gao, Jian; Ulekleiv, Camilla H; Halstensen, Trond S
2016-09-26
Increased expression of epidermal growth factor receptor (EGFR) and its ligands is associated with poor prognosis and chemoresistance in many carcinoma types, but its role in head and neck squamous cell carcinoma (HNSCC) is unclear. Our aim was to clarify whether mRNA expression of EGFR-ligands was linked to prognosis and cisplatin resistance, and if so, which ligand was most important and how was the expression regulated. To examine the prognostic effect of EGFR-ligand expression, we analyzed tumorous mRNA expression in 399 HNSCC patients. The intracellular signaling pathways controlling epidermal growth factor (EGF)-induced amphiregulin (AREG) expression were examined in three oral squamous cell carcinoma (OSCC) cell lines. Effect of AREG on cisplatin resistance was examined by viability assays in four-, and by association in 11 OSCC cell lines. The patients were divided into five groups according to the median mRNA expression levels of four EGFR ligands, i.e. AREG, EGF, heparin-binding EGF-like growth factor (HBEGF) and beta-cellulin (BTC). The number of increased-expressed EGFR-ligands were progressively correlated to five-year survival, even in advanced TNM-stage IV patients, where five-year mortality increased from 26 % if tumor expressed none to one EGFR-ligand, to 45 % in three to four ligand expressing tumors. Thus, staging the tumor according to these EGFR-ligand mRNA expression pattern completely out performed TNM staging in predicting prognosis. Multivariate analysis identified AREG as the dominating predictor, and AREG was overexpressed in OSCC compared to tumors from other sites. Both EGF and HBEGF stimulation induced strong AREG increase in OSCC cell lines, which was partially mediated by the extracellular signal-regulated kinase 1/2 pathway, and negatively regulated by p38, c-Jun N-terminal kinase, and phosphoinositide-3 kinase. Although increased AREG mRNA expression predicted unfavorable prognosis in platinum treated HNSCC patients, AREG did not mediate cisplatin resistance in the OSCC cell lines. Increased tumorous mRNA expression of four EGFR ligands was progressively associated with poor prognosis in HNSCC. Thus, EGFR-ligands mRNA expression pattern may be a new prognostic biomarker. The tightly regulated EGF-induced AREG mRNA expression was partly lost in the OSCC cell lines and restoring its regulation may be a new target in cancer treatment. Not applicable as the clinical data of the 498 HNSCC patients and their mRNA expression profiles were collected from the open TCGA database: http://cancergenome.nih.gov/cancersselected/headandneck .
Zhang, Kun; Niu, Shaofang; Di, Dianping; Shi, Lindan; Liu, Deshui; Cao, Xiuling; Miao, Hongqin; Wang, Xianbing; Han, Chenggui; Yu, Jialin; Li, Dawei; Zhang, Yongliang
2013-10-10
Both genome-wide transcriptomic surveys of the mRNA expression profiles and virus-induced gene silencing-based molecular studies of target gene during virus-plant interaction involve the precise estimation of the transcript abundance. Quantitative real-time PCR (qPCR) is the most widely adopted technique for mRNA quantification. In order to obtain reliable quantification of transcripts, identification of the best reference genes forms the basis of the preliminary work. Nevertheless, the stability of internal controls in virus-infected monocots needs to be fully explored. In this work, the suitability of ten housekeeping genes (ACT, EF1α, FBOX, GAPDH, GTPB, PP2A, SAND, TUBβ, UBC18 and UK) for potential use as reference genes in qPCR were investigated in five different monocot plants (Brachypodium, barley, sorghum, wheat and maize) under infection with different viruses including Barley stripe mosaic virus (BSMV), Brome mosaic virus (BMV), Rice black-streaked dwarf virus (RBSDV) and Sugarcane mosaic virus (SCMV). By using three different algorithms, the most appropriate reference genes or their combinations were identified for different experimental sets and their effectiveness for the normalisation of expression studies were further validated by quantitative analysis of a well-studied PR-1 gene. These results facilitate the selection of desirable reference genes for more accurate gene expression studies in virus-infected monocots. Copyright © 2013 Elsevier B.V. All rights reserved.
Grace, Christy R.; Ferreira, Antonio M.; Waddell, M. Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael; LoCascio, Philip F.; Panetta, John C.; Wilkinson, Mark R.; Pui, Ching-Hon; Naeve, Clayton W.; Uberbacher, Edward C.; Bonten, Erik J.; Evans, William E.
2016-01-01
MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10−16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription. PMID:26844769
Krishnaswamy, Venkat Raghavan; Manikandan, Mayakannan; Munirajan, Arasambattu Kannan; Vijayaraghavan, Doraiswamy; Korrapati, Purna Sai
2014-12-01
Chronic cutaneous wound (CCW) is a major health care burden wherein the healing process is slow or rather static resulting in anatomical and functional restriction of the damaged tissue. Dysregulated expression and degradation of matrix proteins, growth factors and cytokines contribute to the disrupted and uncoordinated healing process of CCW. Therefore, therapeutic approaches for effective management of CCW should be focused towards identifying and manipulating the molecular defects, such as reduced bioavailability of the pro-healing molecules and elevated activity of proteases. This study essentially deals with assessing the expression and integrity of an extracellular matrix protein, Dermatopontin (DPT), in CCW using real-time quantitative reverse transcriptase PCR and immunological techniques. The results indicate that, despite DPT's high mRNA expression, the protein levels are markedly reduced in both CCW tissue and its exudate. To elucidate the cause for this contradiction in mRNA and protein levels, the stability of DPT is analyzed in the presence of wound exudates and various proteases that are naturally elevated in CCW. DPT was observed to be degraded at higher rates when incubated with certain recombinant proteases or chronic wound exudate. In conclusion, the susceptibility of DPT protein to specific proteases present at high levels in the wound milieu resulted in the degradation of DPT, thus leading to impaired healing response in CCW.
Zu, Yujiao; Overby, Haley; Ren, Guofeng; Fan, Zhaoyang; Zhao, Ling; Wang, Shu
2018-01-01
Trans -resveratrol (R) has a potential to increase energy expenditure via inducing browning in white adipose tissue. However, its low levels of aqueous solubility, stability, and poor bioavailability limit its application. We have successfully synthesized biocompatible, and biodegradable R encapsulated lipid nanocarriers (R-nano), and R encapsulated liposomes (R-lipo). The mean particle size of R-nano and R-lipo were 140 nm and 110 nm, respectively, and their polydispersity index values were less than 0.2. Nanoen-capsulation significantly increased aqueous solubility and enhanced chemical stability of R, especially at 37 °C. R-lipo had higher physical and chemical stability than R-nano while R-nano had more prolonged release than R-lipo. Both R-nano and R-lipo increased cellular R content in 3T3-L1 cells. Both R-nano and R-lipo dose-dependently induced uncoupling protein 1 (UCP1) mRNA expression and decreased white specific marker insulin growth factor binding protein 3 expression under isoproterenol (ISO)-stimulated conditions. At the low dose (5 μM), nanoencapsulated compared to native R enhanced UCP1 and beige marker CD137 expression under ISO-stimulated conditions. Compared to R-nano, R-lipo had better biological activity, possibly due to its higher physical and chemical stability at the room and body temperature. Taken together, our study demonstrates that nanoencapsulation increased R’s aqueous solubility and stability, which led to enhanced browning of white adipocytes. Even though both R-lipo and R-nano increased R’s browning activities, their differential characteristics need to be considered in obesity treatment. PMID:29433059
Gardner, Katherine L.; Hale, Matthew W.; Lightman, Stafford L.; Plotsky, Paul M.; Lowry, Christopher A.
2009-01-01
Anxiety disorders, depression and animal models of vulnerability to a depression-like syndrome have been associated with dysregulation of serotonergic systems in the brain. To evaluate the effects of early life experience, adverse experiences during adulthood, and potential interactions between these factors on serotonin transporter (slc6a4) mRNA expression, we investigated in rats the effects of maternal separation (180 min/day from days 2–14 of life; MS180), neonatal handing (15 min/day from days 2–14 of life; MS15), or normal animal facility rearing control conditions (AFR) with or without subsequent exposure to adult social defeat on slc6a4 mRNA expression in the dorsal raphe nucleus (DR) and caudal linear nucleus. At the level of specific subdivisions of the DR, there were no differences in slc6a4 mRNA expression between MS15 and AFR rats. Among rats exposed to a novel cage control condition, increased slc6a4 mRNA expression was observed in the dorsal part of the DR in MS180 rats, relative to AFR control rats. In contrast, MS180 rats exposed to social defeat as adults had increased slc6a4 mRNA expression throughout the DR compared to both MS15 and AFR controls. Social defeat increased slc6a4 mRNA expression, but only in MS180 rats and only in the “lateral wings” of the DR. Overall these data demonstrate that early life experience and stressful experience during adulthood interact to determine slc6a4 mRNA expression. These data support the hypothesis that early life experience and major stressful life events contribute to dysregulation of serotonergic systems in stress-related neuropsychiatric disorders. PMID:19781533
mRNA expression levels of hypoxia-induced and stem cell-associated genes in human glioblastoma.
Bache, Matthias; Rot, Swetlana; Keßler, Jacqueline; Güttler, Antje; Wichmann, Henri; Greither, Thomas; Wach, Sven; Taubert, Helge; Söling, Ariane; Bilkenroth, Udo; Kappler, Matthias; Vordermark, Dirk
2015-06-01
The roles of hypoxia-induced and stem cell-associated genes in the development of malignancy and tumour progression are well known. However, there are a limited number of studies analysing the impact of mRNA expression levels of hypoxia-induced and stem cell-associated genes in the tissues of brain tumours and glioblastoma patients. In this study, tumour tissues from patients with glioblastoma multiforme and tumour adjacent tissues were analysed. We investigated mRNA expression levels of hypoxia-inducible factor-1α (HIF-1α), hypoxia-inducible factor-2α (HIF-2α), carbonic anhydrase 9 (CA9), vascular endothelial growth factor (VEGF), glucose transporter-1 (GLUT-1) and osteopontin (OPN), and stem cell-associated genes survivin, epidermal growth factor receptor (EGFR), human telomerase reverse transcriptase (hTERT), Nanog and octamer binding transcription factor 4 (OCT4) using quantitative real-time polymerase chain reaction (qRT-PCR). Our data revealed higher mRNA expression levels of hypoxia-induced and stem cell-associated genes in tumour tissue than levels in the tumour adjacent tissues in patients with glioblastoma multiforme. A strong positive correlation between the mRNA expression levels of HIF-2α, CA9, VEGF, GLUT-1 and OPN suggests a specific hypoxia-associated profile of mRNA expression in glioblastoma multiforme. Additionally, the results indicate the role of stem-cell-related genes in tumour hypoxia. Kaplan-Maier analysis revealed that high mRNA expression levels of hypoxia-induced markers showed a trend towards shorter overall survival in glioblastoma patients (P=0.061). Our data suggest that mRNA expression levels of hypoxia-induced genes are important tumour markers in patients with glioblastoma multiforme.
Gilhar, A; Ullmann, Y; Shalagino, R; Weisinger, G
1998-01-01
Whether the impact of skin biological age on cytokine expression is a result of this tissue's proliferation potential or not is an important issue in dermatology. We investigated these questions by monitoring cytokine marker mRNA expression from human skin samples from healthy groups of individuals. The skin samples studied represented three age groups: fetal (17-21 weeks), young (18-35 years) and aged (76-88 years). Furthermore, upon skin transplantation of tissue from different age groups onto nude mice, we investigated whether cytokine marker RNA levels would change or normalize. Interestingly, both TNF-alpha and P53 mRNA showed a similar pattern of expression. Both were significantly higher in fetal skin (p < 0.0001 and p < 0.05, respectively), and no difference was noted between aged versus young skin. In contrast to this, IL1-alpha mRNA was expressed at its lowest and highest levels in fetal and young skin, respectively. Following skin transplantation, cytokines and P53 mRNA expression were normalized to similar levels in all age groups. This study implies that when cytokine expression was determined directly at the mRNA level, post-natal expression was not significantly different at either age group. Furthermore, it seems that the environmental conditions surrounding the grafted human skin found on nude mice encouraged normalization of donor cytokine expression.
Differential Expression Patterns of occ1-Related Genes in Adult Monkey Visual Cortex
Takahata, Toru; Komatsu, Yusuke; Watakabe, Akiya; Hashikawa, Tsutomu; Tochitani, Shiro
2009-01-01
We have previously revealed that occ1 is preferentially expressed in the primary visual area (V1) of the monkey neocortex. In our attempt to identify more area-selective genes in the macaque neocortex, we found that testican-1, an occ1-related gene, and its family members also exhibit characteristic expression patterns along the visual pathway. The expression levels of testican-1 and testican-2 mRNAs as well as that of occ1 mRNA start of high in V1, progressively decrease along the ventral visual pathway, and end of low in the temporal areas. Complementary to them, the neuronal expression of SPARC mRNA is abundant in the association areas and scarce in V1. Whereas occ1, testican-1, and testican-2 mRNAs are preferentially distributed in thalamorecipient layers including “blobs,” SPARC mRNA expression avoids these layers. Neither SC1 nor testican-3 mRNA expression is selective to particular areas, but SC1 mRNA is abundantly observed in blobs. The expressions of occ1, testican-1, testican-2, and SC1 mRNA were downregulated after monocular tetrodotoxin injection. These results resonate with previous works on chemical and functional gradients along the primate occipitotemporal visual pathway and raise the possibility that these gradients and functional architecture may be related to the visual activity–dependent expression of these extracellular matrix glycoproteins. PMID:19073625
MiR-30c: a novel regulator of salt tolerance in tilapia.
Yan, Biao; Guo, Jin-Tao; Zhao, Li-Hui; Zhao, Jin-Liang
2012-08-24
miRNAs comprise a class of ~22 nt noncoding RNAs that modulate the stability and/or translational potential of their mRNA targets. Emerging data suggest that stress conditions can alter the biogenesis of miRNAs, thereby changing the expression of mRNA targets. Here, we reveal that miR-30c, a kidney-enriched miRNA, emerges as a crucial osmoregulator in Nile tilapia. miR-30c loss of function leads to an inability to respond to osmotic stress. We identify HSP70 as one of the direct regulatory targets of miR-30c. miR-30c directly regulates HSP70 by targeting its 3'-UTR, and inhibition of miR-30c substantially increases HSP70 mRNA level in vivo. Taken together, our experiments suggest that miRNAs participate in a regulatory circuit that allows rapid gene program transitions in response to osmotic stress. miR-30c may be developed as a molecular marker to assist to breed or genetically engineer salt tolerant species. Copyright © 2012 Elsevier Inc. All rights reserved.
Zimmermann, K; Herget, T; Salbaum, J M; Schubert, W; Hilbich, C; Cramer, M; Masters, C L; Multhaup, G; Kang, J; Lemaire, H G
1988-01-01
Cloning and sequence analysis revealed the putative amyloid A4 precursor (pre-A4) of Alzheimer's disease to have characteristics of a membrane-spanning glycoprotein. In addition to brain, pre-A4 mRNA was found in adult human muscle and other tissues. We demonstrate by in situ hybridization that pre-A4 mRNA is present in adult human muscle, in cultured human myoblasts and myotubes. Immunofluorescence with antipeptide antibodies shows the putative pre-A4 protein to be expressed in adult human muscle and associated with some but not all nuclear envelopes. Despite high levels of a single 3.5-kb pre-A4 mRNA species in cultured myoblasts and myotubes, the presence of putative pre-A4 protein could not be detected by immunofluorescence. This suggests that putative pre-A4 protein is stabilized and therefore functioning in the innervated muscle tissue but not in developing, i.e. non-innervated cultured muscle cells. The selective localization of the protein on distinct nuclear envelopes could reflect an interaction with motor endplates. Images PMID:2896589
Murakami, Shinya; Kuehnle, Katrin; Stern, David B.
2005-01-01
Numerous nuclear gene products are required for the correct expression of organellar genes. One such gene in the green alga Chlamydomonas reinhardtii is MCD1, whose product is required for stability of the chloroplast-encoded petD mRNA. In mcd1 mutants, which are non-photosynthetic, petD mRNA is degraded by a 5′–3′ exonuclease activity, resulting in a failure to synthesize its product, subunit IV of the cytochrome b 6/f complex. Here, we report the sequence of the wild-type MCD1 gene, which encodes a large and novel putative protein. Analysis of three mutant alleles showed that two harbored large deletions, but that one allele, mcd1-2, had a single base change resulting in a nonsense codon near the N-terminus. This same mutant allele can be suppressed by a second-site mutation in the nuclear MCD2 gene, whereas mcd2-1 cannot suppress the deletion in mcd1-1 (Esposito,D. Higgs,D.C. Drager,R.G. Stern, D.B. and Girard-Bascou,J. (2001) Curr. Genet., 39, 40–48). We report the cloning of mcd2-1, and show that the mutation lies in a tRNASer(CGA), which has been modified to translate the nonsense codon in mcd1-2. We discuss how the existence of a large tRNASer gene family may permit this suppression without pleiotropic consequences. PMID:15947135
2011-01-01
Background Fatty acid binding proteins (FABP) play an important role in carcinogenesis. Modified FABP expression patterns were described for prostate, bladder and for renal cell carcinoma. Studies on metabolic relationships and interactions in permanent cell lines allow a deeper insight into molecular processes. The aim of this study is therefore a systematic overview on mRNA and protein expressions of seven FABPs in frequently used urological cell lines. Methods Nine cell lines of renal carcinomas, seven of urinary bladder carcinomas, and five of prostate carcinomas were investigated. Quantitative RT-qPCR and western blotting were used to determine different FABPs. In addition, 46 paired cancerous and noncancerous tissue samples from nephrectomy specimen with renal cell carcinomas were investigated regarding the ileum FABP mRNA expression level and associated with survival outcome. Results General characteristics of all urological carcinoma cell lines were the expression of E-and IL-FABP on mRNA and protein level, while the expressions differed between the cell lines. The protein expression was not always congruent with the mRNA expression. Renal cell carcinoma cell lines showed expressions of L-, H- and B-FABP mRNA in addition to the general FABP expression in five out of the eight investigated cell lines. In bladder cancer cell lines, we additionally found the expression of A-FABP mRNA in six cell lines, while H-FABP was present only in three cell lines. In prostate cancer cell lines, a strong reduction of A- and E- FABP mRNA was observed. The expression of B-FABP mRNA and protein was observed only in the 22 RV-1 cells. IL-FABP mRNA was over-expressed in renal tumour tissue. The IL-FABP ratio was identified as an independent indicator of survival outcome. Conclusions Distinctly different FABP expression patterns were observed not only between the cell lines derived from the three cancer types, but also between the cell lines from the same cancer. The FABP patterns in the cell lines do not always reflect the real situation in the tumours. These facts have to be considered in functional studies concerning the different FABPs. PMID:21767383
Wang, Yuliang; Shen, Zhongyang; Zhu, Zhijun; Han, Ruifa; Huai, Mingsheng
2011-03-01
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Annually, about 200,000 patients died of HCC in China. Liver transplantation (LT) holds great theoretical appeal in treating HCC. However, the high recurrence rate after transplantation is the most important limiting factor for long-term survival. To assess the value of alpha-fetoprotein (AFP) messenger RNA (mRNA), Glypican-3 (GPC3) mRNA-expressing cells in the peripheral blood (PB) for prediction of HCC recurrence following orthotopic liver transplantation (OLT). 29 patients with HCC who underwent OLT with a minimum clinical follow-up of 12 months were included in this retrospective study. We detected AFP mRNA, GPC3 mRNA-expressing cells in the PB by TaqMan real-time reverse transcriptase-polymerase chain reaction (RT-PCR), pre-, intra- and post-operatively. The early recurrence of patients was evaluated. 8 (28%), 15 (52%), and 9 (31%) patients had AFP mRNA detected pre-, intra-, and post-operatively, respectively. With 12 months of follow-up, HCC recurred in 7 (24%) patients. Univariate analysis revealed that positive pre- and post-operative AFP mRNA, TNM stage as well as vascular invasion were significant predictors for the HCC recurrence. Multivariate analysis revealed that being positive for AFP mRNA pre-operatively remained a significant risk factor for HCC recurrence after OLT. GPC3 mRNA was expressed in all PB samples. There was no significant difference in the expression levels of GPC3 mRNA between the HCC and control groups. There were no significant differences in GPC3 mRNA expression values between those patients with and without tumor recurrence. The pre-operative detection of circulating AFP mRNA-expressing cells could be a useful predictor for HCC recurrence following OLT. GPC3 mRNA-expressing cells in PB seem to have no diagnostic value.
Winteler, H V; Schneidinger, B; Jaeger, K E; Haas, D
1996-01-01
The anaerobically inducible arcDABC operon encodes the enzymes of the arginine deiminase pathway in Pseudomonas aeruginosa. Upon induction, the arcAB mRNAs and proteins reach high intracellular levels, because of a strong anaerobically controlled promoter and mRNA processing in arcD, leading to stable downstream transcripts. We explored the usefulness of this system for the construction of expression vectors. The lacZ gene of Escherichia coli was expressed to the highest levels when fused close to the arc promoter. Insertion of lacZ further downstream into arcA or arcB did not stabilize the intrinsically unstable lacZ mRNA. On the contrary, lacZ mRNA appeared to be a vulnerable endonuclease target destabilizing arcAB mRNAs in the 5'-to-3' direction in P. aeruginosa. The native arc promoter was modified for optional expression in the -10 sequence and in the -40 region, which is a binding site for the anaerobic regulator ANR. In P. aeruginosa grown either anaerobically or with oxygen limitation in unshaken cultures, this promoter was stronger than the induced tac promoter. The P. aeruginosa lipAH genes, which encode extracellular lipase and lipase foldase, respectively, were fused directly to the modified arc promoter in an IncQ vector plasmid. Semianaerobic static cultures of P. aeruginosa PAO1 carrying this recombinant plasmid overproduced extracellular lipase 30-fold during stationary phase compared with the production by strain PAO1 without the plasmid. Severe oxygen limitation, in contrast, resulted in poor lipase productivity despite effective induction of the ANR-dependent promoter, suggesting that secretion of active lipase is blocked by the absence of oxygen. In conclusion, the modified arc promoter is useful for driving the expression of cloned genes in P. aeruginosa during oxygen-limited growth and stationary phase. PMID:8795231
Kaija, Helena; Pakanen, Lasse; Kortelainen, Marja-Leena; Porvari, Katja
2015-01-01
Prostate cancer has been extensively studied, but cellular stress responses in healthy prostate tissue are rarely investigated. Hypothermia is known to cause alterations in mRNA and protein expressions and stability. The aim of this study was to use normal rat prostate as a model in order to find out consequences of cold exposure and rewarming on the expressions of genes which are either members or functionally/structurally related to erythroblastic leukemia viral oncogene B (ErbB) signaling pathway. Relative mRNA expressions of amphiregulin (AMR), cyclin D1 (CyD1), cyclin-dependent kinase inhibitor 1A (p21), transmembrane form of the prostatic acid phosphatase (PAcP), thrombomodulin (TM) and heat shock transcription factor 1 (HSF1) in rat ventral prostate were quantified in mild (2 or 4.5 h at room temperature) and severe (2 or 4.5 h at +10°C) hypothermia and in rewarming after cold exposure (2 h at +10°C followed by 2 h at room temperature or 3 h at +28°C). AMR protein level, apoptotic Bcl-2 associated X protein to B-cell CLL/lymphoma 2 (Bax/Bcl-2) mRNA ratio and proliferative index Ki-67 were determined. 4.5-h mild hypothermia, 2-h severe hypothermia and rewarming increased expression of all these genes. Elevated proliferation index Ki-67 could be seen in 2-h severe hypothermia, and the proliferation index had its highest value in longer rewarming with totally recovered normal body temperature. Pro-apoptotic tendency could be seen in 2-h mild hypothermia while anti-apoptosis was predominant in 4.5-h mild hypothermia and in shorter rewarming with only partly recovered body temperature. Hypothermia and following rewarming promote the proliferation of cells in healthy rat prostate tissue possibly via ErbB signaling pathway. PMID:25996932
Takahashi, Kazuhiro; Yatabe, Megumi; Fujiwara, Ken; Hirose, Takuo; Totsune, Kazuhito; Yashiro, Takashi
2013-02-28
Expression of (pro)renin receptor ((P)RR), a specific receptor for renin and prorenin, was studied in rat pituitary gland. In situ hybridization showed that cells expressing (P)RR mRNA were widely distributed in the anterior lobe and intermediate lobe of the pituitary gland. Double-staining using in situ hybridization for (P)RR mRNA and immunohistochemistry for the pituitary hormones showed that (P)RR mRNA was expressed in most of the GH cells and ACTH cells in the anterior lobe. (P)RR mRNA was also expressed in a few prolactin cells and TSH cells, but not in LH cells. The present study has shown for the first time the distribution of (P)RR mRNA expressing cells in the rat pituitary gland. These findings suggest that (P)RR plays physiological roles in the pituitary gland, such as the modulation of the pituitary hormone secretion.
Xu, Zhen-Feng; Wu, Gen-Cheng; Cao, Xiao-Ding
2002-01-01
It has been reported that interleukin-1beta (IL-1beta ) play a key role in the pathogenesis of cerebral ischemia. Acupuncture is an effective traditional medical therapy in China. The aim of present study was to evaluate the effect of electroacupuncture (EA) on IL-1beta mRNA expression after middle cerebral artery occlusion (MCAO) in rats. Using in situ hybridization technique, it was found that in the MCAO group the expression of IL-1beta mRNA was significantly increased at 2h, 6h, 12h after reperfusion in cerebral ischemic cortex compared with normal group. In EA+ MCAO group the expression of IL-1beta mRNA was significantly decreased at 2h, 6h and 12h in ischemic cortex compared with MCAO group. The results indicated that EA might decrease the IL-1beta protein expression by reducing the IL-beta mRNA expression in ischemic cortex.
The potential role of myocardial serotonin receptor 2B expression in canine dilated cardiomyopathy.
Fonfara, Sonja; Hetzel, Udo; Oyama, Mark A; Kipar, Anja
2014-03-01
Serotonin signalling in the heart is mediated by receptor subtype 2B (5-HTR2B). A contribution of serotonin to valvular disease has been reported, but myocardial expression of 5-HTR2B and its role in canine dilated cardiomyopathy (DCM) is not known. The aim of the present study was to investigate myocardial 5-HTR2B mRNA expression in dogs with DCM and to correlate results with expression of markers for inflammation and remodelling. Myocardial samples from eight healthy dogs, four dogs with DCM, five with cardiac diseases other than DCM and six with systemic non-cardiac diseases were investigated for 5-HTR2B mRNA expression using quantitative PCR (qPCR). The results were compared to mRNA expression of selected cytokines, matrix metalloproteinases (MMP) and tissue inhibitors of matrix metalloproteinase (TIMP). Laser microdissection with subsequent qPCR and immunohistochemistry were employed to identify the cells expressing 5-HTR2B. The myocardium of control dogs showed constitutive 5-HTR2B mRNA expression. In dogs with DCM, 5-HTR2B mRNA values were significantly greater than in all other groups, with highest levels of expression in the left ventricle and right atrium. Myocytes were identified as the source of 5-HTR2B mRNA and protein. A significant positive correlation of 5-HTR2B mRNA with expression of several cytokines, MMPs and TIMPs was observed. The findings suggest that serotonin might play a role in normal cardiac structure and function and could contribute to myocardial remodelling and functional impairment in dogs with DCM. Copyright © 2013 Elsevier Ltd. All rights reserved.
Arai, Koji Y; Fujioka, Atsuko; Okamura, Ryoko; Nishiyama, Toshio
2014-01-01
Epidermal-dermal interaction plays important roles in physiological events such as wound healing. In this study, we examined a double paracrine mechanism between keratinocytes and fibroblasts through interleukin-1 (IL-1) and an IL-1-induced inflammatory mediator prostaglandin E₂ (PGE₂) using the skin equivalent. The epidermal layer of the skin equivalent expressed high levels of IL-1α mRNA (IL1A mRNA) and relatively low levels of IL-1β mRNA (IL1B mRNA). IL1A mRNA was not detected in fibroblasts. Fibroblasts also expressed low but not negligible levels of IL1B mRNA only in the presence of keratinocytes. Expression of prostaglandin-endoperoxide synthase 2 mRNA (PTGS2 mRNA) and production of PGE₂ in three-dimensionally cultured fibroblasts were noticeably stimulated by co-culture with keratinocytes, whereas PTGS2 mRNA expression in the epidermal layer was very low. In addition, hydroxyprostaglandin dehydrogenase 15-(NAD) mRNA was highly expressed in keratinocytes but not in fibroblasts, and exogenous IL-1β stimulated PTGS2 mRNA expression in the dermal equivalent. The thickness of the epidermal layer and the number of MKI67-positive keratinocytes in the skin equivalent were decreased by treatment with indomethacin, and the decrease recovered when exogenous PGE₂ was added. These results indicate that keratinocytes stimulate their own proliferation through a double paracrine mechanism mediated by IL-1 and PGE₂. © 2014 by the Wound Healing Society.
Testosterone Regulates NUCB2 mRNA Expression in Male Mouse Hypothalamus and Pituitary Gland
Seon, Sojeong; Jeon, Daun; Kim, Heejeong; Chung, Yiwa; Choi, Narae; Yang, Hyunwon
2017-01-01
ABSTRACT Nesfatin-1/NUCB2 is known to take part in the control of the appetite and energy metabolism. Recently, many reports have shown nesfatin-1/NUCB2 expression and function in various organs. We previously demonstrated that nesfatin-1/NUCB2 expression level is higher in the pituitary gland compared to other organs and its expression is regulated by 17β-estradiol and progesterone secreted from the ovary. However, currently no data exist on the expression of nesfatin-1/NUCB2 and its regulation mechanism in the pituitary of male mouse. Therefore, we examined whether nesfatin-1/NUCB2 is expressed in the male mouse pituitary and if its expression is regulated by testosterone. As a result of PCR and western blotting, we found that a large amount of nesfatin-1/NUCB2 was expressed in the pituitary and hypothalamus. The NUCB2 mRNA expression level in the pituitary was decreased after castration, but not in the hypothalamus. In addition, its mRNA expression level in the pituitary was increased after testosterone treatment in the castrated mice, whereas, the expression level in the hypothalamus was significantly decreased after the treatment with testosterone. The in vitro experiment to elucidate the direct effect of testosterone on NUCB2 mRNA expression showed that NUCB2 mRNA expression was significantly decreased with testosterone in cultured hypothalamus tissue, but increased with testosterone in cultured pituitary gland. The present study demonstrated that nesfatin-1/NUCB2 was highly expressed in the male mouse pituitary and was regulated by testosterone. This data suggests that reproductive-endocrine regulation through hypothalamus-pituitary-testis axis may contribute to NUCB2 mRNA expression in the mouse hypothalamus and pituitary gland. PMID:28484746
Liu, Baoshan; Yan, Rongdi; Zhang, Jie; Wang, Bin; Sun, Hu; Cui, Xing
2017-08-02
As evidence was shown that abnormal shortening of telomeres begins to accumulate in myelodysplastic syndrome (MDS) patients, this study was conducted to determine the relationship between the mRNA expression levels of telomere-binding proteins (TRF1/TRF2/TIN2/TPP1/POT1/RAP1) and the risk level in MDS. There were 40 patients with MDS and 40 normal controls in this study. Methods including telomere content assays and quantitative reverse transcription-polymerase chain reaction were used to examine the mRNA levels of TRF1/TRF2/TIN2/TPP1/POT1/RAP1 in patients with MDS. Compared to the normal group used as a control, the mRNA expression levels of RAP1/POT1/TPP1 of the patients with MDS were decreased, whereas their levels of TRF1/TRF2 and TIN2 were increased. A positive correlation was found between the TRF1, TRF2, and TIN2 mRNA expression levels and the risk level of the International Prognostic Scoring System (IPSS) and the World Health Organization Prognostic Scoring System (WPSS) criteria; however, a negative correlation was found between RAP1/POT1/TPP1 mRNA expression levels and the risk levels of IPSS and WPSS criteria. Because the reduction of TRF1/TRF2/TIN2 mRNA expression and the increase of RAP1/POT1/TPP1 mRNA expression are closely related to the risk levels of the IPSS and WPSS criteria in MDS, it is thought that these telomere-binding proteins could lead to abnormal telomere length and function, which cause chromosomal abnormalities in MDS. With this evidence, we suggest that those proteins' mRNA expressions could be used as biomarkers for the assessment of the risk degree of MDS patients.
Buggele, William A.; Krause, Katherine E.; Horvath, Curt M.
2013-01-01
The mammalian antiviral response relies on the alteration of cellular gene expression, to induce the production of antiviral effectors and regulate their activities. Recent research has indicated that virus infections can induce the accumulation of cellular microRNA (miRNA) species that influence the stability of host mRNAs and their protein products. To determine the potential for miRNA regulation of cellular responses to influenza A virus infection, small RNA profiling was carried out using next generation sequencing. Comparison of miRNA expression profiles in uninfected human A549 cells to cells infected with influenza A virus strains A/Udorn/72 and A/WSN/33, revealed virus-induced changes in miRNA abundance. Gene expression analysis identified mRNA targets for a cohort of highly inducible miRNAs linked to diverse cellular functions. Experiments demonstrate that the histone deacetylase, HDAC1, can be regulated by influenza-inducible miR-449b, resulting in altered mRNA and protein levels. Expression of miR-449b enhances virus and poly(I:C) activation of the IFNβ promoter, a process known to be negatively regulated by HDAC1. These findings demonstrate miRNA induction by influenza A virus infection and elucidate an example of miRNA control of antiviral gene expression in human cells, defining a role for miR-449b in regulation of HDAC1 and antiviral cytokine signaling. PMID:24086750
Zhang, Chao; Li, Hui; Jiang, Wei; Zhang, Xiaowei; Li, Gang
2016-12-13
Although it has showed that icaritin can apparently suppress growth of HCC by reducing the level of AFP, the intrinsic mechanism remains unclear. In this study, we explored the possible mechanism of miRNAs on post-transcriptional regulation of AFP gene, as well as the effects of HBV infection and icaritin in hepatoma cells. The results showed that miR-620, miR-1236 and miR-1270 could bind target sites in the range of 9-18 nt and 131-151 nt downstream of the stop codon in the AFP mRNA 3'-UTR to suppress the expression of AFP. Mutation of these target sites could reverse the effects of these miRNAs. Icaritin (10 μM) might reduce the stability and translational activity of AFP mRNA by increasing the expression levels of these mentioned miRNAs. HBV infection resulted in apparent decreases of these miRNAs and, consequently, increased AFP expression. The results indicated that miR-620, miR-1236 and miR-1270 are critical factors in the post-transcriptional regulation of AFP. Icaritin can counteract the effect of HBV. These findings will contribute to full understanding of the regulatory mechanism of AFP expression in hepatoma cells. And also it revealed a synergistic mechanism of HBV infection and elevation of AFP in the pathogenesis of HCC, as well as the potential clinical significance of icaritin on the therapy of HCC induced by HBV.
Synthesis and Characterization of a Magnetically Active 19F Molecular Beacon.
Dempsey, Megan E; Marble, Hetal D; Shen, Tun-Li; Fawzi, Nicolas L; Darling, Eric M
2018-02-21
Gene expression is used extensively to describe cellular characteristics and behaviors; however, most methods of assessing gene expression are unsuitable for living samples, requiring destructive processes such as fixation or lysis. Recently, molecular beacons have become a viable tool for live-cell imaging of mRNA molecules in situ. Historically, beacon-mediated imaging has been limited to fluorescence-based approaches. We propose the design and synthesis of a novel molecular beacon for magnetic resonance detection of any desired target nucleotide sequence. The biologically compatible synthesis incorporates commonly used bioconjugation reactions in aqueous conditions and is accessible for laboratories without extensive synthesis capabilities. The resulting beacon uses fluorine ( 19 F) as a reporter, which is broadened, or turned "off", via paramagnetic relaxation enhancement from a stabilized nitroxide radical spin label when the beacon is not bound to its nucleic acid target. Therefore, the 19 F NMR signal of the beacon is quenched in its hairpin conformation when the spin label and the 19 F substituent are held in proximity, but the signal is recovered upon beacon hybridization to its specific complementary nucleotide sequence by physical separation of the radical from the 19 F reporter. This study establishes a path for magnetic resonance-based assessment of specific mRNA expression, providing new possibilities for applying molecular beacon technology in living systems.
Tan, Xuemei; Ye, Hua; Yang, Kai; Chen, Dan; Tang, Hong
2015-07-01
To investigate the expression and circadian rhythm variation of biological clock gene Per1 and cell cycle genes p53, CyclinD1, cyclin-dependent kinases (CDK1), CyclinB1 in different stages of carcinogenesis in buccal mucosa and its relationship with the development of buccal mucosa carcinoma. Ninety golden hamsters were housed under 12 hours light-12 hours dark cycles, and the model of buccal squamous cell carcinoma was established by using the dimethylbenzanthracene (DMBA) to smear the golden hamster buccal mucosa. Before the DMBA was used and after DMBA was used 6 weeks and 14 weeks respectively, the golden hamsters were sacrificed at 6 different time points (5 rats per time point) within 24 hour, including 4, 8, 12, 16, 20 and 24 hour after lights onset (HALO), and the normal buccal mucosa, precancerous lesions and cancer tissue were obtained, respectively. HE stained sections were prepared to observe the canceration of each tissue. Real time RT-PCR was used to detect the mRNA expression of Per1, p53, CyclinD1, CDK1 and CyclinB1, and a cosine analysis method was applied to determine the circadian rhythm variation of Per1, p53, CyclinD1, CDK1 and CyclinB1 mRNA expression, which were characterized by median, amplitude and acrophase. The expression of Per1, p53, CDK1 and CyclinD1 mRNA in 6 different time points within 24 hours in the tissues of three different stages of carcinogenesis had circadian rhythm, respectively. However, the CyclinB1 mRNA was expressed with circadian rhythm just in normal and cancer tissue (P < 0.05), while in precancerous lesions the circadian rhythm was in disorder (P > 0.05). As the development of carcinoma, the median of Per1 and p53 mRNA expression were significantly decreased (P < 0.05), yet the median of CDK1, CyclinB1 and CyclinD1 mRNA expression were significantly increased (P < 0.05). The amplitude of Per1, p53 and CyclinD1 mRNA expression was significantly decreased as the development of carcinoma (P < 0.05), however the amplitude of CDK1 mRNA expression was significantly increased (P < 0.05). In addition, there was no significant difference in the amplitude of CyclinB1 mRNA expression. The time that the peak expression value of Per1 and CDK1 mRNA appeared (Acrophase) in precancerous lesions was remarkably earlier than that in normal tissues, but the acrophase of p53 and CyclinD1 mRNA expression was remarkably delayed. Moreover, the acrophase of CDK1 and CyclinB1 mRNA expression in cancer tissues was obviously earlier than that in normal tissues, yet there was no significant variation in acrophase of Per1, p53, CyclinD1 mRNA expression between normal tissues and cancer tissues. The circadian rhythm of clock gene Per1 and cell cycle genes p53, CyclinD1, CDK1, CyclinB1 expression remarkably varied with the occurrence and development of carcinoma. Further research into the interaction between circadian and cell cycle of two cycle activity and relationship with the carcinogenesis may providenew ideas and methods of individual treatment and the mechanism of carcinogenesis.
Szot, Patricia; Franklin, Allyn; Figlewicz, Dianne P; Beuca, Timothy Petru; Bullock, Kristin; Hansen, Kim; Banks, William A; Raskind, Murray A; Peskind, Elaine R
2017-07-04
Neuroinflammation is proposed to be an important component in the development of several central nervous system (CNS) disorders including depression, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. However, exactly how neuroinflammation leads to, or contributes to, these central disorders is unclear. The objective of the study was to examine and compare the expression of mRNAs for interleukin-6 (IL-6), IL-7, IL-10 and the receptors for IL-6 (IL-6R) and IL-7 (IL-7R) using in situ hybridization in discrete brain regions and in the spleen after multiple injections of 3mg/kg lipopolysaccharide (LPS), a model of neuroinflammation. In the spleen, LPS significantly elevated IL-6 mRNA expression, then IL-10 mRNA, with no effect on IL-7 or IL-7R mRNA, while significantly decreasing IL-6R mRNA expression. In the CNS, LPS administration had the greatest effect on IL-6 and IL-6R mRNA. LPS increased IL-6 mRNA expression only in non-neuronal cells throughout the brain, but significantly elevated IL-6R mRNA in neuronal populations, where observed, except the cerebellum. LPS resulted in variable effects on IL-10 mRNA, and had no effect on IL-7 or IL-7R mRNA expression. These studies indicate that LPS-induced neuroinflammation has substantial but variable effects on the regional and cellular patterns of CNS IL-6, IL-7 and IL-10, and for IL-6R and IL-7R mRNA expression. It is apparent that administration of LPS can affect non-neuronal and neuronal cells in the brain. Further research is required to determine how CNS inflammatory changes associated with IL-6, IL-10 and IL-6R could in turn contribute to the development of CNS neurological disorders. Published by Elsevier Ltd.
Matoušková, Petra; Bártíková, Hana; Boušová, Iva; Hanušová, Veronika; Szotáková, Barbora; Skálová, Lenka
2014-01-01
Obesity and metabolic syndrome is increasing health problem worldwide. Among other ways, nutritional intervention using phytochemicals is important method for treatment and prevention of this disease. Recent studies have shown that certain phytochemicals could alter the expression of specific genes and microRNAs (miRNAs) that play a fundamental role in the pathogenesis of obesity. For study of the obesity and its treatment, monosodium glutamate (MSG)-injected mice with developed central obesity, insulin resistance and liver lipid accumulation are frequently used animal models. To understand the mechanism of phytochemicals action in obese animals, the study of selected genes expression together with miRNA quantification is extremely important. For this purpose, real-time quantitative PCR is a sensitive and reproducible method, but it depends on proper normalization entirely. The aim of present study was to identify the appropriate reference genes for mRNA and miRNA quantification in MSG mice treated with green tea catechins, potential anti-obesity phytochemicals. Two sets of reference genes were tested: first set contained seven commonly used genes for normalization of messenger RNA, the second set of candidate reference genes included ten small RNAs for normalization of miRNA. The expression stability of these reference genes were tested upon treatment of mice with catechins using geNorm, NormFinder and BestKeeper algorithms. Selected normalizers for mRNA quantification were tested and validated on expression of quinone oxidoreductase, biotransformation enzyme known to be modified by catechins. The effect of selected normalizers for miRNA quantification was tested on two obesity- and diabetes- related miRNAs, miR-221 and miR-29b, respectively. Finally, the combinations of B2M/18S/HPRT1 and miR-16/sno234 were validated as optimal reference genes for mRNA and miRNA quantification in liver and 18S/RPlP0/HPRT1 and sno234/miR-186 in small intestine of MSG mice. These reference genes will be used for mRNA and miRNA normalization in further study of green tea catechins action in obese mice.
Singh, Vishal; Rana, Minakshi; Jain, Manish; Singh, Niharika; Naqvi, Arshi; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar
2015-01-14
In the present study, the anti-atherosclerotic effect and the underlying mechanism of curcuma oil (C. oil), a lipophilic fraction from turmeric (Curcuma longa L.), was evaluated in a hamster model of accelerated atherosclerosis and in THP-1 macrophages. Male golden Syrian hamsters were subjected to partial carotid ligation (PCL) or FeCl3-induced arterial oxidative injury (Ox-injury) after 1 week of treatment with a high-cholesterol (HC) diet or HC diet plus C. oil (100 and 300 mg/kg, orally). Hamsters fed with the HC diet were analysed at 1, 3 and 5 weeks following carotid injury. The HC diet plus C. oil-fed group was analysed at 5 weeks. In hyperlipidaemic hamsters with PCL or Ox-injury, C. oil (300 mg/kg) reduced elevated plasma and aortic lipid levels, arterial macrophage accumulation, and stenosis when compared with those subjected to arterial injury alone. Similarly, elevated mRNA transcripts of matrix metalloproteinase-2 (MMP-2), MMP-9, cluster of differentiation 45 (CD45), TNF-α, interferon-γ (IFN-γ), IL-1β and IL-6 were reduced in atherosclerotic arteries, while those of transforming growth factor-β (TGF-β) and IL-10 were increased after the C. oil treatment (300 mg/kg). The treatment with C. oil prevented HC diet- and oxidised LDL (OxLDL)-induced lipid accumulation, decreased the mRNA expression of CD68 and CD36, and increased the mRNA expression of PPARα, LXRα, ABCA1 and ABCG1 in both hyperlipidaemic hamster-derived peritoneal and THP-1 macrophages. The administration of C. oil suppressed the mRNA expression of TNF-α, IL-1β, IL-6 and IFN-γ and increased the expression of TGF-β in peritoneal macrophages. In THP-1 macrophages, C. oil supplementation prevented OxLDL-induced production of TNF-α and IL-1β and increased the levels of TGF-β. The present study shows that C. oil attenuates arterial injury-induced accelerated atherosclerosis, inflammation and macrophage foam-cell formation.
Diminished nuclear RNA decay upon Salmonella infection upregulates antibacterial noncoding RNAs.
Imamura, Katsutoshi; Takaya, Akiko; Ishida, Yo-Ichi; Fukuoka, Yayoi; Taya, Toshiki; Nakaki, Ryo; Kakeda, Miho; Imamachi, Naoto; Sato, Aiko; Yamada, Toshimichi; Onoguchi-Mizutani, Rena; Akizuki, Gen; Tanu, Tanzina; Tao, Kazuyuki; Miyao, Sotaro; Suzuki, Yutaka; Nagahama, Masami; Yamamoto, Tomoko; Jensen, Torben Heick; Akimitsu, Nobuyoshi
2018-06-07
Cytoplasmic mRNA degradation controls gene expression to help eliminate pathogens during infection. However, it has remained unclear whether such regulation also extends to nuclear RNA decay. Here, we show that 145 unstable nuclear RNAs, including enhancer RNAs (eRNAs) and long noncoding RNAs (lncRNAs) such as NEAT1v2, are stabilized upon Salmonella infection in HeLa cells. In uninfected cells, the RNA exosome, aided by the Nuclear EXosome Targeting (NEXT) complex, degrades these labile transcripts. Upon infection, the levels of the exosome/NEXT components, RRP6 and MTR4, dramatically decrease, resulting in transcript stabilization. Depletion of lncRNAs, NEAT1v2, or eRNA07573 in HeLa cells triggers increased susceptibility to Salmonella infection concomitant with the deregulated expression of a distinct class of immunity-related genes, indicating that the accumulation of unstable nuclear RNAs contributes to antibacterial defense. Our results highlight a fundamental role for regulated degradation of nuclear RNA in the response to pathogenic infection. © 2018 The Authors.
Light intensity affects RNA silencing of a transgene in Nicotiana benthamiana plants.
Kotakis, Christos; Vrettos, Nicholas; Kotsis, Dimitrios; Tsagris, Mina; Kotzabasis, Kiriakos; Kalantidis, Kriton
2010-10-12
Expression of exogenous sequences in plants is often suppressed through one of the earliest described RNA silencing pathways, sense post-transcriptional gene silencing (S-PTGS). This type of suppression has made significant contributions to our knowledge of the biology of RNA silencing pathways and has important consequences in plant transgenesis applications. Although significant progress has been made in recent years, factors affecting the stability of transgene expression are still not well understood. It has been shown before that the efficiency of RNA silencing in plants is influenced by various environmental factors. Here we report that a major environmental factor, light intensity, significantly affects the induction and systemic spread of S-PTGS. Moreover, we show that photoadaptation to high or low light intensity conditions differentially affects mRNA levels of major components of the RNA silencing machinery. Light intensity is one of the previously unknown factors that affect transgene stability at the post-transcriptional level. Our findings demonstrate an example of how environmental conditions could affect RNA silencing.
Gene regulation of atrial natriuretic peptide A, B, and C receptors in rat glomeruli.
Itoh, K; Nonoguchi, H; Shiraishi, N; Tomita, K
1999-01-01
Atrial natriuretic peptide (ANP) has three types of receptor. We investigated the gene regulation of three types of ANP receptors (ANPR-A, B, and C) in rat glomeruli using reverse transcription coupled with competitive polymerase chain reaction (PCR). Competitive PCR revealed that ANPR-C mRNA expression was most abundant (ANPR-C > A > B) in glomeruli from control rats among mRNA expressions of three receptors, which were 20- to 15,000-fold higher than those in inner medullary collecting ducts. Two days' dehydration caused reversible decreases of ANPR-A, B, and C mRNAs by 50-80%. To determine the mechanisms of down-regulation of mRNA expression, isolated glomeruli were incubated in isotonic or hypertonic solution. Hyperosmolality induced by NaCl, mannitol or raffinose caused significant increases of ANPR-A, B, and C mRNA expression. Hypertonicity by urea showed smaller effects. ANP stimulated the expression of ANPR-A, B, and C mRNA in vitro. These results indicate that dehydration caused reversible decreases of ANPR-A, B, and C mRNA expression in glomeruli, and these decreases were not caused by increased plasma osmolality but probably by lower circulating levels of ANP.
Zhang, Zhen-Hai; Wu, Shuo-Dong; Gao, Hong; Shi, Gang; Jin, Jun-Zhe; Kong, Jing; Tian, Zhong; Su, Yang
2006-03-07
To detect the expression of pituitary adenylate cyclase-activating polypeptide receptor 1 (VPCAP1-R)and VPCAP2-R mRNA in gallbladder tissues of patients with gallstone or gallbladder polyps. The expression of VPCAP1-R and VPCAP2-R mRNA in gallbladder tissues was detected in 25 patients with gallstone,8 patients with gallbladder polyps and 7 donors of liver transplantation by reverse transcription polymerase chain reaction (RT-PCR). The VPCAP2-R mRNA expression level in the control group (1.09+/-0.58) was lower than that in the gallbladder polyp group (1.64+/-0.56) and the gallstone group (1.55+/-0.45) (P<0.05) while the VPCAP1-R mRNA expression level in the control group (1.15+/-0.23) was not apparently different from that in the gallbladder polyp group (1.28+/-0.56) and the gallstone group (1.27+/-0.38). The abnormal expression of VPCAP2-R mRNA in gallbladder tissue may play a role in the formation of gallbladder stone and gallbladder polyps.
Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M
1990-09-01
The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility.
Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M
1990-01-01
The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility. Images PMID:1697032
Effect of Supplemental Trace Minerals on Hsp-70 mRNA Expression in Commercial Broiler Chicken.
Rajkumar, U; Vinoth, A; Reddy, E Pradeep Kumar; Shanmugam, M; Rao, S V Rama
2018-01-02
The effects of supplementing the organic forms of selenium (Se), chromium (Cr), and zinc (Zn) on Hsp-70 mRNA expression and body weight in broiler chickens were evaluated. 200 chicks were equally distributed into stainless steel battery brooders at the rate of 5 birds per pen and reared under heat stress condition up to 42 nd day. The chicks were fed with three experimental diets supplemented with organic forms of Se (0.30 mg/kg), Cr (2 mg/kg), and Zn (40 mg/kg) during the starter and finisher phases and a control diet without any supplementation. On the 21st and 42nd day, 20 birds from each period were sacrificed and samples were collected for analysis. Organic Se, Cr, and Zn supplementation significantly (P < 0.05) reduced the expression of Hsp-70 mRNA levels. The Hsp-70 mRNA expression levels were significantly (P < 0.05) different between the tissues studied with spleen having the lowest expression level. Hsp-70 mRNA expression level was not affected by age of the birds. The study concluded that organic trace mineral (oTM) supplementation resulted in low Hsp-70 mRNA expression, indicating reduced heat stress in broilers.
Conserved Non-Coding Sequences are Associated with Rates of mRNA Decay in Arabidopsis.
Spangler, Jacob B; Feltus, Frank Alex
2013-01-01
Steady-state mRNA levels are tightly regulated through a combination of transcriptional and post-transcriptional control mechanisms. The discovery of cis-acting DNA elements that encode these control mechanisms is of high importance. We have investigated the influence of conserved non-coding sequences (CNSs), DNA patterns retained after an ancient whole genome duplication event, on the breadth of gene expression and the rates of mRNA decay in Arabidopsis thaliana. The absence of CNSs near α duplicate genes was associated with a decrease in breadth of gene expression and slower mRNA decay rates while the presence CNSs near α duplicates was associated with an increase in breadth of gene expression and faster mRNA decay rates. The observed difference in mRNA decay rate was fastest in genes with CNSs in both non-transcribed and transcribed regions, albeit through an unknown mechanism. This study supports the notion that some Arabidopsis CNSs regulate the steady-state mRNA levels through post-transcriptional control mechanisms and that CNSs also play a role in controlling the breadth of gene expression.
Conserved Non-Coding Sequences are Associated with Rates of mRNA Decay in Arabidopsis
Spangler, Jacob B.; Feltus, Frank Alex
2013-01-01
Steady-state mRNA levels are tightly regulated through a combination of transcriptional and post-transcriptional control mechanisms. The discovery of cis-acting DNA elements that encode these control mechanisms is of high importance. We have investigated the influence of conserved non-coding sequences (CNSs), DNA patterns retained after an ancient whole genome duplication event, on the breadth of gene expression and the rates of mRNA decay in Arabidopsis thaliana. The absence of CNSs near α duplicate genes was associated with a decrease in breadth of gene expression and slower mRNA decay rates while the presence CNSs near α duplicates was associated with an increase in breadth of gene expression and faster mRNA decay rates. The observed difference in mRNA decay rate was fastest in genes with CNSs in both non-transcribed and transcribed regions, albeit through an unknown mechanism. This study supports the notion that some Arabidopsis CNSs regulate the steady-state mRNA levels through post-transcriptional control mechanisms and that CNSs also play a role in controlling the breadth of gene expression. PMID:23675377
Schwarz, Alexander P; Trofimov, Alexander N; Zubareva, Olga E; Lioudyno, Victoria I; Kosheverova, Vera V; Ischenko, Alexander M; Klimenko, Victor M
2017-08-30
Long (D2L) and short (D2S) isoform of the D2 dopamine receptor are believed to play different roles in behavioral regulation. However, little is known about differential regulation of these isoforms mRNA expression during the process of learning in physiological and pathological states. In this study, we have investigated the combined effect of training in active avoidance (AA) paradigm and chronic early life treatment with pro-inflammatory cytokine interleukin (IL)-1β (1μg/kg i.p., P15-21) on D2S and D2L dopamine receptor mRNA expression in the medial prefrontal cortex (mPFC) of adult rats. We have shown differential regulation of D2 short and long mRNA isoform expression in the mPFC. There was no effect of AA-training on D2S mRNA expression, while D2L mRNA was downregulated in AA-trained control (intact and saline-treated) animals, and this effect was not observed in rats treated with IL-1β. D2S mRNA expression level negatively correlated with learning ability within control (saline-treated and intact) groups but not in IL-1β-treated animals. Thus, prefrontal expression of distinct D2 dopamine receptor splice variants is supposed to be implicated in cognitive decline caused by early life immune challenge. Copyright © 2017 Elsevier B.V. All rights reserved.
Ni, Haifeng; Jiang, Bo; Zhou, Zhen; Yuan, Xiaoyang; Cao, Xiaolin; Huang, Guangwu; Li, Yong
2017-01-01
The aim of this study was to investigate the inactivation of the MutS homolog human 3 (MSH3) gene by promoter methylation in nasopharyngeal carcinoma (NPC). Methylation-specific PCR, semi-quantitative reverse transcription PCR and immunohistochemical analysis were used to detect methylation and the mRNA and protein expression levels of MSH3 in 54 cases of NPC tissues and 16 cases of normal nasopharyngeal epithelial (NNE) tissues. The association between promoter methylation and mRNA expression, and the mRNA and protein expression of the gene and clinical factors was analyzed. The promoter methylation of MSH3 was detected in 50% (27/54) of the primary tumors, but not in the 16 NNE tissues. The mRNA and protein expression levels were significantly decreased in the 54 cases of human NPC as compared to the 16 NNE tissues (P<0.05). The MSH3-methylated cases exhibited significantly lower mRNA and protein expression levels than the unmethylated cases (P<0.05). The MSH3 mRNA and protein expression levels were significantly associated with the variable T stage (P<0.05); however, they did not correlate with the age and sex of the patients, or with the N stage, TNM classification or histopathological subtype (P>0.05). On the whole, MSH3 was frequently inactivated by promoter methylation and its mRNA and protein expression correlated with the primary tumor stage in NPC. PMID:28656302
Feng, Lin; Gan, Lu; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Tang, Ling; Kuang, Sheng-Yao; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu
2017-04-01
This study firstly aimed to test the impact of dietary isoleucine (Ile) on tight junction protein, inflammation, apoptosis, antioxidant defense and related signaling molecule gene expression in the gill of fish. Young grass carp (Ctenopharyngodon idella) (weighing 256.8 ± 3.5 g) were fed six diets containing graded levels of Ile, namely, 3.8, 6.6, 9.3, 12.5, 15.2 and 18.5 g/kg diet for 8 weeks. The results firstly revealed that Ile deficiency down-regulated the mRNA expressions of claudin-3, claudin-b, claudin-c, occludin and zonula occludens-1 (ZO-1) and up-regulated the mRNA expression of claudin-12, which led to the intercellular structure damage of fish gill. These effects were partially ascribed to the up-regulation of pro-inflammatory cytokines [interleukin 1β (IL-1β), interleukin 8 (IL-8) and tumor necrosis factor-α (TNF-α)] mRNA expressions that referring to up-regulated nuclear factor κB P65 (NF-κB P65) mRNA expression and down-regulated inhibitor factor κBα (IκBα) mRNA expression, and the down-regulation of anti-inflammatory cytokines [interleukin 10 (IL-10) and transforming growth factor β1 (TGF-β1)] mRNA expressions that referring to the down-regulated TOR and S6K1 mRNA expression. Interestingly, no change in claudin 15 mRNA level was observed among every treatment. At the same time, the results firstly indicated that Ile deficiency also resulted in the cellular structure damage of fish gill: (1) DNA fragmentation partially due to the up-regulation of caspase-3, caspase-8 and caspase-9 mRNA expression; (2) increase in protein carbonyl (PC), malondialdehyde (MDA) and ROS contents, which may be partially attributed to the impaired antioxidant defense [indicated by decreased glutathione (GSH) level and depressed anti-superoxide anion (ASA), anti-hydroxyl radical (a-HR), copper/zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT) and glutathione peroxidase (GPx) activities] that referring to the down-regulation of corresponding antioxidant enzyme mRNA expressions and the related signaling molecules Nrf2 mRNA expression. Ile excess caused similar negative effects that observed in Ile-deficient group, whereas these negative effects were reversed with appropriate Ile supplementation. In conclusion, our results indicated that Ile deficiency or excess disrupted the structural integrity of fish gill, partially due to the trigger of apoptosis, the impairment of antioxidant defense, and the regulation of tight junction protein, inflammatory cytokines, apoptosis-related, antioxidant enzymes and related signaling molecules mRNA expressions in the fish gill. Copyright © 2017 Elsevier Ltd. All rights reserved.
Donald, John A; Bartolo, Ray C
2003-06-01
Guanylin and uroguanylin are peptides that activate guanylyl cyclase C (GC-C) receptors in the intestine and kidney, which causes an increase in the excretion of salt and water. The Spinifex hopping mouse, Notomys alexis, is a desert rodent that can survive for extended periods without free access to water and it was hypothesised that to conserve water, the expression of guanylin, uroguanylin, and GC-C would be down-regulated to reduce the excretion of water in urine and faeces. Accordingly, this study examined the expression of guanylin, uroguanylin, and GC-C mRNA in Notomys under normal (access to water) and water-deprived conditions. Initially, guanylin and uroguanylin cDNAs encoding the full open reading frame were cloned and sequenced. A PCR analysis showed guanylin and uroguanylin mRNA expression in the small intestine, caecum, proximal and distal colon, heart, and kidney. In addition, a partial GC-C cDNA was obtained and GC-C mRNA expression was demonstrated in the proximal and distal colon, but not the kidney. Subsequently, a semi-quantitative PCR method showed that water deprivation in Notomys caused a significant increase in guanylin and uroguanylin mRNA expression in the distal colon, and in guanylin and GC-C mRNA expression in the proximal colon. No significant difference in guanylin and uroguanylin mRNA expression was observed in the kidney. The results of this study indicate that there is, in fact, an up-regulation of the colonic guanylin system in Notomys after 7 days of water deprivation.
Mathy, N.; Jarrige, A.-C.; Robert-Le Meur, M.; Portier, C.
2001-01-01
Polynucleotide phosphorylase (PNPase) synthesis is translationally autocontrolled via an RNase III-dependent mechanism, which results in a tight correlation between protein level and messenger stability. In cells grown at 18°C, the amount of PNPase is twice that found in cells grown at 30°C. To investigate whether this effect was transcriptional or posttranscriptional, the expression of a set of pnp-lacZ transcriptional and translational fusions was analyzed in cells grown at different temperatures. In the absence of PNPase, there was no increase in pnp-lacZ expression, indicating that the increase in pnp expression occurs at a posttranscriptional level. Other experiments clearly show that increased pnp expression at low temperature is only observed under conditions in which the autocontrol mechanism of PNPase is functional. At low temperature, the destabilizing effect of PNPase on its own mRNA is less efficient, leading to a decrease in repression and an increase in the expression level. PMID:11395447
Mathy, N; Jarrige, A C; Robert-Le Meur, M; Portier, C
2001-07-01
Polynucleotide phosphorylase (PNPase) synthesis is translationally autocontrolled via an RNase III-dependent mechanism, which results in a tight correlation between protein level and messenger stability. In cells grown at 18 degrees C, the amount of PNPase is twice that found in cells grown at 30 degrees C. To investigate whether this effect was transcriptional or posttranscriptional, the expression of a set of pnp-lacZ transcriptional and translational fusions was analyzed in cells grown at different temperatures. In the absence of PNPase, there was no increase in pnp-lacZ expression, indicating that the increase in pnp expression occurs at a posttranscriptional level. Other experiments clearly show that increased pnp expression at low temperature is only observed under conditions in which the autocontrol mechanism of PNPase is functional. At low temperature, the destabilizing effect of PNPase on its own mRNA is less efficient, leading to a decrease in repression and an increase in the expression level.
da Silva Neto Trajano, Larissa Alexsandra; Trajano, Eduardo Tavares Lima; da Silva Sergio, Luiz Philippe; Teixeira, Adilson Fonseca; Mencalha, Andre Luiz; Stumbo, Ana Carolina; de Souza da Fonseca, Adenilson
2018-04-26
Muscle injuries are the most prevalent type of injury in sports. A great number of athletes have relapsed in muscle injuries not being treated properly. Photobiomodulation therapy is an inexpensive and safe technique with many benefits in muscle injury treatment. However, little has been explored about the infrared laser effects on DNA and telomeres in muscle injuries. Thus, the aim of this study was to evaluate photobiomodulation effects on mRNA relative levels from genes related to telomere and genomic stabilization in injured muscle. Wistar male rats were randomly divided into six groups: control, laser 25 mW, laser 75 mW, injury, injury laser 25 mW, and injury laser 75 mW. Photobiomodulation was performed with 904 nm, 3 J/cm 2 at 25 or 75 mW. Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly on the tibialis anterior muscle. After euthanasia, skeletal muscle samples were withdrawn and total RNA extracted for evaluation of mRNA levels from genomic (ATM and p53) and chromosome stabilization (TRF1 and TRF2) genes by real-time quantitative polymerization chain reaction. Data show that photobiomodulation reduces the mRNA levels from ATM and p53, as well reduces mRNA levels from TRF1 and TRF2 at 25 and 75 mW in injured skeletal muscle. In conclusion, photobiomodulation alters mRNA relative levels from genes related to genomic and telomere stabilization in injured skeletal muscle.
Kloten, Vera; Rose, Michael; Kaspar, Sophie; von Stillfried, Saskia; Knüchel, Ruth; Dahl, Edgar
2014-01-01
Inter-α-trypsin inhibitor heavy chain 5 (ITIH5) is supposed to be involved in extracellular matrix stability and thus may play a key role in the inhibition of tumor progression. The current study is the first to analyze in depth ITIH5 expression as well as its potential clinical and functional impact in colon cancer. Based on 30 tumor and 30 adjacent normal tissues we examined ITIH5 mRNA expression and promoter methylation, whose significance was further validated by independent data sets from The Cancer Genome Atlas (TCGA) platform. In addition, ITIH5 protein expression was evaluated using immunohistochemistry. ITIH5 mRNA expression loss was significantly associated (P < 0.001) with hypermethylation of the ITIH5 promoter in primary colon tumors. In addition, treatment of tumor cell lines with demethylating (DAC) and histone acetylating (TSA) agents induced ITIH5 expression. In line, independent TCGA data revealed a significant expression loss of ITIH5, particularly in the MSI-high and CIMP-positive phenotype concordant with an increased ITIH5 hypermethylation in CIMP-positive colon tumors (P < 0.001). In proximal, i.e., right-sided tumors, abundant ITIH5 expression was associated with longer overall survival (OS, P = 0.049) and the CIMP-positive (P = 0.032) subgroup. Functionally, ITIH5 re-expression mediated a reduced proliferation in HCT116 and CaCo2 cells. In conclusion, our results indicate that ITIH5 is a novel putative tumor suppressor gene in colon cancer with a potential impact in the CIMP-related pathway. ITIH5 may serve as a novel epigenetic-based diagnostic biomarker with further clinical impact for risk stratification of CIMP-positive colon cancer patients. PMID:25093535
The ClC-3 chloride channel and osmoregulation in the European sea bass, Dicentrarchus labrax.
Bossus, Maryline; Charmantier, Guy; Blondeau-Bidet, Eva; Valletta, Bianca; Boulo, Viviane; Lorin-Nebel, Catherine
2013-07-01
Dicentrarchus labrax migrates between sea (SW), brackish and fresh water (FW) where chloride concentrations and requirements for chloride handling change: in FW, fish absorb chloride and restrict renal losses; in SW, they excrete chloride. In this study, the expression and localization of ClC-3 and Na(+)/K(+)-ATPase (NKA) were studied in fish adapted to SW, or exposed to FW from 10 min to 30 days. In gills, NKA-α1 subunit expression transiently increased from 10 min and reached a stabilized intermediate expression level after 24 h in FW. ClC-3 co-localized with NKA in the basolateral membrane of mitochondria-rich cells (MRCs) at all conditions. The intensity of MRC ClC-3 immunostaining was significantly higher (by 50 %) 1 h after the transfer to FW, whereas the branchial ClC-3 protein expression was 30 % higher 7 days after the transfer as compared to SW. This is consistent with the increased number of immunopositive MRCs (immunostained for NKA and ClC-3). However, the ClC-3 mRNA expression was significantly lower in FW gills. In the kidney, after FW transfer, a transient decrease in NKA-α1 subunit expression was followed by significantly higher stable levels from 24 h. The low ClC-3 protein expression detected at both salinities was not observed by immunocytochemistry in the SW kidney; ClC-3 was localized in the basal membrane of the collecting ducts and tubules 7 and 30 days after transfer to FW. Renal ClC-3 mRNA expression, however, seemed higher in SW than in FW. The potential role of this chloride channel ClC-3 in osmoregulatory and osmosensing mechanisms is discussed.
Identification of ATF5-Interacting, SH3-Containing Proteins in Breast Cancer Cells
2010-08-01
CRE-dependent gene repression on R-Ras, HSP27 , and 14-3-3eta, which contribute to ATF5- mediated cell proliferation in Hep3B cell. (Fig. 5) Page 6...transfected with indicated constructs and mRNA level for R-Ras, HSP27 , and YWHAH(14-3-3eta) was determined by RT-PCR. β-actin was used as control...B23-dependent regulation of ATF5 stability impacts on expression of ATF5 downstream targets R-Ras, HSP27 , and 14-3-3eta, and cell proliferation of
Non-coding functions of alternative pre-mRNA splicing in development
Mockenhaupt, Stefan; Makeyev, Eugene V.
2015-01-01
A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. PMID:26493705
Liu, Aijun; Zhang, Zhiwen; Li, Anmin; Xue, Jinghui
2010-08-06
CIRP (cold-inducible RNA-binding protein) mRNA is highly expressed in hypothermic conditions in mammalian cells, and the relationship between CIRP and neuroprotection for cerebral ischemia under hypothermia has been focused upon. At present, however, the expression characteristics of CIRP under hypothermia and cerebral ischemia in vivo are not clearly elucidated. In this study, CIRP mRNA expression in various regions of rat brain was examined by reverse transcriptase polymerase chain reaction (RT-PCR). CIRP expression levels were found to be similar in the hippocampus and cortex. Real-time quantitative PCR analysis revealed increasing CIRP mRNA expression in the cortex during the 24-h observation period following treatment with hypothermia or cerebral ischemia, with a greater increase in the hypothermia group. When cerebral ischemia was induced following hypothermia, CIRP mRNA expression in the cortex again showed a significant increasing tendency, but ischemia delayed the appearance of this increase. To reveal the relationship between CIRP and energy metabolism in the rat brain, lactate and pyruvate concentrations in the cortex of the rats treated with hypothermia, ischemia and ischemia after hypothermia were determined by spectrophotometric assay, and levels of phosphofructokinas-1 (PFK-1), the major regulatory enzyme of the glycolytic pathway, in the rat cortex in the three groups was also analyzed by Western blot. Using linear correlation, lactate and pyruvate concentrations, and PFK-1 levels, were each analyzed in the three groups in association with CIRP mRNA expression levels. The analysis did not reveal any correlation between the three metabolic parameters and CIRP mRNA expression induced by hypothermia, suggesting that while playing a role in neuroprotection under hypothermia, CIRP does not affect cerebral energy metabolism. Copyright 2010. Published by Elsevier B.V.
Kitada, Masaaki; Takeda, Kazuya; Dezawa, Mari
2016-07-01
We previously demonstrated that NG2-positive oligodendrocyte precursor cells (OPCs) do not express DM-20 mRNA and identified a distinct DM-20 mRNA-positive cell population expressing glutathione-S-transferase pi isoform (GST-pi) in the nucleus (GST-pi(Nuc)) of the adult rat spinal cord. As GST-pi intranuclear localization correlates with progenitor cell properties, we examined the differentiation status of this cell population under the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method, consisting of intraperitoneal BrdU injections every 2 h for 48 h. We observed that a certain population of proliferating/proliferated cells expressed DM-20 mRNA, and sometimes two proliferating/proliferated cells were observed still attached to each other. We performed triple staining for BrdU, DM-20 mRNA, and NG2 and found pairs of neighboring BrdU-positive cells, which were considered to originate from the same progenitor cells and where both cells expressed DM-20 mRNA. Triple staining for BrdU, DM-20 mRNA, and GST-pi detected proliferating/proliferated cells exhibiting the GST-pi(Nuc)/DM-20 mRNA-positive expression pattern. These findings suggested the presence of a GST-pi(Nuc)/DM-20 mRNA-positive oligodendrocyte-lineage progenitor cell population in the adult rat spinal cord. However, we did not find any pair of neighboring BrdU-positive cells with this expression pattern. These observations collectively support the idea that GST-pi(Nuc)/DM-20 mRNA-expressing cells are the progeny of NG2-positive OPCs rather than a novel type of oligodendrocyte-lineage progenitor cells and that DM-20 mRNA expression is dynamically regulated during differentiation of OPCs into oligodendrocytes.
Yuan, Li-Xing; Liu, Han-Min; Li, Mi; Gao, Ju; Zhou, Tong-Fu
2005-09-01
To study the expression of heme oxygenase-1 mRNA and pulmonary remodeling before and after surgical establishment of left-to-right shunt in volume-overloaded SD rats and rats with Losartan intervention. Left-to-right shunt volume-overloaded SD rat models were established by aortocaval shunt operation. Seven rats with shunt were placed on Losartan (Losartan group), 7 rats with but not given Losartan were included in the operation group, and 4 rats after sham operation served as controls. Pulmonary pressure and right ventricular pressure were measured during catheterization. The relative weights ventricles were determined after execution of the rats. Pulmonary vascular remodeling parameters, including percentage arterial wall thickness and percentage muscularized small arteries, were assessed by morphometry. Heme oxygenase-1 (HO-1) mRNA expression and heme oxygenase-2 (HO-2) mRNA expression were detected RT-PCR method. Pulmonary artery pressure and right ventricular relative weight decreased significantly in the rats of Losartan group; in addition, the percentage arterial wall thickness and percentage of muscularized small arteries in the Losartan group were reduced as compared with those in the operation group. The level 1 mRAN expression in rats with shunt was significantly higher than that in rats without shunt. The level mRNA expression in the Losartan group decreased remarkably as compared against that in the operation The level of HO-1 mRNA expression in lungs was significantly higher than that in ventricles. There statistically significant differences in HO-2 mRNA expression levels between the three rat groups. Losartan intervention can markedly reduce pulmonary pressure, inhibit vascular remodeling in volume-overloaded left-to-right shunt rats, and result in down-regulation of HO-1 mRNA expression.
A role for polyamines in glucose-stimulated insulin-gene expression.
Welsh, N
1990-01-01
The aim of the present study was to evaluate the possible role for polyamines in the glucose regulation of the metabolism of insulin mRNA of pancreatic islet cells. For this purpose islets were prepared from adult mice and cultured for 2 days in culture medium RPMI 1640 containing 3.3 mM- or 16.7 mM-glucose with or without the addition of the inhibitors of polyamine biosynthesis difluoromethylornithine (DFMO) and ethylglyoxal bis(guanylhydrazone) (EGBG). Culture at the high glucose concentration increased the islet contents of both insulin mRNA and polyamines. The synthesis of total RNA, total islet polyamines and polyamines associated with islet nuclei was also increased. When the combination of DFMO and EGBG was added in the presence of 16.7 mM-glucose, low contents of insulin mRNA, spermine and spermidine were observed. Total islet polyamine synthesis was also depressed by DFMO + EGBG, unlike islet biosynthesis of polyamines associated with nuclei, which was not equally decreased by the polyamine-synthesis inhibitors. Total RNA synthesis and turnover was not affected by DFMO + EGBG. Finally, actinomycin D attenuated the glucose-induced enhancement of insulin mRNA, and cycloheximide counteracted the insulin-mRNA attenuation induced by inhibition of polyamine synthesis. It is concluded that the glucose-induced increase in insulin mRNA is paralleled by increased contents and rates of polyamine biosynthesis and that an attenuation of the increase in polyamines prevents the increase in insulin mRNA. In addition, the results are compatible with the view that polyamines exert their effects on insulin mRNA mainly by increasing the stability of this messenger. PMID:2241922
The metastasis suppressor gene KISS-1 regulates osteosarcoma apoptosis and autophagy processes.
Yin, Yiran; Tang, Lian; Shi, Lei
2017-03-01
The expression of the metastasis suppressor gene KISS-1 in osteosarcoma cells during apoptosis and autophagy was evaluated. MG-63 osteosarcoma cells were transfected with either KISS-1 overexpression or KISS-1 knockdown expression vector in vitro, and compared with cell lines transfected with empty vector. After 12, 24, 48 and 72 h of cell culture, the cell proliferation was examined. The MTT method was used to detect apoptosis by flow cytometry, and the mRNA levels of apoptosis and autophagy markers caspase-3, Bcl-2, Bax, LC3 and Beclin1 were assessed by RT-PCR. Our results showed that cells in the control and low expression group kept proliferating during the cell culture period of 72 h, while the cells in the overexpression group progressively decreased in number. Also, the proliferation rate of the low expression group was significantly higher than that of the control group. The relative mRNA expression levels of caspase-3 and Bax mRNA in the control and low expression group showed no change (the expression was lowest in the low expression group). Moreover, the mRNA level of Bcl-2 increased in both cell groups. The mRNA expression levels of caspase-3 and Bax in the overexpression group were increased, and the level of Bcl-2 was reduced significantly. At the same time, the relative expression level of LC3 and Beclin1 mRNA in the control and low expression groups remained the same, and that of the overexpression group increased. The mRNA levels of LC3 and Beclin1 in the overexpression group were the highest, and that of the low expression group the lowest. The differences were statistically significant (P<0.05). Based on these results, we showed that KISS-1 inhibited the proliferation of osteosarcoma in vitro, probably by accelerating the processes of apoptosis and autophagy in the cells.
Huang, Jin; Hu, Huabin; Xie, Yangchun; Tang, Youhong; Liu, Wei; Zhong, Meizuo
2013-06-01
To analyze the impact of β-tubulin-III (TUBB3), thymidylate synthase (TS) and excision repair cross complementation group 1 (ERCC1) mRNA expression on chemoresponse and clinical outcome of patients with advanced gastric cancer treated with TXT/CDDP/FU (DCF) regimen chemotherapy. The study population consisted of 48 patients with advanced gastric cancer. All patients were treated with DCF regimen palliative chemotherapy. The mRNA expressions of TUBB3, TS and ERCC1 of primary tumors were examined by multiplex branched-DNA liquid chip technology. The patients with low TUBB3 mRNA expression had higher response rate to chemotherapy than patients with high TUBB3 expression (P=0.011). There were no significant differences between response rate and TS or ERCC1 expression pattern. Median overall survival (OS) and median time to progression (TTP) were significantly longer in patients with low TUBB3 mRNA expression (P=0.002, P<0.001). TS or ERCC1 expression was not correlated with TTP and OS. In the combined analysis including TUBB3, TS and ERCC1, the patients with 0 or 1 high expression gene had better response rate, TTP and OS than the remaining patients (all P<0.001). Multivariate analysis revealed that ECOG (Eastern Cooperative Oncology Group)≥2 (HR=2.42, P=0.009) and TUBB3 (HR=2.34, P=0.036) mRNA expression significantly impacted on OS. High TUBB3 mRNA expression is correlated with resistance to DCF regimen chemotherapy. TUBB3 might be a predictive and prognostic factor in patients with advanced gastric cancer treated with TXT-based chemotherapy. The combined evaluation of TUBB3, TS and ERCC1 expression can promote the individual treatment in advanced gastric cancer.
Agyekum, A K; Sands, J S; Regassa, A; Kiarie, E; Weihrauch, D; Kim, W K; Nyachoti, C M
2015-07-01
The present study evaluated supplemental carbohydrase effect on performance, intestinal nutrient uptake, and transporter mRNA expressions in growing pigs offered a high-fiber diet manufactured with distillers dried grains with solubles (DDGS). Twenty-four pigs (22.4 ± 0.7 kg BW) were randomly assigned to 1of 3 nutritionally adequate diets (8 pigs per diet) based on corn and soybean meal (SBM) with either 0 (control) or 30% DDGS (high fiber [HF]). The third diet was supplemented with a xylanase and β-glucanase blend (XB) in addition to the 30% DDGS (HF+XB). Parameters determined were ADFI, ADG, G:F, plasma glucose and plasma urea nitrogen (PUN) concentrations, jejunal tissue electrophysiological properties, and mRNA expressions of the sodium-dependent glucose transport 1 (SGLT1) and cationic AA transporter, bo,+AT, in the jejunal and ileal tissues. In addition, mRNA expressions of the short-chain fatty acid transporters, monocarboxylate transporter 1 (MCT1) and sodium-coupled monocarboxylate transporter, and mucin genes were quantified in the ileum. Feed intake, plasma glucose, and jejunal tissue electrophysiological properties were not affected (P > 0.05) by diet. However, control-fed pigs had superior growth rate and feed efficiency and higher PUN (P < 0.05) than HF- and HF+XB-fed pigs. The HF diet increased (P < 0.05) SGLT1 mRNA expression in the jejunum and decreased (P < 0.05) bo,+ mRNA expression in the ileum. The XB supplementation also increased bo,+ mRNA expression in the ileum relative to HF-fed pigs. Additionally, MCT1 mRNA expression was greater (P < 0.05) in the ileum of the HF- and HF+XB-fed pigs. In the present study, XB supplementation influenced nutrient transporter mRNA expression, although it was not accompanied by improved pig performance.
Yu, Qing-Sheng; Yu, Hong-Liang; Pan, Jin-Fang
2011-02-01
To observe the effect of Qihuang Decoction (QHD) on mRNA expression of apoptosis genes Bcl-2, Bax, and signal transduction molecules Caspase-3, 9 in intestinal mucosa epithelium of ischemia/ reperfusion (I/R) injured rats. Forty Wistar rats were randomized equally into 4 groups, the control group, the model group, the glutamine group, and the QHD group. Rats in the latter two groups were gastric infused with glutamine and QHD respectively for 3 days, but saline was infused instead to rats in the control group and model group. After then, except those in the control group intervened only by sham operation, rats were made into I/R injured model by 45 min occlusion of superior mesenteric artery followed by 1 h reperfusion. Immediately after modeling, mRNA expressions of Bcl-2, Bax, Caspase-3, and Caspase-9 in intestinal mucosa epithelium of rats were detected by reverse transcription-polymerase chain reaction (RT-PCR). Compared with the control group, mRNA expressions of Bcl-2, Bax, Caspase-3 and Caspase-9 were higher in the other three groups (P < 0.05). Compared with the model group, Bcl-2 mRNA expression was higher, while the expressions of the other three indices were lower in both the glutamine group and the QHD group (P < 0.05); and comparisons between the glutamine group and the QHD group showed a more depressed Bax mRNA expression (0.281 +/- 0.087 vs 0.350 +/- 0.053) and higher Bcl-2/Bax ratio (1.648 vs 1. 374) in the QHD group. QHD can reduce the I/R injury in the intestinal mucosa epithelium by inhibiting the cell apoptosis. The mechanism may be correlated with increased Bcl-2 mRNA expressions and decreased mRNA expressions of Bax, Caspase-3 and Caspase-9.
Replenishment of RANTES mRNA expression in activated eosinophils fromatopic asthmatics
Velazquez, J R; Lacy, P; Moqbel, R
2000-01-01
Eosinophils have been shown to express the gene encoding regulated upon activation, normal T‐cell expressed and secreted (RANTES), a potent eosinophilotactic chemokine. RANTES protein expression in eosinophils has previously been shown to be up‐regulated by a number of agonists, including complement‐dependent factors (C3b/iC3b) and interferon‐γ (IFN‐γ). We hypothesized that gene expression of RANTES is regulated in these cells by eosinophil‐specific agonists. We analysed RANTES mRNA expression by reverse‐transcription polymerase chain reaction (RT‐PCR) in human peripheral blood eosinophils obtained from mild atopic asthmatics following stimulation over time. In resting eosinophils, a low level of RANTES mRNA was found to be constitutively expressed in all the atopic donors tested in this study (n = 6). Following stimulation with C3b/iC3b (serum‐coated surfaces), eosinophils released measurable levels of RANTES, while sustained transcript expression was detected for up to 24 hr of stimulation. In contrast, IFN‐γ (5 ng/ml) transiently and significantly (P < 0·05, n = 3) depleted relative amounts of RANTES PCR product (compared with β2‐microglobulin) after 1–4 hr of stimulation. RANTES transcript was again detectable after 24 hr of IFN‐γ incubation, suggesting that the pool of RANTES mRNA had been replenished. Other eosinophil‐active cytokines, interleukin‐3 (IL‐3), IL‐4, IL‐5 and granulocyte–macrophage colony‐stimulating factor, did not appear to modulate RANTES mRNA expression after 1 hr of incubation. The effect of IFN‐γ on RANTES mRNA was reversed by cycloheximide, suggesting that IFN‐γ may act by increasing the rate of translation of RANTES mRNA. These findings indicate that IFN‐γ may induce a rapid and transient effect on the translation and replenishment of RANTES mRNA in eosinophils. This novel observation supports the notion that eosinophils have the potential to replenish their stored and released bioactive proteins. PMID:10792507
Guo, Y; Schoell, M C; Freeman, R S
2009-04-23
von Hippel-Lindau (VHL) disease is caused by germ-line mutations in the VHL tumor suppressor gene and is the most common cause of inherited renal cell carcinoma (RCC). Mutations in the VHL gene also occur in a large majority of sporadic cases of clear-cell RCC, which have high intrinsic resistance to chemotherapy and radiotherapy. Here we show that VHL-deficient RCC cells express lower levels of the proapoptotic Bcl-2 family protein BIM(EL) and are more resistant to etoposide and UV radiation-induced death compared to the same cells stably expressing the wild-type VHL protein (pVHL). Reintroducing pVHL into VHL-null cells increased the half-life of BIM(EL) protein without affecting its mRNA expression, and overexpressing pVHL inhibited BIM(EL) polyubiquitination. Suppressing pVHL expression with RNA interference resulted in a decrease in BIM(EL) protein and a corresponding decrease in the sensitivity of RCC cells to apoptotic stimuli. Directly inhibiting BIM(EL) expression in pVHL-expressing RCC cells caused a similar decrease in cell death. These results demonstrate that pVHL acts to promote BIM(EL) protein stability in RCC cells, and that destabilization of BIM(EL) in the absence of pVHL contributes to the increased resistance of VHL-null RCC cells to certain apoptotic stimuli.
Prognostic impact of mRNA levels of osteopontin splice variants in soft tissue sarcoma patients.
Hahnel, Antje; Wichmann, Henri; Greither, Thomas; Kappler, Matthias; Würl, Peter; Kotzsch, Matthias; Taubert, Helge; Vordermark, Dirk; Bache, Matthias
2012-04-02
It is well known that osteopontin (OPN) plays an important role in tumor progression and that a high OPN expression level in several tumor entities correlates with poor prognosis in cancer patients. However, little is known about the prognostic relevance of the OPN mRNA splice variants. We analyzed the mRNA expression levels of different OPN splice variants in tumor tissue of 124 soft tissue sarcoma (STS) patients. Quantitative real-time PCR (qRT-PCR) was used to analyze the mRNA expression level of three OPN splice variants (OPN-a, -b and -c). The multivariate Cox's proportional hazard regression model revealed that high mRNA expression levels of OPN splice variants are significantly associated with poor prognosis in STS patients (n = 124). Women (n = 68) with high mRNA expression levels of OPN-a and OPN-b have an especially elevated risk of tumor-related death (OPN-a: RR = 3.0, P = 0.01, CI = 1.3-6.8; OPN-b: RR = 3.4, P = 0.01, CI = 1.4-8.2). In particular, we found that high mRNA expression levels of OPN-b and OPN-c correlated with a high risk of tumor-related death in STS patients that received radiotherapy (n = 52; OPN-b: RR = 10.3, P < 0.01, CI = 2.0-53.7; OPN-c: RR = 11.4, P < 0.01, CI = 2.2-59.3). Our study shows that elevated mRNA expression levels of OPN splice variants are negative prognostic and predictive markers for STS patients. Further studies are needed to clarify the impact of the OPN splice variants on prognosis.
Luo, Li; Dong, Bi-rong; Teng, Li-hua
2008-07-01
To explore the effects of Houttuynia Cordata on expression of human beta-defensin-2 (HBD-2) in pulmonary epithelial cells (SPC-A-1) in vitro; and to observe the correlationship between the level of HBD-2 mRNA and the concentrations or treatment times of Houttuynia Cordata. The SPC-A-1 cells were cultured with different concentrations of Houttuynia Cordata in vitro, including 0, 12.5, 25, 50, 100 and 200 microg/ml. And then, the SPC-A-1 cells were cultured with the optimal concentration of Houttuynia Cordata in different lengths of time, including 1, 2, 4, 8, 16 and 24 hours. After the treatment, the mRNA level of HBD-2 in pulmonary epithelial cells was detected by means of semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). After being cultured with Houttuynia Cordata, the expression of HBD-2 mRNA had positive correlation with the stimulus concentrations (rs=0.829, P=0.042) and stimulus time (rs=0.914, P=0.003). The highest expression of HBD-2 mRNA was induced by 100 microg/ml Houttuynia Cordata after 8-hour treatment. In comparison with the normal control group and the interleukin-1beta group, 100 microg/ml Houttuynia Cordata could significantly up-regulate the expression of HBD-2 mRNA in SPC-A-1 cells after 8-hour treatment (P<0.01). Houttuynia Cordata can up-regulate expression of HBD-2 mRNA in SPC-A-1 cells, and the highest expression level of HBD-2 mRNA can be obtained by culture with 100 microg/ml Houttuynia Cordata for 8 hours.
Alves, Agnelo Neves; Ribeiro, Beatriz Guimarães; Fernandes, Kristianne Porta Santos; Souza, Nadhia Helena Costa; Rocha, Lília Alves; Nunes, Fabio Daumas; Bussadori, Sandra Kalil; Mesquita-Ferrari, Raquel Agnelli
2016-05-01
This study analyzed the effect of pre-injury and post-injury irradiation with low-level laser therapy (LLLT) on the mRNA expression of myogenic regulatory factors and interleukin 6 (IL-6) during the skeletal muscle repair. Male rats were divided into six groups: control group, sham group, LLLT group, injury group; pre-injury LLLT group, and post-injury LLLT group. LLLT was performed with a diode laser (wavelength 780 nm; output power 40 mW' and total energy 3.2 J). Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly onto the belly of the tibialis anterior (TA) muscle. After euthanasia, the TA muscle was removed for the isolation of total RNA and analysis of MyoD, myogenin, and IL-6 using real-time quantitative PCR. Significant increases were found in the expression of MyoD mRNA at 3 and 7 days as well as the expression of myogenin mRNA at 14 days in the post-injury LLLT group in comparison to injury group. A significant reduction was found in the expression of IL-6 mRNA at 3 and 7 days in the pre-injury LLLT and post-injury LLLT groups. A significant increase in IL-6 mRNA was found at 14 days in the post-injury LLLT group in comparison to the injury group. LLLT administered following muscle injury modulates the mRNA expression of MyoD and myogenin. Moreover, the both forms of LLLT administration were able to modulate the mRNA expression of IL-6 during the muscle repair process.
Tachibana, Masatsugu; Shinagawa, Yasuhiro; Kawamata, Hitoshi; Omotehara, Fumie; Horiuchi, Hideki; Ohkura, Yasuo; Kubota, Keiichi; Imai, Yutaka; Fujibayashi, Takashi; Fujimori, Takahiro
2003-01-01
We present a new approach towards the detection of the mRNAs in formalin-fixed, paraffin-embedded samples using a reverse transcriptase (RT)-polymerase chain reaction (PCR). The total RNAs were extracted from 10-micron-thick sections and were reverse-transcribed, then the RT-products were subjected to PCR amplification of GAPDH mRNA for screening the mRNA degradation. Next, nested PCR was performed for examining the expression of p53-related genes, p21WAF1, MDM2, p33ING1 and p14ARF. GAPDH mRNA expression was detectable in 12 out of 21 oral squamous cell carcinoma (SCC) samples. p21WAF1 mRNA expression was detectable in 5 out of 12 SCC samples, MDM2 mRNA expression was detectable in 5 our of 12 SCC samples and p33ING1 mRNA expression was detectable in 6 out of 12 SCC samples. However, the expression of p14ARF mRNA was not detectable in any of the samples. Seven out of 12 oral SCC samples showed abnormal nuclear accumulation of p53 protein by immunohistochemical staining, whereas 5 out of 12 oral SCCs showed negative staining for p53 protein. Of of p33ING1 mRNA. One of these was a verrucous carcinoma in which the p53 gene products might be inactivated by the oncoprotein E6 of human papilloma virus. Thus, the p53 tumor suppressor pathway was disrupted in most oral SCCs at the cellular levels, due to either an abnormality in p53 itself or loss of expression of p53 regulatory factors. This method would assist in making diagnosis, determining therapeutic strategy and predicting the prognosis of various cancers including oral SCCs.
Lechuga, Carmen G; Hernández-Nazara, Zamira H; Domínguez Rosales, José-Alfredo; Morris, Elena R; Rincón, Ana Rosa; Rivas-Estilla, Ana María; Esteban-Gamboa, Andrés; Rojkind, Marcos
2004-11-01
Transforming growth factor-beta1 (TGF-beta1), the main cytokine involved in liver fibrogenesis, induces expression of the type I collagen genes in hepatic stellate cells by a transcriptional mechanism, which is hydrogen peroxide and de novo protein synthesis dependent. Our recent studies have revealed that expression of type I collagen and matrix metalloproteinase-13 (MMP-13) mRNAs in hepatic stellate cells is reciprocally modulated. Because TGF-beta1 induces a transient elevation of alpha1(I) collagen mRNA, we investigated whether this cytokine was able to induce the expression of MMP-13 mRNA during the downfall of the alpha1(I) collagen mRNA. In the present study, we report that TGF-beta1 induces a rapid decline in steady-state levels of MMP-13 mRNA at the time that it induces the expression of alpha1(I) collagen mRNA. This change in MMP-13 mRNA expression occurs within the first 6 h postcytokine administration and is accompanied by a twofold increase in gene transcription and a fivefold decrease in mRNA half-life. This is followed by increased expression of MMP-13 mRNA, which reaches maximal values by 48 h. Our results also show that this TGF-beta1-mediated effect is de novo protein synthesis-dependent and requires the activity of p38MAPK, phosphatidylinositol 3-kinase, AKT, and p70(S6k). Altogether, our data suggest that regulation of MMP-13 by TGF-beta1 is a complex process involving transcriptional and posttranscriptional mechanisms.
Li, Qiangxiang; Chen, Jing; Li, Yajia; Chen, Ting; Zou, Jing; Wang, Hua
2017-01-01
Abstract Background: The aim of the study was to observe the effect of polysaccharide of dendrobium candidum (PDC) and high glucose on proliferation, apoptosis of human corneal epithelial cells (HCEC). Methods: The MTT method was used to screen and take the optimal high-glucose concentration, treatment time, and PDC concentration using HCEC and divide it into 4 groups: control group (C), high glucose group (HG), PDC group, and HG + PDC group. We observed and compared the effect of the 4 groups on HCEC proliferation by MTT, apoptosis by Annexin V-FITC/PI double fluorescent staining and flow cytometry (FCM), and expression of bax mRNA and bcl-2 mRNA by RT-qPCR. Results: Compared with the control group, proliferative activity of HCEC cells was reduced; the cells apoptosis ratio was increased; the expression of bax mRNA was increased, and the expression of bcl-2 mRNA was reduced in the HG group. Proliferative activity of HCEC cells in the PDC group was increased, and the expression of bcl-2 mRNA was increased but that of bax mRNA was decreased. Proliferative activity of HCEC cells in the HG + PDC group was increased, but it could not restore to the normal level; the expression of bax mRNA was significantly decreased but the expression of bcl-2 mRNA was significantly increased. Conclusions: Our results demonstrate that high glucose can inhibit proliferative activity and induce apoptosis of HCEC. PDC can improve the proliferative activity of HCEC cells under the high glucose environment and reduce the apoptosis of cells by regulating the expression of bax and bcl-2. PDC play a very important role on protecting and repairing of corneal epithelial cells damage in high glucose. PMID:28796073
Liu, Bin; Liang, Guiyou; Xu, Gang; Liu, Daxin; Cai, Qingyong; Gao, Zhenyu
2013-01-01
During cardiac pulmonary bypass (CPB), myocardial ischemia-reperfusion (I/R) induces heart glucose metabolism impairment. Our previous research showed that the decreased glucose utilization is due to decreased glucose transporter-4 (Glut-4) expression and translocation to myocyte surface membranes. This study further examined whether rosiglitazone, a synthetic agonist of peroxisome proliferator-activated receptor γ, could intervene glucose metabolism by regulating Glut-4 mRNA during I/R in dogs. Cardiac ischemia was induced by cardiopulmonary bypass for 30 or 120 min. Plasma insulin and glucose concentrations were measured at pre-bypass (control), aortic cross-clamp off (I/R) at 15, 45, and 75 min. The left ventricle biopsies were taken for the expression of Glut-4 mRNA by real-time RT-PCR. In dogs receiving 120 min ischemia, coronary arterial, venous glucose concentrations, plasma insulin levels, and insulin resistant index (IRI) were increased, but the expression of Glut-4 mRNA was decreased obviously at 15 min of reperfusion, and recovered gradually. On the other hand, these changes were relatively mild in dogs treated with rosiglitazone in cardioplegic solution and expression of Glut-4 mRNA was increased remarkably. It is concluded that the decrease in total amount of Glut-4 mRNA expression could be one of the important molecular mechanisms, which causes the myocardium insulin resistance. The longer the ischemia period, the decrease in amount of Glut-4 mRNA was more dramatic. Adding rosiglitazone into the cardioplegic solution during I/R can increase the amount of Glut-4 mRNA expression, mitigate the myocardium insulin resistance and improve the myocardium I/R injury during CPB.
Rueda-Martínez, Carmen; Lamas, Oscar; Mataró, María José; Robledo-Carmona, Juan; Sánchez-Espín, Gemma; Jiménez-Navarro, Manuel; Such-Martínez, Miguel; Fernández, Borja
2014-01-01
Dilatation of the ascending aorta (AAD) is a prevalent aortopathy that occurs frequently associated with bicuspid aortic valve (BAV), the most common human congenital cardiac malformation. The molecular mechanisms leading to AAD associated with BAV are still poorly understood. The search for differentially expressed genes in diseased tissue by quantitative real-time PCR (qPCR) is an invaluable tool to fill this gap. However, studies dedicated to identify reference genes necessary for normalization of mRNA expression in aortic tissue are scarce. In this report, we evaluate the qPCR expression of six candidate reference genes in tissue from the ascending aorta of 52 patients with a variety of clinical and demographic characteristics, normal and dilated aortas, and different morphologies of the aortic valve (normal aorta and normal valve n = 30; dilated aorta and normal valve n = 10; normal aorta and BAV n = 4; dilated aorta and BAV n = 8). The expression stability of the candidate reference genes was determined with three statistical algorithms, GeNorm, NormFinder and Bestkeeper. The expression analyses showed that the most stable genes for the three algorithms employed were CDKN1β, POLR2A and CASC3, independently of the structure of the aorta and the valve morphology. In conclusion, we propose the use of these three genes as reference genes for mRNA expression analysis in human ascending aorta. However, we suggest searching for specific reference genes when conducting qPCR experiments with new cohort of samples. PMID:24841551
Sihto, Henna-Maria; Tasara, Taurai; Stephan, Roger; Johler, Sophia
2014-07-01
Staphylococcus aureus represents the most prevalent cause of food-borne intoxications worldwide. While being repressed by competing bacteria in most matrices, this pathogen exhibits crucial competitive advantages during growth at high salt concentrations or low pH, conditions frequently encountered in food production and preservation. We aimed to identify reference genes that could be used to normalize qPCR mRNA expression levels during growth of S. aureus in food-related osmotic (NaCl) and acidic (lactic acid) stress adaptation models. Expression stability of nine housekeeping genes was evaluated in full (LB) and nutrient-deficient (CYGP w/o glucose) medium under conditions of osmotic (4.5% NaCl) and acidic stress (lactic acid, pH 6.0) after 2-h exposure. Among the set of candidate reference genes investigated, rplD, rpoB,gyrB, and rho were most stably expressed in LB and thus represent the most suitable reference genes for normalization of qPCR data in osmotic or lactic acid stress models in a rich medium. Under nutrient-deficient conditions, expression of rho and rpoB was highly stable across all tested conditions. The presented comprehensive data on changes in expression of various S. aureus housekeeping genes under conditions of osmotic and lactic acid stress facilitate selection of reference genes for qPCR-based stress response models. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Chandra, Vikas; Das, Tapojyoti; Gulati, Puneet; Biswas, Nidhan K; Rote, Sarang; Chatterjee, Uttara; Ghosh, Samarendra N; Deb, Sumit; Saha, Suniti K; Chowdhury, Anup K; Ghosh, Subhashish; Rudin, Charles M; Mukherjee, Ankur; Basu, Analabha; Dhara, Surajit
2015-01-01
Hedgehog (Hh) signaling pathway is a valid therapeutic target in a wide range of malignancies. We focus here on glioblastoma multiforme (GBM), a lethal malignancy of the central nervous system (CNS). By analyzing RNA-sequencing based transcriptomics data on 149 clinical cases of TCGA-GBM database we show here a strong correlation (r = 0.7) between GLI1 and PTCH1 mRNA expression--as a hallmark of the canonical Hh-pathway activity in this malignancy. GLI1 mRNA expression varied in 3 orders of magnitude among the GBM patients of the same cohort showing a single continuous distribution-unlike the discrete high/low-GLI1 mRNA expressing clusters of medulloblastoma (MB). When compared with MB as a reference, the median GLI1 mRNA expression in GBM appeared 14.8 fold lower than that of the "high-Hh" cluster of MB but 5.6 fold higher than that of the "low-Hh" cluster of MB. Next, we demonstrated statistically significant up- and down-regulation of GLI1 mRNA expressions in GBM patient-derived low-passage neurospheres in vitro by sonic hedgehog ligand-enriched conditioned media (shh-CM) and by Hh-inhibitor drug vismodegib respectively. We also showed clinically achievable dose (50 μM) of vismodegib alone to be sufficient to induce apoptosis and cell cycle arrest in these low-passage GBM neurospheres in vitro. Vismodegib showed an effect on the neurospheres, both by down-regulating GLI1 mRNA expression and by inducing apoptosis/cell cycle arrest, irrespective of their relative endogenous levels of GLI1 mRNA expression. We conclude from our study that this single continuous distribution pattern of GLI1 mRNA expression technically puts almost all GBM patients in a single group rather than discrete high- or low-clusters in terms of Hh-pathway activity. That is suggestive of therapies with Hh-pathway inhibitor drugs in this malignancy without a need for further stratification of patients on the basis of relative levels of Hh-pathway activity among them.
Nomura, Nobuhiko; Nakamura, Kouji
2013-01-01
The Gram-positive anaerobic bacterium Clostridium perfringens is pathogenic to humans and animals, and the production of its toxins is strictly regulated during the exponential phase. We recently found that the 5′ leader sequence of the colA transcript encoding collagenase, which is a major toxin of this organism, is processed and stabilized in the presence of the small RNA VR-RNA. The primary colA 5′-untranslated region (5′UTR) forms a long stem-loop structure containing an internal bulge and masks its own ribosomal binding site. Here we found that VR-RNA directly regulates colA expression through base pairing with colA mRNA in vivo. However, when the internal bulge structure was closed by point mutations in colA mRNA, translation ceased despite the presence of VR-RNA. In addition, a mutation disrupting the colA stem-loop structure induced mRNA processing and ColA-FLAG translational activation in the absence of VR-RNA, indicating that the stem-loop and internal bulge structure of the colA 5′ leader sequence is important for regulation by VR-RNA. On the other hand, processing was required for maximal ColA expression but was not essential for VR-RNA-dependent colA regulation. Finally, colA processing and translational activation were induced at a high temperature without VR-RNA. These results suggest that inhibition of the colA 5′ leader structure through base pairing is the primary role of VR-RNA in colA regulation and that the colA 5′ leader structure is a possible thermosensor. PMID:23585542
miR-128 inhibits telomerase activity by targeting TERT mRNA
Guzman, Herlinda; Sanders, Katie; Idica, Adam; Bochnakian, Aurore; Jury, Douglas; Daugaard, Iben; Zisoulis, Dimitrios G; Pedersen, Irene Munk
2018-01-01
Telomerase is a unique cellular reverse transcriptase (RT) essential for maintaining telomere stability and required for the unlimited proliferation of cancer cells. The limiting determinant of telomerase activity is the catalytic component TERT, and TERT expression is closely correlated with telomerase activity and cancer initiation and disease progression. For this reason the regulation of TERT levels in the cell is of great importance. microRNAs (miRs) function as an additional regulatory level in cells, crucial for defining expression boundaries, proper cell fate decisions, cell cycle control, genome integrity, cell death and metastasis. We performed an anti-miR library screen to identity novel miRs, which participate in the control of telomerase. We identified the tumor suppressor miR (miR-128) as a novel endogenous telomerase inhibitor and determined that miR-128 significantly reduces the mRNA and protein levels of Tert in a panel of cancer cell lines. We further evaluated the mechanism by which miR-128 regulates TERT and demonstrated that miR-128 interacts directly with the coding sequence of TERT mRNA in both HeLa cells and teratoma cells. Interestingly, the functional miR-128 binding site in TERT mRNA, is conserved between TERT and the other cellular reverse transcriptase encoded by Long Interspersed Elements-1 (LINE-1 or L1), which can also contribute to the oncogenic phenotype of cancer. This finding supports the novel idea that miRs may function in parallel pathways to inhibit tumorigenesis, by regulating a group of enzymes (such as RT) by targeting conserved binding sites in the coding region of both enzymes. PMID:29568354
Tun, Temdara; Kang, Young-Sook
2017-05-01
Hyperglycemia causes the breakdown of the blood-retinal barrier by impairing endothelial nitric oxide synthase (eNOS) function. Statins have many pleiotropic effects such as improving endothelial barrier permeability and increasing eNOS mRNA stability. The objective of this study was to determine effect of simvastatin on l-arginine transport and NO production under high-glucose conditions in conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB). Changes in l-arginine transport uptake and, expression levels of cationic amino acid transporter 1 (CAT-1) and eNOS mRNA were investigated after pre-treatment with simvastatin and NOS inhibitors (l-NMMA and l-NAME) under high-glucose conditions using TR-iBRB, an in vitro model of iBRB. The NO level released from TR-iBRB cells was examined using Griess reagents. Under high glucose conditions, [ 3 H]l-arginine uptake was decreased in TR-iBRB cells. Simvastatin pretreatment elevated [ 3 H]l-arginine uptake, the expression levels of CAT-1 and eNOS mRNA, and NO production under high-glucose conditions. Moreover, the co-treatment with simvastatin and NOS inhibitors reduced [ 3 H]l-arginine uptake compared to pretreatment with simvastatin alone. Our results suggest that, in the presence of high-glucose levels, increased l-arginine uptake due to simvastatin treatment was associated with increased CAT-1 and eNOS mRNA levels, leading to higher NO production in TR-iBRB cells. Thus, simvastatin might be a good modulator for diabetic retinopathy therapy by increasing of the l-arginine uptake and improving endothelial function in retinal capillary endothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Conserved small mRNA with an unique, extended Shine-Dalgarno sequence
Hahn, Julia; Migur, Anzhela; von Boeselager, Raphael Freiherr; Kubatova, Nina; Kubareva, Elena; Schwalbe, Harald
2017-01-01
ABSTRACT Up to now, very small protein-coding genes have remained unrecognized in sequenced genomes. We identified an mRNA of 165 nucleotides (nt), which is conserved in Bradyrhizobiaceae and encodes a polypeptide with 14 amino acid residues (aa). The small mRNA harboring a unique Shine-Dalgarno sequence (SD) with a length of 17 nt was localized predominantly in the ribosome-containing P100 fraction of Bradyrhizobium japonicum USDA 110. Strong interaction between the mRNA and 30S ribosomal subunits was demonstrated by their co-sedimentation in sucrose density gradient. Using translational fusions with egfp, we detected weak translation and found that it is impeded by both the extended SD and the GTG start codon (instead of ATG). Biophysical characterization (CD- and NMR-spectroscopy) showed that synthesized polypeptide remained unstructured in physiological puffer. Replacement of the start codon by a stop codon increased the stability of the transcript, strongly suggesting additional posttranscriptional regulation at the ribosome. Therefore, the small gene was named rreB (ribosome-regulated expression in Bradyrhizobiaceae). Assuming that the unique ribosome binding site (RBS) is a hallmark of rreB homologs or similarly regulated genes, we looked for similar putative RBS in bacterial genomes and detected regions with at least 16 nt complementarity to the 3′-end of 16S rRNA upstream of sORFs in Caulobacterales, Rhizobiales, Rhodobacterales and Rhodospirillales. In the Rhodobacter/Roseobacter lineage of α-proteobacteria the corresponding gene (rreR) is conserved and encodes an 18 aa protein. This shows how specific RBS features can be used to identify new genes with presumably similar control of expression at the RNA level. PMID:27834614
Asthmatic airway smooth muscle CXCL10 production: mitogen-activated protein kinase JNK involvement.
Alrashdan, Yazan A; Alkhouri, Hatem; Chen, Emily; Lalor, Daniel J; Poniris, Maree; Henness, Sheridan; Brightling, Christopher E; Burgess, Janette K; Armour, Carol L; Ammit, Alaina J; Hughes, J Margaret
2012-05-15
CXCL10 (IP10) is involved in mast cell migration to airway smooth muscle (ASM) bundles in asthma. We aimed to investigate the role of cytokine-induced MAPK activation in CXCL10 production by ASM cells from people with and without asthma. Confluent growth-arrested ASM cells were treated with inhibitors of the MAPKs ERK, p38, and JNK and transcription factor NF-κB, or vehicle, and stimulated with IL-1β, TNF-α, or IFN-γ, alone or combined (cytomix). CXCL10 mRNA and protein, JNK, NF-κB p65 phosphorylation, and Iκ-Bα protein degradation were assessed using real-time PCR, ELISA, and immunoblotting, respectively. Cytomix, IL-1β, and TNF-α induced CXCL10 mRNA expression more rapidly in asthmatic than nonasthmatic ASM cells. IL-1β and/or TNF-α combined with IFN-γ synergistically increased asthmatic ASM cell CXCL10 release. Inhibitor effects were similar in asthmatic and nonasthmatic cells, but cytomix-induced release was least affected, with only JNK and NF-κB inhibitors halving it. Notably, JNK phosphorylation was markedly less in asthmatic compared with nonasthmatic cells. However, in both, the JNK inhibitor SP600125 reduced JNK phosphorylation and CXCL10 mRNA levels but did not affect CXCL10 mRNA stability or Iκ-Bα degradation. Together, the JNK and NF-κB inhibitors completely inhibited their CXCL10 release. We concluded that, in asthmatic compared with nonasthmatic ASM cells, JNK activation was reduced and CXCL10 gene expression was more rapid following cytomix stimulation. However, in both, JNK activation did not regulate early events leading to NF-κB activation. Thus JNK and NF-κB provide independent therapeutic targets for limiting CXCL10 production and mast cell migration to the ASM in asthma.
Lee, Cheng-Tse; Chang, Li-Ching; Wu, Pei-Fung
2016-06-01
This study explored that lipoic acid treatment for 24 h significantly upregulated and promoted heat shock-induced catalase expression and downregulated GPx1 messenger RNA (mRNA) expression, indicating that lipoic acid exhibits antioxidant activity in the decomposition of hydrogen peroxide by upregulating catalase expression. Moreover, lipoic acid treatment for 3 h increased and promoted heat shock-induced interleukin (IL)-6 mRNA and protein levels and that for 24 h downregulated IL-6 mRNA expression, suggesting a dual effect of lipoic acid on IL-6 regulation. Lipoic acid alone failed to increase or reduce tumor necrosis factor (TNF)-α mRNA and protein levels, whereas heat shock alone downregulated TNF-α mRNA and protein expression. These data suggest that lipoic acid does not have a proinflammatory role and that heat shock acts as an anti-inflammatory agent by downregulating TNF-α expression in C2C12 myotubes. Moreover, lipoic acid or heat shock alone upregulated the IL-6 receptor (IL-6R-α) and glycoprotein 130 (gp130) mRNA expression followed by IL-6 expression; these data indicate that the regulation of lipoic acid or heat shock is mediated by IL-6R signaling, thus suggesting that C2C12 myotubes possesses a mechanism for regulating IL-6R and gp130 expression following lipoic acid treatment or heat shock.
Li, Ping; Xu, Dan; Luo, Chengqun
2010-07-01
To observe the expression of high mobility group box chromosomal protein 1(HMGB1) in RAW264.7 macrophages after interfering with burning serum and qinghuobaidu-yin (QHBDY), and to find out the endogenous protection mechanism of QHBDY resisting inflammation reaction. RT-PCR was used to detect the expression of HMGB1 in RAW264.7 macrophages after interfering RAW264.7 macrophages with normal SD rat serum, burning SD rat serum, and QHBDY feeding SD rat serum. Small quantity of HMGB1 mRNA was expressed in RAW264.7. The expression of HMGB1 mRNA fluctuated around the standard level after interfering with normal serum of SD rats. The expression of HMGB1 mRNA rose at 3 h, and then decreased to the standard level; at 18 h, it rose rapidly; at 36 h, it reached the peak; and at 48 h, it remained at the high level after interfering with burning serum. The expression of HMGB1 mRNA increased at 3 h, and then decreased to the standard level. At 24 h, it started to rise after interfering with herb serum, and was lower than that of; the burning serum group (P<0.05). Burning serum can increase the expression of HMGB1 mRNA in RAW264.7. QHBDY can decrease the high expression of HMGB1 mRNA in RAW264.7 caused by burning serum.
Endocannabinoids participate in placental apoptosis induced by hypoxia inducible factor-1.
Abán, C; Martinez, N; Carou, C; Albamonte, I; Toro, A; Seyahian, A; Franchi, A; Leguizamón, G; Trigubo, D; Damiano, A; Farina, M
2016-10-01
During pregnancy, apoptosis is a physiological event critical in the remodeling and aging of the placenta. Increasing evidence has pointed towards the relevance of endocannabinoids (ECs) and hypoxia as modulators of trophoblast cell death. However, the relation between these factors is still unknown. In this report, we evaluated the participation of ECs in placental apoptosis induced by cobalt chloride (CoCl2), a hypoxia mimicking agent that stabilizes the expression of hypoxia inducible factor-1 alpha (HIF-1α). We found that HIF-1α stabilization decreased FAAH mRNA and protein levels, suggesting an increase in ECs tone. Additionally, CoCl2 incubation and Met-AEA treatment reduced cell viability and increased TUNEL-positive staining in syncytiotrophoblast layer. Immunohistochemical analysis demonstrated Bax and Bcl-2 protein expression in the cytoplasm of syncytiotrophoblast. Finally, HIF-1α stabilization produced an increase in Bax/Bcl-2 ratio, activation of caspase 3 and PARP cleavage. All these changes in apoptotic parameters were reversed with AM251, a CB1 antagonist. These results demonstrate that HIF-1α may induce apoptosis in human placenta via intrinsic pathway by a mechanism that involves activation of CB1 receptor suggesting a role of the ECs in this process.
Transcriptional bursting explains the noise–versus–mean relationship in mRNA and protein levels
Dar, Roy; Shaffer, Sydney M.; Singh, Abhyudai; ...
2016-07-28
Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-tocell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: thatmore » increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. In conclusion, the data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean.« less
Study on expression of CDH4 in lung cancer.
Li, Zhupeng; Su, Dan; Ying, Lisha; Yu, Guangmao; Mao, Weimin
2017-01-17
The human CDH4 gene, which encodes the R-cadherin protein, has an important role in cell migration and cell adhesion, sorting, tissue morphogenesis, and tumor genesis. This study analyzed the relationship of CDH4 mRNA expression with lung cancer. Real time PCR was applied to detect CDH4 mRNA transcription in 142 paired cases of lung cancer and noncancerous regions. No correlation was identified between CDH4 mRNA expression and gender, age, lymphnode metastasis, TNM stage, family history, smoking state, drinking state (P > 0.05), but grade and histotype (P < 0.05). The relative CDH4 mRNA value was remarkably decreased in lung cancer tissues compared with noncancerous tissues (P = 0.001). We found that CDH4 mRNA expression was associated with grade and histotype. What is more, the relative CDH4 mRNA value was decreased in the lung cancer tissues. Our results suggested that CDH4 might be a putative tumor suppressor gene (TSG) in lung cancer.
Inoue, Makiko; Shiina, Tomoya; Aizawa, Sayaka; Sakata, Ichiro; Takagi, Hiroyasu; Sakai, Takafumi
2012-06-01
Although δ-crystallin (δ-crys), also known as lens protein, is transiently expressed in Rathke's pouch (RP) of the chick embryo, detailed temporal and spatial expression patterns have been obscure. In this study, to understand the relationship between the δ-crys mRNA-expressing region and RP formation, we examined the embryonic expression pattern of δ-crys mRNA in the primordium of the adenohypophysis. δ-crys mRNA expression was initially found at stage 15 anterior to the foregut and posterior to the invaginated oral ectoderm. After RP formation, the δ-crys mRNA was expressed in the post-ventral region of RP and the anterior region of RP. δ-crys mRNA expression was then restricted to the cephalic lobe of the pituitary gland. From stage 20, the δ-crys and alpha-glycoprotein subunit (αGSU) mRNA-expressing regions were almost completely overlapping. The αGSU mRNA-expressing region is thought to be the primordium of the pars tuberalis, and these regions were overlapped with the Lhx3 mRNA-expressing region. The intensity of δ-crys mRNA expression gradually decreased with development and completely disappeared by stage 34. These results suggest that the embryonic chick pituitary gland consists of two different regions labeled with δ-crys and Lhx3.
Guo, Hui; Xian, Jian-An; Li, Bin; Ye, Chao-Xia; Wang, An-Li; Miao, Yu-Tao; Liao, Shao-An
2013-05-01
Apoptotic cell ratio and mRNA expression of caspase-3, cathepsin B (CTSB), heat shock protein 70 (HSP70), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx) and thioredoxin (TRx) in hemocytes of white shrimp Litopenaeus vannamei exposed to nitrite-N (20 mg/L) was investigated at different stress time (0, 4, 8, 12, 24, 48 and 72 h). The apoptotic cell ratio and mRNA expression level of CTSB were significantly increased in shrimp exposed to nitrite-N for 48 and 72 h. Caspase-3 mRNA expression level significantly increased by 766.50% and 1811.16% for 24 and 48 h exposure, respectively. HSP70 expression level significantly increased at 8 and 72 h exposure. MnSOD mRNA expression in hemocytes up-regulated at 8 and 48 h, while CAT mRNA expression level increased at 24 and 48 h. GPx expression showed a trend that increased first and then decreased. Significant increases of GPx expression were observed at 8 and 12 h exposure. Expression level of TRx reached its highest level after 48 h exposure. These results suggest that nitrite exposure induces expression of apoptosis-related genes in hemocytes, and subsequently caused hemocyte apoptosis. Meanwhile, expression levels of HSP70 and antioxidant enzymes up-regulated to protect the hemocyte against nitrite stress. Copyright © 2013 Elsevier Inc. All rights reserved.
Enhanced levels of scrapie responsive gene mRNA in BSE-infected mouse brain.
Dandoy-Dron, F; Benboudjema, L; Guillo, F; Jaegly, A; Jasmin, C; Dormont, D; Tovey, M G; Dron, M
2000-03-10
The expression of the mRNA of nine scrapie responsive genes was analyzed in the brains of FVB/N mice infected with bovine spongiform encephalopathy (BSE). The RNA transcripts of eight genes were overexpressed to a comparable extent in both BSE-infected and scrapie-infected mice, indicating a common series of pathogenic events in the two transmissible spongiform encephalopathies (TSEs). In contrast, the serine proteinase inhibitor spi 2, an analogue of the human alpha-1 antichymotrypsin gene, was overexpressed to a greater extent in the brains of scrapie-infected animals than in animals infected with BSE, reflecting either an agent specific or a mouse strain specific response. The levels of spi 2 mRNA were increased during the course of scrapie prior to the onset of clinical signs of the disease and the increase reached 11 to 45 fold relative to uninfected controls in terminally ill mice. Spi 2, in common with four of the other scrapie responsive genes studied, is known to be associated with pro-inflammatory processes. These observations underline the importance of cell reactivity in TSE. In addition, scrg2 mRNA the level of which is enhanced in TSE-infected mouse brain, was identified as a previously unrecognized long transcript of the murine aldolase C gene. However, the level of the principal aldolase C mRNA is unaffected in TSE. The increased representation of the longer transcript in the late stage of the disease may reflect changes in mRNA processing and/or stability in reactive astrocytes or in damaged Purkinje cells.
Xiong, Ying; Wang, Yan; Zheng, Junfang; Zhao, Yuan; Tao, Tao; Wang, Qiqi; Liu, Hua; Wang, Songlin; Jiang, Wen G.; He, Junqi
2016-01-01
G protein-coupled estrogen receptor (GPER) plays an important role in mediating the effects of estradiol. High levels of GPER have been implicated to associate with the malignant progress of invasive breast cancer (IBC). However, the mechanisms by which GPER protein levels were regulated remain unclear. In this study, PDZ protein Na+/H+ exchanger regulatory factor (NHERF1) was found to interact with GPER in breast cancer cells. This interaction was mediated by the PDZ2 domain of NHERF1 and the carboxyl terminal PDZ binding motif of GPER. NHERF1 was demonstrated to facilitate GPER expression at post-transcriptional level and improve GPER protein stability by inhibiting the receptor degradation via ubiquitin-proteasome pathway in a GPER/NHERF1 interaction-dependent manner. In addition, GPER protein levels are positively associated with NHERF1 protein levels in a panel of estrogen receptor (ER)-positive breast cancer cells. Furthermore, analysis of clinical IBC data from The Cancer Genome Atlas (TCGA) showed no significant difference in GPER mRNA levels between ER-positive IBC and normal breast tissues. However, gene set enrichment analysis (GSEA) showed that GPER signaling is ultra-activated in ER-positive IBC when compared with normal and its activation is positively associated with NHERF1 mRNA levels. Taken together, our findings identify NHERF1 as a new binding partner for GPER and its overexpression promotes protein stability and activation of GPER in ER-positive IBC. Our data indicate that regulation of GPER stability by NHERF1 may contribute to GPER-mediated carcinogenesis in ER-positive IBC. PMID:27448983
Meng, Ran; Qin, Qiong; Xiong, Ying; Wang, Yan; Zheng, Junfang; Zhao, Yuan; Tao, Tao; Wang, Qiqi; Liu, Hua; Wang, Songlin; Jiang, Wen G; He, Junqi
2016-08-23
G protein-coupled estrogen receptor (GPER) plays an important role in mediating the effects of estradiol. High levels of GPER have been implicated to associate with the malignant progress of invasive breast cancer (IBC). However, the mechanisms by which GPER protein levels were regulated remain unclear. In this study, PDZ protein Na+/H+ exchanger regulatory factor (NHERF1) was found to interact with GPER in breast cancer cells. This interaction was mediated by the PDZ2 domain of NHERF1 and the carboxyl terminal PDZ binding motif of GPER. NHERF1 was demonstrated to facilitate GPER expression at post-transcriptional level and improve GPER protein stability by inhibiting the receptor degradation via ubiquitin-proteasome pathway in a GPER/NHERF1 interaction-dependent manner. In addition, GPER protein levels are positively associated with NHERF1 protein levels in a panel of estrogen receptor (ER)-positive breast cancer cells. Furthermore, analysis of clinical IBC data from The Cancer Genome Atlas (TCGA) showed no significant difference in GPER mRNA levels between ER-positive IBC and normal breast tissues. However, gene set enrichment analysis (GSEA) showed that GPER signaling is ultra-activated in ER-positive IBC when compared with normal and its activation is positively associated with NHERF1 mRNA levels. Taken together, our findings identify NHERF1 as a new binding partner for GPER and its overexpression promotes protein stability and activation of GPER in ER-positive IBC. Our data indicate that regulation of GPER stability by NHERF1 may contribute to GPER-mediated carcinogenesis in ER-positive IBC.
Ammon-Treiber, Susanne; Grecksch, Gisela; Stumm, Ralf; Riechert, Uta; Tischmeyer, Helga; Reichenauer, Anke; Höllt, Volker
2004-01-01
Induction of Hsp70 in the brain has been reported after intake of drugs of abuse like amphetamine and lysergic acid diethylamide. In this investigation, gene expression of Hsp70 and other heat shock genes in the rat brain was studied in response to morphine. Twenty milligrams per kilogram morphine intraperitoneally resulted in a marked induction of Hsp70 messenger RNA (mRNA) expression in the frontal cortex with a maximum increase of 13.2-fold after 2 hours. A moderate increase of Hsp27 mRNA expression (6.7-fold) could be observed after 4 hours, whereas mRNA expression of Hsp90 and of the constitutive Hsc70 did not exceed a mean factor of 1.8-fold during the 24 hours interval. The increase in Hsp70 mRNA was dose dependent, showing a significant elevation after doses ranging from 10 to 50 mg/kg morphine. In situ hybridization revealed enhanced Hsp70 mRNA expression mainly in cortical areas, in the hippocampus, in the paraventricular and supraoptic nuclei of the hypothalamus, in the locus coeruleus, as well in the pineal body. The double in situ hybridization technique revealed increased Hsp70 mRNA expression mainly in VGLUT1-positive neurons and to a lesser extent in olig1-positive oligodendroglia. Immunohistochemistry revealed a marked increase of Hsp70 protein in neuronal cells and blood vessels after 12 hours. In contrast to animal experiments, morphine did not increase Hsp70 mRNA expression in vitro in μ-opioid receptor (MOR1)–expressing human embryonic kidney 293 cells, suggesting no direct MOR1-mediated cellular effect. To exclude a body temperature–related morphine effect on Hsp70 mRNA expression, the temperature was recorded. Five to 20 mg/kg resulted in hyperthermia (maximum 40.6°), whereas a high dose (50 mg/kg) that produced the highest mRNA induction, showed a clear hypothermia (minimum 37.2°C). These findings argue against the possibility that Hsp70 induction by morphine is caused by its effect on body temperature. It may be speculated that increased expression of Hsp70 after morphine application protects brain structures against potentially hazardous effects of opiates. PMID:15497504
Strauss, W L
1990-07-01
The clonal murine neuroblastoma cell lines NS20-Y and N1E-115 have been proposed as models for examining the commitment of neural crest cells to either the cholinergic or adrenergic phenotype, respectively. The validity of this model depends in part on the extent to which these two cell lines have diverged as a result of their transformed, rather than neuronal properties. In order to quantitate differences in gene expression between NS20-Y and N1E-115 cells, the mRNA complexity of each cell type was determined. An analysis of the kinetics of hybridization of NS20-Y cell mRNA with cDNA prepared from NS20-Y cell mRNA demonstrated the presence of approximately 11,700 mRNA species assuming an average length of 1900 nucleotides. A similar analysis using mRNA isolated from N1E-115 cells and cDNA prepared from N1E-115 cell mRNA demonstrated that the adrenergic cell line expressed approximately 11,600 mRNA species. The species of mRNA expressed by each cell line were resolved into high, intermediate, and low abundance populations. In order to determine whether mRNAs were expressed by the cholinergic, but not by the adrenergic cell line, NS20-Y cDNA was hybridized to an excess of N1E-115 cell mRNA. An analysis of the solution hybridization kinetics from this procedure demonstrated that the two cell lines do not differ significantly in the nucleotide complexity of their mRNA populations. The extensive similarity between the two mRNA populations suggests that only a small number of genes are expressed differentially between the two cell lines and supports their use as models for the differentiation of cholinergic and adrenergic neurons.
Brené, S; Lindefors, N; Herrera-Marschitz, M; Persson, H
1993-07-01
In this report we have studied the influence of hippocampal neurons on neuropeptide mRNA expression in both dorsal and ventral striatum in the rat. Intrahippocampal unilateral kainic acid injections were performed in control animals and in animals with a unilateral 6-hydroxydopamine-induced dopamine deafferentation of the striatum. In situ hybridization combined with quantitative image analysis was used to study the expression of preprotachykinin A mRNA encoding the neuropeptides substance P and neurokinin A. The 6-hydroxydopamine-induced lesion caused a decrease of preprotachykinin A mRNA levels in the ipsilateral dorsal striatum and in both sides of the ventral striatum. In normal rats, the intrahippocampal kainic acid injection caused a twofold increase in preprotachykinin A mRNA in the limbic parts of the striatum, which are innervated by the hippocampus. No effect of the kainic acid injection was seen in the lateral parts of the dorsal striatum, a region which does not appear to be innervated by the hippocampus. Animals with a 6-hydroxydopamine lesion showed a similar kainic acid-mediated increase in preprotachykinin A mRNA in parts of the ventral striatum. In the dopamine-lesioned dorsal striatum and ventral striatum the decreased preprotachykinin A mRNA levels were normalized by the intrahippocampal kainic acid injection. These results show that kainic acid-mediated excitation of hippocampal neurons causes a dopamine-independent induction of preprotachykinin A mRNA expression in parts of the ventral striatum, and reverses the dopamine deafferentation-induced decrease of preprotachykinin A mRNA in both dorsal and ventral striatum. Combined, our results suggest that hippocampal neurons can regulate preprotachykinin A mRNA expression in both the ventral and the dorsal striatum.
2014-01-01
Objective To describe the preparation of nano emodin transfersome (NET) and investigate its effect on mRNA expression of adipose triglyceride lipase (ATGL) and G0/G1 switch gene 2 (G0S2) in adipose tissue of diet-induced obese rats. Methods NET was prepared by film-ultrasonic dispersion method. The effects of emodin components at different ratios on encapsulation efficiency were investigated.The NET envelopment rate was determined by ultraviolet spectrophotometry. The particle size and Zeta potential of NET were evaluated by Zetasizer analyzer. Sixty male SD rats were assigned to groups randomly. After 8-week treatment, body weight, wet weight of visceral fat and the percentage of body fat (PBF) were measured. Fasting blood glucose and serum lipid levels were determined. The adipose tissue section was HE stained, and the cellular diameter and quantity of adipocytes were evaluated by light microscopy. The mRNA expression of ATGL and G0S2 from the peri-renal fat tissue was assayed by RT-PCR. Results The appropriate formulation was deoxycholic acid sodium salt vs. phospholipids 1:8, cholesterol vs. phospholipids 1:3, vitamin Evs. phospholipids 1:20, and emodin vs. phospholipid 1:6. Zeta potential was −15.11 mV, and the particle size was 292.2 nm. The mean encapsulation efficiency was (69.35 ± 0.25)%. Compared with the obese model group, body weight, wet weight of visceral fat, PBF and mRNA expression of G0S2 from peri-renal fat tissue were decreased significantly after NET treatment (all P < 0.05), while high-density lipoprotein cholesterol (HDL-C), the diameter of adipocytes and mRNA expression of ATGL from peri-renal fat tissue were increased significantly (all P < 0.05). Conclusion The preparation method is simple and reasonable. NET with negative electricity was small and uniform in particle size, with high encapsulation efficiency and stability. NET could reduce body weight and adipocyte size, and this effect was associated with the up-regulation of ATGL, down-regulation of G0S2 expression in the adipose tissue, and improved insulin sensitivity. PMID:24641917
Nandrolone decreases mu opioid receptor expression in SH-SY5Y human neuroblastoma cells.
Guarino, Goffredo; Spampinato, Santi
2008-07-16
Nandrolone and other anabolic androgenic steroids alter the expression and function of neurotransmitter systems and contribute to drug dependence. Nandrolone treatment (10-10 M) caused a time-dependent and concentration-dependent downregulation of mu opioid receptor (MOPr) transcripts in SH-SY5Y human neuroblastoma cells. This effect was prevented by the androgen receptor antagonist hydroxyflutamide. Receptor binding assays confirmed a decrease in MOPr of approximately 40% in nandrolone-treated cells. Treatment with actinomycin D (10 (-5)M), a transcription inhibitor, revealed that nandrolone might regulate MOPr mRNA stability. In SH-SY5Y cells transfected with a human MOPr luciferase promoter/reporter construct, nandrolone did not alter the rate of gene transcription. These results suggest that nandrolone may regulate MOPr expression through posttranscriptional mechanisms requiring the androgen receptor.
Ohno, Misa; Togashi, Yuto; Tsuda, Kyoko; Okawa, Kazuaki; Kamaya, Minori; Sakaguchi, Masayoshi; Sugahara, Yasusato; Oyama, Fumitaka
2013-01-01
Chitinase hydrolyzes chitin, which is an N-acetyl-D-glucosamine polymer that is present in a wide range of organisms, including insects, parasites and fungi. Although mammals do not contain any endogenous chitin, humans and mice express two active chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Because the level of expression of these chitinases is increased in many inflammatory conditions, including Gaucher disease and mouse models of asthma, both chitinases may play important roles in the pathophysiologies of these and other diseases. We recently established a quantitative PCR system using a single standard DNA and showed that AMCase mRNA is synthesized at extraordinarily high levels in mouse stomach tissues. In this study, we applied this methodology to the quantification of chitinase mRNAs in human tissues and found that both chitinase mRNAs were widely expressed in normal human tissues. Chit1 mRNA was highly expressed in the human lung, whereas AMCase mRNA was not overexpressed in normal human stomach tissues. The levels of these mRNAs in human tissues were significantly lower than the levels of housekeeping genes. Because the AMCase expression levels were quite different between the human and mouse stomach tissues, we developed a quantitative PCR system to compare the mRNA levels between human and mouse tissues using a human-mouse hybrid standard DNA. Our analysis showed that Chit1 mRNA is expressed at similar levels in normal human and mouse lung. In contrast, the AMCase expression level in human stomach was significantly lower than that expression level observed in mouse stomach. These mRNA differences between human and mouse stomach tissues were reflecting differences in the chitinolytic activities and levels of protein expression. Thus, the expression level of the AMCase in the stomach is species-specific. PMID:23826286
Gou, Chenyu; Liu, Xiangzhen; Shi, Xiaomei; Chai, Hanjing; He, Zhi-Ming; Huang, Xuan; Fang, Qun
2017-10-01
CDKN1C and KCNQ1OT1 are imprinted genes that might be potential regulators of placental development. This study investigated placental expressions of CDKN1C and KCNQ1OT1 in monozygotic twins with and without selective intrauterine growth restriction (sIUGR). Seventeen sIUGR and fifteen normal monozygotic(MZ) twin pairs were examined. Placental mRNA expressions of CDKN1C and KCNQ1OT1 were detected by real-time fluorescent quantitative PCR. CDKN1C protein expression was detected by immunohistochemical assay and Western-blotting. In the sIUGR group, smaller fetuses had a smaller share of the placenta, and CDKN1C protein expression was significantly increased while KCNQ1OT1 mRNA expression was significantly decreased. The CDKN1C/KCNQ1OT1 mRNA ratio was lower in the larger fetus than in the smaller fetus (p < .05). In the control group, CDKN1C protein expression showed no difference between larger and smaller fetuses, while KCNQ1OT1 mRNA expression was significantly lower in the larger fetus, and the CDKN1C/KCNQ1OT1 mRNA ratio was higher in the larger fetus than in the smaller fetus (p < .05). Our findings showed that pathogenesis of sIUGR may be related to the co-effect of the up-regulated protein expression of CDKN1C and down-regulated mRNA expression of KCNQ1OT1 in the placenta.
Grommen, Sylvia V H; Arckens, Lutgarde; Theuwissen, Tim; Darras, Veerle M; De Groef, Bert
2008-03-01
In this study, we tried to elucidate the changes in thyroid hormone (TH) receptor beta2 (TRbeta2) expression at the different levels of the hypothalamo-pituitary-thyroidal (HPT) axis during the last week of chicken embryonic development and hatching, a period characterized by an augmented activity of the HPT axis. We quantified TRbeta2 mRNA in retina, pineal gland, and the major control levels of the HPT axis - brain, pituitary, and thyroid gland - at day 18 of incubation, and found the most abundant mRNA content in retina and pituitary. Thyroidal TRbeta2 mRNA content increased dramatically between embryonic day 14 and 1 day post-hatch. In pituitary and hypothalamus, TRbeta2 mRNA expression rose gradually, in parallel with increases in plasma thyroxine concentrations. Using in situ hybridization, we have demonstrated the presence of TRbeta2 mRNA throughout the diencephalon and confirmed the elevation in TRbeta2 mRNA expression in the hypophyseal thyrotropes. In vitro incubation with THs caused a down-regulation of TRbeta2 mRNA levels in embryonic but not in post-hatch pituitaries. The observed expression patterns in pituitary and diencephalon may point to substantial changes in TRbeta2-mediated TH feedback active during the perinatal period. The strong rise in thyroidal TRbeta2 mRNA content could be indicative of an augmented modulation of thyroid development and/or function by THs toward and after hatching. Finally, THs proved to exert an age-dependent effect on pituitary TRbeta2 mRNA expression.
Irvin, Elizabeth Ann; Williams, Denita; Hamler, Sarah E; Smith, Mary Alice
2008-10-01
Exposure to Listeria monocytogenes during pregnancy can result in spontaneous abortion and stillbirths; however, the mechanisms are unknown. Our objective was to determine the effects of infection on specific inflammatory and anti-inflammatory cytokine mRNA expression and apoptosis in the placenta after infection with L. monocytogenes. Pregnant guinea pigs were treated on gestation day (gd) 35 with 10(8) colony forming units L. monocytogenes and sacrificed on gd 37, 41, 44, or 55. At gd 41, IFN-gamma and IL-2 mRNA expression was significantly decreased in placentas from treated dams (0.0012-fold and 0.131-fold, respectively). At gd 55, TNF-alpha mRNA expression was significantly decreased (0.19-fold), while IFN-gamma mRNA expression was significantly increased (32-fold), and apoptosis was detected in 100% of placentas from treated dams. In conclusion, inflammatory cytokine mRNA expression is altered and apoptosis is increased in the placenta after treatment with L. monocytogenes, and these changes may contribute to fetal death.
Shuai, Xiu-rong; Liu, Tong-fa; Guo, Zhen-rong; Yu, Shun-xian; He, Peng-fei; Yuan, Wen-zhou; Li, Feng; He, Li-xin
2004-04-07
To investigate the effect of the escharectomy during burn shock stage on expression of glucose translator-4 (GLUT4) mRNA in skeletal muscle and adipose tissue. 30% TBSA scalded rats were employed. Escharectomy were conducted at 8 h, 24 h, 168 h after burns respectively. Insulin, glucagon, cortisol and glucose levels in serum were analyzed. RT-PCR were employed to analyze GLUT4 mRNA expression in skeletal muscle and adipose tissue. Glucagon, cortisol and glucose levels in serum were declined in groups which escharectomy were conducted during burn shock stage. GLUT4 mRNA expression in both skeletal muscle and adipose tissue were downregulated after burns and escharectomy conducted during burn shock stage made it restored to near normal. GLUT4 mRNA expression will declined after major burns in skeletal muscle and adipose tissue. Escharectomy during shock stage could make it upregulated, which will be helpful to improve glucose metabolism and hypermetabolism after major burns.
Al-Haj, Latifa; Blackshear, Perry J.; Khabar, Khalid S.A.
2012-01-01
The p21Cip1/WAF1 plays an important role in cell-cycle arrest. Here, we find that RNase L regulates p21-mediated G1 growth arrest in AU-rich elements-dependent manner. We found a significant loss of p21 mRNA expression in RNASEL−/− MEFs and that the overexpression of RNase L in HeLa cells induces p21 mRNA expression. The p21 mRNA half-life significantly changes as a result of RNase L modulation, indicating a post-transcriptional effect. Indeed, we found that RNase L promotes tristetraprolin (TTP/ZFP36) mRNA decay. This activity was not seen with dimerization- and nuclease-deficient RNase L mutants. Deficiency in TTP led to increases in p21 mRNA and protein. With induced ablation of RNase L, TTP mRNA and protein expressions were higher, while p21 expression became reduced. We further establish that TTP, but not C124R TTP mutant, binds to, and accelerates the decay of p21 mRNA. The p21 mRNA half-life was prolonged in TTP−/− MEFs. The TTP regulation of p21 mRNA decay required functional AU-rich elements. Thus, we demonstrate a novel mechanism of regulating G1 growth arrest by an RNase L-TTP-p21 axis. PMID:22718976
Mzhelskaya, M M; Klinnikova, M G; Koldysheva, E V; Lushnikova, E L
2017-10-01
The expression of VEGFR2 (Flk-1, according to immunohistochemistry) and of cyclin D2 mRNA (according to real-time PCR) in the myocardium of rats is studied in doxorubicin-induced cardiomyopathy and in response to betulonic acid amide. Doxorubicin alone and in combination with betulonic acid amide causes after 3 days a manifest reduction of cyclin D2 mRNA expression (by 38 and 63%, respectively), while injection of betulonic acid amide alone causes a 23-fold increase of cyclin D2 mRNA expression. An increase of cyclin D2 mRNA expression has been detected in all experimental groups after 14 days of experiment, the most pronounced in response to betulonic acid amide (63 times). The expression of Flk-1 in cardiomyocytes increases significantly in response to both chemical agents starting from day 3 of experiment. These results indicate that doxorubicin and betulonic acid amide induce cytoprotective reactions in the myocardium, first at the intracellular, then at the cellular levels.
[Research of expression of L-DOPA decarboxylase in laryngeal cancer].
Lai, Shisheng; Wan, Zhili
2014-12-01
This study aimed to investigate the expression levels of L-DOPA decarboxylase (DDC) mRNA and protein in laryngeal cancer, and to determine the clinical significance of DDC in diagnosis and prognosis of laryngeal cancer. Total RNA was isolated from 106 tissue samples surgically removed from 53 laryngeal cancer patients. A quantitative real-time polymerase chain reaction (RT-PCR) methodology based on SYBR Green I fluorescent dye was developed for the quantification of mRNA levels. In addition, Western Blot analysis was performed to detect the expression level of DDC protein. DDC mRNA expression in both primary (P= 0. 000) and recurrent (P=0. 033) laryngeal cancer samples downregulated significantly compared with their nonmalignant counterparts. Moreover, expression of DDC mRNA was not associated with age and histologic grade, but the significantly decreased mRNA were correlated with early TMN stage (P=0. 021). Additionally, DDC protein was detected in both cancerous and noncancerous tissues. Expression levels of DDC may play a vital role in the progression of laryngeal cancer, which can be served as a promising biomarker for the future clinical management of laryngeal cancer patients.
Alkaline phosphatase in osteoblasts is down-regulated by pulsatile fluid flow
NASA Technical Reports Server (NTRS)
Hillsley, M. V.; Frangos, J. A.
1997-01-01
It is our hypothesis that interstitial fluid flow plays a role in the bone remodeling response to mechanical loading. The fluid flow-induced expression of three proteins (collagen, osteopontin, and alkaline phosphatase) involved in bone remodeling was investigated. Rat calvarial osteoblasts subjected to pulsatile fluid flow at an average shear stress of 5 dyne/cm2 showed decreased alkaline phosphatase (AP) mRNA expression after only 1 hour of flow. After 3 hours of flow, AP mRNA levels had decreased to 30% of stationary control levels and remained at this level for an additional 5 hours of flow. Steady flow (4 dyne/cm2 fluid shear stress), in contrast, resulted in a delayed and less dramatic decrease in AP mRNA expression to 63% of control levels after 8 hours of flow. The reduced AP mRNA expression under pulsatile flow conditions was followed by reduced AP enzyme activity after 24 hours. No changes in collagen or osteopontin mRNA expression were detected over 8 hours of pulsatile flow. This is the first time fluid flow has been shown to affect gene expression in osteoblasts.
Decreased TIM-3 mRNA expression in peripheral blood mononuclear cells from nephropathy patients.
Cai, X Z; Liu, N; Qiao, Y; Du, S Y; Chen, Y; Chen, D; Yu, S; Jiang, Y
2015-06-12
Increasing evidence shows that TIM-1 and TIM-3 in-fluence chronic autoimmune diseases, and their expression levels in immune cells from nephritic patients are still unknown. Real-time transcription-polymerase chain reaction analysis was used to deter-mine expression levels of TIM-1 and TIM-3 mRNA in peripheral blood mononuclear cells (PBMCs) from 36 patients with minimal change glo-merulopathy (MCG), 65 patients with lupus nephritis (LN), 78 patients with IgA nephropathy (IgAN), 55 patients with membranous nephropa-thy (MN), 22 patients with crescentic glomerulonephritis (CGN), 26 patients with anaphylactoid purpura nephritis (APN), and 63 healthy controls. TIM-3 mRNA expression significantly decreased in PBMCs from nephritic patients (LN, P < 0.0001; MCG, P < 0.0001; MN, P = 0.0031; CGN, P = 0.0464; IgAN, P = 0.0002; APN, P = 0.0392) com-pared with healthy controls. In contrast, there was no significant differ-ence in TIM-1 mRNA expression between the patients and the healthy controls. Our results suggest that insufficient expression of TIM-3 mRNA may be involved in the pathogenesis of nephropathy.
Li, Wande
2013-01-01
Lysyl oxidase (LO) catalyzes crosslink of collagen, elastin, and histone H1, stabilizing the extracellular matrix and cell nucleus. This enzyme displays dual functions for tumorigenesis, i.e., as a tumor suppressor inactivating the ras oncogene and as a tumor promoter enhancing malignant cell metastasis. To elucidate LO transcriptional regulation, we have cloned the 804 base pair region upstream of the translation start site (ATG) of the rat LO gene with the maximal promoter activity. Computer analysis indicated that at least four hypoxia-response element (HRE) consensuses (5′-ACGTG-3′) exist in the cloned LO promoter. Treatment of rat lung fibroblasts (RFL6) with CoCl2 (Co, 10–100 μM), a chemical hypoxia reagent, enhanced LO mRNA expression and promoter activities. Overexpression of LO was associated with upregulation of hypoxia-inducible factor (HIF)-1α at mRNA levels in cobalt (Co)–treated cells. Thus, LO is a hypoxia-responsive gene. Dominant negative-HIF-1α inhibited LO promoter activities stimulated by Co. Electrophoretic mobility shift, oligonucleotide competition, and in vitro translated HIF-1α binding assays indicated that only one HRE mapped at −387/−383 relative to ATG was functionally active among four consensuses. Site-directed mutation of this HRE significantly diminished the Co-induced and LO promoter-directed expression of the reporter gene. Cadmium (Cd), an inducer of reactive oxygen species, inhibited HIF-1α mRNA expression and HIF-1α binding to the LO gene in Co-treated cells as revealed by RT-PCR and ChIP assays, respectively. Thus, modulation of the HRE activity by Co and Cd plays a critical role in LO gene transactivation. PMID:23161664
Gao, Song; Zhou, Jing; Zhao, Yinzhi; Toselli, Paul; Li, Wande
2013-04-01
Lysyl oxidase (LO) catalyzes crosslink of collagen, elastin, and histone H1, stabilizing the extracellular matrix and cell nucleus. This enzyme displays dual functions for tumorigenesis, i.e., as a tumor suppressor inactivating the ras oncogene and as a tumor promoter enhancing malignant cell metastasis. To elucidate LO transcriptional regulation, we have cloned the 804 base pair region upstream of the translation start site (ATG) of the rat LO gene with the maximal promoter activity. Computer analysis indicated that at least four hypoxia-response element (HRE) consensuses (5'-ACGTG-3') exist in the cloned LO promoter. Treatment of rat lung fibroblasts (RFL6) with CoCl2 (Co, 10-100 μM), a chemical hypoxia reagent, enhanced LO mRNA expression and promoter activities. Overexpression of LO was associated with upregulation of hypoxia-inducible factor (HIF)-1α at mRNA levels in cobalt (Co)-treated cells. Thus, LO is a hypoxia-responsive gene. Dominant negative-HIF-1α inhibited LO promoter activities stimulated by Co. Electrophoretic mobility shift, oligonucleotide competition, and in vitro translated HIF-1α binding assays indicated that only one HRE mapped at -387/-383 relative to ATG was functionally active among four consensuses. Site-directed mutation of this HRE significantly diminished the Co-induced and LO promoter-directed expression of the reporter gene. Cadmium (Cd), an inducer of reactive oxygen species, inhibited HIF-1α mRNA expression and HIF-1α binding to the LO gene in Co-treated cells as revealed by RT-PCR and ChIP assays, respectively. Thus, modulation of the HRE activity by Co and Cd plays a critical role in LO gene transactivation.
Mocquet, Vincent; Neusiedler, Julia; Rende, Francesca; Cluet, David; Robin, Jean-Philippe; Terme, Jean-Michel; Duc Dodon, Madeleine; Wittmann, Jürgen; Morris, Christelle; Le Hir, Hervé; Ciminale, Vincenzo
2012-01-01
In this report, we analyzed whether the degradation of mRNAs by the nonsense-mediated mRNA decay (NMD) pathway was affected in human T-lymphotropic virus type 1 (HTLV-1)-infected cells. This pathway was indeed strongly inhibited in C91PL, HUT102, and MT2 cells, and such an effect was also observed by the sole expression of the Tax protein in Jurkat and HeLa cells. In line with this activity, Tax binds INT6/EIF3E (here called INT6), which is a subunit of the translation initiation factor eukaryotic initiation factor 3 (eIF3) required for efficient NMD, as well as the NMD core factor upstream frameshift protein 1 (UPF1). It was also observed that Tax expression alters the morphology of processing bodies (P-bodies), the cytoplasmic structures which concentrate RNA degradation factors. The presence of UPF1 in these subcellular compartments was increased by Tax, whereas that of INT6 was decreased. In line with these effects, the level of the phosphorylated form of UPF1 was increased in the presence of Tax. Analysis of several mutants of the viral protein showed that the interaction with INT6 is necessary for NMD inhibition. The alteration of mRNA stability was observed to affect viral transcripts, such as that coding for the HTLV-1 basic leucine zipper factor (HBZ), and also several cellular mRNAs sensitive to the NMD pathway. Our data indicate that the effect of Tax on viral and cellular gene expression is not restricted to transcriptional control but can also involve posttranscriptional regulation. PMID:22553336
Wang, Jiajing; Hmadcha, Abdelkrim; Zakarian, Vaagn; Song, Fei; Loeb, Jeffrey A
2015-09-01
The neuregulins (NRGs) are a family of alternatively spliced factors that play important roles in nervous system development and disease. In motor neurons, NRG1 expression is regulated by activity and neurotrophic factors, however, little is known about what controls isoform-specific transcription. Here we show that NRG1 expression in the chick embryo increases in motor neurons that have extended their axons and that limb bud ablation before motor axon outgrowth prevents this induction, suggesting a trophic role from the developing limb. Consistently, NRG1 induction after limb bud ablation can be rescued by adding back the neurotrophic factors BDNF and GDNF. Mechanistically, BDNF induces a rapid and transient increase in type I and type III NRG1 mRNAs that peak at 4h in rat embryonic ventral spinal cord cultures. Blocking MAPK or PI3K signaling or blocking transcription with Actinomycin D blocks BDNF induced NRG1 gene induction. BDNF had no effect on mRNA degradation, suggesting that transcriptional activation rather than message stability is important. Furthermore, BDNF activates a reporter construct that includes 700bp upstream of the type I NRG1 start site. Protein synthesis is also required for type I NRG1 mRNA transcription as cycloheximide produced a super-induction of type I, but not type III NRG1 mRNA, possibly through a mechanism involving sustained activation of MAPK and PI3K. These results reveal the existence of highly responsive, transient transcriptional regulatory mechanisms that differentially modulate NRG1 isoform expression as a function of extracellular and intracellular signaling cascades and mediated by neurotrophic factors and axon-target interactions. Copyright © 2015 Elsevier Inc. All rights reserved.
The effects of copper on blood and biochemical parameters of rainbow trout (Oncorhynchus mykiss)
Dethloff, G.M.; Schlenk, D.; Khan, S.; Bailey, H.C.
1999-01-01
Metals are released into aquatic systems from many sources, often at sublethal concentrations. The effects of sublethal concentrations of metals on fish are not entirely understood. The objective of this study was to determine the hematological and biochemical effects of a range of copper concentrations (6.4, 16.0, 26.9 ??g Cu/L) on rainbow trout (Oncorhynchus mykiss) over a prolonged period of time. Trout were exposed to copper, and, at intervals of 3, 7, 14, and 21 days, selected parameters were evaluated. Hemoglobin, hematocrit, plasma glucose, and plasma cortisol levels were elevated in trout exposed to 26.9 ??g Cu/L at day 3 and then returned to levels comparable to control fish. Plasma protein and lactate levels were not significantly altered in trout from any copper treatment. Hepatic copper concentration and hepatic metallothionein mRNA expression were consistently elevated in trout exposed to 26.9 ??g Cu/L. Both of these parameters stabilized by day 3, with only hepatic copper concentration showing a further increase at day 21. Hepatic copper concentration and hepatic metallothionein mRNA expression appear to be robust indicators of copper exposure. Most blood-based parameters evaluated appear to be associated with a transitory, nonspecific stress response. The return of elevated hematological and biochemical parameters to control levels after 3 days and thestabilization of hepatic metallothionein mRNA expression and copper concentration over a similar time period suggested acclimation to dissolved copper at 26.9 ??g/L. Further analysis of the data on blood-based parameters indicated that certain parameters (hemoglobin, hematocrit, plasma glucose, plasma cortisol) may be useful in field monitoring.
Kowalska, Joanna; Wypijewska del Nogal, Anna; Darzynkiewicz, Zbigniew M.; Buck, Janina; Nicola, Corina; Kuhn, Andreas N.; Lukaszewicz, Maciej; Zuberek, Joanna; Strenkowska, Malwina; Ziemniak, Marcin; Maciejczyk, Maciej; Bojarska, Elzbieta; Rhoads, Robert E.; Darzynkiewicz, Edward; Sahin, Ugur; Jemielity, Jacek
2014-01-01
Modified mRNA cap analogs aid in the study of mRNA-related processes and may enable creation of novel therapeutic interventions. We report the synthesis and properties of 11 dinucleotide cap analogs bearing a single boranophosphate modification at either the α-, β- or γ-position of the 5′,5′-triphosphate chain. The compounds can potentially serve either as inhibitors of translation in cancer cells or reagents for increasing expression of therapeutic proteins in vivo from exogenous mRNAs. The BH3-analogs were tested as substrates and binding partners for two major cytoplasmic cap-binding proteins, DcpS, a decapping pyrophosphatase, and eIF4E, a translation initiation factor. The susceptibility to DcpS was different between BH3-analogs and the corresponding analogs containing S instead of BH3 (S-analogs). Depending on its placement, the boranophosphate group weakened the interaction with DcpS but stabilized the interaction with eIF4E. The first of the properties makes the BH3-analogs more stable and the second, more potent as inhibitors of protein biosynthesis. Protein expression in dendritic cells was 2.2- and 1.7-fold higher for mRNAs capped with m27,2′-OGppBH3pG D1 and m27,2′-OGppBH3pG D2, respectively, than for in vitro transcribed mRNA capped with m27,3′-OGpppG. Higher expression of cancer antigens would make mRNAs containing m27,2′-OGppBH3pG D1 and m27,2′-OGppBH3pG D2 favorable for anticancer immunization. PMID:25150148
Zhang, Zhen-Hai; Wu, Shuo-Dong; Gao, Hong; Shi, Gang; Jin, Jun-Zhe; Kong, Jing; Tian, Zhong; Su, Yang
2006-01-01
AIM: To detect the expression of pituitary adenylate cyclase-activating polypeptide receptor 1 (VPCAP1-R) and VPCAP2-R mRNA in gallbladder tissues of patients with gallstone or gallbladder polyps. METHODS: The expression of VPCAP1-R and VPCAP2-R mRNA in gallbladder tissues was detected in 25 patients with gallstone, 8 patients with gallbladder polyps and 7 donors of liver transplantation by reverse transcription polymerase chain reaction (RT-PCR). RESULTS: The VPCAP2-R mRNA expression level in the control group (1.09±0.58) was lower than that in the gallbladder polyp group (1.64 ± 0.56) and the gallstone group (1.55±0.45) (P < 0.05) while the VPCAP1-R mRNA expression level in the control group (1.15 ± 0.23) was not apparently different from that in the gallbladder polyp group (1.28±0.56) and the gallstone group (1.27 ± 0.38). CONCLUSION: The abnormal expression of VPCAP2-R mRNA in gallbladder tissue may play a role in the formation of gallbladder stone and gallbladder polyps. PMID:16552823
CMG2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients
Wedler, Alice; Rot, Swetlana; Keßler, Jacqueline; Kehlen, Astrid; Holzhausen, Hans-Jürgen; Bache, Matthias; Würl, Peter; Kappler, Matthias
2017-01-01
The capillary morphogenesis gene 2 (CMG2), also known as the anthrax toxin receptor 2 (ANTXR2), is a transmembrane protein putatively involved in extracellular matrix (ECM) adhesion and tissue remodeling. CMG2 promotes endothelial cell proliferation and exhibits angiogenic properties. Its downregulation is associated with a worsened survival of breast carcinoma patients. Aim of this study was to analyze the CMG2 mRNA and protein expression in soft tissue sarcoma and their association with patient outcome. CMG2 mRNA was measured in 121 tumor samples of soft tissue sarcoma patients using quantitative real-time PCR. CMG2 protein was evaluated in 52 tumor samples by ELISA. CMG2 mRNA was significantly correlated with the corresponding CMG2 protein expression (rs = 0.31; p = 0.027). CMG2 mRNA expression was associated with the mRNA expressions of several ECM and tissue remodeling enzymes, among them CD26 and components of the uPA system. Low CMG2 mRNA expression was correlated with a worsened patients’ disease-specific survival in Kaplan-Meier analyses (mean patient survival was 25 vs. 96 months; p = 0.013), especially in high-stage tumors. A decreased CMG2 expression is a negative prognostic factor for soft tissue sarcoma patients. CMG2 may be an interesting candidate gene for the further exploration of soft tissue sarcoma genesis and progression. PMID:29215551
CMG2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients.
Greither, Thomas; Wedler, Alice; Rot, Swetlana; Keßler, Jacqueline; Kehlen, Astrid; Holzhausen, Hans-Jürgen; Bache, Matthias; Würl, Peter; Taubert, Helge; Kappler, Matthias
2017-12-07
The capillary morphogenesis gene 2 (CMG2), also known as the anthrax toxin receptor 2 (ANTXR2), is a transmembrane protein putatively involved in extracellular matrix (ECM) adhesion and tissue remodeling. CMG2 promotes endothelial cell proliferation and exhibits angiogenic properties. Its downregulation is associated with a worsened survival of breast carcinoma patients. Aim of this study was to analyze the CMG2 mRNA and protein expression in soft tissue sarcoma and their association with patient outcome. CMG2 mRNA was measured in 121 tumor samples of soft tissue sarcoma patients using quantitative real-time PCR. CMG2 protein was evaluated in 52 tumor samples by ELISA. CMG2 mRNA was significantly correlated with the corresponding CMG2 protein expression (r s = 0.31; p = 0.027). CMG2 mRNA expression was associated with the mRNA expressions of several ECM and tissue remodeling enzymes, among them CD26 and components of the uPA system. Low CMG2 mRNA expression was correlated with a worsened patients' disease-specific survival in Kaplan-Meier analyses (mean patient survival was 25 vs. 96 months; p = 0.013), especially in high-stage tumors. A decreased CMG2 expression is a negative prognostic factor for soft tissue sarcoma patients. CMG2 may be an interesting candidate gene for the further exploration of soft tissue sarcoma genesis and progression.
Jocks, T; Zahner, G; Freudenberg, J; Wolf, G; Thaiss, F; Helmchen, U; Stahl, R A
1996-06-01
To study whether prostaglandins (PG) can regulate the mRNA expression of monocyte-chemoattractant protein 1 (MCP-1) in glomerular immune injury, MCP-1 mRNA levels were evaluated in anti-thymocyte antibody (ATS) -induced glomerular injury by Northern blotting and reverse transcription-polymerase chain reaction. Immune injury was induced in vivo by the intravenous application of ATS to male Wistar rats and in vitro by the perfusion of isolated rat kidneys with ATS and rat serum. In vivo 3 h and 5 days after antibody application, glomerular mRNA expression of MCP-1 was markedly enhanced compared with controls. In the isolated perfused kidney, antibody and complement also induced an increase in MCP-1 expression at 10 min and 60 min after antibody perfusion. When the rats were treated with PGE (250 micrograms, twice daily), the increase in MCP-1 expression was reduced. This was associated with a reduction of intraglomerular recruitment of monocytes/macrophages. In the isolated perfused kidneys, PGE1 (1 mg/L) prevented the antibody- and rat serum-stimulated increase in glomerular MCP-1 mRNA expression. These data demonstrate that PGE1 reduces glomerular MCP-1 mRNA expression in glomerulonephritis and in the isolated perfused rat kidney after induction of immune injury with antibody and complement. The data suggest that prostaglandins might mediate MCP-1 effects in glomerular immune injuries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui
Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pHmore » 10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50 nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. - Highlights: • Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression. • EGF-induced MMP-9 expression via p300 stabilization and NFκB/c-Jun activation. • Gallic acid-capped gold nanoparticles inhibit EGF-modulated p300 stabilization. • Gallic acid-capped gold nanoparticles abrogate EGF-induced NFκB/c-Jun activation.« less
Ni, Haifeng; Jiang, Bo; Zhou, Zhen; Yuan, Xiaoyang; Cao, Xiaolin; Huang, Guangwu; Li, Yong
2017-09-01
The aim of this study was to investigate the inactivation of the MutS homolog human 3 (MSH3) gene by promoter methylation in nasopharyngeal carcinoma (NPC). Methylation‑specific PCR, semi‑quantitative reverse transcription PCR and immunohistochemical analysis were used to detect methylation and the mRNA and protein expression levels of MSH3 in 54 cases of NPC tissues and 16 cases of normal nasopharyngeal epithelial (NNE) tissues. The association between promoter methylation and mRNA expression, and the mRNA and protein expression of the gene and clinical factors was analyzed. The promoter methylation of MSH3 was detected in 50% (27/54) of the primary tumors, but not in the 16 NNE tissues. The mRNA and protein expression levels were significantly decreased in the 54 cases of human NPC as compared to the 16 NNE tissues (P<0.05). The MSH3‑methylated cases exhibited significantly lower mRNA and protein expression levels than the unmethylated cases (P<0.05). The MSH3 mRNA and protein expression levels were significantly associated with the variable T stage (P<0.05); however, they did not correlate with the age and sex of the patients, or with the N stage, TNM classification or histopathological subtype (P>0.05). On the whole, MSH3 was frequently inactivated by promoter methylation and its mRNA and protein expression correlated with the primary tumor stage in NPC.
Simsek, Meric; Quezada-Calvillo, Roberto; Nichols, Buford L; Hamaker, Bruce R
2017-05-24
Diverse natural phenolic compounds show inhibition activity of intestinal α-glucosidases, which may constitute the molecular basis for their ability to control systemic glycemia. Additionally, phenolics can modify mRNA expression for proteins involved in nutritional, metabolic or immune processes. To explore the possibility that phenolics can regulate the mRNA expression, enzymatic activity, and protein synthesis/processing of intestinal Maltase-Glucoamylase (MGAM) and Sucrase-Isomaltase (SI), small intestinal explants from Balb/c mice were cultured for 24 h in the presence or absence of gallic acid, caffeic acid, and (+)-catechin at 0.1, 0.5, and 1 mM. We measured the levels of MGAM and SI mRNA expression by qRT-PCR, maltase and sucrase activities by a standard colorimetric method and the molecular size distribution of MGAM and SI proteins by western blotting. mRNA expression for MGAM was induced by the three phenolic compounds at 0.1 mM. mRNA expression for SI was induced by caffeic and gallic acids, but not by (+)-catechin. Caffeic acid was the most effective inducer of mRNA expression of these enzymes. Total maltase and sucrase activities were not affected by treatment with phenolics. The proportion of high molecular size forms of MGAM was significantly increased by two of the three phenolic compounds, but little effect was observed on SI proteins. Thus, changes in the protein synthesis/processing, affecting the proportions of the different molecular forms of MGAM, may account for the lack of correlation between mRNA expression and enzymatic activity.