A precise clock distribution network for MRPC-based experiments
NASA Astrophysics Data System (ADS)
Wang, S.; Cao, P.; Shang, L.; An, Q.
2016-06-01
In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.
Performance test of the Multi-gap Resistive Plate Chamber (MRPC) with cosmic ray
NASA Astrophysics Data System (ADS)
Ikeda, Michihiko; Akieda, Tomomi; Tomita, Shoko; Ninomiya, Aki
2014-09-01
MRPC is a gaseous ionization detector, which a good timing resolution has been used practically in the nuclear and particle physics experiment. A mixed gas of SF6 and Fleon 134a was flowed through the gaps between high resistive plates (500 μm thickness glass). A high electric field of ~2 ×106 [V/m] was applied between the plates. A charged particle passes through the MRPC and causes avalanche amplification. We constructed a relatively small MRPC with a readout pad (20 mm × 50 mm). The development is motivated by feasibility study of the MRPC as a photon tagger at the Research Center for Electron Photon Science (ELPH), Tohoku University. The photon tagger needs a good timing resolution (<100 ps), therefore we studied the small size MRPC, while a large sized MRPCs are widely used in nuclear and particle experiments. The MRPC can operate under the strong magnetic field and thus it can be a good candidate as an electron detector placed in the magnet. We tested the HV dependence of time resolution of the MRPC with cosmic rays. The MRPC will be demonstrated at the open campus of the Tohoku University as an example of nuclear experimental detectors. We will measure the zenith angle and velocity distributions of cosmic ray.
Development and performance of self-sealed MRPC
NASA Astrophysics Data System (ADS)
Lyu, P.; Wang, Y.; Guo, B.; Han, D.; Li, Y.; Herrmann, N.; Deppner, I.; Simon, C.; Weidenkaff, P.; Jochen, F.; Loizeau, P.-A.; Laden Kis, M.
2017-03-01
The MRPC has been widely applied in the high-energy physics experiments in recent decades for its excellent timing performance and good efficiency. The Compressed Baryonic Matter (CBM) experiment at FAIR plans to build its TOF system based on the MRPCs, aiming at a good hadron identification. The CBM-TOF will work at a very high particle flux rate (~ 30 kHz/cm2) condition, and the long-time exposure to such high-rate ionizing radiation will lead to severe gas aging problem on the MRPC. In order to improve the gas interchange inside the MRPC, we designed a new structure of self-sealed MRPC. It has a much smaller gas volume, which may accelerate the exchange process between the fresh and the polluted gas. The preparation time before the MRPC could work is also largely shortened. A prototype of self-sealed MRPC was produced in Tsinghua University, and it was tested in the CERN SPS Nov 2015 beam test organized by the CBM-TOF group. It showed around 98% efficiency and 60 ps time resolution. Due to the rate limit of 10 kHz/cm2 in this beam test, we cannot make judgement on its performance under extremely high rate. Therefore further studies have to be performed under higher rate in order to study the capability of improving the gas exchange speed of this more flexible and operable sealed MRPC. This will allow that MRPC to be better suited for the high rate environment of TOF system while operating in the experiment.
Li, Qingde; Gao, Xun; Cheng, Wanli; Han, Guangping
2017-01-01
Red pottery clay (RPC) was modified using a silane coupling agent, and the modified RPC (mRPC) was then used to enhance the performance of high-density polyethylene-based wood-plastic composites. The effect of the mRPC content on the performances of the composites was investigated through Fourier transform infrared spectrometry, differential mechanical analysis (DMA) and ultraviolet (UV)-accelerated aging tests. After adding the mRPC, a moisture adsorption hysteresis was observed. The DMA results indicated that the mRPC effectively enhanced the rigidity and elasticity of the composites. The mRPC affected the thermal gravimetric, leading to a reduction of the thermal degradation rate and a right-shift of the thermal degradation peak; the initial thermal degradation temperature was increased. After 3000 h of UV-accelerated aging, the flexural strength and impact strength both declined. For aging time between 0 and 1000 h, the increase in amplitude of ΔL* (luminescence) and ΔE* (color) reached a maximum; the surface fading did not became obvious. ΔL* and ΔE* increased more significantly between 1000 and 2000 h. These characterization results indicate that the chromophores of the mRPC became briefly active. However, when the aging times were higher than 2000 h, the photo-degradation reaction was effectively prevented by adding the mRPC. The best overall enhancement was observed for an mRPC mass percentage of 5%, with a storage modulus of 3264 MPa and an increase in loss modulus by 16.8%, the best anti-aging performance and the lowest degree of color fading. PMID:28772470
Quality control and batch testing of MRPC modules for BESIII ETOF upgrade
NASA Astrophysics Data System (ADS)
Liu, Z.; Li, X.; Sun, Y. J.; Li, C.; Heng, Y. K.; Chen, T. X.; Dai, H. L.; Shao, M.; Sun, S. S.; Tang, Z. B.; Yang, R. X.; Wu, Z.; Wang, X. Z.
2017-12-01
The end-cap time-of-flight (ETOF) system for the Beijing Spectrometer III (BESIII) has been upgraded using the Multi-gap Resistive Plate Chamber (MRPC) technology (Williams et al., 1999; Li et al., 2001; Blanco et al., 2003; Fonte et al., 2013, [1-4]). A set of quality-assurance procedures has been developed to guarantee the performances of the 72 mass-produced MRPC modules installed. The cosmic ray batch testing show that the average detection efficiency of the MRPC modules is about 95%. Two different calibration methods indicate that MRPCs' time resolution can reach 60 ps in the cosmic ray test.
Online aging study of a high rate MRPC
NASA Astrophysics Data System (ADS)
Wang, Jie; Wang, Yi; Feng, S. Q.; Xie, Bo; Lv, Pengfei; Wang, Fuyue; Guo, Baohong; Han, Dong; Li, Yuanjing
2016-05-01
With the constant increase of accelerator luminosity, the rate requirements of MRPC detectors have become very important, and the aging characteristics of the detector have to be studied meticulously. An online aging test system has been set up in our lab, and in this paper the setup of the system is described and the performance stability of a high-rate MRPC studied over a long running time under a high luminosity environment. The high rate MRPC was irradiated by X-rays for 36 days and the accumulated charge density reached 0.1 C/cm2. No obvious performance degradation was observed for the detector. Supported by National Natural Science Foundation of China (11420101004, 11461141011, 11275108), Ministry of Science and Technology (2015CB856905)
Development of a large-area Multigap RPC with adequate spatial resolution for muon tomography
NASA Astrophysics Data System (ADS)
Wang, J.; Wang, Y.; Wang, X.; Zeng, M.; Xie, B.; Han, D.; Lyu, P.; Wang, F.; Li, Y.
2016-11-01
We study the performance of a large-area 2-D Multigap Resistive Plate Chamber (MRPC) designed for muon tomography with high spatial resolution. An efficiency up to 98% and a spatial resolution of around 270 μ m are obtained in cosmic ray and X-ray tests. The performance of the MRPC is also investigated for two working gases: standard gas and pure Freon. The result shows that the MRPC working in pure Freon can provide higher efficiency and better spatial resolution.
A high time and spatial resolution MRPC designed for muon tomography
NASA Astrophysics Data System (ADS)
Shi, L.; Wang, Y.; Huang, X.; Wang, X.; Zhu, W.; Li, Y.; Cheng, J.
2014-12-01
A prototype of cosmic muon scattering tomography system has been set up in Tsinghua University in Beijing. Multi-gap Resistive Plate Chamber (MRPC) is used in the system to get the muon tracks. Compared with other detectors, MRPC can not only provide the track but also the Time of Flight (ToF) between two detectors which can estimate the energy of particles. To get a more accurate track and higher efficiency of the tomography system, a new type of high time and two-dimensional spatial resolution MRPC has been developed. A series of experiments have been done to measure the efficiency, time resolution and spatial resolution. The results show that the efficiency can reach 95% and its time resolution is around 65 ps. The cluster size is around 4 and the spatial resolution can reach 200 μ m.
Performance study of large area encoding readout MRPC
NASA Astrophysics Data System (ADS)
Chen, X. L.; Wang, Y.; Chen, G.; Han, D.; Wang, X.; Zeng, M.; Zeng, Z.; Zhao, Z.; Guo, B.
2018-02-01
Muon tomography system built by the 2-D readout high spatial resolution Multi-gap Resistive Plate Chamber (MRPC) detector is a project of Tsinghua University. An encoding readout method based on the fine-fine configuration has been used to minimize the number of the readout electronic channels resulting in reducing the complexity and the cost of the system. In this paper, we provide a systematic comparison of the MRPC detector performance with and without fine-fine encoding readout. Our results suggest that the application of the fine-fine encoding readout leads us to achieve a detecting system with slightly worse spatial resolution but dramatically reduce the number of electronic channels.
Development of non-destructive testing technology for the crack of steam generator tubes
NASA Astrophysics Data System (ADS)
Cheong, Yong Moo; Chung, Tae Eon; Yim, Chang Jae; Kang, Ki Won
1993-01-01
The artificial defects of slot type with width of 0.2 mm were manufactured by EDM to simulate the axial and the circumferential cracks located at the region of expansion transition of the steam generator tubes. The defect signals of ECT using MRPC were analyzed. It is possible to suppress satisfactorily the malign effects of the variation of the geometry of the tubes on the inspection of cracks by using the MRPC probe. The optimum exciting frequency for the detection of cracks by MRPC is greater than 200 kHz and is less than 400 kHz. The direction of crack has little effect on the detectability of the defect.
Ueki, Toshiyuki; Inouye, Sumiko
2003-01-01
Myxococcus xanthus exhibits social behavior and multicellular development. FruA is an essential transcription factor for fruiting body development in M. xanthus. In the present study, the upstream promoter region was found to be necessary for the induction of fruA expression during development. A cis-acting element required for the induction was identified and was located between nucleotides –154 and –107 with respect to the transcription initiation site. In addition, it was found that two binding sites exist within this element of the fruA promoter. By using DNA affinity column chromatography containing the cis-acting element, a fruA promoter-binding protein was purified. The purified protein was shown by N-terminal sequence analysis to be identical to MrpC, a protein identified previously by transposon insertion mutagenesis as an essential locus for fruiting body development [Sun, H. & Shi, W. (2001) J. Bacteriol. 183, 4786–4795]. Furthermore, fruA mRNA was not detectable in the mrpC::km strain, demonstrating that MrpC is essential for fruA expression. Moreover, mutational analysis of the binding sites for MrpC in the fruA promoter indicates that binding of MrpC activates transcription of fruA in vivo. This report provides evidence for a direct molecular interaction involved in temporally regulated gene expression in M. xanthus. PMID:12851461
The upgrade system of BESIII ETOF with MRPC technology
NASA Astrophysics Data System (ADS)
Wang, X. Z.; Sun, Y. J.; Li, C.; Heng, Y. K.; Wu, Z.; Cao, P.; Dai, H. L.; Ji, X. L.; Gong, W. X.; Liu, Z.; Luo, X. L.; Sun, W. J.; Wang, S. Y.; Wang, Y.; Yang, R. X.; Ye, M.; Zhao, J. L.
2016-08-01
An upgrade, based on Multigap Resistive Plate Chamber (MRPC) technology, of the endcap Time-Of-Flight (ETOF) detector of the Beijing Spectrometer III (BESIII) has been proposed for the replacement of the current scintillator + PMT based ETOF, with the aim of improving the time resolution down to 80 ps sigma. This improvement will enhance the particle identification capability to meet the higher precision requirements of physics. The ETOF system including MRPC modules, Front End Electronics (FEE), CLOCK module, fast control boards and Time to Digital modules (TDIG), has been designed, constructed and parts of the ETOF system have seperately tested. Aiming at examining the quality of entire ETOF system and training the operation of all participated instruments, a cosmic ray test system was built and tested in the laboratory for about three months to guarantee the performance. In this paper the results of the test are presented indicating that the entire ETOF system works well and satisfies the requirements of the upgrade.
NASA Astrophysics Data System (ADS)
Abbrescia, M.; An, S.; Antolini, R.; Badala, A.; Baldini Ferroli, R.; Bencivenni, G.; Blanco, F.; Bressan, E.; Chiavassa, A.; Chiri, C.; Cifarelli, L.; Cindolo, F.; Coccia, E.; de Pasquale, S.; di Giovanni, A.; d'Incecco, M.; Fabbri, F.L.; Frolov, V.; Garbini, M.; Gustavino, C.; Hatzifotiadou, D.; Imponente, G.; Kim, J.; La Rocca, P.; Librizzi, F.; Maggiora, A.; Menghetti, H.; Miozzi, S.; Moro, R.; Panareo, M.; Pappalardo, G.S.; Piragino, G.; Riggi, F.; Romano, F.; Sartorelli, G.; Sbarra, C.; Selvi, M.; Serci, S.; WIlliams, C.; Zichichi, A.; Zuyenski, R.
The EEE (/Extreme Energy Event/) Project is an experiment for the study of very high-energy extensive air showers, actually starting in Italy. It is based on the detection of the shower muon component by means of a network of tracking detectors, installed in Italian High Schools. The Project, supported by the Ministero dell’Università e della Ricerca (MIUR), Istituto Nazionale di Fisica Nucleare (INFN), European Organization for Nuclear Research (CERN) and Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi” has been conceived by its leader Professor Antonino Zichichi. In its first phase the detector telescopes will be installed in 21 High Schools in 7 piloting cities all over Italy. The network will soon be heavily upgraded by increasing the number of High Schools and cities. The single tracking telescope is composed by 3 large (~ 2 m2 ) Multi-gap Resistive Plate Chambers (MRPC), realized with float glass electrodes. The use of particle detectors based on such MRPCs will allow to determine with a very high accuracy the direction of the axis of cosmic ray showers initiated by primaries of ultra-high energy, together with a high temporal resolution. The first MRPC telescope, installed in the Liceo Scientifico “B.Touschek” in Grottaferrata near the LNF-INFN site (nearby Rome), is successfully running. By the end of year 2007, the installation of the other telescopes will open the way for the first search of high-energy cosmic rays distant coincidences. In the future, serving many High Schools scattered all over the Italian territory, the EEE Project will also allow to investigate coincidences between multiple primaries producing distant showers. Here we present the experimental apparatus and its tasks.
The cosmic ray muon tomography facility based on large scale MRPC detectors
NASA Astrophysics Data System (ADS)
Wang, Xuewu; Zeng, Ming; Zeng, Zhi; Wang, Yi; Zhao, Ziran; Yue, Xiaoguang; Luo, Zhifei; Yi, Hengguan; Yu, Baihui; Cheng, Jianping
2015-06-01
Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm×73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been tested and image is reconstructed using MAP algorithm. The reconstruction results show that the prototype is working well and the objects with complex structure and small size (20 mm) can be imaged on it, while the high-Z material is distinguishable from the low-Z one. This prototype provides a good platform for our further studies of the physical characteristics and the performances of cosmic ray muon tomography.
An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography
NASA Astrophysics Data System (ADS)
Yue, X.; Zeng, M.; Wang, Y.; Wang, X.; Zeng, Z.; Zhao, Z.; Cheng, J.
2014-09-01
A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given.
The MRPC-based ALICE time-of-flight detector: Status andperformance
NASA Astrophysics Data System (ADS)
Alici, A.; ALICE Collaboration
2013-04-01
The large time-of-flight (TOF) array is one of the main detectors devoted to charged hadron identification in the mid-rapidity region of the ALICE experiment at the LHC. It allows separation among pions, kaons and protons up to a few GeV/c, covering the full azimuthal angle and -0.9<η<0.9. The TOF exploits the innovative MRPC technology capable of an intrinsic time resolution better than 50 ps with an efficiency close to 100% and a large operational plateau; the full array consists of 1593 MRPCs covering a cylindrical surface of 141 m2. The TOF detector has been efficiently taking data since the first pp collisions recorded in ALICE in December 2009. In this report, the status of the TOF detector and the performance achieved for both pp and Pb-Pb collisions aredescribed.
Status and performance of the ALICE MRPC-based Time-Of-Flight detector
NASA Astrophysics Data System (ADS)
Alici, A.
2012-10-01
ALICE is the dedicated heavy-ion experiment at the CERN LHC. One of the main detectors devoted to charged hadron identification in the ALICE central barrel is a large Time-Of-Flight (TOF) array; it allows separation among pions, kaons and protons up to a few GeV/c, covering the full azimuthal angle and -0.9 < η < 0.9. The very good performance required for such a system has been achieved by means of the Multigap Resistive Plate Chamber (MRPC) whose intrinsic time resolution is better than 50 ps with an overall efficiency close to 100% and a large operational plateau; the full array consists of 1593 MRPCs covering a cylindrical surface of 141 m2. In this report, the status of the TOF detector and the performance achieved during the 2010 and 2011 data taking periods are reported together with selected physics results obtained with pp and Pb-Pb collisions.
Particle identification with the ALICE Time-Of-Flight detector at the LHC
NASA Astrophysics Data System (ADS)
Alici, A.
2014-12-01
High performance Particle Identification system (PID) is a distinguishing characteristic of the ALICE experiment at the CERN Large Hadron Collider (LHC). Charged particles in the intermediate momentum range are identified in ALICE by the Time-Of-Flight (TOF) detector. The TOF exploits the Multi-gap Resistive Plate Chamber (MRPC) technology, capable of an intrinsic time resolution at the level of few tens of ps with an overall efficiency close to 100% and a large operation plateau. The full system is made of 1593 MRPC chambers with a total area of 141 m2, covering the pseudorapidity interval [-0.9,+0.9] and the full azimuthal angle. The ALICE TOF system has shown very stable operation during the first 3 years of collisions at the LHC. In this paper a summary of the system performance as well as main results with data from collisions will be reported.
Recent results and performance of the multi-gap resistive plate chambers network for the EEE Project
NASA Astrophysics Data System (ADS)
Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D`Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferraro, A.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Licciulli, F.; Maggiora, A.; Maragoto Rodriguez, O.; Maron, G.; Martelli, B.; Mazziotta, M. N.; Miozzi, S.; Nania, R.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Park, W.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Stori, L.; Taiuti, M.; Terreni, G.; Visnyei, O. B.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeusky, R.
2016-11-01
The Extreme Energy Events (EEE) Project is devoted to the study of Extensive Atmospheric Showers through a network of muon telescopes, installed in High Schools, with the further aim of introducing young students to particle and astroparticle physics. Each telescope is a tracking detector composed of three Multi-gap Resistive Plate Chambers (MRPC) with an active area of 1.60 × 0.80 m2. Their characteristics are similar to the ones built for the Time Of Flight array of the ALICE Experimentat LHC . The EEE Project started with a few pilot towns, where the telescopes have been taking data since 2008, and it has been constantly extended, reaching at present more than 50 MRPCs telescopes. They are spread across Italy with two additional stations at CERN, covering an area of around 3 × 105 km2, with a total surface area for all the MRPCs of 190 m2. A comprehensive description of the MRPCs network is reported here: efficiency, time and spatial resolution measured using cosmic rays hitting the telescopes. The most recent results on the detector and physics performance from a series of coordinated data acquisition periods are also presented.
Search for long distance correlations between extensive air showers detected by the EEE network
NASA Astrophysics Data System (ADS)
Abbrescia, M.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Battaglieri, M.; Boi, S.; Bossini, E.; Carnesecchi, F.; Chiavassa, A.; Cicalo, C.; Cifarelli, L.; Coccetti, F.; Coccia, E.; De Gruttola, D.; De Pasquale, S.; Fabbri, F. L.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Mandaglio, G.; Maragoto Rodriguez, O.; Maron, G.; Mazziotta, M. N.; Miozzi, S.; Nania, R.; Noferini, F.; Nozzoli, F.; Palmonari, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Park, W.; Perasso, L.; Pilo, F.; Piragino, G.; Pisano, S.; Riggi, F.; Righini, G. C.; Ripoli, C.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Squarcia, S.; Taiuti, M.; Terreni, G.; Trifirò, A.; Trimarchi, M.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zheng, L.; Zichichi, A.; Zuyeuski, R.
2018-02-01
A search for long distance correlations between individual Extensive Air Showers (EAS) detected by pairs of MRPC telescopes of the Extreme Energy Events (EEE) network was carried out. The search for an anomaly in these events is the purpose of our work. A dataset obtained by all the possible 45 pairs between 10 EEE cluster sites (hosting at least two telescopes), located at relative distances between 86 and 1200km, was analyzed, corresponding to an overall period of 3968 days time exposure. To estimate the possible event excess with respect to the spurious rate, the number of coincidence events was extracted as a function of the time difference between the arrival of the showers in the two sites, from ± 10 s to the smallest time interval where events are still observed. The analysis was done taking into account both the time and orientation correlation between the showers detected by the telescope pairs. A few candidate events with unusually small time difference and angular distance were observed, with a p-value sensibly smaller than a confidence level of 0.05.
Redenti, Stephen; Neeley, William L.; Rompani, Santiago; Saigal, Sunita; Yang, Jing; Klassen, Henry; Langer, Robert; Young, Michael J.
2014-01-01
Retinal degenerations cause permanent visual loss and affect millions world-wide. Presently, a novel treatment highlights the potential of using biodegradable polymer scaffolds to induce differentiation and deliver retinal progenitor cells for cell replacement therapy. In this study, we engineered and analyzed a micro-fabricated polymer, poly(glycerol sebacate) (PGS) scaffold, whose useful properties include biocompatibility, elasticity, porosity, and a microtopology conducive to mouse retinal progenitor cell (mRPC) differentiation. In vitro proliferation assays revealed that PGS held up to 86,610 (±9993) mRPCs per square millimeter, which were retained through simulated transplantations. mRPCs adherent to PGS differentiated toward mature phenotypes as evidenced by changes in mRNA, protein levels, and enhanced sensitivity to glutamate. Transplanted composites demonstrated long-term mRPC survival and migrated cells exhibited mature marker expression in host retina. These results suggest that combining mRPCs with PGS scaffolds for subretinal transplantation is a practical strategy for advancing retinal tissue engineering as a restorative therapy. PMID:19361860
Testing of multigap Resistive Plate Chambers for Electron Ion Collider Detector Development
NASA Astrophysics Data System (ADS)
Hamilton, Hannah; Phenix Collaboration
2015-10-01
Despite decades of research on the subject, some details of the spin structure of the nucleon continues to be unknown. To improve our knowledge of the nucleon spin structure, the construction of a new collider is needed. This is one of the primary goals of the proposed Electron Ion Collider (EIC). Planned EIC spectrometers will require good particle identification. This can be provided by time of flight (TOF) detectors with excellent timing resolutions of 10 ps. A potential TOF detector that could meet this requirement is a glass multigap resistive plate chamber (mRPC). These mRPCs can provide excellent timing resolution at a low cost. The current glass mRPC prototypes have a total of twenty 0.1 mm thick gas gaps. In order to test the feasibility of this design, a cosmic test stand was assembled. This stand used the coincidence of scintillators as a trigger, and contains fast electronics. The construction, the method of testing, and the test results of the mRPCs will be presented.
Operation and performance of the EEE network array for the detection of cosmic rays
NASA Astrophysics Data System (ADS)
Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferraro, A.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Licciulli, F.; Maggiora, A.; Maragoto Rodriguez, O.; Maron, G.; Martelli, B.; Mazziotta, M. N.; Miozzi, S.; Nania, R.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Park, W.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Stori, L.; Taiuti, M.; Terreni, G.; Visnyei, O. B.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeuski, R.
2017-02-01
The EEE (Extreme Energy Events) Project is an experiment for the detection of cosmic ray muons by means of a sparse array of telescopes, each made of three Multigap Resistive Plate Chambers (MRPC), distributed over all the Italian territory and at CERN. The main scientific goals of the Project are the investigation of the properties of the local muon flux, the detection of Extensive Air Showers (EAS) and the search for long-distance correlations between far telescopes. The Project is also characterized by a strong educational and outreach aspect since the telescopes are managed by teams of students and teachers who had previously constructed them at CERN. In this paper an overall description of the experiment is given, including the design, construction and performance of the telescopes. The operation of the whole array, which currently consists of more than 50 telescopes, is also presented by showing the most recent physics results.
NASA Astrophysics Data System (ADS)
Carnesecchi, F.; Liu, Z.; Kim, D. W.; Rodriguez, O. M.; Park, W.; Vallecorsa, S.; Williams, M. C. S.; Zichichi, A.; Zuyeuski, R.
2018-02-01
The authors regret that 3 authors were missed out in the original article and there is a modification to the Acknowledgements section. The corrected author group information and Acknowledgements is as follows:
Comparing Novel Multi-Gap Resistive Plate Chamber Models
NASA Astrophysics Data System (ADS)
Stien, Haley; EIC PID Consortium Collaboration
2016-09-01
Investigating nuclear structure has led to the fundamental theory of Quantum Chromodynamics. An Electron Ion Collider (EIC) is a proposed accelerator that would further these investigations. In order to prepare for the EIC, there is an active detector research and development effort. One specific goal is to achieve better particle identification via improved Time of Flight (TOF) detectors. A promising option is the Multi-Gap Resistive Plate Chamber (mRPC). These detectors are similar to the more traditional RPCs, but their active gas gaps have dividers to form several thinner gas gaps. These very thin and accurately defined gas gaps improve the timing resolution of the chamber, so the goal is to build an mRPC with the thinnest gaps to achieve the best possible timing resolution. Two different construction techniques have been employed to make two mRPCs. The first technique is to physically separate the gas gaps with sheets of glass that are .2mm thick. The second technique is to 3D print the layered gas gaps. A comparison of these mRPCs and their performances will be discussed and the latest data presented. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.
Testing Mylar Multi-Gap Resistive Plate Chambers
NASA Astrophysics Data System (ADS)
Towell, Cecily; EIC PID Consortium Collaboration
2016-09-01
Quantum Chromodynamics (QCD) is the fundamental theory that successfully explains strong force interactions. To continue the effective study of QCD in nuclear structure, plans are being made to construct an Electron Ion Collider (EIC). Part of the preparation for the EIC includes continued detector development to push beyond their current capabilities. This includes Time of Flight (TOF) detectors, which are used for particle identification. Multi-Gap Resistive Plate Chambers (mRPCs) are a type of TOF detector that typically use glass to make small gas gaps within the detector to produce fast signals when a high energy particle goes through the detector. These extremely thin gaps of 0.2mm are key in achieving the excellent timing resolution capability of these detectors. A new mRPC design is being tested with the goal of reaching a timing resolution of 10ps. This design uses sheets of mylar in place of the glass so that the width of the dividers is smaller, thus vastly increasing the number of gas gaps. Multiple versions of this mylar mRPC have been made and tested. The methods for producing these mRPCs and their performance will be discussed. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.
NASA Astrophysics Data System (ADS)
Wei, Chengying; Xiong, Cuilian; Liu, Huanlin
2017-12-01
Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.
Trust Maximization in Social Networks
NASA Astrophysics Data System (ADS)
Zhan, Justin; Fang, Xing
Trust is a human-related phenomenon in social networks. Trust research on social networks has gained much attention on its usefulness, and on modeling propagations. There is little focus on finding maximum trust in social networks which is particularly important when a social network is oriented by certain tasks. In this paper, we propose a trust maximization algorithm based on the task-oriented social networks.
In-beam test of the RPC architecture foreseen to be used for the CBM-TOF inner wall
NASA Astrophysics Data System (ADS)
Petriş, M.; Bartoş, D.; Petrovici, M.; Rădulescu, L.; Simion, V.; Deppner, I.; Herrmann, N.; Simon, C.; Frühauf, J.; Kiš, M.; Loizeau, P.-A.
2018-05-01
The Time Of Flight (TOF) subsystem is one of the main detectors of the CBM experiment. The TOF wall in conjunction with Silicon Tracking System (STS) is foreseen to identify charged hadrons, i.e. pions, kaons and protons, with a full azimuthal coverage at 2.50 - 250 polar angles. A system time resolution of at least 80 ps, including all contributions, such as electronics jitter and the resolution of the time reference system, is required. Such a performance should be maintained up to a counting rate larger than 30 kHz/cm2 at the most inner region of TOF wall. Our R&D activity has been focused on the development of two-dimensional position sensitive Multi-gap Resistive Plate Counter (MRPC) prototypes for the forward region of the CBM-TOF subdetector, the most demanding zone in terms of granularity and counting rate. The in-beam tests using secondary particles produced in 30 GeV/u Pb ion collisions on a Pb target at SPS - CERN aimed to test the performance of these prototypes in conditions similar to the ones expected at SIS100 at FAIR. The performance of the prototypes is studied in conditions of exposure of the whole active area of the chamber to high multiplicity of reaction products. The results show that this type of MRPC fulfill the challenging requirements of the CBM-TOF wall. Therefore, such an architecture is recommended as basic solution for CBM-TOF inner zone.
Uncovering the overlapping community structure of complex networks by maximal cliques
NASA Astrophysics Data System (ADS)
Li, Junqiu; Wang, Xingyuan; Cui, Yaozu
2014-12-01
In this paper, a unique algorithm is proposed to detect overlapping communities in the un-weighted and weighted networks with considerable accuracy. The maximal cliques, overlapping vertex, bridge vertex and isolated vertex are introduced. First, all the maximal cliques are extracted by the algorithm based on the deep and bread searching. Then two maximal cliques can be merged into a larger sub-graph by some given rules. In addition, the proposed algorithm successfully finds overlapping vertices and bridge vertices between communities. Experimental results using some real-world networks data show that the performance of the proposed algorithm is satisfactory.
Polarity related influence maximization in signed social networks.
Li, Dong; Xu, Zhi-Ming; Chakraborty, Nilanjan; Gupta, Anika; Sycara, Katia; Li, Sheng
2014-01-01
Influence maximization in social networks has been widely studied motivated by applications like spread of ideas or innovations in a network and viral marketing of products. Current studies focus almost exclusively on unsigned social networks containing only positive relationships (e.g. friend or trust) between users. Influence maximization in signed social networks containing both positive relationships and negative relationships (e.g. foe or distrust) between users is still a challenging problem that has not been studied. Thus, in this paper, we propose the polarity-related influence maximization (PRIM) problem which aims to find the seed node set with maximum positive influence or maximum negative influence in signed social networks. To address the PRIM problem, we first extend the standard Independent Cascade (IC) model to the signed social networks and propose a Polarity-related Independent Cascade (named IC-P) diffusion model. We prove that the influence function of the PRIM problem under the IC-P model is monotonic and submodular Thus, a greedy algorithm can be used to achieve an approximation ratio of 1-1/e for solving the PRIM problem in signed social networks. Experimental results on two signed social network datasets, Epinions and Slashdot, validate that our approximation algorithm for solving the PRIM problem outperforms state-of-the-art methods.
Polarity Related Influence Maximization in Signed Social Networks
Li, Dong; Xu, Zhi-Ming; Chakraborty, Nilanjan; Gupta, Anika; Sycara, Katia; Li, Sheng
2014-01-01
Influence maximization in social networks has been widely studied motivated by applications like spread of ideas or innovations in a network and viral marketing of products. Current studies focus almost exclusively on unsigned social networks containing only positive relationships (e.g. friend or trust) between users. Influence maximization in signed social networks containing both positive relationships and negative relationships (e.g. foe or distrust) between users is still a challenging problem that has not been studied. Thus, in this paper, we propose the polarity-related influence maximization (PRIM) problem which aims to find the seed node set with maximum positive influence or maximum negative influence in signed social networks. To address the PRIM problem, we first extend the standard Independent Cascade (IC) model to the signed social networks and propose a Polarity-related Independent Cascade (named IC-P) diffusion model. We prove that the influence function of the PRIM problem under the IC-P model is monotonic and submodular Thus, a greedy algorithm can be used to achieve an approximation ratio of 1-1/e for solving the PRIM problem in signed social networks. Experimental results on two signed social network datasets, Epinions and Slashdot, validate that our approximation algorithm for solving the PRIM problem outperforms state-of-the-art methods. PMID:25061986
Energy optimization in mobile sensor networks
NASA Astrophysics Data System (ADS)
Yu, Shengwei
Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while consuming negligible amount of energy for mobility cost. For the second problem, the problem is extended to accommodate mobile robotic nodes with energy harvesting capability, which makes it a non-convex optimization problem. The non-convexity issue is tackled by using the existing sequential convex approximation method, based on which we propose a novel procedure of modified sequential convex approximation that has fast convergence speed. For the third problem, the proposed procedure is used to solve another challenging non-convex problem, which results in utilizing mobility and routing simultaneously in mobile robotic sensor networks to prolong the network lifetime. The results indicate that joint design of mobility and routing has an edge over other methods in prolonging network lifetime, which is also the justification for the use of mobility in mobile sensor networks for energy efficiency purpose. For the fourth problem, we include the dynamics of the robotic nodes in the problem by modeling the networked robotic system using hybrid systems theory. A novel distributed method for the networked hybrid system is used to solve the optimal moving trajectories for robotic nodes and optimal network links, which are not answered by previous approaches. Finally, the fact that mobility is more effective in prolonging network lifetime for a data-intensive network leads us to apply our methods to study mobile visual sensor networks, which are useful in many applications. We investigate the joint design of mobility, data routing, and encoding power to help improving the video quality while maximizing the network lifetime. This study leads to a better understanding of the role mobility can play in data-intensive surveillance sensor networks.
NASA Astrophysics Data System (ADS)
Yeh, Cheng-Ta; Lin, Yi-Kuei; Yang, Jo-Yun
2018-07-01
Network reliability is an important performance index for many real-life systems, such as electric power systems, computer systems and transportation systems. These systems can be modelled as stochastic-flow networks (SFNs) composed of arcs and nodes. Most system supervisors respect the network reliability maximization by finding the optimal multi-state resource assignment, which is one resource to each arc. However, a disaster may cause correlated failures for the assigned resources, affecting the network reliability. This article focuses on determining the optimal resource assignment with maximal network reliability for SFNs. To solve the problem, this study proposes a hybrid algorithm integrating the genetic algorithm and tabu search to determine the optimal assignment, called the hybrid GA-TS algorithm (HGTA), and integrates minimal paths, recursive sum of disjoint products and the correlated binomial distribution to calculate network reliability. Several practical numerical experiments are adopted to demonstrate that HGTA has better computational quality than several popular soft computing algorithms.
Numerical simulation of coherent resonance in a model network of Rulkov neurons
NASA Astrophysics Data System (ADS)
Andreev, Andrey V.; Runnova, Anastasia E.; Pisarchik, Alexander N.
2018-04-01
In this paper we study the spiking behaviour of a neuronal network consisting of Rulkov elements. We find that the regularity of this behaviour maximizes at a certain level of environment noise. This effect referred to as coherence resonance is demonstrated in a random complex network of Rulkov neurons. An external stimulus added to some of neurons excites them, and then activates other neurons in the network. The network coherence is also maximized at the certain stimulus amplitude.
RPCs in biomedical applications
NASA Astrophysics Data System (ADS)
Belli, G.; De Vecchi, C.; Giroletti, E.; Guida, R.; Musitelli, G.; Nardò, R.; Necchi, M. M.; Pagano, D.; Ratti, S. P.; Sani, G.; Vicini, A.; Vitulo, P.; Viviani, C.
2006-08-01
We are studying possible applications of Resistive Plate Chambers (RPCs) in the biomedical domain such as Positron Emission Tomography (PET). The use of RPCs in PET can provide several improvements on the usual scintillation-based detectors. The most striking features are the extremely good spatial and time resolutions. They can be as low as 50 μm and 25 ps respectively, to be compared to the much higher intrinsic limits in bulk detectors. Much efforts have been made to investigate suitable materials to make RPCs sensitive to 511 keV photons. For this reason, we are studying different types of coating employing high Z materials with proper electrical resistivity. Later investigations explored the possibility of coating glass electrodes by mean of serigraphy techniques, employing oxide based mixtures with a high density of high Z materials; the efficiency is strongly dependent on its thickness and it reaches a maximum for a characteristic value that is a function of the compound (usually a few hundred microns). The most promising mixtures seem to be PbO, Bi 2O 3 and Tl 2O. Preliminary gamma efficiency measurements for a Multigap RPC prototype (MRPC) are presented as well as simulations using GEANT4-based framework. The MRPC has 5 gas gaps; their spacings are kept by 0.3 mm diameter nylon fishing line, electrodes are made of thin glasses (1 mm for the outer electrodes, 0.15-0.4 mm for the inner ones). The detector is enclosed in a metallic gas-tight box, filled with a C 2H 2F 4 92.5%, SF 6 2.5%, C 4H 10 5% mixture. Different gas mixtures are being studied increasing the SF6 percentage and results of efficiency as a function of the new mixtures will be presented.
Detecting community structure via the maximal sub-graphs and belonging degrees in complex networks
NASA Astrophysics Data System (ADS)
Cui, Yaozu; Wang, Xingyuan; Eustace, Justine
2014-12-01
Community structure is a common phenomenon in complex networks, and it has been shown that some communities in complex networks often overlap each other. So in this paper we propose a new algorithm to detect overlapping community structure in complex networks. To identify the overlapping community structure, our algorithm firstly extracts fully connected sub-graphs which are maximal sub-graphs from original networks. Then two maximal sub-graphs having the key pair-vertices can be merged into a new larger sub-graph using some belonging degree functions. Furthermore we extend the modularity function to evaluate the proposed algorithm. In addition, overlapping nodes between communities are founded successfully. Finally we report the comparison between the modularity and the computational complexity of the proposed algorithm with some other existing algorithms. The experimental results show that the proposed algorithm gives satisfactory results.
Maximizing algebraic connectivity in air transportation networks
NASA Astrophysics Data System (ADS)
Wei, Peng
In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the weight assignment can not be studied separately for the problem with operating cost constraint. Therefore a relaxed SDP method with golden section search is developed to solve both at the same time. The cluster decomposition is utilized to solve large scale networks.
A T0/Trigger detector for the External Target Experiment at CSR
NASA Astrophysics Data System (ADS)
Hu, D.; Shao, M.; Sun, Y.; Li, C.; Chen, H.; Tang, Z.; Zhang, Y.; Zhou, J.; Zeng, H.; Zhao, X.; You, W.; Song, G.; Deng, P.; Lu, J.; Zhao, L.
2017-06-01
A new T0/Trigger detector based on multi-gap resistive plate chamber (MRPC) technology has been constructed and tested for the external target experiment (ETE) at HIRFL-CSR. It measures the multiplicity and timing information of particles produced in heavy-ion collisions at the target region, providing necessary event collision time (T0) and collision centrality with high precision. Monte-Carlo simulation shows a time resolution of several tens of picosecond can be achieved at central collisions. The experimental tests have been performed for this prototype detector at the CSR-ETE. The preliminary results are shown to demonstrate the performance of the T0/Trigger detector.
Efficient data communication protocols for wireless networks
NASA Astrophysics Data System (ADS)
Zeydan, Engin
In this dissertation, efficient decentralized algorithms are investigated for cost minimization problems in wireless networks. For wireless sensor networks, we investigate both the reduction in the energy consumption and throughput maximization problems separately using multi-hop data aggregation for correlated data in wireless sensor networks. The proposed algorithms exploit data redundancy using a game theoretic framework. For energy minimization, routes are chosen to minimize the total energy expended by the network using best response dynamics to local data. The cost function used in routing takes into account distance, interference and in-network data aggregation. The proposed energy-efficient correlation-aware routing algorithm significantly reduces the energy consumption in the network and converges in a finite number of steps iteratively. For throughput maximization, we consider both the interference distribution across the network and correlation between forwarded data when establishing routes. Nodes along each route are chosen to minimize the interference impact in their neighborhood and to maximize the in-network data aggregation. The resulting network topology maximizes the global network throughput and the algorithm is guaranteed to converge with a finite number of steps using best response dynamics. For multiple antenna wireless ad-hoc networks, we present distributed cooperative and regret-matching based learning schemes for joint transmit beanformer and power level selection problem for nodes operating in multi-user interference environment. Total network transmit power is minimized while ensuring a constant received signal-to-interference and noise ratio at each receiver. In cooperative and regret-matching based power minimization algorithms, transmit beanformers are selected from a predefined codebook to minimize the total power. By selecting transmit beamformers judiciously and performing power adaptation, the cooperative algorithm is shown to converge to pure strategy Nash equilibrium with high probability throughout the iterations in the interference impaired network. On the other hand, the regret-matching learning algorithm is noncooperative and requires minimum amount of overhead. The proposed cooperative and regret-matching based distributed algorithms are also compared with centralized solutions through simulation results.
2012-01-01
Background Synchronized bursting activity (SBA) is a remarkable dynamical behavior in both ex vivo and in vivo neural networks. Investigations of the underlying structural characteristics associated with SBA are crucial to understanding the system-level regulatory mechanism of neural network behaviors. Results In this study, artificial pulsed neural networks were established using spike response models to capture fundamental dynamics of large scale ex vivo cortical networks. Network simulations with synaptic parameter perturbations showed the following two findings. (i) In a network with an excitatory ratio (ER) of 80-90%, its connective ratio (CR) was within a range of 10-30% when the occurrence of SBA reached the highest expectation. This result was consistent with the experimental observation in ex vivo neuronal networks, which were reported to possess a matured inhibitory synaptic ratio of 10-20% and a CR of 10-30%. (ii) No SBA occurred when a network does not contain any all-positive-interaction feedback loop (APFL) motif. In a neural network containing APFLs, the number of APFLs presented an optimal range corresponding to the maximal occurrence of SBA, which was very similar to the optimal CR. Conclusions In a neural network, the evolutionarily selected CR (10-30%) optimizes the occurrence of SBA, and APFL serves a pivotal network motif required to maximize the occurrence of SBA. PMID:22462685
NASA Astrophysics Data System (ADS)
Zulai, Luis G. T.; Durand, Fábio R.; Abrão, Taufik
2015-05-01
In this article, an energy-efficiency mechanism for next-generation passive optical networks is investigated through heuristic particle swarm optimization. Ten-gigabit Ethernet-wavelength division multiplexing optical code division multiplexing-passive optical network next-generation passive optical networks are based on the use of a legacy 10-gigabit Ethernet-passive optical network with the advantage of using only an en/decoder pair of optical code division multiplexing technology, thus eliminating the en/decoder at each optical network unit. The proposed joint mechanism is based on the sleep-mode power-saving scheme for a 10-gigabit Ethernet-passive optical network, combined with a power control procedure aiming to adjust the transmitted power of the active optical network units while maximizing the overall energy-efficiency network. The particle swarm optimization based power control algorithm establishes the optimal transmitted power in each optical network unit according to the network pre-defined quality of service requirements. The objective is controlling the power consumption of the optical network unit according to the traffic demand by adjusting its transmitter power in an attempt to maximize the number of transmitted bits with minimum energy consumption, achieving maximal system energy efficiency. Numerical results have revealed that it is possible to save 75% of energy consumption with the proposed particle swarm optimization based sleep-mode energy-efficiency mechanism compared to 55% energy savings when just a sleeping-mode-based mechanism is deployed.
Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim
2016-01-01
The average topological overlap of two graphs of two consecutive time steps measures the amount of changes in the edge configuration between the two snapshots. This value has to be zero if the edge configuration changes completely and one if the two consecutive graphs are identical. Current methods depend on the number of nodes in the network or on the maximal number of connected nodes in the consecutive time steps. In the first case, this methodology breaks down if there are nodes with no edges. In the second case, it fails if the maximal number of active nodes is larger than the maximal number of connected nodes. In the following, an adaption of the calculation of the temporal correlation coefficient and of the topological overlap of the graph between two consecutive time steps is presented, which shows the expected behaviour mentioned above. The newly proposed adaption uses the maximal number of active nodes, i.e. the number of nodes with at least one edge, for the calculation of the topological overlap. The three methods were compared with the help of vivid example networks to reveal the differences between the proposed notations. Furthermore, these three calculation methods were applied to a real-world network of animal movements in order to detect influences of the network structure on the outcome of the different methods.
Lin, Yunyue; Wu, Qishi; Cai, Xiaoshan; ...
2010-01-01
Data transmission from sensor nodes to a base station or a sink node often incurs significant energy consumption, which critically affects network lifetime. We generalize and solve the problem of deploying multiple base stations to maximize network lifetime in terms of two different metrics under one-hop and multihop communication models. In the one-hop communication model, the sensors far away from base stations always deplete their energy much faster than others. We propose an optimal solution and a heuristic approach based on the minimal enclosing circle algorithm to deploy a base station at the geometric center of each cluster. In themore » multihop communication model, both base station location and data routing mechanism need to be considered in maximizing network lifetime. We propose an iterative algorithm based on rigorous mathematical derivations and use linear programming to compute the optimal routing paths for data transmission. Simulation results show the distinguished performance of the proposed deployment algorithms in maximizing network lifetime.« less
Multiway spectral community detection in networks
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Newman, M. E. J.
2015-11-01
One of the most widely used methods for community detection in networks is the maximization of the quality function known as modularity. Of the many maximization techniques that have been used in this context, some of the most conceptually attractive are the spectral methods, which are based on the eigenvectors of the modularity matrix. Spectral algorithms have, however, been limited, by and large, to the division of networks into only two or three communities, with divisions into more than three being achieved by repeated two-way division. Here we present a spectral algorithm that can directly divide a network into any number of communities. The algorithm makes use of a mapping from modularity maximization to a vector partitioning problem, combined with a fast heuristic for vector partitioning. We compare the performance of this spectral algorithm with previous approaches and find it to give superior results, particularly in cases where community sizes are unbalanced. We also give demonstrative applications of the algorithm to two real-world networks and find that it produces results in good agreement with expectations for the networks studied.
Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadi, Shahin; Gleich, David F.; Kolda, Tamara G.
2015-11-01
Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangularmore » AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.« less
Stimulus Sensitivity of a Spiking Neural Network Model
NASA Astrophysics Data System (ADS)
Chevallier, Julien
2018-02-01
Some recent papers relate the criticality of complex systems to their maximal capacity of information processing. In the present paper, we consider high dimensional point processes, known as age-dependent Hawkes processes, which have been used to model spiking neural networks. Using mean-field approximation, the response of the network to a stimulus is computed and we provide a notion of stimulus sensitivity. It appears that the maximal sensitivity is achieved in the sub-critical regime, yet almost critical for a range of biologically relevant parameters.
Optimal topologies for maximizing network transmission capacity
NASA Astrophysics Data System (ADS)
Chen, Zhenhao; Wu, Jiajing; Rong, Zhihai; Tse, Chi K.
2018-04-01
It has been widely demonstrated that the structure of a network is a major factor that affects its traffic dynamics. In this work, we try to identify the optimal topologies for maximizing the network transmission capacity, as well as to build a clear relationship between structural features of a network and the transmission performance in terms of traffic delivery. We propose an approach for designing optimal network topologies against traffic congestion by link rewiring and apply them on the Barabási-Albert scale-free, static scale-free and Internet Autonomous System-level networks. Furthermore, we analyze the optimized networks using complex network parameters that characterize the structure of networks, and our simulation results suggest that an optimal network for traffic transmission is more likely to have a core-periphery structure. However, assortative mixing and the rich-club phenomenon may have negative impacts on network performance. Based on the observations of the optimized networks, we propose an efficient method to improve the transmission capacity of large-scale networks.
IMNN: Information Maximizing Neural Networks
NASA Astrophysics Data System (ADS)
Charnock, Tom; Lavaux, Guilhem; Wandelt, Benjamin D.
2018-04-01
This software trains artificial neural networks to find non-linear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). As compressing large data sets vastly simplifies both frequentist and Bayesian inference, important information may be inadvertently missed. Likelihood-free inference based on automatically derived IMNN summaries produces summaries that are good approximations to sufficient statistics. IMNNs are robustly capable of automatically finding optimal, non-linear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima.
Real-time topic-aware influence maximization using preprocessing.
Chen, Wei; Lin, Tian; Yang, Cheng
2016-01-01
Influence maximization is the task of finding a set of seed nodes in a social network such that the influence spread of these seed nodes based on certain influence diffusion model is maximized. Topic-aware influence diffusion models have been recently proposed to address the issue that influence between a pair of users are often topic-dependent and information, ideas, innovations etc. being propagated in networks are typically mixtures of topics. In this paper, we focus on the topic-aware influence maximization task. In particular, we study preprocessing methods to avoid redoing influence maximization for each mixture from scratch. We explore two preprocessing algorithms with theoretical justifications. Our empirical results on data obtained in a couple of existing studies demonstrate that one of our algorithms stands out as a strong candidate providing microsecond online response time and competitive influence spread, with reasonable preprocessing effort.
Influencing Busy People in a Social Network
Sarkar, Kaushik; Sundaram, Hari
2016-01-01
We identify influential early adopters in a social network, where individuals are resource constrained, to maximize the spread of multiple, costly behaviors. A solution to this problem is especially important for viral marketing. The problem of maximizing influence in a social network is challenging since it is computationally intractable. We make three contributions. First, we propose a new model of collective behavior that incorporates individual intent, knowledge of neighbors actions and resource constraints. Second, we show that the multiple behavior influence maximization is NP-hard. Furthermore, we show that the problem is submodular, implying the existence of a greedy solution that approximates the optimal solution to within a constant. However, since the greedy algorithm is expensive for large networks, we propose efficient heuristics to identify the influential individuals, including heuristics to assign behaviors to the different early adopters. We test our approach on synthetic and real-world topologies with excellent results. We evaluate the effectiveness under three metrics: unique number of participants, total number of active behaviors and network resource utilization. Our heuristics produce 15-51% increase in expected resource utilization over the naïve approach. PMID:27711127
Influencing Busy People in a Social Network.
Sarkar, Kaushik; Sundaram, Hari
2016-01-01
We identify influential early adopters in a social network, where individuals are resource constrained, to maximize the spread of multiple, costly behaviors. A solution to this problem is especially important for viral marketing. The problem of maximizing influence in a social network is challenging since it is computationally intractable. We make three contributions. First, we propose a new model of collective behavior that incorporates individual intent, knowledge of neighbors actions and resource constraints. Second, we show that the multiple behavior influence maximization is NP-hard. Furthermore, we show that the problem is submodular, implying the existence of a greedy solution that approximates the optimal solution to within a constant. However, since the greedy algorithm is expensive for large networks, we propose efficient heuristics to identify the influential individuals, including heuristics to assign behaviors to the different early adopters. We test our approach on synthetic and real-world topologies with excellent results. We evaluate the effectiveness under three metrics: unique number of participants, total number of active behaviors and network resource utilization. Our heuristics produce 15-51% increase in expected resource utilization over the naïve approach.
Designing Secure Library Networks.
ERIC Educational Resources Information Center
Breeding, Michael
1997-01-01
Focuses on designing a library network to maximize security. Discusses UNIX and file servers; connectivity to campus, corporate networks and the Internet; separation of staff from public servers; controlling traffic; the threat of network sniffers; hubs that eliminate eavesdropping; dividing the network into subnets; Switched Ethernet;…
Morino, Masato; Natsui, Shinsuke; Swartz, Talia H; Krulwich, Terry A; Ito, Masahiro
2008-06-01
Mrp antiporters catalyze secondary Na(+)(Li(+))/H(+) antiport and/or K(+)/H(+) antiport that is physiologically important in diverse bacteria. An additional capacity for anion flux has been observed for a few systems. Mrp is unique among antiporters in that it requires all six or seven hydrophobic gene products (MrpA to MrpG) of the mrp operon for full antiporter activity, but MrpE has been reported to be dispensable. Here, the membrane complexes formed by Mrp proteins were examined using a cloned mrp operon from alkaliphilic Bacillus pseudofirmus OF4. The operon was engineered so that the seven Mrp proteins could be detected in single samples. Membrane extracts of an antiporter-deficient Escherichia coli strain expressing this construct were analyzed by blue native-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Mrp complexes of two sizes were identified containing all seven Mrp proteins. Studies of the single nonpolar mrp gene deletions in the construct showed that a subcomplex of MrpA, MrpB, MrpC, and MrpD was formed in the absence of MrpE, MrpF, or MrpG. By contrast, MrpE, MrpF, and MrpG were not observed in membranes lacking MrpA, MrpB, MrpC, or MrpD. Although MrpA and MrpD have been hypothesized to be the antiporter proteins, the MrpA-to-D complex was inactive. Every Mrp protein was required for an activity level near that of the wild-type Na(+)/H(+) antiporter, but a very low activity level was observed in the absence of MrpE. The introduction of an MrpE(P114G) mutation into the full Mrp complex led to antiport activity with a greatly increased apparent K(m) value for Na(+). The results suggested that interactions among the proteins of heterooligomeric Mrp complexes strongly impact antiporter properties.
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Tian, Rui; Yu, Xiaosong; Zhang, Jiawei; Zhang, Jie
2017-03-01
A proper traffic grooming strategy in dynamic optical networks can improve the utilization of bandwidth resources. An auxiliary graph (AG) is designed to solve the traffic grooming problem under a dynamic traffic scenario in spatial division multiplexing enabled elastic optical networks (SDM-EON) with multi-core fibers. Five traffic grooming policies achieved by adjusting the edge weights of an AG are proposed and evaluated through simulation: maximal electrical grooming (MEG), maximal optical grooming (MOG), maximal SDM grooming (MSG), minimize virtual hops (MVH), and minimize physical hops (MPH). Numeric results show that each traffic grooming policy has its own features. Among different traffic grooming policies, an MPH policy can achieve the lowest bandwidth blocking ratio, MEG can save the most transponders, and MSG can obtain the fewest cores for each request.
Maximizing synchronizability of duplex networks
NASA Astrophysics Data System (ADS)
Wei, Xiang; Emenheiser, Jeffrey; Wu, Xiaoqun; Lu, Jun-an; D'Souza, Raissa M.
2018-01-01
We study the synchronizability of duplex networks formed by two randomly generated network layers with different patterns of interlayer node connections. According to the master stability function, we use the smallest nonzero eigenvalue and the eigenratio between the largest and the second smallest eigenvalues of supra-Laplacian matrices to characterize synchronizability on various duplexes. We find that the interlayer linking weight and linking fraction have a profound impact on synchronizability of duplex networks. The increasingly large inter-layer coupling weight is found to cause either decreasing or constant synchronizability for different classes of network dynamics. In addition, negative node degree correlation across interlayer links outperforms positive degree correlation when most interlayer links are present. The reverse is true when a few interlayer links are present. The numerical results and understanding based on these representative duplex networks are illustrative and instructive for building insights into maximizing synchronizability of more realistic multiplex networks.
Cooperative Resource Pricing in Service Overlay Networks for Mobile Agents
NASA Astrophysics Data System (ADS)
Nakano, Tadashi; Okaie, Yutaka
The success of peer-to-peer overlay networks depends on cooperation among participating peers. In this paper, we investigate the degree of cooperation among individual peers required to induce globally favorable properties in an overlay network. Specifically, we consider a resource pricing problem in a market-oriented overlay network where participating peers sell own resources (e.g., CPU cycles) to earn energy which represents some money or rewards in the network. In the resource pricing model presented in this paper, each peer sets the price for own resource based on the degree of cooperation; non-cooperative peers attempt to maximize their own energy gains, while cooperative peers maximize the sum of own and neighbors' energy gains. Simulation results are presented to demonstrate that the network topology is an important factor influencing the minimum degree of cooperation required to increase the network-wide global energy gain.
Dynamic Pricing in Electronic Commerce Using Neural Network
NASA Astrophysics Data System (ADS)
Ghose, Tapu Kumar; Tran, Thomas T.
In this paper, we propose an approach where feed-forward neural network is used for dynamically calculating a competitive price of a product in order to maximize sellers’ revenue. In the approach we considered that along with product price other attributes such as product quality, delivery time, after sales service and seller’s reputation contribute in consumers purchase decision. We showed that once the sellers, by using their limited prior knowledge, set an initial price of a product our model adjusts the price automatically with the help of neural network so that sellers’ revenue is maximized.
Information processing in echo state networks at the edge of chaos.
Boedecker, Joschka; Obst, Oliver; Lizier, Joseph T; Mayer, N Michael; Asada, Minoru
2012-09-01
We investigate information processing in randomly connected recurrent neural networks. It has been shown previously that the computational capabilities of these networks are maximized when the recurrent layer is close to the border between a stable and an unstable dynamics regime, the so called edge of chaos. The reasons, however, for this maximized performance are not completely understood. We adopt an information-theoretical framework and are for the first time able to quantify the computational capabilities between elements of these networks directly as they undergo the phase transition to chaos. Specifically, we present evidence that both information transfer and storage in the recurrent layer are maximized close to this phase transition, providing an explanation for why guiding the recurrent layer toward the edge of chaos is computationally useful. As a consequence, our study suggests self-organized ways of improving performance in recurrent neural networks, driven by input data. Moreover, the networks we study share important features with biological systems such as feedback connections and online computation on input streams. A key example is the cerebral cortex, which was shown to also operate close to the edge of chaos. Consequently, the behavior of model systems as studied here is likely to shed light on reasons why biological systems are tuned into this specific regime.
Learning in neural networks based on a generalized fluctuation theorem
NASA Astrophysics Data System (ADS)
Hayakawa, Takashi; Aoyagi, Toshio
2015-11-01
Information maximization has been investigated as a possible mechanism of learning governing the self-organization that occurs within the neural systems of animals. Within the general context of models of neural systems bidirectionally interacting with environments, however, the role of information maximization remains to be elucidated. For bidirectionally interacting physical systems, universal laws describing the fluctuation they exhibit and the information they possess have recently been discovered. These laws are termed fluctuation theorems. In the present study, we formulate a theory of learning in neural networks bidirectionally interacting with environments based on the principle of information maximization. Our formulation begins with the introduction of a generalized fluctuation theorem, employing an interpretation appropriate for the present application, which differs from the original thermodynamic interpretation. We analytically and numerically demonstrate that the learning mechanism presented in our theory allows neural networks to efficiently explore their environments and optimally encode information about them.
Network marketing on a small-world network
NASA Astrophysics Data System (ADS)
Kim, Beom Jun; Jun, Tackseung; Kim, Jeong-Yoo; Choi, M. Y.
2006-02-01
We investigate a dynamic model of network marketing in a small-world network structure artificially constructed similarly to the Watts-Strogatz network model. Different from the traditional marketing, consumers can also play the role of the manufacturer's selling agents in network marketing, which is stimulated by the referral fee the manufacturer offers. As the wiring probability α is increased from zero to unity, the network changes from the one-dimensional regular directed network to the star network where all but one player are connected to one consumer. The price p of the product and the referral fee r are used as free parameters to maximize the profit of the manufacturer. It is observed that at α=0 the maximized profit is constant independent of the network size N while at α≠0, it increases linearly with N. This is in parallel to the small-world transition. It is also revealed that while the optimal value of p stays at an almost constant level in a broad range of α, that of r is sensitive to a change in the network structure. The consumer surplus is also studied and discussed.
Maximizing Information Diffusion in the Cyber-physical Integrated Network †
Lu, Hongliang; Lv, Shaohe; Jiao, Xianlong; Wang, Xiaodong; Liu, Juan
2015-01-01
Nowadays, our living environment has been embedded with smart objects, such as smart sensors, smart watches and smart phones. They make cyberspace and physical space integrated by their abundant abilities of sensing, communication and computation, forming a cyber-physical integrated network. In order to maximize information diffusion in such a network, a group of objects are selected as the forwarding points. To optimize the selection, a minimum connected dominating set (CDS) strategy is adopted. However, existing approaches focus on minimizing the size of the CDS, neglecting an important factor: the weight of links. In this paper, we propose a distributed maximizing the probability of information diffusion (DMPID) algorithm in the cyber-physical integrated network. Unlike previous approaches that only consider the size of CDS selection, DMPID also considers the information spread probability that depends on the weight of links. To weaken the effects of excessively-weighted links, we also present an optimization strategy that can properly balance the two factors. The results of extensive simulation show that DMPID can nearly double the information diffusion probability, while keeping a reasonable size of selection with low overhead in different distributed networks. PMID:26569254
Maximally informative pairwise interactions in networks
Fitzgerald, Jeffrey D.; Sharpee, Tatyana O.
2010-01-01
Several types of biological networks have recently been shown to be accurately described by a maximum entropy model with pairwise interactions, also known as the Ising model. Here we present an approach for finding the optimal mappings between input signals and network states that allow the network to convey the maximal information about input signals drawn from a given distribution. This mapping also produces a set of linear equations for calculating the optimal Ising-model coupling constants, as well as geometric properties that indicate the applicability of the pairwise Ising model. We show that the optimal pairwise interactions are on average zero for Gaussian and uniformly distributed inputs, whereas they are nonzero for inputs approximating those in natural environments. These nonzero network interactions are predicted to increase in strength as the noise in the response functions of each network node increases. This approach also suggests ways for how interactions with unmeasured parts of the network can be inferred from the parameters of response functions for the measured network nodes. PMID:19905153
Network Coding for Function Computation
ERIC Educational Resources Information Center
Appuswamy, Rathinakumar
2011-01-01
In this dissertation, the following "network computing problem" is considered. Source nodes in a directed acyclic network generate independent messages and a single receiver node computes a target function f of the messages. The objective is to maximize the average number of times f can be computed per network usage, i.e., the "computing…
Relaxation dynamics of maximally clustered networks
NASA Astrophysics Data System (ADS)
Klaise, Janis; Johnson, Samuel
2018-01-01
We study the relaxation dynamics of fully clustered networks (maximal number of triangles) to an unclustered state under two different edge dynamics—the double-edge swap, corresponding to degree-preserving randomization of the configuration model, and single edge replacement, corresponding to full randomization of the Erdős-Rényi random graph. We derive expressions for the time evolution of the degree distribution, edge multiplicity distribution and clustering coefficient. We show that under both dynamics networks undergo a continuous phase transition in which a giant connected component is formed. We calculate the position of the phase transition analytically using the Erdős-Rényi phenomenology.
Effect of inhibitory firing pattern on coherence resonance in random neural networks
NASA Astrophysics Data System (ADS)
Yu, Haitao; Zhang, Lianghao; Guo, Xinmeng; Wang, Jiang; Cao, Yibin; Liu, Jing
2018-01-01
The effect of inhibitory firing patterns on coherence resonance (CR) in random neuronal network is systematically studied. Spiking and bursting are two main types of firing pattern considered in this work. Numerical results show that, irrespective of the inhibitory firing patterns, the regularity of network is maximized by an optimal intensity of external noise, indicating the occurrence of coherence resonance. Moreover, the firing pattern of inhibitory neuron indeed has a significant influence on coherence resonance, but the efficacy is determined by network property. In the network with strong coupling strength but weak inhibition, bursting neurons largely increase the amplitude of resonance, while they can decrease the noise intensity that induced coherence resonance within the neural system of strong inhibition. Different temporal windows of inhibition induced by different inhibitory neurons may account for the above observations. The network structure also plays a constructive role in the coherence resonance. There exists an optimal network topology to maximize the regularity of the neural systems.
Wireless Cooperative Networks: Self-Configuration and Optimization
2011-09-09
TERMS wireless sensor networks , wireless cooperative networks, resource optimization, ultra-wideband, localization, ranging 16. SECURITY...Communications We consider two prevalent relay protocols for wireless sensor networks : decode-and-forward (DF) and amplify-and-forward (AF). To... sensor networks where each node may have its own sensing data to transmit, since they can maximally conserve energy while helping others as relays
Lezon, Timothy R; Banavar, Jayanth R; Cieplak, Marek; Maritan, Amos; Fedoroff, Nina V
2006-12-12
We describe a method based on the principle of entropy maximization to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher-order interactions. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabolic oscillations identifies a gene interaction network that reflects the intracellular communication pathways that adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems.
Lifetime Maximization via Hole Alleviation in IoT Enabling Heterogeneous Wireless Sensor Networks.
Wadud, Zahid; Javaid, Nadeem; Khan, Muhammad Awais; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra
2017-07-21
In Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs), there are two major factors which degrade the performance of the network. One is the void hole which occurs in a particular region due to unavailability of forwarder nodes. The other is the presence of energy hole which occurs due to imbalanced data traffic load on intermediate nodes. Therefore, an optimum transmission strategy is required to maximize the network lifespan via hole alleviation. In this regard, we propose a heterogeneous network solution that is capable to balance energy dissipation among network nodes. In addition, the divide and conquer approach is exploited to evenly distribute number of transmissions over various network areas. An efficient forwarder node selection is performed to alleviate coverage and energy holes. Linear optimization is performed to validate the effectiveness of our proposed work in term of energy minimization. Furthermore, simulations are conducted to show that our claims are well grounded. Results show the superiority of our work as compared to the baseline scheme in terms of energy consumption and network lifetime.
Optimizing interconnections to maximize the spectral radius of interdependent networks
NASA Astrophysics Data System (ADS)
Chen, Huashan; Zhao, Xiuyan; Liu, Feng; Xu, Shouhuai; Lu, Wenlian
2017-03-01
The spectral radius (i.e., the largest eigenvalue) of the adjacency matrices of complex networks is an important quantity that governs the behavior of many dynamic processes on the networks, such as synchronization and epidemics. Studies in the literature focused on bounding this quantity. In this paper, we investigate how to maximize the spectral radius of interdependent networks by optimally linking k internetwork connections (or interconnections for short). We derive formulas for the estimation of the spectral radius of interdependent networks and employ these results to develop a suite of algorithms that are applicable to different parameter regimes. In particular, a simple algorithm is to link the k nodes with the largest k eigenvector centralities in one network to the node in the other network with a certain property related to both networks. We demonstrate the applicability of our algorithms via extensive simulations. We discuss the physical implications of the results, including how the optimal interconnections can more effectively decrease the threshold of epidemic spreading in the susceptible-infected-susceptible model and the threshold of synchronization of coupled Kuramoto oscillators.
Lifetime Maximization via Hole Alleviation in IoT Enabling Heterogeneous Wireless Sensor Networks
Wadud, Zahid; Khan, Muhammad Awais; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra
2017-01-01
In Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs), there are two major factors which degrade the performance of the network. One is the void hole which occurs in a particular region due to unavailability of forwarder nodes. The other is the presence of energy hole which occurs due to imbalanced data traffic load on intermediate nodes. Therefore, an optimum transmission strategy is required to maximize the network lifespan via hole alleviation. In this regard, we propose a heterogeneous network solution that is capable to balance energy dissipation among network nodes. In addition, the divide and conquer approach is exploited to evenly distribute number of transmissions over various network areas. An efficient forwarder node selection is performed to alleviate coverage and energy holes. Linear optimization is performed to validate the effectiveness of our proposed work in term of energy minimization. Furthermore, simulations are conducted to show that our claims are well grounded. Results show the superiority of our work as compared to the baseline scheme in terms of energy consumption and network lifetime. PMID:28753990
Competition between Homophily and Information Entropy Maximization in Social Networks
Zhao, Jichang; Liang, Xiao; Xu, Ke
2015-01-01
In social networks, it is conventionally thought that two individuals with more overlapped friends tend to establish a new friendship, which could be stated as homophily breeding new connections. While the recent hypothesis of maximum information entropy is presented as the possible origin of effective navigation in small-world networks. We find there exists a competition between information entropy maximization and homophily in local structure through both theoretical and experimental analysis. This competition suggests that a newly built relationship between two individuals with more common friends would lead to less information entropy gain for them. We demonstrate that in the evolution of the social network, both of the two assumptions coexist. The rule of maximum information entropy produces weak ties in the network, while the law of homophily makes the network highly clustered locally and the individuals would obtain strong and trust ties. A toy model is also presented to demonstrate the competition and evaluate the roles of different rules in the evolution of real networks. Our findings could shed light on the social network modeling from a new perspective. PMID:26334994
Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle.
Gibbs, David L; Shmulevich, Ilya
2017-06-01
The Influence Maximization Problem (IMP) aims to discover the set of nodes with the greatest influence on network dynamics. The problem has previously been applied in epidemiology and social network analysis. Here, we demonstrate the application to cell cycle regulatory network analysis for Saccharomyces cerevisiae. Fundamentally, gene regulation is linked to the flow of information. Therefore, our implementation of the IMP was framed as an information theoretic problem using network diffusion. Utilizing more than 26,000 regulatory edges from YeastMine, gene expression dynamics were encoded as edge weights using time lagged transfer entropy, a method for quantifying information transfer between variables. By picking a set of source nodes, a diffusion process covers a portion of the network. The size of the network cover relates to the influence of the source nodes. The set of nodes that maximizes influence is the solution to the IMP. By solving the IMP over different numbers of source nodes, an influence ranking on genes was produced. The influence ranking was compared to other metrics of network centrality. Although the top genes from each centrality ranking contained well-known cell cycle regulators, there was little agreement and no clear winner. However, it was found that influential genes tend to directly regulate or sit upstream of genes ranked by other centrality measures. The influential nodes act as critical sources of information flow, potentially having a large impact on the state of the network. Biological events that affect influential nodes and thereby affect information flow could have a strong effect on network dynamics, potentially leading to disease. Code and data can be found at: https://github.com/gibbsdavidl/miergolf.
Influence maximization in social networks under an independent cascade-based model
NASA Astrophysics Data System (ADS)
Wang, Qiyao; Jin, Yuehui; Lin, Zhen; Cheng, Shiduan; Yang, Tan
2016-02-01
The rapid growth of online social networks is important for viral marketing. Influence maximization refers to the process of finding influential users who make the most of information or product adoption. An independent cascade-based model for influence maximization, called IMIC-OC, was proposed to calculate positive influence. We assumed that influential users spread positive opinions. At the beginning, users held positive or negative opinions as their initial opinions. When more users became involved in the discussions, users balanced their own opinions and those of their neighbors. The number of users who did not change positive opinions was used to determine positive influence. Corresponding influential users who had maximum positive influence were then obtained. Experiments were conducted on three real networks, namely, Facebook, HEP-PH and Epinions, to calculate maximum positive influence based on the IMIC-OC model and two other baseline methods. The proposed model resulted in larger positive influence, thus indicating better performance compared with the baseline methods.
NASA Astrophysics Data System (ADS)
Abbrescia, M.; An, S.; Antolini, R.; Badalà, A.; Baldini Ferroli, R.; Bencivenni, G.; Blanco, F.; Bressan, E.; Chiavassa, A.; Chiri, C.; Cifarelli, L.; Cindolo, F.; Coccia, E.; de Pasquale, S.; di Giovanni, A.; D'Incecco, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gustavino, C.; Hatzifotiadou, D.; Imponente, G.; Kim, J.; La Rocca, P.; Librizzi, F.; Maggiora, A.; Menghetti, H.; Miozzi, S.; Moro, R.; Panareo, M.; Pappalardo, G. S.; Piragino, G.; Riggi, F.; Romano, F.; Sartorelli, G.; Sbarra, C.; Selvi, M.; Serci, S.; Williams, C.; Zichichi, A.; Zuyeuski, R.
2008-04-01
The EEE Project, conceived by its leader Antonino Zichichi, aims to detect Extreme Energy Events of cosmic rays with an array of muon telescopes distributed over the Italian territory. The Project involves Italian High Schools in order to introduce young people to Physics, also countervailing the recent crisis of university scientific classes inscriptions. The detectors for the EEE telescopes are Multigap Resistive Plate Chambers (MRPC) and have been constructed by teams of High School students who went in shift at the CERN laboratories. The mechanics and the electronics were developed by groups of researchers from CERN, the Italian Centro Fermi and INFN. The first group of schools of the EEE Project has inaugurated their telescopes recently. A status report of the Project and the preliminary results are presented.
Intrinsic noise and deviations from criticality in Boolean gene-regulatory networks
NASA Astrophysics Data System (ADS)
Villegas, Pablo; Ruiz-Franco, José; Hidalgo, Jorge; Muñoz, Miguel A.
2016-10-01
Gene regulatory networks can be successfully modeled as Boolean networks. A much discussed hypothesis says that such model networks reproduce empirical findings the best if they are tuned to operate at criticality, i.e. at the borderline between their ordered and disordered phases. Critical networks have been argued to lead to a number of functional advantages such as maximal dynamical range, maximal sensitivity to environmental changes, as well as to an excellent tradeoff between stability and flexibility. Here, we study the effect of noise within the context of Boolean networks trained to learn complex tasks under supervision. We verify that quasi-critical networks are the ones learning in the fastest possible way -even for asynchronous updating rules- and that the larger the task complexity the smaller the distance to criticality. On the other hand, when additional sources of intrinsic noise in the network states and/or in its wiring pattern are introduced, the optimally performing networks become clearly subcritical. These results suggest that in order to compensate for inherent stochasticity, regulatory and other type of biological networks might become subcritical rather than being critical, all the most if the task to be performed has limited complexity.
Luo, Hanjiang; Guo, Zhongwen; Wu, Kaishun; Hong, Feng; Feng, Yuan
2009-01-01
Underwater acoustic sensor networks (UWA-SNs) are envisioned to perform monitoring tasks over the large portion of the world covered by oceans. Due to economics and the large area of the ocean, UWA-SNs are mainly sparsely deployed networks nowadays. The limited battery resources is a big challenge for the deployment of such long-term sensor networks. Unbalanced battery energy consumption will lead to early energy depletion of nodes, which partitions the whole networks and impairs the integrity of the monitoring datasets or even results in the collapse of the entire networks. On the contrary, balanced energy dissipation of nodes can prolong the lifetime of such networks. In this paper, we focus on the energy balance dissipation problem of two types of sparsely deployed UWA-SNs: underwater moored monitoring systems and sparsely deployed two-dimensional UWA-SNs. We first analyze the reasons of unbalanced energy consumption in such networks, then we propose two energy balanced strategies to maximize the lifetime of networks both in shallow and deep water. Finally, we evaluate our methods by simulations and the results show that the two strategies can achieve balanced energy consumption per node while at the same time prolong the networks lifetime. PMID:22399970
NASA Astrophysics Data System (ADS)
Keum, Jongho; Coulibaly, Paulin
2017-07-01
Adequate and accurate hydrologic information from optimal hydrometric networks is an essential part of effective water resources management. Although the key hydrologic processes in the water cycle are interconnected, hydrometric networks (e.g., streamflow, precipitation, groundwater level) have been routinely designed individually. A decision support framework is proposed for integrated design of multivariable hydrometric networks. The proposed method is applied to design optimal precipitation and streamflow networks simultaneously. The epsilon-dominance hierarchical Bayesian optimization algorithm was combined with Shannon entropy of information theory to design and evaluate hydrometric networks. Specifically, the joint entropy from the combined networks was maximized to provide the most information, and the total correlation was minimized to reduce redundant information. To further optimize the efficiency between the networks, they were designed by maximizing the conditional entropy of the streamflow network given the information of the precipitation network. Compared to the traditional individual variable design approach, the integrated multivariable design method was able to determine more efficient optimal networks by avoiding the redundant stations. Additionally, four quantization cases were compared to evaluate their effects on the entropy calculations and the determination of the optimal networks. The evaluation results indicate that the quantization methods should be selected after careful consideration for each design problem since the station rankings and the optimal networks can change accordingly.
Price of anarchy is maximized at the percolation threshold.
Skinner, Brian
2015-05-01
When many independent users try to route traffic through a network, the flow can easily become suboptimal as a consequence of congestion of the most efficient paths. The degree of this suboptimality is quantified by the so-called price of anarchy (POA), but so far there are no general rules for when to expect a large POA in a random network. Here I address this question by introducing a simple model of flow through a network with randomly placed congestible and incongestible links. I show that the POA is maximized precisely when the fraction of congestible links matches the percolation threshold of the lattice. Both the POA and the total cost demonstrate critical scaling near the percolation threshold.
Extinction times of epidemic outbreaks in networks.
Holme, Petter
2013-01-01
In the Susceptible-Infectious-Recovered (SIR) model of disease spreading, the time to extinction of the epidemics happens at an intermediate value of the per-contact transmission probability. Too contagious infections burn out fast in the population. Infections that are not contagious enough die out before they spread to a large fraction of people. We characterize how the maximal extinction time in SIR simulations on networks depend on the network structure. For example we find that the average distances in isolated components, weighted by the component size, is a good predictor of the maximal time to extinction. Furthermore, the transmission probability giving the longest outbreaks is larger than, but otherwise seemingly independent of, the epidemic threshold.
NASA Astrophysics Data System (ADS)
Buldú, Javier M.; Papo, David
2018-03-01
Over the last two decades Network Science has become one of the most active fields in science, whose growth has been supported by four fundamental pillars: statistical physics, nonlinear dynamics, graph theory and Big Data [1]. Initially concerned with analyzing the structure of networks, Network Science rapidly turned its attention, focused on the implications of network topology, on the dynamics of and processes unfolding on networked systems, greatly improving our understanding of diffusion, synchronization, epidemics and information transmission in complex systems [2]. The network approach typically considered complex systems as evolving in a vacuum; however real networks are generally not isolated systems, but are in continuous and evolving contact with other networks, with which they interact in multiple qualitative different and typically time-varying ways. These systems can then be represented as a collection of subsystems with connectivity layers, which are simply collapsed when considering the traditional monolayer representation. Surprisingly, such an "unpacking" of layers has proven to bear profound consequences on the structural and dynamical properties of networks, leading for instance to counter-intuitive synchronization phenomena, where maximization synchronization is achieved through strategies opposite of those maximizing synchronization in isolated networks [3].
Utilizing Maximal Independent Sets as Dominating Sets in Scale-Free Networks
NASA Astrophysics Data System (ADS)
Derzsy, N.; Molnar, F., Jr.; Szymanski, B. K.; Korniss, G.
Dominating sets provide key solution to various critical problems in networked systems, such as detecting, monitoring, or controlling the behavior of nodes. Motivated by graph theory literature [Erdos, Israel J. Math. 4, 233 (1966)], we studied maximal independent sets (MIS) as dominating sets in scale-free networks. We investigated the scaling behavior of the size of MIS in artificial scale-free networks with respect to multiple topological properties (size, average degree, power-law exponent, assortativity), evaluated its resilience to network damage resulting from random failure or targeted attack [Molnar et al., Sci. Rep. 5, 8321 (2015)], and compared its efficiency to previously proposed dominating set selection strategies. We showed that, despite its small set size, MIS provides very high resilience against network damage. Using extensive numerical analysis on both synthetic and real-world (social, biological, technological) network samples, we demonstrate that our method effectively satisfies four essential requirements of dominating sets for their practical applicability on large-scale real-world systems: 1.) small set size, 2.) minimal network information required for their construction scheme, 3.) fast and easy computational implementation, and 4.) resiliency to network damage. Supported by DARPA, DTRA, and NSF.
NASA Astrophysics Data System (ADS)
Ben-Zvi, Yehonatan; Reznikov, Natalie; Shahar, Ron; Weiner, Steve
2017-09-01
Cancellous bone is an intricate network of interconnected trabeculae, to which analysis of network topology can be applied. The inter-trabecular angle (ITA) analysis - an analysis of network topological parameters and regularity of network-forming nodes, was previously carried out on human proximal femora and showed that trabecular bone follows two main principles: sparsity of the network connectedness (prevalence of nodes with low connectivity in the network) and maximal space spanning (angular offset of connected elements is maximal for their number and approximates the values of geometrically symmetric shapes). These observations suggest that 3D organization of trabecular bone, irrespective of size and shape of individual elements, reflects a tradeoff between minimal metabolic cost of maintenance and maximal network stability under conditions of multidirectional loading. In this study we validate the ITA application using additional 3D structures (cork and 3D-printed metal lattices), analyze the ITA parameters in porcine proximal femora and mandibles and carry out a spatial analysis of the most common node type in the porcine mandibular condyle. The validation shows that the ITA application reliably detects designed or evolved topological parameters. The ITA parameters of porcine trabecular bones are similar to those of human bones. We demonstrate functional adaptation in the pig mandibular condyle by showing that the planar nodes with 3 edges are preferentially aligned in relation to the muscle forces that are applied to the condyle. We conclude that the ITA topological parameters are remarkable conserved, but locally do adapt to applied stresses.
Aćimović, Jugoslava; Mäki-Marttunen, Tuomo; Linne, Marja-Leena
2015-01-01
We developed a two-level statistical model that addresses the question of how properties of neurite morphology shape the large-scale network connectivity. We adopted a low-dimensional statistical description of neurites. From the neurite model description we derived the expected number of synapses, node degree, and the effective radius, the maximal distance between two neurons expected to form at least one synapse. We related these quantities to the network connectivity described using standard measures from graph theory, such as motif counts, clustering coefficient, minimal path length, and small-world coefficient. These measures are used in a neuroscience context to study phenomena from synaptic connectivity in the small neuronal networks to large scale functional connectivity in the cortex. For these measures we provide analytical solutions that clearly relate different model properties. Neurites that sparsely cover space lead to a small effective radius. If the effective radius is small compared to the overall neuron size the obtained networks share similarities with the uniform random networks as each neuron connects to a small number of distant neurons. Large neurites with densely packed branches lead to a large effective radius. If this effective radius is large compared to the neuron size, the obtained networks have many local connections. In between these extremes, the networks maximize the variability of connection repertoires. The presented approach connects the properties of neuron morphology with large scale network properties without requiring heavy simulations with many model parameters. The two-steps procedure provides an easier interpretation of the role of each modeled parameter. The model is flexible and each of its components can be further expanded. We identified a range of model parameters that maximizes variability in network connectivity, the property that might affect network capacity to exhibit different dynamical regimes.
Lezon, Timothy R.; Banavar, Jayanth R.; Cieplak, Marek; Maritan, Amos; Fedoroff, Nina V.
2006-01-01
We describe a method based on the principle of entropy maximization to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher-order interactions. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabolic oscillations identifies a gene interaction network that reflects the intracellular communication pathways that adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems. PMID:17138668
Random network peristalsis in Physarum polycephalum organizes fluid flows across an individual
Alim, Karen; Amselem, Gabriel; Peaudecerf, François; Brenner, Michael P.; Pringle, Anne
2013-01-01
Individuals can function as integrated organisms only when information and resources are shared across a body. Signals and substrates are commonly moved using fluids, often channeled through a network of tubes. Peristalsis is one mechanism for fluid transport and is caused by a wave of cross-sectional contractions along a tube. We extend the concept of peristalsis from the canonical case of one tube to a random network. Transport is maximized within the network when the wavelength of the peristaltic wave is of the order of the size of the network. The slime mold Physarum polycephalum grows as a random network of tubes, and our experiments confirm peristalsis is used by the slime mold to drive internal cytoplasmic flows. Comparisons of theoretically generated contraction patterns with the patterns exhibited by individuals of P. polycephalum demonstrate that individuals maximize internal flows by adapting patterns of contraction to size, thus optimizing transport throughout an organism. This control of fluid flow may be the key to coordinating growth and behavior, including the dynamic changes in network architecture seen over time in an individual. PMID:23898203
Random network peristalsis in Physarum polycephalum organizes fluid flows across an individual.
Alim, Karen; Amselem, Gabriel; Peaudecerf, François; Brenner, Michael P; Pringle, Anne
2013-08-13
Individuals can function as integrated organisms only when information and resources are shared across a body. Signals and substrates are commonly moved using fluids, often channeled through a network of tubes. Peristalsis is one mechanism for fluid transport and is caused by a wave of cross-sectional contractions along a tube. We extend the concept of peristalsis from the canonical case of one tube to a random network. Transport is maximized within the network when the wavelength of the peristaltic wave is of the order of the size of the network. The slime mold Physarum polycephalum grows as a random network of tubes, and our experiments confirm peristalsis is used by the slime mold to drive internal cytoplasmic flows. Comparisons of theoretically generated contraction patterns with the patterns exhibited by individuals of P. polycephalum demonstrate that individuals maximize internal flows by adapting patterns of contraction to size, thus optimizing transport throughout an organism. This control of fluid flow may be the key to coordinating growth and behavior, including the dynamic changes in network architecture seen over time in an individual.
Analyzing Online Teacher Networks: Cyber Networks Require Cyber Research Tools
ERIC Educational Resources Information Center
Schlager, Mark S.; Farooq, Umer; Fusco, Judith; Schank, Patricia; Dwyer, Nathan
2009-01-01
The authors argue that conceptual and methodological limitations in existing research approaches severely hamper theory building and empirical exploration of teacher learning and collaboration through cyber-enabled networks. They conclude that new frameworks, tools, and techniques are needed to understand and maximize the benefits of teacher…
Using crowdsourcing to prioritize bicycle network improvements : final report.
DOT National Transportation Integrated Search
2016-04-01
Effort to improve the bicycle route network using crowdsourced data is a powerful means : of incorporating citizens in infrastructure improvement decisions, which will improve : livability by maximizing the benefit of the bicycle infrastructure fundi...
Designing Robust and Resilient Tactical MANETs
2014-09-25
Bounds on the Throughput Efficiency of Greedy Maximal Scheduling in Wireless Networks , IEEE/ACM Transactions on Networking , (06 2011): 0. doi: N... Wireless Sensor Networks and Effects of Long Range Dependant Data, Special IWSM Issue of Sequential Analysis, (11 2012): 0. doi: A. D. Dominguez...Bushnell, R. Poovendran. A Convex Optimization Approach for Clone Detection in Wireless Sensor Networks , Pervasive and Mobile Computing, (01 2012
Maximal Neighbor Similarity Reveals Real Communities in Networks
Žalik, Krista Rizman
2015-01-01
An important problem in the analysis of network data is the detection of groups of densely interconnected nodes also called modules or communities. Community structure reveals functions and organizations of networks. Currently used algorithms for community detection in large-scale real-world networks are computationally expensive or require a priori information such as the number or sizes of communities or are not able to give the same resulting partition in multiple runs. In this paper we investigate a simple and fast algorithm that uses the network structure alone and requires neither optimization of pre-defined objective function nor information about number of communities. We propose a bottom up community detection algorithm in which starting from communities consisting of adjacent pairs of nodes and their maximal similar neighbors we find real communities. We show that the overall advantage of the proposed algorithm compared to the other community detection algorithms is its simple nature, low computational cost and its very high accuracy in detection communities of different sizes also in networks with blurred modularity structure consisting of poorly separated communities. All communities identified by the proposed method for facebook network and E-Coli transcriptional regulatory network have strong structural and functional coherence. PMID:26680448
Real-Time Optimization in Complex Stochastic Environment
2015-06-24
simpler ones, thus addressing scalability and the limited resources of networked wireless devices. This, however, comes at the expense of increased...Maximization of Wireless Sensor Networks with Non-ideal Batteries”, IEEE Trans. on Control of Network Systems, Vol. 1, 1, pp. 86-98, 2014. [27...C.G., “Optimal Energy-Efficient Downlink Transmission Scheduling for Real-Time Wireless Networks ”, subm. to IEEE Trans. on Control of Network Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard
Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less
NASA Astrophysics Data System (ADS)
Han, Fei; Cheng, Lin
2017-04-01
The tradable credit scheme (TCS) outperforms congestion pricing in terms of social equity and revenue neutrality, apart from the same perfect performance on congestion mitigation. This article investigates the effectiveness and efficiency of TCS on enhancing transportation network capacity in a stochastic user equilibrium (SUE) modelling framework. First, the SUE and credit market equilibrium conditions are presented; then an equivalent general SUE model with TCS is established by virtue of two constructed functions, which can be further simplified under a specific probability distribution. To enhance the network capacity by utilizing TCS, a bi-level mathematical programming model is established for the optimal TCS design problem, with the upper level optimization objective maximizing network reserve capacity and lower level being the proposed SUE model. The heuristic sensitivity analysis-based algorithm is developed to solve the bi-level model. Three numerical examples are provided to illustrate the improvement effect of TCS on the network in different scenarios.
Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard; ...
2017-06-06
Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less
Generalized networking engineering: optimal pricing and routing in multiservice networks
NASA Astrophysics Data System (ADS)
Mitra, Debasis; Wang, Qiong
2002-07-01
One of the functions of network engineering is to allocate resources optimally to forecasted demand. We generalize the mechanism by incorporating price-demand relationships into the problem formulation, and optimizing pricing and routing jointly to maximize total revenue. We consider a network, with fixed topology and link bandwidths, that offers multiple services, such as voice and data, each having characteristic price elasticity of demand, and quality of service and policy requirements on routing. Prices, which depend on service type and origin-destination, determine demands, that are routed, subject to their constraints, so as to maximize revenue. We study the basic properties of the optimal solution and prove that link shadow costs provide the basis for both optimal prices and optimal routing policies. We investigate the impact of input parameters, such as link capacities and price elasticities, on prices, demand growth, and routing policies. Asymptotic analyses, in which network bandwidth is scaled to grow, give results that are noteworthy for their qualitative insights. Several numerical examples illustrate the analyses.
Maximizing Resource Utilization in Video Streaming Systems
ERIC Educational Resources Information Center
Alsmirat, Mohammad Abdullah
2013-01-01
Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…
Hot spots, indicator taxa, complementarity and optimal networks of taiga.
Virolainen, K M; Ahlroth, P; Hyvärinen, E; Korkeamäki, E; Mattila, J; Päiivinen, J; Rintala, T; Suomi, T; Suhonen, J
2000-01-01
If hot spots for different taxa coincide, priority-setting surveys in a region could be carried out more cheaply by focusing on indicator taxa. Several previous studies show that hot spots of different taxa rarely coincide. However, in tropical areas indicator taxa may be used in selecting complementary networks to represent biodiversity as a whole. We studied beetles (Coleoptera), Heteroptera, polypores or bracket fungi (Polyporaceae) and vascular plants of old growth boreal taiga forests. Optimal networks for Heteroptera maximized the high overall species richness of beetles and vascular plants, but these networks were least favourable options for polypores. Polypores are an important group indicating the conservation value of old growth taiga forests. Random selection provided a better option. Thus, certain groups may function as good indicators for maximizing the overall species richness of some taxonomic groups, but all taxa should be examined separately. PMID:10885520
NASA Astrophysics Data System (ADS)
Agha Mohammad Ali Kermani, Mehrdad; Fatemi Ardestani, Seyed Farshad; Aliahmadi, Alireza; Barzinpour, Farnaz
2017-01-01
Influence maximization deals with identification of the most influential nodes in a social network given an influence model. In this paper, a game theoretic framework is developed that models a competitive influence maximization problem. A novel competitive influence model is additionally proposed that incorporates user heterogeneity, message content, and network structure. The proposed game-theoretic model is solved using Nash Equilibrium in a real-world dataset. It is shown that none of the well-known strategies are stable and at least one player has the incentive to deviate from the proposed strategy. Moreover, violation of Nash equilibrium strategy by each player leads to their reduced payoff. Contrary to previous works, our results demonstrate that graph topology, as well as the nodes' sociability and initial tendency measures have an effect on the determination of the influential node in the network.
Distributed Sensing and Processing: A Graphical Model Approach
2005-11-30
that Ramanujan graph toplogies maximize the convergence rate of distributed detection consensus algorithms, improving over three orders of...small world type network designs. 14. SUBJECT TERMS Ramanujan graphs, sensor network topology, sensor network...that Ramanujan graphs, for which there are explicit algebraic constructions, have large eigenratios, converging much faster than structured graphs
Efficient Deployment of Key Nodes for Optimal Coverage of Industrial Mobile Wireless Networks
Li, Xiaomin; Li, Di; Dong, Zhijie; Hu, Yage; Liu, Chengliang
2018-01-01
In recent years, industrial wireless networks (IWNs) have been transformed by the introduction of mobile nodes, and they now offer increased extensibility, mobility, and flexibility. Nevertheless, mobile nodes pose efficiency and reliability challenges. Efficient node deployment and management of channel interference directly affect network system performance, particularly for key node placement in clustered wireless networks. This study analyzes this system model, considering both industrial properties of wireless networks and their mobility. Then, static and mobile node coverage problems are unified and simplified to target coverage problems. We propose a novel strategy for the deployment of clustered heads in grouped industrial mobile wireless networks (IMWNs) based on the improved maximal clique model and the iterative computation of new candidate cluster head positions. The maximal cliques are obtained via a double-layer Tabu search. Each cluster head updates its new position via an improved virtual force while moving with full coverage to find the minimal inter-cluster interference. Finally, we develop a simulation environment. The simulation results, based on a performance comparison, show the efficacy of the proposed strategies and their superiority over current approaches. PMID:29439439
Preserving Source Location Privacy for Energy Harvesting WSNs.
Huang, Changqin; Ma, Ming; Liu, Yuxin; Liu, Anfeng
2017-03-30
Fog (From cOre to edGe) computing employs a huge number of wireless embedded devices to enable end users with anywhere-anytime-to-anything connectivity. Due to their operating nature, wireless sensor nodes often work unattended, and hence are exposed to a variety of attacks. Preserving source-location privacy plays a key role in some wireless sensor network (WSN) applications. In this paper, a redundancy branch convergence-based preserved source location privacy scheme (RBCPSLP) is proposed for energy harvesting sensor networks, with the following advantages: numerous routing branches are created in non-hotspot areas with abundant energy, and those routing branches can merge into a few routing paths before they reach the hotspot areas. The generation time, the duration of routing, and the number of routing branches are then decided independently based on the amount of energy obtained, so as to maximize network energy utilization, greatly enhance privacy protection, and provide long network lifetimes. Theoretical analysis and experimental results show that the RBCPSLP scheme allows a several-fold improvement of the network energy utilization as well as the source location privacy preservation, while maximizing network lifetimes.
Preserving Source Location Privacy for Energy Harvesting WSNs
Huang, Changqin; Ma, Ming; Liu, Yuxin; Liu, Anfeng
2017-01-01
Fog (From cOre to edGe) computing employs a huge number of wireless embedded devices to enable end users with anywhere-anytime-to-anything connectivity. Due to their operating nature, wireless sensor nodes often work unattended, and hence are exposed to a variety of attacks. Preserving source-location privacy plays a key role in some wireless sensor network (WSN) applications. In this paper, a redundancy branch convergence-based preserved source location privacy scheme (RBCPSLP) is proposed for energy harvesting sensor networks, with the following advantages: numerous routing branches are created in non-hotspot areas with abundant energy, and those routing branches can merge into a few routing paths before they reach the hotspot areas. The generation time, the duration of routing, and the number of routing branches are then decided independently based on the amount of energy obtained, so as to maximize network energy utilization, greatly enhance privacy protection, and provide long network lifetimes. Theoretical analysis and experimental results show that the RBCPSLP scheme allows a several-fold improvement of the network energy utilization as well as the source location privacy preservation, while maximizing network lifetimes. PMID:28358341
Achieving High Throughput for Data Transfer over ATM Networks
NASA Technical Reports Server (NTRS)
Johnson, Marjory J.; Townsend, Jeffrey N.
1996-01-01
File-transfer rates for ftp are often reported to be relatively slow, compared to the raw bandwidth available in emerging gigabit networks. While a major bottleneck is disk I/O, protocol issues impact performance as well. Ftp was developed and optimized for use over the TCP/IP protocol stack of the Internet. However, TCP has been shown to run inefficiently over ATM. In an effort to maximize network throughput, data-transfer protocols can be developed to run over UDP or directly over IP, rather than over TCP. If error-free transmission is required, techniques for achieving reliable transmission can be included as part of the transfer protocol. However, selected image-processing applications can tolerate a low level of errors in images that are transmitted over a network. In this paper we report on experimental work to develop a high-throughput protocol for unreliable data transfer over ATM networks. We attempt to maximize throughput by keeping the communications pipe full, but still keep packet loss under five percent. We use the Bay Area Gigabit Network Testbed as our experimental platform.
Maximal switchability of centralized networks
NASA Astrophysics Data System (ADS)
Vakulenko, Sergei; Morozov, Ivan; Radulescu, Ovidiu
2016-08-01
We consider continuous time Hopfield-like recurrent networks as dynamical models for gene regulation and neural networks. We are interested in networks that contain n high-degree nodes preferably connected to a large number of N s weakly connected satellites, a property that we call n/N s -centrality. If the hub dynamics is slow, we obtain that the large time network dynamics is completely defined by the hub dynamics. Moreover, such networks are maximally flexible and switchable, in the sense that they can switch from a globally attractive rest state to any structurally stable dynamics when the response time of a special controller hub is changed. In particular, we show that a decrease of the controller hub response time can lead to a sharp variation in the network attractor structure: we can obtain a set of new local attractors, whose number can increase exponentially with N, the total number of nodes of the nework. These new attractors can be periodic or even chaotic. We provide an algorithm, which allows us to design networks with the desired switching properties, or to learn them from time series, by adjusting the interactions between hubs and satellites. Such switchable networks could be used as models for context dependent adaptation in functional genetics or as models for cognitive functions in neuroscience.
The fourth dimension of life: fractal geometry and allometric scaling of organisms.
West, G B; Brown, J H; Enquist, B J
1999-06-04
Fractal-like networks effectively endow life with an additional fourth spatial dimension. This is the origin of quarter-power scaling that is so pervasive in biology. Organisms have evolved hierarchical branching networks that terminate in size-invariant units, such as capillaries, leaves, mitochondria, and oxidase molecules. Natural selection has tended to maximize both metabolic capacity, by maximizing the scaling of exchange surface areas, and internal efficiency, by minimizing the scaling of transport distances and times. These design principles are independent of detailed dynamics and explicit models and should apply to virtually all organisms.
Sampling Based Influence Maximization on Linear Threshold Model
NASA Astrophysics Data System (ADS)
Jia, Su; Chen, Ling
2018-04-01
A sampling based influence maximization on linear threshold (LT) model method is presented. The method samples the routes in the possible worlds in the social networks, and uses Chernoff bound to estimate the number of samples so that the error can be constrained within a given bound. Then the active possibilities of the routes in the possible worlds are calculated, and are used to compute the influence spread of each node in the network. Our experimental results show that our method can effectively select appropriate seed nodes set that spreads larger influence than other similar methods.
Yang, Liu; Lu, Yinzhi; Zhong, Yuanchang; Wu, Xuegang; Yang, Simon X
2015-12-26
Energy resource limitation is a severe problem in traditional wireless sensor networks (WSNs) because it restricts the lifetime of network. Recently, the emergence of energy harvesting techniques has brought with them the expectation to overcome this problem. In particular, it is possible for a sensor node with energy harvesting abilities to work perpetually in an Energy Neutral state. In this paper, a Multi-hop Energy Neutral Clustering (MENC) algorithm is proposed to construct the optimal multi-hop clustering architecture in energy harvesting WSNs, with the goal of achieving perpetual network operation. All cluster heads (CHs) in the network act as routers to transmit data to base station (BS) cooperatively by a multi-hop communication method. In addition, by analyzing the energy consumption of intra- and inter-cluster data transmission, we give the energy neutrality constraints. Under these constraints, every sensor node can work in an energy neutral state, which in turn provides perpetual network operation. Furthermore, the minimum network data transmission cycle is mathematically derived using convex optimization techniques while the network information gathering is maximal. Simulation results show that our protocol can achieve perpetual network operation, so that the consistent data delivery is guaranteed. In addition, substantial improvements on the performance of network throughput are also achieved as compared to the famous traditional clustering protocol LEACH and recent energy harvesting aware clustering protocols.
Yang, Liu; Lu, Yinzhi; Zhong, Yuanchang; Wu, Xuegang; Yang, Simon X.
2015-01-01
Energy resource limitation is a severe problem in traditional wireless sensor networks (WSNs) because it restricts the lifetime of network. Recently, the emergence of energy harvesting techniques has brought with them the expectation to overcome this problem. In particular, it is possible for a sensor node with energy harvesting abilities to work perpetually in an Energy Neutral state. In this paper, a Multi-hop Energy Neutral Clustering (MENC) algorithm is proposed to construct the optimal multi-hop clustering architecture in energy harvesting WSNs, with the goal of achieving perpetual network operation. All cluster heads (CHs) in the network act as routers to transmit data to base station (BS) cooperatively by a multi-hop communication method. In addition, by analyzing the energy consumption of intra- and inter-cluster data transmission, we give the energy neutrality constraints. Under these constraints, every sensor node can work in an energy neutral state, which in turn provides perpetual network operation. Furthermore, the minimum network data transmission cycle is mathematically derived using convex optimization techniques while the network information gathering is maximal. Simulation results show that our protocol can achieve perpetual network operation, so that the consistent data delivery is guaranteed. In addition, substantial improvements on the performance of network throughput are also achieved as compared to the famous traditional clustering protocol LEACH and recent energy harvesting aware clustering protocols. PMID:26712764
Pore network extraction from pore space images of various porous media systems
NASA Astrophysics Data System (ADS)
Yi, Zhixing; Lin, Mian; Jiang, Wenbin; Zhang, Zhaobin; Li, Haishan; Gao, Jian
2017-04-01
Pore network extraction, which is defined as the transformation from irregular pore space to a simplified network in the form of pores connected by throats, is significant to microstructure analysis and network modeling. A physically realistic pore network is not only a representation of the pore space in the sense of topology and morphology, but also a good tool for predicting transport properties accurately. We present a method to extract pore network by employing the centrally located medial axis to guide the construction of maximal-balls-like skeleton where the pores and throats are defined and parameterized. To validate our method, various rock samples including sand pack, sandstones, and carbonates were used to extract pore networks. The pore structures were compared quantitatively with the structures extracted by medial axis method or maximal ball method. The predicted absolute permeability and formation factor were verified against the theoretical solutions obtained by lattice Boltzmann method and finite volume method, respectively. The two-phase flow was simulated through the networks extracted from homogeneous sandstones, and the generated relative permeability curves were compared with the data obtained from experimental method and other numerical models. The results show that the accuracy of our network is higher than that of other networks for predicting transport properties, so the presented method is more reliable for extracting physically realistic pore network.
A Local Scalable Distributed Expectation Maximization Algorithm for Large Peer-to-Peer Networks
NASA Technical Reports Server (NTRS)
Bhaduri, Kanishka; Srivastava, Ashok N.
2009-01-01
This paper offers a local distributed algorithm for expectation maximization in large peer-to-peer environments. The algorithm can be used for a variety of well-known data mining tasks in a distributed environment such as clustering, anomaly detection, target tracking to name a few. This technology is crucial for many emerging peer-to-peer applications for bioinformatics, astronomy, social networking, sensor networks and web mining. Centralizing all or some of the data for building global models is impractical in such peer-to-peer environments because of the large number of data sources, the asynchronous nature of the peer-to-peer networks, and dynamic nature of the data/network. The distributed algorithm we have developed in this paper is provably-correct i.e. it converges to the same result compared to a similar centralized algorithm and can automatically adapt to changes to the data and the network. We show that the communication overhead of the algorithm is very low due to its local nature. This monitoring algorithm is then used as a feedback loop to sample data from the network and rebuild the model when it is outdated. We present thorough experimental results to verify our theoretical claims.
Decompositions of large-scale biological systems based on dynamical properties.
Soranzo, Nicola; Ramezani, Fahimeh; Iacono, Giovanni; Altafini, Claudio
2012-01-01
Given a large-scale biological network represented as an influence graph, in this article we investigate possible decompositions of the network aimed at highlighting specific dynamical properties. The first decomposition we study consists in finding a maximal directed acyclic subgraph of the network, which dynamically corresponds to searching for a maximal open-loop subsystem of the given system. Another dynamical property investigated is strong monotonicity. We propose two methods to deal with this property, both aimed at decomposing the system into strongly monotone subsystems, but with different structural characteristics: one method tends to produce a single large strongly monotone component, while the other typically generates a set of smaller disjoint strongly monotone subsystems. Original heuristics for the methods investigated are described in the article. altafini@sissa.it
NASA Astrophysics Data System (ADS)
Ebrahimi Zade, Amir; Sadegheih, Ahmad; Lotfi, Mohammad Mehdi
2014-07-01
Hubs are centers for collection, rearrangement, and redistribution of commodities in transportation networks. In this paper, non-linear multi-objective formulations for single and multiple allocation hub maximal covering problems as well as the linearized versions are proposed. The formulations substantially mitigate complexity of the existing models due to the fewer number of constraints and variables. Also, uncertain shipments are studied in the context of hub maximal covering problems. In many real-world applications, any link on the path from origin to destination may fail to work due to disruption. Therefore, in the proposed bi-objective model, maximizing safety of the weakest path in the network is considered as the second objective together with the traditional maximum coverage goal. Furthermore, to solve the bi-objective model, a modified version of NSGA-II with a new dynamic immigration operator is developed in which the accurate number of immigrants depends on the results of the other two common NSGA-II operators, i.e. mutation and crossover. Besides validating proposed models, computational results confirm a better performance of modified NSGA-II versus traditional one.
Teaching Gateways and Bridges To Rank Broadcast Messages for Educational Networks.
ERIC Educational Resources Information Center
Losee, Robert M., Jr.
Messages entering an educational information distribution network may be ranked for an ordered introduction into the network to maximize the timeliness of message arrivals over the set of users. Electronic mail, EDI documents, and broadcast news may be ranked by the users who choose to examine those messages of interest or benefit to themselves.…
Conjunctive management of multi-reservoir network system and groundwater system
NASA Astrophysics Data System (ADS)
Mani, A.; Tsai, F. T. C.
2015-12-01
This study develops a successive mixed-integer linear fractional programming (successive MILFP) method to conjunctively manage water resources provided by a multi-reservoir network system and a groundwater system. The conjunctive management objectives are to maximize groundwater withdrawals and maximize reservoir storages while satisfying water demands and raising groundwater level to a target level. The decision variables in the management problem are reservoir releases and spills, network flows and groundwater pumping rates. Using the fractional programming approach, the objective function is defined as a ratio of total groundwater withdraws to total reservoir storage deficits from the maximum storages. Maximizing this ratio function tends to maximizing groundwater use and minimizing surface water use. This study introduces a conditional constraint on groundwater head in order to sustain aquifers from overpumping: if current groundwater level is less than a target level, groundwater head at the next time period has to be raised; otherwise, it is allowed to decrease up to a certain extent. This conditional constraint is formulated into a set of mixed binary nonlinear constraints and results in a mixed-integer nonlinear fractional programming (MINLFP) problem. To solve the MINLFP problem, we first use the response matrix approach to linearize groundwater head with respect to pumping rate and reduce the problem to an MILFP problem. Using the Charnes-Cooper transformation, the MILFP is transformed to an equivalent mixed-integer linear programming (MILP). The solution of the MILP is successively updated by updating the response matrix in every iteration. The study uses IBM CPLEX to solve the MILP problem. The methodology is applied to water resources management in northern Louisiana. This conjunctive management approach aims to recover the declining groundwater level of the stressed Sparta aquifer by using surface water from a network of four reservoirs as an alternative source of supply.
Statistical mechanics of influence maximization with thermal noise
NASA Astrophysics Data System (ADS)
Lynn, Christopher W.; Lee, Daniel D.
2017-03-01
The problem of optimally distributing a budget of influence among individuals in a social network, known as influence maximization, has typically been studied in the context of contagion models and deterministic processes, which fail to capture stochastic interactions inherent in real-world settings. Here, we show that by introducing thermal noise into influence models, the dynamics exactly resemble spins in a heterogeneous Ising system. In this way, influence maximization in the presence of thermal noise has a natural physical interpretation as maximizing the magnetization of an Ising system given a budget of external magnetic field. Using this statistical mechanical formulation, we demonstrate analytically that for small external-field budgets, the optimal influence solutions exhibit a highly non-trivial temperature dependence, focusing on high-degree hub nodes at high temperatures and on easily influenced peripheral nodes at low temperatures. For the general problem, we present a projected gradient ascent algorithm that uses the magnetic susceptibility to calculate locally optimal external-field distributions. We apply our algorithm to synthetic and real-world networks, demonstrating that our analytic results generalize qualitatively. Our work establishes a fruitful connection with statistical mechanics and demonstrates that influence maximization depends crucially on the temperature of the system, a fact that has not been appreciated by existing research.
Pricing Resources in LTE Networks through Multiobjective Optimization
Lai, Yung-Liang; Jiang, Jehn-Ruey
2014-01-01
The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid “user churn,” which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution. PMID:24526889
Pricing resources in LTE networks through multiobjective optimization.
Lai, Yung-Liang; Jiang, Jehn-Ruey
2014-01-01
The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid "user churn," which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution.
Wireless Sensor Network-Based Service Provisioning by a Brokering Platform
Guijarro, Luis; Pla, Vicent; Vidal, Jose R.; Naldi, Maurizio; Mahmoodi, Toktam
2017-01-01
This paper proposes a business model for providing services based on the Internet of Things through a platform that intermediates between human users and Wireless Sensor Networks (WSNs). The platform seeks to maximize its profit through posting both the price charged to each user and the price paid to each WSN. A complete analysis of the profit maximization problem is performed in this paper. We show that the service provider maximizes its profit by incentivizing all users and all Wireless Sensor Infrastructure Providers (WSIPs) to join the platform. This is true not only when the number of users is high, but also when it is moderate, provided that the costs that the users bear do not trespass a cost ceiling. This cost ceiling depends on the number of WSIPs, on the value of the intrinsic value of the service and on the externality that the WSIP has on the user utility. PMID:28498347
Wireless Sensor Network-Based Service Provisioning by a Brokering Platform.
Guijarro, Luis; Pla, Vicent; Vidal, Jose R; Naldi, Maurizio; Mahmoodi, Toktam
2017-05-12
This paper proposes a business model for providing services based on the Internet of Things through a platform that intermediates between human users and Wireless Sensor Networks (WSNs). The platform seeks to maximize its profit through posting both the price charged to each user and the price paid to each WSN. A complete analysis of the profit maximization problem is performed in this paper. We show that the service provider maximizes its profit by incentivizing all users and all Wireless Sensor Infrastructure Providers (WSIPs) to join the platform. This is true not only when the number of users is high, but also when it is moderate, provided that the costs that the users bear do not trespass a cost ceiling. This cost ceiling depends on the number of WSIPs, on the value of the intrinsic value of the service and on the externality that the WSIP has on the user utility.
Network Modeling and Energy-Efficiency Optimization for Advanced Machine-to-Machine Sensor Networks
Jung, Sungmo; Kim, Jong Hyun; Kim, Seoksoo
2012-01-01
Wireless machine-to-machine sensor networks with multiple radio interfaces are expected to have several advantages, including high spatial scalability, low event detection latency, and low energy consumption. Here, we propose a network model design method involving network approximation and an optimized multi-tiered clustering algorithm that maximizes node lifespan by minimizing energy consumption in a non-uniformly distributed network. Simulation results show that the cluster scales and network parameters determined with the proposed method facilitate a more efficient performance compared to existing methods. PMID:23202190
On Maximizing the Lifetime of Wireless Sensor Networks by Optimally Assigning Energy Supplies
Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; Gonzalez-Castaño, Francisco Javier
2013-01-01
The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively. PMID:23939582
On maximizing the lifetime of Wireless Sensor Networks by optimally assigning energy supplies.
Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; González-Castano, Francisco Javier
2013-08-09
The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively.
Network efficient power control for wireless communication systems.
Campos-Delgado, Daniel U; Luna-Rivera, Jose Martin; Martinez-Sánchez, C J; Gutierrez, Carlos A; Tecpanecatl-Xihuitl, J L
2014-01-01
We introduce a two-loop power control that allows an efficient use of the overall power resources for commercial wireless networks based on cross-layer optimization. This approach maximizes the network's utility in the outer-loop as a function of the averaged signal to interference-plus-noise ratio (SINR) by considering adaptively the changes in the network characteristics. For this purpose, the concavity property of the utility function was verified with respect to the SINR, and an iterative search was proposed with guaranteed convergence. In addition, the outer-loop is in charge of selecting the detector that minimizes the overall power consumption (transmission and detection). Next the inner-loop implements a feedback power control in order to achieve the optimal SINR in the transmissions despite channel variations and roundtrip delays. In our proposal, the utility maximization process and detector selection and feedback power control are decoupled problems, and as a result, these strategies are implemented at two different time scales in the two-loop framework. Simulation results show that substantial utility gains may be achieved by improving the power management in the wireless network.
Network Efficient Power Control for Wireless Communication Systems
Campos-Delgado, Daniel U.; Luna-Rivera, Jose Martin; Martinez-Sánchez, C. J.; Gutierrez, Carlos A.; Tecpanecatl-Xihuitl, J. L.
2014-01-01
We introduce a two-loop power control that allows an efficient use of the overall power resources for commercial wireless networks based on cross-layer optimization. This approach maximizes the network's utility in the outer-loop as a function of the averaged signal to interference-plus-noise ratio (SINR) by considering adaptively the changes in the network characteristics. For this purpose, the concavity property of the utility function was verified with respect to the SINR, and an iterative search was proposed with guaranteed convergence. In addition, the outer-loop is in charge of selecting the detector that minimizes the overall power consumption (transmission and detection). Next the inner-loop implements a feedback power control in order to achieve the optimal SINR in the transmissions despite channel variations and roundtrip delays. In our proposal, the utility maximization process and detector selection and feedback power control are decoupled problems, and as a result, these strategies are implemented at two different time scales in the two-loop framework. Simulation results show that substantial utility gains may be achieved by improving the power management in the wireless network. PMID:24683350
Coverage maximization under resource constraints using a nonuniform proliferating random walk.
Saha, Sudipta; Ganguly, Niloy
2013-02-01
Information management services on networks, such as search and dissemination, play a key role in any large-scale distributed system. One of the most desirable features of these services is the maximization of the coverage, i.e., the number of distinctly visited nodes under constraints of network resources as well as time. However, redundant visits of nodes by different message packets (modeled, e.g., as walkers) initiated by the underlying algorithms for these services cause wastage of network resources. In this work, using results from analytical studies done in the past on a K-random-walk-based algorithm, we identify that redundancy quickly increases with an increase in the density of the walkers. Based on this postulate, we design a very simple distributed algorithm which dynamically estimates the density of the walkers and thereby carefully proliferates walkers in sparse regions. We use extensive computer simulations to test our algorithm in various kinds of network topologies whereby we find it to be performing particularly well in networks that are highly clustered as well as sparse.
Lee, Jong-Ho; Sohn, Illsoo; Kim, Yong-Hwa
2017-05-16
In this paper, we investigate simultaneous wireless power transfer and secure multicasting via cooperative decode-and-forward (DF) relays in the presence of multiple energy receivers and eavesdroppers. Two scenarios are considered under a total power budget: maximizing the minimum harvested energy among the energy receivers under a multicast secrecy rate constraint; and maximizing the multicast secrecy rate under a minimum harvested energy constraint. For both scenarios, we solve the transmit power allocation and relay beamformer design problems by using semidefinite relaxation and bisection technique. We present numerical results to analyze the energy harvesting and secure multicasting performances in cooperative DF relay networks.
Lee, Jong-Ho; Sohn, Illsoo; Kim, Yong-Hwa
2017-01-01
In this paper, we investigate simultaneous wireless power transfer and secure multicasting via cooperative decode-and-forward (DF) relays in the presence of multiple energy receivers and eavesdroppers. Two scenarios are considered under a total power budget: maximizing the minimum harvested energy among the energy receivers under a multicast secrecy rate constraint; and maximizing the multicast secrecy rate under a minimum harvested energy constraint. For both scenarios, we solve the transmit power allocation and relay beamformer design problems by using semidefinite relaxation and bisection technique. We present numerical results to analyze the energy harvesting and secure multicasting performances in cooperative DF relay networks. PMID:28509841
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabita, F. Robert
2013-07-30
In this study, the Principal Investigator, F.R. Tabita has teamed up with J. C. Liao from UCLA. This project's main goal is to manipulate regulatory networks in phototrophic bacteria to affect and maximize the production of large amounts of hydrogen gas under conditions where wild-type organisms are constrained by inherent regulatory mechanisms from allowing this to occur. Unrestrained production of hydrogen has been achieved and this will allow for the potential utilization of waste materials as a feed stock to support hydrogen production. By further understanding the means by which regulatory networks interact, this study will seek to maximize themore » ability of currently available “unrestrained” organisms to produce hydrogen. The organisms to be utilized in this study, phototrophic microorganisms, in particular nonsulfur purple (NSP) bacteria, catalyze many significant processes including the assimilation of carbon dioxide into organic carbon, nitrogen fixation, sulfur oxidation, aromatic acid degradation, and hydrogen oxidation/evolution. Moreover, due to their great metabolic versatility, such organisms highly regulate these processes in the cell and since virtually all such capabilities are dispensable, excellent experimental systems to study aspects of molecular control and biochemistry/physiology are available.« less
Teng, Xian; Pei, Sen; Morone, Flaviano; Makse, Hernán A
2016-10-26
Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called "Collective Influence (CI)" has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes' significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct "virtual" information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes' importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community.
Nguyen, Thi-Tham; Van Le, Duc; Yoon, Seokhoon
2014-01-01
This paper proposes a practical low-complexity MAC (medium access control) scheme for quality of service (QoS)-aware and cluster-based underwater acoustic sensor networks (UASN), in which the provision of differentiated QoS is required. In such a network, underwater sensors (U-sensor) in a cluster are divided into several classes, each of which has a different QoS requirement. The major problem considered in this paper is the maximization of the number of nodes that a cluster can accommodate while still providing the required QoS for each class in terms of the PDR (packet delivery ratio). In order to address the problem, we first estimate the packet delivery probability (PDP) and use it to formulate an optimization problem to determine the optimal value of the maximum packet retransmissions for each QoS class. The custom greedy and interior-point algorithms are used to find the optimal solutions, which are verified by extensive simulations. The simulation results show that, by solving the proposed optimization problem, the supportable number of underwater sensor nodes can be maximized while satisfying the QoS requirements for each class. PMID:24608009
Nguyen, Thi-Tham; Le, Duc Van; Yoon, Seokhoon
2014-03-07
This paper proposes a practical low-complexity MAC (medium access control) scheme for quality of service (QoS)-aware and cluster-based underwater acoustic sensor networks (UASN), in which the provision of differentiated QoS is required. In such a network, underwater sensors (U-sensor) in a cluster are divided into several classes, each of which has a different QoS requirement. The major problem considered in this paper is the maximization of the number of nodes that a cluster can accommodate while still providing the required QoS for each class in terms of the PDR (packet delivery ratio). In order to address the problem, we first estimate the packet delivery probability (PDP) and use it to formulate an optimization problem to determine the optimal value of the maximum packet retransmissions for each QoS class. The custom greedy and interior-point algorithms are used to find the optimal solutions, which are verified by extensive simulations. The simulation results show that, by solving the proposed optimization problem, the supportable number of underwater sensor nodes can be maximized while satisfying the QoS requirements for each class.
NASA Astrophysics Data System (ADS)
Kim, Y.; Hwang, T.; Vose, J. M.; Martin, K. L.; Band, L. E.
2016-12-01
Obtaining quality hydrologic observations is the first step towards a successful water resources management. While remote sensing techniques have enabled to convert satellite images of the Earth's surface to hydrologic data, the importance of ground-based observations has never been diminished because in-situ data are often highly accurate and can be used to validate remote measurements. The existence of efficient hydrometric networks is becoming more important to obtain as much as information with minimum redundancy. The World Meteorological Organization (WMO) has recommended a guideline for the minimum hydrometric network density based on physiography; however, this guideline is not for the optimum network design but for avoiding serious deficiency from a network. Moreover, all hydrologic variables are interconnected within the hydrologic cycle, while monitoring networks have been designed individually. This study proposes an integrated network design method using entropy theory with a multiobjective optimization approach. In specific, a precipitation and a streamflow networks in a semi-urban watershed in Ontario, Canada were designed simultaneously by maximizing joint entropy, minimizing total correlation, and maximizing conditional entropy of streamflow network given precipitation network. After comparing with the typical individual network designs, the proposed design method would be able to determine more efficient optimal networks by avoiding the redundant stations, in which hydrologic information is transferable. Additionally, four quantization cases were applied in entropy calculations to assess their implications on the station rankings and the optimal networks. The results showed that the selection of quantization method should be considered carefully because the rankings and optimal networks are subject to change accordingly.
NASA Astrophysics Data System (ADS)
Keum, J.; Coulibaly, P. D.
2017-12-01
Obtaining quality hydrologic observations is the first step towards a successful water resources management. While remote sensing techniques have enabled to convert satellite images of the Earth's surface to hydrologic data, the importance of ground-based observations has never been diminished because in-situ data are often highly accurate and can be used to validate remote measurements. The existence of efficient hydrometric networks is becoming more important to obtain as much as information with minimum redundancy. The World Meteorological Organization (WMO) has recommended a guideline for the minimum hydrometric network density based on physiography; however, this guideline is not for the optimum network design but for avoiding serious deficiency from a network. Moreover, all hydrologic variables are interconnected within the hydrologic cycle, while monitoring networks have been designed individually. This study proposes an integrated network design method using entropy theory with a multiobjective optimization approach. In specific, a precipitation and a streamflow networks in a semi-urban watershed in Ontario, Canada were designed simultaneously by maximizing joint entropy, minimizing total correlation, and maximizing conditional entropy of streamflow network given precipitation network. After comparing with the typical individual network designs, the proposed design method would be able to determine more efficient optimal networks by avoiding the redundant stations, in which hydrologic information is transferable. Additionally, four quantization cases were applied in entropy calculations to assess their implications on the station rankings and the optimal networks. The results showed that the selection of quantization method should be considered carefully because the rankings and optimal networks are subject to change accordingly.
Energy-Efficient Cognitive Radio Sensor Networks: Parametric and Convex Transformations
Naeem, Muhammad; Illanko, Kandasamy; Karmokar, Ashok; Anpalagan, Alagan; Jaseemuddin, Muhammad
2013-01-01
Designing energy-efficient cognitive radio sensor networks is important to intelligently use battery energy and to maximize the sensor network life. In this paper, the problem of determining the power allocation that maximizes the energy-efficiency of cognitive radio-based wireless sensor networks is formed as a constrained optimization problem, where the objective function is the ratio of network throughput and the network power. The proposed constrained optimization problem belongs to a class of nonlinear fractional programming problems. Charnes-Cooper Transformation is used to transform the nonlinear fractional problem into an equivalent concave optimization problem. The structure of the power allocation policy for the transformed concave problem is found to be of a water-filling type. The problem is also transformed into a parametric form for which a ε-optimal iterative solution exists. The convergence of the iterative algorithms is proven, and numerical solutions are presented. The iterative solutions are compared with the optimal solution obtained from the transformed concave problem, and the effects of different system parameters (interference threshold level, the number of primary users and secondary sensor nodes) on the performance of the proposed algorithms are investigated. PMID:23966194
Game among interdependent networks: The impact of rationality on system robustness
NASA Astrophysics Data System (ADS)
Fan, Yuhang; Cao, Gongze; He, Shibo; Chen, Jiming; Sun, Youxian
2016-12-01
Many real-world systems are composed of interdependent networks that rely on one another. Such networks are typically designed and operated by different entities, who aim at maximizing their own payoffs. There exists a game among these entities when designing their own networks. In this paper, we study the game investigating how the rational behaviors of entities impact the system robustness. We first introduce a mathematical model to quantify the interacting payoffs among varying entities. Then we study the Nash equilibrium of the game and compare it with the optimal social welfare. We reveal that the cooperation among different entities can be reached to maximize the social welfare in continuous game only when the average degree of each network is constant. Therefore, the huge gap between Nash equilibrium and optimal social welfare generally exists. The rationality of entities makes the system inherently deficient and even renders it extremely vulnerable in some cases. We analyze our model for two concrete systems with continuous strategy space and discrete strategy space, respectively. Furthermore, we uncover some factors (such as weakening coupled strength of interdependent networks, designing a suitable topology dependence of the system) that help reduce the gap and the system vulnerability.
Adjacency Matrix-Based Transmit Power Allocation Strategies in Wireless Sensor Networks
Consolini, Luca; Medagliani, Paolo; Ferrari, Gianluigi
2009-01-01
In this paper, we present an innovative transmit power control scheme, based on optimization theory, for wireless sensor networks (WSNs) which use carrier sense multiple access (CSMA) with collision avoidance (CA) as medium access control (MAC) protocol. In particular, we focus on schemes where several remote nodes send data directly to a common access point (AP). Under the assumption of finite overall network transmit power and low traffic load, we derive the optimal transmit power allocation strategy that minimizes the packet error rate (PER) at the AP. This approach is based on modeling the CSMA/CA MAC protocol through a finite state machine and takes into account the network adjacency matrix, depending on the transmit power distribution and determining the network connectivity. It will be then shown that the transmit power allocation problem reduces to a convex constrained minimization problem. Our results show that, under the assumption of low traffic load, the power allocation strategy, which guarantees minimal delay, requires the maximization of network connectivity, which can be equivalently interpreted as the maximization of the number of non-zero entries of the adjacency matrix. The obtained theoretical results are confirmed by simulations for unslotted Zigbee WSNs. PMID:22346705
Robust Rate Maximization for Heterogeneous Wireless Networks under Channel Uncertainties
Xu, Yongjun; Hu, Yuan; Li, Guoquan
2018-01-01
Heterogeneous wireless networks are a promising technology in next generation wireless communication networks, which has been shown to efficiently reduce the blind area of mobile communication and improve network coverage compared with the traditional wireless communication networks. In this paper, a robust power allocation problem for a two-tier heterogeneous wireless networks is formulated based on orthogonal frequency-division multiplexing technology. Under the consideration of imperfect channel state information (CSI), the robust sum-rate maximization problem is built while avoiding sever cross-tier interference to macrocell user and maintaining the minimum rate requirement of each femtocell user. To be practical, both of channel estimation errors from the femtocells to the macrocell and link uncertainties of each femtocell user are simultaneously considered in terms of outage probabilities of users. The optimization problem is analyzed under no CSI feedback with some cumulative distribution function and partial CSI with Gaussian distribution of channel estimation error. The robust optimization problem is converted into the convex optimization problem which is solved by using Lagrange dual theory and subgradient algorithm. Simulation results demonstrate the effectiveness of the proposed algorithm by the impact of channel uncertainties on the system performance. PMID:29466315
Locating an imaging radar in Canada for identifying spaceborne objects
NASA Astrophysics Data System (ADS)
Schick, William G.
1992-12-01
This research presents a study of the maximal coverage p-median facility location problem as applied to the location of an imaging radar in Canada for imaging spaceborne objects. The classical mathematical formulation of the maximal coverage p-median problem is converted into network-flow with side constraint formulations that are developed using a scaled down version of the imaging radar location problem. Two types of network-flow with side constraint formulations are developed: a network using side constraints that simulates the gains in a generalized network; and a network resembling a multi-commodity flow problem that uses side constraints to force flow along identical arcs. These small formulations are expanded to encompass a case study using 12 candidate radar sites, and 48 satellites divided into three states. SAS/OR PROC NETFLOW was used to solve the network-flow with side constraint formulations. The case study show that potential for both formulations, although the simulated gains formulation encountered singular matrix computational difficulties as a result of the very organized nature of its side constraint matrix. The multi-commodity flow formulation, when combined with equi-distribution of flow constraints, provided solutions for various values of p, the number of facilities to be selected.
Visualizing deep neural network by alternately image blurring and deblurring.
Wang, Feng; Liu, Haijun; Cheng, Jian
2018-01-01
Visualization from trained deep neural networks has drawn massive public attention in recent. One of the visualization approaches is to train images maximizing the activation of specific neurons. However, directly maximizing the activation would lead to unrecognizable images, which cannot provide any meaningful information. In this paper, we introduce a simple but effective technique to constrain the optimization route of the visualization. By adding two totally inverse transformations, image blurring and deblurring, to the optimization procedure, recognizable images can be created. Our algorithm is good at extracting the details in the images, which are usually filtered by previous methods in the visualizations. Extensive experiments on AlexNet, VGGNet and GoogLeNet illustrate that we can better understand the neural networks utilizing the knowledge obtained by the visualization. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Child and Adolescent Psychiatry Trials Network
ERIC Educational Resources Information Center
March, John S.; Silva, Susan G.; Compton, Scott; Anthony, Ginger; DeVeaugh-Geiss, Joseph; Califf, Robert; Krishnan, Ranga
2004-01-01
Objective: The current generation of clinical trials in pediatric psychiatry often fails to maximize clinical utility for practicing clinicians, thereby diluting its impact. Method: To attain maximum clinical relevance and acceptability, the Child and Adolescent Psychiatry Trials Network (CAPTN) will transport to pediatric psychiatry the practical…
Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach
NASA Astrophysics Data System (ADS)
Pinto, Rafael S.; Saa, Alberto
2015-12-01
A recently proposed dimensional reduction approach for studying synchronization in the Kuramoto model is employed to build optimal network topologies to favor or to suppress synchronization. The approach is based in the introduction of a collective coordinate for the time evolution of the phase locked oscillators, in the spirit of the Ott-Antonsen ansatz. We show that the optimal synchronization of a Kuramoto network demands the maximization of the quadratic function ωTL ω , where ω stands for the vector of the natural frequencies of the oscillators and L for the network Laplacian matrix. Many recently obtained numerical results can be reobtained analytically and in a simpler way from our maximization condition. A computationally efficient hill climb rewiring algorithm is proposed to generate networks with optimal synchronization properties. Our approach can be easily adapted to the case of the Kuramoto models with both attractive and repulsive interactions, and again many recent numerical results can be rederived in a simpler and clearer analytical manner.
TCP throughput adaptation in WiMax networks using replicator dynamics.
Anastasopoulos, Markos P; Petraki, Dionysia K; Kannan, Rajgopal; Vasilakos, Athanasios V
2010-06-01
The high-frequency segment (10-66 GHz) of the IEEE 802.16 standard seems promising for the implementation of wireless backhaul networks carrying large volumes of Internet traffic. In contrast to wireline backbone networks, where channel errors seldom occur, the TCP protocol in IEEE 802.16 Worldwide Interoperability for Microwave Access networks is conditioned exclusively by wireless channel impairments rather than by congestion. This renders a cross-layer design approach between the transport and physical layers more appropriate during fading periods. In this paper, an adaptive coding and modulation (ACM) scheme for TCP throughput maximization is presented. In the current approach, Internet traffic is modulated and coded employing an adaptive scheme that is mathematically equivalent to the replicator dynamics model. The stability of the proposed ACM scheme is proven, and the dependence of the speed of convergence on various physical-layer parameters is investigated. It is also shown that convergence to the strategy that maximizes TCP throughput may be further accelerated by increasing the amount of information from the physical layer.
Zhang, Pan; Moore, Cristopher
2014-01-01
Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory ‘‘communities’’ in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature and using an efficient belief propagation algorithm to obtain the consensus of many partitions with high modularity, rather than looking for a single partition that maximizes it. We show analytically and numerically that the proposed algorithm works all of the way down to the detectability transition in networks generated by the stochastic block model. It also performs well on real-world networks, revealing large communities in some networks where previous work has claimed no communities exist. Finally we show that by applying our algorithm recursively, subdividing communities until no statistically significant subcommunities can be found, we can detect hierarchical structure in real-world networks more efficiently than previous methods. PMID:25489096
Local excitation-inhibition ratio for synfire chain propagation in feed-forward neuronal networks
NASA Astrophysics Data System (ADS)
Guo, Xinmeng; Yu, Haitao; Wang, Jiang; Liu, Jing; Cao, Yibin; Deng, Bin
2017-09-01
A leading hypothesis holds that spiking activity propagates along neuronal sub-populations which are connected in a feed-forward manner, and the propagation efficiency would be affected by the dynamics of sub-populations. In this paper, how the interaction between local excitation and inhibition effects on synfire chain propagation in feed-forward network (FFN) is investigated. The simulation results show that there is an appropriate excitation-inhibition (EI) ratio maximizing the performance of synfire chain propagation. The optimal EI ratio can significantly enhance the selectivity of FFN to synchronous signals, which thereby increases the stability to background noise. Moreover, the effect of network topology on synfire chain propagation is also investigated. It is found that synfire chain propagation can be maximized by an optimal interlayer linking probability. We also find that external noise is detrimental to synchrony propagation by inducing spiking jitter. The results presented in this paper may provide insights into the effects of network dynamics on neuronal computations.
Social networks uncovered: 10 tips every plastic surgeon should know.
Dauwe, Phillip; Heller, Justin B; Unger, Jacob G; Graham, Darrell; Rohrich, Rod J
2012-11-01
Understanding online social networks is of critical importance to the plastic surgeon. With knowledge, it becomes apparent that the numerous networks available are similar in their structure, usage, and function. The key is communication between Internet media such that one maximizes exposure to patients. This article focuses on 2 social networking platforms that we feel provide the most utility to plastic surgeons. Ten tips are provided for incorporation of Facebook and Twitter into your practice.
Synchronization on Erdös-Rényi networks.
Gong, Baihua; Yang, Lei; Yang, Kongqing
2005-09-01
In this Brief Report, by analyzing the spectral properties of the Laplacian matrix of Erdös-Rényi networks, we obtained the critical coupling strength of the complete synchronization analytically. In particular, for any size of the networks, when the average degree is greater than a threshold and the coupling strength is large enough, the networks can synchronize. Here, the threshold is determined by the value of the maximal Lyapunov exponent of each dynamical unit.
Envisioning, quantifying, and managing thermal regimes on river networks
E. Ashley Steel; Timothy J. Beechie; Christian E. Torgersen; Aimee H. Fullerton
2017-01-01
Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival....
Optimal deployment of resources for maximizing impact in spreading processes
2017-01-01
The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of “influential spreaders” for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distribution of available resources hence results from an interplay between network topology and spreading dynamics. We show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples. PMID:28900013
Energy Aware Clustering Algorithms for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian
2011-09-01
The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.
Alanazi, Adwan; Elleithy, Khaled
2016-01-01
Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node– continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches. PMID:27618048
Alanazi, Adwan; Elleithy, Khaled
2016-09-07
Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node- continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches.
Stefanović, Stefica Cerjan; Bolanča, Tomislav; Luša, Melita; Ukić, Sime; Rogošić, Marko
2012-02-24
This paper describes the development of ad hoc methodology for determination of inorganic anions in oilfield water, since their composition often significantly differs from the average (concentration of components and/or matrix). Therefore, fast and reliable method development has to be performed in order to ensure the monitoring of desired properties under new conditions. The method development was based on computer assisted multi-criteria decision making strategy. The used criteria were: maximal value of objective functions used, maximal robustness of the separation method, minimal analysis time, and maximal retention distance between two nearest components. Artificial neural networks were used for modeling of anion retention. The reliability of developed method was extensively tested by the validation of performance characteristics. Based on validation results, the developed method shows satisfactory performance characteristics, proving the successful application of computer assisted methodology in the described case study. Copyright © 2011 Elsevier B.V. All rights reserved.
Cournot games with network effects for electric power markets
NASA Astrophysics Data System (ADS)
Spezia, Carl John
The electric utility industry is moving from regulated monopolies with protected service areas to an open market with many wholesale suppliers competing for consumer load. This market is typically modeled by a Cournot game oligopoly where suppliers compete by selecting profit maximizing quantities. The classical Cournot model can produce multiple solutions when the problem includes typical power system constraints. This work presents a mathematical programming formulation of oligopoly that produces unique solutions when constraints limit the supplier outputs. The formulation casts the game as a supply maximization problem with power system physical limits and supplier incremental profit functions as constraints. The formulation gives Cournot solutions identical to other commonly used algorithms when suppliers operate within the constraints. Numerical examples demonstrate the feasibility of the theory. The results show that the maximization formulation will give system operators more transmission capacity when compared to the actions of suppliers in a classical constrained Cournot game. The results also show that the profitability of suppliers in constrained networks depends on their location relative to the consumers' load concentration.
A decentralized mechanism for improving the functional robustness of distribution networks.
Shi, Benyun; Liu, Jiming
2012-10-01
Most real-world distribution systems can be modeled as distribution networks, where a commodity can flow from source nodes to sink nodes through junction nodes. One of the fundamental characteristics of distribution networks is the functional robustness, which reflects the ability of maintaining its function in the face of internal or external disruptions. In view of the fact that most distribution networks do not have any centralized control mechanisms, we consider the problem of how to improve the functional robustness in a decentralized way. To achieve this goal, we study two important problems: 1) how to formally measure the functional robustness, and 2) how to improve the functional robustness of a network based on the local interaction of its nodes. First, we derive a utility function in terms of network entropy to characterize the functional robustness of a distribution network. Second, we propose a decentralized network pricing mechanism, where each node need only communicate with its distribution neighbors by sending a "price" signal to its upstream neighbors and receiving "price" signals from its downstream neighbors. By doing so, each node can determine its outflows by maximizing its own payoff function. Our mathematical analysis shows that the decentralized pricing mechanism can produce results equivalent to those of an ideal centralized maximization with complete information. Finally, to demonstrate the properties of our mechanism, we carry out a case study on the U.S. natural gas distribution network. The results validate the convergence and effectiveness of our mechanism when comparing it with an existing algorithm.
Smart border: ad-hoc wireless sensor networks for border surveillance
NASA Astrophysics Data System (ADS)
He, Jun; Fallahi, Mahmoud; Norwood, Robert A.; Peyghambarian, Nasser
2011-06-01
Wireless sensor networks have been proposed as promising candidates to provide automated monitoring, target tracking, and intrusion detection for border surveillance. In this paper, we demonstrate an ad-hoc wireless sensor network system for border surveillance. The network consists of heterogeneously autonomous sensor nodes that distributively cooperate with each other to enable a smart border in remote areas. This paper also presents energy-aware and sleeping algorithms designed to maximize the operating lifetime of the deployed sensor network. Lessons learned in building the network and important findings from field experiments are shared in the paper.
Resource Allocation and Cross Layer Control in Wireless Networks
2006-08-25
arrival rates lies within the capacity region of the network. The notion of controlling the system to maximize its stability region and the following...optimization problem (4.5) that must be solved at the beginning of 48 Dynamic Control for Network Stability each time slot requires in general knowledge...Dynamic Control for Network Stability ~ (c) ab (t) those of any other feasible algorithm, then for any time t 0; X ic U (c) i (t) "X b ~ (c) ab (t) X
NASA Astrophysics Data System (ADS)
Teng, Xian; Pei, Sen; Morone, Flaviano; Makse, Hernán A.
2016-10-01
Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called “Collective Influence (CI)” has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes’ significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct “virtual” information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes’ importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community.
Teng, Xian; Pei, Sen; Morone, Flaviano; Makse, Hernán A.
2016-01-01
Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called “Collective Influence (CI)” has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes’ significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct “virtual” information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes’ importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community. PMID:27782207
Using a genetic algorithm to optimize a water-monitoring network for accuracy and cost effectiveness
NASA Astrophysics Data System (ADS)
Julich, R. J.
2004-05-01
The purpose of this project is to determine the optimal spatial distribution of water-monitoring wells to maximize important data collection and to minimize the cost of managing the network. We have employed a genetic algorithm (GA) towards this goal. The GA uses a simple fitness measure with two parts: the first part awards a maximal score to those combinations of hydraulic head observations whose net uncertainty is closest to the value representing all observations present, thereby maximizing accuracy; the second part applies a penalty function to minimize the number of observations, thereby minimizing the overall cost of the monitoring network. We used the linear statistical inference equation to calculate standard deviations on predictions from a numerical model generated for the 501-observation Death Valley Regional Flow System as the basis for our uncertainty calculations. We have organized the results to address the following three questions: 1) what is the optimal design strategy for a genetic algorithm to optimize this problem domain; 2) what is the consistency of solutions over several optimization runs; and 3) how do these results compare to what is known about the conceptual hydrogeology? Our results indicate the genetic algorithms are a more efficient and robust method for solving this class of optimization problems than have been traditional optimization approaches.
IMHRP: Improved Multi-Hop Routing Protocol for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Huang, Jianhua; Ruan, Danwei; Hong, Yadong; Zhao, Ziming; Zheng, Hong
2017-10-01
Wireless sensor network (WSN) is a self-organizing system formed by a large number of low-cost sensor nodes through wireless communication. Sensor nodes collect environmental information and transmit it to the base station (BS). Sensor nodes usually have very limited battery energy. The batteries cannot be charged or replaced. Therefore, it is necessary to design an energy efficient routing protocol to maximize the network lifetime. This paper presents an improved multi-hop routing protocol (IMHRP) for homogeneous networks. In the IMHRP protocol, based on the distances to the BS, the CH nodes are divided into internal CH nodes and external CH nodes. The set-up phase of the protocol is based on the LEACH protocol and the minimum distance between CH nodes are limited to a special constant distance, so a more uniform distribution of CH nodes is achieved. In the steady-state phase, the routes of different CH nodes are created on the basis of the distances between the CH nodes. The energy efficiency of communication can be maximized. The simulation results show that the proposed algorithm can more effectively reduce the energy consumption of each round and prolong the network lifetime compared with LEACH protocol and MHT protocol.
NASA Astrophysics Data System (ADS)
Yan, Xin-Guo; Xie, Chi; Wang, Gang-Jin
2015-08-01
We study the topological stability of stock market network by investigating the topological robustness, namely the ability of the network to resist structural or topological changes. The stock market network is extracted by minimal spanning tree (MST) and planar maximally filtered graph (PMFG). We find that the specific delisting thresholds of the listed companies exist in both MST and PMFG networks. In comparison with MST, PMFG provides more information and is better for the aim of exploring stock market network’s robustness. The PMFG before the US sub-prime crisis (i.e., from June 2005 to May 2007) has a stronger robustness against the intentional topological damage than the other two sub-periods (i.e., from June 2007 to May 2009 and from June 2009 to May 2011). We also find that the nonfractal property exists in MSTs of S&P 500, i.e., the highly connected nodes link with each other directly, which indicates that the MSTs are vulnerable to the removal of such important nodes. Moreover, the financial institutions and high technology companies are important in maintaining the stability of S&P 500 network.
Efficient Network Coding-Based Loss Recovery for Reliable Multicast in Wireless Networks
NASA Astrophysics Data System (ADS)
Chi, Kaikai; Jiang, Xiaohong; Ye, Baoliu; Horiguchi, Susumu
Recently, network coding has been applied to the loss recovery of reliable multicast in wireless networks [19], where multiple lost packets are XOR-ed together as one packet and forwarded via single retransmission, resulting in a significant reduction of bandwidth consumption. In this paper, we first prove that maximizing the number of lost packets for XOR-ing, which is the key part of the available network coding-based reliable multicast schemes, is actually a complex NP-complete problem. To address this limitation, we then propose an efficient heuristic algorithm for finding an approximately optimal solution of this optimization problem. Furthermore, we show that the packet coding principle of maximizing the number of lost packets for XOR-ing sometimes cannot fully exploit the potential coding opportunities, and we then further propose new heuristic-based schemes with a new coding principle. Simulation results demonstrate that the heuristic-based schemes have very low computational complexity and can achieve almost the same transmission efficiency as the current coding-based high-complexity schemes. Furthermore, the heuristic-based schemes with the new coding principle not only have very low complexity, but also slightly outperform the current high-complexity ones.
A Lifetime Maximization Relay Selection Scheme in Wireless Body Area Networks.
Zhang, Yu; Zhang, Bing; Zhang, Shi
2017-06-02
Network Lifetime is one of the most important metrics in Wireless Body Area Networks (WBANs). In this paper, a relay selection scheme is proposed under the topology constrains specified in the IEEE 802.15.6 standard to maximize the lifetime of WBANs through formulating and solving an optimization problem where relay selection of each node acts as optimization variable. Considering the diversity of the sensor nodes in WBANs, the optimization problem takes not only energy consumption rate but also energy difference among sensor nodes into account to improve the network lifetime performance. Since it is Non-deterministic Polynomial-hard (NP-hard) and intractable, a heuristic solution is then designed to rapidly address the optimization. The simulation results indicate that the proposed relay selection scheme has better performance in network lifetime compared with existing algorithms and that the heuristic solution has low time complexity with only a negligible performance degradation gap from optimal value. Furthermore, we also conduct simulations based on a general WBAN model to comprehensively illustrate the advantages of the proposed algorithm. At the end of the evaluation, we validate the feasibility of our proposed scheme via an implementation discussion.
Maximal qubit violation of n-locality inequalities in a star-shaped quantum network
NASA Astrophysics Data System (ADS)
Andreoli, Francesco; Carvacho, Gonzalo; Santodonato, Luca; Chaves, Rafael; Sciarrino, Fabio
2017-11-01
Bell's theorem was a cornerstone for our understanding of quantum theory and the establishment of Bell non-locality played a crucial role in the development of quantum information. Recently, its extension to complex networks has been attracting growing attention, but a deep characterization of quantum behavior is still missing for this novel context. In this work we analyze quantum correlations arising in the bilocality scenario, that is a tripartite quantum network where the correlations between the parties are mediated by two independent sources of states. First, we prove that non-bilocal correlations witnessed through a Bell-state measurement in the central node of the network form a subset of those obtainable by means of a local projective measurement. This leads us to derive the maximal violation of the bilocality inequality that can be achieved by arbitrary two-qubit quantum states and arbitrary local projective measurements. We then analyze in details the relation between the violation of the bilocality inequality and the CHSH inequality. Finally, we show how our method can be extended to the n-locality scenario consisting of n two-qubit quantum states distributed among n+1 nodes of a star-shaped network.
Social Network Influence and Personal Financial Status
NASA Astrophysics Data System (ADS)
Luo, Shaojun; Morone, Flaviano; Sarraute, Carlos; Makse, Hernan
Networks of social ties emerging from individual economic needs display a highly structured architecture. In response to socio-economic demands, people reshape their circle of contacts for maximizing their social status, and ipso facto, the pattern of their interconnections is strongly correlates with their personal financial situation. In this work we transform this qualitative and verbal statement into an operative definition, which allows us to quantify the economic wellness of individuals trough a measure of their collective influence. We consider the network of mobile phone calls made by the Mexican population during three months, in order to study the correlation of person's economic situation with her network location. Notably, we find that rich people tend to be also the most influential nodes, i.e., they self-organize to optimally position themselves in the network. This finding may be also raised at the level of a principle, a fact that would explain the emergence of the phenomenon of collective influence itself as the result of the local optimization of socio-economic interactions. Our method represents a powerful and efficient indicator of socio-economic robustness, which may be applied to maximize the effect of large scale economic intervention and stimulus policies
Service-Oriented Node Scheduling Scheme for Wireless Sensor Networks Using Markov Random Field Model
Cheng, Hongju; Su, Zhihuang; Lloret, Jaime; Chen, Guolong
2014-01-01
Future wireless sensor networks are expected to provide various sensing services and energy efficiency is one of the most important criterions. The node scheduling strategy aims to increase network lifetime by selecting a set of sensor nodes to provide the required sensing services in a periodic manner. In this paper, we are concerned with the service-oriented node scheduling problem to provide multiple sensing services while maximizing the network lifetime. We firstly introduce how to model the data correlation for different services by using Markov Random Field (MRF) model. Secondly, we formulate the service-oriented node scheduling issue into three different problems, namely, the multi-service data denoising problem which aims at minimizing the noise level of sensed data, the representative node selection problem concerning with selecting a number of active nodes while determining the services they provide, and the multi-service node scheduling problem which aims at maximizing the network lifetime. Thirdly, we propose a Multi-service Data Denoising (MDD) algorithm, a novel multi-service Representative node Selection and service Determination (RSD) algorithm, and a novel MRF-based Multi-service Node Scheduling (MMNS) scheme to solve the above three problems respectively. Finally, extensive experiments demonstrate that the proposed scheme efficiently extends the network lifetime. PMID:25384005
Self-organizing feature maps for dynamic control of radio resources in CDMA microcellular networks
NASA Astrophysics Data System (ADS)
Hortos, William S.
1998-03-01
The application of artificial neural networks to the channel assignment problem for cellular code-division multiple access (CDMA) cellular networks has previously been investigated. CDMA takes advantage of voice activity and spatial isolation because its capacity is only interference limited, unlike time-division multiple access (TDMA) and frequency-division multiple access (FDMA) where capacities are bandwidth-limited. Any reduction in interference in CDMA translates linearly into increased capacity. To satisfy the high demands for new services and improved connectivity for mobile communications, microcellular and picocellular systems are being introduced. For these systems, there is a need to develop robust and efficient management procedures for the allocation of power and spectrum to maximize radio capacity. Topology-conserving mappings play an important role in the biological processing of sensory inputs. The same principles underlying Kohonen's self-organizing feature maps (SOFMs) are applied to the adaptive control of radio resources to minimize interference, hence, maximize capacity in direct-sequence (DS) CDMA networks. The approach based on SOFMs is applied to some published examples of both theoretical and empirical models of DS/CDMA microcellular networks in metropolitan areas. The results of the approach for these examples are informally compared to the performance of algorithms, based on Hopfield- Tank neural networks and on genetic algorithms, for the channel assignment problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mercier, C.W.
The Network File System (NFS) will be the user interface to a High-Performance Data System (HPDS) being developed at Los Alamos National Laboratory (LANL). HPDS will manage high-capacity, high-performance storage systems connected directly to a high-speed network from distributed workstations. NFS will be modified to maximize performance and to manage massive amounts of data. 6 refs., 3 figs.
Implications of RFID in Location-Aware Wi-Fi Networks
ERIC Educational Resources Information Center
Duhainy, Robert
2010-01-01
The use of radio frequency identification (RFID) technology is increasingly common. Its use for specific applications has been mandated by a number of major retailers, as well as by the U.S. government; however, core RFID technologies and networks lack consistent approaches to maximize the efficiency and security of RFID applications. The purpose…
NASA Astrophysics Data System (ADS)
Luque, Pablo; Mántaras, Daniel A.; Fidalgo, Eloy; Álvarez, Javier; Riva, Paolo; Girón, Pablo; Compadre, Diego; Ferran, Jordi
2013-12-01
The main objective of this work is to determine the limit of safe driving conditions by identifying the maximal friction coefficient in a real vehicle. The study will focus on finding a method to determine this limit before reaching the skid, which is valuable information in the context of traffic safety. Since it is not possible to measure the friction coefficient directly, it will be estimated using the appropriate tools in order to get the most accurate information. A real vehicle is instrumented to collect information of general kinematics and steering tie-rod forces. A real-time algorithm is developed to estimate forces and aligning torque in the tyres using an extended Kalman filter and neural networks techniques. The methodology is based on determining the aligning torque; this variable allows evaluation of the behaviour of the tyre. It transmits interesting information from the tyre-road contact and can be used to predict the maximal tyre grip and safety margin. The maximal grip coefficient is estimated according to a knowledge base, extracted from computer simulation of a high detailed three-dimensional model, using Adams® software. The proposed methodology is validated and applied to real driving conditions, in which maximal grip and safety margin are properly estimated.
NASA Astrophysics Data System (ADS)
Nowak, Christian; Escobedo, Fernando A.
2017-08-01
Molecular simulations are used to study the effect of synthesis conditions on the tensile response of liquid-crystalline elastomers formed by block copolymer chains. Remarkably, it is found that despite the significant presence of trapped entanglements, these networks can exhibit the sawtooth tensile response previously predicted for ideal unentangled networks. It is also found that the monomer concentration during crosslinking can be tuned to limit the extent of entanglements and inhomogeneities while also maximizing network extensibility. It is predicted that networks synthesized at a "critical" concentration will have the greatest toughness.
ERIC Educational Resources Information Center
Mayrath, Michael C.; Nihalani, Priya K.; Robinson, Daniel H.
2011-01-01
In 2 experiments, 241 undergraduates with low domain knowledge viewed a tutorial on how to use Packet Tracer (PT), a computer-networking training simulation developed by the Cisco Networking Academy. Participants were then tested on retention of tutorial content and transfer using PT. Tutorial modality (text, narration, or narration plus text) was…
Taking the Network on the Road: Portable Network Solutions for Computer Security Educators
ERIC Educational Resources Information Center
Rosenberg, Timothy; Hoffman, Lance J.
2006-01-01
Educational institutions that wish to implement a specialized teaching laboratory often have a variety of obstacles to overcome. Some of these obstacles are related to adapting existing classroom infrastructure, building the laboratory, and meeting the demands for multiple-use classrooms to maximize the return on investment. In some cases, such as…
COOPERATIVE ROUTING FOR DYNAMIC AERIAL LAYER NETWORKS
2018-03-01
Advisor, Computing & Communications Division Information Directorate This report is published in the interest of scientific and technical...information accumulation at the physical layer, and study the cooperative routing and resource allocation problems associated with such SU networks...interference power constraint is studied . In [Shi2012Joint], an optimal power and sub-carrier allocation strategy to maximize SUs’ throughput subject to
Network clustering and community detection using modulus of families of loops.
Shakeri, Heman; Poggi-Corradini, Pietro; Albin, Nathan; Scoglio, Caterina
2017-01-01
We study the structure of loops in networks using the notion of modulus of loop families. We introduce an alternate measure of network clustering by quantifying the richness of families of (simple) loops. Modulus tries to minimize the expected overlap among loops by spreading the expected link usage optimally. We propose weighting networks using these expected link usages to improve classical community detection algorithms. We show that the proposed method enhances the performance of certain algorithms, such as spectral partitioning and modularity maximization heuristics, on standard benchmarks.
Quantum speedup in solving the maximal-clique problem
NASA Astrophysics Data System (ADS)
Chang, Weng-Long; Yu, Qi; Li, Zhaokai; Chen, Jiahui; Peng, Xinhua; Feng, Mang
2018-03-01
The maximal-clique problem, to find the maximally sized clique in a given graph, is classically an NP-complete computational problem, which has potential applications ranging from electrical engineering, computational chemistry, and bioinformatics to social networks. Here we develop a quantum algorithm to solve the maximal-clique problem for any graph G with n vertices with quadratic speedup over its classical counterparts, where the time and spatial complexities are reduced to, respectively, O (√{2n}) and O (n2) . With respect to oracle-related quantum algorithms for the NP-complete problems, we identify our algorithm as optimal. To justify the feasibility of the proposed quantum algorithm, we successfully solve a typical clique problem for a graph G with two vertices and one edge by carrying out a nuclear magnetic resonance experiment involving four qubits.
Yu, Lianchun; Shen, Zhou; Wang, Chen; Yu, Yuguo
2018-01-01
Selective pressure may drive neural systems to process as much information as possible with the lowest energy cost. Recent experiment evidence revealed that the ratio between synaptic excitation and inhibition (E/I) in local cortex is generally maintained at a certain value which may influence the efficiency of energy consumption and information transmission of neural networks. To understand this issue deeply, we constructed a typical recurrent Hodgkin-Huxley network model and studied the general principles that governs the relationship among the E/I synaptic current ratio, the energy cost and total amount of information transmission. We observed in such a network that there exists an optimal E/I synaptic current ratio in the network by which the information transmission achieves the maximum with relatively low energy cost. The coding energy efficiency which is defined as the mutual information divided by the energy cost, achieved the maximum with the balanced synaptic current. Although background noise degrades information transmission and imposes an additional energy cost, we find an optimal noise intensity that yields the largest information transmission and energy efficiency at this optimal E/I synaptic transmission ratio. The maximization of energy efficiency also requires a certain part of energy cost associated with spontaneous spiking and synaptic activities. We further proved this finding with analytical solution based on the response function of bistable neurons, and demonstrated that optimal net synaptic currents are capable of maximizing both the mutual information and energy efficiency. These results revealed that the development of E/I synaptic current balance could lead a cortical network to operate at a highly efficient information transmission rate at a relatively low energy cost. The generality of neuronal models and the recurrent network configuration used here suggest that the existence of an optimal E/I cell ratio for highly efficient energy costs and information maximization is a potential principle for cortical circuit networks. Summary We conducted numerical simulations and mathematical analysis to examine the energy efficiency of neural information transmission in a recurrent network as a function of the ratio of excitatory and inhibitory synaptic connections. We obtained a general solution showing that there exists an optimal E/I synaptic ratio in a recurrent network at which the information transmission as well as the energy efficiency of this network achieves a global maximum. These results reflect general mechanisms for sensory coding processes, which may give insight into the energy efficiency of neural communication and coding. PMID:29773979
Yu, Lianchun; Shen, Zhou; Wang, Chen; Yu, Yuguo
2018-01-01
Selective pressure may drive neural systems to process as much information as possible with the lowest energy cost. Recent experiment evidence revealed that the ratio between synaptic excitation and inhibition (E/I) in local cortex is generally maintained at a certain value which may influence the efficiency of energy consumption and information transmission of neural networks. To understand this issue deeply, we constructed a typical recurrent Hodgkin-Huxley network model and studied the general principles that governs the relationship among the E/I synaptic current ratio, the energy cost and total amount of information transmission. We observed in such a network that there exists an optimal E/I synaptic current ratio in the network by which the information transmission achieves the maximum with relatively low energy cost. The coding energy efficiency which is defined as the mutual information divided by the energy cost, achieved the maximum with the balanced synaptic current. Although background noise degrades information transmission and imposes an additional energy cost, we find an optimal noise intensity that yields the largest information transmission and energy efficiency at this optimal E/I synaptic transmission ratio. The maximization of energy efficiency also requires a certain part of energy cost associated with spontaneous spiking and synaptic activities. We further proved this finding with analytical solution based on the response function of bistable neurons, and demonstrated that optimal net synaptic currents are capable of maximizing both the mutual information and energy efficiency. These results revealed that the development of E/I synaptic current balance could lead a cortical network to operate at a highly efficient information transmission rate at a relatively low energy cost. The generality of neuronal models and the recurrent network configuration used here suggest that the existence of an optimal E/I cell ratio for highly efficient energy costs and information maximization is a potential principle for cortical circuit networks. We conducted numerical simulations and mathematical analysis to examine the energy efficiency of neural information transmission in a recurrent network as a function of the ratio of excitatory and inhibitory synaptic connections. We obtained a general solution showing that there exists an optimal E/I synaptic ratio in a recurrent network at which the information transmission as well as the energy efficiency of this network achieves a global maximum. These results reflect general mechanisms for sensory coding processes, which may give insight into the energy efficiency of neural communication and coding.
A Target Coverage Scheduling Scheme Based on Genetic Algorithms in Directional Sensor Networks
Gil, Joon-Min; Han, Youn-Hee
2011-01-01
As a promising tool for monitoring the physical world, directional sensor networks (DSNs) consisting of a large number of directional sensors are attracting increasing attention. As directional sensors in DSNs have limited battery power and restricted angles of sensing range, maximizing the network lifetime while monitoring all the targets in a given area remains a challenge. A major technique to conserve the energy of directional sensors is to use a node wake-up scheduling protocol by which some sensors remain active to provide sensing services, while the others are inactive to conserve their energy. In this paper, we first address a Maximum Set Covers for DSNs (MSCD) problem, which is known to be NP-complete, and present a greedy algorithm-based target coverage scheduling scheme that can solve this problem by heuristics. This scheme is used as a baseline for comparison. We then propose a target coverage scheduling scheme based on a genetic algorithm that can find the optimal cover sets to extend the network lifetime while monitoring all targets by the evolutionary global search technique. To verify and evaluate these schemes, we conducted simulations and showed that the schemes can contribute to extending the network lifetime. Simulation results indicated that the genetic algorithm-based scheduling scheme had better performance than the greedy algorithm-based scheme in terms of maximizing network lifetime. PMID:22319387
Interference-Robust Transmission in Wireless Sensor Networks
Han, Jin-Seok; Lee, Yong-Hwan
2016-01-01
Low-power wireless sensor networks (WSNs) operating in unlicensed spectrum bands may seriously suffer from interference from other coexisting radio systems, such as IEEE 802.11 wireless local area networks. In this paper, we consider the improvement of the transmission performance of low-power WSNs by adjusting the transmission rate and the payload size in response to the change of co-channel interference. We estimate the probability of transmission failure and the data throughput and then determine the payload size to maximize the throughput performance. We investigate that the transmission time maximizing the normalized throughput is not much affected by the transmission rate, but rather by the interference condition. We adjust the transmission rate and the transmission time in response to the change of the channel and interference condition, respectively. Finally, we verify the performance of the proposed scheme by computer simulation. The simulation results show that the proposed scheme significantly improves data throughput compared with conventional schemes while preserving energy efficiency even in the presence of interference. PMID:27854249
Interference-Robust Transmission in Wireless Sensor Networks.
Han, Jin-Seok; Lee, Yong-Hwan
2016-11-14
Low-power wireless sensor networks (WSNs) operating in unlicensed spectrum bands may seriously suffer from interference from other coexisting radio systems, such as IEEE 802.11 wireless local area networks. In this paper, we consider the improvement of the transmission performance of low-power WSNs by adjusting the transmission rate and the payload size in response to the change of co-channel interference. We estimate the probability of transmission failure and the data throughput and then determine the payload size to maximize the throughput performance. We investigate that the transmission time maximizing the normalized throughput is not much affected by the transmission rate, but rather by the interference condition. We adjust the transmission rate and the transmission time in response to the change of the channel and interference condition, respectively. Finally, we verify the performance of the proposed scheme by computer simulation. The simulation results show that the proposed scheme significantly improves data throughput compared with conventional schemes while preserving energy efficiency even in the presence of interference.
Optimal deployment of resources for maximizing impact in spreading processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lokhov, Andrey Y.; Saad, David
The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of “influential spreaders” for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distributionmore » of available resources hence results from an interplay between network topology and spreading dynamics. Here, we show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples.« less
Optimal deployment of resources for maximizing impact in spreading processes
Lokhov, Andrey Y.; Saad, David
2017-09-12
The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of “influential spreaders” for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distributionmore » of available resources hence results from an interplay between network topology and spreading dynamics. Here, we show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples.« less
Information Overload and Viral Marketing: Countermeasures and Strategies
NASA Astrophysics Data System (ADS)
Cheng, Jiesi; Sun, Aaron; Zeng, Daniel
Studying information diffusion through social networks has become an active research topic with important implications in viral marketing applications. One of the fundamental algorithmic problems related to viral marketing is the Influence Maximization (IM) problem: given an social network, which set of nodes should be considered by the viral marketer as the initial targets, in order to maximize the influence of the advertising message. In this work, we study the IM problem in an information-overloaded online social network. Information overload occurs when individuals receive more information than they can process, which can cause negative impacts on the overall marketing effectiveness. Many practical countermeasures have been proposed for alleviating the load of information on recipients. However, how these approaches can benefit viral marketers is not well understood. In our work, we have adapted the classic Information Cascade Model to incorporate information overload and study its countermeasures. Our results suggest that effective control of information overload has the potential to improve marketing effectiveness, but the targeting strategy should be re-designed in response to these countermeasures.
NASA Astrophysics Data System (ADS)
Clawson, Wesley Patrick
Previous studies, both theoretical and experimental, of network level dynamics in the cerebral cortex show evidence for a statistical phenomenon called criticality; a phenomenon originally studied in the context of phase transitions in physical systems and that is associated with favorable information processing in the context of the brain. The focus of this thesis is to expand upon past results with new experimentation and modeling to show a relationship between criticality and the ability to detect and discriminate sensory input. A line of theoretical work predicts maximal sensory discrimination as a functional benefit of criticality, which can then be characterized using mutual information between sensory input, visual stimulus, and neural response,. The primary finding of our experiments in the visual cortex in turtles and neuronal network modeling confirms this theoretical prediction. We show that sensory discrimination is maximized when visual cortex operates near criticality. In addition to presenting this primary finding in detail, this thesis will also address our preliminary results on change-point-detection in experimentally measured cortical dynamics.
Research of ad hoc network based on SINCGARS network
NASA Astrophysics Data System (ADS)
Nie, Hao; Cai, Xiaoxia; Chen, Hong; Chen, Jian; Weng, Pengfei
2016-03-01
In today's world, science and technology make a spurt of progress, so society has entered the era of information technology, network. Only the comprehensive use of electronic warfare and network warfare means can we maximize their access to information and maintain the information superiority. Combined with the specific combat mission and operational requirements, the research design and construction in accordance with the actual military which are Suitable for the future of information technology needs of the tactical Adhoc network, tactical internet, will greatly improve the operational efficiency of the command of the army. Through the study of the network of the U.S. military SINCGARS network, it can explore the routing protocol and mobile model, to provide a reference for the research of our army network.
An Online Algorithm for Maximizing Submodular Functions
2007-12-20
dynamics of the social network are known. In theory, our online algorithms could be used to adapt a marketing campaign to unknown or time-varying social...An Online Algorithm for Maximizing Submodular Functions Matthew Streeter Daniel Golovin December 20, 2007 CMU-CS-07-171 School of Computer Science...number. 1. REPORT DATE 20 DEC 2007 2. REPORT TYPE 3. DATES COVERED 00-00-2007 to 00-00-2007 4. TITLE AND SUBTITLE An Online Algorithm for
Automatic physical inference with information maximizing neural networks
NASA Astrophysics Data System (ADS)
Charnock, Tom; Lavaux, Guilhem; Wandelt, Benjamin D.
2018-04-01
Compressing large data sets to a manageable number of summaries that are informative about the underlying parameters vastly simplifies both frequentist and Bayesian inference. When only simulations are available, these summaries are typically chosen heuristically, so they may inadvertently miss important information. We introduce a simulation-based machine learning technique that trains artificial neural networks to find nonlinear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). In test cases where the posterior can be derived exactly, likelihood-free inference based on automatically derived IMNN summaries produces nearly exact posteriors, showing that these summaries are good approximations to sufficient statistics. In a series of numerical examples of increasing complexity and astrophysical relevance we show that IMNNs are robustly capable of automatically finding optimal, nonlinear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima. We anticipate that the automatic physical inference method described in this paper will be essential to obtain both accurate and precise cosmological parameter estimates from complex and large astronomical data sets, including those from LSST and Euclid.
Navigable networks as Nash equilibria of navigation games.
Gulyás, András; Bíró, József J; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri
2015-07-03
Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network.
NASA Astrophysics Data System (ADS)
Matveev, A. S.; Ishchenko, R.
2017-11-01
We consider a generic deterministic time-invariant fluid model of a single server switched network, which consists of finitely many infinite size buffers (queues) and receives constant rate inflows of jobs from the outside. Any flow undergoes a multi-phase service, entering a specific buffer after every phase, and ultimately leaves the network; the route of the flow over the buffers is pre-specified, and flows may merge inside the network. They share a common source of service, which can serve at most one buffer at a time and has to switch among buffers from time to time; any switch consumes a nonzero switchover period. With respect to the long-run maximal scaled wip (work in progress) performance metric, near-optimality of periodic scheduling and service protocols is established: the deepest optimum (that is over all feasible processes in the network, irrespective of the initial state) is furnished by such a protocol up to as small error as desired. Moreover, this can be achieved with a special periodic protocol introduced in the paper. It is also shown that the exhaustive policy is optimal for any buffer whose service at the maximal rate does not cause growth of the scaled wip.
NASA Astrophysics Data System (ADS)
Coogan, A.; Avanzi, F.; Akella, R.; Conklin, M. H.; Bales, R. C.; Glaser, S. D.
2017-12-01
Automatic meteorological and snow stations provide large amounts of information at dense temporal resolution, but data quality is often compromised by noise and missing values. We present a new gap-filling and cleaning procedure for networks of these stations based on Kalman filtering and expectation maximization. Our method utilizes a multi-sensor, regime-switching Kalman filter to learn a latent process that captures dependencies between nearby stations and handles sharp changes in snowfall rate. Since the latent process is inferred using observations across working stations in the network, it can be used to fill in large data gaps for a malfunctioning station. The procedure was tested on meteorological and snow data from Wireless Sensor Networks (WSN) in the American River basin of the Sierra Nevada. Data include air temperature, relative humidity, and snow depth from dense networks of 10 to 12 stations within 1 km2 swaths. Both wet and dry water years have similar data issues. Data with artificially created gaps was used to quantify the method's performance. Our multi-sensor approach performs better than a single-sensor one, especially with large data gaps, as it learns and exploits the dominant underlying processes in snowpack at each site.
Multiscale Embedded Gene Co-expression Network Analysis
Song, Won-Min; Zhang, Bin
2015-01-01
Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma. PMID:26618778
Multiscale Embedded Gene Co-expression Network Analysis.
Song, Won-Min; Zhang, Bin
2015-11-01
Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.
Virzintiene, Egle; Moparthi, Vamsi K; Al-Eryani, Yusra; Shumbe, Leonard; Górecki, Kamil; Hägerhäll, Cecilia
2013-10-11
MrpA and MrpD are homologous to NuoL, NuoM and NuoN in complex I over the first 14 transmembrane helices. In this work, the C-terminal domain of MrpA, outside this conserved area, was investigated. The transmembrane orientation was found to correspond to that of NuoJ in complex I. We have previously demonstrated that the subunit NuoK is homologous to MrpC. The function of the MrpA C-terminus was tested by expression in a previously used Bacillus subtilis model system. At neutral pH, the truncated MrpA still worked, but at pH 8.4, where Mrp-complex formation is needed for function, the C-terminal domain of MrpA was absolutely required. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Anghel, M.; Toroczkai, Zoltán; Bassler, Kevin E.; Korniss, G.
2004-02-01
Using the minority game as a model for competition dynamics, we investigate the effects of interagent communications across a network on the global evolution of the game. Agent communication across this network leads to the formation of an influence network, which is dynamically coupled to the evolution of the game, and it is responsible for the information flow driving the agents' actions. We show that the influence network spontaneously develops hubs with a broad distribution of in-degrees, defining a scale-free robust leadership structure. Furthermore, in realistic parameter ranges, facilitated by information exchange on the network, agents can generate a high degree of cooperation making the collective almost maximally efficient.
Dynamic Spectrum Access for Internet of Things Service in Cognitive Radio-Enabled LPWANs
Moon, Bongkyo
2017-01-01
In this paper, we focus on a dynamic spectrum access strategy for Internet of Things (IoT) applications in two types of radio systems: cellular networks and cognitive radio-enabled low power wide area networks (CR-LPWANs). The spectrum channel contention between the licensed cellular networks and the unlicensed CR-LPWANs, which work with them, only takes place within the cellular radio spectrum range. Our aim is to maximize the spectrum capacity for the unlicensed users while ensuring that it never interferes with the licensed network. Therefore, in this paper we propose a dynamic spectrum access strategy for CR-LPWANs operating in both licensed and unlicensed bands. The simulation and the numerical analysis by using a matrix geometric approach for the strategy are presented. Finally, we obtain the blocking probability of the licensed users, the mean dwell time of the unlicensed user, and the total carried traffic and combined service quality for the licensed and unlicensed users. The results show that the proposed strategy can maximize the spectrum capacity for the unlicensed users using IoT applications as well as keep the service quality of the licensed users independent of them. PMID:29206215
Dynamic Spectrum Access for Internet of Things Service in Cognitive Radio-Enabled LPWANs.
Moon, Bongkyo
2017-12-05
In this paper, we focus on a dynamic spectrum access strategy for Internet of Things (IoT) applications in two types of radio systems: cellular networks and cognitive radio-enabled low power wide area networks (CR-LPWANs). The spectrum channel contention between the licensed cellular networks and the unlicensed CR-LPWANs, which work with them, only takes place within the cellular radio spectrum range. Our aim is to maximize the spectrum capacity for the unlicensed users while ensuring that it never interferes with the licensed network. Therefore, in this paper we propose a dynamic spectrum access strategy for CR-LPWANs operating in both licensed and unlicensed bands. The simulation and the numerical analysis by using a matrix geometric approach for the strategy are presented. Finally, we obtain the blocking probability of the licensed users, the mean dwell time of the unlicensed user, and the total carried traffic and combined service quality for the licensed and unlicensed users. The results show that the proposed strategy can maximize the spectrum capacity for the unlicensed users using IoT applications as well as keep the service quality of the licensed users independent of them.
Optimal resource allocation strategy for two-layer complex networks
NASA Astrophysics Data System (ADS)
Ma, Jinlong; Wang, Lixin; Li, Sufeng; Duan, Congwen; Liu, Yu
2018-02-01
We study the traffic dynamics on two-layer complex networks, and focus on its delivery capacity allocation strategy to enhance traffic capacity measured by the critical value Rc. With the limited packet-delivering capacity, we propose a delivery capacity allocation strategy which can balance the capacities of non-hub nodes and hub nodes to optimize the data flow. With the optimal value of parameter αc, the maximal network capacity is reached because most of the nodes have shared the appropriate delivery capacity by the proposed delivery capacity allocation strategy. Our work will be beneficial to network service providers to design optimal networked traffic dynamics.
2015-03-01
information dominance in the maritime domain by optimizing tactical mobile ad hoc network (MANET) systems for wireless sharing of biometric data in maritime interdiction operations (MIO). Current methods for sharing biometric data in MIO are unnecessarily slow and do not leverage wireless networks at the tactical edge to maximize information dominance . Field experiments allow students to test wireless MANETs at the tactical edge. Analysis is focused on determining optimal MANET design and implementation. It considers various implementations with
Networking Micro-Processors for Effective Computer Utilization in Nursing
Mangaroo, Jewellean; Smith, Bob; Glasser, Jay; Littell, Arthur; Saba, Virginia
1982-01-01
Networking as a social entity has important implications for maximizing computer resources for improved utilization in nursing. This paper describes the one process of networking of complementary resources at three institutions. Prairie View A&M University, Texas A&M University and the University of Texas School of Public Health, which has effected greater utilization of computers at the college. The results achieved in this project should have implications for nurses, users, and consumers in the development of computer resources.
Convergent neuromodulation onto a network neuron can have divergent effects at the network level.
Kintos, Nickolas; Nusbaum, Michael P; Nadim, Farzan
2016-04-01
Different neuromodulators often target the same ion channel. When such modulators act on different neuron types, this convergent action can enable a rhythmic network to produce distinct outputs. Less clear are the functional consequences when two neuromodulators influence the same ion channel in the same neuron. We examine the consequences of this seeming redundancy using a mathematical model of the crab gastric mill (chewing) network. This network is activated in vitro by the projection neuron MCN1, which elicits a half-center bursting oscillation between the reciprocally-inhibitory neurons LG and Int1. We focus on two neuropeptides which modulate this network, including a MCN1 neurotransmitter and the hormone crustacean cardioactive peptide (CCAP). Both activate the same voltage-gated current (I MI ) in the LG neuron. However, I MI-MCN1 , resulting from MCN1 released neuropeptide, has phasic dynamics in its maximal conductance due to LG presynaptic inhibition of MCN1, while I MI-CCAP retains the same maximal conductance in both phases of the gastric mill rhythm. Separation of time scales allows us to produce a 2D model from which phase plane analysis shows that, as in the biological system, I MI-MCN1 and I MI-CCAP primarily influence the durations of opposing phases of this rhythm. Furthermore, I MI-MCN1 influences the rhythmic output in a manner similar to the Int1-to-LG synapse, whereas I MI-CCAP has an influence similar to the LG-to-Int1 synapse. These results show that distinct neuromodulators which target the same voltage-gated ion channel in the same network neuron can nevertheless produce distinct effects at the network level, providing divergent neuromodulator actions on network activity.
Convergent neuromodulation onto a network neuron can have divergent effects at the network level
Kintos, Nickolas; Nusbaum, Michael P.; Nadim, Farzan
2016-01-01
Different neuromodulators often target the same ion channel. When such modulators act on different neuron types, this convergent action can enable a rhythmic network to produce distinct outputs. Less clear are the functional consequences when two neuromodulators influence the same ion channel in the same neuron. We examine the consequences of this seeming redundancy using a mathematical model of the crab gastric mill (chewing) network. This network is activated in vitro by the projection neuron MCN1, which elicits a half-center bursting oscillation between the reciprocally-inhibitory neurons LG and Int1. We focus on two neuropeptides which modulate this network, including a MCN1 neurotransmitter and the hormone crustacean cardioactive peptide (CCAP). Both activate the same voltage-gated current (IMI) in the LG neuron. However, IMI-MCN1, resulting from MCN1 released neuropeptide, has phasic dynamics in its maximal conductance due to LG presynaptic inhibition of MCN1, while IMI-CCAP retains the same maximal conductance in both phases of the gastric mill rhythm. Separation of time scales allows us to produce a 2D model from which phase plane analysis shows that, as in the biological system, IMI-MCN1 and IMI-CCAP primarily influence the durations of opposing phases of this rhythm. Furthermore, IMI-MCN1 influences the rhythmic output in a manner similar to the Int1-to-LG synapse, whereas IMI-CCAP has an influence similar to the LG-to-Int1 synapse. These results show that distinct neuromodulators which target the same voltage-gated ion channel in the same network neuron can nevertheless produce distinct effects at the network level, providing divergent neuromodulator actions on network activity. PMID:26798029
Navigable networks as Nash equilibria of navigation games
Gulyás, András; Bíró, József J.; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri
2015-01-01
Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network. PMID:26138277
FUSE: a profit maximization approach for functional summarization of biological networks.
Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes; Yu, Hanry
2012-03-21
The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein interaction network (PPI) using graph theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary Generator) that generates functional maps of a PPI at different levels of organization, from broad process-process level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that exploits Minimum Description Length (MDL) principle to maximize information gain of the summary graph while satisfying the level of detail constraint. We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-art graph clustering methods with GO term enrichment by constructing the biological process landscape of the PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the network and identify many different processes and complexes that regulate it. Finally, we study the higher-order connectivity of the human PPI. By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering methods with GO term enrichment.
Maximizing the Potential of Telecommunications Technology.
ERIC Educational Resources Information Center
Young, Dennis M.
2003-01-01
Offers advice on planning a reliable and cost-effective school telecommunications system, including issues such as the layered nature of many schools' systems, and the move from centralized to distributed networks. (EV)
Properties of highly clustered networks
NASA Astrophysics Data System (ADS)
Newman, M. E.
2003-08-01
We propose and solve exactly a model of a network that has both a tunable degree distribution and a tunable clustering coefficient. Among other things, our results indicate that increased clustering leads to a decrease in the size of the giant component of the network. We also study susceptible/infective/recovered type epidemic processes within the model and find that clustering decreases the size of epidemics, but also decreases the epidemic threshold, making it easier for diseases to spread. In addition, clustering causes epidemics to saturate sooner, meaning that they infect a near-maximal fraction of the network for quite low transmission rates.
McCabe, Collin M; Nunn, Charles L
2018-01-01
The transmission of infectious disease through a population is often modeled assuming that interactions occur randomly in groups, with all individuals potentially interacting with all other individuals at an equal rate. However, it is well known that pairs of individuals vary in their degree of contact. Here, we propose a measure to account for such heterogeneity: effective network size (ENS), which refers to the size of a maximally complete network (i.e., unstructured, where all individuals interact with all others equally) that corresponds to the outbreak characteristics of a given heterogeneous, structured network. We simulated susceptible-infected (SI) and susceptible-infected-recovered (SIR) models on maximally complete networks to produce idealized outbreak duration distributions for a disease on a network of a given size. We also simulated the transmission of these same diseases on random structured networks and then used the resulting outbreak duration distributions to predict the ENS for the group or population. We provide the methods to reproduce these analyses in a public R package, "enss." Outbreak durations of simulations on randomly structured networks were more variable than those on complete networks, but tended to have similar mean durations of disease spread. We then applied our novel metric to empirical primate networks taken from the literature and compared the information represented by our ENSs to that by other established social network metrics. In AICc model comparison frameworks, group size and mean distance proved to be the metrics most consistently associated with ENS for SI simulations, while group size, centralization, and modularity were most consistently associated with ENS for SIR simulations. In all cases, ENS was shown to be associated with at least two other independent metrics, supporting its use as a novel metric. Overall, our study provides a proof of concept for simulation-based approaches toward constructing metrics of ENS, while also revealing the conditions under which this approach is most promising.
NASA Astrophysics Data System (ADS)
Lin, Guoji
Electro-magnetic (E&M) probes such as direct photons and muons (mu) are important tools to study the properties of the extremely hot and dense matter created in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC). In this thesis, several topics of E&M physics will be addressed, including neutral pion (pi0) production, direct photon HBT, and photon elliptic flow (v2) in Au+Au collisions at sNN = 200 GeV. A discussion on the simulation study of the new Muon Telescope Detector (MTD) will also be presented. The pi0 production is a fundamental measurement of hadron production and prerequisite for the background study of direct photons. Neutral pions are reconstructed using the photons detected by the STAR Barrel Electro-magnetic Calorimeter (BEMC) and the Time Projection Chamber (TPC). Spectra of pi 0 are measured at transverse momentum 1 < pT < 12 GeV/c near mid-rapidity (0 < eta < 0.8) in 200 GeV Au+Au collisions. The spectra and nuclear modification factors RCP and RAA are compared to earlier pi+/- and pi0 results. Direct photon Hanbury-Brown and Twiss (HBT) correlations can reveal information of the system size throughout the whole collision. A first attempt of direct photon HBT study at RHIC in 200 GeV Au+Au collisions is done using photons detected by the STAR BEMC and TPC. All unknown correlation at small Qinv is observed, whose magnitude is much larger than the expected HBT signal, and possible causes of the correlation will be discussed. Direct photon elliptic flow (v2) at intermediate to high pT is sensitive to the source of direct photon production. Results of inclusive photon v2 in 200 GeV Au+Au collisions are presented. The v2 of pi0 decay photons is calculated from the previously published pi results. The comparison between inclusive and decay photon v 2 indicates that direct photon v2 is small. A new large-area Muon Telescope Detector at mid-rapidity at RHIC is proposed and under investigation, using the Long-strip Multi-Gap Resistive Plate Chamber (Long-MRPC). Simulations indicate that the MTD can effectively identify mu and reject hadron backgrounds, and it can serve as a mu trigger. A beam test result of the Long-MRPC at Fermi National Accelerator Laboratory (FNAL) is also discussed.
An Efficient Data-Gathering Routing Protocol for Underwater Wireless Sensor Networks.
Javaid, Nadeem; Ilyas, Naveed; Ahmad, Ashfaq; Alrajeh, Nabil; Qasim, Umar; Khan, Zahoor Ali; Liaqat, Tayyaba; Khan, Majid Iqbal
2015-11-17
Most applications of underwater wireless sensor networks (UWSNs) demand reliable data delivery over a longer period in an efficient and timely manner. However, the harsh and unpredictable underwater environment makes routing more challenging as compared to terrestrial WSNs. Most of the existing schemes deploy mobile sensors or a mobile sink (MS) to maximize data gathering. However, the relatively high deployment cost prevents their usage in most applications. Thus, this paper presents an autonomous underwater vehicle (AUV)-aided efficient data-gathering (AEDG) routing protocol for reliable data delivery in UWSNs. To prolong the network lifetime, AEDG employs an AUV for data collection from gateways and uses a shortest path tree (SPT) algorithm while associating sensor nodes with the gateways. The AEDG protocol also limits the number of associated nodes with the gateway nodes to minimize the network energy consumption and to prevent the gateways from overloading. Moreover, gateways are rotated with the passage of time to balance the energy consumption of the network. To prevent data loss, AEDG allows dynamic data collection at the AUV depending on the limited number of member nodes that are associated with each gateway. We also develop a sub-optimal elliptical trajectory of AUV by using a connected dominating set (CDS) to further facilitate network throughput maximization. The performance of the AEDG is validated via simulations, which demonstrate the effectiveness of AEDG in comparison to two existing UWSN routing protocols in terms of the selected performance metrics.
An Efficient Data-Gathering Routing Protocol for Underwater Wireless Sensor Networks
Javaid, Nadeem; Ilyas, Naveed; Ahmad, Ashfaq; Alrajeh, Nabil; Qasim, Umar; Khan, Zahoor Ali; Liaqat, Tayyaba; Khan, Majid Iqbal
2015-01-01
Most applications of underwater wireless sensor networks (UWSNs) demand reliable data delivery over a longer period in an efficient and timely manner. However, the harsh and unpredictable underwater environment makes routing more challenging as compared to terrestrial WSNs. Most of the existing schemes deploy mobile sensors or a mobile sink (MS) to maximize data gathering. However, the relatively high deployment cost prevents their usage in most applications. Thus, this paper presents an autonomous underwater vehicle (AUV)-aided efficient data-gathering (AEDG) routing protocol for reliable data delivery in UWSNs. To prolong the network lifetime, AEDG employs an AUV for data collection from gateways and uses a shortest path tree (SPT) algorithm while associating sensor nodes with the gateways. The AEDG protocol also limits the number of associated nodes with the gateway nodes to minimize the network energy consumption and to prevent the gateways from overloading. Moreover, gateways are rotated with the passage of time to balance the energy consumption of the network. To prevent data loss, AEDG allows dynamic data collection at the AUV depending on the limited number of member nodes that are associated with each gateway. We also develop a sub-optimal elliptical trajectory of AUV by using a connected dominating set (CDS) to further facilitate network throughput maximization. The performance of the AEDG is validated via simulations, which demonstrate the effectiveness of AEDG in comparison to two existing UWSN routing protocols in terms of the selected performance metrics. PMID:26593924
Lin, Haifeng; Bai, Di; Gao, Demin; Liu, Yunfei
2016-07-30
In Rechargeable Wireless Sensor Networks (R-WSNs), in order to achieve the maximum data collection rate it is critical that sensors operate in very low duty cycles because of the sporadic availability of energy. A sensor has to stay in a dormant state in most of the time in order to recharge the battery and use the energy prudently. In addition, a sensor cannot always conserve energy if a network is able to harvest excessive energy from the environment due to its limited storage capacity. Therefore, energy exploitation and energy saving have to be traded off depending on distinct application scenarios. Since higher data collection rate or maximum data collection rate is the ultimate objective for sensor deployment, surplus energy of a node can be utilized for strengthening packet delivery efficiency and improving the data generating rate in R-WSNs. In this work, we propose an algorithm based on data aggregation to compute an upper data generation rate by maximizing it as an optimization problem for a network, which is formulated as a linear programming problem. Subsequently, a dual problem by introducing Lagrange multipliers is constructed, and subgradient algorithms are used to solve it in a distributed manner. At the same time, a topology controlling scheme is adopted for improving the network's performance. Through extensive simulation and experiments, we demonstrate that our algorithm is efficient at maximizing the data collection rate in rechargeable wireless sensor networks.
2011-12-01
Pennsylvania Emergency Management Agency QHSR Quadrennial Homeland Security Review Report RCP Regional Catastrophic Preparedness SAA State...service has evolved from a single-purpose service focused on controlling fires to a multidimensional response element responsible for pre- hospital ... hospital preparedness program Preparedness Training for all personnel; training and network activities during prior year assist in preparedness
A 250-Mbit/s ring local computer network using 1.3-microns single-mode optical fibers
NASA Technical Reports Server (NTRS)
Eng, S. T.; Tell, R.; Andersson, T.; Eng, B.
1985-01-01
A 250-Mbit/s three-station fiber-optic ring local computer network was built and successfully demonstrated. A conventional token protocol was employed for bus arbitration to maximize the bus efficiency under high loading conditions, and a non-return-to-zero (NRS) data encoding format was selected for simplicity and maximum utilization of the ECL-circuit bandwidth.
Listing All Maximal Cliques in Sparse Graphs in Near-optimal Time
2011-01-01
523 10 Arabisopsis thaliana 1745 3098 71 12 Drosophila melanogaster 7282 24894 176 12 Homo Sapiens 9527 31182 308 12 Schizosaccharomyces pombe 2031...clusters of actors [6,14,28,40] and may be used as features in exponential random graph models for statistical analysis of social networks [17,19,20,44,49...29. R. Horaud and T. Skordas. Stereo correspondence through feature grouping and maximal cliques. IEEE Trans. Patt. An. Mach. Int. 11(11):1168–1180
An Incentive-based Online Optimization Framework for Distribution Grids
Zhou, Xinyang; Dall'Anese, Emiliano; Chen, Lijun; ...
2017-10-09
This article formulates a time-varying social-welfare maximization problem for distribution grids with distributed energy resources (DERs) and develops online distributed algorithms to identify (and track) its solutions. In the considered setting, network operator and DER-owners pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. The proposed algorithm affords an online implementation to enable tracking of the solutions in the presence of time-varying operational conditions and changing optimization objectives. It involves a strategy where the network operator collects voltage measurements throughout the feeder to build incentive signals for the DER-owners in real time; DERs thenmore » adjust the generated/consumed powers in order to avoid the violation of the voltage constraints while maximizing given objectives. Stability of the proposed schemes is analytically established and numerically corroborated.« less
An Incentive-based Online Optimization Framework for Distribution Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xinyang; Dall'Anese, Emiliano; Chen, Lijun
This article formulates a time-varying social-welfare maximization problem for distribution grids with distributed energy resources (DERs) and develops online distributed algorithms to identify (and track) its solutions. In the considered setting, network operator and DER-owners pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. The proposed algorithm affords an online implementation to enable tracking of the solutions in the presence of time-varying operational conditions and changing optimization objectives. It involves a strategy where the network operator collects voltage measurements throughout the feeder to build incentive signals for the DER-owners in real time; DERs thenmore » adjust the generated/consumed powers in order to avoid the violation of the voltage constraints while maximizing given objectives. Stability of the proposed schemes is analytically established and numerically corroborated.« less
Multidimensional density shaping by sigmoids.
Roth, Z; Baram, Y
1996-01-01
An estimate of the probability density function of a random vector is obtained by maximizing the output entropy of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's optimization method, applied to the estimated density, yields a recursive estimator for a random variable or a random sequence. A constrained connectivity structure yields a linear estimator, which is particularly suitable for "real time" prediction. A Gaussian nonlinearity yields a closed-form solution for the network's parameters, which may also be used for initializing the optimization algorithm when other nonlinearities are employed. A triangular connectivity between the neurons and the input, which is naturally suggested by the statistical setting, reduces the number of parameters. Applications to classification and forecasting problems are demonstrated.
Accelerating the Mining of Influential Nodes in Complex Networks through Community Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halappanavar, Mahantesh; Sathanur, Arun V.; Nandi, Apurba
Computing the set of influential nodes with a given size to ensure maximal spread of influence on a complex network is a challenging problem impacting multiple applications. A rigorous approach to influence maximization involves utilization of optimization routines that comes with a high computational cost. In this work, we propose to exploit the existence of communities in complex networks to accelerate the mining of influential seeds. We provide intuitive reasoning to explain why our approach should be able to provide speedups without significantly degrading the extent of the spread of influence when compared to the case of influence maximization withoutmore » using the community information. Additionally, we have parallelized the complete workflow by leveraging an existing parallel implementation of the Louvain community detection algorithm. We then conduct a series of experiments on a dataset with three representative graphs to first verify our implementation and then demonstrate the speedups. Our method achieves speedups ranging from 3x - 28x for graphs with small number of communities while nearly matching or even exceeding the activation performance on the entire graph. Complexity analysis reveals that dramatic speedups are possible for larger graphs that contain a correspondingly larger number of communities. In addition to the speedups obtained from the utilization of the community structure, scalability results show up to 6.3x speedup on 20 cores relative to the baseline run on 2 cores. Finally, current limitations of the approach are outlined along with the planned next steps.« less
A Game Theoretic Approach for Balancing Energy Consumption in Clustered Wireless Sensor Networks.
Yang, Liu; Lu, Yinzhi; Xiong, Lian; Tao, Yang; Zhong, Yuanchang
2017-11-17
Clustering is an effective topology control method in wireless sensor networks (WSNs), since it can enhance the network lifetime and scalability. To prolong the network lifetime in clustered WSNs, an efficient cluster head (CH) optimization policy is essential to distribute the energy among sensor nodes. Recently, game theory has been introduced to model clustering. Each sensor node is considered as a rational and selfish player which will play a clustering game with an equilibrium strategy. Then it decides whether to act as the CH according to this strategy for a tradeoff between providing required services and energy conservation. However, how to get the equilibrium strategy while maximizing the payoff of sensor nodes has rarely been addressed to date. In this paper, we present a game theoretic approach for balancing energy consumption in clustered WSNs. With our novel payoff function, realistic sensor behaviors can be captured well. The energy heterogeneity of nodes is considered by incorporating a penalty mechanism in the payoff function, so the nodes with more energy will compete for CHs more actively. We have obtained the Nash equilibrium (NE) strategy of the clustering game through convex optimization. Specifically, each sensor node can achieve its own maximal payoff when it makes the decision according to this strategy. Through plenty of simulations, our proposed game theoretic clustering is proved to have a good energy balancing performance and consequently the network lifetime is greatly enhanced.
Incentive-Based Voltage Regulation in Distribution Networks: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xinyang; Chen, Lijun; Dall'Anese, Emiliano
This paper considers distribution networks fea- turing distributed energy resources, and designs incentive-based mechanisms that allow the network operator and end-customers to pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. Two different network-customer coordination mechanisms that require different amounts of information shared between the network operator and end-customers are developed to identify a solution of a well-defined social-welfare maximization prob- lem. Notably, the signals broadcast by the network operator assume the connotation of prices/incentives that induce the end- customers to adjust the generated/consumed powers in order to avoid the violation of the voltagemore » constraints. Stability of the proposed schemes is analytically established and numerically corroborated.« less
Incentive-Based Voltage Regulation in Distribution Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Baker, Kyri A; Zhou, Xinyang
This paper considers distribution networks fea- turing distributed energy resources, and designs incentive-based mechanisms that allow the network operator and end-customers to pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. Two different network-customer coordination mechanisms that require different amounts of information shared between the network operator and end-customers are developed to identify a solution of a well-defined social-welfare maximization prob- lem. Notably, the signals broadcast by the network operator assume the connotation of prices/incentives that induce the end- customers to adjust the generated/consumed powers in order to avoid the violation of the voltagemore » constraints. Stability of the proposed schemes is analytically established and numerically corroborated.« less
Modeling and optimization of Quality of Service routing in Mobile Ad hoc Networks
NASA Astrophysics Data System (ADS)
Rafsanjani, Marjan Kuchaki; Fatemidokht, Hamideh; Balas, Valentina Emilia
2016-01-01
Mobile ad hoc networks (MANETs) are a group of mobile nodes that are connected without using a fixed infrastructure. In these networks, nodes communicate with each other by forming a single-hop or multi-hop network. To design effective mobile ad hoc networks, it is important to evaluate the performance of multi-hop paths. In this paper, we present a mathematical model for a routing protocol under energy consumption and packet delivery ratio of multi-hop paths. In this model, we use geometric random graphs rather than random graphs. Our proposed model finds effective paths that minimize the energy consumption and maximizes the packet delivery ratio of the network. Validation of the mathematical model is performed through simulation.
Complete graph model for community detection
NASA Astrophysics Data System (ADS)
Sun, Peng Gang; Sun, Xiya
2017-04-01
Community detection brings plenty of considerable problems, which has attracted more attention for many years. This paper develops a new framework, which tries to measure the interior and the exterior of a community based on a same metric, complete graph model. In particular, the exterior is modeled as a complete bipartite. We partition a network into subnetworks by maximizing the difference between the interior and the exterior of the subnetworks. In addition, we compare our approach with some state of the art methods on computer-generated networks based on the LFR benchmark as well as real-world networks. The experimental results indicate that our approach obtains better results for community detection, is capable of splitting irregular networks and achieves perfect results on the karate network and the dolphin network.
The NASA Science Internet: An integrated approach to networking
NASA Technical Reports Server (NTRS)
Rounds, Fred
1991-01-01
An integrated approach to building a networking infrastructure is an absolute necessity for meeting the multidisciplinary science networking requirements of the Office of Space Science and Applications (OSSA) science community. These networking requirements include communication connectivity between computational resources, databases, and library systems, as well as to other scientists and researchers around the world. A consolidated networking approach allows strategic use of the existing science networking within the Federal government, and it provides networking capability that takes into consideration national and international trends towards multivendor and multiprotocol service. It also offers a practical vehicle for optimizing costs and maximizing performance. Finally, and perhaps most important to the development of high speed computing is that an integrated network constitutes a focus for phasing to the National Research and Education Network (NREN). The NASA Science Internet (NSI) program, established in mid 1988, is structured to provide just such an integrated network. A description of the NSI is presented.
Using NetMaster to manage IBM networks
NASA Technical Reports Server (NTRS)
Ginsburg, Guss
1991-01-01
After defining a network and conveying its importance to support the activities at the JSC, the need for network management based on the size and complexity of the IBM SNA network at JSC is demonstrated. Network Management consists of being aware of component status and the ability to control resources to meet the availability and service needs of users. The concerns of the user are addressed as well as those of the staff responsible for managing the network. It is explained how NetMaster (a network management system for managing SNA networks) is used to enhance reliability and maximize service to SNA network users through automated procedures. The following areas are discussed: customization, problem and configuration management, and system measurement applications of NetMaster. Also, several examples are given that demonstrate NetMaster's ability to manage and control the network, integrate various product functions, as well as provide useful management information.
NASA Astrophysics Data System (ADS)
Ji, Wei
2013-07-01
Video on demand is a very attractive service used for entertainment, education, and other purposes. The design of passive optical networking+Ethernet over coaxial cable accessing and a home gateway system is proposed. The network integrates the passive optical networking and Ethernet over coaxial cable to provide high dedicated bandwidth for the metropolitan video-on-demand services. Using digital video broadcasting, IP television protocol, unicasting, and broadcasting mechanisms maximizes the system throughput. The home gateway finishes radio frequency signal receiving and provides three kinds of interfaces for high-definition video, voice, and data, which achieves triple-play and wire/wireless access synchronously.
Shim, Kyusung; Do, Nhu Tri; An, Beongku
2017-01-01
In this paper, we study the physical layer security (PLS) of opportunistic scheduling for uplink scenarios of multiuser multirelay cooperative networks. To this end, we propose a low-complexity, yet comparable secrecy performance source relay selection scheme, called the proposed source relay selection (PSRS) scheme. Specifically, the PSRS scheme first selects the least vulnerable source and then selects the relay that maximizes the system secrecy capacity for the given selected source. Additionally, the maximal ratio combining (MRC) technique and the selection combining (SC) technique are considered at the eavesdropper, respectively. Investigating the system performance in terms of secrecy outage probability (SOP), closed-form expressions of the SOP are derived. The developed analysis is corroborated through Monte Carlo simulation. Numerical results show that the PSRS scheme significantly improves the secure ability of the system compared to that of the random source relay selection scheme, but does not outperform the optimal joint source relay selection (OJSRS) scheme. However, the PSRS scheme drastically reduces the required amount of channel state information (CSI) estimations compared to that required by the OJSRS scheme, specially in dense cooperative networks. PMID:28212286
NASA Astrophysics Data System (ADS)
Cardoso, T.; Oliveira, M. D.; Barbosa-Póvoa, A.; Nickel, S.
2015-05-01
Although the maximization of health is a key objective in health care systems, location-allocation literature has not yet considered this dimension. This study proposes a multi-objective stochastic mathematical programming approach to support the planning of a multi-service network of long-term care (LTC), both in terms of services location and capacity planning. This approach is based on a mixed integer linear programming model with two objectives - the maximization of expected health gains and the minimization of expected costs - with satisficing levels in several dimensions of equity - namely, equity of access, equity of utilization, socioeconomic equity and geographical equity - being imposed as constraints. The augmented ε-constraint method is used to explore the trade-off between these conflicting objectives, with uncertainty in the demand and delivery of care being accounted for. The model is applied to analyze the (re)organization of the LTC network currently operating in the Great Lisbon region in Portugal for the 2014-2016 period. Results show that extending the network of LTC is a cost-effective investment.
Maximization of Learning Speed in the Motor Cortex Due to Neuronal Redundancy
Takiyama, Ken; Okada, Masato
2012-01-01
Many redundancies play functional roles in motor control and motor learning. For example, kinematic and muscle redundancies contribute to stabilizing posture and impedance control, respectively. Another redundancy is the number of neurons themselves; there are overwhelmingly more neurons than muscles, and many combinations of neural activation can generate identical muscle activity. The functional roles of this neuronal redundancy remains unknown. Analysis of a redundant neural network model makes it possible to investigate these functional roles while varying the number of model neurons and holding constant the number of output units. Our analysis reveals that learning speed reaches its maximum value if and only if the model includes sufficient neuronal redundancy. This analytical result does not depend on whether the distribution of the preferred direction is uniform or a skewed bimodal, both of which have been reported in neurophysiological studies. Neuronal redundancy maximizes learning speed, even if the neural network model includes recurrent connections, a nonlinear activation function, or nonlinear muscle units. Furthermore, our results do not rely on the shape of the generalization function. The results of this study suggest that one of the functional roles of neuronal redundancy is to maximize learning speed. PMID:22253586
A new hierarchical method to find community structure in networks
NASA Astrophysics Data System (ADS)
Saoud, Bilal; Moussaoui, Abdelouahab
2018-04-01
Community structure is very important to understand a network which represents a context. Many community detection methods have been proposed like hierarchical methods. In our study, we propose a new hierarchical method for community detection in networks based on genetic algorithm. In this method we use genetic algorithm to split a network into two networks which maximize the modularity. Each new network represents a cluster (community). Then we repeat the splitting process until we get one node at each cluster. We use the modularity function to measure the strength of the community structure found by our method, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our method are highly effective at discovering community structure in both computer-generated and real-world network data.
Optimal percolation on multiplex networks.
Osat, Saeed; Faqeeh, Ali; Radicchi, Filippo
2017-11-16
Optimal percolation is the problem of finding the minimal set of nodes whose removal from a network fragments the system into non-extensive disconnected clusters. The solution to this problem is important for strategies of immunization in disease spreading, and influence maximization in opinion dynamics. Optimal percolation has received considerable attention in the context of isolated networks. However, its generalization to multiplex networks has not yet been considered. Here we show that approximating the solution of the optimal percolation problem on a multiplex network with solutions valid for single-layer networks extracted from the multiplex may have serious consequences in the characterization of the true robustness of the system. We reach this conclusion by extending many of the methods for finding approximate solutions of the optimal percolation problem from single-layer to multiplex networks, and performing a systematic analysis on synthetic and real-world multiplex networks.
Research and realization of info-net security controlling system
NASA Astrophysics Data System (ADS)
Xu, Tao; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen
2017-03-01
The thesis introduces some relative concepts about Network Cybernetics, and we design and realize a new info-net security controlling system based on Network Cybernetics. The system can control the endpoints, safely save files, encrypt communication, supervise actions of users and show security conditions, in order to realize full-scale security management. At last, we simulate the functions of the system. The results show, the system can ensure the controllability of users and devices, and supervise them real-time. The system can maximize the security of the network and users.
Robust Learning of High-dimensional Biological Networks with Bayesian Networks
NASA Astrophysics Data System (ADS)
Nägele, Andreas; Dejori, Mathäus; Stetter, Martin
Structure learning of Bayesian networks applied to gene expression data has become a potentially useful method to estimate interactions between genes. However, the NP-hardness of Bayesian network structure learning renders the reconstruction of the full genetic network with thousands of genes unfeasible. Consequently, the maximal network size is usually restricted dramatically to a small set of genes (corresponding with variables in the Bayesian network). Although this feature reduction step makes structure learning computationally tractable, on the downside, the learned structure might be adversely affected due to the introduction of missing genes. Additionally, gene expression data are usually very sparse with respect to the number of samples, i.e., the number of genes is much greater than the number of different observations. Given these problems, learning robust network features from microarray data is a challenging task. This chapter presents several approaches tackling the robustness issue in order to obtain a more reliable estimation of learned network features.
Entanglement distribution in star network based on spin chain in diamond
NASA Astrophysics Data System (ADS)
Zhu, Yuan-Ming; Ma, Lei
2018-06-01
After star network of spins was proposed, generating entanglement directly through spin interactions between distant parties became possible. We propose an architecture which involves coupled spin chains based on nitrogen-vacancy centers and nitrogen defect spins to expand star network. The numerical analysis shows that the maximally achievable entanglement Em exponentially decays with the length of spin chains M and spin noise. The entanglement capability of this configuration under the effect of disorder and spin loss is also studied. Moreover, it is shown that with this kind of architecture, star network of spins is feasible in measurement of magnetic-field gradient.
Yu, Shanen; Xu, Yiming; Jiang, Peng; Wu, Feng; Xu, Huan
2017-01-01
At present, free-to-move node self-deployment algorithms aim at event coverage and cannot improve network coverage under the premise of considering network connectivity, network reliability and network deployment energy consumption. Thus, this study proposes pigeon-based self-deployment algorithm (PSA) for underwater wireless sensor networks to overcome the limitations of these existing algorithms. In PSA, the sink node first finds its one-hop nodes and maximizes the network coverage in its one-hop region. The one-hop nodes subsequently divide the network into layers and cluster in each layer. Each cluster head node constructs a connected path to the sink node to guarantee network connectivity. Finally, the cluster head node regards the ratio of the movement distance of the node to the change in the coverage redundancy ratio as the target function and employs pigeon swarm optimization to determine the positions of the nodes. Simulation results show that PSA improves both network connectivity and network reliability, decreases network deployment energy consumption, and increases network coverage. PMID:28338615
2007-09-01
Configuration Consideration ...........................54 C. MAE NGAT DAM, CHIANG MAI , THAILAND, FIELD EXPERIMENT...2006 802.11 Network Topology Mae Ngat Dam, Chiang Mai , Thailand.......................39 Figure 31. View of COASTS 2006 802.11 Topology...Requirements (Background From Google Earth).....62 Figure 44. Mae Ngat Dam, Chiang Mai , Thailand (From Google Earth
Generalized Orienteering Problem with Resource Dependent Rewards
2013-02-19
School, Monterey, California February 19, 2013 Abstract We introduce a generalized Orienteering Problem where, as usual, a vehicle is routed from a ...prescribed start node, through a directed network, to a prescribed destination node, collecting rewards at each node visited, in order to maximize the...total reward along the path. In our generalization, transit on arcs in the network and reward collection at nodes both consume a variable amount of the
Moving target tracking through distributed clustering in directional sensor networks.
Enayet, Asma; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Almogren, Ahmad; Alamri, Atif
2014-12-18
The problem of moving target tracking in directional sensor networks (DSNs) introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target's location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster heads coordinate their member nodes in optimizing the active sensing and communication directions of the nodes, precisely determining the target location by aggregating reported sensing data from multiple nodes and transferring the resultant location information to the sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and maximizes the number of sleeping nodes in the network. We have also investigated the dynamic approach of activating sleeping nodes on-demand so that the moving target tracking accuracy can be enhanced while maximizing the network lifetime. We have carried out our extensive simulations in ns-3, and the results show that the proposed mechanism achieves higher performance compared to the state-of-the-art works.
Moving Target Tracking through Distributed Clustering in Directional Sensor Networks
Enayet, Asma; Razzaque, Md. Abdur; Hassan, Mohammad Mehedi; Almogren, Ahmad; Alamri, Atif
2014-01-01
The problem of moving target tracking in directional sensor networks (DSNs) introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target's location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster heads coordinate their member nodes in optimizing the active sensing and communication directions of the nodes, precisely determining the target location by aggregating reported sensing data from multiple nodes and transferring the resultant location information to the sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and maximizes the number of sleeping nodes in the network. We have also investigated the dynamic approach of activating sleeping nodes on-demand so that the moving target tracking accuracy can be enhanced while maximizing the network lifetime. We have carried out our extensive simulations in ns-3, and the results show that the proposed mechanism achieves higher performance compared to the state-of-the-art works. PMID:25529205
Maximal radius of the aftershock zone in earthquake networks
NASA Astrophysics Data System (ADS)
Mezentsev, A. Yu.; Hayakawa, M.
2009-09-01
In this paper, several seismoactive regions were investigated (Japan, Southern California and two tectonically distinct Japanese subregions) and structural seismic constants were estimated for each region. Using the method for seismic clustering detection proposed by Baiesi and Paczuski [M. Baiesi, M. Paczuski, Phys. Rev. E 69 (2004) 066106; M. Baiesi, M. Paczuski, Nonlin. Proc. Geophys. (2005) 1607-7946], we obtained the equation of the aftershock zone (AZ). It was shown that the consideration of a finite velocity of seismic signal leads to the natural appearance of maximal possible radius of the AZ. We obtained the equation of maximal radius of the AZ as a function of the magnitude of the main event and estimated its values for each region.
Assessing park-and-ride impacts.
DOT National Transportation Integrated Search
2010-06-01
Efficient transportation systems are vital to quality-of-life and mobility issues, and an effective park-and-ride (P&R) : network can help maximize system performance. Properly placed P&R facilities are expected to result in fewer calls : to increase...
Memory of the unjamming transition during cyclic tiltings of a granular pile.
Deboeuf, S; Dauchot, O; Staron, L; Mangeney, A; Vilotte, J-P
2005-11-01
Discrete numerical simulations are performed to study the evolution of the microstructure and the response of a granular packing during successive loading-unloading cycles, consisting of quasistatic rotations in the gravity field between opposite inclination angles. We show that internal variables--e.g., stress and fabric of the pile--exhibit hysteresis during these cycles due to the exploration of different metastable configurations. Interestingly, the hysteretic behavior of the pile strongly depends on the maximal inclination of the cycles, giving evidence of the irreversible modifications of the pile state occurring close to the unjamming transition. More specifically, we show that for cycles with maximal inclination larger than the repose angle, the weak-contact network carries the memory of the unjamming transition. These results demonstrate the relevance of a two-phase description--strong- and weak-contact networks--for a granular system, as soon as it has approached the unjamming transition.
Ultrascalable petaflop parallel supercomputer
Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Chiu, George [Cross River, NY; Cipolla, Thomas M [Katonah, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Hall, Shawn [Pleasantville, NY; Haring, Rudolf A [Cortlandt Manor, NY; Heidelberger, Philip [Cortlandt Manor, NY; Kopcsay, Gerard V [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Takken, Todd [Brewster, NY
2010-07-20
A massively parallel supercomputer of petaOPS-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC) having up to four processing elements. The ASIC nodes are interconnected by multiple independent networks that optimally maximize the throughput of packet communications between nodes with minimal latency. The multiple networks may include three high-speed networks for parallel algorithm message passing including a Torus, collective network, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. The use of a DMA engine is provided to facilitate message passing among the nodes without the expenditure of processing resources at the node.
Pattern Analysis in Social Networks with Dynamic Connections
NASA Astrophysics Data System (ADS)
Wu, Yu; Zhang, Yu
In this paper, we explore how decentralized local interactions of autonomous agents in a network relate to collective behaviors. Most existing work in this area models social network in which agent relations are fixed; instead, we focus on dynamic social networks where agents can rationally adjust their neighborhoods based on their individual interests. We propose a new connection evaluation rule called the Highest Weighted Reward (HWR) rule, with which agents dynamically choose their neighbors in order to maximize their own utilities based on the rewards from previous interactions. Our experiments show that in the 2-action pure coordination game, our system will stabilize to a clustering state where all relationships in the network are rewarded with the optimal payoff. Our experiments also reveal additional interesting patterns in the network.
NASA Astrophysics Data System (ADS)
Abdeh-Kolahchi, A.; Satish, M.; Datta, B.
2004-05-01
A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.
Optimal Base Station Density of Dense Network: From the Viewpoint of Interference and Load.
Feng, Jianyuan; Feng, Zhiyong
2017-09-11
Network densification is attracting increasing attention recently due to its ability to improve network capacity by spatial reuse and relieve congestion by offloading. However, excessive densification and aggressive offloading can also cause the degradation of network performance due to problems of interference and load. In this paper, with consideration of load issues, we study the optimal base station density that maximizes the throughput of the network. The expected link rate and the utilization ratio of the contention-based channel are derived as the functions of base station density using the Poisson Point Process (PPP) and Markov Chain. They reveal the rules of deployment. Based on these results, we obtain the throughput of the network and indicate the optimal deployment density under different network conditions. Extensive simulations are conducted to validate our analysis and show the substantial performance gain obtained by the proposed deployment scheme. These results can provide guidance for the network densification.
High-speed and high-fidelity system and method for collecting network traffic
Weigle, Eric H [Los Alamos, NM
2010-08-24
A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.
LinkMind: link optimization in swarming mobile sensor networks.
Ngo, Trung Dung
2011-01-01
A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.
Analysis of complex network performance and heuristic node removal strategies
NASA Astrophysics Data System (ADS)
Jahanpour, Ehsan; Chen, Xin
2013-12-01
Removing important nodes from complex networks is a great challenge in fighting against criminal organizations and preventing disease outbreaks. Six network performance metrics, including four new metrics, are applied to quantify networks' diffusion speed, diffusion scale, homogeneity, and diameter. In order to efficiently identify nodes whose removal maximally destroys a network, i.e., minimizes network performance, ten structured heuristic node removal strategies are designed using different node centrality metrics including degree, betweenness, reciprocal closeness, complement-derived closeness, and eigenvector centrality. These strategies are applied to remove nodes from the September 11, 2001 hijackers' network, and their performance are compared to that of a random strategy, which removes randomly selected nodes, and the locally optimal solution (LOS), which removes nodes to minimize network performance at each step. The computational complexity of the 11 strategies and LOS is also analyzed. Results show that the node removal strategies using degree and betweenness centralities are more efficient than other strategies.
LinkMind: Link Optimization in Swarming Mobile Sensor Networks
Ngo, Trung Dung
2011-01-01
A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation. PMID:22164070
On the Control of Consensus Networks: Theory and Applications
NASA Astrophysics Data System (ADS)
Hudoba de Badyn, Mathias
Signed networks allow the study of positive and negative interactions between agents. In this thesis, three papers are presented that address controllability of networked dynamics. First, controllability of signed consensus networks is approached from a symmetry perspective, for both linear and nonlinear consensus protocols. It is shown that the graph-theoretic property of signed networks known as structural balance renders the consensus protocol uncontrollable when coupled with a certain type of symmetry. Stabilizability and output controllability of signed linear consensus is also examined, as well as a data-driven approach to finding bipartite consensus stemming from structural balance for signed nonlinear consensus. Second, an algorithm is constructed that allows one to grow a network while preserving controllability, and some generalizations of this algorithm are presented. Submodular optimization is used to analyze a second algorithm that adds nodes to a network to maximize the network connectivity.
ERIC Educational Resources Information Center
Couros, Alec
2008-01-01
The various scandals around social networking abuses have garnered lots of press in the past couple of years. Predators, bullying, slander, and harassment of all kinds on sites such as MySpace and Facebook are increasingly the subjects of horror stories and play into a renewed wave of fear about the dangers online. However, once the fear of safety…
Lin, Haifeng; Bai, Di; Gao, Demin; Liu, Yunfei
2016-01-01
In Rechargeable Wireless Sensor Networks (R-WSNs), in order to achieve the maximum data collection rate it is critical that sensors operate in very low duty cycles because of the sporadic availability of energy. A sensor has to stay in a dormant state in most of the time in order to recharge the battery and use the energy prudently. In addition, a sensor cannot always conserve energy if a network is able to harvest excessive energy from the environment due to its limited storage capacity. Therefore, energy exploitation and energy saving have to be traded off depending on distinct application scenarios. Since higher data collection rate or maximum data collection rate is the ultimate objective for sensor deployment, surplus energy of a node can be utilized for strengthening packet delivery efficiency and improving the data generating rate in R-WSNs. In this work, we propose an algorithm based on data aggregation to compute an upper data generation rate by maximizing it as an optimization problem for a network, which is formulated as a linear programming problem. Subsequently, a dual problem by introducing Lagrange multipliers is constructed, and subgradient algorithms are used to solve it in a distributed manner. At the same time, a topology controlling scheme is adopted for improving the network’s performance. Through extensive simulation and experiments, we demonstrate that our algorithm is efficient at maximizing the data collection rate in rechargeable wireless sensor networks. PMID:27483282
NASA Astrophysics Data System (ADS)
Chen, Siyue; Leung, Henry; Dondo, Maxwell
2014-05-01
As computer network security threats increase, many organizations implement multiple Network Intrusion Detection Systems (NIDS) to maximize the likelihood of intrusion detection and provide a comprehensive understanding of intrusion activities. However, NIDS trigger a massive number of alerts on a daily basis. This can be overwhelming for computer network security analysts since it is a slow and tedious process to manually analyse each alert produced. Thus, automated and intelligent clustering of alerts is important to reveal the structural correlation of events by grouping alerts with common features. As the nature of computer network attacks, and therefore alerts, is not known in advance, unsupervised alert clustering is a promising approach to achieve this goal. We propose a joint optimization technique for feature selection and clustering to aggregate similar alerts and to reduce the number of alerts that analysts have to handle individually. More precisely, each identified feature is assigned a binary value, which reflects the feature's saliency. This value is treated as a hidden variable and incorporated into a likelihood function for clustering. Since computing the optimal solution of the likelihood function directly is analytically intractable, we use the Expectation-Maximisation (EM) algorithm to iteratively update the hidden variable and use it to maximize the expected likelihood. Our empirical results, using a labelled Defense Advanced Research Projects Agency (DARPA) 2000 reference dataset, show that the proposed method gives better results than the EM clustering without feature selection in terms of the clustering accuracy.
Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.
Shim, Yoonsik; Philippides, Andrew; Staras, Kevin; Husbands, Phil
2016-10-01
We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM) networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.
A Game Theoretic Approach for Balancing Energy Consumption in Clustered Wireless Sensor Networks
Lu, Yinzhi; Xiong, Lian; Tao, Yang; Zhong, Yuanchang
2017-01-01
Clustering is an effective topology control method in wireless sensor networks (WSNs), since it can enhance the network lifetime and scalability. To prolong the network lifetime in clustered WSNs, an efficient cluster head (CH) optimization policy is essential to distribute the energy among sensor nodes. Recently, game theory has been introduced to model clustering. Each sensor node is considered as a rational and selfish player which will play a clustering game with an equilibrium strategy. Then it decides whether to act as the CH according to this strategy for a tradeoff between providing required services and energy conservation. However, how to get the equilibrium strategy while maximizing the payoff of sensor nodes has rarely been addressed to date. In this paper, we present a game theoretic approach for balancing energy consumption in clustered WSNs. With our novel payoff function, realistic sensor behaviors can be captured well. The energy heterogeneity of nodes is considered by incorporating a penalty mechanism in the payoff function, so the nodes with more energy will compete for CHs more actively. We have obtained the Nash equilibrium (NE) strategy of the clustering game through convex optimization. Specifically, each sensor node can achieve its own maximal payoff when it makes the decision according to this strategy. Through plenty of simulations, our proposed game theoretic clustering is proved to have a good energy balancing performance and consequently the network lifetime is greatly enhanced. PMID:29149075
Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP
Staras, Kevin
2016-01-01
We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM) networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture. PMID:27760125
Design of surface-water data networks for regional information
Moss, Marshall E.; Gilroy, E.J.; Tasker, Gary D.; Karlinger, M.R.
1982-01-01
This report describes a technique, Network Analysis of Regional Information (NARI), and the existing computer procedures that have been developed for the specification of the regional information-cost relation for several statistical parameters of streamflow. The measure of information used is the true standard error of estimate of a regional logarithmic regression. The cost is a function of the number of stations at which hydrologic data are collected and the number of years for which the data are collected. The technique can be used to obtain either (1) a minimum cost network that will attain a prespecified accuracy and reliability or (2) a network that maximizes information given a set of budgetary and time constraints.
Multi-petascale highly efficient parallel supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time andmore » supports DMA functionality allowing for parallel processing message-passing.« less
Spreading Sequence System for Full Connectivity Relay Network
NASA Technical Reports Server (NTRS)
Kwon, Hyuck M. (Inventor); Pham, Khanh D. (Inventor); Yang, Jie (Inventor)
2018-01-01
Fully connected uplink and downlink fully connected relay network systems using pseudo-noise spreading and despreading sequences subjected to maximizing the signal-to-interference-plus-noise ratio. The relay network systems comprise one or more transmitting units, relays, and receiving units connected via a communication network. The transmitting units, relays, and receiving units each may include a computer for performing the methods and steps described herein and transceivers for transmitting and/or receiving signals. The computer encodes and/or decodes communication signals via optimum adaptive PN sequences found by employing Cholesky decompositions and singular value decompositions (SVD). The PN sequences employ channel state information (CSI) to more effectively and more securely computing the optimal sequences.
An analysis of the sectorial influence of CSI300 stocks within the directed network
NASA Astrophysics Data System (ADS)
Mai, Yong; Chen, Huan; Meng, Lei
2014-02-01
This paper uses the Partial Correlation Planar maximally filtered Graph (PCPG) method to construct a directed network for the constituent stocks underlying the China Securities Index 300 (CSI300). We also analyse the impact of individual stocks. We find that the CSI300 market is a scale-free network with a relatively small power law exponent. The volatility of the stock prices has significant impact on other stocks. In the sectorial network, the industrial sector is the most influential one over other sectors, the financial sector only has a modest influence, while the telecommunication services sector’s influence is marginal. In addition, such inter-sector influence displays quarterly stability.
Discovering network behind infectious disease outbreak
NASA Astrophysics Data System (ADS)
Maeno, Yoshiharu
2010-11-01
Stochasticity and spatial heterogeneity are of great interest recently in studying the spread of an infectious disease. The presented method solves an inverse problem to discover the effectively decisive topology of a heterogeneous network and reveal the transmission parameters which govern the stochastic spreads over the network from a dataset on an infectious disease outbreak in the early growth phase. Populations in a combination of epidemiological compartment models and a meta-population network model are described by stochastic differential equations. Probability density functions are derived from the equations and used for the maximal likelihood estimation of the topology and parameters. The method is tested with computationally synthesized datasets and the WHO dataset on the SARS outbreak.
Coding for Parallel Links to Maximize the Expected Value of Decodable Messages
NASA Technical Reports Server (NTRS)
Klimesh, Matthew A.; Chang, Christopher S.
2011-01-01
When multiple parallel communication links are available, it is useful to consider link-utilization strategies that provide tradeoffs between reliability and throughput. Interesting cases arise when there are three or more available links. Under the model considered, the links have known probabilities of being in working order, and each link has a known capacity. The sender has a number of messages to send to the receiver. Each message has a size and a value (i.e., a worth or priority). Messages may be divided into pieces arbitrarily, and the value of each piece is proportional to its size. The goal is to choose combinations of messages to send on the links so that the expected value of the messages decodable by the receiver is maximized. There are three parts to the innovation: (1) Applying coding to parallel links under the model; (2) Linear programming formulation for finding the optimal combinations of messages to send on the links; and (3) Algorithms for assisting in finding feasible combinations of messages, as support for the linear programming formulation. There are similarities between this innovation and methods developed in the field of network coding. However, network coding has generally been concerned with either maximizing throughput in a fixed network, or robust communication of a fixed volume of data. In contrast, under this model, the throughput is expected to vary depending on the state of the network. Examples of error-correcting codes that are useful under this model but which are not needed under previous models have been found. This model can represent either a one-shot communication attempt, or a stream of communications. Under the one-shot model, message sizes and link capacities are quantities of information (e.g., measured in bits), while under the communications stream model, message sizes and link capacities are information rates (e.g., measured in bits/second). This work has the potential to increase the value of data returned from spacecraft under certain conditions.
NASA Astrophysics Data System (ADS)
Shelus, P. J.; Ricklefs, R. L.; Wiant, J. R.; Ries, J. G.
2003-08-01
The lunar and artificial satellite laser ranging network, part of the International Laser Ranging Service, monitors a large number of targets. Many scientific disciplines are investigated using these data. These include the realization and maintenance of the International Terrestrial Reference Frame; the 3-dimensional deformation of the solid Earth; Earth orientation; variations in the topography and volume of the liquid Earth, including ocean circulation, mean sea level, ice sheet thickness, and wave heights; tidally generated variations in atmospheric mass distribution; calibration of microwave tracking techniques; picosecond global time transfer; determination of the dynamic equinox, the obliquity of the ecliptic, the precession constant and theories of nutation; gravitational and general relativistic studies, including Einstein's Equivalence Principle, the Robertson-Walker b parameter and time rate of change of the gravitational constant; lunar physics, including the dissipation of rotational energy, shape of the core-mantle boundary (Love Number k2), and free librations and their stimulating mechanisms; Solar System ties to the International Celestial Reference Frame. With shrinking resources, we must not only assess specific data requirements for each target, but also maximize the efficiency of the observing network. Several factors must be considered. First, not only does a result depend critically upon the quality and quantity of the data, it also depends upon the data distribution. Second, as technology improves, the cost of obtaining data can increase. Both require that scientific endeavor pay close attention to the manner in which the data is gathered. We examine the evolution of the laser network, using data analysis requirements and efficient network scheduling to maximize the scientific return. This requires an understanding of the observing equipment, as well as the scientific principles being studied. Queue scheduling and worth functions become important. This work is funded by: NSF AST-0204127, NASA NAG5-10195, NAS5-01096, NAG5-11464.
Jin, Long; Zhang, Yunong
2015-07-01
In this brief, a discrete-time Zhang neural network (DTZNN) model is first proposed, developed, and investigated for online time-varying nonlinear optimization (OTVNO). Then, Newton iteration is shown to be derived from the proposed DTZNN model. In addition, to eliminate the explicit matrix-inversion operation, the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is introduced, which can effectively approximate the inverse of Hessian matrix. A DTZNN-BFGS model is thus proposed and investigated for OTVNO, which is the combination of the DTZNN model and the quasi-Newton BFGS method. In addition, theoretical analyses show that, with step-size h=1 and/or with zero initial error, the maximal residual error of the DTZNN model has an O(τ(2)) pattern, whereas the maximal residual error of the Newton iteration has an O(τ) pattern, with τ denoting the sampling gap. Besides, when h ≠ 1 and h ∈ (0,2) , the maximal steady-state residual error of the DTZNN model has an O(τ(2)) pattern. Finally, an illustrative numerical experiment and an application example to manipulator motion generation are provided and analyzed to substantiate the efficacy of the proposed DTZNN and DTZNN-BFGS models for OTVNO.
The Conundrum of Functional Brain Networks: Small-World Efficiency or Fractal Modularity
Gallos, Lazaros K.; Sigman, Mariano; Makse, Hernán A.
2012-01-01
The human brain has been studied at multiple scales, from neurons, circuits, areas with well-defined anatomical and functional boundaries, to large-scale functional networks which mediate coherent cognition. In a recent work, we addressed the problem of the hierarchical organization in the brain through network analysis. Our analysis identified functional brain modules of fractal structure that were inter-connected in a small-world topology. Here, we provide more details on the use of network science tools to elaborate on this behavior. We indicate the importance of using percolation theory to highlight the modular character of the functional brain network. These modules present a fractal, self-similar topology, identified through fractal network methods. When we lower the threshold of correlations to include weaker ties, the network as a whole assumes a small-world character. These weak ties are organized precisely as predicted by theory maximizing information transfer with minimal wiring costs. PMID:22586406
The value of conflict in stable social networks
NASA Astrophysics Data System (ADS)
Pramukkul, Pensri; Svenkeson, Adam; West, Bruce J.; Grigolini, Paolo
2015-09-01
A cooperative network model of sociological interest is examined to determine the sensitivity of the global dynamics to having a fraction of the members behaving uncooperatively, that is, being in conflict with the majority. We study a condition where in the absence of these uncooperative individuals, the contrarians, the control parameter exceeds a critical value and the network is frozen in a state of consensus. The network dynamics change with variations in the percentage of contrarians, resulting in a balance between the value of the control parameter and the percentage of those in conflict with the majority. We show that, as a finite-size effect, the transmission of information from a network B to a network A, with a small fraction of lookout members in A who adopt the behavior of B, becomes maximal when both networks are assigned the same critical percentage of contrarians.
Parameterized centrality metric for network analysis
NASA Astrophysics Data System (ADS)
Ghosh, Rumi; Lerman, Kristina
2011-06-01
A variety of metrics have been proposed to measure the relative importance of nodes in a network. One of these, alpha-centrality [P. Bonacich, Am. J. Sociol.0002-960210.1086/228631 92, 1170 (1987)], measures the number of attenuated paths that exist between nodes. We introduce a normalized version of this metric and use it to study network structure, for example, to rank nodes and find community structure of the network. Specifically, we extend the modularity-maximization method for community detection to use this metric as the measure of node connectivity. Normalized alpha-centrality is a powerful tool for network analysis, since it contains a tunable parameter that sets the length scale of interactions. Studying how rankings and discovered communities change when this parameter is varied allows us to identify locally and globally important nodes and structures. We apply the proposed metric to several benchmark networks and show that it leads to better insights into network structure than alternative metrics.
Mixture models with entropy regularization for community detection in networks
NASA Astrophysics Data System (ADS)
Chang, Zhenhai; Yin, Xianjun; Jia, Caiyan; Wang, Xiaoyang
2018-04-01
Community detection is a key exploratory tool in network analysis and has received much attention in recent years. NMM (Newman's mixture model) is one of the best models for exploring a range of network structures including community structure, bipartite and core-periphery structures, etc. However, NMM needs to know the number of communities in advance. Therefore, in this study, we have proposed an entropy regularized mixture model (called EMM), which is capable of inferring the number of communities and identifying network structure contained in a network, simultaneously. In the model, by minimizing the entropy of mixing coefficients of NMM using EM (expectation-maximization) solution, the small clusters contained little information can be discarded step by step. The empirical study on both synthetic networks and real networks has shown that the proposed model EMM is superior to the state-of-the-art methods.
Mohsenizadeh, Daniel N; Dehghannasiri, Roozbeh; Dougherty, Edward R
2018-01-01
In systems biology, network models are often used to study interactions among cellular components, a salient aim being to develop drugs and therapeutic mechanisms to change the dynamical behavior of the network to avoid undesirable phenotypes. Owing to limited knowledge, model uncertainty is commonplace and network dynamics can be updated in different ways, thereby giving multiple dynamic trajectories, that is, dynamics uncertainty. In this manuscript, we propose an experimental design method that can effectively reduce the dynamics uncertainty and improve performance in an interaction-based network. Both dynamics uncertainty and experimental error are quantified with respect to the modeling objective, herein, therapeutic intervention. The aim of experimental design is to select among a set of candidate experiments the experiment whose outcome, when applied to the network model, maximally reduces the dynamics uncertainty pertinent to the intervention objective.
Throughput Maximization for Sensor-Aided Cognitive Radio Networks with Continuous Energy Arrivals
Nguyen, Thanh-Tung; Koo, Insoo
2015-01-01
We consider a Sensor-Aided Cognitive Radio Network (SACRN) in which sensors capable of harvesting energy are distributed throughout the network to support secondary transmitters for sensing licensed channels in order to improve both energy and spectral efficiency. Harvesting ambient energy is one of the most promising solutions to mitigate energy deficiency, prolong device lifetime, and partly reduce the battery size of devices. So far, many works related to SACRN have considered single secondary users capable of harvesting energy in whole slot as well as short-term throughput. In the paper, we consider two types of energy harvesting sensor nodes (EHSN): Type-I sensor nodes will harvest ambient energy in whole slot duration, whereas type-II sensor nodes will only harvest energy after carrying out spectrum sensing. In the paper, we also investigate long-term throughput in the scheduling window, and formulate the throughput maximization problem by considering energy-neutral operation conditions of type-I and -II sensors and the target detection probability. Through simulations, it is shown that the sensing energy consumption of all sensor nodes can be efficiently managed with the proposed scheme to achieve optimal long-term throughput in the window. PMID:26633393
Fast effects of glucocorticoids on memory-related network oscillations in the mouse hippocampus.
Weiss, E K; Krupka, N; Bähner, F; Both, M; Draguhn, A
2008-05-01
Transient or lasting increases in glucocorticoids accompany deficits in hippocampus-dependent memory formation. Recent data indicate that the formation and consolidation of declarative and spatial memory are mechanistically related to different patterns of hippocampal network oscillations. These include gamma oscillations during memory acquisition and the faster ripple oscillations (approximately 200 Hz) during subsequent memory consolidation. We therefore analysed the effects of acutely applied glucocorticoids on network activity in mouse hippocampal slices. Evoked field population spikes and paired-pulse responses were largely unaltered by corticosterone or cortisol, respectively, despite a slight increase in maximal population spike amplitude by 10 microm corticosterone. Several characteristics of sharp waves and superimposed ripple oscillations were affected by glucocorticoids, most prominently the frequency of spontaneously occurring sharp waves. At 0.1 microm, corticosterone increased this frequency, whereas maximal (10 microm) concentrations led to a reduction. In addition, gamma oscillations became slightly faster and less regular in the presence of high doses of corticosteroids. The present study describes acute effects of glucocorticoids on sharp wave-ripple complexes and gamma oscillations in mouse hippocampal slices, revealing a potential background for memory deficits in the presence of elevated levels of these hormones.
Autoshaping and automaintenance: a neural-network approach.
Burgos, José E
2007-07-01
This article presents an interpretation of autoshaping, and positive and negative automaintenance, based on a neural-network model. The model makes no distinction between operant and respondent learning mechanisms, and takes into account knowledge of hippocampal and dopaminergic systems. Four simulations were run, each one using an A-B-A design and four instances of feedfoward architectures. In A, networks received a positive contingency between inputs that simulated a conditioned stimulus (CS) and an input that simulated an unconditioned stimulus (US). Responding was simulated as an output activation that was neither elicited by nor required for the US. B was an omission-training procedure. Response directedness was defined as sensory feedback from responding, simulated as a dependence of other inputs on responding. In Simulation 1, the phenomena were simulated with a fully connected architecture and maximally intense response feedback. The other simulations used a partially connected architecture without competition between CS and response feedback. In Simulation 2, a maximally intense feedback resulted in substantial autoshaping and automaintenance. In Simulation 3, eliminating response feedback interfered substantially with autoshaping and automaintenance. In Simulation 4, intermediate autoshaping and automaintenance resulted from an intermediate response feedback. Implications for the operant-respondent distinction and the behavior-neuroscience relation are discussed.
Autoshaping and Automaintenance: A Neural-Network Approach
Burgos, José E
2007-01-01
This article presents an interpretation of autoshaping, and positive and negative automaintenance, based on a neural-network model. The model makes no distinction between operant and respondent learning mechanisms, and takes into account knowledge of hippocampal and dopaminergic systems. Four simulations were run, each one using an A-B-A design and four instances of feedfoward architectures. In A, networks received a positive contingency between inputs that simulated a conditioned stimulus (CS) and an input that simulated an unconditioned stimulus (US). Responding was simulated as an output activation that was neither elicited by nor required for the US. B was an omission-training procedure. Response directedness was defined as sensory feedback from responding, simulated as a dependence of other inputs on responding. In Simulation 1, the phenomena were simulated with a fully connected architecture and maximally intense response feedback. The other simulations used a partially connected architecture without competition between CS and response feedback. In Simulation 2, a maximally intense feedback resulted in substantial autoshaping and automaintenance. In Simulation 3, eliminating response feedback interfered substantially with autoshaping and automaintenance. In Simulation 4, intermediate autoshaping and automaintenance resulted from an intermediate response feedback. Implications for the operant–respondent distinction and the behavior–neuroscience relation are discussed. PMID:17725055
Beamspace Multiple Input Multiple Output. Part II: Steerable Antennas in Mobile Ad Hoc Networks
2016-09-01
to the transmitter with half the channel transfer function power , since the actual receiver dwells on each channel only half the time. Fourth diagram...steering in a wireless network to maximize signal power and minimize interference [8–10]. The ability to switch beams adds another diversity dimension to...channel transfer function power , since the actual receiver dwells on each channel only half the time. Fourth diagram: The transmit array sends four
Zhou, Jian; Wang, Lusheng; Wang, Weidong; Zhou, Qingfeng
2017-01-01
In future scenarios of heterogeneous and dense networks, randomly-deployed small star networks (SSNs) become a key paradigm, whose system performance is restricted to inter-SSN interference and requires an efficient resource allocation scheme for interference coordination. Traditional resource allocation schemes do not specifically focus on this paradigm and are usually too time consuming in dense networks. In this article, a very efficient graph-based scheme is proposed, which applies the maximal independent set (MIS) concept in graph theory to help divide SSNs into almost interference-free groups. We first construct an interference graph for the system based on a derived distance threshold indicating for any pair of SSNs whether there is intolerable inter-SSN interference or not. Then, SSNs are divided into MISs, and the same resource can be repetitively used by all the SSNs in each MIS. Empirical parameters and equations are set in the scheme to guarantee high performance. Finally, extensive scenarios both dense and nondense are randomly generated and simulated to demonstrate the performance of our scheme, indicating that it outperforms the classical max K-cut-based scheme in terms of system capacity, utility and especially time cost. Its achieved system capacity, utility and fairness can be close to the near-optimal strategy obtained by a time-consuming simulated annealing search. PMID:29113109
Two fast and accurate heuristic RBF learning rules for data classification.
Rouhani, Modjtaba; Javan, Dawood S
2016-03-01
This paper presents new Radial Basis Function (RBF) learning methods for classification problems. The proposed methods use some heuristics to determine the spreads, the centers and the number of hidden neurons of network in such a way that the higher efficiency is achieved by fewer numbers of neurons, while the learning algorithm remains fast and simple. To retain network size limited, neurons are added to network recursively until termination condition is met. Each neuron covers some of train data. The termination condition is to cover all training data or to reach the maximum number of neurons. In each step, the center and spread of the new neuron are selected based on maximization of its coverage. Maximization of coverage of the neurons leads to a network with fewer neurons and indeed lower VC dimension and better generalization property. Using power exponential distribution function as the activation function of hidden neurons, and in the light of new learning approaches, it is proved that all data became linearly separable in the space of hidden layer outputs which implies that there exist linear output layer weights with zero training error. The proposed methods are applied to some well-known datasets and the simulation results, compared with SVM and some other leading RBF learning methods, show their satisfactory and comparable performance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optimal quantum networks and one-shot entropies
NASA Astrophysics Data System (ADS)
Chiribella, Giulio; Ebler, Daniel
2016-09-01
We develop a semidefinite programming method for the optimization of quantum networks, including both causal networks and networks with indefinite causal structure. Our method applies to a broad class of performance measures, defined operationally in terms of interative tests set up by a verifier. We show that the optimal performance is equal to a max relative entropy, which quantifies the informativeness of the test. Building on this result, we extend the notion of conditional min-entropy from quantum states to quantum causal networks. The optimization method is illustrated in a number of applications, including the inversion, charge conjugation, and controlization of an unknown unitary dynamics. In the non-causal setting, we show a proof-of-principle application to the maximization of the winning probability in a non-causal quantum game.
Designing connected marine reserves in the face of global warming.
Álvarez-Romero, Jorge G; Munguía-Vega, Adrián; Beger, Maria; Del Mar Mancha-Cisneros, Maria; Suárez-Castillo, Alvin N; Gurney, Georgina G; Pressey, Robert L; Gerber, Leah R; Morzaria-Luna, Hem Nalini; Reyes-Bonilla, Héctor; Adams, Vanessa M; Kolb, Melanie; Graham, Erin M; VanDerWal, Jeremy; Castillo-López, Alejandro; Hinojosa-Arango, Gustavo; Petatán-Ramírez, David; Moreno-Baez, Marcia; Godínez-Reyes, Carlos R; Torre, Jorge
2018-02-01
Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well-connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean-warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph-theoretical approach based on centrality (eigenvector and distance-weighted fragmentation) of habitat patches can help design better-connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation-only reserve design is unlikely, particularly in regions with strong asymmetric patterns of dispersal connectivity. Our results support previous studies suggesting that, given potential reductions in PLD due to ocean warming, future marine reserve networks would require more and/or larger reserves in closer proximity to maintain larval connectivity. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Analoui, Morteza; Rezvani, Mohammad Hossein
2011-01-01
Behavior modeling has recently been investigated for designing self-organizing mechanisms in the context of communication networks in order to exploit the natural selfishness of the users with the goal of maximizing the overall utility. In strategic behavior modeling, the users of the network are assumed to be game players who seek to maximize their utility with taking into account the decisions that the other players might make. The essential difference between the aforementioned researches and this work is that it incorporates the non-strategic decisions in order to design the mechanism for the overlay network. In this solution concept, the decisions that a peer might make does not affect the actions of the other peers at all. The theory of consumer-firm developed in microeconomics is a model of the non-strategic behavior that we have adopted in our research. Based on it, we have presented distributed algorithms for peers' "joining" and "leaving" operations. We have modeled the overlay network as a competitive economy in which the content provided by an origin server can be viewed as commodity and the origin server and the peers who multicast the content to their downside are considered as the firms. On the other hand, due to the dual role of the peers in the overlay network, they can be considered as the consumers as well. On joining to the overlay economy, each peer is provided with an income and tries to get hold of the service regardless to the behavior of the other peers. We have designed the scalable algorithms in such a way that the existence of equilibrium price (known as Walrasian equilibrium price) is guaranteed.
A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks
Alemi, Alireza; Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo
2015-01-01
Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns. PMID:26291608
A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.
Alemi, Alireza; Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo
2015-08-01
Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns.
A Framework for Maximizing the Survivability of Network Dependent Services
2003-03-01
thank my wife, Sebnem, and my daughter, Ozge for their support, love, and understanding throughout my thesis work. Without their unselfish love and...completed. Finally, I would like to dedicate this thesis work to my beloved daughter Ozge Aktop. xvi THIS
Correlation based networks of equity returns sampled at different time horizons
NASA Astrophysics Data System (ADS)
Tumminello, M.; di Matteo, T.; Aste, T.; Mantegna, R. N.
2007-01-01
We investigate the planar maximally filtered graphs of the portfolio of the 300 most capitalized stocks traded at the New York Stock Exchange during the time period 2001 2003. Topological properties such as the average length of shortest paths, the betweenness and the degree are computed on different planar maximally filtered graphs generated by sampling the returns at different time horizons ranging from 5 min up to one trading day. This analysis confirms that the selected stocks compose a hierarchical system progressively structuring as the sampling time horizon increases. Finally, a cluster formation, associated to economic sectors, is quantitatively investigated.
Estimation and classification by sigmoids based on mutual information
NASA Technical Reports Server (NTRS)
Baram, Yoram
1994-01-01
An estimate of the probability density function of a random vector is obtained by maximizing the mutual information between the input and the output of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's s method, applied to an estimated density, yields a recursive maximum likelihood estimator, consisting of a single internal layer of sigmoids, for a random variable or a random sequence. Applications to the diamond classification and to the prediction of a sun-spot process are demonstrated.
Base norms and discrimination of generalized quantum channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenčová, A.
2014-02-15
We introduce and study norms in the space of hermitian matrices, obtained from base norms in positively generated subspaces. These norms are closely related to discrimination of so-called generalized quantum channels, including quantum states, channels, and networks. We further introduce generalized quantum decision problems and show that the maximal average payoffs of decision procedures are again given by these norms. We also study optimality of decision procedures, in particular, we obtain a necessary and sufficient condition under which an optimal 1-tester for discrimination of quantum channels exists, such that the input state is maximally entangled.
Samal, Areejit
2008-12-01
Constraint-based flux balance analysis (FBA) has proven successful in predicting the flux distribution of metabolic networks in diverse environmental conditions. FBA finds one of the alternate optimal solutions that maximizes the biomass production rate. Almaas et al. have shown that the flux distribution follows a power law, and it is possible to associate with most metabolites two reactions which maximally produce and consume a given metabolite, respectively. This observation led to the concept of high-flux backbone (HFB) in metabolic networks. In previous work, the HFB has been computed using a particular optima obtained using FBA. In this paper, we investigate the conservation of HFB of a particular solution for a given medium across different alternate optima and near-optima in metabolic networks of E. coli and S. cerevisiae. Using flux variability analysis (FVA), we propose a method to determine reactions that are guaranteed to be in HFB regardless of alternate solutions. We find that the HFB of a particular optima is largely conserved across alternate optima in E. coli, while it is only moderately conserved in S. cerevisiae. However, the HFB of a particular near-optima shows a large variation across alternate near-optima in both organisms. We show that the conserved set of reactions in HFB across alternate near-optima has a large overlap with essential reactions and reactions which are both uniquely consuming (UC) and uniquely producing (UP). Our findings suggest that the structure of the metabolic network admits a high degree of redundancy and plasticity in near-optimal flow patterns enhancing system robustness for a given environmental condition.
Synchronization in a noise-driven developing neural network
NASA Astrophysics Data System (ADS)
Lin, I.-H.; Wu, R.-K.; Chen, C.-M.
2011-11-01
We use computer simulations to investigate the structural and dynamical properties of a developing neural network whose activity is driven by noise. Structurally, the constructed neural networks in our simulations exhibit the small-world properties that have been observed in several neural networks. The dynamical change of neuronal membrane potential is described by the Hodgkin-Huxley model, and two types of learning rules, including spike-timing-dependent plasticity (STDP) and inverse STDP, are considered to restructure the synaptic strength between neurons. Clustered synchronized firing (SF) of the network is observed when the network connectivity (number of connections/maximal connections) is about 0.75, in which the firing rate of neurons is only half of the network frequency. At the connectivity of 0.86, all neurons fire synchronously at the network frequency. The network SF frequency increases logarithmically with the culturing time of a growing network and decreases exponentially with the delay time in signal transmission. These conclusions are consistent with experimental observations. The phase diagrams of SF in a developing network are investigated for both learning rules.
Modelling and temporal performances evaluation of networked control systems using (max, +) algebra
NASA Astrophysics Data System (ADS)
Ammour, R.; Amari, S.
2015-01-01
In this paper, we address the problem of temporal performances evaluation of producer/consumer networked control systems. The aim is to develop a formal method for evaluating the response time of this type of control systems. Our approach consists on modelling, using Petri nets classes, the behaviour of the whole architecture including the switches that support multicast communications used by this protocol. (max, +) algebra formalism is then exploited to obtain analytical formulas of the response time and the maximal and minimal bounds. The main novelty is that our approach takes into account all delays experienced at the different stages of networked automation systems. Finally, we show how to apply the obtained results through an example of networked control system.
Functional network inference of the suprachiasmatic nucleus
Abel, John H.; Meeker, Kirsten; Granados-Fuentes, Daniel; St. John, Peter C.; Wang, Thomas J.; Bales, Benjamin B.; Doyle, Francis J.; Herzog, Erik D.; Petzold, Linda R.
2016-01-01
In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure. PMID:27044085
Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.
Li, Xiumin; Small, Michael
2012-06-01
Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both in vivo and in vitro. In this paper, we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed in this network with appropriate input intensity. We find that the process of network learning via spike-timing dependent plasticity dramatically increases the complexity of network structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial for information transmission with high efficiency and also could be responsible for the large information capacity of this network compared with alternative archetypal networks with different neural connectivity.
Improving Stochastic Communication Network Performance: Reliability vs. Throughput
1991-12-01
increased to one. 2) arc survivabil.. ities will be increased in increments of one tenths. and 3) the costs to increase- arc si’rvivabilities were equal and...This reliability value is leni used to maximize the associated expected flow. For Net work A. a bIdget of (8)() pro(duces a tradcoff point at (.58.37...Network B for a buidgel of 2000 which allows a nel \\\\ork relial)ilitv of one to be achieved and a bidget of 1200 which allows for ;, maximum 57
2014-02-26
set of anomaly detection rules 62 I.-R. Chen et al. / Ad Hoc Networks 19 (2014) 59–74 Author’s personal copy including the interval rule (for...deficiencies in anomaly detection (e.g., imperfection of rules) by a false negative probability (PHfn) of misidentifying an unhealthy node as a...multimedia servers, Multimedia Syst. 8 (2) (2000) 83–91. [53] R. Mitchell, I.R. Chen, Adaptive intrusion detection for unmanned aircraft systems based on
NASA Technical Reports Server (NTRS)
Foytik, Peter; Robinson, Mike
2010-01-01
As urban populations and traffic congestion levels increase, effective use of information and communication tools and intelligent transportation systems as becoming increasingly important in order to maximize the efficiency of transportation networks. The appropriate placement and employment of these tools within a network is critical to their effectiveness. This presentation proposes and demonstrates the use of a commercial transportation simulation tool to simulate dynamic traffic assignment and rerouting to model route modifications as a result of traffic information.
A Model for the Growth of Network Service Providers
2011-12-01
Service Provider O-D Origin-Destination POP Point of Presence UCG Unilateral Connection Game xiv THIS PAGE INTENTIONALLY LEFT BLANK xv EXECUTIVE...xvi We make use of the Abilene dataset as input to the network provisioning model and assume that the NSP is new to the market and is building an...has to decide on the connections to build and the markets to serve in order to maximize its profits. The NSP makes these decisions based on the market
Predicting disease-related proteins based on clique backbone in protein-protein interaction network.
Yang, Lei; Zhao, Xudong; Tang, Xianglong
2014-01-01
Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.
A generalized optimization principle for asymmetric branching in fluidic networks
Stephenson, David
2016-01-01
When applied to a branching network, Murray’s law states that the optimal branching of vascular networks is achieved when the cube of the parent channel radius is equal to the sum of the cubes of the daughter channel radii. It is considered integral to understanding biological networks and for the biomimetic design of artificial fluidic systems. However, despite its ubiquity, we demonstrate that Murray’s law is only optimal (i.e. maximizes flow conductance per unit volume) for symmetric branching, where the local optimization of each individual channel corresponds to the global optimum of the network as a whole. In this paper, we present a generalized law that is valid for asymmetric branching, for any cross-sectional shape, and for a range of fluidic models. We verify our analytical solutions with the numerical optimization of a bifurcating fluidic network for the examples of laminar, turbulent and non-Newtonian fluid flows. PMID:27493583
Takahashi, Kei-ichiro; Takigawa, Ichigaku; Mamitsuka, Hiroshi
2013-01-01
Detecting biclusters from expression data is useful, since biclusters are coexpressed genes under only part of all given experimental conditions. We present a software called SiBIC, which from a given expression dataset, first exhaustively enumerates biclusters, which are then merged into rather independent biclusters, which finally are used to generate gene set networks, in which a gene set assigned to one node has coexpressed genes. We evaluated each step of this procedure: 1) significance of the generated biclusters biologically and statistically, 2) biological quality of merged biclusters, and 3) biological significance of gene set networks. We emphasize that gene set networks, in which nodes are not genes but gene sets, can be more compact than usual gene networks, meaning that gene set networks are more comprehensible. SiBIC is available at http://utrecht.kuicr.kyoto-u.ac.jp:8080/miami/faces/index.jsp.
Two years of LCOGT operations: the challenges of a global observatory
NASA Astrophysics Data System (ADS)
Volgenau, Nikolaus; Boroson, Todd
2016-07-01
With 18 telescopes distributed over 6 sites, and more telescopes being added in 2016, Las Cumbres Observatory Global Telescope Network is a unique resource for timedomain astronomy. The Network's continuous coverage of the night sky, and the optimization of the observing schedule over all sites simultaneously, have enabled LCOGTusers to produce significant science results. However, practical challenges to maximizing the Network's science output remain. The Network began providing observations for members of its Science Collaboration and other partners in May 2014. In the two years since then, LCOGT has made a number of improvements to increase the Network's science yield. We also now have two years' experience monitoring observatory performance; effective monitoring of an observatory that spans the globe is a complex enterprise. Here, we describe some of LCOGT's efforts to monitor the Network, assess the quality of science data, and improve communication with our users.
An Energy Efficient Cooperative Hierarchical MIMO Clustering Scheme for Wireless Sensor Networks
Nasim, Mehwish; Qaisar, Saad; Lee, Sungyoung
2012-01-01
In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO) communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO) clustering scheme and traditional multihop Single-Input-Single-Output (SISO) routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes. PMID:22368459
Optimal forwarding ratio on dynamical networks with heterogeneous mobility
NASA Astrophysics Data System (ADS)
Gan, Yu; Tang, Ming; Yang, Hanxin
2013-05-01
Since the discovery of non-Poisson statistics of human mobility trajectories, more attention has been paid to understand the role of these patterns in different dynamics. In this study, we first introduce the heterogeneous mobility of mobile agents into dynamical networks, and then investigate packet forwarding strategy on the heterogeneous dynamical networks. We find that the faster speed and the higher proportion of high-speed agents can enhance the network throughput and reduce the mean traveling time in random forwarding. A hierarchical structure in the dependence of high-speed is observed: the network throughput remains unchanged at small and large high-speed value. It is also interesting to find that a slightly preferential forwarding to high-speed agents can maximize the network capacity. Through theoretical analysis and numerical simulations, we show that the optimal forwarding ratio stems from the local structural heterogeneity of low-speed agents.
Inferring personal economic status from social network location
NASA Astrophysics Data System (ADS)
Luo, Shaojun; Morone, Flaviano; Sarraute, Carlos; Travizano, Matías; Makse, Hernán A.
2017-05-01
It is commonly believed that patterns of social ties affect individuals' economic status. Here we translate this concept into an operational definition at the network level, which allows us to infer the economic well-being of individuals through a measure of their location and influence in the social network. We analyse two large-scale sources: telecommunications and financial data of a whole country's population. Our results show that an individual's location, measured as the optimal collective influence to the structural integrity of the social network, is highly correlated with personal economic status. The observed social network patterns of influence mimic the patterns of economic inequality. For pragmatic use and validation, we carry out a marketing campaign that shows a threefold increase in response rate by targeting individuals identified by our social network metrics as compared to random targeting. Our strategy can also be useful in maximizing the effects of large-scale economic stimulus policies.
Inferring personal economic status from social network location.
Luo, Shaojun; Morone, Flaviano; Sarraute, Carlos; Travizano, Matías; Makse, Hernán A
2017-05-16
It is commonly believed that patterns of social ties affect individuals' economic status. Here we translate this concept into an operational definition at the network level, which allows us to infer the economic well-being of individuals through a measure of their location and influence in the social network. We analyse two large-scale sources: telecommunications and financial data of a whole country's population. Our results show that an individual's location, measured as the optimal collective influence to the structural integrity of the social network, is highly correlated with personal economic status. The observed social network patterns of influence mimic the patterns of economic inequality. For pragmatic use and validation, we carry out a marketing campaign that shows a threefold increase in response rate by targeting individuals identified by our social network metrics as compared to random targeting. Our strategy can also be useful in maximizing the effects of large-scale economic stimulus policies.
NASA Astrophysics Data System (ADS)
Davendralingam, Navindran
Conceptual design of aircraft and the airline network (routes) on which aircraft fly on are inextricably linked to passenger driven demand. Many factors influence passenger demand for various Origin-Destination (O-D) city pairs including demographics, geographic location, seasonality, socio-economic factors and naturally, the operations of directly competing airlines. The expansion of airline operations involves the identificaion of appropriate aircraft to meet projected future demand. The decisions made in incorporating and subsequently allocating these new aircraft to serve air travel demand affects the inherent risk and profit potential as predicted through the airline revenue management systems. Competition between airlines then translates to latent passenger observations of the routes served between OD pairs and ticket pricing---this in effect reflexively drives future states of demand. This thesis addresses the integrated nature of aircraft design, airline operations and passenger demand, in order to maximize future expected profits as new aircraft are brought into service. The goal of this research is to develop an approach that utilizes aircraft design, airline network design and passenger demand as a unified framework to provide better integrated design solutions in order to maximize expexted profits of an airline. This is investigated through two approaches. The first is a static model that poses the concurrent engineering paradigm above as an investment portfolio problem. Modern financial portfolio optimization techniques are used to leverage risk of serving future projected demand using a 'yet to be introduced' aircraft against potentially generated future profits. Robust optimization methodologies are incorporated to mitigate model sensitivity and address estimation risks associated with such optimization techniques. The second extends the portfolio approach to include dynamic effects of an airline's operations. A dynamic programming approach is employed to simulate the reflexive nature of airline supply-demand interactions by modeling the aggregate changes in demand that would result from tactical allocations of aircraft to maximize profit. The best yet-to-be-introduced aircraft maximizes profit by minimizing the long term fleetwide direct operating costs.
Feltus, F Alex; Ficklin, Stephen P; Gibson, Scott M; Smith, Melissa C
2013-06-05
In genomics, highly relevant gene interaction (co-expression) networks have been constructed by finding significant pair-wise correlations between genes in expression datasets. These networks are then mined to elucidate biological function at the polygenic level. In some cases networks may be constructed from input samples that measure gene expression under a variety of different conditions, such as for different genotypes, environments, disease states and tissues. When large sets of samples are obtained from public repositories it is often unmanageable to associate samples into condition-specific groups, and combining samples from various conditions has a negative effect on network size. A fixed significance threshold is often applied also limiting the size of the final network. Therefore, we propose pre-clustering of input expression samples to approximate condition-specific grouping of samples and individual network construction of each group as a means for dynamic significance thresholding. The net effect is increase sensitivity thus maximizing the total co-expression relationships in the final co-expression network compendium. A total of 86 Arabidopsis thaliana co-expression networks were constructed after k-means partitioning of 7,105 publicly available ATH1 Affymetrix microarray samples. We term each pre-sorted network a Gene Interaction Layer (GIL). Random Matrix Theory (RMT), an un-supervised thresholding method, was used to threshold each of the 86 networks independently, effectively providing a dynamic (non-global) threshold for the network. The overall gene count across all GILs reached 19,588 genes (94.7% measured gene coverage) and 558,022 unique co-expression relationships. In comparison, network construction without pre-sorting of input samples yielded only 3,297 genes (15.9%) and 129,134 relationships. in the global network. Here we show that pre-clustering of microarray samples helps approximate condition-specific networks and allows for dynamic thresholding using un-supervised methods. Because RMT ensures only highly significant interactions are kept, the GIL compendium consists of 558,022 unique high quality A. thaliana co-expression relationships across almost all of the measurable genes on the ATH1 array. For A. thaliana, these networks represent the largest compendium to date of significant gene co-expression relationships, and are a means to explore complex pathway, polygenic, and pleiotropic relationships for this focal model plant. The networks can be explored at sysbio.genome.clemson.edu. Finally, this method is applicable to any large expression profile collection for any organism and is best suited where a knowledge-independent network construction method is desired.
2013-01-01
Background In genomics, highly relevant gene interaction (co-expression) networks have been constructed by finding significant pair-wise correlations between genes in expression datasets. These networks are then mined to elucidate biological function at the polygenic level. In some cases networks may be constructed from input samples that measure gene expression under a variety of different conditions, such as for different genotypes, environments, disease states and tissues. When large sets of samples are obtained from public repositories it is often unmanageable to associate samples into condition-specific groups, and combining samples from various conditions has a negative effect on network size. A fixed significance threshold is often applied also limiting the size of the final network. Therefore, we propose pre-clustering of input expression samples to approximate condition-specific grouping of samples and individual network construction of each group as a means for dynamic significance thresholding. The net effect is increase sensitivity thus maximizing the total co-expression relationships in the final co-expression network compendium. Results A total of 86 Arabidopsis thaliana co-expression networks were constructed after k-means partitioning of 7,105 publicly available ATH1 Affymetrix microarray samples. We term each pre-sorted network a Gene Interaction Layer (GIL). Random Matrix Theory (RMT), an un-supervised thresholding method, was used to threshold each of the 86 networks independently, effectively providing a dynamic (non-global) threshold for the network. The overall gene count across all GILs reached 19,588 genes (94.7% measured gene coverage) and 558,022 unique co-expression relationships. In comparison, network construction without pre-sorting of input samples yielded only 3,297 genes (15.9%) and 129,134 relationships. in the global network. Conclusions Here we show that pre-clustering of microarray samples helps approximate condition-specific networks and allows for dynamic thresholding using un-supervised methods. Because RMT ensures only highly significant interactions are kept, the GIL compendium consists of 558,022 unique high quality A. thaliana co-expression relationships across almost all of the measurable genes on the ATH1 array. For A. thaliana, these networks represent the largest compendium to date of significant gene co-expression relationships, and are a means to explore complex pathway, polygenic, and pleiotropic relationships for this focal model plant. The networks can be explored at sysbio.genome.clemson.edu. Finally, this method is applicable to any large expression profile collection for any organism and is best suited where a knowledge-independent network construction method is desired. PMID:23738693
Constructing financial network based on PMFG and threshold method
NASA Astrophysics Data System (ADS)
Nie, Chun-Xiao; Song, Fu-Tie
2018-04-01
Based on planar maximally filtered graph (PMFG) and threshold method, we introduced a correlation-based network named PMFG-based threshold network (PTN). We studied the community structure of PTN and applied ISOMAP algorithm to represent PTN in low-dimensional Euclidean space. The results show that the community corresponds well to the cluster in the Euclidean space. Further, we studied the dynamics of the community structure and constructed the normalized mutual information (NMI) matrix. Based on the real data in the market, we found that the volatility of the market can lead to dramatic changes in the community structure, and the structure is more stable during the financial crisis.
DOT National Transportation Integrated Search
2002-11-01
This paper develops an algorithm for optimally locating surveillance technologies with an emphasis on Automatic Vehicle Identification tag readers by maximizing the benefit that would accrue from measuring travel times on a transportation network. Th...
Maximizing the optical network capacity
Bayvel, Polina; Maher, Robert; Liga, Gabriele; Shevchenko, Nikita A.; Lavery, Domaniç; Killey, Robert I.
2016-01-01
Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available. But as the volume of data continues to increase, is there a limit to the capacity of an optical fibre communication channel? The optical fibre channel is nonlinear, and the intensity-dependent Kerr nonlinearity limit has been suggested as a fundamental limit to optical fibre capacity. Current research is focused on whether this is the case, and on linear and nonlinear techniques, both optical and electronic, to understand, unlock and maximize the capacity of optical communications in the nonlinear regime. This paper describes some of them and discusses future prospects for success in the quest for capacity. PMID:26809572
NASA Astrophysics Data System (ADS)
Qiu, Sihang; Chen, Bin; Wang, Rongxiao; Zhu, Zhengqiu; Wang, Yuan; Qiu, Xiaogang
2018-04-01
Hazardous gas leak accident has posed a potential threat to human beings. Predicting atmospheric dispersion and estimating its source become increasingly important in emergency management. Current dispersion prediction and source estimation models cannot satisfy the requirement of emergency management because they are not equipped with high efficiency and accuracy at the same time. In this paper, we develop a fast and accurate dispersion prediction and source estimation method based on artificial neural network (ANN), particle swarm optimization (PSO) and expectation maximization (EM). The novel method uses a large amount of pre-determined scenarios to train the ANN for dispersion prediction, so that the ANN can predict concentration distribution accurately and efficiently. PSO and EM are applied for estimating the source parameters, which can effectively accelerate the process of convergence. The method is verified by the Indianapolis field study with a SF6 release source. The results demonstrate the effectiveness of the method.
Pricing the Services in Dynamic Environment: Agent Pricing Model
NASA Astrophysics Data System (ADS)
Žagar, Drago; Rupčić, Slavko; Rimac-Drlje, Snježana
New Internet applications and services as well as new user demands open many new issues concerning dynamic management of quality of service and price for received service, respectively. The main goals of Internet service providers are to maximize profit and maintain a negotiated quality of service. From the users' perspective the main goal is to maximize ratio of received QoS and costs of service. However, achieving these objectives could become very complex if we know that Internet service users might during the session become highly dynamic and proactive. This connotes changes in user profile or network provider/s profile caused by high level of user mobility or variable level of user demands. This paper proposes a new agent based pricing architecture for serving the highly dynamic customers in context of dynamic user/network environment. The proposed architecture comprises main aspects and basic parameters that will enable objective and transparent assessment of the costs for the service those Internet users receive while dynamically change QoS demands and cost profile.
Drop-in compatible entanglement for optical-fiber networks.
Hall, Matthew A; Altepeter, Joseph B; Kumar, Prem
2009-08-17
A growing number of quantum communication protocols require entanglement distribution among remote parties, which is best accomplished by exploiting the mature technology and extensive infrastructure of low-loss optical fiber. For this reason, a practical source of entangled photons must be drop-in compatible with optical fiber networks. Here we demonstrate such a source for the first time, in which the nonlinearity of standard single-mode fiber is utilized to yield entangled photon pairs in the 1310-nm O-band. Using an ultra-stable design, we produce polarization entanglement with 98.0% +/- 0.5% fidelity to a maximally entangled state as characterized via coincidence-basis tomography. To demonstrate the source's drop-in capability, we transmit one photon from each entangled pair through a telecommunications-grade optical amplifier set to boost classical 1550-nm (C-band) communication signals. We verify that the photon pairs experience no measurable decoherence upon passing through the active amplifier (the output state's fidelity with a maximally entangled state is 98.4% +/- 1.4%). (c) 2009 Optical Society of America
Graph Design via Convex Optimization: Online and Distributed Perspectives
NASA Astrophysics Data System (ADS)
Meng, De
Network and graph have long been natural abstraction of relations in a variety of applications, e.g. transportation, power system, social network, communication, electrical circuit, etc. As a large number of computation and optimization problems are naturally defined on graphs, graph structures not only enable important properties of these problems, but also leads to highly efficient distributed and online algorithms. For example, graph separability enables the parallelism for computation and operation as well as limits the size of local problems. More interestingly, graphs can be defined and constructed in order to take best advantage of those problem properties. This dissertation focuses on graph structure and design in newly proposed optimization problems, which establish a bridge between graph properties and optimization problem properties. We first study a new optimization problem called Geodesic Distance Maximization Problem (GDMP). Given a graph with fixed edge weights, finding the shortest path, also known as the geodesic, between two nodes is a well-studied network flow problem. We introduce the Geodesic Distance Maximization Problem (GDMP): the problem of finding the edge weights that maximize the length of the geodesic subject to convex constraints on the weights. We show that GDMP is a convex optimization problem for a wide class of flow costs, and provide a physical interpretation using the dual. We present applications of the GDMP in various fields, including optical lens design, network interdiction, and resource allocation in the control of forest fires. We develop an Alternating Direction Method of Multipliers (ADMM) by exploiting specific problem structures to solve large-scale GDMP, and demonstrate its effectiveness in numerical examples. We then turn our attention to distributed optimization on graph with only local communication. Distributed optimization arises in a variety of applications, e.g. distributed tracking and localization, estimation problems in sensor networks, multi-agent coordination. Distributed optimization aims to optimize a global objective function formed by summation of coupled local functions over a graph via only local communication and computation. We developed a weighted proximal ADMM for distributed optimization using graph structure. This fully distributed, single-loop algorithm allows simultaneous updates and can be viewed as a generalization of existing algorithms. More importantly, we achieve faster convergence by jointly designing graph weights and algorithm parameters. Finally, we propose a new problem on networks called Online Network Formation Problem: starting with a base graph and a set of candidate edges, at each round of the game, player one first chooses a candidate edge and reveals it to player two, then player two decides whether to accept it; player two can only accept limited number of edges and make online decisions with the goal to achieve the best properties of the synthesized network. The network properties considered include the number of spanning trees, algebraic connectivity and total effective resistance. These network formation games arise in a variety of cooperative multiagent systems. We propose a primal-dual algorithm framework for the general online network formation game, and analyze the algorithm performance by the competitive ratio and regret.
Statistical mechanics of the international trade network.
Fronczak, Agata; Fronczak, Piotr
2012-05-01
Analyzing real data on international trade covering the time interval 1950-2000, we show that in each year over the analyzed period the network is a typical representative of the ensemble of maximally random weighted networks, whose directed connections (bilateral trade volumes) are only characterized by the product of the trading countries' GDPs. It means that time evolution of this network may be considered as a continuous sequence of equilibrium states, i.e., a quasistatic process. This, in turn, allows one to apply the linear response theory to make (and also verify) simple predictions about the network. In particular, we show that bilateral trade fulfills a fluctuation-response theorem, which states that the average relative change in imports (exports) between two countries is a sum of the relative changes in their GDPs. Yearly changes in trade volumes prove that the theorem is valid.
Statistical mechanics of the international trade network
NASA Astrophysics Data System (ADS)
Fronczak, Agata; Fronczak, Piotr
2012-05-01
Analyzing real data on international trade covering the time interval 1950-2000, we show that in each year over the analyzed period the network is a typical representative of the ensemble of maximally random weighted networks, whose directed connections (bilateral trade volumes) are only characterized by the product of the trading countries' GDPs. It means that time evolution of this network may be considered as a continuous sequence of equilibrium states, i.e., a quasistatic process. This, in turn, allows one to apply the linear response theory to make (and also verify) simple predictions about the network. In particular, we show that bilateral trade fulfills a fluctuation-response theorem, which states that the average relative change in imports (exports) between two countries is a sum of the relative changes in their GDPs. Yearly changes in trade volumes prove that the theorem is valid.
Game theory and extremal optimization for community detection in complex dynamic networks.
Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca
2014-01-01
The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.
Dopaminergic Balance between Reward Maximization and Policy Complexity
Parush, Naama; Tishby, Naftali; Bergman, Hagai
2011-01-01
Previous reinforcement-learning models of the basal ganglia network have highlighted the role of dopamine in encoding the mismatch between prediction and reality. Far less attention has been paid to the computational goals and algorithms of the main-axis (actor). Here, we construct a top-down model of the basal ganglia with emphasis on the role of dopamine as both a reinforcement learning signal and as a pseudo-temperature signal controlling the general level of basal ganglia excitability and motor vigilance of the acting agent. We argue that the basal ganglia endow the thalamic-cortical networks with the optimal dynamic tradeoff between two constraints: minimizing the policy complexity (cost) and maximizing the expected future reward (gain). We show that this multi-dimensional optimization processes results in an experience-modulated version of the softmax behavioral policy. Thus, as in classical softmax behavioral policies, probability of actions are selected according to their estimated values and the pseudo-temperature, but in addition also vary according to the frequency of previous choices of these actions. We conclude that the computational goal of the basal ganglia is not to maximize cumulative (positive and negative) reward. Rather, the basal ganglia aim at optimization of independent gain and cost functions. Unlike previously suggested single-variable maximization processes, this multi-dimensional optimization process leads naturally to a softmax-like behavioral policy. We suggest that beyond its role in the modulation of the efficacy of the cortico-striatal synapses, dopamine directly affects striatal excitability and thus provides a pseudo-temperature signal that modulates the tradeoff between gain and cost. The resulting experience and dopamine modulated softmax policy can then serve as a theoretical framework to account for the broad range of behaviors and clinical states governed by the basal ganglia and dopamine systems. PMID:21603228
Representativeness-based sampling network design for the State of Alaska
Forrest M. Hoffman; Jitendra Kumar; Richard T. Mills; William W. Hargrove
2013-01-01
Resource and logistical constraints limit the frequency and extent of environmental observations, particularly in the Arctic, necessitating the development of a systematic sampling strategy to maximize coverage and objectively represent environmental variability at desired scales. A quantitative methodology for stratifying sampling domains, informing site selection,...
Resource Sharing and Public Education. Project Evaluation Report.
ERIC Educational Resources Information Center
Leton, Donald A.
Two exemplary projects developed to maximize student options through the sharing of facilities, programs, and options were evaluated. The Remedial-Developmental Program developed a communications network between McKinley and Roosevelt High Schools and Kapiolani Community College to share student information and use it for individual student…
Enhancing Family Literacy through Collaboration: Program Considerations.
ERIC Educational Resources Information Center
Tice, Carolyn J.
2000-01-01
Presents findings from a two-year evaluation of a family literacy program in rural Appalachian Ohio. Demonstrates positive results for both impact/outcome and process objectives. Highlights an extensive network of interpersonal and interagency relationships that maximized resources and supported families as they changed. Suggests the importance of…
Self-Learning Intelligent Agents for Dynamic Traffic Routing on Transportation Networks
NASA Astrophysics Data System (ADS)
Sadek, Add; Basha, Nagi
Intelligent Transportation Systems (ITS) are designed to take advantage of recent advances in communications, electronics, and Information Technology in improving the efficiency and safety of transportation systems. Among the several ITS applications is the notion of Dynamic Traffic Routing (DTR), which involves generating "optimal" routing recommendations to drivers with the aim of maximizing network utilizing. In this paper, we demonstrate the feasibility of using a self-learning intelligent agent to solve the DTR problem to achieve traffic user equilibrium in a transportation network. The core idea is to deploy an agent to a simulation model of a highway. The agent then learns by itself by interacting with the simulation model. Once the agent reaches a satisfactory level of performance, it can then be deployed to the real-world, where it would continue to learn how to refine its control policies over time. To test this concept in this paper, the Cell Transmission Model (CTM) developed by Carlos Daganzo of the University of California at Berkeley is used to simulate a simple highway with two main alternative routes. With the model developed, a Reinforcement Learning Agent (RLA) is developed to learn how to best dynamically route traffic, so as to maximize the utilization of existing capacity. Preliminary results obtained from our experiments are promising. RL, being an adaptive online learning technique, appears to have a great potential for controlling a stochastic dynamic systems such as a transportation system. Furthermore, the approach is highly scalable and applicable to a variety of networks and roadways.
An improved game-theoretic approach to uncover overlapping communities
NASA Astrophysics Data System (ADS)
Sun, Hong-Liang; Ch'Ng, Eugene; Yong, Xi; Garibaldi, Jonathan M.; See, Simon; Chen, Duan-Bing
How can we uncover overlapping communities from complex networks to understand the inherent structures and functions? Chen et al. firstly proposed a community game (Game) to study this problem, and the overlapping communities have been discovered when the game is convergent. It is based on the assumption that each vertex of the underlying network is a rational game player to maximize its utility. In this paper, we investigate how similar vertices affect the formation of community game. The Adamic-Adar Index (AA Index) has been employed to define the new utility function. This novel method has been evaluated on both synthetic and real-world networks. Experimental study shows that it has significant improvement of accuracy (from 4.8% to 37.6%) compared with the Game on 10 real networks. It is more efficient on Facebook networks (FN) and Amazon co-purchasing networks than on other networks. This result implicates that “friend circles of friends” of Facebook are valuable to understand the overlapping community division.
NASA Astrophysics Data System (ADS)
Fu, Yu-Hsiang; Huang, Chung-Yuan; Sun, Chuen-Tsai
2016-11-01
Using network community structures to identify multiple influential spreaders is an appropriate method for analyzing the dissemination of information, ideas and infectious diseases. For example, data on spreaders selected from groups of customers who make similar purchases may be used to advertise products and to optimize limited resource allocation. Other examples include community detection approaches aimed at identifying structures and groups in social or complex networks. However, determining the number of communities in a network remains a challenge. In this paper we describe our proposal for a two-phase evolutionary framework (TPEF) for determining community numbers and maximizing community modularity. Lancichinetti-Fortunato-Radicchi benchmark networks were used to test our proposed method and to analyze execution time, community structure quality, convergence, and the network spreading effect. Results indicate that our proposed TPEF generates satisfactory levels of community quality and convergence. They also suggest a need for an index, mechanism or sampling technique to determine whether a community detection approach should be used for selecting multiple network spreaders.
Computationally Efficient Nonlinear Bell Inequalities for Quantum Networks
NASA Astrophysics Data System (ADS)
Luo, Ming-Xing
2018-04-01
The correlations in quantum networks have attracted strong interest with new types of violations of the locality. The standard Bell inequalities cannot characterize the multipartite correlations that are generated by multiple sources. The main problem is that no computationally efficient method is available for constructing useful Bell inequalities for general quantum networks. In this work, we show a significant improvement by presenting new, explicit Bell-type inequalities for general networks including cyclic networks. These nonlinear inequalities are related to the matching problem of an equivalent unweighted bipartite graph that allows constructing a polynomial-time algorithm. For the quantum resources consisting of bipartite entangled pure states and generalized Greenberger-Horne-Zeilinger (GHZ) states, we prove the generic nonmultilocality of quantum networks with multiple independent observers using new Bell inequalities. The violations are maximal with respect to the presented Tsirelson's bound for Einstein-Podolsky-Rosen states and GHZ states. Moreover, these violations hold for Werner states or some general noisy states. Our results suggest that the presented Bell inequalities can be used to characterize experimental quantum networks.
Extending Stability Through Hierarchical Clusters in Echo State Networks
Jarvis, Sarah; Rotter, Stefan; Egert, Ulrich
2009-01-01
Echo State Networks (ESN) are reservoir networks that satisfy well-established criteria for stability when constructed as feedforward networks. Recent evidence suggests that stability criteria are altered in the presence of reservoir substructures, such as clusters. Understanding how the reservoir architecture affects stability is thus important for the appropriate design of any ESN. To quantitatively determine the influence of the most relevant network parameters, we analyzed the impact of reservoir substructures on stability in hierarchically clustered ESNs, as they allow a smooth transition from highly structured to increasingly homogeneous reservoirs. Previous studies used the largest eigenvalue of the reservoir connectivity matrix (spectral radius) as a predictor for stable network dynamics. Here, we evaluate the impact of clusters, hierarchy and intercluster connectivity on the predictive power of the spectral radius for stability. Both hierarchy and low relative cluster sizes extend the range of spectral radius values, leading to stable networks, while increasing intercluster connectivity decreased maximal spectral radius. PMID:20725523
Networks of Firms and the Ridge in the Production Space
NASA Astrophysics Data System (ADS)
Souma, Wataru
We develop complex networks that represent activities in the economy. The network in this study is constructed from firms and the relationships between firms, i.e., shareholding, interlocking directors, transactions, and joint applications for patents. Thus, the network is regarded as a multigraph, and it is also regarded as a weighted network. By calculating various network indices, we clarify the characteristics of the network. We also consider the dynamics of firms in the production space that are characterized by capital stock, employment, and profit. Each firm moves within this space to maximize their profit by using controlling of capital stock and employment. We show that the dynamics of rational firms can be described using a ridge equation. We analytically solve this equation by assuming the extensive Cobb-Douglas production function, and thereby obtain a solution. By comparing the distribution of firms and this solution, we find that almost all of the 1,100 firms listed on the first section of the Tokyo stock exchange and belonging to the manufacturing sector are managed efficiently.
Reward-based training of recurrent neural networks for cognitive and value-based tasks
Song, H Francis; Yang, Guangyu R; Wang, Xiao-Jing
2017-01-01
Trained neural network models, which exhibit features of neural activity recorded from behaving animals, may provide insights into the circuit mechanisms of cognitive functions through systematic analysis of network activity and connectivity. However, in contrast to the graded error signals commonly used to train networks through supervised learning, animals learn from reward feedback on definite actions through reinforcement learning. Reward maximization is particularly relevant when optimal behavior depends on an animal’s internal judgment of confidence or subjective preferences. Here, we implement reward-based training of recurrent neural networks in which a value network guides learning by using the activity of the decision network to predict future reward. We show that such models capture behavioral and electrophysiological findings from well-known experimental paradigms. Our work provides a unified framework for investigating diverse cognitive and value-based computations, and predicts a role for value representation that is essential for learning, but not executing, a task. DOI: http://dx.doi.org/10.7554/eLife.21492.001 PMID:28084991
NASA Astrophysics Data System (ADS)
WANG, Qingrong; ZHU, Changfeng; LI, Ying; ZHANG, Zhengkun
2017-06-01
Considering the time dependence of emergency logistic network and complexity of the environment that the network exists in, in this paper the time dependent network optimization theory and robust discrete optimization theory are combined, and the emergency logistics dynamic network optimization model with characteristics of robustness is built to maximize the timeliness of emergency logistics. On this basis, considering the complexity of dynamic network and the time dependence of edge weight, an improved ant colony algorithm is proposed to realize the coupling of the optimization algorithm and the network time dependence and robustness. Finally, a case study has been carried out in order to testify validity of this robustness optimization model and its algorithm, and the value of different regulation factors was analyzed considering the importance of the value of the control factor in solving the optimal path. Analysis results show that this model and its algorithm above-mentioned have good timeliness and strong robustness.
Optimizing spread dynamics on graphs by message passing
NASA Astrophysics Data System (ADS)
Altarelli, F.; Braunstein, A.; Dall'Asta, L.; Zecchina, R.
2013-09-01
Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the past decades, much effort has been devoted to understanding the typical behavior of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception being models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).
Incremental k-core decomposition: Algorithms and evaluation
Sariyuce, Ahmet Erdem; Gedik, Bugra; Jacques-SIlva, Gabriela; ...
2016-02-01
A k-core of a graph is a maximal connected subgraph in which every vertex is connected to at least k vertices in the subgraph. k-core decomposition is often used in large-scale network analysis, such as community detection, protein function prediction, visualization, and solving NP-hard problems on real networks efficiently, like maximal clique finding. In many real-world applications, networks change over time. As a result, it is essential to develop efficient incremental algorithms for dynamic graph data. In this paper, we propose a suite of incremental k-core decomposition algorithms for dynamic graph data. These algorithms locate a small subgraph that ismore » guaranteed to contain the list of vertices whose maximum k-core values have changed and efficiently process this subgraph to update the k-core decomposition. We present incremental algorithms for both insertion and deletion operations, and propose auxiliary vertex state maintenance techniques that can further accelerate these operations. Our results show a significant reduction in runtime compared to non-incremental alternatives. We illustrate the efficiency of our algorithms on different types of real and synthetic graphs, at varying scales. Furthermore, for a graph of 16 million vertices, we observe relative throughputs reaching a million times, relative to the non-incremental algorithms.« less
A network function-based definition of communities in complex networks.
Chauhan, Sanjeev; Girvan, Michelle; Ott, Edward
2012-09-01
We consider an alternate definition of community structure that is functionally motivated. We define network community structure based on the function the network system is intended to perform. In particular, as a specific example of this approach, we consider communities whose function is enhanced by the ability to synchronize and/or by resilience to node failures. Previous work has shown that, in many cases, the largest eigenvalue of the network's adjacency matrix controls the onset of both synchronization and percolation processes. Thus, for networks whose functional performance is dependent on these processes, we propose a method that divides a given network into communities based on maximizing a function of the largest eigenvalues of the adjacency matrices of the resulting communities. We also explore the differences between the partitions obtained by our method and the modularity approach (which is based solely on consideration of network structure). We do this for several different classes of networks. We find that, in many cases, modularity-based partitions do almost as well as our function-based method in finding functional communities, even though modularity does not specifically incorporate consideration of function.
Reconstruction of financial networks for robust estimation of systemic risk
NASA Astrophysics Data System (ADS)
Mastromatteo, Iacopo; Zarinelli, Elia; Marsili, Matteo
2012-03-01
In this paper we estimate the propagation of liquidity shocks through interbank markets when the information about the underlying credit network is incomplete. We show that techniques such as maximum entropy currently used to reconstruct credit networks severely underestimate the risk of contagion by assuming a trivial (fully connected) topology, a type of network structure which can be very different from the one empirically observed. We propose an efficient message-passing algorithm to explore the space of possible network structures and show that a correct estimation of the network degree of connectedness leads to more reliable estimations for systemic risk. Such an algorithm is also able to produce maximally fragile structures, providing a practical upper bound for the risk of contagion when the actual network structure is unknown. We test our algorithm on ensembles of synthetic data encoding some features of real financial networks (sparsity and heterogeneity), finding that more accurate estimations of risk can be achieved. Finally we find that this algorithm can be used to control the amount of information that regulators need to require from banks in order to sufficiently constrain the reconstruction of financial networks.
Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih
2015-11-01
This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility. Copyright © 2015 Elsevier Ltd. All rights reserved.
Resource Allocation Algorithms for the Next Generation Cellular Networks
NASA Astrophysics Data System (ADS)
Amzallag, David; Raz, Danny
This chapter describes recent results addressing resource allocation problems in the context of current and future cellular technologies. We present models that capture several fundamental aspects of planning and operating these networks, and develop new approximation algorithms providing provable good solutions for the corresponding optimization problems. We mainly focus on two families of problems: cell planning and cell selection. Cell planning deals with choosing a network of base stations that can provide the required coverage of the service area with respect to the traffic requirements, available capacities, interference, and the desired QoS. Cell selection is the process of determining the cell(s) that provide service to each mobile station. Optimizing these processes is an important step towards maximizing the utilization of current and future cellular networks.
A real-time hybrid neuron network for highly parallel cognitive systems.
Christiaanse, Gerrit Jan; Zjajo, Amir; Galuzzi, Carlo; van Leuken, Rene
2016-08-01
For comprehensive understanding of how neurons communicate with each other, new tools need to be developed that can accurately mimic the behaviour of such neurons and neuron networks under `real-time' constraints. In this paper, we propose an easily customisable, highly pipelined, neuron network design, which executes optimally scheduled floating-point operations for maximal amount of biophysically plausible neurons per FPGA family type. To reduce the required amount of resources without adverse effect on the calculation latency, a single exponent instance is used for multiple neuron calculation operations. Experimental results indicate that the proposed network design allows the simulation of up to 1188 neurons on Virtex7 (XC7VX550T) device in brain real-time yielding a speed-up of x12.4 compared to the state-of-the art.
Spreading gossip in social networks.
Lind, Pedro G; da Silva, Luciano R; Andrade, José S; Herrmann, Hans J
2007-09-01
We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.
Spreading gossip in social networks
NASA Astrophysics Data System (ADS)
Lind, Pedro G.; da Silva, Luciano R.; Andrade, José S., Jr.; Herrmann, Hans J.
2007-09-01
We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Neena; Barhen, Jacob; Glover, Charles Wayne
2012-01-01
Multi-sensor networks may face resource limitations in a dynamically evolving multiple target tracking scenario. It is necessary to task the sensors efficiently so that the overall system performance is maximized within the system constraints. The central sensor resource manager may control the sensors to meet objective functions that are formulated to meet system goals such as minimization of track loss, maximization of probability of target detection, and minimization of track error. This paper discusses the variety of techniques that may be utilized to optimize sensor performance for either near term gain or future reward over a longer time horizon.
Interdisciplinary Team Teaching: An Effective Method to Transform Student Attitudes
ERIC Educational Resources Information Center
Little, Amanda; Hoel, Anne
2011-01-01
In order to maximize student development in an interdisciplinary context, we implemented and evaluated a business-biology team teaching approach. The class project involved teams of environmental science and business students analyzing an industry stakeholder interested in participating in the development of a community composting network. We…
Networking Pedagogies for Professional Writing Students
ERIC Educational Resources Information Center
Bay, Jennifer
2010-01-01
This essay proposes that in light of what has been called the "new economy," writing instructors need to rethink some of the pedagogical approaches and theories they use to professionalize their students. While at one time the concept of experiential or situated learning was useful for maximizing educational possibilities, everyone has moved into…
Trade-offs and efficiencies in optimal budget-constrained multispecies corridor networks
Bistra Dilkina; Rachel Houtman; Carla P. Gomes; Claire A. Montgomery; Kevin S. McKelvey; Katherine Kendall; Tabitha A. Graves; Richard Bernstein; Michael K. Schwartz
2016-01-01
Conservation biologists recognize that a system of isolated protected areas will be necessary but insufficient to meet biodiversity objectives. Current approaches to connecting core conservation areas through corridors consider optimal corridor placement based on a single optimization goal: commonly, maximizing the movement for a target species across a...
Ecosystem growth and development.
Fath, Brian D; Jørgensen, Sven E; Patten, Bernard C; Straskraba, Milan
2004-11-01
One of the most important features of biosystems is how they are able to maintain local order (low entropy) within their system boundaries. At the ecosystem scale, this organization can be observed in the thermodynamic parameters that describe it, such that these parameters can be used to track ecosystem growth and development during succession. Thermodynamically, ecosystem growth is the increase of energy throughflow and stored biomass, and ecosystem development is the internal reorganization of these energy mass stores, which affect transfers, transformations, and time lags within the system. Several proposed hypotheses describe thermodynamically the orientation or natural tendency that ecosystems follow during succession, and here, we consider five: minimize specific entropy production, maximize dissipation, maximize exergy storage (includes biomass and information), maximize energy throughflow, and maximize retention time. These thermodynamic orientors were previously all shown to occur to some degree during succession, and here we present a refinement by observing them during different stages of succession. We view ecosystem succession as a series of four growth and development stages: boundary, structural, network, and informational. We demonstrate how each of these ecological thermodynamic orientors behaves during the different growth and development stages, and show that while all apply during some stages only maximizing energy throughflow and maximizing exergy storage are applicable during all four stages. Therefore, we conclude that the movement away from thermodynamic equilibrium, and the subsequent increase in organization during ecosystem growth and development, is a result of system components and configurations that maximize the flux of useful energy and the amount of stored exergy. Empirical data and theoretical models support these conclusions.
Changes in functional and structural brain connectome along the Alzheimer's disease continuum.
Filippi, Massimo; Basaia, Silvia; Canu, Elisa; Imperiale, Francesca; Magnani, Giuseppe; Falautano, Monica; Comi, Giancarlo; Falini, Andrea; Agosta, Federica
2018-05-09
The aim of this study was two-fold: (i) to investigate structural and functional brain network architecture in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI), stratified in converters (c-aMCI) and non-converters (nc-aMCI) to AD; and to assess the relationship between healthy brain network functional connectivity and the topography of brain atrophy in patients along the AD continuum. Ninety-four AD patients, 47 aMCI patients (25 c-aMCI within 36 months) and 53 age- and sex-matched healthy controls were studied. Graph analysis and connectomics assessed global and local, structural and functional topological network properties and regional connectivity. Healthy topological features of brain regions were assessed based on their connectivity with the point of maximal atrophy (epicenter) in AD and aMCI patients. Brain network graph analysis properties were severely altered in AD patients. Structural brain network was already altered in c-aMCI patients relative to healthy controls in particular in the temporal and parietal brain regions, while functional connectivity did not change. Structural connectivity alterations distinguished c-aMCI from nc-aMCI cases. In both AD and c-aMCI, the point of maximal atrophy was located in left hippocampus (disease-epicenter). Brain regions most strongly connected with the disease-epicenter in the healthy functional connectome were also the most atrophic in both AD and c-aMCI patients. Progressive degeneration in the AD continuum is associated with an early breakdown of anatomical brain connections and follows the strongest connections with the disease-epicenter. These findings support the hypothesis that the topography of brain connectional architecture can modulate the spread of AD through the brain.
Rodgers, Edmund W; Fu, Jing Jing; Krenz, Wulf-Dieter C; Baro, Deborah J
2011-11-09
The phases at which network neurons fire in rhythmic motor outputs are critically important for the proper generation of motor behaviors. The pyloric network in the crustacean stomatogastric ganglion generates a rhythmic motor output wherein neuronal phase relationships are remarkably invariant across individuals and throughout lifetimes. The mechanisms for maintaining these robust phase relationships over the long-term are not well described. Here we show that tonic nanomolar dopamine (DA) acts at type 1 DA receptors (D1Rs) to enable an activity-dependent mechanism that can contribute to phase maintenance in the lateral pyloric (LP) neuron. The LP displays continuous rhythmic bursting. The activity-dependent mechanism was triggered by a prolonged decrease in LP burst duration, and it generated a persistent increase in the maximal conductance (G(max)) of the LP hyperpolarization-activated current (I(h)), but only in the presence of steady-state DA. Interestingly, micromolar DA produces an LP phase advance accompanied by a decrease in LP burst duration that abolishes normal LP network function. During a 1 h application of micromolar DA, LP phase recovered over tens of minutes because, the activity-dependent mechanism enabled by steady-state DA was triggered by the micromolar DA-induced decrease in LP burst duration. Presumably, this mechanism restored normal LP network function. These data suggest steady-state DA may enable homeostatic mechanisms that maintain motor network output during protracted neuromodulation. This DA-enabled, activity-dependent mechanism to preserve phase may be broadly relevant, as diminished dopaminergic tone has recently been shown to reduce I(h) in rhythmically active neurons in the mammalian brain.
A Bayesian Active Learning Experimental Design for Inferring Signaling Networks.
Ness, Robert O; Sachs, Karen; Mallick, Parag; Vitek, Olga
2018-06-21
Machine learning methods for learning network structure are applied to quantitative proteomics experiments and reverse-engineer intracellular signal transduction networks. They provide insight into the rewiring of signaling within the context of a disease or a phenotype. To learn the causal patterns of influence between proteins in the network, the methods require experiments that include targeted interventions that fix the activity of specific proteins. However, the interventions are costly and add experimental complexity. We describe an active learning strategy for selecting optimal interventions. Our approach takes as inputs pathway databases and historic data sets, expresses them in form of prior probability distributions on network structures, and selects interventions that maximize their expected contribution to structure learning. Evaluations on simulated and real data show that the strategy reduces the detection error of validated edges as compared with an unguided choice of interventions and avoids redundant interventions, thereby increasing the effectiveness of the experiment.
Integrated forward and reverse supply chain: A tire case study.
Pedram, Ali; Yusoff, Nukman Bin; Udoncy, Olugu Ezutah; Mahat, Abu Bakar; Pedram, Payam; Babalola, Ayo
2017-02-01
This paper attempts to integrate both a forward and reverse supply chain to design a closed-loop supply chain network (CLSC). The problem in the design of a CLSC network is uncertainty in demand, return products and the quality of return products. Scenario analyses are generated to overcome this uncertainty. In contrast to the existing supply chain network design models, a new application of a CLSC network was studied in this paper to reduce waste. A multi-product, multi-tier mixed integer linear model is developed for a CLSC network design. The main objective is to maximize profit and provide waste management decision support in order to minimize pollution. The result shows applicability of the model in the tire industry. The model determines the number and the locations of facilities and the material flows between these facilities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structural reducibility of multilayer networks
NASA Astrophysics Data System (ADS)
de Domenico, Manlio; Nicosia, Vincenzo; Arenas, Alexandre; Latora, Vito
2015-04-01
Many complex systems can be represented as networks consisting of distinct types of interactions, which can be categorized as links belonging to different layers. For example, a good description of the full protein-protein interactome requires, for some organisms, up to seven distinct network layers, accounting for different genetic and physical interactions, each containing thousands of protein-protein relationships. A fundamental open question is then how many layers are indeed necessary to accurately represent the structure of a multilayered complex system. Here we introduce a method based on quantum theory to reduce the number of layers to a minimum while maximizing the distinguishability between the multilayer network and the corresponding aggregated graph. We validate our approach on synthetic benchmarks and we show that the number of informative layers in some real multilayer networks of protein-genetic interactions, social, economical and transportation systems can be reduced by up to 75%.
Multilayer Statistical Intrusion Detection in Wireless Networks
NASA Astrophysics Data System (ADS)
Hamdi, Mohamed; Meddeb-Makhlouf, Amel; Boudriga, Noureddine
2008-12-01
The rapid proliferation of mobile applications and services has introduced new vulnerabilities that do not exist in fixed wired networks. Traditional security mechanisms, such as access control and encryption, turn out to be inefficient in modern wireless networks. Given the shortcomings of the protection mechanisms, an important research focuses in intrusion detection systems (IDSs). This paper proposes a multilayer statistical intrusion detection framework for wireless networks. The architecture is adequate to wireless networks because the underlying detection models rely on radio parameters and traffic models. Accurate correlation between radio and traffic anomalies allows enhancing the efficiency of the IDS. A radio signal fingerprinting technique based on the maximal overlap discrete wavelet transform (MODWT) is developed. Moreover, a geometric clustering algorithm is presented. Depending on the characteristics of the fingerprinting technique, the clustering algorithm permits to control the false positive and false negative rates. Finally, simulation experiments have been carried out to validate the proposed IDS.
Umar, Amara; Javaid, Nadeem; Ahmad, Ashfaq; Khan, Zahoor Ali; Qasim, Umar; Alrajeh, Nabil; Hayat, Amir
2015-06-18
Performance enhancement of Underwater Wireless Sensor Networks (UWSNs) in terms of throughput maximization, energy conservation and Bit Error Rate (BER) minimization is a potential research area. However, limited available bandwidth, high propagation delay, highly dynamic network topology, and high error probability leads to performance degradation in these networks. In this regard, many cooperative communication protocols have been developed that either investigate the physical layer or the Medium Access Control (MAC) layer, however, the network layer is still unexplored. More specifically, cooperative routing has not yet been jointly considered with sink mobility. Therefore, this paper aims to enhance the network reliability and efficiency via dominating set based cooperative routing and sink mobility. The proposed work is validated via simulations which show relatively improved performance of our proposed work in terms the selected performance metrics.
Locating influential nodes in complex networks
Malliaros, Fragkiskos D.; Rossi, Maria-Evgenia G.; Vazirgiannis, Michalis
2016-01-01
Understanding and controlling spreading processes in networks is an important topic with many diverse applications, including information dissemination, disease propagation and viral marketing. It is of crucial importance to identify which entities act as influential spreaders that can propagate information to a large portion of the network, in order to ensure efficient information diffusion, optimize available resources or even control the spreading. In this work, we capitalize on the properties of the K-truss decomposition, a triangle-based extension of the core decomposition of graphs, to locate individual influential nodes. Our analysis on real networks indicates that the nodes belonging to the maximal K-truss subgraph show better spreading behavior compared to previously used importance criteria, including node degree and k-core index, leading to faster and wider epidemic spreading. We further show that nodes belonging to such dense subgraphs, dominate the small set of nodes that achieve the optimal spreading in the network. PMID:26776455
An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.
Vimalarani, C; Subramanian, R; Sivanandam, S N
2016-01-01
Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.
Energy neutral and low power wireless communications
NASA Astrophysics Data System (ADS)
Orhan, Oner
Wireless sensor nodes are typically designed to have low cost and small size. These design objectives impose restrictions on the capacity and efficiency of the transceiver components and energy storage units that can be used. As a result, energy becomes a bottleneck and continuous operation of the sensor network requires frequent battery replacements, increasing the maintenance cost. Energy harvesting and energy efficient transceiver architectures are able to overcome these challenges by collecting energy from the environment and utilizing the energy in an intelligent manner. However, due to the nature of the ambient energy sources, the amount of useful energy that can be harvested is limited and unreliable. Consequently, optimal management of the harvested energy and design of low power transceivers pose new challenges for wireless network design and operation. The first part of this dissertation is on energy neutral wireless networking, where optimal transmission schemes under different system setups and objectives are investigated. First, throughput maximization for energy harvesting two-hop networks with decode-and-forward half-duplex relays is studied. For a system with two parallel relays, various combinations of the following four transmission modes are considered: Broadcast from the source, multi-access from the relays, and successive relaying phases I and II. Next, the energy cost of the processing circuitry as well as the transmission energy are taken into account for communication over a broadband fading channel powered by an energy harvesting transmitter. Under this setup, throughput maximization, energy maximization, and transmission completion time minimization problems are studied. Finally, source and channel coding for an energy-limited wireless sensor node is investigated under various energy constraints including energy harvesting, processing and sampling costs. For each objective, optimal transmission policies are formulated as the solutions of a convex optimization problem, and the properties of these optimal policies are identified. In the second part of this thesis, low power transceiver design is considered for millimeter wave communication systems. In particular, using an additive quantization noise model, the effect of analog-digital conversion (ADC) resolution and bandwidth on the achievable rate is investigated for a multi-antenna system under a receiver power constraint. Two receiver architectures, analog and digital combining, are compared in terms of performance.
Loop Mirror Laser Neural Network with a Fast Liquid-Crystal Display
NASA Astrophysics Data System (ADS)
Mos, Evert C.; Schleipen, Jean J. H. B.; de Waardt, Huug; Khoe, Djan G. D.
1999-07-01
In our laser neural network (LNN) all-optical threshold action is obtained by application of controlled optical feedback to a laser diode. Here an extended experimental LNN is presented with as many as 32 neurons and 12 inputs. In the setup we use a fast liquid-crystal display to implement an optical matrix vector multiplier. This display, based on ferroelectric liquid-crystal material, enables us to present 125 training examples s to the LNN. To maximize the optical feedback efficiency of the setup, a loop mirror is introduced. We use a -rule learning algorithm to train the network to perform a number of functions toward the application area of telecommunication data switching.
Hierarchical coefficient of a multifractal based network
NASA Astrophysics Data System (ADS)
Moreira, Darlan A.; Lucena, Liacir dos Santos; Corso, Gilberto
2014-02-01
The hierarchical property for a general class of networks stands for a power-law relation between clustering coefficient, CC and connectivity k: CC∝kβ. This relation is empirically verified in several biologic and social networks, as well as in random and deterministic network models, in special for hierarchical networks. In this work we show that the hierarchical property is also present in a Lucena network. To create a Lucena network we use the dual of a multifractal lattice ML, the vertices are the sites of the ML and links are established between neighbouring lattices, therefore this network is space filling and planar. Besides a Lucena network shows a scale-free distribution of connectivity. We deduce a relation for the maximal local clustering coefficient CCimax of a vertex i in a planar graph. This condition expresses that the number of links among neighbour, N△, of a vertex i is equal to its connectivity ki, that means: N△=ki. The Lucena network fulfils the condition N△≃ki independent of ki and the anisotropy of ML. In addition, CCmax implies the threshold β=1 for the hierarchical property for any scale-free planar network.
NASA Astrophysics Data System (ADS)
Budilova, E. V.; Terekhin, A. T.; Chepurnov, S. A.
1994-09-01
A hypothetical neural scheme is proposed that ensures efficient decision making by an animal searching for food in a maze. Only the general structure of the network is fixed; its quantitative characteristics are found by numerical optimization that simulates the process of natural selection. Selection is aimed at maximization of the expected number of descendants, which is directly related to the energy stored during the reproductive cycle. The main parameters to be optimized are the increments of the interneuronal links and the working-memory constants.
2014-11-04
maximization. A numerical example is provided to illustrate these ideas. [2] Marcos M. Vasconcelos and Nuno C. Martins, “Remote Estimation Games...and bias are affected by current and past outputs. (Working papers to be submitted until the end of 2014) [7] Marcos M. Vasconcelos and Nuno C...4. Personnel: Students partially funded by this grant E. Arvelo, S. Park, D. Ward, M. Vasconcelos
Functional network inference of the suprachiasmatic nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abel, John H.; Meeker, Kirsten; Granados-Fuentes, Daniel
2016-04-04
In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data frommore » individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure.« less
Zhang, Lun; Zhang, Meng; Yang, Wenchen; Dong, Decun
2015-01-01
This paper presents the modelling and analysis of the capacity expansion of urban road traffic network (ICURTN). Thebilevel programming model is first employed to model the ICURTN, in which the utility of the entire network is maximized with the optimal utility of travelers' route choice. Then, an improved hybrid genetic algorithm integrated with golden ratio (HGAGR) is developed to enhance the local search of simple genetic algorithms, and the proposed capacity expansion model is solved by the combination of the HGAGR and the Frank-Wolfe algorithm. Taking the traditional one-way network and bidirectional network as the study case, three numerical calculations are conducted to validate the presented model and algorithm, and the primary influencing factors on extended capacity model are analyzed. The calculation results indicate that capacity expansion of road network is an effective measure to enlarge the capacity of urban road network, especially on the condition of limited construction budget; the average computation time of the HGAGR is 122 seconds, which meets the real-time demand in the evaluation of the road network capacity. PMID:25802512
NASA Astrophysics Data System (ADS)
Toroczkai, Zoltan; Anghel, Marian; Bassler, Kevin; Korniss, Gyorgy
2003-03-01
The dynamics of human, and most biological populations is characterized by competition for resources. By its own nature, this dynamics creates the group of "elites", formed by those agents who have strategies that are the most successful in the given situation, and therefore the rest of the agents will tend to follow, imitate, or interact with them, creating a social structure of leadership in the agent society. These inter-agent communications generate a complex social network with small-world character which itself forms the substrate for a second network, the action network. The latter is a highly dynamic, adaptive, directed network, defined by those inter-agent communication links on the substrate along which the passed information /prediction is acted upon by the other agents. By using the minority game for competition dynamics, here we show that when the substrate network is highly connected, the action network spontaneously develops hubs with a broad distribution of out-degrees, defining a robust leadership structure that is scale-free. Furthermore, in certain, realistic parameter ranges, facilitated by information passing on the action network, agents can spontaneously generate a high degree of cooperation making the collective almost maximally efficient.
Hypersonic Vehicle Trajectory Optimization and Control
NASA Technical Reports Server (NTRS)
Balakrishnan, S. N.; Shen, J.; Grohs, J. R.
1997-01-01
Two classes of neural networks have been developed for the study of hypersonic vehicle trajectory optimization and control. The first one is called an 'adaptive critic'. The uniqueness and main features of this approach are that: (1) they need no external training; (2) they allow variability of initial conditions; and (3) they can serve as feedback control. This is used to solve a 'free final time' two-point boundary value problem that maximizes the mass at the rocket burn-out while satisfying the pre-specified burn-out conditions in velocity, flightpath angle, and altitude. The second neural network is a recurrent network. An interesting feature of this network formulation is that when its inputs are the coefficients of the dynamics and control matrices, the network outputs are the Kalman sequences (with a quadratic cost function); the same network is also used for identifying the coefficients of the dynamics and control matrices. Consequently, we can use it to control a system whose parameters are uncertain. Numerical results are presented which illustrate the potential of these methods.
Influence maximization in complex networks through optimal percolation
NASA Astrophysics Data System (ADS)
Morone, Flaviano; Makse, Hernan; CUNY Collaboration; CUNY Collaboration
The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. Reference: F. Morone, H. A. Makse, Nature 524,65-68 (2015)
Extraordinary variability and sharp transitions in a maximally frustrated dynamic network
NASA Astrophysics Data System (ADS)
Liu, Wenjia; Schmittmann, Beate; Zia, R. K. P.
2013-03-01
Most previous studies of complex networks have focused on single, static networks. However, in the real world, networks are dynamic and interconnected. Inspired by the presence of extroverts and introverts in the general population, we investigate a highly simplified model of a social network, involving two types of nodes: one preferring the highest degree possible, and one preferring no connections whatsoever. There are only two control parameters in the model: the number of ``introvert'' and ``extrovert'' nodes, NI and NE. Our key findings are as follows: As a function of NI and NE, the system exhibits a highly unusual transition, displaying extraordinary fluctuations (as in 2nd order transitions) and discontinuous jumps (characteristic of 1st order transitions). Most remarkably, the system can be described by an Ising-like Hamiltonian with long-range multi-spin interactions and some of its properties can be obtained analytically. This is in stark contrast with other dynamic network models which rely almost exclusively on simulations. NSF-DMR-1005417/1244666 and and ICTAS Virginia Tech
Joint Resource Optimization for Cognitive Sensor Networks with SWIPT-Enabled Relay.
Lu, Weidang; Lin, Yuanrong; Peng, Hong; Nan, Tian; Liu, Xin
2017-09-13
Energy-constrained wireless networks, such as wireless sensor networks (WSNs), are usually powered by fixed energy supplies (e.g., batteries), which limits the operation time of networks. Simultaneous wireless information and power transfer (SWIPT) is a promising technique to prolong the lifetime of energy-constrained wireless networks. This paper investigates the performance of an underlay cognitive sensor network (CSN) with SWIPT-enabled relay node. In the CSN, the amplify-and-forward (AF) relay sensor node harvests energy from the ambient radio-frequency (RF) signals using power splitting-based relaying (PSR) protocol. Then, it helps forward the signal of source sensor node (SSN) to the destination sensor node (DSN) by using the harvested energy. We study the joint resource optimization including the transmit power and power splitting ratio to maximize CSN's achievable rate with the constraint that the interference caused by the CSN to the primary users (PUs) is within the permissible threshold. Simulation results show that the performance of our proposed joint resource optimization can be significantly improved.
Measuring the value of accurate link prediction for network seeding.
Wei, Yijin; Spencer, Gwen
2017-01-01
The influence-maximization literature seeks small sets of individuals whose structural placement in the social network can drive large cascades of behavior. Optimization efforts to find the best seed set often assume perfect knowledge of the network topology. Unfortunately, social network links are rarely known in an exact way. When do seeding strategies based on less-than-accurate link prediction provide valuable insight? We introduce optimized-against-a-sample ([Formula: see text]) performance to measure the value of optimizing seeding based on a noisy observation of a network. Our computational study investigates [Formula: see text] under several threshold-spread models in synthetic and real-world networks. Our focus is on measuring the value of imprecise link information. The level of investment in link prediction that is strategic appears to depend closely on spread model: in some parameter ranges investments in improving link prediction can pay substantial premiums in cascade size. For other ranges, such investments would be wasted. Several trends were remarkably consistent across topologies.
Blue, Christine M.; Funkhouser, D. Ellen; Riggs, Sheila; Rindal, D. Brad; Worley, Donald; Pihlstrom, Daniel J.; Benjamin, Paul; Gilbert, Gregg H.
2014-01-01
Objectives The purpose of this study was to quantify within The National Dental Practice-Based Research Network current utilization of dental hygienists and assistants with expanded functions and quantify network dentists’ attitudes toward a new non-dentist provider model - the dental therapist. Methods Dental practice-based research network practitioner-investigators participated in a single, cross-sectional administration of a questionnaire. Results Current non-dentist providers are not being utilized by network practitioner-investigators to the fullest extent allowed by law. Minnesota practitioners, practitioners in large group practices, and those with prior experience with expanded function non-dentist providers delegate at a higher rate and had more-positive perceptions of the new dental therapist model. Conclusions Expanding scopes of practice for dental hygienists and assistants has not translated to the maximal delegation allowed by law among network practices. This finding may provide insight into dentists’ acceptance of newer non-dentist provider models. PMID:23668892
A neural networks-based hybrid routing protocol for wireless mesh networks.
Kojić, Nenad; Reljin, Irini; Reljin, Branimir
2012-01-01
The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic-i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance.
Jeong, Hyundoo; Yoon, Byung-Jun
2017-03-14
Network querying algorithms provide computational means to identify conserved network modules in large-scale biological networks that are similar to known functional modules, such as pathways or molecular complexes. Two main challenges for network querying algorithms are the high computational complexity of detecting potential isomorphism between the query and the target graphs and ensuring the biological significance of the query results. In this paper, we propose SEQUOIA, a novel network querying algorithm that effectively addresses these issues by utilizing a context-sensitive random walk (CSRW) model for network comparison and minimizing the network conductance of potential matches in the target network. The CSRW model, inspired by the pair hidden Markov model (pair-HMM) that has been widely used for sequence comparison and alignment, can accurately assess the node-to-node correspondence between different graphs by accounting for node insertions and deletions. The proposed algorithm identifies high-scoring network regions based on the CSRW scores, which are subsequently extended by maximally reducing the network conductance of the identified subnetworks. Performance assessment based on real PPI networks and known molecular complexes show that SEQUOIA outperforms existing methods and clearly enhances the biological significance of the query results. The source code and datasets can be downloaded from http://www.ece.tamu.edu/~bjyoon/SEQUOIA .
A Neural Networks-Based Hybrid Routing Protocol for Wireless Mesh Networks
Kojić, Nenad; Reljin, Irini; Reljin, Branimir
2012-01-01
The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic—i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance. PMID:22969360
Family Science and Community-Based Learning: Using Speed Networking
ERIC Educational Resources Information Center
Payne, Pamela B.; Hubler, Daniel S.
2017-01-01
Students in Family Science often feel that they have an uphill battle to finding career opportunities that maximize their experiences from degree programs. The hallmark of successful programs in Family Science needs to be the development and maintenance of high-quality field experiences for students that align with national standards and…
Allies Shift Focus toward Promoting Standards Adoption
ERIC Educational Resources Information Center
Gewertz, Catherine
2010-01-01
With the new common standards completed, education leaders in nearly every state face the critical decision of whether to adopt them. To maximize the number of states that do, a core group of advocates is providing information and advice to help build the necessary base of support. The support network includes groups that spearheaded the Common…
Predicting costs of alien species surveillance across varying transportation networks
Laura Blackburn; Rebecca Epanchin-Niell; Alexandra Thompson; Andrew Liebhold; Jacqueline Beggs
2017-01-01
Efforts to detect and eradicate invading populations before they establish are a critical component of national biosecurity programmes. An essential element for maximizing the efficiency of these efforts is the balancing of expenditures on surveillance (e.g. trapping) versus treatment (e.g. eradication). Identifying the optimal allocation of resources towards...
Persistence in Distance Education: A Study Case Using Bayesian Network to Understand Retention
ERIC Educational Resources Information Center
Eliasquevici, Marianne Kogut; da Rocha Seruffo, Marcos César; Resque, Sônia Nazaré Fernandes
2017-01-01
This article presents a study on the variables promoting student retention in distance undergraduate courses at Federal University of Pará, aiming to help school managers minimize student attrition and maximize retention until graduation. The theoretical background is based on Rovai's Composite Model and the methodological approach is conditional…
NASA Astrophysics Data System (ADS)
Fattoruso, Grazia; Longobardi, Antonia; Pizzuti, Alfredo; Molinara, Mario; Marocco, Claudio; De Vito, Saverio; Tortorella, Francesco; Di Francia, Girolamo
2017-06-01
Rainfall data collection gathered in continuous by a distributed rain gauge network is instrumental to more effective hydro-geological risk forecasting and management services though the input estimated rainfall fields suffer from prediction uncertainty. Optimal rain gauge networks can generate accurate estimated rainfall fields. In this research work, a methodology has been investigated for evaluating an optimal rain gauges network aimed at robust hydrogeological hazard investigations. The rain gauges of the Sarno River basin (Southern Italy) has been evaluated by optimizing a two-objective function that maximizes the estimated accuracy and minimizes the total metering cost through the variance reduction algorithm along with the climatological variogram (time-invariant). This problem has been solved by using an enumerative search algorithm, evaluating the exact Pareto-front by an efficient computational time.
Skill complementarity enhances heterophily in collaboration networks
Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Tan, Qun-Zhao; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H. Eugene
2016-01-01
Much empirical evidence shows that individuals usually exhibit significant homophily in social networks. We demonstrate, however, skill complementarity enhances heterophily in the formation of collaboration networks, where people prefer to forge social ties with people who have professions different from their own. We construct a model to quantify the heterophily by assuming that individuals choose collaborators to maximize utility. Using a huge database of online societies, we find evidence of heterophily in collaboration networks. The results of model calibration confirm the presence of heterophily. Both empirical analysis and model calibration show that the heterophilous feature is persistent along the evolution of online societies. Furthermore, the degree of skill complementarity is positively correlated with their production output. Our work sheds new light on the scientific research utility of virtual worlds for studying human behaviors in complex socioeconomic systems. PMID:26743687
Correlational Neural Networks.
Chandar, Sarath; Khapra, Mitesh M; Larochelle, Hugo; Ravindran, Balaraman
2016-02-01
Common representation learning (CRL), wherein different descriptions (or views) of the data are embedded in a common subspace, has been receiving a lot of attention recently. Two popular paradigms here are canonical correlation analysis (CCA)-based approaches and autoencoder (AE)-based approaches. CCA-based approaches learn a joint representation by maximizing correlation of the views when projected to the common subspace. AE-based methods learn a common representation by minimizing the error of reconstructing the two views. Each of these approaches has its own advantages and disadvantages. For example, while CCA-based approaches outperform AE-based approaches for the task of transfer learning, they are not as scalable as the latter. In this work, we propose an AE-based approach, correlational neural network (CorrNet), that explicitly maximizes correlation among the views when projected to the common subspace. Through a series of experiments, we demonstrate that the proposed CorrNet is better than AE and CCA with respect to its ability to learn correlated common representations. We employ CorrNet for several cross-language tasks and show that the representations learned using it perform better than the ones learned using other state-of-the-art approaches.
Improving UDP/IP Transmission Without Increasing Congestion
NASA Technical Reports Server (NTRS)
Burleigh, Scott
2006-01-01
Datagram Retransmission (DGR) is a computer program that, within certain limits, ensures the reception of each datagram transmitted under the User Datagram Protocol/Internet Protocol. [User Datagram Protocol (UDP) is considered unreliable because it does not involve a reliability-ensuring connection-initiation dialogue between sender and receiver. UDP is well suited to issuing of many small messages to many different receivers.] Unlike prior software for ensuring reception of UDP datagrams, DGR does not contribute to network congestion by retransmitting data more frequently as an ever-increasing number of messages and acknowledgements is lost. Instead, DGR does just the opposite: DGR includes an adaptive timeout-interval- computing component that provides maximum opportunity for reception of acknowledgements, minimizing retransmission. By monitoring changes in the rate at which message-transmission transactions are completed, DGR detects changes in the level of congestion and responds by imposing varying degrees of delay on the transmission of new messages. In addition, DGR maximizes throughput by not waiting for acknowledgement of a message before sending the next message. All DGR communication is asynchronous, to maximize efficient utilization of network connections. DGR manages multiple concurrent datagram transmission and acknowledgement conversations.
Maximizing the optical network capacity.
Bayvel, Polina; Maher, Robert; Xu, Tianhua; Liga, Gabriele; Shevchenko, Nikita A; Lavery, Domaniç; Alvarado, Alex; Killey, Robert I
2016-03-06
Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available. But as the volume of data continues to increase, is there a limit to the capacity of an optical fibre communication channel? The optical fibre channel is nonlinear, and the intensity-dependent Kerr nonlinearity limit has been suggested as a fundamental limit to optical fibre capacity. Current research is focused on whether this is the case, and on linear and nonlinear techniques, both optical and electronic, to understand, unlock and maximize the capacity of optical communications in the nonlinear regime. This paper describes some of them and discusses future prospects for success in the quest for capacity. © 2016 The Authors.
Liu, Xin
2015-10-30
In a cognitive sensor network (CSN), the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs) becomes very large. In this paper, a novel wireless power transfer (WPT)-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF) energy of the primary node (PN) to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.
Optimization of Multiple Related Negotiation through Multi-Negotiation Network
NASA Astrophysics Data System (ADS)
Ren, Fenghui; Zhang, Minjie; Miao, Chunyan; Shen, Zhiqi
In this paper, a Multi-Negotiation Network (MNN) and a Multi- Negotiation Influence Diagram (MNID) are proposed to optimally handle Multiple Related Negotiations (MRN) in a multi-agent system. Most popular, state-of-the-art approaches perform MRN sequentially. However, a sequential procedure may not optimally execute MRN in terms of maximizing the global outcome, and may even lead to unnecessary losses in some situations. The motivation of this research is to use a MNN to handle MRN concurrently so as to maximize the expected utility of MRN. Firstly, both the joint success rate and the joint utility by considering all related negotiations are dynamically calculated based on a MNN. Secondly, by employing a MNID, an agent's possible decision on each related negotiation is reflected by the value of expected utility. Lastly, through comparing expected utilities between all possible policies to conduct MRN, an optimal policy is generated to optimize the global outcome of MRN. The experimental results indicate that the proposed approach can improve the global outcome of MRN in a successful end scenario, and avoid unnecessary losses in an unsuccessful end scenario.
Optimizing the Energy and Throughput of a Water-Quality Monitoring System.
Olatinwo, Segun O; Joubert, Trudi-H
2018-04-13
This work presents a new approach to the maximization of energy and throughput in a wireless sensor network (WSN), with the intention of applying the approach to water-quality monitoring. Water-quality monitoring using WSN technology has become an interesting research area. Energy scarcity is a critical issue that plagues the widespread deployment of WSN systems. Different power supplies, harvesting energy from sustainable sources, have been explored. However, when energy-efficient models are not put in place, energy harvesting based WSN systems may experience an unstable energy supply, resulting in an interruption in communication, and low system throughput. To alleviate these problems, this paper presents the joint maximization of the energy harvested by sensor nodes and their information-transmission rate using a sum-throughput technique. A wireless information and power transfer (WIPT) method is considered by harvesting energy from dedicated radio frequency sources. Due to the doubly near-far condition that confronts WIPT systems, a new WIPT system is proposed to improve the fairness of resource utilization in the network. Numerical simulation results are presented to validate the mathematical formulations for the optimization problem, which maximize the energy harvested and the overall throughput rate. Defining the performance metrics of achievable throughput and fairness in resource sharing, the proposed WIPT system outperforms an existing state-of-the-art WIPT system, with the comparison based on numerical simulations of both systems. The improved energy efficiency of the proposed WIPT system contributes to addressing the problem of energy scarcity.
Optimizing the Energy and Throughput of a Water-Quality Monitoring System
Olatinwo, Segun O.
2018-01-01
This work presents a new approach to the maximization of energy and throughput in a wireless sensor network (WSN), with the intention of applying the approach to water-quality monitoring. Water-quality monitoring using WSN technology has become an interesting research area. Energy scarcity is a critical issue that plagues the widespread deployment of WSN systems. Different power supplies, harvesting energy from sustainable sources, have been explored. However, when energy-efficient models are not put in place, energy harvesting based WSN systems may experience an unstable energy supply, resulting in an interruption in communication, and low system throughput. To alleviate these problems, this paper presents the joint maximization of the energy harvested by sensor nodes and their information-transmission rate using a sum-throughput technique. A wireless information and power transfer (WIPT) method is considered by harvesting energy from dedicated radio frequency sources. Due to the doubly near–far condition that confronts WIPT systems, a new WIPT system is proposed to improve the fairness of resource utilization in the network. Numerical simulation results are presented to validate the mathematical formulations for the optimization problem, which maximize the energy harvested and the overall throughput rate. Defining the performance metrics of achievable throughput and fairness in resource sharing, the proposed WIPT system outperforms an existing state-of-the-art WIPT system, with the comparison based on numerical simulations of both systems. The improved energy efficiency of the proposed WIPT system contributes to addressing the problem of energy scarcity. PMID:29652866
Multibaseline gravitational wave radiometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talukder, Dipongkar; Bose, Sukanta; Mitra, Sanjit
2011-03-15
We present a statistic for the detection of stochastic gravitational wave backgrounds (SGWBs) using radiometry with a network of multiple baselines. We also quantitatively compare the sensitivities of existing baselines and their network to SGWBs. We assess how the measurement accuracy of signal parameters, e.g., the sky position of a localized source, can improve when using a network of baselines, as compared to any of the single participating baselines. The search statistic itself is derived from the likelihood ratio of the cross correlation of the data across all possible baselines in a detector network and is optimal in Gaussian noise.more » Specifically, it is the likelihood ratio maximized over the strength of the SGWB and is called the maximized-likelihood ratio (MLR). One of the main advantages of using the MLR over past search strategies for inferring the presence or absence of a signal is that the former does not require the deconvolution of the cross correlation statistic. Therefore, it does not suffer from errors inherent to the deconvolution procedure and is especially useful for detecting weak sources. In the limit of a single baseline, it reduces to the detection statistic studied by Ballmer [Classical Quantum Gravity 23, S179 (2006).] and Mitra et al.[Phys. Rev. D 77, 042002 (2008).]. Unlike past studies, here the MLR statistic enables us to compare quantitatively the performances of a variety of baselines searching for a SGWB signal in (simulated) data. Although we use simulated noise and SGWB signals for making these comparisons, our method can be straightforwardly applied on real data.« less
Jo, Kyuri; Jung, Inuk; Moon, Ji Hwan; Kim, Sun
2016-01-01
Motivation: To understand the dynamic nature of the biological process, it is crucial to identify perturbed pathways in an altered environment and also to infer regulators that trigger the response. Current time-series analysis methods, however, are not powerful enough to identify perturbed pathways and regulators simultaneously. Widely used methods include methods to determine gene sets such as differentially expressed genes or gene clusters and these genes sets need to be further interpreted in terms of biological pathways using other tools. Most pathway analysis methods are not designed for time series data and they do not consider gene-gene influence on the time dimension. Results: In this article, we propose a novel time-series analysis method TimeTP for determining transcription factors (TFs) regulating pathway perturbation, which narrows the focus to perturbed sub-pathways and utilizes the gene regulatory network and protein–protein interaction network to locate TFs triggering the perturbation. TimeTP first identifies perturbed sub-pathways that propagate the expression changes along the time. Starting points of the perturbed sub-pathways are mapped into the network and the most influential TFs are determined by influence maximization technique. The analysis result is visually summarized in TF-Pathway map in time clock. TimeTP was applied to PIK3CA knock-in dataset and found significant sub-pathways and their regulators relevant to the PIP3 signaling pathway. Availability and Implementation: TimeTP is implemented in Python and available at http://biohealth.snu.ac.kr/software/TimeTP/. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: sunkim.bioinfo@snu.ac.kr PMID:27307609
ImNet: a fiber optic network with multistar topology for high-speed data transmission
NASA Astrophysics Data System (ADS)
Vossebuerger, F.; Keizers, Andreas; Soederman, N.; Meyer-Ebrecht, Dietrich
1993-10-01
ImNet is a fiber-optic local area network, which has been developed for high speed image communication in Picture Archiving and Communication Systems (PACS). A comprehensive analysis of image communication requirements in hospitals led to the conclusion that there is a need for networks which are optimized for the transmission of large datafiles. ImNet is optimized for this application in contrast to current-state LANs. ImNet consists of two elements: a link module and a switch module. The point-to-point link module can be up to 4 km by using fiber optic cable. For short distances up to 100 m a cheaper module using shielded twisted pair cable is available. The link module works bi-directionally and handles all protocols up to OSI-Level 3. The data rate per link is up to 140 MBit/s (clock rate 175 MHz). The switch module consists of the control unit and the cross-point-switch array. The array has up to fourteen interfaces for link modules. Up to fourteen data transfers each with a maximal transfer rate of 400 MBit/s can be handled at the same time. Thereby the maximal throughput of a switch module is 5.6 GBit/s. Out of these modules a multi-star network can be built i.e., an arbitrary tree structure of stars. This topology allows multiple transmissions at the same time as long as they do not require identical links. Therefore the overall throughput of ImNet can be a multiple of the datarate per link.
Cascade phenomenon against subsequent failures in complex networks
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Liu, Zhi-Quan; He, Xuan; Ma, Jian-Feng
2018-06-01
Cascade phenomenon may lead to catastrophic disasters which extremely imperil the network safety or security in various complex systems such as communication networks, power grids, social networks and so on. In some flow-based networks, the load of failed nodes can be redistributed locally to their neighboring nodes to maximally preserve the traffic oscillations or large-scale cascading failures. However, in such local flow redistribution model, a small set of key nodes attacked subsequently can result in network collapse. Then it is a critical problem to effectively find the set of key nodes in the network. To our best knowledge, this work is the first to study this problem comprehensively. We first introduce the extra capacity for every node to put up with flow fluctuations from neighbors, and two extra capacity distributions including degree based distribution and average distribution are employed. Four heuristic key nodes discovering methods including High-Degree-First (HDF), Low-Degree-First (LDF), Random and Greedy Algorithms (GA) are presented. Extensive simulations are realized in both scale-free networks and random networks. The results show that the greedy algorithm can efficiently find the set of key nodes in both scale-free and random networks. Our work studies network robustness against cascading failures from a very novel perspective, and methods and results are very useful for network robustness evaluations and protections.
Uplink Array Calibration via Far-Field Power Maximization
NASA Technical Reports Server (NTRS)
Vilnrotter, V.; Mukai, R.; Lee, D.
2006-01-01
Uplink antenna arrays have the potential to greatly increase the Deep Space Network s high-data-rate uplink capabilities as well as useful range, and to provide additional uplink signal power during critical spacecraft emergencies. While techniques for calibrating an array of receive antennas have been addressed previously, proven concepts for uplink array calibration have yet to be demonstrated. This article describes a method of utilizing the Moon as a natural far-field reflector for calibrating a phased array of uplink antennas. Using this calibration technique, the radio frequency carriers transmitted by each antenna of the array are optimally phased to ensure that the uplink power received by the spacecraft is maximized.
Two Dimensional Array Based Overlay Network for Balancing Load of Peer-to-Peer Live Video Streaming
NASA Astrophysics Data System (ADS)
Faruq Ibn Ibrahimy, Abdullah; Rafiqul, Islam Md; Anwar, Farhat; Ibn Ibrahimy, Muhammad
2013-12-01
The live video data is streaming usually in a tree-based overlay network or in a mesh-based overlay network. In case of departure of a peer with additional upload bandwidth, the overlay network becomes very vulnerable to churn. In this paper, a two dimensional array-based overlay network is proposed for streaming the live video stream data. As there is always a peer or a live video streaming server to upload the live video stream data, so the overlay network is very stable and very robust to churn. Peers are placed according to their upload and download bandwidth, which enhances the balance of load and performance. The overlay network utilizes the additional upload bandwidth of peers to minimize chunk delivery delay and to maximize balance of load. The procedure, which is used for distributing the additional upload bandwidth of the peers, distributes the additional upload bandwidth to the heterogeneous strength peers in a fair treat distribution approach and to the homogeneous strength peers in a uniform distribution approach. The proposed overlay network has been simulated by Qualnet from Scalable Network Technologies and results are presented in this paper.
Analyzing the Effects of UAV Mobility Patterns on Data Collection in Wireless Sensor Networks.
Rashed, Sarmad; Soyturk, Mujdat
2017-02-20
Sensor nodes in a Wireless Sensor Network (WSN) can be dispersed over a remote sensing area (e.g., the regions that are hardly accessed by human beings). In such kinds of networks, datacollectionbecomesoneofthemajorissues. Getting connected to each sensor node and retrieving the information in time introduces new challenges. Mobile sink usage-especially Unmanned Aerial Vehicles (UAVs)-is the most convenient approach to covering the area and accessing each sensor node in such a large-scale WSN. However, the operation of the UAV depends on some parameters, such as endurance time, altitude, speed, radio type in use, and the path. In this paper, we explore various UAV mobility patterns that follow different paths to sweep the operation area in order to seek the best area coverage with the maximum number of covered nodes in the least amount of time needed by the mobile sink. We also introduce a new metric to formulate the tradeoff between maximizing the covered nodes and minimizing the operation time when choosing the appropriate mobility pattern. A realistic simulation environment is used in order to compare and evaluate the performance of the system. We present the performance results for the explored UAV mobility patterns. The results are very useful to present the tradeoff between maximizing the covered nodes and minimizing the operation time to choose the appropriate mobility pattern.
A Coalitional Game for Distributed Inference in Sensor Networks With Dependent Observations
NASA Astrophysics Data System (ADS)
He, Hao; Varshney, Pramod K.
2016-04-01
We consider the problem of collaborative inference in a sensor network with heterogeneous and statistically dependent sensor observations. Each sensor aims to maximize its inference performance by forming a coalition with other sensors and sharing information within the coalition. It is proved that the inference performance is a nondecreasing function of the coalition size. However, in an energy constrained network, the energy consumption of inter-sensor communication also increases with increasing coalition size, which discourages the formation of the grand coalition (the set of all sensors). In this paper, the formation of non-overlapping coalitions with statistically dependent sensors is investigated under a specific communication constraint. We apply a game theoretical approach to fully explore and utilize the information contained in the spatial dependence among sensors to maximize individual sensor performance. Before formulating the distributed inference problem as a coalition formation game, we first quantify the gain and loss in forming a coalition by introducing the concepts of diversity gain and redundancy loss for both estimation and detection problems. These definitions, enabled by the statistical theory of copulas, allow us to characterize the influence of statistical dependence among sensor observations on inference performance. An iterative algorithm based on merge-and-split operations is proposed for the solution and the stability of the proposed algorithm is analyzed. Numerical results are provided to demonstrate the superiority of our proposed game theoretical approach.
Analyzing the Effects of UAV Mobility Patterns on Data Collection in Wireless Sensor Networks
Rashed, Sarmad; Soyturk, Mujdat
2017-01-01
Sensor nodes in a Wireless Sensor Network (WSN) can be dispersed over a remote sensing area (e.g., the regions that are hardly accessed by human beings). In such kinds of networks, data collection becomes one of the major issues. Getting connected to each sensor node and retrieving the information in time introduces new challenges. Mobile sink usage—especially Unmanned Aerial Vehicles (UAVs)—is the most convenient approach to covering the area and accessing each sensor node in such a large-scale WSN. However, the operation of the UAV depends on some parameters, such as endurance time, altitude, speed, radio type in use, and the path. In this paper, we explore various UAV mobility patterns that follow different paths to sweep the operation area in order to seek the best area coverage with the maximum number of covered nodes in the least amount of time needed by the mobile sink. We also introduce a new metric to formulate the tradeoff between maximizing the covered nodes and minimizing the operation time when choosing the appropriate mobility pattern. A realistic simulation environment is used in order to compare and evaluate the performance of the system. We present the performance results for the explored UAV mobility patterns. The results are very useful to present the tradeoff between maximizing the covered nodes and minimizing the operation time to choose the appropriate mobility pattern. PMID:28230727
NASA Astrophysics Data System (ADS)
Bashiri, Mahdi; Farshbaf-Geranmayeh, Amir; Mogouie, Hamed
2013-11-01
In this paper, a new method is proposed to optimize a multi-response optimization problem based on the Taguchi method for the processes where controllable factors are the smaller-the-better (STB)-type variables and the analyzer desires to find an optimal solution with smaller amount of controllable factors. In such processes, the overall output quality of the product should be maximized while the usage of the process inputs, the controllable factors, should be minimized. Since all possible combinations of factors' levels, are not considered in the Taguchi method, the response values of the possible unpracticed treatments are estimated using the artificial neural network (ANN). The neural network is tuned by the central composite design (CCD) and the genetic algorithm (GA). Then data envelopment analysis (DEA) is applied for determining the efficiency of each treatment. Although the important issue for implementation of DEA is its philosophy, which is maximization of outputs versus minimization of inputs, this important issue has been neglected in previous similar studies in multi-response problems. Finally, the most efficient treatment is determined using the maximin weight model approach. The performance of the proposed method is verified in a plastic molding process. Moreover a sensitivity analysis has been done by an efficiency estimator neural network. The results show efficiency of the proposed approach.
Structural power and the evolution of collective fairness in social networks.
Santos, Fernando P; Pacheco, Jorge M; Paiva, Ana; Santos, Francisco C
2017-01-01
From work contracts and group buying platforms to political coalitions and international climate and economical summits, often individuals assemble in groups that must collectively reach decisions that may favor each part unequally. Here we quantify to which extent our network ties promote the evolution of collective fairness in group interactions, modeled by means of Multiplayer Ultimatum Games (MUG). We show that a single topological feature of social networks-which we call structural power-has a profound impact on the tendency of individuals to take decisions that favor each part equally. Increased fair outcomes are attained whenever structural power is high, such that the networks that tie individuals allow them to meet the same partners in different groups, thus providing the opportunity to strongly influence each other. On the other hand, the absence of such close peer-influence relationships dismisses any positive effect created by the network. Interestingly, we show that increasing the structural power of a network leads to the appearance of well-defined modules-as found in human social networks that often exhibit community structure-providing an interaction environment that maximizes collective fairness.
A Game-Theoretic Response Strategy for Coordinator Attack in Wireless Sensor Networks
Liu, Jianhua; Yue, Guangxue; Shang, Huiliang; Li, Hongjie
2014-01-01
The coordinator is a specific node that controls the whole network and has a significant impact on the performance in cooperative multihop ZigBee wireless sensor networks (ZWSNs). However, the malicious node attacks coordinator nodes in an effort to waste the resources and disrupt the operation of the network. Attacking leads to a failure of one round of communication between the source nodes and destination nodes. Coordinator selection is a technique that can considerably defend against attack and reduce the data delivery delay, and increase network performance of cooperative communications. In this paper, we propose an adaptive coordinator selection algorithm using game and fuzzy logic aiming at both minimizing the average number of hops and maximizing network lifetime. The proposed game model consists of two interrelated formulations: a stochastic game for dynamic defense and a best response policy using evolutionary game formulation for coordinator selection. The stable equilibrium best policy to response defense is obtained from this game model. It is shown that the proposed scheme can improve reliability and save energy during the network lifetime with respect to security. PMID:25105171
An evolutionary game approach for determination of the structural conflicts in signed networks
Tan, Shaolin; Lü, Jinhu
2016-01-01
Social or biochemical networks can often divide into two opposite alliances in response to structural conflicts between positive (friendly, activating) and negative (hostile, inhibiting) interactions. Yet, the underlying dynamics on how the opposite alliances are spontaneously formed to minimize the structural conflicts is still unclear. Here, we demonstrate that evolutionary game dynamics provides a felicitous possible tool to characterize the evolution and formation of alliances in signed networks. Indeed, an evolutionary game dynamics on signed networks is proposed such that each node can adaptively adjust its choice of alliances to maximize its own fitness, which yet leads to a minimization of the structural conflicts in the entire network. Numerical experiments show that the evolutionary game approach is universally efficient in quality and speed to find optimal solutions for all undirected or directed, unweighted or weighted signed networks. Moreover, the evolutionary game approach is inherently distributed. These characteristics thus suggest the evolutionary game dynamic approach as a feasible and effective tool for determining the structural conflicts in large-scale on-line signed networks. PMID:26915581
Research on Some Bus Transport Networks with Random Overlapping Clique Structure
NASA Astrophysics Data System (ADS)
Yang, Xu-Hua; Wang, Bo; Wang, Wan-Liang; Sun, You-Xian
2008-11-01
On the basis of investigating the statistical data of bus transport networks of three big cities in China, we propose that each bus route is a clique (maximal complete subgraph) and a bus transport network (BTN) consists of a lot of cliques, which intensively connect and overlap with each other. We study the network properties, which include the degree distribution, multiple edges' overlapping time distribution, distribution of the overlap size between any two overlapping cliques, distribution of the number of cliques that a node belongs to. Naturally, the cliques also constitute a network, with the overlapping nodes being their multiple links. We also research its network properties such as degree distribution, clustering, average path length, and so on. We propose that a BTN has the properties of random clique increment and random overlapping clique, at the same time, a BTN is a small-world network with highly clique-clustered and highly clique-overlapped. Finally, we introduce a BTN evolution model, whose simulation results agree well with the statistical laws that emerge in real BTNs.
Tackling Information Asymmetry in Networks: A New Entropy-Based Ranking Index
NASA Astrophysics Data System (ADS)
Barucca, Paolo; Caldarelli, Guido; Squartini, Tiziano
2018-06-01
Information is a valuable asset in socio-economic systems, a significant part of which is entailed into the network of connections between agents. The different interlinkages patterns that agents establish may, in fact, lead to asymmetries in the knowledge of the network structure; since this entails a different ability of quantifying relevant, systemic properties (e.g. the risk of contagion in a network of liabilities), agents capable of providing a better estimation of (otherwise) inaccessible network properties, ultimately have a competitive advantage. In this paper, we address the issue of quantifying the information asymmetry of nodes: to this aim, we define a novel index—InfoRank—intended to rank nodes according to their information content. In order to do so, each node ego-network is enforced as a constraint of an entropy-maximization problem and the subsequent uncertainty reduction is used to quantify the node-specific accessible information. We, then, test the performance of our ranking procedure in terms of reconstruction accuracy and show that it outperforms other centrality measures in identifying the "most informative" nodes. Finally, we discuss the socio-economic implications of network information asymmetry.
Balanced excitation and inhibition are required for high-capacity, noise-robust neuronal selectivity
Abbott, L. F.; Sompolinsky, Haim
2017-01-01
Neurons and networks in the cerebral cortex must operate reliably despite multiple sources of noise. To evaluate the impact of both input and output noise, we determine the robustness of single-neuron stimulus selective responses, as well as the robustness of attractor states of networks of neurons performing memory tasks. We find that robustness to output noise requires synaptic connections to be in a balanced regime in which excitation and inhibition are strong and largely cancel each other. We evaluate the conditions required for this regime to exist and determine the properties of networks operating within it. A plausible synaptic plasticity rule for learning that balances weight configurations is presented. Our theory predicts an optimal ratio of the number of excitatory and inhibitory synapses for maximizing the encoding capacity of balanced networks for given statistics of afferent activations. Previous work has shown that balanced networks amplify spatiotemporal variability and account for observed asynchronous irregular states. Here we present a distinct type of balanced network that amplifies small changes in the impinging signals and emerges automatically from learning to perform neuronal and network functions robustly. PMID:29042519
A game-theoretic response strategy for coordinator attack in wireless sensor networks.
Liu, Jianhua; Yue, Guangxue; Shen, Shigen; Shang, Huiliang; Li, Hongjie
2014-01-01
The coordinator is a specific node that controls the whole network and has a significant impact on the performance in cooperative multihop ZigBee wireless sensor networks (ZWSNs). However, the malicious node attacks coordinator nodes in an effort to waste the resources and disrupt the operation of the network. Attacking leads to a failure of one round of communication between the source nodes and destination nodes. Coordinator selection is a technique that can considerably defend against attack and reduce the data delivery delay, and increase network performance of cooperative communications. In this paper, we propose an adaptive coordinator selection algorithm using game and fuzzy logic aiming at both minimizing the average number of hops and maximizing network lifetime. The proposed game model consists of two interrelated formulations: a stochastic game for dynamic defense and a best response policy using evolutionary game formulation for coordinator selection. The stable equilibrium best policy to response defense is obtained from this game model. It is shown that the proposed scheme can improve reliability and save energy during the network lifetime with respect to security.
Fisher information at the edge of chaos in random Boolean networks.
Wang, X Rosalind; Lizier, Joseph T; Prokopenko, Mikhail
2011-01-01
We study the order-chaos phase transition in random Boolean networks (RBNs), which have been used as models of gene regulatory networks. In particular we seek to characterize the phase diagram in information-theoretic terms, focusing on the effect of the control parameters (activity level and connectivity). Fisher information, which measures how much system dynamics can reveal about the control parameters, offers a natural interpretation of the phase diagram in RBNs. We report that this measure is maximized near the order-chaos phase transitions in RBNs, since this is the region where the system is most sensitive to its parameters. Furthermore, we use this study of RBNs to clarify the relationship between Shannon and Fisher information measures.
The scheduling of tracking times for interplanetary spacecraft on the Deep Space Network
NASA Technical Reports Server (NTRS)
Webb, W. A.
1978-01-01
The Deep Space Network (DSN) is a network of tracking stations, located throughout the globe, used to track spacecraft for NASA's interplanetary missions. This paper describes a computer program, DSNTRAK, which provides an optimum daily tracking schedule for the DSN given the view periods at each station for a mission set of n spacecraft, where n is between 2 and 6. The objective function is specified in terms of relative total daily tracking time requirements between the n spacecraft. Linear programming is used to maximize the total daily tracking time and determine an optimal daily tracking schedule consistent with DSN station capabilities. DSNTRAK is used as part of a procedure to provide DSN load forecasting information for proposed future NASA mission sets.
Beamforming design with proactive interference cancelation in MISO interference channels
NASA Astrophysics Data System (ADS)
Li, Yang; Tian, Yafei; Yang, Chenyang
2015-12-01
In this paper, we design coordinated beamforming at base stations (BSs) to facilitate interference cancelation at users in interference networks, where each BS is equipped with multiple antennas and each user is with a single antenna. By assuming that each user can select the best decoding strategy to mitigate the interference, either canceling the interference after decoding when it is strong or treating it as noise when it is weak, we optimize the beamforming vectors that maximize the sum rate for the networks under different interference scenarios and find the solutions of beamforming with closed-form expressions. The inherent design principles are then analyzed, and the performance gain over passive interference cancelation is demonstrated through simulations in heterogeneous cellular networks.
Coverage-maximization in networks under resource constraints.
Nandi, Subrata; Brusch, Lutz; Deutsch, Andreas; Ganguly, Niloy
2010-06-01
Efficient coverage algorithms are essential for information search or dispersal in all kinds of networks. We define an extended coverage problem which accounts for constrained resources of consumed bandwidth B and time T . Our solution to the network challenge is here studied for regular grids only. Using methods from statistical mechanics, we develop a coverage algorithm with proliferating message packets and temporally modulated proliferation rate. The algorithm performs as efficiently as a single random walker but O(B(d-2)/d) times faster, resulting in significant service speed-up on a regular grid of dimension d . The algorithm is numerically compared to a class of generalized proliferating random walk strategies and on regular grids shown to perform best in terms of the product metric of speed and efficiency.
NASA Astrophysics Data System (ADS)
Adabi, Sepideh; Adabi, Sahar; Rezaee, Ali
According to the traditional definition of Wireless Sensor Networks (WSNs), static sensors have limited the feasibility of WSNs in some kind of approaches, so the mobility was introduced in WSN. Mobile nodes in a WSN come equipped with battery and from the point of deployment, this battery reserve becomes a valuable resource since it cannot be replenished. Hence, maximizing the network lifetime by minimizing the energy is an important challenge in Mobile WSN. Energy conservation can be accomplished by different approaches. In this paper, we presented an energy conservation solution based on Cellular Automata. The main objective of this solution is based on dynamically adjusting the transmission range and switching between operational states of the sensor nodes.
Cooperation in scale-free networks with limited associative capacities
NASA Astrophysics Data System (ADS)
Poncela, Julia; Gómez-Gardeñes, Jesús; Moreno, Yamir
2011-05-01
In this work we study the effect of limiting the number of interactions (the associative capacity) that a node can establish per round of a prisoner’s dilemma game. We focus on the way this limitation influences the level of cooperation sustained by scale-free networks. We show that when the game includes cooperation costs, limiting the associative capacity of nodes to a fixed quantity renders in some cases larger values of cooperation than in the unrestricted scenario. This allows one to define an optimum capacity for which cooperation is maximally enhanced. Finally, for the case without cooperation costs, we find that even a tight limitation of the associative capacity of nodes yields the same levels of cooperation as in the original network.
Cough event classification by pretrained deep neural network.
Liu, Jia-Ming; You, Mingyu; Wang, Zheng; Li, Guo-Zheng; Xu, Xianghuai; Qiu, Zhongmin
2015-01-01
Cough is an essential symptom in respiratory diseases. In the measurement of cough severity, an accurate and objective cough monitor is expected by respiratory disease society. This paper aims to introduce a better performed algorithm, pretrained deep neural network (DNN), to the cough classification problem, which is a key step in the cough monitor. The deep neural network models are built from two steps, pretrain and fine-tuning, followed by a Hidden Markov Model (HMM) decoder to capture tamporal information of the audio signals. By unsupervised pretraining a deep belief network, a good initialization for a deep neural network is learned. Then the fine-tuning step is a back propogation tuning the neural network so that it can predict the observation probability associated with each HMM states, where the HMM states are originally achieved by force-alignment with a Gaussian Mixture Model Hidden Markov Model (GMM-HMM) on the training samples. Three cough HMMs and one noncough HMM are employed to model coughs and noncoughs respectively. The final decision is made based on viterbi decoding algorihtm that generates the most likely HMM sequence for each sample. A sample is labeled as cough if a cough HMM is found in the sequence. The experiments were conducted on a dataset that was collected from 22 patients with respiratory diseases. Patient dependent (PD) and patient independent (PI) experimental settings were used to evaluate the models. Five criteria, sensitivity, specificity, F1, macro average and micro average are shown to depict different aspects of the models. From overall evaluation criteria, the DNN based methods are superior to traditional GMM-HMM based method on F1 and micro average with maximal 14% and 11% error reduction in PD and 7% and 10% in PI, meanwhile keep similar performances on macro average. They also surpass GMM-HMM model on specificity with maximal 14% error reduction on both PD and PI. In this paper, we tried pretrained deep neural network in cough classification problem. Our results showed that comparing with the conventional GMM-HMM framework, the HMM-DNN could get better overall performance on cough classification task.
NIBBS-search for fast and accurate prediction of phenotype-biased metabolic systems.
Schmidt, Matthew C; Rocha, Andrea M; Padmanabhan, Kanchana; Shpanskaya, Yekaterina; Banfield, Jill; Scott, Kathleen; Mihelcic, James R; Samatova, Nagiza F
2012-01-01
Understanding of genotype-phenotype associations is important not only for furthering our knowledge on internal cellular processes, but also essential for providing the foundation necessary for genetic engineering of microorganisms for industrial use (e.g., production of bioenergy or biofuels). However, genotype-phenotype associations alone do not provide enough information to alter an organism's genome to either suppress or exhibit a phenotype. It is important to look at the phenotype-related genes in the context of the genome-scale network to understand how the genes interact with other genes in the organism. Identification of metabolic subsystems involved in the expression of the phenotype is one way of placing the phenotype-related genes in the context of the entire network. A metabolic system refers to a metabolic network subgraph; nodes are compounds and edges labels are the enzymes that catalyze the reaction. The metabolic subsystem could be part of a single metabolic pathway or span parts of multiple pathways. Arguably, comparative genome-scale metabolic network analysis is a promising strategy to identify these phenotype-related metabolic subsystems. Network Instance-Based Biased Subgraph Search (NIBBS) is a graph-theoretic method for genome-scale metabolic network comparative analysis that can identify metabolic systems that are statistically biased toward phenotype-expressing organismal networks. We set up experiments with target phenotypes like hydrogen production, TCA expression, and acid-tolerance. We show via extensive literature search that some of the resulting metabolic subsystems are indeed phenotype-related and formulate hypotheses for other systems in terms of their role in phenotype expression. NIBBS is also orders of magnitude faster than MULE, one of the most efficient maximal frequent subgraph mining algorithms that could be adjusted for this problem. Also, the set of phenotype-biased metabolic systems output by NIBBS comes very close to the set of phenotype-biased subgraphs output by an exact maximally-biased subgraph enumeration algorithm ( MBS-Enum ). The code (NIBBS and the module to visualize the identified subsystems) is available at http://freescience.org/cs/NIBBS.
NIBBS-Search for Fast and Accurate Prediction of Phenotype-Biased Metabolic Systems
Padmanabhan, Kanchana; Shpanskaya, Yekaterina; Banfield, Jill; Scott, Kathleen; Mihelcic, James R.; Samatova, Nagiza F.
2012-01-01
Understanding of genotype-phenotype associations is important not only for furthering our knowledge on internal cellular processes, but also essential for providing the foundation necessary for genetic engineering of microorganisms for industrial use (e.g., production of bioenergy or biofuels). However, genotype-phenotype associations alone do not provide enough information to alter an organism's genome to either suppress or exhibit a phenotype. It is important to look at the phenotype-related genes in the context of the genome-scale network to understand how the genes interact with other genes in the organism. Identification of metabolic subsystems involved in the expression of the phenotype is one way of placing the phenotype-related genes in the context of the entire network. A metabolic system refers to a metabolic network subgraph; nodes are compounds and edges labels are the enzymes that catalyze the reaction. The metabolic subsystem could be part of a single metabolic pathway or span parts of multiple pathways. Arguably, comparative genome-scale metabolic network analysis is a promising strategy to identify these phenotype-related metabolic subsystems. Network Instance-Based Biased Subgraph Search (NIBBS) is a graph-theoretic method for genome-scale metabolic network comparative analysis that can identify metabolic systems that are statistically biased toward phenotype-expressing organismal networks. We set up experiments with target phenotypes like hydrogen production, TCA expression, and acid-tolerance. We show via extensive literature search that some of the resulting metabolic subsystems are indeed phenotype-related and formulate hypotheses for other systems in terms of their role in phenotype expression. NIBBS is also orders of magnitude faster than MULE, one of the most efficient maximal frequent subgraph mining algorithms that could be adjusted for this problem. Also, the set of phenotype-biased metabolic systems output by NIBBS comes very close to the set of phenotype-biased subgraphs output by an exact maximally-biased subgraph enumeration algorithm ( MBS-Enum ). The code (NIBBS and the module to visualize the identified subsystems) is available at http://freescience.org/cs/NIBBS. PMID:22589706
Chen, Yi-Shin
2018-01-01
Conventional decision theory suggests that under risk, people choose option(s) by maximizing the expected utility. However, theories deal ambiguously with different options that have the same expected utility. A network approach is proposed by introducing ‘goal’ and ‘time’ factors to reduce the ambiguity in strategies for calculating the time-dependent probability of reaching a goal. As such, a mathematical foundation that explains the irrational behavior of choosing an option with a lower expected utility is revealed, which could imply that humans possess rationality in foresight. PMID:29702665
Pan, Wei; Chen, Yi-Shin
2018-01-01
Conventional decision theory suggests that under risk, people choose option(s) by maximizing the expected utility. However, theories deal ambiguously with different options that have the same expected utility. A network approach is proposed by introducing 'goal' and 'time' factors to reduce the ambiguity in strategies for calculating the time-dependent probability of reaching a goal. As such, a mathematical foundation that explains the irrational behavior of choosing an option with a lower expected utility is revealed, which could imply that humans possess rationality in foresight.
On the Achievable Throughput Over TVWS Sensor Networks
Caleffi, Marcello; Cacciapuoti, Angela Sara
2016-01-01
In this letter, we study the throughput achievable by an unlicensed sensor network operating over TV white space spectrum in presence of coexistence interference. Through the letter, we first analytically derive the achievable throughput as a function of the channel ordering. Then, we show that the problem of deriving the maximum expected throughput through exhaustive search is computationally unfeasible. Finally, we derive a computational-efficient algorithm characterized by polynomial-time complexity to compute the channel set maximizing the expected throughput and, stemming from this, we derive a closed-form expression of the maximum expected throughput. Numerical simulations validate the theoretical analysis. PMID:27043565
NASA Astrophysics Data System (ADS)
Ezhilarasu, P. Megavarna; Inbavalli, M.; Murali, K.; Thamilmaran, K.
2018-07-01
In this paper, we report the dynamical transitions to strange non-chaotic attractors in a quasiperiodically forced state controlled-cellular neural network (SC-CNN)-based MLC circuit via two different mechanisms, namely the Heagy-Hammel route and the gradual fractalisation route. These transitions were observed through numerical simulations and hardware experiments and confirmed using statistical tools, such as maximal Lyapunov exponent spectrum and its variance and singular continuous spectral analysis. We find that there is a remarkable agreement of the results from both numerical simulations as well as from hardware experiments.
Equivalence between entanglement and the optimal fidelity of continuous variable teleportation.
Adesso, Gerardo; Illuminati, Fabrizio
2005-10-07
We devise the optimal form of Gaussian resource states enabling continuous-variable teleportation with maximal fidelity. We show that a nonclassical optimal fidelity of N-user teleportation networks is necessary and sufficient for N-party entangled Gaussian resources, yielding an estimator of multipartite entanglement. The entanglement of teleportation is equivalent to the entanglement of formation in a two-user protocol, and to the localizable entanglement in a multiuser one. Finally, we show that the continuous-variable tangle, quantifying entanglement sharing in three-mode Gaussian states, is defined operationally in terms of the optimal fidelity of a tripartite teleportation network.
Mapping and discrimination of networks in the complexity-entropy plane
NASA Astrophysics Data System (ADS)
Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.
2017-10-01
Complex networks are usually characterized in terms of their topological, spatial, or information-theoretic properties and combinations of the associated metrics are used to discriminate networks into different classes or categories. However, even with the present variety of characteristics at hand it still remains a subject of current research to appropriately quantify a network's complexity and correspondingly discriminate between different types of complex networks, like infrastructure or social networks, on such a basis. Here we explore the possibility to classify complex networks by means of a statistical complexity measure that has formerly been successfully applied to distinguish different types of chaotic and stochastic time series. It is composed of a network's averaged per-node entropic measure characterizing the network's information content and the associated Jenson-Shannon divergence as a measure of disequilibrium. We study 29 real-world networks and show that networks of the same category tend to cluster in distinct areas of the resulting complexity-entropy plane. We demonstrate that within our framework, connectome networks exhibit among the highest complexity while, e.g., transportation and infrastructure networks display significantly lower values. Furthermore, we demonstrate the utility of our framework by applying it to families of random scale-free and Watts-Strogatz model networks. We then show in a second application that the proposed framework is useful to objectively construct threshold-based networks, such as functional climate networks or recurrence networks, by choosing the threshold such that the statistical network complexity is maximized.
Project: Internal communications
NASA Technical Reports Server (NTRS)
Black, Lydia
1994-01-01
The purpose of this study was to ascertain the perceived information needs of NASA Langley employees. One hundred and twelve face-to-face interviews were conducted with a representative sample of aero-space technologists, administrative professionals, technicians. and secretarial/clerical personnel. Results of employee perceptions are analyzed and summarized using affinity diagramming. Particular strategies to maximize use of existing internal communication networks are discussed.
Winner Takes All: Competing Viruses or Ideas on Fair-Play Networks
2012-01-01
ratio (up to some exponents ). Also, clearly, the maximal ratios are attained at one of the last two fixed points. 4.3 Special Case: Barbell Graph A...Huberman. The dynamics of viral marketing. In EC, 2006. [24] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst . Cascading behavior in large
ERIC Educational Resources Information Center
Godsall, Lyndon; Crescimano, Linda; Blair, Risa
2005-01-01
Pine Crest School is not a technology school. It does not have a specific technology track; however, it maximizes the use of technology to deliver the curriculum from PK to 12. For more than six years, the students have used laptop computers. For the past four, it has had all Grade 6-12 students using our wireless network. It has implemented a…
Multiple network alignment via multiMAGNA+.
Vijayan, Vipin; Milenkovic, Tijana
2017-08-21
Network alignment (NA) aims to find a node mapping that identifies topologically or functionally similar network regions between molecular networks of different species. Analogous to genomic sequence alignment, NA can be used to transfer biological knowledge from well- to poorly-studied species between aligned network regions. Pairwise NA (PNA) finds similar regions between two networks while multiple NA (MNA) can align more than two networks. We focus on MNA. Existing MNA methods aim to maximize total similarity over all aligned nodes (node conservation). Then, they evaluate alignment quality by measuring the amount of conserved edges, but only after the alignment is constructed. Directly optimizing edge conservation during alignment construction in addition to node conservation may result in superior alignments. Thus, we present a novel MNA method called multiMAGNA++ that can achieve this. Indeed, multiMAGNA++ outperforms or is on par with existing MNA methods, while often completing faster than existing methods. That is, multiMAGNA++ scales well to larger network data and can be parallelized effectively. During method evaluation, we also introduce new MNA quality measures to allow for more fair MNA method comparison compared to the existing alignment quality measures. MultiMAGNA++ code is available on the method's web page at http://nd.edu/~cone/multiMAGNA++/.
Experimental evolution of protein–protein interaction networks
Kaçar, Betül; Gaucher, Eric A.
2013-01-01
The modern synthesis of evolutionary theory and genetics has enabled us to discover underlying molecular mechanisms of organismal evolution. We know that in order to maximize an organism's fitness in a particular environment, individual interactions among components of protein and nucleic acid networks need to be optimized by natural selection, or sometimes through random processes, as the organism responds to changes and/or challenges in the environment. Despite the significant role of molecular networks in determining an organism's adaptation to its environment, we still do not know how such inter- and intra-molecular interactions within networks change over time and contribute to an organism's evolvability while maintaining overall network functions. One way to address this challenge is to identify connections between molecular networks and their host organisms, to manipulate these connections, and then attempt to understand how such perturbations influence molecular dynamics of the network and thus influence evolutionary paths and organismal fitness. In the present review, we discuss how integrating evolutionary history with experimental systems that combine tools drawn from molecular evolution, synthetic biology and biochemistry allow us to identify the underlying mechanisms of organismal evolution, particularly from the perspective of protein interaction networks. PMID:23849056
A macrochip interconnection network enabled by silicon nanophotonic devices.
Zheng, Xuezhe; Cunningham, John E; Koka, Pranay; Schwetman, Herb; Lexau, Jon; Ho, Ron; Shubin, Ivan; Krishnamoorthy, Ashok V; Yao, Jin; Mekis, Attila; Pinguet, Thierry
2010-03-01
We present an advanced wavelength-division multiplexing point-to-point network enabled by silicon nanophotonic devices. This network offers strictly non-blocking all-to-all connectivity while maximizing bisection bandwidth, making it ideal for multi-core and multi-processor interconnections. We introduce one of the key components, the nanophotonic grating coupler, and discuss, for the first time, how this device can be useful for practical implementations of the wavelength-division multiplexing network using optical proximity communications. Finite difference time-domain simulation of the nanophotonic grating coupler device indicates that it can be made compact (20 microm x 50 microm), low loss (3.8 dB), and broadband (100 nm). These couplers require subwavelength material modulation at the nanoscale to achieve the desired functionality. We show that optical proximity communication provides unmatched optical I/O bandwidth density to electrical chips, which enables the application of wavelength-division multiplexing point-to-point network in macrochip with unprecedented bandwidth-density. The envisioned physical implementation is discussed. The benefits of such an interconnect network include a 5-6x improvement in latency when compared to a purely electronic implementation. Performance analysis shows that the wavelength-division multiplexing point-to-point network offers better overall performance over other optical network architectures.
The ASP Sensor Network: Infrastructure for the Next Generation of NASA Airborne Science
NASA Astrophysics Data System (ADS)
Myers, J. S.; Sorenson, C. E.; Van Gilst, D. P.; Duley, A.
2012-12-01
A state-of-the-art real-time data communications network is being implemented across the NASA Airborne Science Program core platforms. Utilizing onboard Ethernet networks and satellite communications systems, it is intended to maximize the science return from both single-platform missions and complex multi-aircraft Earth science campaigns. It also provides an open platform for data visualization and synthesis software tools, for use by the science instrument community. This paper will describe the prototype implementations currently deployed on the NASA DC-8 and Global Hawk aircraft, and the ongoing effort to expand the capability to other science platforms. Emphasis will be on the basic network architecture, the enabling hardware, and new standardized instrument interfaces. The new Mission Tools Suite, which provides an web-based user interface, will be also described; together with several example use-cases of this evolving technology.
Siri, Benoît; Berry, Hugues; Cessac, Bruno; Delord, Bruno; Quoy, Mathias
2008-12-01
We present a mathematical analysis of the effects of Hebbian learning in random recurrent neural networks, with a generic Hebbian learning rule, including passive forgetting and different timescales, for neuronal activity and learning dynamics. Previous numerical work has reported that Hebbian learning drives the system from chaos to a steady state through a sequence of bifurcations. Here, we interpret these results mathematically and show that these effects, involving a complex coupling between neuronal dynamics and synaptic graph structure, can be analyzed using Jacobian matrices, which introduce both a structural and a dynamical point of view on neural network evolution. Furthermore, we show that sensitivity to a learned pattern is maximal when the largest Lyapunov exponent is close to 0. We discuss how neural networks may take advantage of this regime of high functional interest.
Communal Cooperation in Sensor Networks for Situation Management
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin,Chunsheng
2006-01-01
Situation management is a rapidly evolving science where managed sources are processed as realtime streams of events and fused in a way that maximizes comprehension, thus enabling better decisions for action. Sensor networks provide a new technology that promises ubiquitous input and action throughout an environment, which can substantially improve information available to the process. Here we describe a NASA program that requires improvements in sensor networks and situation management. We present an approach for massively deployed sensor networks that does not rely on centralized control but is founded in lessons learned from the way biological ecosystems are organized. In this approach, fully distributed data aggregation and integration can be performed in a scalable fashion where individual motes operate based on local information, making local decisions that achieve globally-meaningful results. This exemplifies the robust, fault-tolerant infrastructure required for successful situation management systems.
Benefit of adaptive FEC in shared backup path protected elastic optical network.
Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang
2015-07-27
We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.
Improving deep convolutional neural networks with mixed maxout units.
Zhao, Hui-Zhen; Liu, Fu-Xian; Li, Long-Yue
2017-01-01
Motivated by insights from the maxout-units-based deep Convolutional Neural Network (CNN) that "non-maximal features are unable to deliver" and "feature mapping subspace pooling is insufficient," we present a novel mixed variant of the recently introduced maxout unit called a mixout unit. Specifically, we do so by calculating the exponential probabilities of feature mappings gained by applying different convolutional transformations over the same input and then calculating the expected values according to their exponential probabilities. Moreover, we introduce the Bernoulli distribution to balance the maximum values with the expected values of the feature mappings subspace. Finally, we design a simple model to verify the pooling ability of mixout units and a Mixout-units-based Network-in-Network (NiN) model to analyze the feature learning ability of the mixout models. We argue that our proposed units improve the pooling ability and that mixout models can achieve better feature learning and classification performance.
Role of inhibitory control in modulating focal seizure spread.
Liou, Jyun-You; Ma, Hongtao; Wenzel, Michael; Zhao, Mingrui; Baird-Daniel, Eliza; Smith, Elliot H; Daniel, Andy; Emerson, Ronald; Yuste, Rafael; Schwartz, Theodore H; Schevon, Catherine A
2018-05-10
Focal seizure propagation is classically thought to be spatially contiguous. However, distribution of seizures through a large-scale epileptic network has been theorized. Here, we used a multielectrode array, wide field calcium imaging, and two-photon calcium imaging to study focal seizure propagation pathways in an acute rodent neocortical 4-aminopyridine model. Although ictal neuronal bursts did not propagate beyond a 2-3-mm region, they were associated with hemisphere-wide field potential fluctuations and parvalbumin-positive interneuron activity outside the seizure focus. While bicuculline surface application enhanced contiguous seizure propagation, focal bicuculline microinjection at sites distant to the 4-aminopyridine focus resulted in epileptic network formation with maximal activity at the two foci. Our study suggests that both classical and epileptic network propagation can arise from localized inhibition defects, and that the network appearance can arise in the context of normal brain structure without requirement for pathological connectivity changes between sites.
Water Security Toolkit User Manual: Version 1.3 | Science ...
User manual: Data Product/Software The Water Security Toolkit (WST) is a suite of tools that help provide the information necessary to make good decisions resulting in the minimization of further human exposure to contaminants, and the maximization of the effectiveness of intervention strategies. WST assists in the evaluation of multiple response actions in order to select the most beneficial consequence management strategy. It includes hydraulic and water quality modeling software and optimization methodologies to identify: (1) sensor locations to detect contamination, (2) locations in the network in which the contamination was introduced, (3) hydrants to remove contaminated water from the distribution system, (4) locations in the network to inject decontamination agents to inactivate, remove or destroy contaminants, (5) locations in the network to take grab sample to confirm contamination or cleanup and (6) valves to close in order to isolate contaminated areas of the network.
Design and architecture of the Mars relay network planning and analysis framework
NASA Technical Reports Server (NTRS)
Cheung, K. M.; Lee, C. H.
2002-01-01
In this paper we describe the design and architecture of the Mars Network planning and analysis framework that supports generation and validation of efficient planning and scheduling strategy. The goals are to minimize the transmitting time, minimize the delaying time, and/or maximize the network throughputs. The proposed framework would require (1) a client-server architecture to support interactive, batch, WEB, and distributed analysis and planning applications for the relay network analysis scheme, (2) a high-fidelity modeling and simulation environment that expresses link capabilities between spacecraft to spacecraft and spacecraft to Earth stations as time-varying resources, and spacecraft activities, link priority, Solar System dynamic events, the laws of orbital mechanics, and other limiting factors as spacecraft power and thermal constraints, (3) an optimization methodology that casts the resource and constraint models into a standard linear and nonlinear constrained optimization problem that lends itself to commercial off-the-shelf (COTS)planning and scheduling algorithms.
On the capacity of ternary Hebbian networks
NASA Technical Reports Server (NTRS)
Baram, Yoram
1991-01-01
Networks of ternary neurons storing random vectors over the set -1,0,1 by the so-called Hebbian rule are considered. It is shown that the maximal number of stored patterns that are equilibrium states of the network with probability tending to one as N tends to infinity is at least on the order of (N exp 2-1/alpha)/K, where N is the number of neurons, K is the number of nonzero elements in a pattern, and t = alpha x K, alpha between 1/2 and 1, is the threshold in the neuron function. While, for small K, this bound is similar to that obtained for fully connected binary networks, the number of interneural connections required in the ternary case is considerably smaller. Similar bounds, incorporating error probabilities, are shown to guarantee, in the same probabilistic sense, the correction of errors in the nonzero elements and in the location of these elements.
Role of adjacency-matrix degeneracy in maximum-entropy-weighted network models
NASA Astrophysics Data System (ADS)
Sagarra, O.; Pérez Vicente, C. J.; Díaz-Guilera, A.
2015-11-01
Complex network null models based on entropy maximization are becoming a powerful tool to characterize and analyze data from real systems. However, it is not easy to extract good and unbiased information from these models: A proper understanding of the nature of the underlying events represented in them is crucial. In this paper we emphasize this fact stressing how an accurate counting of configurations compatible with given constraints is fundamental to build good null models for the case of networks with integer-valued adjacency matrices constructed from an aggregation of one or multiple layers. We show how different assumptions about the elements from which the networks are built give rise to distinctively different statistics, even when considering the same observables to match those of real data. We illustrate our findings by applying the formalism to three data sets using an open-source software package accompanying the present work and demonstrate how such differences are clearly seen when measuring network observables.
NASA Astrophysics Data System (ADS)
Xia, Weiwei; Shen, Lianfeng
We propose two vertical handoff schemes for cellular network and wireless local area network (WLAN) integration: integrated service-based handoff (ISH) and integrated service-based handoff with queue capabilities (ISHQ). Compared with existing handoff schemes in integrated cellular/WLAN networks, the proposed schemes consider a more comprehensive set of system characteristics such as different features of voice and data services, dynamic information about the admitted calls, user mobility and vertical handoffs in two directions. The code division multiple access (CDMA) cellular network and IEEE 802.11e WLAN are taken into account in the proposed schemes. We model the integrated networks by using multi-dimensional Markov chains and the major performance measures are derived for voice and data services. The important system parameters such as thresholds to prioritize handoff voice calls and queue sizes are optimized. Numerical results demonstrate that the proposed ISHQ scheme can maximize the utilization of overall bandwidth resources with the best quality of service (QoS) provisioning for voice and data services.
The prisoner’s dilemma on co-evolving networks under perfect rationality
NASA Astrophysics Data System (ADS)
Biely, Christoly; Dragosits, Klaus; Thurner, Stefan
2007-04-01
We consider the prisoner’s dilemma being played repeatedly on a dynamic network, where agents may choose their actions as well as their co-players. This leads to co-evolution of network structure and strategy patterns of the players. Individual decisions are made fully rationally and are based on local information only. They are made such that links to defecting agents are resolved and that cooperating agents build up new links. The exact form of the updating scheme is motivated by profit maximization and not by imitation. If players update their decisions in a synchronized way the system exhibits oscillatory dynamics: Periods of growing cooperation (and total linkage) alternate with periods of increasing defection. The cyclical behavior is reduced and the system stabilizes at significant total cooperation levels when players are less synchronized. In this regime we find emergent network structures resembling ‘complex’ and hierarchical topology. The exponent of the power-law degree distribution ( γ∼8.6) perfectly matches empirical results for human communication networks.
Hop Optimization and Relay Node Selection in Multi-hop Wireless Ad-Hoc Networks
NASA Astrophysics Data System (ADS)
Li, Xiaohua(Edward)
In this paper we propose an efficient approach to determine the optimal hops for multi-hop ad hoc wireless networks. Based on the assumption that nodes use successive interference cancellation (SIC) and maximal ratio combining (MRC) to deal with mutual interference and to utilize all the received signal energy, we show that the signal-to-interference-plus-noise ratio (SINR) of a node is determined only by the nodes before it, not the nodes after it, along a packet forwarding path. Based on this observation, we propose an iterative procedure to select the relay nodes and to calculate the path SINR as well as capacity of an arbitrary multi-hop packet forwarding path. The complexity of the algorithm is extremely low, and scaling well with network size. The algorithm is applicable in arbitrarily large networks. Its performance is demonstrated as desirable by simulations. The algorithm can be helpful in analyzing the performance of multi-hop wireless networks.
Hierarchy in directed random networks.
Mones, Enys
2013-02-01
In recent years, the theory and application of complex networks have been quickly developing in a markable way due to the increasing amount of data from real systems and the fruitful application of powerful methods used in statistical physics. Many important characteristics of social or biological systems can be described by the study of their underlying structure of interactions. Hierarchy is one of these features that can be formulated in the language of networks. In this paper we present some (qualitative) analytic results on the hierarchical properties of random network models with zero correlations and also investigate, mainly numerically, the effects of different types of correlations. The behavior of the hierarchy is different in the absence and the presence of giant components. We show that the hierarchical structure can be drastically different if there are one-point correlations in the network. We also show numerical results suggesting that the hierarchy does not change monotonically with the correlations and there is an optimal level of nonzero correlations maximizing the level of hierarchy.
A high-resolution human contact network for infectious disease transmission
Salathé, Marcel; Kazandjieva, Maria; Lee, Jung Woo; Levis, Philip; Feldman, Marcus W.; Jones, James H.
2010-01-01
The most frequent infectious diseases in humans—and those with the highest potential for rapid pandemic spread—are usually transmitted via droplets during close proximity interactions (CPIs). Despite the importance of this transmission route, very little is known about the dynamic patterns of CPIs. Using wireless sensor network technology, we obtained high-resolution data of CPIs during a typical day at an American high school, permitting the reconstruction of the social network relevant for infectious disease transmission. At 94% coverage, we collected 762,868 CPIs at a maximal distance of 3 m among 788 individuals. The data revealed a high-density network with typical small-world properties and a relatively homogeneous distribution of both interaction time and interaction partners among subjects. Computer simulations of the spread of an influenza-like disease on the weighted contact graph are in good agreement with absentee data during the most recent influenza season. Analysis of targeted immunization strategies suggested that contact network data are required to design strategies that are significantly more effective than random immunization. Immunization strategies based on contact network data were most effective at high vaccination coverage. PMID:21149721
Cytoprophet: a Cytoscape plug-in for protein and domain interaction networks inference.
Morcos, Faruck; Lamanna, Charles; Sikora, Marcin; Izaguirre, Jesús
2008-10-01
Cytoprophet is a software tool that allows prediction and visualization of protein and domain interaction networks. It is implemented as a plug-in of Cytoscape, an open source software framework for analysis and visualization of molecular networks. Cytoprophet implements three algorithms that predict new potential physical interactions using the domain composition of proteins and experimental assays. The algorithms for protein and domain interaction inference include maximum likelihood estimation (MLE) using expectation maximization (EM); the set cover approach maximum specificity set cover (MSSC) and the sum-product algorithm (SPA). After accepting an input set of proteins with Uniprot ID/Accession numbers and a selected prediction algorithm, Cytoprophet draws a network of potential interactions with probability scores and GO distances as edge attributes. A network of domain interactions between the domains of the initial protein list can also be generated. Cytoprophet was designed to take advantage of the visual capabilities of Cytoscape and be simple to use. An example of inference in a signaling network of myxobacterium Myxococcus xanthus is presented and available at Cytoprophet's website. http://cytoprophet.cse.nd.edu.
Optimal stimulus scheduling for active estimation of evoked brain networks.
Kafashan, MohammadMehdi; Ching, ShiNung
2015-12-01
We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.
Optimal stimulus scheduling for active estimation of evoked brain networks
NASA Astrophysics Data System (ADS)
Kafashan, MohammadMehdi; Ching, ShiNung
2015-12-01
Objective. We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. Approach. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. Main results. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. Significance. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.
Molecular inspired models for prediction and control of directional FSO/RF wireless networks
NASA Astrophysics Data System (ADS)
Llorca, Jaime; Milner, Stuart D.; Davis, Christopher C.
2010-08-01
Directional wireless networks using FSO and RF transmissions provide wireless backbone support for mobile communications in dynamic environments. The heterogeneous and dynamic nature of such networks challenges their robustness and requires self-organization mechanisms to assure end-to-end broadband connectivity. We developed a framework based on the definition of a potential energy function to characterize robustness in communication networks and the study of first and second order variations of the potential energy to provide prediction and control strategies for network performance optimization. In this paper, we present non-convex molecular potentials such as the Morse Potential, used to describe the potential energy of bonds within molecules, for the characterization of communication links in the presence of physical constraints such as the power available at the network nodes. The inclusion of the Morse Potential translates into adaptive control strategies where forces on network nodes drive the release, retention or reconfiguration of communication links for network performance optimization. Simulation results show the effectiveness of our self-organized control mechanism, where the physical topology reorganizes to maximize the number of source to destination communicating pairs. Molecular Normal Mode Analysis (NMA) techniques for assessing network performance degradation in dynamic networks are also presented. Preliminary results show correlation between peaks in the eigenvalues of the Hessian of the network potential and network degradation.
Parasuraman, Ramviyas; Fabry, Thomas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel
2014-12-12
The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the "server-relay-client" framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions.
Parasuraman, Ramviyas; Fabry, Thomas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel
2014-01-01
The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions. PMID:25615734
Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer
Yu, Hongyan; Zhang, Yongqiang; Yang, Yuanyuan; Ji, Luyue
2017-01-01
Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three factors including spectral efficiency, the transmit power and outage target rate for two different modes, i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the energy efficiency maximization problem subject to the constraints of minimum Quality of Service (QoS), minimum harvested energy and maximum transmission power as non-convex optimization problem. In particular, we focus on optimizing power control and power allocation policy in PS and TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose the corresponding algorithm to characterize a non-convex optimization problem that takes into account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage probability and effective throughput from the scenarios that the transmitter does not or partially know the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed optimal iterative algorithm can achieve optimal solutions within a small number of iterations and various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target rate, respectively. PMID:28820496
Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer.
Yu, Hongyan; Zhang, Yongqiang; Guo, Songtao; Yang, Yuanyuan; Ji, Luyue
2017-08-18
Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three factors including spectral efficiency, the transmit power and outage target rate for two different modes, i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the energy efficiency maximization problem subject to the constraints of minimum Quality of Service (QoS), minimum harvested energy and maximum transmission power as non-convex optimization problem. In particular, we focus on optimizing power control and power allocation policy in PS and TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose the corresponding algorithm to characterize a non-convex optimization problem that takes into account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage probability and effective throughput from the scenarios that the transmitter does not or partially know the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed optimal iterative algorithm can achieve optimal solutions within a small number of iterations and various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target rate, respectively.
Neuro-genetic system for optimization of GMI samples sensitivity.
Pitta Botelho, A C O; Vellasco, M M B R; Hall Barbosa, C R; Costa Silva, E
2016-03-01
Magnetic sensors are largely used in several engineering areas. Among them, magnetic sensors based on the Giant Magnetoimpedance (GMI) effect are a new family of magnetic sensing devices that have a huge potential for applications involving measurements of ultra-weak magnetic fields. The sensitivity of magnetometers is directly associated with the sensitivity of their sensing elements. The GMI effect is characterized by a large variation of the impedance (magnitude and phase) of a ferromagnetic sample, when subjected to a magnetic field. Recent studies have shown that phase-based GMI magnetometers have the potential to increase the sensitivity by about 100 times. The sensitivity of GMI samples depends on several parameters, such as sample length, external magnetic field, DC level and frequency of the excitation current. However, this dependency is yet to be sufficiently well-modeled in quantitative terms. So, the search for the set of parameters that optimizes the samples sensitivity is usually empirical and very time consuming. This paper deals with this problem by proposing a new neuro-genetic system aimed at maximizing the impedance phase sensitivity of GMI samples. A Multi-Layer Perceptron (MLP) Neural Network is used to model the impedance phase and a Genetic Algorithm uses the information provided by the neural network to determine which set of parameters maximizes the impedance phase sensitivity. The results obtained with a data set composed of four different GMI sample lengths demonstrate that the neuro-genetic system is able to correctly and automatically determine the set of conditioning parameters responsible for maximizing their phase sensitivities. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yan; Mohanty, Soumya D.; Jenet, Fredrick A., E-mail: ywang12@hust.edu.cn
2015-12-20
Supermassive black hole binaries are one of the primary targets of gravitational wave (GW) searches using pulsar timing arrays (PTAs). GW signals from such systems are well represented by parameterized models, allowing the standard Generalized Likelihood Ratio Test (GLRT) to be used for their detection and estimation. However, there is a dichotomy in how the GLRT can be implemented for PTAs: there are two possible ways in which one can split the set of signal parameters for semi-analytical and numerical extremization. The straightforward extension of the method used for continuous signals in ground-based GW searches, where the so-called pulsar phasemore » parameters are maximized numerically, was addressed in an earlier paper. In this paper, we report the first study of the performance of the second approach where the pulsar phases are maximized semi-analytically. This approach is scalable since the number of parameters left over for numerical optimization does not depend on the size of the PTA. Our results show that for the same array size (9 pulsars), the new method performs somewhat worse in parameter estimation, but not in detection, than the previous method where the pulsar phases were maximized numerically. The origin of the performance discrepancy is likely to be in the ill-posedness that is intrinsic to any network analysis method. However, the scalability of the new method allows the ill-posedness to be mitigated by simply adding more pulsars to the array. This is shown explicitly by taking a larger array of pulsars.« less
Molecular Evolution of Grass Stomata.
Chen, Zhong-Hua; Chen, Guang; Dai, Fei; Wang, Yizhou; Hills, Adrian; Ruan, Yong-Ling; Zhang, Guoping; Franks, Peter J; Nevo, Eviatar; Blatt, Michael R
2017-02-01
Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in rapidly changing environments. Grass stomata harness the active turgor control mechanisms present in stomata of more ancient plant lineages, maximizing several morphological and developmental features to ensure rapid responses to environmental inputs. The evolutionary development of grass stomata appears to have been a gradual progression. Therefore, understanding the complex structures, developmental events, regulatory networks, and combinations of ion transporters necessary to drive rapid stomatal movement may inform future efforts towards breeding new crop varieties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Persistence paves the way for cooperation in evolutionary games
NASA Astrophysics Data System (ADS)
Huang, Chang-Wei; Dai, Qiong-Lin
2017-04-01
Cooperation is an effective way to maximize collective benefits, especially in modern human society. The issues on the emergence and maintenance of cooperation have attracted much attention in recent years. Here, we introduce the persistence parameter τ to characterize the time duration of choices held by individuals and consider the effects of τ on cooperation. We find that persistence could promote cooperation in a population no matter what the network structure is. Furthermore, the results on heterogeneous networks show that individuals with larger τ are more inclined to cooperate than those with smaller τ. Moreover, we investigate the effects of correlations between degree and persistence in scale-free networks and find that assortative matching could remarkably enhance cooperation whereas disassortative matching has adverse impacts on the evolution of cooperation.
Dynamics of investor spanning trees around dot-com bubble.
Ranganathan, Sindhuja; Kivelä, Mikko; Kanniainen, Juho
2018-01-01
We identify temporal investor networks for Nokia stock by constructing networks from correlations between investor-specific net-volumes and analyze changes in the networks around dot-com bubble. The analysis is conducted separately for households, financial, and non-financial institutions. Our results indicate that spanning tree measures for households reflected the boom and crisis: the maximum spanning tree measures had a clear upward tendency in the bull markets when the bubble was building up, and, even more importantly, the minimum spanning tree measures pre-reacted the burst of the bubble. At the same time, we find less clear reactions in the minimal and maximal spanning trees of non-financial and financial institutions around the bubble, which suggests that household investors can have a greater herding tendency around bubbles.
Patterns of cooperation: fairness and coordination in networks of interacting agents
NASA Astrophysics Data System (ADS)
Do, Anne-Ly; Rudolf, Lars; Gross, Thilo
2010-06-01
We study the self-assembly of a complex network of collaborations among self-interested agents. The agents can maintain different levels of cooperation with different partners. Further, they continuously, selectively and independently adapt the amount of resources allocated to each of their collaborations in order to maximize the obtained payoff. We show analytically that the system approaches a state in which the agents make identical investments, and links produce identical benefits. Despite this high degree of social coordination, some agents manage to secure privileged topological positions in the network, enabling them to extract high payoffs. Our analytical investigations provide a rationale for the emergence of unidirectional non-reciprocal collaborations and different responses to the withdrawal of a partner from an interaction that have been reported in the psychological literature.
Dynamics of investor spanning trees around dot-com bubble
Kivelä, Mikko; Kanniainen, Juho
2018-01-01
We identify temporal investor networks for Nokia stock by constructing networks from correlations between investor-specific net-volumes and analyze changes in the networks around dot-com bubble. The analysis is conducted separately for households, financial, and non-financial institutions. Our results indicate that spanning tree measures for households reflected the boom and crisis: the maximum spanning tree measures had a clear upward tendency in the bull markets when the bubble was building up, and, even more importantly, the minimum spanning tree measures pre-reacted the burst of the bubble. At the same time, we find less clear reactions in the minimal and maximal spanning trees of non-financial and financial institutions around the bubble, which suggests that household investors can have a greater herding tendency around bubbles. PMID:29897973
Incidents Prediction in Road Junctions Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Hajji, Tarik; Alami Hassani, Aicha; Ouazzani Jamil, Mohammed
2018-05-01
The implementation of an incident detection system (IDS) is an indispensable operation in the analysis of the road traffics. However the IDS may, in no case, represent an alternative to the classical monitoring system controlled by the human eye. The aim of this work is to increase detection and prediction probability of incidents in camera-monitored areas. Knowing that, these areas are monitored by multiple cameras and few supervisors. Our solution is to use Artificial Neural Networks (ANN) to analyze moving objects trajectories on captured images. We first propose a modelling of the trajectories and their characteristics, after we develop a learning database for valid and invalid trajectories, and then we carry out a comparative study to find the artificial neural network architecture that maximizes the rate of valid and invalid trajectories recognition.
Network formation: neighborhood structures, establishment costs, and distributed learning.
Chasparis, Georgios C; Shamma, Jeff S
2013-12-01
We consider the problem of network formation in a distributed fashion. Network formation is modeled as a strategic-form game, where agents represent nodes that form and sever unidirectional links with other nodes and derive utilities from these links. Furthermore, agents can form links only with a limited set of neighbors. Agents trade off the benefit from links, which is determined by a distance-dependent reward function, and the cost of maintaining links. When each agent acts independently, trying to maximize its own utility function, we can characterize “stable” networks through the notion of Nash equilibrium. In fact, the introduced reward and cost functions lead to Nash equilibria (networks), which exhibit several desirable properties such as connectivity, bounded-hop diameter, and efficiency (i.e., minimum number of links). Since Nash networks may not necessarily be efficient, we also explore the possibility of “shaping” the set of Nash networks through the introduction of state-based utility functions. Such utility functions may represent dynamic phenomena such as establishment costs (either positive or negative). Finally, we show how Nash networks can be the outcome of a distributed learning process. In particular, we extend previous learning processes to so-called “state-based” weakly acyclic games, and we show that the proposed network formation games belong to this class of games.
node2vec: Scalable Feature Learning for Networks
Grover, Aditya; Leskovec, Jure
2016-01-01
Prediction tasks over nodes and edges in networks require careful effort in engineering features used by learning algorithms. Recent research in the broader field of representation learning has led to significant progress in automating prediction by learning the features themselves. However, present feature learning approaches are not expressive enough to capture the diversity of connectivity patterns observed in networks. Here we propose node2vec, an algorithmic framework for learning continuous feature representations for nodes in networks. In node2vec, we learn a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes. We define a flexible notion of a node’s network neighborhood and design a biased random walk procedure, which efficiently explores diverse neighborhoods. Our algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and we argue that the added flexibility in exploring neighborhoods is the key to learning richer representations. We demonstrate the efficacy of node2vec over existing state-of-the-art techniques on multi-label classification and link prediction in several real-world networks from diverse domains. Taken together, our work represents a new way for efficiently learning state-of-the-art task-independent representations in complex networks. PMID:27853626
2013-06-01
zarzoso/ biblio /tnn10.pdf"> % "Robust independent component analysis by iterative maximization</a> % <a href = "http://www.i3s.unice.fr/~zarzoso... biblio /tnn10.pdf"> % of the kurtosis contrast with algebraic optimal step size"</a>, % IEEE Transactions on Neural Networks, vol. 21, no. 2, % pp
ERIC Educational Resources Information Center
Maranto, Robert; Van Raemdonck, Dirk C.
2011-01-01
Many people view subgovernments such as the "military-industrial complex" as largely self-governing and budget maximizing. Yet, as defense cutbacks in the 1970s and 1990s show, such networks do not maintain their privileged status indefinitely. In similar fashion, some claim public education is too autonomous and too focused on budget…
Deep Unfolding for Topic Models.
Chien, Jen-Tzung; Lee, Chao-Hsi
2018-02-01
Deep unfolding provides an approach to integrate the probabilistic generative models and the deterministic neural networks. Such an approach is benefited by deep representation, easy interpretation, flexible learning and stochastic modeling. This study develops the unsupervised and supervised learning of deep unfolded topic models for document representation and classification. Conventionally, the unsupervised and supervised topic models are inferred via the variational inference algorithm where the model parameters are estimated by maximizing the lower bound of logarithm of marginal likelihood using input documents without and with class labels, respectively. The representation capability or classification accuracy is constrained by the variational lower bound and the tied model parameters across inference procedure. This paper aims to relax these constraints by directly maximizing the end performance criterion and continuously untying the parameters in learning process via deep unfolding inference (DUI). The inference procedure is treated as the layer-wise learning in a deep neural network. The end performance is iteratively improved by using the estimated topic parameters according to the exponentiated updates. Deep learning of topic models is therefore implemented through a back-propagation procedure. Experimental results show the merits of DUI with increasing number of layers compared with variational inference in unsupervised as well as supervised topic models.
Scalable learning method for feedforward neural networks using minimal-enclosing-ball approximation.
Wang, Jun; Deng, Zhaohong; Luo, Xiaoqing; Jiang, Yizhang; Wang, Shitong
2016-06-01
Training feedforward neural networks (FNNs) is one of the most critical issues in FNNs studies. However, most FNNs training methods cannot be directly applied for very large datasets because they have high computational and space complexity. In order to tackle this problem, the CCMEB (Center-Constrained Minimum Enclosing Ball) problem in hidden feature space of FNN is discussed and a novel learning algorithm called HFSR-GCVM (hidden-feature-space regression using generalized core vector machine) is developed accordingly. In HFSR-GCVM, a novel learning criterion using L2-norm penalty-based ε-insensitive function is formulated and the parameters in the hidden nodes are generated randomly independent of the training sets. Moreover, the learning of parameters in its output layer is proved equivalent to a special CCMEB problem in FNN hidden feature space. As most CCMEB approximation based machine learning algorithms, the proposed HFSR-GCVM training algorithm has the following merits: The maximal training time of the HFSR-GCVM training is linear with the size of training datasets and the maximal space consumption is independent of the size of training datasets. The experiments on regression tasks confirm the above conclusions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Focal temporal pole atrophy and network degeneration in semantic variant primary progressive aphasia
Collins, Jessica A; Montal, Victor; Hochberg, Daisy; Quimby, Megan; Mandelli, Maria Luisa; Makris, Nikos; Seeley, William W; Gorno-Tempini, Maria Luisa; Dickerson, Bradford C
2017-01-01
Abstract A wealth of neuroimaging research has associated semantic variant primary progressive aphasia with distributed cortical atrophy that is most prominent in the left anterior temporal cortex; however, there is little consensus regarding which region within the anterior temporal cortex is most prominently damaged, which may indicate the putative origin of neurodegeneration. In this study, we localized the most prominent and consistent region of atrophy in semantic variant primary progressive aphasia using cortical thickness analysis in two independent patient samples (n = 16 and 28, respectively) relative to age-matched controls (n = 30). Across both samples the point of maximal atrophy was located in the same region of the left temporal pole. This same region was the point of maximal atrophy in 100% of individual patients in both semantic variant primary progressive aphasia samples. Using resting state functional connectivity in healthy young adults (n = 89), we showed that the seed region derived from the semantic variant primary progressive aphasia analysis was strongly connected with a large-scale network that closely resembled the distributed atrophy pattern in semantic variant primary progressive aphasia. In both patient samples, the magnitude of atrophy within a brain region was predicted by that region’s strength of functional connectivity to the temporopolar seed region in healthy adults. These findings suggest that cortical atrophy in semantic variant primary progressive aphasia may follow connectional pathways within a large-scale network that converges on the temporal pole. PMID:28040670
Li, Ruiying; Ma, Wenting; Huang, Ning; Kang, Rui
2017-01-01
A sophisticated method for node deployment can efficiently reduce the energy consumption of a Wireless Sensor Network (WSN) and prolong the corresponding network lifetime. Pioneers have proposed many node deployment based lifetime optimization methods for WSNs, however, the retransmission mechanism and the discrete power control strategy, which are widely used in practice and have large effect on the network energy consumption, are often neglected and assumed as a continuous one, respectively, in the previous studies. In this paper, both retransmission and discrete power control are considered together, and a more realistic energy-consumption-based network lifetime model for linear WSNs is provided. Using this model, we then propose a generic deployment-based optimization model that maximizes network lifetime under coverage, connectivity and transmission rate success constraints. The more accurate lifetime evaluation conduces to a longer optimal network lifetime in the realistic situation. To illustrate the effectiveness of our method, both one-tiered and two-tiered uniformly and non-uniformly distributed linear WSNs are optimized in our case studies, and the comparisons between our optimal results and those based on relatively inaccurate lifetime evaluation show the advantage of our method when investigating WSN lifetime optimization problems.
Reinforcement learning for routing in cognitive radio ad hoc networks.
Al-Rawi, Hasan A A; Yau, Kok-Lim Alvin; Mohamad, Hafizal; Ramli, Nordin; Hashim, Wahidah
2014-01-01
Cognitive radio (CR) enables unlicensed users (or secondary users, SUs) to sense for and exploit underutilized licensed spectrum owned by the licensed users (or primary users, PUs). Reinforcement learning (RL) is an artificial intelligence approach that enables a node to observe, learn, and make appropriate decisions on action selection in order to maximize network performance. Routing enables a source node to search for a least-cost route to its destination node. While there have been increasing efforts to enhance the traditional RL approach for routing in wireless networks, this research area remains largely unexplored in the domain of routing in CR networks. This paper applies RL in routing and investigates the effects of various features of RL (i.e., reward function, exploitation, and exploration, as well as learning rate) through simulation. New approaches and recommendations are proposed to enhance the features in order to improve the network performance brought about by RL to routing. Simulation results show that the RL parameters of the reward function, exploitation, and exploration, as well as learning rate, must be well regulated, and the new approaches proposed in this paper improves SUs' network performance without significantly jeopardizing PUs' network performance, specifically SUs' interference to PUs.
Reinforcement Learning for Routing in Cognitive Radio Ad Hoc Networks
Al-Rawi, Hasan A. A.; Mohamad, Hafizal; Hashim, Wahidah
2014-01-01
Cognitive radio (CR) enables unlicensed users (or secondary users, SUs) to sense for and exploit underutilized licensed spectrum owned by the licensed users (or primary users, PUs). Reinforcement learning (RL) is an artificial intelligence approach that enables a node to observe, learn, and make appropriate decisions on action selection in order to maximize network performance. Routing enables a source node to search for a least-cost route to its destination node. While there have been increasing efforts to enhance the traditional RL approach for routing in wireless networks, this research area remains largely unexplored in the domain of routing in CR networks. This paper applies RL in routing and investigates the effects of various features of RL (i.e., reward function, exploitation, and exploration, as well as learning rate) through simulation. New approaches and recommendations are proposed to enhance the features in order to improve the network performance brought about by RL to routing. Simulation results show that the RL parameters of the reward function, exploitation, and exploration, as well as learning rate, must be well regulated, and the new approaches proposed in this paper improves SUs' network performance without significantly jeopardizing PUs' network performance, specifically SUs' interference to PUs. PMID:25140350
NASA Astrophysics Data System (ADS)
Li, Ming-Xia; Jiang, Zhi-Qiang; Xie, Wen-Jie; Xiong, Xiong; Zhang, Wei; Zhou, Wei-Xing
2015-02-01
Traders develop and adopt different trading strategies attempting to maximize their profits in financial markets. These trading strategies not only result in specific topological structures in trading networks, which connect the traders with the pairwise buy-sell relationships, but also have potential impacts on market dynamics. Here, we present a detailed analysis on how the market behaviors are correlated with the structures of traders in trading networks based on audit trail data for the Baosteel stock and its warrant at the transaction level from 22 August 2005 to 23 August 2006. In our investigation, we divide each trade day into 48 rolling time windows with a length of 5 min, construct a trading network within each window, and obtain a time series of over 11,600 trading networks. We find that there are strongly simultaneous correlations between the topological metrics (including network centralization, assortative index, and average path length) of trading networks that characterize the patterns of order execution and the financial variables (including return, volatility, intertrade duration, and trading volume) for the stock and its warrant. Our analysis may shed new lights on how the microscopic interactions between elements within complex system affect the system's performance.
A distributed incentive compatible pricing mechanism for P2P networks
NASA Astrophysics Data System (ADS)
Zhang, Jie; Zhao, Zheng; Xiong, Xiao; Shi, Qingwei
2007-09-01
Peer-to-Peer (P2P) systems are currently receiving considerable interest. However, as experience with P2P networks shows, the selfish behaviors of peers may lead to serious problems of P2P network, such as free-riding and white-washing. In order to solve these problems, there are increasing considerations on reputation system design in the study of P2P networks. Most of the existing works is concerning probabilistic estimation or social networks to evaluate the trustworthiness for a peer to others. However, these models can not be efficient all the time. In this paper, our aim is to provide a general mechanism that can maximize P2P networks social welfare in a way of Vickrey-Clarke-Groves family, while assuming every peer in P2P networks is rational and selfish, which means they only concern about their own outcome. This mechanism has some desirable properties using an O(n) algorithm: (1) incentive compatibility, every peer truly report its connection type; (2) individually rationality; and (3) fully decentralized, we design a multiple-principal multiple-agent model, concerning about the service provider and service requester individually.
Cross layer optimization for cloud-based radio over optical fiber networks
NASA Astrophysics Data System (ADS)
Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong; Yang, Hui; Meng, Luoming
2016-07-01
To adapt the 5G communication, the cloud radio access network is a paradigm introduced by operators which aggregates all base stations computational resources into a cloud BBU pool. The interaction between RRH and BBU or resource schedule among BBUs in cloud have become more frequent and complex with the development of system scale and user requirement. It can promote the networking demand among RRHs and BBUs, and force to form elastic optical fiber switching and networking. In such network, multiple stratum resources of radio, optical and BBU processing unit have interweaved with each other. In this paper, we propose a novel multiple stratum optimization (MSO) architecture for cloud-based radio over optical fiber networks (C-RoFN) with software defined networking. Additionally, a global evaluation strategy (GES) is introduced in the proposed architecture. MSO can enhance the responsiveness to end-to-end user demands and globally optimize radio frequency, optical spectrum and BBU processing resources effectively to maximize radio coverage. The feasibility and efficiency of the proposed architecture with GES strategy are experimentally verified on OpenFlow-enabled testbed in terms of resource occupation and path provisioning latency.
Hierarchical trie packet classification algorithm based on expectation-maximization clustering.
Bi, Xia-An; Zhao, Junxia
2017-01-01
With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm.
Ring-like reliable PON planning with physical constraints for a smart grid
NASA Astrophysics Data System (ADS)
Wang, Xin; Gu, Rentao; Ji, Yuefeng
2016-01-01
Due to the high reliability requirements in the communication networks of a smart grid, a ring-like reliable PON is an ideal choice to carry power distribution information. Economical network planning is also very important for the smart grid communication infrastructure. Although the ring-like reliable PON has been widely used in the real applications, as far as we know, little research has been done on the network optimization subject of the ring-like reliable PON. Most PON planning research studies only consider a star-like topology or cascaded PON network, which barely guarantees the reliability requirements of the smart grid. In this paper, we mainly investigate the economical network planning problem for the ring-like reliable PON of the smart grid. To address this issue, we built a mathematical model for the planning problem of the ring-like reliable PON, and the objective was to minimize the total deployment costs under physical constraints. The model is simplified such that all of the nodes have the same properties, except OLT, because each potential splitter site can be located in the same ONU position in power communication networks. The simplified model is used to construct an optimal main tree topology in the complete graph and a backup-protected tree topology in the residual graph. An efficient heuristic algorithm, called the Constraints and Minimal Weight Oriented Fast Searching Algorithm (CMW-FSA), is proposed. In CMW-FSA, a feasible solution can be obtained directly with oriented constraints and a few recursive search processes. From the simulation results, the proposed planning model and CMW-FSA are verified to be accurate (the error rates are less than 0.4%) and effective compared with the accurate solution (CAESA), especially in small and sparse scenarios. The CMW-FSA significantly reduces the computation time compared with the CAESA. The time complexity algorithm of the CMW-FSA is acceptable and calculated as T(n) = O(n3). After evaluating the effects of the parameters of the two PON systems, the total planning costs of each scenario show a general declining trend and reach a threshold as the respective maximal transmission distances and maximal time delays increase.
Electrothermal actuation based on carbon nanotube network in silicone elastomer
NASA Astrophysics Data System (ADS)
Chen, L. Z.; Liu, C. H.; Hu, C. H.; Fan, S. S.
2008-06-01
The authors report an electrothermal actuator, which is fabricated by involving carbon nanotube network into the silicone elastomer. The actuators exhibit excellent performances as good as normal dielectric elastomer actuators while working under much lower voltages (e.g., 1.5Vmm-1). They are longitudinal actuators and there is no need for stacking or rolling sheets of materials. In addition, they can satisfy the demand of different voltage applications ranging from dozens of voltages to thousands of voltages by using different carbon nanotube loading composites. Visible maximal strain of 4.4% occurs at an electric power intensity around 0.03Wmm-3.
Stability of discrete time recurrent neural networks and nonlinear optimization problems.
Singh, Jayant; Barabanov, Nikita
2016-02-01
We consider the method of Reduction of Dissipativity Domain to prove global Lyapunov stability of Discrete Time Recurrent Neural Networks. The standard and advanced criteria for Absolute Stability of these essentially nonlinear systems produce rather weak results. The method mentioned above is proved to be more powerful. It involves a multi-step procedure with maximization of special nonconvex functions over polytopes on every step. We derive conditions which guarantee an existence of at most one point of local maximum for such functions over every hyperplane. This nontrivial result is valid for wide range of neuron transfer functions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Protograph LDPC Codes Over Burst Erasure Channels
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Sam; Jones, Christopher
2006-01-01
In this paper we design high rate protograph based LDPC codes suitable for binary erasure channels. To simplify the encoder and decoder implementation for high data rate transmission, the structure of codes are based on protographs and circulants. These LDPC codes can improve data link and network layer protocols in support of communication networks. Two classes of codes were designed. One class is designed for large block sizes with an iterative decoding threshold that approaches capacity of binary erasure channels. The other class is designed for short block sizes based on maximizing minimum stopping set size. For high code rates and short blocks the second class outperforms the first class.
An accelerated training method for back propagation networks
NASA Technical Reports Server (NTRS)
Shelton, Robert O. (Inventor)
1993-01-01
The principal objective is to provide a training procedure for a feed forward, back propagation neural network which greatly accelerates the training process. A set of orthogonal singular vectors are determined from the input matrix such that the standard deviations of the projections of the input vectors along these singular vectors, as a set, are substantially maximized, thus providing an optimal means of presenting the input data. Novelty exists in the method of extracting from the set of input data, a set of features which can serve to represent the input data in a simplified manner, thus greatly reducing the time/expense to training the system.
Readout electronics for CBM-TOF super module quality evaluation based on 10 Gbps ethernet
NASA Astrophysics Data System (ADS)
Jiang, D.; Cao, P.; Huang, X.; Zheng, J.; Wang, Q.; Li, B.; Li, J.; Liu, S.; An, Q.
2017-07-01
The Compressed Baryonic Matter-Time of Flight (CBM-TOF) wall uses high performance of Multi-gap Resistive Plate Chambers (MRPC) assembled in super modules to identify charged particles with high channel density and high measurement precision at high event rate. Electronics meet the challenge for reading data out from a super module at high speed of about 6 Gbps in real time. In this paper, the readout electronics for CBM-TOF super module quality evaluation is proposed based on 10 Gigabit Ethernet. The digitized TOF data from one super module will be concentrated at the front-end electronics residing on the side of the super module and transmitted to an extreme speed readout module (XSRM) housed in the backend crate through the PCI Express (PCIe) protocol via optic channels. Eventually, the XSRM transmits data to the data acquisition (DAQ) system through four 10 Gbps Ethernet ports in real time. This readout structure has advantages of high performance and expansibility. Furthermore, it is easy to operate. Test results on the prototype show that the overall data readout performance for each XSRM can reach up to 28.8 Gbps, which means XSRM can meet the requirement of reading data out from 4 super modules with 1280 channels in real time.
Lee, Bongsoo; Holkenbrink, Carina; Treuner-Lange, Anke
2012-01-01
Myxococcus xanthus undergoes a starvation-induced multicellular developmental program during which cells partition into three known fates: (i) aggregation into fruiting bodies followed by differentiation into spores, (ii) lysis, or (iii) differentiation into nonaggregating persister-like cells, termed peripheral rods. As a first step to characterize cell fate segregation, we enumerated total, aggregating, and nonaggregating cells throughout the developmental program. We demonstrate that both cell lysis and cell aggregation begin with similar timing at approximately 24 h after induction of development. Examination of several known regulatory proteins in the separated aggregated and nonaggregated cell fractions revealed previously unknown heterogeneity in the accumulation patterns of proteins involved in type IV pilus (T4P)-mediated motility (PilC and PilA) and regulation of development (MrpC, FruA, and C-signal). As part of our characterization of the cell lysis fate, we set out to investigate the unorthodox MazF-MrpC toxin-antitoxin system which was previously proposed to induce programmed cell death (PCD). We demonstrate that deletion of mazF in two different wild-type M. xanthus laboratory strains does not significantly reduce developmental cell lysis, suggesting that MazF's role in promoting PCD is an adaption to the mutant background strain used previously. PMID:22493014
Improvement of Nonlinearity Correction for BESIII ETOF Upgrade
NASA Astrophysics Data System (ADS)
Sun, Weijia; Cao, Ping; Ji, Xiaolu; Fan, Huanhuan; Dai, Hongliang; Zhang, Jie; Liu, Shubin; An, Qi
2015-08-01
An improved scheme to implement integral non-linearity (INL) correction of time measurements in the Beijing Spectrometer III Endcap Time-of-Flight (BESIII ETOF) upgrade system is presented in this paper. During upgrade, multi-gap resistive plate chambers (MRPC) are introduced as ETOF detectors which increases the total number of time measurement channels to 1728. The INL correction method adopted in BESIII TOF proved to be of limited use, because the sharply increased number of electronic channels required for reading out the detector strips degrade the system configuration efficiency severely. Furthermore, once installed into the spectrometer, BESIII TOF electronics do not support the TDCs' nonlinearity evaluation online. In this proposed method, INL data used for the correction algorithm are automatically imported from a non-volatile read-only memory (ROM) instead of from data acquisition software. This guarantees the real-time performance and system efficiency of the INL correction, especially for the ETOF upgrades with massive number of channels. Besides, a signal that is not synchronized to the system 41.65 MHz clock from BEPCII is sent to the frontend electronics (FEE) to simulate pseudo-random test pulses for the purpose of online nonlinearity evaluation. Test results show that the time measuring INL errors in one module with 72 channels can be corrected online and in real time.
Recent Developments and Applications of Radiation/Detection Technology in Tsinghua University
NASA Astrophysics Data System (ADS)
Kang, Ke-Jun
2010-03-01
Nuclear technology applications have been very important research fields in Tsinghua University (THU) for more than 50 years. This paper describes two major directions and related projects running in THU concerning nuclear technology applications for radiation imaging and nuclear technology applications for astrophysics. Radiation imaging is a significant application of nuclear technology for all kinds of real world needs including security inspections, anti-smuggling operations, and medicine. The current improved imaging systems give much higher quality radiation images. THU has produced accelerating tubes for both industrial and medical accelerators with energy levels ranging from 2.5˜20Mev. Detectors have been produced for medical and industrial imaging as well as for high energy physics experiments such as the MRPC with fast time and position resolutions. DR and CT systems for radiation imaging systems have been continuously improved with new system designs and improved algorithms for image reconstruction and processing. Two important new key initiatives are the dual-energy radiography and dual-energy CT systems. Dual-energy CT imaging improves material discrimination by providing both the electron density and the atomic number distribution of scanned objects. Finally, this paper also introduces recent developments related to the hard X-ray modulation telescope (HXMT) provided by THU.
Redundant Design in Interdependent Networks
2016-01-01
Modern infrastructure networks are often coupled together and thus could be modeled as interdependent networks. Overload and interdependent effect make interdependent networks more fragile when suffering from attacks. Existing research has primarily concentrated on the cascading failure process of interdependent networks without load, or the robustness of isolated network with load. Only limited research has been done on the cascading failure process caused by overload in interdependent networks. Redundant design is a primary approach to enhance the reliability and robustness of the system. In this paper, we propose two redundant methods, node back-up and dependency redundancy, and the experiment results indicate that two measures are effective and costless. Two detailed models about redundant design are introduced based on the non-linear load-capacity model. Based on the attributes and historical failure distribution of nodes, we introduce three static selecting strategies-Random-based, Degree-based, Initial load-based and a dynamic strategy-HFD (historical failure distribution) to identify which nodes could have a back-up with priority. In addition, we consider the cost and efficiency of different redundant proportions to determine the best proportion with maximal enhancement and minimal cost. Experiments on interdependent networks demonstrate that the combination of HFD and dependency redundancy is an effective and preferred measure to implement redundant design on interdependent networks. The results suggest that the redundant design proposed in this paper can permit construction of highly robust interactive networked systems. PMID:27764174
Learning, memory, and the role of neural network architecture.
Hermundstad, Ann M; Brown, Kevin S; Bassett, Danielle S; Carlson, Jean M
2011-06-01
The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.
NASA Astrophysics Data System (ADS)
Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang
2017-08-01
Distributed radar network systems have been shown to have many unique features. Due to their advantage of signal and spatial diversities, radar networks are attractive for target detection. In practice, the netted radars in radar networks are supposed to maximize their transmit power to achieve better detection performance, which may be in contradiction with low probability of intercept (LPI). Therefore, this paper investigates the problem of adaptive power allocation for radar networks in a cooperative game-theoretic framework such that the LPI performance can be improved. Taking into consideration both the transmit power constraints and the minimum signal to interference plus noise ratio (SINR) requirement of each radar, a cooperative Nash bargaining power allocation game based on LPI is formulated, whose objective is to minimize the total transmit power by optimizing the power allocation in radar networks. First, a novel SINR-based network utility function is defined and utilized as a metric to evaluate power allocation. Then, with the well-designed network utility function, the existence and uniqueness of the Nash bargaining solution are proved analytically. Finally, an iterative Nash bargaining algorithm is developed that converges quickly to a Pareto optimal equilibrium for the cooperative game. Numerical simulations and theoretic analysis are provided to evaluate the effectiveness of the proposed algorithm.
Assenova, Valentina A
2018-01-01
Complex innovations- ideas, practices, and technologies that hold uncertain benefits for potential adopters-often vary in their ability to diffuse in different communities over time. To explain why, I develop a model of innovation adoption in which agents engage in naïve (DeGroot) learning about the value of an innovation within their social networks. Using simulations on Bernoulli random graphs, I examine how adoption varies with network properties and with the distribution of initial opinions and adoption thresholds. The results show that: (i) low-density and high-asymmetry networks produce polarization in influence to adopt an innovation over time, (ii) increasing network density and asymmetry promote adoption under a variety of opinion and threshold distributions, and (iii) the optimal levels of density and asymmetry in networks depend on the distribution of thresholds: networks with high density (>0.25) and high asymmetry (>0.50) are optimal for maximizing diffusion when adoption thresholds are right-skewed (i.e., barriers to adoption are low), but networks with low density (<0.01) and low asymmetry (<0.25) are optimal when thresholds are left-skewed. I draw on data from a diffusion field experiment to predict adoption over time and compare the results to observed outcomes.
A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks.
Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao
2017-07-04
Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network.
Gene Regulatory Network Inferences Using a Maximum-Relevance and Maximum-Significance Strategy
Liu, Wei; Zhu, Wen; Liao, Bo; Chen, Xiangtao
2016-01-01
Recovering gene regulatory networks from expression data is a challenging problem in systems biology that provides valuable information on the regulatory mechanisms of cells. A number of algorithms based on computational models are currently used to recover network topology. However, most of these algorithms have limitations. For example, many models tend to be complicated because of the “large p, small n” problem. In this paper, we propose a novel regulatory network inference method called the maximum-relevance and maximum-significance network (MRMSn) method, which converts the problem of recovering networks into a problem of how to select the regulator genes for each gene. To solve the latter problem, we present an algorithm that is based on information theory and selects the regulator genes for a specific gene by maximizing the relevance and significance. A first-order incremental search algorithm is used to search for regulator genes. Eventually, a strict constraint is adopted to adjust all of the regulatory relationships according to the obtained regulator genes and thus obtain the complete network structure. We performed our method on five different datasets and compared our method to five state-of-the-art methods for network inference based on information theory. The results confirm the effectiveness of our method. PMID:27829000
CFDP for Interplanetary Overlay Network
NASA Technical Reports Server (NTRS)
Burleigh, Scott C.
2011-01-01
The CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol for Interplanetary Overlay Network (CFDP-ION) is an implementation of CFDP that uses IO' s DTN (delay tolerant networking) implementation as its UT (unit-data transfer) layer. Because the DTN protocols effect automatic, reliable transmission via multiple relays, CFDP-ION need only satisfy the requirements for Class 1 ("unacknowledged") CFDP. This keeps the implementation small, but without loss of capability. This innovation minimizes processing resources by using zero-copy objects for file data transmission. It runs without modification in VxWorks, Linux, Solaris, and OS/X. As such, this innovation can be used without modification in both flight and ground systems. Integration with DTN enables the CFDP implementation itself to be very simple; therefore, very small. Use of ION infrastructure minimizes consumption of storage and processing resources while maximizing safety.
NASA Astrophysics Data System (ADS)
Lu, Weizhao; Huang, Chunhui; Hou, Kun; Shi, Liting; Zhao, Huihui; Li, Zhengmei; Qiu, Jianfeng
2018-05-01
In continuous-variable quantum key distribution (CV-QKD), weak signal carrying information transmits from Alice to Bob; during this process it is easily influenced by unknown noise which reduces signal-to-noise ratio, and strongly impacts reliability and stability of the communication. Recurrent quantum neural network (RQNN) is an artificial neural network model which can perform stochastic filtering without any prior knowledge of the signal and noise. In this paper, a modified RQNN algorithm with expectation maximization algorithm is proposed to process the signal in CV-QKD, which follows the basic rule of quantum mechanics. After RQNN, noise power decreases about 15 dBm, coherent signal recognition rate of RQNN is 96%, quantum bit error rate (QBER) drops to 4%, which is 6.9% lower than original QBER, and channel capacity is notably enlarged.
Automatic discovery of the communication network topology for building a supercomputer model
NASA Astrophysics Data System (ADS)
Sobolev, Sergey; Stefanov, Konstantin; Voevodin, Vadim
2016-10-01
The Research Computing Center of Lomonosov Moscow State University is developing the Octotron software suite for automatic monitoring and mitigation of emergency situations in supercomputers so as to maximize hardware reliability. The suite is based on a software model of the supercomputer. The model uses a graph to describe the computing system components and their interconnections. One of the most complex components of a supercomputer that needs to be included in the model is its communication network. This work describes the proposed approach for automatically discovering the Ethernet communication network topology in a supercomputer and its description in terms of the Octotron model. This suite automatically detects computing nodes and switches, collects information about them and identifies their interconnections. The application of this approach is demonstrated on the "Lomonosov" and "Lomonosov-2" supercomputers.
Subcommunities and Their Mutual Relationships in a Transaction Network
NASA Astrophysics Data System (ADS)
Iino, T.; Iyetomi, H.
We investigate a Japanese transaction network consisting ofabout 800 thousand firms (nodes) and four million business relations (links) with focus on its modular structure. Communities detected by maximizing modularity often are dominated by firms with common features or behaviors in the network, such as characterized by regions or industry sectors. However, it is well known that the modularity optimization approach has a resolution limit problem, that is, it fails in identifying fine communities buried in large communities. To unfold such hidden structures, we apply the community detection to each of subnetworks formed by isolating those communities from the whole body. Subcommunities thus identified are composed of firms with finer regions, more specified sectors or business affiliations. Also we introduce a new idea of reduced modularity matrix to measure the strength of relations between (sub)communities.
NASA Astrophysics Data System (ADS)
Habibi, Hamed; Rahimi Nohooji, Hamed; Howard, Ian
2017-09-01
Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method.
A computer method for schedule processing and quick-time updating.
NASA Technical Reports Server (NTRS)
Mccoy, W. H.
1972-01-01
A schedule analysis program is presented which can be used to process any schedule with continuous flow and with no loops. Although generally thought of as a management tool, it has applicability to such extremes as music composition and computer program efficiency analysis. Other possibilities for its use include the determination of electrical power usage during some operation such as spacecraft checkout, and the determination of impact envelopes for the purpose of scheduling payloads in launch processing. At the core of the described computer method is an algorithm which computes the position of each activity bar on the output waterfall chart. The algorithm is basically a maximal-path computation which gives to each node in the schedule network the maximal path from the initial node to the given node.
Optimization of Long Range Major Rehabilitation of Airfield Pavements.
1983-01-01
the network level, the mathematical representation of choosing those projects that maximize the sum of the user value weighted structural performanceof ...quantitatively be compared . In addition, an estimate of an appropriate level of funding for the entire system can be made. The simple example shows a...pavement engineers to only working in the present. The designing and comparing of pavement maintenance and rehabilitation alternatives remain directed
Advanced Lighting Controls for Reducing Energy use and Cost in DoD Installations
2013-05-01
OccuSwitch Wireless is a room-based lighting control system employing dimmable light sources, occupancy and daylight sensors , wireless interconnection...combination of wireless and wired control solution for building-wide networked system that maximizes the use of daylight while improving visual...architecture of Hybrid ILDC. Architecture: The system features wireless connectivity among sensors and actuators within a zone and exploits wired
Algorithm for parametric community detection in networks.
Bettinelli, Andrea; Hansen, Pierre; Liberti, Leo
2012-07-01
Modularity maximization is extensively used to detect communities in complex networks. It has been shown, however, that this method suffers from a resolution limit: Small communities may be undetectable in the presence of larger ones even if they are very dense. To alleviate this defect, various modifications of the modularity function have been proposed as well as multiresolution methods. In this paper we systematically study a simple model (proposed by Pons and Latapy [Theor. Comput. Sci. 412, 892 (2011)] and similar to the parametric model of Reichardt and Bornholdt [Phys. Rev. E 74, 016110 (2006)]) with a single parameter α that balances the fraction of within community edges and the expected fraction of edges according to the configuration model. An exact algorithm is proposed to find optimal solutions for all values of α as well as the corresponding successive intervals of α values for which they are optimal. This algorithm relies upon a routine for exact modularity maximization and is limited to moderate size instances. An agglomerative hierarchical heuristic is therefore proposed to address parametric modularity detection in large networks. At each iteration the smallest value of α for which it is worthwhile to merge two communities of the current partition is found. Then merging is performed and the data are updated accordingly. An implementation is proposed with the same time and space complexity as the well-known Clauset-Newman-Moore (CNM) heuristic [Phys. Rev. E 70, 066111 (2004)]. Experimental results on artificial and real world problems show that (i) communities are detected by both exact and heuristic methods for all values of the parameter α; (ii) the dendrogram summarizing the results of the heuristic method provides a useful tool for substantive analysis, as illustrated particularly on a Les Misérables data set; (iii) the difference between the parametric modularity values given by the exact method and those given by the heuristic is moderate; (iv) the heuristic version of the proposed parametric method, viewed as a modularity maximization tool, gives better results than the CNM heuristic for large instances.
Optimal route discovery for soft QOS provisioning in mobile ad hoc multimedia networks
NASA Astrophysics Data System (ADS)
Huang, Lei; Pan, Feng
2007-09-01
In this paper, we propose an optimal routing discovery algorithm for ad hoc multimedia networks whose resource keeps changing, First, we use stochastic models to measure the network resource availability, based on the information about the location and moving pattern of the nodes, as well as the link conditions between neighboring nodes. Then, for a certain multimedia packet flow to be transmitted from a source to a destination, we formulate the optimal soft-QoS provisioning problem as to find the best route that maximize the probability of satisfying its desired QoS requirements in terms of the maximum delay constraints. Based on the stochastic network resource model, we developed three approaches to solve the formulated problem: A centralized approach serving as the theoretical reference, a distributed approach that is more suitable to practical real-time deployment, and a distributed dynamic approach that utilizes the updated time information to optimize the routing for each individual packet. Examples of numerical results demonstrated that using the route discovered by our distributed algorithm in a changing network environment, multimedia applications could achieve better QoS statistically.
A framework for detecting communities of unbalanced sizes in networks
NASA Astrophysics Data System (ADS)
Žalik, Krista Rizman; Žalik, Borut
2018-01-01
Community detection in large networks has been a focus of recent research in many of fields, including biology, physics, social sciences, and computer science. Most community detection methods partition the entire network into communities, groups of nodes that have many connections within communities and few connections between them and do not identify different roles that nodes can have in communities. We propose a community detection model that integrates more different measures that can fast identify communities of different sizes and densities. We use node degree centrality, strong similarity with one node from community, maximal similarity of node to community, compactness of communities and separation between communities. Each measure has its own strength and weakness. Thus, combining different measures can benefit from the strengths of each one and eliminate encountered problems of using an individual measure. We present a fast local expansion algorithm for uncovering communities of different sizes and densities and reveals rich information on input networks. Experimental results show that the proposed algorithm is better or as effective as the other community detection algorithms for both real-world and synthetic networks while it requires less time.
Suppressing epidemic spreading by risk-averse migration in dynamical networks
NASA Astrophysics Data System (ADS)
Yang, Han-Xin; Tang, Ming; Wang, Zhen
2018-01-01
In this paper, we study the interplay between individual behaviors and epidemic spreading in a dynamical network. We distribute agents on a square-shaped region with periodic boundary conditions. Every agent is regarded as a node of the network and a wireless link is established between two agents if their geographical distance is less than a certain radius. At each time, every agent assesses the epidemic situation and make decisions on whether it should stay in or leave its current place. An agent will leave its current place with a speed if the number of infected neighbors reaches or exceeds a critical value E. Owing to the movement of agents, the network's structure is dynamical. Interestingly, we find that there exists an optimal value of E leading to the maximum epidemic threshold. This means that epidemic spreading can be effectively controlled by risk-averse migration. Besides, we find that the epidemic threshold increases as the recovering rate increases, decreases as the contact radius increases, and is maximized by an optimal moving speed. Our findings offer a deeper understanding of epidemic spreading in dynamical networks.
An Adaptive QSE-reduced Nuclear Reaction Network for Silicon Burning
NASA Astrophysics Data System (ADS)
Parete-Koon, Suzanne; Hix, William Raphael; Thielemann, Friedrich-Karl
2010-02-01
The nuclei of the ``iron peak'' are formed late in the evolution of massive stars and during supernovae. Silicon burning during these events is responsible for the production of a wide range of nuclei with atomic mass numbers from 28 to 64. The large number of nuclei involved make accurate modeling of silicon burning computationally expensive. Examination of the physics of silicon burning reveals that the nuclear evolution is dominated by large groups of nuclei in mutual equilibrium. We present an improvement on our hybrid equilibrium-network scheme that takes advantage of this quasi-equilibrium (QSE) to reduce the number of independent variables calculated. Because the membership and number of these groups vary as the temperature, density and electron faction change, achieving maximal efficiency requires dynamic adjustment of group number and membership. The resultant QSE-reduced network is up to 20 times faster than the full network it replaces without significant loss of accuracy. These reductions in computational cost and the number of species evolved make QSE-reduced networks well suited for inclusion within hydrodynamic simulations, particularly in multi-dimensional applications. )
Fast Entanglement Establishment via Local Dynamics for Quantum Repeater Networks
NASA Astrophysics Data System (ADS)
Gyongyosi, Laszlo; Imre, Sandor
Quantum entanglement is a necessity for future quantum communication networks, quantum internet, and long-distance quantum key distribution. The current approaches of entanglement distribution require high-delay entanglement transmission, entanglement swapping to extend the range of entanglement, high-cost entanglement purification, and long-lived quantum memories. We introduce a fundamental protocol for establishing entanglement in quantum communication networks. The proposed scheme does not require entanglement transmission between the nodes, high-cost entanglement swapping, entanglement purification, or long-lived quantum memories. The protocol reliably establishes a maximally entangled system between the remote nodes via dynamics generated by local Hamiltonians. The method eliminates the main drawbacks of current schemes allowing fast entanglement establishment with a minimized delay. Our solution provides a fundamental method for future long-distance quantum key distribution, quantum repeater networks, quantum internet, and quantum-networking protocols. This work was partially supported by the GOP-1.1.1-11-2012-0092 project sponsored by the EU and European Structural Fund, by the Hungarian Scientific Research Fund - OTKA K-112125, and by the COST Action MP1006.
Discovering the influential users oriented to viral marketing based on online social networks
NASA Astrophysics Data System (ADS)
Zhu, Zhiguo
2013-08-01
The target of viral marketing on the platform of popular online social networks is to rapidly propagate marketing information at lower cost and increase sales, in which a key problem is how to precisely discover the most influential users in the process of information diffusion. A novel method is proposed in this paper for helping companies to identify such users as seeds to maximize information diffusion in the viral marketing. Firstly, the user trust network oriented to viral marketing and users’ combined interest degree in the network including isolated users are extensively defined. Next, we construct a model considering the time factor to simulate the process of information diffusion in viral marketing and propose a dynamic algorithm description. Finally, experiments are conducted with a real dataset extracted from the famous SNS website Epinions. The experimental results indicate that the proposed algorithm has better scalability and is less time-consuming. Compared with the classical model, the proposed algorithm achieved a better performance than does the classical method on the two aspects of network coverage rate and time-consumption in our four sub-datasets.
Implementing direct, spatially isolated problems on transputer networks
NASA Technical Reports Server (NTRS)
Ellis, Graham K.
1988-01-01
Parametric studies were performed on transputer networks of up to 40 processors to determine how to implement and maximize the performance of the solution of problems where no processor-to-processor data transfer is required for the problem solution (spatially isolated). Two types of problems are investigated a computationally intensive problem where the solution required the transmission of 160 bytes of data through the parallel network, and a communication intensive example that required the transmission of 3 Mbytes of data through the network. This data consists of solutions being sent back to the host processor and not intermediate results for another processor to work on. Studies were performed on both integer and floating-point transputers. The latter features an on-chip floating-point math unit and offers approximately an order of magnitude performance increase over the integer transputer on real valued computations. The results indicate that a minimum amount of work is required on each node per communication to achieve high network speedups (efficiencies). The floating-point processor requires approximately an order of magnitude more work per communication than the integer processor because of the floating-point unit's increased computing capacity.
Impact of Earthquake Preperation Process On Hydrodeformation Field Evolution In The Caucasus
NASA Astrophysics Data System (ADS)
Melikadze, G.; Aliev, A.; Bendukidze, G.; Biagi, P. F.; Garalov, B.; Mirianashvili, V.
The paper studies relation between geodeformation regime variations of underground water observed in boreholes and deformation processes in the Earth crust, asso- ciated with formation of earthquakes with M=3 and higher. Monitoring of hydro- geodeformation field (HGDF) has been carried out thanks to the on-purpose gen- eral network of Armenia, Azerbaijan, Georgia and Russia. The wells are uniformly distributed throughout the Caucasus and cover all principal geological blocks of the region. The paper deals with results associated with several earthquakes occured in Georgia and one in Azerbaijan. As the network comprises boreholes of different depths, varying from 250 m down to 3,500 m, preliminary calibration of the boreholes involved was carried out, based on evaluation of the water level variation due to known Earth tide effect. This was necessary for sensitivity evaluation and normalization of hydro-dynamic signals. Obtained data have been processed by means of spectral anal- ysis to dissect background field of disturbances from the valid signal. The processed data covered the period of 1991-1993 comprising the following 4 strong earthquakes of the Caucasus, namely in: Racha (1991, M=6.9), Java (1991, M=6.2), Barisakho (1992, M=6.5) and Talish (1993, M=5.6). Formation of the compression zone in the east Caucasus and that of extension in the western Georgia and north Caucasus was observed 7 months prior to Racha quake. Boundary between the above 2 zones passed along the known submeridional fault. The area where maximal gradient was observed, coincided with the joint of deep faults and appeared to be the place for origination of the earthquake. After the quake occurred, the zone of maximal gradient started to mi- grate towards East and residual deformations in HGDF have outlined source first of Java quake (on 15.06.1991), than that of Barisakho (on 23.10.1992) and Talish (on 2.10.1993) ones. Thus, HGDF indicated migration of the deformation field along the slope of the Greater Caucasus 7 months prior the earthquake. After these reassuring results we increased density of the network, that made possible to observe migration process along Achara-Trialeti fault system prior smaller earthquakes as well (Achara, on 10.02.1996, M=2.9; Guria, on 28.05.1996, M=4.3; Javakheti, 28.05.1997, M=3.3; 1 Khashmi, 28.11.97, M=5.1). Directly prior a quake, when deformation reached its crit- ical value, the natural regime characteristic in each observation point was disturbed. Period of perturbation (varying from several hours up to several days) was dependant on the magnitude of earthquake. Disturbances showed themselves within the area of maximal stress, sometimes at a distance from the source; e.g. in case of Racha earth- quake perturbations were observed first at Lisi point (on 15.03.1991) at a distance of 190 km from earthquake source, though within the area of maximal compression, and only 25 days later at Oni point (on 10.04.1991) located in the source zone. This can be considered as one of the examples of long-distance manifestation of hydrodynamic precoursers. The obtained results verify capability of the existing HGDF observation network for tracing M=3 and higher earthquake precursors in the Caucasus, and in case of modernization of the network will be capable for middle-term prediction of large earthquakes. 2
Noise Tolerance of Attractor and Feedforward Memory Models
Lim, Sukbin; Goldman, Mark S.
2017-01-01
In short-term memory networks, transient stimuli are represented by patterns of neural activity that persist long after stimulus offset. Here, we compare the performance of two prominent classes of memory networks, feedback-based attractor networks and feedforward networks, in conveying information about the amplitude of a briefly presented stimulus in the presence of gaussian noise. Using Fisher information as a metric of memory performance, we find that the optimal form of network architecture depends strongly on assumptions about the forms of nonlinearities in the network. For purely linear networks, we find that feedforward networks outperform attractor networks because noise is continually removed from feedforward networks when signals exit the network; as a result, feedforward networks can amplify signals they receive faster than noise accumulates over time. By contrast, attractor networks must operate in a signal-attenuating regime to avoid the buildup of noise. However, if the amplification of signals is limited by a finite dynamic range of neuronal responses or if noise is reset at the time of signal arrival, as suggested by recent experiments, we find that attractor networks can out-perform feedforward ones. Under a simple model in which neurons have a finite dynamic range, we find that the optimal attractor networks are forgetful if there is no mechanism for noise reduction with signal arrival but nonforgetful (perfect integrators) in the presence of a strong reset mechanism. Furthermore, we find that the maximal Fisher information for the feedforward and attractor networks exhibits power law decay as a function of time and scales linearly with the number of neurons. These results highlight prominent factors that lead to trade-offs in the memory performance of networks with different architectures and constraints, and suggest conditions under which attractor or feedforward networks may be best suited to storing information about previous stimuli. PMID:22091664
Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming
2009-01-01
Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators. PMID:19851479
Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming
2009-01-01
Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators.