Sample records for mrna-binding protein function

  1. The ribosome as a missing link in prebiotic evolution II: Ribosomes encode ribosomal proteins that bind to common regions of their own mRNAs and rRNAs.

    PubMed

    Root-Bernstein, Robert; Root-Bernstein, Meredith

    2016-05-21

    We have proposed that the ribosome may represent a missing link between prebiotic chemistries and the first cells. One of the predictions that follows from this hypothesis, which we test here, is that ribosomal RNA (rRNA) must have encoded the proteins necessary for ribosomal function. In other words, the rRNA also functioned pre-biotically as mRNA. Since these ribosome-binding proteins (rb-proteins) must bind to the rRNA, but the rRNA also functioned as mRNA, it follows that rb-proteins should bind to their own mRNA as well. This hypothesis can be contrasted to a "null" hypothesis in which rb-proteins evolved independently of the rRNA sequences and therefore there should be no necessary similarity between the rRNA to which rb-proteins bind and the mRNA that encodes the rb-protein. Five types of evidence reported here support the plausibility of the hypothesis that the mRNA encoding rb-proteins evolved from rRNA: (1) the ubiquity of rb-protein binding to their own mRNAs and autogenous control of their own translation; (2) the higher-than-expected incidence of Arginine-rich modules associated with RNA binding that occurs in rRNA-encoded proteins; (3) the fact that rRNA-binding regions of rb-proteins are homologous to their mRNA binding regions; (4) the higher than expected incidence of rb-protein sequences encoded in rRNA that are of a high degree of homology to their mRNA as compared with a random selection of other proteins; and (5) rRNA in modern prokaryotes and eukaryotes encodes functional proteins. None of these results can be explained by the null hypothesis that assumes independent evolution of rRNA and the mRNAs encoding ribosomal proteins. Also noteworthy is that very few proteins bind their own mRNAs that are not associated with ribosome function. Further tests of the hypothesis are suggested: (1) experimental testing of whether rRNA-encoded proteins bind to rRNA at their coding sites; (2) whether tRNA synthetases, which are also known to bind to their own mRNAs, are encoded by the tRNA sequences themselves; (3) and the prediction that archaeal and prokaryotic (DNA-based) genomes were built around rRNA "genes" so that rRNA-related sequences will be found to make up an unexpectedly high proportion of these genomes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. mRNA stability in mammalian cells.

    PubMed Central

    Ross, J

    1995-01-01

    This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413

  3. Determinants of RNA binding and translational repression by the Bicaudal-C regulatory protein.

    PubMed

    Zhang, Yan; Park, Sookhee; Blaser, Susanne; Sheets, Michael D

    2014-03-14

    Bicaudal-C (Bic-C) RNA binding proteins function as important translational repressors in multiple biological contexts within metazoans. However, their RNA binding sites are unknown. We recently demonstrated that Bic-C functions in spatially regulated translational repression of the xCR1 mRNA during Xenopus development. This repression contributes to normal development by confining the xCR1 protein, a regulator of key signaling pathways, to specific cells of the embryo. In this report, we combined biochemical approaches with in vivo mRNA reporter assays to define the minimal Bic-C target site within the xCR1 mRNA. This 32-nucleotide Bic-C target site is predicted to fold into a stem-loop secondary structure. Mutational analyses provided evidence that this stem-loop structure is important for Bic-C binding. The Bic-C target site was sufficient for Bic-C mediated repression in vivo. Thus, we describe the first RNA binding site for a Bic-C protein. This identification provides an important step toward understanding the mechanisms by which evolutionarily conserved Bic-C proteins control cellular function in metazoans.

  4. The actin binding cytoskeletal protein Moesin is involved in nuclear mRNA export.

    PubMed

    Kristó, Ildikó; Bajusz, Csaba; Borsos, Barbara N; Pankotai, Tibor; Dopie, Joseph; Jankovics, Ferenc; Vartiainen, Maria K; Erdélyi, Miklós; Vilmos, Péter

    2017-10-01

    Current models imply that the evolutionarily conserved, actin-binding Ezrin-Radixin-Moesin (ERM) proteins perform their activities at the plasma membrane by anchoring membrane proteins to the cortical actin network. Here we show that beside its cytoplasmic functions, the single ERM protein of Drosophila, Moesin, has a novel role in the nucleus. The activation of transcription by heat shock or hormonal treatment increases the amount of nuclear Moesin, indicating biological function for the protein in the nucleus. The distribution of Moesin in the nucleus suggests a function in transcription and the depletion of mRNA export factors Nup98 or its interacting partner, Rae1, leads to the nuclear accumulation of Moesin, suggesting that the nuclear function of the protein is linked to mRNA export. Moesin localizes to mRNP particles through the interaction with the mRNA export factor PCID2 and knock down of Moesin leads to the accumulation of mRNA in the nucleus. Based on our results we propose that, beyond its well-known, manifold functions in the cytoplasm, the ERM protein of Drosophila is a new, functional component of the nucleus where it participates in mRNA export. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Drosophila Hephaestus/Polypyrimidine Tract Binding Protein Is Required for Dorso-Ventral Patterning and Regulation of Signalling between the Germline and Soma

    PubMed Central

    McDermott, Suzanne M.; Davis, Ilan

    2013-01-01

    In the Drosophila oocyte, gurken (grk) mRNA encodes a secreted TGF-α signal that specifies the future embryonic dorso-ventral axes by altering the fate of the surrounding epithelial follicle cells. We previously identified a number of RNA binding proteins that associate specifically with the 64 nucleotide grk localization signal, including the Drosophila orthologue of polypyrimidine tract-binding protein (PTB), Hephaestus (Heph). To test whether Heph is required for correct grk mRNA or protein function, we used immunoprecipitation to validate the association of Heph with grk mRNA and characterized the heph mutant phenotype. We found that Heph is a component of grk mRNP complexes but heph germline clones show that Heph is not required for grk mRNA localization. Instead, we identify a novel function for Heph in the germline and show that it is required for proper Grk protein localization. Furthermore, we show that Heph is required in the oocyte for the correct organization of the actin cytoskeleton and dorsal appendage morphogenesis. Our results highlight a requirement for an mRNA binding protein in the localization of Grk protein, which is independent of mRNA localization, and we propose that Heph is required in the germline for efficient Grk signalling to the somatic follicle cells during dorso-ventral patterning. PMID:23894566

  6. CELFish ways to modulate mRNA decay

    PubMed Central

    St. Louis, Irina Vlasova; Dickson, Alexa M.; Bohjanen, Paul R.; Wilusz, Carol J.

    2013-01-01

    The CELF family of RNA-binding proteins regulates many steps of mRNA metabolism. Although their best characterized function is in pre-mRNA splice site choice, CELF family members are also powerful modulators of mRNA decay. In this review we focus on the different modes of regulation that CELF proteins employ to mediate mRNA decay by binding to GU-rich elements. After starting with an overview of the importance of CELF proteins during development and disease pathogenesis, we then review the mRNA networks and cellular pathways these proteins regulate and the mechanisms by which they influence mRNA decay. Finally, we discuss how CELF protein activity is modulated during development and in response to cellular signals. We conclude by highlighting the priorities for new experiments in this field. PMID:23328451

  7. A divergent Pumilio repeat protein family for pre-rRNA processing and mRNA localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Chen; McCann, Kathleen L.; Wine, Robert N.

    Pumilio/feminization of XX and XO animals (fem)-3 mRNA-binding factor (PUF) proteins bind sequence specifically to mRNA targets using a single-stranded RNA-binding domain comprising eight Pumilio (PUM) repeats. PUM repeats have now been identified in proteins that function in pre-rRNA processing, including human Puf-A and yeast Puf6. This is a role not previously ascribed to PUF proteins. In this paper we present crystal structures of human Puf-A that reveal a class of nucleic acid-binding proteins with 11 PUM repeats arranged in an “L”-like shape. In contrast to classical PUF proteins, Puf-A forms sequence-independent interactions with DNA or RNA, mediated by conservedmore » basic residues. We demonstrate that equivalent basic residues in yeast Puf6 are important for RNA binding, pre-rRNA processing, and mRNA localization. Finally, PUM repeats can be assembled into alternative folds that bind to structured nucleic acids in addition to forming canonical eight-repeat crescent-shaped RNA-binding domains found in classical PUF proteins.« less

  8. A divergent Pumilio repeat protein family for pre-rRNA processing and mRNA localization

    DOE PAGES

    Qiu, Chen; McCann, Kathleen L.; Wine, Robert N.; ...

    2014-12-15

    Pumilio/feminization of XX and XO animals (fem)-3 mRNA-binding factor (PUF) proteins bind sequence specifically to mRNA targets using a single-stranded RNA-binding domain comprising eight Pumilio (PUM) repeats. PUM repeats have now been identified in proteins that function in pre-rRNA processing, including human Puf-A and yeast Puf6. This is a role not previously ascribed to PUF proteins. In this paper we present crystal structures of human Puf-A that reveal a class of nucleic acid-binding proteins with 11 PUM repeats arranged in an “L”-like shape. In contrast to classical PUF proteins, Puf-A forms sequence-independent interactions with DNA or RNA, mediated by conservedmore » basic residues. We demonstrate that equivalent basic residues in yeast Puf6 are important for RNA binding, pre-rRNA processing, and mRNA localization. Finally, PUM repeats can be assembled into alternative folds that bind to structured nucleic acids in addition to forming canonical eight-repeat crescent-shaped RNA-binding domains found in classical PUF proteins.« less

  9. Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets

    PubMed Central

    Farazi, Thalia A.; Leonhardt, Carl S.; Mukherjee, Neelanjan; Mihailovic, Aleksandra; Li, Song; Max, Klaas E.A.; Meyer, Cindy; Yamaji, Masashi; Cekan, Pavol; Jacobs, Nicholas C.; Gerstberger, Stefanie; Bognanni, Claudia; Larsson, Erik; Ohler, Uwe; Tuschl, Thomas

    2014-01-01

    Recent studies implicated the RNA-binding protein with multiple splicing (RBPMS) family of proteins in oocyte, retinal ganglion cell, heart, and gastrointestinal smooth muscle development. These RNA-binding proteins contain a single RNA recognition motif (RRM), and their targets and molecular function have not yet been identified. We defined transcriptome-wide RNA targets using photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) in HEK293 cells, revealing exonic mature and intronic pre-mRNA binding sites, in agreement with the nuclear and cytoplasmic localization of the proteins. Computational and biochemical approaches defined the RNA recognition element (RRE) as a tandem CAC trinucleotide motif separated by a variable spacer region. Similar to other mRNA-binding proteins, RBPMS family of proteins relocalized to cytoplasmic stress granules under oxidative stress conditions suggestive of a support function for mRNA localization in large and/or multinucleated cells where it is preferentially expressed. PMID:24860013

  10. Poly(A)-binding proteins and mRNA localization: who rules the roost?

    PubMed

    Gray, Nicola K; Hrabálková, Lenka; Scanlon, Jessica P; Smith, Richard W P

    2015-12-01

    RNA-binding proteins are often multifunctional, interact with a variety of protein partners and display complex localizations within cells. Mammalian cytoplasmic poly(A)-binding proteins (PABPs) are multifunctional RNA-binding proteins that regulate multiple aspects of mRNA translation and stability. Although predominantly diffusely cytoplasmic at steady state, they shuttle through the nucleus and can be localized to a variety of cytoplasmic foci, including those associated with mRNA storage and localized translation. Intriguingly, PABP sub-cellular distribution can alter dramatically in response to cellular stress or viral infection, becoming predominantly nuclear and/or being enriched in induced cytoplasmic foci. However, relatively little is known about the mechanisms that govern this distribution/relocalization and in many cases PABP functions within specific sites remain unclear. Here we discuss the emerging evidence with respect to these questions in mammals. © 2015 Authors; published by Portland Press Limited.

  11. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement*

    PubMed Central

    Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh

    2016-01-01

    Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis. PMID:26887951

  12. PDZ Binding Domains, Structural Disorder and Phosphorylation: A Menage-a-trois Tailing Dcp2 mRNA Decapping Enzymes.

    PubMed

    Gunawardana, Dilantha

    2016-01-01

    Diverse cellular activities are mediated through the interaction of protein domains and their binding partners. One such protein domain widely distributed in the higher metazoan world is the PDZ domain, which facilitates abundant protein-protein interactions. The PDZ domain-PDZ binding domain interaction has been implicated in several pathologies including Alzheimer's disease, Parkinson's disease and Down syndrome. PDZ domains bind to C-terminal peptides/proteins which have either of the following combinations: S/T-X-hydrophobic-COOH for type I, hydrophobic-Xhydrophobic- COOH for type II, and D/E-X-hydrophobic-COOH for type III, although hydrophobicity in the termini form the key characteristic of the PDZ-binding domains. We identified and characterized a Dcp2 type mRNA decapping enzyme from Arabidopsis thaliana, a protein containing a putative PDZ-binding domain using mutagenesis and protein biochemistry. Now we are using bioinformatics to study the Cterminal end of mRNA decapping enzymes from complex metazoans with the aim of (1) identifying putative PDZ-binding domains (2) Correlating structural disorder with PDZ binding domains and (3) Demonstrating the presence of phosphorylation sites in C-terminal extremities of Dcp2 type mRNA decapping enzymes. It is proposed here that the trinity of PDZbinding domains, structural disorder and phosphorylation-susceptible sites are a feature of the Dcp2 family of decapping enzymes and perhaps is a wider trick in protein evolution where scaffolding/tethering is a requirement for localization and function. It is critical though laboratory-based supporting evidence is sought to back-up this bioinformatics exploration into tail regions of mRNA decapping enzymes.

  13. Alteration of Cyclic-AMP Response Element Binding Protein in the Postmortem Brain of Subjects with Bipolar Disorder and Schizophrenia

    PubMed Central

    Ren, Xinguo; Rizavi, Hooriyah S.; Khan, Mansoor A.; Bhaumik, Runa; Dwivedi, Yogesh; Pandey, Ghanshyam N.

    2013-01-01

    Background Abnormalities of cyclic-AMP (cAMP) response element binding protein (CREB) function has been suggested in bipolar (BP) illness and schizophrenia (SZ), based on both indirect and direct evidence. To further elucidate the role of CREB in these disorders, we studied CREB expression and function in two brain areas implicated in these disorders, i.e., dorsolateral prefrontal cortex (DLPFC) and cingulate gyrus (CG). Methods We determined CREB protein expression using Western blot technique, CRE-DNA binding using gel shift assay, and mRNA expression using real-time RT-polymerase chain reaction (qPCR) in DLPFC and CG of the postmortem brain of BP (n = 19), SZ (n = 20), and normal control (NC, n = 20) subjects. Results We observed that CREB protein and mRNA expression and CRE-DNA binding activity were significantly decreased in the nuclear fraction of DLPFC and CG obtained from BP subjects compared with NC subjects. However, the protein and mRNA expression and CRE-DNA binding in SZ subjects was significantly decreased in CG, but not in DLPFC, compared with NC. Conclusion These studies thus indicate region-specific abnormalities of CREB expression and function in both BP and SZ. They suggest that abnormalities of CREB in CG may be associated with both BP and SZ, but its abnormality in DLPFC is specific to BP illness. PMID:24148789

  14. DND protein functions as a translation repressor during zebrafish embryogenesis.

    PubMed

    Kobayashi, Manami; Tani-Matsuhana, Saori; Ohkawa, Yasuka; Sakamoto, Hiroshi; Inoue, Kunio

    2017-03-04

    Germline and somatic cell distinction is regulated through a combination of microRNA and germ cell-specific RNA-binding proteins in zebrafish. An RNA-binding protein, DND, has been reported to relieve the miR-430-mediated repression of some germ plasm mRNAs such as nanos3 and tdrd7 in primordial germ cells (PGCs). Here, we showed that miR-430-mediated repression is not counteracted by the overexpression of DND protein in somatic cells. Using a λN-box B tethering assay in the embryo, we found that tethering of DND to reporter mRNA results in translation repression without affecting mRNA stability. Translation repression by DND was not dependent on another germline-specific translation repressor, Nanos3, in zebrafish embryos. Moreover, our data suggested that DND represses translation of nanog and dnd mRNAs, whereas an RNA-binding protein DAZ-like (DAZL) promotes dnd mRNA translation. Thus, our study showed that DND protein functions as a translation repressor of specific mRNAs to control PGC development in zebrafish. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1).

    PubMed

    Fonseca, Bruno D; Zakaria, Chadi; Jia, Jian-Jun; Graber, Tyson E; Svitkin, Yuri; Tahmasebi, Soroush; Healy, Danielle; Hoang, Huy-Dung; Jensen, Jacob M; Diao, Ilo T; Lussier, Alexandre; Dajadian, Christopher; Padmanabhan, Niranjan; Wang, Walter; Matta-Camacho, Edna; Hearnden, Jaclyn; Smith, Ewan M; Tsukumo, Yoshinori; Yanagiya, Akiko; Morita, Masahiro; Petroulakis, Emmanuel; González, Jose L; Hernández, Greco; Alain, Tommy; Damgaard, Christian K

    2015-06-26

    The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of protein synthesis. The best studied targets of mTORC1 in translation are the eukaryotic initiation factor-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). In this study, we identify the La-related protein 1 (LARP1) as a key novel target of mTORC1 with a fundamental role in terminal oligopyrimidine (TOP) mRNA translation. Recent genome-wide studies indicate that TOP and TOP-like mRNAs compose a large portion of the mTORC1 translatome, but the mechanism by which mTORC1 controls TOP mRNA translation is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5'TOP motif to repress TOP mRNA translation; and (iv) LARP1 competes with the eukaryotic initiation factor (eIF) 4G for TOP mRNA binding. Importantly, from a drug resistance standpoint, our data also show that reducing LARP1 protein levels by RNA interference attenuates the inhibitory effect of rapamycin, Torin1, and amino acid deprivation on TOP mRNA translation. Collectively, our findings demonstrate that LARP1 functions as an important repressor of TOP mRNA translation downstream of mTORC1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1)*

    PubMed Central

    Fonseca, Bruno D.; Zakaria, Chadi; Jia, Jian-Jun; Graber, Tyson E.; Svitkin, Yuri; Tahmasebi, Soroush; Healy, Danielle; Hoang, Huy-Dung; Jensen, Jacob M.; Diao, Ilo T.; Lussier, Alexandre; Dajadian, Christopher; Padmanabhan, Niranjan; Wang, Walter; Matta-Camacho, Edna; Hearnden, Jaclyn; Smith, Ewan M.; Tsukumo, Yoshinori; Yanagiya, Akiko; Morita, Masahiro; Petroulakis, Emmanuel; González, Jose L.; Hernández, Greco; Alain, Tommy; Damgaard, Christian K.

    2015-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of protein synthesis. The best studied targets of mTORC1 in translation are the eukaryotic initiation factor-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). In this study, we identify the La-related protein 1 (LARP1) as a key novel target of mTORC1 with a fundamental role in terminal oligopyrimidine (TOP) mRNA translation. Recent genome-wide studies indicate that TOP and TOP-like mRNAs compose a large portion of the mTORC1 translatome, but the mechanism by which mTORC1 controls TOP mRNA translation is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5′TOP motif to repress TOP mRNA translation; and (iv) LARP1 competes with the eukaryotic initiation factor (eIF) 4G for TOP mRNA binding. Importantly, from a drug resistance standpoint, our data also show that reducing LARP1 protein levels by RNA interference attenuates the inhibitory effect of rapamycin, Torin1, and amino acid deprivation on TOP mRNA translation. Collectively, our findings demonstrate that LARP1 functions as an important repressor of TOP mRNA translation downstream of mTORC1. PMID:25940091

  17. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement.

    PubMed

    Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh

    2016-04-15

    Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation

    PubMed Central

    Williams, Kathryn R.; McAninch, Damian S.; Stefanovic, Snezana; Xing, Lei; Allen, Megan; Li, Wenqi; Feng, Yue; Mihailescu, Mihaela Rita; Bassell, Gary J.

    2016-01-01

    Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development. PMID:26658614

  19. Engineered proteins with PUF scaffold to manipulate RNA metabolism

    PubMed Central

    Wang, Yang; Wang, Zefeng; Tanaka Hall, Traci M.

    2013-01-01

    Pumilio/fem-3 mRNA binding factor (FBF) proteins are characterized by a sequence-specific RNA-binding domain. This unique single-stranded RNA recognition module, whose sequence specificity can be reprogrammed, has been fused with functional modules to engineer protein factors with various functions. Here we summarize the advancement in developing RNA regulatory tools and opportunities for the future. PMID:23731364

  20. Structure of Drosophila Oskar reveals a novel RNA binding protein

    PubMed Central

    Yang, Na; Yu, Zhenyu; Hu, Menglong; Wang, Mingzhu; Lehmann, Ruth; Xu, Rui-Ming

    2015-01-01

    Oskar (Osk) protein plays critical roles during Drosophila germ cell development, yet its functions in germ-line formation and body patterning remain poorly understood. This situation contrasts sharply with the vast knowledge about the function and mechanism of osk mRNA localization. Osk is predicted to have an N-terminal LOTUS domain (Osk-N), which has been suggested to bind RNA, and a C-terminal hydrolase-like domain (Osk-C) of unknown function. Here, we report the crystal structures of Osk-N and Osk-C. Osk-N shows a homodimer of winged-helix–fold modules, but without detectable RNA-binding activity. Osk-C has a lipase-fold structure but lacks critical catalytic residues at the putative active site. Surprisingly, we found that Osk-C binds the 3′UTRs of osk and nanos mRNA in vitro. Mutational studies identified a region of Osk-C important for mRNA binding. These results suggest possible functions of Osk in the regulation of stability, regulation of translation, and localization of relevant mRNAs through direct interaction with their 3′UTRs, and provide structural insights into a novel protein–RNA interaction motif involving a hydrolase-related domain. PMID:26324911

  1. Signal sequence-independent targeting of MID2 mRNA to the endoplasmic reticulum by the yeast RNA-binding protein Khd1p.

    PubMed

    Syed, Muhammad Ibrahim; Moorthy, Balaji T; Jenner, Andreas; Fetka, Ingrid; Jansen, Ralf-Peter

    2018-05-17

    Localization of mRNAs depends on specific RNA-binding proteins (RBPs) and critically contributes not only to cell polarization but also to basal cell function. The yeast RBP Khd1p binds to several hundred mRNAs, the majority of which encodes secreted or membrane proteins. We demonstrate that a subfraction of Khd1p associates with artificial liposomes and endoplasmic reticulum (ER), and that Khd1p endomembrane association is partially dependent on its binding to RNA. ER targeting of at least two mRNAs, MID2 and SLG1/WSC1, requires KHD1 but is independent of their translation. Together, our results suggest interdependence of Khd1p and mRNA for their targeting to the ER and presents additional evidence for signal sequence-independent, RBP-mediated mRNA targeting. © 2018 Federation of European Biochemical Societies.

  2. bicoid RNA localization requires specific binding of an endosomal sorting complex

    PubMed Central

    Irion, Uwe; St Johnston, Daniel

    2007-01-01

    Summary paragraph: bicoid mRNA localises to the anterior of the Drosophila egg, where it is translated to form a morphogen gradient of Bicoid protein that patterns the head and thorax of the embryo. Although bicoid was the first identified localised cytoplasmic determinant1-4, little is known about how the mRNA is coupled to the microtubule-dependent transport pathway that targets it to the anterior, and it has been proposed that it is recognised by a complex of many redundant proteins, each of which binds to the localisation element in its 3'UTR with little or no specificity5. Indeed, the only known RNA-binding protein that co-localises with bicoid mRNA is Staufen, which binds non-specifically to dsRNA in vitro6, 7. Here we show that mutants in all subunits of the ESCRT-II complex (Vps22, Vps25 and Vps36) abolish the final Staufen-dependent step in bcd RNA localisation. ESCRT-II is a highly conserved component of the pathway that sorts ubiquitinated endosomal proteins into internal vesicles8, 9, and functions as a tumour-suppressor by removing activated receptors from the cytoplasm10, 11. However, the role of ESCRT-II in bicoid localisation appears to be independent of endosomal sorting, because mutations in ESCRT-I and III components have no effect of the targeting of bicoid mRNA. Instead, Vps36 functions by binding directly and specifically to stem-loop V of the bicoid 3'UTR through its N-terminal GLUE domain12, making it the first example of a sequence specific RNA-binding protein that recognises the bicoid localisation signal. Furthermore, Vps36 localises to the anterior of the oocyte in a bicoid mRNA-dependent manner, and is required for the subsequent recruitment of Staufen to the bicoid complex. This novel function of ESCRT-II as an RNA-binding complex is conserved in vertebrates, and may explain some of its roles that are independent of endosomal sorting. PMID:17268469

  3. Ribosomal proteins L5 and L11 co-operatively inactivate c-Myc via RNA-induced silencing complex.

    PubMed

    Liao, J-M; Zhou, X; Gatignol, A; Lu, H

    2014-10-09

    Oncogene MYC is highly expressed in many human cancers and functions as a global regulator of ribosome biogenesis. Previously, we reported that ribosomal protein (RP) L11 binds to c-Myc and inhibits its transcriptional activity in response to ribosomal stress. Here, we show that RPL5, co-operatively with RPL11, guides the RNA-induced silencing complex (RISC) to c-Myc mRNA and mediates the degradation of the mRNA, consequently leading to inhibition of c-Myc activity. Knocking down of RPL5 induced c-Myc expression at both mRNA and protein levels, whereas overexpression of RPL5 suppressed c-Myc expression and activity. Immunoprecipitation revealed that RPL5 binds to 3'UTR of c-Myc mRNA and two subunits of RISC, TRBP (HIV-1 TAR RNA-binding protein) and Ago2, mediating the targeting of c-Myc mRNA by miRNAs. Interestingly, RPL5 and RPL11 co-resided on c-Myc mRNA and suppressed c-Myc expression co-operatively. These findings uncover a mechanism by which these two RPs can co-operatively suppress c-Myc expression, allowing a tightly controlled ribosome biogenesis in cells.

  4. A Polypyrimidine Tract Binding Protein, Pumpkin RBP50, Forms the Basis of a Phloem-Mobile Ribonucleoprotein Complex[W

    PubMed Central

    Ham, Byung-Kook; Brandom, Jeri L.; Xoconostle-Cázares, Beatriz; Ringgold, Vanessa; Lough, Tony J.; Lucas, William J.

    2009-01-01

    RNA binding proteins (RBPs) are integral components of ribonucleoprotein (RNP) complexes and play a central role in RNA processing. In plants, some RBPs function in a non-cell-autonomous manner. The angiosperm phloem translocation stream contains a unique population of RBPs, but little is known regarding the nature of the proteins and mRNA species that constitute phloem-mobile RNP complexes. Here, we identified and characterized a 50-kD pumpkin (Cucurbita maxima cv Big Max) phloem RNA binding protein (RBP50) that is evolutionarily related to animal polypyrimidine tract binding proteins. In situ hybridization studies indicated a high level of RBP50 transcripts in companion cells, while immunolocalization experiments detected RBP50 in both companion cells and sieve elements. A comparison of the levels of RBP50 present in vascular bundles and phloem sap indicated that this protein is highly enriched in the phloem sap. Heterografting experiments confirmed that RBP50 is translocated from source to sink tissues. Collectively, these findings established that RBP50 functions as a non-cell-autonomous RBP. Protein overlay, coimmunoprecipitation, and cross-linking experiments identified the phloem proteins and mRNA species that constitute RBP50-based RNP complexes. Gel mobility-shift assays demonstrated that specificity, with respect to the bound mRNA, is established by the polypyrimidine tract binding motifs within such transcripts. We present a model for RBP50-based RNP complexes within the pumpkin phloem translocation stream. PMID:19122103

  5. FRET-detectable interactions between the ARE binding proteins, HuR and p37AUF1

    PubMed Central

    David, Pamela S.; Tanveer, Rasheeda; Port, J. David

    2007-01-01

    A number of highly regulated gene classes are regulated post-transcriptionally at the level of mRNA stability. A central feature in these mRNAs is the presence of A+U-rich elements (ARE) within their 3′ UTRs. Two ARE binding proteins, HuR and AUF1, are associated with mRNA stabilization and destabilization, respectively. Previous studies have demonstrated homomultimerization of each protein and the capacity to bind simultaneous or competitively to a single ARE. To investigate this possibility further, cell biological and biophysical approaches were undertaken. Protein–protein interaction was monitored by fluorescence resonance energy transfer (FRET) and by immunocytochemistry in live and fixed cells using fluorescently labeled CFP/YFP fusion proteins of HuR and p37AUF1. Strong nuclear FRET between HuR/HuR and AUF1/AUF1 homodimers as well as HuR/AUF1 heterodimers was observed. Treatment with the MAP kinase activator, anisomycin, which commonly stabilizes ARE-containing mRNAs, caused rapid nuclear to cytoplasmic shuttling of HuR. AUF1 also underwent shuttling, but on a longer time scale. After shuttling, HuR/HuR, AUF1/AUF1, and HuR/AUF1, FRET was also observed in the cytoplasm. In further studies, arsenite rapidly induced the formation of stress granules containing HuR and TIA-1 but not AUF1. The current studies demonstrate that two mRNA binding proteins, HuR and AUF1, are colocalized and are capable of functional interaction in both the nucleus and cytoplasm. FRET-based detection of AUF1/HuR interaction may serve as a basis of opening up new dimensions in delineating the functional interaction of mRNA binding proteins with RNA turnover. PMID:17626845

  6. Cooperative interplay of let-7 mimic and HuR with MYC RNA.

    PubMed

    Gunzburg, Menachem J; Sivakumaran, Andrew; Pendini, Nicole R; Yoon, Je-Hyun; Gorospe, Myriam; Wilce, Matthew C J; Wilce, Jacqueline A

    2015-01-01

    Both RNA-binding proteins (RBP) and miRNA play important roles in the regulation of mRNA expression, often acting together to regulate a target mRNA. In some cases the RBP and miRNA have been reported to act competitively, but in other instances they function cooperatively. Here, we investigated HuR function as an enhancer of let-7-mediated translational repression of c-Myc despite the separation of their binding sites. Using an in vitro system, we determined that a let-7 mimic, consisting of single-stranded (ss)DNA complementary to the let-7 binding site, enhanced the affinity of HuR for a 122-nt MYC RNA encompassing both binding sites. This finding supports the biophysical principle of cooperative binding by an RBP and miRNA purely through interactions at distal mRNA binding sites.

  7. LARP4 Is Regulated by Tumor Necrosis Factor Alpha in a Tristetraprolin-Dependent Manner

    PubMed Central

    Mattijssen, Sandy

    2015-01-01

    LARP4 is a protein with unknown function that independently binds to poly(A) RNA, RACK1, and the poly(A)-binding protein (PABPC1). Here, we report on its regulation. We found a conserved AU-rich element (ARE) in the human LARP4 mRNA 3′ untranslated region (UTR). This ARE, but not its antisense version or a point-mutated version, significantly decreased the stability of β-globin reporter mRNA. We found that overexpression of tristetraprolin (TTP), but not its RNA binding mutant or the other ARE-binding proteins tested, decreased cellular LARP4 levels. RNA coimmunoprecipitation showed that TTP specifically associated with LARP4 mRNA in vivo. Consistent with this, mouse LARP4 accumulated to higher levels in TTP gene knockout (KO) cells than in control cells. Stimulation of WT cells with tumor necrosis factor alpha (TNF-α), which rapidly induces TTP, robustly decreased LARP4 with a coincident time course but had no such effect on LARP4B or La protein or on LARP4 in the TTP KO cells. The TNF-α-induced TTP pulse was followed by a transient decrease in LARP4 mRNA that was quickly followed by a subsequent transient decrease in LARP4 protein. Involvement of LARP4 as a target of TNF-α–TTP regulation provides a clue as to how its functional activity may be used in a physiologic pathway. PMID:26644407

  8. Selective regulation of YB-1 mRNA translation by the mTOR signaling pathway is not mediated by 4E-binding protein.

    PubMed

    Lyabin, D N; Ovchinnikov, L P

    2016-03-02

    The Y-box binding protein 1 (YB-1) is a key regulator of gene expression at the level of both translation and transcription. The mode of its action on cellular events depends on its subcellular distribution and the amount in the cell. So far, the regulatory mechanisms of YB-1 synthesis have not been adequately studied. Our previous finding was that selective inhibition of YB-1 mRNA translation was caused by suppression of activity of the mTOR signaling pathway. It was suggested that this event may be mediated by phosphorylation of the 4E-binding protein (4E-BP). Here, we report that 4E-BP alone can only slightly inhibit YB-1 synthesis both in the cell and in vitro, although it essentially decreases binding of the 4F-group translation initiation factors to mRNA. With inhibited mTOR kinase, the level of mRNA binding to the eIF4F-group factors was decreased, while that to 4E-BP1 was increased, as was observed for both mTOR kinase-sensitive mRNAs and those showing low sensitivity. This suggests that selective inhibition of translation of YB-1 mRNA, and probably some other mRNAs as well, by mTOR kinase inhibitors is not mediated by the action of the 4E-binding protein upon functions of the 4F-group translation initiation factors.

  9. The HILDA Complex Coordinates a Conditional Switch in the 3′-Untranslated Region of the VEGFA mRNA

    PubMed Central

    Yao, Peng; Potdar, Alka A.; Ray, Partho Sarothi; Eswarappa, Sandeepa M.; Flagg, Andrew C.; Willard, Belinda; Fox, Paul L.

    2013-01-01

    Cell regulatory circuits integrate diverse, and sometimes conflicting, environmental cues to generate appropriate, condition-dependent responses. Here, we elucidate the components and mechanisms driving a protein-directed RNA switch in the 3′UTR of vascular endothelial growth factor (VEGF)-A. We describe a novel HILDA (hypoxia-inducible hnRNP L–DRBP76–hnRNP A2/B1) complex that coordinates a three-element RNA switch, enabling VEGFA mRNA translation during combined hypoxia and inflammation. In addition to binding the CA-rich element (CARE), heterogeneous nuclear ribonucleoprotein (hnRNP) L regulates switch assembly and function. hnRNP L undergoes two previously unrecognized, condition-dependent posttranslational modifications: IFN-γ induces prolyl hydroxylation and von Hippel-Lindau (VHL)-mediated proteasomal degradation, whereas hypoxia stimulates hnRNP L phosphorylation at Tyr359, inducing binding to hnRNP A2/B1, which stabilizes the protein. Also, phospho-hnRNP L recruits DRBP76 (double-stranded RNA binding protein 76) to the 3′UTR, where it binds an adjacent AU-rich stem-loop (AUSL) element, “flipping” the RNA switch by disrupting the GAIT (interferon-gamma-activated inhibitor of translation) element, preventing GAIT complex binding, and driving robust VEGFA mRNA translation. The signal-dependent, HILDA complex coordinates the function of a trio of neighboring RNA elements, thereby regulating translation of VEGFA and potentially other mRNA targets. The VEGFA RNA switch might function to ensure appropriate angiogenesis and tissue oxygenation during conflicting signals from combined inflammation and hypoxia. We propose the VEGFA RNA switch as an archetype for signal-activated, protein-directed, multi-element RNA switches that regulate posttranscriptional gene expression in complex environments. PMID:23976881

  10. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism

    PubMed Central

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K.; Lehtonen, Jukka Y.A.

    2016-01-01

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3′-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. PMID:26681690

  11. Protein Translation and Signaling in Human Eosinophils

    PubMed Central

    Esnault, Stephane; Shen, Zhong-Jian; Malter, James S.

    2017-01-01

    We have recently reported that, unlike IL-5 and GM-CSF, IL-3 induces increased translation of a subset of mRNAs. In addition, we have demonstrated that Pin1 controls the activity of mRNA binding proteins, leading to enhanced mRNA stability, GM-CSF protein production and prolonged eosinophil (EOS) survival. In this review, discussion will include an overview of cap-dependent protein translation and its regulation by intracellular signaling pathways. We will address the more general process of mRNA post-transcriptional regulation, especially regarding mRNA binding proteins, which are critical effectors of protein translation. Furthermore, we will focus on (1) the roles of IL-3-driven sustained signaling on enhanced protein translation in EOS, (2) the mechanisms regulating mRNA binding proteins activity in EOS, and (3) the potential targeting of IL-3 signaling and the signaling leading to mRNA binding activity changes to identify therapeutic targets to treat EOS-associated diseases. PMID:28971096

  12. PTB and TIAR binding to insulin mRNA 3'- and 5'UTRs; implications for insulin biosynthesis and messenger stability.

    PubMed

    Fred, Rikard G; Mehrabi, Syrina; Adams, Christopher M; Welsh, Nils

    2016-09-01

    Insulin expression is highly controlled on the posttranscriptional level. The RNA binding proteins (RBPs) responsible for this result are still largely unknown. To identify RBPs that bind to insulin mRNA we performed mass spectrometry analysis on proteins that bound synthetic oligonucloetides mimicing the 5'- and the 3'-untranslated regions (UTRs) of rat and human insulin mRNA in vitro . We observed that the RBPs heterogeneous nuclear ribonucleoprotein (hnRNP) U, polypyrimidine tract binding protein (PTB), hnRNP L and T-cell restricted intracellular antigen 1-related protein (TIA-1-related protein; TIAR) bind to insulin mRNA sequences, and that the in vitro binding affinity of these RBPs changed when INS-1 cells were exposed to glucose, 3-isobutyl-1-methylxanthine (IBMX) or nitric oxide. High glucose exposure resulted in a modest increase in PTB and TIAR binding to an insulin mRNA sequence. The inducer of nitrosative stress DETAnonoate increased markedly hnRNP U and TIAR mRNA binding. An increased PTB to TIAR binding ratio in vitro correlated with higher insulin mRNA levels and insulin biosynthesis rates in INS-1 cells. To further investigate the importance of RNA-binding proteins for insulin mRNA stability, we decreased INS-1 and EndoC-βH1 cell levels of PTB and TIAR by RNAi. In both cell lines, decreased levels of PTB resulted in lowered insulin mRNA levels while decreased levels of TIAR resulted in increased insulin mRNA levels. Thapsigargin-induced stress granule formation was associated with a redistribution of TIAR from the cytosol to stress granules. These experiments indicate that alterations in insulin mRNA stability and translation correlate with differential RBP binding. We propose that the balance between PTB on one hand and TIAR on the other participates in the control of insulin mRNA stability and utilization for insulin biosynthesis.

  13. Global Phosphoproteomics Identifies a Major Role for AKT and 14-3-3 in Regulating EDC3*

    PubMed Central

    Larance, Mark; Rowland, Alexander F.; Hoehn, Kyle L.; Humphreys, David T.; Preiss, Thomas; Guilhaus, Michael; James, David E.

    2010-01-01

    Insulin plays an essential role in metabolic homeostasis in mammals, and many of the underlying biochemical pathways are regulated via the canonical phosphatidylinositol 3-kinase/AKT pathway. To identify novel metabolic actions of insulin, we conducted a quantitative proteomics analysis of insulin-regulated 14-3-3-binding proteins in muscle cells. These studies revealed a novel role for insulin in the post-transcriptional regulation of mRNA expression. EDC3, a component of the mRNA decay and translation repression pathway associated with mRNA processing bodies, was shown to be phosphorylated by AKT downstream of insulin signaling. The major insulin-regulated site was mapped to Ser-161, and phosphorylation at this site led to increased 14-3-3 binding. Functional studies indicated that induction of 14-3-3 binding to EDC3 causes morphological changes in processing body structures, inhibition of microRNA-mediated mRNA post-transcriptional regulation, and alterations in the protein- protein interactions of EDC3. These data highlight an important new arm of the insulin signaling cascade in the regulation of mRNA utilization. PMID:20051463

  14. RNA-binding proteins in plants: the tip of an iceberg?

    NASA Technical Reports Server (NTRS)

    Fedoroff, Nina V.; Federoff, N. V. (Principal Investigator)

    2002-01-01

    RNA-binding proteins, which are involved in the synthesis, processing, transport, translation, and degradation of RNA, are emerging as important, often multifunctional, cellular regulatory proteins. Although relatively few RNA-binding proteins have been studied in plants, they are being identified with increasing frequency, both genetically and biochemically. RNA-binding proteins that regulate chloroplast mRNA stability and translation in response to light and that have been elegantly analyzed in Clamydomonas reinhardtii have counterparts with similar functions in higher plants. Several recent reports describe mutations in genes encoding RNA-binding proteins that affect plant development and hormone signaling.

  15. Cooperative interplay of let-7 mimic and HuR with MYC RNA

    PubMed Central

    Gunzburg, Menachem J; Sivakumaran, Andrew; Pendini, Nicole R; Yoon, Je-Hyun; Gorospe, Myriam; Wilce, Matthew Cj; Wilce, Jacqueline A

    2015-01-01

    Both RNA-binding proteins (RBP) and miRNA play important roles in the regulation of mRNA expression, often acting together to regulate a target mRNA. In some cases the RBP and miRNA have been reported to act competitively, but in other instances they function cooperatively. Here, we investigated HuR function as an enhancer of let-7-mediated translational repression of c-Myc despite the separation of their binding sites. Using an in vitro system, we determined that a let-7 mimic, consisting of single-stranded (ss)DNA complementary to the let-7 binding site, enhanced the affinity of HuR for a 122-nt MYC RNA encompassing both binding sites. This finding supports the biophysical principle of cooperative binding by an RBP and miRNA purely through interactions at distal mRNA binding sites. PMID:26177105

  16. Evidence that Poly(A) Binding Protein C1 Binds Nuclear Pre-mRNA Poly(A) Tails

    PubMed Central

    Hosoda, Nao; Lejeune, Fabrice; Maquat, Lynne E.

    2006-01-01

    In mammalian cells, poly(A) binding protein C1 (PABP C1) has well-known roles in mRNA translation and decay in the cytoplasm. However, PABPC1 also shuttles in and out of the nucleus, and its nuclear function is unknown. Here, we show that PABPC1, like the major nuclear poly(A) binding protein PABPN1, associates with nuclear pre-mRNAs that are polyadenylated and intron containing. PABPC1 does not bind nonpolyadenylated histone mRNA, indicating that the interaction of PABPC1 with pre-mRNA requires a poly(A) tail. Consistent with this conclusion, UV cross-linking results obtained using intact cells reveal that PABPC1 binds directly to pre-mRNA poly(A) tails in vivo. We also show that PABPC1 immunopurifies with poly(A) polymerase, suggesting that PABPC1 is acquired by polyadenylated transcripts during poly(A) tail synthesis. Our findings demonstrate that PABPC1 associates with polyadenylated transcripts earlier in mammalian mRNA biogenesis than previously thought and offer insights into the mechanism by which PABPC1 is recruited to newly synthesized poly(A). Our results are discussed in the context of pre-mRNA processing and stability and mRNA trafficking and the pioneer round of translation. PMID:16581783

  17. A Novel Post-translational Modification of Nucleolin, SUMOylation at Lys-294, Mediates Arsenite-induced Cell Death by Regulating gadd45α mRNA Stability*

    PubMed Central

    Zhang, Dongyun; Liang, Yuguang; Xie, Qipeng; Gao, Guangxun; Wei, Jinlong; Huang, Haishan; Li, Jingxia; Gao, Jimin; Huang, Chuanshu

    2015-01-01

    Nucleolin is a ubiquitously expressed protein and participates in many important biological processes, such as cell cycle regulation and ribosomal biogenesis. The activity of nucleolin is regulated by intracellular localization and post-translational modifications, including phosphorylation, methylation, and ADP-ribosylation. Small ubiquitin-like modifier (SUMO) is a category of recently verified forms of post-translational modifications and exerts various effects on the target proteins. In the studies reported here, we discovered SUMOylational modification of human nucleolin protein at Lys-294, which facilitated the mRNA binding property of nucleolin by maintaining its nuclear localization. In response to arsenic exposure, nucleolin-SUMO was induced and promoted its binding with gadd45α mRNA, which increased gadd45α mRNA stability and protein expression, subsequently causing GADD45α-mediated cell death. On the other hand, ectopic expression of Mn-SOD attenuated the arsenite-generated superoxide radical level, abrogated nucleolin-SUMO, and in turn inhibited arsenite-induced apoptosis by reducing GADD45α expression. Collectively, our results for the first time demonstrate that nucleolin-SUMO at K294R plays a critical role in its nucleus sequestration and gadd45α mRNA binding activity. This novel biological function of nucleolin is distinct from its conventional role as a proto-oncogene. Therefore, our findings here not only reveal a new modification of nucleolin protein and its novel functional paradigm in mRNA metabolism but also expand our understanding of the dichotomous roles of nucleolin in terms of cancer development, which are dependent on multiple intracellular conditions and consequently the appropriate regulations of its modifications, including SUMOylation. PMID:25561743

  18. Cloning and tissue distribution of rat hear fatty acid binding protein mRNA: identical forms in heart and skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claffey, K.P.; Herrera, V.L.; Brecher, P.

    1987-12-01

    A fatty acid binding protein (FABP) as been identified and characterized in rat heart, but the function and regulation of this protein are unclear. In this study the cDNA for rat heart FABP was cloned from a lambda gt11 library. Sequencing of the cDNA showed an open reading frame coding for a protein with 133 amino acids and a calculated size of 14,776 daltons. Several differences were found between the sequence determined from the cDNA and that reported previously by protein sequencing techniques. Northern blot analysis using rat heart FABP cDNA as a probe established the presence of an abundantmore » mRNA in rat heart about 0.85 kilobases in length. This mRNA was detected, but was not abundant, in fetal heart tissue. Tissue distribution studies showed a similar mRNA species in red, but not white, skeletal muscle. In general, the mRNA tissue distribution was similar to that of the protein detected by Western immunoblot analysis, suggesting that heart FABP expression may be regulated at the transcriptional level. S1 nuclease mapping studies confirmed that the mRNA hybridized to rat heart FABP cDNA was identical in heart and red skeletal muscle throughout the entire open reading frame. The structural differences between heart FABP and other members of this multigene family may be related to the functional requirements of oxidative muscle for fatty acids as a fuel source.« less

  19. The FMRP regulon: from targets to disease convergence

    PubMed Central

    Fernández, Esperanza; Rajan, Nicholas; Bagni, Claudia

    2013-01-01

    The fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates mRNA metabolism. FMRP has been largely studied in the brain, where the absence of this protein leads to fragile X syndrome, the most frequent form of inherited intellectual disability. Since the identification of the FMRP gene in 1991, many studies have primarily focused on understanding the function/s of this protein. Hundreds of potential FMRP mRNA targets and several interacting proteins have been identified. Here, we report the identification of FMRP mRNA targets in the mammalian brain that support the key role of this protein during brain development and in regulating synaptic plasticity. We compared the genes from databases and genome-wide association studies with the brain FMRP transcriptome, and identified several FMRP mRNA targets associated with autism spectrum disorders, mood disorders and schizophrenia, showing a potential common pathway/s for these apparently different disorders. PMID:24167470

  20. Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing.

    PubMed

    Tsai, Pei-Ling; Chiou, Ni-Ting; Kuss, Sharon; García-Sastre, Adolfo; Lynch, Kristen W; Fontoura, Beatriz M A

    2013-01-01

    Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression.

  1. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism.

    PubMed

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K; Lehtonen, Jukka Y A

    2016-04-20

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3'-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Competition between RNA-binding proteins CELF1 and HuR modulates MYC translation and intestinal epithelium renewal

    PubMed Central

    Liu, Lan; Ouyang, Miao; Rao, Jaladanki N.; Zou, Tongtong; Xiao, Lan; Chung, Hee Kyoung; Wu, Jing; Donahue, James M.; Gorospe, Myriam; Wang, Jian-Ying

    2015-01-01

    The mammalian intestinal epithelium is one of the most rapidly self-renewing tissues in the body, and its integrity is preserved through strict regulation. The RNA-binding protein (RBP) ELAV-like family member 1 (CELF1), also referred to as CUG-binding protein 1 (CUGBP1), regulates the stability and translation of target mRNAs and is implicated in many aspects of cellular physiology. We show that CELF1 competes with the RBP HuR to modulate MYC translation and regulates intestinal epithelial homeostasis. Growth inhibition of the small intestinal mucosa by fasting in mice was associated with increased CELF1/Myc mRNA association and decreased MYC expression. At the molecular level, CELF1 was found to bind the 3′-untranslated region (UTR) of Myc mRNA and repressed MYC translation without affecting total Myc mRNA levels. HuR interacted with the same Myc 3′-UTR element, and increasing the levels of HuR decreased CELF1 binding to Myc mRNA. In contrast, increasing the concentrations of CELF1 inhibited formation of the [HuR/Myc mRNA] complex. Depletion of cellular polyamines also increased CELF1 and enhanced CELF1 association with Myc mRNA, thus suppressing MYC translation. Moreover, ectopic CELF1 overexpression caused G1-phase growth arrest, whereas CELF1 silencing promoted cell proliferation. These results indicate that CELF1 represses MYC translation by decreasing Myc mRNA association with HuR and provide new insight into the molecular functions of RBPs in the regulation of intestinal mucosal growth. PMID:25808495

  3. mRNA export: threading the needle

    PubMed Central

    Gaouar, Ouassila; Germain, Hugo

    2013-01-01

    After mRNA biogenesis, several proteins interact with the messenger to ensure its proper export to the cytoplasm. Some of these proteins will bind RNA early on, at the onset of transcription by RNA polymerase II holoenzyme, while others will join later for downstream processing steps, such as poly-adenylation or splicing, or may direct mRNA ribonucleoprotein particle migration to the nucleopore. We recently discovered that Arabidopsis plant knockout for the protein MOS11 (MODIFIER OF SNC1, 11) partially suppresses autoimmune responses observed in the TNL-type [TIR/NBS/LRR (Toll-interleukin-like receptor/nucleotide-binding site/C-terminal leucine-rich repeat)] R gene gain-of-function variant snc1 (suppressor of npr1-1, constitutive 1). This suppression of resistance to pathogens appears to be caused by a decrease in nuclear mRNA export in mos11-1 snc1 plants. In humans, the putative ortholog of MOS11, CIP29 (29-kDa cytokine-induced protein), interacts with three proteins that are also involved in mRNA export: DDX39 (DEAD-box RNA helicase), TAF15 of the FUS family (FUSED IN SARCOMA), and ALY (ALWAYS EARLY), a protein implicated in mRNA export in mammalian systems. These proteins have received very little attention in plants. Here, we will discuss their particularities and role in mRNA export and biotic stress. PMID:23526740

  4. A truncated human peroxisome proliferator-activated receptor alpha splice variant with dominant negative activity.

    PubMed

    Gervois, P; Torra, I P; Chinetti, G; Grötzinger, T; Dubois, G; Fruchart, J C; Fruchart-Najib, J; Leitersdorf, E; Staels, B

    1999-09-01

    The peroxisome proliferator-activated receptor alpha (PPARalpha) plays a key role in lipid and lipoprotein metabolism. However, important inter- and intraspecies differences exist in the response to PPARalpha activators. This incited us to screen for PPARalpha variants with different signaling functions. In the present study, using a RT-PCR approach a variant human PPARalpha mRNA species was identified, which lacks the entire exon 6 due to alternative splicing. This deletion leads to the introduction of a premature stop codon, resulting in the formation of a truncated PPARalpha protein (PPARalphatr) lacking part of the hinge region and the entire ligand-binding domain. RNase protection analysis demonstrated that PPARalphatr mRNA is expressed in several human tissues and cells, representing between 20-50% of total PPARalpha mRNA. By contrast, PPARalphatr mRNA could not be detected in rodent tissues. Western blot analysis using PPARalpha-specific antibodies demonstrated the presence of an immunoreactive protein migrating at the size of in vitro produced PPARalphatr protein both in human hepatoma HepG2 cells and in human hepatocytes. Both in the presence or absence of 9-cis-retinoic acid receptor, PPARalphatr did not bind to DNA in gel shift assays. Immunocytochemical analysis of transfected CV-1 cells indicated that, whereas transfected PPARalphawt was mainly nuclear localized, the majority of PPARalphatr resided in the cytoplasm, with presence in the nucleus depending on cell culture conditions. Whereas a chimeric PPARalphatr protein containing a nuclear localization signal cloned at its N-terminal localized into the nucleus and exhibited strong negative activity on PPARalphawt transactivation function, PPARalphatr interfered with PPARalphatr transactivation function only under culture conditions inducing its nuclear localization. Cotransfection of the coactivator CREB-binding protein relieved the transcriptional repression of PPARalphawt by PPARalphatr, suggesting that the dominant negative effect of PPARalphatr might occur through competition for essential coactivators. In addition, PPARalphatr interfered with transcriptional activity of other nuclear receptors such as PPARgamma, hepatic nuclear factor-4, and glucocorticoid receptor-alpha, which share CREB-binding protein/p300 as a coactivator. Thus, we have identified a human PPARalpha splice variant that may negatively interfere with PPARalphawt function. Factors regulating either the ratio of PPARalphawt vs. PPARalphatr mRNA or the nuclear entry of PPARalphatr protein should therefore lead to altered signaling via the PPARalpha and, possibly also, other nuclear receptor pathways.

  5. Motility screen identifies Drosophila IGF-II mRNA-binding protein--zipcode-binding protein acting in oogenesis and synaptogenesis.

    PubMed

    Boylan, Kristin L M; Mische, Sarah; Li, Mingang; Marqués, Guillermo; Morin, Xavier; Chia, William; Hays, Thomas S

    2008-02-01

    The localization of specific mRNAs can establish local protein gradients that generate and control the development of cellular asymmetries. While all evidence underscores the importance of the cytoskeleton in the transport and localization of RNAs, we have limited knowledge of how these events are regulated. Using a visual screen for motile proteins in a collection of GFP protein trap lines, we identified the Drosophila IGF-II mRNA-binding protein (Imp), an ortholog of Xenopus Vg1 RNA binding protein and chicken zipcode-binding protein. In Drosophila, Imp is part of a large, RNase-sensitive complex that is enriched in two polarized cell types, the developing oocyte and the neuron. Using time-lapse confocal microscopy, we establish that both dynein and kinesin contribute to the transport of GFP-Imp particles, and that regulation of transport in egg chambers appears to differ from that in neurons. In Drosophila, loss-of-function Imp mutations are zygotic lethal, and mutants die late as pharate adults. Imp has a function in Drosophila oogenesis that is not essential, as well as functions that are essential during embryogenesis and later development. Germline clones of Imp mutations do not block maternal mRNA localization or oocyte development, but overexpression of a specific Imp isoform disrupts dorsal/ventral polarity. We report here that loss-of-function Imp mutations, as well as Imp overexpression, can alter synaptic terminal growth. Our data show that Imp is transported to the neuromuscular junction, where it may modulate the translation of mRNA targets. In oocytes, where Imp function is not essential, we implicate a specific Imp domain in the establishment of dorsoventral polarity.

  6. Isolation and characterization of Xenopus laevis homologs of the mouse inv gene and functional analysis of the conserved calmodulin binding sites.

    PubMed

    Yasuhiko, Yukuto; Shiokawa, Koichiro; Mochizuki, Toshio; Asashima, Makoto; Yokoyama, Takahiko

    2006-04-01

    The homozygous inv (inversion of embryonic turning) mouse mutant shows situs inversus and polycystic kidney disease, both of which result from the lack of the inv gene. Previously, we suggested that inv may be important for the left-right axis formation, not only in mice but also in Xenopus, and that calmodulin regulates this inv protein function. Here, we isolated and characterized two Xenopus laevis homologs (Xinv-1 and Xinv-2) of the mouse inv gene, and performed functional analysis of the conserved IQ motifs that interact with calmodulin. Xinv-1 expresses early in development in the same manner as mouse inv does. Unexpectedly, a full-length Xenopus inv mRNA did not randomize cardiac orientation when injected into Xenopus embryos, which is different from mouse inv mRNA. Contrary to mouse inv mRNA, Xenopus inv mRNA with mutated IQ randomized cardiac orientation. The present study indicates that calmodulin binding sites (IQ motifs) are crucial in controlling the biological activity of both mouse and Xenopus inv proteins. Although mouse and Xenopus inv genes have a quite similar structure, the interaction with calmodulin and IQ motifs of Xenopus inv and mouse inv proteins may regulate their function in different ways.

  7. cAMP-Mediated Stimulation of Tyrosine Hydroxylase mRNA Translation Is Mediated by Polypyrimidine-Rich Sequences within Its 3′-Untranslated Region and Poly(C)-Binding Protein 2

    PubMed Central

    Xu, Lu; Sterling, Carol R.

    2009-01-01

    Tyrosine hydroxylase (TH) plays a critical role in maintaining the appropriate concentrations of catecholamine neurotransmitters in brain and periphery, particularly during long-term stress, long-term drug treatment, or neurodegenerative diseases. Its expression is controlled by both transcriptional and post-transcriptional mechanisms. In a previous report, we showed that treatment of rat midbrain slice explant cultures or mouse MN9D cells with cAMP analog or forskolin leads to induction of TH protein without concomitant induction of TH mRNA. We further showed that cAMP activates mechanisms that regulate TH mRNA translation via cis-acting sequences within its 3′-untranslated region (UTR). In the present report, we extend these studies to show that MN9D cytoplasmic proteins bind to the same TH mRNA 3′-UTR domain that is required for the cAMP response. RNase T1 mapping demonstrates binding of proteins to a 27-nucleotide polypyrimidine-rich sequence within this domain. A specific mutation within the polypyrimidine-rich sequence inhibits protein binding and cAMP-mediated translational activation. UV-cross-linking studies identify a ∼44-kDa protein as a major TH mRNA 3′-UTR binding factor, and cAMP induces the 40- to 42-kDa poly(C)-binding protein-2 (PCBP2) in MN9D cells. We show that PCBP2 binds to the TH mRNA 3′-UTR domain that participates in the cAMP response. Overexpression of PCBP2 induces TH protein without concomitant induction of TH mRNA. These results support a model in which cAMP induces PCBP2, leading to increased interaction with its cognate polypyrimidine binding site in the TH mRNA 3′-UTR. This increased interaction presumably plays a role in the activation of TH mRNA translation by cAMP in dopaminergic neurons. PMID:19620256

  8. SUMO-Modification of the La Protein Facilitates Binding to mRNA In Vitro and in Cells.

    PubMed

    Kota, Venkatesh; Sommer, Gunhild; Durette, Chantal; Thibault, Pierre; van Niekerk, Erna A; Twiss, Jeffery L; Heise, Tilman

    2016-01-01

    The RNA-binding protein La is involved in several aspects of RNA metabolism including the translational regulation of mRNAs and processing of pre-tRNAs. Besides its well-described phosphorylation by Casein kinase 2, the La protein is also posttranslationally modified by the Small Ubiquitin-like MOdifier (SUMO), but the functional outcome of this modification has not been defined. The objective of this study was to test whether sumoylation changes the RNA-binding activity of La. Therefore, we established an in vitro sumoylation assay for recombinant human La and analyzed its RNA-binding activity by electrophoretic mobility shift assays. We identified two novel SUMO-acceptor sites within the La protein located between the RNA recognition motif 1 and 2 and we demonstrate for the first time that sumoylation facilitates the RNA-binding of La to small RNA oligonucleotides representing the oligopyrimidine tract (TOP) elements from the 5' untranslated regions (UTR) of mRNAs encoding ribosomal protein L22 and L37 and to a longer RNA element from the 5' UTR of cyclin D1 (CCND1) mRNA in vitro. Furthermore, we show by RNA immunoprecipitation experiments that a La mutant deficient in sumoylation has impaired RNA-binding activity in cells. These data suggest that modulating the RNA-binding activity of La by sumoylation has important consequences on its functionality.

  9. SUMO-Modification of the La Protein Facilitates Binding to mRNA In Vitro and in Cells

    PubMed Central

    Kota, Venkatesh; Sommer, Gunhild; Durette, Chantal; Thibault, Pierre; van Niekerk, Erna A.; Twiss, Jeffery L.

    2016-01-01

    The RNA-binding protein La is involved in several aspects of RNA metabolism including the translational regulation of mRNAs and processing of pre-tRNAs. Besides its well-described phosphorylation by Casein kinase 2, the La protein is also posttranslationally modified by the Small Ubiquitin-like MOdifier (SUMO), but the functional outcome of this modification has not been defined. The objective of this study was to test whether sumoylation changes the RNA-binding activity of La. Therefore, we established an in vitro sumoylation assay for recombinant human La and analyzed its RNA-binding activity by electrophoretic mobility shift assays. We identified two novel SUMO-acceptor sites within the La protein located between the RNA recognition motif 1 and 2 and we demonstrate for the first time that sumoylation facilitates the RNA-binding of La to small RNA oligonucleotides representing the oligopyrimidine tract (TOP) elements from the 5’ untranslated regions (UTR) of mRNAs encoding ribosomal protein L22 and L37 and to a longer RNA element from the 5’ UTR of cyclin D1 (CCND1) mRNA in vitro. Furthermore, we show by RNA immunoprecipitation experiments that a La mutant deficient in sumoylation has impaired RNA-binding activity in cells. These data suggest that modulating the RNA-binding activity of La by sumoylation has important consequences on its functionality. PMID:27224031

  10. The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms.

    PubMed Central

    Makeyev, Aleksandr V; Liebhaber, Stephen A

    2002-01-01

    The poly(C) binding proteins (PCBPs) are encoded at five dispersed loci in the mouse and human genomes. These proteins, which can be divided into two groups, hnRNPs K/J and the alphaCPs (alphaCP1-4), are linked by a common evolutionary history, a shared triple KH domain configuration, and by their poly(C) binding specificity. Given these conserved characteristics it is remarkable to find a substantial diversity in PCBP functions. The roles of these proteins in mRNA stabilization, translational activation, and translational silencing suggest a complex and diverse set of post-transcriptional control pathways. Their additional putative functions in transcriptional control and as structural components of important DNA-protein complexes further support their remarkable structural and functional versatility. Clearly the identification of additional binding targets and delineation of corresponding control mechanisms and effector pathways will establish highly informative models for further exploration. PMID:12003487

  11. The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms.

    PubMed

    Makeyev, Aleksandr V; Liebhaber, Stephen A

    2002-03-01

    The poly(C) binding proteins (PCBPs) are encoded at five dispersed loci in the mouse and human genomes. These proteins, which can be divided into two groups, hnRNPs K/J and the alphaCPs (alphaCP1-4), are linked by a common evolutionary history, a shared triple KH domain configuration, and by their poly(C) binding specificity. Given these conserved characteristics it is remarkable to find a substantial diversity in PCBP functions. The roles of these proteins in mRNA stabilization, translational activation, and translational silencing suggest a complex and diverse set of post-transcriptional control pathways. Their additional putative functions in transcriptional control and as structural components of important DNA-protein complexes further support their remarkable structural and functional versatility. Clearly the identification of additional binding targets and delineation of corresponding control mechanisms and effector pathways will establish highly informative models for further exploration.

  12. Drosophila stem loop binding protein coordinates accumulation of mature histone mRNA with cell cycle progression

    PubMed Central

    Sullivan, Eileen; Santiago, Carlos; Parker, Emily D.; Dominski, Zbigniew; Yang, Xiaocui; Lanzotti, David J.; Ingledue, Tom C.; Marzluff, William F.; Duronio, Robert J.

    2001-01-01

    Replication-associated histone genes encode the only metazoan mRNAs that lack polyA tails, ending instead in a conserved 26-nt sequence that forms a stem–loop. Most of the regulation of mammalian histone mRNA is posttranscriptional and mediated by this unique 3′ end. Stem–loop–binding protein (SLBP) binds to the histone mRNA 3′ end and is thought to participate in all aspects of histone mRNA metabolism, including cell cycle regulation. To examine SLBP function genetically, we have cloned the gene encoding Drosophila SLBP (dSLBP) by a yeast three-hybrid method and have isolated mutations in dSLBP. dSLBP function is required both zygotically and maternally. Strong dSLBP alleles cause zygotic lethality late in development and result in production of stable histone mRNA that accumulates in nonreplicating cells. These histone mRNAs are cytoplasmic and have polyadenylated 3′ ends like other polymerase II transcripts. Hypomorphic dSLBP alleles support zygotic development but cause female sterility. Eggs from these females contain dramatically reduced levels of histone mRNA, and mutant embryos are not able to complete the syncytial embryonic cycles. This is in part because of a failure of chromosome condensation at mitosis that blocks normal anaphase. These data demonstrate that dSLBP is required in vivo for 3′ end processing of histone pre-mRNA, and that this is an essential function for development. Moreover, dSLBP-dependent processing plays an important role in coupling histone mRNA production with the cell cycle. PMID:11157774

  13. RNA regulatory networks diversified through curvature of the PUF protein scaffold

    DOE PAGES

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; ...

    2015-09-14

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extendedmore » interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.« less

  14. RNA regulatory networks diversified through curvature of the PUF protein scaffold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extendedmore » interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.« less

  15. miR-328 Functions as an RNA Decoy to Modulate hnRNP E2 Regulation of mRNA Translation in Leukemic Blasts

    PubMed Central

    Eiring, Anna M.; Harb, Jason G.; Neviani, Paolo; Garton, Christopher; Oaks, Joshua J.; Spizzo, Riccardo; Liu, Shujun; Schwind, Sebastian; Santhanam, Ramasamy; Hickey, Christopher J.; Becker, Heiko; Chandler, Jason C.; Andino, Raul; Cortes, Jorge; Hokland, Peter; Huettner, Claudia S.; Bhatia, Ravi; Roy, Denis C.; Liebhaber, Stephen A.; Caligiuri, Michael A.; Marcucci, Guido; Garzon, Ramiro; Croce, Carlo M.; Calin, George A.; Perrotti, Danilo

    2010-01-01

    SUMMARY MicroRNAs and heterogeneous ribonucleoproteins (hnRNPs) are posttranscriptional gene regulators that bind mRNA in a sequence-specific manner. Here, we report that loss of miR-328 occurs in blast crisis chronic myelogenous leukemia (CML-BC) in a BCR/ABL dose- and kinase-dependent manner through the MAPK-hnRNP E2 pathway. Restoration of miR-328 expression rescues differentiation and impairs survival of leukemic blasts by simultaneously interacting with the translational regulator poly(rC)-binding protein hnRNP E2 and with the mRNA encoding the survival factor PIM1, respectively. The interaction with hnRNP E2 is independent of the microRNA’s seed sequence and it leads to release of CEBPA mRNA from hnRNP E2-mediated translational inhibition. Altogether, these data reveal the dual ability of a microRNA to control cell fate both through base pairing with mRNA targets and through a decoy activity that interferes with the function of regulatory proteins. PMID:20211135

  16. Fragile X mental retardation protein recognizes a G quadruplex structure within the survival motor neuron domain containing 1 mRNA 5'-UTR.

    PubMed

    McAninch, Damian S; Heinaman, Ashley M; Lang, Cara N; Moss, Kathryn R; Bassell, Gary J; Rita Mihailescu, Mihaela; Evans, Timothy L

    2017-07-25

    G quadruplex structures have been predicted by bioinformatics to form in the 5'- and 3'-untranslated regions (UTRs) of several thousand mature mRNAs and are believed to play a role in translation regulation. Elucidation of these roles has primarily been focused on the 3'-UTR, with limited focus on characterizing the G quadruplex structures and functions in the 5'-UTR. Investigation of the affinity and specificity of RNA binding proteins for 5'-UTR G quadruplexes and the resulting regulatory effects have also been limited. Among the mRNAs predicted to form a G quadruplex structure within the 5'-UTR is the survival motor neuron domain containing 1 (SMNDC1) mRNA, encoding a protein that is critical to the spliceosome. Additionally, this mRNA has been identified as a potential target of the fragile X mental retardation protein (FMRP), whose loss of expression leads to fragile X syndrome. FMRP is an RNA binding protein involved in translation regulation that has been shown to bind mRNA targets that form G quadruplex structures. In this study we have used biophysical methods to investigate G quadruplex formation in the 5'-UTR of SMNDC1 mRNA and analyzed its interactions with FMRP. Our results show that SMNDC1 mRNA 5'-UTR forms an intramolecular, parallel G quadruplex structure comprised of three G quartet planes, which is bound specifically by FMRP both in vitro and in mouse brain lysates. These findings suggest a model by which FMRP might regulate the translation of a subset of its mRNA targets by recognizing the G quadruplex structure present in their 5'-UTR, and affecting their accessibility by the protein synthesis machinery.

  17. Trans‐acting translational regulatory RNA binding proteins

    PubMed Central

    Harvey, Robert F.; Smith, Tom S.; Mulroney, Thomas; Queiroz, Rayner M. L.; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa

    2018-01-01

    The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans‐acting regulatory RNA‐binding proteins (RBPs) are necessary to provide mRNA‐specific translation, and these interact with 5′ and 3′ untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans‐acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans‐acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans‐acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: 1RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes2Translation > Translation Regulation3Translation > Translation Mechanisms PMID:29341429

  18. Trans-acting translational regulatory RNA binding proteins.

    PubMed

    Harvey, Robert F; Smith, Tom S; Mulroney, Thomas; Queiroz, Rayner M L; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa; Lilley, Kathryn S; Willis, Anne E

    2018-05-01

    The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans-acting regulatory RNA-binding proteins (RBPs) are necessary to provide mRNA-specific translation, and these interact with 5' and 3' untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans-acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans-acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans-acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Translation Regulation Translation > Translation Mechanisms. © 2018 Medical Research Council and University of Cambridge. WIREs RNA published by Wiley Periodicals, Inc.

  19. Molecular determinants of Cytochrome C oxidase IV mRNA axonal trafficking

    PubMed Central

    Kar, Amar N.; Vargas, Jose Norberto S.; Chen, Cai-Yun; Kowalak, Jeffrey A; Gioio, Anthony E.; Kaplan, Barry B.

    2017-01-01

    In previous studies, we identified a putative 38-nucleotide stem-loop structure (zipcode) in the 3′ untranslated region of the cytochrome c oxidase subunit IV (COXIV) mRNA that was necessary and sufficient for the axonal localization of the message in primary superior cervical ganglion (SCG) neurons. However, little is known about the proteins that interact with the COXIV-zipcode and regulate the axonal trafficking and local translation of the COXIV message. To identify proteins involved in the axonal transport of the COXIV mRNA, we used the biotinylated 38-nucleotide COXIV RNA zipcode as bait in the affinity purification of COXIV zipcode binding proteins. Gel-shift assays of the biotinylated COXIV zipcode indicated that the putative stem-loop structure functions as a nucleation site for the formation of ribonucleoprotein complexes. Mass spectrometric analysis of the COXIV zipcode ribonucleoprotein complex led to the identification of a large number RNA binding proteins, including fused in sarcoma/translated in liposarcoma (FUS/TLS), and Y-box protein 1 (YB-1). Validation experiments, using western analyses, confirmed the presence of the candidate proteins in the COXIV zipcode affinity purified complexes obtained from SCG axons. Immunohistochemical studies show that FUS, and YB-1 are present in SCG axons. Importantly, RNA immunoprecipitation studies show that FUS, and YB-1 interact with endogenous axonal COXIV transcripts. siRNA-mediated downregulation of the candidate proteins FUS and YB-1 expression in the cell-bodies diminishes the levels of COXIV mRNA in the axon, suggesting functional roles for these proteins in the axonal trafficking of COXIV mRNA. PMID:28161363

  20. Galectin-3 is a non-classic RNA binding protein that stabilizes the mucin MUC4 mRNA in the cytoplasm of cancer cells.

    PubMed

    Coppin, Lucie; Vincent, Audrey; Frénois, Frédéric; Duchêne, Belinda; Lahdaoui, Fatima; Stechly, Laurence; Renaud, Florence; Villenet, Céline; Van Seuningen, Isabelle; Leteurtre, Emmanuelle; Dion, Johann; Grandjean, Cyrille; Poirier, Françoise; Figeac, Martin; Delacour, Delphine; Porchet, Nicole; Pigny, Pascal

    2017-03-06

    Pancreatic cancer cells express high levels of MUC1, MUC4 and MUC16 mRNAs that encode membrane-bound mucins. These mRNAs share unusual features such as a long half-life. However, it remains unknown how mucin mRNA stability is regulated. Galectin-3 (Gal-3) is an endogenous lectin playing important biological functions in epithelial cells. Gal-3 is encoded by LGALS3 which is up-regulated in pancreatic cancer. Despite the absence of a RNA-recognition motif, Gal-3 interacts indirectly with pre-mRNAs in the nucleus and promotes constitutive splicing. However a broader role of Gal-3 in mRNA fate is unexplored. We report herein that Gal-3 increases MUC4 mRNA stability through an intermediate, hnRNP-L which binds to a conserved CA repeat element in the 3'UTR in a Gal-3 dependent manner and also controls Muc4 mRNA levels in epithelial tissues of Gal3 -/- mice. Gal-3 interacts with hnRNP-L in the cytoplasm, especially during cell mitosis, but only partly associates with protein markers of P-Bodies or Stress Granules. By RNA-IP plus RNA-seq analysis and imaging, we demonstrate that Gal-3 binds to mature spliced MUC4 mRNA in the perinuclear region, probably in hnRNP-L-containing RNA granules. Our findings highlight a new role for Gal-3 as a non-classic RNA-binding protein that regulates MUC4 mRNA post-transcriptionally.

  1. Galectin-3 is a non-classic RNA binding protein that stabilizes the mucin MUC4 mRNA in the cytoplasm of cancer cells

    PubMed Central

    Coppin, Lucie; Vincent, Audrey; Frénois, Frédéric; Duchêne, Belinda; Lahdaoui, Fatima; Stechly, Laurence; Renaud, Florence; Villenet, Céline; Seuningen, Isabelle Van; Leteurtre, Emmanuelle; Dion, Johann; Grandjean, Cyrille; Poirier, Françoise; Figeac, Martin; Delacour, Delphine; Porchet, Nicole; Pigny, Pascal

    2017-01-01

    Pancreatic cancer cells express high levels of MUC1, MUC4 and MUC16 mRNAs that encode membrane-bound mucins. These mRNAs share unusual features such as a long half-life. However, it remains unknown how mucin mRNA stability is regulated. Galectin-3 (Gal-3) is an endogenous lectin playing important biological functions in epithelial cells. Gal-3 is encoded by LGALS3 which is up-regulated in pancreatic cancer. Despite the absence of a RNA-recognition motif, Gal-3 interacts indirectly with pre-mRNAs in the nucleus and promotes constitutive splicing. However a broader role of Gal-3 in mRNA fate is unexplored. We report herein that Gal-3 increases MUC4 mRNA stability through an intermediate, hnRNP-L which binds to a conserved CA repeat element in the 3′UTR in a Gal-3 dependent manner and also controls Muc4 mRNA levels in epithelial tissues of Gal3−/− mice. Gal-3 interacts with hnRNP-L in the cytoplasm, especially during cell mitosis, but only partly associates with protein markers of P-Bodies or Stress Granules. By RNA-IP plus RNA-seq analysis and imaging, we demonstrate that Gal-3 binds to mature spliced MUC4 mRNA in the perinuclear region, probably in hnRNP-L-containing RNA granules. Our findings highlight a new role for Gal-3 as a non-classic RNA-binding protein that regulates MUC4 mRNA post-transcriptionally. PMID:28262838

  2. In vitro optimization of antisense oligodeoxynucleotide design: an example using the connexin gene family.

    PubMed

    Law, Lee Yong; Zhang, Wei V; Stott, N Susan; Becker, David L; Green, Colin R

    2006-09-01

    The completion of the human and mouse genomes has identified at least 20 connexin isomers in this family of intercellular channel proteins. However, there are no specific gap junction blockers or channel-blocking mimetic peptides available for the study of specific connexins. We designed antisense oligodeoxynucleotides that functionally reduce targeted connexin protein expression and can be used to reveal the biological function of individual connexins in vivo. Connexin mRNA was firstly exposed in vitro to deoxyribozymes complementing the sense coding sequence. Those that cleaved the target connexin mRNA in defined regions were used as the basis to design oligodeoxynucleotides to the accessible sites, thus taking into account tertiary mRNA configurations rather than relying on computed predictions. Antisense oligodeoxynucleotides designed to bind to accessible mRNA sites selectively reduced connexin26 and -43 mRNA expression in a corneal epithelium ex vivo model. Connexin43 protein levels were reduced correlating with the knockdown in mRNA and the protein's rapid turnover; protein levels of connexin26 did not alter, supporting lower turnover rates reported for that protein. We show, for the first time, an inexpensive and empirical approach to the preparation of specific and functional antisense oligodeoxynucleotides against known gene targets in the post-genomic era.

  3. PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast

    PubMed Central

    2014-01-01

    Background Nrd1 and Nab3 are essential sequence-specific yeast RNA binding proteins that function as a heterodimer in the processing and degradation of diverse classes of RNAs. These proteins also regulate several mRNA coding genes; however, it remains unclear exactly what percentage of the mRNA component of the transcriptome these proteins control. To address this question, we used the pyCRAC software package developed in our laboratory to analyze CRAC and PAR-CLIP data for Nrd1-Nab3-RNA interactions. Results We generated high-resolution maps of Nrd1-Nab3-RNA interactions, from which we have uncovered hundreds of new Nrd1-Nab3 mRNA targets, representing between 20 and 30% of protein-coding transcripts. Although Nrd1 and Nab3 showed a preference for binding near 5′ ends of relatively short transcripts, they bound transcripts throughout coding sequences and 3′ UTRs. Moreover, our data for Nrd1-Nab3 binding to 3′ UTRs was consistent with a role for these proteins in the termination of transcription. Our data also support a tight integration of Nrd1-Nab3 with the nutrient response pathway. Finally, we provide experimental evidence for some of our predictions, using northern blot and RT-PCR assays. Conclusions Collectively, our data support the notion that Nrd1 and Nab3 function is tightly integrated with the nutrient response and indicate a role for these proteins in the regulation of many mRNA coding genes. Further, we provide evidence to support the hypothesis that Nrd1-Nab3 represents a failsafe termination mechanism in instances of readthrough transcription. PMID:24393166

  4. Structural analysis of the Quaking homodimerization interface

    PubMed Central

    Beuck, Christine; Qu, Song; Fagg, W. Samuel; Ares, Manuel; Williamson, James R.

    2012-01-01

    Quaking is a prototypical member of the STAR protein family, which plays key roles in posttranscriptional gene regulation by controlling mRNA translation, stability and splicing. QkI-5 has been shown to regulate mRNA expression in the central nervous system, but little is known about its roles in other tissues. STAR proteins function as dimers and bind to bipartite RNA sequences, however, the structural and functional roles of homo- and hetero-dimerization are still unclear. Here, we present the crystal structure of the QkI dimerization domain, which adopts a similar stacked helix-turn-helix arrangement as its homologs GLD-1 and Sam68, but differs by an additional helix inserted in the dimer interface. Variability of the dimer interface residues likely ensures selective homodimerization by preventing association with non-cognate STAR family proteins in the cell. Mutations that inhibit dimerization also significantly impair RNA binding in vitro, alter QkI-5 protein levels, and impair QkI function in a splicing assay in vivo. Together our results indicate that a functional Qua1 homodimerization domain is required for QkI-5 function in mammalian cells. PMID:22982292

  5. Posttranscriptional regulation of albumin gene expression by branched-chain amino acids in rats with acute liver injury.

    PubMed

    Kuwahata, Masashi; Kuramoto, Yasuko; Tomoe, Yuka; Sugata, Emi; Segawa, Hiroko; Ito, Mikiko; Oka, Tatsuzo; Miyamoto, Ken-Ichi

    2004-12-24

    We previously demonstrated that the integration of albumin mRNA into functional polysomes was regulated by the supply of branched-chain amino acids (BCAA) in the liver of galactosamine-treated rats. To study the mechanism of this regulation, we investigated interaction between rat liver proteins and albumin transcripts. When albumin transcript was incubated with ribosome salt wash (RSW) extracts prepared from liver, a specific RNA-protein complex (p65) formed. Competition experiments showed that a pyrimidine-rich sequence in the coding region of albumin mRNA was required for the formation of p65. The level of p65 was increased in the RSW extracts prepared from liver of galactosamine-treated rats infused with a standard amino acid formula, compared with a BCAA-enriched amino acid formula. The protein in p65 appears to be polypyrimidine tract-binding protein (PTB), because the formation of p65 was reduced in the RSW extracts pre-incubated with anti-PTB antibody. In cell-free translation analysis, immunodepletion of PTB from rabbit reticulocyte lysate caused an increase in albumin translation. These results suggest that binding of PTB to albumin mRNA suppresses its translation. A supply of BCAA may interfere with this binding and improve the translation efficiency of albumin mRNA in injured liver.

  6. Global Maps of ProQ Binding In Vivo Reveal Target Recognition via RNA Structure and Stability Control at mRNA 3' Ends.

    PubMed

    Holmqvist, Erik; Li, Lei; Bischler, Thorsten; Barquist, Lars; Vogel, Jörg

    2018-05-15

    The conserved RNA-binding protein ProQ has emerged as the centerpiece of a previously unknown third large network of post-transcriptional control in enterobacteria. Here, we have used in vivo UV crosslinking and RNA sequencing (CLIP-seq) to map hundreds of ProQ binding sites in Salmonella enterica and Escherichia coli. Our analysis of these binding sites, many of which are conserved, suggests that ProQ recognizes its cellular targets through RNA structural motifs found in small RNAs (sRNAs) and at the 3' end of mRNAs. Using the cspE mRNA as a model for 3' end targeting, we reveal a function for ProQ in protecting mRNA against exoribonucleolytic activity. Taken together, our results underpin the notion that ProQ governs a post-transcriptional network distinct from those of the well-characterized sRNA-binding proteins, CsrA and Hfq, and suggest a previously unrecognized, sRNA-independent role of ProQ in stabilizing mRNAs. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. RNA-Binding Proteins Revisited - The Emerging Arabidopsis mRNA Interactome.

    PubMed

    Köster, Tino; Marondedze, Claudius; Meyer, Katja; Staiger, Dorothee

    2017-06-01

    RNA-protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture - where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Mechanism of mRNA-STAR domain interaction: Molecular dynamics simulations of Mammalian Quaking STAR protein.

    PubMed

    Sharma, Monika; Anirudh, C R

    2017-10-03

    STAR proteins are evolutionary conserved mRNA-binding proteins that post-transcriptionally regulate gene expression at all stages of RNA metabolism. These proteins possess conserved STAR domain that recognizes identical RNA regulatory elements as YUAAY. Recently reported crystal structures show that STAR domain is composed of N-terminal QUA1, K-homology domain (KH) and C-terminal QUA2, and mRNA binding is mediated by KH-QUA2 domain. Here, we present simulation studies done to investigate binding of mRNA to STAR protein, mammalian Quaking protein (QKI). We carried out conventional MD simulations of STAR domain in presence and absence of mRNA, and studied the impact of mRNA on the stability, dynamics and underlying allosteric mechanism of STAR domain. Our unbiased simulations results show that presence of mRNA stabilizes the overall STAR domain by reducing the structural deviations, correlating the 'within-domain' motions, and maintaining the native contacts information. Absence of mRNA not only influenced the essential modes of motion of STAR domain, but also affected the connectivity of networks within STAR domain. We further explored the dissociation of mRNA from STAR domain using umbrella sampling simulations, and the results suggest that mRNA binding to STAR domain occurs in multi-step: first conformational selection of mRNA backbone conformations, followed by induced fit mechanism as nucleobases interact with STAR domain.

  9. The increasing diversity of functions attributed to the SAFB family of RNA-/DNA-binding proteins.

    PubMed

    Norman, Michael; Rivers, Caroline; Lee, Youn-Bok; Idris, Jalilah; Uney, James

    2016-12-01

    RNA-binding proteins play a central role in cellular metabolism by orchestrating the complex interactions of coding, structural and regulatory RNA species. The SAFB (scaffold attachment factor B) proteins (SAFB1, SAFB2 and SAFB-like transcriptional modulator, SLTM), which are highly conserved evolutionarily, were first identified on the basis of their ability to bind scaffold attachment region DNA elements, but attention has subsequently shifted to their RNA-binding and protein-protein interactions. Initial studies identified the involvement of these proteins in the cellular stress response and other aspects of gene regulation. More recently, the multifunctional capabilities of SAFB proteins have shown that they play crucial roles in DNA repair, processing of mRNA and regulatory RNA, as well as in interaction with chromatin-modifying complexes. With the advent of new techniques for identifying RNA-binding sites, enumeration of individual RNA targets has now begun. This review aims to summarise what is currently known about the functions of SAFB proteins. © 2016 The Author(s).

  10. [Expression of the Drosophila melanogaster limk1 gene 3'-UTRs mRNA in Yeast Saccharomyces cerevisiae].

    PubMed

    Rumyantsev, A M; Zakharov, G A; Zhuravlev, A V; Padkina, M V; Savvateeva-Popova, E V; Sambuk, E V

    2014-06-01

    The stability of mRNA and its translation efficacy in higher eukaryotes are influenced by the interaction of 3'-untranscribed regions (3'-UTRs) with microRNAs and RNA-binding proteins. Since Saccharomyces cerevisiae lack microRNAs, it is possible to evaluate the contribution of only 3'-UTRs' and RNA-binding proteins' interaction in post-transcriptional regulation. For this, the post-transcriptional regulation of Drosophila limk1 gene encoding for the key enzyme of actin remodeling was studied in yeast. Analysis of limkl mRNA 3'-UTRs revealed the potential sites of yeast transcriptional termination. Computer remodeling demonstrated the possibility of secondary structure formation in limkl mRNA 3'-UTRs. For an evaluation of the functional activity of Drosophila 3'-UTRs in yeast, the reporter gene PHO5 encoding for yeast acid phosphatase (AP) fused to different variants of Drosophila limk1 mRNA 3'-UTRs (513, 1075, 1554 bp) was used. Assessments of AP activity and RT-PCR demonstrated that Drosophila limkl gene 3'-UTRs were functionally active and recognized in yeast. Therefore, yeast might be used as an appropriate model system for studies of 3'-UTR's role in post-transcriptional regulation.

  11. Post-transcriptional inducible gene regulation by natural antisense RNA.

    PubMed

    Nishizawa, Mikio; Ikeya, Yukinobu; Okumura, Tadayoshi; Kimura, Tominori

    2015-01-01

    Accumulating data indicate the existence of natural antisense transcripts (asRNAs), frequently transcribed from eukaryotic genes and do not encode proteins in many cases. However, their importance has been overlooked due to their heterogeneity, low expression level, and unknown function. Genes induced in responses to various stimuli are transcriptionally regulated by the activation of a gene promoter and post-transcriptionally regulated by controlling mRNA stability and translatability. A low-copy-number asRNA may post-transcriptionally regulate gene expression with cis-controlling elements on the mRNA. The asRNA itself may act as regulatory RNA in concert with trans-acting factors, including various RNA-binding proteins that bind to cis-controlling elements, microRNAs, and drugs. A novel mechanism that regulates mRNA stability includes the interaction of asRNA with mRNA by hybridization to loops in secondary structures. Furthermore, recent studies have shown that the functional network of mRNAs, asRNAs, and microRNAs finely tunes the levels of mRNA expression. The post-transcriptional mechanisms via these RNA-RNA interactions may play pivotal roles to regulate inducible gene expression and present the possibility of the involvement of asRNAs in various diseases.

  12. Polypyrimidine tract binding protein 1 protects mRNAs from recognition by the nonsense-mediated mRNA decay pathway

    PubMed Central

    Ge, Zhiyun; Quek, Bao Lin; Beemon, Karen L; Hogg, J Robert

    2016-01-01

    The nonsense-mediated mRNA decay (NMD) pathway degrades mRNAs containing long 3'UTRs to perform dual roles in mRNA quality control and gene expression regulation. However, expansion of vertebrate 3'UTR functions has required a physical expansion of 3'UTR lengths, complicating the process of detecting nonsense mutations. We show that the polypyrimidine tract binding protein 1 (PTBP1) shields specific retroviral and cellular transcripts from NMD. When bound near a stop codon, PTBP1 blocks the NMD protein UPF1 from binding 3'UTRs. PTBP1 can thus mark specific stop codons as genuine, preserving both the ability of NMD to accurately detect aberrant mRNAs and the capacity of long 3'UTRs to regulate gene expression. Illustrating the wide scope of this mechanism, we use RNA-seq and transcriptome-wide analysis of PTBP1 binding sites to show that many human mRNAs are protected by PTBP1 and that PTBP1 enrichment near stop codons correlates with 3'UTR length and resistance to NMD. DOI: http://dx.doi.org/10.7554/eLife.11155.001 PMID:26744779

  13. Double-Stranded RNA-Binding Protein Regulates Vascular Endothelial Growth Factor mRNA Stability, Translation, and Breast Cancer Angiogenesis▿

    PubMed Central

    Vumbaca, Frank; Phoenix, Kathryn N.; Rodriguez-Pinto, Daniel; Han, David K.; Claffey, Kevin P.

    2008-01-01

    Vascular endothelial growth factor (VEGF) is a key angiogenic factor expressed under restricted nutrient and oxygen conditions in most solid tumors. The expression of VEGF under hypoxic conditions requires transcription through activated hypoxia-inducible factor 1 (HIF-1), increased mRNA stability, and facilitated translation. This study identified double-stranded RNA-binding protein 76/NF90 (DRBP76/NF90), a specific isoform of the DRBP family, as a VEGF mRNA-binding protein which plays a key role in VEGF mRNA stability and protein synthesis under hypoxia. The DRBP76/NF90 protein binds to a human VEGF 3′ untranslated mRNA stability element. RNA interference targeting the DRBP76/NF90 isoform limited hypoxia-inducible VEGF mRNA and protein expression with no change in HIF-1-dependent transcriptional activity. Stable repression of DRBP76/NF90 in MDA-MB-435 breast cancer cells demonstrated reduced polysome-associated VEGF mRNA levels under hypoxic conditions and reduced mRNA stability. Transient overexpression of the DRBP76/NF90 protein increased both VEGF mRNA and protein levels synthesized under normoxic and hypoxic conditions. Cells with stable repression of the DRBP76/NF90 isoform showed reduced tumorigenic and angiogenic potential in an orthotopic breast tumor model. These data demonstrate that the DRBP76/NF90 isoform facilitates VEGF expression by promoting VEGF mRNA loading onto polysomes and translation under hypoxic conditions, thus promoting breast cancer growth and angiogenesis in vivo. PMID:18039850

  14. Retinal-specific ATP-binding cassette transporter (ABCR/ABCA4) is expressed at the choroid plexus in rat brain.

    PubMed

    Bhongsatiern, Jiraganya; Ohtsuki, Sumio; Tachikawa, Masanori; Hori, Satoko; Terasaki, Tetsuya

    2005-03-01

    ATP-binding cassette (ABC) transporter A4 is a member of the ABC transporter subfamily A which has been reported to be exclusively expressed in the retina. In contrast, a previous report has suggested a possible relationship between ABCA4 and CNS function. The purpose of the present study was to investigate the localization of ABCA4 mRNA and protein in rat brain. In situ hybridization analysis revealed that ABCA4 mRNA was localized in the lateral ventricles. RT-PCR analysis detected ABCA4 mRNA in isolated rat choroid plexus and conditionally immortalized rat choroid plexus epithelial cells (TR-CSFB). Furthermore, ABCA4 protein was also detected in the isolated rat choroid plexus at about 250 kDa by western blot analysis, and its apparent molecular size was reduced by N-glycosidase F treatment. These results suggest that glycosylated ABCA4 protein is expressed in rat choroid plexus epithelial cells. ABCA4 may play a role in the function of the blood-cerebrospinal fluid barrier and affect CSF conditions.

  15. Protein-mRNA interactome capture: cartography of the mRNP landscape

    PubMed Central

    Ryder, Sean P.

    2016-01-01

    RNA-binding proteins play a variety of roles in cellular physiology. Some regulate mRNA processing, mRNA abundance, and translation efficiency. Some fight off invader RNA through small RNA-driven silencing pathways. Others sense foreign sequences in the form of double-stranded RNA and activate the innate immune response. Yet others, for example cytoplasmic aconitase, act as bi-functional proteins, processing metabolites in one conformation and regulating metabolic gene expression in another. Not all are involved in gene regulation. Some play structural roles, for example, connecting the translational machinery to the endoplasmic reticulum outer membrane. Despite their pervasive role and relative importance, it has remained difficult to identify new RNA-binding proteins in a systematic, unbiased way. A recent body of literature from several independent labs has defined robust, easily adaptable protocols for mRNA interactome discovery. In this review, I summarize the methods and review some of the intriguing findings from their application to a wide variety of biological systems. PMID:29098073

  16. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking.

    PubMed

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-05-18

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes.

  17. Regulation of the mRNA-binding protein AUF1 by activation of the beta-adrenergic receptor signal transduction pathway.

    PubMed

    Pende, A; Tremmel, K D; DeMaria, C T; Blaxall, B C; Minobe, W A; Sherman, J A; Bisognano, J D; Bristow, M R; Brewer, G; Port, J

    1996-04-05

    In both cell culture based model systems and in the failing human heart, beta-adrenergic receptors ( beta-AR) undergo agonist-mediated down-regulation. This decrease correlates closely with down-regulation of its mRNA, an effect regulated in part by changes in mRNA stability. Regulation of mRNA stability has been associated with mRNA-binding proteins that recognize A + U-rich elements within the 3'-untranslated regions of many mRNAs encoding proto-oncogene and cytokine mRNAs. We demonstrate here that the mRNA-binding protein, AUF1, is present in both human heart and in hamster DDT1-MF2 smooth muscle cells and that its abundance is regulated by beta-AR agonist stimulation. In human heart, AUF1 mRNA and protein was significantly increased in individuals with myocardial failure, a condition associated with increases in the beta-adrenergic receptor agonist norepinephrine. In the same hearts, there was a significant decrease (approximately 50%) in the abundance of beta1-AR mRNA and protein. In DDT1-MF2 cells, where agonist-mediated destabilization of beta2-AR mRNA was first described, exposure to beta-AR agonist resulted in a significant increase in AUF1 mRNA and protein (approximately 100%). Conversely, agonist exposure significantly decreased (approximately 40%) beta2-adrenergic receptor mRNA abundance. Last, we demonstrate that AUF1 can be immunoprecipitated from polysome-derived proteins following UV cross-linking to the 3'-untranslated region of the human beta1-AR mRNA and that purified, recombinant p37AUF1 protein also binds to beta1-AR 3'-untranslated region mRNA.

  18. Calmodulin binds to inv protein: implication for the regulation of inv function.

    PubMed

    Yasuhiko, Y; Imai, F; Ookubo, K; Takakuwa, Y; Shiokawa, K; Yokoyama, T

    2001-12-01

    Establishment of the left-right asymmetry of internal organs is essential for the normal development of vertebrates. The inv mutant in mice shows a constant reversal of left-right asymmetry and although the inv gene has been cloned, its biochemical and cell biological functions have not been defined. Here, we show that calmodulin binds to mouse inv protein at two sites (IQ1 and IQ2). The binding of calmodulin to the IQ2 site occurs in the absence of Ca(2+) and is not observed in the presence of Ca(2+). Injection of mouse inv mRNA into the right blastomere of Xenopus embryos at the two-cell stage randomized the left-right asymmetry of the embryo and altered the patterns of Xnr-1 and Pitx2 expression. Importantly, inv mRNA that lacked the region encoding the IQ2 site was unable to randomize left-right asymmetry in Xenopus embryos, implying that the IQ2 site is essential for inv to randomize left-right asymmetry in Xenopus. These results suggest that calmodulin binding may regulate inv function. Based on our findings, we propose a model for the regulation of inv function by calcium-calmodulin and discuss its implications.

  19. Iron regulatory protein 1 is not required for the modulation of ferritin and transferrin receptor expression by iron in a murine pro-B lymphocyte cell line

    PubMed Central

    Schalinske, Kevin L.; Blemings, Kenneth P.; Steffen, Daniel W.; Chen, Opal S.; Eisenstein, Richard S.

    1997-01-01

    Iron regulatory proteins (IRPs) are cytoplasmic RNA binding proteins that are central components of a sensory and regulatory network that modulates vertebrate iron homeostasis. IRPs regulate iron metabolism by binding to iron responsive element(s) (IREs) in the 5′ or 3′ untranslated region of ferritin or transferrin receptor (TfR) mRNAs. Two IRPs, IRP1 and IRP2, have been identified previously. IRP1 exhibits two mutually exclusive functions as an RNA binding protein or as the cytosolic isoform of aconitase. We demonstrate that the Ba/F3 family of murine pro-B lymphocytes represents the first example of a mammalian cell line that fails to express IRP1 protein or mRNA. First, all of the IRE binding activity in Ba/F3-gp55 cells is attributable to IRP2. Second, synthesis of IRP2, but not of IRP1, is detectable in Ba/F3-gp55 cells. Third, the Ba/F3 family of cells express IRP2 mRNA at a level similar to other murine cell lines, but IRP1 mRNA is not detectable. In the Ba/F3 family of cells, alterations in iron status modulated ferritin biosynthesis and TfR mRNA level over as much as a 20- and 14-fold range, respectively. We conclude that IRP1 is not essential for regulation of ferritin or TfR expression by iron and that IRP2 can act as the sole IRE-dependent mediator of cellular iron homeostasis. PMID:9380695

  20. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export

    PubMed Central

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M.; Brandl, Holger; Schwich, Oliver D.; Steiner, Michaela C.; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M.

    2016-01-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1–7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1–7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3′ untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3′ ends. PMID:26944680

  1. A novel RNA binding protein affects rbcL gene expression and is specific to bundle sheath chloroplasts in C4 plants

    PubMed Central

    2013-01-01

    Background Plants that utilize the highly efficient C4 pathway of photosynthesis typically possess kranz-type leaf anatomy that consists of two morphologically and functionally distinct photosynthetic cell types, the bundle sheath (BS) and mesophyll (M) cells. These two cell types differentially express many genes that are required for C4 capability and function. In mature C4 leaves, the plastidic rbcL gene, encoding the large subunit of the primary CO2 fixation enzyme Rubisco, is expressed specifically within BS cells. Numerous studies have demonstrated that BS-specific rbcL gene expression is regulated predominantly at post-transcriptional levels, through the control of translation and mRNA stability. The identification of regulatory factors associated with C4 patterns of rbcL gene expression has been an elusive goal for many years. Results RLSB, encoded by the nuclear RLSB gene, is an S1-domain RNA binding protein purified from C4 chloroplasts based on its specific binding to plastid-encoded rbcL mRNA in vitro. Co-localized with LSU to chloroplasts, RLSB is highly conserved across many plant species. Most significantly, RLSB localizes specifically to leaf bundle sheath (BS) cells in C4 plants. Comparative analysis using maize (C4) and Arabidopsis (C3) reveals its tight association with rbcL gene expression in both plants. Reduced RLSB expression (through insertion mutation or RNA silencing, respectively) led to reductions in rbcL mRNA accumulation and LSU production. Additional developmental effects, such as virescent/yellow leaves, were likely associated with decreased photosynthetic function and disruption of associated signaling networks. Conclusions Reductions in RLSB expression, due to insertion mutation or gene silencing, are strictly correlated with reductions in rbcL gene expression in both maize and Arabidopsis. In both plants, accumulation of rbcL mRNA as well as synthesis of LSU protein were affected. These findings suggest that specific accumulation and binding of the RLSB binding protein to rbcL mRNA within BS chloroplasts may be one determinant leading to the characteristic cell type-specific localization of Rubisco in C4 plants. Evolutionary modification of RLSB expression, from a C3 “default” state to BS cell-specificity, could represent one mechanism by which rbcL expression has become restricted to only one cell type in C4 plants. PMID:24053212

  2. Recognition of the murine coronavirus genomic RNA packaging signal depends on the second RNA-binding domain of the nucleocapsid protein.

    PubMed

    Kuo, Lili; Koetzner, Cheri A; Hurst, Kelley R; Masters, Paul S

    2014-04-01

    The coronavirus nucleocapsid (N) protein forms a helical ribonucleoprotein with the viral positive-strand RNA genome and binds to the principal constituent of the virion envelope, the membrane (M) protein, to facilitate assembly and budding. Besides these structural roles, N protein associates with a component of the replicase-transcriptase complex, nonstructural protein 3, at a critical early stage of infection. N protein has also been proposed to participate in the replication and selective packaging of genomic RNA and the transcription and translation of subgenomic mRNA. Coronavirus N proteins contain two structurally distinct RNA-binding domains, an unusual characteristic among RNA viruses. To probe the functions of these domains in the N protein of the model coronavirus mouse hepatitis virus (MHV), we constructed mutants in which each RNA-binding domain was replaced by its counterpart from the N protein of severe acute respiratory syndrome coronavirus (SARS-CoV). Mapping of revertants of the resulting chimeric viruses provided evidence for extensive intramolecular interactions between the two RNA-binding domains. Through analysis of viral RNA that was packaged into virions we identified the second of the two RNA-binding domains as a principal determinant of MHV packaging signal recognition. As expected, the interaction of N protein with M protein was not affected in either of the chimeric viruses. Moreover, the SARS-CoV N substitutions did not alter the fidelity of leader-body junction formation during subgenomic mRNA synthesis. These results more clearly delineate the functions of N protein and establish a basis for further exploration of the mechanism of genomic RNA packaging. This work describes the interactions of the two RNA-binding domains of the nucleocapsid protein of a model coronavirus, mouse hepatitis virus. The main finding is that the second of the two domains plays an essential role in recognizing the RNA structure that allows the selective packaging of genomic RNA into assembled virions.

  3. Identification and Validation of Novel Small Molecule Disruptors of HuR-mRNA Interaction

    PubMed Central

    Wu, Xiaoqing; Lan, Lan; Wilson, David Michael; Marquez, Rebecca T.; Tsao, Wei-chung; Gao, Philip; Roy, Anuradha; Turner, Benjamin Andrew; McDonald, Peter; Tunge, Jon A; Rogers, Steven A; Dixon, Dan A.; Aubé, Jeffrey; Xu, Liang

    2015-01-01

    HuR, an RNA binding protein, binds to adenine- and uridine-rich elements (ARE) in the 3′-untranslated region (UTR) of target mRNAs, regulating their stability and translation. HuR is highly abundant in many types of cancer, and it promotes tumorigenesis by interacting with cancer-associated mRNAs, which encode proteins that are implicated in different tumor processes including cell proliferation, cell survival, angiogenesis, invasion, and metastasis. Drugs that disrupt the stabilizing effect of HuR upon mRNA targets could have dramatic effects on inhibiting cancer growth and persistence. In order to identify small molecules that directly disrupt the HuR–ARE interaction, we established a fluorescence polarization (FP) assay optimized for high throughput screening (HTS) using HuR protein and an ARE oligo from Musashi RNA-binding protein 1 (Msi1) mRNA, a HuR target. Following the performance of an HTS of ~6000 compounds, we discovered a cluster of potential disruptors, which were then validated by AlphaLISA (Amplified Luminescent Proximity Homogeneous Assay), surface plasmon resonance (SPR), ribonucleoprotein immunoprecipitation (RNP IP) assay, and luciferase reporter functional studies. These compounds disrupted HuR–ARE interactions at the nanomolar level and blocked HuR function by competitive binding to HuR. These results support future studies toward chemical probes for a HuR function study and possibly a novel therapy for HuR-overexpressing cancers. PMID:25750985

  4. Oncoprotein AEG-1 is an endoplasmic reticulum RNA-binding protein whose interactome is enriched in organelle resident protein-encoding mRNAs.

    PubMed

    Hsu, Jack C-C; Reid, David W; Hoffman, Alyson M; Sarkar, Devanand; Nicchitta, Christopher V

    2018-05-01

    Astrocyte elevated gene-1 (AEG-1), an oncogene whose overexpression promotes tumor cell proliferation, angiogenesis, invasion, and enhanced chemoresistance, is thought to function primarily as a scaffolding protein, regulating PI3K/Akt and Wnt/β-catenin signaling pathways. Here we report that AEG-1 is an endoplasmic reticulum (ER) resident integral membrane RNA-binding protein (RBP). Examination of the AEG-1 RNA interactome by HITS-CLIP and PAR-CLIP methodologies revealed a high enrichment for endomembrane organelle-encoding transcripts, most prominently those encoding ER resident proteins, and within this cohort, for integral membrane protein-encoding RNAs. Cluster mapping of the AEG-1/RNA interaction sites demonstrated a normalized rank order interaction of coding sequence >5' untranslated region, with 3' untranslated region interactions only weakly represented. Intriguingly, AEG-1/membrane protein mRNA interaction sites clustered downstream from encoded transmembrane domains, suggestive of a role in membrane protein biogenesis. Secretory and cytosolic protein-encoding mRNAs were also represented in the AEG-1 RNA interactome, with the latter category notably enriched in genes functioning in mRNA localization, translational regulation, and RNA quality control. Bioinformatic analyses of RNA-binding motifs and predicted secondary structure characteristics indicate that AEG-1 lacks established RNA-binding sites though shares the property of high intrinsic disorder commonly seen in RBPs. These data implicate AEG-1 in the localization and regulation of secretory and membrane protein-encoding mRNAs and provide a framework for understanding AEG-1 function in health and disease. © 2018 Hsu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  5. Maternal Nanos-Dependent RNA Stabilization in the Primordial Germ Cells of Drosophila Embryos.

    PubMed

    Sugimori, Seiko; Kumata, Yuji; Kobayashi, Satoru

    2018-01-01

    Nanos (Nos) is an evolutionary conserved protein expressed in the germline of various animal species. In Drosophila, maternal Nos protein is essential for germline development. In the germline progenitors, or the primordial germ cells (PGCs), Nos binds to the 3' UTR of target mRNAs to repress their translation. In contrast to this prevailing role of Nos, here we report that the 3' UTR of CG32425 mRNA mediates Nos-dependent RNA stabilization in PGCs. We found that the level of mRNA expressed from a reporter gene fused to the CG32425 3' UTR was significantly reduced in PGCs lacking maternal Nos (nos PGCs) as compared with normal PGCs. By deleting the CG32425 3' UTR, we identified the region required for mRNA stabilization, which includes Nos-binding sites. In normal embryos, CG32425 mRNA was maternally supplied into PGCs and remained in this cell type during embryogenesis. However, as expected from our reporter assay, the levels of CG32425 mRNA and its protein product expressed in nos PGCs were lower than in normal PGCs. Thus, we propose that Nos protein has dual functions in translational repression and stabilization of specific RNAs to ensure proper germline development. © 2017 Japanese Society of Developmental Biologists.

  6. Abnormal mRNA Expression Levels of Telomere-Binding Proteins Represent Biomarkers in Myelodysplastic Syndromes: A Case-Control Study.

    PubMed

    Liu, Baoshan; Yan, Rongdi; Zhang, Jie; Wang, Bin; Sun, Hu; Cui, Xing

    2017-08-02

    As evidence was shown that abnormal shortening of telomeres begins to accumulate in myelodysplastic syndrome (MDS) patients, this study was conducted to determine the relationship between the mRNA expression levels of telomere-binding proteins (TRF1/TRF2/TIN2/TPP1/POT1/RAP1) and the risk level in MDS. There were 40 patients with MDS and 40 normal controls in this study. Methods including telomere content assays and quantitative reverse transcription-polymerase chain reaction were used to examine the mRNA levels of TRF1/TRF2/TIN2/TPP1/POT1/RAP1 in patients with MDS. Compared to the normal group used as a control, the mRNA expression levels of RAP1/POT1/TPP1 of the patients with MDS were decreased, whereas their levels of TRF1/TRF2 and TIN2 were increased. A positive correlation was found between the TRF1, TRF2, and TIN2 mRNA expression levels and the risk level of the International Prognostic Scoring System (IPSS) and the World Health Organization Prognostic Scoring System (WPSS) criteria; however, a negative correlation was found between RAP1/POT1/TPP1 mRNA expression levels and the risk levels of IPSS and WPSS criteria. Because the reduction of TRF1/TRF2/TIN2 mRNA expression and the increase of RAP1/POT1/TPP1 mRNA expression are closely related to the risk levels of the IPSS and WPSS criteria in MDS, it is thought that these telomere-binding proteins could lead to abnormal telomere length and function, which cause chromosomal abnormalities in MDS. With this evidence, we suggest that those proteins' mRNA expressions could be used as biomarkers for the assessment of the risk degree of MDS patients.

  7. Microtubules as platforms for probing liquid-liquid phase separation in cells: application to RNA-binding proteins.

    PubMed

    Maucuer, Alexandre; Desforges, Bénédicte; Joshi, Vandana; Boca, Mirela; Kretov, Dmitry; Hamon, Loic; Bouhss, Ahmed; Curmi, Patrick A; Pastré, David

    2018-05-04

    Liquid-liquid phase separation enables compartmentalization of biomolecules in cells, notably RNA and associated proteins in the nucleus. Besides critical functions in RNA processing, there is a major interest in deciphering the molecular mechanisms of compartmentalization orchestrated by RNA-binding proteins such as TDP-43 and FUS due to their link to neuron diseases. However, tools for probing compartmentalization in cells are lacking. Here we developed a method to analyze the mixing:demixing of two different phases in a cellular context. The principle is the following: mRNA-binding proteins are confined on microtubules and quantitative parameters defining their spatial segregation are measured along the microtubule network. Through this approach, we found that four mRNA binding proteins, HuR, G3BP1, TDP-43 and FUS form mRNA-rich liquid-like compartments on microtubules. TDP-43 is partly miscible with FUS but immiscible with either HuR or G3BP1. We also demonstrate that mRNA is essential to capture the mixing:demixing behavior of RNA-binding proteins in cells. Altogether we show that microtubules can be used as platforms to understand the mechanisms underlying liquid-liquid phase separation and their deregulation in human diseases. © 2018. Published by The Company of Biologists Ltd.

  8. Pheromone Binding Protein EhipPBP1 Is Highly Enriched in the Male Antennae of the Seabuckthorn Carpenterworm and Is Binding to Sex Pheromone Components

    PubMed Central

    Hu, Ping; Gao, Chenglong; Zong, Shixiang; Luo, Youqing; Tao, Jing

    2018-01-01

    The seabuckthorn carpenterworm moth Eogystia hippophaecolus is a major threat to seabuckthorn plantations, causing considerable ecological and economic losses in China. Transcriptomic analysis of E. hippophaecolus previously identified 137 olfactory proteins, including three pheromone-binding proteins (PBPs). We investigated the function of E. hippophaecolus PBP1 by studying its mRNA and protein expression profiles and its binding ability with different compounds. The highest levels of expression were in the antennae, particularly in males, with much lower levels of expression in the legs and external genitals. Recombinant PBP1 showed strong binding to sex-pheromone components, suggesting that antennal EhipPBP1 is involved in binding sex-pheromone components during pheromone communication. PMID:29755369

  9. Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP)

    PubMed Central

    Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.

    2016-01-01

    Gene regulation at the post-transcriptional level is frequently based on cis- and trans-acting factors on target mRNAs. We found a C-rich element (CRE) in mu-opioid receptor (MOR) 3′-untranslated region (UTR) to which poly (rC) binding protein 1 (PCBP1) binds, resulting in MOR mRNA stabilization. RNA immunoprecipitation and RNA EMSA revealed the formation of PCBP1-RNA complexes at the element. Knockdown of PCBP1 decreased MOR mRNA half-life and protein expression. Stimulation by forskolin increased cytoplasmic localization of PCBP1 and PCBP1/MOR 3′-UTR interactions via increased serine phosphorylation that was blocked by protein kinase A (PKA) or (phosphatidyl inositol-3) PI3-kinase inhibitors. The forskolin treatment also enhanced serine- and tyrosine-phosphorylation of AU-rich element binding protein (AUF1), concurrent with its increased binding to the CRE, and led to an increased interaction of poly A binding protein (PABP) with the CRE and poly(A) sites. AUF1 phosphorylation also led to an increased interaction with PCBP1. These findings suggest that a single co-regulator, PCBP1, plays a crucial role in stabilizing MOR mRNA, and is induced by PKA signaling by conforming to AUF1 and PABP. PMID:27836661

  10. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.

    PubMed

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M

    2016-03-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends. © 2016 Müller-McNicoll et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Mammalian Peptidylglycine α-Amidating Monooxygenase mRNA Expression Can Be Modulated by the La Autoantigen

    PubMed Central

    Brenet, Fabienne; Dussault, Nadège; Borch, Jonas; Ferracci, Géraldine; Delfino, Christine; Roepstorff, Peter; Miquelis, Raymond; Ouafik, L'Houcine

    2005-01-01

    Peptidylglycine α-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the COOH-terminal α-amidation of peptidylglycine substrates, yielding amidated products. We have previously reported a putative regulatory RNA binding protein (PAM mRNA-BP) that binds specifically to the 3′ untranslated region (UTR) of PAM-mRNA. Here, the PAM mRNA-BP was isolated and revealed to be La protein using affinity purification onto a 3′ UTR PAM RNA, followed by tandem mass spectrometry identification. We determined that the core binding sequence is approximately 15-nucleotides (nt) long and is located 471 nt downstream of the stop codon. Moreover, we identified the La autoantigen as a protein that specifically binds the 3′ UTR of PAM mRNA in vivo and in vitro. Furthermore, La protein overexpression caused a nuclear retention of PAM mRNAs and resulted in the down-regulation of endogenous PAM activity. Most interestingly, the nuclear retention of PAM mRNA is lost upon expressing the La proteins that lack a conserved nuclear retention element, suggesting a direct association between PAM mRNA and La protein in vivo. Reporter assays using a chimeric mRNA that combined luciferase and the 3′ UTR of PAM mRNA demonstrated a decrease of the reporter activity due to an increase in the nuclear localization of reporter mRNAs, while the deletion of the 15-nt La binding site led to their clear-cut cytoplasmic relocalization. The results suggest an important role for the La protein in the modulation of PAM expression, possibly by mechanisms that involve a nuclear retention and perhaps a processing of pre-PAM mRNA molecules. PMID:16107699

  12. Domain-specific phosphomimetic mutation allows dissection of different protein kinase C (PKC) isotype-triggered activities of the RNA binding protein HuR.

    PubMed

    Schulz, Sebastian; Doller, Anke; Pendini, Nicole R; Wilce, Jacqueline A; Pfeilschifter, Josef; Eberhardt, Wolfgang

    2013-12-01

    The ubiquitous mRNA binding protein human antigen R (HuR) participates in the post-transcriptional regulation of many AU-rich element (ARE)-bearing mRNAs. Previously, by using in vitro kinase assay, we have identified serines (Ser) 158, 221 and 318 as targets of protein kinase C (PKC)-triggered phosphorylation. In this study, we tested whether GFP- or GST-tagged HuR constructs bearing a phosphomimetic Ser (S)-to-Asp (D) substitution at the different PKC target sites, would affect different HuR functions including HuR nucleo-cytoplasmic redistribution and binding to different types of ARE-containing mRNAs. The phosphomimetic GFP-tagged HuR protein bearing a phosphomimetic substitution in the hinge region of HuR (HuR-S221D) showed an increased cytoplasmic abundance when compared to wild-type HuR. Conversely, data from in vitro kinase assay and electrophoretic mobility shift assay (EMSA), implicates that phosphorylation at Ser 221 is not relevant for mRNA binding of HuR. Quantification of in vitro binding affinities of GST-tagged wild-type HuR and corresponding HuR proteins bearing a phosphomimetic substitution in either RRM2 (HuR-S158D) or in RRM3 (HuR-S318D) by microscale thermophoresis (MST) indicates a specific binding of wild-type HuR to type I, II or type III-ARE-oligonucleotides in the high nanomolar range. Interestingly, phosphomimetic mutation at position 158 or 318 had a negative influence on HuR binding to type I- and type II-ARE-mRNAs whereas it significantly enhanced HuR affinity to a type III-ARE substrate. Our data suggest that differential phosphorylation of HuR by PKCs at different HuR domains coordinates subcellular HuR distribution and leads to a preferential binding to U-rich bearing target mRNA. © 2013.

  13. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function.

    PubMed

    Bassell, Gary J; Warren, Stephen T

    2008-10-23

    Fragile X syndrome is the most common inherited form of cognitive deficiency in humans and perhaps the best-understood single cause of autism. A trinucleotide repeat expansion, inactivating the X-linked FMR1 gene, leads to the absence of the fragile X mental retardation protein. FMRP is a selective RNA-binding protein that regulates the local translation of a subset of mRNAs at synapses in response to activation of Gp1 metabotropic glutamate receptors (mGluRs) and possibly other receptors. In the absence of FMRP, excess and dysregulated mRNA translation leads to altered synaptic function and loss of protein synthesis-dependent plasticity. Recent evidence indicates the role of FMRP in regulated mRNA transport in dendrites. New studies also suggest a possible local function of FMRP in axons that may be important for guidance, synaptic development, and formation of neural circuits. The understanding of FMRP function at synapses has led to rationale therapeutic approaches.

  14. IMP3 Stabilization of WNT5B mRNA Facilitates TAZ Activation in Breast Cancer.

    PubMed

    Samanta, Sanjoy; Guru, Santosh; Elaimy, Ameer L; Amante, John J; Ou, Jianhong; Yu, Jun; Zhu, Lihua J; Mercurio, Arthur M

    2018-05-29

    Insulin-like growth factor-2 mRNA-binding protein 3 (IMP3) is an oncofetal protein associated with many aggressive cancers and implicated in the function of breast cancer stem cells (CSCs). The mechanisms involved, however, are poorly understood. We observed that IMP3 facilitates the activation of TAZ, a transcriptional co-activator of Hippo signaling that is necessary for the function of breast CSCs. The mechanism by which IMP3 activates TAZ involves both mRNA stability and transcriptional regulation. IMP3 stabilizes the mRNA of an alternative WNT ligand (WNT5B) indirectly by repressing miR145-5p, which targets WNT5B, resulting in TAZ activation by alternative WNT signaling. IMP3 also facilitates the transcription of SLUG, which is necessary for TAZ nuclear localization and activation, by a mechanism that is also mediated by WNT5B. These results demonstrate that TAZ can be regulated by an mRNA-binding protein and that this regulation involves the integration of Hippo and alternative WNT-signaling pathways. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Protein-protein interactions and cancer: targeting the central dogma.

    PubMed

    Garner, Amanda L; Janda, Kim D

    2011-01-01

    Between 40,000 and 200,000 protein-protein interactions have been predicted to exist within the human interactome. As these interactions are of a critical nature in many important cellular functions and their dysregulation is causal of disease, the modulation of these binding events has emerged as a leading, yet difficult therapeutic arena. In particular, the targeting of protein-protein interactions relevant to cancer is of fundamental importance as the tumor-promoting function of several aberrantly expressed proteins in the cancerous state is directly resultant of its ability to interact with a protein-binding partner. Of significance, these protein complexes play a crucial role in each of the steps of the central dogma of molecular biology, the fundamental processes of genetic transmission. With the many important discoveries being made regarding the mechanisms of these genetic process, the identification of new chemical probes are needed to better understand and validate the druggability of protein-protein interactions related to the central dogma. In this review, we provide an overview of current small molecule-based protein-protein interaction inhibitors for each stage of the central dogma: transcription, mRNA splicing and translation. Importantly, through our analysis we have uncovered a lack of necessary probes targeting mRNA splicing and translation, thus, opening up the possibility for expansion of these fields.

  16. The landscape of the non-canonical RNA-binding site of Gemin5 unveils a feedback loop counteracting the negative effect on translation.

    PubMed

    Francisco-Velilla, Rosario; Fernandez-Chamorro, Javier; Dotu, Ivan; Martinez-Salas, Encarnación

    2018-05-16

    Gemin5 is a predominantly cytoplasmic protein that downregulates translation, beyond controlling snRNPs assembly. The C-terminal region harbors a non-canonical RNA-binding site consisting of two domains, RBS1 and RBS2, which differ in RNA-binding capacity and the ability to modulate translation. Here, we show that these domains recognize distinct RNA targets in living cells. Interestingly, the most abundant and exclusive RNA target of the RBS1 domain was Gemin5 mRNA. Biochemical and functional characterization of this target demonstrated that RBS1 polypeptide physically interacts with a predicted thermodynamically stable stem-loop upregulating mRNA translation, thereby counteracting the negative effect of Gemin5 protein on global protein synthesis. In support of this result, destabilization of the stem-loop impairs the stimulatory effect on translation. Moreover, RBS1 stimulates translation of the endogenous Gemin5 mRNA. Hence, although the RBS1 domain downregulates global translation, it positively enhances translation of RNA targets carrying thermodynamically stable secondary structure motifs. This mechanism allows fine-tuning the availability of Gemin5 to play its multiple roles in gene expression control.

  17. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking

    PubMed Central

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-01-01

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes. DOI: http://dx.doi.org/10.7554/eLife.06041.001 PMID:25985087

  18. Two novel LRR-only proteins in Chlamys farreri: Similar in structure, yet different in expression profile and pattern recognition.

    PubMed

    Wang, Mengqiang; Wang, Lingling; Xin, Lusheng; Wang, Xiudan; Wang, Lin; Xu, Jianchao; Jia, Zhihao; Yue, Feng; Wang, Hao; Song, Linsheng

    2016-06-01

    Leucine-rich repeat (LRR)-only proteins could mediate protein-ligand and protein-protein interactions and be involved in the immune response. In the present study, two novel LRR-only proteins, CfLRRop-2 and CfLRRop-3, were identified and characterized from scallop Chlamys farreri. They both contained nine LRR motifs with the consensus signature sequence LxxLxLxxNxL and formed typical horseshoe structure. The CfLRRop-2 and CfLRRop-3 mRNA transcripts were constitutively expressed in haemocytes, muscle, mantle, gill, haepatopancreas and gonad, with the highest expression level in haepatopancreas and gill, respectively. During the ontogenesis of scallop, the mRNA transcripts of CfLRRop-2 were kept at a high level in oocytes and embryos, while those of CfLRRop-3 were expressed at a rather low level from oocytes to blastula. Their mRNA transcripts were significantly increased after the stimulation of lipopolysaccharide (LPS), peptidoglycan (PGN), glucan (GLU) and polyinosinic-polycytidylic acid (poly I:C), and the mRNA expression of CfLRRop-2 rose more intensely than that of CfLRRop-3. After the suppression of CfTLR (previously identified Toll-like receptor in C. farreri) via RNA interference (RNAi), CfLRRop-3 mRNA transcripts increased more intensely and lastingly than those of CfLRRop-2. The rCfLRRop-3 protein could bind LPS, PGN, GLU and poly I:C, while rCfLRRop-2 exhibited no significant binding activity to them. Additionally, rCfLRRop-2 could significantly induce the release of TNF-α from the mixed primary cultured scallop haemocytes, but rCfLRRop-3 failed. These results collectively indicated that CfLRRop-2 might act as an immune effector or pro-inflammatory factor, while CfLRRop-3 would function as a pattern recognition receptor (PRR), suggesting the function of LRR-only protein family has differentiated in scallop. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Interaction of RNA-binding protein HuR and miR-466i regulates GM-CSF expression.

    PubMed

    Chen, Jing; Adamiak, William; Huang, Ganlei; Atasoy, Ulus; Rostami, Abdolmohamad; Yu, Shiguang

    2017-12-08

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by T helper 17 (Th17) cells plays an essential role in autoimmune diseases. Transcriptional regulation of Th17 cell differentiation has been extensively studied, but post-transcriptional regulation of Th17 cell differentiation has remained less well characterized. The RNA-binding protein HuR functions to promote the stability of target mRNAs via binding the AU-rich elements of the 3' untranslated region (3'UTR) of numerous pro-inflammatory cytokines including IL-4, IL-13, IL-17 and TNF-α. However, whether HuR regulates GM-CSF expression in Th17 cells has not been fully investigated. Here we showed that HuR conditional knockout (KO) Th17 cells have decreased GM-CSF mRNA in comparison with wild-type (WT) Th17 cells, and that HuR binds directly to GM-CSF mRNA 3'UTR. Interestingly, HuR deficiency increased the levels of certain microRNA expression in Th17 cells; for example, miR-466i functioned to mediate GM-CSF and IL-17 mRNA decay, which was confirmed by in vitro luciferase assay. Furthermore, we found that HuR promoted Mxi1 expression to inhibit certain miRNA expression. Taken together, these findings indicate that interaction of HuR and miR-466i orchestrates GM-CSF expression in Th17 cells.

  20. Patterns of gene expression in atrophying skeletal muscles: response to food deprivation

    NASA Technical Reports Server (NTRS)

    Jagoe, R. Thomas; Lecker, Stewart H.; Gomes, Marcelo; Goldberg, Alfred L.

    2002-01-01

    During fasting and many systemic diseases, muscle undergoes rapid loss of protein and functional capacity. To define the transcriptional changes triggering muscle atrophy and energy conservation in fasting, we used cDNA microarrays to compare mRNAs from muscles of control and food-deprived mice. Expression of >94% of genes did not change, but interesting patterns emerged among genes that were differentially expressed: 1) mRNAs encoding polyubiquitin, ubiquitin extension proteins, and many (but not all) proteasome subunits increased, which presumably contributes to accelerated protein breakdown; 2) a dramatic increase in mRNA for the ubiquitin ligase, atrogin-1, but not most E3s; 3) a significant suppression of mRNA for myosin binding protein H (but not other myofibrillar proteins) and IGF binding protein 5, which may favor cell protein loss; 4) decreases in mRNAs for several glycolytic enzymes and phosphorylase kinase subunits, and dramatic increases in mRNAs for pyruvate dehydrogenase kinase 4 and glutamine synthase, which should promote glucose sparing and gluconeogenesis. During fasting, metallothionein mRNA increased dramatically, mRNAs for extracellular matrix components fell, and mRNAs that may favor cap-independent mRNA translation rose. Significant changes occurred in mRNAs for many growth-related proteins and transcriptional regulators. These transcriptional changes indicate a complex adaptive program that should favor protein degradation and suppress glucose oxidation in muscle. Similar analysis of muscles atrophying for other causes is allowing us to identify a set of atrophy-specific changes in gene expression.

  1. Hsp70 Is a Novel Posttranscriptional Regulator of Gene Expression That Binds and Stabilizes Selected mRNAs Containing AU-Rich Elements

    PubMed Central

    Kishor, Aparna; Tandukar, Bishal; Ly, Yann V.; Toth, Eric A.; Suarez, Yvelisse; Brewer, Gary

    2013-01-01

    The AU-rich elements (AREs) encoded within many mRNA 3′ untranslated regions (3′UTRs) are targets for factors that control transcript longevity and translational efficiency. Hsp70, best known as a protein chaperone with well-defined peptide-refolding properties, is known to interact with ARE-like RNA substrates in vitro. Here, we show that cofactor-free preparations of Hsp70 form direct, high-affinity complexes with ARE substrates based on specific recognition of U-rich sequences by both the ATP- and peptide-binding domains. Suppressing Hsp70 in HeLa cells destabilized an ARE reporter mRNA, indicating a novel ARE-directed mRNA-stabilizing role for this protein. Hsp70 also bound and stabilized endogenous ARE-containing mRNAs encoding vascular endothelial growth factor (VEGF) and Cox-2, which involved a mechanism that was unaffected by an inhibitor of its protein chaperone function. Hsp70 recognition and stabilization of VEGF mRNA was mediated by an ARE-like sequence in the proximal 3′UTR. Finally, stabilization of VEGF mRNA coincided with the accumulation of Hsp70 protein in HL60 promyelocytic leukemia cells recovering from acute thermal stress. We propose that the binding and stabilization of selected ARE-containing mRNAs may contribute to the cytoprotective effects of Hsp70 following cellular stress but may also provide a novel mechanism linking constitutively elevated Hsp70 expression to the development of aggressive neoplastic phenotypes. PMID:23109422

  2. Sex-lethal promotes nuclear retention of msl2 mRNA via interactions with the STAR protein HOW

    PubMed Central

    Graindorge, Antoine; Carré, Clément; Gebauer, Fátima

    2013-01-01

    Female-specific repression of male-specific-lethal-2 (msl2) mRNA in Drosophila melanogaster provides a paradigm for coordinated control of gene expression by RNA-binding complexes. Repression is orchestrated by Sex-lethal (SXL), which binds to the 5′ and 3′ untranslated regions (UTRs) of the mRNA and inhibits splicing in the nucleus and subsequent translation in the cytoplasm. Here we show that SXL ensures msl2 silencing by yet a third mechanism that involves inhibition of nucleocytoplasmic transport of msl2 mRNA. To identify SXL cofactors in msl2 regulation, we devised a two-step purification method termed GRAB (GST pull-down and RNA affinity binding) and identified Held-Out-Wings (HOW) as a component of the msl2 5′ UTR-associated complex. HOW directly interacts with SXL and binds to two sequence elements in the msl2 5′ UTR. Depletion of HOW reduces the capacity of SXL to repress the expression of msl2 reporters without affecting SXL-mediated regulation of splicing or translation. Instead, HOW is required for SXL to retain msl2 transcripts in the nucleus. Cooperation with SXL confers a sex-specific role to HOW. Our results uncover a novel function of SXL in nuclear mRNA retention and identify HOW as a mediator of this function. PMID:23788626

  3. RNA-Binding Protein Dnd1 Promotes Breast Cancer Apoptosis by Stabilizing the Bim mRNA in a miR-221 Binding Site.

    PubMed

    Cheng, Feng; Pan, Ying; Lu, Yi-Min; Zhu, Lei; Chen, Shuzheng

    2017-01-01

    RNA-binding proteins (RBPs) and miRNAs are capable of controlling processes in normal development and cancer. Both of them could determine RNA transcripts fate from synthesis to decay. One such RBP, Dead end (Dnd1), is essential for regulating germ-cell viability and suppresses the germ-cell tumors development, yet how it exerts its functions in breast cancer has remained unresolved. The level of Dnd1 was detected in 21 cancerous tissues paired with neighboring normal tissues by qRT-PCR. We further annotated TCGA (The Cancer Genome Atlas) mRNA expression profiles and found that the expression of Dnd1 and Bim is positively correlated ( p = 0.04). Patients with higher Dnd1 expression level had longer overall survival ( p = 0.0014) by KM Plotter tool. Dnd1 knockdown in MCF-7 cells decreased Bim expression levels and inhibited apoptosis. While knockdown of Dnd1 promoted the decay of Bim mRNA 3'UTR, the stability of Bim-5'UTR was not affected. In addition, mutation of miR-221-binding site in Bim-3'UTR canceled the effect of Dnd1 on Bim mRNA. Knockdown of Dnd1 in MCF-7 cells confirmed that Dnd1 antagonized miR-221-inhibitory effects on Bim expression. Overall, our findings indicate that Dnd1 facilitates apoptosis by increasing the expression of Bim via its competitive combining with miR-221 in Bim-3'UTR. The new function of Dnd1 may contribute to a vital role in breast cancer development.

  4. The Mitochondrion-Targeted PENTATRICOPEPTIDE REPEAT78 Protein Is Required for nad5 Mature mRNA Stability and Seed Development in Maize.

    PubMed

    Zhang, Ya-Feng; Suzuki, Masaharu; Sun, Feng; Tan, Bao-Cai

    2017-10-09

    Pentatricopepetide repeat (PPR) proteins are a large family of RNA-binding proteins involved in RNA metabolism in plant organelles. Although many PPR proteins have been functionally studied, few of them are identified with a function in mitochondrial RNA stability. By using a reverse genetic approach, we characterized the role of the mitochondrion-targeted PPR78 protein in nad5 mature mRNA stability and maize (Zea mays) seed development. Loss of PPR78 function leads to a dramatic reduction in the steady-state level of mitochondrial nad5 mature mRNA, blocks the assembly of complex I in the electron transport chain, and causes an arrest in embryogenesis and endosperm development. Characterization of a second strong allele confirms the function of PPR78 in nad5 mRNA accumulation and maize seed development. The generation of mature nad5 requires the assembly of three distinct precursor RNAs via trans-splicing reactions, and the accumulation of nad5T1 precursor is reduced in the ppr78 mutants. However, it is the instability of mature nad5 rather than nad5T1 causing loss of the full-length nad5 transcript, and degradation of nad5 losing both translation start and stop codons is enriched in the mutant. Our data imply the assembly of mature nad5 mRNA precedes the protection of PPR78. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  5. Dynein-Dependent Transport of nanos RNA in Drosophila Sensory Neurons Requires Rumpelstiltskin and the Germ Plasm Organizer Oskar

    PubMed Central

    Xu, Xin; Brechbiel, Jillian L.

    2013-01-01

    Intracellular mRNA localization is a conserved mechanism for spatially regulating protein production in polarized cells, such as neurons. The mRNA encoding the translational repressor Nanos (Nos) forms ribonucleoprotein (RNP) particles that are dendritically localized in Drosophila larval class IV dendritic arborization (da) neurons. In nos mutants, class IV da neurons exhibit reduced dendritic branching complexity, which is rescued by transgenic expression of wild-type nos mRNA but not by a localization-compromised nos derivative. While localization is essential for nos function in dendrite morphogenesis, the mechanism underlying the transport of nos RNP particles was unknown. We investigated the mechanism of dendritic nos mRNA localization by analyzing requirements for nos RNP particle motility in class IV da neuron dendrites through live imaging of fluorescently labeled nos mRNA. We show that dynein motor machinery components mediate transport of nos mRNA in proximal dendrites. Two factors, the RNA-binding protein Rumpelstiltskin and the germ plasm protein Oskar, which are required for diffusion/entrapment-mediated localization of nos during oogenesis, also function in da neurons for formation and transport of nos RNP particles. Additionally, we show that nos regulates neuronal function, most likely independent of its dendritic localization and function in morphogenesis. Our results reveal adaptability of localization factors for regulation of a target transcript in different cellular contexts. PMID:24027279

  6. Dynein-dependent transport of nanos RNA in Drosophila sensory neurons requires Rumpelstiltskin and the germ plasm organizer Oskar.

    PubMed

    Xu, Xin; Brechbiel, Jillian L; Gavis, Elizabeth R

    2013-09-11

    Intracellular mRNA localization is a conserved mechanism for spatially regulating protein production in polarized cells, such as neurons. The mRNA encoding the translational repressor Nanos (Nos) forms ribonucleoprotein (RNP) particles that are dendritically localized in Drosophila larval class IV dendritic arborization (da) neurons. In nos mutants, class IV da neurons exhibit reduced dendritic branching complexity, which is rescued by transgenic expression of wild-type nos mRNA but not by a localization-compromised nos derivative. While localization is essential for nos function in dendrite morphogenesis, the mechanism underlying the transport of nos RNP particles was unknown. We investigated the mechanism of dendritic nos mRNA localization by analyzing requirements for nos RNP particle motility in class IV da neuron dendrites through live imaging of fluorescently labeled nos mRNA. We show that dynein motor machinery components mediate transport of nos mRNA in proximal dendrites. Two factors, the RNA-binding protein Rumpelstiltskin and the germ plasm protein Oskar, which are required for diffusion/entrapment-mediated localization of nos during oogenesis, also function in da neurons for formation and transport of nos RNP particles. Additionally, we show that nos regulates neuronal function, most likely independent of its dendritic localization and function in morphogenesis. Our results reveal adaptability of localization factors for regulation of a target transcript in different cellular contexts.

  7. The function of the inner nuclear envelope protein SUN1 in mRNA export is regulated by phosphorylation.

    PubMed

    Li, Ping; Stumpf, Maria; Müller, Rolf; Eichinger, Ludwig; Glöckner, Gernot; Noegel, Angelika A

    2017-08-22

    SUN1, a component of the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex, functions in mammalian mRNA export through the NXF1-dependent pathway. It associates with mRNP complexes by direct interaction with NXF1. It also binds to the NPC through association with the nuclear pore component Nup153, which is involved in mRNA export. The SUN1-NXF1 association is at least partly regulated by a protein kinase C (PKC) which phosphorylates serine 113 (S113) in the N-terminal domain leading to reduced interaction. The phosphorylation appears to be important for the SUN1 function in nuclear mRNA export since GFP-SUN1 carrying a S113A mutation was less efficient in restoring mRNA export after SUN1 knockdown as compared to the wild type protein. By contrast, GFP-SUN1-S113D resembling the phosphorylated state allowed very efficient export of poly(A)+RNA. Furthermore, probing a possible role of the LINC complex component Nesprin-2 in this process we observed impaired mRNA export in Nesprin-2 knockdown cells. This effect might be independent of SUN1 as expression of a GFP tagged SUN-domain deficient SUN1, which no longer can interact with Nesprin-2, did not affect mRNA export.

  8. Staufen1 dimerizes via a conserved motif and a degenerate dsRNA-binding domain to promote mRNA decay

    PubMed Central

    Gleghorn, Michael L.; Gong, Chenguang; Kielkopf, Clara L.; Maquat, Lynne E.

    2014-01-01

    Staufen (STAU)1-mediated mRNA decay (SMD) degrades mammalian-cell mRNAs that bind the double-stranded (ds)RNA-binding protein STAU1 in their 3′-untranslated region. We report a new motif, which typifies STAU homologs from all vertebrate classes, that is responsible for human (h)STAU1 homodimerization. Our crystal structure and mutagenesis analyses reveal that this motif, now named the Staufen-swapping motif (SSM), and dsRNA-binding domain 5 (‘RBD’5) mediate protein dimerization: the two SSM α-helices of one molecule interact primarily through a hydrophobic patch with the two ‘RBD’5 α-helices of a second molecule. ‘RBD’5 adopts the canonical α-β-β-β-α fold of a functional RBD, but it lacks residues and features needed to bind duplex RNA. In cells, SSM-mediated hSTAU1 dimerization increases the efficiency of SMD by augmenting hSTAU1 binding to the ATP-dependent RNA helicase hUPF1. Dimerization regulates keratinocyte-mediated wound-healing and, undoubtedly, many other cellular processes. PMID:23524536

  9. Drosophila Pumilio Protein Contains Multiple Autonomous Repression Domains That Regulate mRNAs Independently of Nanos and Brain Tumor

    PubMed Central

    Weidmann, Chase A.

    2012-01-01

    Drosophila melanogaster Pumilio is an RNA-binding protein that potently represses specific mRNAs. In developing embryos, Pumilio regulates a key morphogen, Hunchback, in collaboration with the cofactor Nanos. To investigate repression by Pumilio and Nanos, we created cell-based assays and found that Pumilio inhibits translation and enhances mRNA decay independent of Nanos. Nanos robustly stimulates repression through interactions with the Pumilio RNA-binding domain. We programmed Pumilio to recognize a new binding site, which garners repression of new target mRNAs. We show that cofactors Brain Tumor and eIF4E Homologous Protein are not obligatory for Pumilio and Nanos activity. The conserved RNA-binding domain of Pumilio was thought to be sufficient for its function. Instead, we demonstrate that three unique domains in the N terminus of Pumilio possess the major repressive activity and can function autonomously. The N termini of insect and vertebrate Pumilio and Fem-3 binding factors (PUFs) are related, and we show that corresponding regions of human PUM1 and PUM2 have repressive activity. Other PUF proteins lack these repression domains. Our findings suggest that PUF proteins have evolved new regulatory functions through protein sequences appended to their conserved PUF repeat RNA-binding domains. PMID:22064486

  10. Drosophila Pumilio protein contains multiple autonomous repression domains that regulate mRNAs independently of Nanos and brain tumor.

    PubMed

    Weidmann, Chase A; Goldstrohm, Aaron C

    2012-01-01

    Drosophila melanogaster Pumilio is an RNA-binding protein that potently represses specific mRNAs. In developing embryos, Pumilio regulates a key morphogen, Hunchback, in collaboration with the cofactor Nanos. To investigate repression by Pumilio and Nanos, we created cell-based assays and found that Pumilio inhibits translation and enhances mRNA decay independent of Nanos. Nanos robustly stimulates repression through interactions with the Pumilio RNA-binding domain. We programmed Pumilio to recognize a new binding site, which garners repression of new target mRNAs. We show that cofactors Brain Tumor and eIF4E Homologous Protein are not obligatory for Pumilio and Nanos activity. The conserved RNA-binding domain of Pumilio was thought to be sufficient for its function. Instead, we demonstrate that three unique domains in the N terminus of Pumilio possess the major repressive activity and can function autonomously. The N termini of insect and vertebrate Pumilio and Fem-3 binding factors (PUFs) are related, and we show that corresponding regions of human PUM1 and PUM2 have repressive activity. Other PUF proteins lack these repression domains. Our findings suggest that PUF proteins have evolved new regulatory functions through protein sequences appended to their conserved PUF repeat RNA-binding domains.

  11. Visualization of RNA–protein interactions in living cells: FMRP and IMP1 interact on mRNAs

    PubMed Central

    Rackham, Oliver; Brown, Chris M

    2004-01-01

    Protein expression depends significantly on the stability, translation efficiency and localization of mRNA. These qualities are largely dictated by the RNA-binding proteins associated with an mRNA. Here, we report a method to visualize and localize RNA–protein interactions in living mammalian cells. Using this method, we found that the fragile X mental retardation protein (FMRP) isoform 18 and the human zipcode-binding protein 1 ortholog IMP1, an RNA transport factor, were present on common mRNAs. These interactions occurred predominantly in the cytoplasm, in granular structures. In addition, FMRP and IMP1 interacted independently of RNA. Tethering of FMRP to an mRNA caused IMP1 to be recruited to the same mRNA and resulted in granule formation. The intimate association of FMRP and IMP1 suggests a link between mRNA transport and translational repression in mammalian cells. PMID:15282548

  12. Targeting of cytosolic mRNA to mitochondria: naked RNA can bind to the mitochondrial surface.

    PubMed

    Michaud, Morgane; Maréchal-Drouard, Laurence; Duchêne, Anne-Marie

    2014-05-01

    Mitochondria contain hundreds of proteins but only a few are encoded by the mitochondrial genome. The other proteins are nuclear-encoded and imported into mitochondria. These proteins can be translated on free cytosolic polysomes, then targeted and imported into mitochondria. Nonetheless, numerous cytosolic mRNAs encoding mitochondrial proteins are detected at the surface of mitochondria in yeast, plants and animals. The localization of mRNAs to the vicinity of mitochondria would be a way for mitochondrial protein sorting. The mechanisms responsible for mRNA targeting to mitochondria are not clearly identified. Sequences within the mRNA molecules (cis-elements), as well as a few trans-acting factors, have been shown to be essential for targeting of some mRNAs. In order to identify receptors involved in mRNA docking to the mitochondrial surface, we have developed an in vitro mRNA binding assay with isolated plant mitochondria. We show that naked mRNAs are able to bind to isolated mitochondria, and our results strongly suggest that mRNA docking to the plant mitochondrial outer membrane requires at least one component of TOM complex. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Functional characterisation of the Schizosaccharomyces pombe homologue of the leukaemia-associated translocation breakpoint binding protein translin and its binding partner, TRAX.

    PubMed

    Jaendling, Alessa; Ramayah, Soshila; Pryce, David W; McFarlane, Ramsay J

    2008-02-01

    Translin is a conserved protein which associates with the breakpoint junctions of chromosomal translocations linked with the development of some human cancers. It binds to both DNA and RNA and has been implicated in mRNA metabolism and regulation of genome stability. It has a binding partner, translin-associated protein X (TRAX), levels of which are regulated by the translin protein in higher eukaryotes. In this study we find that this regulatory function is conserved in the lower eukaryotes, suggesting that translin and TRAX have important functions which provide a selective advantage to both unicellular and multi-cellular eukaryotes, indicating that this function may not be tissue-specific in nature. However, to date, the biological importance of translin and TRAX remains unclear. Here we systematically investigate proposals that suggest translin and TRAX play roles in controlling mitotic cell proliferation, DNA damage responses, genome stability, meiotic/mitotic recombination and stability of GT-rich repeat sequences. We find no evidence for translin and/or TRAX primary function in these pathways, indicating that the conserved biochemical function of translin is not implicated in primary pathways for regulating genome stability and/or segregation.

  14. Involvement of Hu and heterogeneous nuclear ribonucleoprotein K in neuronal differentiation through p21 mRNA post-transcriptional regulation.

    PubMed

    Yano, Masato; Okano, Hirotaka J; Okano, Hideyuki

    2005-04-01

    The Hu family is a group of neuronal RNA-binding proteins required for neuronal differentiation in the developing nervous system. Previously, Hu proteins have been shown to enhance the stabilization and/or translation of target mRNAs, such as p21 (CIP1), by binding to AU-rich elements in untranslated regions (UTRs). In this study, we show that Hu induces p21 expression, cell cycle arrest, and neuronal differentiation in mouse neuroblastoma N1E-115 cells. p21 expression is also up-regulated during Me2SO-induced differentiation in N1E-115 cells and is controlled by post-transcriptional mechanisms through its 3'-UTR. To investigate the molecular mechanisms of Hu functions, we used a proteomics strategy to isolate Hu-interacting proteins and identified heterogeneous nuclear ribonucleoprotein (hnRNP) K. hnRNP K also specifically binds to CU-rich sequences in p21 mRNA 3'-UTR and represses its translation in both nonneuronal and neuronal cells. Further, using RNA interference experiments, we show that the Hu-p21 pathway contributes to the regulation of neurite outgrowth and proliferation in N1E-115 cells, and this pathway is antagonized by hnRNP K. Our results suggest a model in which the mutually antagonistic action of two RNA-binding proteins, Hu and hnRNP K, control the timing of the switch from proliferation to neuronal differentiation through the post-transcriptional regulation of p21 mRNA.

  15. Molecular analysis of nicotinic receptor expression in autism.

    PubMed

    Martin-Ruiz, C M; Lee, M; Perry, R H; Baumann, M; Court, J A; Perry, E K

    2004-04-07

    Autism is a developmental disorder of unknown aetiopathology and lacking any specific pharmacological therapeutic intervention. Neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA) and acetylcholine have been implicated. Abnormalities in nicotinic acetylcholine receptors have been identified including cortical loss of binding to the alpha4/beta2 subtype and increase in cerebellar alpha7 binding. Receptor expression (mRNA) has not so far been systematically examined. This study aims to further explore the role of nicotinic receptors in autism by analysing nicotinic receptor subunit mRNA in conjunction with protein levels and receptor binding in different brain areas. Quantitative RT-PCR for alpha4, alpha7 and beta2 subunit mRNA expression levels; alpha3, alpha4, alpha7 and beta2 subunit protein expression immunochemistry and specific radioligand receptor binding were performed in adult autism and control brain samples from cerebral cortex and cerebellum. Alpha4 and beta2 protein expression and receptor binding density as well as alpha4 mRNA levels were lower in parietal cortex in autism, while alpha7 did not change for any of these parameters. In cerebellum, alpha4 mRNA expression was increased, whereas subunit protein and receptor levels were decreased. Alpha7 receptor binding in cerebellum was increased alongside non-significant elevations in mRNA and protein expression levels. No significant changes were found for beta2 in cerebellum. The data obtained, using complementary measures of receptor expression, indicate that reduced gene expression of the alpha4beta2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism, whilst post-transcriptional abnormalities of both this and the alpha7 subtype are apparent in the cerebellum. The findings point to dendritic and/or synaptic nicotinic receptor abnormalities that may relate to disruptions in cerebral circuitry development.

  16. RNA-binding Protein Immunoprecipitation (RIP) to Examine AUF1 Binding to Senescence-Associated Secretory Phenotype (SASP) Factor mRNA

    PubMed Central

    Alspach, Elise; Stewart, Sheila A.

    2016-01-01

    Immunoprecipitation and subsequent isolation of nucleic acids allows for the investigation of protein:nucleic acid interactions. RNA-binding protein immunoprecipitation (RIP) is used for the analysis of protein interactions with mRNA. Combining RIP with quantitative real-time PCR (qRT-PCR) further enhances the RIP technique by allowing for the quantitative assessment of RNA-binding protein interactions with their target mRNAs, and how these interactions change in different cellular settings. Here, we describe the immunoprecipitation of the RNA-binding protein AUF1 with several different factors associated with the senescence-associated secretory phenotype (SASP) (Alspach and Stewart, 2013), specifically IL6 and IL8. This protocol was originally published in Alspach et al. (2014). PMID:27453911

  17. Glucocorticoid receptor interacts with PNRC2 in a ligand-dependent manner to recruit UPF1 for rapid mRNA degradation.

    PubMed

    Cho, Hana; Park, Ok Hyun; Park, Joori; Ryu, Incheol; Kim, Jeonghan; Ko, Jesang; Kim, Yoon Ki

    2015-03-31

    Glucocorticoid receptor (GR), which was originally known to function as a nuclear receptor, plays a role in rapid mRNA degradation by acting as an RNA-binding protein. The mechanism by which this process occurs remains unknown. Here, we demonstrate that GR, preloaded onto the 5'UTR of a target mRNA, recruits UPF1 through proline-rich nuclear receptor coregulatory protein 2 (PNRC2) in a ligand-dependent manner, so as to elicit rapid mRNA degradation. We call this process GR-mediated mRNA decay (GMD). Although GMD, nonsense-mediated mRNA decay (NMD), and staufen-mediated mRNA decay (SMD) share upstream frameshift 1 (UPF1) and PNRC2, we find that GMD is mechanistically distinct from NMD and SMD. We also identify de novo cellular GMD substrates using microarray analysis. Intriguingly, GMD functions in the chemotaxis of human monocytes by targeting chemokine (C-C motif) ligand 2 (CCL2) mRNA. Thus, our data provide molecular evidence of a posttranscriptional role of the well-studied nuclear hormone receptor, GR, which is traditionally considered a transcription factor.

  18. HnRNP-like proteins as post-transcriptional regulators.

    PubMed

    Yeap, Wan-Chin; Namasivayam, Parameswari; Ho, Chai-Ling

    2014-10-01

    Plant cells contain a diverse repertoire of RNA-binding proteins (RBPs) that coordinate a network of post-transcriptional regulation. RBPs govern diverse developmental processes by modulating the gene expression of specific transcripts. Recent gene annotation and RNA sequencing clearly showed that heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins which form a family of RBPs, are also expressed in higher plants and serve specific plant functions. In addition to their involvement in post-transcriptional regulation from mRNA capping to translation, they are also involved in telomere regulation, gene silencing and regulation in chloroplast. Here, we review the involvement of plant hnRNP-like proteins in post-transcription regulation of RNA processes and their functional roles in control of plant developmental processes especially plant-specific functions including flowering, chloroplastic-specific mRNA regulation, long-distance phloem transportation and plant responses to environmental stresses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. PAPERCLIP identifies microRNA targets and a role of CstF64/64tau in promoting non-canonical poly(A) site usage

    PubMed Central

    Hwang, Hun-Way; Park, Christopher Y.; Goodarzi, Hani; Fak, John J.; Mele, Aldo; Moore, Michael J.; Saito, Yuhki; Darnell, Robert B.

    2016-01-01

    Accurate and precise annotation of the 3′ untranslated regions (3′ UTRs) is critical in understanding how mRNAs are regulated by microRNAs (miRNAs) and RNA-binding proteins (RBPs). Here we describe a method, PAPERCLIP (Poly(A) binding Protein-mediated mRNA 3′ End Retrieval by CrossLinking ImmunoPrecipitation), which shows high specificity for the mRNA 3′ ends and compares favorably to existing 3′ end mapping methods. PAPERCLIP uncovers a previously unrecognized role of CstF64/64tau in promoting the usage of a selected group of non-canonical poly(A) sites, the majority of them containing a downstream GUKKU motif. Furthermore, in mouse brain, PAPERCLIP discovers extended 3′ UTR sequences harboring functional miRNA binding sites and reveals developmentally regulated APA shifts including one in Atp2b2 that is evolutionarily conserved in human and results in a gain of a functional binding site of miR-137. PAPERCLIP provides a powerful tool to decipher post-transcriptional regulation of mRNAs through APA in vivo. PMID:27050522

  20. Vesiculoviral matrix (M) protein occupies nucleic acid binding site at nucleoporin pair (Rae1∙Nup98)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quan, Beili; Seo, Hyuk-Soo; Blobel, Günter

    2014-07-01

    mRNA export factor 1 (Rae1) and nucleoporin 98 (Nup98) are host cell targets for the matrix (M) protein of vesicular stomatitis virus (VSV). How Rae1 functions in mRNA export and how M protein targets both Rae1 and Nup98 are not understood at the molecular level. To obtain structural insights, we assembled a 1:1:1 complex of M•Rae1•Nup98 and established a crystal structure at 3.15-Å resolution. We found that the M protein contacts the Rae1•Nup98 heterodimer principally by two protrusions projecting from the globular domain of M like a finger and thumb. Both projections clamp to the side of the β-propeller ofmore » Rae1, with the finger also contacting Nup98. The most prominent feature of the finger is highly conserved Methionine 51 (Met51) with upstream and downstream acidic residues. The complementary surface on Rae1 displays a deep hydrophobic pocket, into which Met51 fastens like a bolt, and a groove of basic residues on either side, which bond to the acidic residues of the finger. Notably, the M protein competed for in vitro binding of various oligonucleotides to Rae1•Nup98. We localized this competing activity of M to its finger using a synthetic peptide. Collectively, our data suggest that Rae1 serves as a binding protein for the phosphate backbone of any nucleic acid and that the finger of M mimics this ligand. In the context of mRNA export, we propose that a given mRNA segment, after having been deproteinated by helicase, is transiently reproteinated by Nup98-tethered Rae1. We suggest that such repetitive cycles provide cytoplasmic stopover sites required for ratcheting mRNA across the nuclear pore.« less

  1. The role of mammalian Staufen on mRNA traffic: a view from its nucleocytoplasmic shuttling function.

    PubMed

    Miki, Takashi; Takano, Keizo; Yoneda, Yoshihiro

    2005-01-01

    The localization of mRNA in neuronal dendrites plays a role in both locally and temporally regulated protein synthesis, which is required for certain forms of synaptic plasticity. RNA granules constitute a dendritic mRNA transport machinery in neurons, which move along microtubules. RNA granules contain densely packed clusters of ribosomes, but lack some factors that are required for translation, suggesting that they are translationally incompetent. Recently some of the components of RNA granules have been identified, and their functions are in the process of being examined, in attempts to better understand the properties of RNA granules. Mammalian Staufen, a double-stranded RNA binding protein, is a component of RNA granules. Staufen is localized in the somatodendritic domain of neurons, and plays an important role in dendritic mRNA targeting. Recently, one of the mammalian homologs of Staufen, Staufen2 (Stau2), was shown to shuttle between the nucleus and the cytoplasm. This finding suggests the possibility that Stau2 binds RNA in the nucleus and that this ribonucleoprotein particle is transported from the nucleus to RNA granules in the cytoplasm. A closer study of this process might provide a clue to the mechanism by which RNA granules are formed.

  2. The transcriptional activator ZNF143 is essential for normal development in zebrafish

    PubMed Central

    2012-01-01

    Background ZNF143 is a sequence-specific DNA-binding protein that stimulates transcription of both small RNA genes by RNA polymerase II or III, or protein-coding genes by RNA polymerase II, using separable activating domains. We describe phenotypic effects following knockdown of this protein in developing Danio rerio (zebrafish) embryos by injection of morpholino antisense oligonucleotides that target znf143 mRNA. Results The loss of function phenotype is pleiotropic and includes a broad array of abnormalities including defects in heart, blood, ear and midbrain hindbrain boundary. Defects are rescued by coinjection of synthetic mRNA encoding full-length ZNF143 protein, but not by protein lacking the amino-terminal activation domains. Accordingly, expression of several marker genes is affected following knockdown, including GATA-binding protein 1 (gata1), cardiac myosin light chain 2 (cmlc2) and paired box gene 2a (pax2a). The zebrafish pax2a gene proximal promoter contains two binding sites for ZNF143, and reporter gene transcription driven by this promoter in transfected cells is activated by this protein. Conclusions Normal development of zebrafish embryos requires ZNF143. Furthermore, the pax2a gene is probably one example of many protein-coding gene targets of ZNF143 during zebrafish development. PMID:22268977

  3. The transcriptional activator ZNF143 is essential for normal development in zebrafish.

    PubMed

    Halbig, Kari M; Lekven, Arne C; Kunkel, Gary R

    2012-01-23

    ZNF143 is a sequence-specific DNA-binding protein that stimulates transcription of both small RNA genes by RNA polymerase II or III, or protein-coding genes by RNA polymerase II, using separable activating domains. We describe phenotypic effects following knockdown of this protein in developing Danio rerio (zebrafish) embryos by injection of morpholino antisense oligonucleotides that target znf143 mRNA. The loss of function phenotype is pleiotropic and includes a broad array of abnormalities including defects in heart, blood, ear and midbrain hindbrain boundary. Defects are rescued by coinjection of synthetic mRNA encoding full-length ZNF143 protein, but not by protein lacking the amino-terminal activation domains. Accordingly, expression of several marker genes is affected following knockdown, including GATA-binding protein 1 (gata1), cardiac myosin light chain 2 (cmlc2) and paired box gene 2a (pax2a). The zebrafish pax2a gene proximal promoter contains two binding sites for ZNF143, and reporter gene transcription driven by this promoter in transfected cells is activated by this protein. Normal development of zebrafish embryos requires ZNF143. Furthermore, the pax2a gene is probably one example of many protein-coding gene targets of ZNF143 during zebrafish development.

  4. Alternative Polyadenylation in Human Diseases

    PubMed Central

    Chang, Jae-Woong; Yeh, Hsin-Sung

    2017-01-01

    Varying length of messenger RNA (mRNA) 3′-untranslated region is generated by alternating the usage of polyadenylation sites during pre-mRNA processing. It is prevalent through all eukaryotes and has emerged as a key mechanism for controlling gene expression. Alternative polyadenylation (APA) plays an important role for cell growth, proliferation, and differentiation. In this review, we discuss the functions of APA related with various physiological conditions including cellular metabolism, mRNA processing, and protein diversity in a variety of disease models. We also discuss the molecular mechanisms underlying APA regulation, such as variations in the concentration of mRNA processing factors and RNA-binding proteins, as well as global transcriptome changes under cellular signaling pathway. PMID:29271615

  5. Dynamic Modeling of GAIT System Reveals Transcriptome Expansion and Translational Trickle Control Device

    PubMed Central

    Yao, Peng; Potdar, Alka A.; Arif, Abul; Ray, Partho Sarothi; Mukhopadhyay, Rupak; Willard, Belinda; Xu, Yichi; Yan, Jun; Saidel, Gerald M.; Fox, Paul L.

    2012-01-01

    SUMMARY Post-transcriptional regulatory mechanisms superimpose “fine-tuning” control upon “on-off” switches characteristic of gene transcription. We have exploited computational modeling with experimental validation to resolve an anomalous relationship between mRNA expression and protein synthesis. Differential GAIT (Gamma-interferon Activated Inhibitor of Translation) complex activation repressed VEGF-A synthesis to a low, constant rate despite high, variable VEGFA mRNA expression. Dynamic model simulations indicated the presence of an unidentified, inhibitory GAIT element-interacting factor. We discovered a truncated form of glutamyl-prolyl tRNA synthetase (EPRS), the GAIT constituent that binds the 3’-UTR GAIT element in target transcripts. The truncated protein, EPRSN1, prevents binding of functional GAIT complex. EPRSN1 mRNA is generated by a remarkable polyadenylation-directed conversion of a Tyr codon in the EPRS coding sequence to a stop codon (PAY*). By low-level protection of GAIT element-bearing transcripts, EPRSN1 imposes a robust “translational trickle” of target protein expression. Genome-wide analysis shows PAY* generates multiple truncated transcripts thereby contributing to transcriptome expansion. PMID:22386318

  6. The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization

    PubMed Central

    Lindsey, Stephan; T. Papoutsakis, Eleftherios

    2012-01-01

    Summary We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild-type mice, AHR-null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower-ploidy megakaryocytes (Mks). AHR mRNA increased 3·6-fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked-down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes ≥16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations. PMID:21226706

  7. The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization.

    PubMed

    Lindsey, Stephan; Papoutsakis, Eleftherios T

    2011-02-01

    We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild-type mice, AHR-null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower-ploidy megakaryocytes (Mks). AHR mRNA increased 3·6-fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked-down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes ≥16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations. © 2011 Blackwell Publishing Ltd.

  8. RNA G-quadruplexes: emerging mechanisms in disease

    PubMed Central

    Cammas, Anne

    2017-01-01

    Abstract RNA G-quadruplexes (G4s) are formed by G-rich RNA sequences in protein-coding (mRNA) and non-coding (ncRNA) transcripts that fold into a four-stranded conformation. Experimental studies and bioinformatic predictions support the view that these structures are involved in different cellular functions associated to both DNA processes (telomere elongation, recombination and transcription) and RNA post-transcriptional mechanisms (including pre-mRNA processing, mRNA turnover, targeting and translation). An increasing number of different diseases have been associated with the inappropriate regulation of RNA G4s exemplifying the potential importance of these structures on human health. Here, we review the different molecular mechanisms underlying the link between RNA G4s and human diseases by proposing several overlapping models of deregulation emerging from recent research, including (i) sequestration of RNA-binding proteins, (ii) aberrant expression or localization of RNA G4-binding proteins, (iii) repeat associated non-AUG (RAN) translation, (iv) mRNA translational blockade and (v) disabling of protein–RNA G4 complexes. This review also provides a comprehensive survey of the functional RNA G4 and their mechanisms of action. Finally, we highlight future directions for research aimed at improving our understanding on RNA G4-mediated regulatory mechanisms linked to diseases. PMID:28013268

  9. Intellectual disabilities, neuronal posttranscriptional RNA metabolism, and RNA-binding proteins: three actors for a complex scenario.

    PubMed

    Bardoni, Barbara; Abekhoukh, Sabiha; Zongaro, Samantha; Melko, Mireille

    2012-01-01

    Intellectual disability (ID) is the most frequent cause of serious handicap in children and young adults and interests 2-3% of worldwide population, representing a serious problem from the medical, social, and economic points of view. The causes are very heterogeneous. Genes involved in ID have various functions altering different pathways important in neuronal function. Regulation of mRNA metabolism is particularly important in neurons for synaptic structure and function. Here, we review ID due to alteration of mRNA metabolism. Functional absence of some RNA-binding proteins--namely, FMRP, FMR2P, PQBP1, UFP3B, VCX-A--causes different forms of ID. These proteins are involved in different steps of RNA metabolism and, even if a detailed analysis of their RNA targets has been performed so far only for FMRP, it appears clear that they modulate some aspects (translation, stability, transport, and sublocalization) of a subset of RNAs coding for proteins, whose function must be relevant for neurons. Two other proteins, DYRK1A and CDKL5, involved in Down syndrome and Rett syndrome, respectively, have been shown to have an impact on splicing efficiency of specific mRNAs. Both proteins are kinases and their effect is indirect. Interestingly, both are localized in nuclear speckles, the nuclear domains where splicing factors are assembled, stocked, and recycled and influence their biogenesis and/or their organization. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Molecular characterization and functional analysis of pheromone binding protein 1 from Cydia pomonella (L.).

    PubMed

    Tian, Z; Zhang, Y

    2016-12-01

    A full-length cDNA encoding Cydia pomonella pheromone binding protein 1 (CpomPBP1) was cloned and characterized. CpomPBP1, possessing the typical characteristics of lepidopteran odorant binding proteins, was detected to be specifically expressed in the antennae of male and female moths at the mRNA and protein level. Soluble recombinant CpomPBP1 was subjected to in vitro binding to analyse its binding properties and to search for potentially active semiochemicals. A competitive binding assay showed that three 12-carbon ligands, codlemone, 1-dodecanol and E,E-2,4-dodecadienal, were able to bind to CpomPBP1 in decreasing order of affinity. Moreover, unlike the wild-type CpomPBP1, the C-terminus truncated CpomPBP1 exhibited high affinity to ligands even in an acidic environment, suggesting that the C-terminus plays a role in preventing ligands from binding to CpomPBP1 in a lower pH environment. © 2016 The Royal Entomological Society.

  11. microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein.

    PubMed

    Pinder, Benjamin D; Smibert, Craig A

    2013-01-01

    Argonaute (Ago) proteins are typically recruited to target messenger RNAs via an associated small RNA such as a microRNA (miRNA). Here, we describe a new mechanism of Ago recruitment through the Drosophila Smaug RNA-binding protein. We show that Smaug interacts with the Ago1 protein, and that Ago1 interacts with and is required for the translational repression of the Smaug target, nanos mRNA. The Ago1/nanos mRNA interaction does not require a miRNA, but it does require Smaug. Taken together, our data suggest a model whereby Smaug directly recruits Ago1 to nanos mRNA in a miRNA-independent manner, thereby repressing translation.

  12. Human mRNA polyadenylate binding protein: evolutionary conservation of a nucleic acid binding motif.

    PubMed Central

    Grange, T; de Sa, C M; Oddos, J; Pictet, R

    1987-01-01

    We have isolated a full length cDNA (cDNA) coding for the human poly(A) binding protein. The cDNA derived 73 kd basic translation product has the same Mr, isoelectric point and peptidic map as the poly(A) binding protein. DNA sequence analysis reveals a 70,244 dalton protein. The N terminal part, highly homologous to the yeast poly(A) binding protein, is sufficient for poly(A) binding activity. This domain consists of a four-fold repeated unit of approximately 80 amino acids present in other nucleic acid binding proteins. In the C terminal part there is, as in the yeast protein, a sequence of approximately 150 amino acids, rich in proline, alanine and glutamine which together account for 48% of the residues. A 2,9 kb mRNA corresponding to this cDNA has been detected in several vertebrate cell types and in Drosophila melanogaster at every developmental stage including oogenesis. Images PMID:2885805

  13. The human insulin receptor mRNA contains a functional internal ribosome entry segment

    PubMed Central

    Spriggs, Keith A.; Cobbold, Laura C.; Ridley, Simon H.; Coldwell, Mark; Bottley, Andrew; Bushell, Martin; Willis, Anne E.; Siddle, Kenneth

    2009-01-01

    Regulation of mRNA translation is an important mechanism determining the level of expression of proteins in eukaryotic cells. Translation is most commonly initiated by cap-dependent scanning, but many eukaryotic mRNAs contain internal ribosome entry segments (IRESs), providing an alternative means of initiation capable of independent regulation. Here, we show by using dicistronic luciferase reporter vectors that the 5′-UTR of the mRNA encoding human insulin receptor (hIR) contains a functional IRES. RNAi-mediated knockdown showed that the protein PTB was required for maximum IRES activity. Electrophoretic mobility shift assays confirmed that PTB1, PTB2 and nPTB, but not unr or PTB4, bound to hIR mRNA, and deletion mapping implicated a CCU motif 448 nt upstream of the initiator AUG in PTB binding. The IR-IRES was functional in a number of cell lines, and most active in cells of neuronal origin, as assessed by luciferase reporter assays. The IRES was more active in confluent than sub-confluent cells, but activity did not change during differentiation of 3T3-L1 fibroblasts to adipocytes. IRES activity was stimulated by insulin in sub-confluent cells. The IRES may function to maintain expression of IR protein in tissues such as the brain where mRNA translation by cap-dependent scanning is less effective. PMID:19654240

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walden, William E.; Selezneva, Anna I.; Dupuy, Jérôme

    Iron regulatory protein 1 (IRP1) binds iron-responsive elements (IREs) in messenger RNAs (mRNAs), to repress translation or degradation, or binds an iron-sulfur cluster, to become a cytosolic aconitase enzyme. The 2.8 angstrom resolution crystal structure of the IRP1:ferritin H IRE complex shows an open protein conformation compared with that of cytosolic aconitase. The extended, L-shaped IRP1 molecule embraces the IRE stem-loop through interactions at two sites separated by {approx}30 angstroms, each involving about a dozen protein:RNA bonds. Extensive conformational changes related to binding the IRE or an iron-sulfur cluster explain the alternate functions of IRP1 as an mRNA regulator ormore » enzyme.« less

  15. Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction.

    PubMed

    Ray, Swagat; Anderson, Emma C

    2016-03-03

    The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eukaryotic translation initiation factor 4G (eIF4G), we investigated whether Unr has a general role in translational control. We found that Unr strongly stimulates translation in vitro, and mutation of cold shock domains 2 or 4 inhibited its translation activity. The ability of Unr and its mutants to stimulate translation correlated with its ability to bind RNA, and to interact with PABP1. We found that Unr stimulated the binding of PABP1 to mRNA, and that Unr was required for the stable interaction of PABP1 and eIF4G in cells. siRNA-mediated knockdown of Unr reduced the overall level of cellular translation in cells, as well as that of cap-dependent and IRES-dependent reporters. These data describe a novel role for Unr in regulating cellular gene expression.

  16. The Compass-like Locus, Exclusive to the Ambulacrarians, Encodes a Chromatin Insulator Binding Protein in the Sea Urchin Embryo

    PubMed Central

    Cavalieri, Vincenzo; Melfi, Raffaella; Spinelli, Giovanni

    2013-01-01

    Chromatin insulators are eukaryotic genome elements that upon binding of specific proteins display barrier and/or enhancer-blocking activity. Although several insulators have been described throughout various metazoans, much less is known about proteins that mediate their functions. This article deals with the identification and functional characterization in Paracentrotus lividus of COMPASS-like (CMPl), a novel echinoderm insulator binding protein. Phylogenetic analysis shows that the CMPl factor, encoded by the alternative spliced Cmp/Cmpl transcript, is the founder of a novel ambulacrarian-specific family of Homeodomain proteins containing the Compass domain. Specific association of CMPl with the boxB cis-element of the sns5 chromatin insulator is demonstrated by using a yeast one-hybrid system, and further corroborated by ChIP-qPCR and trans-activation assays in developing sea urchin embryos. The sns5 insulator lies within the early histone gene cluster, basically between the H2A enhancer and H1 promoter. To assess the functional role of CMPl within this locus, we challenged the activity of CMPl by two distinct experimental strategies. First we expressed in the developing embryo a chimeric protein, containing the DNA-binding domain of CMPl, which efficiently compete with the endogenous CMPl for the binding to the boxB sequence. Second, to titrate the embryonic CMPl protein, we microinjected an affinity-purified CMPl antibody. In both the experimental assays we congruently observed the loss of the enhancer-blocking function of sns5, as indicated by the specific increase of the H1 expression level. Furthermore, microinjection of the CMPl antiserum in combination with a synthetic mRNA encoding a forced repressor of the H2A enhancer-bound MBF1 factor restores the normal H1 mRNA abundance. Altogether, these results strongly support the conclusion that the recruitment of CMPl on sns5 is required for buffering the H1 promoter from the H2A enhancer activity, and this, in turn, accounts for the different level of accumulation of early linker and nucleosomal transcripts. PMID:24086165

  17. Roles of Heparan Sulfate Sulfation in Dentinogenesis*

    PubMed Central

    Hayano, Satoru; Kurosaka, Hiroshi; Yanagita, Takeshi; Kalus, Ina; Milz, Fabian; Ishihara, Yoshihito; Islam, Md. Nurul; Kawanabe, Noriaki; Saito, Masahiro; Kamioka, Hiroshi; Adachi, Taiji; Dierks, Thomas; Yamashiro, Takashi

    2012-01-01

    Cell surface heparan sulfate (HS) is an essential regulator of cell signaling and development. HS traps signaling molecules, like Wnt in the glycosaminoglycan side chains of HS proteoglycans (HSPGs), and regulates their functions. Endosulfatases Sulf1 and Sulf2 are secreted at the cell surface to selectively remove 6-O-sulfate groups from HSPGs, thereby modifying the affinity of cell surface HSPGs for its ligands. This study provides molecular evidence for the functional roles of HSPG sulfation and desulfation in dentinogenesis. We show that odontogenic cells are highly sulfated on the cell surface and become desulfated during their differentiation to odontoblasts, which produce tooth dentin. Sulf1/Sulf2 double null mutant mice exhibit a thin dentin matrix and short roots combined with reduced expression of dentin sialophosphoprotein (Dspp) mRNA, encoding a dentin-specific extracellular matrix precursor protein, whereas single Sulf mutants do not show such defective phenotypes. In odontoblast cell lines, Dspp mRNA expression is potentiated by the activation of the Wnt canonical signaling pathway. In addition, pharmacological interference with HS sulfation promotes Dspp mRNA expression through activation of Wnt signaling. On the contrary, the silencing of Sulf suppresses the Wnt signaling pathway and subsequently Dspp mRNA expression. We also show that Wnt10a protein binds to cell surface HSPGs in odontoblasts, and interference with HS sulfation decreases the binding affinity of Wnt10a for HSPGs, which facilitates the binding of Wnt10a to its receptor and potentiates the Wnt signaling pathway, thereby up-regulating Dspp mRNA expression. These results demonstrate that Sulf-mediated desulfation of cellular HSPGs is an important modification that is critical for the activation of the Wnt signaling in odontoblasts and for production of the dentin matrix. PMID:22351753

  18. Post-transcriptional trafficking and regulation of neuronal gene expression.

    PubMed

    Goldie, Belinda J; Cairns, Murray J

    2012-02-01

    Intracellular messenger RNA (mRNA) traffic and translation must be highly regulated, both temporally and spatially, within eukaryotic cells to support the complex functional partitioning. This capacity is essential in neurons because it provides a mechanism for rapid input-restricted activity-dependent protein synthesis in individual dendritic spines. While this feature is thought to be important for synaptic plasticity, the structures and mechanisms that support this capability are largely unknown. Certainly specialized RNA binding proteins and binding elements in the 3' untranslated region (UTR) of translationally regulated mRNA are important, but the subtlety and complexity of this system suggests that an intermediate "specificity" component is also involved. Small non-coding microRNA (miRNA) are essential for CNS development and may fulfill this role by acting as the guide strand for mediating complex patterns of post-transcriptional regulation. In this review we examine post-synaptic gene regulation, mRNA trafficking and the emerging role of post-transcriptional gene silencing in synaptic plasticity.

  19. ESTROGEN INDUCED VITELLOGENIN MRNA AND PROTEIN IN SHEEPSHEAD MINNOW (CYPRINODON VARIEGATUS)

    EPA Science Inventory

    Many environmentally persistent xenobiotic chemicals appear to disrupt normal endocrine function by acting as ligands for endogenous steroid receptors, including the estrogen receptor. Xenobiotics that bind to the estrogen receptor may elicit several effects, one of which is acti...

  20. Interleukin-1 homologues IL-1F7b and IL-18 contain functional mRNA instability elements within the coding region responsive to lipopolysaccharide

    PubMed Central

    2004-01-01

    IL-1F7b, a novel homologue of the IL-1 (interleukin 1) family, was discovered by computational cloning. We demonstrated that IL-1F7b shares critical amino acid residues with IL-18 and binds to the IL-18-binding protein enhancing its ability to inhibit IL-18-induced interferon-γ. We also showed that low levels of IL-1F7b are constitutively present intracellularly in human blood monocytes. In this study, we demonstrate that similar to IL-18, both mRNA and intracellular protein expression of IL-1F7b are up-regulated by LPS (lipopolysaccharide) in human monocytes. In stable transfectants of murine RAW264.7 macrophage cells, there was no IL-1F7b protein expression despite a highly active CMV promoter. We found that IL-1F7b-specific mRNA was rapidly degraded in transfected cells, via a 3′-UTR (untranslated region)-independent control of IL-1F7b transcript stability. After LPS stimulation, there was a rapid transient increase in IL-1F7b-specific mRNA and concomitant protein levels. Using sequence alignment, we found a conserved ten-nucleotide homology box within the open reading frame of IL-F7b, which is flanking the coding region instability elements of some selective genes. In-frame deletion of downstream exon 5 from the full-length IL-1F7b cDNA markedly increased the levels of IL-1F7b mRNA. A similar coding region element is located in IL-18. When transfected into RAW264.7 macrophages, IL-18 mRNA was also unstable unless treated with LPS. These results indicate that both IL-1F7b and IL-18 mRNA contain functional instability determinants within their coding region, which influence mRNA decay as a novel mechanism to regulate the expression of IL-1 family members. PMID:15046617

  1. Mechanisms of Lin28-Mediated miRNA and mRNA Regulation—A Structural and Functional Perspective

    PubMed Central

    Mayr, Florian; Heinemann, Udo

    2013-01-01

    Lin28 is an essential RNA-binding protein that is ubiquitously expressed in embryonic stem cells. Its physiological function has been linked to the regulation of differentiation, development, and oncogenesis as well as glucose metabolism. Lin28 mediates these pleiotropic functions by inhibiting let-7 miRNA biogenesis and by modulating the translation of target mRNAs. Both activities strongly depend on Lin28’s RNA-binding domains (RBDs), an N-terminal cold-shock domain (CSD) and a C-terminal Zn-knuckle domain (ZKD). Recent biochemical and structural studies revealed the mechanisms of how Lin28 controls let-7 biogenesis. Lin28 binds to the terminal loop of pri- and pre-let-7 miRNA and represses their processing by Drosha and Dicer. Several biochemical and structural studies showed that the specificity of this interaction is mainly mediated by the ZKD with a conserved GGAGA or GGAGA-like motif. Further RNA crosslinking and immunoprecipitation coupled to high-throughput sequencing (CLIP-seq) studies confirmed this binding motif and uncovered a large number of new mRNA binding sites. Here we review exciting recent progress in our understanding of how Lin28 binds structurally diverse RNAs and fulfills its pleiotropic functions. PMID:23939427

  2. Conserved and divergent features of the structure and function of La and La-related proteins (LARPs)

    PubMed Central

    Bayfield, Mark A.; Yang, Ruiqing; Maraia, Richard J.

    2010-01-01

    Genuine La proteins contain two RNA binding motifs, a La motif (LAM) followed by a RNA recognition motif (RRM), arranged in a unique way to bind RNA. These proteins interact with an extensive variety of cellular RNAs and exhibit activities in two broad categories: i) to promote the metabolism of nascent pol III transcripts, including precursor-tRNAs, by binding to their common, UUU-3’OH containing ends, and ii) to modulate the translation of certain mRNAs involving an unknown binding mechanism. Characterization of several La-RNA crystal structures as well as biochemical studies reveal insight into their unique two-motif domain architecture and how the LAM recognizes UUU-3’OH while the RRM binds other parts of a pre-tRNA. Recent studies of members of distinct families of conserved La-related proteins (LARPs) indicate that some of these harbor activity related to genuine La proteins, suggesting that their UUU-3’OH binding mode has been appropriated for the assembly and regulation of a specific snRNP (e.g., 7SK snRNA assembly by hLARP7/PIP7S). Analyses of other LARP family members (i.e., hLARP4, hLARP6) suggest more diverged RNA binding modes and specialization for cytoplasmic mRNA-related functions. Thus it appears that while genuine La proteins exhibit broad general involvement in both snRNA-related and mRNA-related functions, different LARP families may have evolved specialized activities in either snRNA or mRNA related functions. In this review, we summarize recent progress that has led to greater understanding of the structure and function of La proteins and their roles in tRNA processing and RNP assembly dynamics, as well as progress on the different LARPs. PMID:20138158

  3. HuD and the Survival Motor Neuron Protein Interact in Motoneurons and Are Essential for Motoneuron Development, Function, and mRNA Regulation.

    PubMed

    Hao le, Thi; Duy, Phan Q; An, Min; Talbot, Jared; Iyer, Chitra C; Wolman, Marc; Beattie, Christine E

    2017-11-29

    Motoneurons establish a critical link between the CNS and muscles. If motoneurons do not develop correctly, they cannot form the required connections, resulting in movement defects or paralysis. Compromised development can also lead to degeneration because the motoneuron is not set up to function properly. Little is known, however, regarding the mechanisms that control vertebrate motoneuron development, particularly the later stages of axon branch and dendrite formation. The motoneuron disease spinal muscular atrophy (SMA) is caused by low levels of the survival motor neuron (SMN) protein leading to defects in vertebrate motoneuron development and synapse formation. Here we show using zebrafish as a model system that SMN interacts with the RNA binding protein (RBP) HuD in motoneurons in vivo during formation of axonal branches and dendrites. To determine the function of HuD in motoneurons, we generated zebrafish HuD mutants and found that they exhibited decreased motor axon branches, dramatically fewer dendrites, and movement defects. These same phenotypes are present in animals expressing low levels of SMN, indicating that both proteins function in motoneuron development. HuD binds and transports mRNAs and one of its target mRNAs, Gap43 , is involved in axonal outgrowth. We found that Gap43 was decreased in both HuD and SMN mutants. Importantly, transgenic expression of HuD in motoneurons of SMN mutants rescued the motoneuron defects, the movement defects, and Gap43 mRNA levels. These data support that the interaction between SMN and HuD is critical for motoneuron development and point to a role for RBPs in SMA. SIGNIFICANCE STATEMENT In zebrafish models of the motoneuron disease spinal muscular atrophy (SMA), motor axons fail to form the normal extent of axonal branches and dendrites leading to decreased motor function. SMA is caused by low levels of the survival motor neuron (SMN) protein. We show in motoneurons in vivo that SMN interacts with the RNA binding protein, HuD. Novel mutants reveal that HuD is also necessary for motor axonal branch and dendrite formation. Data also revealed that both SMN and HuD affect levels of an mRNA involved in axonal growth. Moreover, expressing HuD in SMN-deficient motoneurons can rescue the motoneuron development and motor defects caused by low levels of SMN. These data support that SMN:HuD complexes are essential for normal motoneuron development and indicate that mRNA handling is a critical component of SMA. Copyright © 2017 the authors 0270-6474/17/3711559-13$15.00/0.

  4. Arsenic Induces Polyadenylation of Canonical Histone mRNA by Down-regulating Stem-Loop-binding Protein Gene Expression*

    PubMed Central

    Brocato, Jason; Fang, Lei; Chervona, Yana; Chen, Danqi; Kiok, Kathrin; Sun, Hong; Tseng, Hsiang-Chi; Xu, Dazhong; Shamy, Magdy; Jin, Chunyuan; Costa, Max

    2014-01-01

    The replication-dependent histone genes are the only metazoan genes whose messenger RNA (mRNA) does not terminate with a poly(A) tail at the 3′-end. Instead, the histone mRNAs display a stem-loop structure at their 3′-end. Stem-loop-binding protein (SLBP) binds the stem-loop and regulates canonical histone mRNA metabolism. Here we report that exposure to arsenic, a carcinogenic metal, decreased cellular levels of SLBP by inducing its proteasomal degradation and inhibiting SLBP transcription via epigenetic mechanisms. Notably, arsenic exposure dramatically increased polyadenylation of canonical histone H3.1 mRNA possibly through down-regulation of SLBP expression. The polyadenylated H3.1 mRNA induced by arsenic was not susceptible to normal degradation that occurs at the end of S phase, resulting in continued presence into mitosis, increased total H3.1 mRNA, and increased H3 protein levels. Excess expression of canonical histones have been shown to increase sensitivity to DNA damage as well as increase the frequency of missing chromosomes and induce genomic instability. Thus, polyadenylation of canonical histone mRNA following arsenic exposure may contribute to arsenic-induced carcinogenesis. PMID:25266719

  5. Tumor-promoting function and prognostic significance of the RNA-binding protein T-cell intracellular antigen-1 in esophageal squamous cell carcinoma

    PubMed Central

    Fujita, Yuji; Naruto, Takuya; Kohmoto, Tomohiro; Miyakami, Yuko; Watanabe, Miki; Kudo, Yasusei; Fujiwara, Hitoshi; Ichikawa, Daisuke; Otsuji, Eigo; Imoto, Issei

    2016-01-01

    T-cell intracellular antigen-1 (TIA1) is an RNA-binding protein involved in many regulatory aspects of mRNA metabolism. Here, we report previously unknown tumor-promoting activity of TIA1, which seems to be associated with its isoform-specific molecular distribution and regulation of a set of cancer-related transcripts, in esophageal squamous cell carcinoma (ESCC). Immunohistochemical overexpression of TIA1 ectopically localized in the cytoplasm of tumor cells was an independent prognosticator for worse overall survival in a cohort of 143 ESCC patients. Knockdown of TIA1 inhibited proliferation of ESCC cells. By exogenously introducing each of two major isoforms, TIA1a and TIA1b, only TIA1a, which was localized to both the nucleus and cytoplasm, promoted anchorage-dependent and anchorage-independent ESCC cell proliferation. Ribonucleoprotein immunoprecipitation, followed by microarray analysis or massive-parallel sequencing, identified a set of TIA1-binding mRNAs, including SKP2 and CCNA2. TIA1 increased SKP2 and CCNA2 protein levels through the suppression of mRNA decay and translational induction, respectively. Our findings uncover a novel oncogenic function of TIA1 in esophageal tumorigenesis, and implicate its use as a marker for prognostic evaluation and as a therapeutic target in ESCC. PMID:26958940

  6. Tumor-promoting function and prognostic significance of the RNA-binding protein T-cell intracellular antigen-1 in esophageal squamous cell carcinoma.

    PubMed

    Hamada, Junichi; Shoda, Katsutoshi; Masuda, Kiyoshi; Fujita, Yuji; Naruto, Takuya; Kohmoto, Tomohiro; Miyakami, Yuko; Watanabe, Miki; Kudo, Yasusei; Fujiwara, Hitoshi; Ichikawa, Daisuke; Otsuji, Eigo; Imoto, Issei

    2016-03-29

    T-cell intracellular antigen-1 (TIA1) is an RNA-binding protein involved in many regulatory aspects of mRNA metabolism. Here, we report previously unknown tumor-promoting activity of TIA1, which seems to be associated with its isoform-specific molecular distribution and regulation of a set of cancer-related transcripts, in esophageal squamous cell carcinoma (ESCC). Immunohistochemical overexpression of TIA1 ectopically localized in the cytoplasm of tumor cells was an independent prognosticator for worse overall survival in a cohort of 143 ESCC patients. Knockdown of TIA1 inhibited proliferation of ESCC cells. By exogenously introducing each of two major isoforms, TIA1a and TIA1b, only TIA1a, which was localized to both the nucleus and cytoplasm, promoted anchorage-dependent and anchorage-independent ESCC cell proliferation. Ribonucleoprotein immunoprecipitation, followed by microarray analysis or massive-parallel sequencing, identified a set of TIA1-binding mRNAs, including SKP2 and CCNA2. TIA1 increased SKP2 and CCNA2 protein levels through the suppression of mRNA decay and translational induction, respectively. Our findings uncover a novel oncogenic function of TIA1 in esophageal tumorigenesis, and implicate its use as a marker for prognostic evaluation and as a therapeutic target in ESCC.

  7. DAZ Family Proteins, Key Players for Germ Cell Development

    PubMed Central

    Fu, Xia-Fei; Cheng, Shun-Feng; Wang, Lin-Qing; Yin, Shen; De Felici, Massimo; Shen, Wei

    2015-01-01

    DAZ family proteins are found almost exclusively in germ cells in distant animal species. Deletion or mutations of their encoding genes usually severely impair either oogenesis or spermatogenesis or both. The family includes Boule (or Boll), Dazl (or Dazla) and DAZ genes. Boule and Dazl are situated on autosomes while DAZ, exclusive of higher primates, is located on the Y chromosome. Deletion of DAZ gene is the most common causes of infertility in humans. These genes, encoding for RNA binding proteins, contain a highly conserved RNA recognition motif and at least one DAZ repeat encoding for a 24 amino acids sequence able to bind other mRNA binding proteins. Basically, Daz family proteins function as adaptors for target mRNA transport and activators of their translation. In some invertebrate species, BOULE protein play a pivotal role in germline specification and a conserved regulatory role in meiosis. Depending on the species, DAZL is expressed in primordial germ cells (PGCs) and/or pre-meiotic and meiotic germ cells of both sexes. Daz is found in fetal gonocytes, spermatogonia and spermatocytes of adult testes. Here we discuss DAZ family genes in a phylogenic perspective, focusing on the common and distinct features of these genes, and their pivotal roles during gametogenesis evolved during evolution. PMID:26327816

  8. Post-Transcriptional Regulation of the Human Mu-Opioid Receptor (MOR) by Morphine-Induced RNA Binding Proteins hnRNP K and PCBP1

    PubMed Central

    Song, Kyu Young; Choi, Hack Sun; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.

    2016-01-01

    Expression of the mu-opioid receptor (MOR) protein is controlled by extensive transcriptional and post-transcriptional processing. MOR gene expression has previously been shown to be altered by a post-transcriptional mechanism involving the MOR mRNA untranslated region (UTR). Here, we demonstrate for the first time the role of heterogeneous nuclear ribonucleic acids (hnRNA)-binding protein (hnRNP) K and poly(C)-binding protein 1 (PCBP1) as post-transcriptional inducers in MOR gene regulation. In the absence of morphine, a significant level of MOR mRNA is sustained in its resting state and partitions in the translationally inactive polysomal fraction. Morphine stimulation activates the downstream targets hnRNP K and PCPB1 and induces partitioning of the MOR mRNA to the translationally active fraction. Using reporter and ligand binding assays, as well as RNA EMSA, we reveal potential RNP binding sites located in the 5′-untranslated region of human MOR mRNA. In addition, we also found that morphine-induced RNPs could regulate MOR expression. Our results establish the role of hnRNP K and PCPB1 in the translational control of morphine-induced MOR expression in human neuroblastoma (NMB) cells as well as cells stably expressing MOR (NMB1). PMID:27292014

  9. Single-Molecule Imaging of PSD-95 mRNA Translation in Dendrites and Its Dysregulation in a Mouse Model of Fragile X Syndrome

    PubMed Central

    Ifrim, Marius F.; Williams, Kathryn R.

    2015-01-01

    Fragile X syndrome (FXS) is caused by the loss of the fragile X mental retardation protein (FMRP), an RNA binding protein that regulates translation of numerous target mRNAs, some of which are dendritically localized. Our previous biochemical studies using synaptoneurosomes demonstrate a role for FMRP and miR-125a in regulating the translation of PSD-95 mRNA. However, the local translation of PSD-95 mRNA within dendrites and spines, as well as the roles of FMRP or miR-125a, have not been directly studied. Herein, local synthesis of a Venus-PSD-95 fusion protein was directly visualized in dendrites and spines using single-molecule imaging of a diffusion-restricted Venus-PSD-95 reporter under control of the PSD-95 3′UTR. The basal translation rates of Venus-PSD-95 mRNA was increased in cultured hippocampal neurons from Fmr1 KO mice compared with WT neurons, which correlated with a transient elevation of endogenous PSD-95 within dendrites. Following mGluR stimulation with (S)-3,5-dihydroxyphenylglycine, the rate of Venus-PSD-95 mRNA translation increased rapidly in dendrites of WT hippocampal neurons, but not in those of Fmr1 KO neurons or when the binding site of miR125a, previously shown to bind PSD-95 3′UTR, was mutated. This study provides direct support for the hypothesis that local translation within dendrites and spines is dysregulated in FXS. Impairments in the regulated local synthesis of PSD-95, a critical regulator of synaptic structure and function, may affect the spatiotemporal control of PSD-95 levels and affect dendritic spine development and synaptic plasticity in FXS. PMID:25948262

  10. Single-Molecule Imaging of PSD-95 mRNA Translation in Dendrites and Its Dysregulation in a Mouse Model of Fragile X Syndrome.

    PubMed

    Ifrim, Marius F; Williams, Kathryn R; Bassell, Gary J

    2015-05-06

    Fragile X syndrome (FXS) is caused by the loss of the fragile X mental retardation protein (FMRP), an RNA binding protein that regulates translation of numerous target mRNAs, some of which are dendritically localized. Our previous biochemical studies using synaptoneurosomes demonstrate a role for FMRP and miR-125a in regulating the translation of PSD-95 mRNA. However, the local translation of PSD-95 mRNA within dendrites and spines, as well as the roles of FMRP or miR-125a, have not been directly studied. Herein, local synthesis of a Venus-PSD-95 fusion protein was directly visualized in dendrites and spines using single-molecule imaging of a diffusion-restricted Venus-PSD-95 reporter under control of the PSD-95 3'UTR. The basal translation rates of Venus-PSD-95 mRNA was increased in cultured hippocampal neurons from Fmr1 KO mice compared with WT neurons, which correlated with a transient elevation of endogenous PSD-95 within dendrites. Following mGluR stimulation with (S)-3,5-dihydroxyphenylglycine, the rate of Venus-PSD-95 mRNA translation increased rapidly in dendrites of WT hippocampal neurons, but not in those of Fmr1 KO neurons or when the binding site of miR125a, previously shown to bind PSD-95 3'UTR, was mutated. This study provides direct support for the hypothesis that local translation within dendrites and spines is dysregulated in FXS. Impairments in the regulated local synthesis of PSD-95, a critical regulator of synaptic structure and function, may affect the spatiotemporal control of PSD-95 levels and affect dendritic spine development and synaptic plasticity in FXS. Copyright © 2015 the authors 0270-6474/15/357116-15$15.00/0.

  11. Efficient generation of transgenic reporter strains and analysis of expression patterns in Caenorhabditis elegans using Library MosSCI

    PubMed Central

    Kaymak, Ebru; Farley, Brian M.; Hay, Samantha A.; Li, Chihua; Ho, Samantha; Hartman, Daniel J.; Ryder, Sean P.

    2016-01-01

    Background In C. elegans, germline development and early embryogenesis rely on post-transcriptional regulation of maternally transcribed mRNAs. In many cases, the 3′UTR is sufficient to govern the expression patterns of these transcripts. Several RNA-binding proteins are required to regulate maternal mRNAs through the 3′UTR. Despite intensive efforts to map RNA-binding protein-mRNA interactions in vivo, the biological impact of most binding events remains unknown. Reporter studies using single copy integrated transgenes are essential to evaluate the functional consequences of interactions between RNA-binding proteins and their associated mRNAs. Results In this report, we present an efficient method of generating reporter strains with improved throughput by using a library variant of MosSCI transgenesis. Furthermore, using RNA interference, we identify the suite of RBPs that control the expression pattern of five different maternal mRNAs. Conclusions The results provide a generalizable and efficient strategy to assess the functional relevance of protein-RNA interactions in vivo, and reveal new regulatory connections between key RNA-binding proteins and their maternal mRNA targets. PMID:27294288

  12. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system.

    PubMed

    Hogan, Daniel J; Riordan, Daniel P; Gerber, André P; Herschlag, Daniel; Brown, Patrick O

    2008-10-28

    RNA-binding proteins (RBPs) have roles in the regulation of many post-transcriptional steps in gene expression, but relatively few RBPs have been systematically studied. We searched for the RNA targets of 40 proteins in the yeast Saccharomyces cerevisiae: a selective sample of the approximately 600 annotated and predicted RBPs, as well as several proteins not annotated as RBPs. At least 33 of these 40 proteins, including three of the four proteins that were not previously known or predicted to be RBPs, were reproducibly associated with specific sets of a few to several hundred RNAs. Remarkably, many of the RBPs we studied bound mRNAs whose protein products share identifiable functional or cytotopic features. We identified specific sequences or predicted structures significantly enriched in target mRNAs of 16 RBPs. These potential RNA-recognition elements were diverse in sequence, structure, and location: some were found predominantly in 3'-untranslated regions, others in 5'-untranslated regions, some in coding sequences, and many in two or more of these features. Although this study only examined a small fraction of the universe of yeast RBPs, 70% of the mRNA transcriptome had significant associations with at least one of these RBPs, and on average, each distinct yeast mRNA interacted with three of the RBPs, suggesting the potential for a rich, multidimensional network of regulation. These results strongly suggest that combinatorial binding of RBPs to specific recognition elements in mRNAs is a pervasive mechanism for multi-dimensional regulation of their post-transcriptional fate.

  13. Circadian clock-dependent and -independent posttranscriptional regulation underlies temporal mRNA accumulation in mouse liver

    PubMed Central

    Wang, Jingkui; Yeung, Jake; Gobet, Cédric; Sobel, Jonathan; Lück, Sarah; Molina, Nacho; Naef, Felix

    2018-01-01

    The mammalian circadian clock coordinates physiology with environmental cycles through the regulation of daily oscillations of gene expression. Thousands of transcripts exhibit rhythmic accumulations across mouse tissues, as determined by the balance of their synthesis and degradation. While diurnally rhythmic transcription regulation is well studied and often thought to be the main factor generating rhythmic mRNA accumulation, the extent of rhythmic posttranscriptional regulation is debated, and the kinetic parameters (e.g., half-lives), as well as the underlying regulators (e.g., mRNA-binding proteins) are relatively unexplored. Here, we developed a quantitative model for cyclic accumulations of pre-mRNA and mRNA from total RNA-seq data, and applied it to mouse liver. This allowed us to identify that about 20% of mRNA rhythms were driven by rhythmic mRNA degradation, and another 15% of mRNAs regulated by both rhythmic transcription and mRNA degradation. The method could also estimate mRNA half-lives and processing times in intact mouse liver. We then showed that, depending on mRNA half-life, rhythmic mRNA degradation can either amplify or tune phases of mRNA rhythms. By comparing mRNA rhythms in wild-type and Bmal1−/− animals, we found that the rhythmic degradation of many transcripts did not depend on a functional BMAL1. Interestingly clock-dependent and -independent degradation rhythms peaked at distinct times of day. We further predicted mRNA-binding proteins (mRBPs) that were implicated in the posttranscriptional regulation of mRNAs, either through stabilizing or destabilizing activities. Together, our results demonstrate how posttranscriptional regulation temporally shapes rhythmic mRNA accumulation in mouse liver. PMID:29432155

  14. Molecular dynamics simulations show how the FMRP Ile304Asn mutation destabilizes the KH2 domain structure and affects its function.

    PubMed

    Di Marino, Daniele; Achsel, Tilmann; Lacoux, Caroline; Falconi, Mattia; Bagni, Claudia

    2014-01-01

    Mutations or deletions of FMRP, involved in the regulation of mRNA metabolism in brain, lead to the Fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. A severe manifestation of the disease has been associated with the Ile304Asn mutation, located on the KH2 domain of the protein. Several hypotheses have been proposed to explain the possible molecular mechanism responsible for the drastic effect of this mutation in humans. Here, we performed a molecular dynamics simulation and show that the Ile304Asn mutation destabilizes the hydrophobic core producing a partial unfolding of two α-helices and a displacement of a third one. The affected regions show increased residue flexibility and motion. Molecular docking analysis revealed strongly reduced binding to a model single-stranded nucleic acid in agreement with known data that the two partially unfolded helices form the RNA-binding surface. The third helix, which we show here to be also affected, is involved in the PAK1 protein interaction. These two functional binding sites on the KH2 domain do not overlap spatially, and therefore, they can simultaneously bind their targets. Since the Ile304Asn mutation affects both binding sites, this may justify the severe clinical manifestation observed in the patient in which both mRNA metabolism activity and cytoskeleton remodeling would be affected.

  15. Hsp27 binding to the 3′UTR of bim mRNA prevents neuronal death during oxidative stress–induced injury: a novel cytoprotective mechanism

    PubMed Central

    Dávila, David; Jiménez-Mateos, Eva M.; Mooney, Claire M.; Velasco, Guillermo; Henshall, David C.; Prehn, Jochen H. M.

    2014-01-01

    Neurons face a changeable microenvironment and therefore need mechanisms that allow rapid switch on/off of their cytoprotective and apoptosis-inducing signaling pathways. Cellular mechanisms that control apoptosis activation include the regulation of pro/antiapoptotic mRNAs through their 3′-untranslated region (UTR). This region holds binding elements for RNA-binding proteins, which can control mRNA translation. Here we demonstrate that heat shock protein 27 (Hsp27) prevents oxidative stress–induced cell death in cerebellar granule neurons by specific regulation of the mRNA for the proapoptotic BH3-only protein, Bim. Hsp27 depletion induced by oxidative stress using hydrogen peroxide (H2O2) correlated with bim gene activation and subsequent neuronal death, whereas enhanced Hsp27 expression prevented these. This effect could not be explained by proteasomal degradation of Bim or bim promoter inhibition; however, it was associated with a specific increase in the levels of bim mRNA and with its binding to Hsp27. Finally, we determined that enhanced Hsp27 expression in neurons exposed to H2O2 or glutamate prevented the translation of a reporter plasmid where bim-3′UTR mRNA sequence was cloned downstream of a luciferase gene. These results suggest that repression of bim mRNA translation through binding to the 3′UTR constitutes a novel cytoprotective mechanism of Hsp27 during stress in neurons. PMID:25187648

  16. Stress- and Rho-activated ZO-1–associated nucleic acid binding protein binding to p21 mRNA mediates stabilization, translation, and cell survival

    PubMed Central

    Nie, Mei; Balda, Maria S.; Matter, Karl

    2012-01-01

    A central component of the cellular stress response is p21WAF1/CIP1, which regulates cell proliferation, survival, and differentiation. Inflammation and cell stress often up-regulate p21 posttranscriptionally by regulatory mechanisms that are poorly understood. ZO-1–associated nucleic acid binding protein (ZONAB)/DbpA is a Y-box transcription factor that is regulated by components of intercellular junctions that are affected by cytokines and tissue damage. We therefore asked whether ZONAB activation is part of the cellular stress response. Here, we demonstrate that ZONAB promotes cell survival in response to proinflammatory, hyperosmotic, and cytotoxic stress and that stress-induced ZONAB activation involves the Rho regulator GEF-H1. Unexpectedly, stress-induced ZONAB activation does not stimulate ZONAB’s activity as a transcription factor but leads to the posttranscriptional up-regulation of p21 protein and mRNA. Up-regulation is mediated by ZONAB binding to specific sites in the 3′-untranslated region of the p21 mRNA, resulting in mRNA stabilization and enhanced translation. Binding of ZONAB to mRNA is activated by GEF-H1 via Rho stimulation and also mediates Ras-induced p21 expression. We thus identify a unique type of stress and Rho signaling activated pathway that drives mRNA stabilization and translation and links the cellular stress response to p21 expression and cell survival. PMID:22711822

  17. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    PubMed Central

    Toro-Ascuy, Daniela; Rojas-Araya, Bárbara; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo

    2016-01-01

    The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A), allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries. PMID:27886048

  18. Dietary modulation and structure prediction of rat mucosal pentraxin (Mptx) protein and loss of function in humans

    PubMed Central

    van der Meer-van Kraaij, Cindy; Siezen, Roland; Kramer, Evelien; Reinders, Marjolein; Blokzijl, Hans; van der Meer, Roelof

    2007-01-01

    Mucosal pentraxin (Mptx), identified in rats, is a short pentraxin of unknown function. Other subfamily members are Serum amyloid P component (SAP), C-reactive protein (CRP) and Jeltraxin. Rat Mptx mRNA is predominantly expressed in colon and in vivo is strongly (30-fold) regulated by dietary heme and calcium, modulators of colon cancer risk. This renders Mptx a potential nutrient sensitive biomarker of gut health. To support a role as biomarker, we examined whether the pentraxin protein structure is conserved, whether Mptx protein is nutrient-sensitively expressed and whether Mptx is expressed in mouse and human. Sequence comparison and 3D modelling showed that rat Mptx is highly homologous to the other pentraxins. The calcium-binding site and subunit interaction sites are highly conserved, while a loop deletion and charged residues contribute to a distinctive “top” face of the pentamer. In accordance with mRNA expression, Mptx protein is strongly down-regulated in rat colon mucosa in response to high dietary heme intake. Mptx mRNA is expressed in rat and mouse colon, but not in human colon. A stop codon at the beginning of human exon two indicates loss of function, which may be related to differences in intestinal cell turnover between man and rodents. PMID:18850182

  19. The FASTK family of proteins: emerging regulators of mitochondrial RNA biology

    PubMed Central

    Jourdain, Alexis A.; Popow, Johannes; de la Fuente, Miguel A.; Martinou, Jean-Claude

    2017-01-01

    Abstract The FASTK family proteins have recently emerged as key post-transcriptional regulators of mitochondrial gene expression. FASTK, the founding member and its homologs FASTKD1–5 are architecturally related RNA-binding proteins, each having a different function in the regulation of mitochondrial RNA biology, from mRNA processing and maturation to ribosome assembly and translation. In this review, we outline the structure, evolution and function of these FASTK proteins and discuss the individual role that each has in mitochondrial RNA biology. In addition, we highlight the aspects of FASTK research that still require more attention. PMID:29036396

  20. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators

    PubMed Central

    Redfern, Andrew D.; Colley, Shane M.; Beveridge, Dianne J.; Ikeda, Naoya; Epis, Michael R.; Li, Xia; Foulds, Charles E.; Stuart, Lisa M.; Barker, Andrew; Russell, Victoria J.; Ramsay, Kerry; Kobelke, Simon J.; Li, Xiaotao; Hatchell, Esme C.; Payne, Christine; Giles, Keith M.; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B.; O’Malley, Bert W.; Leedman, Peter J.

    2013-01-01

    The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing. PMID:23550157

  1. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators.

    PubMed

    Redfern, Andrew D; Colley, Shane M; Beveridge, Dianne J; Ikeda, Naoya; Epis, Michael R; Li, Xia; Foulds, Charles E; Stuart, Lisa M; Barker, Andrew; Russell, Victoria J; Ramsay, Kerry; Kobelke, Simon J; Li, Xiaotao; Hatchell, Esme C; Payne, Christine; Giles, Keith M; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B; O'Malley, Bert W; Leedman, Peter J

    2013-04-16

    The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing.

  2. Inference of RNA decay rate from transcriptional profiling highlights the regulatory programs of Alzheimer's disease.

    PubMed

    Alkallas, Rached; Fish, Lisa; Goodarzi, Hani; Najafabadi, Hamed S

    2017-10-13

    The abundance of mRNA is mainly determined by the rates of RNA transcription and decay. Here, we present a method for unbiased estimation of differential mRNA decay rate from RNA-sequencing data by modeling the kinetics of mRNA metabolism. We show that in all primary human tissues tested, and particularly in the central nervous system, many pathways are regulated at the mRNA stability level. We present a parsimonious regulatory model consisting of two RNA-binding proteins and four microRNAs that modulate the mRNA stability landscape of the brain, which suggests a new link between RBFOX proteins and Alzheimer's disease. We show that downregulation of RBFOX1 leads to destabilization of mRNAs encoding for synaptic transmission proteins, which may contribute to the loss of synaptic function in Alzheimer's disease. RBFOX1 downregulation is more likely to occur in older and female individuals, consistent with the association of Alzheimer's disease with age and gender."mRNA abundance is determined by the rates of transcription and decay. Here, the authors propose a method for estimating the rate of differential mRNA decay from RNA-seq data and model mRNA stability in the brain, suggesting a link between mRNA stability and Alzheimer's disease."

  3. Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons.

    PubMed

    Fallini, Claudia; Donlin-Asp, Paul G; Rouanet, Jeremy P; Bassell, Gary J; Rossoll, Wilfried

    2016-03-30

    Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily affecting spinal motor neurons. It is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays an essential role in the biogenesis of spliceosomal small nuclear ribonucleoproteins in all tissues. The etiology of the specific defects in the motor circuitry in SMA is still unclear, but SMN has also been implicated in mediating the axonal localization of mRNA-protein complexes, which may contribute to the axonal degeneration observed in SMA. Here, we report that SMN deficiency severely disrupts local protein synthesis within neuronal growth cones. We also identify the cytoskeleton-associated growth-associated protein 43 (GAP43) mRNA as a new target of SMN and show that motor neurons from SMA mouse models have reduced levels ofGAP43mRNA and protein in axons and growth cones. Importantly, overexpression of two mRNA-binding proteins, HuD and IMP1, restoresGAP43mRNA and protein levels in growth cones and rescues axon outgrowth defects in SMA neurons. These findings demonstrate that SMN plays an important role in the localization and local translation of mRNAs with important axonal functions and suggest that disruption of this function may contribute to the axonal defects observed in SMA. The motor neuron disease spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays a key role in assembling RNA/protein complexes that are essential for mRNA splicing. It remains unclear whether defects in this well characterized housekeeping function cause the specific degeneration of spinal motor neurons observed in SMA. Here, we describe an additional role of SMN in regulating the axonal localization and local translation of the mRNA encoding growth-associated protein 43 (GAP43). This study supports a model whereby SMN deficiency impedes transport and local translation of mRNAs important for neurite outgrowth and stabilization, thus contributing to axon degeneration, muscle denervation, and motor neuron cell death in SMA. Copyright © 2016 the authors 0270-6474/16/363811-10$15.00/0.

  4. Mechanisms and consequences of alternative polyadenylation

    PubMed Central

    Di Giammartino, Dafne Campigli; Nishida, Kensei; Manley, James L.

    2011-01-01

    Summary Alternative polyadenylation (APA) is emerging as a widespread mechanism used to control gene expression. Like alternative splicing, usage of alternative poly(A) sites allows a single gene to encode multiple mRNA transcripts. In some cases, this changes the mRNA coding potential; in other cases, the code remains unchanged but the 3’UTR length is altered, influencing the fate of mRNAs in several ways, for example, by altering the availability of RNA binding protein sites and microRNA binding sites. The mechansims governing both global and gene-specific APA are only starting to be deciphered. Here we review what is known about these mechanisms and the functional consequences of alternative polyadenlyation. PMID:21925375

  5. The modulation of extracellular superoxide dismutase in the specifically enhanced cellular immune response against secondary challenge of Vibrio splendidus in Pacific oyster (Crassostrea gigas).

    PubMed

    Liu, Conghui; Zhang, Tao; Wang, Lingling; Wang, Mengqiang; Wang, Weilin; Jia, Zhihao; Jiang, Shuai; Song, Linsheng

    2016-10-01

    Extracellular superoxide dismutase (EcSOD) is a copper-containing glycoprotein playing an important role in antioxidant defense of living cells exposed to oxidative stress, and also participating in microorganism internalization and cell adhesion in invertebrates. EcSOD from oyster (designated CgEcSOD) had been previously reported to bind lipopolysaccharides (LPS) and act as a bridge molecule in Vibrio splendidus internalization. Its mRNA expression pattern, PAMP binding spectrum and microorganism binding capability were examined in the present study. The mRNA expression of CgEcSOD in hemocytes was significantly up-regulated at the initial phase and decreased sharply at 48 h post V. splendidus stimulation. The recombinant CgEcSOD protein (rCgEcSOD) could bind LPS, PGN and poly (I:C), as well as various microorganisms including Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Vibrio anguillarum, V. splendidus, Pastoris pastoris and Yarrowia lipolytica at the presence of divalent metal ions Cu(2+). After the secondary V. splendidus stimulation, the mRNA and protein of CgEcSOD were both down-regulated significantly. The results collectively indicated that CgEcSOD could not only function in the immune recognition, but also might contribute to the immune priming of oyster by inhibiting the foreign microbe invasion through a specific down-regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Quantitative identification of proteins that influence miRNA biogenesis by RNA pull-down-SILAC mass spectrometry (RP-SMS).

    PubMed

    Choudhury, Nila Roy; Michlewski, Gracjan

    2018-06-08

    RNA-binding proteins mediate and control gene expression. As some examples, they regulate pre-mRNA synthesis and processing; mRNA localisation, translation and decay; and microRNA (miRNA) biogenesis and function. Here, we present a detailed protocol for RNA pull-down coupled to stable isotope labelling by amino acids in cell culture (SILAC) mass spectrometry (RP-SMS) that enables quantitative, fast and specific detection of RNA-binding proteins that regulate miRNA biogenesis. In general, this method allows for the identification of RNA-protein complexes formed using in vitro or chemically synthesized RNAs and protein extracts derived from cultured cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1

    PubMed Central

    Hung, Ming-Lung; Hautbergue, Guillaume M.; Snijders, Ambrosius P. L.; Dickman, Mark J.; Wilson, Stuart A.

    2010-01-01

    The REF/ALY mRNA export adaptor binds TAP/NXF1 via an arginine-rich region, which overlaps with its RNA-binding domain. When TAP binds a REF:RNA complex, it triggers transfer of the RNA from REF to TAP. Here, we have examined the effects of arginine methylation on the activities of the REF protein in mRNA export. We have mapped the arginine methylation sites of REF using mass spectrometry and find that several arginines within the TAP and RNA binding domains are methylated in vivo. However, arginine methylation has no effect on the REF:TAP interaction. Instead, arginine methylation reduces the RNA-binding activity of REF in vitro and in vivo. The reduced RNA-binding activity of REF in its methylated state is essential for efficient displacement of RNA from REF by TAP in vivo. Therefore, arginine methylation fine-tunes the RNA-binding activity of REF such that the RNA–protein interaction can be readily disrupted by export factors further down the pathway. PMID:20129943

  8. N-ethylmaleimide-sensitive factor interacts with the serotonin transporter and modulates its trafficking: implications for pathophysiology in autism

    PubMed Central

    2014-01-01

    Background Changes in serotonin transporter (SERT) function have been implicated in autism. SERT function is influenced by the number of transporter molecules present at the cell surface, which is regulated by various cellular mechanisms including interactions with other proteins. Thus, we searched for novel SERT-binding proteins and investigated whether the expression of one such protein was affected in subjects with autism. Methods Novel SERT-binding proteins were examined by a pull-down system. Alterations of SERT function and membrane expression upon knockdown of the novel SERT-binding protein were studied in HEK293-hSERT cells. Endogenous interaction of SERT with the protein was evaluated in mouse brains. Alterations in the mRNA expression of SERT (SLC6A4) and the SERT-binding protein in the post-mortem brains and the lymphocytes of autism patients were compared to nonclinical controls. Results N-ethylmaleimide-sensitive factor (NSF) was identified as a novel SERT-binding protein. NSF was co-localized with SERT at the plasma membrane, and NSF knockdown resulted in decreased SERT expression at the cell membranes and decreased SERT uptake function. NSF was endogenously co-localized with SERT and interacted with SERT. While SLC6A4 expression was not significantly changed, NSF expression tended to be reduced in post-mortem brains, and was significantly reduced in lymphocytes of autistic subjects, which correlated with the severity of the clinical symptoms. Conclusions These data clearly show that NSF interacts with SERT under physiological conditions and is required for SERT membrane trafficking and uptake function. A possible role for NSF in the pathophysiology of autism through modulation of SERT trafficking, is suggested. PMID:24834316

  9. A set of highly conserved RNA-binding proteins, alphaCP-1 and alphaCP-2, implicated in mRNA stabilization, are coexpressed from an intronless gene and its intron-containing paralog.

    PubMed

    Makeyev, A V; Chkheidze, A N; Liebhaber, S A

    1999-08-27

    Gene families normally expand by segmental genomic duplication and subsequent sequence divergence. Although copies of partially or fully processed mRNA transcripts are occasionally retrotransposed into the genome, they are usually nonfunctional ("processed pseudogenes"). The two major cytoplasmic poly(C)-binding proteins in mammalian cells, alphaCP-1 and alphaCP-2, are implicated in a spectrum of post-transcriptional controls. These proteins are highly similar in structure and are encoded by closely related mRNAs. Based on this close relationship, we were surprised to find that one of these proteins, alphaCP-2, was encoded by a multiexon gene, whereas the second gene, alphaCP-1, was identical to and colinear with its mRNA. The alphaCP-1 and alphaCP-2 genes were shown to be single copy and were mapped to separate chromosomes. The linkage groups encompassing each of the two loci were concordant between mice and humans. These data suggested that the alphaCP-1 gene was generated by retrotransposition of a fully processed alphaCP-2 mRNA and that this event occurred well before the mammalian radiation. The stringent structural conservation of alphaCP-1 and its ubiquitous tissue distribution suggested that the retrotransposed alphaCP-1 gene was rapidly recruited to a function critical to the cell and distinct from that of its alphaCP-2 progenitor.

  10. IGF2BP3 modulates the interaction of invasion-associated transcripts with RISC

    PubMed Central

    Ennajdaoui, Hanane; Howard, Jonathan M.; Sterne-Weiler, Timothy; Jahanbani, Fereshteh; Coyne, Doyle J.; Uren, Philip J.; Dargyte, Marija; Katzman, Sol; Draper, Jolene M.; Wallace, Andrew; Cazarez, Oscar; Burns, Suzanne C.; Qiao, Mei; Hinck, Lindsay; Smith, Andrew D.; Toloue, Masoud M.; Blencowe, Benjamin J.; Penalva, Luiz O.F.; Sanford, Jeremy R.

    2016-01-01

    Summary Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) expression correlates with malignancy. But its role(s) in pathogenesis remain enigmatic. Here, we interrogated the IGF2BP3-RNA interaction network in pancreatic ductal adenocarcinoma (PDAC) cells. Using a combination of genome-wide approaches we identify 164 direct mRNA targets of IGF2BP3. These transcripts encode proteins enriched for functions such as cell migration, proliferation and adhesion. Loss of IGF2BP3 reduced PDAC cell invasiveness and remodeled focal adhesion junctions. Individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) revealed significant overlap of IGF2BP3 and miRNA binding sites. IGF2BP3 promotes association of the RNA induced silencing complex (RISC) with specific transcripts. Our results show that IGF2BP3 influences a malignancy-associated RNA regulon by modulating miRNA-mRNA interactions. PMID:27210763

  11. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    PubMed

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. KSRP Modulation of GAP-43 mRNA Stability Restricts Axonal Outgrowth in Embryonic Hippocampal Neurons

    PubMed Central

    Bird, Clark W.; Gardiner, Amy S.; Bolognani, Federico; Tanner, Daniel C.; Chen, Ching-Yi; Lin, Wei-Jye; Yoo, Soonmoon; Twiss, Jeffery L.; Perrone- Bizzozero, Nora

    2013-01-01

    The KH-type splicing regulatory protein (KSRP) promotes the decay of AU-rich element (ARE)-containing mRNAs. Although KSRP is expressed in the nervous system, very little is known about its role in neurons. In this study, we examined whether KSRP regulates the stability of the ARE-containing GAP-43 mRNA. We found that KSRP destabilizes this mRNA by binding to its ARE, a process that requires the presence of its fourth KH domain (KH4). Furthermore, KSRP competed with the stabilizing factor HuD for binding to these sequences. We also examined the functional consequences of KSRP overexpression and knockdown on the differentiation of primary hippocampal neurons in culture. Overexpression of full length KSRP or KSRP without its nuclear localization signal hindered axonal outgrowth in these cultures, while overexpression of a mutant protein without the KH4 domain that has less affinity for binding to GAP-43′s ARE had no effect. In contrast, depletion of KSRP led to a rise in GAP-43 mRNA levels and a dramatic increase in axonal length, both in KSRP shRNA transfected cells and neurons cultured from Ksrp+/− and Ksrp −/−embryos. Finally we found that overexpression of GAP-43 rescued the axonal outgrowth deficits seen with KSRP overexpression, but only when cells were transfected with GAP-43 constructs containing 3′ UTR sequences targeting the transport of this mRNA to axons. Together, our results suggest that KSRP is an important regulator of mRNA stability and axonal length that works in direct opposition to HuD to regulate the levels of GAP-43 and other ARE-containing neuronal mRNAs. PMID:24244461

  13. Participation of Xenopus Elr-type Proteins in Vegetal mRNA Localization during Oogenesis*

    PubMed Central

    Arthur, Patrick K.; Claussen, Maike; Koch, Susanne; Tarbashevich, Katsiaryna; Jahn, Olaf; Pieler, Tomas

    2009-01-01

    Directional transport of specific mRNAs is of primary biological relevance. In Xenopus oocytes, mRNA localization to the vegetal pole is important for germ layer formation and germ cell development. Using a biochemical approach, we identified Xenopus Elr-type proteins, homologs of the Hu/ELAV proteins, as novel components of the vegetal mRNA localization machinery. They bind specifically to the localization elements of several different vegetally localizing Xenopus mRNAs, and they are part of one RNP together with other localization proteins, such as Vg1RBP and XStaufen 1. Blocking Elr-type protein binding by either localization element mutagenesis or antisense morpholino oligonucleotide-mediated masking of their target RNA structures, as well as overexpression of wild type and mutant ElrB proteins, interferes with vegetal localization in Xenopus oocytes. PMID:19458392

  14. G quadruplex RNA structures in PSD-95 mRNA: potential regulators of miR-125a seed binding site accessibility.

    PubMed

    Stefanovic, Snezana; Bassell, Gary J; Mihailescu, Mihaela Rita

    2015-01-01

    Fragile X syndrome (FXS) is the most common inherited form of intellectual disability caused by the CGG trinucleotide expansion in the 3'-untranslated region of the FMR1 gene on the X chromosome, that silences the expression of the Fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA which encodes for the postsynaptic density protein 95 (PSD-95), and together with the microRNA miR-125a, to play an important role in the reversible inhibition of the PSD-95 mRNA translation in neurons. The loss of FMRP in Fmr1 KO mice disables this translation control in the production of the PSD-95 protein. Interestingly, the miR-125a binding site on PSD-95 mRNA is embedded in the G-rich region bound by FMRP and postulated to adopt one or more G quadruplex structures. In this study, we have used different biophysical techniques to validate and characterize the formation of parallel G quadruplex structures and binding of miR-125a to its complementary sequence located within the 3' UTR of PSD-95 mRNA. Our results indicate that the PSD-95 mRNA G-rich region folds into alternate G quadruplex conformations that coexist in equilibrium. miR-125a forms a stable complex with PSD-95 mRNA, as evident by characteristic Watson-Crick base-pairing that coexists with one of the G quadruplex forms, suggesting a novel mechanism for G quadruplex structures to regulate the access of miR-125a to its binding site. © 2014 Stefanovic et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  15. G quadruplex RNA structures in PSD-95 mRNA: potential regulators of miR-125a seed binding site accessibility

    PubMed Central

    Stefanovic, Snezana; Bassell, Gary J.

    2015-01-01

    Fragile X syndrome (FXS) is the most common inherited form of intellectual disability caused by the CGG trinucleotide expansion in the 3′-untranslated region of the FMR1 gene on the X chromosome, that silences the expression of the Fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA which encodes for the postsynaptic density protein 95 (PSD-95), and together with the microRNA miR-125a, to play an important role in the reversible inhibition of the PSD-95 mRNA translation in neurons. The loss of FMRP in Fmr1 KO mice disables this translation control in the production of the PSD-95 protein. Interestingly, the miR-125a binding site on PSD-95 mRNA is embedded in the G-rich region bound by FMRP and postulated to adopt one or more G quadruplex structures. In this study, we have used different biophysical techniques to validate and characterize the formation of parallel G quadruplex structures and binding of miR-125a to its complementary sequence located within the 3′ UTR of PSD-95 mRNA. Our results indicate that the PSD-95 mRNA G-rich region folds into alternate G quadruplex conformations that coexist in equilibrium. miR-125a forms a stable complex with PSD-95 mRNA, as evident by characteristic Watson–Crick base-pairing that coexists with one of the G quadruplex forms, suggesting a novel mechanism for G quadruplex structures to regulate the access of miR-125a to its binding site. PMID:25406362

  16. sRNA antitoxins: more than one way to repress a toxin.

    PubMed

    Wen, Jia; Fozo, Elizabeth M

    2014-08-04

    Bacterial toxin-antitoxin loci consist of two genes: one encodes a potentially toxic protein, and the second, an antitoxin to repress its function or expression. The antitoxin can either be an RNA or a protein. For type I and type III loci, the antitoxins are RNAs; however, they have very different modes of action. Type I antitoxins repress toxin protein expression through interacting with the toxin mRNA, thereby targeting the mRNA for degradation or preventing its translation or both; type III antitoxins directly bind to the toxin protein, sequestering it. Along with these two very different modes of action for the antitoxin, there are differences in the functions of the toxin proteins and the mobility of these loci between species. Within this review, we discuss the major differences as to how the RNAs repress toxin activity, the potential consequences for utilizing different regulatory strategies, as well as the confirmed and potential biological roles for these loci across bacterial species.

  17. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    PubMed

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-05-04

    Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  18. An Essential Role for COPI in mRNA Localization to Mitochondria and Mitochondrial Function.

    PubMed

    Zabezhinsky, Dmitry; Slobodin, Boris; Rapaport, Doron; Gerst, Jeffrey E

    2016-04-19

    Nuclear-encoded mRNAs encoding mitochondrial proteins (mMPs) can localize directly to the mitochondrial surface, yet how mMPs target mitochondria and whether RNA targeting contributes to protein import into mitochondria and cellular metabolism are unknown. Here, we show that the COPI vesicle coat complex is necessary for mMP localization to mitochondria and mitochondrial function. COPI inactivation leads to reduced mMP binding to COPI itself, resulting in the dissociation of mMPs from mitochondria, a reduction in mitochondrial membrane potential, a decrease in protein import in vivo and in vitro, and severe deficiencies in mitochondrial respiration. Using a model mMP (OXA1), we observed that COPI inactivation (or mutation of the potential COPI-interaction site) led to altered mRNA localization and impaired cellular respiration. Overall, COPI-mediated mMP targeting is critical for mitochondrial protein import and function, and transcript delivery to the mitochondria or endoplasmic reticulum is regulated by cis-acting RNA sequences and trans-acting proteins. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. System-wide identification of RNA-binding proteins by interactome capture.

    PubMed

    Castello, Alfredo; Horos, Rastislav; Strein, Claudia; Fischer, Bernd; Eichelbaum, Katrin; Steinmetz, Lars M; Krijgsveld, Jeroen; Hentze, Matthias W

    2013-03-01

    Owing to their preeminent biological functions, the repertoire of expressed RNA-binding proteins (RBPs) and their activity states are highly informative about cellular systems. We have developed a novel and unbiased technique, called interactome capture, for identifying the active RBPs of cultured cells. By making use of in vivo UV cross-linking of RBPs to polyadenylated RNAs, covalently bound proteins are captured with oligo(dT) magnetic beads. After stringent washes, the mRNA interactome is determined by quantitative mass spectrometry (MS). The protocol takes 3 working days for analysis of single proteins by western blotting, and about 2 weeks for the determination of complete cellular mRNA interactomes by MS. The most important advantage of interactome capture over other in vitro and in silico approaches is that only RBPs bound to RNA in a physiological environment are identified. When applied to HeLa cells, interactome capture revealed hundreds of novel RBPs. Interactome capture can also be broadly used to compare different biological states, including metabolic stress, cell cycle, differentiation, development or the response to drugs.

  20. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives.

    PubMed

    Maraia, Richard J; Mattijssen, Sandy; Cruz-Gallardo, Isabel; Conte, Maria R

    2017-11-01

    La was first identified as a polypeptide component of ribonucleic protein complexes targeted by antibodies in autoimmune patients and is now known to be a eukaryote cell-ubiquitous protein. Structure and function studies have shown that La binds to a common terminal motif, UUU-3'-OH, of nascent RNA polymerase III (RNAP III) transcripts and protects them from exonucleolytic decay. For precursor-tRNAs, the most diverse and abundant of these transcripts, La also functions as an RNA chaperone that helps to prevent their misfolding. Related to this, we review evidence that suggests that La and its link to RNAP III were significant in the great expansions of the tRNAomes that occurred in eukaryotes. Four families of La-related proteins (LARPs) emerged during eukaryotic evolution with specialized functions. We provide an overview of the high-resolution structural biology of La and LARPs. LARP7 family members most closely resemble La but function with a single RNAP III nuclear transcript, 7SK, or telomerase RNA. A cytoplasmic isoform of La protein as well as LARPs 6, 4, and 1 function in mRNA metabolism and translation in distinct but similar ways, sometimes with the poly(A)-binding protein, and in some cases by direct binding to poly(A)-RNA. New structures of LARP domains, some complexed with RNA, provide novel insights into the functional versatility of these proteins. We also consider LARPs in relation to ancestral La protein and potential retention of links to specific RNA-related pathways. One such link may be tRNA surveillance and codon usage by LARP-associated mRNAs. WIREs RNA 2017, 8:e1430. doi: 10.1002/wrna.1430 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  1. Role of FAST Kinase Domains 3 (FASTKD3) in Post-transcriptional Regulation of Mitochondrial Gene Expression*

    PubMed Central

    Boehm, Erik; Zornoza, María; Jourdain, Alexis A.; Delmiro Magdalena, Aitor; García-Consuegra, Inés; Torres Merino, Rebeca; Orduña, Antonio; Martín, Miguel A.; Martinou, Jean-Claude; De la Fuente, Miguel A.; Simarro, María

    2016-01-01

    The Fas-activated serine/threonine kinase (FASTK) family of proteins has recently emerged as a central regulator of mitochondrial gene expression through the function of an unusual RNA-binding domain named RAP (for RNA-binding domain abundant in Apicomplexans), shared by all six members of the family. Here we describe the role of one of the less characterized members, FASTKD3, in mitochondrial RNA metabolism. First, we show that, in contrast to FASTK, FASTKD2, and FASTKD5, FASTKD3 does not localize in mitochondrial RNA granules, which are sites of processing and maturation of mtRNAs and ribosome biogenesis. Second, we generated FASTKD3 homozygous knock-out cell lines by homologous recombination and observed that the absence of FASTKD3 resulted in increased steady-state levels and half-lives of a subset of mature mitochondrial mRNAs: ND2, ND3, CYTB, COX2, and ATP8/6. No aberrant processing of RNA precursors was observed. Rescue experiments demonstrated that RAP domain is required for FASTKD3 function in mRNA stability. Besides, we describe that FASTKD3 is required for efficient COX1 mRNA translation without altering mRNA levels, which results in a decrease in the steady-state levels of COX1 protein. This finding is associated with reduced mitochondrial complex IV assembly and activity. Our observations suggest that the function of this family of proteins goes beyond RNA processing and ribosome assembly and includes RNA stability and translation regulation within mitochondria. PMID:27789713

  2. Fatty acid binding proteins (FABPs) in prostate, bladder and kidney cancer cell lines and the use of IL-FABP as survival predictor in patients with renal cell carcinoma

    PubMed Central

    2011-01-01

    Background Fatty acid binding proteins (FABP) play an important role in carcinogenesis. Modified FABP expression patterns were described for prostate, bladder and for renal cell carcinoma. Studies on metabolic relationships and interactions in permanent cell lines allow a deeper insight into molecular processes. The aim of this study is therefore a systematic overview on mRNA and protein expressions of seven FABPs in frequently used urological cell lines. Methods Nine cell lines of renal carcinomas, seven of urinary bladder carcinomas, and five of prostate carcinomas were investigated. Quantitative RT-qPCR and western blotting were used to determine different FABPs. In addition, 46 paired cancerous and noncancerous tissue samples from nephrectomy specimen with renal cell carcinomas were investigated regarding the ileum FABP mRNA expression level and associated with survival outcome. Results General characteristics of all urological carcinoma cell lines were the expression of E-and IL-FABP on mRNA and protein level, while the expressions differed between the cell lines. The protein expression was not always congruent with the mRNA expression. Renal cell carcinoma cell lines showed expressions of L-, H- and B-FABP mRNA in addition to the general FABP expression in five out of the eight investigated cell lines. In bladder cancer cell lines, we additionally found the expression of A-FABP mRNA in six cell lines, while H-FABP was present only in three cell lines. In prostate cancer cell lines, a strong reduction of A- and E- FABP mRNA was observed. The expression of B-FABP mRNA and protein was observed only in the 22 RV-1 cells. IL-FABP mRNA was over-expressed in renal tumour tissue. The IL-FABP ratio was identified as an independent indicator of survival outcome. Conclusions Distinctly different FABP expression patterns were observed not only between the cell lines derived from the three cancer types, but also between the cell lines from the same cancer. The FABP patterns in the cell lines do not always reflect the real situation in the tumours. These facts have to be considered in functional studies concerning the different FABPs. PMID:21767383

  3. The Polyadenosine RNA-binding Protein, Zinc Finger Cys3His Protein 14 (ZC3H14), Regulates the Pre-mRNA Processing of a Key ATP Synthase Subunit mRNA*

    PubMed Central

    Wigington, Callie P.; Morris, Kevin J.; Newman, Laura E.; Corbett, Anita H.

    2016-01-01

    Polyadenosine RNA-binding proteins (Pabs) regulate multiple steps in gene expression. This protein family includes the well studied Pabs, PABPN1 and PABPC1, as well as the newly characterized Pab, zinc finger CCCH-type containing protein 14 (ZC3H14). Mutations in ZC3H14 are linked to a form of intellectual disability. To probe the function of ZC3H14, we performed a transcriptome-wide analysis of cells depleted of either ZC3H14 or the control Pab, PABPN1. Depletion of PABPN1 affected ∼17% of expressed transcripts, whereas ZC3H14 affected only ∼1% of expressed transcripts. To assess the function of ZC3H14 in modulating target mRNAs, we selected the gene encoding the ATP synthase F0 subunit C (ATP5G1) transcript. Knockdown of ZC3H14 significantly reduced ATP5G1 steady-state mRNA levels. Consistent with results suggesting that ATP5G1 turnover increases upon depletion of ZC3H14, double knockdown of ZC3H14 and the nonsense-mediated decay factor, UPF1, rescues ATP5G1 transcript levels. Furthermore, fractionation reveals an increase in the amount of ATP5G1 pre-mRNA that reaches the cytoplasm when ZC3H14 is depleted and that ZC3H14 binds to ATP5G1 pre-mRNA in the nucleus. These data support a role for ZC3H14 in ensuring proper nuclear processing and retention of ATP5G1 pre-mRNA. Consistent with the observation that ATP5G1 is a rate-limiting component for ATP synthase activity, knockdown of ZC3H14 decreases cellular ATP levels and causes mitochondrial fragmentation. These data suggest that ZC3H14 modulates pre-mRNA processing of select mRNA transcripts and plays a critical role in regulating cellular energy levels, observations that have broad implications for proper neuronal function. PMID:27563065

  4. Translation of Polioviral mRNA Is Inhibited by Cleavage of Polypyrimidine Tract-Binding Proteins Executed by Polioviral 3Cpro

    PubMed Central

    Back, Sung Hoon; Kim, Yoon Ki; Kim, Woo Jae; Cho, Sungchan; Oh, Hoe Rang; Kim, Jung-Eun; Jang, Sung Key

    2002-01-01

    The translation of polioviral mRNA occurs through an internal ribosomal entry site (IRES). Several RNA-binding proteins, such as polypyrimidine tract-binding protein (PTB) and poly(rC)-binding protein (PCBP), are required for the poliovirus IRES-dependent translation. Here we report that a poliovirus protein, 3Cpro (and/or 3CDpro), cleaves PTB isoforms (PTB1, PTB2, and PTB4). Three 3Cpro target sites (one major target site and two minor target sites) exist in PTBs. PTB fragments generated by poliovirus infection are redistributed to the cytoplasm from the nucleus, where most of the intact PTBs are localized. Moreover, these PTB fragments inhibit polioviral IRES-dependent translation in a cell-based assay system. We speculate that the proteolytic cleavage of PTBs may contribute to the molecular switching from translation to replication of polioviral RNA. PMID:11836431

  5. Comprehensive Identification of mRNA-Binding Proteins of Leishmania donovani by Interactome Capture.

    PubMed

    Nandan, Devki; Thomas, Sneha A; Nguyen, Anne; Moon, Kyung-Mee; Foster, Leonard J; Reiner, Neil E

    2017-01-01

    Leishmania are unicellular eukaryotes responsible for leishmaniasis in humans. Like other trypanosomatids, leishmania regulate protein coding gene expression almost exclusively at the post-transcriptional level with the help of RNA binding proteins (RBPs). Due to the presence of polycystronic transcription units, leishmania do not regulate RNA polymerase II-dependent transcription initiation. Recent evidence suggests that the main control points in gene expression are mRNA degradation and translation. Protein-RNA interactions are involved in every aspect of RNA biology, such as mRNA splicing, polyadenylation, localization, degradation, and translation. A detailed picture of these interactions would likely prove to be highly informative in understanding leishmania biology and virulence. We developed a strategy involving covalent UV cross-linking of RBPs to mRNA in vivo, followed by interactome capture using oligo(dT) magnetic beads to define comprehensively the mRNA interactome of growing L. donovani amastigotes. The protein mass spectrometry analysis of captured proteins identified 79 mRNA interacting proteins which withstood very stringent washing conditions. Strikingly, we found that 49 of these mRNA interacting proteins had no orthologs or homologs in the human genome. Consequently, these may represent high quality candidates for selective drug targeting leading to novel therapeutics. These results show that this unbiased, systematic strategy has the promise to be applicable to study the mRNA interactome during various biological settings such as metabolic changes, stress (low pH environment, oxidative stress and nutrient deprivation) or drug treatment.

  6. Distinct Protein Expression Profiles of Solid-Pseudopapillary Neoplasms of the Pancreas.

    PubMed

    Park, Minhee; Lim, Jong-Sun; Lee, Hyoung-Joo; Na, Keun; Lee, Min Jung; Kang, Chang Moo; Paik, Young-Ki; Kim, Hoguen

    2015-08-07

    Solid-pseudopapillary neoplasm (SPN) is an uncommon pancreatic tumor with mutation in CTNNB1 and distinct clinical and pathological features. We compared the proteomic profiles of SPN to mRNA expression. Pooled SPNs and pooled non-neoplastic pancreatic tissues were examined with high-resolution mass spectrometry. We identified 329 (150 up-regulated and 179 down-regulated) differentially expressed proteins in SPN. We identified 191 proteins (58.1% of the 329 dysregulated proteins) with the same expression tendencies in SPN based on mRNA data. Many overexpressed proteins were related to signaling pathways known to be activated in SPNs. We found that several proteins involved in Wnt signaling, including DKK4 and β-catenin, and proteins that bind β-catenin, such as FUS and NONO, were up-regulated in SPNs. Molecules involved in glycolysis, including PKM2, ENO2, and HK1, were overexpressed in accordance to their mRNA levels. In summary, SPN showed (1) distinct protein expression changes that correlated with mRNA expression, (2) overexpression of Wnt signaling proteins and proteins that bind directly to β-catenin, and (3) overexpression of proteins involved in metabolism. These findings may help develop early diagnostic biomarkers and molecular targets.

  7. The transport of Staufen2-containing ribonucleoprotein complexes involves kinesin motor protein and is modulated by mitogen-activated protein kinase pathway.

    PubMed

    Jeong, Ji-Hye; Nam, Yeon-Ju; Kim, Seok-Yong; Kim, Eung-Gook; Jeong, Jooyoung; Kim, Hyong Kyu

    2007-09-01

    There is increasing evidence showing that mRNA is transported to the neuronal dendrites in ribonucleoprotein (RNP) complexes or RNA granules, which are aggregates of mRNA, rRNA, ribosomal proteins, and RNA-binding proteins. In these RNP complexes, Staufen, a double-stranded RNA-binding protein, is believed to be a core component that plays a key role in the dendritic mRNA transport. This study investigated the molecular mechanisms of the dendritic mRNA transport using green fluorescent protein-tagged Staufen2 produced employing a Sindbis viral expression system. The kinesin heavy chain was found to be associated with Staufen2. The inhibition of kinesin resulted in a significant decrease in the level of dendritic transport of the Staufen2-containing RNP complexes in neurons under non-stimulating or stimulating conditions. This suggests that the dendritic transport of the Staufen2-containing RNP complexes use kinesin as a motor protein. A mitogen-activated protein kinase inhibitor, PD98059, inhibited the activity-induced increase in the amount of both the Staufen2-containing RNP complexes and Ca(2+)/calmodulin-dependent protein kinase II alpha-subunit mRNA in the distal dendrites of cultured hippocampal neurons. Overall, these results suggest that dendritic mRNA transport is mediated via the Staufen2 and kinesin motor proteins and might be modulated by the neuronal activity and mitogen-activated protein kinase pathway.

  8. An m6A-YTH Module Controls Developmental Timing and Morphogenesis in Arabidopsis.

    PubMed

    Arribas-Hernández, Laura; Bressendorff, Simon; Hansen, Mathias Henning; Poulsen, Christian; Erdmann, Susanne; Brodersen, Peter

    2018-04-11

    Methylation of N6-adenosine (m6A) in mRNA is an important post-transcriptional gene regulatory mechanism in eukaryotes. m6A provides a binding site for effector proteins ("readers") that influence pre-mRNA splicing, mRNA degradation or translational efficiency. YT521-B homology (YTH) domain proteins are important m6A readers with established functions in animals. Plants contain more YTH domain proteins than other eukaryotes, but their biological importance remains unknown. Here, we show that the cytoplasmic Arabidopsis thaliana YTH domain proteins EVOLUTIONARILY CONSERVED C-TERMINAL REGION2/3 (ECT2/3) are required for the correct timing of leaf formation and for normal leaf morphology. These functions depend fully on intact m6A binding sites of ECT2 and ECT3, indicating that they function as m6A readers. Mutation of the close ECT2 homolog, ECT4, enhances the delayed leaf emergence and leaf morphology defects of ect2/ect3 mutants, and all three ECT proteins are expressed at leaf formation sites in the shoot apex of young seedlings and in the division zone of developing leaves. ECT2 and ECT3 are also highly expressed at early stages of trichome development and are required for trichome morphology, as previously reported for m6A itself. Overall, our study establishes the relevance of a cytoplasmic m6A-YTH regulatory module in the timing and execution of plant organogenesis. © 2018 American Society of Plant Biologists. All rights reserved.

  9. Activation of protein kinase C induces nuclear translocation of RFX1 and down-regulates c-myc via an intron 1 X box in undifferentiated leukemia HL-60 cells.

    PubMed

    Chen, L; Smith, L; Johnson, M R; Wang, K; Diasio, R B; Smith, J B

    2000-10-13

    Treatment of human promyelocytic leukemia cells (HL-60) with phorbol 12-myristate 13-acetate (PMA) is known to decrease c-myc mRNA by blocking transcription elongation at sites near the first exon/intron border. Treatment of HL-60 cells with either PMA or bryostatin 1, which acutely activates protein kinase C (PKC), decreased the levels of myc mRNA and Myc protein. The inhibition of Myc synthesis accounted for the drop in Myc protein, because PMA treatment had no effect on Myc turnover. Treatment with PMA or bryostatin 1 increased nuclear protein binding to MIE1, a c-myc intron 1 element that defines an RFX1-binding X box. RFX1 antiserum supershifted MIE1-protein complexes. Increased MIE1 binding was independent of protein synthesis and abolished by a selective PKC inhibitor, which also prevented the effect of PMA on myc mRNA and protein levels and Myc synthesis. PMA treatment increased RFX1 in the nuclear fraction and decreased it in the cytosol without affecting total RFX1. Transfection of HL-60 cells with myc reporter gene constructs showed that the RFX1-binding X box was required for the down-regulation of reporter gene expression by PMA. These findings suggest that nuclear translocation and binding of RFX1 to the X box cause the down-regulation of myc expression, which follows acute PKC activation in undifferentiated HL-60 cells.

  10. The Drosophila Tis11 protein and its effects on mRNA expression in flies.

    PubMed

    Choi, Youn-Jeong; Lai, Wi S; Fedic, Robert; Stumpo, Deborah J; Huang, Weichun; Li, Leping; Perera, Lalith; Brewer, Brandy Y; Wilson, Gerald M; Mason, James M; Blackshear, Perry J

    2014-12-19

    Members of the mammalian tristetraprolin family of CCCH tandem zinc finger proteins can bind to certain AU-rich elements (AREs) in mRNAs, leading to their deadenylation and destabilization. Mammals express three or four members of this family, but Drosophila melanogaster and other insects appear to contain a single gene, Tis11. We found that recombinant Drosophila Tis11 protein could bind to ARE-containing RNA oligonucleotides with low nanomolar affinity. Remarkably, co-expression in mammalian cells with "target" RNAs demonstrated that Tis11 could promote destabilization of ARE-containing mRNAs and that this was partially dependent on a conserved C-terminal sequence resembling the mammalian NOT1 binding domain. Drosophila Tis11 promoted both deadenylation and decay of a target transcript in this heterologous cell system. We used chromosome deletion/duplication and P element insertion to produce two types of Tis11 deficiency in adult flies, both of which were viable and fertile. To address the hypothesis that Tis11 deficiency would lead to the abnormal accumulation of potential target transcripts, we analyzed gene expression in adult flies by deep mRNA sequencing. We identified 69 transcripts from 56 genes that were significantly up-regulated more than 1.5-fold in both types of Tis11-deficient flies. Ten of the up-regulated transcripts encoded probable proteases, but many other functional classes of proteins were represented. Many of the up-regulated transcripts contained potential binding sites for tristetraprolin family member proteins that were conserved in other Drosophila species. Tis11 is thus an ARE-binding, mRNA-destabilizing protein that may play a role in post-transcriptional gene expression in Drosophila and other insects. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The Drosophila Tis11 Protein and Its Effects on mRNA Expression in Flies*

    PubMed Central

    Choi, Youn-Jeong; Lai, Wi S.; Fedic, Robert; Stumpo, Deborah J.; Huang, Weichun; Li, Leping; Perera, Lalith; Brewer, Brandy Y.; Wilson, Gerald M.; Mason, James M.; Blackshear, Perry J.

    2014-01-01

    Members of the mammalian tristetraprolin family of CCCH tandem zinc finger proteins can bind to certain AU-rich elements (AREs) in mRNAs, leading to their deadenylation and destabilization. Mammals express three or four members of this family, but Drosophila melanogaster and other insects appear to contain a single gene, Tis11. We found that recombinant Drosophila Tis11 protein could bind to ARE-containing RNA oligonucleotides with low nanomolar affinity. Remarkably, co-expression in mammalian cells with “target” RNAs demonstrated that Tis11 could promote destabilization of ARE-containing mRNAs and that this was partially dependent on a conserved C-terminal sequence resembling the mammalian NOT1 binding domain. Drosophila Tis11 promoted both deadenylation and decay of a target transcript in this heterologous cell system. We used chromosome deletion/duplication and P element insertion to produce two types of Tis11 deficiency in adult flies, both of which were viable and fertile. To address the hypothesis that Tis11 deficiency would lead to the abnormal accumulation of potential target transcripts, we analyzed gene expression in adult flies by deep mRNA sequencing. We identified 69 transcripts from 56 genes that were significantly up-regulated more than 1.5-fold in both types of Tis11-deficient flies. Ten of the up-regulated transcripts encoded probable proteases, but many other functional classes of proteins were represented. Many of the up-regulated transcripts contained potential binding sites for tristetraprolin family member proteins that were conserved in other Drosophila species. Tis11 is thus an ARE-binding, mRNA-destabilizing protein that may play a role in post-transcriptional gene expression in Drosophila and other insects. PMID:25342740

  12. The yeast cytoplasmic LsmI/Pat1p complex protects mRNA 3' termini from partial degradation.

    PubMed Central

    He, W; Parker, R

    2001-01-01

    A key aspect of understanding eukaryotic gene regulation will be the identification and analysis of proteins that bind mRNAs and control their function. Recently, a complex of seven Lsm proteins and the Pat1p have been shown to interact with yeast mRNAs and promote mRNA decapping. In this study we present several observations to indicate that the LsmI/Pat1 complex has a second distinct function in protecting the 3'-UTR of mRNAs from trimming. First, mutations in the LSM1 to LSM7, as well as PAT1, genes led to the accumulation of MFA2pG and PGK1pG transcripts that had been shortened by 10-20 nucleotides at their 3' ends (referred to as trimming). Second, the trimming of these mRNAs was more severe at the high temperature, correlating with the inability of these mutant strains to grow at high temperature. In contrast, trimming did not occur in a dcp1 Delta strain, wherein the decapping enzyme is lacking. This indicates that trimming is not simply a consequence of the inhibition of mRNA decapping. Third, the temperature-sensitive growth of lsm and pat1 mutants was suppressed by mutations in the exosome or the functionally related Ski proteins, which are required for efficient 3' to 5' mRNA degradation of mRNA. Moreover, in lsm ski double mutants, higher levels of the trimmed mRNAs accumulated, indicating that exosome function is not required for mRNA trimming but that the exosome does degrade the trimmed mRNAs. These results raise the possibility that the temperature-sensitive growth of the lsm1-7 and pat1 mutants is at least partially due to mRNA trimming, which either inactivates the function of the mRNAs or makes them available for premature 3' to 5' degradation by the exosome. PMID:11514438

  13. Aryl Hydrocarbon Receptor-Dependent Retention of Nuclear HuR Suppresses Cigarette Smoke-Induced Cyclooxygenase-2 Expression Independent of DNA-Binding

    PubMed Central

    Zago, Michela; Sheridan, Jared A.; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR−/−) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR−/− mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR−/− mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target. PMID:24086407

  14. Aryl hydrocarbon receptor-dependent retention of nuclear HuR suppresses cigarette smoke-induced cyclooxygenase-2 expression independent of DNA-binding.

    PubMed

    Zago, Michela; Sheridan, Jared A; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR(-/-) ) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR(-/-) mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR(-/-) mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target.

  15. Increased Cardiac Arrhythmogenesis Associated With Gap Junction Remodeling With Upregulation of RNA-Binding Protein FXR1.

    PubMed

    Chu, Miensheng; Novak, Stefanie Mares; Cover, Cathleen; Wang, Anne A; Chinyere, Ikeotunye Royal; Juneman, Elizabeth B; Zarnescu, Daniela C; Wong, Pak Kin; Gregorio, Carol C

    2018-02-06

    Gap junction remodeling is well established as a consistent feature of human heart disease involving spontaneous ventricular arrhythmia. The mechanisms responsible for gap junction remodeling that include alterations in the distribution of, and protein expression within, gap junctions are still debated. Studies reveal that multiple transcriptional and posttranscriptional regulatory pathways are triggered in response to cardiac disease, such as those involving RNA-binding proteins. The expression levels of FXR1 (fragile X mental retardation autosomal homolog 1), an RNA-binding protein, are critical to maintain proper cardiac muscle function; however, the connection between FXR1 and disease is not clear. To identify the mechanisms regulating gap junction remodeling in cardiac disease, we sought to identify the functional properties of FXR1 expression, direct targets of FXR1 in human left ventricle dilated cardiomyopathy (DCM) biopsy samples and mouse models of DCM through BioID proximity assay and RNA immunoprecipitation, how FXR1 regulates its targets through RNA stability and luciferase assays, and functional consequences of altering the levels of this important RNA-binding protein through the analysis of cardiac-specific FXR1 knockout mice and mice injected with 3xMyc-FXR1 adeno-associated virus. FXR1 expression is significantly increased in tissue samples from human and mouse models of DCM via Western blot analysis. FXR1 associates with intercalated discs, and integral gap junction proteins Cx43 (connexin 43), Cx45 (connexin 45), and ZO-1 (zonula occludens-1) were identified as novel mRNA targets of FXR1 by using a BioID proximity assay and RNA immunoprecipitation. Our findings show that FXR1 is a multifunctional protein involved in translational regulation and stabilization of its mRNA targets in heart muscle. In addition, introduction of 3xMyc-FXR1 via adeno-associated virus into mice leads to the redistribution of gap junctions and promotes ventricular tachycardia, showing the functional significance of FXR1 upregulation observed in DCM. In DCM, increased FXR1 expression appears to play an important role in disease progression by regulating gap junction remodeling. Together this study provides a novel function of FXR1, namely, that it directly regulates major gap junction components, contributing to proper cell-cell communication in the heart. © 2017 American Heart Association, Inc.

  16. RNA-binding proteins of the NXF (nuclear export factor) family and their connection with the cytoskeleton.

    PubMed

    Mamon, L A; Ginanova, V R; Kliver, S F; Yakimova, A O; Atsapkina, A A; Golubkova, E V

    2017-04-01

    The mutual relationship between mRNA and the cytoskeleton can be seen from two points of view. On the one hand, the cytoskeleton is necessary for mRNA trafficking and anchoring to subcellular domains. On the other hand, cytoskeletal growth and rearrangement require the translation of mRNAs that are connected to the cytoskeleton. β-actin mRNA localization may influence dynamic changes in the actin cytoskeleton. In the cytoplasm, long-lived mRNAs exist in the form of RNP (ribonucleoprotein) complexes, where they interact with RNA-binding proteins, including NXF (Nuclear eXport Factor). Dm NXF1 is an evolutionarily conserved protein in Drosophila melanogaster that has orthologs in different animals. The universal function of nxf1 genes is the nuclear export of different mRNAs in various organisms. In this mini-review, we briefly discuss the evidence demonstrating that Dm NXF1 fulfils not only universal but also specialized cytoplasmic functions. This protein is detected not only in the nucleus but also in the cytoplasm. It is a component of neuronal granules. Dm NXF1 marks nuclear division spindles during early embryogenesis and the dense body on one side of the elongated spermatid nuclei. The characteristic features of sbr mutants (sbr 10 and sbr 5 ) are impairment of chromosome segregation and spindle formation anomalies during female meiosis. sbr 12 mutant sterile males with immobile spermatozoa exhibit disturbances in the axoneme, mitochondrial derivatives and cytokinesis. These data allow us to propose that the Dm NXF1 proteins transport certain mRNAs in neurites and interact with localized mRNAs that are necessary for dynamic changes of the cytoskeleton. © 2017 Wiley Periodicals, Inc.

  17. Deregulation of versican and elastin binding protein in solar elastosis.

    PubMed

    Knott, Anja; Reuschlein, Katja; Lucius, Ralph; Stäb, Franz; Wenck, Horst; Gallinat, Stefan

    2009-04-01

    Several changes in skin appearance including loss of elasticity and wrinkle formation are associated with alterations in the composition of the dermal extracellular matrix. They are induced by intrinsic aging or by environmental factors such as UV light referred to as photoaging. A general characteristic in the histology of photoaged skin is the accumulation of elastotic material suggesting impaired formation and/or massive breakdown of elastic fibres. In order to shed light on some of the underlying mechanisms we tracked two of the major players in elastic fibre formation in different skin conditions: EBP (elastin binding protein), a regulator of elastic fibre assembly and VER (versican), a component of functional elastic fibres as well as non-functional elastotic material. Using quantitative RT-PCR on skin biopsies we found that the expression levels of VER and EBP were unaltered during intrinsic skin aging. Upon acute UV stress however, VER and EBP showed different regulation patterns: VER mRNA increased after 6 h and was further up-regulated until 24 h. The EBP mRNA by contrast was reduced after 6 h but showed massive induction at 24 h after acute UV stress. In chronically sun-exposed skin, VER protein was accumulated similar to elastotic material in the extracellular space, whereas its mRNA level was consistently reduced compared to sun-protected skin. The EBP mRNA by contrast showed slightly increased expression levels in the sun-exposed area compared to its sun-protected counterpart. Based on these data we propose a model which may help to explain parts of the mechanisms leading to the formation of elastotic masses. We further hypothesize that the presence of elastotic material triggers some yet unknown feedback mechanism(s) resulting in altered expression patterns of VER and EBP in chronically sun-exposed skin.

  18. Developmental regulation of collagenase-3 mRNA in normal, differentiating osteoblasts through the activator protein-1 and the runt domain binding sites

    NASA Technical Reports Server (NTRS)

    Winchester, S. K.; Selvamurugan, N.; D'Alonzo, R. C.; Partridge, N. C.

    2000-01-01

    Collagenase-3 mRNA is initially detectable when osteoblasts cease proliferation, increasing during differentiation and mineralization. We showed that this developmental expression is due to an increase in collagenase-3 gene transcription. Mutation of either the activator protein-1 or the runt domain binding site decreased collagenase-3 promoter activity, demonstrating that these sites are responsible for collagenase-3 gene transcription. The activator protein-1 and runt domain binding sites bind members of the activator protein-1 and core-binding factor family of transcription factors, respectively. We identified core-binding factor a1 binding to the runt domain binding site and JunD in addition to a Fos-related antigen binding to the activator protein-1 site. Overexpression of both c-Fos and c-Jun in osteoblasts or core-binding factor a1 increased collagenase-3 promoter activity. Furthermore, overexpression of c-Fos, c-Jun, and core-binding factor a1 synergistically increased collagenase-3 promoter activity. Mutation of either the activator protein-1 or the runt domain binding site resulted in the inability of c-Fos and c-Jun or core-binding factor a1 to increase collagenase-3 promoter activity, suggesting that there is cooperative interaction between the sites and the proteins. Overexpression of Fra-2 and JunD repressed core-binding factor a1-induced collagenase-3 promoter activity. Our results suggest that members of the activator protein-1 and core-binding factor families, binding to the activator protein-1 and runt domain binding sites are responsible for the developmental regulation of collagenase-3 gene expression in osteoblasts.

  19. Molecular analysis of the von hippel-lindau disease gene.

    PubMed

    Chernoff, A; Kasparcova, V; Linehan, W M; Stolle, C A

    2001-01-01

    Von Hippel-Lindau (VHL) disease is an autosomal dominant disorder that predisposes the affected individual to develop characteristic tumors. These include CNS hemangioblastoma, retinal angiomas, endolymphatic sac tumors, pancreatic cysts and tumors, epididymal cystadenomas, pheochromocytomas, renal cysts, and clear-cell renal carcinoma. The VHL gene was localized to 3p25 and then isolated by Latif et al. (1). The gene contains three exons with an open reading frame of 852 nucleotides, which encode a predicted protein of 284 amino acids. The VHL protein is believed to have several functions. It is involved in transcription regulation through its inhibition of elongation by binding to the B and C subunits of elongin. Mutations of VHL allow the B and C subunits to bind with the A subunit. This complex then overcomes "pausing" of RNA polymerase during mRNA transcription (2,3). Several studies suggest that the VHL protein is also involved in regulation of hypoxia-inducible transcripts, particularly vascular endothelial growth factor (VEGF), by altering mRNA stability (4,5). Therefore, VHL gene mutations permit the overexpression of VEGF under normoxic conditions, which leads to the angiogenesis believed to be required for tumor growth. The VHL-elongin BC complex (VBC) also binds two other proteins-CUL2 and Rbx1-in a complex that has structural similarity to other E3 ubiquitin ligase complexes (6). Such complexes mediate the degradation of cell-cycle regulatory proteins.

  20. Remodeling of the pioneer translation initiation complex involves translation and the karyopherin importin β

    PubMed Central

    Sato, Hanae; Maquat, Lynne E.

    2009-01-01

    Mammalian mRNAs lose and acquire proteins throughout their life span while undergoing processing, transport, translation, and decay. How translation affects messenger RNA (mRNA)–protein interactions is largely unknown. The pioneer round of translation uses newly synthesized mRNA that is bound by cap-binding protein 80 (CBP80)–CBP20 (also known as the cap-binding complex [CBC]) at the cap, poly(A)-binding protein N1 (PABPN1) and PABPC1 at the poly(A) tail, and, provided biogenesis involves pre-mRNA splicing, exon junction complexes (EJCs) at exon–exon junctions. Subsequent rounds of translation engage mRNA that is bound by eukaryotic translation initiation factor 4E (eIF4E) at the cap and PABPC1 at the poly(A) tail, but that lacks detectable EJCs and PABPN1. Using the level of intracellular iron to regulate the translation of specific mRNAs, we show that translation promotes not only removal of EJC constituents, including the eIF4AIII anchor, but also replacement of PABPN1 by PABPC1. Remarkably, translation does not affect replacement of CBC by eIF4E. Instead, replacement of CBC by eIF4E is promoted by importin β (IMPβ): Inhibiting the binding of IMPβ to the complex of CBC–IMPα at an mRNA cap using the IMPα IBB (IMPβ-binding) domain or a RAN variant increases the amount of CBC-bound mRNA and decreases the amount of eIF4E-bound mRNA. Our studies uncover a previously unappreciated role for IMPβ and a novel paradigm for how newly synthesized messenger ribonucleoproteins (mRNPs) are matured. PMID:19884259

  1. Structural features of LC8-induced self-association of swallow.

    PubMed

    Kidane, Ariam I; Song, Yujuan; Nyarko, Afua; Hall, Justin; Hare, Michael; Löhr, Frank; Barbar, Elisar

    2013-09-03

    Cell functions depend on the collective activity of protein networks within which a few proteins, called hubs, participate in a large number of interactions. Dynein light chain LC8, first discovered as a subunit of the motor protein dynein, is considered to have a role broader than that of dynein, and its participation in diverse systems fits the description of a hub. Among its partners is Swallow with which LC8 is essential for proper localization of bicoid mRNA at the anterior cortex of Drosophila oocytes. Why LC8 is essential in this process is not clear, but emerging evidence suggests that LC8 functions by promoting self-association and/or structural organization of its diverse binding partners. This work addresses the energetics and structural features of LC8-induced Swallow self-association distant from LC8 binding. Mutational design based on a hypothetical helical wheel, intermonomer nuclear Overhauser effects assigned to residues expected at interface positions, and circular dichroism spectral characteristics indicate that the LC8-promoted dimer of Swallow is a coiled coil. Secondary chemical shifts and (15)N backbone relaxation identify the boundaries and distinguishing structural features of the coiled coil. Thermodynamic analysis of Swallow polypeptides designed to decouple self-association from LC8 binding reveals that the higher binding affinity of the engineered bivalent Swallow is of purely entropic origin and that the linker separating the coiled coil from the LC8 binding site remains disordered. We speculate that the LC8-promoted coiled coil is critical for bicoid mRNA localization because it favors structural organization of Swallow, which except for the central LC8-promoted coiled coil is primarily disordered.

  2. Structural Features of LC8-Induced Self Association of Swallow†

    PubMed Central

    Kidane, Ariam I.; Song, Yujuan; Nyarko, Afua; Hall, Justin; Hare, Michael; Löhr, Frank; Barbar, Elisar

    2013-01-01

    Cell function depends on the collective activity of protein networks within which a few proteins, called hubs, participate in a large number of interactions. Dynein light chain LC8, first discovered as a subunit of the motor protein dynein, is considered to have a role broader than dynein and its participation in diverse systems fits the description of a hub. Among its partners is Swallow with which LC8 is essential for proper localization of bicoid mRNA at the anterior cortex of Drosophila oocytes. Why LC8 is essential in this process is not clear, but emerging evidence suggests that LC8 functions by promoting self-association and/or structural organization of its diverse binding partners. This work addresses the mechanistic and structural features of LC8-induced Swallow self-association distant from LC8 binding. Mutational design based on a hypothetical helical wheel, inter-monomer NOEs assigned to residues expected at interface positions and circular dichroism spectral characteristics indicate that the LC8-promoted dimer of Swallow is a coiled-coil. Secondary chemical shifts and 15N backbone relaxation identify the boundaries and distinguishing structural features of the coiled-coil. Thermodynamic analysis of Swallow polypeptides designed to decouple self-association from LC8 binding reveals that the higher binding affinity of the engineered bivalent Swallow is of purely entropic origin and that the linker separating the coiled-coil from the LC8 binding site remains disordered. We speculate that the LC8-promoted coiled-coil is critical for bicoid mRNA localization because it could induce structural organization of Swallow, which except for the central LC8-promoted coiled-coil is primarily disordered. PMID:23914803

  3. The stargazin-related protein γ7 interacts with the mRNA binding protein hnRNP A2 and regulates the stability of specific mRNAs including CaV2.2

    PubMed Central

    Ferron, Laurent; Davies, Anthony; Page, Karen M.; Cox, David J.; Leroy, Jerôme; Waithe, Dominic; Butcher, Adrian J.; Sellaturay, Priya; Bolsover, Steven; Pratt, Wendy S.; Moss, Fraser J.; Dolphin, Annette C.

    2009-01-01

    The role(s) of the novel stargazin-like γ-subunit proteins remain controversial. We have shown previously that the neuron-specific γ7 suppresses the expression of certain calcium channels, particularly CaV2.2, and is therefore unlikely to operate as a calcium channel subunit. We now show that the effect of γ7 on CaV2.2 expression is via an increase in the degradation rate of CaV2.2 mRNA, and hence a reduction of CaV2.2 protein level. Furthermore, exogenous expression of γ7 in PC12 cells also decreased the endogenous CaV2.2 mRNA level. Conversely, knockdown of endogenous γ7 with short-hairpin RNAs produced a reciprocal enhancement of CaV2.2 mRNA stability and an increase in endogenous calcium currents in PC12 cells. Moreover, both endogenous and expressed γ7 are present on intracellular membranes, rather than the plasma membrane. The cytoplasmic C-terminus of γ7 is essential for all its effects, and we show that γ7 binds directly via its C-terminus to a ribonucleoprotein (hnRNP A2), which also binds to a motif in CaV2.2 mRNA, and is associated with native CaV2.2 mRNA in PC12 cells. The expression of hnRNP A2 enhances CaV2.2 IBa and this enhancement is prevented by a concentration of γ7 that alone has no effect on IBa. The effect of γ7 is selective for certain mRNAs as it had no effect on α2δ-2 mRNA stability, but it decreased the mRNA stability for the potassium-chloride co-transporter, KCC1, which contains a similar hnRNP A2 binding motif to that in CaV2.2 mRNA. Our results indicate that γ7 plays a role in stabilizing CaV2.2 mRNA. PMID:18923037

  4. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy

    NASA Technical Reports Server (NTRS)

    Gomes, M. D.; Lecker, S. H.; Jagoe, R. T.; Navon, A.; Goldberg, A. L.

    2001-01-01

    Muscle wasting is a debilitating consequence of fasting, inactivity, cancer, and other systemic diseases that results primarily from accelerated protein degradation by the ubiquitin-proteasome pathway. To identify key factors in this process, we have used cDNA microarrays to compare normal and atrophying muscles and found a unique gene fragment that is induced more than ninefold in muscles of fasted mice. We cloned this gene, which is expressed specifically in striated muscles. Because this mRNA also markedly increases in muscles atrophying because of diabetes, cancer, and renal failure, we named it atrogin-1. It contains a functional F-box domain that binds to Skp1 and thereby to Roc1 and Cul1, the other components of SCF-type Ub-protein ligases (E3s), as well as a nuclear localization sequence and PDZ-binding domain. On fasting, atrogin-1 mRNA levels increase specifically in skeletal muscle and before atrophy occurs. Atrogin-1 is one of the few examples of an F-box protein or Ub-protein ligase (E3) expressed in a tissue-specific manner and appears to be a critical component in the enhanced proteolysis leading to muscle atrophy in diverse diseases.

  5. A Herpesvirus Ribosome-Associated, RNA-Binding Protein Confers a Growth Advantage upon Mutants Deficient in a GADD34-Related Function†

    PubMed Central

    Mulvey, Matthew; Poppers, Jeremy; Ladd, Alison; Mohr, Ian

    1999-01-01

    The herpes simplex virus type 1 γ34.5 gene product and the cellular GADD34 protein both contain similar domains that can regulate the activity of eukaryotic initiation factor 2 (eIF2), a critical translation initiation factor. Viral mutants that lack the GADD34-related function grow poorly on a variety of malignant human cells, as activation of the cellular PKR kinase leads to the accumulation of inactive, phosphorylated eIF2 at late times postinfection. Termination of translation prior to the completion of the viral reproductive cycle leads to impaired growth. Extragenic suppressors that regain the ability to synthesize proteins efficiently in the absence of the viral GADD34-related function have been isolated. These suppressor alleles are dominant in trans and affect the steady-state accumulation of several viral mRNA species. We demonstrate that deregulated expression of Us11, a virus-encoded RNA-binding, ribosome-associated protein is necessary and sufficient to confer a growth advantage upon viral mutants that lack a GADD34-related function. Ectopic expression of Us11 reduces the accumulation of the activated cellular PKR kinase and allows for sustained protein synthesis. Thus, an RNA-binding, ribosome-associated protein (Us11) and a GADD34-related protein (γ34.5) both function in a signal pathway that regulates translation by modulating eIF2 phosphorylation. PMID:10074192

  6. Identification of a new EF-hand superfamily member from Trypanosoma brucei

    NASA Technical Reports Server (NTRS)

    Wong, S.; Kretsinger, R. H.; Campbell, D. A.

    1992-01-01

    We identified several open reading frames between the regions encoding calmodulin and ubiquitin-EP52/1 in the genome of Trypanosoma brucei. One of these, EFH5, encodes a protein 192 amino acids long. The EFH5 transcript is present in poly(A)+ mRNA and is present at similar levels in the mammalian bloodstream form and the insect procyclic form. EFH5 contains four EF-hand homolog domains, two of which are inferred to bind Ca2+ ions. We expressed EFH5 as a fusion protein in Escherichia coli and demonstrated calcium-binding activity of the fusion protein using the 45Ca-overlay technique. The function of EFH5 remains unknown; however, as the fourth EF-hand homolog identified in trypanosomes, it attests to the broad range of functions assumed by calcium functioning as a second messenger. EFH5, which is most closely related to LAV1-2 from Physarum, represents a distinct subfamily among the EF-hand-containing proteins.

  7. Phyloscan: locating transcription-regulating binding sites in mixed aligned and unaligned sequence data.

    PubMed

    Palumbo, Michael J; Newberg, Lee A

    2010-07-01

    The transcription of a gene from its DNA template into an mRNA molecule is the first, and most heavily regulated, step in gene expression. Especially in bacteria, regulation is typically achieved via the binding of a transcription factor (protein) or small RNA molecule to the chromosomal region upstream of a regulated gene. The protein or RNA molecule recognizes a short, approximately conserved sequence within a gene's promoter region and, by binding to it, either enhances or represses expression of the nearby gene. Since the sought-for motif (pattern) is short and accommodating to variation, computational approaches that scan for binding sites have trouble distinguishing functional sites from look-alikes. Many computational approaches are unable to find the majority of experimentally verified binding sites without also finding many false positives. Phyloscan overcomes this difficulty by exploiting two key features of functional binding sites: (i) these sites are typically more conserved evolutionarily than are non-functional DNA sequences; and (ii) these sites often occur two or more times in the promoter region of a regulated gene. The website is free and open to all users, and there is no login requirement. Address: (http://bayesweb.wadsworth.org/phyloscan/).

  8. NF90 isoforms, a new family of cellular proteins involved in viral replication?

    PubMed

    Patiño, Claudia; Haenni, Anne-Lise; Urcuqui-Inchima, Silvio

    2015-01-01

    The Nuclear Factor 90 (NF90) and its isoforms constitute a family of proteins that can interact with double-stranded (ds) RNA, through its dsRNA binding motifs. Due to various potential translational events such as alternative splicing, the human Interleukin enhancer binding factor 3 (ilf3) gene codes for multifunctional proteins that are NF90 and its isoforms, involved in transcription, translation, mRNA export and microRNA biogenesis. These proteins can act as cellular partners affecting viral replication and they are also implicated in host defense. As a result of these numerous functions, these protein isoforms have been given various names over the years, leading to confusion in determining their specific functions. In this review we focus on the role of the human NF90 protein isoforms in DNA and RNA virus replication. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  9. Hsp27 binding to the 3'UTR of bim mRNA prevents neuronal death during oxidative stress-induced injury: a novel cytoprotective mechanism.

    PubMed

    Dávila, David; Jiménez-Mateos, Eva M; Mooney, Claire M; Velasco, Guillermo; Henshall, David C; Prehn, Jochen H M

    2014-11-01

    Neurons face a changeable microenvironment and therefore need mechanisms that allow rapid switch on/off of their cytoprotective and apoptosis-inducing signaling pathways. Cellular mechanisms that control apoptosis activation include the regulation of pro/antiapoptotic mRNAs through their 3'-untranslated region (UTR). This region holds binding elements for RNA-binding proteins, which can control mRNA translation. Here we demonstrate that heat shock protein 27 (Hsp27) prevents oxidative stress-induced cell death in cerebellar granule neurons by specific regulation of the mRNA for the proapoptotic BH3-only protein, Bim. Hsp27 depletion induced by oxidative stress using hydrogen peroxide (H2O2) correlated with bim gene activation and subsequent neuronal death, whereas enhanced Hsp27 expression prevented these. This effect could not be explained by proteasomal degradation of Bim or bim promoter inhibition; however, it was associated with a specific increase in the levels of bim mRNA and with its binding to Hsp27. Finally, we determined that enhanced Hsp27 expression in neurons exposed to H2O2 or glutamate prevented the translation of a reporter plasmid where bim-3'UTR mRNA sequence was cloned downstream of a luciferase gene. These results suggest that repression of bim mRNA translation through binding to the 3'UTR constitutes a novel cytoprotective mechanism of Hsp27 during stress in neurons. © 2014 Dávila et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Annexin II is associated with mRNAs which may constitute a distinct subpopulation.

    PubMed Central

    Vedeler, A; Hollås, H

    2000-01-01

    Protein-mRNA interactions affect mRNA transport, anchorage, stability and translatability in the cytoplasm. During the purification of three subpopulations of polysomes, it was observed that a 36-kDa protein, identified as annexin II, is associated with only one specific population of polysomes, namely cytoskeleton-associated polysomes. This association appears to be calcium-dependent since it was sensitive to EGTA and could be reconstituted in vitro. UV irradiation resulted in partial, EGTA-resistant cross-linking of annexin II to the polysomes. Binding of (32)P-labelled total RNA to proteins isolated from the cytoskeleton-bound polysomes on a NorthWestern blot resulted in a radioactive band having the same mobility as annexin II and, most importantly, purified native annexin II immobilized on nitrocellulose specifically binds mRNA. The mRNA population isolated from cytoskeleton-bound polysomes binds to annexin II with the highest affinity as compared with those isolated from free or membrane-bound polysomes. Interestingly, the annexin II complex, isolated from porcine small intestinal microvilli was a far better substrate for mRNA binding than the complex derived from transformed Krebs II ascites cells. When cytoskeleton-associated polysomes were split into 60 S and 40 S ribosomal subunits, and a peak containing mRNA complexes, annexin II fractionated with the mRNAs. Finally, using affinity purification of mRNA on poly(A)(+)-coupled magnetic beads, annexin II was only detected in association with messenger ribonucleoproteins (mRNPs) present in the cytoskeletal fraction (non-polysomal mRNPs). These results, derived from both in vitro experiments and cell fractionation, suggest that annexin II binds directly to the RNA moiety of mRNP complexes containing a specific population of mRNAs. PMID:10839987

  11. ATP-binding cassette (ABC) transporters in caprine preantral follicles: gene and protein expression.

    PubMed

    Guerreiro, Denise Damasceno; de Lima, Laritza Ferreira; Mbemya, Gildas Tetaping; Maside, Carolina Mielgo; Miranda, André Marrocos; Tavares, Kaio César Simiano; Alves, Benner Geraldo; Faustino, Luciana Rocha; Smitz, Johan; de Figueiredo, José Ricardo; Rodrigues, Ana Paula Ribeiro

    2018-06-01

    The multidrug resistance proteins ABCB1, ABCC2 and ABCG2 are an energy-dependent efflux pump that functions in systemic detoxification processes. Physiologically expressed in a variety of tissues, most abundantly in the liver and intestinal epithelia, placenta, blood-brain barrier and various stem cells, until now, these pumps were not identified in goat ovarian tissue. Therefore, the aim of this study is to analyze ABCB1, ABCC2, and ABCG2 mRNA and protein expression in goat preantral follicles. Fragments (3 × 3 × 1 mm) from five pairs of ovary (n = 10) obtained from five goat were collected and immediately submitted to qPCR, Western blot, and immunofluorescence assay for mRNA detection and identification and localization of the ABC transporters, respectively. mRNA for ABCB1, ABCC2, and ABCG2 and the presence of their proteins were observed on ovarian tissue samples. Positive marks were observed for the three transport proteins in all follicular categories studied. However, the marks were primarily localized in the oocyte of primordial, transition and primary follicle categories. In conclusion, goat ovarian tissue expresses mRNA for the ABCB1, ABCC2 and ABCG2 transporters and the expression of these proteins in the preantral follicles is a follicle-dependent stage.

  12. Post-Transcriptional Regulation of Endothelial Nitric Oxide Synthase Expression by Polypyrimidine Tract-Binding Protein 1.

    PubMed

    Yi, Bing; Ozerova, Maria; Zhang, Guan-Xin; Yan, Guijun; Huang, Shengdong; Sun, Jianxin

    2015-10-01

    Endothelial nitric oxide synthase (eNOS) is an important regulator of vascular function and its expression is regulated at post-transcriptional levels through a yet unknown mechanism. The purpose of this study is to elucidate the post-transcriptional factors regulating eNOS expression and function in endothelium. To elucidate the molecular basis of tumor necrosis factor (TNF)-α-mediated eNOS mRNA instability, biotinylated eNOS 3'-untranslational region (UTR) was used to purify its associated proteins by RNA affinity chromatography from cytosolic fractions of TNF-α-stimulated human umbilical vein endothelial cells (HUVECs). We identified 2 cytosolic proteins, with molecular weight of 52 and 57 kDa, which specifically bind to eNOS 3'-UTR in response to TNF-α stimulation. Matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis identified the 57-kDa protein as polypyrimidine tract-binding protein 1 (PTB1). RNA gel mobility shift and UV cross-linking assays demonstrated that PTB1 binds to a UCUU-rich sequence in eNOS 3'-UTR, and the C-terminal half of PTB1 is critical to this interaction. Importantly, PTB1 overexpression leads to decreased activity of luciferase gene fused with eNOS 3'-UTR as well as reduced eNOS expression and activity in human ECs. In HUVECs, we show that TNF-α markedly increased PTB1 expression, whereas adenovirus-mediated PTB1 overexpression decreased eNOS mRNA stability and reduced protein expression and endothelium-dependent relaxation. Furthermore, knockdown of PTB1 substantially attenuated TNF-α-induced destabilization of eNOS transcript and downregulation of eNOS expression. These results indicate that PTB1 is essential for regulating eNOS expression at post-transcriptional levels and suggest a novel therapeutic target for treatment of vascular diseases associated with inflammatory endothelial dysfunction. © 2015 American Heart Association, Inc.

  13. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1-17 and 18-36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNAmore » binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.« less

  14. Expression of fragile X mental retardation protein and Fmr1 mRNA during folliculogenesis in the rat.

    PubMed

    Ferder, Ianina; Parborell, Fernanda; Sundblad, Victoria; Chiauzzi, Violeta; Gómez, Karina; Charreau, Eduardo H; Tesone, Marta; Dain, Liliana

    2013-04-01

    Fragile X mental retardation protein (FMRP) belongs to a small family of RNA-binding proteins. Its absence or inactivity is responsible for fragile X syndrome, the most common cause of inherited mental retardation. Despite its ubiquitous expression, FMRP function and expression remain almost understudied in non-neuronal tissues, though previous studies on germline development during oogenesis may suggest a special function of this protein also in ovarian tissue. In addition, the well-documented association of FMR1 premutation state with fragile X-related premature ovarian insufficiency adds interest to the role of FMRP in ovarian physiology. The aim of the present work was to investigate the expression of Fmr1 mRNA and its protein, FMRP, at different stages of rat follicular development. By immunohistochemical studies we demonstrated FMRP expression in granulosa, theca and germ cells in all stages of follicular development. In addition, changes in Fmr1 expression, both at the protein and mRNA levels, were observed. FMRP levels increased upon follicular development while preantral and early antral follicles presented similar levels of Fmr1 transcripts with decreased expression in preovulatory follicles. These observations suggest that Fmr1 expression in the ovary is regulated at different and perhaps independent levels. In addition, our results show expression of at least four different isoforms of FMRP during all stages of follicular growth with expression patterns that differ from those observed in brain and testis. Our study shows a regulated expression of Fmr1, both at mRNA and protein levels, during rat follicular development.

  15. Chaperone Hsp27 Modulates AUF1 Proteolysis and AU-Rich Element-Mediated mRNA Degradation▿

    PubMed Central

    Knapinska, Anna M.; Gratacós, Frances M.; Krause, Christopher D.; Hernandez, Kristina; Jensen, Amber G.; Bradley, Jacquelyn J.; Wu, Xiangyue; Pestka, Sidney; Brewer, Gary

    2011-01-01

    AUF1 is an AU-rich element (ARE)-binding protein that recruits translation initiation factors, molecular chaperones, and mRNA degradation enzymes to the ARE for mRNA destruction. We recently found chaperone Hsp27 to be an AUF1-associated ARE-binding protein required for tumor necrosis factor alpha (TNF-α) mRNA degradation in monocytes. Hsp27 is a multifunctional protein that participates in ubiquitination of proteins for their degradation by proteasomes. A variety of extracellular stimuli promote Hsp27 phosphorylation on three serine residues—Ser15, Ser78, and Ser82—by a number of kinases, including the mitogen-activated protein (MAP) pathway kinases p38 and MK2. Activating either kinase stabilizes ARE mRNAs. Likewise, ectopic expression of phosphomimetic mutant forms of Hsp27 stabilizes reporter ARE mRNAs. Here, we continued to examine the contributions of Hsp27 to mRNA degradation. As AUF1 is ubiquitinated and degraded by proteasomes, we addressed the hypothesis that Hsp27 phosphorylation controls AUF1 levels to modulate ARE mRNA degradation. Indeed, selected phosphomimetic mutants of Hsp27 promote proteolysis of AUF1 in a proteasome-dependent fashion and render ARE mRNAs more stable. Our results suggest that the p38 MAP kinase (MAPK)-MK2–Hsp27 signaling axis may target AUF1 destruction by proteasomes, thereby promoting ARE mRNA stabilization. PMID:21245386

  16. An NXF1 mRNA with a retained intron is expressed in hippocampal and neocortical neurons and is translated into a protein that functions as an Nxf1 cofactor.

    PubMed

    Li, Ying; Bor, Yeou-Cherng; Fitzgerald, Mark P; Lee, Kevin S; Rekosh, David; Hammarskjold, Marie-Louise

    2016-12-01

    The Nxf1 protein is a major nuclear export receptor for the transport of mRNA, and it also is essential for export of retroviral mRNAs with retained introns. In the latter case, it binds to RNA elements known as constitutive transport elements (CTEs) and functions in conjunction with a cofactor known as Nxt1. The NXF1 gene also regulates expression of its own intron-containing RNA through the use of a functional CTE within intron 10. mRNA containing this intron is exported to the cytoplasm, where it can be translated into the 356-amino acid short Nxf1(sNxf1) protein, despite the fact that it is a prime candidate for nonsense-mediated decay (NMD). Here we demonstrate that sNxf1 is highly expressed in nuclei and dendrites of hippocampal and neocortical neurons in rodent brain. Additionally, we show that sNxf1 localizes in RNA granules in neurites of differentiated N2a mouse neuroblastoma cells, where it shows partial colocalization with Staufen2 isoform SS, a protein known to play a role in dendritic mRNA trafficking. We also show that sNxf1 forms heterodimers in conjunction with the full-length Nxf1 and that sNxf1 can replace Nxt1 to enhance the expression of CTE-containing mRNA and promote its association with polyribosomes. © 2016 Li et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Joining the dots - protein-RNA interactions mediating local mRNA translation in neurons.

    PubMed

    Gallagher, Christopher; Ramos, Andres

    2018-06-01

    Establishing and maintaining the complex network of connections required for neuronal communication requires the transport and in situ translation of large groups of mRNAs to create local proteomes. In this Review, we discuss the regulation of local mRNA translation in neurons and the RNA-binding proteins that recognise RNA zipcode elements and connect the mRNAs to the cellular transport networks, as well as regulate their translation control. However, mRNA recognition by the regulatory proteins is mediated by the combinatorial action of multiple RNA-binding domains. This increases the specificity and affinity of the interaction, while allowing the protein to recognise a diverse set of targets and mediate a range of mechanisms for translational regulation. The structural and molecular understanding of the interactions can be used together with novel microscopy and transcriptome-wide data to build a mechanistic framework for the regulation of local mRNA translation. © 2018 Federation of European Biochemical Societies.

  18. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3.

    PubMed Central

    Méthot, N; Song, M S; Sonenberg, N

    1996-01-01

    The binding of mRNA to the ribosome is mediated by eukaryotic initiation factors eukaryotic initiation factor 4F (eIF4F), eIF4B, eIF4A, and eIF3, eIF4F binds to the mRNA cap structure and, in combination with eIF4B, is believed to unwind the secondary structure in the 5' untranslated region to facilitate ribosome binding. eIF3 associates with the 40S ribosomal subunit prior to mRNA binding. eIF4B copurifies with eIF3 and eIF4F through several purification steps, suggesting the involvement of a multisubunit complex during translation initiation. To understand the mechanism by which eIF4B promotes 40S ribosome binding to the mRNA, we studied its interactions with partner proteins by using a filter overlay (protein-protein [far Western]) assay and the two-hybrid system. In this report, we show that eIF4B self-associates and also interacts directly with the p170 subunit of eIF3. A region rich in aspartic acid, arginine, tyrosine, and glycine, termed the DRYG domain, is sufficient for self-association of eIF4B, both in vitro and in vivo, and for interaction with the p170 subunit of eIF3. These experiments suggest that eIF4B participates in mRNA-ribosome binding by acting as an intermediary between the mRNA and eIF3, via a direct interaction with the p170 subunit of eIF3. PMID:8816444

  19. The Yeast PUF Protein Puf5 Has Pop2-Independent Roles in Response to DNA Replication Stress

    PubMed Central

    Traven, Ana; Lo, Tricia L.; Lithgow, Trevor; Heierhorst, Jörg

    2010-01-01

    PUFs are RNA binding proteins that promote mRNA deadenylation and decay and inhibit translation. Yeast Puf5 is the prototype for studying PUF-dependent gene repression. Puf5 binds to the Pop2 subunit of the Ccr4-Pop2-NOT mRNA deadenylase, recruiting the deadenylase and associated translational repressors to mRNAs. Here we used yeast genetics to show that Puf5 has additional roles in vivo that do not require Pop2. Deletion of PUF5 caused increased sensitivity to DNA replication stress in cells lacking Pop2, as well as in cells mutated for two activities recruited to mRNAs by the Puf5-Pop2 interaction, the deadenylase Ccr4 and the translational repressor Dhh1. A functional Puf5 RNA binding domain was required, and Puf5 cytoplasmic localisation was sufficient for resistance to replication stress, indicating posttranscriptional gene expression control is involved. In contrast to DNA replication stress, in response to the cell wall integrity pathway activator caffeine, PUF5 and POP2 acted in the same genetic pathway, indicating that functions of Puf5 in the caffeine response are mediated by Pop2-dependent gene repression. Our results support a model in which Puf5 uses multiple, Pop2-dependent and Pop2-independent mechanisms to control mRNA expression. The Pop2-independent roles for Puf5 could involve spatial control of gene expression, a proposition supported by our data indicating that the active form of Puf5 is localised to cytoplasmic foci. PMID:20498834

  20. [Protein S3 fragments neighboring mRNA during elongation and translation termination on the human ribosome].

    PubMed

    Khaĭrulina, Iu S; Molotkov, M V; Bulygin, K N; Graĭfer, D M; Ven'yaminova, A G; Frolova, L Iu; Stahl, J; Karpova, G G

    2008-01-01

    Protein S3 fragments were determined that crosslink to modified mRNA analogues in positions +5 to +12 relative to the first nucleotide in the P-site binding codon in model complexes mimicking states of ribosomes at the elongation and translation termination steps. The mRNA analogues contained a Phe codon UUU/UUC at the 5'-termini that could predetermine the position of the tRNA(Phe) on the ribosome by the location of P-site binding and perfluorophenylazidobenzoyl group at a nucleotide in various positions 3' of the UUU/UUC codon. The crosslinked S3 protein was isolated from 80S ribosomal complexes irradiated with mild UV light and subjected to cyanogen bromide-induced cleavage at methionine residues with subsequent identification of the crosslinked oligopeptides. An analysis of the positions of modified oligopeptides resulting from the cleavage showed that, in dependence on the positions of modified nucleotides in the mRNA analogue, the crosslinking sites were found in the N-terminal half of the protein (fragment 2-127) and/or in the C-terminal fragment 190-236; the latter reflects a new peculiarity in the structure of the mRNA binding center in the ribosome, unknown to date. The results of crosslinking did not depend on the type of A-site codon or on the presence of translation termination factor eRF1.

  1. Green tea polyphenols improve cardiac muscle mRNA and protein levels of signal pathways related to insulin and lipid metabolism and inflammation in insulin-resistant rats.

    PubMed

    Qin, Bolin; Polansky, Marilyn M; Harry, Dawson; Anderson, Richard A

    2010-05-01

    Epidemiological studies indicate that the consumption of green tea polyphenols (GTP) may reduce the risk of coronary artery disease. To explore the underlying mechanisms of action at the molecular level, we examined the effects of GTP on the cardiac mRNA and protein levels of genes involved in insulin and lipid metabolism and inflammation. In rats fed a high-fructose diet, supplementation with GTP (200 mg/kg BW daily dissolved in distilled water) for 6 wk, reduced systemic blood glucose, plasma insulin, retinol-binding protein 4, soluble CD36, cholesterol, triglycerides, free fatty acids and LDL-C levels, as well as the pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and IL-6. GTP did not affect food intake, bodyweight and heart weight. In the myocardium, GTP also increased the insulin receptor (Ir), insulin receptor substrate 1 and 2 (Irs1 and Irs2), phosphoinositide-3-kinase (Pi3k), v-akt murine thymoma viral oncogene homolog 1 (Akt1), glucose transporter 1 and 4 (Glut1 and Glut4) and glycogen synthase 1 (Gys1) expression but inhibited phosphatase and tensin homolog deleted on chromosome ten (Pten) expression and decreased glycogen synthase kinase 3beta (Gsk3beta) mRNA expression. The sterol regulatory element-binding protein-1c (Srebp1c) mRNA, microsomal triglyceride transfer protein (Mttp) mRNA and protein, Cd36 mRNA and cluster of differentiation 36 protein levels were decreased and peroxisome proliferator-activated receptor (Ppar)gamma mRNA levels were increased. GTP also decreased the inflammatory factors: Tnf, Il1b and Il6 mRNA levels, and enhanced the anti-inflammatory protein, zinc-finger protein, protein and mRNA expression. In summary, consumption of GTP ameliorated the detrimental effects of high-fructose diet on insulin signaling, lipid metabolism and inflammation in the cardiac muscle of rats.

  2. HuR binding to cytoplasmic mRNA is perturbed by heat shock

    PubMed Central

    Gallouzi, Imed-Eddine; Brennan, Christopher M.; Stenberg, Myrna G.; Swanson, Maurice S.; Eversole, Ashley; Maizels, Nancy; Steitz, Joan A.

    2000-01-01

    AU-rich elements (AREs) located in the 3′ untranslated region target the mRNAs encoding many protooncoproteins, cytokines, and lymphokines for rapid degradation. HuR, a ubiquitously expressed member of the embryonic lethal abnormal vision (ELAV) family of RNA-binding proteins, binds ARE sequences and selectively stabilizes ARE-containing reporter mRNAs when overexpressed in transiently transfected cells. HuR appears predominantly nucleoplasmic but has been shown to shuttle between the nucleus and cytoplasm via a novel shuttling sequence HNS. We report generation of a mouse monoclonal antibody 3A2 that both immunoblots and immunoprecipitates HuR protein; it recognizes an epitope located in the first of HuR's three RNA recognition motifs. This antibody was used to probe HuR interactions with mRNA before and after heat shock, a condition that has been reported to stabilize ARE-containing mRNAs. At 37°C, approximately one-third of the cytoplasmic HuR appears polysome associated, and in vivo UV crosslinking reveals that HuR interactions with poly(A)+ RNA are predominantly cytoplasmic rather than nuclear. This comprises evidence that HuR directly interacts with mRNA in vivo. After heat shock, 12–15% of HuR accumulates in discrete foci in the cytoplasm, but surprisingly the majority of HuR crosslinks instead to nuclear poly(A)+ RNA, whose levels are dramatically increased in the stressed cells. This behavior of HuR differs from that of another ARE-binding protein, hnRNP D, which has been implicated as an effector of mRNA decay rather than mRNA stabilization and of the general pre-RNA-binding protein hnRNP A1. We interpret these differences to mean that the temporal association of HuR with ARE-containing mRNAs is different from that of these other two proteins. PMID:10737787

  3. Combinatory RNA-Sequencing Analyses Reveal a Dual Mode of Gene Regulation by ADAR1 in Gastric Cancer.

    PubMed

    Cho, Charles J; Jung, Jaeeun; Jiang, Lushang; Lee, Eun Ji; Kim, Dae-Soo; Kim, Byung Sik; Kim, Hee Sung; Jung, Hwoon-Yong; Song, Ho-June; Hwang, Sung Wook; Park, Yangsoon; Jung, Min Kyo; Pack, Chan Gi; Myung, Seung-Jae; Chang, Suhwan

    2018-04-25

    Adenosine deaminase acting on RNA 1 (ADAR1) is known to mediate deamination of adenosine-to-inosine through binding to double-stranded RNA, the phenomenon known as RNA editing. Currently, the function of ADAR1 in gastric cancer is unclear. This study was aimed at investigating RNA editing-dependent and editing-independent functions of ADAR1 in gastric cancer, especially focusing on its influence on editing of 3' untranslated regions (UTRs) and subsequent changes in expression of messenger RNAs (mRNAs) as well as microRNAs (miRNAs). RNA-sequencing and small RNA-sequencing were performed on AGS and MKN-45 cells with a stable ADAR1 knockdown. Changed frequencies of editing and mRNA and miRNA expression were then identified by bioinformatic analyses. Targets of RNA editing were further validated in patients' samples. In the Alu region of both gastric cell lines, editing was most commonly of the A-to-I type in 3'-UTR or intron. mRNA and protein levels of PHACTR4 increased in ADAR1 knockdown cells, because of the loss of seed sequences in 3'-UTR of PHACTR4 mRNA that are required for miRNA-196a-3p binding. Immunohistochemical analyses of tumor and paired normal samples from 16 gastric cancer patients showed that ADAR1 expression was higher in tumors than in normal tissues and inversely correlated with PHACTR4 staining. On the other hand, decreased miRNA-148a-3p expression in ADAR1 knockdown cells led to increased mRNA and protein expression of NFYA, demonstrating ADAR1's editing-independent function. ADAR1 regulates post-transcriptional gene expression in gastric cancer through both RNA editing-dependent and editing-independent mechanisms.

  4. SLXL1, a novel acrosomal protein, interacts with DKKL1 and is involved in fertilization in mice.

    PubMed

    Zhuang, Xin-jie; Hou, Xiao-jun; Liao, Shang-Ying; Wang, Xiu-Xia; Cooke, Howard J; Zhang, Ming; Han, Chunsheng

    2011-01-01

    Spermatogenesis is a complex cellular developmental process which involves diverse families of genes. The Xlr (X-linked, lymphocyte regulated) family includes multiple members, only a few of which have reported functions in meiosis, post-meiotic maturation, and fertilization of germ cells. Slx-like1 (Slxl1) is a member of the Xlr family, whose expression and function in spermatogenesis need to be elucidated. The mRNA and protein expression and localization of Slxl1 were investigated by RT-PCR, Western blotting and immunohistochemistry in different tissues and at different stages of spermatogenesis. The interacting partner of SLXL1 was examined by co-immunoprecipitation and co-localization. Assessment of the role of SLXL1 in capacitation, acrosome reaction, zona pellucida binding/penetration, and fertilization was carried out in vitro using blocking antisera. The results showed that Slxl1 mRNA and protein were specifically expressed in the testis. SLXL1 was exclusively located in the acrosome of post-meiotic germ cells and interacts with DKKL1 (Dickkopf-like1), which is an acrosome-associated protein and plays an important role in fertilization. The rates of zona pellucida binding/penetration and fertilization were significantly reduced by the anti-SLXL1 polyclonal antiserum. SLXL1 is the first identified member of the XLR family that is associated with acrosome and is involved in zona pellucid binding/penetration and subsequent fertilization. These results, together with previous studies, suggest that Xlr family members participate in diverse processes from meiosis to fertilization during spermatogenesis.

  5. The induced RNA-binding protein, HuR, targets 3'-UTR region of IL-6 mRNA and enhances its stabilization in periodontitis.

    PubMed

    Ouhara, K; Munenaga, S; Kajiya, M; Takeda, K; Matsuda, S; Sato, Y; Hamamoto, Y; Iwata, T; Yamasaki, S; Akutagawa, K; Mizuno, N; Fujita, T; Sugiyama, E; Kurihara, H

    2018-06-01

    RNA-binding proteins (RBPs) regulate mRNA stability by binding to the 3'-untranslated region (UTR) region of mRNA. Human antigen-R (HuR), one of the RBPs, is involved in the progression of diseases, such as rheumatoid arthritis, diabetes mellitus and some inflammatory diseases. Interleukin (IL)-6 is a major inflammatory cytokine regulated by HuR binding to mRNA. Periodontal disease (PD) is also an inflammatory disease caused by elevations in IL-6 following an infection by periodontopathogenic bacteria. The involvement of HuR in the progression of PD was assessed using in-vitro and in-vivo experiments. Immunohistochemistry of inflamed periodontal tissue showed strong staining of HuR in the epithelium and connective tissue. HuR mRNA and protein level was increased following stimulation with Porphyromonas gingivalis (Pg), one of the periodontopathogenic bacteria, lipopolysacchride (LPS)-derived from Pg (PgLPS) and tumour necrosis factor (TNF)-α in OBA-9, an immortalized human gingival epithelial cell. The luciferase activity of 3'-UTR of IL-6 mRNA was increased by TNF-α, Pg and PgLPS in OBA-9. Luciferase activity was also increased in HuR-over-expressing OBA-9 following a bacterial stimulation. Down-regulation of HuR by siRNA resulted in a decrease in mRNA expression and production of IL-6. In contrast, the over-expression of HuR increased IL-6 mRNA expression and production in OBA-9. The HuR inhibitor, quercetin, suppressed Pg-induced HuR mRNA expression and IL-6 production in OBA-9. An oral inoculation with quercetin also inhibited bone resorption in ligature-induced periodontitis model mice as a result of down-regulation of IL-6. These results show that HuR modulates inflammatory responses by regulating IL-6. © 2018 British Society for Immunology.

  6. Role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of Dr+ Escherichia coli receptor protein Decay Accelerating Factor (DAF or CD55) by Nitric oxide

    PubMed Central

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2012-01-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr+). The epithelial invasion of Dr+ E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by down-regulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5′-untranslated region and mapped NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5′-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3′-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. The NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. PMID:23176121

  7. Role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of Dr+ Escherichia coli receptor protein decay accelerating factor (DAF or CD55) by nitric oxide.

    PubMed

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2013-02-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr(+) ). The epithelial invasion of Dr(+) E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by downregulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5'-untranslated region and mapped the NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5'-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3'-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to the AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. © 2012 The Authors Journal compilation © 2012 FEBS.

  8. Developmental expression of the neuroligins and neurexins in fragile X mice.

    PubMed

    Lai, Jonathan K Y; Doering, Laurie C; Foster, Jane A

    2016-03-01

    Neuroligins and neurexins are transsynaptic proteins involved in the maturation of glutamatergic and GABAergic synapses. Research has identified synaptic proteins and function as primary contributors to the development of fragile X syndrome. Fragile X mental retardation protein (FMRP), the protein that is lacking in fragile X syndrome, binds neuroligin-1 and -3 mRNA. Using in situ hybridization, we examined temporal and spatial expression patterns of neuroligin (NLGN) and neurexin (NRXN) mRNAs in the somatosensory (S1) cortex and hippocampus in wild-type (WT) and fragile X knockout (FMR1-KO) mice during the first 5 weeks of postnatal life. Genotype-based differences in expression included increased NLGN1 mRNA in CA1 and S1 cortex, decreased NLGN2 mRNA in CA1 and dentate gyrus (DG) regions of the hippocampus, and increased NRXN3 mRNA in CA1, DG, and S1 cortex between female WT and FMR1-KO mice. In male mice, decreased expression of NRXN3 mRNA was observed in CA1 and DG regions of FMR1-KO mice. Sex differences in hippocampal expression of NLGN2, NRXN1, NRXN2, and NRXN3 mRNAs and in S1 cortex expression of NRXN3 mRNAs were observed WT mice, whereas sex differences in NLGN3, NRXN1, NRXN2, and NRXN3 mRNA expression in the hippocampus and in NLGN1, NRXN2 and NRXN3 mRNA expression in S1 cortex were detected in FMR1-KO mice. These results provide a neuroanatomical map of NLGN and NRXN expression patterns over postnatal development in WT and FMR1-KO mice. The differences in developmental trajectory of these synaptic proteins could contribute to long-term differences in CNS wiring and synaptic function. © 2015 Wiley Periodicals, Inc.

  9. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein

    PubMed Central

    2014-01-01

    Background Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown. Results To gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug’s target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes. Conclusions Smaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism. PMID:24393533

  10. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein.

    PubMed

    Chen, Linan; Dumelie, Jason G; Li, Xiao; Cheng, Matthew Hk; Yang, Zhiyong; Laver, John D; Siddiqui, Najeeb U; Westwood, J Timothy; Morris, Quaid; Lipshitz, Howard D; Smibert, Craig A

    2014-01-07

    Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown. To gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug's target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes. Smaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism.

  11. EBP1 is a novel E2F target gene regulated by transforming growth factor-β.

    PubMed

    Judah, David; Chang, Wing Y; Dagnino, Lina

    2010-11-10

    Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1) promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-β1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context.

  12. Phosphorylation of human tristetraprolin in response to its interaction with the Cbl interacting protein CIN85.

    PubMed

    Kedar, Vishram P; Darby, Martyn K; Williams, Jason G; Blackshear, Perry J

    2010-03-08

    Tristetraprolin (TTP) is the prototype member of a family of CCCH tandem zinc finger proteins and is considered to be an anti-inflammatory protein in mammals. TTP plays a critical role in the decay of tumor necrosis factor alpha (TNF) mRNA, among others, by binding AU-rich RNA elements in the 3'-untranslated regions of this transcript and promoting its deadenylation and degradation. We used yeast two-hybrid analysis to identify potential protein binding partners for human TTP (hTTP). Various regions of hTTP recovered 31 proteins that fell into 12 categories based on sequence similarities. Among these, the interactions between hTTP and CIN85, cytoplasmic poly (A) binding protein (PABP), nucleolin and heat shock protein 70 were confirmed by co-immunoprecipitation experiments. CIN85 and hTTP co-localized in the cytoplasm of cells as determined by confocal microscopy. CIN85 contains three SH3 domains that specifically bind a unique proline-arginine motif (PXXXPR) found in several CIN85 effectors. We found that the SH3 domains of CIN85 bound to a PXXXPR motif located near the C-terminus of hTTP. Co-expression of CIN85 with hTTP resulted in the increased phosphorylation of hTTP at serine residues in positions 66 and 93, possibly due in part to the demonstrated association of mitogen-activated protein kinase kinase kinase 4 (MEKK4) to both proteins. The presence of CIN85 did not appear to alter hTTP's binding to RNA probes or its stimulated breakdown of TNF mRNA. These studies describe interactions between hTTP and nucleolin, cytoplasmic PABP, heat shock protein 70 and CIN85; these interactions were initially discovered by two-hybrid analysis, and confirmed by co-immunoprecipitation. We found that CIN85 binding to a C-terminal motif within hTTP led to the increased phosphorylation of hTTP, possibly through enhanced association with MEKK4. The functional consequences to each of the members of this putative complex remain to be determined.

  13. The conserved, disease-associated RNA binding protein dNab2 interacts with the Fragile-X protein ortholog in Drosophila neurons

    PubMed Central

    Bienkowski, Rick S.; Banerjee, Ayan; Rounds, J. Christopher; Rha, Jennifer; Omotade, Omotola F.; Gross, Christina; Morris, Kevin J.; Leung, Sara W.; Pak, ChangHui; Jones, Stephanie K.; Santoro, Michael R.; Warren, Stephen T.; Zheng, James Q.; Bassell, Gary J.; Corbett, Anita H.; Moberg, Kenneth H.

    2017-01-01

    Summary The Drosophila dNab2 protein is an ortholog of human ZC3H14, a poly(A) RNA-binding protein required for intellectual function. dNab2 supports memory and axon projection, but its molecular role in neurons is undefined. Here we present a network of interactions that links dNab2 to cytoplasmic control of neuronal mRNAs in conjunction with and the Fragile-X protein ortholog dFMRP. dNab2 and dfmr1 interact genetically in control of neurodevelopment and olfactory memory and their encoded proteins co-localize in puncta within neuronal processes. dNab2 regulates CaMKII but not futsch mRNA, implying a selective role in control of dFMRP-bound transcripts. Reciprocally, dFMRP and vertebrate FMRP restrict mRNA poly(A)-tail length similar to dNab2/ZC3H14. Parallel studies of murine hippocampal neurons indicate that ZC3H14 is also a cytoplasmic regulator of neuronal mRNAs. In sum these findings suggest that dNab2 represses expression of a subset of dFMRP-target mRNAs, which could underlie brain-specific defects in patients lacking ZC3H14. PMID:28793261

  14. Conserved RNA binding activity of a Yin-Yang 1 homologue in the ova of the purple sea urchin Strongylocentrotus purpuratus.

    PubMed

    Belak, Zachery R; Ovsenek, Nicholas; Eskiw, Christopher H

    2018-05-23

    Yin-Yang 1 (YY1) is a highly conserved transcription factor possessing RNA-binding activity. A putative YY1 homologue was previously identified in the developmental model organism Strongylocentrotus purpuratus (the purple sea urchin) by genomic sequencing. We identified a high degree of sequence similarity with YY1 homologues of vertebrate origin which shared 100% protein sequence identity over the DNA- and RNA-binding zinc-finger region with high similarity in the N-terminal transcriptional activation domain. SpYY1 demonstrated identical DNA- and RNA-binding characteristics between Xenopus laevis and S. purpuratus indicating that it maintains similar functional and biochemical properties across widely divergent deuterostome species. SpYY1 binds to the consensus YY1 DNA element, and also to U-rich RNA sequences. Although we detected SpYY1 RNA-binding activity in ova lysates and observed cytoplasmic localization, SpYY1 was not associated with maternal mRNA in ova. SpYY1 expressed in Xenopus oocytes was excluded from the nucleus and associated with maternally expressed cytoplasmic mRNA molecules. These data demonstrate the existence of an YY1 homologue in S. purpuratus with similar structural and biochemical features to those of the well-studied vertebrate YY1; however, the data reveal major differences in the biological role of YY1 in the regulation of maternally expressed mRNA in the two species.

  15. A Sub-Element in PRE enhances nuclear export of intronless mRNAs by recruiting the TREX complex via ZC3H18

    PubMed Central

    Chi, Binkai; Wang, Ke; Du, Yanhua; Gui, Bin; Chang, Xingya; Wang, Lantian; Fan, Jing; Chen, She; Wu, Xudong; Li, Guohui; Cheng, Hong

    2014-01-01

    Viral RNA elements that facilitate mRNA export are useful tools for identifying cellular RNA export factors. Here we show that hepatitis B virus post-transcriptional element (PRE) is one such element, and using PRE several new cellular mRNA export factors were identified. We found that PRE drastically enhances the cytoplasmic accumulation of cDNA transcripts independent of any viral protein. Systematic deletion analysis revealed the existence of a 116 nt functional Sub-Element of PRE (SEP1). The RNP that forms on the SEP1 RNA was affinity purified, in which TREX components as well as several other proteins were identified. TREX components and the SEP1-associating protein ZC3H18 are required for SEP1-mediated mRNA export. Significantly, ZC3H18 directly binds to the SEP1 RNA, interacts with TREX and is required for stable association of TREX with the SEP1-containing mRNA. Requirements for SEP1-mediated mRNA export are similar to those for splicing-dependent mRNA export. Consistent with these similarities, several SEP1-interacting proteins, including ZC3H18, ARS2, Acinus and Brr2, are required for efficient nuclear export of polyA RNAs. Together, our data indicate that SEP1 enhances mRNA export by recruiting TREX via ZC3H18. The new mRNA export factors that we identified might be involved in cap- and splicing-dependent TREX recruitment to cellular mRNAs. PMID:24782531

  16. IGF2BP3 Modulates the Interaction of Invasion-Associated Transcripts with RISC.

    PubMed

    Ennajdaoui, Hanane; Howard, Jonathan M; Sterne-Weiler, Timothy; Jahanbani, Fereshteh; Coyne, Doyle J; Uren, Philip J; Dargyte, Marija; Katzman, Sol; Draper, Jolene M; Wallace, Andrew; Cazarez, Oscar; Burns, Suzanne C; Qiao, Mei; Hinck, Lindsay; Smith, Andrew D; Toloue, Masoud M; Blencowe, Benjamin J; Penalva, Luiz O F; Sanford, Jeremy R

    2016-05-31

    Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) expression correlates with malignancy, but its role(s) in pathogenesis remains enigmatic. We interrogated the IGF2BP3-RNA interaction network in pancreatic ductal adenocarcinoma (PDAC) cells. Using a combination of genome-wide approaches, we have identified 164 direct mRNA targets of IGF2BP3. These transcripts encode proteins enriched for functions such as cell migration, proliferation, and adhesion. Loss of IGF2BP3 reduced PDAC cell invasiveness and remodeled focal adhesion junctions. Individual nucleotide resolution crosslinking immunoprecipitation (iCLIP) revealed significant overlap of IGF2BP3 and microRNA (miRNA) binding sites. IGF2BP3 promotes association of the RNA-induced silencing complex (RISC) with specific transcripts. Our results show that IGF2BP3 influences a malignancy-associated RNA regulon by modulating miRNA-mRNA interactions. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. mRNA-Selective Translation Induced by FSH in Primary Sertoli Cells

    PubMed Central

    Musnier, Astrid; León, Kelly; Morales, Julia; Reiter, Eric; Boulo, Thomas; Costache, Vlad; Vourc'h, Patrick; Heitzler, Domitille; Oulhen, Nathalie; Poupon, Anne; Boulben, Sandrine; Cormier, Patrick

    2012-01-01

    FSH is a key hormonal regulator of Sertoli cell secretory activity, required to optimize sperm production. To fulfil its biological function, FSH binds a G protein-coupled receptor, the FSH-R. The FSH-R-transduced signaling network ultimately leads to the transcription or down-regulation of numerous genes. In addition, recent evidence has suggested that FSH might also regulate protein translation. However, this point has never been demonstrated conclusively yet. Here we have addressed this issue in primary rat Sertoli cells endogenously expressing physiological levels of FSH-R. We observed that, within 90 min of stimulation, FSH not only enhanced overall protein synthesis in a mammalian target of rapamycin-dependent manner but also increased the recruitment of mRNA to polysomes. m7GTP pull-down experiments revealed the functional recruitment of mammalian target of rapamycin and p70 S6 kinase to the 5′cap, further supported by the enhanced phosphorylation of one of p70 S6 kinase targets, the eukaryotic initiation factor 4B. Importantly, the scaffolding eukaryotic initiation factor 4G was also recruited, whereas eukaryotic initiation factor 4E-binding protein, the eukaryotic initiation factor 4E generic inhibitor, appeared to play a minor role in translational regulations induced by FSH, in contrast to what is generally observed in response to anabolic factors. This particular regulation of the translational machinery by FSH stimulation might support mRNA-selective translation, as shown here by quantitative RT-PCR amplification of the c-fos and vascular endothelial growth factor mRNA but not of all FSH target mRNA, in polysomal fractions. These findings add a new level of complexity to FSH biological roles in its natural target cells, which has been underappreciated so far. PMID:22383463

  18. Cinnamon extract regulates plasma levels of adipose-derived factors and expression of multiple genes related to carbohydrate metabolism and lipogenesis in adipose tissue of fructose-fed rats.

    PubMed

    Qin, B; Polansky, M M; Anderson, R A

    2010-03-01

    We reported earlier that dietary cinnamon extract (CE) improves systemic insulin sensitivity and dyslipidemia by enhancing insulin signaling. In the present study, we have examined the effects of CE on several biomarkers including plasma levels of adipose-derived adipokines, and the potential molecular mechanisms of CE in epididymal adipose tissue (EAT). In Wistar rats fed a high-fructose diet (HFD) to induce insulin resistance, supplementation with a CE (Cinnulin PF, 50 mg/kg daily) for 8 weeks reduced blood glucose, plasma insulin, triglycerides, total cholesterol, chylomicron-apoB48, VLDL-apoB100, and soluble CD36. CE also inhibited plasma retinol binding protein 4 (RBP4) and fatty acid binding protein 4 (FABP4) levels. CE-induced increases in plasma adiponectin were not significant. CE did not affect food intake, bodyweight, and EAT weight. In EAT, there were increases in the insulin receptor ( IR) and IR substrate 2 ( IRS2) mRNA, but CE-induced increases in mRNA expression of IRS1, phosphoinositide-3-kinase, AKT1, glucose transporters 1 and 4 , and glycogen synthase 1 expression and decreased trends in mRNA expression of glycogen synthase kinase 3beta were not statistically significant. CE also enhanced the mRNA levels of ADIPOQ, and inhibited sterol regulatory element binding protein-1c mRNA levels. mRNA and protein levels of fatty acid synthase and FABP4 were inhibited by CE and RBP4, and CD36 protein levels were also decreased by CE. These results suggest that CE effectively ameliorates circulating levels of adipokines partially mediated via regulation of the expression of multiple genes involved in insulin sensitivity and lipogenesis in the EAT.

  19. Musashi RNA-Binding Proteins as Cancer Drivers and Novel Therapeutic Targets.

    PubMed

    Kudinov, Alexander E; Karanicolas, John; Golemis, Erica A; Boumber, Yanis

    2017-05-01

    Aberrant gene expression that drives human cancer can arise from epigenetic dysregulation. Although much attention has focused on altered activity of transcription factors and chromatin-modulating proteins, proteins that act posttranscriptionally can potently affect expression of oncogenic signaling proteins. The RNA-binding proteins (RBP) Musashi-1 (MSI1) and Musashi-2 (MSI2) are emerging as regulators of multiple critical biological processes relevant to cancer initiation, progression, and drug resistance. Following identification of Musashi as a regulator of progenitor cell identity in Drosophila , the human Musashi proteins were initially linked to control of maintenance of hematopoietic stem cells, then stem cell compartments for additional cell types. More recently, the Musashi proteins were found to be overexpressed and prognostic of outcome in numerous cancer types, including colorectal, lung, and pancreatic cancers; glioblastoma; and several leukemias. MSI1 and MSI2 bind and regulate the mRNA stability and translation of proteins operating in essential oncogenic signaling pathways, including NUMB/Notch, PTEN/mTOR, TGFβ/SMAD3, MYC, cMET, and others. On the basis of these activities, MSI proteins maintain cancer stem cell populations and regulate cancer invasion, metastasis, and development of more aggressive cancer phenotypes, including drug resistance. Although RBPs are viewed as difficult therapeutic targets, initial efforts to develop MSI-specific inhibitors are promising, and RNA interference-based approaches to inhibiting these proteins have had promising outcomes in preclinical studies. In the interim, understanding the function of these translational regulators may yield insight into the relationship between mRNA expression and protein expression in tumors, guiding tumor-profiling analysis. This review provides a current overview of Musashi as a cancer driver and novel therapeutic target. Clin Cancer Res; 23(9); 2143-53. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. Approaches for Investigating Translational Regulation Controlled by PARP1: Biotin-Based UV Cross-Linking and Luciferase Reporter Assay.

    PubMed

    Ji, Yingbiao

    2017-01-01

    The RNA-binding proteins (RBPs) play a pivotal role in controlling gene expression through posttranscriptional processes. As the trans-acting factors, RBPs interact with the cis-regulatory elements located within mRNAs to regulate mRNA translational efficiency. Adding a new-layer regulation, recent studies suggest that poly(ADP-ribosyl)ation of the RNA-binding proteins often inhibit the RNA-binding ability of RBPs, thus regulating RBP-dependent mRNA metabolism including translational control. Here, we describe a biotin-based UV cross-linking method to determine if excessive accumulation of pADPr in the cell disrupts the interaction between RBPs and their target mRNAs. In addition, we illustrate the protocol of using the luciferase reporter assay to determine the effect of poly(ADP-ribosyl)ation on mRNA translation.

  1. Heterogeneous RNA-binding protein M4 is a receptor for carcinoembryonic antigen in Kupffer cells.

    PubMed

    Bajenova, O V; Zimmer, R; Stolper, E; Salisbury-Rowswell, J; Nanji, A; Thomas, P

    2001-08-17

    Here we report the isolation of the recombinant cDNA clone from rat macrophages, Kupffer cells (KC) that encodes a protein interacting with carcinoembryonic antigen (CEA). To isolate and identify the CEA receptor gene we used two approaches: screening of a KC cDNA library with a specific antibody and the yeast two-hybrid system for protein interaction using as a bait the N-terminal part of the CEA encoding the binding site. Both techniques resulted in the identification of the rat heterogeneous RNA-binding protein (hnRNP) M4 gene. The rat ortholog cDNA sequence has not been previously described. The open reading frame for this gene contains a 2351-base pair sequence with the polyadenylation signal AATAAA and a termination poly(A) tail. The mRNA shows ubiquitous tissue expression as a 2.4-kilobase transcript. The deduced amino acid sequence comprised a 78-kDa membrane protein with 3 putative RNA-binding domains, arginine/methionine/glutamine-rich C terminus and 3 potential membrane spanning regions. When hnRNP M4 protein is expressed in pGEX4T-3 vector system in Escherichia coli it binds (125)I-labeled CEA in a Ca(2+)-dependent fashion. Transfection of rat hnRNP M4 cDNA into a non-CEA binding mouse macrophage cell line p388D1 resulted in CEA binding. These data provide evidence for a new function of hnRNP M4 protein as a CEA-binding protein in Kupffer cells.

  2. Molecular cloning, expression pattern, and 3D structural prediction of the cold inducible RNA-binding protein (CIRP) in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Gao, Jinning; Ma, Liman; Li, Zan; Wang, Wenji; Wang, Zhongkai; Yu, Haiyang; Qi, Jie; Wang, Xubo; Wang, Zhigang; Zhang, Quanqi

    2015-02-01

    Cold-inducible RNA-binding protein (CIRP) is a kind of RNA binding proteins that plays important roles in many physiological processes. The CIRP has been widely studied in mammals and amphibians since it was first cloned from mammals. On the contrary, there are little reports in teleosts. In this study, the Po CIRP gene of the Japanese flounder was cloned and sequenced. The genomic sequence consists of seven exons and six introns. The putative PoCIRP protein of flounder was 198 amino acid residues long containing the RNA recognition motif (RRM). Phylogenetic analysis showed that the flounder PoCIRP is highly conserved with other teleost CIRPs. The 5' flanking sequence was cloned by genome walking and many transcription factor binding sites were identified. There is a CpGs region located in promoter and exon I region and the methylation state is low. Quantitative real-time PCR analysis uncovered that Po CIRP gene was widely expressed in adult tissues with the highest expression level in the ovary. The mRNA of the Po CIRP was maternally deposited and the expression level of the gene was regulated up during the gastrula and neurula stages. In order to gain the information how the protein interacts with mRNA, we performed the modeling of the 3D structure of the flounder PoCIRP. The results showed a cleft existing the surface of the molecular. Taken together, the results indicate that the CIRP is a multifunctional molecular in teleosts and the findings about the structure provide valuable information for understanding the basis of this protein's function.

  3. Novel RNA-binding activity of NQO1 promotes SERPINA1 mRNA translation.

    PubMed

    Di Francesco, Andrea; Di Germanio, Clara; Panda, Amaresh C; Huynh, Phu; Peaden, Robert; Navas-Enamorado, Ignacio; Bastian, Paul; Lehrmann, Elin; Diaz-Ruiz, Alberto; Ross, David; Siegel, David; Martindale, Jennifer L; Bernier, Michel; Gorospe, Myriam; Abdelmohsen, Kotb; de Cabo, Rafael

    2016-10-01

    NAD(P)H: quinone oxidoreductase (NQO1) is essential for cell defense against reactive oxidative species, cancer, and metabolic stress. Recently, NQO1 was found in ribonucleoprotein (RNP) complexes, but NQO1-interacting mRNAs and the functional impact of such interactions are not known. Here, we used ribonucleoprotein immunoprecipitation (RIP) and microarray analysis to identify comprehensively the subset of NQO1 target mRNAs in human hepatoma HepG2 cells. One of its main targets, SERPINA1 mRNA, encodes the serine protease inhibitor α-1-antitrypsin, A1AT, which is associated with disorders including obesity-related metabolic inflammation, chronic obstructive pulmonary disease (COPD), liver cirrhosis and hepatocellular carcinoma. Biotin pulldown analysis indicated that NQO1 can bind the 3' untranslated region (UTR) and the coding region (CR) of SERPINA1 mRNA. NQO1 did not affect SERPINA1 mRNA levels; instead, it enhanced the translation of SERPINA1 mRNA, as NQO1 silencing decreased the size of polysomes forming on SERPINA1 mRNA and lowered the abundance of A1AT. Luciferase reporter analysis further indicated that NQO1 regulates SERPINA1 mRNA translation through the SERPINA1 3'UTR. Accordingly, NQO1-KO mice had reduced hepatic and serum levels of A1AT and increased activity of neutrophil elastase (NE), one of the main targets of A1AT. We propose that this novel mechanism of action of NQO1 as an RNA-binding protein may help to explain its pleiotropic biological effects. Published by Elsevier Inc.

  4. La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs.

    PubMed

    Lahr, Roni M; Fonseca, Bruno D; Ciotti, Gabrielle E; Al-Ashtal, Hiba A; Jia, Jian-Jun; Niklaus, Marius R; Blagden, Sarah P; Alain, Tommy; Berman, Andrea J

    2017-04-07

    The 5'terminal oligopyrimidine (5'TOP) motif is a cis -regulatory RNA element located immediately downstream of the 7-methylguanosine [m 7 G] cap of TOP mRNAs, which encode ribosomal proteins and translation factors. In eukaryotes, this motif coordinates the synchronous and stoichiometric expression of the protein components of the translation machinery. La-related protein 1 (LARP1) binds TOP mRNAs, regulating their stability and translation. We present crystal structures of the human LARP1 DM15 region in complex with a 5'TOP motif, a cap analog (m 7 GTP), and a capped cytidine (m 7 GpppC), resolved to 2.6, 1.8 and 1.7 Å, respectively. Our binding, competition, and immunoprecipitation data corroborate and elaborate on the mechanism of 5'TOP motif binding by LARP1. We show that LARP1 directly binds the cap and adjacent 5'TOP motif of TOP mRNAs, effectively impeding access of eIF4E to the cap and preventing eIF4F assembly. Thus, LARP1 is a specialized TOP mRNA cap-binding protein that controls ribosome biogenesis.

  5. Fluorescence Correlation Spectroscopy to find the critical balance between extracellular association and intracellular dissociation of mRNA-complexes.

    PubMed

    Zhang, Heyang; De Smedt, Stefaan C; Remaut, Katrien

    2018-05-10

    Fluorescence Correlation Spectroscopy (FCS) is a promising tool to study interactions on a single molecule level. The diffusion of fluorescent molecules in and out of the excitation volume of a confocal microscope leads to the fluorescence fluctuations that give information on the average number of fluorescent molecules present in the excitation volume and their diffusion coefficients. In this context, we complexed mRNA into lipoplexes and polyplexes and explored the association/dissociation degree of complexes by using gel electrophoresis and FCS. FCS enabled us to measure the association and dissociation degree of mRNA-based complexes both in buffer and protein-rich biological fluids such as human serum and ascitic fluid, which is a clear advantage over gel electrophoresis that was only applicable in protein-free buffer solutions. Furthermore, following the complex stability in buffer and biological fluids by FCS assisted to understand how complex characteristics, such as charge ratio and strength of mRNA binding, correlated to the transfection efficiency. We found that linear polyethyleneimine prevented efficient translation of mRNA, most likely due to a too strong mRNA binding, whereas the lipid based carrier Lipofectamine ® messengerMAX did succeed in efficient release and subsequent translation of mRNA in the cytoplasm of the cells. Overall, FCS is a reliable tool for the in depth characterization of mRNA complexes and can help us to find the critical balance keeping mRNA bound in complexes in the extracellular environment and efficient intracellular mRNA release leading to protein production. The delivery of messenger RNA (mRNA) to cells is promising to treat a variety of diseases. Therefore, the mRNA is typically packed in small lipid particles or polymer particles that help the mRNA to reach the cytoplasm of the cells. These particles should bind and carry the mRNA in the extracellular environment (e.g. blood, peritoneal fluid, ...), but should release the mRNA again in the intracellular environment. In this paper, we evaluated a method (Fluorescence Correlation Spectroscopy) that allows for the in depth characterization of mRNA complexes and can help us to find the critical balance keeping mRNA bound in complexes in the extracellular environment and efficient intracellular mRNA release leading to protein production. Copyright © 2018. Published by Elsevier Ltd.

  6. Cell type-dependent gene regulation by Staufen2 in conjunction with Upf1

    PubMed Central

    2011-01-01

    Background Staufen2 (Stau2), a double-stranded RNA-binding protein, is a component of neuronal RNA granules, which are dendritic mRNA transport machines. Although Stau2 is thought to be involved in the dendritic targeting of several mRNAs in neurons, the mechanism whereby Stau2 regulates these mRNAs is unknown. To elucidate the functions of Stau2, we screened for novel binding partners by affinity purification of GST-tagged Stau2 from 293F cells. Results Three RNA helicases, RNA helicase A, Upf1 and Mov10, were identified in Stau2-containing complexes. We focused our studies on Upf1, a key player in nonsense-mediated mRNA decay. Stau2 was found to bind directly to Upf1 in an RNA-independent manner in vitro. Tethering Stau2 to the 3'-untranslated region (UTR) of a reporter gene had little effect on its expression in HeLa cells. In contrast, when the same tethering assay was performed in 293F cells, we observed an increase in reporter protein levels. This upregulation of protein expression by Stau2 turned out to be dependent on Upf1. Moreover, we found that in 293F cells, Stau2 upregulates the reporter mRNA level in an Upf1-independent manner. Conclusions These results indicate that the recruitment of Stau2 alone or in combination with Upf1 differentially affects the fate of mRNAs. Moreover, the results suggest that Stau2-mediated fate determination could be executed in a cell type-specific manner. PMID:22087843

  7. AtLa1 protein initiates IRES-dependent translation of WUSCHEL mRNA and regulates the stem cell homeostasis of Arabidopsis in response to environmental hazards.

    PubMed

    Cui, Yuchao; Rao, Shaofei; Chang, Beibei; Wang, Xiaoshuang; Zhang, Kaidian; Hou, Xueliang; Zhu, Xueyi; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong; Yang, Chengwei; Huang, Tao

    2015-10-01

    Plant stem cells are hypersensitive to environmental hazards throughout their life cycle, but the mechanism by which plants safeguard stem cell homeostasis in response to environmental hazards is largely unknown. The homeodomain transcription factor WUSCHEL (WUS) protein maintains the stem cell pool in the shoot apical meristem of Arabidopsis. Here, we demonstrate that the translation of WUS mRNA is directed by an internal ribosomal entry site (IRES) located in the 5'-untranslated region. The AtLa1 protein, an RNA-binding factor, binds to the 5'-untranslated region and initiates the IRES-dependent translation of WUS mRNA. Knockdown of AtLa1 expression represses the WUS IRES-dependent translation and leads to the arrest of growth and development. The AtLa1 protein is mainly located in the nucleoplasm. However, environmental hazards promote the nuclear-to-cytoplasmic translocation of the AtLa1 protein, which further enhances the IRES-dependent translation of WUS mRNA. Genetic evidence indicates that the WUS protein increases the tolerance of the shoot apical meristem to environmental hazards. Based on these results, we conclude that the stem cell niche in Arabidopsis copes with environmental hazards by enhancing the IRES-dependent translation of WUS mRNA under the control of the AtLa1 protein. © 2015 John Wiley & Sons Ltd.

  8. SR proteins in Vertical Integration of Gene Expression from Transcription to RNA Processing to Translation

    PubMed Central

    Zhong, Xiang-Yang; Wang, Pingping; Han, Joonhee; Rosenfeld, Michael G.; Fu, Xiang-Dong

    2009-01-01

    Summary SR proteins have been studied extensively as a family of RNA binding proteins that participate in both constitutive and regulated pre-mRNA splicing in mammalian cells. However, SR proteins were first discovered as factors that interact with transcriptionally active chromatin. Recent studies have now uncovered properties that connect these once apparently disparate functions, showing that a subset of SR proteins seem to bind directly to the histone 3 tail, play an active role in transcriptional elongation, and co-localize with genes that are engaged in specific intra- and inter-chromosome interactions for coordinated regulation of gene expression in the nucleus. These transcription-related activities are also coupled with a further expansion of putative functions of specific SR protein family members in RNA metabolism downstream of mRNA splicing, from RNA export to stability control to translation. These findings therefore highlight the broader roles of SR proteins in vertical integration of gene expression and provide mechanistic insights into their contributions to genome stability and proper cell cycle progression in higher eukaryotic cells. PMID:19595711

  9. SR proteins in vertical integration of gene expression from transcription to RNA processing to translation.

    PubMed

    Zhong, Xiang-Yang; Wang, Pingping; Han, Joonhee; Rosenfeld, Michael G; Fu, Xiang-Dong

    2009-07-10

    SR proteins have been studied extensively as a family of RNA-binding proteins that participate in both constitutive and regulated pre-mRNA splicing in mammalian cells. However, SR proteins were first discovered as factors that interact with transcriptionally active chromatin. Recent studies have now uncovered properties that connect these once apparently disparate functions, showing that a subset of SR proteins seem to bind directly to the histone 3 tail, play an active role in transcriptional elongation, and colocalize with genes that are engaged in specific intra- and interchromosome interactions for coordinated regulation of gene expression in the nucleus. These transcription-related activities are also coupled with a further expansion of putative functions of specific SR protein family members in RNA metabolism downstream of mRNA splicing, from RNA export to stability control to translation. These findings, therefore, highlight the broader roles of SR proteins in vertical integration of gene expression and provide mechanistic insights into their contributions to genome stability and proper cell-cycle progression in higher eukaryotic cells.

  10. ABCE1 Is a Highly Conserved RNA Silencing Suppressor

    PubMed Central

    Kärblane, Kairi; Gerassimenko, Jelena; Nigul, Lenne; Piirsoo, Alla; Smialowska, Agata; Vinkel, Kadri; Kylsten, Per; Ekwall, Karl; Swoboda, Peter; Truve, Erkki; Sarmiento, Cecilia

    2015-01-01

    ATP-binding cassette sub-family E member 1 (ABCE1) is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference. PMID:25659154

  11. Estrogen receptor alpha and nuclear factor Y coordinately regulate the transcription of the SUMO-conjugating UBC9 gene in MCF-7 breast cancer cells.

    PubMed

    Ying, Shibo; Dünnebier, Thomas; Si, Jing; Hamann, Ute

    2013-01-01

    UBC9 encodes a protein that conjugates small ubiquitin-related modifier (SUMO) to target proteins thereby changing their functions. Recently, it was noted that UBC9 expression and activity play a role in breast tumorigenesis and response to anticancer drugs. However, the underlying mechanism is poorly understood. To investigate the transcriptional regulation of the UBC9 gene, we identified and characterized its promoter and cis-elements. Promoter activity was tested using luciferase reporter assays. The binding of transcription factors to the promoter was detected by chromatin immunoprecipitation (ChIP), and their functional role was confirmed by siRNA knockdown. UBC9 mRNA and protein levels were measured by quantitative reverse transcription PCR and Western blot analysis, respectively. An increased expression of UBC9 mRNA and protein was found in MCF-7 breast cancer cells treated with 17β-estradiol (E2). Analysis of various deletion mutants revealed a 137 bp fragment upstream of the transcription initiation site to be sufficient for reporter gene transcription. Mutations of putative estrogen receptor α (ER-α) (one imperfect estrogen response element, ERE) and/or nuclear factor Y (NF-Y) binding sites (two CCAAT boxes) markedly reduced promoter activity. Similar results were obtained in ER-negative MDA-MB-231 cells except that the ERE mutation did not affect promoter activity. Additionally, promoter activity was stimulated upon E2 treatment and overexpression of ER-α or NF-YA in MCF-7 cells. ChIP confirmed direct binding of both transcription factors to the UBC9 promoter in vivo. Furthermore, UBC9 expression was diminished by ER-α and NF-Y siRNAs on the mRNA and protein levels. In conclusion, we identified the proximal UBC9 promoter and provided evidence that ER-α and NF-Y regulate UBC9 expression on the transcriptional level in response to E2 in MCF-7 cells. These findings may contribute to a better understanding of the regulation of UBC9 in ER-positive breast cancer and be useful for the development of cancer therapies targeting UBC9.

  12. Seed Dormancy in Arabidopsis Requires Self-Binding Ability of DOG1 Protein and the Presence of Multiple Isoforms Generated by Alternative Splicing.

    PubMed

    Nakabayashi, Kazumi; Bartsch, Melanie; Ding, Jia; Soppe, Wim J J

    2015-12-01

    The Arabidopsis protein DELAY OF GERMINATION 1 (DOG1) is a key regulator of seed dormancy, which is a life history trait that determines the timing of seedling emergence. The amount of DOG1 protein in freshly harvested seeds determines their dormancy level. DOG1 has been identified as a major dormancy QTL and variation in DOG1 transcript levels between accessions contributes to natural variation for seed dormancy. The DOG1 gene is alternatively spliced. Alternative splicing increases the transcriptome and proteome diversity in higher eukaryotes by producing transcripts that encode for proteins with altered or lost function. It can also generate tissue specific transcripts or affect mRNA stability. Here we suggest a different role for alternative splicing of the DOG1 gene. DOG1 produces five transcript variants encoding three protein isoforms. Transgenic dog1 mutant seeds expressing single DOG1 transcript variants from the endogenous DOG1 promoter did not complement because they were non-dormant and lacked DOG1 protein. However, transgenic plants overexpressing single DOG1 variants from the 35S promoter could accumulate protein and showed complementation. Simultaneous expression of two or more DOG1 transcript variants from the endogenous DOG1 promoter also led to increased dormancy levels and accumulation of DOG1 protein. This suggests that single isoforms are functional, but require the presence of additional isoforms to prevent protein degradation. Subsequently, we found that the DOG1 protein can bind to itself and that this binding is required for DOG1 function but not for protein accumulation. Natural variation for DOG1 binding efficiency was observed among Arabidopsis accessions and contributes to variation in seed dormancy.

  13. The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation.

    PubMed

    Buratti, Emanuele; Baralle, Francisco Ernesto

    2010-01-01

    Heterogeneous ribonucleoproteins (hnRNPs) are multifunctional RNA-binding proteins (RBPs) involved in many cellular processes. They participate in most gene expression pathways, from DNA replication and repair to mRNA translation. Among this class of proteins, TDP-43 (and more recently FUS/TLS) have received considerable attention due to their involvement in several neurodegenerative diseases. This finding has prompted many research groups to focus on the gene expression pathways that are regulated by these proteins. The results have uncovered a considerable complexity of TDP-43 and FUS/TLS functions due to the many independent mechanisms by which they may act to influence various cellular processes (such as DNA transcription, pre-mRNA splicing, mRNA export/import). The aim of this chapter will be to review especially some of the novel functions that have been uncovered, such as role in miRNA synthesis, regulation of transcript levels, and potential autoregulatory mechanisms in order to provide the basis for further investigations.

  14. Structural basis of UGUA recognition by the Nudix protein CFIm25 and implications for a regulatory role in mRNA 3′ processing

    PubMed Central

    Yang, Qin; Gilmartin, Gregory M.; Doublié, Sylvie

    2010-01-01

    Human Cleavage Factor Im (CFIm) is an essential component of the pre-mRNA 3′ processing complex that functions in the regulation of poly(A) site selection through the recognition of UGUA sequences upstream of the poly(A) site. Although the highly conserved 25 kDa subunit (CFIm25) of the CFIm complex possesses a characteristic α/β/α Nudix fold, CFIm25 has no detectable hydrolase activity. Here we report the crystal structures of the human CFIm25 homodimer in complex with UGUAAA and UUGUAU RNA sequences. CFIm25 is the first Nudix protein to be reported to bind RNA in a sequence-specific manner. The UGUA sequence contributes to binding specificity through an intramolecular G:A Watson–Crick/sugar-edge base interaction, an unusual pairing previously found to be involved in the binding specificity of the SAM-III riboswitch. The structures, together with mutational data, suggest a novel mechanism for the simultaneous sequence-specific recognition of two UGUA elements within the pre-mRNA. Furthermore, the mutually exclusive binding of RNA and the signaling molecule Ap4A (diadenosine tetraphosphate) by CFIm25 suggests a potential role for small molecules in the regulation of mRNA 3′ processing. PMID:20479262

  15. Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3' processing.

    PubMed

    Yang, Qin; Gilmartin, Gregory M; Doublié, Sylvie

    2010-06-01

    Human Cleavage Factor Im (CFI(m)) is an essential component of the pre-mRNA 3' processing complex that functions in the regulation of poly(A) site selection through the recognition of UGUA sequences upstream of the poly(A) site. Although the highly conserved 25 kDa subunit (CFI(m)25) of the CFI(m) complex possesses a characteristic alpha/beta/alpha Nudix fold, CFI(m)25 has no detectable hydrolase activity. Here we report the crystal structures of the human CFI(m)25 homodimer in complex with UGUAAA and UUGUAU RNA sequences. CFI(m)25 is the first Nudix protein to be reported to bind RNA in a sequence-specific manner. The UGUA sequence contributes to binding specificity through an intramolecular G:A Watson-Crick/sugar-edge base interaction, an unusual pairing previously found to be involved in the binding specificity of the SAM-III riboswitch. The structures, together with mutational data, suggest a novel mechanism for the simultaneous sequence-specific recognition of two UGUA elements within the pre-mRNA. Furthermore, the mutually exclusive binding of RNA and the signaling molecule Ap(4)A (diadenosine tetraphosphate) by CFI(m)25 suggests a potential role for small molecules in the regulation of mRNA 3' processing.

  16. TDP-43 functions within a network of hnRNP proteins to inhibit the production of a truncated human SORT1 receptor.

    PubMed

    Mohagheghi, Fatemeh; Prudencio, Mercedes; Stuani, Cristiana; Cook, Casey; Jansen-West, Karen; Dickson, Dennis W; Petrucelli, Leonard; Buratti, Emanuele

    2016-02-01

    The aggregation and mislocalization of RNA-binding proteins leads to the aberrant regulation of RNA metabolism and is a key feature of many neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia. However, the pathological consequences of abnormal deposition of TDP-43 and other RNA-binding proteins remain unclear, as the specific molecular events that drive neurodegeneration have been difficult to identify and continue to be elusive. Here, we provide novel insight into the complexity of the RNA-binding protein network by demonstrating that the inclusion of exon 17b in the SORT1 mRNA, a pathologically relevant splicing event known to be regulated by TDP-43, is also considerably affected by additional RNA-binding proteins, such as hnRNP L, PTB/nPTB and hnRNP A1/A2. Most importantly, the expression of hnRNP A1/A2 and PTB/nPTB is significantly altered in patients with frontotemporal dementia with TDP-43-positive inclusions (FTLD-TDP), indicating that perturbations in RNA metabolism and processing in FTLD-TDP are not exclusively driven by a loss of TDP-43 function. These results also suggest that a comprehensive assessment of the RNA-binding protein network will dramatically advance our current understanding of the role of TDP-43 in disease pathogenesis, as well as enhance both diagnostic and therapeutic capabilities. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Culture medium, gas atmosphere and MAPK inhibition affect regulation of RNA-binding protein targets during mouse preimplantation development.

    PubMed

    Calder, Michele D; Watson, Patricia H; Watson, Andrew J

    2011-11-01

    During oogenesis, mammalian oocytes accumulate maternal mRNAs that support the embryo until embryonic genome activation. RNA-binding proteins (RBP) may regulate the stability and turnover of maternal and embryonic mRNAs. We hypothesised that varying embryo culture conditions, such as culture medium, oxygen tension and MAPK inhibition, affects regulation of RBPs and their targets during preimplantation development. STAU1, ELAVL1, KHSRP and ZFP36 proteins and mRNAs were detected throughout mouse preimplantation development, whereas Elavl2 mRNA decreased after the two-cell stage. Potential target mRNAs of RBP regulation, Gclc, Slc2a1 and Slc7a1 were detected during mouse preimplantation development. Gclc mRNA was significantly elevated in embryos cultured in Whitten's medium compared with embryos cultured in KSOMaa, and Gclc mRNA was elevated under high-oxygen conditions. Inhibition of the p38 MAPK pathway reduced Slc7a1 mRNA expression while inhibition of ERK increased Slc2a1 mRNA expression. The half-lives of the potential RBP mRNA targets are not regulated in parallel; Slc2a1 mRNA displayed the longest half-life. Our results indicate that mRNAs and proteins encoding five RBPs are present during preimplantation development and more importantly, demonstrate that expression of RBP target mRNAs are regulated by culture medium, gas atmosphere and MAPK pathways.

  18. No significant regulation of bicoid mRNA by Pumilio or Nanos in the early Drosophila embryo.

    PubMed

    Wharton, Tammy H; Nomie, Krystle J; Wharton, Robin P

    2018-01-01

    Drosophila Pumilio (Pum) is a founding member of the conserved Puf domain class of RNA-binding translational regulators. Pum binds with high specificity, contacting eight nucleotides, one with each of the repeats in its RNA-binding domain. In general, Pum is thought to block translation in collaboration with Nanos (Nos), which exhibits no binding specificity in isolation but is recruited jointly to regulatory sequences containing a Pum binding site in the 3'-UTRs of target mRNAs. Unlike Pum, which is ubiquitous in the early embryo, Nos is tightly restricted to the posterior, ensuring that repression of its best-characterized target, maternal hunchback (hb) mRNA, takes place exclusively in the posterior. An exceptional case of Nos-independent regulation by Pum has been described-repression of maternal bicoid (bcd) mRNA at the anterior pole of the early embryo, dependent on both Pum and conserved Pum binding sites in the 3'-UTR of the mRNA. We have re-investigated regulation of bcd in the early embryo; our experiments reveal no evidence of a role for Pum or its conserved binding sites in regulation of the perdurance of bcd mRNA or protein. Instead, we find that Pum and Nos control the accumulation of bcd mRNA in testes.

  19. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2′-O methylations

    PubMed Central

    Laudenbach, Beatrice Theres; Martínez-Montero, Saúl; Cencic, Regina; Habjan, Matthias; Pichlmair, Andreas; Damha, Masad J.; Pelletier, Jerry; Nagar, Bhushan

    2017-01-01

    IFIT1 (IFN-induced protein with tetratricopeptide repeats-1) is an effector of the host innate immune antiviral response that prevents propagation of virus infection by selectively inhibiting translation of viral mRNA. It relies on its ability to compete with the translation initiation factor eIF4F to specifically recognize foreign capped mRNAs, while remaining inactive against host mRNAs marked by ribose 2′-O methylation at the first cap-proximal nucleotide (N1). We report here several crystal structures of RNA-bound human IFIT1, including a 1.6-Å complex with capped RNA. IFIT1 forms a water-filled, positively charged RNA-binding tunnel with a separate hydrophobic extension that unexpectedly engages the cap in multiple conformations (syn and anti) giving rise to a relatively plastic and nonspecific mode of binding, in stark contrast to eIF4E. Cap-proximal nucleotides encircled by the tunnel provide affinity to compete with eIF4F while allowing IFIT1 to select against N1 methylated mRNA. Gel-shift binding assays confirm that N1 methylation interferes with IFIT1 binding, but in an RNA-dependent manner, whereas translation assays reveal that N1 methylation alone is not sufficient to prevent mRNA recognition at high IFIT1 concentrations. Structural and functional analysis show that 2′-O methylation at N2, another abundant mRNA modification, is also detrimental for RNA binding, thus revealing a potentially synergistic role for it in self- versus nonself-mRNA discernment. Finally, structure-guided mutational analysis confirms the importance of RNA binding for IFIT1 restriction of a human coronavirus mutant lacking viral N1 methylation. Our structural and biochemical analysis sheds new light on the molecular basis for IFIT1 translational inhibition of capped viral RNA. PMID:28251928

  20. Interactions among rsmX ncRNAs and Rsm RNA-binding proteins in the plant pathogen Pseudomonas syringae DC3000

    USDA-ARS?s Scientific Manuscript database

    In response to changing environmental stimuli, many bacterial species utilize the Csr/Rsm system of posttranscriptional gene expression regulation to control metabolism, motility, biofilm formation, and quorum sensing. Most Csr/Rsm RNA binding proteins are thought to bind near the 5’ end of mRNA tra...

  1. A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yuen; Wang, Yuan; Feng, Jinyan

    2015-04-03

    The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within itsmore » 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro.« less

  2. The Epstein–Barr virus nuclear protein SM is both a post-transcriptional inhibitor and activator of gene expression

    PubMed Central

    Ruvolo, Vivian; Wang, Eryu; Boyle, Sarah; Swaminathan, Sankar

    1998-01-01

    The Epstein–Barr virus (EBV) nuclear protein BS-MLF1 (SM) is expressed early after entry of EBV into the lytic cycle. SM transactivates reporter gene constructs driven by a wide variety of promoters, but the mechanism of SM action is poorly understood. In this study, we demonstrate that the SM protein inhibits expression of intron-containing genes and activates expression of intron-less genes. We demonstrate that SM has the predicted inhibitory effect on expression of a spliced EBV gene but activates an unspliced early EBV gene. SM inhibited gene expression at the post-transcriptional level by preventing the accumulation of nuclear and cytoplasmic RNA transcripts. Conversely, SM led to increased accumulation of nuclear mRNA from intron-less genes without affecting the rate of transcription, indicating that SM enhances nuclear RNA stability. The ratio of cytoplasmic to nuclear polyadenylated mRNA was increased in the presence of SM, suggesting that SM also enhances nucleo-cytoplasmic mRNA transport. The degree of transactivation by SM was dependent on the sequence of the 3′-untranslated region of the target mRNA. Finally, we demonstrate that the amino-terminal portion of SM fused to glutathione-S-transferase binds radioactively labeled RNA in vitro, indicating that SM is a single-stranded RNA binding protein. Importantly, the latent and immediate-early genes of EBV contain introns whereas many early and late genes do not. Thus, SM may down-regulate synthesis of host cell proteins and latent EBV proteins while simultaneously enhancing expression of specific lytic EBV genes by binding to mRNA and modulating its stability and transport. PMID:9671768

  3. The Epstein-Barr virus nuclear protein SM is both a post-transcriptional inhibitor and activator of gene expression.

    PubMed

    Ruvolo, V; Wang, E; Boyle, S; Swaminathan, S

    1998-07-21

    The Epstein-Barr virus (EBV) nuclear protein BS-MLF1 (SM) is expressed early after entry of EBV into the lytic cycle. SM transactivates reporter gene constructs driven by a wide variety of promoters, but the mechanism of SM action is poorly understood. In this study, we demonstrate that the SM protein inhibits expression of intron-containing genes and activates expression of intron-less genes. We demonstrate that SM has the predicted inhibitory effect on expression of a spliced EBV gene but activates an unspliced early EBV gene. SM inhibited gene expression at the post-transcriptional level by preventing the accumulation of nuclear and cytoplasmic RNA transcripts. Conversely, SM led to increased accumulation of nuclear mRNA from intron-less genes without affecting the rate of transcription, indicating that SM enhances nuclear RNA stability. The ratio of cytoplasmic to nuclear polyadenylated mRNA was increased in the presence of SM, suggesting that SM also enhances nucleo-cytoplasmic mRNA transport. The degree of transactivation by SM was dependent on the sequence of the 3'-untranslated region of the target mRNA. Finally, we demonstrate that the amino-terminal portion of SM fused to glutathione-S-transferase binds radioactively labeled RNA in vitro, indicating that SM is a single-stranded RNA binding protein. Importantly, the latent and immediate-early genes of EBV contain introns whereas many early and late genes do not. Thus, SM may down-regulate synthesis of host cell proteins and latent EBV proteins while simultaneously enhancing expression of specific lytic EBV genes by binding to mRNA and modulating its stability and transport.

  4. Changes in the folding landscape of the WW domain provide a molecular mechanism for an inherited genetic syndrome.

    PubMed

    Pucheta-Martinez, Encarna; D'Amelio, Nicola; Lelli, Moreno; Martinez-Torrecuadrada, Jorge L; Sudol, Marius; Saladino, Giorgio; Gervasio, Francesco Luigi

    2016-07-26

    WW domains are small domains present in many human proteins with a wide array of functions and acting through the recognition of proline-rich sequences. The WW domain belonging to polyglutamine tract-binding protein 1 (PQBP1) is of particular interest due to its direct involvement in several X chromosome-linked intellectual disabilities, including Golabi-Ito-Hall (GIH) syndrome, where a single point mutation (Y65C) correlates with the development of the disease. The mutant cannot bind to its natural ligand WBP11, which regulates mRNA processing. In this work we use high-field high-resolution NMR and enhanced sampling molecular dynamics simulations to gain insight into the molecular causes the disease. We find that the wild type protein is partially unfolded exchanging among multiple beta-strand-like conformations in solution. The Y65C mutation further destabilizes the residual fold and primes the protein for the formation of a disulphide bridge, which could be at the origin of the loss of function.

  5. Changes in the folding landscape of the WW domain provide a molecular mechanism for an inherited genetic syndrome

    NASA Astrophysics Data System (ADS)

    Pucheta-Martinez, Encarna; D'Amelio, Nicola; Lelli, Moreno; Martinez-Torrecuadrada, Jorge L.; Sudol, Marius; Saladino, Giorgio; Gervasio, Francesco Luigi

    2016-07-01

    WW domains are small domains present in many human proteins with a wide array of functions and acting through the recognition of proline-rich sequences. The WW domain belonging to polyglutamine tract-binding protein 1 (PQBP1) is of particular interest due to its direct involvement in several X chromosome-linked intellectual disabilities, including Golabi-Ito-Hall (GIH) syndrome, where a single point mutation (Y65C) correlates with the development of the disease. The mutant cannot bind to its natural ligand WBP11, which regulates mRNA processing. In this work we use high-field high-resolution NMR and enhanced sampling molecular dynamics simulations to gain insight into the molecular causes the disease. We find that the wild type protein is partially unfolded exchanging among multiple beta-strand-like conformations in solution. The Y65C mutation further destabilizes the residual fold and primes the protein for the formation of a disulphide bridge, which could be at the origin of the loss of function.

  6. ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK-RSK pathway.

    PubMed

    Adachi, Shungo; Homoto, Masae; Tanaka, Rikou; Hioki, Yusaku; Murakami, Hiroshi; Suga, Hiroaki; Matsumoto, Masaki; Nakayama, Keiichi I; Hatta, Tomohisa; Iemura, Shun-ichiro; Natsume, Tohru

    2014-09-01

    Low-density lipoprotein receptor (LDLR) mRNA is unstable, but is stabilized upon extracellular signal-regulated kinase (ERK) activation, possibly through the binding of certain proteins to the LDLR mRNA 3'-untranslated region (UTR), although the detailed mechanism underlying this stability control is unclear. Here, using a proteomic approach, we show that proteins ZFP36L1 and ZFP36L2 specifically bind to the 3'-UTR of LDLR mRNA and recruit the CCR4-NOT-deadenylase complex, resulting in mRNA destabilization. We also show that the C-terminal regions of ZFP36L1 and ZFP36L2 are directly phosphorylated by p90 ribosomal S6 kinase, a kinase downstream of ERK, resulting in dissociation of the CCR4-NOT-deadenylase complex and stabilization of LDLR mRNA. We further demonstrate that targeted disruption of the interaction between LDLR mRNA and ZFP36L1 and ZFP36L2 using antisense oligonucleotides results in upregulation of LDLR mRNA and protein. These results indicate that ZFP36L1 and ZFP36L2 regulate LDLR protein levels downstream of ERK. Our results also show the usefulness of our method for identifying critical regulators of specific RNAs and the potency of antisense oligonucleotide-based therapeutics. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae

    PubMed Central

    Dever, Thomas E.; Kinzy, Terri Goss; Pavitt, Graham D.

    2016-01-01

    In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae. The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs. PMID:27183566

  8. Nitric oxide-mediated modulation of iron regulatory proteins: implication for cellular iron homeostasis.

    PubMed

    Kim, Sangwon; Ponka, Prem

    2002-01-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) that are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO(.), a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels and a decrease in ferritin synthesis. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO(+) (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels and a dramatic increase in ferritin synthesis. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels and an increase in ferritin synthesis in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO(+)-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  9. WIG1 is crucial for AGO2-mediated ACOT7 mRNA silencing via miRNA-dependent and -independent mechanisms.

    PubMed

    Lee, Hyung Chul; Jung, Seung Hee; Hwang, Hyun Jung; Kang, Donghee; De, Supriyo; Dudekula, Dawood B; Martindale, Jennifer L; Park, Byungkyu; Park, Seung Kuk; Lee, Eun Kyung; Lee, Jeong-Hwa; Jeong, Sunjoo; Han, Kyungsook; Park, Heon Joo; Ko, Young-Gyu; Gorospe, Myriam; Lee, Jae-Seon

    2017-06-20

    RNA-binding proteins (RBPs) are involved in mRNA splicing, maturation, transport, translation, storage and turnover. Here, we identified ACOT7 mRNA as a novel target of human WIG1. ACOT7 mRNA decay was triggered by the microRNA miR-9 in a WIG1-dependent manner via classic recruitment of Argonaute 2 (AGO2). Interestingly, AGO2 was also recruited to ACOT7 mRNA in a WIG1-dependent manner in the absence of miR-9, which indicates an alternative model whereby WIG1 controls AGO2-mediated gene silencing. The WIG1-AGO2 complex attenuated translation initiation via an interaction with translation initiation factor 5B (eIF5B). These results were confirmed using a WIG1 tethering system based on the MS2 bacteriophage coat protein and a reporter construct containing an MS2-binding site, and by immunoprecipitation of WIG1 and detection of WIG1-associated proteins using liquid chromatography-tandem mass spectrometry. We also identified WIG1-binding motifs using photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation analyses. Altogether, our data indicate that WIG1 governs the miRNA-dependent and the miRNA-independent recruitment of AGO2 to lower the stability of and suppress the translation of ACOT7 mRNA. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Translation initiation mediated by nuclear cap-binding protein complex.

    PubMed

    Ryu, Incheol; Kim, Yoon Ki

    2017-04-01

    In mammals, cap-dependent translation of mRNAs is initiated by two distinct mechanisms: cap-binding complex (CBC; a heterodimer of CBP80 and 20)-dependent translation (CT) and eIF4E-dependent translation (ET). Both translation initiation mechanisms share common features in driving cap- dependent translation; nevertheless, they can be distinguished from each other based on their molecular features and biological roles. CT is largely associated with mRNA surveillance such as nonsense-mediated mRNA decay (NMD), whereas ET is predominantly involved in the bulk of protein synthesis. However, several recent studies have demonstrated that CT and ET have similar roles in protein synthesis and mRNA surveillance. In a subset of mRNAs, CT preferentially drives the cap-dependent translation, as ET does, and ET is responsible for mRNA surveillance, as CT does. In this review, we summarize and compare the molecular features of CT and ET with a focus on the emerging roles of CT in translation. [BMB Reports 2017; 50(4): 186-193].

  11. Increased Expression of Interleukin-18 mRNA is Associated with Carotid Artery Stenosis

    PubMed

    Arapi, Berk; Bayoğlu, Burcu; Cengiz, Müjgan; Dirican, Ahmet; Deser, Serkan Burç; Junusbekov, Yerik; Arslan, Caner

    2018-05-29

    Carotid artery stenosis is the atherosclerotic narrowing of the proximal internal carotid artery and one of the primary causes of stroke. Elevated expression of the pleiotropic proinflammatory cytokine interleukin-18 has been demonstrated in human atherosclerotic plaques. To investigate whether the mRNA expression levels of interleukin-18 and interleukin-18-binding protein and interleukin-18 −137 G/C (rs187238) variants are associated with carotid artery stenosis development. Case-control study. The mRNA expression levels of interleukin-18 and interleukin-18-binding protein and interleukin-18 rs187238 variants were evaluated by quantitative real-time polymerase chain reaction and real-time polymerase chain reaction, respectively, in the peripheral blood mononuclear cells of 70 patients with carotid artery stenosis (36 symptomatic, 34 asymptomatic) and 75 healthy controls. Interleukin-18 mRNA expression was significantly increased in carotid artery stenosis patients compared to that in healthy controls (p=0.01). However, no significant difference was observed between interleukin-18-binding protein mRNA expression levels in patients with carotid artery stenosis and those in controls (p=0.101). Internal carotid artery stenosis severity was significantly higher in symptomatic patients than that in asymptomatic patients (p<0.001). A significant relationship was identified between interleukin-18 expression and internal carotid artery stenosis severity in patients with carotid artery stenosis (p=0.051). Interleukin-18 rs187238 polymorphism genotype frequencies did not significantly differ between patients with carotid artery stenosis and controls (p=0.246). A significant difference was identified between interleukin-18-binding protein gene expression and symptomatic and asymptomatic patients (p=0.026), but there was no difference in interleukin-18 expression between the symptomatic and asymptomatic subgroups (p=0.397). Interleukin-18 mRNA expression may affect carotid artery stenosis etiopathogenesis and internal carotid artery stenosis severity and also may play a mechanistic role in the pathogenesis of carotid artery stenosis, influencing the appearance of symptoms.

  12. Regulation of c-Myc mRNA by L11 in Response to UV and Gamma irradiation

    DTIC Science & Technology

    2011-10-01

    release of L11 from the nucleolus to the nucleoplasm, where it binds to c-Myc protein, and to the cytoplasm, where it binds to c-myc mRNA. We also found...rRNA and ribosomal proteins (RPs), rRNA processing, and the as- sembly of the mature ribosome subunits in the nucleolus fol- lowed by their transport...from the nucleolus or from intact ribosomes to suppress MDM2 (68). However, whether L11 suppresses c-Myc in response to ribosomal stress is not known

  13. Expression of Serum Retinol Binding Protein and Transthyretin within Mouse Gastric Ghrelin Cells

    PubMed Central

    Walker, Angela K.; Gong, Zhi; Park, Won-Mee

    2013-01-01

    Ghrelin is an orexigenic peptide hormone produced mainly by a distinct group of dispersed endocrine cells located within the gastric oxyntic mucosa. Besides secreted gene products derived from the preproghrelin gene, which include acyl-ghrelin, desacyl-ghrelin and obestatin, ghrelin cells also synthesize the secreted protein nesfatin-1. The main goal of the current study was to identify other proteins secreted from ghrelin cells. An initial gene chip screen using mRNAs derived from highly enriched pools of mouse gastric ghrelin cells demonstrated high levels of serum retinol-binding protein (RBP4) and transthyretin (TTR), both of which are known to circulate in the bloodstream bound to each other. This high expression was confirmed by quantitative RT-PCR using as template mRNA derived from the enriched gastric ghrelin cell pools and from two ghrelin-producing cell lines (SG-1 and PG-1). RBP4 protein also was shown to be secreted into the culture medium of ghrelin cell lines. Neither acute nor chronic caloric restriction had a significant effect on RBP4 mRNA levels within stomachs of C57BL/6J mice, although both manipulations significantly decreased stomach TTR mRNA levels. In vitro studies using PG-1 cells showed no effect on RBP4 release of octanoic acid, epinephrine or norepinephrine, all of which are known to act directly on ghrelin cells to stimulate ghrelin secretion. These data provide new insights into ghrelin cell physiology, and given the known functions of RBP4 and TTR, support an emerging role for the ghrelin cell in blood glucose handling and metabolism. PMID:23840311

  14. Autotaxin Expression Is Regulated at the Post-transcriptional Level by the RNA-binding Proteins HuR and AUF1.

    PubMed

    Sun, Shuhong; Zhang, Xiaotian; Lyu, Lin; Li, Xixi; Yao, Siliang; Zhang, Junjie

    2016-12-09

    Autotaxin (ATX) is a key enzyme that converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), a lysophospholipid mediator that regulates cellular activities through its specific G protein-coupled receptors. The ATX-LPA axis plays an important role in various physiological and pathological processes, especially in inflammation and cancer development. Although the transcriptional regulation of ATX has been widely studied, the post-transcriptional regulation of ATX is largely unknown. In this study, we identified conserved adenylate-uridylate (AU)-rich elements in the ATX mRNA 3'-untranslated region (3'UTR). The RNA-binding proteins HuR and AUF1 directly bound to the ATX mRNA 3'UTR and had antagonistic functions in ATX expression. HuR enhanced ATX expression by increasing ATX mRNA stability, whereas AUF1 suppressed ATX expression by promoting ATX mRNA decay. HuR and AUF1 were involved in ATX regulation in Colo320 human colon cancer cells and the LPS-stimulated human monocytic THP-1 cells. HuR knockdown suppressed ATX expression in B16 mouse melanoma cells, leading to inhibition of cell migration. This effect was reversed by AUF1 knockdown to recover ATX expression or by the addition of LPA. These results suggest that the post-transcriptional regulation of ATX expression by HuR and AUF1 modulates cancer cell migration. In summary, we identified HuR and AUF1 as novel post-transcriptional regulators of ATX expression, thereby elucidating a novel mechanism regulating the ATX-LPA axis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Different forms of soluble cytoplasmic mRNA binding proteins and particles in Xenopus laevis oocytes and embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, M.T.; Krohne, G.; Franke, W.W.

    1991-01-01

    To gain insight into the mechanisms involved in the formation of maternally stored mRNPs during Xenopus laevis development, we searched for soluble cytoplasmic proteins of the oocyte that are able to selectively bind mRNAs, using as substrate radiolabeled mRNA. In vitro mRNP assembly in solution was followed by UV-cross-linking and RNase digestion, resulting in covalent tagging of polypeptides by nucleotide transfer. Five polypeptides of approximately 54, 56 60, 70, and 100 kD (p54, p56, p60, p70, and p100) have been found to selectively bind mRNA and assemble into mRNPs. These polypeptides, which correspond to previously described native mRNP components, occurmore » in three different particle classes of approximately 4.5S, approximately 6S, and approximately 15S, as also determined by their reactions with antibodies against p54 and p56. Whereas the approximately 4.5S class contains p42, p60, and p70, probably each in the form of individual molecules or small complexes, the approximately 6S particles appears to consist only of p54 and p56, which occur in a near-stoichiometric ratio suggestive of a heterodimer complex. The approximately 15S particles contain, in addition to p54 and p56, p60 and p100 and this is the single occurring form of RNA-binding p100. We have also observed changes in the in vitro mRNA binding properties of these polypeptides during oogenesis and early embryonic development, in relation to their phosphorylation state and to the activity of an approximately 15S particle-associated protein kinase, suggesting that these proteins are involved in the developmental translational regulation of maternal mRNAs.« less

  16. Inhibition of Poly(A)-binding protein with a synthetic RNA mimic reduces pain sensitization in mice.

    PubMed

    Barragán-Iglesias, Paulino; Lou, Tzu-Fang; Bhat, Vandita D; Megat, Salim; Burton, Michael D; Price, Theodore J; Campbell, Zachary T

    2018-01-02

    Nociceptors rely on cap-dependent translation to rapidly induce protein synthesis in response to pro-inflammatory signals. Comparatively little is known regarding the role of the regulatory factors bound to the 3' end of mRNA in nociceptor sensitization. Poly(A)-binding protein (PABP) stimulates translation initiation by bridging the Poly(A) tail to the eukaryotic initiation factor 4F complex associated with the mRNA cap. Here, we use unbiased assessment of PABP binding specificity to generate a chemically modified RNA-based competitive inhibitor of PABP. The resulting RNA mimic, which we designated as the Poly(A) SPOT-ON, is more stable than unmodified RNA and binds PABP with high affinity and selectivity in vitro. We show that injection of the Poly(A) SPOT-ON at the site of an injury can attenuate behavioral response to pain. Collectively, these results suggest that PABP is integral for nociceptive plasticity. The general strategy described here provides a broad new source of mechanism-based inhibitors for RNA-binding proteins and is applicable for in vivo studies.

  17. Axonal transport of TDP-43 mRNA granules in neurons is impaired by ALS-causing mutations

    PubMed Central

    Carrasco, Monica A.; Williams, Luis A.; Winborn, Christina S.; Han, Steve S. W.; Kiskinis, Evangelos; Winborn, Brett; Freibaum, Brian D.; Kanagaraj, Anderson; Clare, Alison J.; Badders, Nisha M.; Bilican, Bilada; Chaum, Edward; Chandran, Siddharthan; Shaw, Christopher E.; Eggan, Kevin C.; Maniatis, Tom; Taylor, J. Paul

    2014-01-01

    Summary The RNA binding protein TDP-43 regulates RNA metabolism at multiple levels, including transcription, RNA splicing, and mRNA stability. TDP-43 is a major component of the cytoplasmic inclusions characteristic of amyotrophic lateral sclerosis and some types of frontotemporal lobar degeneration. The importance of TDP-43 in disease is underscored by the fact that dominant missense mutations are sufficient to cause disease, although the role of TDP-43 in pathogenesis is unknown. Here we show that TDP-43 forms cytoplasmic mRNP granules that undergo bidirectional, microtubule-dependent transport in neurons in vitro and in vivo and facilitate delivery of target mRNA to distal neuronal compartments. TDP-43 mutations impair this mRNA transport function in vivo and in vitro, including in stem cell-derived motor neurons from ALS patients bearing any one of three different TDP-43 ALS-causing mutations. Thus, TDP43 mutations that cause ALS lead to partial loss of a novel cytoplasmic function of TDP-43. PMID:24507191

  18. Regulation of p21/CIP1/WAF-1 mediated cell-cycle arrest by RNase L and tristetraprolin, and involvement of AU-rich elements

    PubMed Central

    Al-Haj, Latifa; Blackshear, Perry J.; Khabar, Khalid S.A.

    2012-01-01

    The p21Cip1/WAF1 plays an important role in cell-cycle arrest. Here, we find that RNase L regulates p21-mediated G1 growth arrest in AU-rich elements-dependent manner. We found a significant loss of p21 mRNA expression in RNASEL−/− MEFs and that the overexpression of RNase L in HeLa cells induces p21 mRNA expression. The p21 mRNA half-life significantly changes as a result of RNase L modulation, indicating a post-transcriptional effect. Indeed, we found that RNase L promotes tristetraprolin (TTP/ZFP36) mRNA decay. This activity was not seen with dimerization- and nuclease-deficient RNase L mutants. Deficiency in TTP led to increases in p21 mRNA and protein. With induced ablation of RNase L, TTP mRNA and protein expressions were higher, while p21 expression became reduced. We further establish that TTP, but not C124R TTP mutant, binds to, and accelerates the decay of p21 mRNA. The p21 mRNA half-life was prolonged in TTP−/− MEFs. The TTP regulation of p21 mRNA decay required functional AU-rich elements. Thus, we demonstrate a novel mechanism of regulating G1 growth arrest by an RNase L-TTP-p21 axis. PMID:22718976

  19. Chemical shift assignments of the first and second RRMs of Nrd1, a fission yeast MAPK-target RNA binding protein.

    PubMed

    Kobayashi, Ayaho; Kanaba, Teppei; Satoh, Ryosuke; Ito, Yutaka; Sugiura, Reiko; Mishima, Masaki

    2017-10-01

    Negative regulator differentiation 1 (Nrd1), a fission yeast RNA binding protein, modulates cytokinesis and sexual development and contributes to stress granule formation in response to environmental stresses. Nrd1 comprises four RRM domains and binds and stabilizes Cdc4 mRNA that encodes the myosin II light chain. Nrd1 binds the Cpc2 fission-yeast RACK1 homolog, and the interaction promotes Nrd1 localization to stress granules. Interestingly, Pmk1 mitogen-activated protein kinase phosphorylates Thr40 in the unstructured N-terminal region and Thr126 in the first RRM domain of Nrd1. Phosphorylation significantly reduces RNA-binding activity and likely modulates Nrd1 function. To reveal the relationship between the structure and function of Nrd1 and how phosphorylation affects structure, we used heteronuclear NMR techniques to investigate the three-dimensional structure of Nrd1. Here we report the 1 H, 13 C, and 15 N resonance assignments of RRM1-RRM2 (residues 108-284) comprising the first and second RRMs obtained using heteronuclear NMR techniques. Secondary structures derived from the chemical shifts are reported. These data should contribute to the understanding of the three-dimensional structure of the RRM1-RRM2 region of Nrd1 and the perturbation caused by phosphorylation.

  20. An RNA-Binding Multimer Specifies Nematode Sperm Fate.

    PubMed

    Aoki, Scott T; Porter, Douglas F; Prasad, Aman; Wickens, Marvin; Bingman, Craig A; Kimble, Judith

    2018-06-26

    FOG-3 is a master regulator of sperm fate in Caenorhabditis elegans and homologous to Tob/BTG proteins, which in mammals are monomeric adaptors that recruit enzymes to RNA binding proteins. Here, we determine the FOG-3 crystal structure and in vitro demonstrate that FOG-3 forms dimers that can multimerize. The FOG-3 multimeric structure has a basic surface potential, suggestive of binding nucleic acid. Consistent with that prediction, FOG-3 binds directly to nearly 1,000 RNAs in nematode spermatogenic germ cells. Most binding is to the 3' UTR, and most targets (94%) are oogenic mRNAs, even though assayed in spermatogenic cells. When tethered to a reporter mRNA, FOG-3 represses its expression. Together these findings elucidate the molecular mechanism of sperm fate specification and reveal the evolution of a protein from monomeric to multimeric form with acquisition of a distinct mode of mRNA repression. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis.

    PubMed

    Yang, W; Du, W W; Li, X; Yee, A J; Yang, B B

    2016-07-28

    It has recently been shown that the upregulation of a pseudogene specific to a protein-coding gene could function as a sponge to bind multiple potential targeting microRNAs (miRNAs), resulting in increased gene expression. Similarly, it was recently demonstrated that circular RNAs can function as sponges for miRNAs, and could upregulate expression of mRNAs containing an identical sequence. Furthermore, some mRNAs are now known to not only translate protein, but also function to sponge miRNA binding, facilitating gene expression. Collectively, these appear to be effective mechanisms to ensure gene expression and protein activity. Here we show that expression of a member of the forkhead family of transcription factors, Foxo3, is regulated by the Foxo3 pseudogene (Foxo3P), and Foxo3 circular RNA, both of which bind to eight miRNAs. We found that the ectopic expression of the Foxo3P, Foxo3 circular RNA and Foxo3 mRNA could all suppress tumor growth and cancer cell proliferation and survival. Our results showed that at least three mechanisms are used to ensure protein translation of Foxo3, which reflects an essential role of Foxo3 and its corresponding non-coding RNAs.

  2. CK2 is responsible for phosphorylation of human La protein serine-366 and can modulate rpL37 5'-terminal oligopyrimidine mRNA metabolism.

    PubMed

    Schwartz, Elena I; Intine, Robert V; Maraia, Richard J

    2004-11-01

    La protein binds precursors to 5S rRNA, tRNAs, and other transcripts that contain 3' UUU-OH and also promotes their maturation in the nucleus. Separate from this function, human La has been shown to positively modulate the translation of mRNAs that contain complex 5' regulatory motifs that direct internal initiation of translation. Nonphosphorylated La (npLa) inhibits pre-tRNA processing, while phosphorylation of human La serine-366 (S(366)) promotes pre-tRNA processing. npLa was found specifically associated with a class of mRNAs that have unusually short 5' untranslated regions comprised of terminal oligopyrimidine (5'TOP) tracts and that encode ribosomal proteins and translation elongation factors. Although La S(366) represents a CK2 phosphorylation site, there was no evidence that CK2 phosphorylates it in vivo. We used the CK2-specific inhibitor, 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), and antisense-mediated knockdown to demonstrate that CK2 is responsible for La S(366) phosphorylation in vivo. Hypophosphorylation was not associated with significant change in total La levels or proteolytic cleavage. Quantitative reverse transcription-PCR revealed increased association of the 5'TOP-mRNA encoding ribosomal protein L37 (rpL37) with La after TBB treatment. Transfection revealed more rpL37 mRNA associated with nonphosphorylatable La A(366) than with La S(366), concomitant with La A(366)-specific shift of a fraction of L37 mRNA off polysomes. The data indicate that CK2 phosphorylates La S(366) in vivo, that this limits 5'TOP mRNA binding, and that increasing npLa leads to greater association with potentially negative effects on TOP mRNA translation. Consistent with data that indicate that phosphorylation reverses negative effects of npLa on tRNA production, the present data suggest that CK2 phosphorylation of La can affect production of the translational machinery.

  3. Brain tumor is a sequence-specific RNA-binding protein that directs maternal mRNA clearance during the Drosophila maternal-to-zygotic transition.

    PubMed

    Laver, John D; Li, Xiao; Ray, Debashish; Cook, Kate B; Hahn, Noah A; Nabeel-Shah, Syed; Kekis, Mariana; Luo, Hua; Marsolais, Alexander J; Fung, Karen Yy; Hughes, Timothy R; Westwood, J Timothy; Sidhu, Sachdev S; Morris, Quaid; Lipshitz, Howard D; Smibert, Craig A

    2015-05-12

    Brain tumor (BRAT) is a Drosophila member of the TRIM-NHL protein family. This family is conserved among metazoans and its members function as post-transcriptional regulators. BRAT was thought to be recruited to mRNAs indirectly through interaction with the RNA-binding protein Pumilio (PUM). However, it has recently been demonstrated that BRAT directly binds to RNA. The precise sequence recognized by BRAT, the extent of BRAT-mediated regulation, and the exact roles of PUM and BRAT in post-transcriptional regulation are unknown. Genome-wide identification of transcripts associated with BRAT or with PUM in Drosophila embryos shows that they bind largely non-overlapping sets of mRNAs. BRAT binds mRNAs that encode proteins associated with a variety of functions, many of which are distinct from those implemented by PUM-associated transcripts. Computational analysis of in vitro and in vivo data identified a novel RNA motif recognized by BRAT that confers BRAT-mediated regulation in tissue culture cells. The regulatory status of BRAT-associated mRNAs suggests a prominent role for BRAT in post-transcriptional regulation, including a previously unidentified role in transcript degradation. Transcriptomic analysis of embryos lacking functional BRAT reveals an important role in mediating the decay of hundreds of maternal mRNAs during the maternal-to-zygotic transition. Our results represent the first genome-wide analysis of the mRNAs associated with a TRIM-NHL protein and the first identification of an RNA motif bound by this protein family. BRAT is a prominent post-transcriptional regulator in the early embryo through mechanisms that are largely independent of PUM.

  4. The Choice of Alternative 5' Splice Sites in Influenza Virus M1 mRNA is Regulated by the Viral Polymerase Complex

    NASA Astrophysics Data System (ADS)

    Shih, Shin-Ru; Nemeroff, Martin E.; Krug, Robert M.

    1995-07-01

    The influenza virus M1 mRNA has two alternative 5' splice sites: a distal 5' splice site producing mRNA_3 that has the coding potential for 9 amino acids and a proximal 5' splice site producing M2 mRNA encoding the essential M2 ion-channel protein. Only mRNA_3 was made in uninfected cells transfected with DNA expressing M1 mRNA. Similarly, using nuclear extracts from uninfected cells, in vitro splicing of M1 mRNA yielded only mRNA_3. Only when the mRNA_3 5' splice site was inactivated by mutation was M2 mRNA made in uninfected cells and in uninfected cell extracts. In influenza virus-infected cells, M2 mRNA was made, but only after a delay, suggesting that newly synthesized viral gene product(s) were needed to activate the M2 5' splice site. We present strong evidence that these gene products are the complex of the three polymerase proteins, the same complex that functions in the transcription and replication of the viral genome. Gel shift experiments showed that the viral polymerase complex bound to the 5' end of the viral M1 mRNA in a sequence-specific and cap-dependent manner. During in vitro splicing catalyzed by uninfected cell extracts, the binding of the viral polymerase complex blocked the mRNA_3 5' splice site, resulting in the switch to the M2 mRNA 5' splice site and the production of M2 mRNA.

  5. A novel member of the SAF (scaffold attachment factor)-box protein family inhibits gene expression and induces apoptosis

    PubMed Central

    Chan, Ching Wan; Lee, Youn-Bok; Uney, James; Flynn, Andrea; Tobias, Jonathan H.; Norman, Michael

    2007-01-01

    The SLTM [SAF (scaffold attachment factor)-like transcription modulator] protein contains a SAF-box DNA-binding motif and an RNA-binding domain, and shares an overall identity of 34% with SAFB1 {scaffold attachment factor-B1; also known as SAF-B (scaffold attachment factor B), HET [heat-shock protein 27 ERE (oestrogen response element) and TATA-box-binding protein] or HAP (heterogeneous nuclear ribonucleoprotein A1-interacting protein)}. Here, we show that SLTM is localized to the cell nucleus, but excluded from nucleoli, and to a large extent it co-localizes with SAFB1. In the nucleus, SLTM has a punctate distribution and it does not co-localize with SR (serine/arginine) proteins. Overexpression of SAFB1 has been shown to exert a number of inhibitory effects, including suppression of oestrogen signalling. Although SLTM also suppressed the ability of oestrogen to activate a reporter gene in MCF-7 breast-cancer cells, inhibition of a constitutively active β-galactosidase gene suggested that this was primarily the consequence of a generalized inhibitory effect on transcription. Measurement of RNA synthesis, which showed a particularly marked inhibition of [3H]uridine incorporation into mRNA, supported this conclusion. In addition, analysis of cell-cycle parameters, chromatin condensation and cytochrome c release showed that SLTM induced apoptosis in a range of cultured cell lines. Thus the inhibitory effects of SLTM on gene expression appear to result from generalized down-regulation of mRNA synthesis and initiation of apoptosis consequent upon overexpressing the protein. While indicating a crucial role for SLTM in cellular function, these results also emphasize the need for caution when interpreting phenotypic changes associated with manipulation of protein expression levels. PMID:17630952

  6. Complex mutual regulation of facilitates chromatin transcription (FACT) subunits on both mRNA and protein levels in human cells.

    PubMed

    Safina, Alfiya; Garcia, Henry; Commane, Mairead; Guryanova, Olga; Degan, Seamus; Kolesnikova, Kateryna; Gurova, Katerina V

    2013-08-01

    Facilitates chromatin transcription (FACT) is a chromatin remodeling complex with two subunits: SSRP1 and SPT16. Mechanisms controlling FACT levels are of interest, since the complex is not expressed in most differentiated cells, but is frequently upregulated in cancer, particularly in poorly differentiated, aggressive tumors. Moreover, inhibition of FACT expression or function in tumor cells interferes with their survival. Here we demonstrate that SSRP1 and SPT16 protein levels decline upon induction of cellular differentiation or senescence in vitro and that similar declines in protein levels for both SSRP1 and SPT16 occur upon RNAi-mediated knockdown of either SSRP1 or SPT16. The interdependence of SSRP1 and SPT16 protein levels was found to be due to their association with SSRP1 and SPT16 mRNAs, which stabilizes the proteins. In particular, presence of SSRP1 mRNA is critical for SPT16 protein stability. In addition, binding of SSRP1 and SPT16 mRNAs to the FACT complex increases the stability and efficiency of translation of the mRNAs. These data support a model in which the FACT complex is stable when SSRP1 mRNA is present, but quickly degrades when SSRP1 mRNA levels drop. In the absence of FACT complex, SSRP1 and SPT16 mRNAs are unstable and inefficiently translated, making reactivation of FACT function unlikely in normal cells. Thus, we have described a complex and unusual mode of regulation controlling cellular FACT levels that results in amplified and stringent control of FACT activity. The FACT dependence of tumor cells suggests that mechanisms controlling FACT levels could be targeted for anticancer therapy.

  7. Role of nitric oxide in cellular iron metabolism.

    PubMed

    Kim, Sangwon; Ponka, Prem

    2003-03-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) which are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO*, a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO+ (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO+-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  8. The involvement of mRNA processing factors TIA-1, TIAR, and PABP-1 during mammalian hibernation.

    PubMed

    Tessier, Shannon N; Audas, Timothy E; Wu, Cheng-Wei; Lee, Stephen; Storey, Kenneth B

    2014-11-01

    Mammalian hibernators survive low body temperatures, ischemia-reperfusion, and restricted nutritional resources via global reductions in energy-expensive cellular processes and selective increases in stress pathways. Consequently, studies that analyze hibernation uncover mechanisms which balance metabolism and support survival by enhancing stress tolerance. We hypothesized processing factors that influence messenger ribonucleic acid (mRNA) maturation and translation may play significant roles in hibernation. We characterized the amino acid sequences of three RNA processing proteins (T cell intracellular antigen 1 (TIA-1), TIA1-related (TIAR), and poly(A)-binding proteins (PABP-1)) from thirteen-lined ground squirrels (Ictidomys tridecemlineatus), which all displayed a high degree of sequence identity with other mammals. Alternate Tia-1 and TiaR gene variants were found in the liver with higher expression of isoform b versus a in both cases. The localization of RNA-binding proteins to subnuclear structures was assessed by immunohistochemistry and confirmed by subcellular fractionation; TIA-1 was identified as a major component of subnuclear structures with up to a sevenfold increase in relative protein levels in the nucleus during hibernation. By contrast, there was no significant difference in the relative protein levels of TIARa/TIARb in the nucleus, and a decrease was observed for TIAR isoforms in cytoplasmic fractions of torpid animals. Finally, we used solubility tests to analyze the formation of reversible aggregates that are associated with TIA-1/R function during stress; a shift towards the soluble fraction (TIA-1a, TIA-1b) was observed during hibernation suggesting enhanced protein aggregation was not present during torpor. The present study identifies novel posttranscriptional regulatory mechanisms that may play a role in reducing translational rates and/or mRNA processing under unfavorable environmental conditions.

  9. Derepression of microRNA-mediated protein translation inhibition by apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and its family members.

    PubMed

    Huang, Jialing; Liang, Zhihui; Yang, Bin; Tian, Heng; Ma, Jin; Zhang, Hui

    2007-11-16

    The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G or A3G) and its fellow cytidine deaminase family members are potent restrictive factors for human immunodeficiency virus type 1 (HIV-1) and many other retroviruses. A3G interacts with a vast spectrum of RNA-binding proteins and is located in processing bodies and stress granules. However, its cellular function remains to be further clarified. Using a luciferase reporter gene and green fluorescent protein reporter gene, we demonstrate that A3G and other APOBEC family members can counteract the inhibition of protein synthesis by various microRNAs (miRNAs) such as mir-10b, mir-16, mir-25, and let-7a. A3G could also enhance the expression level of miRNA-targeted mRNA. Further, A3G facilitated the association of microRNA-targeted mRNA with polysomes rather than with processing bodies. Intriguingly, experiments with a C288A/C291A A3G mutant indicated that this function of A3G is separable from its cytidine deaminase activity. Our findings suggest that the major cellular function of A3G, in addition to inhibiting the mobility of retrotransposons and replication of endogenous retroviruses, is most likely to prevent the decay of miRNA-targeted mRNA in processing bodies.

  10. La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs

    PubMed Central

    Lahr, Roni M; Fonseca, Bruno D; Ciotti, Gabrielle E; Al-Ashtal, Hiba A; Jia, Jian-Jun; Niklaus, Marius R; Blagden, Sarah P; Alain, Tommy; Berman, Andrea J

    2017-01-01

    The 5’terminal oligopyrimidine (5’TOP) motif is a cis-regulatory RNA element located immediately downstream of the 7-methylguanosine [m7G] cap of TOP mRNAs, which encode ribosomal proteins and translation factors. In eukaryotes, this motif coordinates the synchronous and stoichiometric expression of the protein components of the translation machinery. La-related protein 1 (LARP1) binds TOP mRNAs, regulating their stability and translation. We present crystal structures of the human LARP1 DM15 region in complex with a 5’TOP motif, a cap analog (m7GTP), and a capped cytidine (m7GpppC), resolved to 2.6, 1.8 and 1.7 Å, respectively. Our binding, competition, and immunoprecipitation data corroborate and elaborate on the mechanism of 5’TOP motif binding by LARP1. We show that LARP1 directly binds the cap and adjacent 5’TOP motif of TOP mRNAs, effectively impeding access of eIF4E to the cap and preventing eIF4F assembly. Thus, LARP1 is a specialized TOP mRNA cap-binding protein that controls ribosome biogenesis. DOI: http://dx.doi.org/10.7554/eLife.24146.001 PMID:28379136

  11. A loss of function allele for murine Staufen1 leads to impairment of dendritic Staufen1-RNP delivery and dendritic spine morphogenesis

    PubMed Central

    Vessey, John P.; Macchi, Paolo; Stein, Joel M.; Mikl, Martin; Hawker, Kelvin N.; Vogelsang, Petra; Wieczorek, Krzysztof; Vendra, Georgia; Riefler, Julia; Tübing, Fabian; Aparicio, Samuel A. J.; Abel, Ted; Kiebler, Michael A.

    2008-01-01

    The dsRNA-binding protein Staufen was the first RNA-binding protein proven to play a role in RNA localization in Drosophila. A mammalian homolog, Staufen1 (Stau1), has been implicated in dendritic RNA localization in neurons, translational control, and mRNA decay. However, the precise mechanisms by which it fulfills these specific roles are only partially understood. To determine its physiological functions, the murine Stau1 gene was disrupted by homologous recombination. Homozygous stau1tm1Apa mutant mice express a truncated Stau1 protein lacking the functional RNA-binding domain 3. The level of the truncated protein is significantly reduced. Cultured hippocampal neurons derived from stau1tm1Apa homozygous mice display deficits in dendritic delivery of Stau1-EYFP and β-actin mRNA-containing ribonucleoprotein particles (RNPs). Furthermore, these neurons have a significantly reduced dendritic tree and develop fewer synapses. Homozygous stau1tm1Apa mutant mice are viable and show no obvious deficits in development, fertility, health, overall brain morphology, and a variety of behavioral assays, e.g., hippocampus-dependent learning. However, we did detect deficits in locomotor activity. Our data suggest that Stau1 is crucial for synapse development in vitro but not critical for normal behavioral function. PMID:18922781

  12. Endoplasmic reticulum stress in vasopressin neurons of familial diabetes insipidus model mice: aggregate formation and mRNA poly(A) tail shortening.

    PubMed

    Arima, Hiroshi; Morishita, Yoshiaki; Hagiwara, Daisuke; Hayashi, Masayuki; Oiso, Yutaka

    2014-01-01

    The immunoglobulin heavy chain binding protein (BiP) is an endoplasmic reticulum (ER) chaperone, which binds to newly synthesized secretory and transmembrane proteins to facilitate protein folding. BiP mRNA is expressed in the arginine vasopressin (AVP) neurons in the supraoptic nucleus of wild-type mice even in basal conditions, and the expression levels increase in response to dehydration. These data suggest that AVP neurons are subjected to ER stress. Familial neurohypophysial diabetes insipidus (FNDI) is caused by mutations in the gene locus of AVP. The mutant proteins could accumulate in the ER and possibly increase ER stress in the AVP neurons. We bred mice possessing a mutation causing FNDI, which manifested progressive polyuria, as do the patients with FNDI. Electron microscopic analyses demonstrated that aggregates accumulated in the ER of AVP neurons in FNDI mice. Despite polyuria, which could potentially induce dehydration, AVP mRNA expression was decreased in the supraoptic nucleus, and the AVP mRNA poly(A) tail length was shortened in FNDI mice compared with wild-type mice. Incubation of hypothalamic explants of wild-type mice with ER stressors caused shortening of the poly(A) tail length of AVP mRNA, accompanied by decreases in the expression. These data revealed a mechanism by which ER stress decreases poly(A) tail length of AVP mRNA, and this reduces the load of unfolded proteins that form the aggregates in ER of the AVP neurons in FNDI mice.

  13. La-related protein 1 (LARP1) repression of TOP mRNA translation is mediated through its cap-binding domain and controlled by an adjacent regulatory region

    PubMed Central

    Philippe, Lucas; Vasseur, Jean-Jacques; Debart, Françoise

    2018-01-01

    Abstract Cell growth is a complex process shaped by extensive and coordinated changes in gene expression. Among these is the tightly regulated translation of a family of growth-related mRNAs defined by a 5′ terminal oligopyrimidine (TOP) motif. TOP mRNA translation is partly controlled via the eukaryotic initiation factor 4F (eIF4F), a translation factor that recognizes the mRNA 5′ cap structure. Recent studies have also implicated La-related protein 1 (LARP1), which competes with eIF4F for binding to mRNA 5′ ends. However, it has remained controversial whether LARP1 represses TOP mRNA translation directly and, if so, what features define its mRNA targets. Here, we show that the C-terminal half of LARP1 is necessary and sufficient to control TOP mRNA translation in cells. This fragment contains the DM15 cap-binding domain as well as an adjacent regulatory region that we identified. We further demonstrate that purified LARP1 represses TOP mRNA translation in vitro through the combined recognition of both the TOP sequence and cap structure, and that its intrinsic repressive activity and affinity for these features are subject to regulation. These results support a model whereby the translation of TOP mRNAs is controlled by a growth-regulated competition between eIF4F and LARP1 for their 5′ ends. PMID:29244122

  14. RNA-binding Protein Quaking Stabilizes Sirt2 mRNA during Oligodendroglial Differentiation*

    PubMed Central

    Thangaraj, Merlin P.; Furber, Kendra L.; Gan, Jotham K.; Ji, Shaoping; Sobchishin, Larhonda; Doucette, J. Ronald; Nazarali, Adil J.

    2017-01-01

    Myelination is controlled by timely expression of genes involved in the differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes (OLs). Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, plays a critical role in OL differentiation by promoting both arborization and downstream expression of myelin-specific genes. However, the mechanisms involved in regulating SIRT2 expression during OL development are largely unknown. The RNA-binding protein quaking (QKI) plays an important role in myelination by post-transcriptionally regulating the expression of several myelin specific genes. In quaking viable (qkv/qkv) mutant mice, SIRT2 protein is severely reduced; however, it is not known whether these genes interact to regulate OL differentiation. Here, we report for the first time that QKI directly binds to Sirt2 mRNA via a common quaking response element (QRE) located in the 3′ untranslated region (UTR) to control SIRT2 expression in OL lineage cells. This interaction is associated with increased stability and longer half-lives of Sirt2.1 and Sirt2.2 transcripts leading to increased accumulation of Sirt2 transcripts. Consistent with this, overexpression of qkI promoted the expression of Sirt2 mRNA and protein. However, overexpression of the nuclear isoform qkI-5 promoted the expression of Sirt2 mRNA, but not SIRT2 protein, and delayed OL differentiation. These results suggest that the balance in the subcellular distribution and temporal expression of QKI isoforms control the availability of Sirt2 mRNA for translation. Collectively, our study demonstrates that QKI directly plays a crucial role in the post-transcriptional regulation and expression of Sirt2 to facilitate OL differentiation. PMID:28188285

  15. Cis-acting elements in its 3′ UTR mediate post-transcriptional regulation of KRAS

    PubMed Central

    Kim, Minlee; Kogan, Nicole; Slack, Frank J.

    2016-01-01

    Multiple RNA-binding proteins and non-coding RNAs, such as microRNAs (miRNAs), are involved in post-transcriptional gene regulation through recognition motifs in the 3′ untranslated region (UTR) of their target genes. The KRAS gene encodes a key signaling protein, and its messenger RNA (mRNA) contains an exceptionally long 3′ UTR; this suggests that it may be subject to a highly complex set of regulatory processes. However, 3′ UTR-dependent regulation of KRAS expression has not been explored in detail. Using extensive deletion and mutational analyses combined with luciferase reporter assays, we have identified inhibitory and stabilizing cis-acting regions within the KRAS 3′ UTR that may interact with miRNAs and RNA-binding proteins, such as HuR. Particularly, we have identified an AU-rich 49-nt fragment in the KRAS 3′ UTR that is required for KRAS 3′ UTR reporter repression. This element contains a miR-185 complementary element, and we show that overexpression of miR-185 represses endogenous KRAS mRNA and protein in vitro. In addition, we have identified another 49-nt fragment that is required to promote KRAS 3′ UTR reporter expression. These findings indicate that multiple cis-regulatory motifs in the 3′ UTR of KRAS finely modulate its expression, and sequence alterations within a binding motif may disrupt the precise functions of trans-regulatory factors, potentially leading to aberrant KRAS expression. PMID:26930719

  16. Enhanced prefrontal serotonin 2A receptor signaling in the subchronic phencyclidine mouse model of schizophrenia.

    PubMed

    Santini, Martin A; Ratner, Cecilia; Aznar, Susana; Klein, Anders B; Knudsen, Gitte M; Mikkelsen, Jens D

    2013-05-01

    Prefrontal serotonin 2A receptors (5-HT2A Rs) have been linked to the pathogenesis and treatment of schizophrenia. Many antipsychotics fully occupy 5-HT2A R at clinical relevant doses, and activation of 5-HT2A receptors by lysergic acid diethylamide (LSD) and LSD-like drugs induces a schizophrenia-like psychosis in humans. Subchronic phencyclidine (PCP) administration is a well-established model for schizophrenia-like symptoms in rodents. The aim of the present study was to investigate whether subchronic PCP administration changes expression, binding, or functionality of cortical 5-HT2A Rs. As a measure of 5-HT2A R functionality, we used the 5-HT2A R agonist 2,5-dimethoxy-4-iodoamphetamine (DOI)-induced head-twitch response (HTR) and mRNA expression of the immediate-early genes (IEGs) activity-related cytoskeletal associated-protein (Arc), c-fos, and early growth response protein 2 (egr-2) in the frontal cortex. Mice were treated with PCP (10 mg/kg) or saline for 10 days, followed by a 5-day washout period. The PCP pretreatment increased the overall induction of HTR and frontal cortex IEG mRNA expression following a single challenge with DOI. These functional changes were not associated with changes in 5-HT2A R binding. Also, binding of the 5-HT1A R and the 5-HT transporter was unaffected. Finally, basal mRNA level of Arc was increased in the prefrontal cortex after subchronic PCP administration as revealed with in situ hybridization. Together these findings indicate that PCP administration produces changes in the brain that result in an increase in the absolute effect of DOI. Therefore, neurotransmission involving the 5-HT2A R could contribute to the behavioral deficits observed after PCP treatment. © 2013 Wiley Periodicals, Inc. Copyright © 2013 Wiley Periodicals, Inc.

  17. Identification of a differentially-expressed gene in fatty liver of overfeeding geese.

    PubMed

    Zhao, Ayong; Tang, Huachun; Lu, Sufang; He, Ruiguo

    2007-09-01

    In response to overfeeding, geese develop fatty liver. To understand the fattening mechanism, mRNA differential display reverse transcription PCR was used to study the gene expression differences between French Landes grey geese and Xupu white geese in conditions of overfeeding and normal feeding. One gene was found to be up-regulated in the fatty liver in both breeds, and it has a 1797 bp cDNA with 83% identity to chicken SELENBP1. The sequence analysis revealed that its open reading frame of 1413 bp encodes a protein of 471 amino acids, which contains a putative conserved domain of 56 kDa selenium binding protein with high homology to its homologues of chicken (95%), rat (86%), mouse (84%), human (86%), monkey (86%), dog (86%), and cattle (86%). The function of this protein has been briefly reviewed based on published information. In tissue expression analysis, the expression of geese SELENBP1 mRNA was found to be higher in liver or kidney than in other tested tissues. The results showed that overfeeding could increase the mRNA expression level of geese SELENBP1.

  18. ZFP36 RNA-binding proteins restrain T-cell activation and anti-viral immunity.

    PubMed

    Moore, Michael J; Blachere, Nathalie E; Fak, John J; Park, Christopher Y; Sawicka, Kirsty; Parveen, Salina; Zucker-Scharff, Ilana; Moltedo, Bruno; Rudensky, Alexander Y; Darnell, Robert B

    2018-05-31

    Dynamic post-transcriptional control of RNA expression by RNA-binding proteins (RBPs) is critical during immune response. ZFP36 RBPs are prominent inflammatory regulators linked to autoimmunity and cancer, but functions in adaptive immunity are less clear. We used HITS-CLIP to define ZFP36 targets in mouse T cells, revealing unanticipated actions in regulating T cell activation, proliferation, and effector functions. Transcriptome and ribosome profiling showed that ZFP36 represses mRNA target abundance and translation, notably through novel AU-rich sites in coding sequence. Functional studies revealed that ZFP36 regulates early T cell activation kinetics cell autonomously, by attenuating activation marker expression, limiting T cell expansion, and promoting apoptosis. Strikingly, loss of ZFP36 in vivo accelerated T cell responses to acute viral infection and enhanced anti-viral immunity. These findings uncover a critical role for ZFP36 RBPs in restraining T cell expansion and effector functions, and suggest ZFP36 inhibition as a strategy to enhance immune-based therapies. © 2018, Moore et al.

  19. Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 translation.

    PubMed

    Chennupati, Vijaykumar; Veiga, Diogo Ft; Maslowski, Kendle M; Andina, Nicola; Tardivel, Aubry; Yu, Eric Chi-Wang; Stilinovic, Martina; Simillion, Cedric; Duchosal, Michel A; Quadroni, Manfredo; Roberts, Irene; Sankaran, Vijay G; MacDonald, H Robson; Fasel, Nicolas; Angelillo-Scherrer, Anne; Schneider, Pascal; Hoang, Trang; Allam, Ramanjaneyulu

    2018-04-02

    Ribosomal proteins (RP) regulate specific gene expression by selectively translating subsets of mRNAs. Indeed, in Diamond-Blackfan anemia and 5q- syndrome, mutations in RP genes lead to a specific defect in erythroid gene translation and cause anemia. Little is known about the molecular mechanisms of selective mRNA translation and involvement of ribosomal-associated factors in this process. Ribonuclease inhibitor 1 (RNH1) is a ubiquitously expressed protein that binds to and inhibits pancreatic-type ribonucleases. Here, we report that RNH1 binds to ribosomes and regulates erythropoiesis by controlling translation of the erythroid transcription factor GATA1. Rnh1-deficient mice die between embryonic days E8.5 and E10 due to impaired production of mature erythroid cells from progenitor cells. In Rnh1-deficient embryos, mRNA levels of Gata1 are normal, but GATA1 protein levels are decreased. At the molecular level, we found that RNH1 binds to the 40S subunit of ribosomes and facilitates polysome formation on Gata1 mRNA to confer transcript-specific translation. Further, RNH1 knockdown in human CD34+ progenitor cells decreased erythroid differentiation without affecting myelopoiesis. Our results reveal an unsuspected role for RNH1 in the control of GATA1 mRNA translation and erythropoiesis.

  20. O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat

    PubMed Central

    Xiao, Jun; Xu, Shujuan; Li, Chunhua; Xu, Yunyuan; Xing, Lijing; Niu, Yuda; Huan, Qing; Tang, Yimiao; Zhao, Changping; Wagner, Doris; Gao, Caixia; Chong, Kang

    2014-01-01

    Vernalization, sensing of prolonged cold, is important for seasonal flowering in eudicots and monocots. While vernalization silences a repressor (FLC, MADS-box transcription factor) in eudicots, it induces an activator (TaVRN1, an AP1 clade MADS-box transcription factor) in monocots. The mechanism for TaVRN1 induction during vernalization is not well understood. Here we reveal a novel mechanism for controlling TaVRN1 mRNA accumulation in response to prolonged cold sensing in wheat. The carbohydrate-binding protein VER2, a jacalin lectin, promotes TaVRN1 upregulation by physically interacting with the RNA-binding protein TaGRP2. TaGRP2 binds to TaVRN1 pre-mRNA and inhibits TaVRN1 mRNA accumulation. The physical interaction between VER2 and TaGRP2 is controlled by TaGRP2 O-GlcNAc modification, which gradually increases during vernalization. The interaction between VER2 and O-GlcNAc-TaGRP2 reduces TaGRP2 protein accumulation in the nucleus and/or promotes TaGRP2 dissociation from TaVRN1, leading to TaVRN1 mRNA accumulation. Our data reveal a new mechanism for sensing prolonged cold in temperate cereals. PMID:25091017

  1. Cup Blocks the Precocious Activation of the Orb Autoregulatory Loop

    PubMed Central

    Wong, Li Chin; Schedl, Paul

    2011-01-01

    Translational regulation of localized mRNAs is essential for patterning and axes determination in many organisms. In the Drosophila ovary, the germline-specific Orb protein mediates the translational activation of a variety of mRNAs localized in the oocyte. One of the Orb target mRNAs is orb itself, and this autoregulatory activity ensures that Orb proteins specifically accumulate in the developing oocyte. Orb is an RNA-binding protein and is a member of the cytoplasmic polyadenylation element binding (CPEB) protein family. We report here that Cup forms a complex in vivo with Orb. We also show that cup negatively regulates orb and is required to block the precocious activation of the orb positive autoregulatory loop. In cup mutant ovaries, high levels of Orb accumulate in the nurse cells, leading to what appears to be a failure in oocyte specification as a number of oocyte markers inappropriately accumulate in nurse cells. In addition, while orb mRNA is mislocalized and destabilized, a longer poly(A) tail is maintained than in wild type ovaries. Analysis of Orb phosphoisoforms reveals that loss of cup leads to the accumulation of hyperphosphorylated Orb, suggesting that an important function of cup in orb-dependent mRNA localization pathways is to impede Orb activation. PMID:22164257

  2. Short Hairpin Ribonucleic Acid Constructs Targeting Insulin-like Growth Factor Binding Protein-3 Reversed Decreased Testosterone Concentrations in Diabetic Rats

    PubMed Central

    Zhou, Zhang-Yan; Fei-Li; Cheng, Shao-Ping; Huang, Hui; Peng, Bi-Wen; Wang, Jing; Liu, Chang-Mao; Xing, Cheng; Sun, Ya-Ling; Bsoul, Najeeb; Pan, Hui; Yi, Cun-Jian; Liu, Rong-Hua; Zhong, Guang-Jun

    2015-01-01

    Background The aim of this study was to determine if shRNA constructs targeting insulin-like growth factor binding protein-3 can rehabilitate decreased serum testosterone concentrations in streptozotocin-induced diabetic rats. Material/Methods After 12 weeks of intracavernous administration of IGFBP-3 shRNA, intracavernous pressure responses to electrical stimulation of cavernous nerves were evaluated. The expression of IGFBP-3 at mRNA and protein levels was detected by quantitative real-time PCR analysis and Western blot, respectively. The concentrations of serum testosterone and cavernous cyclic guanosine monophosphate were detected by enzyme-linked immunosorbent assay. Results After 12 weeks of intracavernous administration of IGFBP-3 shRNA, the cavernosal pressure was significantly increased in response to the cavernous nerves stimulation compared to the diabetic control group (p<0.01). Cavernous IGFBP-3 expression at both mRNA and protein levels was significantly inhibited. Both serum testosterone and cavernous cyclic guanosine monophosphate concentrations were significantly increased in the IGFBP-3 shRNA treatment group compared to the diabetic control group (p<0.01). Conclusions These results suggest that IGFBP-3 shRNA may rehabilitate erectile function via increases of concentrations of serum testosterone and cavernous cyclic guanosine monophosphate in streptozotocin-induced diabetic rats. PMID:25582342

  3. HNRNPLL stabilizes mRNAs for DNA replication proteins and promotes cell cycle progression in colorectal cancer cells.

    PubMed

    Sakuma, Keiichiro; Sasaki, Eiichi; Kimura, Kenya; Komori, Koji; Shimizu, Yasuhiro; Yatabe, Yasushi; Aoki, Masahiro

    2018-06-05

    HNRNPLL (heterogeneous nuclear ribonucleoprotein L-like), an RNA-binding protein that regulates alternative splicing of pre-mRNAs, has been shown to regulate differentiation of lymphocytes, as well as metastasis of colorectal cancer cells. Here we show that HNRNPLL promotes cell cycle progression and hence proliferation of colorectal cancer cells. Functional annotation analysis of those genes whose expression levels were changed by three-fold or more in RNA sequencing analysis between SW480 cells overexpressing HNRNPLL and those knocked down for HNRNPLL revealed enrichment of DNA replication-related genes by HNRNPLL overexpression. Among 13 genes detected in the DNA replication pathway, PCNA, RFC3, and FEN1 showed reproducible upregulation by HNRNPLL overexpression both at mRNA and protein levels in SW480 and HT29 cells. Importantly, knockdown of any of these genes alone suppressed the proliferation promoting effect induced by HNRNPLL overexpression. RNA-immunoprecipitation assay presented a binding of FLAG-tagged HNRNPLL to mRNA of these genes, and HNRNPLL overexpression significantly suppressed the downregulation of these genes during 12 hours of actinomycin D treatment, suggesting a role of HNRNPLL in mRNA stability. Finally, analysis of a public RNA sequencing dataset of clinical samples suggested a link between overexpression of HNRNPLL and that of PCNA, RFC3, and FEN1. This link was further supported by immunohistochemistry of colorectal cancer clinical samples, whereas expression of CDKN1A, which is known to inhibit the cooperative function of PCNA, RFC3, and FEN1, was negatively associated with HNRNPLL expression. These results indicate that HNRNPLL stabilizes mRNAs encoding regulators of DNA replication and promotes colorectal cancer cell proliferation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Effects of interferon-gamma and lipopolysaccharide on macrophage iron metabolism are mediated by nitric oxide-induced degradation of iron regulatory protein 2.

    PubMed

    Kim, S; Ponka, P

    2000-03-03

    Iron regulatory proteins (IRP-1 and IRP-2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements, which are located in the 3'-untranslated region and the 5'-untranslated region of their respective mRNAs. Cellular iron levels affect binding of IRPs to iron-responsive elements and consequently expression of TfR and ferritin. Moreover, NO(*), a redox species of nitric oxide that interacts primarily with iron, can activate IRP-1 RNA binding activity resulting in an increase in TfR mRNA levels. Recently we found that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO(+) (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA binding of IRP-2 followed by IRP-2 degradation, and these changes were associated with a decrease in TfR mRNA levels (Kim, S., and Ponka, P. (1999) J. Biol. Chem. 274, 33035-33042). In this study, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP-1 binding activity, whereas RNA binding of IRP-2 decreased and was followed by a degradation of this protein. Moreover, the decrease of IRP-2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. Furthermore, LPS/IFN-gamma-stimulated RAW 264.7 cells showed increased rates of ferritin synthesis. These results suggest that NO(+)-mediated degradation of IRP-2 plays a major role in iron metabolism during inflammation.

  5. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins.

    PubMed

    Chen, Eileen; Joseph, Simpson

    2015-07-01

    Translational control is a common mechanism used to regulate gene expression and occur in bacteria to mammals. Typically in translational control, an RNA-binding protein binds to a unique sequence in the mRNA to regulate protein synthesis by the ribosomes. Alternatively, a protein may bind to or modify a translation factor to globally regulate protein synthesis by the cell. Here, we review translational control by the fragile X mental retardation protein (FMRP), the absence of which causes the neurological disease, fragile X syndrome (FXS). Copyright © 2015 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  6. Advanced Running Performance by Genetic Predisposition in Male Dummerstorf Marathon Mice (DUhTP) Reveals Higher Sterol Regulatory Element-Binding Protein (SREBP) Related mRNA Expression in the Liver and Higher Serum Levels of Progesterone

    PubMed Central

    Brenmoehl, Julia; Walz, Christina; Ponsuksili, Siriluck; Schwerin, Manfred; Fuellen, Georg; Hoeflich, Andreas

    2016-01-01

    Long-term-selected DUhTP mice represent a non-inbred model for inborn physical high-performance without previous training. Abundance of hepatic mRNA in 70-day male DUhTP and control mice was analyzed using the Affymetrix mouse array 430A 2.0. Differential expression analysis with PLIER corrected data was performed using AltAnalyze. Searching for over-representation in biochemical pathways revealed cholesterol metabolism being most prominently affected in DUhTP compared to unselected control mice. Furthermore, pathway analysis by AltAnalyze plus PathVisio indicated significant induction of glycolysis, fatty acid synthesis and cholesterol biosynthesis in the liver of DUhTP mice versus unselected control mice. In contrast, gluconeogenesis was partially inactivated as judged from the analysis of hepatic mRNA transcript abundance in DUhTP mice. Analysis of mRNA transcripts related to steroid hormone metabolism inferred elevated synthesis of progesterone and reduced levels of sex steroids. Abundance of steroid delta isomerase-5 mRNA (Hsd3b5, FC 4.97) was increased and steroid 17-alpha-monooxygenase mRNA (Cyp17a1, FC -11.6) was massively diminished in the liver of DUhTP mice. Assessment of steroid profiles by LC-MS revealed increased levels of progesterone and decreased levels of sex steroids in serum from DUhTP mice versus controls. Analysis of hepatic mRNA transcript abundance indicates that sterol regulatory element-binding protein-1 (SREBP-1) may play a major role in metabolic pathway activation in the marathon mouse model DUhTP. Thus, results from bioinformatics modeling of hepatic mRNA transcript abundance correlated with direct steroid analysis by mass spectrometry and further indicated functions of SREBP-1 and steroid hormones for endurance performance in DUhTP mice. PMID:26799318

  7. Regulation of cytoplasmic mRNA decay

    PubMed Central

    Schoenberg, Daniel R.; Maquat, Lynne E.

    2012-01-01

    Discoveries made over the past 20 years highlight the importance of mRNA decay as a means to modulate gene expression and thereby protein production. Up until recently, studies focused largely on identifying cis-acting sequences that serve as mRNA stability or instability elements, the proteins that bind these elements, how the process of translation influences mRNA decay, and the ribonucleases that catalyze decay. Now, current studies have begun to elucidate how the decay process is regulated. This review examines our current understanding of how mammalian-cell mRNA decay is controlled by different signaling pathways and lays out a framework for future research. PMID:22392217

  8. CsrA Participates in a PNPase Autoregulatory Mechanism by Selectively Repressing Translation of pnp Transcripts That Have Been Previously Processed by RNase III and PNPase

    PubMed Central

    Park, Hongmarn; Yakhnin, Helen; Connolly, Michael; Romeo, Tony

    2015-01-01

    ABSTRACT Csr is a conserved global regulatory system that represses or activates gene expression posttranscriptionally. CsrA of Escherichia coli is a homodimeric RNA binding protein that regulates transcription elongation, translation initiation, and mRNA stability by binding to the 5′ untranslated leader or initial coding sequence of target transcripts. pnp mRNA, encoding the 3′ to 5′ exoribonuclease polynucleotide phosphorylase (PNPase), was previously identified as a CsrA target by transcriptome sequencing (RNA-seq). Previous studies also showed that RNase III and PNPase participate in a pnp autoregulatory mechanism in which RNase III cleavage of the untranslated leader, followed by PNPase degradation of the resulting 5′ fragment, leads to pnp repression by an undefined translational repression mechanism. Here we demonstrate that CsrA binds to two sites in pnp leader RNA but only after the transcript is fully processed by RNase III and PNPase. In the absence of processing, both of the binding sites are sequestered in an RNA secondary structure, which prevents CsrA binding. The CsrA dimer bridges the upstream high-affinity site to the downstream site that overlaps the pnp Shine-Dalgarno sequence such that bound CsrA causes strong repression of pnp translation. CsrA-mediated translational repression also leads to a small increase in the pnp mRNA decay rate. Although CsrA has been shown to regulate translation and mRNA stability of numerous genes in a variety of organisms, this is the first example in which prior mRNA processing is required for CsrA-mediated regulation. IMPORTANCE CsrA protein represses translation of numerous mRNA targets, typically by binding to multiple sites in the untranslated leader region preceding the coding sequence. We found that CsrA represses translation of pnp by binding to two sites in the pnp leader transcript but only after it is processed by RNase III and PNPase. Processing by these two ribonucleases alters the mRNA secondary structure such that it becomes accessible to the ribosome for translation as well as to CsrA. As one of the CsrA binding sites overlaps the pnp ribosome binding site, bound CsrA prevents ribosome binding. This is the first example in which regulation by CsrA requires prior mRNA processing and should link pnp expression to conditions affecting CsrA activity. PMID:26438818

  9. A novel function of vitellogenin subdomain, vWF type D, as a toxin-binding protein in the pufferfish Takifugu pardalis ovary.

    PubMed

    Yin, Xianzhe; Kiriake, Aya; Ohta, Akira; Kitani, Yoichiro; Ishizaki, Shoichiro; Nagashima, Yuji

    2017-09-15

    Marine pufferfish of the Tetraodontidae family contain high levels of tetrodotoxin (TTX) in the liver and ovary. TTX is suggested to transfer from the liver to the ovary in female pufferfish during maturation. TTX in pufferfish eggs may act as a repellent against predators and as a sexual pheromone to attract male pufferfish. The toxification mechanism of the pufferfish ovary is poorly understood. Here we evaluated the chemical form of TTX and its related substances in the ovary of the panther pufferfish Takifugu pardalis by LC-ESI/MS. TTX and its analogs 4-epi-TTX, 4, 9-anhydroTTX, deoxyTTX, dideoxyTTX, and trideoxyTTX were detected in a low molecular weight fraction by Sephacryl S-400 column chromatography. The finding of an unknown TTX-related substance in a high molecular weight fraction from the Sephacryl S-400 column suggested the occurrence of toxin-binding protein in the ovary. The toxin-binding protein in the ovary was purified by ion-exchange HPLC, gel filtration HPLC, and SDS-PAGE. Amino acid sequencing and cDNA cloning revealed that the toxin-binding protein, TPOBP-10 (Takifugu pardalis ovary toxin-binding protein with a molecular mass of 10 kDa) was homologous with the predicted vitellogenin-1-like protein [Takifugu rubripes] subdomain, a von Willebrand factor type D domain. TPOBP-10 mRNA was highly expressed in the ovary and liver and less in other organs of female individuals based on RT-PCR. These findings reveal a novel function of the vitellogenin subdomain as binding with TTX-related substances, and its involvement in the toxification of the pufferfish ovary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A systems biology analysis of the changes in gene expression via silencing of HPV-18 E1 expression in HeLa cells.

    PubMed

    Castillo, Andres; Wang, Lu; Koriyama, Chihaya; Eizuru, Yoshito; Jordan, King; Akiba, Suminori

    2014-10-01

    Previous studies have reported the detection of a truncated E1 mRNA generated from HPV-18 in HeLa cells. Although it is unclear whether a truncated E1 protein could function as a replicative helicase for viral replication, it would still retain binding sites for potential interactions with different host cell proteins. Furthermore, in this study, we found evidence in support of expression of full-length HPV-18 E1 mRNA in HeLa cells. To determine whether interactions between E1 and cellular proteins play an important role in cellular processes other than viral replication, genome-wide expression profiles of HPV-18 positive HeLa cells were compared before and after the siRNA knockdown of E1 expression. Differential expression and gene set enrichment analysis uncovered four functionally related sets of genes implicated in host defence mechanisms against viral infection. These included the toll-like receptor, interferon and apoptosis pathways, along with the antiviral interferon-stimulated gene set. In addition, we found that the transcriptional coactivator E1A-binding protein p300 (EP300) was downregulated, which is interesting given that EP300 is thought to be required for the transcription of HPV-18 genes in HeLa cells. The observed changes in gene expression produced via the silencing of HPV-18 E1 expression in HeLa cells indicate that in addition to its well-known role in viral replication, the E1 protein may also play an important role in mitigating the host's ability to defend against viral infection.

  11. RNA-Binding Protein FXR1 Regulates p21 and TERC RNA to Bypass p53-Mediated Cellular Senescence in OSCC

    PubMed Central

    Majumder, Mrinmoyee; House, Reniqua; Palanisamy, Nallasivam; Qie, Shuo; Day, Terrence A.; Neskey, David; Diehl, J. Alan

    2016-01-01

    RNA-binding proteins (RBP) regulate numerous aspects of co- and post-transcriptional gene expression in cancer cells. Here, we demonstrate that RBP, fragile X-related protein 1 (FXR1), plays an essential role in cellular senescence by utilizing mRNA turnover pathway. We report that overexpressed FXR1 in head and neck squamous cell carcinoma targets (G-quadruplex (G4) RNA structure within) both mRNA encoding p21 (Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A, Cip1) and the non-coding RNA Telomerase RNA Component (TERC), and regulates their turnover to avoid senescence. Silencing of FXR1 in cancer cells triggers the activation of Cyclin-Dependent Kinase Inhibitors, p53, increases DNA damage, and ultimately, cellular senescence. Overexpressed FXR1 binds and destabilizes p21 mRNA, subsequently reduces p21 protein expression in oral cancer cells. In addition, FXR1 also binds and stabilizes TERC RNA and suppresses the cellular senescence possibly through telomerase activity. Finally, we report that FXR1-regulated senescence is irreversible and FXR1-depleted cells fail to form colonies to re-enter cellular proliferation. Collectively, FXR1 displays a novel mechanism of controlling the expression of p21 through p53-dependent manner to bypass cellular senescence in oral cancer cells. PMID:27606879

  12. Pub1p C-Terminal RRM Domain Interacts with Tif4631p through a Conserved Region Neighbouring the Pab1p Binding Site

    PubMed Central

    Rico-Lastres, Palma; Pérez-Cañadillas, José Manuel

    2011-01-01

    Pub1p, a highly abundant poly(A)+ mRNA binding protein in Saccharomyces cerevisiae, influences the stability and translational control of many cellular transcripts, particularly under some types of environmental stresses. We have studied the structure, RNA and protein recognition modes of different Pub1p constructs by NMR spectroscopy. The structure of the C-terminal RRM domain (RRM3) shows a non-canonical N-terminal helix that packs against the canonical RRM fold in an original fashion. This structural trait is conserved in Pub1p metazoan homologues, the TIA-1 family, defining a new class of RRM-type domains that we propose to name TRRM (TIA-1 C-terminal domain-like RRM). Pub1p TRRM and the N-terminal RRM1-RRM2 tandem bind RNA with high selectivity for U-rich sequences, with TRRM showing additional preference for UA-rich ones. RNA-mediated chemical shift changes map to β-sheet and protein loops in the three RRMs. Additionally, NMR titration and biochemical in vitro cross-linking experiments determined that Pub1p TRRM interacts specifically with the N-terminal region (1–402) of yeast eIF4G1 (Tif4631p), very likely through the conserved Box1, a short sequence motif neighbouring the Pab1p binding site in Tif4631p. The interaction involves conserved residues of Pub1p TRRM, which define a protein interface that mirrors the Pab1p-Tif4631p binding mode. Neither protein nor RNA recognition involves the novel N-terminal helix, whose functional role remains unclear. By integrating these new results with the current knowledge about Pub1p, we proposed different mechanisms of Pub1p recruitment to the mRNPs and Pub1p-mediated mRNA stabilization in which the Pub1p/Tif4631p interaction would play an important role. PMID:21931728

  13. Assessing Specific Oligonucleotides and Small Molecule Antibiotics for the Ability to Inhibit the CRD-BP-CD44 RNA Interaction

    PubMed Central

    Thomsen, Dana; Lee, Chow H.

    2014-01-01

    Studies on Coding Region Determinant-Binding Protein (CRD-BP) and its orthologs have confirmed their functional role in mRNA stability and localization. CRD-BP is present in extremely low levels in normal adult tissues, but it is over-expressed in many types of aggressive human cancers and in neonatal tissues. Although the exact role of CRD-BP in tumour progression is unclear, cumulative evidence suggests that its ability to physically associate with target mRNAs is an important criterion for its oncogenic role. CRD-BP has high affinity for the 3′UTR of the oncogenic CD44 mRNA and depletion of CRD-BP in cells led to destabilization of CD44 mRNA, decreased CD44 expression, reduced adhesion and disruption of invadopodia formation. Here, we further characterize the CRD-BP-CD44 RNA interaction and assess specific antisense oligonucleotides and small molecule antibiotics for their ability to inhibit the CRD-BP-CD44 RNA interaction. CRD-BP has a high affinity for binding to CD44 RNA nts 2862–3055 with a Kd of 645 nM. Out of ten antisense oligonucleotides spanning nts 2862–3055, only three antisense oligonucleotides (DD4, DD7 and DD10) were effective in competing with CRD-BP for binding to 32P-labeled CD44 RNA. The potency of DD4, DD7 and DD10 in inhibiting the CRD-BP-CD44 RNA interaction in vitro correlated with their ability to specifically reduce the steady-state level of CD44 mRNA in cells. The aminoglycoside antibiotics neomycin, paramomycin, kanamycin and streptomycin effectively inhibited the CRD-BP-CD44 RNA interaction in vitro. Assessing the potential inhibitory effect of aminoglycoside antibiotics including neomycin on the CRD-BP-CD44 mRNA interaction in cells proved difficult, likely due to their propensity to non-specifically bind nucleic acids. Our results have important implications for future studies in finding small molecules and nucleic acid-based inhibitors that interfere with protein-RNA interactions. PMID:24622399

  14. Assessing specific oligonucleotides and small molecule antibiotics for the ability to inhibit the CRD-BP-CD44 RNA interaction.

    PubMed

    King, Dustin T; Barnes, Mark; Thomsen, Dana; Lee, Chow H

    2014-01-01

    Studies on Coding Region Determinant-Binding Protein (CRD-BP) and its orthologs have confirmed their functional role in mRNA stability and localization. CRD-BP is present in extremely low levels in normal adult tissues, but it is over-expressed in many types of aggressive human cancers and in neonatal tissues. Although the exact role of CRD-BP in tumour progression is unclear, cumulative evidence suggests that its ability to physically associate with target mRNAs is an important criterion for its oncogenic role. CRD-BP has high affinity for the 3'UTR of the oncogenic CD44 mRNA and depletion of CRD-BP in cells led to destabilization of CD44 mRNA, decreased CD44 expression, reduced adhesion and disruption of invadopodia formation. Here, we further characterize the CRD-BP-CD44 RNA interaction and assess specific antisense oligonucleotides and small molecule antibiotics for their ability to inhibit the CRD-BP-CD44 RNA interaction. CRD-BP has a high affinity for binding to CD44 RNA nts 2862-3055 with a Kd of 645 nM. Out of ten antisense oligonucleotides spanning nts 2862-3055, only three antisense oligonucleotides (DD4, DD7 and DD10) were effective in competing with CRD-BP for binding to 32P-labeled CD44 RNA. The potency of DD4, DD7 and DD10 in inhibiting the CRD-BP-CD44 RNA interaction in vitro correlated with their ability to specifically reduce the steady-state level of CD44 mRNA in cells. The aminoglycoside antibiotics neomycin, paramomycin, kanamycin and streptomycin effectively inhibited the CRD-BP-CD44 RNA interaction in vitro. Assessing the potential inhibitory effect of aminoglycoside antibiotics including neomycin on the CRD-BP-CD44 mRNA interaction in cells proved difficult, likely due to their propensity to non-specifically bind nucleic acids. Our results have important implications for future studies in finding small molecules and nucleic acid-based inhibitors that interfere with protein-RNA interactions.

  15. Evolution of RLSB, a nuclear-encoded S1 domain RNA binding protein associated with post-transcriptional regulation of plastid-encoded rbcL mRNA in vascular plants.

    PubMed

    Yerramsetty, Pradeep; Stata, Matt; Siford, Rebecca; Sage, Tammy L; Sage, Rowan F; Wong, Gane Ka-Shu; Albert, Victor A; Berry, James O

    2016-06-29

    RLSB, an S-1 domain RNA binding protein of Arabidopsis, selectively binds rbcL mRNA and co-localizes with Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) within chloroplasts of C3 and C4 plants. Previous studies using both Arabidopsis (C3) and maize (C4) suggest RLSB homologs are post-transcriptional regulators of plastid-encoded rbcL mRNA. While RLSB accumulates in all Arabidopsis leaf chlorenchyma cells, in C4 leaves RLSB-like proteins accumulate only within Rubisco-containing bundle sheath chloroplasts of Kranz-type species, and only within central compartment chloroplasts in the single cell C4 plant Bienertia. Our recent evidence implicates this mRNA binding protein as a primary determinant of rbcL expression, cellular localization/compartmentalization, and photosynthetic function in all multicellular green plants. This study addresses the hypothesis that RLSB is a highly conserved Rubisco regulatory factor that occurs in the chloroplasts all higher plants. Phylogenetic analysis has identified RLSB orthologs and paralogs in all major plant groups, from ancient liverworts to recent angiosperms. RLSB homologs were also identified in algae of the division Charophyta, a lineage closely related to land plants. RLSB-like sequences were not identified in any other algae, suggesting that it may be specific to the evolutionary line leading to land plants. The RLSB family occurs in single copy across most angiosperms, although a few species with two copies were identified, seemingly randomly distributed throughout the various taxa, although perhaps correlating in some cases with known ancient whole genome duplications. Monocots of the order Poales (Poaceae and Cyperaceae) were found to contain two copies, designated here as RLSB-a and RLSB-b, with only RLSB-a implicated in the regulation of rbcL across the maize developmental gradient. Analysis of microsynteny in angiosperms revealed high levels of conservation across eudicot species and for both paralogs in grasses, highlighting the possible importance of maintaining this gene and its surrounding genomic regions. Findings presented here indicate that the RLSB family originated as a unique gene in land plant evolution, perhaps in the common ancestor of charophytes and higher plants. Purifying selection has maintained this as a highly conserved single- or two-copy gene across most extant species, with several conserved gene duplications. Together with previous findings, this study suggests that RLSB has been sustained as an important regulatory protein throughout the course of land plant evolution. While only RLSB-a has been directly implicated in rbcL regulation in maize, RLSB-b could have an overlapping function in the co-regulation of rbcL, or may have diverged as a regulator of one or more other plastid-encoded mRNAs. This analysis confirms that RLSB is an important and unique photosynthetic regulatory protein that has been continuously expressed in land plants as they emerged and diversified from their ancient common ancestor.

  16. Expression pattern of L-FABP gene in different tissues and its regulation of fat metabolism-related genes in duck.

    PubMed

    He, Jun; Tian, Yong; Li, Jinjun; Shen, Junda; Tao, Zhengrong; Fu, Yan; Niu, Dong; Lu, Lizhi

    2013-01-01

    Liver fatty acid binding protein (L-FABP) is a member of intracellular lipid-binding proteins responsible for the transportation of fatty acids. The expression pattern of duck L-FABP mRNA was examined in this study by quantitative RT-PCR. The results showed that duck L-FABP gene was expressed in many tissues, including heart, lung, kidney, muscle, ovary, brain, intestine, stomach and adipocyte tissues, and highly expressed in liver. Several lipid metabolism-related genes were selected to detect the regulation of L-FABP in duck. The expression of L-FABP and lipoprotein lipase was promoted by oleic acid. The L-FABP knockdown decreased the expression levels of peroxisome proliferator-activated receptor α (PPARα), fatty acid synthase and lipoprotein lipase by 61.1, 42.3 and 53.7 %, respectively (P < 0.05), but had no influences on the mRNA levels of PPARγ and leptin receptor. L-FABP might function through the PPARα to regulate the fat metabolism-related gene expression and play important roles in lipid metabolism in duck hepatocytes.

  17. Potential contributions of heat shock proteins to temperature-dependent sex determination in the American alligator.

    PubMed

    Kohno, S; Katsu, Y; Urushitani, H; Ohta, Y; Iguchi, T; Guillette, L J

    2010-01-01

    Sex determination in the American alligator depends on the incubation temperature experienced during a thermo-sensitive period (TSP), although sex determination can be 'reversed' by embryonic exposure to an estrogenic compound. Thus, temperature and estrogenic signals play essential roles during temperature-dependent sex determination (TSD). The genetic basis for TSD is poorly understood, although previous studies observed that many of the genes associated with genetic sex determination (GSD) are expressed in species with TSD. Heat shock proteins (HSPs), good candidates because of their temperature-sensitive expression, have not been examined in regard to TSD but HSPs have the ability to modify steroid receptor function. A number of HSP cDNAs (HSP27, DNAJ, HSP40, HSP47, HSP60, HSP70A, HSP70B, HSP70C, HSP75, HSP90alpha, HSP90beta, and HSP108) as well as cold-inducible RNA binding protein (CIRBP) and HSP-binding protein (HSPBP) were cloned, and expression of their mRNA in the gonadal-adrenal-mesonephros complex (GAM) was investigated. Embryonic and neonatal GAMs exhibited mRNA for all of the HSPs examined during and after the TSP. One-month-old GAMs were separated into 3 portions (gonad, adrenal gland, and mesonephros), and sexual dimorphism in the mRNA expression of gonadal HSP27 (male > female), gonadal HSP70A (male < female), and adrenal HSP90 alpha (male > female) was observed. These findings provide new insights on TSD and suggest that further studies examining the role of HSPs during gonadal development are needed. (c) 2009 S. Karger AG, Basel.

  18. Translation Repression in Human Cells by MicroRNA-Induced Gene Silencing Requires RCK/p54

    PubMed Central

    Chu, Chia-ying

    2006-01-01

    RNA interference is triggered by double-stranded RNA that is processed into small interfering RNAs (siRNAs) by Dicer enzyme. Endogenously, RNA interference triggers are created from small noncoding RNAs called microRNAs (miRNAs). RNA-induced silencing complexes (RISC) in human cells can be programmed by exogenously introduced siRNA or endogenously expressed miRNA. siRNA-programmed RISC (siRISC) silences expression by cleaving a perfectly complementary target mRNA, whereas miRNA-induced silencing complexes (miRISC) inhibits translation by binding imperfectly matched sequences in the 3′ UTR of target mRNA. Both RISCs contain Argonaute2 (Ago2), which catalyzes target mRNA cleavage by siRISC and localizes to cytoplasmic mRNA processing bodies (P-bodies). Here, we show that RCK/p54, a DEAD box helicase, interacts with argonaute proteins, Ago1 and Ago2, in affinity-purified active siRISC or miRISC from human cells; directly interacts with Ago1 and Ago2 in vivo, facilitates formation of P-bodies, and is a general repressor of translation. Disrupting P-bodies by depleting Lsm1 did not affect RCK/p54 interactions with argonaute proteins and its function in miRNA-mediated translation repression. Depletion of RCK/p54 disrupted P-bodies and dispersed Ago2 throughout the cytoplasm but did not significantly affect siRNA-mediated RNA functions of RISC. Depleting RCK/p54 released general, miRNA-induced, and let-7-mediated translational repression. Therefore, we propose that translation repression is mediated by miRISC via RCK/p54 and its specificity is dictated by the miRNA sequence binding multiple copies of miRISC to complementary 3′ UTR sites in the target mRNA. These studies also suggest that translation suppression by miRISC does not require P-body structures, and location of miRISC to P-bodies is the consequence of translation repression. PMID:16756390

  19. Genetics Home Reference: distal myopathy 2

    MedlinePlus

    ... is unknown. This protein can attach to (bind) RNA, which is a chemical cousin of DNA. Some ... matrin 3 binds and stabilizes a type of RNA called messenger RNA (mRNA), which provides the genetic ...

  20. pUL69 of Human Cytomegalovirus Recruits the Cellular Protein Arginine Methyltransferase 6 via a Domain That Is Crucial for mRNA Export and Efficient Viral Replication.

    PubMed

    Thomas, Marco; Sonntag, Eric; Müller, Regina; Schmidt, Stefanie; Zielke, Barbara; Fossen, Torgils; Stamminger, Thomas

    2015-09-01

    The regulatory protein pUL69 of human cytomegalovirus acts as a viral mRNA export factor, facilitating the cytoplasmic accumulation of unspliced RNA via interaction with the cellular mRNA export factor UAP56. Here we provide evidence for a posttranslational modification of pUL69 via arginine methylation within the functionally important N terminus. First, we demonstrated a specific immunoprecipitation of full-length pUL69 as well as pUL69aa1-146 by a mono/dimethylarginine-specific antibody. Second, we observed a specific electrophoretic mobility shift upon overexpression of the catalytically active protein arginine methyltransferase 6 (PRMT6). Third, a direct interaction of pUL69 and PRMT6 was confirmed by yeast two-hybrid and coimmunoprecipitation analyses. We mapped the PRMT6 interaction motif to the pUL69 N terminus and identified critical amino acids within the arginine-rich R1 box of pUL69 that were crucial for PRMT6 and/or UAP56 recruitment. In order to test the impact of putative methylation substrates on the functions of pUL69, we constructed various pUL69 derivatives harboring arginine-to-alanine substitutions and tested them for RNA export activity. Thus, we were able to discriminate between arginines within the R1 box of pUL69 that were crucial for UAP56/PRMT6-interaction and/or mRNA export activity. Remarkably, nuclear magnetic resonance (NMR) analyses revealed the same α-helical structures for pUL69 sequences encoding either the wild type R1/R2 boxes or a UAP56/PRMT6 binding-deficient derivative, thereby excluding the possibility that R/A amino acid substitutions within R1 affected the secondary structure of pUL69. We therefore conclude that the pUL69 N terminus is methylated by PRMT6 and that this critically affects the functions of pUL69 for efficient mRNA export and replication of human cytomegalovirus. The UL69 protein of human cytomegalovirus is a multifunctional regulatory protein that acts as a viral RNA export factor with a critical role for efficient replication. Here, we demonstrate that pUL69 is posttranslationally modified via arginine methylation and that the protein methyltransferase PRMT6 mediates this modification. Furthermore, arginine residues with a crucial function for RNA export and for binding of the cellular RNA export factor UAP56 as well as PRMT6 were mapped within the arginine-rich R1 motif of pUL69. Importantly, we demonstrated that mutation of those arginines did not alter the secondary structure of R1, suggesting that they may serve as critical methylation substrates. In summary, our study reveals a novel posttranslational modification of pUL69 which has a significant impact on the function of this important viral regulatory protein. Since PRMTs appear to be amenable to selective inhibition by small molecules, this may constitute a novel target for antiviral therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. [Protein S3 in the human 80S ribosome adjoins mRNA from 3'-side of the A-site codon].

    PubMed

    Molotkov, M V; Graĭfer, D M; Popugaeva, E A; Bulygin, K N; Meshchaninova, M I; Ven'iaminova, A G; Karpova, G G

    2007-01-01

    The protein environment of mRNA 3' of the A-site codon (the decoding site) in the human 80S ribosome was studied using a set of oligoribonucleotide derivatives bearing a UUU triplet at the 5'-end and a perfluoroarylazide group at one of the nucleotide residues at the 3'-end of this triplet. Analogues of mRNA were phased into the ribosome using binding at the tRNAPhe P-site, which recognizes the UUU codon. Mild UV irradiation of ribosome complexes with tRNAPhe and mRNA analogues resulted in the predominant crosslinking of the analogues with the 40S subunit components, mainly with proteins and, to a lesser extent, with rRNA. Among the 40S subunit ribosomal proteins, the S3 protein was the main target for modification in all cases. In addition, minor crosslinking with the S2 protein was observed. The crosslinking with the S3 and S2 proteins occurred both in triple complexes and in the absence of tRNA. Within triple complexes, crosslinking with S15 protein was also found, its efficiency considerably falling when the modified nucleotide was moved from positions +5 to +12 relative to the first codon nucleotide in the P-site. In some cases, crosslinking with the S30 protein was observed, it was most efficient for the derivative containing a photoreactive group at the +7 adenosine residue. The results indicate that the S3 protein in the human ribosome plays a key role in the formation of the mRNA binding site 3' of the codon in the decoding site.

  2. The multifunctional Staufen proteins: conserved roles from neurogenesis to synaptic plasticity

    PubMed Central

    Heraud-Farlow, Jacki E.; Kiebler, Michael A.

    2014-01-01

    Staufen (Stau) proteins belong to a family of RNA-binding proteins (RBPs) that are important for RNA localisation in many organisms. In this review we discuss recent findings on the conserved role played by Stau during both the early differentiation of neurons and in the synaptic plasticity of mature neurons. Recent molecular data suggest mechanisms for how Stau2 regulates mRNA localisation, mRNA stability, translation, and ribonucleoprotein (RNP) assembly. We offer a perspective on how this multifunctional RBP has been adopted to regulate mRNA localisation under several different cellular and developmental conditions. PMID:25012293

  3. Nectinepsin: a new extracellular matrix protein of the pexin family. Characterization of a novel cDNA encoding a protein with an RGD cell binding motif.

    PubMed

    Blancher, C; Omri, B; Bidou, L; Pessac, B; Crisanti, P

    1996-10-18

    We report the isolation and characterization of a novel cDNA from quail neuroretina encoding a putative protein named nectinepsin. The nectinepsin cDNA identifies a major 2.2-kilobase mRNA that is detected from ED 5 in neuroretina and is increasingly abundant during embryonic development. A nectinepsin mRNA is also found in quail liver, brain, and intestine and in mouse retina. The deduced nectinepsin amino acid sequence contains the RGD cell binding motif of integrin ligands. Furthermore, nectinepsin shares substantial homologies with vitronectin and structural protein similarities with most of the matricial metalloproteases. However, the presence of a specific sequence and the lack of heparin and collagen binding domains of the vitronectin indicate that nectinepsin is a new extracellular matrix protein. Furthermore, genomic Southern blot studies suggest that nectinepsin and vitronectin are encoded by different genes. Western blot analysis with an anti-human vitronectin antiserum revealed, in addition to the 65- and 70-kDa vitronectin bands, an immunoreactive protein of about 54 kDa in all tissues containing nectinepsin mRNA. It seems likely that the form of vitronectin found in chick egg yolk plasma by Nagano et al. ((1992) J. Biol. Chem. 267, 24863-24870) is the protein that corresponds to the nectinepsin cDNA. This new protein could be an important molecule involved in the early steps of the development.

  4. Silencing of Chemosensory Protein Gene NlugCSP8 by RNAi Induces Declining Behavioral Responses of Nilaparvata lugens

    PubMed Central

    Waris, Muhammad I.; Younas, Aneela; ul Qamar, Muhammad T.; Hao, Liu; Ameen, Asif; Ali, Saqib; Abdelnabby, Hazem Elewa; Zeng, Fang-Fang; Wang, Man-Qun

    2018-01-01

    Chemosensory proteins (CSPs) play imperative functions in chemical and biochemical signaling of insects, as they distinguish and transfer ecological chemical indications to a sensory system in order to initiate behavioral responses. The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae), has emerged as the most destructive pest, causing serious damage to rice in extensive areas throughout Asia. Biotic characteristics like monophagy, dual wing forms, and annual long-distance migration imply a critical role of chemoreception in N. lugens. In this study, we cloned the full-length CSP8 gene from N. lugens. Protein sequence analysis indicated that NlugCSP8 shared high sequence resemblance with the CSPs of other insect family members and had the typical four-cysteine signature. Analysis of gene expression indicated that NlugCSP8 mRNA was specifically expressed in the wings of mated 3-day brachypterous females with a 175-fold difference compare to unmated 3-day brachypterous females. The NlugCSP8 mRNA was also highly expressed in the abdomen of unmated 5-day brachypterous males and correlated to the age, gender, adult wing form, and mating status. A competitive ligand-binding assay demonstrated that ligands with long chain carbon atoms, nerolidol, hexanal, and trans-2-hexenal were able to bind to NlugCSP8 in declining order of affinity. By using bioinformatics techniques, three-dimensional protein structure modeling and molecular docking, the binding sites of NlugCSP8 to the volatiles which had high binding affinity were predicted. In addition, behavioral experiments using the compounds displaying the high binding affinity for the NlugCSP8, revealed four compounds able to elicit significant behavioral responses from N. lugens. The in vivo functions of NlugCSP8 were further confirmed through the testing of RNAi and post-RNAi behavioral experiments. The results revealed that reduction in NlugCSP8 transcript abundance caused a decrease in behavioral response to representative attractants. An enhanced understanding of the NlugCSP8 is expected to contribute in the improvement of more effective and eco-friendly control strategies of BPH. PMID:29706901

  5. The actin-binding protein profilin 2 is a novel regulator of iron homeostasis.

    PubMed

    Luscieti, Sara; Galy, Bruno; Gutierrez, Lucia; Reinke, Michael; Couso, Jorge; Shvartsman, Maya; Di Pascale, Antonio; Witke, Walter; Hentze, Matthias W; Pilo Boyl, Pietro; Sanchez, Mayka

    2017-10-26

    Cellular iron homeostasis is controlled by the iron regulatory proteins (IRPs) 1 and 2 that bind cis -regulatory iron-responsive elements (IRE) on target messenger RNAs (mRNA). We identified profilin 2 ( Pfn2 ) mRNA, which encodes an actin-binding protein involved in endocytosis and neurotransmitter release, as a novel IRP-interacting transcript, and studied its role in iron metabolism. A combination of electrophoretic mobility shift assay experiments and bioinformatic analyses led to the identification of an atypical and conserved IRE in the 3' untranslated region of Pfn2 mRNA. Pfn2 mRNA levels were significantly reduced in duodenal samples from mice with intestinal IRP ablation, suggesting that IRPs exert a positive effect on Pfn2 mRNA expression in vivo. Overexpression of Pfn2 in HeLa and Hepa1-6 cells reduced their metabolically active iron pool. Importantly, Pfn2-deficient mice showed iron accumulation in discrete areas of the brain (olfactory bulb, hippocampus, and midbrain) and reduction of the hepatic iron store without anemia. Despite low liver iron levels, hepatic hepcidin expression remained high, likely because of compensatory activation of hepcidin by mild inflammation. Splenic ferroportin was increased probably to sustain hematopoiesis. Overall, our results indicate that Pfn2 expression is controlled by the IRPs in vivo and that Pfn2 contributes to maintaining iron homeostasis in cell lines and mice. © 2017 by The American Society of Hematology.

  6. Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency.

    PubMed

    Polesskaya, Anna; Cuvellier, Sylvain; Naguibneva, Irina; Duquet, Arnaud; Moss, Eric G; Harel-Bellan, Annick

    2007-05-01

    Lin-28 is a highly conserved, RNA-binding, microRNA-regulated protein that is involved in regulation of developmental timing in Caenorhabditis elegans. In mammals, Lin-28 is stage-specifically expressed in embryonic muscle, neurons, and epithelia, as well as in embryonic carcinoma cells, but is suppressed in most adult tissues, with the notable exception of skeletal and cardiac muscle. The specific function and mechanism of action of Lin-28 are not well understood. Here we used loss-of-function and gain-of-function assays in cultured myoblasts to show that expression of Lin-28 is essential for skeletal muscle differentiation in mice. In order to elucidate the specific function of Lin-28, we used a combination of biochemical and functional assays, which revealed that, in differentiating myoblasts, Lin-28 binds to the polysomes and increases the efficiency of protein synthesis. An important target of Lin-28 is IGF-2, a crucial growth and differentiation factor for muscle tissue. Interaction of Lin-28 with translation initiation complexes in skeletal myoblasts and in the embryonic carcinoma cell line P19 was confirmed by localization of Lin-28 to the stress granules, temporary structures that contain stalled mRNA-protein translation complexes. Our results unravel novel mechanisms of translational regulation in skeletal muscle and suggest that Lin-28 performs the role of "translational enhancer" in embryonic and adult cells and tissues.

  7. Identification of a Novel Hypocholesterolemic Protein, Major Royal Jelly Protein 1, Derived from Royal Jelly

    PubMed Central

    Asai, Saori; Kusada, Mio; Watanabe, Suzuyo; Kawashima, Takuji; Nakamura, Tadashi; Shimada, Masaya; Goto, Tsuyoshi; Nagaoka, Satoshi

    2014-01-01

    Royal jelly (RJ) intake lowers serum cholesterol levels in animals and humans, but the active component in RJ that lowers serum cholesterol level and its molecular mechanism are unclear. In this study, we set out to identify the bile acid-binding protein contained in RJ, because dietary bile acid-binding proteins including soybean protein and its peptide are effective in ameliorating hypercholesterolemia. Using a cholic acid-conjugated column, we separated some bile acid-binding proteins from RJ and identified the major RJ protein 1 (MRJP1), MRJP2, and MRJP3 as novel bile acid-binding proteins from RJ, based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Purified MRJP1, which is the most abundant protein of the bile acid-binding proteins in RJ, exhibited taurocholate-binding activity in vitro. The micellar solubility of cholesterol was significantly decreased in the presence of MRJP1 compared with casein in vitro. Liver bile acids levels were significantly increased, and cholesterol 7α-hydroxylase (CYP7A1) mRNA and protein tended to increase by MRJP1 feeding compared with the control. CYP7A1 mRNA and protein levels were significantly increased by MRJP1 tryptic hydrolysate treatment compared with that of casein tryptic hydrolysate in hepatocytes. MRJP1 hypocholesterolemic effect has been investigated in rats. The cholesterol-lowering action induced by MRJP1 occurs because MRJP1 interacts with bile acids induces a significant increase in fecal bile acids excretion and a tendency to increase in fecal cholesterol excretion and also enhances the hepatic cholesterol catabolism. We have identified, for the first time, a novel hypocholesterolemic protein, MRJP1, in RJ. Interestingly, MRJP1 exhibits greater hypocholesterolemic activity than the medicine β-sitosterol in rats. PMID:25144734

  8. A General Framework for Interrogation of mRNA Stability Programs Identifies RNA-Binding Proteins that Govern Cancer Transcriptomes.

    PubMed

    Perron, Gabrielle; Jandaghi, Pouria; Solanki, Shraddha; Safisamghabadi, Maryam; Storoz, Cristina; Karimzadeh, Mehran; Papadakis, Andreas I; Arseneault, Madeleine; Scelo, Ghislaine; Banks, Rosamonde E; Tost, Jorg; Lathrop, Mark; Tanguay, Simon; Brazma, Alvis; Huang, Sidong; Brimo, Fadi; Najafabadi, Hamed S; Riazalhosseini, Yasser

    2018-05-08

    Widespread remodeling of the transcriptome is a signature of cancer; however, little is known about the post-transcriptional regulatory factors, including RNA-binding proteins (RBPs) that regulate mRNA stability, and the extent to which RBPs contribute to cancer-associated pathways. Here, by modeling the global change in gene expression based on the effect of sequence-specific RBPs on mRNA stability, we show that RBP-mediated stability programs are recurrently deregulated in cancerous tissues. Particularly, we uncovered several RBPs that contribute to the abnormal transcriptome of renal cell carcinoma (RCC), including PCBP2, ESRP2, and MBNL2. Modulation of these proteins in cancer cell lines alters the expression of pathways that are central to the disease and highlights RBPs as driving master regulators of RCC transcriptome. This study presents a framework for the screening of RBP activities based on computational modeling of mRNA stability programs in cancer and highlights the role of post-transcriptional gene dysregulation in RCC. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The poly(rC)-binding protein αCP2 is a noncanonical factor in X. laevis cytoplasmic polyadenylation

    PubMed Central

    Vishnu, Melanie R.; Sumaroka, Marina; Klein, Peter S.; Liebhaber, Stephen A.

    2011-01-01

    Post-transcriptional control of mRNA stability and translation is central to multiple developmental pathways. This control can be linked to cytoplasmic polyadenylation in certain settings. In maturing Xenopus oocytes, specific mRNAs are targeted for polyadenylation via recruitment of the Cytoplasmic Polyadenylation Element (CPE) binding protein (CPEB) to CPE(s) within the 3′ UTR. Cytoplasmic polyadenylation is also critical to early embryonic events, although corresponding determinants are less defined. Here, we demonstrate that the Xenopus ortholog of the poly(rC) binding protein αCP2 can recruit cytoplasmic poly(A) polymerase activity to mRNAs in Xenopus post-fertilization embryos, and that this recruitment relies on cis sequences recognized by αCP2. We find that the hα-globin 3′ UTR, a validated mammalian αCP2 target, constitutes an effective target for cytoplasmic polyadenylation in Xenopus embryos, but not during Xenopus oocyte maturation. We further demonstrate that the cytoplasmic polyadenylation activity is dependent on the action of the C-rich αCP-binding site in conjunction with the adjacent AAUAAA. Consistent with its ability to target mRNA for poly(A) addition, we find that XαCP2 associates with core components of the Xenopus cytoplasmic polyadenylation complex, including the cytoplasmic poly(A) polymerase XGLD2. Furthermore, we observe that the C-rich αCP-binding site can robustly enhance the activity of a weak canonical oocyte maturation CPE in early embryos, possibly via a direct interaction between XαCP2 and CPEB1. These studies establish XαCP2 as a novel cytoplasmic polyadenylation trans factor, indicate that C-rich sequences can function as noncanonical cytoplasmic polyadenylation elements, and expand our understanding of the complexities underlying cytoplasmic polyadenylation in specific developmental settings. PMID:21444632

  10. Naturally occurring glucagon-like peptide-2 (GLP-2) receptors in human intestinal cell lines.

    PubMed

    Sams, Anette; Hastrup, Sven; Andersen, Marie; Thim, Lars

    2006-02-17

    Although clinical trials with GLP-2 receptor agonists are currently ongoing, the mechanisms behind GLP-2-induced intestinal epithelial growth remain to be understood. To approach the GLP-2 mechanism of action this study aimed to identify intestinal cell lines endogenously expressing the GLP-2 receptor. Here we report the first identification of a cell line endogenously expressing functional GLP-2 receptors. The human intestinal epithelial cell line, FHC, expressed GLP-2 receptor encoding mRNA (RT-PCR) and GLP-2 receptor protein (Western blot). In cultured FHC cells, GLP-2 induced concentration dependent cAMP accumulation (pEC(50)=9.7+/-0.04 (mean+/-S.E.M., n=4)). In addition, a naturally occurring human intestinal fibroblast cell line, 18Co, endogenously expressing GLP-2 receptor encoding mRNA (RT-PCR) and protein (Western blot) was identified. No receptor functionality (binding or G-protein signalling) could be demonstrated in 18Co cells. The identified gut-relevant cell lines provide tools for future clarification of the mechanisms underlying GLP-2-induced epithelial growth.

  11. The flexible C-terminal arm of the Lassa arenavirus Z-protein mediates interactions with multiple binding partners.

    PubMed

    May, Eric R; Armen, Roger S; Mannan, Aristotle M; Brooks, Charles L

    2010-08-01

    The arenavirus genome encodes for a Z-protein, which contains a RING domain that coordinates two zinc ions, and has been identified as having several functional roles at various stages of the virus life cycle. Z-protein binds to multiple host proteins and has been directly implicated in the promotion of viral budding, repression of mRNA translation, and apoptosis of infected cells. Using homology models of the Z-protein from Lassa strain arenavirus, replica exchange molecular dynamics (MD) was used to refine the structures, which were then subsequently clustered. Population-weighted ensembles of low-energy cluster representatives were predicted based upon optimal agreement of the chemical shifts computed with the SPARTA program with the experimental NMR chemical shifts. A member of the refined ensemble was identified to be a potential binder of budding factor Tsg101 based on its correspondence to the structure of the HIV-1 Gag late domain when bound to Tsg101. Members of these ensembles were docked against the crystal structure of human eIF4E translation initiation factor. Two plausible binding modes emerged based upon their agreement with experimental observation, favorable interaction energies and stability during MD trajectories. Mutations to Z are proposed that would either inhibit both binding mechanisms or selectively inhibit only one mode. The C-terminal domain conformation of the most populated member of the representative ensemble shielded protein-binding recognition motifs for Tsg101 and eIF4E and represents the most populated state free in solution. We propose that C-terminal flexibility is key for mediating the different functional states of the Z-protein. (c) 2010 Wiley-Liss, Inc.

  12. The Flexible C-terminal Arm of the Lassa Arenavirus Z-Protein Mediates Interactions with Multiple Binding Partners

    PubMed Central

    May, Eric R.; Armen, Roger S.; Mannan, Aristotle M.; Brooks, Charles L.

    2010-01-01

    The arenavirus genome encodes for a Z-protein, which contains a RING domain that coordinates two zinc ions, and has been identified as having several functional roles at various stages of the virus life cycle. Z-protein binds to multiple host proteins and has been directly implicated in the promotion of viral budding, repression of mRNA translation and apoptosis of infected cells. Using homology models of the Z-protein from Lassa strain arenavirus, replica exchange molecular dynamics were employed to refine the structures, which were then subsequently clustered. Population weighted ensembles of low energy cluster representatives were predicted based upon optimal agreement of the chemical shifts computed with the SPARTA program with the experimental NMR chemical shifts. A member of the refined ensemble was indentified to be a potential binder of budding factor Tsg101 based on its correspondence to the structure of the HIV-1 Gag late domain when bound to Tsg101. Members of these ensembles were docked against the crystal structure of human eIF4E translation initiation factor. Two plausible binding modes emerged based upon their agreement with experimental observation, favorable interaction energies and stability during molecular dynamics trajectories. Mutations to Z are proposed that would either inhibit both binding mechanisms or selectively inhibit only one mode. The C-terminal domain conformation of the most populated member of the representative ensemble shielded protein binding recognition motifs for Tsg101 and eIF4E, and represents the most populated state free in solution. We propose that C-terminal flexibility is key for mediating the different functional states of the Z-protein. PMID:20544962

  13. Repeated immobilization stress increases uncoupling protein 1 expression and activity in Wistar rats.

    PubMed

    Gao, Bihu; Kikuchi-Utsumi, Kazue; Ohinata, Hiroshi; Hashimoto, Masaaki; Kuroshima, Akihiro

    2003-06-01

    Repeat immobilization-stressed rats are leaner and have improved cold tolerance due to enhancement of brown adipose tissue (BAT) thermogenesis. This process likely involves stress-induced sympathetic nervous system activation and adrenocortical hormone release, which dynamically enhances and suppresses uncoupling protein 1 (UCP1) function, respectively. To investigate whether repeated immobilization influences UCP1 thermogenic properties, we assessed UCP1 mRNA, protein expression, and activity (GDP binding) in BAT from immobilization-naive or repeatedly immobilized rats (3 h daily for 4 weeks) and sham operated or adrenalectomized (ADX) rats. UCP1 properties were assessed before (basal) and after exposure to 3 h of acute immobilization. Basal levels of GDP binding and UCP1 expression was significantly increased (140 and 140%) in the repeated immobilized group. Acute immobilization increased GDP binding in both naive (180%) and repeated immobilized groups (220%) without changing UCP1 expression. In ADX rats, basal GDP binding and UCP1 gene expression significantly increased (140 and 110%), and acute immobilization induced further increase. These data demonstrate that repeated immobilization resulted in enhanced UCP1 function, suggesting that enhanced BAT thermogenesis contributes to lower body weight gain through excess energy loss and an improved ability to maintain body temperature during cold exposure.

  14. Cloning and sequence analysis of Galleria mellonella juvenile hormone binding protein--a search for ancestors and relatives.

    PubMed

    Rodriguez Parkitna, Jan M; Ozyhar, Andrzej; Wiśniewski, Jacek R; Kochman, Marian

    2002-09-01

    Juvenile hormone binding proteins (JHBPs) serve as specific carriers of juvenile hormone (JH) in insect hemolymph. As shown in this report, Galleria mellonella JHBP is encoded by a cDNA of 1063 nucleotides. The pre-protein consists of 245 amino acids with a 20 amino acid leader sequence. The concentration of the JHBP mRNA reaches a maximum on the third day of the last larval instar, and decreases five-fold towards pupation. Comparison of amino acid sequences of JHBPs from Bombyx mori, Heliothis virescens, Manduca sexta and G. mellonella shows that 57 positions out of 226 are occupied by identical amino acids. A phylogeny tree was constructed from 32 proteins, which function could be associated to JH. It has three major branches: (i) ligand binding domains of nuclear receptors, (ii) JHBPs and JH esterases (JHEs), and (iii) hypothetical proteins found in Drosophila melanogaster genome. Despite the close positioning of JHEs and JHBPs on the tree, which probably arises from the presence of a common JH binding motif, these proteins are unlikely to belong to the same family. Detailed analysis of the secondary structure modeling shows that JHBPs may contain a beta-barrel motif flanked by alpha-helices and thus be evolutionary related to the same superfamily as calycins.

  15. Structural and Functional Analysis of the Interaction Between the Nucleoporin Nup98 and the mRNA Export Facto Rae1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Ren; H Seo; G Blobel

    The export of mRNAs is a multistep process, involving the packaging of mRNAs into messenger ribonucleoprotein particles (mRNPs), their transport through nuclear pore complexes, and mRNP remodeling events prior to translation. Ribonucleic acid export 1 (Rae1) and Nup98 are evolutionarily conserved mRNA export factors that are targeted by the vesicular stomatitis virus matrix protein to inhibit host cell nuclear export. Here, we present the crystal structure of human Rae1 in complex with the Gle2-binding sequence (GLEBS) of Nup98 at 1.65 {angstrom} resolution. Rae1 forms a seven-bladed {beta}-propeller with several extensive surface loops. The Nup98 GLEBS motif forms an {approx}50-{angstrom}-long hairpinmore » that binds with its C-terminal arm to an essentially invariant hydrophobic surface that extends over the entire top face of the Rae1 {beta}-propeller. The C-terminal arm of the GLEBS hairpin is necessary and sufficient for Rae1 binding, and we identify a tandem glutamate element in this arm as critical for complex formation. The Rae1 {center_dot} Nup98{sup GLEBS} surface features an additional conserved patch with a positive electrostatic potential, and we demonstrate that the complex possesses single-stranded RNA-binding capability. Together, these data suggest that the Rae1 {center_dot} Nup98 complex directly binds to the mRNP at several stages of the mRNA export pathway.« less

  16. Phosducin-like protein: an ethanol-responsive potential modulator of guanine nucleotide-binding protein function.

    PubMed

    Miles, M F; Barhite, S; Sganga, M; Elliott, M

    1993-11-15

    Acute and chronic exposure to ethanol produces specific changes in several signal transduction cascades. Such alterations in signaling are thought to be a crucial aspect of the central nervous system's adaptive response, which occurs with chronic exposure to ethanol. We have recently identified and isolated several genes whose expression is specifically induced by ethanol in neural cell cultures. The product of one of these genes has extensive sequence homology to phosducin, a phosphoprotein expressed in retina and pineal gland that modulates trimeric guanine nucleotide-binding protein (G protein) function by binding to G-protein beta gamma subunits. We identified from a rat brain cDNA library an isolate encoding the phosducin-like protein (PhLP), which has 41% identity and 65% amino acid homology to phosducin. PhLP cDNA is expressed in all tissues screened by RNA blot-hybridization analysis and shows marked evolutionary conservation on Southern hybridization. We have identified four forms of PhLP cDNA varying only in their 5' ends, probably due to alternative splicing. This 5'-end variation generates two predicted forms of PhLP protein that differ by 79 aa at the NH2 terminus. Treatment of NG108-15 cells for 24 hr with concentrations of ethanol seen in actively drinking alcoholics (25-100 mM) causes up to a 3-fold increase in PhLP mRNA levels. Induction of PhLP by ethanol could account for at least some of the widespread alterations in signal transduction and G-protein function that are known to occur with chronic exposure to ethanol.

  17. Rig-I regulates NF-κB activity through binding to Nf-κb1 3′-UTR mRNA

    PubMed Central

    Zhang, Hong-Xin; Liu, Zi-Xing; Sun, Yue-Ping; Lu, Shun-Yuan; Liu, Xue-Song; Huang, Qiu-Hua; Xie, Yin-Yin; Dang, Su-Ying; Zheng, Guang-Yong; Li, Yi-Xue; Kuang, Ying; Fei, Jian; Chen, Zhu; Wang, Zhu-Gang

    2013-01-01

    Retinoic acid inducible gene I (RIG-I) senses viral RNAs and triggers innate antiviral responses through induction of type I IFNs and inflammatory cytokines. However, whether RIG-I interacts with host cellular RNA remains undetermined. Here we report that Rig-I interacts with multiple cellular mRNAs, especially Nf-κb1. Rig-I is required for NF-κB activity via regulating Nf-κb1 expression at posttranscriptional levels. It interacts with the multiple binding sites within 3′-UTR of Nf-κb1 mRNA. Further analyses reveal that three distinct tandem motifs enriched in the 3′-UTR fragments can be recognized by Rig-I. The 3′-UTR binding with Rig-I plays a critical role in normal translation of Nf-κb1 by recruiting the ribosomal proteins [ribosomal protein L13 (Rpl13) and Rpl8] and rRNAs (18S and 28S). Down-regulation of Rig-I or Rpl13 significantly reduces Nf-κb1 and 3′-UTR–mediated luciferase expression levels. These findings indicate that Rig-I functions as a positive regulator for NF-κB signaling and is involved in multiple biological processes in addition to host antivirus immunity. PMID:23553835

  18. Transient Expression of an LEDGF/p75 Chimera Retargets Lentivector Integration and Functionally Rescues in a Model for X-CGD

    PubMed Central

    Vets, Sofie; De Rijck, Jan; Brendel, Christian; Grez, Manuel; Bushman, Frederic; Debyser, Zeger; Gijsbers, Rik

    2013-01-01

    Retrovirus-based vectors are commonly used as delivery vehicles to correct genetic diseases because of their ability to integrate new sequences stably. However, adverse events in which vector integration activates proto-oncogenes, leading to clonal expansion and leukemogenesis hamper their application. The host cell-encoded lens epithelium-derived growth factor (LEDGF/p75) binds lentiviral integrase and targets integration to active transcription units. We demonstrated earlier that replacing the LEDGF/p75 chromatin interaction domain with an alternative DNA-binding protein could retarget integration. Here, we show that transient expression of the chimeric protein using mRNA electroporation efficiently redirects lentiviral vector (LV) integration in wild-type (WT) cells. We then employed this technology in a model for X-linked chronic granulomatous disease (X-CGD) using myelomonocytic PLB-985 gp91−/− cells. Following electroporation with mRNA encoding the LEDGF-chimera, the cells were treated with a therapeutic lentivector encoding gp91phox. Integration site analysis revealed retargeted integration away from genes and towards heterochromatin-binding protein 1β (CBX1)-binding sites, in regions enriched in marks associated with gene silencing. Nevertheless, gp91phox expression was stable for at least 6 months after electroporation and NADPH-oxidase activity was restored to normal levels as determined by superoxide production. Together, these data provide proof-of-principle that transient expression of engineered LEDGF-chimera can retarget lentivector integration and rescues the disease phenotype in a cell model, opening perspectives for safer gene therapy. PMID:23462964

  19. Loss of PTB or Negative Regulation of Notch mRNA Reveals Distinct Zones of Notch and Actin Protein Accumulation in Drosophila Embryo

    PubMed Central

    Wesley, Cedric S.; Guo, Heng; Chaudhry, Kanita A.; Thali, Markus J.; Yin, Jerry C.; Clason, Todd; Wesley, Umadevi V.

    2011-01-01

    Polypyrimidine Tract Binding (PTB) protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1) the Notch mRNA is a potential target of PTB, (2) PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3) the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions. PMID:21750738

  20. New insights into the interplay between the translation machinery and nonsense-mediated mRNA decay factors.

    PubMed

    Raimondeau, Etienne; Bufton, Joshua C; Schaffitzel, Christiane

    2018-06-19

    Faulty mRNAs with a premature stop codon (PTC) are recognized and degraded by nonsense-mediated mRNA decay (NMD). Recognition of a nonsense mRNA depends on translation and on the presence of NMD-enhancing or the absence of NMD-inhibiting factors in the 3'-untranslated region. Our review summarizes our current understanding of the molecular function of the conserved NMD factors UPF3B and UPF1, and of the anti-NMD factor Poly(A)-binding protein, and their interactions with ribosomes translating PTC-containing mRNAs. Our recent discovery that UPF3B interferes with human translation termination and enhances ribosome dissociation in vitro , whereas UPF1 is inactive in these assays, suggests a re-interpretation of previous experiments and modification of prevalent NMD models. Moreover, we discuss recent work suggesting new functions of the key NMD factor UPF1 in ribosome recycling, inhibition of translation re-initiation and nascent chain ubiquitylation. These new findings suggest that the interplay of UPF proteins with the translation machinery is more intricate than previously appreciated, and that this interplay quality-controls the efficiency of termination, ribosome recycling and translation re-initiation. © 2018 The Author(s).

  1. Post-Transcriptional Regulation of BCL2 mRNA by the RNA-Binding Protein ZFP36L1 in Malignant B Cells

    PubMed Central

    Zekavati, Anna; Nasir, Asghar; Alcaraz, Amor; Aldrovandi, Maceler; Marsh, Phil; Norton, John D.; Murphy, John J.

    2014-01-01

    The human ZFP36 zinc finger protein family consists of ZFP36, ZFP36L1, and ZFP36L2. These proteins regulate various cellular processes, including cell apoptosis, by binding to adenine uridine rich elements in the 3′ untranslated regions of sets of target mRNAs to promote their degradation. The pro-apoptotic and other functions of ZFP36 family members have been implicated in the pathogenesis of lymphoid malignancies. To identify candidate mRNAs that are targeted in the pro-apoptotic response by ZFP36L1, we reverse-engineered a gene regulatory network for all three ZFP36 family members using the ‘maximum information coefficient’ (MIC) for target gene inference on a large microarray gene expression dataset representing cells of diverse histological origin. Of the three inferred ZFP36L1 mRNA targets that were identified, we focussed on experimental validation of mRNA for the pro-survival protein, BCL2, as a target for ZFP36L1. RNA electrophoretic mobility shift assay experiments revealed that ZFP36L1 interacted with the BCL2 adenine uridine rich element. In murine BCL1 leukemia cells stably transduced with a ZFP36L1 ShRNA lentiviral construct, BCL2 mRNA degradation was significantly delayed compared to control lentiviral expressing cells and ZFP36L1 knockdown in different cell types (BCL1, ACHN, Ramos), resulted in increased levels of BCL2 mRNA levels compared to control cells. 3′ untranslated region luciferase reporter assays in HEK293T cells showed that wild type but not zinc finger mutant ZFP36L1 protein was able to downregulate a BCL2 construct containing the BCL2 adenine uridine rich element and removal of the adenine uridine rich core from the BCL2 3′ untranslated region in the reporter construct significantly reduced the ability of ZFP36L1 to mediate this effect. Taken together, our data are consistent with ZFP36L1 interacting with and mediating degradation of BCL2 mRNA as an important target through which ZFP36L1 mediates its pro-apoptotic effects in malignant B-cells. PMID:25014217

  2. Predicting protein-binding regions in RNA using nucleotide profiles and compositions.

    PubMed

    Choi, Daesik; Park, Byungkyu; Chae, Hanju; Lee, Wook; Han, Kyungsook

    2017-03-14

    Motivated by the increased amount of data on protein-RNA interactions and the availability of complete genome sequences of several organisms, many computational methods have been proposed to predict binding sites in protein-RNA interactions. However, most computational methods are limited to finding RNA-binding sites in proteins instead of protein-binding sites in RNAs. Predicting protein-binding sites in RNA is more challenging than predicting RNA-binding sites in proteins. Recent computational methods for finding protein-binding sites in RNAs have several drawbacks for practical use. We developed a new support vector machine (SVM) model for predicting protein-binding regions in mRNA sequences. The model uses sequence profiles constructed from log-odds scores of mono- and di-nucleotides and nucleotide compositions. The model was evaluated by standard 10-fold cross validation, leave-one-protein-out (LOPO) cross validation and independent testing. Since actual mRNA sequences have more non-binding regions than protein-binding regions, we tested the model on several datasets with different ratios of protein-binding regions to non-binding regions. The best performance of the model was obtained in a balanced dataset of positive and negative instances. 10-fold cross validation with a balanced dataset achieved a sensitivity of 91.6%, a specificity of 92.4%, an accuracy of 92.0%, a positive predictive value (PPV) of 91.7%, a negative predictive value (NPV) of 92.3% and a Matthews correlation coefficient (MCC) of 0.840. LOPO cross validation showed a lower performance than the 10-fold cross validation, but the performance remains high (87.6% accuracy and 0.752 MCC). In testing the model on independent datasets, it achieved an accuracy of 82.2% and an MCC of 0.656. Testing of our model and other state-of-the-art methods on a same dataset showed that our model is better than the others. Sequence profiles of log-odds scores of mono- and di-nucleotides were much more powerful features than nucleotide compositions in finding protein-binding regions in RNA sequences. But, a slight performance gain was obtained when using the sequence profiles along with nucleotide compositions. These are preliminary results of ongoing research, but demonstrate the potential of our approach as a powerful predictor of protein-binding regions in RNA. The program and supporting data are available at http://bclab.inha.ac.kr/RBPbinding .

  3. Changes in the folding landscape of the WW domain provide a molecular mechanism for an inherited genetic syndrome

    PubMed Central

    Pucheta-Martinez, Encarna; D’Amelio, Nicola; Lelli, Moreno; Martinez-Torrecuadrada, Jorge L.; Sudol, Marius; Saladino, Giorgio; Gervasio, Francesco Luigi

    2016-01-01

    WW domains are small domains present in many human proteins with a wide array of functions and acting through the recognition of proline-rich sequences. The WW domain belonging to polyglutamine tract-binding protein 1 (PQBP1) is of particular interest due to its direct involvement in several X chromosome-linked intellectual disabilities, including Golabi-Ito-Hall (GIH) syndrome, where a single point mutation (Y65C) correlates with the development of the disease. The mutant cannot bind to its natural ligand WBP11, which regulates mRNA processing. In this work we use high-field high-resolution NMR and enhanced sampling molecular dynamics simulations to gain insight into the molecular causes the disease. We find that the wild type protein is partially unfolded exchanging among multiple beta-strand-like conformations in solution. The Y65C mutation further destabilizes the residual fold and primes the protein for the formation of a disulphide bridge, which could be at the origin of the loss of function. PMID:27456546

  4. Enhancing Nanos expression via the bacterial TomO protein is a conserved strategy used by the symbiont Wolbachia to fuel germ stem cell maintenance in infected Drosophila females.

    PubMed

    Ote, Manabu; Yamamoto, Daisuke

    2018-04-27

    The toxic manipulator of oogenesis (TomO) protein has been identified in the wMel strain of Wolbachia that symbioses with the vinegar fly Drosophila melanogaster, as a protein that affects host reproduction. TomO protects germ stem cells (GSCs) from degeneration, which otherwise occurs in ovaries of host females that are mutant for the gene Sex-lethal (Sxl). We isolated the TomO homologs from wPip, a Wolbachia strain from the mosquito Culex quinquefasciatus. One of the homologs, TomO w Pip 1, exerted the GSC rescue activity in fly Sxl mutants when lacking its hydrophobic stretches. The GSC-rescuing action of the TomO w Pip 1 variant was ascribable to its abilities to associate with Nanos (nos) mRNA and to enhance Nos protein expression. The analysis of structure-activity relationships with TomO homologs and TomO deletion variants revealed distinct modules in the protein that are each dedicated to different functions, i.e., subcellular localization, nos mRNA binding or Nos expression enhancement. We propose that modular reshuffling is the basis for structural and functional diversification of TomO protein members. © 2018 Wiley Periodicals, Inc.

  5. 3′UTR AU-rich elements (AREs) and the RNA-binding protein Tristetraprolin (TTP) are not required for the LPS-mediated destabilization of phospholipase-Cβ-2 mRNA in murine macrophages

    PubMed Central

    Shukla, Smita; Elson, Genie; Blackshear, Perry J.; Lutz, Carol S.; Leibovich, S. Joseph

    2017-01-01

    We have shown previously that bacterial lipopolysaccharide (LPS)-mediated suppression of Phospholipase-Cβ-2 (PLCβ-2) expression is involved in M1 (inflammatory) to M2-like (wound healing) phenotypic switching of macrophages triggered by adenosine. This suppression is mediated post-transcriptionally by destabilization of PLCβ-2 mRNA. To investigate the mechanism of this LPS-mediated destabilization, we examined the roles of RNA-binding agents including microRNAs and RNA-binding proteins that are involved in regulating stability of mRNAs encoding growth factors, inflammatory mediators and proto-oncogenes. Adenylate and Uridylate (AU)-rich elements (AREs) in 3′UTRs are specific recognition sites for RNA-binding proteins including Tristetraprolin (TTP), HuR and AUF1, and for microRNAs that are involved in regulating mRNA stability. In this study, we investigated the role of TTP and AREs in regulating PLCβ-2 mRNA stability. The 3′UTR of the PLCβ-2 gene was inserted into the pLightswitch luciferase reporter plasmid and transfected into RAW264.7 cells. LPS suppressed Luciferase expression from this reporter. Luciferase expression from mutant 3′UTR constructs lacking AREs was similarly down-regulated, suggesting that these regions are not required for LPS-mediated suppression of PLCβ-2. TTP was rapidly upregulated in both primary murine macrophages and RAW264.7 cells in response to LPS. Suppression of PLCβ-2 by LPS was examined using macrophages from mice lacking TTP. LPS suppressed PLCβ-2 expression to the same extent in wild type and TTP−/− macrophages. Also, the rate of decay of PLCβ-2 mRNA in LPS-treated macrophages following transcriptional blockade was similar in wild type and TTP−/− macrophages, clearly indicating that TTP is not involved in LPS-mediated destabilization of PLCβ-2 mRNA in macrophages. PMID:28124257

  6. 3'UTR AU-Rich Elements (AREs) and the RNA-Binding Protein Tristetraprolin (TTP) Are Not Required for the LPS-Mediated Destabilization of Phospholipase-Cβ-2 mRNA in Murine Macrophages.

    PubMed

    Shukla, Smita; Elson, Genie; Blackshear, Perry J; Lutz, Carol S; Leibovich, S Joseph

    2017-04-01

    We have shown previously that bacterial lipopolysaccharide (LPS)-mediated suppression of phospholipase-Cβ-2 (PLCβ-2) expression is involved in M1 (inflammatory) to M2-like (wound healing) phenotypic switching of macrophages triggered by adenosine. This suppression is mediated post-transcriptionally by destabilization of PLCβ-2 mRNA (messenger ribonucleic acid). To investigate the mechanism of this LPS-mediated destabilization, we examined the roles of RNA-binding agents including microRNAs and RNA-binding proteins that are involved in regulating stability of mRNAs encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenylate and uridylate (AU)-rich elements (AREs) in 3'UTRs are specific recognition sites for RNA-binding proteins including tristetraprolin (TTP), HuR, and AUF1 and for microRNAs that are involved in regulating mRNA stability. In this study, we investigated the role of TTP and AREs in regulating PLCβ-2 mRNA stability. The 3'UTR of the PLCβ-2 gene was inserted into the pLightswitch luciferase reporter plasmid and transfected into RAW264.7 cells. LPS suppressed luciferase expression from this reporter. Luciferase expression from mutant 3'UTR constructs lacking AREs was similarly downregulated, suggesting that these regions are not required for LPS-mediated suppression of PLCβ-2. TTP was rapidly upregulated in both primary murine macrophages and RAW264.7 cells in response to LPS. Suppression of PLCβ-2 by LPS was examined using macrophages from mice lacking TTP (TTP -/- ). LPS suppressed PLCβ-2 expression to the same extent in wild type (WT) and TTP -/- macrophages. Also, the rate of decay of PLCβ-2 mRNA in LPS-treated macrophages following transcriptional blockade was similar in WT and TTP -/- macrophages, clearly indicating that TTP is not involved in LPS-mediated destabilization of PLCβ-2 mRNA in macrophages.

  7. Expression of beta 3-adrenoceptor mRNA in rat tissues.

    PubMed

    Evans, B A; Papaioannou, M; Bonazzi, V R; Summers, R J

    1996-01-01

    1. This study examines the expression of beta 3-adrenoceptor messenger RNA (beta 3-AR mRNA) in rat tissues to allow comparison with atypical beta-adrenoceptors determined by functional and radioligand binding techniques. 2. A reverse transcription/polymerase chain reaction protocol has been developed for determining the relative amounts of beta 3-AR mRNA in rat tissues. 3. Measurement of adipsin and uncoupling protein (UCP) mRNA was used to examine all tissues for the presence of white and brown adipose tissue which may contribute beta 3-AR mRNA. 4. The beta 3-AR mRNA is expressed at high levels in brown and white adipose tissue, stomach fundus, the longitudinal/circular smooth muscle of both colon and ileum, and colon submucosa. There was substantial expression of adipsin in colon submucosa and moderate expression in fundus, suggesting that in these regions at least some of the beta 3-AR signal may be contributed by fat. Pylorus and colon mucosa showed moderate levels of beta 3-AR mRNA with lower levels of adipsin. Ileum mucosa and submucosa showed low but readily detectable levels of beta 3-AR. 5. Expression of adipsin in rat skeletal muscles coupled to very low levels of beta 3-AR mRNA indicates that the observed beta 3-AR may be due to the presence of intrinsic fat. beta 3-AR mRNA was virtually undetectable in heart, lung and liver. These results raise the possibility that the atypical beta-AR demonstrated by functional and/or binding studies in muscle and in heart is not the beta 3-AR. 6. By use of two different sets of primers for amplification of beta 3-AR cDNA, no evidence was found for differential splicing of the mRNA in any of the tissues examined. 7. The detection of beta 3-AR mRNA in the gut mucosa and submucosa suggests that in addition to its established roles in lipolysis, thermogenesis and regulation of gut motility beta 3-AR may subserve other functions in the gastrointestinal tract. The absence of beta 3-AR mRNA in rat heart or its presence with adipsin in skeletal muscle suggests that atypical beta-adrenoceptor responses in heart and skeletal muscle are unlikely to be mediated by beta 3-AR.

  8. v-Src oncogene product increases sphingosine kinase 1 expression through mRNA stabilization: alteration of AU-rich element-binding proteins.

    PubMed

    Sobue, S; Murakami, M; Banno, Y; Ito, H; Kimura, A; Gao, S; Furuhata, A; Takagi, A; Kojima, T; Suzuki, M; Nozawa, Y; Murate, T

    2008-10-09

    Sphingosine kinase 1 (SPHK1) is overexpressed in solid tumors and leukemia. However, the mechanism of SPHK1 overexpression by oncogenes has not been defined. We found that v-Src-transformed NIH3T3 cells showed a high SPHK1 mRNA, SPHK1 protein and SPHK enzyme activity. siRNA of SPHK1 inhibited the growth of v-Src-NIH3T3, suggesting the involvement of SPHK1 in v-Src-induced oncogenesis. v-Src-NIH3T3 showed activations of protein kinase C-alpha, signal transducers and activators of transcription 3 and c-Jun NH(2)-terminal kinase. Their inhibition suppressed SPHK1 expression in v-Src-NIH3T3, whereas their overexpression increased SPHK1 mRNA in NIH3T3. Unexpectedly, the nuclear run-on assay and the promoter analysis using 5'-promoter region of mouse SPHK1 did not show any significant difference between mock- and v-Src-NIH3T3. Furthermore, the half-life of SPHK1 mRNA in mock-NIH3T3 was nearly 15 min, whereas that of v-Src-NIH3T3 was much longer. Examination of two AU-rich region-binding proteins, AUF1 and HuR, that regulate mRNA decay reciprocally, showed decreased total AUF1 protein associated with increased tyrosine-phosphorylated form and increased serine-phosphorylated HuR protein in v-Src-NIH3T3. Modulation of AUF1 and HuR by their overexpression or siRNA revealed that SPHK1 mRNA in v-Src- and mock-NIH3T3 was regulated reciprocally by these factors. Our results showed, for the first time, a novel mechanism of v-Src-induced SPHK1 overexpression.

  9. 4-Phenylbutyrate stimulates Hsp70 expression through the Elp2 component of elongator and STAT-3 in cystic fibrosis epithelial cells.

    PubMed

    Suaud, Laurence; Miller, Katelyn; Panichelli, Ashley E; Randell, Rachel L; Marando, Catherine M; Rubenstein, Ronald C

    2011-12-30

    Sodium 4-phenylbutyrate (4PBA) corrects trafficking of ΔF508-CFTR in Cystic Fibrosis (CF) epithelia, which is hypothesized to, at least in part, result from increased expression of Hsp70 (stress-induced 70 kDa heat shock protein). To identify other 4PBA-regulated proteins that may promote correction of ΔF508 trafficking, we performed differential display RT-PCR on mRNA from IB3-1 CF bronchiolar epithelial cells treated for 0-24 h with 1 mM 4PBA. In this screen, a STAT-3 (signal transducer and activator of transcription-3)-interacting protein, StIP-1 that regulates STAT-3 activation had transiently increased expression. StIP-1 is identical to Elongator protein 2 (Elp2), a component of the Elongator complex that regulates RNA polymerase II. Previous studies have suggested that Elongator regulates Hsp70 mRNA transcription, and that the Hsp70 promoter contains functional STAT-3-binding sites. We therefore tested the hypothesis that 4PBA increases Hsp70 expression by an Elongator- and STAT-3-dependent mechanism. 4PBA treatment of IB3-1 CF bronchiolar epithelial cells caused transiently increased expression of Hsp70 protein, as well as Elp2 protein and mRNA. Elp2 depletion by transfection of small interfering RNAs, reduced both Elp2 and Hsp70 protein expression. 4PBA also caused transient activation of STAT-3, and increased abundance of nuclear proteins that bind to the STAT-3-responsive element of the Hsp70 promoter. Luciferase reporter assays demonstrated that both Elp2 overexpression and 4PBA increase Hsp70 promoter activity, while Elp2 depletion blocked the ability of 4PBA to stimulate Hsp70 promoter activity. Together, these data suggest that Elp2 and STAT-3 mediate, at least in part, the stimulation of Hsp70 expression by 4PBA.

  10. 4-Phenylbutyrate Stimulates Hsp70 Expression through the Elp2 Component of Elongator and STAT-3 in Cystic Fibrosis Epithelial Cells*

    PubMed Central

    Suaud, Laurence; Miller, Katelyn; Panichelli, Ashley E.; Randell, Rachel L.; Marando, Catherine M.; Rubenstein, Ronald C.

    2011-01-01

    Sodium 4-phenylbutyrate (4PBA) corrects trafficking of ΔF508-CFTR in Cystic Fibrosis (CF) epithelia, which is hypothesized to, at least in part, result from increased expression of Hsp70 (stress-induced 70 kDa heat shock protein). To identify other 4PBA-regulated proteins that may promote correction of ΔF508 trafficking, we performed differential display RT-PCR on mRNA from IB3-1 CF bronchiolar epithelial cells treated for 0–24 h with 1 mm 4PBA. In this screen, a STAT-3 (signal transducer and activator of transcription-3)-interacting protein, StIP-1 that regulates STAT-3 activation had transiently increased expression. StIP-1 is identical to Elongator protein 2 (Elp2), a component of the Elongator complex that regulates RNA polymerase II. Previous studies have suggested that Elongator regulates Hsp70 mRNA transcription, and that the Hsp70 promoter contains functional STAT-3-binding sites. We therefore tested the hypothesis that 4PBA increases Hsp70 expression by an Elongator- and STAT-3-dependent mechanism. 4PBA treatment of IB3-1 CF bronchiolar epithelial cells caused transiently increased expression of Hsp70 protein, as well as Elp2 protein and mRNA. Elp2 depletion by transfection of small interfering RNAs, reduced both Elp2 and Hsp70 protein expression. 4PBA also caused transient activation of STAT-3, and increased abundance of nuclear proteins that bind to the STAT-3-responsive element of the Hsp70 promoter. Luciferase reporter assays demonstrated that both Elp2 overexpression and 4PBA increase Hsp70 promoter activity, while Elp2 depletion blocked the ability of 4PBA to stimulate Hsp70 promoter activity. Together, these data suggest that Elp2 and STAT-3 mediate, at least in part, the stimulation of Hsp70 expression by 4PBA. PMID:22069317

  11. RNA-binding proteins regulate cell respiration and coenzyme Q biosynthesis by post-transcriptional regulation of COQ7.

    PubMed

    Cascajo, María V; Abdelmohsen, Kotb; Noh, Ji Heon; Fernández-Ayala, Daniel J M; Willers, Imke M; Brea, Gloria; López-Lluch, Guillermo; Valenzuela-Villatoro, Marina; Cuezva, José M; Gorospe, Myriam; Siendones, Emilio; Navas, Plácido

    2016-07-02

    Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3'-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis.

  12. The HTLV-1 Tax Oncoprotein Represses Ku80 Gene Expression

    PubMed Central

    Ducu, Razvan I.; Dayaram, Tajhal; Marriott, Susan J.

    2011-01-01

    The HTLV-I oncoprotein Tax interferes with DNA double strand break repair. Since non-homologous end joining (NHEJ) is a major pathway used to repair DNA double strand breaks we examined the effect of Tax on this pathway, with particular interest in the expression and function of Ku80, a critical component of the NHEJ pathway. Tax expression decreased Ku80 mRNA and protein levels, and repressed transcription from the Ku80 promoter. Conversely, Ku80 mRNA increased following siRNA knockdown of Tax in HTLV-I infected cells. Tax expression was associated with an elevated number of micronuclei and nucleoplasmic bridges, hallmarks of improper DNA double strand break repair. Our studies identified Tax as a transcriptional repressor of Ku80 that correlates with decreased DNA repair function. The reduction of Ku80 transcription by Tax may deplete the cell of an essential DNA break binding protein, resulting in reduced repair of DNA double strand breaks and accumulation genomic mutations. PMID:21571351

  13. Mutational Analysis of Plant Cap-Binding Protein eIF4E Reveals Key Amino Acids Involved in Biochemical Functions and Potyvirus Infection▿

    PubMed Central

    German-Retana, Sylvie; Walter, Jocelyne; Doublet, Bénédicte; Roudet-Tavert, Geneviève; Nicaise, Valérie; Lecampion, Cécile; Houvenaghel, Marie-Christine; Robaglia, Christophe; Michon, Thierry; Le Gall, Olivier

    2008-01-01

    The eukaryotic translation initiation factor 4E (eIF4E) (the cap-binding protein) is involved in natural resistance against several potyviruses in plants. In lettuce, the recessive resistance genes mo11 and mo12 against Lettuce mosaic virus (LMV) are alleles coding for forms of eIF4E unable, or less effective, to support virus accumulation. A recombinant LMV expressing the eIF4E of a susceptible lettuce variety from its genome was able to produce symptoms in mo11 or mo12 varieties. In order to identify the eIF4E amino acid residues necessary for viral infection, we constructed recombinant LMV expressing eIF4E with point mutations affecting various amino acids and compared the abilities of these eIF4E mutants to complement LMV infection in resistant plants. Three types of mutations were produced in order to affect different biochemical functions of eIF4E: cap binding, eIF4G binding, and putative interaction with other virus or host proteins. Several mutations severely reduced the ability of eIF4E to complement LMV accumulation in a resistant host and impeded essential eIF4E functions in yeast. However, the ability of eIF4E to bind a cap analogue or to fully interact with eIF4G appeared unlinked to LMV infection. In addition to providing a functional mutational map of a plant eIF4E, this suggests that the role of eIF4E in the LMV cycle might be distinct from its physiological function in cellular mRNA translation. PMID:18480444

  14. Structural Rearrangement in an RsmA/CsrA Ortholog of Pseudomonas aeruginosa Creates a Dimeric RNA-Binding Protein, RsmN

    PubMed Central

    Morris, Elizabeth R.; Hall, Gareth; Li, Chan; Heeb, Stephan; Kulkarni, Rahul V.; Lovelock, Laura; Silistre, Hazel; Messina, Marco; Cámara, Miguel; Emsley, Jonas; Williams, Paul; Searle, Mark S.

    2013-01-01

    Summary In bacteria, the highly conserved RsmA/CsrA family of RNA-binding proteins functions as global posttranscriptional regulators acting on mRNA translation and stability. Through phenotypic complementation of an rsmA mutant in Pseudomonas aeruginosa, we discovered a family member, termed RsmN. Elucidation of the RsmN crystal structure and that of the complex with a hairpin from the sRNA, RsmZ, reveals a uniquely inserted α helix, which redirects the polypeptide chain to form a distinctly different protein fold to the domain-swapped dimeric structure of RsmA homologs. The overall β sheet structure required for RNA recognition is, however, preserved with compensatory sequence and structure differences, allowing the RsmN dimer to target binding motifs in both structured hairpin loops and flexible disordered RNAs. Phylogenetic analysis indicates that, although RsmN appears unique to P. aeruginosa, homologous proteins with the inserted α helix are more widespread and arose as a consequence of a gene duplication event. PMID:23954502

  15. Structural basis for LeishIF4E-1 modulation by an interacting protein in the human parasite Leishmania major.

    PubMed

    Meleppattu, Shimi; Arthanari, Haribabu; Zinoviev, Alexandra; Boeszoermenyi, Andras; Wagner, Gerhard; Shapira, Michal; Léger-Abraham, Mélissa

    2018-03-19

    Leishmania parasites are unicellular pathogens that are transmitted to humans through the bite of infected sandflies. Most of the regulation of their gene expression occurs post-transcriptionally, and the different patterns of gene expression required throughout the parasites' life cycle are regulated at the level of translation. Here, we report the X-ray crystal structure of the Leishmania cap-binding isoform 1, LeishIF4E-1, bound to a protein fragment of previously unknown function, Leish4E-IP1, that binds tightly to LeishIF4E-1. The molecular structure, coupled to NMR spectroscopy experiments and in vitro cap-binding assays, reveal that Leish4E-IP1 allosterically destabilizes the binding of LeishIF4E-1 to the 5' mRNA cap. We propose mechanisms through which Leish4E-IP1-mediated LeishIF4E-1 inhibition could regulate translation initiation in the human parasite.

  16. The ELAV RNA-stability factor HuR binds the 5′-untranslated region of the human IGF-IR transcript and differentially represses cap-dependent and IRES-mediated translation

    PubMed Central

    Meng, Zheng; King, Peter H.; Nabors, L. Burt; Jackson, Nateka L.; Chen, Ching-Yi; Emanuel, Peter D.; Blume, Scott W.

    2005-01-01

    The type I insulin-like growth factor receptor (IGF-IR) is an integral component in the control of cell proliferation, differentiation and apoptosis. The IGF-IR mRNA contains an extraordinarily long (1038 nt) 5′-untranslated region (5′-UTR), and we have characterized a diverse series of proteins interacting with this RNA sequence which may provide for intricate regulation of IGF-IR gene expression at the translational level. Here, we report the purification and identification of one of these IGF-IR 5′-UTR-binding proteins as HuR, using a novel RNA crosslinking/RNase elution strategy. Because HuR has been predominantly characterized as a 3′-UTR-binding protein, enhancing mRNA stability and generally increasing gene expression, we sought to determine whether HuR might serve a different function in the context of its binding the IGF-IR 5′-UTR. We found that HuR consistently repressed translation initiation through the IGF-IR 5′-UTR. The inhibition of translation by HuR was concentration dependent, and could be reversed in trans by addition of a fragment of the IGF-IR 5′-UTR containing the HuR binding sites as a specific competitor, or abrogated by deletion of the third RNA recognition motif of HuR. We determined that HuR repressed translation initiation through the IGF-IR 5′-UTR in cells as well, and that siRNA knockdown of HuR markedly increased IGF-IR protein levels. Interestingly, we also found that HuR potently inhibited IGF-IR translation mediated through internal ribosome entry. Kinetic assays were performed to investigate the mechanism of translation repression by HuR and the dynamic interplay between HuR and the translation apparatus. We found that HuR, occupying a cap-distal position, significantly delayed translation initiation mediated by cap-dependent scanning, but was eventually displaced from its binding site, directly or indirectly, as a consequence of ribosomal scanning. However, HuR perpetually blocked the activity of the IGF-IR IRES, apparently arresting the IRES-associated translation pre-initiation complex in an inactive state. This function of HuR as a 5′-UTR-binding protein and dual-purpose translation repressor may be critical for the precise regulation of IGF-IR expression essential to normal cellular homeostasis. PMID:15914670

  17. Microgravity and Signaling Molecules in Rat Osteoblasts: Downstream of Receptor Tyrosine Kinase, G-Protein-Coupled Receptor, and Small GTP-Binding Proteins

    NASA Technical Reports Server (NTRS)

    Kumel, Yasuhiro; Shimokawa, Hitoyata; Morita, Sadao; Katano, Hisako; Akiyama, Hideo; Hirano, Masahiko; Ohya, Keiichi; Sams, Clarence F.; Whitson, Peggy A.

    2005-01-01

    Rat osteoblasts were cultured for 4 and 5 days aboard Space Shuttle and solubilized on board. The mRNA levels of the post-receptor signaling molecules were analyzed by quantitative RT-PCR. The G-protein alpha subunit G(alpha)q mRNA levels were elevated 3-fold by microgravity. G(alpha)q stimulates PLC(beta), and then PKC. PKC(delta) and PKC(theta) mRNA levels were increased 2- to 5-fold by microgravity The mRNA levels of SOS and Ras GRF were increased 4 to 5-fold by microgravity, while Ras GAP was not altered. Spaceflight-induced bone loss might be attributed to microgravity modulation of the signaling pathway in osteoblasts.

  18. Cooperative modulation by eIF4G of eIF4E-binding to the mRNA 5' cap in yeast involves a site partially shared by p20.

    PubMed Central

    Ptushkina, M; von der Haar, T; Vasilescu, S; Frank, R; Birkenhäger, R; McCarthy, J E

    1998-01-01

    Interaction between the mRNA 5'-cap-binding protein eIF4E and the multiadaptor protein eIF4G has been demonstrated in all eukaryotic translation assemblies examined so far. This study uses immunological, genetic and biochemical methods to map the surface amino acids on eIF4E that contribute to eIF4G binding. Cap-analogue chromatography and surface plasmon resonance (SPR) analyses demonstrate that one class of mutations in these surface regions disrupts eIF4E-eIF4G association, and thereby polysome formation and growth. The residues at these positions in wild-type eIF4E mediate positive cooperativity between the binding of eIF4G to eIF4E and the latter's cap-affinity. Moreover, two of the mutations confer temperature sensitivity in eIF4G binding to eIF4E which correlates with the formation of large numbers of inactive ribosome 80S couples in vivo and the loss of cellular protein synthesis activity. The yeast 4E-binding protein p20 is estimated by SPR to have a ten times lower binding affinity than eIF4G for eIF4E. Investigation of a second class of eIF4E mutations reveals that p20 shares only part of eIF4G's binding site on the cap-binding protein. The results presented provide a basis for understanding how cycling of eIF4E and eIF4G occurs in yeast translation and explains how p20 can act as a fine, but not as a coarse, regulator of protein synthesis. PMID:9707439

  19. Structural basis underlying CAC RNA recognition by the RRM domain of dimeric RNA-binding protein RBPMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teplova, Marianna; Farazi, Thalia A.; Tuschl, Thomas

    Abstract RNA-binding protein with multiple splicing (designated RBPMS) is a higher vertebrate mRNA-binding protein containing a single RNA recognition motif (RRM). RBPMS has been shown to be involved in mRNA transport, localization and stability, with key roles in axon guidance, smooth muscle plasticity, as well as regulation of cancer cell proliferation and migration. We report on structure-function studies of the RRM domain of RBPMS bound to a CAC-containing single-stranded RNA. These results provide insights into potential topologies of complexes formed by the RBPMS RRM domain and the tandem CAC repeat binding sites as detected by photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation. Thesemore » studies establish that the RRM domain of RBPMS forms a symmetrical dimer in the free state, with each monomer binding sequence-specifically to all three nucleotides of a CAC segment in the RNA bound state. Structure-guided mutations within the dimerization and RNA-binding interfaces of RBPMS RRM on RNA complex formation resulted in both disruption of dimerization and a decrease in RNA-binding affinity as observed by size exclusion chromatography and isothermal titration calorimetry. As anticipated from biochemical binding studies, over-expression of dimerization or RNA-binding mutants of Flag-HA-tagged RBPMS were no longer able to track with stress granules in HEK293 cells, thereby documenting the deleterious effects of such mutationsin vivo.« less

  20. [Influence of fluorine on expression of androgen-binding protein and inhibin B mRNA in rat testis sertoli cells].

    PubMed

    Xu, Rui; Shang, Weichao; Liu, Jianmin; Duan, Liju; Ba, Yue; Zhang, Huizhen; Cheng, Xuemin; Cui, Liuxin

    2010-09-01

    To study the influence of fluorine on the transcription level of androgen binding protein (ABP) and inhibin B (INHB) mRNA in testis sertoli cells of Sprague Dawley rats. A method was set up the model to culture the Sertoli cells. Use a series of concentrations of NaF solutions of 2.5, 5.0, 10.0 and 20.0 mg/L to poison the cells and then, measure the relative expression amount of ABP and INHB mRNA by RT-PCR method. (1) Compare the relative expression amount of ABP mRNA of each group of different concentration with the control group. 2.5 mg/L group was higher than that in the control group, and the difference has the statistical significance (P < 0.05). The 5.0 mg/L group was also higher than that of the control group, and the difference has no statistical significance (P > 0.05). (2) Compare the relative expression amount of INH B mRNA of each group of different concentration with the control group. Both the 2.5 mg/L group and the 5.0 mg/L group were higher than that in the control group, and the difference has the statistical significance (P < 0.05). The rest 2 groups were lower than that in the control group and the difference has no statistical significance (P > 0.05). In the range of concentrations between 2.5 and 20.0 mg/L, no distinct influence of fluorine on the expression of androgen binding protein (ABP) and inhibin B (INHB) mRNA in testis sertoli cells of Sprague Dawley rats.

  1. Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella Typhimurium.

    PubMed

    Jonas, Kristina; Edwards, Adrianne N; Ahmad, Irfan; Romeo, Tony; Römling, Ute; Melefors, Ojar

    2010-02-01

    Bacterial survival depends on the ability to switch between sessile and motile lifestyles in response to changing environmental conditions. In many species, this switch is governed by (3'-5')-cyclic-diguanosine monophosphate (c-di-GMP), a signalling molecule, which is metabolized by proteins containing GGDEF and/or EAL domains. Salmonella Typhimurium contains 20 such proteins. Here, we show that the RNA-binding protein CsrA regulates the expression of eight genes encoding GGDEF, GGDEF-EAL and EAL domain proteins. CsrA bound directly to the mRNA leaders of five of these genes, suggesting that it may regulate these genes post-transcriptionally. The c-di-GMP-specific phosphodiesterase STM3611, which reciprocally controls flagella function and production of biofilm matrix components, was regulated by CsrA binding to the mRNA, but was also indirectly regulated by CsrA through the FlhDC/FliA flagella cascade and STM1344. STM1344 is an unconventional (c-di-GMP-inactive) EAL domain protein, recently identified as a negative regulator of flagella gene expression. Here, we demonstrate that CsrA directly downregulates expression of STM1344, which in turn regulates STM3611 through fliA and thus reciprocally controls motility and biofilm factors. Altogether, our data reveal that the concerted and complex regulation of several genes encoding GGDEF/EAL domain proteins allows CsrA to control the motility-sessility switch in S. Typhimurium at multiple levels.

  2. The Drosophila hnRNP F/H Homolog Glorund Uses Two Distinct RNA-Binding Modes to Diversify Target Recognition.

    PubMed

    Tamayo, Joel V; Teramoto, Takamasa; Chatterjee, Seema; Hall, Traci M Tanaka; Gavis, Elizabeth R

    2017-04-04

    The Drosophila hnRNP F/H homolog, Glorund (Glo), regulates nanos mRNA translation by interacting with a structured UA-rich motif in the nanos 3' untranslated region. Glo regulates additional RNAs, however, and mammalian homologs bind G-tract sequences to regulate alternative splicing, suggesting that Glo also recognizes G-tract RNA. To gain insight into how Glo recognizes both structured UA-rich and G-tract RNAs, we used mutational analysis guided by crystal structures of Glo's RNA-binding domains and identified two discrete RNA-binding surfaces that allow Glo to recognize both RNA motifs. By engineering Glo variants that favor a single RNA-binding mode, we show that a subset of Glo's functions in vivo is mediated solely by the G-tract binding mode, whereas regulation of nanos requires both recognition modes. Our findings suggest a molecular mechanism for the evolution of dual RNA motif recognition in Glo that may be applied to understanding the functional diversity of other RNA-binding proteins. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. The Drosophila hnRNP F/H homolog glorund uses two distinct RNA-binding modes to diversify target recognition

    DOE PAGES

    Tamayo, Joel V.; Teramoto, Takamasa; Chatterjee, Seema; ...

    2017-04-04

    The Drosophila hnRNP F/H homolog, Glorund (Glo), regulates nanos mRNA translation by interacting with a structured UA-rich motif in the nanos 3' untranslated region. Glo regulates additional RNAs, however, and mammalian homologs bind G-tract sequences to regulate alternative splicing, suggesting that Glo also recognizes G-tract RNA. To gain insight into how Glo recognizes both structured UA-rich and G-tract RNAs, we used mutational analysis guided by crystal structures of Glo’s RNA-binding domains and identified two discrete RNA-binding surfaces that allow Glo to recognize both RNA motifs. By engineering Glo variants that favor a single RNA-binding mode, we show that a subsetmore » of Glo’s functions in vivo is mediated solely by the G-tract binding mode, whereas regulation of nanos requires both recognition modes. Lastly, our findings suggest a molecular mechanism for the evolution of dual RNA motif recognition in Glo that may be applied to understanding the functional diversity of other RNA-binding proteins.« less

  4. The Drosophila hnRNP F/H Homolog Glorund Uses Two Distinct RNA-Binding Modes to Diversify Target Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamayo, Joel V.; Teramoto, Takamasa; Chatterjee, Seema

    The Drosophila hnRNP F/H homolog, Glorund (Glo), regulates nanos mRNA translation by interacting with a structured UA-rich motif in the nanos 3' untranslated region. Glo regulates additional RNAs, however, and mammalian homologs bind G-tract sequences to regulate alternative splicing, suggesting that Glo also recognizes G-tract RNA. To gain insight into how Glo recognizes both structured UA-rich and G-tract RNAs, we used mutational analysis guided by crystal structures of Glo’s RNA-binding domains and identified two discrete RNA-binding surfaces that allow Glo to recognize both RNA motifs. By engineering Glo variants that favor a single RNA-binding mode, we show that a subsetmore » of Glo’s functions in vivo is mediated solely by the G-tract binding mode, whereas regulation of nanos requires both recognition modes. Our findings suggest a molecular mechanism for the evolution of dual RNA motif recognition in Glo that may be applied to understanding the functional diversity of other RNA-binding proteins.« less

  5. The Drosophila hnRNP F/H homolog glorund uses two distinct RNA-binding modes to diversify target recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamayo, Joel V.; Teramoto, Takamasa; Chatterjee, Seema

    The Drosophila hnRNP F/H homolog, Glorund (Glo), regulates nanos mRNA translation by interacting with a structured UA-rich motif in the nanos 3' untranslated region. Glo regulates additional RNAs, however, and mammalian homologs bind G-tract sequences to regulate alternative splicing, suggesting that Glo also recognizes G-tract RNA. To gain insight into how Glo recognizes both structured UA-rich and G-tract RNAs, we used mutational analysis guided by crystal structures of Glo’s RNA-binding domains and identified two discrete RNA-binding surfaces that allow Glo to recognize both RNA motifs. By engineering Glo variants that favor a single RNA-binding mode, we show that a subsetmore » of Glo’s functions in vivo is mediated solely by the G-tract binding mode, whereas regulation of nanos requires both recognition modes. Lastly, our findings suggest a molecular mechanism for the evolution of dual RNA motif recognition in Glo that may be applied to understanding the functional diversity of other RNA-binding proteins.« less

  6. A family of cellular proteins related to snake venom disintegrins.

    PubMed

    Weskamp, G; Blobel, C P

    1994-03-29

    Disintegrins are short soluble integrin ligands that were initially identified in snake venom. A previously recognized cellular protein with a disintegrin domain was the guinea pig sperm protein PH-30, a protein implicated in sperm-egg membrane binding and fusion. Here we present peptide sequences that are characteristic for several cellular disintegrin-domain proteins. These peptide sequences were deduced from cDNA sequence tags that were generated by polymerase chain reaction from various mouse tissue and a mouse muscle cell line. Northern blot analysis with four sequence tags revealed distinct mRNA expression patterns. Evidently, cellular proteins containing a disintegrin domain define a superfamily of potential integrin ligands that are likely to function in important cell-cell and cell-matrix interactions.

  7. Understanding the effect of locked nucleic acid and 2'-O-methyl modification on the hybridization thermodynamics of a miRNA-mRNA pair in the presence and absence of AfPiwi protein.

    PubMed

    Kumar, Santosh; Mapa, Koyeli; Maiti, Souvik

    2014-03-18

    miRNAs are some of the key epigenetic regulators of gene expression. They act through hybridization with their target mRNA and modulate the level of respective proteins via different mechanisms. Various cancer conditions are known to be associated with up- and downregulation of the oncogenic and tumor suppressor miRNAs, respectively. The levels of aberrantly expressed oncogenic miRNAs can be downregulated in different ways. Similarly, restoration of tumor suppressor miRNAs to their normal levels can be achieved using miRNA mimics. However, the use of miRNA mimics is limited by their reduced biostability and function. We have studied the hybridization thermodynamics of the miRNA 26a (11-mer, including the seed sequence) guide strand with the mRNA (11-mer) target strand in the absence and presence of AfPiwi protein. We have also inserted locked nucleic acids (LNAs) and 2'-O-methyl-modified nucleotides into the guide strand, in a walk-through manner, to assess their effect on the binding efficiency between guide and target RNA. Insertion of LNA and 2'-O-methyl-modified nucleotides into the guide strand helped to strengthen the binding affinity irrespective of the position of insertion. However, in the presence of AfPiwi protein, these modifications reduced the binding affinity to different extents depending on the position of insertion. Insertion of a modification leads to an increase in the enthalpic contribution with an increased unfavorable entropic contribution, which negatively compensates for the higher favorable enthalpy.

  8. Cholesterol biosynthesis from lanosterol: molecular cloning, chromosomal localization, functional expression and liver-specific gene regulation of rat sterol delta8-isomerase, a cholesterogenic enzyme with multiple functions.

    PubMed Central

    Bae, S; Seong, J; Paik, Y

    2001-01-01

    Sterol Delta(8)-isomerase (SI) (EC 5.3.3.5), also known as emopamil binding protein or sigma receptor, catalyses the conversion of the 8-ene isomer into the 7-ene isomer in the cholesterol biosynthetic pathway in mammals. Recently, mutations of SI have been found to be associated with Conradi-Hünermann syndrome in humans. To investigate the in vitro and in vivo modes of molecular regulation of SI and its role in cholesterol biosynthesis in mammals, we isolated a full-length cDNA encoding rat SI. The deduced amino-acid sequence of rat SI predicts a 230-residue protein (26737 Da) with 87% and 80% amino-acid identity to mouse and human counterparts. The rat SI gene was mapped to chromosome 12q1.2 using fluorescence in situ hybridization (FISH). The biological function of the cloned rat SI cDNA was verified by overexpressing recombinant Myc-SI in Saccharomyces cerevisiae. It showed a characteristic pattern of inhibition on exposure to trans-2-[4-(1,2-diphenylbuten-1-yl)phenoxy]-N,N-dimethylethylamine (tamoxifen; IC(50)=11.2 microM) and 3beta-[2-(diethylamino)ethoxy]androst-5-en-17-one (U18666A; IC(50)=4.2 microM), two well known potent inhibitors of SI. Northern-blot analysis of 3-week-old rats compared with 2-year-old rats showed that SI mRNA expression in both age groups was restricted to liver, where a 70% reduction in mRNA levels was observed in 2-year-old rats. The FISH studies revealed ubiquitous expression of SI mRNA in rat hepatocytes. The in vitro studies showed that the SI mRNA was highly suppressed by 25-hydroxycholesterol in H4IIE cells. Treatment of H4IIE cells grown in medium supplemented with fetal bovine serum with tamoxifen for 24 h resulted in a dose-dependent induction of SI mRNA, with a concomitant suppression of sterol regulatory element binding protein-1 mRNA. Interestingly, this effect was not seen in emopamil-treated cells. The in vivo experiments also indicate that both mRNA expression and enzymic activity of SI in liver were induced approx. 3-fold in rats fed 5% (w/w) cholestyramine plus 0.1% (w/w) lovastatin in normal chow for 2 weeks. With this newly cloned rat SI cDNA, it becomes possible to gain molecular understanding of previously unknown and tamoxifen-mediated gene regulation of SI that is involved in cholesterol metabolism, ischaemia and genetic diseases. PMID:11171067

  9. Pseudouridine and N6-methyladenosine modifications weaken PUF protein/RNA interactions

    PubMed Central

    AlSadhan, Ishraq; Merriman, Dawn K.; Al-Hashimi, Hashim M.; Herschlag, Daniel

    2017-01-01

    RNA modifications are ubiquitous in biology, with over 100 distinct modifications. While the vast majority were identified and characterized on abundant noncoding RNA such as tRNA and rRNA, the advent of sensitive sequencing-based approaches has led to the discovery of extensive and regulated modification of eukaryotic messenger RNAs as well. The two most abundant mRNA modifications—pseudouridine (Ψ) and N6-methyladenosine (m6A)—affect diverse cellular processes including mRNA splicing, localization, translation, and decay and modulate RNA structure. Here, we test the hypothesis that RNA modifications directly affect interactions between RNA-binding proteins and target RNA. We show that Ψ and m6A weaken the binding of the human single-stranded RNA binding protein Pumilio 2 (hPUM2) to its consensus motif, with individual modifications having effects up to approximately threefold and multiple modifications giving larger effects. While there are likely to be some cases where RNA modifications essentially fully ablate protein binding, here we see modest responses that may be more common. Such modest effects could nevertheless profoundly alter the complex landscape of RNA:protein interactions, and the quantitative rather than qualitative nature of these effects underscores the need for quantitative, systems-level accounting of RNA:protein interactions to understand post-transcriptional regulation. PMID:28138061

  10. Novel transcripts of the estrogen receptor α gene in channel catfish

    USGS Publications Warehouse

    Patino, Reynaldo; Xia, Zhenfang; Gale, William L.; Wu, Chunfa; Maule, Alec G.; Chang, Xiaotian

    2000-01-01

    Complementary DNA libraries from liver and ovary of an immature female channel catfish were screened with a homologous ERα cDNA probe. The hepatic library yielded two new channel catfish ER cDNAs that encode N-terminal ERα variants of different sizes. Relative to the catfish ERα (medium size; 581 residues) previously reported, these new cDNAs encode Long-ERα (36 residues longer) and Short-ERα (389 residues shorter). The 5′-end of Long-ERα cDNA is identical to that of Medium-ERα but has an additional 503-bp segment with an upstream, in-frame translation-start codon. Recombinant Long-ERα binds estrogen with high affinity (Kd = 3.4 nM), similar to that previously reported for Medium-ERα but lower than reported for catfish ERβ. Short-ERα cDNA encodes a protein that lacks most of the receptor protein and does not bind estrogen. Northern hybridization confirmed the existence of multiple hepatic ERα RNAs that include the size range of the ERα cDNAs obtained from the libraries as well as additional sizes. Using primers for RT-PCR that target locations internal to the protein-coding sequence, we also established the presence of several ERα cDNA variants with in-frame insertions in the ligand-binding and DNA-binding domains and in-frame or out-of-frame deletions in the ligand-binding domain. These internal variants showed patterns of expression that differed between the ovary and liver. Further, the ovarian library yielded a full-length, ERα antisense cDNA containing a poly(A) signal and tail. A limited survey of histological preparations from juvenile catfish by in situ hybridization using directionally synthesized cRNA probes also suggested the expression of ERα antisense RNA in a tissue-specific manner. In conclusion, channel catfish seemingly have three broad classes of ERα mRNA variants: those encoding N-terminal truncated variants, those encoding internal variants (including C-terminal truncated variants), and antisense mRNA. The sense variants may encode functional ERα or related proteins that modulate ERα or ERβ activity. The existence of ER antisense mRNA is reported in this study for the first time. Its role may be to participate in the regulation of ER gene expression.

  11. The multifunctional Staufen proteins: conserved roles from neurogenesis to synaptic plasticity.

    PubMed

    Heraud-Farlow, Jacki E; Kiebler, Michael A

    2014-09-01

    Staufen (Stau) proteins belong to a family of RNA-binding proteins (RBPs) that are important for RNA localisation in many organisms. In this review we discuss recent findings on the conserved role played by Stau during both the early differentiation of neurons and in the synaptic plasticity of mature neurons. Recent molecular data suggest mechanisms for how Stau2 regulates mRNA localisation, mRNA stability, translation, and ribonucleoprotein (RNP) assembly. We offer a perspective on how this multifunctional RBP has been adopted to regulate mRNA localisation under several different cellular and developmental conditions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Positive feedback between RNA-binding protein HuD and transcription factor SATB1 promotes neurogenesis.

    PubMed

    Wang, Feifei; Tidei, Joseph J; Polich, Eric D; Gao, Yu; Zhao, Huashan; Perrone-Bizzozero, Nora I; Guo, Weixiang; Zhao, Xinyu

    2015-09-08

    The mammalian embryonic lethal abnormal vision (ELAV)-like protein HuD is a neuronal RNA-binding protein implicated in neuronal development, plasticity, and diseases. Although HuD has long been associated with neuronal development, the functions of HuD in neural stem cell differentiation and the underlying mechanisms have gone largely unexplored. Here we show that HuD promotes neuronal differentiation of neural stem/progenitor cells (NSCs) in the adult subventricular zone by stabilizing the mRNA of special adenine-thymine (AT)-rich DNA-binding protein 1 (SATB1), a critical transcriptional regulator in neurodevelopment. We find that SATB1 deficiency impairs the neuronal differentiation of NSCs, whereas SATB1 overexpression rescues the neuronal differentiation phenotypes resulting from HuD deficiency. Interestingly, we also discover that SATB1 is a transcriptional activator of HuD during NSC neuronal differentiation. In addition, we demonstrate that NeuroD1, a neuronal master regulator, is a direct downstream target of SATB1. Therefore, HuD and SATB1 form a positive regulatory loop that enhances NeuroD1 transcription and subsequent neuronal differentiation. Our results here reveal a novel positive feedback network between an RNA-binding protein and a transcription factor that plays critical regulatory roles in neurogenesis.

  13. Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp

    PubMed Central

    Gotic, Ivana; Omidi, Saeed; Fleury-Olela, Fabienne; Molina, Nacho; Naef, Felix; Schibler, Ueli

    2016-01-01

    In mammals, body temperature fluctuates diurnally around a mean value of 36°C–37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of cold-inducible RNA-binding protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles, Cirbp mRNA oscillates about threefold in abundance, as it does in mouse livers. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells’ circadian clocks. Here we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide “approach to steady-state” kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression. PMID:27633015

  14. Cell type-dependent gene regulation by Staufen2 in conjunction with Upf1.

    PubMed

    Miki, Takashi; Kamikawa, Yasunao; Kurono, Sadamu; Kaneko, Yuka; Katahira, Jun; Yoneda, Yoshihiro

    2011-11-16

    dendritic mRNA transport machines. Although Stau2 is thought to be involved in the dendritic targeting of several mRNAs in neurons, the mechanism whereby Stau2 regulates these mRNAs is unknown. To elucidate the functions of Stau2, we screened for novel binding partners by affinity purification of GST-tagged Stau2 from 293F cells. Three RNA helicases, RNA helicase A, Upf1 and Mov10, were identified in Stau2-containing complexes. We focused our studies on Upf1, a key player in nonsense-mediated mRNA decay. Stau2 was found to bind directly to Upf1 in an RNA-independent manner in vitro. Tethering Stau2 to the 3'-untranslated region (UTR) of a reporter gene had little effect on its expression in HeLa cells. In contrast, when the same tethering assay was performed in 293F cells, we observed an increase in reporter protein levels. This upregulation of protein expression by Stau2 turned out to be dependent on Upf1. Moreover, we found that in 293F cells, Stau2 upregulates the reporter mRNA level in an Upf1-independent manner. These results indicate that the recruitment of Stau2 alone or in combination with Upf1 differentially affects the fate of mRNAs. Moreover, the results suggest that Stau2-mediated fate determination could be executed in a cell type-specific manner.

  15. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yeming; Opperman, Laura; Wickens, Marvin

    2011-11-02

    Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short regionmore » of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.« less

  16. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yeming; Opperman, Laura; Wickens, Marvin

    2010-08-19

    Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short regionmore » of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.« less

  17. Functional substitution for TAF(II)250 by a retroposed homolog that is expressed in human spermatogenesis.

    PubMed

    Wang, P Jeremy; Page, David C

    2002-09-15

    TAF(II)250, the largest subunit of the general transcription factor TFIID, is expressed from the human X chromosome, at least in somatic cells. In male meiosis, however, the sex chromosomes are transcriptionally silenced, while the autosomes remain active. How then are protein-encoding genes transcribed during human male meiosis? Here we present a novel autosomal human gene, TAF1L, which is homologous to TAF(II)250 and is expressed specifically in the testis, apparently in germ cells. We hypothesize that during male meiosis, transcription of protein-encoding genes relies upon TAF1L as a functional substitute for TAF(II)250. Like TAF(II)250, the human TAF1L protein can bind directly to TATA-binding protein, an essential component of TFIID. Most importantly, transfection with human TAF1L rescued the temperature-sensitive lethality of a hamster cell line mutant in TAF(II)250. TAF1L lacks introns and evidently arose by retroposition of a processed TAF(II)250 mRNA during primate evolution. The observation that TAF1L can functionally replace TAF(II)250 provides experimental support for the hypothesis that during male meiosis, autosomes provide cellular functions usually supplied by the X chromosome in somatic cells.

  18. Paxillin and embryonic PolyAdenylation Binding Protein (ePABP) engage to regulate androgen-dependent Xenopus laevis oocyte maturation - A model of kinase-dependent regulation of protein expression.

    PubMed

    Miedlich, Susanne U; Taya, Manisha; Young, Melissa Rasar; Hammes, Stephen R

    2017-06-15

    Steroid-triggered Xenopus laevis oocyte maturation is an elegant physiologic model of nongenomic steroid signaling, as it proceeds completely independent of transcription. We previously demonstrated that androgens are the main physiologic stimulator of oocyte maturation in Xenopus oocytes, and that the adaptor protein paxillin plays a crucial role in mediating this process through a positive feedback loop in which paxillin first enhances Mos protein translation, ensued by Erk2 activation and Erk-dependent phosphorylation of paxillin on serine residues. Phosphoserine-paxillin then further augments Mos protein translation and downstream Erk2 activation, resulting in meiotic progression. We hypothesized that paxillin enhances Mos translation by interacting with embryonic PolyAdenylation Binding Protein (ePABP) on polyadenylated Mos mRNA. Knockdown of ePABP phenocopied paxillin knockdown, with reduced Mos protein expression, Erk2 and Cdk1 activation, as well as oocyte maturation. In both Xenopus oocytes and mammalian cells (HEK-293), paxillin and ePABP constitutively interacted. Testosterone (Xenopus) or EGF (HEK-293) augmented ePABP-paxillin binding, as well as ePABP binding to Mos mRNA (Xenopus), in an Erk-dependent fashion. Thus, ePABP and paxillin work together in an Erk-dependent fashion to enhance Mos protein translation and promote oocyte maturation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Moving messages in the developing brain—emerging roles for mRNA transport and local translation in neural stem cells

    PubMed Central

    Pilaz, Louis-Jan; Silver, Debra L.

    2017-01-01

    The mammalian cerebral cortex is a complex brain structure integral to our higher cognition. During embryonic cortical development, radial glial progenitors (RGCs) produce neurons and serve as physical structures for migrating neurons. Recent discoveries highlight new roles for RNA localization and local translation in RGCs, both at the cell body and at distal structures called basal endfeet. By implementing technologies from the field of RNA research to brain development, investigators can manipulate RNA-binding proteins as well as visualize single-molecule RNAs, live movement of mRNAs and their binding proteins, and translation. Going forward, these studies establish a framework for investigating how post-transcriptional RNA regulation helps shape RGC function and triggers neurodevelopmental diseases. PMID:28304078

  20. Purification of ribonucleoproteins by a novel approach: isolation of the SSB1 ribonucleoprotein from yeast and demonstration that it has no role in mRNA splicing.

    PubMed

    Cusick, M E

    1992-12-29

    A novel approach is described to purify potential ribonucleoproteins (RNP) of yeast. The method assays a yeast RNP complex, assembled in vitro on actin pre-mRNA, by low-ionic strength acrylamide gel electrophoresis. The minimal protein components of this RNP complex were three proteins, one of 30 kDa and two at 42-44 kDa, defined by formation of the complex on biotinylated-RNA, binding of this complex to avidin-agarose, and salt elution of the protein in the biotinylated-RNP complex. Using the assay for RNP complex formation, an RNP protein was purified to homogeneity on the basis of its affinity towards single-stranded DNA and RNA. This RNP protein turned out to be identical to a known RNP protein, the single-stranded binding protein 1 (ssb1) of yeast, on the basis of identical gel electrophoretic migration, antibody cross-reactivity, and identical properties on the gel complex formation assay. In vitro mRNA splicing was normal in extracts made from a yeast strain missing ssb1 (ssb1- strain). Addition of anti-ssb1 antibody to splicing extracts made from a wild type strain did not inhibit or diminish splicing. Instead, mRNA splicing was reproducibly stimulated several fold, indicating competition between ssb1 and splicing factors for binding to single-stranded RNA in the extracts. RNP complexes still formed in the ssb1- strain, demonstrating that it would be possible to purify other RNP proteins from this strain using the gel complex formation assay.

  1. Expression of a functional asialoglycoprotein receptor in human renal proximal tubular epithelial cells.

    PubMed

    Seow, Ying-ying T; Tan, Michelle G K; Woo, Keng Thye

    2002-07-01

    The asialoglycoprotein receptor (ASGPR) is a C lectin which binds and endocytoses serum glycoproteins. In humans, the ASGPR is shown mainly to occur in hepatocytes, but does occur extrahepatically in thyroid, in small and large intestines, and in the testis. In the kidney, there has been evidence both for and against its existence in mesangial cells. Standard light microscopy examination of renal tissue stained with an antibody against the ASGPR was performed. The mRNA expression for the ASGPR H1 and H2 subunits in primary human renal proximal tubular epithelial cells (RPTEC), in the human proximal tubular epithelial cell line HK2, and in human renal cortex was investigated using reverse-transcribed nested polymerase chain reaction. ASGPR protein expression as well as ligand binding and uptake were also examined using confocal microscopy and flow cytometry (fluorescence-activated cell sorting). Light microscopy of paraffin renal biopsy sections stained with a polyclonal antibody against the ASGPR showed proximal tubular epithelial cell staining of the cytoplasm and particularly in the basolateral region. Renal cortex and RPTEC specifically have mRNA for both H1 and H2 subunits of the ASGPR, but HK2 only expresses mRNA for H1. Using a monoclonal antibody, the presence of the ASGPR in RPTEC was shown by fluorescence-activated cell sorting and immunofluorescent staining. Specific binding and uptake of fluorescein isothiocyanate labelled asialofetuin which is a specific ASGPR ligand was also demonstrated in RPTEC. Primary renal proximal tubular epithelial cells have a functional ASGPR, consisting of the H1 and H2 subunits, that is capable of specific ligand binding and uptake. Copyright 2002 S. Karger AG, Basel

  2. FXR1P Limits Long-Term Memory, Long-Lasting Synaptic Potentiation, and de novo GluA2 Translation

    PubMed Central

    Jones, Emma V.; Altimimi, Haider F.; Farmer, W. Todd; Gandin, Valentina; Hanna, Edith; Zong, Ruiting; Barbon, Alessandro; Nelson, David L.; Topisirovic, Ivan; Rochford, Joseph; Stellwagen, David; Béïque, Jean-Claude; Murai, Keith K.

    2014-01-01

    SUMMARY Translational control of mRNAs allows for rapid and selective changes in synaptic protein expression, changes that are required for long-lasting plasticity and memory formation in the brain. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein that controls mRNA translation in non-neuronal cells and co-localizes with translational machinery in neurons. However, its neuronal mRNA targets and role in the brain are unknown. Here, we demonstrate that removal of FXR1P from the forebrain of postnatal mice selectively enhances long-term storage of spatial memories, hippocampal late-phase LTP (L-LTP) and de novo GluA2 synthesis. Furthermore, FXR1P binds specifically to the 5’UTR of GluA2 mRNA to repress translation and limit the amount of GluA2 incorporated at potentiated synapses. This study uncovers a new mechanism for regulating long-lasting synaptic plasticity and spatial memory formation and reveals an unexpected divergent role of FXR1P among Fragile X proteins in brain plasticity. PMID:25456134

  3. A new MIF4G domain-containing protein, CTIF, directs nuclear cap-binding protein CBP80/20-dependent translation

    PubMed Central

    Kim, Kyoung Mi; Cho, Hana; Choi, Kobong; Kim, Jaedong; Kim, Bong-Woo; Ko, Young-Gyu; Jang, Sung Key; Kim, Yoon Ki

    2009-01-01

    During or right after mRNA export via the nuclear pore complex (NPC) in mammalian cells, mRNAs undergo translation mediated by nuclear cap-binding proteins 80 and 20 (CBP80/20). After CBP80/20-dependent translation, CBP80/20 is replaced by cytoplasmic cap-binding protein eIF4E, which directs steady-state translation. Nonsense-mediated mRNA decay (NMD), one of the best-characterized mRNA surveillance mechanisms, has been shown to occur on CBP80/20-bound mRNAs. However, despite the tight link between CBP80/20-dependent translation and NMD, the underlying molecular mechanism and cellular factors that mediate CBP80/20-dependent translation remain obscure. Here, we identify a new MIF4G domain-containing protein, CTIF (CBP80/20-dependent translation initiation factor). CTIF interacts directly with CBP80 and is part of the CBP80/20-dependent translation initiation complex. Depletion of endogenous CTIF from an in vitro translation system selectively blocks the translation of CBP80-bound mRNAs, while addition of purified CTIF restores it. Accordingly, down-regulation of endogenous CTIF abrogates NMD. Confocal microscopy shows that CTIF is localized to the perinuclear region. Our observations demonstrate the existence of CBP80/20-dependent translation and support the idea that CBP80/20-dependent translation is mechanistically different from steady-state translation through identification of a specific cellular protein, CTIF. PMID:19648179

  4. An RNA-binding protein, Qki5, regulates embryonic neural stem cells through pre-mRNA processing in cell adhesion signaling.

    PubMed

    Hayakawa-Yano, Yoshika; Suyama, Satoshi; Nogami, Masahiro; Yugami, Masato; Koya, Ikuko; Furukawa, Takako; Zhou, Li; Abe, Manabu; Sakimura, Kenji; Takebayashi, Hirohide; Nakanishi, Atsushi; Okano, Hideyuki; Yano, Masato

    2017-09-15

    Cell type-specific transcriptomes are enabled by the action of multiple regulators, which are frequently expressed within restricted tissue regions. In the present study, we identify one such regulator, Quaking 5 (Qki5), as an RNA-binding protein (RNABP) that is expressed in early embryonic neural stem cells and subsequently down-regulated during neurogenesis. mRNA sequencing analysis in neural stem cell culture indicates that Qki proteins play supporting roles in the neural stem cell transcriptome and various forms of mRNA processing that may result from regionally restricted expression and subcellular localization. Also, our in utero electroporation gain-of-function study suggests that the nuclear-type Qki isoform Qki5 supports the neural stem cell state. We next performed in vivo transcriptome-wide protein-RNA interaction mapping to search for direct targets of Qki5 and elucidate how Qki5 regulates neural stem cell function. Combined with our transcriptome analysis, this mapping analysis yielded a bona fide map of Qki5-RNA interaction at single-nucleotide resolution, the identification of 892 Qki5 direct target genes, and an accurate Qki5-dependent alternative splicing rule in the developing brain. Last, our target gene list provides the first compelling evidence that Qki5 is associated with specific biological events; namely, cell-cell adhesion. This prediction was confirmed by histological analysis of mice in which Qki proteins were genetically ablated, which revealed disruption of the apical surface of the lateral wall in the developing brain. These data collectively indicate that Qki5 regulates communication between neural stem cells by mediating numerous RNA processing events and suggest new links between splicing regulation and neural stem cell states. © 2017 Hayakawa-Yano et al.; Published by Cold Spring Harbor Laboratory Press.

  5. MicroRNA-directed siRNA biogenesis in Caenorhabditis elegans.

    PubMed

    Corrêa, Régis L; Steiner, Florian A; Berezikov, Eugene; Ketting, René F

    2010-04-08

    RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi-related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer.

  6. MicroRNA–Directed siRNA Biogenesis in Caenorhabditis elegans

    PubMed Central

    Corrêa, Régis L.; Steiner, Florian A.; Berezikov, Eugene; Ketting, René F.

    2010-01-01

    RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi–related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer. PMID:20386745

  7. Tristetraprolin inhibits mitochondrial function through suppression of α-Synuclein expression in cancer cells

    PubMed Central

    Vo, Mai-Tram; Choi, Seong Hee; Lee, Ji-Heon; Hong, Chung Hwan; Kim, Jong Soo; Lee, Unn Hwa; Chung, Hyung-Min; Lee, Byung Ju; Park, Jeong Woo; Cho, Wha Ja

    2017-01-01

    Mitochondrial dynamics play critical roles in maintaining mitochondrial functions. Here, we report a novel mechanism for regulation of mitochondrial dynamics mediated by tristetraprolin (TTP), an AU-rich element (ARE)-binding protein. Overexpression of TTP resulted in elongated mitochondria, down-regulation of mitochondrial oxidative phosphorylation, reduced membrane potential, cytochrome c release, and increased apoptotic cell death in cancer cells. TTP overexpression inhibited the expression of α-Synuclein (α-Syn). TTP bound to the ARE within the mRNA 3′-untranslated regions (3′-UTRs) of α-Syn and enhanced the decay of α-Syn mRNA. Overexpression of α-Syn without the 3′-UTR restored TTP-induced defects in mitochondrial morphology, mitochondrial oxidative phosphorylation, membrane potential, and apoptotic cell death. Taken together, our data demonstrate that TTP acts as a regulator of mitochondrial dynamics through enhancing degradation of α-Syn mRNA in cancer cells. This finding will increase understanding of the molecular basis of mitochondrial dynamics. PMID:28410208

  8. Extracellular Vesicle-Associated RNA as a Carrier of Epigenetic Information

    PubMed Central

    2017-01-01

    Post-transcriptional regulation of messenger RNA (mRNA) metabolism and subcellular localization is of the utmost importance both during development and in cell differentiation. Besides carrying genetic information, mRNAs contain cis-acting signals (zip codes), usually present in their 5′- and 3′-untranslated regions (UTRs). By binding to these signals, trans-acting factors, such as RNA-binding proteins (RBPs), and/or non-coding RNAs (ncRNAs), control mRNA localization, translation and stability. RBPs can also form complexes with non-coding RNAs of different sizes. The release of extracellular vesicles (EVs) is a conserved process that allows both normal and cancer cells to horizontally transfer molecules, and hence properties, to neighboring cells. By interacting with proteins that are specifically sorted to EVs, mRNAs as well as ncRNAs can be transferred from cell to cell. In this review, we discuss the mechanisms underlying the sorting to EVs of different classes of molecules, as well as the role of extracellular RNAs and the associated proteins in altering gene expression in the recipient cells. Importantly, if, on the one hand, RBPs play a critical role in transferring RNAs through EVs, RNA itself could, on the other hand, function as a carrier to transfer proteins (i.e., chromatin modifiers, and transcription factors) that, once transferred, can alter the cell’s epigenome. PMID:28937658

  9. Nucleolin Mediates MicroRNA-directed CSF-1 mRNA Deadenylation but Increases Translation of CSF-1 mRNA*

    PubMed Central

    Woo, Ho-Hyung; Baker, Terri; Laszlo, Csaba; Chambers, Setsuko K.

    2013-01-01

    CSF-1 mRNA 3′UTR contains multiple unique motifs, including a common microRNA (miRNA) target in close proximity to a noncanonical G-quadruplex and AU-rich elements (AREs). Using a luciferase reporter system fused to CSF-1 mRNA 3′UTR, disruption of the miRNA target region, G-quadruplex, and AREs together dramatically increased reporter RNA levels, suggesting important roles for these cis-acting regulatory elements in the down-regulation of CSF-1 mRNA. We find that nucleolin, which binds both G-quadruplex and AREs, enhances deadenylation of CSF-1 mRNA, promoting CSF-1 mRNA decay, while having the capacity to increase translation of CSF-1 mRNA. Through interaction with the CSF-1 3′UTR miRNA common target, we find that miR-130a and miR-301a inhibit CSF-1 expression by enhancing mRNA decay. Silencing of nucleolin prevents the miRNA-directed mRNA decay, indicating a requirement for nucleolin in miRNA activity on CSF-1 mRNA. Downstream effects followed by miR-130a and miR-301a inhibition of directed cellular motility of ovarian cancer cells were found to be dependent on nucleolin. The paradoxical effects of nucleolin on miRNA-directed CSF-1 mRNA deadenylation and on translational activation were explored further. The nucleolin protein contains four acidic stretches, four RNA recognition motifs (RRMs), and nine RGG repeats. All three domains in nucleolin regulate CSF-1 mRNA and protein levels. RRMs increase CSF-1 mRNA, whereas the acidic and RGG domains decrease CSF-1 protein levels. This suggests that nucleolin has the capacity to differentially regulate both CSF-1 RNA and protein levels. Our finding that nucleolin interacts with Ago2 indirectly via RNA and with poly(A)-binding protein C (PABPC) directly suggests a nucleolin-Ago2-PABPC complex formation on mRNA. This complex is in keeping with our suggestion that nucleolin may work with PABPC as a double-edged sword on both mRNA deadenylation and translational activation. Our findings underscore the complexity of nucleolin's actions on CSF-1 mRNA and describe the dependence of miR-130a- and miR-301a-directed CSF-1 mRNA decay and inhibition of ovarian cancer cell motility on nucleolin. PMID:23471483

  10. Expression pattern of the type 1 sigma receptor in the brain and identity of critical anionic amino acid residues in the ligand-binding domain of the receptor.

    PubMed

    Seth, P; Ganapathy, M E; Conway, S J; Bridges, C D; Smith, S B; Casellas, P; Ganapathy, V

    2001-07-25

    The type 1 sigma receptor (sigmaR1) has been shown to participate in a variety of functions in the central nervous system. To identify the specific regions of the brain that are involved in sigmaR1 function, we analyzed the expression pattern of the receptor mRNA in the mouse brain by in situ hybridization. SigmaR1 mRNA was detectable primarily in the cerebral cortex, hippocampus, and Purkinje cells of cerebellum. To identify the critical anionic amino acid residues in the ligand-binding domain of sigmaR1, we employed two different approaches: chemical modification of anionic amino acid residues and site-directed mutagenesis. Chemical modification of anionic amino acids in sigmaR1 with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide reduced the ligand-binding activity markedly. Since it is known that a splice variant of this receptor which lacks exon 3 does not have the ability to bind sigma ligands, the ligand-binding domain with its critical anionic amino acid residues is likely to be present in or around the region coded by exon 3. Therefore, each of the anionic amino acids in this region was mutated individually and the influence of each mutation on ligand binding was assessed. These studies have identified two anionic amino acids, D126 and E172, that are obligatory for ligand binding. Even though the ligand-binding function was abolished by these two mutations, the expression of these mutants was normal at the protein level. These results show that sigmaR1 is expressed at high levels in specific areas of the brain that are involved in memory, emotion and motor functions. The results also provide important information on the chemical nature of the ligand-binding site of sigmaR1 that may be of use in the design of sigmaR1-specific ligands with potential for modulation of sigmaR1-related brain functions.

  11. CK2 Is Responsible for Phosphorylation of Human La Protein Serine-366 and Can Modulate rpL37 5′-Terminal Oligopyrimidine mRNA Metabolism

    PubMed Central

    Schwartz, Elena I.; Intine, Robert V.; Maraia, Richard J.

    2004-01-01

    La protein binds precursors to 5S rRNA, tRNAs, and other transcripts that contain 3′ UUU-OH and also promotes their maturation in the nucleus. Separate from this function, human La has been shown to positively modulate the translation of mRNAs that contain complex 5′ regulatory motifs that direct internal initiation of translation. Nonphosphorylated La (npLa) inhibits pre-tRNA processing, while phosphorylation of human La serine-366 (S366) promotes pre-tRNA processing. npLa was found specifically associated with a class of mRNAs that have unusually short 5′ untranslated regions comprised of terminal oligopyrimidine (5′TOP) tracts and that encode ribosomal proteins and translation elongation factors. Although La S366 represents a CK2 phosphorylation site, there was no evidence that CK2 phosphorylates it in vivo. We used the CK2-specific inhibitor, 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), and antisense-mediated knockdown to demonstrate that CK2 is responsible for La S366 phosphorylation in vivo. Hypophosphorylation was not associated with significant change in total La levels or proteolytic cleavage. Quantitative reverse transcription-PCR revealed increased association of the 5′TOP-mRNA encoding ribosomal protein L37 (rpL37) with La after TBB treatment. Transfection revealed more rpL37 mRNA associated with nonphosphorylatable La A366 than with La S366, concomitant with La A366-specific shift of a fraction of L37 mRNA off polysomes. The data indicate that CK2 phosphorylates La S366 in vivo, that this limits 5′TOP mRNA binding, and that increasing npLa leads to greater association with potentially negative effects on TOP mRNA translation. Consistent with data that indicate that phosphorylation reverses negative effects of npLa on tRNA production, the present data suggest that CK2 phosphorylation of La can affect production of the translational machinery. PMID:15485924

  12. Diauxic shift-dependent relocalization of decapping activators Dhh1 and Pat1 to polysomal complexes

    PubMed Central

    Drummond, Sheona P.; Hildyard, John; Firczuk, Helena; Reamtong, Onrapak; Li, Ning; Kannambath, Shichina; Claydon, Amy J.; Beynon, Robert J.; Eyers, Claire E.; McCarthy, John E. G.

    2011-01-01

    Dhh1 and Pat1 in yeast are mRNA decapping activators/translational repressors thought to play key roles in the transition of mRNAs from translation to degradation. However, little is known about the physical and functional relationships between these proteins and the translation machinery. We describe a previously unknown type of diauxic shift-dependent modulation of the intracellular locations of Dhh1 and Pat1. Like the formation of P bodies, this phenomenon changes the spatial relationship between components involved in translation and mRNA degradation. We report significant spatial separation of Dhh1 and Pat1 from ribosomes in exponentially growing cells. Moreover, biochemical analyses reveal that these proteins are excluded from polysomal complexes in exponentially growing cells, indicating that they may not be associated with active states of the translation machinery. In contrast, under diauxic growth shift conditions, Dhh1 and Pat1 are found to co-localize with polysomal complexes. This work suggests that Dhh1 and Pat1 functions are modulated by a re-localization mechanism that involves eIF4A. Pull-down experiments reveal that the intracellular binding partners of Dhh1 and Pat1 change as cells undergo the diauxic growth shift. This reveals a new dimension to the relationship between translation activity and interactions between mRNA, the translation machinery and decapping activator proteins. PMID:21712243

  13. The effect of water deprivation on the tonicity responsive enhancer binding protein (TonEBP) and TonEBP-regulated genes in the kidney of the Spinifex hopping mouse, Notomys alexis.

    PubMed

    Bartolo, Ray C; Donald, John A

    2008-03-01

    In desert rodents, the production of concentrated urine is essential for survival in xeric environments in order to conserve water. Reabsorption of water in the kidney is dependent on large osmotic gradients in the renal medulla. This causes the renal cells to be bathed in a hypertonic extracellular fluid that can compromise cellular function. In response to hypertonicity, kidney cells accumulate compatible, non-ionic osmolytes that lower the ionic strength within the cells to isotonic levels by replacing intracellular ionic electrolytes. The tonicity-responsive enhancer binding protein (TonEBP) is a transcription factor that regulates the expression of genes that encode proteins that catalyse the accumulation of compatible osmolytes. We investigated the expression of TonEBP mRNA and protein and compatible osmolyte genes in the Spinifex hopping mouse, Notomys alexis, an Australian desert rodent that produces a highly concentrated urine. TonEBP mRNA expression was unchanged after 3 days of water deprivation but was significantly increased after 7 and 14 days of water deprivation. Immunohistochemistry showed that during water deprivation TonEBP had translocated from the cytoplasm into the nucleus of cells in the renal medulla and papilla. In addition, 3, 7 and 14 days of water deprivation caused a significant increase in aldose reductase (AR), myo-inositol (SMIT), betaine/GABA (BGT-1) and taurine (TauT) transporter mRNA expression, which is indicative of an increase in TonEBP activity. In desert rodents, TonEBP regulation of gene transcription is probably an important mechanism to protect renal cells in the face of the large corticomedullary gradient that is required to concentrate urine and conserve water.

  14. Update: Mechanisms underlying N6-methyladenosine modification of eukaryotic mRNA

    PubMed Central

    Wang, Yang; Zhao, Jing Crystal

    2016-01-01

    Summary Eukaryotic messenger RNA (mRNA) undergoes chemical modification both at the 5′cap [1, 2] and internally [3–14]. Among internal modifications, m6A, by far the most abundant, is present in all eukaryotes examined, including mammals [3–6], flies [15], plants [16, 17] and yeast [18, 19]. m6A modification plays an essential role in diverse biological processes. Over the past few years, our knowledge relevant to establishment and function of this modification has grown rapidly. This review focuses on technologies that have facilitated m6A detection in mRNAs, identification of m6A methylation enzymes and binding proteins, and potential functions of the modification at the molecular level. Regarding m6A function at cellular or organismal levels or in disease, please refer to other recent reviews [20–23]. PMID:27793360

  15. Matrin 3 binds and stabilizes mRNA.

    PubMed

    Salton, Maayan; Elkon, Ran; Borodina, Tatiana; Davydov, Aleksey; Yaspo, Marie-Laure; Halperin, Eran; Shiloh, Yosef

    2011-01-01

    Matrin 3 (MATR3) is a highly conserved, inner nuclear matrix protein with two zinc finger domains and two RNA recognition motifs (RRM), whose function is largely unknown. Recently we found MATR3 to be phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Here, we show that MATR3 interacts in an RNA-dependent manner with several proteins with established roles in RNA processing, and maintains its interaction with RNA via its RRM2 domain. Deep sequencing of the bound RNA (RIP-seq) identified several small noncoding RNA species. Using microarray analysis to explore MATR3's role in transcription, we identified 77 transcripts whose amounts depended on the presence of MATR3. We validated this finding with nine transcripts which were also bound to the MATR3 complex. Finally, we demonstrated the importance of MATR3 for maintaining the stability of several of these mRNA species and conclude that it has a role in mRNA stabilization. The data suggest that the cellular level of MATR3, known to be highly regulated, modulates the stability of a group of gene transcripts.

  16. Matrin 3 Binds and Stabilizes mRNA

    PubMed Central

    Salton, Maayan; Elkon, Ran; Borodina, Tatiana; Davydov, Aleksey; Yaspo, Marie-Laure; Halperin, Eran; Shiloh, Yosef

    2011-01-01

    Matrin 3 (MATR3) is a highly conserved, inner nuclear matrix protein with two zinc finger domains and two RNA recognition motifs (RRM), whose function is largely unknown. Recently we found MATR3 to be phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Here, we show that MATR3 interacts in an RNA-dependent manner with several proteins with established roles in RNA processing, and maintains its interaction with RNA via its RRM2 domain. Deep sequencing of the bound RNA (RIP-seq) identified several small noncoding RNA species. Using microarray analysis to explore MATR3′s role in transcription, we identified 77 transcripts whose amounts depended on the presence of MATR3. We validated this finding with nine transcripts which were also bound to the MATR3 complex. Finally, we demonstrated the importance of MATR3 for maintaining the stability of several of these mRNA species and conclude that it has a role in mRNA stabilization. The data suggest that the cellular level of MATR3, known to be highly regulated, modulates the stability of a group of gene transcripts. PMID:21858232

  17. Whi3, an S. cerevisiae RNA-binding protein, is a component of stress granules that regulates levels of its target mRNAs.

    PubMed

    Holmes, Kristen J; Klass, Daniel M; Guiney, Evan L; Cyert, Martha S

    2013-01-01

    RNA binding proteins (RBPs) are vital to the regulation of mRNA transcripts, and can alter mRNA localization, degradation, translation, and storage. Whi3 was originally identified in a screen for small cell size mutants, and has since been characterized as an RBP. The identification of Whi3-interacting mRNAs involved in mediating cellular responses to stress suggested that Whi3 might be involved in stress-responsive RNA processing. We show that Whi3 localizes to stress granules in response to glucose deprivation or heat shock. The kinetics and pattern of Whi3 localization in response to a range of temperatures were subtly but distinctly different from those of known components of RNA processing granules. Deletion of Whi3 resulted in an increase in the relative abundance of Whi3 target RNAs, either in the presence or absence of heat shock. Increased levels of the CLN3 mRNA in whi3Δ cells may explain their decreased cell size. Another mRNA target of Whi3 encodes the zinc-responsive transcription factor Zap1, suggesting a role for Whi3 in response to zinc stress. Indeed, we found that whi3Δ cells have enhanced sensitivity to zinc toxicity. Together our results suggest an expanded model for Whi3 function: in addition to its role as a regulator of the cell cycle, Whi3 may have a role in stress-dependent RNA processing and responses to a variety of stress conditions.

  18. Suppression of HPV-16 late L1 5′-splice site SD3632 by binding of hnRNP D proteins and hnRNP A2/B1 to upstream AUAGUA RNA motifs

    PubMed Central

    Li, Xiaoze; Johansson, Cecilia; Glahder, Jacob; Mossberg, Ann-Kristin; Schwartz, Stefan

    2013-01-01

    Human papillomavirus type 16 (HPV-16) 5′-splice site SD3632 is used exclusively to produce late L1 mRNAs. We identified a 34-nt splicing inhibitory element located immediately upstream of HPV-16 late 5′-splice site SD3632. Two AUAGUA motifs located in these 34 nt inhibited SD3632. Two nucleotide substitutions in each of the HPV-16 specific AUAGUA motifs alleviated splicing inhibition and induced late L1 mRNA production from episomal forms of the HPV-16 genome in primary human keratinocytes. The AUAGUA motifs bind specifically not only to the heterogeneous nuclear RNP (hnRNP) D family of RNA-binding proteins including hnRNP D/AUF, hnRNP DL and hnRNP AB but also to hnRNP A2/B1. Knock-down of these proteins induced HPV-16 late L1 mRNA expression, and overexpression of hnRNP A2/B1, hnRNP AB, hnRNP DL and the two hnRNP D isoforms hnRNP D37 and hnRNP D40 further suppressed L1 mRNA expression. This inhibition may allow HPV-16 to hide from the immune system and establish long-term persistent infections with enhanced risk at progressing to cancer. There is an inverse correlation between expression of hnRNP D proteins and hnRNP A2/B1 and HPV-16 L1 production in the cervical epithelium, as well as in cervical cancer, supporting the conclusion that hnRNP D proteins and A2/B1 inhibit HPV-16 L1 mRNA production. PMID:24013563

  19. Regulatory RNA binding proteins contribute to the transcriptome-wide splicing alterations in human cellular senescence.

    PubMed

    Dong, Qiongye; Wei, Lei; Zhang, Michael Q; Wang, Xiaowo

    2018-06-24

    Dysregulation of mRNA splicing has been observed in certain cellular senescence process. However, the common splicing alterations on the whole transcriptome shared by various types of senescence are poorly understood. In order to systematically identify senescence-associated transcriptomic changes in genome-wide scale, we collected RNA sequencing datasets of different human cell types with a variety of senescence-inducing methods from public databases and performed meta-analysis. First, we discovered that a group of RNA binding proteins were consistently down-regulated in diverse senescent samples and identified 406 senescence-associated common differential splicing events. Then, eight differentially expressed RNA binding proteins were predicted to regulate these senescence-associated splicing alterations through an enrichment analysis of their RNA binding information, including motif scanning and enhanced cross-linking immunoprecipitation data. In addition, we constructed the splicing regulatory modules that might contribute to senescence-associated biological processes. Finally, it was confirmed that knockdown of the predicted senescence-associated potential splicing regulators through shRNAs in HepG2 cell line could result in senescence-like splicing changes. Taken together, our work demonstrated a broad range of common changes in mRNA splicing switches and detected their central regulatory RNA binding proteins during senescence. These findings would help to better understand the coordinating splicing alterations in cellular senescence.

  20. Molecular and biochemical characterization of calmodulin from Echinococcus granulosus.

    PubMed

    Wang, Ning; Zhong, Xiuqin; Song, Xingju; Gu, Xiaobin; Lai, Weiming; Xie, Yue; Peng, Xuerong; Yang, Guangyou

    2017-12-04

    Echinococcus granulosus is a harmful cestode parasite that causes cystic echinococcosis in humans as well as various livestock species and wild animals. Calmodulin (CaM), a Ca 2+ sensor protein, is widely expressed in eukaryotes and mediates a variety of cellular signaling activities. In the present study, the cDNA encoding CaM in Echinococcus granulosus (rEgCaM) was successfully cloned and the molecular and biochemical characterizations carried out. The antigenicity and immunoreactivity of rEgCaM was detected and the preliminary enzyme-linked immunosorbent assay (ELISA)-based serodiagnostic potential of EgCaM was assessed. The locations of this protein in the adult worm and larval stage, and the mRNA expression in different states of E. granulosus protoscoleces (PSCs) were defined clearly. Moreover, the Ca 2+ -binding properties of EgCaM were measured. rEgCaM is a highly conserved calcium-binding protein, consisting of 149 amino acids. Immunoblotting analysis revealed that rEgCaM could be identified using E. granulosus infected sheep serum. The use of rEgCaM as an antigen was evaluated by indirect ELISA which exhibited a high sensitivity (90.3%), but low specificity (47.1%). rEgCaM was ubiquitously expressed in protoscoleces and adults of E. granulosus, as well as in the germinal layer of the cyst wall. The mRNA expression level of rEgCaM was increased from the start of H 2 O 2 exposure and then gradually decreased because of the increased apoptosis of PSCs. In electrophoretic mobility tests and 1-anilinonaphthalene-8-sulfonic acid assays, rEgCaM showed a typical characteristic of a calcium-binding protein. To our knowledge, this is the first report on CaM from E. granulosus and rEgCaM is likely to be involved in some important biological function of E. granulosus as a calcium-binding protein.

  1. Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.

    PubMed

    Theil, Elizabeth C; Tosha, Takehiko; Behera, Rabindra K

    2016-05-17

    Ferritins reversibly synthesize iron-oxy(ferrihydrite) biominerals inside large, hollow protein nanocages (10-12 nm, ∼480 000 g/mol); the iron biominerals are metabolic iron concentrates for iron protein biosyntheses. Protein cages of 12- or 24-folded ferritin subunits (4-α-helix polypeptide bundles) self-assemble, experimentally. Ferritin biomineral structures differ among animals and plants or bacteria. The basic ferritin mineral structure is ferrihydrite (Fe2O3·H2O) with either low phosphate in the highly ordered animal ferritin biominerals, Fe/PO4 ∼ 8:1, or Fe/PO4 ∼ 1:1 in the more amorphous ferritin biominerals of plants and bacteria. While different ferritin environments, plant bacterial-like plastid organelles and animal cytoplasm, might explain ferritin biomineral differences, investigation is required. Currently, the physiological significance of plant-specific and animal-specific ferritin iron minerals is unknown. The iron content of ferritin in living tissues ranges from zero in "apoferritin" to as high as ∼4500 iron atoms. Ferritin biomineralization begins with the reaction of Fe(2+) with O2 at ferritin enzyme (Fe(2+)/O oxidoreductase) sites. The product of ferritin enzyme activity, diferric oxy complexes, is also the precursor of ferritin biomineral. Concentrations of Fe(3+) equivalent to 2.0 × 10(-1) M are maintained in ferritin solutions, contrasting with the Fe(3+) Ks ∼ 10(-18) M. Iron ions move into, through, and out of ferritin protein cages in structural subdomains containing conserved amino acids. Cage subdomains include (1) ion channels for Fe(2+) entry/exit, (2) enzyme (oxidoreductase) site for coupling Fe(2+) and O yielding diferric oxy biomineral precursors, and (3) ferric oxy nucleation channels, where diferric oxy products from up to three enzyme sites interact while moving toward the central, biomineral growth cavity (12 nm diameter) where ferric oxy species, now 48-mers, grow in ferric oxy biomineral. High ferritin protein cage symmetry (3-fold and 4-fold axes) and amino acid conservation coincide with function, shown by amino acid substitution effects. 3-Fold symmetry axes control Fe(2+) entry (enzyme catalysis of Fe(2+)/O2 oxidoreduction) and Fe(2+) exit (reductive ferritin mineral dissolution); 3-fold symmetry axes influence Fe(2+)exit from dissolved mineral; bacterial ferritins diverge slightly in Fe/O2 reaction mechanisms and intracage paths of iron-oxy complexes. Biosynthesis rates of ferritin protein change with Fe(2+) and O2 concentrations, dependent on DNA-binding, and heme binding protein, Bach 1. Increased cellular O2 indirectly stabilizes ferritin DNA/Bach 1 interactions. Heme, Fe-protoporphyrin IX, decreases ferritin DNA-Bach 1 binding, causing increased ferritin mRNA biosynthesis (transcription). Direct Fe(2+) binding to ferritin mRNA decreases binding of an inhibitory protein, IRP, causing increased ferritin mRNA translation (protein biosynthesis). Newly synthesized ferritin protein consumes Fe(2+) in biomineral, decreasing Fe(2)(+) and creating a regulatory feedback loop. Ferritin without iron is "apoferritin". Iron removal from ferritin, experimentally, uses biological reductants, for example, NADH + FMN, or chemical reductants, for example, thioglycolic acid, with Fe(2+) chelators; physiological mechanism(s) are murky. Clear, however, is the necessity of ferritin for terrestrial life by conferring oxidant protection (plants, animals, and bacteria), virulence (bacteria), and embryonic survival (mammals). Future studies of ferritin structure/function and Fe(2+)/O2 chemistry will lead to new ferritin uses in medicine, nutrition, and nanochemistry.

  2. Transgenic Expression of ZBP1 in Neurons Suppresses Cocaine-Associated Conditioning

    ERIC Educational Resources Information Center

    Lapidus, Kyle A. B.; Nwokafor, Chiso; Scott, Daniel; Baroni, Timothy E.; Tenenbaum, Scott A.; Hiroi, Noboru; Singer, Robert H.; Czaplinski, Kevin

    2012-01-01

    To directly address whether regulating mRNA localization can influence animal behavior, we created transgenic mice that conditionally express Zipcode Binding Protein 1 (ZBP1) in a subset of neurons in the brain. ZBP1 is an RNA-binding protein that regulates the localization, as well as translation and stability of target mRNAs in the cytoplasm. We…

  3. Insulin-like growth factor-I increases bone sialoprotein (BSP) expression through fibroblast growth factor-2 response element and homeodomain protein-binding site in the proximal promoter of the BSP gene.

    PubMed

    Nakayama, Youhei; Nakajima, Yu; Kato, Naoko; Takai, Hideki; Kim, Dong-Soon; Arai, Masato; Mezawa, Masaru; Araki, Shouta; Sodek, Jaro; Ogata, Yorimasa

    2006-08-01

    Insulin-like growth factor-I (IGF-I) promotes bone formation by stimulating proliferation and differentiation of osteoblasts. Bone sialoprotein (BSP), is thought to function in the initial mineralization of bone, is selectively expressed by differentiated osteoblast. To determine the molecular mechanism of IGF-I regulation of osteogenesis, we analyzed the effects of IGF-I on the expression of BSP in osteoblast-like Saos2 and in rat stromal bone marrow (RBMC-D8) cells. IGF-I (50 ng/ml) increased BSP mRNA levels at 12 h in Saos2 cells. In RBMC-D8 cells, IGF-I increased BSP mRNA levels at 3 h. From transient transfection assays, a twofold increase in transcription by IGF-I was observed at 12 h in pLUC3 construct that included the promoter sequence from -116 to +60. Effect of IGF-I was abrogated by 2-bp mutations in either the FGF2 response element (FRE) or homeodomain protein-binding site (HOX). Gel shift analyses showed that IGF-I increased binding of nuclear proteins to the FRE and HOX elements. Notably, the HOX-protein complex was supershifted by Smad1 antibody, while the FRE-protein complex was shifted by Smad1 and Cbfa1 antibodies. Dlx2 and Dlx5 antibodies disrupted the formation of the FRE- and HOX-protein complexes. The IGF-I effects on the formation of FRE-protein complexes were abolished by tyrosine kinase inhibitor herbimycin A (HA), PI3-kinase/Akt inhibitor LY249002, and MAP kinase kinase inhibitor U0126, while IGF-I effects on HOX-protein complexes were abolished by HA and LY249002. These studies demonstrate that IGF-I stimulates BSP transcription by targeting the FRE and HOX elements in the proximal promoter of BSP gene.

  4. miRNA Enriched in Human Neuroblast Nuclei Bind the MAZ Transcription Factor and Their Precursors Contain the MAZ Consensus Motif.

    PubMed

    Goldie, Belinda J; Fitzsimmons, Chantel; Weidenhofer, Judith; Atkins, Joshua R; Wang, Dan O; Cairns, Murray J

    2017-01-01

    While the cytoplasmic function of microRNA (miRNA) as post-transcriptional regulators of mRNA has been the subject of significant research effort, their activity in the nucleus is less well characterized. Here we use a human neuronal cell model to show that some mature miRNA are preferentially enriched in the nucleus. These molecules were predominantly primate-specific and contained a sequence motif with homology to the consensus MAZ transcription factor binding element. Precursor miRNA containing this motif were shown to have affinity for MAZ protein in nuclear extract. We then used Ago1/2 RIP-Seq to explore nuclear miRNA-associated mRNA targets. Interestingly, the genes for Ago2-associated transcripts were also significantly enriched with MAZ binding sites and neural function, whereas Ago1-transcripts were associated with general metabolic processes and localized with SC35 spliceosomes. These findings suggest the MAZ transcription factor is associated with miRNA in the nucleus and may influence the regulation of neuronal development through Ago2-associated miRNA induced silencing complexes. The MAZ transcription factor may therefore be important for organizing higher order integration of transcriptional and post-transcriptional processes in primate neurons.

  5. Molecular composition of staufen2-containing ribonucleoproteins in embryonic rat brain.

    PubMed

    Maher-Laporte, Marjolaine; Berthiaume, Frédéric; Moreau, Mireille; Julien, Louis-André; Lapointe, Gabriel; Mourez, Michael; DesGroseillers, Luc

    2010-06-28

    Messenger ribonucleoprotein particles (mRNPs) are used to transport mRNAs along neuronal dendrites to their site of translation. Numerous mRNA-binding and regulatory proteins within mRNPs finely regulate the fate of bound-mRNAs. Their specific combination defines different types of mRNPs that in turn are related to specific synaptic functions. One of these mRNA-binding proteins, Staufen2 (Stau2), was shown to transport dendritic mRNAs along microtubules. Its knockdown expression in neurons was shown to change spine morphology and synaptic functions. To further understand the molecular mechanisms by which Stau2 modulates synaptic function in neurons, it is important to identify and characterize protein co-factors that regulate the fate of Stau2-containing mRNPs. To this end, a proteomic approach was used to identify co-immunoprecipitated proteins in Staufen2-containing mRNPs isolated from embryonic rat brains. The proteomic approach identified mRNA-binding proteins (PABPC1, hnRNP H1, YB1 and hsc70), proteins of the cytoskeleton (alpha- and beta-tubulin) and RUFY3 a poorly characterized protein. While PABPC1 and YB1 associate with Stau2-containing mRNPs through RNAs, hsc70 is directly bound to Stau2 and this interaction is regulated by ATP. PABPC1 and YB1 proteins formed puncta in dendrites of embryonic rat hippocampal neurons. However, they poorly co-localized with Stau2 in the large dendritic complexes suggesting that they are rather components of Stau2-containing mRNA particles. All together, these results represent a further step in the characterization of Stau2-containing mRNPs in neurons and provide new tools to study and understand how Stau2-containing mRNPs are transported, translationally silenced during transport and/or locally expressed according to cell needs.

  6. A universal strategy for regulating mRNA translation in prokaryotic and eukaryotic cells.

    PubMed

    Cao, Jicong; Arha, Manish; Sudrik, Chaitanya; Mukherjee, Abhirup; Wu, Xia; Kane, Ravi S

    2015-04-30

    We describe a simple strategy to control mRNA translation in both prokaryotic and eukaryotic cells which relies on a unique protein-RNA interaction. Specifically, we used the Pumilio/FBF (PUF) protein to repress translation by binding in between the ribosome binding site (RBS) and the start codon (in Escherichia coli), or by binding to the 5' untranslated region of target mRNAs (in mammalian cells). The design principle is straightforward, the extent of translational repression can be tuned and the regulator is genetically encoded, enabling the construction of artificial signal cascades. We demonstrate that this approach can also be used to regulate polycistronic mRNAs; such regulation has rarely been achieved in previous reports. Since the regulator used in this study is a modular RNA-binding protein, which can be engineered to target different 8-nucleotide RNA sequences, our strategy could be used in the future to target endogenous mRNAs for regulating metabolic flows and signaling pathways in both prokaryotic and eukaryotic cells. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo.

    PubMed

    Yaguchi, Shunsuke; Yaguchi, Junko; Inaba, Kazuo

    2014-10-31

    bicaudal-C (bicC) mRNA encodes a protein containing RNA-binding domains that is reported to be maternally present with deflection in the oocytes/eggs of some species. The translated protein plays a critical role in the regulation of cell fate specification along the body axis during early embryogenesis in flies and frogs. However, it is unclear how it functions in eggs in which bicC mRNA is uniformly distributed, for instance, sea urchin eggs. Here, we show the function of BicC in the formation of neurogenic ectoderm of the sea urchin embryo. Loss-of-function experiments reveal that BicC is required for serotonergic neurogenesis and for expression of ankAT-1 gene, which is essential for the formation of apical tuft cilia in the neurogenic ectoderm of the sea urchin embryo. In contrast, the expression of FoxQ2, the neurogenic ectoderm specification transcription factor, is invariant in BicC morphants. Because FoxQ2 is an upstream factor of serotonergic neurogenesis and ankAT-1 expression, these data indicate that BicC functions in regulating the events that are coordinated by FoxQ2 during sea urchin embryogenesis.

  8. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions

    NASA Technical Reports Server (NTRS)

    Chicurel, M. E.; Singer, R. H.; Meyer, C. J.; Ingber, D. E.

    1998-01-01

    The extracellular matrix (ECM) activates signalling pathways that control cell behaviour by binding to cell-surface integrin receptors and inducing the formation of focal adhesion complexes (FACs). In addition to clustered integrins, FACs contain proteins that mechanically couple the integrins to the cytoskeleton and to immobilized signal-transducing molecules. Cell adhesion to the ECM also induces a rapid increase in the translation of preexisting messenger RNAs. Gene expression can be controlled locally by targeting mRNAs to specialized cytoskeletal domains. Here we investigate whether cell binding to the ECM promotes formation of a cytoskeletal microcompartment specialized for translational control at the site of integrin binding. High-resolution in situ hybridization revealed that mRNA and ribosomes rapidly and specifically localized to FACs that form when cells bind to ECM-coated microbeads. Relocation of these protein synthesis components to the FAC depended on the ability of integrins to mechanically couple the ECM to the contractile cytoskeleton and on associated tension-moulding of the actin lattice. Our results suggest a new type of gene regulation by integrins and by mechanical stress which may involve translation of mRNAs into proteins near the sites of signal reception.

  9. [ABIN1 is not involved in imatinib upregulating A20 to inhibit the activation of NF-κB pathway in Jurkat T cells].

    PubMed

    Chen, Qian; Wang, Senlin; Lin, Chen; Chen, Shaohua; Zhao, Xiaoling; Li, Yangqiu

    2017-05-01

    Objective To investigate the effect of imatinib (IM) on the expressions of A20-binding inhibitor of NF-κB1 (ABIN1) and A20 in Jurkat T cells. Methods Jurkat T cells were treated with 25, 50 and 100 nmol/L IM for 24 hours. The mRNA and protein levels of ABIN1, A20 and NF-κB were detected by real-time quantitative PCR and Western blotting. Results IM significantly inhibited both mRNA and protein levels of ABIN1 and NF-κB, but raised the mRNA and protein levels of A20; while phorbol 12-myristate 13-acetate/ionomycin increased the expression levels of ABIN1 and A20 mRNA and protein. Conclusion IM could upregulate A20 protein to inhibit the activation of NF-κB pathway in Jurkat T cells, which was independent of the ABIN1 protein.

  10. Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila

    DOE PAGES

    Stoiber, Marcus H.; Olson, Sara; May, Gemma E.; ...

    2015-08-20

    In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified “high occupancy target” (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteinsmore » and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. Lastly, from the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.« less

  11. Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoiber, Marcus H.; Olson, Sara; May, Gemma E.

    In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified “high occupancy target” (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteinsmore » and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. Lastly, from the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.« less

  12. Molecular characterization and expression analysis of Lily-type lectin ( SmLTL) in turbot Scophthalmus maximus, and its response to Vibrio anguillarum

    NASA Astrophysics Data System (ADS)

    Xia, Dandan; Ma, Aijun; Huang, Zhihui; Shang, Xiaomei; Cui, Wenxiao; Yang, Zhi; Qu, Jiangbo

    2018-03-01

    A full-length lily-type lectin ( SmLTL) was identified from turbot ( Scophthalmus maximus) in this study. By searching database for protein identification and function prediction, SmLTL were confirmed. The full-length cDNA of SmLTL is composed of 569 bp and contains a 339 bp ORF that encodes 112 amino acid residues. The SmLTL peptide is characterized by a specific β-prism architecture and contains three mannose binding sites in a three-fold internal repeat between amino acids 30-99; two of the repeats share the classical mannose binding domain (QxDxNxVxY) while the third binding site was similar to other fish-specific binding motifs (TxTxGxRxV). The primary, secondary, and tertiary structures of SmLTL were predicted and analyzed, indicating that the SmLTL protein was hydrophilic, contained 5.36% α-helices, 39.29% extended strands, 16.07% β-folds, and 39.29% random coils, and three β-folds. Quantitative realtime polymerase chain reaction (qPCR) analysis revealed that the SmLTL mRNA was abundantly expressed in skin, gill, and intestine. Low levels of SmLTL expression were observed in other tissues. The expression of SmLTL in gill, skin and intestine increased at mRNA level after stimulation of Vibrio anguillarum, our results suggest that SmLTL serve as the first line of defence against microbial infections and play a pivotal role in the innate mucosal immune system. The current study indicates that SmLTL is a member of the lilytype lectin family and the information reported here will provide an important foundation for future research on the role of this protein.

  13. Transient Expression of an LEDGF/p75 Chimera Retargets Lentivector Integration and Functionally Rescues in a Model for X-CGD.

    PubMed

    Vets, Sofie; De Rijck, Jan; Brendel, Christian; Grez, Manuel; Bushman, Frederic; Debyser, Zeger; Gijsbers, Rik

    2013-03-05

    Retrovirus-based vectors are commonly used as delivery vehicles to correct genetic diseases because of their ability to integrate new sequences stably. However, adverse events in which vector integration activates proto-oncogenes, leading to clonal expansion and leukemogenesis hamper their application. The host cell-encoded lens epithelium-derived growth factor (LEDGF/p75) binds lentiviral integrase and targets integration to active transcription units. We demonstrated earlier that replacing the LEDGF/p75 chromatin interaction domain with an alternative DNA-binding protein could retarget integration. Here, we show that transient expression of the chimeric protein using mRNA electroporation efficiently redirects lentiviral vector (LV) integration in wild-type (WT) cells. We then employed this technology in a model for X-linked chronic granulomatous disease (X-CGD) using myelomonocytic PLB-985 gp91(-/-) cells. Following electroporation with mRNA encoding the LEDGF-chimera, the cells were treated with a therapeutic lentivector encoding gp91(phox). Integration site analysis revealed retargeted integration away from genes and towards heterochromatin-binding protein 1β (CBX1)-binding sites, in regions enriched in marks associated with gene silencing. Nevertheless, gp91(phox) expression was stable for at least 6 months after electroporation and NADPH-oxidase activity was restored to normal levels as determined by superoxide production. Together, these data provide proof-of-principle that transient expression of engineered LEDGF-chimera can retarget lentivector integration and rescues the disease phenotype in a cell model, opening perspectives for safer gene therapy.Molecular Therapy - Nucleic Acids (2013) 2, e77; doi:10.1038/mtna.2013.4; published online 5 March 2013.

  14. A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes

    PubMed Central

    Furic, Luc; Maher-Laporte, Marjolaine; DesGroseillers, Luc

    2008-01-01

    Messenger RNAs are associated with multiple RNA-binding proteins to form ribonucleoprotein (mRNP) complexes. These proteins are important regulators of the fate of their target mRNAs. In human cells, Staufen1 and Staufen2 proteins, coded by two different genes, are double-stranded RNA-binding proteins involved in several cellular functions including mRNA localization, translation, and decay. Although 51% identical, these proteins are nevertheless found in different RNA particles. In addition, differential splicing events generate Staufen2 isoforms that only differ at their N-terminal extremities. In this paper, we used a genome-wide approach to identify and compare the mRNA targets of mammalian Staufen proteins. The mRNA content of Staufen mRNPs was identified by probing DNA microarrays with probes derived from mRNAs isolated from immunopurified Staufen-containing complexes following transfection of HEK293T cells with Stau155-HA, Stau259-HA, or Stau262-HA expressors. Our results indicate that 7% and 11% of the cellular RNAs expressed in HEK293T cells are found in Stau1- and in Stau2-containing mRNPs, respectively. A comparison of Stau1- and Stau2-containing mRNAs identifies a relatively low percentage of common mRNAs; the percentage of common mRNAs highly increases when mRNAs in Stau259-HA- and Stau262-containing mRNPs are compared. There is a predominance of mRNAs involved in cell metabolism, transport, transcription, regulation of cell processes, and catalytic activity. All these subsets of mRNAs are mostly distinct from those associated with FMRP or IMP, although some mRNAs overlap. Consistent with a model of post-transcriptionnal gene regulation, our results show that Stau1- and Stau2-mRNPs associate with distinct but overlapping sets of cellular mRNAs. PMID:18094122

  15. A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes.

    PubMed

    Furic, Luc; Maher-Laporte, Marjolaine; DesGroseillers, Luc

    2008-02-01

    Messenger RNAs are associated with multiple RNA-binding proteins to form ribonucleoprotein (mRNP) complexes. These proteins are important regulators of the fate of their target mRNAs. In human cells, Staufen1 and Staufen2 proteins, coded by two different genes, are double-stranded RNA-binding proteins involved in several cellular functions including mRNA localization, translation, and decay. Although 51% identical, these proteins are nevertheless found in different RNA particles. In addition, differential splicing events generate Staufen2 isoforms that only differ at their N-terminal extremities. In this paper, we used a genome-wide approach to identify and compare the mRNA targets of mammalian Staufen proteins. The mRNA content of Staufen mRNPs was identified by probing DNA microarrays with probes derived from mRNAs isolated from immunopurified Staufen-containing complexes following transfection of HEK293T cells with Stau1(55)-HA, Stau2(59)-HA, or Stau2(62)-HA expressors. Our results indicate that 7% and 11% of the cellular RNAs expressed in HEK293T cells are found in Stau1- and in Stau2-containing mRNPs, respectively. A comparison of Stau1- and Stau2-containing mRNAs identifies a relatively low percentage of common mRNAs; the percentage of common mRNAs highly increases when mRNAs in Stau2(59)-HA- and Stau2(62)-containing mRNPs are compared. There is a predominance of mRNAs involved in cell metabolism, transport, transcription, regulation of cell processes, and catalytic activity. All these subsets of mRNAs are mostly distinct from those associated with FMRP or IMP, although some mRNAs overlap. Consistent with a model of post-transcriptional gene regulation, our results show that Stau1- and Stau2-mRNPs associate with distinct but overlapping sets of cellular mRNAs.

  16. IFIT3 and IFIT2/3 promote IFIT1-mediated translation inhibition by enhancing binding to non-self RNA.

    PubMed

    Fleith, Renata C; Mears, Harriet V; Leong, Xin Yun; Sanford, Thomas J; Emmott, Edward; Graham, Stephen C; Mansur, Daniel S; Sweeney, Trevor R

    2018-06-01

    Interferon-induced proteins with tetratricopeptide repeats (IFITs) are highly expressed during the cell-intrinsic immune response to viral infection. IFIT1 inhibits translation by binding directly to the 5' end of foreign RNAs, particularly those with non-self cap structures, precluding the recruitment of the cap-binding eukaryotic translation initiation factor 4F and ribosome recruitment. The presence of IFIT1 imposes a requirement on viruses that replicate in the cytoplasm to maintain mechanisms to avoid its restrictive effects. Interaction of different IFIT family members is well described, but little is known of the molecular basis of IFIT association or its impact on function. Here, we reconstituted different complexes of IFIT1, IFIT2 and IFIT3 in vitro, which enabled us to reveal critical aspects of IFIT complex assembly. IFIT1 and IFIT3 interact via a YxxxL motif present in the C-terminus of each protein. IFIT2 and IFIT3 homodimers dissociate to form a more stable heterodimer that also associates with IFIT1. We show for the first time that IFIT3 stabilizes IFIT1 protein expression, promotes IFIT1 binding to a cap0 Zika virus reporter mRNA and enhances IFIT1 translation inhibition. This work reveals molecular aspects of IFIT interaction and provides an important missing link between IFIT assembly and function.

  17. hLARP7 C-terminal domain contains an xRRM that binds the 3' hairpin of 7SK RNA

    DOE PAGES

    Eichhorn, Catherine D.; Chug, Rahul; Feigon, Juli

    2016-09-26

    The 7SK small nuclear ribonucleoprotein (snRNP) sequesters and inactivates the positive transcription elongation factor b (P-TEFb), an essential eukaryotic mRNA transcription factor. The human La-related protein group 7 (hLARP7) is a constitutive component of the 7SK snRNP and localizes to the 3' terminus of the 7SK long noncoding RNA. hLARP7, and in particular its C-terminal domain (CTD), is essential for 7SK RNA stability and assembly with P-TEFb. The hLARP7 N-terminal Lamodule binds and protects the 3' end from degradation, but the structural and functional role of its CTD is unclear.We report the solution NMR structure of the hLARP7 CTD andmore » show that this domain contains an xRRM, a class of atypical RRM first identified in the Tetrahymena thermophila telomerase LARP7 protein p65. The xRRM binds the 3' end of 7SK RNA at the top of stem-loop 4 (SL4) and interacts with both unpaired and base-paired nucleotides. This study thus confirms that the xRRM is general to the LARP7 family of proteins and defines the binding site for hLARP7 on the 7SK RNA, providing insight into function.« less

  18. hLARP7 C-terminal domain contains an xRRM that binds the 3' hairpin of 7SK RNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichhorn, Catherine D.; Chug, Rahul; Feigon, Juli

    The 7SK small nuclear ribonucleoprotein (snRNP) sequesters and inactivates the positive transcription elongation factor b (P-TEFb), an essential eukaryotic mRNA transcription factor. The human La-related protein group 7 (hLARP7) is a constitutive component of the 7SK snRNP and localizes to the 3' terminus of the 7SK long noncoding RNA. hLARP7, and in particular its C-terminal domain (CTD), is essential for 7SK RNA stability and assembly with P-TEFb. The hLARP7 N-terminal Lamodule binds and protects the 3' end from degradation, but the structural and functional role of its CTD is unclear.We report the solution NMR structure of the hLARP7 CTD andmore » show that this domain contains an xRRM, a class of atypical RRM first identified in the Tetrahymena thermophila telomerase LARP7 protein p65. The xRRM binds the 3' end of 7SK RNA at the top of stem-loop 4 (SL4) and interacts with both unpaired and base-paired nucleotides. This study thus confirms that the xRRM is general to the LARP7 family of proteins and defines the binding site for hLARP7 on the 7SK RNA, providing insight into function.« less

  19. mRNA interactome capture in mammalian cells.

    PubMed

    Kastelic, Nicolai; Landthaler, Markus

    2017-08-15

    Throughout their entire life cycle, mRNAs are associated with RNA-binding proteins (RBPs), forming ribonucleoprotein (RNP) complexes with highly dynamic compositions. Their interplay is one key to control gene regulatory mechanisms from mRNA synthesis to decay. To assay the global scope of RNA-protein interactions, we and others have published a method combining crosslinking with highly stringent oligo(dT) affinity purification to enrich proteins associated with polyadenylated RNA (poly(A)+ RNA). Identification of the poly(A)+ RNA-bound proteome (also: mRNA interactome capture) has by now been applied to a diversity of cell lines and model organisms, uncovering comprehensive repertoires of RBPs and hundreds of novel RBP candidates. In addition to determining the RBP catalog in a given biological system, mRNA interactome capture allows the examination of changes in protein-mRNA interactions in response to internal and external stimuli, altered cellular programs and disease. Copyright © 2017. Published by Elsevier Inc.

  20. Unfolded protein response transducer IRE1-mediated signaling independent of XBP1 mRNA splicing is not required for growth and development of medaka fish

    PubMed Central

    Ishikawa, Tokiro; Kashima, Makoto; Nagano, Atsushi J; Ishikawa-Fujiwara, Tomoko; Kamei, Yasuhiro; Todo, Takeshi

    2017-01-01

    When activated by the accumulation of unfolded proteins in the endoplasmic reticulum, metazoan IRE1, the most evolutionarily conserved unfolded protein response (UPR) transducer, initiates unconventional splicing of XBP1 mRNA. Unspliced and spliced mRNA are translated to produce pXBP1(U) and pXBP1(S), respectively. pXBP1(S) functions as a potent transcription factor, whereas pXBP1(U) targets pXBP1(S) to degradation. In addition, activated IRE1 transmits two signaling outputs independent of XBP1, namely activation of the JNK pathway, which is initiated by binding of the adaptor TRAF2 to phosphorylated IRE1, and regulated IRE1-dependent decay (RIDD) of various mRNAs in a relatively nonspecific manner. Here, we conducted comprehensive and systematic genetic analyses of the IRE1-XBP1 branch of the UPR using medaka fish and found that the defects observed in XBP1-knockout or IRE1-knockout medaka were fully rescued by constitutive expression of pXBP1(S). Thus, the JNK and RIDD pathways are not required for the normal growth and development of medaka. The unfolded protein response sensor/transducer IRE1-mediated splicing of XBP1 mRNA encoding its active downstream transcription factor to maintain the homeostasis of the endoplasmic reticulum is sufficient for growth and development of medaka fish. PMID:28952924

  1. A bioinformatic survey of RNA-binding proteins in Plasmodium.

    PubMed

    Reddy, B P Niranjan; Shrestha, Sony; Hart, Kevin J; Liang, Xiaoying; Kemirembe, Karen; Cui, Liwang; Lindner, Scott E

    2015-11-02

    The malaria parasites in the genus Plasmodium have a very complicated life cycle involving an invertebrate vector and a vertebrate host. RNA-binding proteins (RBPs) are critical factors involved in every aspect of the development of these parasites. However, very few RBPs have been functionally characterized to date in the human parasite Plasmodium falciparum. Using different bioinformatic methods and tools we searched P. falciparum genome to list and annotate RBPs. A representative 3D models for each of the RBD domain identified in P. falciparum was created using I-TESSAR and SWISS-MODEL. Microarray and RNAseq data analysis pertaining PfRBPs was performed using MeV software. Finally, Cytoscape was used to create protein-protein interaction network for CITH-Dozi and Caf1-CCR4-Not complexes. We report the identification of 189 putative RBP genes belonging to 13 different families in Plasmodium, which comprise 3.5% of all annotated genes. Almost 90% (169/189) of these genes belong to six prominent RBP classes, namely RNA recognition motifs, DEAD/H-box RNA helicases, K homology, Zinc finger, Puf and Alba gene families. Interestingly, almost all of the identified RNA-binding helicases and KH genes have cognate homologs in model species, suggesting their evolutionary conservation. Exploration of the existing P. falciparum blood-stage transcriptomes revealed that most RBPs have peak mRNA expression levels early during the intraerythrocytic development cycle, which taper off in later stages. Nearly 27% of RBPs have elevated expression in gametocytes, while 47 and 24% have elevated mRNA expression in ookinete and asexual stages. Comparative interactome analyses using human and Plasmodium protein-protein interaction datasets suggest extensive conservation of the PfCITH/PfDOZI and PfCaf1-CCR4-NOT complexes. The Plasmodium parasites possess a large number of putative RBPs belonging to most of RBP families identified so far, suggesting the presence of extensive post-transcriptional regulation in these parasites. Taken together, in silico identification of these putative RBPs provides a foundation for future functional studies aimed at defining a unique network of post-transcriptional regulation in P. falciparum.

  2. Protein functional features are reflected in the patterns of mRNA translation speed.

    PubMed

    López, Daniel; Pazos, Florencio

    2015-07-09

    The degeneracy of the genetic code makes it possible for the same amino acid string to be coded by different messenger RNA (mRNA) sequences. These "synonymous mRNAs" may differ largely in a number of aspects related to their overall translational efficiency, such as secondary structure content and availability of the encoded transfer RNAs (tRNAs). Consequently, they may render different yields of the translated polypeptides. These mRNA features related to translation efficiency are also playing a role locally, resulting in a non-uniform translation speed along the mRNA, which has been previously related to some protein structural features and also used to explain some dramatic effects of "silent" single-nucleotide-polymorphisms (SNPs). In this work we perform the first large scale analysis of the relationship between three experimental proxies of mRNA local translation efficiency and the local features of the corresponding encoded proteins. We found that a number of protein functional and structural features are reflected in the patterns of ribosome occupancy, secondary structure and tRNA availability along the mRNA. One or more of these proxies of translation speed have distinctive patterns around the mRNA regions coding for certain protein local features. In some cases the three patterns follow a similar trend. We also show specific examples where these patterns of translation speed point to the protein's important structural and functional features. This support the idea that the genome not only codes the protein functional features as sequences of amino acids, but also as subtle patterns of mRNA properties which, probably through local effects on the translation speed, have some consequence on the final polypeptide. These results open the possibility of predicting a protein's functional regions based on a single genomic sequence, and have implications for heterologous protein expression and fine-tuning protein function.

  3. RNA Modulates the Interaction between Influenza A Virus NS1 and Human PABP1.

    PubMed

    Arias-Mireles, Bryan H; de Rozieres, Cyrus M; Ly, Kevin; Joseph, Simpson

    2018-05-25

    Nonstructural protein 1 (NS1) is a multifunctional protein involved in preventing host-interferon response in influenza A virus (IAV). Previous studies have indicated that NS1 also stimulates the translation of viral mRNA by binding to conserved sequences in the viral 5'-UTR. Additionally, NS1 binds to poly(A) binding protein 1 (PABP1) and eukaryotic initiation factor 4G (eIF4G). The interaction of NS1 with the viral 5'-UTR, PABP1, and eIF4G has been suggested to specifically enhance the translation of viral mRNAs. In contrast, we report that NS1 does not directly bind to sequences in the viral 5'-UTR, indicating that NS1 is not responsible for providing the specificity to stimulate viral mRNA translation. We also monitored the interaction of NS1 with PABP1 using a new, quantitative FRET assay. Our data show that NS1 binds to PABP1 with high affinity; however, the binding of double-stranded RNA (dsRNA) to NS1 weakens the binding of NS1 to PABP1. Correspondingly, the binding of PABP1 to NS1 weakens the binding of NS1 to double-stranded RNA (dsRNA). In contrast, the affinity of PABP1 for binding to poly(A) RNA is not significantly changed by NS1. We propose that the modulation of NS1·PABP1 interaction by dsRNA may be important for the viral cycle.

  4. mRNA 3' of the A site bound codon is located close to protein S3 on the human 80S ribosome.

    PubMed

    Molotkov, Maxim V; Graifer, Dmitri M; Popugaeva, Elena A; Bulygin, Konstantin N; Meschaninova, Maria I; Ven'yaminova, Aliya G; Karpova, Galina G

    2006-07-01

    Ribosomal proteins neighboring the mRNA downstream of the codon bound at the decoding site of human 80S ribosomes were identified using three sets of mRNA analogues that contained a UUU triplet at the 5' terminus and a perfluorophenylazide cross-linker at guanosine, adenosine or uridine residues placed at various locations 3' of this triplet. The positions of modified mRNA nucleotides on the ribosome were governed by tRNA(Phe) cognate to the UUU triplet targeted to the P site. Upon mild UV-irradiation, the mRNA analogues cross-linked preferentially to the 40S subunit, to the proteins and to a lesser extent to the 18S rRNA. Cross-linked nucleotides of 18S rRNA were identified previously. In the present study, it is shown that among the proteins the main target for cross-linking with all the mRNA analogues tested was protein S3 (homologous to prokaryotic S3, S3p); minor cross-linking to protein S2 (S5p) was also detected. Both proteins cross-linked to mRNA analogues in the ternary complexes as well as in the binary complexes (without tRNA). In the ternary complexes protein S15 (S19p) also cross-linked, the yield of the cross-link decreased significantly when the modified nucleotide moved from position +5 to position +12 with respect to the first nucleotide of the P site bound codon. In several ternary complexes minor cross-linking to protein S30 was likewise detected. The results of this study indicate that S3 is a key protein at the mRNA binding site neighboring mRNA downstream of the codon at the decoding site in the human ribosome.

  5. Chemosensory Gene Families in Ectropis grisescens and Candidates for Detection of Type-II Sex Pheromones.

    PubMed

    Li, Zhao-Qun; Luo, Zong-Xiu; Cai, Xiao-Ming; Bian, Lei; Xin, Zhao-Jun; Liu, Yan; Chu, Bo; Chen, Zong-Mao

    2017-01-01

    Tea grey geometrid ( Ectropis grisescens ), a devastating chewing pest in tea plantations throughout China, produces Type-II pheromone components. Little is known about the genes encoding proteins involved in the perception of Type-II sex pheromone components. To investigate the olfaction genes involved in E . grisescens sex pheromones and plant volatiles perception, we sequenced female and male antennae transcriptomes of E . grisescens . After assembly and annotation, we identified 153 candidate chemoreception genes in E. grisescens , including 40 odorant-binding proteins (OBPs), 30 chemosensory proteins (CSPs), 59 odorant receptors (ORs), and 24 ionotropic receptors (IRs). The results of phylogenetic, qPCR, and mRNA abundance analyses suggested that three candidate pheromone-binding proteins (EgriOBP2, 3, and 25), two candidate general odorant-binding proteins (EgriOBP1 and 29), six pheromone receptors (EgriOR24, 25, 28, 31, 37, and 44), and EgriCSP8 may be involved in the detection of Type-II sex pheromone components. Functional investigation by heterologous expression in Xenopus oocytes revealed that EgriOR31 was robustly tuned to the E . grisescens sex pheromone component (Z,Z,Z)-3,6,9-octadecatriene and weakly to the other sex pheromone component (Z,Z)-3,9-6,7-epoxyoctadecadiene. Our results represent a systematic functional analysis of the molecular mechanism of olfaction perception in E . grisescens with an emphasis on gene encoding proteins involved in perception of Type-II sex pheromones, and provide information that will be relevant to other Lepidoptera species.

  6. Chemosensory Gene Families in Ectropis grisescens and Candidates for Detection of Type-II Sex Pheromones

    PubMed Central

    Li, Zhao-Qun; Luo, Zong-Xiu; Cai, Xiao-Ming; Bian, Lei; Xin, Zhao-Jun; Liu, Yan; Chu, Bo; Chen, Zong-Mao

    2017-01-01

    Tea grey geometrid (Ectropis grisescens), a devastating chewing pest in tea plantations throughout China, produces Type-II pheromone components. Little is known about the genes encoding proteins involved in the perception of Type-II sex pheromone components. To investigate the olfaction genes involved in E. grisescens sex pheromones and plant volatiles perception, we sequenced female and male antennae transcriptomes of E. grisescens. After assembly and annotation, we identified 153 candidate chemoreception genes in E. grisescens, including 40 odorant-binding proteins (OBPs), 30 chemosensory proteins (CSPs), 59 odorant receptors (ORs), and 24 ionotropic receptors (IRs). The results of phylogenetic, qPCR, and mRNA abundance analyses suggested that three candidate pheromone-binding proteins (EgriOBP2, 3, and 25), two candidate general odorant-binding proteins (EgriOBP1 and 29), six pheromone receptors (EgriOR24, 25, 28, 31, 37, and 44), and EgriCSP8 may be involved in the detection of Type-II sex pheromone components. Functional investigation by heterologous expression in Xenopus oocytes revealed that EgriOR31 was robustly tuned to the E. grisescens sex pheromone component (Z,Z,Z)-3,6,9-octadecatriene and weakly to the other sex pheromone component (Z,Z)-3,9-6,7-epoxyoctadecadiene. Our results represent a systematic functional analysis of the molecular mechanism of olfaction perception in E. grisescens with an emphasis on gene encoding proteins involved in perception of Type-II sex pheromones, and provide information that will be relevant to other Lepidoptera species. PMID:29209233

  7. [Effects of bushen yinao tablet on physiology and cerebral gene expression in senescence-accelerated mice].

    PubMed

    Zhang, Chong; Wang, Jin-gang; Yang, Ting

    2006-06-01

    To study the effects of Bushen Yin' ao Tablet (BSYNT) on physiology and cerebral gene expression in senescence-accelerated mice (SAM). The change of cerebral tissues mRNA expression in SAM was analyzed and compared by messenger ribonucleic acids reverse transcription differential display polymerase chain reaction (mRNA DDRT-PCR) between the medicated group and the control group. BSYNT could increase the level of hemoglobin (Hb) and amount of erythrocyte (RBC) of blood deficiency mice, improve the spatial learning and memory function and the escape response by conditional stimulus. In this study, 14 differential display bands had been discerned, and three of them had been sequenced. The sequence of the three fragments was similar to fatty acid binding protein 7, ubiquinol-cytochrome C reductase complex (7. 2 kD) and 60S ribosomal protein L21 respectively. And the homogeneity was 97% , 100% , and 99% , respectively. BSYNT has effect on the physiological changing of mice, and its effect on cerebral tissues mRNA expression maybe play an important role in anti-aging on the molecular level.

  8. Pharmacogenetic Inhibition of eIF4E-Dependent Mmp9 mRNA Translation Reverses Fragile X Syndrome-like Phenotypes

    PubMed Central

    Gkogkas, Christos G.; Khoutorsky, Arkady; Cao, Ruifeng; Jafarnejad, Seyed Mehdi; Prager-Khoutorsky, Masha; Giannakas, Nikolaos; Kaminari, Archontia; Fragkouli, Apostolia; Nader, Karim; Price, Theodore J.; Konicek, Bruce W.; Graff, Jeremy R.; Tzinia, Athina K.; Lacaille, Jean-Claude; Sonenberg, Nahum

    2015-01-01

    SUMMARY Fragile X syndrome (FXS) is the leading genetic cause of autism. Mutations in Fmr1 (fragile X mental retardation 1 gene) engender exaggerated translation resulting in dendritic spine dysmorphogenesis, synaptic plasticity alterations, and behavioral deficits in mice, which are reminiscent of FXS pheno-types. Using postmortem brains from FXS patients and Fmr1 knockout mice (Fmr1 −/y), we show that phosphorylation of the mRNA 5′ cap binding protein, eukaryotic initiation factor 4E (eIF4E), is elevated concomitant with increased expression of matrix metalloproteinase 9 (MMP-9) protein. Genetic or pharmacological reduction of eIF4E phosphorylation rescued core behavioral deficits, synaptic plasticity alterations, and dendritic spine morphology defects via reducing exaggerated translation of Mmp9 mRNA in Fmr1 −/y mice, whereas MMP-9 overexpression produced several FXS-like phenotypes. These results uncover a mechanism of regulation of synaptic function by translational control of Mmp-9 in FXS, which opens the possibility of new treatment avenues for the diverse neurological and psychiatric aspects of FXS. PMID:25466251

  9. The regulon of the RNA chaperone CspA and its auto-regulation in Staphylococcus aureus.

    PubMed

    Caballero, Carlos J; Menendez-Gil, Pilar; Catalan-Moreno, Arancha; Vergara-Irigaray, Marta; García, Begoña; Segura, Víctor; Irurzun, Naiara; Villanueva, Maite; Ruiz de Los Mozos, Igor; Solano, Cristina; Lasa, Iñigo; Toledo-Arana, Alejandro

    2018-02-16

    RNA-binding proteins (RBPs) are essential to fine-tune gene expression. RBPs containing the cold-shock domain are RNA chaperones that have been extensively studied. However, the RNA targets and specific functions for many of them remain elusive. Here, combining comparative proteomics and RBP-immunoprecipitation-microarray profiling, we have determined the regulon of the RNA chaperone CspA of Staphylococcus aureus. Functional analysis revealed that proteins involved in carbohydrate and ribonucleotide metabolism, stress response and virulence gene expression were affected by cspA deletion. Stress-associated phenotypes such as increased bacterial aggregation and diminished resistance to oxidative-stress stood out. Integration of the proteome and targetome showed that CspA post-transcriptionally modulates both positively and negatively the expression of its targets, denoting additional functions to the previously proposed translation enhancement. One of these repressed targets was its own mRNA, indicating the presence of a negative post-transcriptional feedback loop. CspA bound the 5'UTR of its own mRNA disrupting a hairpin, which was previously described as an RNase III target. Thus, deletion of the cspA 5'UTR abrogated mRNA processing and auto-regulation. We propose that CspA interacts through a U-rich motif, which is located at the RNase III cleavage site, portraying CspA as a putative RNase III-antagonist.

  10. Identifying mRNA sequence elements for target recognition by human Argonaute proteins

    PubMed Central

    Li, Jingjing; Kim, TaeHyung; Nutiu, Razvan; Ray, Debashish; Hughes, Timothy R.; Zhang, Zhaolei

    2014-01-01

    It is commonly known that mammalian microRNAs (miRNAs) guide the RNA-induced silencing complex (RISC) to target mRNAs through the seed-pairing rule. However, recent experiments that coimmunoprecipitate the Argonaute proteins (AGOs), the central catalytic component of RISC, have consistently revealed extensive AGO-associated mRNAs that lack seed complementarity with miRNAs. We herein test the hypothesis that AGO has its own binding preference within target mRNAs, independent of guide miRNAs. By systematically analyzing the data from in vivo cross-linking experiments with human AGOs, we have identified a structurally accessible and evolutionarily conserved region (∼10 nucleotides in length) that alone can accurately predict AGO–mRNA associations, independent of the presence of miRNA binding sites. Within this region, we further identified an enriched motif that was replicable on independent AGO-immunoprecipitation data sets. We used RNAcompete to enumerate the RNA-binding preference of human AGO2 to all possible 7-mer RNA sequences and validated the AGO motif in vitro. These findings reveal a novel function of AGOs as sequence-specific RNA-binding proteins, which may aid miRNAs in recognizing their targets with high specificity. PMID:24663241

  11. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    PubMed

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  12. Oxaloacetate activates brain mitochondrial biogenesis, enhances the insulin pathway, reduces inflammation and stimulates neurogenesis.

    PubMed

    Wilkins, Heather M; Harris, Janna L; Carl, Steven M; E, Lezi; Lu, Jianghua; Eva Selfridge, J; Roy, Nairita; Hutfles, Lewis; Koppel, Scott; Morris, Jill; Burns, Jeffrey M; Michaelis, Mary L; Michaelis, Elias K; Brooks, William M; Swerdlow, Russell H

    2014-12-15

    Brain bioenergetic function declines in some neurodegenerative diseases, this may influence other pathologies and administering bioenergetic intermediates could have therapeutic value. To test how one intermediate, oxaloacetate (OAA) affects brain bioenergetics, insulin signaling, inflammation and neurogenesis, we administered intraperitoneal OAA, 1-2 g/kg once per day for 1-2 weeks, to C57Bl/6 mice. OAA altered levels, distributions or post-translational modifications of mRNA and proteins (proliferator-activated receptor-gamma coactivator 1α, PGC1 related co-activator, nuclear respiratory factor 1, transcription factor A of the mitochondria, cytochrome oxidase subunit 4 isoform 1, cAMP-response element binding, p38 MAPK and adenosine monophosphate-activated protein kinase) in ways that should promote mitochondrial biogenesis. OAA increased Akt, mammalian target of rapamycin and P70S6K phosphorylation. OAA lowered nuclear factor κB nucleus-to-cytoplasm ratios and CCL11 mRNA. Hippocampal vascular endothelial growth factor mRNA, doublecortin mRNA, doublecortin protein, doublecortin-positive neuron counts and neurite length increased in OAA-treated mice. (1)H-MRS showed OAA increased brain lactate, GABA and glutathione thereby demonstrating metabolic changes are detectable in vivo. In mice, OAA promotes brain mitochondrial biogenesis, activates the insulin signaling pathway, reduces neuroinflammation and activates hippocampal neurogenesis. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Nucleophosmin is overexpressed in thyroid tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pianta, Annalisa; Puppin, Cinzia; Franzoni, Alessandra

    2010-07-02

    Nucleophosmin (NPM) is a protein that contributes to several cell functions. Depending on the context, it can act as an oncogene or tumor suppressor. No data are available on NPM expression in thyroid cells. In this work, we analyzed both NPM mRNA and protein levels in a series of human thyroid tumor tissues and cell lines. By using immunohistochemistry, NPM overexpression was detected in papillary, follicular, undifferentiated thyroid cancer, and also in follicular benign adenomas, indicating it as an early event during thyroid tumorigenesis. In contrast, various levels of NPM mRNA levels as detected by quantitative RT-PCR were observed inmore » tumor tissues, suggesting a dissociation between protein and transcript expression. The same behavior was observed in the normal thyroid FRTL5 cell lines. In these cells, a positive correlation between NPM protein levels, but not mRNA, and proliferation state was detected. By using thyroid tumor cell lines, we demonstrated that such a post-mRNA regulation may depend on NPM binding to p-Akt, whose levels were found to be increased in the tumor cells, in parallel with reduction of PTEN. In conclusion, our present data demonstrate for the first time that nucleophosmin is overexpressed in thyroid tumors, as an early event of thyroid tumorigenesis. It seems as a result of a dysregulation occurring at protein and not transcriptional level related to an increase of p-Akt levels of transformed thyrocytes.« less

  14. Regulation of StAR by the N-terminal Domain and Coinduction of SIK1 and TIS11b/Znf36l1 in Single Cells

    PubMed Central

    Lee, Jinwoo; Tong, Tiegang; Duan, Haichuan; Foong, Yee Hoon; Musaitif, Ibrahim; Yamazaki, Takeshi; Jefcoate, Colin

    2016-01-01

    The cholesterol transfer function of steroidogenic acute regulatory protein (StAR) is uniquely integrated into adrenal cells, with mRNA translation and protein kinase A (PKA) phosphorylation occurring at the mitochondrial outer membrane (OMM). The StAR C-terminal cholesterol-binding domain (CBD) initiates mitochondrial intermembrane contacts to rapidly direct cholesterol to Cyp11a1 in the inner membrane (IMM). The conserved StAR N-terminal regulatory domain (NTD) includes a leader sequence targeting the CBD to OMM complexes that initiate cholesterol transfer. Here, we show how the NTD functions to enhance CBD activity delivers more efficiently from StAR mRNA in adrenal cells, and then how two factors hormonally restrain this process. NTD processing at two conserved sequence sites is selectively affected by StAR PKA phosphorylation. The CBD functions as a receptor to stimulate the OMM/IMM contacts that mediate transfer. The NTD controls the transit time that integrates extramitochondrial StAR effects on cholesterol homeostasis with other mitochondrial functions, including ATP generation, inter-organelle fusion, and the major permeability transition pore in partnership with other OMM proteins. PKA also rapidly induces two additional StAR modulators: salt-inducible kinase 1 (SIK1) and Znf36l1/Tis11b. Induced SIK1 attenuates the activity of CRTC2, a key mediator of StAR transcription and splicing, but only as cAMP levels decline. TIS11b inhibits translation and directs the endonuclease-mediated removal of the 3.5-kb StAR mRNA. Removal of either of these functions individually enhances cAMP-mediated induction of StAR. High-resolution fluorescence in situ hybridization (HR-FISH) of StAR RNA reveals asymmetric transcription at the gene locus and slow RNA splicing that delays mRNA formation, potentially to synchronize with cholesterol import. Adrenal cells may retain slow transcription to integrate with intermembrane NTD activation. HR-FISH resolves individual 3.5-kb StAR mRNA molecules via dual hybridization at the 3′- and 5′-ends and reveals an unexpectedly high frequency of 1:1 pairing with mitochondria marked by the matrix StAR protein. This pairing may be central to translation-coupled cholesterol transfer. Altogether, our results show that adrenal cells exhibit high-efficiency StAR activity that needs to integrate rapid cholesterol transfer with homeostasis and pulsatile hormonal stimulation. StAR NBD, the extended 3.5-kb mRNA, SIK1, and Tis11b play important roles. PMID:27531991

  15. Regulation of StAR by the N-terminal Domain and Coinduction of SIK1 and TIS11b/Znf36l1 in Single Cells.

    PubMed

    Lee, Jinwoo; Tong, Tiegang; Duan, Haichuan; Foong, Yee Hoon; Musaitif, Ibrahim; Yamazaki, Takeshi; Jefcoate, Colin

    2016-01-01

    The cholesterol transfer function of steroidogenic acute regulatory protein (StAR) is uniquely integrated into adrenal cells, with mRNA translation and protein kinase A (PKA) phosphorylation occurring at the mitochondrial outer membrane (OMM). The StAR C-terminal cholesterol-binding domain (CBD) initiates mitochondrial intermembrane contacts to rapidly direct cholesterol to Cyp11a1 in the inner membrane (IMM). The conserved StAR N-terminal regulatory domain (NTD) includes a leader sequence targeting the CBD to OMM complexes that initiate cholesterol transfer. Here, we show how the NTD functions to enhance CBD activity delivers more efficiently from StAR mRNA in adrenal cells, and then how two factors hormonally restrain this process. NTD processing at two conserved sequence sites is selectively affected by StAR PKA phosphorylation. The CBD functions as a receptor to stimulate the OMM/IMM contacts that mediate transfer. The NTD controls the transit time that integrates extramitochondrial StAR effects on cholesterol homeostasis with other mitochondrial functions, including ATP generation, inter-organelle fusion, and the major permeability transition pore in partnership with other OMM proteins. PKA also rapidly induces two additional StAR modulators: salt-inducible kinase 1 (SIK1) and Znf36l1/Tis11b. Induced SIK1 attenuates the activity of CRTC2, a key mediator of StAR transcription and splicing, but only as cAMP levels decline. TIS11b inhibits translation and directs the endonuclease-mediated removal of the 3.5-kb StAR mRNA. Removal of either of these functions individually enhances cAMP-mediated induction of StAR. High-resolution fluorescence in situ hybridization (HR-FISH) of StAR RNA reveals asymmetric transcription at the gene locus and slow RNA splicing that delays mRNA formation, potentially to synchronize with cholesterol import. Adrenal cells may retain slow transcription to integrate with intermembrane NTD activation. HR-FISH resolves individual 3.5-kb StAR mRNA molecules via dual hybridization at the 3'- and 5'-ends and reveals an unexpectedly high frequency of 1:1 pairing with mitochondria marked by the matrix StAR protein. This pairing may be central to translation-coupled cholesterol transfer. Altogether, our results show that adrenal cells exhibit high-efficiency StAR activity that needs to integrate rapid cholesterol transfer with homeostasis and pulsatile hormonal stimulation. StAR NBD, the extended 3.5-kb mRNA, SIK1, and Tis11b play important roles.

  16. Picornavirus Modification of a Host mRNA Decay Protein

    PubMed Central

    Rozovics, Janet M.; Chase, Amanda J.; Cathcart, Andrea L.; Chou, Wayne; Gershon, Paul D.; Palusa, Saiprasad; Wilusz, Jeffrey; Semler, Bert L.

    2012-01-01

    ABSTRACT Due to the limited coding capacity of picornavirus genomic RNAs, host RNA binding proteins play essential roles during viral translation and RNA replication. Here we describe experiments suggesting that AUF1, a host RNA binding protein involved in mRNA decay, plays a role in the infectious cycle of picornaviruses such as poliovirus and human rhinovirus. We observed cleavage of AUF1 during poliovirus or human rhinovirus infection, as well as interaction of this protein with the 5′ noncoding regions of these viral genomes. Additionally, the picornavirus proteinase 3CD, encoded by poliovirus or human rhinovirus genomic RNAs, was shown to cleave all four isoforms of recombinant AUF1 at a specific N-terminal site in vitro. Finally, endogenous AUF1 was found to relocalize from the nucleus to the cytoplasm in poliovirus-infected HeLa cells to sites adjacent to (but distinct from) putative viral RNA replication complexes. PMID:23131833

  17. Insertion of inter-domain linkers improves expression and bioactivity of Zygote arrest (Zar) fusion proteins.

    PubMed

    Cook, Jonathan M; Charlesworth, Amanda

    2017-04-01

    Developmentally important proteins that are crucial for fertilization and embryogenesis are synthesized through highly regulated translation of maternal mRNA. The Zygote arrest proteins, Zar1 and Zar2, are crucial for embryogenesis and have been implicated in binding mRNA and repressing mRNA translation. To investigate Zar1 and Zar2, the full-length proteins had been fused to glutathione-S-transferase (GST) or MS2 protein tags with minimal inter-domain linkers derived from multiple cloning sites; however, these fusion proteins expressed poorly and/or lacked robust function. Here, we tested the effect of inserting additional linkers between the fusion domains. Three linkers were tested, each 17 amino acids long with different physical and chemical properties: flexible hydrophilic, rigid extended or rigid helical. In the presence of any of the three linkers, GST-Zar1 and GST-Zar2 had fewer breakdown products. Moreover, in the presence of any of the linkers, MS2-Zar1 was expressed to higher levels, and in dual luciferase tethered assays, both MS2-Zar1 and MS2-Zar2 repressed luciferase translation to a greater extent. These data suggest that for Zar fusion proteins, increasing the length of linkers, regardless of their physical or chemical properties, improves stability, expression and bioactivity. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Translational regulation of ribosomal protein S15 drives characteristic patterns of protein-mRNA epistasis.

    PubMed

    Mallik, Saurav; Basu, Sudipto; Hait, Suman; Kundu, Sudip

    2018-04-21

    Do coding and regulatory segments of a gene co-evolve with each-other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15-rpsO and S1-rpsO recognition, S15-mediated rpsO structural rearrangement, and S1-mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence-space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue-level epistasis-not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein. © 2018 Wiley Periodicals, Inc.

  19. Combinatorial control of messenger RNAs by Pumilio, Nanos and Brain Tumor Proteins

    PubMed Central

    Arvola, René M.

    2017-01-01

    ABSTRACT Eukaryotes possess a vast array of RNA-binding proteins (RBPs) that affect mRNAs in diverse ways to control protein expression. Combinatorial regulation of mRNAs by RBPs is emerging as the rule. No example illustrates this as vividly as the partnership of 3 Drosophila RBPs, Pumilio, Nanos and Brain Tumor, which have overlapping functions in development, stem cell maintenance and differentiation, fertility and neurologic processes. Here we synthesize 30 y of research with new insights into their molecular functions and mechanisms of action. First, we provide an overview of the key properties of each RBP. Next, we present a detailed analysis of their collaborative regulatory mechanism using a classic example of the developmental morphogen, hunchback, which is spatially and temporally regulated by the trio during embryogenesis. New biochemical, structural and functional analyses provide insights into RNA recognition, cooperativity, and regulatory mechanisms. We integrate these data into a model of combinatorial RNA binding and regulation of translation and mRNA decay. We then use this information, transcriptome wide analyses and bioinformatics predictions to assess the global impact of Pumilio, Nanos and Brain Tumor on gene regulation. Together, the results support pervasive, dynamic post-transcriptional control. PMID:28318367

  20. Combinatorial control of messenger RNAs by Pumilio, Nanos and Brain Tumor Proteins.

    PubMed

    Arvola, René M; Weidmann, Chase A; Tanaka Hall, Traci M; Goldstrohm, Aaron C

    2017-11-02

    Eukaryotes possess a vast array of RNA-binding proteins (RBPs) that affect mRNAs in diverse ways to control protein expression. Combinatorial regulation of mRNAs by RBPs is emerging as the rule. No example illustrates this as vividly as the partnership of 3 Drosophila RBPs, Pumilio, Nanos and Brain Tumor, which have overlapping functions in development, stem cell maintenance and differentiation, fertility and neurologic processes. Here we synthesize 30 y of research with new insights into their molecular functions and mechanisms of action. First, we provide an overview of the key properties of each RBP. Next, we present a detailed analysis of their collaborative regulatory mechanism using a classic example of the developmental morphogen, hunchback, which is spatially and temporally regulated by the trio during embryogenesis. New biochemical, structural and functional analyses provide insights into RNA recognition, cooperativity, and regulatory mechanisms. We integrate these data into a model of combinatorial RNA binding and regulation of translation and mRNA decay. We then use this information, transcriptome wide analyses and bioinformatics predictions to assess the global impact of Pumilio, Nanos and Brain Tumor on gene regulation. Together, the results support pervasive, dynamic post-transcriptional control.

  1. TRIM25 Is Required for the Antiviral Activity of Zinc Finger Antiviral Protein

    PubMed Central

    Zheng, Xiaojiao; Wang, Xinlu; Tu, Fan; Wang, Qin; Fan, Zusen

    2017-01-01

    ABSTRACT Zinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses by binding to viral mRNAs and repressing the translation and/or promoting the degradation of target mRNA. In addition, ZAP regulates the expression of certain cellular genes. Here, we report that tripartite motif-containing protein 25 (TRIM25), a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 abolished ZAP's antiviral activity. The E3 ligase activity of TRIM25 is required for this regulation. TRIM25 mediated ZAP ubiquitination, but the ubiquitination of ZAP itself did not seem to be required for its antiviral activity. Downregulation of endogenous ubiquitin or overexpression of the deubiquitinase OTUB1 impaired ZAP's activity. We provide evidence indicating that TRIM25 modulates the target RNA binding activity of ZAP. These results uncover a mechanism by which the antiviral activity of ZAP is regulated. IMPORTANCE ZAP is a host antiviral factor that specifically inhibits the replication of certain viruses, including HIV-1, Sindbis virus, and Ebola virus. ZAP binds directly to target mRNA, and it represses the translation and promotes the degradation of target mRNA. While the mechanisms by which ZAP posttranscriptionally inhibits target RNA expression have been extensively studied, how its antiviral activity is regulated is not very clear. Here, we report that TRIM25, a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 remarkably abolished ZAP's activity. TRIM25 is required for ZAP optimal binding to target mRNA. These results help us to better understand how the antiviral activity of ZAP is regulated. PMID:28202764

  2. TRIM25 Is Required for the Antiviral Activity of Zinc Finger Antiviral Protein.

    PubMed

    Zheng, Xiaojiao; Wang, Xinlu; Tu, Fan; Wang, Qin; Fan, Zusen; Gao, Guangxia

    2017-05-01

    Zinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses by binding to viral mRNAs and repressing the translation and/or promoting the degradation of target mRNA. In addition, ZAP regulates the expression of certain cellular genes. Here, we report that tripartite motif-containing protein 25 (TRIM25), a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 abolished ZAP's antiviral activity. The E3 ligase activity of TRIM25 is required for this regulation. TRIM25 mediated ZAP ubiquitination, but the ubiquitination of ZAP itself did not seem to be required for its antiviral activity. Downregulation of endogenous ubiquitin or overexpression of the deubiquitinase OTUB1 impaired ZAP's activity. We provide evidence indicating that TRIM25 modulates the target RNA binding activity of ZAP. These results uncover a mechanism by which the antiviral activity of ZAP is regulated. IMPORTANCE ZAP is a host antiviral factor that specifically inhibits the replication of certain viruses, including HIV-1, Sindbis virus, and Ebola virus. ZAP binds directly to target mRNA, and it represses the translation and promotes the degradation of target mRNA. While the mechanisms by which ZAP posttranscriptionally inhibits target RNA expression have been extensively studied, how its antiviral activity is regulated is not very clear. Here, we report that TRIM25, a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 remarkably abolished ZAP's activity. TRIM25 is required for ZAP optimal binding to target mRNA. These results help us to better understand how the antiviral activity of ZAP is regulated. Copyright © 2017 American Society for Microbiology.

  3. miR-128 inhibits telomerase activity by targeting TERT mRNA

    PubMed Central

    Guzman, Herlinda; Sanders, Katie; Idica, Adam; Bochnakian, Aurore; Jury, Douglas; Daugaard, Iben; Zisoulis, Dimitrios G; Pedersen, Irene Munk

    2018-01-01

    Telomerase is a unique cellular reverse transcriptase (RT) essential for maintaining telomere stability and required for the unlimited proliferation of cancer cells. The limiting determinant of telomerase activity is the catalytic component TERT, and TERT expression is closely correlated with telomerase activity and cancer initiation and disease progression. For this reason the regulation of TERT levels in the cell is of great importance. microRNAs (miRs) function as an additional regulatory level in cells, crucial for defining expression boundaries, proper cell fate decisions, cell cycle control, genome integrity, cell death and metastasis. We performed an anti-miR library screen to identity novel miRs, which participate in the control of telomerase. We identified the tumor suppressor miR (miR-128) as a novel endogenous telomerase inhibitor and determined that miR-128 significantly reduces the mRNA and protein levels of Tert in a panel of cancer cell lines. We further evaluated the mechanism by which miR-128 regulates TERT and demonstrated that miR-128 interacts directly with the coding sequence of TERT mRNA in both HeLa cells and teratoma cells. Interestingly, the functional miR-128 binding site in TERT mRNA, is conserved between TERT and the other cellular reverse transcriptase encoded by Long Interspersed Elements-1 (LINE-1 or L1), which can also contribute to the oncogenic phenotype of cancer. This finding supports the novel idea that miRs may function in parallel pathways to inhibit tumorigenesis, by regulating a group of enzymes (such as RT) by targeting conserved binding sites in the coding region of both enzymes. PMID:29568354

  4. Expression of Leukemia/Lymphoma-Related Factor (LRF/POKEMON) in Human Breast Carcinoma and Other Cancers

    PubMed Central

    Aggarwal, Anshu; Hunter, William J.; Aggarwal, Himanshu; Silva, Edibaldo D.; Davey, Mary S.; Murphy, Richard F.; Agrawal, Devendra K.

    2010-01-01

    The POK family of proteins plays an important role in not only embryonic development and cell differentiation, but also in oncogenesis. Leukemia/lymphoma-related factor (LRF) belongs to the POK family of transcriptional repressors and is also known as POK erythroid myeloid ontogenic factor (POKEMON), which binds to short transcripts of HIV-1 (FBI-1) and TTF-1 interacting peptide (TIP21). Its oncogenic role is known only in lymphoma, non-small cell lung carcinoma, and malignant gliomas. The functional expression of LRF in human breast carcinoma has not yet been confirmed. The aim of this study was to investigate and compare the expression of LRF in human breast cancer tissues and other human tumors. The expression of LRF mRNA transcripts and protein was observed in twenty human benign and malignant breast biopsy tissues. Expression of LRF was observed in several formalin-fixed tissues by immunohistochemistry and immunofluorescence. All malignant breast tissues expressed mRNA transcripts and protein for LRF. However, 40% and 15% benign breast biopsy tissues expressed LRF mRNA transcripts and protein, respectively. The overall expression of LRF mRNA transcripts and total protein was significantly more in malignant breast tissues than the benign breast tissues. LRF expression was also observed in the nuclei of human colon, renal, lung, hepatocellular carcinomas and thymoma tumor cells. In general, a significantly higher expression of LRF was seen in malignant tissues than in the corresponding benign or normal tissue. Further studies are warranted to determine the malignant role of LRF in human breast carcinoma. PMID:20471975

  5. Conserved binding of GCAC motifs by MEC-8, couch potato, and the RBPMS protein family

    PubMed Central

    Soufari, Heddy

    2017-01-01

    Precise regulation of mRNA processing, translation, localization, and stability relies on specific interactions with RNA-binding proteins whose biological function and target preference are dictated by their preferred RNA motifs. The RBPMS family of RNA-binding proteins is defined by a conserved RNA recognition motif (RRM) domain found in metazoan RBPMS/Hermes and RBPMS2, Drosophila couch potato, and MEC-8 from Caenorhabditis elegans. In order to determine the parameters of RNA sequence recognition by the RBPMS family, we have first used the N-terminal domain from MEC-8 in binding assays and have demonstrated a preference for two GCAC motifs optimally separated by >6 nucleotides (nt). We have also determined the crystal structure of the dimeric N-terminal RRM domain from MEC-8 in the unbound form, and in complex with an oligonucleotide harboring two copies of the optimal GCAC motif. The atomic details reveal the molecular network that provides specificity to all four bases in the motif, including multiple hydrogen bonds to the initial guanine. Further studies with human RBPMS, as well as Drosophila couch potato, confirm a general preference for this double GCAC motif by other members of the protein family and the presence of this motif in known targets. PMID:28003515

  6. Genome wide assessment of mRNA in astrocyte protrusions by direct RNA sequencing reveals mRNA localization for the intermediate filament protein nestin.

    PubMed

    Thomsen, Rune; Pallesen, Jonatan; Daugaard, Tina F; Børglum, Anders D; Nielsen, Anders L

    2013-11-01

    Subcellular RNA localization plays an important role in development, cell differentiation, and cell migration. For a comprehensive description of the population of protrusion localized mRNAs in astrocytes we separated protrusions from cell bodies in a Boyden chamber and performed high-throughput direct RNA sequencing. The mRNAs with localization in astrocyte protrusions encode proteins belonging to a variety of functional groups indicating involvement of RNA localization for a palette of cellular functions. The mRNA encoding the intermediate filament protein Nestin was among the identified mRNAs. By RT-qPCR and RNA FISH analysis we confirmed Nestin mRNA localization in cell protrusions and also protrusion localization of Nestin protein. Nestin mRNA localization was dependent of Fragile X mental retardation syndrome proteins Fmrp and Fxr1, and the Nestin 3'-UTR was sufficient to mediate protrusion mRNA localization. The mRNAs for two other intermediate filament proteins in astrocytes, Gfap and Vimentin, have moderate and no protrusion localization, respectively, showing that individual intermediate filament components have different localization mechanisms. The correlated localization of Nestin mRNA with Nestin protein in cell protrusions indicates the presence of a regulatory mechanism at the mRNA localization level for the Nestin intermediate filament protein with potential importance for astrocyte functions during brain development and maintenance. Copyright © 2013 Wiley Periodicals, Inc.

  7. Sexual divergence in microtubule function: the novel intranasal microtubule targeting SKIP normalizes axonal transport and enhances memory.

    PubMed

    Amram, N; Hacohen-Kleiman, G; Sragovich, S; Malishkevich, A; Katz, J; Touloumi, O; Lagoudaki, R; Grigoriadis, N C; Giladi, E; Yeheskel, A; Pasmanik-Chor, M; Jouroukhin, Y; Gozes, I

    2016-10-01

    Activity-dependent neuroprotective protein (ADNP), essential for brain formation, is a frequent autism spectrum disorder (ASD)-mutated gene. ADNP associates with microtubule end-binding proteins (EBs) through its SxIP motif, to regulate dendritic spine formation and brain plasticity. Here, we reveal SKIP, a novel four-amino-acid peptide representing an EB-binding site, as a replacement therapy in an outbred Adnp-deficient mouse model. We discovered, for the first time, axonal transport deficits in Adnp(+/-) mice (measured by manganese-enhanced magnetic resonance imaging), with significant male-female differences. RNA sequencing evaluations showed major age, sex and genotype differences. Function enrichment and focus on major gene expression changes further implicated channel/transporter function and the cytoskeleton. In particular, a significant maturation change (1 month-five months) was observed in beta1 tubulin (Tubb1) mRNA, only in Adnp(+/+) males, and sex-dependent increase in calcium channel mRNA (Cacna1e) in Adnp(+/+) males compared with females. At the protein level, the Adnp(+/-) mice exhibited impaired hippocampal expression of the calcium channel (voltage-dependent calcium channel, Cacnb1) as well as other key ASD-linked genes including the serotonin transporter (Slc6a4), and the autophagy regulator, BECN1 (Beclin1), in a sex-dependent manner. Intranasal SKIP treatment normalized social memory in 8- to 9-month-old Adnp(+/-)-treated mice to placebo-control levels, while protecting axonal transport and ameliorating changes in ASD-like gene expression. The control, all d-amino analog D-SKIP, did not mimic SKIP activity. SKIP presents a novel prototype for potential ASD drug development, a prevalent unmet medical need.

  8. Growth Cone Localization of the mRNA Encoding the Chromatin Regulator HMGN5 Modulates Neurite Outgrowth

    PubMed Central

    Moretti, Francesca; Rolando, Chiara; Winker, Moritz; Ivanek, Robert; Rodriguez, Javier; Von Kriegsheim, Alex; Taylor, Verdon; Bustin, Michael

    2015-01-01

    Neurons exploit local mRNA translation and retrograde transport of transcription factors to regulate gene expression in response to signaling events at distal neuronal ends. Whether epigenetic factors could also be involved in such regulation is not known. We report that the mRNA encoding the high-mobility group N5 (HMGN5) chromatin binding protein localizes to growth cones of both neuron-like cells and of hippocampal neurons, where it has the potential to be translated, and that HMGN5 can be retrogradely transported into the nucleus along neurites. Loss of HMGN5 function induces transcriptional changes and impairs neurite outgrowth, while HMGN5 overexpression induces neurite outgrowth and chromatin decompaction; these effects are dependent on growth cone localization of Hmgn5 mRNA. We suggest that the localization and local translation of transcripts coding for epigenetic factors couple the dynamic neuronal outgrowth process with chromatin regulation in the nucleus. PMID:25825524

  9. GIGYF1/2 proteins use auxiliary sequences to selectively bind to 4EHP and repress target mRNA expression

    PubMed Central

    Peter, Daniel; Weber, Ramona; Sandmeir, Felix; Wohlbold, Lara; Helms, Sigrun; Bawankar, Praveen; Valkov, Eugene; Igreja, Cátia; Izaurralde, Elisa

    2017-01-01

    The eIF4E homologous protein (4EHP) is thought to repress translation by competing with eIF4E for binding to the 5′ cap structure of specific mRNAs to which it is recruited through interactions with various proteins, including the GRB10-interacting GYF (glycine–tyrosine–phenylalanine domain) proteins 1 and 2 (GIGYF1/2). Despite its similarity to eIF4E, 4EHP does not interact with eIF4G and therefore fails to initiate translation. In contrast to eIF4G, GIGYF1/2 bind selectively to 4EHP but not eIF4E. Here, we present crystal structures of the 4EHP-binding regions of GIGYF1 and GIGYF2 in complex with 4EHP, which reveal the molecular basis for the selectivity of the GIGYF1/2 proteins for 4EHP. Complementation assays in a GIGYF1/2-null cell line using structure-based mutants indicate that 4EHP requires interactions with GIGYF1/2 to down-regulate target mRNA expression. Our studies provide structural insights into the assembly of 4EHP–GIGYF1/2 repressor complexes and reveal that rather than merely facilitating 4EHP recruitment to transcripts, GIGYF1/2 proteins are required for repressive activity. PMID:28698298

  10. Elevated mitochondrial gene expression during rat liver regeneration after portal vein ligation.

    PubMed

    Shimizu, Y; Suzuki, H; Nimura, Y; Onoue, S; Nagino, M; Tanaka, M; Ozawa, T

    1995-10-01

    We explored the molecular basis of mitochondrial energy production during rat liver regeneration after portal vein ligation. Ligation of the left branch of the portal vein induces an increase in the weight of the nonligated lobe, counterbalancing the reduced weight of the ligated lobe. Using this model, we investigated changes in mitochondrial DNA-binding proteins, mitochondrial DNA, and mitochondrial messenger RNA (mRNA) in rat hepatocytes of the nonligated lobes. The amount of mitochondrial DNA-binding protein increased maximally (200% to 300% of the preoperative level) at 12 hours after the operation, before an increase (390%) in mitochondrial DNA content at 24 hours, and parallel to an increase (240%) in mitochondrial mRNA levels at 12 hours. These results suggest that the energy supply for liver regeneration is achieved through enhancement of mitochondrial DNA replication as well as transcription, in which the mitochondrial DNA-binding proteins probably play regulatory roles. We also found that in the nonligated lobes, mRNA levels of hepatocyte growth factor increased to a detectable level only 12 hours after the operation. These molecular biochemical data help explain why preoperative portal vein embolization, which is a modification of portal vein branch ligation, is an effective method to prevent posthepatectomy liver failure.

  11. The NS1 Protein from Influenza Virus Stimulates Translation Initiation by Enhancing Ribosome Recruitment to mRNAs.

    PubMed

    Panthu, Baptiste; Terrier, Olivier; Carron, Coralie; Traversier, Aurélien; Corbin, Antoine; Balvay, Laurent; Lina, Bruno; Rosa-Calatrava, Manuel; Ohlmann, Théophile

    2017-10-27

    The non-structural protein NS1 of influenza A viruses exerts pleiotropic functions during infection. Among these functions, NS1 was shown to be involved in the control of both viral and cellular translation; however, the mechanism by which this occurs remains to be determined. Thus, we have revisited the role of NS1 in translation by using a combination of influenza infection, mRNA reporter transfection, and in vitro functional and biochemical assays. Our data show that the NS1 protein is able to enhance the translation of virtually all tested mRNAs with the exception of constructs bearing the Dicistroviruses Internal ribosome entry segment (IRESes) (DCV and CrPV), suggesting a role at the level of translation initiation. The domain of NS1 required for translation stimulation was mapped to the RNA binding amino-terminal motif of the protein with residues R38 and K41 being critical for activity. Although we show that NS1 can bind directly to mRNAs, it does not correlate with its ability to stimulate translation. This activity rather relies on the property of NS1 to associate with ribosomes and to recruit them to target mRNAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Patterns and plasticity in RNA-protein interactions enable recruitment of multiple proteins through a single site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valley, Cary T.; Porter, Douglas F.; Qiu, Chen

    2012-06-28

    mRNA control hinges on the specificity and affinity of proteins for their RNA binding sites. Regulatory proteins must bind their own sites and reject even closely related noncognate sites. In the PUF [Pumilio and fem-3 binding factor (FBF)] family of RNA binding proteins, individual proteins discriminate differences in the length and sequence of binding sites, allowing each PUF to bind a distinct battery of mRNAs. Here, we show that despite these differences, the pattern of RNA interactions is conserved among PUF proteins: the two ends of the PUF protein make critical contacts with the two ends of the RNA sites.more » Despite this conserved 'two-handed' pattern of recognition, the RNA sequence is flexible. Among the binding sites of yeast Puf4p, RNA sequence dictates the pattern in which RNA bases are flipped away from the binding surface of the protein. Small differences in RNA sequence allow new modes of control, recruiting Puf5p in addition to Puf4p to a single site. This embedded information adds a new layer of biological meaning to the connections between RNA targets and PUF proteins.« less

  13. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity

    PubMed Central

    Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M.; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea

    2014-01-01

    Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548

  14. Identification and Analysis of Mot3, a Zinc Finger Protein That Binds to the Retrotransposon Ty Long Terminal Repeat (δ) in Saccharomyces cerevisiae

    PubMed Central

    Madison, Jon M.; Dudley, Aimée M.; Winston, Fred

    1998-01-01

    Spt3 and Mot1 are two transcription factors of Saccharomyces cerevisiae that are thought to act in a related fashion to control the function of TATA-binding protein (TBP). Current models suggest that while Spt3 and Mot1 do not directly interact, they do function in a related fashion to stabilize the TBP-TATA interaction at particular promoters. Consistent with this model, certain combinations of spt3 and mot1 mutations are inviable. To identify additional proteins related to Spt3 and Mot1 functions, we screened for high-copy-number suppressors of the mot1 spt3 inviability. This screen identified a previously unstudied gene, MOT3, that encodes a zinc finger protein. We show that Mot3 binds in vitro to three sites within the retrotransposon Ty long terminal repeat (δ) sequence. One of these sites is immediately 5′ of the δ TATA region. Although a mot3 null mutation causes no strong phenotypes, it does cause some mild phenotypes, including a very modest increase in Ty mRNA levels, partial suppression of transcriptional defects caused by a mot1 mutation, and partial suppression of an spt3 mutation. These results, in conjunction with those of an independent study of Mot3 (A. Grishin, M. Rothenberg, M. A. Downs, and K. J. Blumer, Genetics, in press), suggest that this protein plays a varied role in gene expression that may be largely redundant with other factors. PMID:9528759

  15. The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape

    PubMed Central

    Tillett, Richard L.; Wheatley, Matthew D.; Tattersall, Elizabeth A.R.; Schlauch, Karen A.; Cramer, Grant R.; Cushman, John C.

    2014-01-01

    Summary Chilling and freezing can reduce significantly vine survival and fruit set in Vitis vinifera wine grape. To overcome such production losses, a recently identified grapevine C-repeat binding factor (CBF) gene, VvCBF4, was overexpressed in grape vine cv. “Freedom” and found to improve freezing survival and reduced freezing-induced electrolyte leakage by up to 2°C in non-cold-acclimated vines. In addition, overexpression of this transgene caused a reduced growth phenotype similar to that observed for CBF overexpression in Arabidopsis and other species. Both freezing tolerance and reduced growth phenotypes were manifested in a transgene dose-dependent manner. To understand the mechanistic basis of VvCBF4 transgene action, one transgenic line (9–12) was genotyped using microarray-based mRNA expression profiling. Forty-seven and 12 genes were identified in unstressed transgenic shoots with either a greater than 1.5-fold increase or decrease in mRNA abundance, respectively. Comparison of mRNA changes with characterized CBF regulons in woody and herbaceous species revealed partial overlaps suggesting that CBF-mediated cold acclimation responses are widely conserved. Putative VvCBF4-regulon targets included genes with functions in cell wall structure, lipid metabolism, epicuticular wax formation, and stress-responses suggesting that the observed cold tolerance and dwarf phenotypes are the result of a complex network of diverse functional determinants. PMID:21914113

  16. Re-editing the paradigm of Cytidine (C) to Uridine (U) RNA editing.

    PubMed

    Fossat, Nicolas; Tam, Patrick P L

    2014-01-01

    Cytidine (C) to Uridine (U) RNA editing is a post-trancriptional modification that until recently was known to only affect Apolipoprotein b (Apob) RNA and minimally require 2 components of the C to U editosome, the deaminase APOBEC1 and the RNA-binding protein A1CF. Our latest work has identified a novel RNA-binding protein, RBM47, as a core component of the editosome, which can substitute A1CF for the editing of ApoB mRNA. In addition, new RNA species that are subjected to C to U editing have been identified. Here, we highlight these recent discoveries and discuss how they change our view of the composition of the C to U editing machinery and expand our knowledge of the functional attributes of C to U RNA editing.

  17. Crystal structure and RNA-binding properties of an Hfq homolog from the deep-branching Aquificae: conservation of the lateral RNA-binding mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanek, Kimberly A.; Patterson-West, Jennifer; Randolph, Peter S.

    The host factor Hfq, as the bacterial branch of the Sm family, is an RNA-binding protein involved in the post-transcriptional regulation of mRNA expression and turnover. Hfq facilitates pairing between small regulatory RNAs (sRNAs) and their corresponding mRNA targets by binding both RNAs and bringing them into close proximity. Hfq homologs self-assemble into homo-hexameric rings with at least two distinct surfaces that bind RNA. Recently, another binding site, dubbed the `lateral rim', has been implicated in sRNA·mRNA annealing; the RNA-binding properties of this site appear to be rather subtle, and its degree of evolutionary conservation is unknown. An Hfq homologmore » has been identified in the phylogenetically deep-branching thermophileAquifex aeolicus(Aae), but little is known about the structure and function of Hfq from basal bacterial lineages such as the Aquificae. Therefore,AaeHfq was cloned, overexpressed, purified, crystallized and biochemically characterized. Structures ofAaeHfq were determined in space groupsP1 andP6, both to 1.5 Å resolution, and nanomolar-scale binding affinities for uridine- and adenosine-rich RNAs were discovered. Co-crystallization with U 6RNA reveals that the outer rim of theAaeHfq hexamer features a well defined binding pocket that is selective for uracil. ThisAaeHfq structure, combined with biochemical and biophysical characterization of the homolog, reveals deep evolutionary conservation of the lateral RNA-binding mode, and lays a foundation for further studies of Hfq-associated RNA biology in ancient bacterial phyla.« less

  18. Proteomic characterization of the nucleolar linker histone H1 interaction network

    PubMed Central

    Szerlong, Heather J.; Herman, Jacob A.; Krause, Christine M.; DeLuca, Jennifer G.; Skoultchi, Arthur; Winger, Quinton A.; Prenni, Jessica E.; Hansen, Jeffrey C.

    2015-01-01

    To investigate the relationship between linker histone H1 and protein-protein interactions in the nucleolus, biochemical and proteomics approaches were used to characterize nucleoli purified from cultured human and mouse cells. Mass spectrometry identified 175 proteins in human T-cell nucleolar extracts that bound to sepharose-immobilized H1 in vitro. Gene ontology analysis found significant enrichment for H1 binding proteins with functions related to nucleolar chromatin structure and RNA polymerase I transcription regulation, rRNA processing, and mRNA splicing. Consistent with the affinity binding results, H1 existed in large (400 to >650 kDa) macromolecular complexes in human T cell nucleolar extracts. To complement the biochemical experiments, the effects of in vivo H1 depletion on protein content and structural integrity of the nucleolus were investigated using the H1 triple isoform knock out (H1ΔTKO) mouse embryonic stem cell (mESC) model system. Proteomic profiling of purified wild type mESC nucleoli identified a total of 613 proteins, only ~60% of which were detected in the H1 mutant nucleoli. Within the affected group, spectral counting analysis quantitated 135 specific nucleolar proteins whose levels were significantly altered in H1ΔTKO mESC. Importantly, the functions of the affected proteins in mESC closely overlapped with those of the human T cell nucleolar H1 binding proteins. Immunofluorescence microscopy of intact H1ΔTKO mESC demonstrated both a loss of nucleolar RNA content and altered nucleolar morphology resulting from in vivo H1 depletion. We conclude that H1 organizes and maintains an extensive protein-protein interaction network in the nucleolus required for nucleolar structure and integrity. PMID:25584861

  19. A universal strategy for regulating mRNA translation in prokaryotic and eukaryotic cells

    PubMed Central

    Cao, Jicong; Arha, Manish; Sudrik, Chaitanya; Mukherjee, Abhirup; Wu, Xia; Kane, Ravi S.

    2015-01-01

    We describe a simple strategy to control mRNA translation in both prokaryotic and eukaryotic cells which relies on a unique protein–RNA interaction. Specifically, we used the Pumilio/FBF (PUF) protein to repress translation by binding in between the ribosome binding site (RBS) and the start codon (in Escherichia coli), or by binding to the 5′ untranslated region of target mRNAs (in mammalian cells). The design principle is straightforward, the extent of translational repression can be tuned and the regulator is genetically encoded, enabling the construction of artificial signal cascades. We demonstrate that this approach can also be used to regulate polycistronic mRNAs; such regulation has rarely been achieved in previous reports. Since the regulator used in this study is a modular RNA-binding protein, which can be engineered to target different 8-nucleotide RNA sequences, our strategy could be used in the future to target endogenous mRNAs for regulating metabolic flows and signaling pathways in both prokaryotic and eukaryotic cells. PMID:25845589

  20. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA

    PubMed Central

    Hansen, Thomas B; Wiklund, Erik D; Bramsen, Jesper B; Villadsen, Sune B; Statham, Aaron L; Clark, Susan J; Kjems, Jørgen

    2011-01-01

    MicroRNAs (miRNAs) are ∼22 nt non-coding RNAs that typically bind to the 3′ UTR of target mRNAs in the cytoplasm, resulting in mRNA destabilization and translational repression. Here, we report that miRNAs can also regulate gene expression by targeting non-coding antisense transcripts in human cells. Specifically, we show that miR-671 directs cleavage of a circular antisense transcript of the Cerebellar Degeneration-Related protein 1 (CDR1) locus in an Ago2-slicer-dependent manner. The resulting downregulation of circular antisense has a concomitant decrease in CDR1 mRNA levels, independently of heterochromatin formation. This study provides the first evidence for non-coding antisense transcripts as functional miRNA targets, and a novel regulatory mechanism involving a positive correlation between mRNA and antisense circular RNA levels. PMID:21964070

  1. Drosophila Suppressor of Sable Protein [Su(s)] Promotes Degradation of Aberrant and Transposon-Derived RNAs▿

    PubMed Central

    Kuan, Yung-Shu; Brewer-Jensen, Paul; Bai, Wen-Li; Hunter, Cedric; Wilson, Carrie B.; Bass, Sarah; Abernethy, John; Wing, James S.; Searles, Lillie L.

    2009-01-01

    RNA-binding proteins act at various stages of gene expression to regulate and fine-tune patterns of mRNA accumulation. One protein in this class is Drosophila Su(s), a nuclear protein that has been previously shown to inhibit the accumulation of mutant transcripts by an unknown mechanism. Here, we have identified several additional RNAs that are downregulated by Su(s). These Su(s) targets include cryptic wild-type transcripts from the developmentally regulated Sgs4 and ng1 genes, noncoding RNAs derived from tandemly repeated αβ/αγ elements within an Hsp70 locus, and aberrant transcripts induced by Hsp70 promoter transgenes inserted at ectopic sites. We used the αβ RNAs to investigate the mechanism of Su(s) function and obtained evidence that these transcripts are degraded by the nuclear exosome and that Su(s) promotes this process. Furthermore, we showed that the RNA binding domains of Su(s) are important for this effect and mapped the sequences involved to a 267-nucleotide region of an αβ element. Taken together, these results suggest that Su(s) binds to certain nascent transcripts and stimulates their degradation by the nuclear exosome. PMID:19687295

  2. Neuronal activity-induced regulation of Lingo-1.

    PubMed

    Trifunovski, Alexandra; Josephson, Anna; Ringman, Andreas; Brené, Stefan; Spenger, Christian; Olson, Lars

    2004-10-25

    Axonal regeneration after injury can be limited in the adult CNS by the presence of inhibitory proteins such as Nogo. Nogo binds to a receptor complex that consists of Nogo receptor (NgR), p75NTR, and Lingo-1. Nogo binding activates RhoA, which inhibits axonal outgrowth. Here we assessed Lingo-1 and NgR mRNA levels after delivery of BDNF into the rat hippocampal formation, Lingo-1 mRNA levels in rats subjected to kainic acid (KA) and running in running wheels. Lingo-1 mRNA was not changed by running. However, we found that Lingo-1 mRNA was strongly up-regulated while NgR mRNA was down-regulated in the dentate gyrus in both the BDNF and the KA experiments. Our data demonstrate inverse regulation of NgR and Lingo-1 in these situations, suggesting that Lingo-1 up-regulation is one characteristic of activity-induced neural plasticity responses.

  3. Mutant HSPB1 causes loss of translational repression by binding to PCBP1, an RNA binding protein with a possible role in neurodegenerative disease.

    PubMed

    Geuens, Thomas; De Winter, Vicky; Rajan, Nicholas; Achsel, Tilmann; Mateiu, Ligia; Almeida-Souza, Leonardo; Asselbergh, Bob; Bouhy, Delphine; Auer-Grumbach, Michaela; Bagni, Claudia; Timmerman, Vincent

    2017-01-11

    The small heat shock protein HSPB1 (Hsp27) is an ubiquitously expressed molecular chaperone able to regulate various cellular functions like actin dynamics, oxidative stress regulation and anti-apoptosis. So far disease causing mutations in HSPB1 have been associated with neurodegenerative diseases such as distal hereditary motor neuropathy, Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. Most mutations in HSPB1 target its highly conserved α-crystallin domain, while other mutations affect the C- or N-terminal regions or its promotor. Mutations inside the α-crystallin domain have been shown to enhance the chaperone activity of HSPB1 and increase the binding to client proteins. However, the HSPB1-P182L mutation, located outside and downstream of the α-crystallin domain, behaves differently. This specific HSPB1 mutation results in a severe neuropathy phenotype affecting exclusively the motor neurons of the peripheral nervous system. We identified that the HSPB1-P182L mutant protein has a specifically increased interaction with the RNA binding protein poly(C)binding protein 1 (PCBP1) and results in a reduction of its translational repressive activity. RNA immunoprecipitation followed by RNA sequencing on mouse brain lead to the identification of PCBP1 mRNA targets. These targets contain larger 3'- and 5'-UTRs than average and are enriched in an RNA motif consisting of the CTCCTCCTCCTCC consensus sequence. Interestingly, next to the clear presence of neuronal transcripts among the identified PCBP1 targets we identified known genes associated with hereditary peripheral neuropathies and hereditary spastic paraplegias. We therefore conclude that HSPB1 can mediate translational repression through interaction with an RNA binding protein further supporting its role in neurodegenerative disease.

  4. Insect transferrin functions as an antioxidant protein in a beetle larva.

    PubMed

    Kim, Bo Yeon; Lee, Kwang Sik; Choo, Young Moo; Kim, Iksoo; Je, Yeon Ho; Woo, Soo Dong; Lee, Sang Mong; Park, Hyun Cheol; Sohn, Hung Dae; Jin, Byung Rae

    2008-06-01

    In insects transferrin is known as an iron transporter, an antibiotic agent, a vitellogenin, and a juvenile hormone regulated protein. Here, a novel functional role for insect transferrin as an antioxidant protein is demonstrated. Stressors, such as heat shock, fungal challenge, and H(2)O(2) exposure, cause upregulation of the white-spotted flower chafer Protaetia brevitarsis (Coleoptera: Scarabaeidae) transferrin (PbTf) mRNA in the fat body and increases PbTf protein levels in the hemolymph. RNA interference (RNAi) treated PbTf reduction causes increased iron and H(2)O(2) levels in the hemolymph and results in induction of apoptotic cell death in the fat body during exposure to stress. The observed effects of PbTf RNAi suggest that PbTf inhibits stress-induced apoptosis by diminishing the Fenton reaction via the binding of iron, thus supporting an antioxidant role for PbTf in stress responses.

  5. Antisense RNA: effect of ribosome binding sites, target location, size, and concentration on the translation of specific mRNA molecules.

    PubMed

    Daugherty, B L; Hotta, K; Kumar, C; Ahn, Y H; Zhu, J D; Pestka, S

    1989-01-01

    A series of plasmids were constructed to generate RNA complementary to the beta-galactosidase messenger RNA under control of the phage lambda PL promoter. These plasmids generate anti-lacZ mRNA bearing or lacking a synthetic ribosome binding site adjacent to the lambda PL promoter and/or the lacZ ribosome binding site in reverse orientation. Fragments of lacZ DNA from the 5' and/or the 3' region were used in these constructions. When these anti-mRNA molecules were produced in Escherichia coli 294, maximal inhibition of beta-galactosidase synthesis occurred when a functional ribosome binding site was present near the 5' end of the anti-mRNA and the anti-mRNA synthesized was complementary to the 5' region of the mRNA corresponding to the lacZ ribosome binding site and/or the 5'-coding sequence. Anti-mRNAs producing maximal inhibition of beta-galactosidase synthesis exhibited an anti-lacZ mRNA:normal lacZ mRNA ratio of 100:1 or higher. Those showing lower levels of inhibition exhibited much lower anti-lacZ mRNA:normal lacZ mRNA ratios. A functional ribosome binding site at the 5'-end was found to decrease the decay rate of the anti-lacZ mRNAs. In addition, the incorporation of a transcription terminator just downstream of the antisense segment provided for more efficient inhibition of lacZ mRNA translation due to synthesis of smaller and more abundant anti-lacZ mRNAs. The optimal constructions produced undetectable levels of beta-galactosidase synthesis.

  6. Bombyx mori nucleopolyhedrovirus nucleic acid binding proteins BRO-B and BRO-E associate with host T-cell intracellular antigen 1 homologue BmTRN-1 to influence protein synthesis during infection.

    PubMed

    Kotani, Eiji; Muto, Sayaka; Ijiri, Hiroshi; Mori, Hajime

    2015-07-01

    Previous reports have indicated that the Bombyx mori nucleopolyhedrovirus (BmNPV) nucleic acid binding proteins BRO-B and BRO-E are expressed during the early stage of infection and that the BRO family likely supports the regulation of mRNA; however, no study has directly examined the function of BRO family proteins in virus-permissive cells. Here, we show that BRO-B and BRO-E associate with cellular T-cell intracellular antigen 1 homologue (BmTRN-1), a translational regulator, and other cellular translation-related proteins in silkworm cells during viral infection. We created BM-N cells that expressed BRO-B/E to study molecular interactions between BmTRN-1 and BRO-B/E and how they influenced protein synthesis. Fluorescent microscopy revealed that BmTRN-1 was localized in cytoplasmic foci during BmNPV infection. Immunofluorescence studies confirmed that BmTRN-1 and BRO-B/E were colocalized in the amorphous conspicuous cytoplasmic foci. Reporter gene studies revealed that co-expression of BRO-B/E synergistically led to a significant decrease in protein synthesis from a designed transcript carrying the 5'untranslated region of a cellular mRNA with no significant change of transcript abundance. Additionally, RNA interference-mediated knockdown of BmTRN-1 resulted in a marked inhibition of the ability of BRO-B/E to regulate the transcript. These results suggested that the association of BmTRN-1 with BRO-B/E is responsible for the inhibitory regulation of certain mRNAs at the post-transcriptional level and add an additional mechanism for how baculoviruses control protein synthesis during infection.

  7. The transcription repressor, ZEB1, cooperates with CtBP2 and HDAC1 to suppress IL-2 gene activation in T cells.

    PubMed

    Wang, Jun; Lee, Seungsoo; Teh, Charis En-Yi; Bunting, Karen; Ma, Lina; Shannon, M Frances

    2009-03-01

    Activation of T cells leads to the induction of many cytokine genes that are required for appropriate immune responses, including IL-2, a key cytokine for T cell proliferation and homeostasis. The activating transcription factors such as nuclear factor of activated T cells, nuclear factor kappaB/Rel and activated protein-1 family members that regulate inducible IL-2 gene expression have been well documented. However, negative regulation of the IL-2 gene is less studied. Here we examine the role of zinc finger E-box-binding protein (ZEB) 1, a homeodomain/Zn finger transcription factor, as a repressor of IL-2 gene transcription. We show here that ZEB1 is expressed in non-stimulated and stimulated T cells and using chromatin immunoprecipitation assays we show that ZEB1 binds to the IL-2 promoter. Over-expression of ZEB1 can repress IL-2 promoter activity, as well as endogenous IL-2 mRNA production in EL-4 T cells, and this repression is dependent on the ZEB-binding site at -100. ZEB1 cooperates with the co-repressor C-terminal-binding protein (CtBP) 2 and with histone deacetylase 1 to repress the IL-2 promoter and this cooperation depends on the ZEB-binding site in the promoter as well as the Pro-X-Asp-Leu-Ser protein-protein interaction domain in CtBP2. Thus, ZEB1 may function to recruit a repressor complex to the IL-2 promoter.

  8. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis.

    PubMed

    Dennis, Michael D; Jefferson, Leonard S; Kimball, Scot R

    2012-12-14

    Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5'-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.

  9. Staufen2 functions in Staufen1-mediated mRNA decay by binding to itself and its paralog and promoting UPF1 helicase but not ATPase activity

    PubMed Central

    Park, Eonyoung; Gleghorn, Michael L.; Maquat, Lynne E.

    2013-01-01

    Staufen (STAU)1-mediated mRNA decay (SMD) is a posttranscriptional regulatory mechanism in mammals that degrades mRNAs harboring a STAU1-binding site (SBS) in their 3′-untranslated regions (3′ UTRs). We show that SMD involves not only STAU1 but also its paralog STAU2. STAU2, like STAU1, is a double-stranded RNA-binding protein that interacts directly with the ATP-dependent RNA helicase up-frameshift 1 (UPF1) to reduce the half-life of SMD targets that form an SBS by either intramolecular or intermolecular base-pairing. Compared with STAU1, STAU2 binds ∼10-fold more UPF1 and ∼two- to fivefold more of those SBS-containing mRNAs that were tested, and it comparably promotes UPF1 helicase activity, which is critical for SMD. STAU1- or STAU2-mediated augmentation of UPF1 helicase activity is not accompanied by enhanced ATP hydrolysis but does depend on ATP binding and a basal level of UPF1 ATPase activity. Studies of STAU2 demonstrate it changes the conformation of RNA-bound UPF1. These findings, and evidence for STAU1−STAU1, STAU2−STAU2, and STAU1−STAU2 formation in vitro and in cells, are consistent with results from tethering assays: the decrease in mRNA abundance brought about by tethering siRNA-resistant STAU2 or STAU1 to an mRNA 3′ UTR is inhibited by downregulating the abundance of cellular STAU2, STAU1, or UPF1. It follows that the efficiency of SMD in different cell types reflects the cumulative abundance of STAU1 and STAU2. We propose that STAU paralogs contribute to SMD by “greasing the wheels” of RNA-bound UPF1 so as to enhance its unwinding capacity per molecule of ATP hydrolyzed. PMID:23263869

  10. Staufen2 functions in Staufen1-mediated mRNA decay by binding to itself and its paralog and promoting UPF1 helicase but not ATPase activity.

    PubMed

    Park, Eonyoung; Gleghorn, Michael L; Maquat, Lynne E

    2013-01-08

    Staufen (STAU)1-mediated mRNA decay (SMD) is a posttranscriptional regulatory mechanism in mammals that degrades mRNAs harboring a STAU1-binding site (SBS) in their 3'-untranslated regions (3' UTRs). We show that SMD involves not only STAU1 but also its paralog STAU2. STAU2, like STAU1, is a double-stranded RNA-binding protein that interacts directly with the ATP-dependent RNA helicase up-frameshift 1 (UPF1) to reduce the half-life of SMD targets that form an SBS by either intramolecular or intermolecular base-pairing. Compared with STAU1, STAU2 binds ~10-fold more UPF1 and ~two- to fivefold more of those SBS-containing mRNAs that were tested, and it comparably promotes UPF1 helicase activity, which is critical for SMD. STAU1- or STAU2-mediated augmentation of UPF1 helicase activity is not accompanied by enhanced ATP hydrolysis but does depend on ATP binding and a basal level of UPF1 ATPase activity. Studies of STAU2 demonstrate it changes the conformation of RNA-bound UPF1. These findings, and evidence for STAU1-STAU1, STAU2-STAU2, and STAU1-STAU2 formation in vitro and in cells, are consistent with results from tethering assays: the decrease in mRNA abundance brought about by tethering siRNA-resistant STAU2 or STAU1 to an mRNA 3' UTR is inhibited by downregulating the abundance of cellular STAU2, STAU1, or UPF1. It follows that the efficiency of SMD in different cell types reflects the cumulative abundance of STAU1 and STAU2. We propose that STAU paralogs contribute to SMD by "greasing the wheels" of RNA-bound UPF1 so as to enhance its unwinding capacity per molecule of ATP hydrolyzed.

  11. Maternal syntabulin is required for dorsal axis formation and is a germ plasm component in Xenopus.

    PubMed

    Colozza, Gabriele; De Robertis, Edward M

    2014-07-01

    In amphibians and teleosts, early embryonic axial development is driven by maternally deposited mRNAs and proteins, called dorsal determinants, which migrate to the presumptive dorsal side of the embryo in a microtubule-dependent manner after fertilization. Syntabulin is an adapter protein that binds to kinesin KIF5B and to the transmembrane protein Syntaxin1. In zebrafish, a mutation in Syntabulin causes complete embryo ventralization. It is unknown whether Syntabulin plays an analogous role during early development of other species, a question addressed here in Xenopus laevis. in situ hybridization of syntabulin mRNA was carried out at different stages of Xenopus development. In oocytes, syntabulin transcripts were localized to the vegetal cortex of large oocytes and the mitochondrial cloud of very young oocytes. We extended the zebrafish data by finding that during cleavage Xenopus syntabulin mRNA localized to the germ plasm and was later expressed in primordial germ cells (PGCs). This new finding suggested a role for Syntabulin during germ cell differentiation. The functional role of maternal syntabulin mRNA was investigated by knock-down with phosphorothioate DNA antisense oligos followed by oocyte transfer. The results showed that syntabulin mRNA depletion caused the complete loss of dorso-anterior axis formation in frog embryos. Consistent with the ventralized phenotype, syntabulin-depleted embryos displayed severe reduction of dorsal markers and ubiquitous transcription of the ventral marker sizzled. Syntabulin was required for the maternal Wnt/β-Catenin signal, since ventralization could be completely rescued by injection of β-catenin (or syntabulin) mRNA. The data suggest an evolutionarily conserved role for Syntabulin, a protein that bridges microtubule motors and membrane vesicles, during dorso-ventral axis formation in the vertebrates. Copyright © 2013 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  12. Hypoxia induces IGFBP3 in esophageal squamous cancer cells through HIF-1α-mediated mRNA transcription and continuous protein synthesis

    PubMed Central

    Natsuizaka, Mitsuteru; Naganuma, Seiji; Kagawa, Shingo; Ohashi, Shinya; Ahmadi, Azal; Subramanian, Harry; Chang, Sanders; Nakagawa, Kei J.; Ji, Xinjun; Liebhaber, Stephen A.; Klein-Szanto, Andres J.; Nakagawa, Hiroshi

    2012-01-01

    Insulin-like growth factor binding protein (IGFBP)-3 regulates cell proliferation and apoptosis in esophageal squamous cell carcinoma (ESCC) cells. We have investigated how the hypoxic tumor microenvironment in ESCC fosters the induction of IGFBP3. RNA interference experiments revealed that hypoxia-inducible factor (HIF)-1α, but not HIF-2α, regulates IGFBP3 mRNA induction. By chromatin immunoprecipitation and transfection assays, HIF-1α was found to transactivate IGFBP3 through a novel hypoxia responsive element (HRE) located at 57 kb upstream from the transcription start site. Metabolic labeling experiments demonstrated hypoxia-mediated inhibition of global protein synthesis. 7-Methyl GTP-cap binding assays suggested that hypoxia suppresses cap-dependent translation. Experiments using pharmacological inhibitors for mammalian target of rapamycin (mTOR) suggested that a relatively weak mTOR activity may be sufficient for cap-dependent translation of IGFBP3 under hypoxic conditions. Bicistronic RNA reporter transfection assays did not validate the possibility of an internal ribosome entry site as a potential mechanism for cap-independent translation for IGFBP3 mRNA. Finally, IGFBP3 mRNA was found enriched to the polysomes. In aggregate, our study establishes IGFBP3 as a direct HIF-1α target gene and that polysome enrichment of IGFBP3 mRNA may permit continuous translation under hypoxic conditions.—Natsuizaka, M., Naganuma, S., Kagawa, S., Ohashi, S., Ahmadi, A., Subramanian, H., Chang, S., Nakagawa, K. J., Ji, X., Liebhaber, S. A., Klein-Szanto, A. J., Nakagawa, H. Hypoxia induces IGFBP3 in esophageal squamous cancer cells through HIF-1α-mediated mRNA transcription and continuous protein synthesis. PMID:22415309

  13. Functional analysis of the glycogen binding subunit CG9238/Gbs-70E of protein phosphatase 1 in Drosophila melanogaster.

    PubMed

    Kerekes, Éva; Kókai, Endre; Páldy, Ferenc Sándor; Dombrádi, Viktor

    2014-06-01

    The product of the CG9238 gene that we termed glycogen binding subunit 70E (Gbs-70E) was characterized by biochemical and molecular genetics methods. The interaction between Gbs-70E and all catalytic subunits of protein phosphatase 1 (Pp1-87B, Pp1-9C, Pp1-96A and Pp1-13C) of Drosophila melanogaster was confirmed by pairwise yeast two-hybrid tests, co-immunoprecipitation and pull down experiments. The binding of Gbs-70E to glycogen was demonstrated by sedimentation analysis. With RT-PCR we found that the mRNAs coding for the longer Gbs-70E PB/PC protein were expressed in all developmental stages of the fruit flies while the mRNA for the shorter Gbs-70E PA was restricted to the eggs and the ovaries of the adult females. The development specific expression of the shorter splice variant was not conserved in different Drosophila species. The expression level of the gene was manipulated by P-element insertions and gene deletion to analyze the functions of the gene product. A small or moderate reduction in the gene expression resulted in no significant changes, however, a deletion mutant expressing very low level of the transcript lived shorter and exhibited reduced glycogen content in the imagos. In addition, the gene deletion decreased the fertility of the fruit flies. Our results prove that Gbs-70E functions as the glycogen binding subunit of protein phosphatase 1 that regulates glycogen content and plays a role in the development of eggs in D. melanogaster. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells.

    PubMed

    Veiseh, Mandana; Leith, Sean J; Tolg, Cornelia; Elhayek, Sallie S; Bahrami, S Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B; Bissell, Mina J; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies.

  15. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells

    PubMed Central

    Veiseh, Mandana; Leith, Sean J.; Tolg, Cornelia; Elhayek, Sallie S.; Bahrami, S. Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B.; Bissell, Mina J.; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies. PMID:26528478

  16. Protein B61 as a new growth factor: expression of B61 and up-regulation of its receptor epithelial cell kinase during melanoma progression.

    PubMed

    Easty, D J; Guthrie, B A; Maung, K; Farr, C J; Lindberg, R A; Toso, R J; Herlyn, M; Bennett, D C

    1995-06-15

    Epithelial cell kinase (ECK) is a receptor protein tyrosine kinase, the role of which in melanoma biology is unclear. Here we studied the role of ECK during melanoma progression. ECK mRNA was overexpressed in virtually all melanoma lines tested, and levels were significantly higher in cell lines from distant metastases than primary melanomas; melanocytes were negative. Gene amplification was not detected in melanomas. Levels of ECK protein corresponded well with mRNA levels. B61 or LERK-1, recently identified as an ECK ligand, stimulated the growth of ECK-expressing melanoma cell lines, its first identified biological activity. Melanoma chemotaxis and chemoinvasion were not affected by B61. Growth of normal melanocytes was not affected. mRNA for B61 was detected in both melanoma cell lines and normal melanocytes. B61 was also identified by Western blotting and ECK binding activity with the use of a BIAcore binding assay in melanoma cell-conditioned media. These results suggest that B61 is an autocrine growth factor for melanomas but not normal melanocytes.

  17. Molecular mechanism for the operation of nitrogen control in cyanobacteria.

    PubMed Central

    Luque, I; Flores, E; Herrero, A

    1994-01-01

    In cyanobacteria, ammonium exerts a negative regulation of the expression of proteins involved in the assimilation of nitrogen sources alternative to ammonium. In Synechococcus, mRNA levels of genes encoding proteins for nitrate and ammonium assimilation were observed to be negatively regulated by ammonium, and ammonium-regulated transcription start points were identified for those genes. The NtcA protein is a positive regulator of genes subjected to nitrogen control by ammonium. Mutants lacking NtcA exhibited only basal mRNA levels of the regulated genes, even in the absence of ammonium, indicating that NtcA exerts its regulatory action by positively influencing mRNA levels of the nitrogen-regulated genes. NtcA was observed to bind directly to the promoters of nitrogen-regulated genes, and the palindromic DNA sequence GTAN8TAC was identified as a sequence signature for NtcA-target sites. The structure of the nitrogen-, NtcA-regulated promoters of Synechococcus was determined to be constituted by a -10, Pribnow-like box in the form TAN3T, and an NtcA-binding site that substituted for the canonical -35 box. Images PMID:8026471

  18. The nucleotides they are a-changin': function of RNA binding proteins in post-transcriptional messenger RNA editing and modification in Arabidopsis.

    PubMed

    Kramer, Marianne C; Anderson, Stephen J; Gregory, Brian D

    2018-06-05

    During and after transcription, the fate of an RNA molecule is almost entirely directed by the cohorts of interacting RNA-binding proteins (RBPs). RBPs regulate all stages of the life cycle of a messenger RNA (mRNA) molecule, including splicing, polyadenylation, transport out of the nucleus, RNA stability, and translation. In addition to these functions, RBPs can function to modify or edit the sequences encoded by the RNA. While the sequence for each transcript is determined in the genome, by the time an RNA reaches its final fate, the sequence may have been edited, where one nucleotide is converted to another, or modified, where a chemical group, or sometimes others moieties, are covalently linked to a nucleotide base. These changes to the RNA sequence have major consequences on the function of the RNA. Additionally, variation in the levels of the RBPs that perform the editing or modification can drastically affect the fitness of an organism. Here, we review RBPs that are known to edit or modify RNA ribonucleotides, focusing on the RNA editing ability of the pentatricopeptide repeat (PPR) proteins and the RBPs that modify adenosine to N 6 - methyladenosine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Effects of chronic sumatriptan and zolmitriptan treatment on 5-HT receptor expression and function in rats.

    PubMed

    Reuter, U; Salomone, S; Ickenstein, G W; Waeber, C

    2004-05-01

    Triptans are commonly used anti-migraine drugs and show agonist action mainly at serotonin 5-HT(1B/1D/1F) receptors. It is not known whether frequent or long-term treatment with these drugs would alter 5-HT receptor function. We investigated the effects of protracted (14-18 days) sumatriptan and zolmitriptan treatment in rats on 5-HT(1) receptor mRNA expression and function in tissues related to migraine pathophysiology. RT-PCR analysis revealed that 5-HT(1B/1D/1F) receptor mRNA was reduced in the trigeminal ganglion after treatment with either triptan (reduction by: sumatriptan 39% and zolmitriptan 61% for 5-HT(1B); 60%vs 41% for 5-HT(1D); 32%vs 68% for 5-HT(1F)). Sumatriptan attenuated 5-HT(1D) receptor mRNA by 49% in the basilar artery, whereas zolmitriptan reduced 5-HT(1B) mRNA in this tissue by 70%. No change in 5-HT(1) receptor mRNA expression was observed in coronary artery and dura mater. Chronic triptan treatment had no effect in two functional assays [sumatriptan mediated inhibition (50 mg/kg, i.p.) of electrically induced plasma protein extravasation in dura mater and 5-nonyloxytryptamine-stimulated [(35)S]guanosine-5'-O-(3-thio)triphosphate binding in substantia nigra]. Furthermore, vasoconstriction to 5-HT in isolated basilar artery was not affected by chronic triptan treatment, while it was slightly reduced in coronary artery. We conclude that, although our treatment protocol altered mRNA receptor expression in several tissues relevant to migraine pathophysiology, it did not attenuate 5-HT(1) receptor-dependent functions in rats.

  20. The human insulin mRNA is partly translated via a cap- and eIF4A-independent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fred, Rikard G., E-mail: Rikard.Fred@mcb.uu.se; Sandberg, Monica; Pelletier, Jerry

    Highlights: {yields} The polypyrimidine tract binding protein binds to the 5'-UTR of the insulin mRNA. {yields} Insulin mRNA can be translated via a cap-independent mechanism. {yields} The fraction cap-independent insulin synthesis increases during conditions of stress. {yields} The {beta}-cell is able to uphold basal insulin biosynthesis under conditions of stress. -- Abstract: The aim of this study was to investigate whether cap-independent insulin mRNA translation occurs in human pancreatic islets at basal conditions, during stimulation at a high glucose concentration and at conditions of nitrosative stress. We also aimed at correlating cap-independent insulin mRNA translation with binding of the IRESmore » trans-acting factor polypyrimidine tract binding protein (PTB) to the 5'-UTR of insulin mRNA. For this purpose, human islets were incubated for 2 h in the presence of low (1.67 mM) or high glucose (16.7 mM). Nitrosative stress was induced by addition of 1 mM DETA/NO and cap-dependent mRNA translation was inhibited with hippuristanol. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. PTB affinity to insulin mRNA 5'-UTR was assessed by a magnetic micro bead pull-down procedure. We observed that in the presence of 1.67 mM glucose, approximately 70% of the insulin mRNA translation was inhibited by hippuristanol. Corresponding value from islets incubated at 16.7 mM glucose was 93%. DETA/NO treatment significantly decreased the translation of insulin by 85% in high glucose incubated islets, and by 50% at a low glucose concentration. The lowered insulin biosynthesis rates of DETA/NO-exposed islets were further suppressed by hippuristanol with 55% at 16.7 mM glucose but not at 1.67 mM glucose. Thus, hippuristanol-induced inhibition of insulin biosynthesis was less pronounced in DETA/NO-treated islets as compared to control islets. We observed also that PTB bound specifically to the insulin mRNA 5'-UTR in vitro, and that this binding corresponded well with rates of cap-independent insulin biosynthesis at the different conditions. In conclusion, our studies show that insulin biosynthesis is mainly cap-dependent at a high glucose concentration, but that the cap-independent biosynthesis of insulin can constitute as much as 40-100% of all insulin biosynthesis during conditions of nitrosative stress. These data suggest that the pancreatic {beta}-cell is able to uphold basal insulin synthesis at conditions of starvation and stress via a cap- and eIF4A-independent mechanism, possibly mediated by the binding of PTB to the 5'-UTR of the human insulin mRNA.« less

  1. A high ratio of insulin-like growth factor II/insulin-like growth factor binding protein 2 messenger RNA as a marker for anaplasia in meningiomas.

    PubMed

    Nordqvist, A C; Peyrard, M; Pettersson, H; Mathiesen, T; Collins, V P; Dumanski, J P; Schalling, M

    1997-07-01

    Insulin-like growth factors (IGFs) I and II have been implicated as autocrine or paracrine growth promoters. These growth factors bind to specific receptors, and the response is modulated by interaction with IGF-binding proteins (IGFBPs). We observed a strong correlation between anaplastic/atypical histopathology and a high IGF-II/IGFBP-2 mRNA ratio in a set of 68 sporadic meningiomas. A strong correlation was also found between clinical outcome and IGF-II/IGFBP-2 ratio, whereas previously used histochemical markers were less correlated to outcome. We suggest that a high IGF-II/IGFBP-2 mRNA ratio may be a sign of biologically aggressive behavior in meningiomas that can influence treatment strategies. We propose that low IGFBP-2 levels in combination with increased levels of IGF-II would result in more free IGF-II and consequently greater stimulation of proliferation.

  2. ISOLATION AND CHARACTERIZATION OF AXOLOTL NPDC-1 AND ITS EFFECTS ON RETINOIC ACID RECEPTOR SIGNALING

    PubMed Central

    Theodosiou, Maria; Monaghan, James R; Spencer, Michael L; Voss, S Randal; Noonan, Daniel J

    2009-01-01

    Retinoic acid, a key morphogen in early vertebrate development and tissue regeneration, mediates its effects through the binding of receptors that act as ligand-induced transcription factors. These binding events function to recruit an array of transcription co-regulatory proteins to specific gene promoters. One such co-regulatory protein, neuronal proliferation and differentiation control-1 (NPDC-1), is broadly expressed during mammalian development and functions as an in vitro repressor of retinoic acid receptor (RAR)-mediated transcription. To obtain comparative and developmental insights about NPDC-1 function, we cloned the axolotl (Ambystoma mexicanum) orthologue and measured transcript abundances among tissues sampled during the embryonic and juvenile phases of development, and also during spinal cord regeneration. Structurally, the axolotl orthologue of NPDC-1 retained sequence identity to mammalian sequences in all functional domains. Functionally, we observed that axolotl NPDC-1 mRNA expression peaked late in embryogenesis, with highest levels of expression occurring during the time of limb development, a process regulated by retinoic acid signaling. Also similar to what has been observed in mammals, axolotl NPDC-1 directly interacts with axolotl RAR, modulates axolotl RAR DNA binding, and represses cell proliferation and axolotl RAR-mediated gene transcription. These data justify axolotl as a model to further investigate NPDC-1 and its role in regulating retinoic acid signaling. PMID:17331771

  3. Stochastic Protein Multimerization, Cooperativity and Fitness

    NASA Astrophysics Data System (ADS)

    Hagner, Kyle; Setayeshgar, Sima; Lynch, Michael

    Many proteins assemble into multimeric structures that can vary greatly among phylogenetic lineages. As protein-protein interactions (PPI) require productive encounters among subunits, these structural variations are related in part to variation in cellular protein abundance. The protein abundance in turn depends on the intrinsic rates of production and decay of mRNA and protein molecules, as well as rates of cell growth and division. We present a stochastic model for prediction of the multimeric state of a protein as a function of these processes and the free energy associated with binding interfaces. We demonstrate favorable agreement between the model and a wide class of proteins using E. coli proteome data. As such, this platform, which links protein abundance, PPI and quaternary structure in growing and dividing cells can be extended to evolutionary models for the emergence and diversification of multimeric proteins. We investigate cooperativity - a ubiquitous functional property of multimeric proteins - as a possible selective force driving multimerization, demonstrating a reduction in the cost of protein production relative to the overall proteome energy budget that can be tied to fitness.

  4. A retained intron in the 3'-UTR of Calm3 mRNA mediates its Staufen2- and activity-dependent localization to neuronal dendrites.

    PubMed

    Sharangdhar, Tejaswini; Sugimoto, Yoichiro; Heraud-Farlow, Jacqueline; Fernández-Moya, Sandra M; Ehses, Janina; Ruiz de Los Mozos, Igor; Ule, Jernej; Kiebler, Michael A

    2017-10-01

    Dendritic localization and hence local mRNA translation contributes to synaptic plasticity in neurons. Staufen2 (Stau2) is a well-known neuronal double-stranded RNA-binding protein (dsRBP) that has been implicated in dendritic mRNA localization. The specificity of Stau2 binding to its target mRNAs remains elusive. Using individual-nucleotide resolution CLIP (iCLIP), we identified significantly enriched Stau2 binding to the 3'-UTRs of 356 transcripts. In 28 (7.9%) of those, binding occurred to a retained intron in their 3'-UTR The strongest bound 3'-UTR intron was present in the longest isoform of Calmodulin 3 ( Calm3 L ) mRNA Calm3 L 3'-UTR contains six Stau2 crosslink clusters, four of which are in this retained 3'-UTR intron. The Calm3 L mRNA localized to neuronal dendrites, while lack of the 3'-UTR intron impaired its dendritic localization. Importantly, Stau2 mediates this dendritic localization via the 3'-UTR intron, without affecting its stability. Also, NMDA-mediated synaptic activity specifically promoted the dendritic mRNA localization of the Calm3 L isoform, while inhibition of synaptic activity reduced it substantially. Together, our results identify the retained intron as a critical element in recruiting Stau2, which then allows for the localization of Calm3 L mRNA to distal dendrites. © 2017 The Authors.

  5. RNA-directed activation of cytoplasmic dynein-1 in reconstituted transport RNPs.

    PubMed

    McClintock, Mark A; Dix, Carly I; Johnson, Christopher M; McLaughlin, Stephen H; Maizels, Rory J; Hoang, Ha Thi; Bullock, Simon L

    2018-06-26

    Polarised mRNA transport is a prevalent mechanism for spatial control of protein synthesis. However, the composition of transported ribonucleoprotein particles (RNPs) and the regulation of their movement are poorly understood. We have reconstituted microtubule minus end-directed transport of mRNAs using purified components. A Bicaudal-D (BicD) adaptor protein and the RNA-binding protein Egalitarian (Egl) are sufficient for long-distance mRNA transport by the dynein motor and its accessory complex dynactin, thus defining a minimal transport-competent RNP. Unexpectedly, the RNA is required for robust activation of dynein motility. We show that a cis -acting RNA localisation signal promotes the interaction of Egl with BicD, which licenses the latter protein to recruit dynein and dynactin. Our data support a model for BicD activation based on RNA-induced occupancy of two Egl-binding sites on the BicD dimer. Scaffolding of adaptor protein assemblies by cargoes is an attractive mechanism for regulating intracellular transport. © 2018, McClintock et al.

  6. ADAR1 regulates ARHGAP26 gene expression through RNA editing by disrupting miR-30b-3p and miR-573 binding.

    PubMed

    Wang, Qiong; Hui, Haipeng; Guo, Zhendong; Zhang, Weina; Hu, Yaou; He, Tao; Tai, Yanhong; Peng, Peng; Wang, Li

    2013-11-01

    Rho GTPase activating protein 26 (ARHGAP26) is a negative regulator of the Rho family that converts the small G proteins RhoA and Cdc42 to their inactive GDP-bound forms. It is essential for the CLIC/GEEC endocytic pathway, cell spreading, and muscle development. The present study shows that ARHGAP26 mRNA undergoes extensive A-to-I RNA editing in the 3' UTR that is specifically catalyzed by ADAR1. Furthermore, the mRNA and protein levels of ARHGAP26 were decreased in cells in which ADAR1 was knocked down. Conversely, ADAR1 overexpression increased the abundance of ARHGAP26 mRNA and protein. In addition, we found that both miR-30b-3p and miR-573 target the ARHGAP26 gene and that RNA editing of ARHGAP26 mediated by ADAR1 abolished the repression of its expression by miR-30b-3p or miR-573. When ADAR1 was overexpressed, the reduced abundance of ARHGAP26 protein mediated by miR-30b-3p or miR-573 was rescued. Importantly, we also found that knocking down ADAR1 elevated RhoA activity, which was consistent with the reduced level of ARHGAP26. Conversely, when ADAR1 was overexpressed, the amount of RhoA-GTP decreased. The similar expression patterns of ARHGAP26 and ADAR1 in human tissue samples further confirmed our findings. Taken together, our results suggest that ADAR1 regulates the expression of ARHGAP26 through A-to-I RNA editing by disrupting the binding of miR-30b-3p and miR-573 within the 3' UTR of ARHGAP26. This study provides a novel insight into the mechanism by which ADAR1 and its RNA editing function regulate microRNA-mediated modulation of target genes.

  7. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins.

    PubMed

    Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L

    2008-02-22

    One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.

  8. Influence of Xylella fastidiosa cold shock proteins on pathogenesis in grapevine.

    USDA-ARS?s Scientific Manuscript database

    Cold shock proteins (CSPs), a family of nucleic acid binding proteins are an essential part of microbial adaptation to temperature changes. Bacterial CSPs are often expressed in a temperature-dependent manner, and act as chaperones, facilitating translation at low temperature by stabilizing mRNA. In...

  9. 7-methylguanosine diphosphate (m(7)GDP) is not hydrolyzed but strongly bound by decapping scavenger (DcpS) enzymes and potently inhibits their activity.

    PubMed

    Wypijewska, Anna; Bojarska, Elzbieta; Lukaszewicz, Maciej; Stepinski, Janusz; Jemielity, Jacek; Davis, Richard E; Darzynkiewicz, Edward

    2012-10-09

    Decapping scavenger (DcpS) enzymes catalyze the cleavage of a residual cap structure following 3' → 5' mRNA decay. Some previous studies suggested that both m(7)GpppG and m(7)GDP were substrates for DcpS hydrolysis. Herein, we show that mononucleoside diphosphates, m(7)GDP (7-methylguanosine diphosphate) and m(3)(2,2,7)GDP (2,2,7-trimethylguanosine diphosphate), resulting from mRNA decapping by the Dcp1/2 complex in the 5' → 3' mRNA decay, are not degraded by recombinant DcpS proteins (human, nematode, and yeast). Furthermore, whereas mononucleoside diphosphates (m(7)GDP and m(3)(2,2,7)GDP) are not hydrolyzed by DcpS, mononucleoside triphosphates (m(7)GTP and m(3)(2,2,7)GTP) are, demonstrating the importance of a triphosphate chain for DcpS hydrolytic activity. m(7)GTP and m(3)(2,2,7)GTP are cleaved at a slower rate than their corresponding dinucleotides (m(7)GpppG and m(3)(2,2,7)GpppG, respectively), indicating an involvement of the second nucleoside for efficient DcpS-mediated digestion. Although DcpS enzymes cannot hydrolyze m(7)GDP, they have a high binding affinity for m(7)GDP and m(7)GDP potently inhibits DcpS hydrolysis of m(7)GpppG, suggesting that m(7)GDP may function as an efficient DcpS inhibitor. Our data have important implications for the regulatory role of m(7)GDP in mRNA metabolic pathways due to its possible interactions with different cap-binding proteins, such as DcpS or eIF4E.

  10. β-Catenin recognizes a specific RNA motif in the cyclooxygenase-2 mRNA 3′-UTR and interacts with HuR in colon cancer cells

    PubMed Central

    Kim, Inae; Kwak, Hoyun; Lee, Hee Kyu; Hyun, Soonsil; Jeong, Sunjoo

    2012-01-01

    RNA-binding proteins regulate multiple steps of RNA metabolism through both dynamic and combined binding. In addition to its crucial roles in cell adhesion and Wnt-activated transcription in cancer cells, β-catenin regulates RNA alternative splicing and stability possibly by binding to target RNA in cells. An RNA aptamer was selected for specific binding to β-catenin to address RNA recognition by β-catenin more specifically. Here, we characterized the structural properties of the RNA aptamer as a model and identified a β-catenin RNA motif. Similar RNA motif was found in cellular RNA, Cyclooxygenase-2 (COX-2) mRNA 3′-untranslated region (3′-UTR). More significantly, the C-terminal domain of β-catenin interacted with HuR and the Armadillo repeat domain associated with RNA to form the RNA–β-catenin–HuR complex in vitro and in cells. Furthermore, the tertiary RNA–protein complex was predominantly found in the cytoplasm of colon cancer cells; thus, it might be related to COX-2 protein level and cancer progression. Taken together, the β-catenin RNA aptamer was valuable for deducing the cellular RNA aptamer and identifying novel and oncogenic RNA–protein networks in colon cancer cells. PMID:22544606

  11. Deficiency in mTORC1-controlled C/EBPβ-mRNA translation improves metabolic health in mice

    PubMed Central

    Zidek, Laura M; Ackermann, Tobias; Hartleben, Götz; Eichwald, Sabrina; Kortman, Gertrud; Kiehntopf, Michael; Leutz, Achim; Sonenberg, Nahum; Wang, Zhao-Qi; von Maltzahn, Julia; Müller, Christine; Calkhoven, Cornelis F

    2015-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of physiological adaptations in response to changes in nutrient supply. Major downstream targets of mTORC1 signalling are the mRNA translation regulators p70 ribosomal protein S6 kinase 1 (S6K1p70) and the 4E-binding proteins (4E-BPs). However, little is known about vertebrate mRNAs that are specifically controlled by mTORC1 signalling and are engaged in regulating mTORC1-associated physiology. Here, we show that translation of the CCAAT/enhancer binding protein beta (C/EBPβ) mRNA into the C/EBPβ-LIP isoform is suppressed in response to mTORC1 inhibition either through pharmacological treatment or through calorie restriction. Our data indicate that the function of 4E-BPs is required for suppression of LIP. Intriguingly, mice lacking the cis-regulatory upstream open reading frame (uORF) in the C/EBPβ-mRNA, which is required for mTORC1-stimulated translation into C/EBPβ-LIP, display an improved metabolic phenotype with features also found under calorie restriction. Thus, our data suggest that translational adjustment of C/EBPβ-isoform expression is one of the key processes that direct metabolic adaptation in response to changes in mTORC1 activity. PMID:26113365

  12. Arabidopsis TAF15b Localizes to RNA Processing Bodies and Contributes to snc1-Mediated Autoimmunity.

    PubMed

    Dong, Oliver X; Meteignier, Louis-Valentin; Plourde, Melodie B; Ahmed, Bulbul; Wang, Ming; Jensen, Cassandra; Jin, Hailing; Moffett, Peter; Li, Xin; Germain, Hugo

    2016-04-01

    In both animals and plants, messenger (m)RNA export has been shown to contribute to immune response regulation. The Arabidopsis nuclear protein MOS11, along with the nucleoporins MOS3/Nup96/SAR3 and Nup160/SAR1 are components of the mRNA export machinery and contribute to immunity mediated by nucleotide binding leucine-rich repeat immune receptors (NLR). The human MOS11 ortholog CIP29 is part of a small protein complex with three additional members: the RNA helicase DDX39, ALY, and TAF15b. We systematically assessed the biological roles of the Arabidopsis homologs of these proteins in toll interleukin 1 receptor-type NLR (TNL)-mediated immunity using reverse genetics. Although mutations in ALY and DDX39 did not result in obvious defects, taf15b mutation partially suppressed the autoimmune phenotypes of a gain-of-function TNL mutant, snc1. An additive effect on snc1 suppression was observed in mos11-1 taf15b snc1 triple mutant plants, suggesting that MOS11 and TAF15b have independent functions. TAF15b-GFP fusion protein, which fully complemented taf15b mutant phenotypes, localized to nuclei similarly to MOS11. However, it was also targeted to cytosolic granules identified as processing bodies. In addition, we observed no change in SNC1 mRNA levels, whereas less SNC1 protein accumulated in taf15b mutant, suggesting that TAF15b contributes to SNC1 homeostasis through posttranscriptional mechanisms. In summary, this study highlights the importance of posttranscriptional RNA processing mediated by TAF15b in the regulation of TNL-mediated immunity.

  13. Bottom-up design of small molecules that stimulate exon 10 skipping in mutant MAPT pre-mRNA.

    PubMed

    Luo, Yiling; Disney, Matthew D

    2014-09-22

    One challenge in chemical biology is to develop small molecules that control cellular protein content. The amount and identity of proteins are influenced by the RNAs that encode them; thus, protein content in a cell could be affected by targeting mRNA. However, RNA has been traditionally difficult to target with small molecules. In this report, we describe controlling the protein products of the mutated microtubule-associated protein tau (MAPT) mature mRNA with a small molecule. MAPT mutations in exon 10 are associated with inherited frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17), an incurable disease that is directly caused by increased inclusion of exon 10 in MAPT mRNA. Recent studies have shown that mutations within a hairpin at the MAPT exon 10-intron junction decrease the thermodynamic stability of the RNA, increasing binding to U1 snRNP and thus exon 10 inclusion. Therefore, we designed small molecules that bind and stabilize a mutant MAPT by using Inforna, a computational approach based on information about RNA-small-molecule interactions. The optimal compound selectively bound the mutant MAPT hairpin and thermodynamically stabilized its folding, facilitating exon 10 exclusion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A positive feedback mechanism that regulates expression of miR-9 during neurogenesis.

    PubMed

    Davila, Jonathan L; Goff, Loyal A; Ricupero, Christopher L; Camarillo, Cynthia; Oni, Eileen N; Swerdel, Mavis R; Toro-Ramos, Alana J; Li, Jiali; Hart, Ronald P

    2014-01-01

    MiR-9, a neuron-specific miRNA, is an important regulator of neurogenesis. In this study we identify how miR-9 is regulated during early differentiation from a neural stem-like cell. We utilized two immortalized rat precursor clones, one committed to neurogenesis (L2.2) and another capable of producing both neurons and non-neuronal cells (L2.3), to reproducibly study early neurogenesis. Exogenous miR-9 is capable of increasing neurogenesis from L2.3 cells. Only one of three genomic loci capable of encoding miR-9 was regulated during neurogenesis and the promoter region of this locus contains sufficient functional elements to drive expression of a luciferase reporter in a developmentally regulated pattern. Furthermore, among a large number of potential regulatory sites encoded in this sequence, Mef2 stood out because of its known pro-neuronal role. Of four Mef2 paralogs, we found only Mef2C mRNA was regulated during neurogenesis. Removal of predicted Mef2 binding sites or knockdown of Mef2C expression reduced miR-9-2 promoter activity. Finally, the mRNA encoding the Mef2C binding partner HDAC4 was shown to be targeted by miR-9. Since HDAC4 protein could be co-immunoprecipitated with Mef2C protein or with genomic Mef2 binding sequences, we conclude that miR-9 regulation is mediated, at least in part, by Mef2C binding but that expressed miR-9 has the capacity to reduce inhibitory HDAC4, stabilizing its own expression in a positive feedback mechanism.

  15. Paxillin associates with poly(A)-binding protein 1 at the dense endoplasmic reticulum and the leading edge of migrating cells.

    PubMed

    Woods, Alison J; Roberts, Marnie S; Choudhary, Jyoti; Barry, Simon T; Mazaki, Yuichi; Sabe, Hisataka; Morley, Simon J; Critchley, David R; Norman, Jim C

    2002-02-22

    Using mass spectrometry we have identified proteins which co-immunoprecipitate with paxillin, an adaptor protein implicated in the integrin-mediated signaling pathways of cell motility. A major component of paxillin immunoprecipitates was poly(A)-binding protein 1, a 70-kDa mRNA-binding protein. Poly(A)-binding protein 1 associated with both the alpha and beta isoforms of paxillin, and this was unaffected by RNase treatment consistent with a protein-protein interaction. The NH(2)-terminal region of paxillin (residues 54-313) associated directly with poly(A)-binding protein 1 in cell lysates, and with His-poly(A)-binding protein 1 immobilized in microtiter wells. Binding was specific, saturable and of high affinity (K(d) of approximately 10 nm). Cell fractionation studies showed that at steady state, the bulk of paxillin and poly(A)-binding protein 1 was present in the "dense" polyribosome-associated endoplasmic reticulum. However, inhibition of nuclear export with leptomycin B caused paxillin and poly(A)-binding protein 1 to accumulate in the nucleus, indicating that they shuttle between the nuclear and cytoplasmic compartments. When cells migrate, poly(A)-binding protein 1 colocalized with paxillin-beta at the tips of lamellipodia. Our results suggest a new mechanism whereby a paxillin x poly(A)-binding protein 1 complex facilitates transport of mRNA from the nucleus to sites of protein synthesis at the endoplasmic reticulum and the leading lamella during cell migration.

  16. The PPARdelta agonist GW501516 suppresses interleukin-6-mediated hepatocyte acute phase reaction via STAT3 inhibition.

    PubMed

    Kino, T; Rice, K C; Chrousos, G P

    2007-05-01

    Interleukin-6 and downstream liver effectors acute phase reactants are implicated in the systemic inflammatory reaction. Peroxisome proliferator-activated receptor delta (PPARdelta), which binds to and is activated by a variety of fatty acids, was recently shown to have anti-inflammatory actions. We examined the ability of the synthetic PPARdelta agonist GW501516 to suppress interleukin-6-induced expression of acute phase proteins in human hepatoma HepG2 cells and rat primary hepatocytes. Results GW501516 dose-dependently suppressed interleukin-6-induced mRNA expression of the acute phase protein alpha1-antichymotrypsin in HepG2 cells. The compound also suppressed interleukin-6-induced mRNA expression of alpha2-acid glycoprotein, beta-fibrinogen and alpha2-macroglobulin in and the secretion of C-reactive protein by rat primary hepatocytes. Depletion of the PPARdelta receptor, but not of PPARalpha or gamma, attenuated the suppressive effect of GW501516 on interleukin-6-induced alpha1-antichymotrypsin mRNA expression, indicating that PPARdelta specifically mediated this effect. Since interleukin-6 stimulates the transcriptional activity of the alpha1-antichymotrypsin promoter by activating the signal transducer and activator of transcription (STAT) 3, we examined functional interaction of this transcription factor and PPARdelta on this promoter. Overexpression of PPARdelta enhanced the suppressive effect of GW501516 on STAT3-activated transcriptional activity of the alpha1-antichymotrypsin promoter, while GW501516 suppressed interleukin-6-induced binding of this transcription factor to this promoter. These findings indicate that agonist-activated PPARdelta interferes with interleukin-6-induced acute phase reaction in the liver by inhibiting the transcriptional activity of STAT3. PPARdelta agonists might be useful for the suppression of systemic inflammatory reactions in which IL-6 plays a central role.

  17. Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c.

    PubMed

    Costet, Philippe; Cariou, Bertrand; Lambert, Gilles; Lalanne, Florent; Lardeux, Bernard; Jarnoux, Anne-Laure; Grefhorst, Aldo; Staels, Bart; Krempf, Michel

    2006-03-10

    Familial autosomal dominant hypercholesterolemia is associated with high risk for cardiovascular accidents and is related to mutations in the low density lipoprotein receptor or its ligand apolipoprotein B (apoB). Mutations in a third gene, proprotein convertase subtilisin kexin 9 (PCSK9), were recently associated to this disease. PCSK9 acts as a natural inhibitor of the low density lipoprotein receptor pathway, and both genes are regulated by depletion of cholesterol cell content and statins, via sterol regulatory element-binding protein (SREBP). Here we investigated the regulation of PCSK9 gene expression during nutritional changes. We showed that PCSK9 mRNA quantity is decreased by 73% in mice after 24 h of fasting, leading to a 2-fold decrease in protein level. In contrast PCSK9 expression was restored upon high carbohydrate refeeding. PCSK9 mRNA increased by 4-5-fold in presence of insulin in rodent primary hepatocytes, whereas glucose had no effect. Moreover, insulin up-regulated hepatic PCSK9 expression in vivo during a hyperinsulinemic-euglycemic clamp in mice. Adenoviral mediated overexpression of a dominant or negative form of SREBP-1c confirmed the implication of this transcription factor in insulin-mediated stimulation of PCSK9 expression. Liver X receptor agonist T0901317 also regulated PCSK9 expression via this same pathway (a 2-fold increase in PCSK9 mRNA of primary hepatocytes cultured for 24 h in presence of 1 microm T0901317). As our last investigation, we isolated PCSK9 proximal promoter and verified the functionality of a SREBP-1c responsive element located from 335 bp to 355 bp upstream of the ATG. Together, these results show that PCSK9 expression is regulated by nutritional status and insulinemia.

  18. A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction

    PubMed Central

    Karlsson, Thomas; Altankhuyag, Altanchimeg; Dobrovolska, Olena; Turcu, Diana C.; Lewis, Aurélia E.

    2016-01-01

    Polyphosphoinositides (PPIns) are present in the nucleus where they participate in crucial nuclear processes, such as chromatin remodelling, transcription and mRNA processing. In a previous interactomics study, aimed to gain further insight into nuclear PPIns functions, we identified ErbB3 binding protein 1 (EBP1) as a potential nuclear PPIn-binding protein in a lipid pull-down screen. EBP1 is a ubiquitous and conserved protein, located in both the cytoplasm and nucleolus, and associated with cell proliferation and survival. In the present study, we show that EBP1 binds directly to several PPIns via two distinct PPIn-binding sites consisting of clusters of lysine residues and positioned at the N- and C-termini of the protein. Using interaction mutants, we show that the C-terminal PPIn-binding motif contributes the most to the localization of EBP1 in the nucleolus. Importantly, a K372N point mutation, located within the C-terminal motif and found in endometrial tumours, is sufficient to alter the nucleolar targeting of EBP1. Our study reveals also the presence of the class I phosphoinositide 3-kinase (PI3K) catalytic subunit p110β and its product PtdIns(3,4,5)P3 together with EBP1 in the nucleolus. Using NMR, we further demonstrate an association between EBP1 and PtdIns(3,4,5)P3 via both electrostatic and hydrophobic interactions. Taken together, these results show that EBP1 interacts directly with PPIns and associate with PtdIns(3,4,5)P3 in the nucleolus. The presence of p110β and PtdIns(3,4,5)P3 in the nucleolus indicates their potential role in regulating nucleolar processes, at least via EBP1. PMID:27118868

  19. MeCP2 regulates Tet1-catalyzed demethylation, CTCF binding, and learning-dependent alternative splicing of the BDNF gene in Turtle

    PubMed Central

    Zheng, Zhaoqing; Ambigapathy, Ganesh; Keifer, Joyce

    2017-01-01

    MECP2 mutations underlying Rett syndrome cause widespread misregulation of gene expression. Functions for MeCP2 other than transcriptional are not well understood. In an ex vivo brain preparation from the pond turtle Trachemys scripta elegans, an intraexonic splicing event in the brain-derived neurotrophic factor (BDNF) gene generates a truncated mRNA transcript in naïve brain that is suppressed upon classical conditioning. MeCP2 and its partners, splicing factor Y-box binding protein 1 (YB-1) and methylcytosine dioxygenase 1 (Tet1), bind to BDNF chromatin in naïve but dissociate during conditioning; the dissociation correlating with decreased DNA methylation. Surprisingly, conditioning results in new occupancy of BDNF chromatin by DNA insulator protein CCCTC-binding factor (CTCF), which is associated with suppression of splicing in conditioning. Knockdown of MeCP2 shows it is instrumental for splicing and inhibits Tet1 and CTCF binding thereby negatively impacting DNA methylation and conditioning-dependent splicing regulation. Thus, mutations in MECP2 can have secondary effects on DNA methylation and alternative splicing. DOI: http://dx.doi.org/10.7554/eLife.25384.001 PMID:28594324

  20. Structural basis of nucleic-acid recognition and double-strand unwinding by the essential neuronal protein Pur-alpha

    PubMed Central

    Weber, Janine; Bao, Han; Hartlmüller, Christoph; Wang, Zhiqin; Windhager, Almut; Janowski, Robert; Madl, Tobias; Jin, Peng; Niessing, Dierk

    2016-01-01

    The neuronal DNA-/RNA-binding protein Pur-alpha is a transcription regulator and core factor for mRNA localization. Pur-alpha-deficient mice die after birth with pleiotropic neuronal defects. Here, we report the crystal structure of the DNA-/RNA-binding domain of Pur-alpha in complex with ssDNA. It reveals base-specific recognition and offers a molecular explanation for the effect of point mutations in the 5q31.3 microdeletion syndrome. Consistent with the crystal structure, biochemical and NMR data indicate that Pur-alpha binds DNA and RNA in the same way, suggesting binding modes for tri- and hexanucleotide-repeat RNAs in two neurodegenerative RNAopathies. Additionally, structure-based in vitro experiments resolved the molecular mechanism of Pur-alpha's unwindase activity. Complementing in vivo analyses in Drosophila demonstrated the importance of a highly conserved phenylalanine for Pur-alpha's unwinding and neuroprotective function. By uncovering the molecular mechanisms of nucleic-acid binding, this study contributes to understanding the cellular role of Pur-alpha and its implications in neurodegenerative diseases. DOI: http://dx.doi.org/10.7554/eLife.11297.001 PMID:26744780

Top