Cai, Tian; Guo, Ze-Qin; Xu, Xiao-Ying; Wu, Zhi-Jun
2018-03-01
Liquid chromatography-Mass Spectrometry (LC-MS) has been widely used in natural product analysis. Global detection and identification of nontargeted components are desirable in natural product research, for example, in quality control of Chinese herbal medicine. Nontargeted components analysis continues to expand to exciting life science application domains such as metabonomics. With this background, the present review summarizes recent developments in the analysis of minor unknown natural products using LC-MS and mainly focuses on the determination of the molecular formulae, selection of precursor ions, and characteristic fragmentation patterns of the known compounds. This review consists of three parts. Firstly, the methods used to determine unique molecular formula of unknown compounds such as accurate mass measurements, MS n spectra, or relative isotopic abundance information, are introduced. Secondly, the methods improving signal-to-noise ratio of MS/MS spectra by manual-MS/MS or workflow targeting-only signals were elucidated; pure precursor ions can be selected by changing the precursor ion isolated window. Lastly, characteristic fragmentation patterns such as Retro-Diels-Alder (RDA), McLafferty rearrangements, "internal residue loss," and so on, occurring in the molecular ions of natural products are summarized. Classical application of characteristic fragmentation patterns in identifying unknown compounds in extracts and relevant fragmentation mechanisms are presented (RDA reactions occurring readily in the molecular ions of flavanones or isoflavanones, McLafferty-type fragmentation reactions of some natural products such as epipolythiodioxopiperazines; fragmentation by "internal residue loss" possibly involving ion-neutral complex intermediates). © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:202-216, 2018. © 2016 Wiley Periodicals, Inc.
Hanigan, David; Ferrer, Imma; Thurman, E Michael; Herckes, Pierre; Westerhoff, Paul
2017-02-05
N-Nitrosodimethylamine (NDMA) is carcinogenic in rodents and occurs in chloraminated drinking water and wastewater effluents. NDMA forms via reactions between chloramines and mostly unidentified, N-containing organic matter. We developed a mass spectrometry technique to identify NDMA precursors by analyzing 25 model compounds with LC/QTOF-MS. We searched isolates of 11 drinking water sources and 1 wastewater using a custom MATLAB ® program and extracted ion chromatograms for two fragmentation patterns that were specific to the model compounds. Once a diagnostic fragment was discovered, we conducted MS/MS during a subsequent injection to confirm the precursor ion. Using non-target searches and two diagnostic fragmentation patterns, we discovered 158 potential NDMA precursors. Of these, 16 were identified using accurate mass combined with fragment and retention time matches of analytical standards when available. Five of these sixteen NDMA precursors were previously unidentified in the literature, three of which were metabolites of pharmaceuticals. Except methadone, the newly identified precursors all had NDMA molar yields of less than 5%, indicating that NDMA formation could be additive from multiple compounds, each with low yield. We demonstrate that the method is applicable to other disinfection by-product precursors by predicting and verifying the fragmentation patterns for one nitrosodiethylamine precursor. Copyright © 2016. Published by Elsevier B.V.
Analysis of sesterterpenoids from Aspergillus terreus using ESI-QTOF and ESI-IT.
Wu, Zhi-Jun; Fang, Dong-Mei; Han, Dan; Li, Guo-You; Chen, Xiao-Zhen; Qi, Hua-Yi; Zhang, Guo-Lin
2010-01-01
Biosynthesis of terretonin was studied due to the interesting skeleton of this series of sesterterpenoids. Very recently, López-Gresa reported two new sesterterpenoids (terretonins E and F) which are inhibitors of the mammalian mitochondrial respiratory chain. Mass spectrometry (MS), especially tandem mass spectrometry, has been one of the most important physicochemical methods for the identification of trace natural products due to it rapidity, sensitivity and low levels of sample consumption. The potential application prospect and unique skeleton prompted us to study structural characterisation using MS. To obtain sufficient information for rapid structural elucidation of this class of compounds using MS. The elemental composition of the product ions was confirmed by low-energy ESI-CID-QTOF-MS/MS analyses. The fragmentation pathways were postulated on the basis of ESI-QTOF-MS/MS/MS and ESI-IT-MS(n) spectra. Common features and major differences between ESI-QTOF-MS/MS and IT-MS(n) spectra were compared. For ESI-QTOF-MS/MS/MS experiments, capillary exit voltage was raised to induce in-source dissociation. Ammonium acetate or acetic acid were added into solutions to improve the intensity of [M + H]+. The collision energy was optimised to achieve sufficient fragmentation. Some fragmentation pathways were unambiguously proposed by the variety of abundance of fragment ions at different collision energies even without MS(n) spectra. Fragmentation pathways of five representative sesterterpenoids were elucidated using ESI-QTOF-MS/MS/MS and ESI-IT-MS(n) in both positive- and negative-ion mode. The key group of characterising fragmentation profiles was ring B, and these fragmentation patterns are helpful to identify different types of sestertepenoids. Complementary information obtained from fragmentation experiments of [M + H]+ (or [M + NH4]+ and [M-H](-) precursor ions is especially valuable for rapid identification of this kind of sesterterpenoid.
Application of Tandem Two-Dimensional Mass Spectrometry for Top-Down Deep Sequencing of Calmodulin
NASA Astrophysics Data System (ADS)
Floris, Federico; Chiron, Lionel; Lynch, Alice M.; Barrow, Mark P.; Delsuc, Marc-André; O'Connor, Peter B.
2018-06-01
Two-dimensional mass spectrometry (2DMS) involves simultaneous acquisition of the fragmentation patterns of all the analytes in a mixture by correlating their precursor and fragment ions by modulating precursor ions systematically through a fragmentation zone. Tandem two-dimensional mass spectrometry (MS/2DMS) unites the ultra-high accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS/MS and the simultaneous data-independent fragmentation of 2DMS to achieve extensive inter-residue fragmentation of entire proteins. 2DMS was recently developed for top-down proteomics (TDP), and applied to the analysis of calmodulin (CaM), reporting a cleavage coverage of about 23% using infrared multiphoton dissociation (IRMPD) as fragmentation technique. The goal of this work is to expand the utility of top-down protein analysis using MS/2DMS in order to extend the cleavage coverage in top-down proteomics further into the interior regions of the protein. In this case, using MS/2DMS, the cleavage coverage of CaM increased from 23% to 42%.
LC-MS/MS profiling-based secondary metabolite screening of Myxococcus xanthus.
Kim, Jiyoung; Choi, Jung Nam; Kim, Pil; Sok, Dai-Eun; Nam, Soo-Wan; Lee, Choong Hwan
2009-01-01
Myxobacteria, Gram-negative soil bacteria, are a well-known producer of bioactive secondary metabolites. Therefore, this study presents a methodological approach for the high-throughput screening of secondary metabolites from 4 wild-type Myxococcus xanthus strains. First, electrospray ionization mass spectrometry (ESI-MS) was performed using extracellular crude extracts. As a result, 22 metabolite peaks were detected, and the metabolite profiling was then conducted using the m/z value, retention time, and MS/MS fragmentation pattern analyses. Among the peaks, one unknown compound peak was identified as analogous to the myxalamid A, B, and C series. An analysis of the tandem mass spectrometric fragmentation patterns and HR-MS identified myxalamid K as a new compound derived from M. xanthus. In conclusion, LC-MS/MS-based chemical screening of diverse secondary metabolites would appear to be an effective approach for discovering unknown microbial secondary metabolites.
Characterization of epoxy carotenoids by fast atom bombardment collision-induced dissociation MS/MS.
Maoka, Takashi; Fujiwara, Yasuhiro; Hashimoto, Keiji; Akimoto, Naoshige
2004-02-01
The characterization and structure of epoxy carotenoids possessing 5,6-epoxy, 5,8-epoxy and 3,6-epoxy end groups conjugated to the polyene chain were investigated using high-energy fast atom bombardment collision-induced dissociation MS/MS methods. In addition to [M - 80](+*), a characteristic fragment ion of an epoxy carotenoid, product ions resulting from the cleavage of C-C bonds in the polyene chain from the epoxy end group, such as m/z 181 (b ion) and 121 (c ion), were detected. On the other hand, diagnostic ions of m/z 286 (e-H ion) and 312 (f-H ion) were observed, not in the 5,6-epoxy or 5,8-epoxy carotenoid but in the 3,6-epoxy carotenoid. These fragmentation patterns can be used to distinguish 3,6-epoxy carotenoids from 5,6-epoxy or 5,8-epoxy carotenoids. The structure of an epoxy carotenoid, 3,6-epoxy-5,6-dihydro-7',8'-didehydro-beta,beta-carotene-5,3'-diol (8), isolated from oyster, was characterized using FAB CID-MS/MS by comparing fragmentation patterns with those of related known compounds.
Yang, Wei; Fang, Dong-Mei; He, Hong-Ping; Hao, Xiao-Jiang; Wu, Zhi-Jun; Zhang, Guo-Lin
2013-06-15
Limonoids, a class of tetranortriterpenoids, exhibit various biological effects, including acting as potent antifeedants and insect growth-regulators against various pests. The analysis of phragmalin- and mexicanolide-type limonoids by collision-induced dissociation tandem mass spectrometry (CID-MS/MS) has not been reported. A high-performance liquid chromatography/electrospray ionization (HPLC/ESI)-MS/MS method was developed to investigate the fragmentation patterns of [M+NH4 ](+) ions for nine reference phragmalin- and mexicanolide-type limonoids. The method was also used in the identification of limonoid compounds in botanic extracts of Heynea trijuga. The losses of side chains and the furan part were the major fragmentation patterns. However, there was variation in the relative abundances of product ions resulting from the same fragmentation pathways. A total of 89 phragmalin- and mexicanolide-type limonoids in botanic extracts of Heynea trijuga were detected and 50 of these compounds were identified or tentatively characterized based on elemental constituents, fragmentation pathways, and the profile of the major product ions of reference compounds. In addition, the isomers could be tentatively distinguished. An HPLC/ESI-MS/MS method was developed and could be used to simultaneously identify and screen phragmalin- and mexicanolide-type limonoids in botanic extracts of Heynea trijuga. Copyright © 2013 John Wiley & Sons, Ltd.
Chen, Gengbo; Walmsley, Scott; Cheung, Gemmy C M; Chen, Liyan; Cheng, Ching-Yu; Beuerman, Roger W; Wong, Tien Yin; Zhou, Lei; Choi, Hyungwon
2017-05-02
Data independent acquisition-mass spectrometry (DIA-MS) coupled with liquid chromatography is a promising approach for rapid, automatic sampling of MS/MS data in untargeted metabolomics. However, wide isolation windows in DIA-MS generate MS/MS spectra containing a mixed population of fragment ions together with their precursor ions. This precursor-fragment ion map in a comprehensive MS/MS spectral library is crucial for relative quantification of fragment ions uniquely representative of each precursor ion. However, existing reference libraries are not sufficient for this purpose since the fragmentation patterns of small molecules can vary in different instrument setups. Here we developed a bioinformatics workflow called MetaboDIA to build customized MS/MS spectral libraries using a user's own data dependent acquisition (DDA) data and to perform MS/MS-based quantification with DIA data, thus complementing conventional MS1-based quantification. MetaboDIA also allows users to build a spectral library directly from DIA data in studies of a large sample size. Using a marine algae data set, we show that quantification of fragment ions extracted with a customized MS/MS library can provide as reliable quantitative data as the direct quantification of precursor ions based on MS1 data. To test its applicability in complex samples, we applied MetaboDIA to a clinical serum metabolomics data set, where we built a DDA-based spectral library containing consensus spectra for 1829 compounds. We performed fragment ion quantification using DIA data using this library, yielding sensitive differential expression analysis.
Application of Tandem Two-Dimensional Mass Spectrometry for Top-Down Deep Sequencing of Calmodulin.
Floris, Federico; Chiron, Lionel; Lynch, Alice M; Barrow, Mark P; Delsuc, Marc-André; O'Connor, Peter B
2018-06-04
Two-dimensional mass spectrometry (2DMS) involves simultaneous acquisition of the fragmentation patterns of all the analytes in a mixture by correlating their precursor and fragment ions by modulating precursor ions systematically through a fragmentation zone. Tandem two-dimensional mass spectrometry (MS/2DMS) unites the ultra-high accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS/MS and the simultaneous data-independent fragmentation of 2DMS to achieve extensive inter-residue fragmentation of entire proteins. 2DMS was recently developed for top-down proteomics (TDP), and applied to the analysis of calmodulin (CaM), reporting a cleavage coverage of about ~23% using infrared multiphoton dissociation (IRMPD) as fragmentation technique. The goal of this work is to expand the utility of top-down protein analysis using MS/2DMS in order to extend the cleavage coverage in top-down proteomics further into the interior regions of the protein. In this case, using MS/2DMS, the cleavage coverage of CaM increased from ~23% to ~42%. Graphical Abstract Two-dimensional mass spectrometry, when applied to primary fragment ions from the source, allows deep-sequencing of the protein calmodulin.
Neto, Fausto Carnevale; Guaratini, Thais; Costa-Lotufo, Letícia; Colepicolo, Pio; Gates, Paul J; Lopes, Norberto Peporine
2016-07-15
Carotenoids are polyene isoprenoids with an important role in photosynthesis and photoprotection. Their characterization in biological matrices is a crucial subject for biochemical research. In this work we report the full fragmentation of 16 polyenes (carotenes and xanthophylls) by electrospray ionization tandem mass spectrometry (ESI-CID-MS/MS) and nanospray tandem mass spectrometry (nanoESI-CID-MS/MS). Analyses were carried out on a quadrupole time-of-flight (QTOF) mass spectrometer coupled with a nanoESI source and on a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer with an ESI source. The formulae of the product ions were determined by accurate-mass measurements. It is demonstrated that the fragmentation routes observed for the protonated carotenoids derive essentially from charge-remote fragmentations and pericyclic rearrangements, such as electrocyclic and retro-ene eliminations (assisted or not by a sigmatropic hydrogen shift). All mechanisms are dependent on cis-trans isomerization through the formation of several conjugated polyene carbocation intermediates. Some specific ions for the carotenoid epoxides were justified through formation of cyclic oxonium ions. Complete fragmentation pathways of protonated carotenoids by ESI- and nanoESI-CID-MS/MS provided structural information about functional groups, polyene chain and double bonds, and contribute to identification of carotenoids based on MS/MS fragmentation patterns. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Jarecki, Jessica L.; Frey, Brian L.; Smith, Lloyd M.; Stretton, Antony O.
2011-01-01
Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to discover peptides in extracts of the large parasitic nematode Ascaris suum. This required the assembly of a new database of known and predicted peptides. In addition to those already sequenced, peptides were either previously predicted to be processed from precursor proteins identified in an A. suum library of expressed sequence tags (ESTs), or newly predicted from a library of A. suum genome survey sequences (GSSs). The predicted MS/MS fragmentation patterns of this collection of real and putative peptides were compared with the actual fragmentation patterns found in the MS/MS spectra of peptides fractionated by MS; this enabled individual peptides to be sequenced. Many previously identified peptides were found, and 21 novel peptides were discovered. Thus, this approach is very useful, despite the fact that the available GSS database is still preliminary, having only 1X coverage. PMID:21524146
Yang, Xiaoyu; Neta, Pedatsur; Stein, Stephen E
2017-11-01
Tandem mass spectral library searching is finding increased use as an effective means of determining chemical identity in mass spectrometry-based omics studies. We previously reported on constructing a tandem mass spectral library that includes spectra for multiple precursor ions for each analyte. Here we report our method for expanding this library to include MS 2 spectra of fragment ions generated during the ionization process (in-source fragment ions) as well as MS 3 and MS 4 spectra. These can assist the chemical identification process. A simple density-based clustering algorithm was used to cluster all significant precursor ions from MS 1 scans for an analyte acquired during an infusion experiment. The MS 2 spectra associated with these precursor ions were grouped into the same precursor clusters. Subsequently, a new top-down hierarchical divisive clustering algorithm was developed for clustering the spectra from fragmentation of ions in each precursor cluster, including the MS 2 spectra of the original precursors and of the in-source fragments as well as the MS n spectra. This algorithm starts with all the spectra of one precursor in one cluster and then separates them into sub-clusters of similar spectra based on the fragment patterns. Herein, we describe the algorithms and spectral evaluation methods for extending the library. The new library features were demonstrated by searching the high resolution spectra of E. coli extracts against the extended library, allowing identification of compounds and their in-source fragment ions in a manner that was not possible before. Graphical Abstract ᅟ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiang; Malmirchegini, G. Reza; Clubb, Robert T.
Native mass spectrometry (MS) has become an invaluable tool for the characterization of proteins and non-covalent protein complexes under near physiological solution conditions. Here we report the structural characterization of human hemoglobin (Hb), a 64 kDa oxygen-transporting protein complex, by high resolution native top-down mass spectrometry using electrospray ionization (ESI) and a 15-Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Native MS preserves the non-covalent interactions between the globin subunits, and electron capture dissociation (ECD) produces fragments directly from the intact Hb complex without dissociating the subunits. Using activated ion ECD, we observe the gradual unfolding process of themore » Hb complex in the gas phase. Without protein ion activation, the native Hb shows very limited ECD fragmentation from the N-termini, suggesting a tightly packed structure of the native complex and therefore low fragmentation efficiency. Precursor ion activation allows steady increase of N-terminal fragment ions, while the C-terminal fragments remain limited (38 c ions and 4 z ions on the α chain; 36 c ions and 2 z ions on the β chain). This ECD fragmentation pattern suggests that upon activation, the Hb complex starts to unfold from the N-termini of both subunits, whereas the C-terminal regions and therefore the potential regions involved in the subunit binding interactions remain intact. ECD-MS of the Hb dimer show similar fragmentation patterns as the Hb tetramer, providing further evidence for the hypothesized unfolding process of the Hb complex in the gas phase. Native top-down ECD-MS allows efficient probing of the Hb complex structure and the subunit binding interactions in the gas phase. Finally, it may provide a fast and effective means to probe the structure of novel protein complexes that are intractable to traditional structural characterization tools.« less
2013-01-01
Background Collision induced dissociation (CID) in the triple quadrupole mass spectrometer system (QQQ) typically yields more abundant fragment ions than those produced with resonance excitation in the presence of helium gas in the ion trap mass spectrometer system (IT). Detailed product ion spectra can be obtained from one stage MS2 scan using the QQQ. In contrast, generating the same number of fragment ions in the ion trap requires multiple stages of fragmentation (MSn) using CID via in-trap resonance excitation with the associated time penalties and drop in sensitivity. Results The use of in-source fragmentation with electrospray ionization (ESI) followed by product ion scan (MS2) in a triple quadrupole mass spectrometer system, was demonstrated. This process enhances the qualitative power of tandem mass spectrometry to simulate the MS3 of ion trap for a comprehensive study of fragmentation mechanisms. A five pharmacologically significant (1Z, 2E)-N-arylpropanehydrazonoyl chlorides (3a-e) were chosen as model compounds for this study. In this work, detailed fragmentation pathways were elucidated by further dissociation of each fragment ion in the ion spectrum, essentially, by incorporating fragmentor voltage induced dissociation (in-source fragmentation) and isolation of fragments in a quadrupole cell Q1. Subsequently, CID occurs in cell, Q2, and fragment ions are analyzed in Q3 operated in product ion mode this process can be referred to as pseudo-MS3 scan mode. Conclusions This approach allowed unambiguous assignment of all fragment ions using tandem mass spectrometer and provided adequate sensitivity and selectivity. It is beneficial for structure determination of unknown trace components. The data presented in this paper provide useful information on the effect of different substituents on the ionization/fragmentation processes and can be used in the characterization of this important class of compounds. PMID:23351484
Sequencing of Oligourea Foldamers by Tandem Mass Spectrometry
NASA Astrophysics Data System (ADS)
Bathany, Katell; Owens, Neil W.; Guichard, Gilles; Schmitter, Jean-Marie
2013-03-01
This study is focused on sequence analysis of peptidomimetic helical oligoureas by means of tandem mass spectrometry, to build a basis for de novo sequencing for future high-throughput combinatorial library screening of oligourea foldamers. After the evaluation of MS/MS spectra obtained for model compounds with either MALDI or ESI sources, we found that the MALDI-TOF-TOF instrument gave more satisfactory results. MS/MS spectra of oligoureas generated by decay of singly charged precursor ions show major ion series corresponding to fragmentation across both CO-NH and N'H-CO urea bonds. Oligourea backbones fragment to produce a pattern of a, x, b, and y type fragment ions. De novo decoding of spectral information is facilitated by the occurrence of low mass reporter ions, representative of constitutive monomers, in an analogous manner to the use of immonium ions for peptide sequencing.
Yu, Xu; Wang, Fan; Li, Jiani; Shan, Weiguang; Zhu, Bingqi; Wang, Jian
2017-06-05
Thirteen unknown impurities in flomoxef sodium were separated and characterized by liquid chromatography coupled with high resolution ion trap/time-of-flight mass spectrometry (LC-IT-TOF MS)with positive and negative modes of electrospray ionization method for further improvement of official monographs in pharmacopoeias. The fragmentation patterns of impurities in flomoxef in the negative ion mode were studied in detail, and new negative-ion fragmentation regularities were discovered. Chromatographic separation was performed on a Kromasil C18 column (250mm×4.6mm, 5μm). The mobile phase consisted of (A) ammonium formate aqueous solution (10mM)-methanol (84:16, v/v) and (B) ammonium formate aqueous solution (10mM)-methanol (47:53, v/v). In order to determine the m/z values of the molecular ions and formulas of all detected impurities, full scan LC-MS in both positive and negative ion modes was firstly executed to obtain the m/z value of the molecules. Then LC-MS 2 and LC-MS 3 were carried out on target compounds to obtain as much structural information as possible. Complete fragmentation patterns of impurities were studied and used to obtain information about the structures of these impurities. Structures of thirteen unknown degradation products in flomoxef sodium were deduced based on the high resolution MS n data with both positive and negative modes. The forming mechanisms of degradation products in flomoxef sodium were also studied. Copyright © 2017. Published by Elsevier B.V.
Pang, Xiaobing
2015-06-01
Green leaf volatiles (GLVs) emitted by plants after stress or damage induction are a major part of biogenic volatile organic compounds (BVOCs). Proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is a high-resolution and sensitive technique for in situ GLV analyses, while its performance is dramatically influenced by humidity, electric field, etc. In this study the influence of gas humidity and the effect of reduced field (E/N) were examined in addition to measuring calibration curves for the GLVs. Calibration curves measured for seven of the GLVs in dry air were linear, with sensitivities ranging from 5 to 10 ncps/ppbv (normalized counts per second/parts per billion by volume). The sensitivities for most GLV analyses were found to increase by between 20% and 35% when the humidity of the sample gas was raised from 0% to 70% relative humidity (RH) at 21°C, with the exception of (E)-2-hexenol. Product ion branching ratios were also affected by humidity, with the relative abundance of the protonated molecular ions and higher mass fragment ions increasing with humidity. The effect of reduced field (E/N) on the fragmentation of GLVs was examined in the drift tube of the PTR-TOF-MS. The structurally similar GLVs are acutely susceptible to fragmentation following ionization and the fragmentation patterns are highly dependent on E/N. Overall the measured fragmentation patterns contain sufficient information to permit at least partial separation and identification of the isomeric GLVs by looking at differences in their fragmentation patterns at high and low E/N. Copyright © 2015. Published by Elsevier B.V.
Glucosinolate pattern in Isatis tinctoria and I. indigotica seeds.
Mohn, Tobias; Hamburger, Matthias
2008-06-01
The glucosinolate patterns in seeds of five ISATIS TINCTORIA and two ISATIS INDIGOTICA accessions were assessed with a recently developed and validated LC-MS assay for direct analysis of glucosinolates without prior desulfatation. Glucosinolate peaks were identified with in-source fragmentation and detection of the sulfate anion ( M/Z = 97), and by MS/MS experiments. The glucosinolate patterns of the seeds showed characteristic differences compared to leaves. Glucoisatisin and epiglucoisatisin were diagnostic of seed samples. Qualitative and quantitative differences in glucosinolate patterns between both ISATIS species were found for seed samples, enabling a differentiation of the two medicinal plants at the level of seed material.
NASA Astrophysics Data System (ADS)
Rimetz-Planchon, J.; Dhooghe, F.; Schoon, N.; Vanhaecke, F.; Amelynck, C.
2011-04-01
A Flowing Afterglow-Tandem Mass Spectrometer (FA-TMS) was used to investigate the feasibility of selective on-line detection of a series of seven sesquiterpenes (SQTs). These SQTs were chemically ionized by either H3O+ or NO+ reagent ions in the FA, resulting among others in protonated SQT and SQT molecular ions, respectively. These and other Chemical Ionization (CI) product ions were subsequently subjected to dissociation by collisions with Ar atoms in the collision cell of the tandem mass spectrometer. The fragmentation spectra show similarities with mass spectra obtained for these compounds with other instruments such as a Proton Transfer Reaction-Linear Ion Trap (PTR-LIT), a Proton Transfer Reaction-Mass Spectrometer (PTR-MS), a Triple Quadrupole-Mass Spectrometer (QqQ-MS) and a Selected Ion Flow Tube-Mass Spectrometer (SIFT-MS). Fragmentation of protonated SQT is characterized by fragment ions at the same masses but with different intensities for the individual SQT. Distinction of SQTs is based on well-chosen intensity ratios and collision energies. The fragmentation patterns of SQT molecular ions show specific fragment ion tracers at m/z 119, m/z162, m/z 137 and m/z 131 for α-cedrene, δ-neoclovene, isolongifolene and α-humulene, respectively. Consequently, chemical ionization of SQT by NO+, followed by MS/MS of SQT+ seems to open a way for selective quantification of SQTs in mixtures.
A detailed mechanistic fragmentation analysis of methamphetamine and select regioisomers by GC/MS.
Sachs, Sandra B; Woo, Francis
2007-03-01
A novel ring-substituted methamphetamine regioisomer, N,alpha,4-trimethyl phenmethylamine, was synthesized in order to study the validity of proposed structures for various mass spectrometry (MS)-derived peaks in a methamphetamine fragmentation pattern. While other research efforts have studied aspects of methamphetamine in detail, a full fragmentation study has not been reported previously. In addition to showing molecular structures represented by fragment peaks, mechanisms for selected processes are detailed. An empirically derived procedure to easily determine by simple spectral peak pattern recognition the geometry of dimethyl- or ethyl-substituted immonium ions (RRC = N+ RR) where m/z = 58 is outlined. These results are platform independent for electron ionization (EI) instruments, but have also proven to be helpful in explaining spectral peaks observed in spectra from ion trap systems. The spectrum for the synthesized methamphetamine regioisomer was accurately predicted using this methodology. While this approach is useful in some casework, the converse may be more useful: when an unexpected or unusual peak pattern arises in a spectrum, being able to analyze it to determine the structure of the molecule. This paper gives an analyst the means to begin such retro-synthetic analyses.
Li, Na; Mao, Wenjun; Liu, Xue; Wang, Shuyao; Xia, Zheng; Cao, Sujian; Li, Lin; Zhang, Qi; Liu, Shan
2016-10-04
Five sulfated oligosaccharide fragments, F1-F5, were prepared from a pyruvylated galactan sulfate from the green alga Codium divaricatum, by partial depolymerization using mild acid hydrolysis and purification with gel-permeation chromatography. Negative-ion electrospray tandem mass spectrometry with collision-induced dissociation (ES-CID-MS/MS) is attempted for sequence determination of the sulfated oligosaccharides. The sequence of F1 with homogeneous disaccharide composition was first characterized to be Galp-(4SO4)-(1 → 3)-Galp by detailed nuclear magnetic resonance spectroscopic analyses. The fragmentation pattern of F1 in the product ion spectra was established on the basis of negative-ion ES-CID MS/MS, which was then applied to sequence analysis of other sulfated oligosaccharides. The sequences of F2 and F3 were deduced to be Galp-(4SO4)-(1 → 3)-Galp-(1 → 3)-Galp-(1 → 3)-Galp and 3,4-O-(1-carboxyethylidene)-Galp-(6SO4)-(1 → 3)-Galp, respectively. The sequences of major fragments in F4 and F5 were also deduced. The investigation demonstrated that negative-ion ES-CID-MS/MS was an efficient method for the sequence analysis of the pyruvylated galactan sulfate-derived oligosaccharides which revealed the patterns of substitution and glycosidic linkages. The pyruvylated galactan sulfate-derived oligosaccharides were novel sulfated oligosaccharides different from other algal polysaccharide-derived oligosaccharides. Copyright © 2016 Elsevier Ltd. All rights reserved.
Native top-down mass spectrometry for the structural characterization of human hemoglobin
Zhang, Jiang; Malmirchegini, G. Reza; Clubb, Robert T.; ...
2015-06-09
Native mass spectrometry (MS) has become an invaluable tool for the characterization of proteins and non-covalent protein complexes under near physiological solution conditions. Here we report the structural characterization of human hemoglobin (Hb), a 64 kDa oxygen-transporting protein complex, by high resolution native top-down mass spectrometry using electrospray ionization (ESI) and a 15-Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Native MS preserves the non-covalent interactions between the globin subunits, and electron capture dissociation (ECD) produces fragments directly from the intact Hb complex without dissociating the subunits. Using activated ion ECD, we observe the gradual unfolding process of themore » Hb complex in the gas phase. Without protein ion activation, the native Hb shows very limited ECD fragmentation from the N-termini, suggesting a tightly packed structure of the native complex and therefore low fragmentation efficiency. Precursor ion activation allows steady increase of N-terminal fragment ions, while the C-terminal fragments remain limited (38 c ions and 4 z ions on the α chain; 36 c ions and 2 z ions on the β chain). This ECD fragmentation pattern suggests that upon activation, the Hb complex starts to unfold from the N-termini of both subunits, whereas the C-terminal regions and therefore the potential regions involved in the subunit binding interactions remain intact. ECD-MS of the Hb dimer show similar fragmentation patterns as the Hb tetramer, providing further evidence for the hypothesized unfolding process of the Hb complex in the gas phase. Native top-down ECD-MS allows efficient probing of the Hb complex structure and the subunit binding interactions in the gas phase. Finally, it may provide a fast and effective means to probe the structure of novel protein complexes that are intractable to traditional structural characterization tools.« less
Maldini, Mariateresa; Montoro, Paola; Piacente, Sonia; Pizza, Cosimo
2009-12-01
Direct flow injection/electrospray ionization/ion trap tandem mass spectrometry was used to investigate the presence of proanthocyanidins (PAs) in the methanolic extract of B. simaruba bark. Additionally, an LC-ESI-MS qualitative study was performed by using a monolithic stationary phase. The fragmentation pattern obtained evidenced the presence in B. simaruba bark of PAs belonging to the series of polymers of epicatechin, along with their glycosilated derivatives.
Milgroom, M G; Lipari, S E; Powell, W A
1992-06-01
We analyzed DNA fingerprints in the chestnut blight fungus, Cryphonectria parasitica, for stability, inheritance, linkage and variability in a natural population. DNA fingerprints resulting from hybridization with a dispersed moderately repetitive DNA sequence of C. parasitica in plasmid pMS5.1 hybridized to 6-17 restriction fragments per individual isolate. In a laboratory cross and from progeny from a single perithecium collected from a field population, the presence/absence of 11 fragments in the laboratory cross and 12 fragments in the field progeny set segregated in 1:1 ratios. Two fragments in each progeny set cosegregated; no other linkage was detected among the segregating fragments. Mutations, identified by missing bands, were detected for only one fragment in which 4 of 43 progeny lacked a band present in both parents; no novel fragments were detected in any progeny. All other fragments appeared to be stably inherited. Hybridization patterns did not change during vegetative growth or sporulation. However, fingerprint patterns of single conidial isolates of strains EP155 and EP67 were found to be heterogenous due to mutations that occurred during culturing in the laboratory since these strains were first isolated in 1976-1977. In a population sample of 39 C. parasitica isolates, we found 33 different fingerprint patterns with pMS5.1. Most isolates differed from all other isolates by the presence or absence of several fragments. Six fingerprint patterns each occurred twice. Isolates with identical fingerprints occurred in cankers on the same chestnut stems three times; isolates within the other three pairs were isolated from cankers more than 5 m apart. The null hypothesis of random mating in this population could not be rejected if the six putative clones were removed from the analysis. Thus, a rough estimate of the clonal fraction of this population is 6 in 39 isolates (15.4%).
Zhou, Tingting; Liu, Hua; Wen, Jun; Fan, Guorong; Chai, Yifeng; Wu, Yutian
2010-09-15
A high-performance liquid chromatography-diode array detection/electrospray ionization mass spectrometry (HPLC-DAD/ESI-MS) method was applied to the characterization of ten iridoid glycosides in Gardenia jasminoides Ellis, a traditional Chinese medicine. During the process of structural elucidation, two groups of isomers including two epimers were structurally characterized and differentiated according to their distinctive fragmentation patterns which were closely related to their isomeric differentiations. Subsequently, the major compounds were purified by multi-dimensional chromatography and semi-preparative HPLC and the structure identification was confirmed with NMR techniques. The major fragmentation pathways of iridoid glycosides in Gardenia jasminoides Ellis obtained through the MS data were schemed systematically, which provided the best sensitivity and specificity for characterization of the iridoid glycosides especially the isomers so far. Based on the fragmentation patterns of iridoid glycosides concluded, seven major iridoid glycosides were characterized in rat plasma after intravenous administration of Gardenia jasminoides Ellis. Copyright 2010 John Wiley & Sons, Ltd.
Wan, Chuan-Xing; Luo, Jian-Guang; Gu, Yu-Cheng; Xu, De-Ran; Kong, Ling-Yi
2013-01-01
Homoflavonoids, characterised by one more carbon atom directly added to C6 -C3 -C6 backbone of flavonoids, are rich in the species of genus Ophioglossum. Up to now we have little knowledge about their MS fragmentation patterns. It is therefore necessary to investigate their MS fragmentation pathways so as to distinguish them from other types of flavonoids. To develop a rapid method for identifying homoflavonoids from Ophioglossum based on their characteristic MS fragmentation. Mass spectrometry fragmentation pathways and qualitative analysis of homoflavonoids in three ferns of Ophioglosssum were investigated by using high-performance liquid chromatography coupled with diode-array detection and electrospray ionisation tandem mass spectrometry (HPLC-DAD-ESI/MS(n) ). The analyses of the MS(n) spectra of the homoflavonoids allowed us to classify them into two types according to their fragmentation characteristics. The type I homoflavonoids, with an attached additional carbon atom to the C-3 position of the C-ring, presented the initial competing loss of H2 O and CH2 O from their aglycone ions, compared to the initial removal of H2 O or CO in the case of the type II homoflavonoids, which bear the additional carbon atom at the C-2' site of the B-ring and forming ring D. The above characteristic fragmentations of homoflavonoids were quite different from those of other flavonoids, and were successfully applied to identify homoflavonoids in the crude extracts of three Ophioglossum species. The HPLC-DAD-ESI/MS(n) method obtained in the present study provided a powerful tool for identifying homoflavonoids from ferns in the genus Ophioglossum. Copyright © 2013 John Wiley & Sons, Ltd.
Donkuru, McDonald; Chitanda, Jackson M; Verrall, Ronald E; El-Aneed, Anas
2014-04-15
This study aimed at evaluating the collision-induced dissociation tandem mass spectrometric (CID-MS/MS) fragmentation patterns of novel β-cyclodextrin-substituted- and bis-pyridinium gemini surfactants currently being explored as nanomaterial drug delivery agents. In the β-cyclodextrin-substituted gemini surfactants, a β-cyclodextrin ring is grafted onto an N,N-bis(dimethylalkyl)-α,ω-aminoalkane-diammonium moiety using variable succinyl linkers. In contrast, the bis-pyridinium gemini surfactants are based on a 1,1'-(1,1'-(ethane-1,2-diylbis(sulfanediyl))bis(alkane-2,1-diyl))dipyridinium template, defined by two symmetrical N-alkylpyridinium parts connected through a fixed ethane dithiol spacer. Detection of the precursor ion [M](2+) species of the synthesized compounds and the determination of mass accuracies were conducted using a QqTOF-MS instrument. A multi-stage tandem MS analysis of the detected [M](2+) species was conducted using the QqQ-LIT-MS instrument. Both instruments were equipped with an electrospray ionization (ESI) source. Abundant precursor ion [M](2+) species were detected for all compounds at sub-1 ppm mass accuracies. The β-cyclodextrin-substituted compounds, fragmented via two main pathways: Pathway 1: the loss of one head-tail region produces a [M-(N(Me)2-R)](2+) ion, from which sugar moieties (Glc) are sequentially cleaved; Pathway 2: both head-tail regions are lost to give [M-2(N(Me)2-R)](+), followed by consecutive loss of Glc units. Alternatively, the cleavage of the Glc units could also have occurred simultaneously. Nevertheless, the fragmentation evolved around the quaternary ammonium cations, with characteristic cleavage of Glc moieties. For the bis-pyridinium gemini compounds, they either lost neutral pyridine(s) to give doubly charged ions (Pathway A) or formed complementary pyridinium alongside other singly charged ions (Pathway B). Similar to β-cyclodextrin-substituted compounds, the fragmentation was centered on the pyridinium functional groups. The MS(n) analyses of these novel gemini surfactants, reported here for the first time, revealed diagnostic ions for each compound, with a universal fragmentation pattern for each compound series. The diagnostic ions will be employed within liquid chromatography (LC)/MS/MS methods for screening, identification, and quantification of these compounds within biological samples. Copyright © 2014 John Wiley & Sons, Ltd.
Cao, Jie; Yin, Chengle; Qin, Yan; Cheng, Zhihong; Chen, Daofeng
2014-10-01
The mass spectrometric (MS) analysis of flavone di-C-glycosides has been a difficult task due to pure standards being unavailable commercially and to that the reported relative intensities of some diagnostic ions varied with MS instruments. In this study, five flavone di-C-glycoside standards from Viola yedoensis have been systematically studied by high performance liquid chromatography-electrospray ionization-tandem ion trap mass spectrometry (HPLC-ESI-IT-MS(n)) in the negative ion mode to analyze their fragmentation patterns. A new MS(2) and MS(3) hierarchical fragmentation for the identification of the sugar nature (hexoses or pentoses) at C-6 and C-8 is presented based on previously established rules of fragmentation. Here, for the first time, we report that the MS(2) and MS(3) structure-diagnostic fragments about the glycosylation types and positions are highly dependent on the configuration of the sugars at C-6 and C-8. The base peak ((0,2) X1 (0,2) X(2)(-) ion) in MS(3) spectra of di-C-glycosides could be used as a diagnostic ion for flavone aglycones. These newly proposed fragmentation behaviors have been successfully applied to the characterization of flavone di-C-glycosides found in V. yedoensis. A total of 35 flavonoid glycosides, including 1 flavone mono-C-hexoside, 2 flavone 6,8-di-C-hexosides, 11 flavone 6,8-di-C-pentosides, 13 flavone 6,8-C-hexosyl-C-pentosides, 5 acetylated flavone C-glycosides and 3 flavonol O-glycosides, were identified or tentatively identified on the base of their UV profiles, MS and MS(n) (n = 5) data, or by comparing with reference substances. Among these, the acetylated flavone C-glycosides were reported from V. yedoensis for the first time. Copyright © 2014 John Wiley & Sons, Ltd.
Zhang, Jia-Yu; Zhang, Qian; Li, Ning; Wang, Zi-Jian; Lu, Jian-Qiu; Qiao, Yan-Jiang
2013-01-30
A method of modified diagnostic fragment-ion-based extension strategy (DFIBES) coupled to DFIs (diagnostic fragmentation ions) intensity analysis was successfully established to simultaneously screen and identify the chlorogenic acids (CGAs) in Flos Lonicerae Japonicae (FLJ) by HPLC-ESI-MS(n). DFIs, such as m/z 191 [quinic acid-H](-), m/z 179 [caffeic acid-H](-) and m/z 173 [quinic acid-H-H2O](-) were determined or proposed from the fragmentation patterns analysis of corresponding reference substances for every chemical family of CGAs. A "structure extension" method was then proposed based on the well-demonstrated fragmentation patterns and was successively applied into the rapid screening of CGAs in FLJ. Considering that substitution isomerism is a common phenomenon, a full ESI-MS(n) fragmentation analysis according to the intensity of DFIs has been performed to identify the CGA isomers. Based on the DFIs and intensity analysis, 41 peaks attributed to CGAs including 4 caffeoylquinic acids (CQA), 7 CQA glycosides, 6 dicaffeoylquinic acids (DiCQA), 10 DiCQA glycosides, 1 tricaffeoylquinic acids (TriCQA), 4p-coumaroylquinic acids (pCoQA), 3 feruloylquinic acids (FQA) and 6 caffeoylferuloylquinic acids (CFQA) were identified preliminarily in a 65-min chromatographic run. It was the first time to systematically report the presence of CGAs in FLJ, especially for CQA glycosides, DiCQA glycosides, TriCQA, pCoQA and CFQA. All the results indicated that the method of developed DFIBES coupled to DFIs analysis was feasible, reliable and universal for screening and identifying the constituents with the same carbon skeletons especially the isomeric compounds from the complex extract of TCMs. Copyright © 2012 Elsevier B.V. All rights reserved.
Selected reaction monitoring mass spectrometry: a methodology overview.
Ebhardt, H Alexander
2014-01-01
Moving past the discovery phase of proteomics, the term targeted proteomics combines multiple approaches investigating a certain set of proteins in more detail. One such targeted proteomics approach is the combination of liquid chromatography and selected or multiple reaction monitoring mass spectrometry (SRM, MRM). SRM-MS requires prior knowledge of the fragmentation pattern of peptides, as the presence of the analyte in a sample is determined by measuring the m/z values of predefined precursor and fragment ions. Using scheduled SRM-MS, many analytes can robustly be monitored allowing for high-throughput sample analysis of the same set of proteins over many conditions. In this chapter, fundaments of SRM-MS are explained as well as an optimized SRM pipeline from assay generation to data analyzed.
Musharraf, Syed Ghulam; Ali, Arslan; Khan, Naik Tameem; Yousuf, Maria; Choudhary, Muhammad Iqbal; Atta-ur-Rahman
2013-02-01
Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to investigate the effect of different substitutions introduced during metabolism on fragmentation patterns of four anabolic steroids including methyltestosterone, methandrostenolone, cis-androsterone and adrenosterone, along with their metabolites. Collision-induced dissociation (CID) analysis was performed to correlate the major product ions of 19 steroids with structural features. The analysis is done to portray metabolic alteration, such as incorporation or reduction of double bonds, hydroxylations, and/or oxidation of hydroxyl moieties to keto functional group on steroidal skeleton which leads to drastically changed product ion spectra from the respective classes of steroids, therefore, making them difficult to identify. The comparative ESI-MS/MS study also revealed some characteristic peaks to differentiate different steroidal metabolites and can be useful for the unambiguous identification of anabolic steroids in biological fluid. Moreover, LC-ESI-MS/MS analysis of fermented extract of methyltestosterone, obtained by Macrophomina phaseolina was also investigated. Copyright © 2012 Elsevier Inc. All rights reserved.
Witt, Matthias; Fuchser, Jens; Koch, Boris P
2009-04-01
The complex natural organic matter standard Suwannee river fulvic acid (SRFA) was analyzed by negative ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR MS) using on-resonance collision induced dissociation (CID) of single ultrahigh resolved mass peaks in the ICR cell. Molecular formula assignment of precursor masses resulted in exactly one molecular formula for each of the peaks. Analyses of the corresponding fragment spectra and comparison to different standard substances revealed specific neutral losses and fragmentation patterns which result in structures consisting of a high degree of carboxyl- and fewer hydroxyl groups. The comparison of fragmented mass peaks within different pseudohomologous series (CH(2)-series, and CH(4) vs O exchange) suggested structurally based differences between these series. CID FTICR MS allowed isolating single mass peaks in a very complex natural organic matter spectrum. Subsequently, fragmentation gave structural insights into this material. Our results suggest that the structural diversity in complex humic substances is not as high as expected.
Hu, Youcai; Qu, Jing; Liu, Yuanyan; Yu, Shishan; Li, Jianbei; Zhang, Jinlan; Du, Dan
2010-01-01
The mass fragmentation patterns of stilbene glycosides isolated from the genus Lysidice were investigated by negative ion electrospray ionization tandem mass spectrometry, and the influence of collision energy on their fragmentation behavior is discussed. It is found that the presence of the Y(0)(-) and B(0)(-) ions in the MS(2) spectra is characteristic for 1-->6 linked diglycosyl stilbenes, while the Y(0)(-), Y(1)(-), and Z(1)(-) ions are representative ions of 1-->2 linked diglycosyl stilbenes. These results indicate that ESI-MS(n) in the negative ion mode can be used to differentiate 1-->6 and 1-->2 linked diglycosyl stilbenes. Based on the fragmentation rules, 9 new trace constituents were identified or tentatively characterized in a fraction of Lysidice brevicalyx by using HPLC/HRMS and HPLC-DAD/ESI-MS(n). The results of the present study can assist in on-line structural identification of analogous constituents and targeted isolation of novel compounds from crude plant extracts.
Murata, Kenji; Kanno, Shunsuke; Nishio, Hisanori; Saito, Mitsumasa; Tanaka, Tamami; Yamamura, Kenichiro; Sakai, Yasunari; Takada, Hidetoshi; Miyamoto, Tomofumi; Mizuno, Yumi; Ouchi, Kazunobu; Waki, Kenji; Hara, Toshiro
2014-01-01
Background Kawasaki disease (KD) is a systemic vasculitis of unknown etiology. The innate immune system is involved in its pathophysiology at the acute phase. We have recently established a novel murine model of KD coronary arteritis by oral administration of a synthetic microbe-associated molecular pattern (MAMP). On the hypothesis that specific MAMPs exist in KD sera, we have searched them to identify KD-specific molecules and to assess the pathogenesis. Methods We performed liquid chromatography-mass spectrometry (LC-MS) analysis of fractionated serum samples from 117 patients with KD and 106 controls. Microbiological and LC-MS evaluation of biofilm samples were also performed. Results KD samples elicited proinflammatory cytokine responses from human coronary artery endothelial cells (HCAECs). By LC-MS analysis of KD serum samples collected at 3 different periods, we detected a variety of KD-specific molecules in the lipophilic fractions that showed distinct m/z and MS/MS fragmentation patterns in each cluster. Serum KD-specific molecules showed m/z and MS/MS fragmentation patterns almost identical to those of MAMPs obtained from the biofilms formed in vitro (common MAMPs from Bacillus cereus, Yersinia pseudotuberculosis and Staphylococcus aureus) at the 1st study period, and from the biofilms formed in vivo (common MAMPs from Bacillus cereus, Bacillus subtilis/Bacillus cereus/Yersinia pseudotuberculosis and Staphylococcus aureus) at the 2nd and 3rd periods. The biofilm extracts from Bacillus cereus, Bacillus subtilis, Yersinia pseudotuberculosis and Staphylococcus aureus also induced proinflammatory cytokines by HCAECs. By the experiments with IgG affinity chromatography, some of these serum KD-specific molecules bound to IgG. Conclusions We herein conclude that serum KD-specific molecules were mostly derived from biofilms and possessed molecular structures common to MAMPs from Bacillus cereus, Bacillus subtilis, Yersinia pseudotuberculosis and Staphylococcus aureus. Discovery of these KD-specific molecules might offer novel insight into the diagnosis and management of KD as well as its pathogenesis. PMID:25411968
Analysis of 62 synthetic cannabinoids by gas chromatography-mass spectrometry with photoionization.
Akutsu, Mamoru; Sugie, Ken-Ichi; Saito, Koichi
2017-01-01
Gas chromatography-mass spectrometry (GC-MS) in electron ionization (EI) mode is one of the most commonly used techniques for analysis of synthetic cannabinoids, because the GC-EI-MS spectra contain characteristic fragment ions for identification of a compound; however, the information on its molecular ions is frequently lacking. To obtain such molecular ion information, GC-MS in chemical ionization (CI) mode is frequently used. However, GC-CI-MS requires a relatively tedious process using reagent gas such as methane or isobutane. In this study, we show that GC-MS in photoionization (PI) mode provided molecular ions in all spectra of 62 synthetic cannabinoids, and 35 of the 62 compounds showed only the molecular radical cations. Except for the 35 compounds, the PI spectra showed very simple patterns with the molecular peak plus only a few fragment peak(s). An advantage is that the ion source for GC-PI-MS can easily be used for GC-EI-MS as well. Therefore, GC-EI/PI-MS will be a useful tool for the identification of synthetic cannabinoids contained in a dubious product. To the best of our knowledge, this is the first report to use GC-PI-MS for analysis of synthetic cannabinoids.
Masike, Keabetswe
2018-01-01
Liquid chromatography-mass spectrometry- (LC-MS-) based multiple reaction monitoring (MRM) methods have been used to detect and quantify metabolites for years. These approaches rely on the monitoring of various fragmentation pathways of multiple precursors and the subsequent corresponding product ions. However, MRM methods are incapable of confidently discriminating between isomeric and isobaric molecules and, as such, the development of methods capable of overcoming this challenge has become imperative. Due to increasing scanning rates of recent MS instruments, it is now possible to operate MS instruments both in the static and dynamic modes. One such method is known as synchronized survey scan (SSS), which is capable of acquiring a product ion scan (PIS) during MRM analysis. The current study shows, for the first time, the use of SSS-based PIS approach as a feasible identification feature of MRM. To achieve the above, five positional isomers of dicaffeoylquinic acids (diCQAs) were studied with the aid of SSS-based PIS method. Here, the MRM transitions were automatically optimized using a 3,5-diCQA isomer by monitoring fragmentation transitions common to all five isomers. Using the mixture of these isomers, fragmentation spectra of the five isomers achieved with SSS-based PIS were used to identify each isomer based on previously published hierarchical fragmentation keys. The optimized method was also used to detect and distinguish between diCQA components found in Bidens pilosa and their isobaric counterparts found in Moringa oleifera plants. Thus, the method was shown to distinguish (by differences in fragmentation patterns) between diCQA and their isobars, caffeoylquinic acid (CQA) glycosides. In conclusion, SSS allowed the detection and discrimination of isomeric and isobaric compounds in a single chromatographic run by producing a PIS spectrum, triggered in the automatic MS/MS synchronized survey scan mode. PMID:29805830
NASA Astrophysics Data System (ADS)
Qiang, Liming; Cao, Shuxia; Zhao, Xiaoyang; Mao, Xiangju; Guo, Yanchun; Liao, Xincheng; Zhao, Yufen
2007-10-01
The fragmentation patterns of N-diisopropyloxyphosphoryl-l-[alpha]-Ala (DIPP-l-[alpha]-Ala), N-diisopropyloxyphosphoryl-d-[alpha]-Ala (DIPP-d-[alpha]-Ala), N-diisopropyloxyphosphoryl-[beta]-Ala (DIPP-[beta]-Ala) and N-diisopropyloxyphosphoryl-[gamma]-amino butyric acid (DIPP-[gamma]-Aba) were investigated by electrospray ionization tandem mass spectrometry (ESI-MS/MS). DIPP-d-[alpha]-Ala showed the same fragmentation pathways as DIPP-l-[alpha]-Ala. In the fragmentation of protonated DIPP-[beta]-Ala, the characteristic fragment ion [M + H - 2C3H6 - H2O - CH2CO]+ appeared and could be used to distinguish [beta]-Ala from l-[alpha]-Ala and d-[alpha]-Ala through tandem mass spectra, even though they possess the same molecular weight. In the fragmentation of protonated DIPP-[gamma]-Aba, the break of PN bond occurred and an interesting protonated lactam ion with five-membered ring was generated. Furthermore, in the MS3 spectrum of [M + Na - 2C3H6]+ ion of DIPP-[gamma]-Aba, a strong intensity of unique fragment ion, namely lactam-sodium adduct with five-membered ring, was observed, which could be considered as a mark for [gamma]-amino acids. The stepwise fragmentations of their [M + Na]+ ions and [M - H]- ions showed that they all underwent a PN to PO bond migration through a five-membered or six-membered or even seven-membered ring transition state, respectively, which supported the great affinity of hydroxyl for phosphoryl group.
Zhang, Shui-Han; Hu, Xin; Shi, Shu-Yun; Huang, Lu-Qi; Chen, Wei; Chen, Lin; Cai, Ping
2016-05-01
A major challenge of profiling chlorogenic acids (CGA) in natural products is to effectively detect unknown or minor isomeric compounds. Here, we developed an effective strategy, typical ultraviolet (UV) spectra in combination with diagnostic mass fragmentation analysis based on HPLC-DAD-QTOF-MS/MS, to comprehensively profile CGA in the buds of Lonicera macranthoides. First, three CGA UV patterns were obtained by UV spectra screening. Second, 13 types of CGA classified by molecular weights were found by thorough analysis of CGA peaks using high-resolution MS. Third, selected ion monitoring (SIM) was carried out for each type of CGA to avoid overlooking of minor ones. Fourth, MS/MS spectra of each CGA were investigated. Then 70 CGA were identified by matching their UV spectra, accurate mass signals and fragmentation patterns with standards or previously reported compounds, including six caffeoylquinic acids (CQA), six diCQA, one triCQA, three caffeoylshikimic acids (CSA), six diCSA, one triCSA, three p-coumaroylquinic acids (pCoQA), four p-coumaroylcaffeoylquinic acids (pCoCQA), four feruloylquinic acids (FQA), five methyl caffeoylquinates (MCQ), three ethyl caffeoylquinates (ECQ), three dimethoxycinnamoylquinic acids (DQA), six caffeoylferuloylquinic acids (CFQA), six methyl dicaffeoylquinates (MdiCQ), four FQA glycosides (FQAG), six MCQ glycosides (MCQG), and three ethyl dicaffeoylquinates (EdiCQ). Forty-five of them were discovered from Lonicera species for the first time, and it is noted that CGA profiles were investigated for the first time in L. macranthoides. Results indicated that the developed method was a useful approach to explore unknown and minor isomeric compounds from complex natural products.
Novel Concepts of MS-Cleavable Cross-linkers for Improved Peptide Structure Analysis
NASA Astrophysics Data System (ADS)
Hage, Christoph; Falvo, Francesco; Schäfer, Mathias; Sinz, Andrea
2017-10-01
The chemical cross-linking/mass spectrometry (MS) approach is gaining increasing importance as an alternative method for studying protein conformation and for deciphering protein interaction networks. This study is part of our ongoing efforts to develop innovative cross-linking principles for a facile and efficient assignment of cross-linked products. We evaluate two homobifunctional, amine-reactive, and MS-cleavable cross-linkers regarding their potential for automated analysis of cross-linked products. We introduce the bromine phenylurea (BrPU) linker that possesses a unique structure yielding a distinctive fragmentation pattern on collisional activation. Moreover, BrPU delivers the characteristic bromine isotope pattern and mass defect for all cross-linker-decorated fragments. We compare the fragmentation behavior of the BrPU linker with that of our previously described MS-cleavable TEMPO-Bz linker (which consists of a 2,2,6,6-tetramethylpiperidine-1-oxy moiety connected to a benzyl group) that was developed to perform free-radical-initiated peptide sequencing. Comparative collisional activation experiments (collision-induced dissociation and higher-energy collision-induced dissociation) with both cross-linkers were conducted in negative electrospray ionization mode with an Orbitrap Fusion mass spectrometer using five model peptides. As hypothesized in a previous study, the presence of a cross-linked N-terminal aspartic acid residue seems to be the prerequisite for the loss of an intact peptide from the cross-linked products. As the BrPU linker combines a characteristic mass shift with an isotope signature, it presents a more favorable combination for automated assignment of cross-linked products compared with the TEMPO-Bz linker. [Figure not available: see fulltext.
Zou, Hong-Yan; Luo, Jun; Xu, De-Ran; Kong, Ling-Yi
2014-01-01
'Naoyanghua', composed of the flowers of Rhododendron molle G. Don, is a traditional Chinese medicine that is widely known for its toxicity. Grayanane-type diterpenoids are the main active ingredients in R. molle, as well as possibly their toxicity: they are, however, difficult to isolate and analyse using common chromatographic methods, due to their small amounts and absence of conjugated groups, such as phenyl and α, β-unsaturated ketone. To establish a highly sensitive, selective and reliable method for the qualitative evaluation of trace diterpenoids in the flowers of R. molle by using tandem solid-phase extraction followed by high-performance liquid chromatography with electrospray ionisation quadrupole-time-of-flight mass spectrometry (HPLC-ESI/QTOF/MS/MS). Tandem solid phase extraction (SPE) was undertaken using a polyamide cartridge and a C18E cartridge in succession to enrich the trace diterpenoids. HPLC-ESI/QTOF/MS/MS was used to determine the fragmentation patterns of diterpenoids and to tentatively characterise their fragmentation pathways. HPLC-ESI/QTOF/MS/MS detected a total of 14 diterpenoids, eight of which were identified by comparison with literature sources and six based on fragmentation analysis. Among the latter six, rhodojaponin VI-3-glucoside was tentatively identified as a new diterpenoid glycoside and rhodojaponin VII, rhodojaponin IV and rhodojaponin I were reported from R. molle for the first time. By qualitative research of diterpenoids in this plant by HPLC-ESI/QTOF/MS/MS, a reliable methodology for the analysis of these active constituents of R. molle was established for the first time. Copyright © 2014 John Wiley & Sons, Ltd.
Context-Sensitive Markov Models for Peptide Scoring and Identification from Tandem Mass Spectrometry
Grover, Himanshu; Wallstrom, Garrick; Wu, Christine C.
2013-01-01
Abstract Peptide and protein identification via tandem mass spectrometry (MS/MS) lies at the heart of proteomic characterization of biological samples. Several algorithms are able to search, score, and assign peptides to large MS/MS datasets. Most popular methods, however, underutilize the intensity information available in the tandem mass spectrum due to the complex nature of the peptide fragmentation process, thus contributing to loss of potential identifications. We present a novel probabilistic scoring algorithm called Context-Sensitive Peptide Identification (CSPI) based on highly flexible Input-Output Hidden Markov Models (IO-HMM) that capture the influence of peptide physicochemical properties on their observed MS/MS spectra. We use several local and global properties of peptides and their fragment ions from literature. Comparison with two popular algorithms, Crux (re-implementation of SEQUEST) and X!Tandem, on multiple datasets of varying complexity, shows that peptide identification scores from our models are able to achieve greater discrimination between true and false peptides, identifying up to ∼25% more peptides at a False Discovery Rate (FDR) of 1%. We evaluated two alternative normalization schemes for fragment ion-intensities, a global rank-based and a local window-based. Our results indicate the importance of appropriate normalization methods for learning superior models. Further, combining our scores with Crux using a state-of-the-art procedure, Percolator, we demonstrate the utility of using scoring features from intensity-based models, identifying ∼4-8 % additional identifications over Percolator at 1% FDR. IO-HMMs offer a scalable and flexible framework with several modeling choices to learn complex patterns embedded in MS/MS data. PMID:23289783
Wasslen, Karl V; Tan, Le Hoa; Manthorpe, Jeffrey M; Smith, Jeffrey C
2014-04-01
Defining cellular processes relies heavily on elucidating the temporal dynamics of proteins. To this end, mass spectrometry (MS) is an extremely valuable tool; different MS-based quantitative proteomics strategies have emerged to map protein dynamics over the course of stimuli. Herein, we disclose our novel MS-based quantitative proteomics strategy with unique analytical characteristics. By passing ethereal diazomethane over peptides on strong cation exchange resin within a microfluidic device, peptides react to contain fixed, permanent positive charges. Modified peptides display improved ionization characteristics and dissociate via tandem mass spectrometry (MS(2)) to form strong a2 fragment ion peaks. Process optimization and determination of reactive functional groups enabled a priori prediction of MS(2) fragmentation patterns for modified peptides. The strategy was tested on digested bovine serum albumin (BSA) and successfully quantified a peptide that was not observable prior to modification. Our method ionizes peptides regardless of proton affinity, thus decreasing ion suppression and permitting predictable multiple reaction monitoring (MRM)-based quantitation with improved sensitivity.
A novel isoflavone profiling method based on UPLC-PDA-ESI-MS.
Zhang, Shuang; Zheng, Zong-Ping; Zeng, Mao-Mao; He, Zhi-Yong; Tao, Guan-Jun; Qin, Fang; Chen, Jie
2017-03-15
A novel non-targeted isoflavone profiling method was developed using the diagnostic fragment-ion-based extension strategy, based on ultra-high performance liquid chromatography coupled with photo-diode array detector and electrospray ionization-mass spectrometry (UPLC-PDA-ESI-MS). 16 types of isoflavones were obtained in positive mode, but only 12 were obtained in negative mode due to the absence of precursor ions. Malonyldaidzin and malonylgenistin glycosylated at the 4'-O position or malonylated at the 4″-O position of glucose were indicated by their retention behavior and fragmentation pattern. Three possible quantification methods in one run based on UPLC-PDA and UPLC-ESI-MS were validated and compared, suggesting that methods based on UPLC-ESI-MS possess remarkable selectivity and sensitivity. Impermissible quantitative deviations induced by the linearity calibration with 400-fold dynamic range was observed for the first time and was recalibrated with a 20-fold dynamic range. These results suggest that isoflavones and their stereoisomers can be simultaneously determined by positive-ion UPLC-ESI-MS in soymilk. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Jora, Manasses; Burns, Andrew P.; Ross, Robert L.; Lobue, Peter A.; Zhao, Ruoxia; Palumbo, Cody M.; Beal, Peter A.; Addepalli, Balasubrahmanyam; Limbach, Patrick A.
2018-06-01
The analytical identification of positional isomers (e.g., 3-, N 4-, 5-methylcytidine) within the > 160 different post-transcriptional modifications found in RNA can be challenging. Conventional liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) approaches rely on chromatographic separation for accurate identification because the collision-induced dissociation (CID) mass spectra of these isomers nearly exclusively yield identical nucleobase ions (BH2 +) from the same molecular ion (MH+). Here, we have explored higher-energy collisional dissociation (HCD) as an alternative fragmentation technique to generate more informative product ions that can be used to differentiate positional isomers. LC-MS/MS of modified nucleosides characterized using HCD led to the creation of structure- and HCD energy-specific fragmentation patterns that generated unique fingerprints, which can be used to identify individual positional isomers even when they cannot be separated chromatographically. While particularly useful for identifying positional isomers, the fingerprinting capabilities enabled by HCD also offer the potential to generate HPLC-independent spectral libraries for the rapid analysis of modified ribonucleosides. [Figure not available: see fulltext.
Zhou, Da-Yong; Zhang, Xiu-Li; Xu, Qing; Xue, Xing-Ya; Zhang, Fei-Fang; Liang, Xin-Miao
2009-08-15
Polymethoxylated flavones (PMFs), as potential cancer chemopreventive agents, are widely distributed in Citrus genus. In this study, a selected ion monitoring-tandem mass (SIM-MS/MS) method for the rapid identification of PMFs in Fructus aurantii (F. aurantii) with ultra-performance liquid chromatography (UPLC) coupled to quadrupole, hybrid orthogonal acceleration time-of-flight tandem mass spectrometer (Q-TOFMS/MS) was proposed. The MS data for candidates, containing accurate mass and isotopic patterns for both precursors and their fragment ions, were acquired selectively. Based on the MS data, the mass spectrometric fingerprint (MSFP) for candidates, consisting of chemical formula and dissociation pattern, was determined. Comparing the MSFPs of the observed compounds with the diagnostic MSFP of the species, 44 PMFs were tentatively identified. The method was validated by tangeretin and sinensetin, two representative compounds of PMFs, and was considered to be suitable for the rapid screening of PMFs in crude and partially purified samples.
Yang, Rong-Sheng; Sheng, Huaming; Lexa, Katrina W; Sherer, Edward C; Zhang, Li-Kang; Xiang, Bangping; Helmy, Roy; Mao, Bing
2017-03-01
An unusual in-source fragmentation pattern observed for 14 doubly quaternized cinchona alkaloid-based phase-transfer catalysts (PTC) was studied using (+)-ESI high resolution mass spectrometry. Loss of the substituted benzyl cation (R1 or R2) was found to be the major product ion [M 2+ - R 1 + or R 2 + ] + in MS spectra of all PTC compounds. A Hofmann elimination product ion [M - H] + was also observed. Only a small amount of the doubly charged M 2+ ions were observed in the MS spectra, likely due to strong Columbic repulsion between the two quaternary ammonium cations in the gas phase. The positive voltage in the MS inlet but not the ESI probe was found to induce this extensive fragmentation for all PTC diboromo-salts. Compound 1 was used as an example to illustrate the proposed in-source fragmentation mechanism. The mechanism of formation of the Hofmann elimination product ion [M - H] + was further investigated using HRMS/MS, H/D exchange, and DFT calculations. The proposed formation of 2b as the major Hofmann elimination product ion was supported both by HRMS/MS and DFT calculations. Formation of product ion 2b through a concerted unimolecular E i elimination pathway is proposed rather than a bimolecular E2 elimination pathway for common solution Hofmann eliminations. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Yang, Rong-Sheng; Sheng, Huaming; Lexa, Katrina W.; Sherer, Edward C.; Zhang, Li-Kang; Xiang, Bangping; Helmy, Roy; Mao, Bing
2017-03-01
An unusual in-source fragmentation pattern observed for 14 doubly quaternized cinchona alkaloid-based phase-transfer catalysts (PTC) was studied using (+)-ESI high resolution mass spectrometry. Loss of the substituted benzyl cation (R1 or R2) was found to be the major product ion [M2+ - R1 + or R2 +]+ in MS spectra of all PTC compounds. A Hofmann elimination product ion [M - H]+ was also observed. Only a small amount of the doubly charged M2+ ions were observed in the MS spectra, likely due to strong Columbic repulsion between the two quaternary ammonium cations in the gas phase. The positive voltage in the MS inlet but not the ESI probe was found to induce this extensive fragmentation for all PTC diboromo-salts. Compound 1 was used as an example to illustrate the proposed in-source fragmentation mechanism. The mechanism of formation of the Hofmann elimination product ion [M - H]+ was further investigated using HRMS/MS, H/D exchange, and DFT calculations. The proposed formation of 2b as the major Hofmann elimination product ion was supported both by HRMS/MS and DFT calculations. Formation of product ion 2b through a concerted unimolecular Ei elimination pathway is proposed rather than a bimolecular E2 elimination pathway for common solution Hofmann eliminations.
Computational mass spectrometry for small molecules
2013-01-01
The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222
Abad-García, Beatriz; Garmón-Lobato, Sergio; Berrueta, Luis A; Gallo, Blanca; Vicente, Francisca
2009-09-01
A mass spectrometric method using electrospray ionization with triple quadrupole and quadrupole time-of-flight hybrid (Q-Tof) mass spectrometry has been applied to the structural characterization of dihydroflavonols. This family of compounds has been studied by liquid chromatography/tandem mass spectrometry (LC/MS/MS) for the first time in this work. A comprehensive study of the product ion MS spectra of the [M+H](+) ion of a commercially available standard has been performed. The most useful fragmentations in terms of structural identification are those that involve cleavage of the C-ring, resulting in diagnostic ions of dihydroflavonol family: (1,3)A(0) (+), (1,2)B(0) (+), (1,2)B(0) (+)-CO, (0,2)A(0) (+), (0,2)A(0) (+)-H(2)O, (0,2)A(0) (+)-CO, and (0,2)A(0) (+)-H(2)O-CO, that allow the characterization of the substituents in the A- and B-rings. In addition to those ions, other product ions due to losses of H(2)O and CO molecules from the Y(0) (+) ion were observed. Their fragmentation mechanisms and ion structures have been proposed. The established fragmentation patterns have been used to successfully identity three dihydroflavonols found in tangerine juices for the first time. Copyright (c) 2009 John Wiley & Sons, Ltd.
Cordero, Chiara; Rubiolo, Patrizia; Reichenbach, Stephen E; Carretta, Andrea; Cobelli, Luigi; Giardina, Matthew; Bicchi, Carlo
2017-01-13
The possibility to transfer methods from thermal to differential-flow modulated comprehensive two-dimensional gas chromatographic (GC×GC) platforms is of high interest to improve GC×GC flexibility and increase the compatibility of results from different platforms. The principles of method translation are here applied to an original method, developed for a loop-type thermal modulated GC×GC-MS/FID system, suitable for quali-quantitative screening of suspected fragrance allergens. The analysis conditions were translated to a reverse-injection differential flow modulated platform (GC×2GC-MS/FID) with a dual-parallel secondary column and dual detection. The experimental results, for a model mixture of suspected volatile allergens and for raw fragrance mixtures of different composition, confirmed the feasibility of translating methods by preserving 1 D elution order, as well as the relative alignment of resulting 2D peak patterns. A correct translation produced several benefits including an effective transfer of metadata (compound names, MS fragmentation pattern, response factors) by automatic template transformation and matching from the original/reference method to its translated counterpart. The correct translation provided: (a) 2D pattern repeatability, (b) MS fragmentation pattern reliability for identity confirmation, and (c) comparable response factors and quantitation accuracy within a concentration range of three orders of magnitude. The adoption of a narrow bore (i.e. 0.1mm d c ) first-dimension column to operate under close-to-optimal conditions with the differential-flow modulation GC×GC platform was also advantageous in halving the total analysis under the translated conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Integrated quantification and identification of aldehydes and ketones in biological samples.
Siegel, David; Meinema, Anne C; Permentier, Hjalmar; Hopfgartner, Gérard; Bischoff, Rainer
2014-05-20
The identification of unknown compounds remains to be a bottleneck of mass spectrometry (MS)-based metabolomics screening experiments. Here, we present a novel approach which facilitates the identification and quantification of analytes containing aldehyde and ketone groups in biological samples by adding chemical information to MS data. Our strategy is based on rapid autosampler-in-needle-derivatization with p-toluenesulfonylhydrazine (TSH). The resulting TSH-hydrazones are separated by ultrahigh-performance liquid chromatography (UHPLC) and detected by electrospray ionization-quadrupole-time-of-flight (ESI-QqTOF) mass spectrometry using a SWATH (Sequential Window Acquisition of all Theoretical Fragment-Ion Spectra) data-independent high-resolution mass spectrometry (HR-MS) approach. Derivatization makes small, poorly ionizable or retained analytes amenable to reversed phase chromatography and electrospray ionization in both polarities. Negatively charged TSH-hydrazone ions furthermore show a simple and predictable fragmentation pattern upon collision induced dissociation, which enables the chemo-selective screening for unknown aldehydes and ketones via a signature fragment ion (m/z 155.0172). By means of SWATH, targeted and nontargeted application scenarios of the suggested derivatization route are enabled in the frame of a single UHPLC-ESI-QqTOF-HR-MS workflow. The method's ability to simultaneously quantify and identify molecules containing aldehyde and ketone groups is demonstrated using 61 target analytes from various compound classes and a (13)C labeled yeast matrix. The identification of unknowns in biological samples is detailed using the example of indole-3-acetaldehyde.
NASA Astrophysics Data System (ADS)
Salvador, Christian Mark; Ho, T.-T.; Chou, Charles C.-K.; Chen, M.-J.; Huang, W.-R.; Huang, S.-H.
2016-09-01
Organic matter is the most complicated and unresolved major component of atmospheric aerosol particles. Its sources and global budget are still highly uncertain and thereby necessitate further research efforts with state-of-the-art instrument. This study employed a Thermo-Desorption Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (TD-PTR-TOF-MS) for characterization of ambient organic aerosols. First, five authentic standard substances, which include phthalic acid, levoglucosan, arabitol, cis-pinonic acid and glutaric acid, were utilized to examine the response of the instrument. The results demonstrated the linearity of the TD-PTR-TOF-MS signals against a range of mass loading of specific species on filters. However, it was found that significant fragmentation happened to those challenging compounds, although the proton-transfer-reaction (PTR) was recognized as a soft ionization technique. Consequently, quantitative characterization of aerosols with the TD-PTR-TOF-MS depended on the availability of the fragmentation pattern in mass spectra and the recovery rate with the quantification ion peak(s). The instrument was further deployed to analyze a subset of submicron aerosol samples collected at the TARO (Taipei Aerosol and Radiation Observatory) in Taipei, Taiwan during August 2013. The results were compared with the measurements from a conventional DRI thermo-optical carbon analyzer. The inter-comparison indicated that the TD-PTR-TOF-MS underestimated the mass of total organic matter (TOM) in aerosol samples by 27%. The underestimation was most likely due to the thermo-decomposition during desorption processes and fragmentation in PTR drift tube, where undetectable fragments were formed. Besides, condensation loss of low vapor pressure species in the transfer components was also responsible for the underestimation to a certain degree. Nevertheless, it was showed that the sum of the mass concentrations of the major detected ion peaks correlated strongly with the TOM determined by DRI analyzer (R2 = 0.8578), suggesting that the TD-PTR-TOF-MS measurements explained more than 85% of the variance in the time series of TOM. In addition to identification by comparing with the fragmentation pattern obtained from the mass spectra of the authentic substances, most of the major ions were attributed to protonated or acylium ions of specific parent compounds. Amongst the quantified species with full calibration with authentic standard, phthalic acid was found accounting for 7.0% of the mass loading of TOM. In addition, a high-end estimation of 9.4% was suggested for the mass contribution from glutaric acid, which was made by assuming that the ion with m/z of 73.027 was totally produced from fragmentation of glutaric acid as characterization of authentic standard despite of the formation of protonated methyl-glyoxal ion. Moreover, a substantial contribution from ions corresponding to protonated acetic acid and acetone was measured, which could be produced from fragmentation of larger oxygenated molecules. The TD-PTR-TOF-MS measurements suggested that low molecular weight carboxylic acid (LMWCA), products of photochemical oxidation of gaseous hydrocarbons and fatty acids, constituted a major fraction of secondary organic aerosols in Taipei, Taiwan, a typical subtropical urban area.
Lawrence, Peter; Brenna, J Thomas
2006-02-15
Covalent adduct chemical ionization (CACI) using a product of acetonitrile self-reaction, (1-methyleneimino)-1-ethenylium (MIE; CH2=C=N+=CH2), has been investigated as a method for localizing double bonds in a series of 16 non-methylene-interrupted fatty acid methyl esters (NMI-FAME) of polyenes with three and more double bonds. As with polyunsaturated homoallylic (methylene-interrupted) FAME and conjugated dienes, MIE (m/z 54) reacts across double bonds to yield molecular ions 54 mass units above the parent analyte. [M + 54]+ ions of several 20- and 22-carbon FAME that include one double bond in the C2-C3 position separated by two to five methylene units from a three, four, or five C homoallylic system dissociated according to rules for the homoallylic system, with an additional fragment corresponding to cleavage between the lone double bond and the carboxyl group and defining the position of the lone double bond. Triene FAME with both methylene and ethylene interruption yielded characteristic fragments distinguishable from homoallylic trienes. Fragmentation of fully conjugated trienes in the MS-1 spectra yields ratios of [M + 54]+/[M + 54 - 32]+ (loss of methanol) near unity, which distinguishes them from homoallylic FAME having a ratio of 8 or more; collisionally activated dissociation of [M + 54]+ yields a series of ions, including some rearrangement products, indicative of double bond position. Unlike conjugated dienes, fully conjugated triene diagnostic ion signal ratios did not follow any pattern based on double bond geometry. Partially conjugated trienes behave similarly to monoenes and conjugated dienes, yielding [M + 54]+/[M + 54 - 32]+ of 2-3 and, permitting them to be assigned as partially conjugated FAME using the MS-1 spectrum. They yield unique MS/MS spectra with weaker but assignable fragment ions, along with a diagnostic fragment that locates the lone double bond and permits 6,10,12-octatrienoate to be distinguished from 6,8,12-octatrienoate. The presence of a triple bond did not affect fragment formation in a methylene-interrupted yne-ene but did change fragments in a conjugated yne-ene. These data extend the principle of double bond localization by acetonitrile CACI-MS/MS to double bond structure in complex FAME found in nature.
Montoro, Paola; Maldini, Mariateresa; Piacente, Sonia; Macchia, Mario; Pizza, Cosimo
2010-01-20
The major phytochemical constituents, namely, alkaloids, flavonoids and ellagic acid derivatives, of leaves of Camptotheca acuminata were identified using high performance liquid chromatography (HPLC) coupled with electrospray mass spectrometry (ESI-MS) in extracts of plants cultivated in Italy and collected at different growth stages. Alkaloids related to camptothecin were identified and quantified by HPLC coupled with ESI-tandem mass spectrometry (MS/MS) employing, respectively, an ion trap and a triple quadrupole mass analyser. The fragmentation patterns of alkaloids related to camptothecin were analysed and a specific Multiple Reaction Monitoring HPLC-MS/MS method was developed for the quantitative determination of these constituents. The described method provides high sensitivity and specificity for the characterisation and quantitative determination of the alkaloids in C. acuminata.
Onghena, Matthias; Van Hoeck, Els; Van Loco, Joris; Ibáñez, María; Cherta, Laura; Portolés, Tania; Pitarch, Elena; Hernandéz, Félix; Lemière, Filip; Covaci, Adrian
2015-11-01
This work presents a strategy for elucidation of unknown migrants from plastic food contact materials (baby bottles) using a combination of analytical techniques in an untargeted approach. First, gas chromatography (GC) coupled to mass spectrometry (MS) in electron ionisation mode was used to identify migrants through spectral library matching. When no acceptable match was obtained, a second analysis by GC-(electron ionisation) high resolution mass spectrometry time of flight (TOF) was applied to obtain accurate mass fragmentation spectra and isotopic patterns. Databases were then searched to find a possible elemental composition for the unknown compounds. Finally, a GC hybrid quadrupole-TOF-MS with an atmospheric pressure chemical ionisation source was used to obtain the molecular ion or the protonated molecule. Accurate mass data also provided additional information on the fragmentation behaviour as two acquisition functions with different collision energies were available (MS(E) approach). In the low-energy function, limited fragmentation took place, whereas for the high-energy function, fragmentation was enhanced. For less volatile unknowns, ultra-high pressure liquid chromatography-quadrupole-TOF-MS was additionally applied. Using a home-made database containing common migrating compounds and plastic additives, tentative identification was made for several positive findings based on accurate mass of the (de)protonated molecule, product ion fragments and characteristic isotopic ions. Six illustrative examples are shown to demonstrate the modus operandi and the difficulties encountered during identification. The combination of these techniques was proven to be a powerful tool for the elucidation of unknown migrating compounds from plastic baby bottles. Copyright © 2015 John Wiley & Sons, Ltd.
N-Protonated Isomers and Coulombic Barriers to Dissociation of Doubly Protonated Ala8Arg
NASA Astrophysics Data System (ADS)
Haeffner, Fredrik; Irikura, Karl K.
2017-10-01
Collision-induced dissociation (or tandem mass spectrometry, MS/MS) of a protonated peptide results in a spectrum of fragment ions that is useful for inferring amino acid sequence. This is now commonplace and a foundation of proteomics. The underlying chemical and physical processes are believed to be those familiar from physical organic chemistry and chemical kinetics. However, first-principles predictions remain intractable because of the conflicting necessities for high accuracy (to achieve qualitatively correct kinetics) and computational speed (to compensate for the high cost of reliable calculations on such large molecules). To make progress, shortcuts are needed. Inspired by the popular mobile proton model, we have previously proposed a simplified theoretical model in which the gas-phase fragmentation pattern of protonated peptides reflects the relative stabilities of N-protonated isomers, thus avoiding the need for transition-state information. For singly protonated Ala n ( n = 3-11), the resulting predictions were in qualitative agreement with the results from low-energy MS/MS experiments. Here, the comparison is extended to a model tryptic peptide, doubly protonated Ala8Arg. This is of interest because doubly protonated tryptic peptides are the most important in proteomics. In comparison with experimental results, our model seriously overpredicts the degree of backbone fragmentation at N9. We offer an improved model that corrects this deficiency. The principal change is to include Coulombic barriers, which hinder the separation of the product cations from each other. Coulombic barriers may be equally important in MS/MS of all multiply charged peptide ions. [Figure not available: see fulltext.
Schreiver, Ines; Hutzler, Christoph; Laux, Peter; Berlien, Hans-Peter; Luch, Andreas
2015-08-05
Since laser treatment of tattoos is the favored method for the removing of no longer wanted permanent skin paintings, analytical, biokinetics and toxicological data on the fragmentation pattern of commonly used pigments are urgently required for health safety reasons. Applying dynamic headspace-gas chromatography with mass spectrometric detection (DHS-GC/MS) and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-ToF-MS), we identified 1,2-benzene dicarbonitrile, benzonitrile, benzene, and the poisonous gas hydrogen cyanide (HCN) as main fragmentation products emerging dose-dependently upon ruby laser irradiation of the popular blue pigment copper phthalocyanine in suspension. Skin cell viability was found to be significantly compromised at cyanide levels of ≥1 mM liberated during ruby laser irradiation of >1.5 mg/ml phthalocyanine blue. Further, for the first time we introduce pyrolysis-GC/MS as method suitable to simulate pigment fragmentation that may occur spontaneously or during laser removal of organic pigments in the living skin of tattooed people. According to the literature such regular tattoos hold up to 9 mg pigment/cm(2) skin.
Schreiver, Ines; Hutzler, Christoph; Laux, Peter; Berlien, Hans-Peter; Luch, Andreas
2015-01-01
Since laser treatment of tattoos is the favored method for the removing of no longer wanted permanent skin paintings, analytical, biokinetics and toxicological data on the fragmentation pattern of commonly used pigments are urgently required for health safety reasons. Applying dynamic headspace—gas chromatography with mass spectrometric detection (DHS—GC/MS) and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GCxGC—ToF-MS), we identified 1,2-benzene dicarbonitrile, benzonitrile, benzene, and the poisonous gas hydrogen cyanide (HCN) as main fragmentation products emerging dose-dependently upon ruby laser irradiation of the popular blue pigment copper phthalocyanine in suspension. Skin cell viability was found to be significantly compromised at cyanide levels of ≥1 mM liberated during ruby laser irradiation of >1.5 mg/ml phthalocyanine blue. Further, for the first time we introduce pyrolysis-GC/MS as method suitable to simulate pigment fragmentation that may occur spontaneously or during laser removal of organic pigments in the living skin of tattooed people. According to the literature such regular tattoos hold up to 9 mg pigment/cm2 skin. PMID:26243473
NASA Astrophysics Data System (ADS)
Schreiver, Ines; Hutzler, Christoph; Laux, Peter; Berlien, Hans-Peter; Luch, Andreas
2015-08-01
Since laser treatment of tattoos is the favored method for the removing of no longer wanted permanent skin paintings, analytical, biokinetics and toxicological data on the fragmentation pattern of commonly used pigments are urgently required for health safety reasons. Applying dynamic headspace—gas chromatography with mass spectrometric detection (DHS—GC/MS) and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GCxGC—ToF-MS), we identified 1,2-benzene dicarbonitrile, benzonitrile, benzene, and the poisonous gas hydrogen cyanide (HCN) as main fragmentation products emerging dose-dependently upon ruby laser irradiation of the popular blue pigment copper phthalocyanine in suspension. Skin cell viability was found to be significantly compromised at cyanide levels of ≥1 mM liberated during ruby laser irradiation of >1.5 mg/ml phthalocyanine blue. Further, for the first time we introduce pyrolysis-GC/MS as method suitable to simulate pigment fragmentation that may occur spontaneously or during laser removal of organic pigments in the living skin of tattooed people. According to the literature such regular tattoos hold up to 9 mg pigment/cm2 skin.
Tempest: Accelerated MS/MS database search software for heterogeneous computing platforms
Adamo, Mark E.; Gerber, Scott A.
2017-01-01
MS/MS database search algorithms derive a set of candidate peptide sequences from in-silico digest of a protein sequence database, and compute theoretical fragmentation patterns to match these candidates against observed MS/MS spectra. The original Tempest publication described these operations mapped to a CPU-GPU model, in which the CPU generates peptide candidates that are asynchronously sent to a discrete GPU to be scored against experimental spectra in parallel (Milloy et al., 2012). The current version of Tempest expands this model, incorporating OpenCL to offer seamless parallelization across multicore CPUs, GPUs, integrated graphics chips, and general-purpose coprocessors. Three protocols describe how to configure and run a Tempest search, including discussion of how to leverage Tempest's unique feature set to produce optimal results. PMID:27603022
Weissberg, Avi; Tzanani, Nitzan; Dagan, Shai
2013-12-01
The use of chemical warfare agents has become an issue of emerging concern. One of the challenges in analytical monitoring of the extremely toxic 'V'-type chemical weapons [O-alkyl S-(2-dialkylamino)ethyl alkylphosphonothiolates] is to distinguish and identify compounds of similar structure. MS analysis of these compounds reveals mostly fragment/product ions representing the amine-containing residue. Hence, isomers or derivatives with the same amine residue exhibit similar mass spectral patterns in both classical EI/MS and electrospray ionization-MS, leading to unavoidable ambiguity in the identification of the phosphonate moiety. A set of five 'V'-type agents, including O-ethyl S-(2-diisopropylamino)ethyl methylphosphonothiolate (VX), O-isobutyl S-(2-diethylamino)ethyl methylphosphonothiolate (RVX) and O-ethyl S-(2-diethylamino)ethyl methylphosphonothiolate (VM) were studied by liquid chromatography/electrospray ionization/MS, utilizing a QTRAP mass detector. MS/MS enhanced product ion scans and multistage MS(3) experiments were carried out. Based on the results, possible fragmentation pathways were proposed, and a method for the differentiation and identification of structural isomers and derivatives of 'V'-type chemical warfare agents was obtained. MS/MS enhanced product ion scans at various collision energies provided information-rich spectra, although many of the product ions obtained were at low abundance. Employing MS(3) experiments enhanced the selectivity for those low abundance product ions and provided spectra indicative of the different phosphonate groups. Study of the fragmentation pathways, revealing some less expected structures, was carried out and allowed the formulation of mechanistic rules and the determination of sets of ions typical of specific groups, for example, methylphosphonothiolates versus ethylphosphonothiolates. The new group-specific ions elucidated in this work are also useful for screening unknown 'V'-type agents and related compounds, utilizing precursor ion scan experiments. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Picazas-Márquez, Nerea; Sierra, María; Nova, Clara; Moreno, Juan Manuel; Aboitiz, Nuria; de Rivas, Gema; Sierra, Miguel A.; Martínez-Álvarez, Roberto; Gómez-Caballero, Esther
2016-09-01
A new class of compounds, mono- and bis-haloethylphosphonates (HAPs and bisHAPs, respectively), listed in Schedule 2.B.04 of the Chemical Weapons Convention (CWC), has been synthesized and studied by GC-MS with two aims. First, to improve the identification of this type of chemicals by the Organization for the Prohibition of Chemical Weapons, (OPCW). Second, to study the synergistic effect of halogen and silicon atoms in molecules undergoing mass spectrometry. Fragmentation patterns of trimethylsilyl derivatives of HAPs were found to depend on the nature of the halogen atom; this was in agreement with DFT-calculations. The data suggest that a novel intramolecular halogen transfer takes place during the fragmentation process.
Picazas-Márquez, Nerea; Sierra, María; Nova, Clara; Moreno, Juan Manuel; Aboitiz, Nuria; de Rivas, Gema; Sierra, Miguel A; Martínez-Álvarez, Roberto; Gómez-Caballero, Esther
2016-09-01
A new class of compounds, mono- and bis-haloethylphosphonates (HAPs and bisHAPs, respectively), listed in Schedule 2.B.04 of the Chemical Weapons Convention (CWC), has been synthesized and studied by GC-MS with two aims. First, to improve the identification of this type of chemicals by the Organization for the Prohibition of Chemical Weapons, (OPCW). Second, to study the synergistic effect of halogen and silicon atoms in molecules undergoing mass spectrometry. Fragmentation patterns of trimethylsilyl derivatives of HAPs were found to depend on the nature of the halogen atom; this was in agreement with DFT-calculations. The data suggest that a novel intramolecular halogen transfer takes place during the fragmentation process. Graphical Abstract ᅟ.
25C-NBOMe--new potent hallucinogenic substance identified on the drug market.
Zuba, Dariusz; Sekuła, Karolina; Buczek, Agnieszka
2013-04-10
This publication reports analytical properties of a new hallucinogenic substance identified in blotter papers seized from the drug market, namely 25C-NBOMe [2-(4-chloro-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine]. The identification was based on results of comprehensive study including several analytical methods, i.e., GC-EI-MS (without derivatization and after derivatization with TFAA), LC-ESI-QTOF-MS, FTIR and NMR. The GC-MS spectrum of 25C-NBOMe was similar to those obtained for other representatives of the 25-NBOMe series, with dominant ions observed at m/z=150, 121 and 91. Fragment ions analogic to those in 2C-C (4-chloro-2,5-dimethoxy-β-phenylethanamine) were also observed, but their intensities were low. Derivatization allowed the determination of molecular mass of the investigated substance. The exact molecular mass and chemical formula were confirmed by LC-QTOF-MS experiments and fragmentation pattern under electrospray ionization was determined. The MS/MS experiments confirmed that the investigated substance was N-(2-methoxy)benzyl derivative of 2C-C. The substance was also characterized by FTIR spectroscopy to corroborate its identity. Final elucidation of the structure was performed by NMR spectroscopy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Rongrong; Pomin, Vitor H.; Sharp, Joshua S.
2011-09-01
Improved methods for structural analyses of glycosaminoglycans (GAGs) are required to understand their functional roles in various biological processes. Major challenges in structural characterization of complex GAG oligosaccharides using liquid chromatography-mass spectrometry (LC-MS) include the accurate determination of the patterns of sulfation due to gas-phase losses of the sulfate groups upon collisional activation and inefficient on-line separation of positional sulfation isomers prior to MS/MS analyses. Here, a sequential chemical derivatization procedure including permethylation, desulfation, and acetylation was demonstrated to enable both on-line LC separation of isomeric mixtures of chondroitin sulfate (CS) oligosaccharides and accurate determination of sites of sulfation by MS n . The derivatized oligosaccharides have sulfate groups replaced with acetyl groups, which are sufficiently stable to survive MS n fragmentation and reflect the original sulfation patterns. A standard reversed-phase LC-MS system with a capillary C18 column was used for separation, and MS n experiments using collision-induced dissociation (CID) were performed. Our results indicate that the combination of this derivatization strategy and MS n methodology enables accurate identification of the sulfation isomers of CS hexasaccharides with either saturated or unsaturated nonreducing ends. Moreover, derivatized CS hexasaccharide isomer mixtures become separable by LC-MS method due to different positions of acetyl modifications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amundson, Lucas M.; Owen, Ben C.; Gallardo, Vanessa A.
2011-01-01
Positive-mode atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS n ) was tested for the differentiation of regioisomeric aromatic ketocarboxylic acids. Each analyte forms exclusively an abundant protonated molecule upon ionization via positive-mode APCI in a commercial linear quadrupole ion trap (LQIT) mass spectrometer. Energy-resolved collision-activated dissociation (CAD) experiments carried out on the protonated analytes revealed fragmentation patterns that varied based on the location of the functional groups. Unambiguous differentiation between the regioisomers was achieved in each case by observing different fragmentation patterns, different relative abundances of ion-molecule reaction products, or different relative abundances of fragment ions formed at differentmore » collision energies. The mechanisms of some of the reactions were examined by H/D exchange reactions and molecular orbital calculations.« less
The potential of combining ion trap/MS/MS and TOF/MS for identification of emerging contaminants
Ferrer, I.; Furlong, E.T.; Heine, C.E.; Thurman, E.M.
2002-01-01
The use of a method combining ion trap tandem mass spectrometry (MS/MS) and time of flight mass spectrometry (TOF/MS) for identification of emerging contaminates was discussed. The two tools together complemented each other in sensitivity, fragmentation and accurate mass determination. Liquid chromatography/electrospray ionization/ion-trap tandem mass spectrometry (LC/ESI/MS/MS), in positive ion mode of operation, was used to separate and identify specific compounds. Diagnostic fragment ions were obtained for a polyethyleneglycol(PEG) homolog by ion trap MS/MS, and fragments were measured by TOF/MS. It was observed that the combined method gave an exact mass measurement that differed from the calculated mass.
Rui, Wen; Chen, Hongyuan; Tan, Yuzhi; Zhong, Yanmei; Feng, Yifan
2010-05-01
A rapid method for the analysis of the main components of the total glycosides of Ranunculus japonicus (TGOR) was developed using ultra-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The separation analysis was performed on a Waters Acquity UPLC system and the accurate mass of molecules and their fragment ions were determined by Q-TOF MS. Twenty compounds, including lactone glycosides, flavonoid glycosides and flavonoid aglycones, were identified and tentatively deduced on the basis of their elemental compositions, MS/MS data and relevant literature. The results demonstrated that lactone glycosides and flavonoids were the main constituents of TGOR. Furthermore, an effective and rapid pattern was established allowing for the comprehensive and systematic characterization of the complex samples.
2011-01-01
Background Various solutions have been introduced for the identification of post-translational modification (PTM) from tandem mass spectrometry (MS/MS) in proteomics field but the identification of peptide modifiers, such as Ubiquitin (Ub) and ubiquitin-like proteins (Ubls), is still a challenge. The fragmentation of peptide modifier produce complex shifted ion mass patterns in combination with other PTMs, which makes it difficult to identify and locate the PTMs on a protein sequence. Currently, most PTM identification methods do not consider the complex fragmentation of peptide modifier or deals it separately from the other PTMs. Results We developed an advanced PTM identification method that inspects possible ion patterns of the most known peptide modifiers as well as other known biological and chemical PTMs to make more comprehensive and accurate conclusion. The proposed method searches all detectable mass differences of measured peaks from their theoretical values and the mass differences within mass tolerance range are grouped as mass shift classes. The most possible locations of multiple PTMs including peptide modifiers can be determined by evaluating all possible scenarios generated by the combination of the qualified mass shift classes.The proposed method showed excellent performance in the test with simulated spectra having various PTMs including peptide modifiers and in the comparison with recently developed methods such as QuickMod and SUMmOn. In the analysis of HUPO Brain Proteome Project (BPP) datasets, the proposed method could find the ubiquitin modification sites that were not identified by other conventional methods. Conclusions This work presents a novel method for identifying bothpeptide modifiers that generate complex fragmentation patternsand PTMs that are not fragmented during fragmentation processfrom tandem mass spectra. PMID:22373085
García Marrero, Danny E; Glasser, Wolfgang G; Pizzi, Antonio; Paczkowski, Sebastian; Laborie, Marie-Pierre G
2014-10-01
The structure of condensed tannins (CTs) from Pinus pinaster bark extract and their hydroxypropylated derivatives with four degrees of substitution (DS 1, 2, 3 and 4) has been characterized for the first time using negative-ion mode electrospray ionization tandem mass spectrometry (ESI(-)-MS/MS). The results showed that P. pinaster bark CTs possess structural homogeneity in terms of monomeric units (C(15), catechin). The oligomer sizes were detected to be dimers to heptamers. The derivatives showed typical phenyl-propyl ether mass fragmentation by substituent elimination (58 amu) and inherent C(15) flavonoid fissions. The relative abundance of the product ions revealed a preferential triple, tetra-/penta- and octa- hydroxypropylation substitution pattern in the monomer, dimer and trimer derivatives, respectively. A defined order of -OH reactivity towards propylene oxide was established by means of multistage experiments (A-ring ≥ B-ring > C-ring). A high structural heterogeneity of the modified oligomers was detected. Copyright © 2014 John Wiley & Sons, Ltd.
Fragmentation of organic ions bearing fixed multiple charges observed in MALDI MS.
Lou, Xianwen; Li, Bao; de Waal, Bas F M; Schill, Jurgen; Baker, Matthew B; Bovee, Ralf A A; van Dongen, Joost L J; Milroy, Lech-Gustav; Meijer, E W
2018-01-01
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) was used to analyze a series of synthetic organic ions bearing fixed multiple charges. Despite the multiple intrinsic charges, only singly charged ions were recorded in each case. In addition to the pseudo-molecular ions formed by counterion adduction, deprotonation and electron capture, a number of fragment ions were also observed. Charge splitting by fragmentation was found to be a viable route for charge reduction leading to the formation of the observed singly charged fragment ions. Unlike multivalent metal ions, organic ions can rearrange and/or fragment during charge reduction. This fragmentation process will evidently complicate the interpretation of the MALDI MS spectrum. Because MALDI MS is usually considered as a soft ionization technique, the fragment ion peaks can easily be erroneously interpreted as impurities. Therefore, the awareness and understanding of the underlying MALDI-induced fragmentation pathways is essential for a proper interpretation of the corresponding mass spectra. Due to the fragment ions generated during charge reduction, special care should be taken in the MALDI MS analysis of multiply charged ions. In this work, the possible mechanisms by which the organic ions bearing fixed multiple charges fragment are investigated. With an improved understanding of the fragmentation mechanisms, MALDI TOF MS should still be a useful technique for the characterization of organic ions with fixed multiple charges. Copyright © 2017 John Wiley & Sons, Ltd.
UP-HILIC-MS/MS to Determine the Action Pattern of Penicillium sp. Dextranase.
Yi, Lin; Sun, Xue; Du, Kenze; Ouyang, Yilan; Wu, Chengling; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing
2015-07-01
Investigation of the action pattern of enzymes acting on carbohydrates is challenging, as both the substrate and the digestion products are complex mixtures. Dextran and its enzyme-derived oligosaccharides are widely used for many industrial applications. In this work, a new method relying on ultra-performance hydrophilic interaction liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UP-HILIC-Q/TOF-MS/MS) was developed to analyze a complex mixture of dextran oligosaccharide products to determine the action pattern of dextranase. No derivatization of oligosaccharides was required and the impact of the α- and β-configurations of the native oligosaccharides on the chromatographic separation was eliminated. The 1→6, 1→3, 1→4 backbone linkages and the branch linkages of these oligosaccharides were all distinguished from diagnostic ions in their MS/MS spectra, including fragments corresponding to (0,2)A, (0,3)A, (0,4)A, B-H2O, (2,5)A, and (3,5)A. The sequences of the oligosaccharide products were similarly established. Thus, the complex oligosaccharide mixtures in dextran digestion products were profiled and identified using this method. The more enzyme-resistant structures in dextran were established using much less sample, labor, time, and uncertainty than in previous studies. This method provides an efficient, sensitive, and straightforward way to monitor the entire process of digestion, establish the action pattern of the dextranase from Penicillium sp., and to support the proper industrial application of dextranase.
UP-HILIC-MS/MS to Determine the Action Pattern of Penicillium sp. Dextranase
NASA Astrophysics Data System (ADS)
Yi, Lin; Sun, Xue; Du, Kenze; Ouyang, Yilan; Wu, Chengling; Xu, Naiyu; Linhardt, Robert J.; Zhang, Zhenqing
2015-07-01
Investigation of the action pattern of enzymes acting on carbohydrates is challenging, as both the substrate and the digestion products are complex mixtures. Dextran and its enzyme-derived oligosaccharides are widely used for many industrial applications. In this work, a new method relying on ultra-performance hydrophilic interaction liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UP-HILIC- Q/TOF-MS/MS) was developed to analyze a complex mixture of dextran oligosaccharide products to determine the action pattern of dextranase. No derivatization of oligosaccharides was required and the impact of the α- and β-configurations of the native oligosaccharides on the chromatographic separation was eliminated. The 1→6, 1→3, 1→4 backbone linkages and the branch linkages of these oligosaccharides were all distinguished from diagnostic ions in their MS/MS spectra, including fragments corresponding to 0,2A, 0,3A, 0,4A, B-H2O, 2,5A, and 3,5A. The sequences of the oligosaccharide products were similarly established. Thus, the complex oligosaccharide mixtures in dextran digestion products were profiled and identified using this method. The more enzyme-resistant structures in dextran were established using much less sample, labor, time, and uncertainty than in previous studies. This method provides an efficient, sensitive, and straightforward way to monitor the entire process of digestion, establish the action pattern of the dextranase from Penicillium sp., and to support the proper industrial application of dextranase.
Al Hasan, Naila M; Johnson, Grant E; Laskin, Julia
2013-09-01
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy(n-) and VxOyCl(n-) ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N(+), tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCl(n-) and VxOyCl(L)((n-1)-) clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl((1-2)-) and VxOy ((1-2)-) anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.
NASA Astrophysics Data System (ADS)
Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia
2013-09-01
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy n- and VxOyCln- ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln- and VxOyCl(L)(n-1)- clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1-2)- and VxOy (1-2)- anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.
Evaluation of coal-related model compounds using a tandem mass spectrometry.
Li, Guo-Sheng; Dong, Xueming; Fan, Xing; You, Chun-Yan; Wu, Ge; Zhao, Yun-Peng; Lu, Yao; Wei, Xian-Yong; Ma, Feng-Yun
2018-05-08
Gas chromotography/mass spectrometry (GC/MS) is a routine and basic instrumental method for the analysis of complex coal conversion products in chemical industry. To further enhance practical potentials of GC/MS in chemical industry, a tandem MS method for the selection of ion pair applied in monitoring coal conversions was established by using GC/quadrupole time-of-flight MS (GC/Q-TOF MS). The corresponding fragmentation pathways were explored and suitable ion pairs were screened. Fourteen coal-related model compounds (CRMCs) were analyzed using a GC/Q-TOF MS with different collision induced dissociation (CID) energies (5-20 eV). The fragmentation pathways can offer a better understanding of chemical bond breaking, hydrogen transfer, rearrangement reactions and elimination of neutral fragments for CRMCs during the CID process. The precursor ions of aromatic hydrocarbons without alkyl chain were hard to fragment with a CID energy of 20 eV. But aromatic hydrocarbons with branched chains were prone to fragment via the loss of alkyl chains and further fragmented through ring-open reactions. Compared to C alk -C ar bond, C ar -C ar bond was hard to fragment duo to its high bond dissociation energy. The existence of heteroatoms facilitated fragmentation that was conducive to screening ion pair. The CID technique of GC/Q-TOF MS will contribute to the studies on the organic composition of coals and building monitoring methods for coal conversions via fragmentation and ion pair selection. This article is protected by copyright. All rights reserved.
Automated Assignment of MS/MS Cleavable Cross-Links in Protein 3D-Structure Analysis
NASA Astrophysics Data System (ADS)
Götze, Michael; Pettelkau, Jens; Fritzsche, Romy; Ihling, Christian H.; Schäfer, Mathias; Sinz, Andrea
2015-01-01
CID-MS/MS cleavable cross-linkers hold an enormous potential for an automated analysis of cross-linked products, which is essential for conducting structural proteomics studies. The created characteristic fragment ion patterns can easily be used for an automated assignment and discrimination of cross-linked products. To date, there are only a few software solutions available that make use of these properties, but none allows for an automated analysis of cleavable cross-linked products. The MeroX software fills this gap and presents a powerful tool for protein 3D-structure analysis in combination with MS/MS cleavable cross-linkers. We show that MeroX allows an automatic screening of characteristic fragment ions, considering static and variable peptide modifications, and effectively scores different types of cross-links. No manual input is required for a correct assignment of cross-links and false discovery rates are calculated. The self-explanatory graphical user interface of MeroX provides easy access for an automated cross-link search platform that is compatible with commonly used data file formats, enabling analysis of data originating from different instruments. The combination of an MS/MS cleavable cross-linker with a dedicated software tool for data analysis provides an automated workflow for 3D-structure analysis of proteins. MeroX is available at
NASA Astrophysics Data System (ADS)
Ma, Xin; Dagan, Shai; Somogyi, Árpád; Wysocki, Vicki H.; Scaraffia, Patricia Y.
2013-04-01
Glu, Gln, Pro, and Ala are the main amino acids involved in ammonia detoxification in mosquitoes. In order to develop a tandem mass spectrometry method (MS2) to monitor each carbon of the above isotopically-labeled 13C-amino acids for metabolic studies, the compositions and origins of atoms in fragments of the protonated amino acid should be first elucidated. Thus, various electrospray (ESI)-based MS2 tools were employed to study the fragmentation of these unlabeled and isotopically-labeled amino acids and better understand their dissociation pathways. A broad range of fragments, including previously-undescribed low m/z fragments was revealed. The formulae of the fragments (from m/z 130 down to m/z 27) were confirmed by their accurate masses. The structures and conformations of the larger fragments of Glu were also explored by ion mobility mass spectrometry (IM-MS) and gas-phase hydrogen/deuterium exchange (HDX) experiments. It was found that some low m/z fragments ( m/z 27-30) are common to Glu, Gln, Pro, and Ala. The origins of carbons in these small fragments are discussed and additional collision induced dissociation (CID) MS2 fragmentation pathways are proposed for them. It was also found that small fragments (≤ m/z 84) of protonated, methylated Glu, and methylated Gln are the same as those of the underivatized Glu and Gln. Taken together, the new approach of utilizing low m/z fragments can be applied to distinguish, identify, and quantify 13C-amino acids labeled at various positions, either in the backbone or side chain.
Lamoliatte, Frederic; Bonneil, Eric; Durette, Chantal; Caron-Lizotte, Olivier; Wildemann, Dirk; Zerweck, Johannes; Wenshuk, Holger; Thibault, Pierre
2013-01-01
Protein modification by small ubiquitin-like modifier (SUMO) modulates the activities of numerous proteins involved in different cellular functions such as gene transcription, cell cycle, and DNA repair. Comprehensive identification of SUMOylated sites is a prerequisite to determine how SUMOylation regulates protein function. However, mapping SUMOylated Lys residues by mass spectrometry (MS) is challenging because of the dynamic nature of this modification, the existence of three functionally distinct human SUMO paralogs, and the large SUMO chain remnant that remains attached to tryptic peptides. To overcome these problems, we created HEK293 cell lines that stably express functional SUMO paralogs with an N-terminal His6-tag and an Arg residue near the C terminus that leave a short five amino acid SUMO remnant upon tryptic digestion. We determined the fragmentation patterns of our short SUMO remnant peptides by collisional activation and electron transfer dissociation using synthetic peptide libraries. Activation using higher energy collisional dissociation on the LTQ-Orbitrap Elite identified SUMO paralog-specific fragment ions and neutral losses of the SUMO remnant with high mass accuracy (< 5 ppm). We exploited these features to detect SUMO modified tryptic peptides in complex cell extracts by correlating mass measurements of precursor and fragment ions using a data independent acquisition method. We also generated bioinformatics tools to retrieve MS/MS spectra containing characteristic fragment ions to the identification of SUMOylated peptide by conventional Mascot database searches. In HEK293 cell extracts, this MS approach uncovered low abundance SUMOylated peptides and 37 SUMO3-modified Lys residues in target proteins, most of which were previously unknown. Interestingly, we identified mixed SUMO-ubiquitin chains with ubiquitylated SUMO proteins (K20 and K32) and SUMOylated ubiquitin (K63), suggesting a complex crosstalk between these two modifications. PMID:23750026
MS2/TOF and LC-MS/TOF studies on toremifene to characterize its forced degradation products.
Bansal, Gulshan; Maddhesia, Pawan K; Bansal, Yogita
2011-12-21
The present study was designed to characterize the possible degradation products of toremifene under varied conditions as prescribed by ICH guidelines Q1A(R2). The forced degradation studies were conducted on toremifene citrate under the conditions of hydrolysis (acidic, basic and neutral), photolysis, oxidation and dry heat. The drug was found unstable to photolysis and hydrolysis in water and acidic media but stable to alkaline hydrolysis, peroxide oxidation and thermal degradation. In total fifteen degradation products (I-XV) were formed, which were resolved from each other and the drug on a C-18 column employing an isocratic elution method. A complete mass fragmentation pattern of the drug was established with the help of LC/ESI-MS/TOF to assist characterization of the degradation products. Of the fifteen products, six products III, IV, VII, VIII, XIV and XV were detected in LC-MS. The molecular masses of III, IV, VII and VIII were found to be the same i.e., 387, while those of XIV and XV were 389 and 403, respectively. Structures of these products were elucidated through comparison of their mass fragmentation patterns with the drug, which were proposed on the basis of accurate masses of the parent and fragment ions. These were characterized as (Z)-2-(2-(dimethylamino)ethyl)-4-(4-hydroxy-1,2-diphenylbut-1-enyl)phenol (III), (E)-2-(2-(dimethylamino)ethyl)-4-(4-hydroxy-1,2-diphenylbut-1-enyl)phenol (IV), (E)-4-(4-(2-(dimethylamino)ethoxy)phenyl)-3,4-diphenylbut-3-en-1-ol (VII), (Z)-4-(4-(2-(dimethylamino)ethoxy)phenyl)-3,4-diphenylbut-3-en-1-ol (VIII), 2-(4-(10-(2-chloroethyl)phenanthren-9-yl)phenoxy)-N-methylethanamine (XIV), and 2-(4-(10-(2-chloroethyl)phenanthren-9-yl)phenoxy)-N,N-dimethylethanamine (XV). Finally, a most plausible mechanistic explanation for degradation of the drug in different chemical environments is also proposed. The results of the study disclose six new degradation related impurities of the drug.
Michael, Claudia; Rizzi, Andreas M
2015-07-15
Quantitative monitoring of changes in the N-glycome upon disease has gained significance in the context of biomarker discovery. Separation and quantification of isobaric glycan isomers can be attained by using high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS). Collision-induced dissociation (CID)-based fragmentation of separated isobaric glycans is evaluated in respect to its potential of providing fragment ions specific for the linkage positions of terminal sialic acids and the presence of intersecting GlcNAc moieties, respectively. N-Glycans were labeled via reductive amination using (12)C6-aniline and (13)C6-aniline as isotope-coded labeling reagents. The differently labeled glycans were merged and separated into various species using a porous graphitic carbon (PGC) stationary phase. Identification of structural features of separated isobaric isomers was performed by CID-based tandem mass spectrometry (MS/MS) carried out in a quadrupole time-of-flight (QqTOF) or a quadrupole ion-trap (IT) mass spectrometer. Working in the negative ion mode, new diagnostic CID fragment ions could be found that are indicative for the α2,6-type linkage of sialic acids. Other diagnostic ions, identified before as being indicative for the substitution of the 6-antenna, could be confirmed as being of relevance also in the case of aniline labeling. In the positive ion mode, CID fragment ions indicative for the structure of short neutral N-glycans were identified. One new diagnostic ion specific for the linkage position of the terminal sialic acids and one for the presence of bisecting GlcNAc in N-glycans were identified. The aniline label introduced for improved relative quantitation in MS(1) was found not to significantly alter the CID fragmentation patterns that were reported previously by other authors for unlabeled/reduced glycans or for glycans with more polar labels. Copyright © 2015 John Wiley & Sons, Ltd.
Paz, Beatriz; Daranas, Antonio H.; Cruz, Patricia G.; Franco, José M.; Norte, Manuel; Fernández, José J.
2008-01-01
Okadaic acid (1) (OA) and its congeners are mainly responsible for diarrhetic shellfish poisoning (DSP) syndrome. The presence of several OA derivatives have already been confirmed in Prorocentrum and Dinophysis spp. In this paper, we report on the detection and identification of a new DSP toxin, the OA isomer 19-epi-okadaic acid (2) (19-epi-OA), isolated from cultures of Prorocentrum belizeanum, by determining its retention time (RT) and fragmentation pattern using liquid chromatography coupled with mass spectrometry (LC–MS/MS). PMID:19005581
Paz, Beatriz; Daranas, Antonio H; Cruz, Patricia G; Franco, José M; Norte, Manuel; Fernández, José J
2008-01-01
Okadaic acid (1) (OA) and its congeners are mainly responsible for diarrhetic shellfish poisoning (DSP) syndrome. The presence of several OA derivatives have already been confirmed in Prorocentrum and Dinophysis spp. In this paper, we report on the detection and identification of a new DSP toxin, the OA isomer 19-epi-okadaic acid (2) (19-epi-OA), isolated from cultures of Prorocentrum belizeanum, by determining its retention time (RT) and fragmentation pattern using liquid chromatography coupled with mass spectrometry (LC-MS/MS).
Zheng, Wei; Wang, Fangxu; Zhao, Yang; Sun, Xinguang; Kang, Liping; Fan, Ziquan; Qiao, Lirui; Yan, Renyi; Liu, Shuchen; Ma, Baiping
2017-11-01
A strategy for rapid identification of the chemical constituents from crude extracts of Tribulus terrestris was proposed using an informatics platform for the UHPLC/Q-TOF MS E data analyses. This strategy mainly utilizes neutral losses, characteristic fragments, and in-house library to rapidly identify the structure of the compounds. With this strategy, rapid characterization of the chemical components of T. terrestris from Beijing, China was successfully achieved. A total of 82 steroidal saponins and nine flavonoids were identified or tentatively identified from T. terrestris. Among them, 15 new components were deduced based on retention times and characteristic MS fragmentation patterns. Furthermore, the chemical components of T. terrestris, including the other two samples from Xinjiang Uygur Autonomous region, China, and Rome, Italy, were also identified with this strategy. Altogether, 141 chemical components were identified from these three samples, of which 39 components were identified or tentatively identified as new compounds, including 35 groups of isomers. It demonstrated that this strategy provided an efficient protocol for the rapid identification of chemical constituents in complex samples such as traditional Chinese medicines (TCMs) by UHPLC/Q-TOF MS E with informatics platform. Graphical Abstract ᅟ.
Cloning and function analysis of an alfalfa (Medicago sativa L.) zinc finger protein promoter MsZPP.
Li, Yan; Sun, Yan; Yang, Qingchuan; Kang, Junmei; Zhang, Tiejun; Gruber, Margaret Yvonne; Fang, Feng
2012-08-01
A 1272 bp upstream sequence of MsZFN gene was cloned from alfalfa, which was designed as MsZPP (Genbank accession number: FJ 161979.2) using an adaptor-mediated genome walking method. A sole transcription start site was located 69 bp upstream of the translation start site. Its pattern of expression included roots, stem vascular tissues, floral reproductive organs, and leaves, but the promoter did not express in seeds, petals or sepals. Transcription levels can be stimulated by dark, MeJA, and IAA. However, GUS fusion activities had no change by treatments of GA, ABA, drought and high salt for 3 days. Deletion analysis revealed that all sections of the promoter can drive gus gene expression in the root, stem, leaves and floral reproductive organs; however, only fragments longer than the -460 bp promoter can stimulate strong gus gene expression in these organs. In addition, the -460 bp promoter fragment can drive gus expression not only in the vascular tissue, but also in leaf guard cells. The results suggest that the promoter MsZPP plays roles in the regulation of transgene expression, particularly due to its darkness, MeJA, and IAA responsiveness.
Steingass, Christof B; Glock, Mona P; Schweiggert, Ralf M; Carle, Reinhold
2015-08-01
In a comprehensive study, more than 60 phenolic compounds were detected in methanolic extracts from different tissues of pineapple infructescence by high-performance liquid chromatography with diode array detection and electrospray ionisation multiple-stage mass spectrometry (HPLC-DAD-ESI-MS (n) ) as well as by gas chromatography-mass spectrometry (GC-MS). The analytical workflow combining both methods revealed numerous compounds assigned for the first time as pineapple constituents by their mass fragmentations. Pineapple crown tissue was characterised by depsides of p-coumaric and ferulic acid. In contrast, major phenolic compounds in pineapple pulp extracts were assigned to diverse S-p-coumaryl, S-coniferyl and S-sinapyl derivatives of glutathione, N-L-γ-glutamyl-L-cysteine and L-cysteine, which were also identified in the peel. The latter was additionally characterised by elevated concentrations of p-coumaric, ferulic and caffeic acid depsides and glycerides, respectively. Two peel-specific cyanidin hexosides were found. Elevated concentrations of isomeric N,N'-diferuloylspermidines may be a useful tool for the detection of fraudulent peel usage for pineapple juice production. Mass fragmentation pathways of characteristic pineapple constituents are proposed, and their putative biological functions are discussed.
NASA Astrophysics Data System (ADS)
Enomoto, Hirofumi; Sensu, Takuya; Sato, Kei; Sato, Futoshi; Paxton, Thanai; Yumoto, Emi; Miyamoto, Koji; Asahina, Masashi; Yokota, Takao; Yamane, Hisakazu
2017-02-01
The plant hormone abscisic acid (ABA) and the jasmonic acid related-compound 12-oxo-phytodienoic acid (OPDA) play crucial roles in seed development, dormancy, and germination. However, a lack of suitable techniques for visualising plant hormones has restricted the investigation of their biological mechanisms. In the present study, desorption electrospray ionisation-imaging mass spectrometry (DESI-IMS), a powerful tool for visualising metabolites in biological tissues, was used to visualise ABA and OPDA in immature Phaseolus vulgaris L. seed sections. The mass spectra, peak values and chemical formulae obtained from the analysis of seed sections were consistent with those determined for ABA and OPDA standards, as were the precursor and major fragment ions observed in tandem mass spectrometry (MS/MS) imaging. Furthermore, the precursor and fragment ion images showed similar distribution patterns. In addition, the localisation of ABA and OPDA using DESI-IMS was confirmed using liquid chromatography-MS/MS (LC-MS/MS). The results indicated that ABA was mainly distributed in the radical and cotyledon of the embryo, whereas OPDA was distributed exclusively in external structures, such as the hilum and seed coat. The present study is the first to report the visualisation of plant hormones using IMS, and demonstrates that DESI-IMS is a promising technique for future plant hormone research.
Enomoto, Hirofumi; Sensu, Takuya; Sato, Kei; Sato, Futoshi; Paxton, Thanai; Yumoto, Emi; Miyamoto, Koji; Asahina, Masashi; Yokota, Takao; Yamane, Hisakazu
2017-01-01
The plant hormone abscisic acid (ABA) and the jasmonic acid related-compound 12-oxo-phytodienoic acid (OPDA) play crucial roles in seed development, dormancy, and germination. However, a lack of suitable techniques for visualising plant hormones has restricted the investigation of their biological mechanisms. In the present study, desorption electrospray ionisation-imaging mass spectrometry (DESI-IMS), a powerful tool for visualising metabolites in biological tissues, was used to visualise ABA and OPDA in immature Phaseolus vulgaris L. seed sections. The mass spectra, peak values and chemical formulae obtained from the analysis of seed sections were consistent with those determined for ABA and OPDA standards, as were the precursor and major fragment ions observed in tandem mass spectrometry (MS/MS) imaging. Furthermore, the precursor and fragment ion images showed similar distribution patterns. In addition, the localisation of ABA and OPDA using DESI-IMS was confirmed using liquid chromatography-MS/MS (LC-MS/MS). The results indicated that ABA was mainly distributed in the radical and cotyledon of the embryo, whereas OPDA was distributed exclusively in external structures, such as the hilum and seed coat. The present study is the first to report the visualisation of plant hormones using IMS, and demonstrates that DESI-IMS is a promising technique for future plant hormone research. PMID:28211480
Rodríguez-Medina, Inmaculada C; Beltrán-Debón, Raúl; Molina, Vicente Micol; Alonso-Villaverde, Carlos; Joven, Jorge; Menéndez, Javier A; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2009-10-01
The phenolic fraction and other polar compounds of the Hibiscus sabdariffa were separated and identified by HPLC with diode array detection coupled to electrospray TOF and IT tandem MS (DAD-HPLC-ESI-TOF-MS and IT-MS). The H. sabdariffa aqueous extract was filtered and directly injected into the LC system. The analysis of the compounds was carried out by RP HPLC coupled to DAD and TOF-MS in order to obtain molecular formula and exact mass. Posterior analyses with IT-MS were performed and the fragmentation pattern and confirmation of the structures were achieved. The H. sabdariffa samples were successfully analyzed in positive and negative ionization modes with two optimized linear gradients. In positive mode, the two most representative anthocyanins and other compounds were identified whereas the phenolic fraction, hydroxycitric acid and its lactone were identified using the negative ionization mode.
Tempest: Accelerated MS/MS Database Search Software for Heterogeneous Computing Platforms.
Adamo, Mark E; Gerber, Scott A
2016-09-07
MS/MS database search algorithms derive a set of candidate peptide sequences from in silico digest of a protein sequence database, and compute theoretical fragmentation patterns to match these candidates against observed MS/MS spectra. The original Tempest publication described these operations mapped to a CPU-GPU model, in which the CPU (central processing unit) generates peptide candidates that are asynchronously sent to a discrete GPU (graphics processing unit) to be scored against experimental spectra in parallel. The current version of Tempest expands this model, incorporating OpenCL to offer seamless parallelization across multicore CPUs, GPUs, integrated graphics chips, and general-purpose coprocessors. Three protocols describe how to configure and run a Tempest search, including discussion of how to leverage Tempest's unique feature set to produce optimal results. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Sekiya, Sadanori; Nagoshi, Keishiro; Iwamoto, Shinichi; Tanaka, Koichi; Takayama, Mitsuo
2015-09-01
The fragment ions observed with time-of-flight (TOF) and quadrupole ion trap (QIT) TOF mass spectrometers (MS) combined with matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) experiments of phosphorylated analytes β-casein and its model peptide were compared from the standpoint of the residence timeframe of analyte and fragment ions in the MALDI ion source and QIT cell. The QIT-TOF MS gave fragment c-, z'-, z-ANL, y-, and b-ions, and further degraded fragments originating from the loss of neutrals such as H(2)O, NH(3), CH(2)O (from serine), C2H4O (from threonine), and H(3)PO(4), whereas the TOF MS merely showed MALDI source-generated fragment c-, z'-, z-ANL, y-, and w-ions. The fragment ions observed in the QIT-TOF MS could be explained by the injection of the source-generated ions into the QIT cell or a cooperative effect of a little internal energy deposition, a long residence timeframe (140 ms) in the QIT cell, and specific amino acid effects on low-energy CID, whereas the source-generated fragments (c-, z'-, z-ANL, y-, and w-ions) could be a result of prompt radical-initiated fragmentation of hydrogen-abundant radical ions [M + H + H](+) and [M + H - H](-) within the 53 ns timeframe, which corresponds to the delayed extraction time. The further degraded fragment b/y-ions produced in the QIT cell were confirmed by positive- and negative-ion low-energy CID experiments performed on the source-generated ions (c-, z'-, and y-ions). The loss of phosphoric acid (98 u) from analyte and fragment ions can be explained by a slow ergodic fragmentation independent of positive and negative charges.
NASA Astrophysics Data System (ADS)
Sekiya, Sadanori; Nagoshi, Keishiro; Iwamoto, Shinichi; Tanaka, Koichi; Takayama, Mitsuo
2015-09-01
The fragment ions observed with time-of-flight (TOF) and quadrupole ion trap (QIT) TOF mass spectrometers (MS) combined with matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) experiments of phosphorylated analytes β-casein and its model peptide were compared from the standpoint of the residence timeframe of analyte and fragment ions in the MALDI ion source and QIT cell. The QIT-TOF MS gave fragment c-, z'-, z-ANL, y-, and b-ions, and further degraded fragments originating from the loss of neutrals such as H2O, NH3, CH2O (from serine), C2H4O (from threonine), and H3PO4, whereas the TOF MS merely showed MALDI source-generated fragment c-, z'-, z-ANL, y-, and w-ions. The fragment ions observed in the QIT-TOF MS could be explained by the injection of the source-generated ions into the QIT cell or a cooperative effect of a little internal energy deposition, a long residence timeframe (140 ms) in the QIT cell, and specific amino acid effects on low-energy CID, whereas the source-generated fragments (c-, z'-, z-ANL, y-, and w-ions) could be a result of prompt radical-initiated fragmentation of hydrogen-abundant radical ions [M + H + H]+ and [M + H - H]- within the 53 ns timeframe, which corresponds to the delayed extraction time. The further degraded fragment b/y-ions produced in the QIT cell were confirmed by positive- and negative-ion low-energy CID experiments performed on the source-generated ions (c-, z'-, and y-ions). The loss of phosphoric acid (98 u) from analyte and fragment ions can be explained by a slow ergodic fragmentation independent of positive and negative charges.
Jerz, Gerold; Wybraniec, Sławomir; Gebers, Nadine; Winterhalter, Peter
2010-07-02
In this study, preparative ion-pair high-speed countercurrent chromatography was directly coupled to an electrospray ionization mass-spectrometry device (IP-HSCCC/ESI-MS-MS) for target-guided fractionation of high molecular weight acyl-oligosaccharide linked betacyanins from purple bracts of Bougainvillea glabra (Nyctaginaceae). The direct identification of six principal acyl-oligosaccharide linked betacyanins in the mass range between m/z 859 and m/z 1359 was achieved by positive ESI-MS ionization and gave access to the genuine pigment profile already during the proceeding of the preparative separation. Inclusively, all MS/MS-fragmentation data were provided during the chromatographic run for a complete analysis of substitution pattern. On-line purity evaluation of the recovered fractions is of high value in target-guided screening procedures and for immediate decisions about suitable fractions used for further structural analysis. The applied preparative hyphenation was shown to be a versatile screening method for on-line monitoring of countercurrent chromatographic separations of polar crude pigment extracts and also traced some minor concentrated compounds. For the separation of 760mg crude pigment extract the biphasic solvent system tert.-butylmethylether/n-butanol/acetonitrile/water 2:2:1:5 (v/v/v/v) was used with addition of ion-pair forming reagent trifluoroacetic acid. The preparative HSCCC-eluate had to be modified by post-column addition of a make-up solvent stream containing formic acid to reduce ion-suppression caused by trifluoroacetic acid and later significantly maximized response of ESI-MS/MS detection of target substances. A variable low-pressure split-unit guided a micro-eluate to the ESI-MS-interface for sensitive and direct on-line detection, and the major volume of the effluent stream was directed to the fraction collector for preparative sample recovery. The applied make-up solvent mixture significantly improved smoothness of the continuously measured IP-HSCCC-ESI-MS base peak ion trace in the experimental range of m/z 50-2200 by masking stationary phase bleeding and generating a stable single solvent phase for ESI-MS/MS detection. Immediate structural data were retrieved throughout the countercurrent chromatography run containing complete MS/MS-fragmentation pattern of the separated acyl-substituted betanidin oligoglycosides. Single ion monitoring indicated clearly the base-line separation of higher concentrated acylated betacyanin components. Copyright 2010 Elsevier B.V. All rights reserved.
Rodríguez-Medina, I C; Segura-Carretero, A; Fernández-Gutiérrez, A
2009-06-05
We have developed a direct method for the qualitative analysis of polyphenols in commercial organic fruit juices. The juices were diluted with water (50/50), filtered and directly injected. The analysis of phenolic compounds was carried out by reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to photodiode array detection (DAD) and electrospray ionisation-Qq-time-of-flight mass spectrometry (ESI-Qq-TOF-MS). A unique gradient program has been optimized for the separation of several phenolic classes and the analysis time was only 5 min. The fruit juice samples were successfully analysed in positive and negative ionisation modes. In positive mode the anthocyanins were identified whereas the vast majority of polyphenols were identified using the negative ionisation mode. The sensitivity, together with mass accuracy and true isotopic pattern of the Qq-TOF-MS, allowed the identification of the phenolic compounds. Moreover, the advantage of the proposed method is the combined search of MS and MS/MS spectra, which improves the identification of compounds considerably, reducing ambiguities and false positive hits. Therefore the total fragmentation of the compound ion leading to the aglycone ion or other fragments was corroborated by MS-MS. The method was successfully employed to characterize diverse phenolic families in commercially available organic juices from four different fruits and consequently could be used in the future for the quantification purposes to compare different content of polyphenols in juices.
McIntyre, Catherine A.; Arthur, Christopher J.
2017-01-01
Rationale The phosphorus storage compound in grains, phytic acid, or myo‐inositol hexakisphosphate (IP6), is important for nutrition and human health, and is reportedly the most abundant organic phosphorus compound in soils. Methods for its determination have traditionally relied on complexation with iron and precipitation, acid digestion and measurement of phosphate concentration, or 31P NMR spectroscopy. Direct determination of phytic acid (and its homologues) using mass spectrometry has, as yet, found limited application to environmental or other complex matrices. The behaviour of phytic acid in electrospray ionisation high‐resolution mass spectrometry (ESI‐HRMS) and its fragmentation, both in‐source and via collision‐induced dissociation, have not been studied so far. Methods The negative ion mass spectrometry and tandem mass spectrometry (MS/MS) of IP6, and the lower inositol pentakisphosphate (IP5), using an ESI‐Orbitrap mass spectrometer is described. The purity of the compounds was investigated using anion‐exchange chromatography. Results IP6 is highly anionic, forming multiply charged ions and sodium adduct ions, which readily undergo dissociation in the ESI source. MS/MS analysis of the phytic acid [M−2H]2− ion and fragment ions and comparison with the full MS of the IP5 reference standard, and the MS/MS spectrum of the pentakisphosphate [M−2H]2− ion, confirm the fragmentation pattern of inositol phosphates in ESI. Further evidence for dissociation in the ion source is shown by the effect of increasing the source voltage on the mass spectrum of phytic acid. Conclusions The ESI‐HRMS of inositol phosphates is unusual and highly characteristic. The study of the full mass spectrum of IP6 in ESI‐HRMS mode indicates the detection of the compound in environmental matrices using this technique is preferable to the use of multiple reaction monitoring (MRM). PMID:28696018
Worton, David R.; Decker, Monika; Isaacman-VanWertz, Gabriel; ...
2017-05-22
A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.5 eV) yields MS with reduced fragmentation enhancing the abundance of the molecular ion providing molecular formulas when combined with high resolution massmore » spectrometry. We demonstrate this new approach by applying it to a sample of organic aerosol. In this sample, 238 peaks were matched to EI MS library data with FM ≥ 800 but a fifth (42 compounds) were determined to be incorrectly identified because the molecular formula was not confirmed by the VUV MS data. This highlights the importance of using a complementary technique to confirm compound identifications even for peaks with very good matching statistics. In total, 171 compounds were identified by EI MS matching to library spectra with confirmation of the molecular formula from the high resolution VUV MS data and were not dependent on the matching statistics being above a threshold value. A large number of unidentified peaks were still observed with FM < 800, which in routine analysis would typically be neglected. Where possible, these peaks were assigned molecular formulas from the VUV MS data (211 in total). In total, the combination of EI and VUV MS data provides more than twice as much molecular level peak information than traditional approaches and improves confidence in the identification of individual organic compounds. The molecular formula data from the VUV MS data was used, in conjunction with GC×GC retention times and the observed EI MS, to generate a new, searchable EI MS library compatible with the standard NIST MS search program. This library is deliberately dynamic and editable so that other end users can add new entries and update existing entries as new information becomes available.A new analytical methodology has been developed to improve molecular level identification of organic compounds in complex samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worton, David R.; Decker, Monika; Isaacman-VanWertz, Gabriel
A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.5 eV) yields MS with reduced fragmentation enhancing the abundance of the molecular ion providing molecular formulas when combined with high resolution massmore » spectrometry. We demonstrate this new approach by applying it to a sample of organic aerosol. In this sample, 238 peaks were matched to EI MS library data with FM ≥ 800 but a fifth (42 compounds) were determined to be incorrectly identified because the molecular formula was not confirmed by the VUV MS data. This highlights the importance of using a complementary technique to confirm compound identifications even for peaks with very good matching statistics. In total, 171 compounds were identified by EI MS matching to library spectra with confirmation of the molecular formula from the high resolution VUV MS data and were not dependent on the matching statistics being above a threshold value. A large number of unidentified peaks were still observed with FM < 800, which in routine analysis would typically be neglected. Where possible, these peaks were assigned molecular formulas from the VUV MS data (211 in total). In total, the combination of EI and VUV MS data provides more than twice as much molecular level peak information than traditional approaches and improves confidence in the identification of individual organic compounds. The molecular formula data from the VUV MS data was used, in conjunction with GC×GC retention times and the observed EI MS, to generate a new, searchable EI MS library compatible with the standard NIST MS search program. This library is deliberately dynamic and editable so that other end users can add new entries and update existing entries as new information becomes available.A new analytical methodology has been developed to improve molecular level identification of organic compounds in complex samples.« less
Degroeve, Sven; Maddelein, Davy; Martens, Lennart
2015-07-01
We present an MS(2) peak intensity prediction server that computes MS(2) charge 2+ and 3+ spectra from peptide sequences for the most common fragment ions. The server integrates the Unimod public domain post-translational modification database for modified peptides. The prediction model is an improvement of the previously published MS(2)PIP model for Orbitrap-LTQ CID spectra. Predicted MS(2) spectra can be downloaded as a spectrum file and can be visualized in the browser for comparisons with observations. In addition, we added prediction models for HCD fragmentation (Q-Exactive Orbitrap) and show that these models compute accurate intensity predictions on par with CID performance. We also show that training prediction models for CID and HCD separately improves the accuracy for each fragmentation method. The MS(2)PIP prediction server is accessible from http://iomics.ugent.be/ms2pip. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Weissinger, E M; Human, C; Metzger, J; Hambach, L; Wolf, D; Greinix, H T; Dickinson, A M; Mullen, W; Jonigk, D; Kuzmina, Z; Kreipe, H; Schweier, P; Böhm, O; Türüchanow, I; Ihlenburg-Schwarz, D; Raad, J; Durban, A; Schiemann, M; Könecke, C; Diedrich, H; Holler, E; Beutel, G; Krauter, J; Ganser, A; Stadler, M
2017-03-01
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) may be curative, but is associated with significant morbidity and mortality. Chronic graft-versus-host disease (cGvHD), characterized by inflammation and fibrosis of multiple target organs, considerably contributes to the morbidity and mortality even years after allo-HSCT. Diagnosis of cGvHD is based on clinical features and histology of biopsies. Here, we report the generation of a urinary cGvHD-specific proteome-pattern (cGvHD_MS14) established by capillary electrophoresis-mass spectrometry to predict onset and severity of cGvHD as an unbiased laboratory test. cGvHD_MS14 was evaluated on samples from 412 patients collected prospectively in four transplant centers. Sensitivity and specificity was 84 and 76% by cGvHD_MS14 classification. Sensitivity further increased to 93% by combination of cGvHD_MS14 with relevant clinical variables to a logistic regression model. cGvHD was predicted up to 55 days prior to clinical diagnosis. Acute GvHD is not recognized by cGvHD_MS14. cGvHD_MS14 consists of 14 differentially excreted peptides, six of those have been sequenced to date and are fragments from thymosin β-4, eukaryotic translation initiation factor 4γ2, fibrinogen β-chain or collagens. In conclusion, the cGvHD_MS14-pattern allows early, highly sensitive and specific prediction of cGvHD as an independent diagnostic criterion of clinical diagnosis potentially allowing early therapeutic intervention.
Setner, Bartosz; Rudowska, Magdalena; Klem, Ewelina; Cebrat, Marek; Szewczuk, Zbigniew
2014-10-01
Improving the sensitivity of detection and fragmentation of peptides to provide reliable sequencing of peptides is an important goal of mass spectrometric analysis. Peptides derivatized by bicyclic quaternary ammonium ionization tags: 1-azabicyclo[2.2.2]octane (ABCO) or 1,4-diazabicyclo[2.2.2]octane (DABCO), are characterized by an increased detection sensitivity in electrospray ionization mass spectrometry (ESI-MS) and longer retention times on the reverse-phase (RP) chromatography columns. The improvement of the detection limit was observed even for peptides dissolved in 10 mM NaCl. Collision-induced dissociation tandem mass spectrometry of quaternary ammonium salts derivatives of peptides showed dominant a- and b-type ions, allowing facile sequencing of peptides. The bicyclic ionization tags are stable in collision-induced dissociation experiments, and the resulted fragmentation pattern is not significantly influenced by either acidic or basic amino acid residues in the peptide sequence. Obtained results indicate the general usefulness of the bicyclic quaternary ammonium ionization tags for ESI-MS/MS sequencing of peptides. Copyright © 2014 John Wiley & Sons, Ltd.
Software LS-MIDA for efficient mass isotopomer distribution analysis in metabolic modelling.
Ahmed, Zeeshan; Zeeshan, Saman; Huber, Claudia; Hensel, Michael; Schomburg, Dietmar; Münch, Richard; Eisenreich, Wolfgang; Dandekar, Thomas
2013-07-09
The knowledge of metabolic pathways and fluxes is important to understand the adaptation of organisms to their biotic and abiotic environment. The specific distribution of stable isotope labelled precursors into metabolic products can be taken as fingerprints of the metabolic events and dynamics through the metabolic networks. An open-source software is required that easily and rapidly calculates from mass spectra of labelled metabolites, derivatives and their fragments global isotope excess and isotopomer distribution. The open-source software "Least Square Mass Isotopomer Analyzer" (LS-MIDA) is presented that processes experimental mass spectrometry (MS) data on the basis of metabolite information such as the number of atoms in the compound, mass to charge ratio (m/e or m/z) values of the compounds and fragments under study, and the experimental relative MS intensities reflecting the enrichments of isotopomers in 13C- or 15 N-labelled compounds, in comparison to the natural abundances in the unlabelled molecules. The software uses Brauman's least square method of linear regression. As a result, global isotope enrichments of the metabolite or fragment under study and the molar abundances of each isotopomer are obtained and displayed. The new software provides an open-source platform that easily and rapidly converts experimental MS patterns of labelled metabolites into isotopomer enrichments that are the basis for subsequent observation-driven analysis of pathways and fluxes, as well as for model-driven metabolic flux calculations.
Meng, Xianshuang; Bai, Hua; Guo, Teng; Niu, Zengyuan; Ma, Qiang
2017-12-15
Comprehensive identification and quantitation of 100 multi-class regulated ingredients in cosmetics was achieved using ultra-high-performance liquid chromatography (UHPLC) coupled with hybrid quadrupole-Orbitrap high-resolution mass spectrometry (Q-Orbitrap HRMS). A simple, efficient, and inexpensive sample pretreatment protocol was developed using ultrasound-assisted extraction (UAE), followed by dispersive solid-phase extraction (dSPE). The cosmetic samples were analyzed by UHPLC-Q-Orbitrap HRMS under synchronous full-scan MS and data-dependent MS/MS (full-scan MS 1 /dd-MS 2 ) acquisition mode. The mass resolution was set to 70,000 FWHM (full width at half maximum) for full-scan MS 1 and 17,500 FWHM for dd-MS 2 stage with the experimentally measured mass deviations of less than 2ppm (parts per million) for quasi-molecular ions and 5ppm for characteristic fragment ions for each individual analyte. An accurate-mass database and a mass spectral library were built in house for searching the 100 target compounds. Broad screening was conducted by comparing the experimentally measured exact mass of precursor and fragment ions, retention time, isotopic pattern, and ionic ratio with the accurate-mass database and by matching the acquired MS/MS spectra against the mass spectral library. The developed methodology was evaluated and validated in terms of limits of detection (LODs), limits of quantitation (LOQs), linearity, stability, accuracy, and matrix effect. The UHPLC-Q-Orbitrap HRMS approach was applied for the analysis of 100 target illicit ingredients in 123 genuine cosmetic samples, and exhibited great potential for high-throughput, sensitive, and reliable screening of multi-class illicit compounds in cosmetics. Copyright © 2017 Elsevier B.V. All rights reserved.
2D FT-ICR MS of Calmodulin: A Top-Down and Bottom-Up Approach.
Floris, Federico; van Agthoven, Maria; Chiron, Lionel; Soulby, Andrew J; Wootton, Christopher A; Lam, Yuko P Y; Barrow, Mark P; Delsuc, Marc-André; O'Connor, Peter B
2016-09-01
Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) allows data-independent fragmentation of all ions in a sample and correlation of fragment ions to their precursors through the modulation of precursor ion cyclotron radii prior to fragmentation. Previous results show that implementation of 2D FT-ICR MS with infrared multi-photon dissociation (IRMPD) and electron capture dissociation (ECD) has turned this method into a useful analytical tool. In this work, IRMPD tandem mass spectrometry of calmodulin (CaM) has been performed both in one-dimensional and two-dimensional FT-ICR MS using a top-down and bottom-up approach. 2D IRMPD FT-ICR MS is used to achieve extensive inter-residue bond cleavage and assignment for CaM, using its unique features for fragment identification in a less time- and sample-consuming experiment than doing the same thing using sequential MS/MS experiments. Graphical Abstract ᅟ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia
2013-07-02
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including V xO y n– and V xO yCl n– ions (x = 1–14, y = 2–36, n = 1–3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V 14O 36Cl(L) 5 (L = Et 4N +, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged V xO yCl n– and V xOmore » yCl(L) (n–1)– clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller V xO yCl (1–2)– and V xO y (1–2)– anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged V xO yCl and V xO y species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of V xO yCl and V xO y anions through low-energy CID. Finally and furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.« less
Ouyang, Hui; Li, Junmao; Wu, Bei; Zhang, Xiaoyong; Li, Yan; Yang, Shilin; He, Mingzhen; Feng, Yulin
2017-06-16
The chlorogenic acids are the major bioactive constituents of the whole plant of Ainsliaea fragrans Champ. (Xingxiang Tuerfeng). These compounds are usually present as isomeric forms in Xingxiang Tuerfeng. Therefore, an efficient approach should be developed for the rapid discovery and identification of chlorogenic acids isomers through the fragmentation pathway and rules. In this study, the collision induced dissociation tandem mass spectrometry (CID-MS/MS) fragmentation routes of chlorogenic acids were systematically investigated by UHPLC-QTOF-MS/MS in the negative ion mode using eight chlorogenic acids standards. As a result, diagnostic product ions for rapid discovery and classification of chlorogenic acids isomers were determined according to their MS/MS fragmentation patterns and intensity analysis. Based on these findings, a novel two-step data mining strategy was established. The first key step was to screen different kinds of substitution and the skeleton of the quinic acid using the characteristic product ions and neutral losses. The second key step was to screen and classify different types of chlorogenic acids using their diagnostic product ions. It was apply to the rapid investigation, classification, and identification of chlorogenic acids. And the same carbon skeletons from a complex extract of Ainsliaea fragrans Champ. were effectively identified. 88 constituents, including 14 chlorogenic acids types, were rapidly discovered and identified, and in particular, 12 types of chlorogenic acids, including p-CoQC, FQA, BQC, CQA-Glu, CFQA, p-Co-CQC, di-p-CoQC, BCQA, di-CQA-Glu, PCQA, tri-QCA, and P-di-CQA, were first discovered in Ainsliaea fragrans Champ. In conclusion, UHPLC-QTOF-MS/MS method together with a systematic two-step data mining strategy was established as a feasible, effective, and rational technique for analyzing chlorogenic acids. Additionally, this study laid a foundation for the study of the active substances and quality control of Ainsliaea fragrans Champ. Copyright © 2017 Elsevier B.V. All rights reserved.
Arapitsas, Panagiotis; Menichetti, Stefano; Vincieri, Franco F; Romani, Annalisa
2007-01-10
This study was designed to develop efficient analytical tools for the difficult HPLC-DAD-MS identification of hydrolyzable tannins in natural tissue extracts. Throughout the study of the spectroscopic characteristics of properly synthesized stereodefined standards, it was observed that the UV-vis spectra of compounds with the m-depsidic link showed a characteristic shoulder at 300 nm, consistent with the simple glucogalloyl esters, whereas compounds with the hexahydroxydiphenoyl (HHDP) unit gave a diagnostic fragmentation pattern, caused by a spontaneous lactonization in the mass spectrometer. These observations were confirmed by HPLC-DAD-MS analyses of tannic acid and raspberry extracts, which are rich in hydrolyzable tannins with the m-depsidic link and the HHDP unit, respectively.
Tian, Qingguo; Kent, Kyle D; Bomser, Joshua A; Schwartz, Steven J
2004-01-01
The metabolism of limonin 17-beta-D-glucopyranoside (LG) by non-cancerous (RWPE-1) and cancerous (PC-3) human prostate epithelial cells was investigated using high-performance liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) with in-source fragmentation and tandem mass spectrometry (MS/MS). During positive ion LC/ESI-MS, LG formed an abundant sodiated species ([M+Na]+) while the protonated molecule was barely observable. [M+Na]+ further fragmented into the less abundant [LARL+H]+ and a predominantly protonated aglycone molecule (limonin) due to in-source fragmentation. The major metabolite, limonin A-ring lactone (LARL), formed an abundant protonated molecule that was fragmented into a protonated molecule of limonin by loss of one molecule of water. In MS/MS by collisionally activated dissociation (CAD), LG produced the sodiated aglycone, [aglycone+Na]+, while LARL fragmented into [M+H]+ of limonin and fragment ions resulted by further loss of water, carbon monoxide and carbon dioxide, indicating the presence of oxygenated-ring structures. The limits of detection of LG were 0.4 and 20 fmol in selected-ion monitoring (SIM) and selected-reaction monitoring (SRM) detection, respectively. Copyright 2004 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Susnea, Iuliana; Bunk, Sebastian; Wendel, Albrecht; Hermann, Corinna; Przybylski, Michael
2011-04-01
We report here an affinity-proteomics approach that combines 2D-gel electrophoresis and immunoblotting with high performance mass spectrometry to the identification of both full length protein antigens and antigenic fragments of Chlamydophila pneumoniae (C. pneumoniae). The present affinity-mass spectrometry approach effectively utilized high resolution FTICR mass spectrometry and LC-tandem-MS for protein identification, and enabled the identification of several new highly antigenic C. pneumoniae proteins that were not hitherto reported or previously detected only in other Chlamydia species, such as Chlamydia trachomatis. Moreover, high resolution affinity-MS provided the identification of several neo-antigenic protein fragments containing N- and C-terminal, and central domains such as fragments of the membrane protein Pmp21 and the secreted chlamydial proteasome-like factor (Cpaf), representing specific biomarker candidates.
Bilbao, Aivett; Zhang, Ying; Varesio, Emmanuel; Luban, Jeremy; Strambio-De-Castillia, Caterina; Lisacek, Frédérique; Hopfgartner, Gérard
2016-01-01
Data-independent acquisition LC-MS/MS techniques complement supervised methods for peptide quantification. However, due to the wide precursor isolation windows, these techniques are prone to interference at the fragment ion level, which in turn is detrimental for accurate quantification. The “non-outlier fragment ion” (NOFI) ranking algorithm has been developed to assign low priority to fragment ions affected by interference. By using the optimal subset of high priority fragment ions these interfered fragment ions are effectively excluded from quantification. NOFI represents each fragment ion as a vector of four dimensions related to chromatographic and MS fragmentation attributes and applies multivariate outlier detection techniques. Benchmarking conducted on a well-defined quantitative dataset (i.e. the SWATH Gold Standard), indicates that NOFI on average is able to accurately quantify 11-25% more peptides than the commonly used Top-N library intensity ranking method. The sum of the area of the Top3-5 NOFIs produces similar coefficients of variation as compared to the library intensity method but with more accurate quantification results. On a biologically relevant human dendritic cell digest dataset, NOFI properly assigns low priority ranks to 85% of annotated interferences, resulting in sensitivity values between 0.92 and 0.80 against 0.76 for the Spectronaut interference detection algorithm. PMID:26412574
Chen, Kewei; Ríos, José Julián; Roca, María; Pérez-Gálvez, Antonio
2015-09-18
Dephytylated chlorophylls (chlorophyllides and pheophorbides) are the starting point of the chlorophyll catabolism in green tissues, components of the chlorophyll pattern in storage/processed food vegetables, as well as the favoured structural arrangement for chlorophyll absorption. In addition, dephytylated native chlorophylls are prone to several modifications of their structure yielding pyro-, 13(2)-hydroxy- and 15(1)-hydroxy-lactone derivatives. Despite of these outstanding remarks only few of them have been analysed by MS(n). Besides new protocols for obtaining standards, we have developed a new high throughput methodology able to determine the fragmentation pathway of 16 dephytylated chlorophyll derivatives, elucidating the structures of the new product ions and new mechanisms of fragmentation. The new methodology combines, by first time, high resolution time-of-flight mass spectrometry and powerful post-processing software. Native chlorophyllides and pheophorbides mainly exhibit product ions that involve the fragmentation of D ring, as well as additional exclusive product ions. The introduction of an oxygenated function at E ring enhances the progress of fragmentation reactions through the β-keto ester group, developing also exclusive product ions for 13(2)-hydroxy derivatives and for 15(1)-hydroxy-lactone ones. Consequently, while MS(2)-based reactions of phytylated chlorophyll derivatives point to fragmentations at the phytyl and propionic chains, dephytylated chlorophyll derivatives behave different as the absence of phytyl makes β-keto ester group and E ring more prone to fragmentation. Proposals of the key reaction mechanisms underlying the origin of new product ions have been made. Copyright © 2015 Elsevier B.V. All rights reserved.
Montoro, Paola; Maldini, Mariateresa; Russo, Mariateresa; Postorino, Santo; Piacente, Sonia; Pizza, Cosimo
2011-02-20
Liquid chromatography electrospray mass spectrometry (LC-ESI/MS) has been applied to the full characterization of saponins and phenolics in hydroalcoholic extracts of roots of liquorice (Glycyrrhiza glabra). Relative quantitative analyses of the samples with respect to the phenolic constituents and to a group of saponins related to glycyrrhizic acid were performed using LC-ESI/MS. For the saponin constituents, full scan LC-MS/MS fragmentation of the protonated (positive ion mode) or deprotonated (negative ion mode) molecular species generated diagnostic fragment ions that provided information concerning the triterpene skeleton and the number and nature of the substituents. On the basis of the specific fragmentation of glycyrrhizic acid, an LC-MS/MS method was developed in order to quantify the analyte in the liquorice root samples. Chinese G. glabra roots contained the highest levels of glycyrrhizic acid, followed by those from Italy (Calabria). Copyright © 2010 Elsevier B.V. All rights reserved.
Fragment screening for drug leads by weak affinity chromatography (WAC-MS).
Ohlson, Sten; Duong-Thi, Minh-Dao
2018-02-23
Fragment-based drug discovery is an important tool for design of small molecule hit-to-lead compounds against various biological targets. Several approved drugs have been derived from an initial fragment screen and many such candidates are in various stages of clinical trials. Finding fragment hits, that are suitable for optimisation by medicinal chemists, is still a challenge as the binding between the small fragment and its target is weak in the range of mM to µM of K d and irrelevant non-specific interactions are abundant in this area of transient interactions. Fortunately, there are methods that can study weak interactions quite efficiently of which NMR, surface plasmon resonance (SPR) and X-ray crystallography are the most prominent. Now, a new technology based on zonal affinity chromatography, weak affinity chromatography (WAC), has been introduced which has remedied many of the problems with other technologies. By combining WAC with mass spectrometry (WAC-MS), it is a powerful tool to identify binders quantitatively in terms of affinity and kinetics either from fragment libraries or from complex mixtures of biological extracts. As WAC-MS can be multiplexed by analysing mixtures of fragments (20-100 fragments) in one sample, this approach yields high throughput, where a whole library of e.g. >2000 fragments can be analysed quantitatively within a day. WAC-MS is easy to perform, where the robustness and quality of HPLC is fully utilized. This review will highlight the rationale behind the application of WAC-MS for fragment screening in drug discovery. Copyright © 2018 Elsevier Inc. All rights reserved.
Jager, N G L; Rosing, H; Linn, S C; Schellens, J H M; Beijnen, J H
2012-06-01
The antiestrogenic effect of tamoxifen is mainly attributable to the active metabolites endoxifen and 4-hydroxytamoxifen. This effect is assumed to be concentration-dependent and therefore quantitative analysis of tamoxifen and metabolites for clinical studies and therapeutic drug monitoring is increasing. We investigated the large discrepancies in reported mean endoxifen and 4-hydroxytamoxifen concentrations. Two published LC-MS/MS methods are used to analyse a set of 75 serum samples from patients treated with tamoxifen. The method from Teunissen et al. (J Chrom B, 879:1677-1685, 2011) separates endoxifen and 4-hydroxytamoxifen from other tamoxifen metabolites with similar masses and fragmentation patterns. The second method, published by Gjerde et al. (J Chrom A, 1082:6-14, 2005) however lacks selectivity, resulting in a factor 2-3 overestimation of the endoxifen and 4-hydroxytamoxifen levels, respectively. We emphasize the use of highly selective LC-MS/MS methods for the quantification of tamoxifen and its metabolites in biological samples.
Shan, Lanlan; Wu, Yuanyuan; Yuan, Lei; Zhang, Yani
2017-01-01
Rhizoma Anemarrhenae, a famous traditional Chinese medicine (TCM), is the dried rhizome of Anemarrhena asphodeloides Bge. (Anemarrhena Bunge of Liliaceae). The medicine presents anti-inflammatory, antipyretic, sedative, and diuretic effects. The chemical constituents of Rhizoma Anemarrhenae are complex and diverse, mainly including steroidal saponins, flavonoids, phenylpropanoids, benzophenones, and alkaloids. In this study, UPLC-Q-TOF/MS was used in combination with data postprocessing techniques, including characteristic fragments filter and neutral loss filter, to rapidly classify and identify the five types of substances in Rhizoma Anemarrhenae. On the basis of numerous literature reviews and according to the corresponding characteristic fragments produced by different types of compounds in combination with neutral loss filtering, we summarized the fragmentation patterns of the main five types of compounds and successfully screened and identified 32 chemical constituents in Rhizoma Anemarrhenae. The components included 18 steroidal saponins, 6 flavonoids, 4 phenylpropanoids, 2 alkaloids, and 2 benzophenones. The method established in this study provided necessary data for the study on the pharmacological effects of Rhizoma Anemarrhenae and also provided the basis for the chemical analysis and quality control of TCMs to promote the development of a method for chemical research on TCMs. PMID:29234389
Shan, Lanlan; Wu, Yuanyuan; Yuan, Lei; Zhang, Yani; Xu, Yanyan; Li, Yubo
2017-01-01
Rhizoma Anemarrhenae , a famous traditional Chinese medicine (TCM), is the dried rhizome of Anemarrhena asphodeloides Bge. ( Anemarrhena Bunge of Liliaceae). The medicine presents anti-inflammatory, antipyretic, sedative, and diuretic effects. The chemical constituents of Rhizoma Anemarrhenae are complex and diverse, mainly including steroidal saponins, flavonoids, phenylpropanoids, benzophenones, and alkaloids. In this study, UPLC-Q-TOF/MS was used in combination with data postprocessing techniques, including characteristic fragments filter and neutral loss filter, to rapidly classify and identify the five types of substances in Rhizoma Anemarrhenae . On the basis of numerous literature reviews and according to the corresponding characteristic fragments produced by different types of compounds in combination with neutral loss filtering, we summarized the fragmentation patterns of the main five types of compounds and successfully screened and identified 32 chemical constituents in Rhizoma Anemarrhenae . The components included 18 steroidal saponins, 6 flavonoids, 4 phenylpropanoids, 2 alkaloids, and 2 benzophenones. The method established in this study provided necessary data for the study on the pharmacological effects of Rhizoma Anemarrhenae and also provided the basis for the chemical analysis and quality control of TCMs to promote the development of a method for chemical research on TCMs.
Mass spectrometry for fragment screening.
Chan, Daniel Shiu-Hin; Whitehouse, Andrew J; Coyne, Anthony G; Abell, Chris
2017-11-08
Fragment-based approaches in chemical biology and drug discovery have been widely adopted worldwide in both academia and industry. Fragment hits tend to interact weakly with their targets, necessitating the use of sensitive biophysical techniques to detect their binding. Common fragment screening techniques include differential scanning fluorimetry (DSF) and ligand-observed NMR. Validation and characterization of hits is usually performed using a combination of protein-observed NMR, isothermal titration calorimetry (ITC) and X-ray crystallography. In this context, MS is a relatively underutilized technique in fragment screening for drug discovery. MS-based techniques have the advantage of high sensitivity, low sample consumption and being label-free. This review highlights recent examples of the emerging use of MS-based techniques in fragment screening. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Allard, Pierre-Marie; Péresse, Tiphaine; Bisson, Jonathan; Gindro, Katia; Marcourt, Laurence; Pham, Van Cuong; Roussi, Fanny; Litaudon, Marc; Wolfender, Jean-Luc
2016-03-15
Dereplication represents a key step for rapidly identifying known secondary metabolites in complex biological matrices. In this context, liquid-chromatography coupled to high resolution mass spectrometry (LC-HRMS) is increasingly used and, via untargeted data-dependent MS/MS experiments, massive amounts of detailed information on the chemical composition of crude extracts can be generated. An efficient exploitation of such data sets requires automated data treatment and access to dedicated fragmentation databases. Various novel bioinformatics approaches such as molecular networking (MN) and in-silico fragmentation tools have emerged recently and provide new perspective for early metabolite identification in natural products (NPs) research. Here we propose an innovative dereplication strategy based on the combination of MN with an extensive in-silico MS/MS fragmentation database of NPs. Using two case studies, we demonstrate that this combined approach offers a powerful tool to navigate through the chemistry of complex NPs extracts, dereplicate metabolites, and annotate analogues of database entries.
Lim, Chee Wei; Tai, Siew Hoon; Lee, Lin Min; Chan, Sheot Harn
2012-07-01
The current food crisis demands unambiguous determination of mycotoxin contamination in staple foods to achieve safer food for consumption. This paper describes the first accurate LC-MS/MS method developed to analyze tricothecenes in grains by applying multiple reaction monitoring (MRM) transition and MS(3) quantitation strategies in tandem. The tricothecenes are nivalenol, deoxynivalenol, deoxynivalenol-3-glucoside, fusarenon X, 3-acetyl-deoxynivalenol, 15-acetyldeoxynivalenol, diacetoxyscirpenol, and HT-2 and T-2 toxins. Acetic acid and ammonium acetate were used to convert the analytes into their respective acetate adducts and ammonium adducts under negative and positive MS polarity conditions, respectively. The mycotoxins were separated by reversed-phase LC in a 13.5-min run, ionized using electrospray ionization, and detected by tandem mass spectrometry. Analyte-specific mass-to-charge (m/z) ratios were used to perform quantitation under MRM transition and MS(3) (linear ion trap) modes. Three experiments were made for each quantitation mode and matrix in batches over 6 days for recovery studies. The matrix effect was investigated at concentration levels of 20, 40, 80, 120, 160, and 200 μg kg(-1) (n = 3) in 5 g corn flour and rice flour. Extraction with acetonitrile provided a good overall recovery range of 90-108% (n = 3) at three levels of spiking concentration of 40, 80, and 120 μg kg(-1). A quantitation limit of 2-6 μg kg(-1) was achieved by applying an MRM transition quantitation strategy. Under MS(3) mode, a quantitation limit of 4-10 μg kg(-1) was achieved. Relative standard deviations of 2-10% and 2-11% were reported for MRM transition and MS(3) quantitation, respectively. The successful utilization of MS(3) enabled accurate analyte fragmentation pattern matching and its quantitation, leading to the development of analytical methods in fields that demand both analyte specificity and fragmentation fingerprint-matching capabilities that are unavailable under MRM transition.
Niu, Xingliang; Luo, Jun; Xu, Deran; Zou, Hongyan; Kong, Lingyi
2017-02-05
Ginkgolides, the main active constituents of Ginkgo biloba, possess significant selectively inhibition on platelet-activating factor and pancreatic lipase and attract wide attention in pharmacological research area. In our study, an effective hydrogen/deuterium (H/D) exchange method was developed by exchanging the α-Hs of lactone groups in ginkgolides with Ds, which was very useful for the elucidation of the fragmentation patterns of ginkgolides in Quadrupole Time-of-flight Mass Spectrometry (Q-TOF-MS), especially in accurately distinguishing the type and position of substituent in framework of ginkgolides. Then, a systematic research strategy for qualitative and quantitative analysis of ginkgolides, based on H/D exchange, tandem solid-phase extraction and LC-Q-TOF-MS, was developed, which was successfully applied in each medicinal part of G. biloba, which indicated that ginkgolide B was the most abundant ginkgolide in the seeds of G. biloba (60.6μg/g). This research was the successful application of H/D exchange in natural products, and proved that H/D exchange is a potential method for analysis research of complex TCMs active constituents. Copyright © 2016 Elsevier B.V. All rights reserved.
Ding, Hui; Ding, Wanjing; Ma, Zhongjun
2017-03-22
Two prenylated indole alkaloids were isolated from the ethyl acetate extracts of a marine-derived fungus Penicillium sp. NH-SL and one of them exhibited potent cytotoxic activity against mouse hepa 1c1c7 cells. In order to detect other bioactive analogs, we used liquid chromatogram tandem mass spectrometry (LC-MS/MS) to analyze the mass spectrometric characteristics of the isolated compounds as well as the crude extracts. As a result, three other analogs were detected, and their structures were deduced according to the similar fragmentation patterns. This is the first systematic report on the mass spectrometric characteristics of prenylated indole derivatives.
Robotham, Scott A.; Brodbelt, Jennifer S.
2011-01-01
Based on reactions with five flavonoids, the regioselectivities of twelve human UDP-glucuronosyltransferase (UGT) isozymes were elucidated. The various flavonoid glucuronides were differentiated based on LC-MS/MS fragmentation patterns of [Co(II)(flavonoid – H)(4,7-diphenyl-1,10-phenanthroline)2]+ complexes generated upon post-column complexation. Glucuronide distributions were evaluated to allow a systematic assessment of the regioselectivity of each isozyme. The various UGT enzymes, including eight UGT1A and four UGT2B, displayed a remarkable range of selectivities, both in terms of the positions of glucuronidation and relative reactivity with flavanones versus flavonols. PMID:21889496
The fate of b-ions in the two worlds of collision-induced dissociation.
Waldera-Lupa, Daniel M; Stefanski, Anja; Meyer, Helmut E; Stühler, Kai
2013-12-01
Fragment analysis of proteins and peptides by mass spectrometry using collision-induced dissociation (CID) revealed that the pairwise generated N-terminal b- and C-terminal y-ions have different stabilities resulting in underrepresentation of b-ions. Detailed analyses of large-scale spectra databases and synthetic peptides underlined these observations and additionally showed that the fragmentation pattern depends on utilized CID regime. To investigate this underrepresentation further we systematically compared resonant excitation energy and beam-type CID facilitated on different mass spectrometer platforms: (i) quadrupole time-of-flight, (ii) linear ion trap and (iii) three-dimensional ion trap. Detailed analysis of MS/MS data from a standard tryptic protein digest revealed that b-ions are significantly underrepresented on all investigated mass spectrometers. By N-terminal acetylation of tryptic peptides we show for the first time that b-ion cyclization reaction significantly contributes to b-ion underrepresentation even on ion trap instruments and accounts for at most 16% of b-ion loss. © 2013.
Wang, Yuqin; Hornshaw, Martin; Alvelius, Gunvor; Bodin, Karl; Liu, Suya; Sjövall, Jan; Griffiths, William J.
2008-01-01
Neutral steroids have traditionally been analysed by gas chromatography – mass spectrometry (GC-MS) after necessary derivatisation reactions. However, GC-MS is unsuitable for the analysis of many conjugated steroids and those with unsuspected functional groups. Here we describe an alternative analytical method specifically designed for the analysis of oxosteroids and those with a 3β-hydroxy-Δ5 or 5α-hydrogen-3β-hydroxy structure. Steroids were derivatised with Girard P (GP) hydrazine to give GP hydrazones which are charged species and readily analysed by matrix-assisted laser desorption/ionization mass spectrometry. The resulting [M]+ ions were then subjected to high-energy collision-induced dissociation on a tandem time-of-flight instrument. The product-ion spectra give structurally informative fragment-ion patterns. The sensitivity of the analytical method is such that steroids structures can be determined from low pg (low fmole) amounts of sample. The utility of the method has been demonstrated by the analysis of oxysterols extracted from rat brain. PMID:16383324
Chen, Kewei; Ríos, José Julián; Pérez-Gálvez, Antonio; Roca, María
2015-08-07
Phytylated chlorophyll derivatives undergo specific oxidative reactions through the natural metabolism or during food processing or storage, and consequently pyro-, 13(2)-hydroxy-, 15(1)-hydroxy-lactone chlorophylls, and pheophytins (a and b) are originated. New analytical procedures have been developed here to reproduce controlled oxidation reactions that specifically, and in reasonable amounts, produce those natural target standards. At the same time and under the same conditions, 16 natural chlorophyll derivatives have been analyzed by APCI-HPLC-hrMS(2) and most of them by the first time. The combination of the high-resolution MS mode with powerful post-processing software has allowed the identification of new fragmentation patterns, characterizing specific product ions for some particular standards. In addition, new hypotheses and reaction mechanisms for the established MS(2)-based reactions have been proposed. As a general rule, the main product ions involve the phytyl and the propionic chains but the introduction of oxygenated functional groups at the isocyclic ring produces new and specific productions and at the same time inhibits some particular fragmentations. It is noteworthy that all b derivatives, except 15(1)-hydroxy-lactone compounds, undergo specific CO losses. We propose a new reaction mechanism based in the structural configuration of a and b chlorophyll derivatives that explain the exclusive CO fragmentation in all b series except for 15(1)-hydroxy-lactone b and all a series compounds. Copyright © 2015 Elsevier B.V. All rights reserved.
Kappelmann, Jannick; Klein, Bianca; Geilenkirchen, Petra; Noack, Stephan
2017-03-01
In recent years the benefit of measuring positionally resolved 13 C-labeling enrichment from tandem mass spectrometry (MS/MS) collisional fragments for improved precision of 13 C-Metabolic Flux Analysis ( 13 C-MFA) has become evident. However, the usage of positional labeling information for 13 C-MFA faces two challenges: (1) The mass spectrometric acquisition of a large number of potentially interfering mass transitions may hamper accuracy and sensitivity. (2) The positional identity of carbon atoms of product ions needs to be known. The present contribution addresses the latter challenge by deducing the maximal positional labeling information contained in LC-ESI-MS/MS spectra of product anions of central metabolism as well as product cations of amino acids. For this purpose, we draw on accurate mass spectrometry, selectively labeled standards, and published fragmentation pathways to structurally annotate all dominant mass peaks of a large collection of metabolites, some of which with a complete fragmentation pathway. Compiling all available information, we arrive at the most detailed map of carbon atom fate of LC-ESI-MS/MS collisional fragments yet, comprising 170 intense and structurally annotated product ions with unique carbon origin from 76 precursor ions of 72 metabolites. Our 13 C-data proof that heuristic fragmentation rules often fail to yield correct fragment structures and we expose common pitfalls in the structural annotation of product ions. We show that the positionally resolved 13 C-label information contained in the product ions that we structurally annotated allows to infer the entire isotopomer distribution of several central metabolism intermediates, which is experimentally demonstrated for malate using quadrupole-time-of-flight MS technology. Finally, the inclusion of the label information from a subset of these fragments improves flux precision in a Corynebacterium glutamicum model of the central carbon metabolism.
Krock, Bernd; Busch, Julia A; Tillmann, Urban; García-Camacho, Francisco; Sánchez-Mirón, Asterio; Gallardo-Rodríguez, Juan J; López-Rosales, Lorenzo; Andree, Karl B; Fernández-Tejedor, Margarita; Witt, Matthias; Cembella, Allan D; Place, Allen R
2017-12-18
A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the detection and quantitation of karlotoxins in the selected reaction monitoring (SRM) mode. This novel method was based upon the analysis of purified karlotoxins (KcTx-1, KmTx-2, 44-oxo-KmTx-2, KmTx-5), one amphidinol (AM-18), and unpurified extracts of bulk cultures of the marine dinoflagellate Karlodinium veneficum strain CCMP2936 from Delaware (Eastern USA), which produces KmTx-1 and KmTx-3. The limit of detection of the SRM method for KmTx-2 was determined as 2.5 ng on-column. Collision induced dissociation (CID) spectra of all putative karlotoxins were recorded to present fragmentation patterns of each compound for their unambiguous identification. Bulk cultures of K. veneficum strain K10 isolated from an embayment of the Ebro Delta, NW Mediterranean, yielded five previously unreported putative karlotoxins with molecular masses 1280, 1298, 1332, 1356, and 1400 Da, and similar fragments to KmTx-5. Analysis of several isolates of K. veneficum from the Ebro Delta revealed small-scale diversity in the karlotoxin spectrum in that one isolate from Fangar Bay produced KmTx-5, whereas the five putative novel karlotoxins were found among several isolates from nearby, but hydrographically distinct Alfacs Bay. Application of this LC-MS/MS method represents an incremental advance in the determination of putative karlotoxins, particularly in the absence of a complete spectrum of purified analytical standards of known specific potency.
Krock, Bernd; Busch, Julia A.; García-Camacho, Francisco; Sánchez-Mirón, Asterio; Gallardo-Rodríguez, Juan J.; López-Rosales, Lorenzo; Andree, Karl B.; Fernández-Tejedor, Margarita; Witt, Matthias; Place, Allen R.
2017-01-01
A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the detection and quantitation of karlotoxins in the selected reaction monitoring (SRM) mode. This novel method was based upon the analysis of purified karlotoxins (KcTx-1, KmTx-2, 44-oxo-KmTx-2, KmTx-5), one amphidinol (AM-18), and unpurified extracts of bulk cultures of the marine dinoflagellate Karlodinium veneficum strain CCMP2936 from Delaware (Eastern USA), which produces KmTx-1 and KmTx-3. The limit of detection of the SRM method for KmTx-2 was determined as 2.5 ng on-column. Collision induced dissociation (CID) spectra of all putative karlotoxins were recorded to present fragmentation patterns of each compound for their unambiguous identification. Bulk cultures of K. veneficum strain K10 isolated from an embayment of the Ebro Delta, NW Mediterranean, yielded five previously unreported putative karlotoxins with molecular masses 1280, 1298, 1332, 1356, and 1400 Da, and similar fragments to KmTx-5. Analysis of several isolates of K. veneficum from the Ebro Delta revealed small-scale diversity in the karlotoxin spectrum in that one isolate from Fangar Bay produced KmTx-5, whereas the five putative novel karlotoxins were found among several isolates from nearby, but hydrographically distinct Alfacs Bay. Application of this LC-MS/MS method represents an incremental advance in the determination of putative karlotoxins, particularly in the absence of a complete spectrum of purified analytical standards of known specific potency. PMID:29258236
Huang, Rongrong; Pomin, Vitor H.; Sharp, Joshua S.
2011-01-01
Improved methods for structural analyses of glycosaminoglycans (GAGs) are required to understand their functional roles in various biological processes. Major challenges in structural characterization of complex GAG oligosaccharides using liquid chromatography-mass spectrometry (LC-MS) include the accurate determination of the patterns of sulfation due to gas-phase losses of the sulfate groups upon collisional activation and inefficient on-line separation of positional sulfation isomers prior to MS/MS analyses. Here, a sequential chemical derivatization procedure including permethylation, desulfation, and acetylation was demonstrated to enable both on-line LC separation of isomeric mixtures of chondroitin sulfate (CS) oligosaccharides and accurate determination of sites of sulfation by MSn. The derivatized oligosaccharides have sulfate groups replaced with acetyl groups, which are sufficiently stable to survive MSn fragmentation and reflect the original sulfation patterns. A standard reversed-phase LC-MS system with a capillary C18 column was used for separation, and MSn experiments using collision-induced dissociation (CID) were performed. Our results indicate that the combination of this derivatization strategy and MSn methodology enables accurate identification of the sulfation isomers of CS hexasaccharides with either saturated or unsaturated nonreducing ends. Moreover, derivatized CS hexasaccharide isomer mixtures become separable by LC-MS method due to different positions of acetyl modifications. PMID:21953261
Abad-García, Beatriz; Berrueta, Luis A; Garmón-Lobato, Sergio; Gallo, Blanca; Vicente, Francisca
2009-07-10
In the present study, a methodology based on liquid chromatography with diode array detection (HPLC/DAD) coupled to an electrospray ionization (ESI) interface and a triple quadrupole mass spectrometer for the simultaneous identification of phenolic compounds in fruit juices has been developed. 72 available phenolic compound standards from diverse families present in fruits have been studied in order to analyze their fragmentation pattern. As a result, a general strategy for the characterization of unknown phenolic compounds in fruit juices was designed: (i) taking into account its UV-visible spectrum and elution order, assign the unknown polyphenol to a polyphenol class, (ii) identify the quasi-molecular ion using positive and negative MS spectra, being supported by adducts generated with solvent or sodium and molecular complexes, (iii) determinate the pattern of glycosylation in positive mode using ESI(+)-CID MS/MS product ion scan experiments, selecting the quasi-molecular ion as precursor ion, and finally, (iv) study the identity of the aglycone through ESI(+)-CID MS/MS product ion spectra from the protonated aglycone, [Y(0)](+). This strategy was successfully employed for the characterization of known and unknown phenolic compounds in juices from 17 different fruits.
Pati, S; Losito, I; Gambacorta, G; La Notte, E; Palmisano, F; Zambonin, P G
2006-07-01
Samples of raw red wine (Primitivo di Manduria, Apulia, Southern Italy) were analysed without any pre-treatment (except 1:2 dilution with water) using HPLC with detection based on UV absorbance and Electrospray Ionisation Sequential Mass Spectrometry (ESI-MSn, with n = 1-3) in a series configuration. In particular, absorbance at 520 nm was monitored for UV detection in order to identify pigments responsible for wine colour. On the other hand, two subsequent stages of MS detection based on positive ions were adopted. The first consisted of an explorative MS acquisition, aimed at the individuation of the m/z ratios for positively charged compounds; the second was based on fragmentation of the detected ions within an ion trap analyser, followed by MS/MS and, if required, MS3 acquisitions. The synergy between UV detection and MSn analysis led to the identification of 41 pigments, which can be classified into five groups: grape anthocyanins, pyranoanthocyanins, vinyl-linked anthocyanin-flavanol pigments, ethyl-bridged anthocyanin-flavanol pigments and flavanol-anthocyanin compounds. Many isomeric and oligomeric structures were found within each group. A further class of compounds, not absorbing in the visible spectrum, could be also characterised by ESI-MSn and corresponded to B-type procyanidins, i.e. proanthocyanidins arising from C4-->C8/C4-->C6 couplings between catechin or epicatechin units. In particular, oligomeric structures (from dimers to pentamers), often present with several isomers, were identified and their fragmentation patterns clarified.
Applications of HPLC/MS in the analysis of traditional Chinese medicines
Li, Miao; Hou, Xiao-Fang; Zhang, Jie; Wang, Si-Cen; Fu, Qiang; He, Lang-Chong
2012-01-01
In China, traditional Chinese medicines (TCMs) have been used in clinical applications for thousands of years. The successful hyphenation of high-Performance liquid chromatography (HPLC) and mass spectrometry (MS) has been applied widely in TCMs and biological samples analysis. Undoubtedly, HPLC/MS technique has facilitated the understanding of the treatment mechanism of TCMs. We reviewed more than 350 published papers within the last 5 years on HPLC/MS in the analysis of TCMs. The present review focused on the applications of HPLC/MS in the component analysis, metabolites analysis, and pharmacokinetics of TCMs etc. 50% of the literature is related to the component analysis of TCMs, which show that this field is the most populär type of research. In the metabolites analysis, HPLC coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry has been demonstrated to be the powerful tool for the characterization of structural features and fragmentation behavior patterns. This paper presented a brief overview of the applications of HPLC/MS in the analysis of TCMs. HPLC/MS in the fingerprint analysis is reviewed elsewhere. PMID:29403684
Luo, Heng; Huang, Zhifang; Tang, Xiaolong; Yi, Jinhai; Chen, Shuiying; Yang, Andong; Yang, Jun
2016-01-01
The chemical components in the decoctions of Chinese herbal medicines are not always the same as those in the crude herbs because of the insolubility or instability of some compounds. In this work, a high-performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI) tandem mass spectrometry method was developed to explore dynamic variation patterns of aconitum alkaloids in Fuzi during the process of decocting aconite root. The fragmentation patterns of aconitum alkaloids using ESI and collision-induced dissociation (CID) techniques were reported. This assay method was validated with respect to linearity (r2 > 0.9950), precision, repeatability, and accuracy (recovery rate between 94.6 and 107.9%).The result showed that the amounts of aconitum alkaloids in the decoction at different boiling time varied significantly. In the decoction process,the diester- type alkaloids in crude aconite roots have transformed into Benzoylaconines or aconines. PMID:27610167
Luo, Heng; Huang, Zhifang; Tang, Xiaolong; Yi, Jinhai; Chen, Shuiying; Yang, Andong; Yang, Jun
2016-01-01
The chemical components in the decoctions of Chinese herbal medicines are not always the same as those in the crude herbs because of the insolubility or instability of some compounds. In this work, a high-performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI) tandem mass spectrometry method was developed to explore dynamic variation patterns of aconitum alkaloids in Fuzi during the process of decocting aconite root. The fragmentation patterns of aconitum alkaloids using ESI and collision-induced dissociation (CID) techniques were reported. This assay method was validated with respect to linearity (r(2) > 0.9950), precision, repeatability, and accuracy (recovery rate between 94.6 and 107.9%).The result showed that the amounts of aconitum alkaloids in the decoction at different boiling time varied significantly. In the decoction process,the diester- type alkaloids in crude aconite roots have transformed into Benzoylaconines or aconines.
Jaiswal, Rakesh; Kuhnert, Nikolai
2011-04-27
Arnica montana is a medicinally important plant due to its broad health effects, and it is used in Ayurvedic, Homeopathic, Unani, and folk medicines. We have used LC-MS(n) (n = 2-5) to detect and characterize in Arnica flowers 11 quantitatively minor fumaric and methoxyoxalic acid-containing chlorogenic acids, nine of them not previously reported in nature. These comprise 1,5-dicaffeoyl-3-methoxyoxaloylquinic acid, 1,3-dicaffeoyl-4-methoxyoxaloylquinic acid, 3,5-dicaffeoyl-4-methoxyoxaloylquinic acid, and 1-methoxyoxaloyl-4,5-dicaffeoylquinic acid (M(r) 602); 3-caffeoyl-4-feruloyl-5-methoxyoxaloylquinic acid and 3-feruloyl-4-methoxyoxaloyl-5-caffeoylquinic acid (M(r) 616); 1,5-dicaffeoyl-4-fumaroyl and 1,5-dicaffeoyl-3-fumaroylquinic acid (M(r) 614); 3,5-dicaffeoyl-1,4-dimethoxyoxaloylquinic acid (M(r) 688); and 1-methoxyoxaloyl-3,4,5-tricaffeoylquinic acid and 1,3,4-tricaffeoyl-5-methoxyoxaloylquinic acid (M(r) 764). All of the structures have been assigned on the basis of LC-MS(n) patterns of fragmentation, relative hydrophobicity, and analogy of fragmentation patterns if compared to caffeoylquinic acids. This is the first time when fumaric acid-containing chlorogenic acids are reported in nature.
Knödler, Matthias; Berardini, Nicolai; Kammerer, Dietmar R; Carle, Reinhold; Schieber, Andreas
2007-01-01
5-Alkyl- and 5-alkenylresorcinols, as well as their hydroxylated derivatives, were extracted from mango (Mangifera indica L.) peels, purified on polyamide and characterized by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (HPLC/APcI-MS) for the first time. Among the 15 compounds analyzed, 3 major and 12 minor C(15)-, C(17)-, and C(19)-substituted resorcinols and related analogues, showing varying degrees of unsaturation, were characterized by their specific fragmentation patterns in collision-induced dissociation experiments. This marks the first report on the occurrence of mono-, di-, and triunsaturated C(15)-homologues, saturated and triunsaturated C(17)-homologues, and mono- and diunsaturated C(19)-homologues in mango peels. Additionally, several hydroxylated C(15)- and C(17)-homologues, also not yet described in mango, and a C(14)-monoene, unique because of its even-numbered side chain, were tentatively identified on the basis of their fragmentation patterns. The results obtained in the present study indicate that HPLC-DAD-APcI-MS(n), combined with the newly developed solid-phase extraction, is a powerful tool for the analysis of alk(en)ylresorcinols and could therefore be used for their determination in various matrices.
Neumann, Steffen; Schmitt-Kopplin, Philippe
2017-01-01
Lipid identification is a major bottleneck in high-throughput lipidomics studies. However, tools for the analysis of lipid tandem MS spectra are rather limited. While the comparison against spectra in reference libraries is one of the preferred methods, these libraries are far from being complete. In order to improve identification rates, the in silico fragmentation tool MetFrag was combined with Lipid Maps and lipid-class specific classifiers which calculate probabilities for lipid class assignments. The resulting LipidFrag workflow was trained and evaluated on different commercially available lipid standard materials, measured with data dependent UPLC-Q-ToF-MS/MS acquisition. The automatic analysis was compared against manual MS/MS spectra interpretation. With the lipid class specific models, identification of the true positives was improved especially for cases where candidate lipids from different lipid classes had similar MetFrag scores by removing up to 56% of false positive results. This LipidFrag approach was then applied to MS/MS spectra of lipid extracts of the nematode Caenorhabditis elegans. Fragments explained by LipidFrag match known fragmentation pathways, e.g., neutral losses of lipid headgroups and fatty acid side chain fragments. Based on prediction models trained on standard lipid materials, high probabilities for correct annotations were achieved, which makes LipidFrag a good choice for automated lipid data analysis and reliability testing of lipid identifications. PMID:28278196
Proanthocyanidin screening by LC-ESI-MS of Portuguese red wines made with teinturier grapes.
Teixeira, Natércia; Azevedo, Joana; Mateus, Nuno; de Freitas, Victor
2016-01-01
Proanthocyanidins (PAs) are one of the most important polyphenolic compounds in wine. Among PAs, prodelphinidin (PD) dimers and trimers have not been widely detected in wines due to the lack of available commercial standards and the difficulty to detect and isolate them from natural sources. LC-ESI-MS (liquid chromatography-electrospray ionization-mass spectrometry) with the right chromatographic conditions has proven to be a powerful tool for PAs detection and identification in complex samples. This technique has been applied to an exhaustive study of PA composition of two Portuguese red wines made with teinturier grapes, especially for the identification of PD dimers and trimers. Tandem mass spectrometry (MS/MS) with ion trap provided additional information about the structures of these compounds through the fragmentation patterns of the pseudomolecular ions. A LC-ESI-MS method was optimized and 41 different compounds were found. Among them are included 8 PD dimers and 13 PD trimers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kelstrup, Christian D.; Frese, Christian; Heck, Albert J. R.; Olsen, Jesper V.; Nielsen, Michael L.
2014-01-01
Unambiguous identification of tandem mass spectra is a cornerstone in mass-spectrometry-based proteomics. As the study of post-translational modifications (PTMs) by means of shotgun proteomics progresses in depth and coverage, the ability to correctly identify PTM-bearing peptides is essential, increasing the demand for advanced data interpretation. Several PTMs are known to generate unique fragment ions during tandem mass spectrometry, the so-called diagnostic ions, which unequivocally identify a given mass spectrum as related to a specific PTM. Although such ions offer tremendous analytical advantages, algorithms to decipher MS/MS spectra for the presence of diagnostic ions in an unbiased manner are currently lacking. Here, we present a systematic spectral-pattern-based approach for the discovery of diagnostic ions and new fragmentation mechanisms in shotgun proteomics datasets. The developed software tool is designed to analyze large sets of high-resolution peptide fragmentation spectra independent of the fragmentation method, instrument type, or protease employed. To benchmark the software tool, we analyzed large higher-energy collisional activation dissociation datasets of samples containing phosphorylation, ubiquitylation, SUMOylation, formylation, and lysine acetylation. Using the developed software tool, we were able to identify known diagnostic ions by comparing histograms of modified and unmodified peptide spectra. Because the investigated tandem mass spectra data were acquired with high mass accuracy, unambiguous interpretation and determination of the chemical composition for the majority of detected fragment ions was feasible. Collectively we present a freely available software tool that allows for comprehensive and automatic analysis of analogous product ions in tandem mass spectra and systematic mapping of fragmentation mechanisms related to common amino acids. PMID:24895383
Brozinski, Jenny-Maria; Lahti, Marja; Oikari, Aimo; Kronberg, Leif
2011-06-01
The anti-inflammatory drug naproxen (NPX) has been found as a micropollutant in river water downstream the discharge points of wastewater treatment plants (WWTP). In this study, rainbow trout (Oncorhynchus mykiss) was exposed to NXP and the uptake and metabolism of the drug was studied. Following exposure through intraperitoneal injection (i.p., 0.5 mg NPX/100 g fish biomass) and through water (1.6 μg L(-1)), the bile was collected and analyzed with various LC-MS/MS methods. The identification of the formed metabolites in i.p. injected fish was based on the exact mass determinations by a time-of-flight mass analyzer (Q-TOF-MS) and on the studies of fragments and fragmentation patterns of precursor ions by an ion trap mass analyzer (IT-MS). No matter the exposure route, the main metabolites were found to be acyl glucuronides of NPX and of 6-O-desmethylnaproxen. Also, unmetabolized NPX was detected in the bile. The total bioconcentration factors (BCF(total-bile)) of NPX and the metabolites in the bile of fish exposed through water ranged from 500 to 2,300. The findings suggest that fish living downstream WWTPs may take up NPX and metabolize the compound. Consequently, NPX and its metabolites in bile can be used to monitor the exposure of fish to NPX.
Ciccimaro, Eugene; Ranasinghe, Asoka; D'Arienzo, Celia; Xu, Carrie; Onorato, Joelle; Drexler, Dieter M; Josephs, Jonathan L; Poss, Michael; Olah, Timothy
2014-12-02
Due to observed collision induced dissociation (CID) fragmentation inefficiency, developing sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) assays for CID resistant compounds is especially challenging. As an alternative to traditional LC-MS/MS, we present here a methodology that preserves the intact analyte ion for quantification by selectively filtering ions while reducing chemical noise. Utilizing a quadrupole-Orbitrap MS, the target ion is selectively isolated while interfering matrix components undergo MS/MS fragmentation by CID, allowing noise-free detection of the analyte's surviving molecular ion. In this manner, CID affords additional selectivity during high resolution accurate mass analysis by elimination of isobaric interferences, a fundamentally different concept than the traditional approach of monitoring a target analyte's unique fragment following CID. This survivor-selected ion monitoring (survivor-SIM) approach has allowed sensitive and specific detection of disulfide-rich cyclic peptides extracted from plasma.
Expert system for computer-assisted annotation of MS/MS spectra.
Neuhauser, Nadin; Michalski, Annette; Cox, Jürgen; Mann, Matthias
2012-11-01
An important step in mass spectrometry (MS)-based proteomics is the identification of peptides by their fragment spectra. Regardless of the identification score achieved, almost all tandem-MS (MS/MS) spectra contain remaining peaks that are not assigned by the search engine. These peaks may be explainable by human experts but the scale of modern proteomics experiments makes this impractical. In computer science, Expert Systems are a mature technology to implement a list of rules generated by interviews with practitioners. We here develop such an Expert System, making use of literature knowledge as well as a large body of high mass accuracy and pure fragmentation spectra. Interestingly, we find that even with high mass accuracy data, rule sets can quickly become too complex, leading to over-annotation. Therefore we establish a rigorous false discovery rate, calculated by random insertion of peaks from a large collection of other MS/MS spectra, and use it to develop an optimized knowledge base. This rule set correctly annotates almost all peaks of medium or high abundance. For high resolution HCD data, median intensity coverage of fragment peaks in MS/MS spectra increases from 58% by search engine annotation alone to 86%. The resulting annotation performance surpasses a human expert, especially on complex spectra such as those of larger phosphorylated peptides. Our system is also applicable to high resolution collision-induced dissociation data. It is available both as a part of MaxQuant and via a webserver that only requires an MS/MS spectrum and the corresponding peptides sequence, and which outputs publication quality, annotated MS/MS spectra (www.biochem.mpg.de/mann/tools/). It provides expert knowledge to beginners in the field of MS-based proteomics and helps advanced users to focus on unusual and possibly novel types of fragment ions.
Expert System for Computer-assisted Annotation of MS/MS Spectra*
Neuhauser, Nadin; Michalski, Annette; Cox, Jürgen; Mann, Matthias
2012-01-01
An important step in mass spectrometry (MS)-based proteomics is the identification of peptides by their fragment spectra. Regardless of the identification score achieved, almost all tandem-MS (MS/MS) spectra contain remaining peaks that are not assigned by the search engine. These peaks may be explainable by human experts but the scale of modern proteomics experiments makes this impractical. In computer science, Expert Systems are a mature technology to implement a list of rules generated by interviews with practitioners. We here develop such an Expert System, making use of literature knowledge as well as a large body of high mass accuracy and pure fragmentation spectra. Interestingly, we find that even with high mass accuracy data, rule sets can quickly become too complex, leading to over-annotation. Therefore we establish a rigorous false discovery rate, calculated by random insertion of peaks from a large collection of other MS/MS spectra, and use it to develop an optimized knowledge base. This rule set correctly annotates almost all peaks of medium or high abundance. For high resolution HCD data, median intensity coverage of fragment peaks in MS/MS spectra increases from 58% by search engine annotation alone to 86%. The resulting annotation performance surpasses a human expert, especially on complex spectra such as those of larger phosphorylated peptides. Our system is also applicable to high resolution collision-induced dissociation data. It is available both as a part of MaxQuant and via a webserver that only requires an MS/MS spectrum and the corresponding peptides sequence, and which outputs publication quality, annotated MS/MS spectra (www.biochem.mpg.de/mann/tools/). It provides expert knowledge to beginners in the field of MS-based proteomics and helps advanced users to focus on unusual and possibly novel types of fragment ions. PMID:22888147
USDA-ARS?s Scientific Manuscript database
Complementary b/y fragment ion pairs from post-source decay (PSD) of metastable YahO protein ion were evaluated for use in the calibration of MALDI-TOF-TOF for tandem mass spectrometry (MS/MS). The yahO gene from pathogenic Escherichia coli O157:H7 strain EDL933 was cloned into a pBAD18 plasmid vect...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petyuk, Vladislav A.; Mayampurath, Anoop M.; Monroe, Matthew E.
2009-12-16
Hybrid two-stage mass spectrometers capable of both highly accurate mass measurement and MS/MS fragmentation have become widely available in recent years and have allowed for sig-nificantly better discrimination between true and false MS/MS pep-tide identifications by applying relatively narrow windows for maxi-mum allowable deviations for parent ion mass measurements. To fully gain the advantage of highly accurate parent ion mass meas-urements, it is important to limit systematic mass measurement errors. The DtaRefinery software tool can correct systematic errors in parent ion masses by reading a set of fragmentation spectra, searching for MS/MS peptide identifications, then fitting a model that canmore » estimate systematic errors, and removing them. This results in a new fragmentation spectrum file with updated parent ion masses.« less
Combinatorial Labeling Method for Improving Peptide Fragmentation in Mass Spectrometry
NASA Astrophysics Data System (ADS)
Kuchibhotla, Bhanuramanand; Kola, Sankara Rao; Medicherla, Jagannadham V.; Cherukuvada, Swamy V.; Dhople, Vishnu M.; Nalam, Madhusudhana Rao
2017-06-01
Annotation of peptide sequence from tandem mass spectra constitutes the central step of mass spectrometry-based proteomics. Peptide mass spectra are obtained upon gas-phase fragmentation. Identification of the protein from a set of experimental peptide spectral matches is usually referred as protein inference. Occurrence and intensity of these fragment ions in the MS/MS spectra are dependent on many factors such as amino acid composition, peptide basicity, activation mode, protease, etc. Particularly, chemical derivatizations of peptides were known to alter their fragmentation. In this study, the influence of acetylation, guanidinylation, and their combination on peptide fragmentation was assessed initially on a lipase (LipA) from Bacillus subtilis followed by a bovine six protein mix digest. The dual modification resulted in improved fragment ion occurrence and intensity changes, and this resulted in the equivalent representation of b- and y-type fragment ions in an ion trap MS/MS spectrum. The improved representation has allowed us to accurately annotate the peptide sequences de novo. Dual labeling has significantly reduced the false positive protein identifications in standard bovine six peptide digest. Our study suggests that the combinatorial labeling of peptides is a useful method to validate protein identifications for high confidence protein inference. [Figure not available: see fulltext.
Quantitative mass spectrometry: an overview
NASA Astrophysics Data System (ADS)
Urban, Pawel L.
2016-10-01
Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.
Jutras, Philippe V.; Marusic, Carla; Lonoce, Chiara; Deflers, Carole; Goulet, Marie-Claire; Benvenuto, Eugenio; Donini, Marcello
2016-01-01
The overall quality of recombinant IgG antibodies in plants is dramatically compromised by host endogenous proteases. Different approaches have been developed to reduce the impact of endogenous proteolysis on IgGs, notably involving site-directed mutagenesis to eliminate protease-susceptible sites or the in situ mitigation of host protease activities to minimize antibody processing in the cell secretory pathway. We here characterized the degradation profile of H10, a human tumour-targeting monoclonal IgG, in leaves of Nicotiana benthamiana also expressing the human serine protease inhibitor α1-antichymotrypsin or the cysteine protease inhibitor tomato cystatin SlCYS8. Leaf extracts revealed consistent fragmentation patterns for the recombinant antibody regardless of leaf age and a strong protective effect of SlCYS8 in specific regions of the heavy chain domains. As shown using an antigen-binding ELISA and LC-MS/MS analysis of antibody fragments, SlCYS8 had positive effects on both the amount of fully-assembled antibody purified from leaf tissue and the stability of biologically active antibody fragments containing the heavy chain Fc domain. Our data confirm the potential of Cys protease inhibitors as convenient antibody-stabilizing expression partners to increase the quality of therapeutic antibodies in plant protein biofactories. PMID:27893815
NASA Astrophysics Data System (ADS)
Fragkaki, A. G.; Angelis, Y. S.; Tsantili-Kakoulidou, A.; Koupparis, M.; Georgakopoulos, C.
2009-08-01
Anabolic androgenic steroids (AAS) are included in the List of prohibited substances of the World Anti-Doping Agency (WADA) as substances abused to enhance athletic performance. Gas chromatography coupled to mass spectrometry (GC-MS) plays an important role in doping control analyses identifying AAS as their enolized-trimethylsilyl (TMS)-derivatives using the electron ionization (EI) mode. This paper explores the suitability of complementary GC-MS mass spectra and statistical analysis (principal component analysis, PCA and partial least squares-discriminant analysis, PLS-DA) to differentiate AAS as a function of their structural and conformational features expressed by their fragment ions. The results obtained showed that the application of PCA yielded a classification among the AAS molecules which became more apparent after applying PLS-DA to the dataset. The application of PLS-DA yielded a clear separation among the AAS molecules which were, thus, classified as: 1-ene-3-keto, 3-hydroxyl with saturated A-ring, 1-ene-3-hydroxyl, 4-ene-3-keto, 1,4-diene-3-keto and 3-keto with saturated A-ring anabolic steroids. The study of this paper also presents structurally diagnostic fragment ions and dissociation routes providing evidence for the presence of unknown AAS or chemically modified molecules known as designer steroids.
Ding, Hui; Ding, Wanjing; Ma, Zhongjun
2017-01-01
Two prenylated indole alkaloids were isolated from the ethyl acetate extracts of a marine-derived fungus Penicillium sp. NH-SL and one of them exhibited potent cytotoxic activity against mouse hepa 1c1c7 cells. In order to detect other bioactive analogs, we used liquid chromatogram tandem mass spectrometry (LC-MS/MS) to analyze the mass spectrometric characteristics of the isolated compounds as well as the crude extracts. As a result, three other analogs were detected, and their structures were deduced according to the similar fragmentation patterns. This is the first systematic report on the mass spectrometric characteristics of prenylated indole derivatives. PMID:28327529
2014-01-01
Structure elucidation of biological compounds is still a major bottleneck of untargeted LC-HRMS approaches in metabolomics research. The aim of the present study was to combine stable isotope labeling and tandem mass spectrometry for the automated interpretation of the elemental composition of fragment ions and thereby facilitate the structural characterization of metabolites. The software tool FragExtract was developed and evaluated with LC-HRMS/MS spectra of both native 12C- and uniformly 13C (U-13C)-labeled analytical standards of 10 fungal substances in pure solvent and spiked into fungal culture filtrate of Fusarium graminearum respectively. Furthermore, the developed approach is exemplified with nine unknown biochemical compounds contained in F. graminearum samples derived from an untargeted metabolomics experiment. The mass difference between the corresponding fragment ions present in the MS/MS spectra of the native and U-13C-labeled compound enabled the assignment of the number of carbon atoms to each fragment signal and allowed the generation of meaningful putative molecular formulas for each fragment ion, which in turn also helped determine the elemental composition of the precursor ion. Compared to laborious manual analysis of the MS/MS spectra, the presented algorithm marks an important step toward efficient fragment signal elucidation and structure annotation of metabolites in future untargeted metabolomics studies. Moreover, as demonstrated for a fungal culture sample, FragExtract also assists the characterization of unknown metabolites, which are not contained in databases, and thus exhibits a significant contribution to untargeted metabolomics research. PMID:24965664
Polet, Michael; Van Gansbeke, Wim; Van Eenoo, Peter; Deventer, Koen
2016-07-01
Identification of anabolic androgenic steroids (AAS) is a vital issue in doping control and toxicology, and searching for metabolites with longer detection times remains an important task. Recently, a gas chromatography chemical ionization triple quadrupole mass spectrometry (GC-CI-MS/MS) method was introduced, and CI, in comparison with electron ionization (EI), proved to be capable of increasing the sensitivity significantly. In addition, correlations between AAS structure and fragmentation behavior could be revealed. This enables the search for previously unknown but expected metabolites by selection of their predicted transitions. The combination of both factors allows the setup of an efficient approach to search for new metabolites. The approach uses selected reaction monitoring which is inherently more sensitive than full scan or precursor ion scan. Additionally, structural information obtained from the structure specific CI fragmentation pattern facilitates metabolite identification. The procedure was demonstrated by a methandienone case study. Its metabolites have been studied extensively in the past, and this allowed an adequate evaluation of the efficiency of the approach. Thirty three metabolites were detected, including all relevant previously discovered metabolites. In our study, the previously reported long-term metabolite (18-nor-17β-hydroxymethyl,17α-methyl-androst-1,4,13-trien-3-one) could be detected up to 26 days by using GC-CI-MS/MS. The study proves the validity of the approach to search for metabolites of new synthetic AAS and new long-term metabolites of less studied AAS and illustrates the increase in sensitivity by using CI. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Application of stored waveform ion modulation 2D-FTICR MS/MS to the analysis of complex mixtures.
Ross, Charles W; Simonsick, William J; Aaserud, David J
2002-09-15
Component identification of complex mixtures, whether they are from polymeric formulations or combinatorial synthesis, by conventional MS/MS techniques generally requires component separation by chromatography or mass spectrometry. An automated means of acquiring simultaneous MS/MS data from a complex mixture without prior separation is obtained from stored waveform ion modulation (SWIM) two-dimensional FTICR MS/MS. The technique applies a series of SWIFT excitation waveforms whose frequency domain magnitude spectrum is a sinusoid increasing in frequency from one waveform to the next. The controlled dissociation of the precursor ions produces an associated modulation of the product ion abundances. Fourier transformation of these abundances reveals the encoded modulation frequency from which connectivities of precursor and product ions are observed. The final result is total assignment of product ions for each precursor ion in a mixture from one automated experiment. We demonstrated the applicability of SWIM 2D-FTICR MS/MS to two diverse samples of industrial importance. We characterized structured polyester oligomers and products derived from combinatorial synthesis. Fragmentation pathways identified in standard serial ion isolation MS/MS experiments were observed for trimethylolpropane/methyl hexahydrophthalic anhydride. A 20-component sample derived from combinatorial synthesis was fragmented, and the template ion along with another key fragment ion was identified for each of the 20 components.
Ahn, K J; Kim, B J; Cho, S B
2017-08-01
Laser therapy is the treatment of choice in tattoo removal. However, the precise mechanisms of laser-tattoo pigment interactions remain to be evaluated. We evaluated the geometric patterns of laser-tattoo pigment particle interactions using a tattoo pigment-embedded tissue-mimicking (TM) phantom. A Q-switched (QS) neodymium-doped yttrium aluminum garnet laser was used at settings of 532-, 660-, and 1064-nm wavelengths, single-pulse and quick pulse-to-pulse treatment modes, and spot sizes of 4 and 7 mm. Most of the laser-tattoo interactions in the experimental conditions formed cocoon-shaped or oval photothermal and photoacoustic injury zones, which contained fragmented tattoo particles in various sizes depending on the conditions. In addition, a long-pulsed 755-nm alexandrite laser was used at a spot size of 6 mm and pulse widths of 3, 5, and 10 ms. The finer granular pattern of tattoo destruction was observed in TM phantoms treated with 3- and 5-ms pulse durations compared to those treated with a 10-ms pulse. We outlined various patterns of laser-tattoo pigment interactions in a tattoo-embedded TM phantom to predict macroscopic tattoo and surrounding tissue reactions after laser treatment for tattoo removal. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans.
Harvey, David J; Watanabe, Yasunori; Allen, Joel D; Rudd, Pauline; Pagel, Kevin; Crispin, Max; Struwe, Weston B
2018-06-01
Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics. Graphical Abstract ᅟ.
Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans
NASA Astrophysics Data System (ADS)
Harvey, David J.; Watanabe, Yasunori; Allen, Joel D.; Rudd, Pauline; Pagel, Kevin; Crispin, Max; Struwe, Weston B.
2018-04-01
Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics. [Figure not available: see fulltext.
Chen, Chu; Xue, Ying; Li, Qing-Miao; Wu, Yan; Liang, Jian; Qing, Lin-Sen
2018-04-01
Amorfrutins with a 2-hydroxybenzoic acid core structure are promising natural PPARγ agonists with potent antidiabetic activity. Owing to the complex matrix and low concentration in botanical material, the identification of unknown amorfrutins remains a challenge. In the present study, a combined application of UPLC-Q-TOF-MS and UPLC-QqQ-MS was developed to discover unknown amorfrutins from fruits of Amorpha fruticosa. First, reference compounds of amorfrutin A (AA), amorfrutin B (AB), and 2-carboxy-3,5-dihydroxy-4-geranylbibenzyl (AC) were analyzed using UPLC-Q-TOF-MS to reveal the characteristic fragment ions and the possible neutral loss. Second, the extract of A. fruticosa was separated and screened by UPLC-QqQ-MS using neutral loss scan to find out suspect compounds associated with the specified neutral fragment Δm/z 44. Third, the extract was re-analyzed by UPLC-Q-TOF-MS to obtain the exact mass of quasi-molecular ion and fragment ions of each suspect compound, and to subsequently calculate their corresponding molecular formulas. Finally, according to the molecular formula of suspect compound and its fragment ions and comparing with literature data, structure elucidation of four unidentified amorfrutins was achieved. The results indicated that the combination of QqQ-MS neutral loss scan and Q-TOF-MS molecular formula calculation was proven to be a powerful tool for unknown natural product identification, and this strategy provides an effective solution to discover natural products or metabolites of trace content. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Chen, Chu; Xue, Ying; Li, Qing-Miao; Wu, Yan; Liang, Jian; Qing, Lin-Sen
2018-02-01
Amorfrutins with a 2-hydroxybenzoic acid core structure are promising natural PPARγ agonists with potent antidiabetic activity. Owing to the complex matrix and low concentration in botanical material, the identification of unknown amorfrutins remains a challenge. In the present study, a combined application of UPLC-Q-TOF-MS and UPLC-QqQ-MS was developed to discover unknown amorfrutins from fruits of Amorpha fruticosa. First, reference compounds of amorfrutin A (AA), amorfrutin B (AB), and 2-carboxy-3,5-dihydroxy-4-geranylbibenzyl (AC) were analyzed using UPLC-Q-TOF-MS to reveal the characteristic fragment ions and the possible neutral loss. Second, the extract of A. fruticosa was separated and screened by UPLC-QqQ-MS using neutral loss scan to find out suspect compounds associated with the specified neutral fragment Δm/z 44. Third, the extract was re-analyzed by UPLC-Q-TOF-MS to obtain the exact mass of quasi-molecular ion and fragment ions of each suspect compound, and to subsequently calculate their corresponding molecular formulas. Finally, according to the molecular formula of suspect compound and its fragment ions and comparing with literature data, structure elucidation of four unidentified amorfrutins was achieved. The results indicated that the combination of QqQ-MS neutral loss scan and Q-TOF-MS molecular formula calculation was proven to be a powerful tool for unknown natural product identification, and this strategy provides an effective solution to discover natural products or metabolites of trace content.
Hage, Christoph; Ihling, Christian H; Götze, Michael; Schäfer, Mathias; Sinz, Andrea
2017-01-01
We have synthesized a homobifunctional amine-reactive cross-linking reagent, containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and a benzyl group (Bz), termed TEMPO-Bz-linker, to derive three-dimensional structural information of proteins. The aim for designing this novel cross-linker was to facilitate the mass spectrometric analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). In an initial study, we had investigated the fragmentation behavior of TEMPO-Bz-derivatized peptides upon collision activation in (+)-electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) experiments. In addition to the homolytic NO-C bond cleavage FRIPS pathway delivering the desired odd-electron product ions, an alternative heterolytic NO-C bond cleavage, resulting in even-electron product ions mechanism was found to be relevant. The latter fragmentation route clearly depends on the protonation of the TEMPO-Bz-moiety itself, which motivated us to conduct (-)-ESI-MS, CID-MS/MS, and MS 3 experiments of TEMPO-Bz-cross-linked peptides to further clarify the fragmentation behavior of TEMPO-Bz-peptide molecular ions. We show that the TEMPO-Bz-linker is highly beneficial for conducting FRIPS in negative ionization mode as the desired homolytic cleavage of the NO-C bond is the major fragmentation pathway. Based on characteristic fragments, the isomeric amino acids leucine and isoleucine could be discriminated. Interestingly, we observed pronounced amino acid side chain losses in cross-linked peptides if the cross-linked peptides contain a high number of acidic amino acids. Graphical Abstract ᅟ.
Jaiswal, Rakesh; Kuhnert, Nikolai
2011-01-01
Burdock (Arcticum lappa L.) roots are used in folk medicine and also as a vegetable in Asian countries especially Japan, Korea, and Thailand. We have used LC-MS(n) (n = 2-4) to detect and characterize in burdock roots 15 quantitatively minor fumaric, succinic, and malic acid-containing chlorogenic acids, 11 of them not previously reported in nature. These comprise 3-succinoyl-4,5-dicaffeoyl or 1-succinoyl-3,4-dicaffeoylquinic acid, 1,5-dicaffeoyl-3-succinoylquinic acid, 1,5-dicaffeoyl-4-succinoylquinic acid, and 3,4-dicaffeoyl-5-succinoylquinic acid (M(r) 616); 1,3-dicaffeoyl-5-fumaroylquinic acid and 1,5-dicaffeoyl-4-fumaroylquinic acid (M(r) 614); 1,5-dicaffeoyl-3-maloylquinic acid, 1,4-dicaffeoyl-3-maloylquinic acid, and 1,5-dicaffeoyl-4-maloylquinic acid (M(r) 632); 1,3,5-tricaffeoyl-4-succinoylquinic acid (M(r) 778); 1,5-dicaffeoyl-3,4-disuccinoylquinic acid (M(r) 716); 1,5-dicaffeoyl-3-fumaroyl-4-succinoylquinic acid and 1-fumaroyl-3,5-dicaffeoyl-4-succinoylquinic acid (M(r) 714); dicaffeoyl-dimaloylquinic acid (M(r) 748); and 1,5-dicaffeoyl-3-succinoyl-4-dimaloylquinic acid (M(r) 732). All the structures have been assigned on the basis of LC-MS(n) patterns of fragmentation, relative hydrophobicity, and analogy of fragmentation patterns if compared to caffeoylquinic acids.
Rathore, Mangal S; Jha, Bhavanath
2016-03-01
The present investigation aimed to evaluate the degree and pattern of DNA methylation using methylation-sensitive AFLP (MS-AFLP) markers in genetically stable in vitro regenerates of Jatropha curcas L.. The genetically stable in vitro regenerates were raised through direct organogenesis via enhanced axillary shoot bud proliferation (Protocol-1) and in vitro-derived leaf regeneration (Protocol-2). Ten selective combinations of MS-AFLP primers produced 462 and 477 MS-AFLP bands in Protocol-1 (P-1) and Protocol-2 (P-2) regenerates, respectively. In P-1 regenerates, 15.8-31.17 % DNA was found methylated with an average of 25.24 %. In P-2 regenerates, 15.93-32.7 % DNA was found methylated with an average of 24.11 %. Using MS-AFLP in P-1 and P-2 regenerates, 11.52-25.53 % and 13.33-25.47 % polymorphism in methylated DNA was reported, respectively. Compared to the mother plant, P-1 regenerates showed hyper-methylation while P-2 showed hypo-methylation. The results clearly indicated alternation in degree and pattern of DNA methylation; hence, epigenetic instability in the genetically stable in vitro regenerates of J. curcas, developed so far using two different regeneration systems and explants of two different origins. The homologous nucleotide fragments in genomes of P-1 and P-2 regenerates showing methylation re-patterning might be involved in immediate adaptive responses and developmental processes through differential regulation of transcriptome under in vitro conditions.
Zhang, Qingqing; Huo, Mengqi; Zhang, Yanling; Qiao, Yanjiang; Gao, Xiaoyan
2018-06-01
High-resolution mass spectrometry (HRMS) provides a powerful tool for the rapid analysis and identification of compounds in herbs. However, the diversity and large differences in the content of the chemical constituents in herbal medicines, especially isomerisms, are a great challenge for mass spectrometry-based structural identification. In the current study, a new strategy for the structural characterization of potential new phthalide compounds was proposed by isomer structure predictions combined with a quantitative structure-retention relationship (QSRR) analysis using phthalide compounds in Chuanxiong as an example. This strategy consists of three steps. First, the structures of phthalide compounds were reasonably predicted on the basis of the structure features and MS/MS fragmentation patterns: (1) the collected raw HRMS data were preliminarily screened by an in-house database; (2) the MS/MS fragmentation patterns of the analogous compounds were summarized; (3) the reported phthalide compounds were identified, and the structures of the isomers were reasonably predicted. Second, the QSRR model was established and verified using representative phthalide compound standards. Finally, the retention times of the predicted isomers were calculated by the QSRR model, and the structures of these peaks were rationally characterized by matching retention times of the detected chromatographic peaks and the predicted isomers. A multiple linear regression QSRR model in which 6 physicochemical variables were screened was built using 23 phthalide standards. The retention times of the phthalide isomers in Chuanxiong were well predicted by the QSRR model combined with reasonable structure predictions (R 2 =0.955). A total of 81 peaks were detected from Chuanxiong and assigned to reasonable structures, and 26 potential new phthalide compounds were structurally characterized. This strategy can improve the identification efficiency and reliability of homologues in complex materials. Copyright © 2018 Elsevier B.V. All rights reserved.
Krog, Jesper S; Español, Yaiza; Giessing, Anders M B; Dziergowska, Agnieszka; Malkiewicz, Andrzej; Ribas de Pouplana, Lluís; Kirpekar, Finn
2011-12-01
tRNA is the most heavily modified of all RNA types, with typically 10-20% of the residues being post-transcriptionally altered. Unravelling the modification pattern of a tRNA is a challenging task; there are 92 currently known tRNA modifications, many of which are chemically similar. Furthermore, the tRNA has to be investigated with single-nucleotide resolution in order to ensure complete mapping of all modifications. In the present work, we characterized tRNA(Lys)(UUU) from Trypanosoma brucei, and provide a complete overview of its post-transcriptional modifications. The first step was MALDI-TOF MS of two independent digests of the tRNA, with RNase A and RNase T1, respectively. This revealed digestion products harbouring mass-changing modifications. Next, the modifications were mapped at the nucleotide level in the RNase products by tandem MS. Comparison with the sequence of the unmodified tRNA revealed the modified residues. The modifications were further characterized at the nucleoside level by chromatographic retention time and fragmentation pattern upon higher-order tandem MS. Phylogenetic comparison with modifications in tRNA(Lys) from other organisms was used through the entire analysis. We identified modifications on 12 nucleosides in tRNA(Lys)(UUU), where U47 exhibited a novel modification, 3-(3-amino-3-carboxypropyl)-5,6-dihydrouridine, based on identical chromatographic retention and MS fragmentation as the synthetic nucleoside. A37 was observed in two versions: a minor fraction with the previously described 2-methylthio-N(6)-threonylcarbamoyl-modification, and a major fraction with A37 being modified by a 294.0-Da moiety. The latter product is the largest adenosine modification reported so far, and we discuss its nature and origin. © 2011 The Authors Journal compilation © 2011 FEBS.
He, Min; Wu, Hai; Nie, Juan; Yan, Pan; Yang, Tian-Biao; Yang, Zhi-Yu; Pei, Rui
2017-11-30
In this study, Liquid Chromatography (LC) separation combined with quadrupole-Time-Of-Flight Mass Spectrometry (qTOF-MS) detection was used to analyze the characteristic ions of the flavonoids from Liang-wai Gan Cao (Radix Glycyrrhizae uralensis). First, accurate mass measurement and isotope curve optimization could provide reliable molecular prediction after noise deduction, baseline calibration and "ghost peak recognition". Thus, some spectral features in the LC-MS data could be clearly explained. Secondly, the chemical structure of flavonoids was deduced by MS/MS fragment ions, and the in-silico spectra by MS-FINDER program provided strong support for overcoming the bottleneck of phytochemical identification. For a predicted formula and experimental MS/MS spectrum, the MS-FINDER program could sort the candidate compounds in the public database based on a comprehensive weighted score, and we took the first 20 reliable compounds to seek the target compound in an in-house database. Certainly, those fragmentation pathways could also be deduced and described as Retro-Diels-Alder (RDA) fragmentation reaction, losses of C 4 H 8 , C 5 H 8 , CH 3 , CO, CO 2 and others. Accordingly, 63 flavonoids were identified, and their in-silico bioactivity were clearly disclosed by some bioinformatics tools. In this experiment, the flavonoids obtained by the four extraction processes were tested by LC-qTOF-MS. We looked for possible Q-markers from these data matrices and then quantified them; their similarities/differences were also described. The results also indicated that the Macroporous Adsorption Resins (MARs) purification is a low cost, environmentally friendly and effective approach. Copyright © 2017 Elsevier B.V. All rights reserved.
Gosetti, Fabio; Chiuminatto, Ugo; Mazzucco, Eleonora; Calabrese, Giorgio; Gennaro, Maria Carla; Marengo, Emilio
2013-01-15
The study deals with the identification of the degradation products formed by simulated sunlight photoirradiation in a commercial beverage that contains Allura Red AC dye. An UHPLC-MS/MS method, that makes use of hybrid triple quadrupole/linear ion trap, was developed. In the identification step the software tool information dependent acquisition (IDA) was used to automatically obtain information about the species present and to build a multiple reaction monitoring (MRM) method with the MS/MS fragmentation pattern of the species considered. The results indicate that the identified degradation products are formed from side-reactions and/or interactions among the dye and other ingredients present in the beverage (ascorbic acid, citric acid, sucrose, aromas, strawberry juice, and extract of chamomile flowers). The presence of aromatic amine or amide functionalities in the chemical structures proposed for the degradation products might suggest potential hazards to consumer health. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dissecting the dynamic conformations of the metamorphic protein lymphotactin.
Harvey, Sophie R; Porrini, Massimiliano; Konijnenberg, Albert; Clarke, David J; Tyler, Robert C; Langridge-Smith, Patrick R R; MacPhee, Cait E; Volkman, Brian F; Barran, Perdita E
2014-10-30
A mass spectrometer provides an ideal laboratory to probe the structure and stability of isolated protein ions. Interrogation of each discrete mass/charge-separated species enables the determination of the intrinsic stability of a protein fold, gaining snapshots of unfolding pathways. In solution, the metamorphic protein lymphotactin (Ltn) exists in equilibrium between two distinct conformations, a monomeric (Ltn10) and a dimeric (Ltn40) fold. Here, we use electron capture dissociation (ECD) and drift tube ion mobility-mass spectrometry (DT IM-MS) to analyze both forms and use molecular dynamics (MD) to consider how the solution fold alters in a solvent-free environment. DT IM-MS reveals significant conformational flexibility for the monomer, while the dimer appears more conformationally restricted. These findings are supported by MD calculations, which reveal how salt bridges stabilize the conformers in vacuo. Following ECD experiments, a distinctive fragmentation pattern is obtained for both the monomer and dimer. Monomer fragmentation becomes more pronounced with increasing charge state especially in the disordered regions and C-terminal α-helix in the solution fold. Lower levels of fragmentation are seen in the β-sheet regions and in regions that contain salt bridges, identified by MD simulations. The lowest charge state of the dimer for which we obtain ECD data ([D+9H](9+)) exhibits extensive fragmentation with no relationship to the solution fold and has a smaller collision cross section (CCS) than charge states 10-13+, suggesting a "collapsed" encounter complex. Other charge states of the dimer, as for the monomer, are resistant to fragmentation in regions of β-sheets in the solution fold. This study provides evidence for preservation and loss of global fold and secondary structural elements, providing a tantalizing glimpse into the power of the emerging field of native top-down mass spectrometry.
Pavlic, Marion; Libiseller, Kathrin; Oberacher, Herbert
2006-09-01
The potential of the combined use of ESI-QqTOF-MS and ESI-QqTOF-MS/MS with mass-spectral library search for the identification of therapeutic and illicit drugs has been evaluated. Reserpine was used for standardizing experimental conditions and for characterization of the performance of the applied mass spectrometric system. Experiments revealed that because of the mass accuracy, the stability of calibration, and the reproducibility of fragmentation, the QqTOF mass spectrometer is an appropriate platform for establishment of a tandem-mass-spectral library. Three-hundred and nineteen substances were used as reference samples to build the spectral library. For each reference compound, product-ion spectra were acquired at ten different collision-energy values between 5 eV and 50 eV. For identification of unknown compounds, a library search algorithm was developed. The closeness of matching between a measured product-ion spectrum and a spectrum stored in the library was characterized by a value called "match probability", which took into account the number of matched fragment ions, the number of fragment ions observed in the two spectra, and the sum of the intensity differences calculated for matching fragments. A large value for the match probability indicated a close match between the measured and the reference spectrum. A unique feature of the library search algorithm-an implemented spectral purification option-enables characterization of multi-contributor fragment-ion spectra. With the aid of this software feature, substances comprising only 1.0% of the total amount of binary mixtures were unequivocally assigned, in addition to the isobaric main contributors. The spectral library was successfully applied to the characterization of 39 forensic casework samples.
Poyer, Salomé; Lopin-Bon, Chrystel; Jacquinet, Jean-Claude; Salpin, Jean-Yves; Daniel, Régis
2017-12-15
Chondroitin sulfate (CS) glycosaminoglycans are bioactive sulfated polysaccharides comprising repeating units of uronic acid and N-acetyl galactose sulfated at various positions. The optimal length and sulfation pattern of the CS bioactive sequences remain elusive so that structure-activity relationships cannot be easily established. Development of efficient analytical methods allowing the differentiation of the various sulfation patterns of CS sequences is therefore of particular importance to correlate their biological functions to the sulfation pattern. Discrimination of different oligomers (dp2 to dp6) of synthetic chondroitin sulfate isomers was evaluated by electrospray ionization tandem mass spectrometry (ESI-MS/MS) in the negative-ion mode from deprotonated and alkali adduct species. In addition, ion mobility mass spectrometry (IMS-MS) was used to study the influence of both the degree of polymerization and sulfate group location on the gas-phase conformation of CS oligomers. ESI-MS/MS spectra of chondroitin sulfate isomers show characteristic product ions exclusively from alkali adduct species (Li, Na, K and Cs). Whatever the alkali adducts studied, MS/MS of chondroitin oligosaccharides sulfated at position 6 yields a specific product ion at m/z 139 while CS oligosaccharides sulfated at position 4 show a specific product ion at m/z 154. Being observed for the different CS oligomers di-, tetra- and hexasaccharides, these fragment ions are considered as diagnostic ions for chondroitin 6-O-sulfate and chondroitin 4-O-sulfate, respectively. IMS-MS experiments reveal that collision cross-sections (CCS) of CS oligomers with low charge states evolved linearly with degrees of polymerization indicating a similar gas-phase conformation. This study allows the fast and unambiguous differentiation of CS isomers sulfated at position 6 or 4 for both saturated and unsaturated analogues from MS/MS experiments. In addition, the CCS linear evolution of CS oligomers in function of the degree of polymerization indicates that no folding occurs even for hexasaccharides. Copyright © 2017 John Wiley & Sons, Ltd.
Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew
2014-06-01
We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.
NASA Astrophysics Data System (ADS)
Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew
2014-06-01
We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.
Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy.
Quinn, Robert A; Nothias, Louis-Felix; Vining, Oliver; Meehan, Michael; Esquenazi, Eduardo; Dorrestein, Pieter C
2017-02-01
Molecular networking is a tandem mass spectrometry (MS/MS) data organizational approach that has been recently introduced in the drug discovery, metabolomics, and medical fields. The chemistry of molecules dictates how they will be fragmented by MS/MS in the gas phase and, therefore, two related molecules are likely to display similar fragment ion spectra. Molecular networking organizes the MS/MS data as a relational spectral network thereby mapping the chemistry that was detected in an MS/MS-based metabolomics experiment. Although the wider utility of molecular networking is just beginning to be recognized, in this review we highlight the principles behind molecular networking and its use for the discovery of therapeutic leads, monitoring drug metabolism, clinical diagnostics, and emerging applications in precision medicine. Copyright © 2016. Published by Elsevier Ltd.
Potential Energy Surfaces and Dynamics for Energetic Ionic Liquids
2012-04-09
advantage of such architectures12. Very recently, we have implemented the FMO method on the BG/ P system at Argonne National Laboratory, demonstrating that...Molecular Orbital Method”, J. Comp. Theoret. Chem., 6, 1 (2010). 4. T. Nagata, D . Fedorov, K. Kitaura, and M.S. Gordon, “A Combined Effective Fragment...Chem., 3, 177 (2007). 6. T. Nagata, D . Fedorov, K. Kitaura, and M.S. Gordon, “A Combined Effective Fragment Potential - Fragment Molecular Orbital
Matsuo, Yosuke; Takahara, Kentaro; Sago, Yuki; Kushiro, Masayo; Nagashima, Hitoshi; Nakagawa, Hiroyuki
2015-09-16
The existence of glucose conjugates of fumonisin B₂ (FB₂) and fumonisin B₃ (FB₃) in corn powder was confirmed for the first time. These "bound-fumonisins" (FB₂ and FB₃ bound to glucose) were identified as N-(1-deoxy-D-fructos-1-yl) fumonisin B₂ (NDfrc-FB₂) and N-(1-deoxy-D-fructos-1-yl) fumonisin B₃ (NDfrc-FB₃) respectively, based on the accurate mass measurements of characteristic ions and fragmentation patterns using high-resolution liquid chromatography-Orbitrap mass spectrometry (LC-Orbitrap MS) analysis. Treatment on NDfrc-FB₂ and NDfrc-FB₃ with the o-phthalaldehyde (OPA) reagent also supported that D-glucose binding to FB₂ and FB₃ molecules occurred to their primary amine residues.
Gates, Paul J; Lopes, Norberto P; Pinto, Emani; Colepicolo, Pio; Cardozo, Karina H M
2011-01-01
This study reports the application of "double isolation" in sustained off-resonance irradiation collisionally-induced dissociation tandem mass spectrometry (SORI-CID-MS/MS) to remove radio- frequency (RF) fragment ions of very close mass isobaric ions (0.02 m/z apart). Analyses were performed with a fraction of a biological extract isolated from a macroalgae containing the mycosporine-like amino acid asterina-330. Direct isolation of the precursor ion by narrowing the isolation window proved ineffective as it impinged upon the required ion thus substantially reducing its intensity. By increasing the correlated sweep time, ejection efficiency of the isolation was improved, but caused the unwanted side-effect of RF fragmentation of labile ions. Finally, by skipping the ion activation step and performing a second isolation (in the MS(3) module) the RF fragments from the first isolation were removed leaving a very pure isolation of the required precursor ion and allowed a very clean CID fragmentation. We demonstrated that the m/z 272.1351 ion is derived from the loss of NH(3) from m/z 289.1620 isobaric impurity and is not related to asterina-330. This application represents a powerful tool to remove unwanted ions in the MS/MS spectrum that result from fragmentation of isobaric ions.
Software Analysis of Uncorrelated MS1 Peaks for Discovery of Post-Translational Modifications.
Pascal, Bruce D; West, Graham M; Scharager-Tapia, Catherina; Flefil, Ricardo; Moroni, Tina; Martinez-Acedo, Pablo; Griffin, Patrick R; Carvalloza, Anthony C
2015-12-01
The goal in proteomics to identify all peptides in a complex mixture has been largely addressed using various LC MS/MS approaches, such as data dependent acquisition, SRM/MRM, and data independent acquisition instrumentation. Despite these developments, many peptides remain unsequenced, often due to low abundance, poor fragmentation patterns, or data analysis difficulties. Many of the unidentified peptides exhibit strong evidence in high resolution MS(1) data and are frequently post-translationally modified, playing a significant role in biological processes. Proteomics Workbench (PWB) software was developed to automate the detection and visualization of all possible peptides in MS(1) data, reveal candidate peptides not initially identified, and build inclusion lists for subsequent MS(2) analysis to uncover new identifications. We used this software on existing data on the autophagy regulating kinase Ulk1 as a proof of concept for this method, as we had already manually identified a number of phosphorylation sites Dorsey, F. C. et al (J. Proteome. Res. 8(11), 5253-5263 (2009)). PWB found all previously identified sites of phosphorylation. The software has been made freely available at http://www.proteomicsworkbench.com . Graphical Abstract ᅟ.
Abad-García, B; Garmón-Lobato, S; Berrueta, L A; Gallo, B; Vicente, F
2009-07-01
Fifteen flavonoid O-diglycosides with different interglycosidic linkage isomery and glycosylation position have been studied in order to analyze their fragmentation patterns. Initial separation was carried out using high performance liquid chromatography with diode array detection (HPLC/DAD) coupled to an electrospray ionization (ESI) interface and a triple quadrupole mass spectrometer. Some useful differences in their MS spectra have been found and discussed. As it has already been reported, [Y*]+/[Y0]+ ratio for flavanones and [Y1]+/[Y0]+ ratio for other flavonoids is specific for each isomeric interglycosidic linkage. In this work it has also been observed that the abundance of these ions is dependent on the position of glycosylation. On the basis of these differences, systematic guidelines for our experimental conditions have been proposed for the differentiation of not only isomeric interglycosidic linkage but also glycosylation position using collision-induced dissociation MS/MS (CID-MS/MS) spectra in positive mode. These results have been successfully applied for the characterization of three diglycosyl flavonoids found in Citrus fruit juices and these conclusions have also been extrapolated for characterizing two triglycosides in the same fruits. Copyright 2009 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Ivanova, Bojidarka; Spiteller, Michael
2017-12-01
The present paper deals with quantitative kinetics and thermodynamics of collision induced dissociation (CID) reactions of piperazines under different experimental conditions together with a systematic description of effect of counter-ions on common MS fragment reactions of piperazines; and intra-molecular effect of quaternary cyclization of substituted piperazines yielding to quaternary salts. There are discussed quantitative model equations of rate constants as well as free Gibbs energies of series of m-independent CID fragment processes in GP, which have been evidenced experimentally. Both kinetic and thermodynamic parameters are also predicted by computational density functional theory (DFT) and ab initio both static and dynamic methods. The paper examines validity of Maxwell-Boltzmann distribution to non-Boltzmann CID processes in quantitatively as well. The experiments conducted within the latter framework yield to an excellent correspondence with theoretical quantum chemical modeling. The important property of presented model equations of reaction kinetics is the applicability in predicting unknown and assigning of known mass spectrometric (MS) patterns. The nature of "GP" continuum of CID-MS coupled scheme of measurements with electrospray ionization (ESI) source is discussed, performing parallel computations in gas-phase (GP) and polar continuum at different temperatures and ionic strengths. The effect of pressure is presented. The study contributes significantly to methodological and phenomenological developments of CID-MS and its analytical implementations for quantitative and structural analyses. It also demonstrates great prospective of a complementary application of experimental CID-MS and computational quantum chemistry studying chemical reactivity, among others. To a considerable extend this work underlies the place of computational quantum chemistry to the field of experimental analytical chemistry in particular highlighting the structural analysis.
Native Mass Spectrometry in Fragment-Based Drug Discovery.
Pedro, Liliana; Quinn, Ronald J
2016-07-28
The advent of native mass spectrometry (MS) in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein-ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD). Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.
Yang, Shenshen; Tian, Meng; Yuan, Lei; Deng, Haoyue; Wang, Lei; Li, Aizhu; Hou, Zhiguo; Li, Yubo
2016-01-01
Evodia rutaecarpa (Juss.) Benth. (Rutaceae) dried ripe fruit is used for dispelling colds, soothing liver, and analgesia. Pharmacological research has proved that alkaloids are the main active ingredients of E. rutaecarpa. This study aimed to rapidly classify and identify the alkaloids constituents of E. rutaecarpa by using UPLC-Q-TOF-MS coupled with diagnostic fragments. Furthermore, the effects of the material base of E. rutaecarpa bioactive ingredients in vivo were examined such that the transitional components in the blood of rats intragastrically given E. rutaecarpa were analyzed and identified. In this study, the type of alcohol extraction of E. rutaecarpa and the corresponding blood sample were used for the analysis by UPLC-Q-TOF-MS in positive ion mode. After reviewing much of the literature and collected information on the fragments, we obtained some diagnostic fragments of the alkaloids. Combining the diagnostic fragments with the technology of UPLC-Q-TOF-MS, we identified the compounds of E. rutaecarpa and blood samples and compared the ion fragment information with that of the alkaloids in E. rutaecarpa. A total of 17 alkaloids components and 6 blood components were identified. The proposed method was rapid, accurate, and sensitive. Therefore, this technique can reliably and practically analyze the chemical constituents in traditional Chinese medicine (TCM). PMID:27446630
Structural Feature Ions for Distinguishing N- and O-Linked Glycan Isomers by LC-ESI-IT MS/MS
NASA Astrophysics Data System (ADS)
Everest-Dass, Arun V.; Abrahams, Jodie L.; Kolarich, Daniel; Packer, Nicolle H.; Campbell, Matthew P.
2013-06-01
Glycomics is the comprehensive study of glycan expression in an organism, cell, or tissue that relies on effective analytical technologies to understand glycan structure-function relationships. Owing to the macro- and micro-heterogeneity of oligosaccharides, detailed structure characterization has required an orthogonal approach, such as a combination of specific exoglycosidase digestions, LC-MS/MS, and the development of bioinformatic resources to comprehensively profile a complex biological sample. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) has emerged as a key tool in the structural analysis of oligosaccharides because of its high sensitivity, resolution, and robustness. Here, we present a strategy that uses LC-ESI-MS/MS to characterize over 200 N- and O-glycans from human saliva glycoproteins, complemented by sequential exoglycosidase treatment, to further verify the annotated glycan structures. Fragment-specific substructure diagnostic ions were collated from an extensive screen of the literature available on the detailed structural characterization of oligosaccharides and, together with other specific glycan structure feature ions derived from cross-ring and glycosidic-linkage fragmentation, were used to characterize the glycans and differentiate isomers. The availability of such annotated mass spectrometric fragmentation spectral libraries of glycan structures, together with such substructure diagnostic ions, will be key inputs for the future development of the automated elucidation of oligosaccharide structures from MS/MS data.
Genetic and epigenetic variation in Spartina alterniflora following the Deepwater Horizon oil spill.
Robertson, Marta; Schrey, Aaron; Shayter, Ashley; Moss, Christina J; Richards, Christina
2017-09-01
Catastrophic events offer unique opportunities to study rapid population response to stress in natural settings. In concert with genetic variation, epigenetic mechanisms may allow populations to persist through severe environmental challenges. In 2010, the Deepwater Horizon oil spill devastated large portions of the coastline along the Gulf of Mexico. However, the foundational salt marsh grass, Spartina alterniflora , showed high resilience to this strong environmental disturbance. Following the spill, we simultaneously examined the genetic and epigenetic structure of recovering populations of S. alterniflora to oil exposure. We quantified genetic and DNA methylation variation using amplified fragment length polymorphism and methylation sensitive fragment length polymorphism (MS-AFLP) to test the hypothesis that response to oil exposure in S. alterniflora resulted in genetically and epigenetically based population differentiation. We found high genetic and epigenetic variation within and among sites and found significant genetic differentiation between contaminated and uncontaminated sites, which may reflect nonrandom mortality in response to oil exposure. Additionally, despite a lack of genomewide patterns in DNA methylation between contaminated and uncontaminated sites, we found five MS-AFLP loci (12% of polymorphic MS-AFLP loci) that were correlated with oil exposure. Overall, our findings support genetically based differentiation correlated with exposure to the oil spill in this system, but also suggest a potential role for epigenetic mechanisms in population differentiation.
NASA Astrophysics Data System (ADS)
Kleber, M.; Liu, S. Y.; Keiluweit, M.; Nico, P. S.; Ahmed, M.
2012-12-01
High radiocarbon ages (centennial to millennial) of soil organic matter tend to occur in soils with high proportions of reactive, hydroxylated minerals, including andisols, spodosols and oxisols. This indicates that the most reactive mineral surfaces, i.e. those that should in theory be particularly efficient in promoting transformations of organic matter are among the most powerful in protecting organic matter against decomposition on long time scales. The easiest way to reconcile this apparent paradox is to assume that organic compounds become fragmented upon contact with minerals, thereby generating fragmentation products which in turn are more likely to become preserved within the soil fabric than their precursor molecules. Here we use Vacuum Ultraviolet - Post Ionisation -Mass Spectroscopy (VUV-PI-MS) in combination with thermal and laser desorption to show how organic compounds undergo complete fragmentation upon contact with mineral surfaces. Fragmentation patterns were generally different between oxidic minerals and minerals belonging to the phyllosilicate group. Also, desorption from phyllosilicates generally required significantly higher energies than desorption from oxide phases. Our investigation suggests that, at low energy levels, breakdown and fragmentation is a probably major outcome of mineral-organic interactions. This observation supports a new model for the role of mineral-organic interactions in the preservation of organic compounds in the environment: mineral-induced fragmentation as a prerequisite for long term protection against decomposition.
Politi, Lucia; Vignali, Claudia; Polettini, Aldo
2007-01-01
A liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis of biological fluids (blood, urine, gastric content, and bile) collected at autopsy in a case of suspected 2,4-dinitrophenol (DNP) fatal poisoning allowed the determination of DNP and its known metabolites (2-amino-4-nitrophenol and nitro-4-aminophenol). The tentative identification of three conjugated metabolites (DNP glucuronide, DNP sulfate, and 2-amino-4-nitrophenol glucuronide) could be made on the basis of their pseudomolecular ion, isotopic and fragmentation patterns, and retention characteristics. Another DNP metabolite reported in the literature, 2,4-diaminophenol, was not detected in the samples. Postmortem blood concentrations were 48.4 mg/L for DNP and 1.2 mg/L for 2-amino-4-nitrophenol. Gas chromatography-MS screening and quantification in postmortem blood revealed the presence of toxic concentrations of citalopram and its desmethylated metabolite (0.58 and 0.40 mg/L, respectively) and therapeutic or lower than therapeutic levels of olanzapine (0.04 mg/L), desalkylflurazepam (0.02 mg/L), and nordazepam (0.01 mg/L). Based on LC-MS-MS results and on available literature data on DNP poisonings, it was concluded that DNP poisoning played a contributing role, together with citalopram, in the cause of death.
Predicting intensity ranks of peptide fragment ions.
Frank, Ari M
2009-05-01
Accurate modeling of peptide fragmentation is necessary for the development of robust scoring functions for peptide-spectrum matches, which are the cornerstone of MS/MS-based identification algorithms. Unfortunately, peptide fragmentation is a complex process that can involve several competing chemical pathways, which makes it difficult to develop generative probabilistic models that describe it accurately. However, the vast amounts of MS/MS data being generated now make it possible to use data-driven machine learning methods to develop discriminative ranking-based models that predict the intensity ranks of a peptide's fragment ions. We use simple sequence-based features that get combined by a boosting algorithm into models that make peak rank predictions with high accuracy. In an accompanying manuscript, we demonstrate how these prediction models are used to significantly improve the performance of peptide identification algorithms. The models can also be useful in the design of optimal multiple reaction monitoring (MRM) transitions, in cases where there is insufficient experimental data to guide the peak selection process. The prediction algorithm can also be run independently through PepNovo+, which is available for download from http://bix.ucsd.edu/Software/PepNovo.html.
Predicting Intensity Ranks of Peptide Fragment Ions
Frank, Ari M.
2009-01-01
Accurate modeling of peptide fragmentation is necessary for the development of robust scoring functions for peptide-spectrum matches, which are the cornerstone of MS/MS-based identification algorithms. Unfortunately, peptide fragmentation is a complex process that can involve several competing chemical pathways, which makes it difficult to develop generative probabilistic models that describe it accurately. However, the vast amounts of MS/MS data being generated now make it possible to use data-driven machine learning methods to develop discriminative ranking-based models that predict the intensity ranks of a peptide's fragment ions. We use simple sequence-based features that get combined by a boosting algorithm in to models that make peak rank predictions with high accuracy. In an accompanying manuscript, we demonstrate how these prediction models are used to significantly improve the performance of peptide identification algorithms. The models can also be useful in the design of optimal MRM transitions, in cases where there is insufficient experimental data to guide the peak selection process. The prediction algorithm can also be run independently through PepNovo+, which is available for download from http://bix.ucsd.edu/Software/PepNovo.html. PMID:19256476
Crevelin, Eduardo J; Possato, Bruna; Lopes, João L C; Lopes, Norberto P; Crotti, Antônio E M
2017-04-04
The potential of copper(II) to induce gas-phase fragmentation reactions in macrotetrolides, a class of polyether ionophores produced by Streptomyces species, was investigated by accurate-mass electrospray tandem mass spectrometry (ESI-MS/MS). Copper(II)/copper(I) transition directly induced production of diagnostic acylium ions with m/z 199, 185, 181, and 167 from α-cleavages of [macrotetrolides + Cu] 2+ . A UPLC-ESI-MS/MS methodology based on the precursor ion scan of these acylium ions was developed and successfully used to identify isodinactin (1), trinactin (2), and tetranactin (3) in a crude extract of Streptomyces sp. AMC 23 in the precursor ion scan mode. In addition, copper(II) was also used to induce radical fragmentation reactions in the carboxylic acid polyether ionophore nigericin. The resulting product ions with m/z 755 and 585 helped to identify nigericin in a crude extract of Streptomyces sp. Eucal-26 by means of precursor ion scan experiments, demonstrating that copper-induced fragmentation reactions can potentially identify different classes of polyether ionophores rapidly and selectively.
[Identification of related substances in nicergoline by HPLC-MS].
Zeng, Xue-fang; Liu, Jie; Song, Min; Hang, Tai-jun
2015-08-01
To study the related substances in nicergoline, electrospray positive ionization high resolution TOF/MS was used for the determination of the accurate mass and elemental composition of the related substances. Triple quadrupoles tandem MS/MS was employed for the determination of the fragmentations of the parent ions. 16 related substances were detected and identified to be eight synthetic by-products and eight degradation products, by using impurity references matching, product mass spectra fragmentations elucidation, and verified further according to synthetic processes and stress testing results. The results obtained are valuable for nicergoline manufacturing process control and quality assurance.
Ferries, Samantha; Perkins, Simon; Brownridge, Philip J; Campbell, Amy; Eyers, Patrick A; Jones, Andrew R; Eyers, Claire E
2017-09-01
Confident identification of sites of protein phosphorylation by mass spectrometry (MS) is essential to advance understanding of phosphorylation-mediated signaling events. However, the development of novel instrumentation requires that methods for MS data acquisition and its interrogation be evaluated and optimized for high-throughput phosphoproteomics. Here we compare and contrast eight MS acquisition methods on the novel tribrid Orbitrap Fusion MS platform using both a synthetic phosphopeptide library and a complex phosphopeptide-enriched cell lysate. In addition to evaluating multiple fragmentation regimes (HCD, EThcD, and neutral-loss-triggered ET(ca/hc)D) and analyzers for MS/MS (orbitrap (OT) versus ion trap (IT)), we also compare two commonly used bioinformatics platforms, Andromeda with PTM-score, and MASCOT with ptmRS for confident phosphopeptide identification and, crucially, phosphosite localization. Our findings demonstrate that optimal phosphosite identification is achieved using HCD fragmentation and high-resolution orbitrap-based MS/MS analysis, employing MASCOT/ptmRS for data interrogation. Although EThcD is optimal for confident site localization for a given PSM, the increased duty cycle compared with HCD compromises the numbers of phosphosites identified. Finally, our data highlight that a charge-state-dependent fragmentation regime and a multiple algorithm search strategy are likely to be of benefit for confident large-scale phosphosite localization.
Hanna, George B.
2018-01-01
Abstract Proton transfer reaction time of flight mass spectrometry (PTR‐ToF‐MS) is a direct injection MS technique, allowing for the sensitive and real‐time detection, identification, and quantification of volatile organic compounds. When aiming to employ PTR‐ToF‐MS for targeted volatile organic compound analysis, some methodological questions must be addressed, such as the need to correctly identify product ions, or evaluating the quantitation accuracy. This work proposes a workflow for PTR‐ToF‐MS method development, addressing the main issues affecting the reliable identification and quantification of target compounds. We determined the fragmentation patterns of 13 selected compounds (aldehydes, fatty acids, phenols). Experiments were conducted under breath‐relevant conditions (100% humid air), and within an extended range of reduced electric field values (E/N = 48–144 Td), obtained by changing drift tube voltage. Reactivity was inspected using H3O+, NO+, and O2 + as primary ions. The results show that a relatively low (<90 Td) E/N often permits to reduce fragmentation enhancing sensitivity and identification capabilities, particularly in the case of aldehydes using NO+, where a 4‐fold increase in sensitivity is obtained by means of drift voltage reduction. We developed a novel calibration methodology, relying on diffusion tubes used as gravimetric standards. For each of the tested compounds, it was possible to define suitable conditions whereby experimental error, defined as difference between gravimetric measurements and calculated concentrations, was 8% or lower. PMID:29336521
Observation of shape isomers states in fission fragments
NASA Astrophysics Data System (ADS)
Kamanin, D. V.; Pyatkov, Yu V.; Alexandrov, A. A.; Alexandrova, I. A.; Mkaza, N.; Malaza, V.; Kuznetsova, E. A.; Strekalovsky, A. O.; Strekalovsky, O. V.; Zhuchko, V. E.
2017-06-01
We discuss the manifestations of a new original effect appeared at crossing of the metal foils by fission fragments. We have observed significant mass deficit in the total mass Ms of the fission fragments detected in coincidence with ions knocked out from the foil. It was shown that at the large angles of scattering of the knocked-out ions from the foil predominantly conventional elastic Rutherford scattering takes place. As the result Ms corresponds to the mean mass of the mother system after emission of fission neutrons (no missing mass). In contrast, in near frontal impacts fission fragment misses essential part of its mass. Residual nuclei at least for the fragments from the heavy mass peak show magic nucleon composition.
NASA Astrophysics Data System (ADS)
Dupré, Mathieu; Cantel, Sonia; Martinez, Jean; Enjalbal, Christine
2012-02-01
By screening a data set of 392 synthetic peptides MS/MS spectra, we found that a known C-terminal rearrangement was unexpectedly frequently occurring from monoprotonated molecular ions in both ESI and MALDI tandem mass spectrometry upon low and high energy collision activated dissociations with QqTOF and TOF/TOF mass analyzer configuration, respectively. Any residue localized at the C-terminal carboxylic acid end, even a basic one, was lost, provided that a basic amino acid such arginine and to a lesser extent histidine and lysine was present in the sequence leading to a fragment ion, usually depicted as (bn-1 + H2O) ion, corresponding to a shortened non-scrambled peptide chain. Far from being an epiphenomenon, such a residue exclusion from the peptide chain C-terminal extremity gave a fragment ion that was the base peak of the MS/MS spectrum in certain cases. Within the frame of the mobile proton model, the ionizing proton being sequestered onto the basic amino acid side chain, it is known that the charge directed fragmentation mechanism involved the C-terminal carboxylic acid function forming an anhydride intermediate structure. The same mechanism was also demonstrated from cationized peptides. To confirm such assessment, we have prepared some of the peptides that displayed such C-terminal residue exclusion as a C-terminal backbone amide. As expected in this peptide amide series, the production of truncated chains was completely suppressed. Besides, multiply charged molecular ions of all peptides recorded in ESI mass spectrometry did not undergo such fragmentation validating that any mobile ionizing proton will prevent such a competitive C-terminal backbone rearrangement. Among all well-known nondirect sequence fragment ions issued from non specific loss of neutral molecules (mainly H2O and NH3) and multiple backbone amide ruptures (b-type internal ions), the described C-terminal residue exclusion is highly identifiable giving raise to a single fragment ion in the high mass range of the MS/MS spectra. The mass difference between this signal and the protonated molecular ion corresponds to the mass of the C-terminal residue. It allowed a straightforward identification of the amino acid positioned at this extremity. It must be emphasized that a neutral residue loss can be misattributed to the formation of a ym-1 ion, i.e., to the loss of the N-terminal residue following the a1-ym-1 fragmentation channel. Extreme caution must be adopted when reading the direct sequence ion on the positive ion MS/MS spectra of singly charged peptides not to mix up the attribution of the N- and C-terminal amino acids. Although such peculiar fragmentation behavior is of obvious interest for de novo peptide sequencing, it can also be exploited in proteomics, especially for studies involving digestion protocols carried out with proteolytic enzymes other than trypsin (Lys-N, Glu-C, and Asp-N) that produce arginine-containing peptides.
Quantitative Mass Spectrometry by Isotope Dilution and Multiple Reaction Monitoring (MRM).
Russo, Paul; Hood, Brian L; Bateman, Nicholas W; Conrads, Thomas P
2017-01-01
Selected reaction monitoring (SRM) is used in molecular profiling to detect and quantify specific known proteins in complex mixtures. Using isotope dilution (Barnidge et al., Anal Chem 75(3):445-451, 2003) methodologies, peptides can be quantified without the need for an antibody-based method. Selected reaction monitoring assays employ electrospray ionization mass spectrometry (ESI-MS) followed by two stages of mass selection: a first stage where the mass of the peptide ion is selected and, after fragmentation by collision-induced dissociation (CID), a second stage (tandem MS) where either a single (e.g., SRM) or multiple (multiple reaction monitoring, MRM) specific peptide fragment ions are transmitted for detection. The MRM experiment is accomplished by specifying the parent masses of the selected endogenous and isotope-labeled peptides for MS/MS fragmentation and then monitoring fragment ions of interest, using their intensities/abundances and relative ratios to quantify the parent protein of interest. In this example protocol, we will utilize isotope dilution MRM-MS to quantify in absolute terms the total levels of the protein of interest, ataxia telangiectasia mutated (ATM) serine/threonine protein kinase. Ataxia telangiectasia mutated (ATM) phosphorylates several key proteins that initiate activation of the DNA damage checkpoint leading to cell cycle arrest.
Hernández, Félix; Bijlsma, Lubertus; Sancho, Juan V; Díaz, Ramon; Ibáñez, María
2011-01-17
This work illustrates the potential of hybrid quadrupole-time-of-flight mass spectrometry (QTOF MS) coupled to ultrahigh pressure liquid chromatography (UHPLC) to investigate the presence of drugs of abuse in wastewater. After solid-phase extraction with Oasis MCX cartridges, seventy-six illicit drugs, prescription drugs with potential for abuse, and metabolites were investigated in the samples by TOF MS using electrospray interface under positive ionization mode, with MS data acquired over an m/z range of 50-1000Da. For 11 compounds, reference standards were available, and experimental data (e.g., retention time and fragmentation data) could be obtained, facilitating a more confident identification. The use of a QTOF instrument enabled the simultaneous application of two acquisition functions with different collision energies: a low energy (LE) function, where none or poor fragmentation took place, and a high energy (HE) function, where fragmentation in the collision cell was promoted. This approach, known as MS(E), enabled the simultaneous acquisition of full-spectrum accurate mass data of both protonated molecules and fragment ions in a single injection, providing relevant information that facilitates the rapid detection and reliable identification of these emerging contaminants in the sample matrices analyzed. In addition, isomeric compounds, like the opiates, morphine and norcodeine, could be discriminated by their specific fragments observed in HE TOF MS spectra, without the need of reference standards. UHPLC-QTOF MS was proven to be a powerful and efficient technique for rapid wide-scope screening and identification of many relevant drugs in complex matrices, such as influent and effluent urban wastewater. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zayed, M. A.; Fahmey, M. A.; Hawash, M. A.; El-Habeeb, Abeer A.
2007-06-01
The buspirone drug is usually present as hydrochloride form of general formula C 21H 31N 5O 2·HCl, and of molecular weight (MW) = 421.96. It is an analgesic anxiolytic drug, which does not cause sedative or depression of central nervous system. In the present work it is investigated using electron impact mass spectral (EI-MS) fragmentation at 70 eV, in comparison with thermal analyses (TA) measurements (TG/DTG and DTA) and molecular orbital calculation (MOC). Semi-empirical MO calculation, PM3 procedure, has been carried out on buspirone both as neutral molecule (in TA) and the corresponding positively charged species (in MS). The calculated MOC parameters include bond length, bond order, particle charge distribution on different atoms and heats of formation. The fragmentation pathways of buspirone in EI-MS lead to the formation of important primary and secondary fragment ions. The mechanism of formation of some important daughter ions can be illuminated from comparing with that obtained using electrospray ESIMS/MS mode mass spectrometer through the accurate mass measurement determination. The losses of the intermediate aliphatic part (CH 2) 4 due to cleavage of N-C bond from both sides is the primary cleavage in both techniques (MS and TA). The PM3 provides a base for fine distinction among sites of initial bond cleavage and subsequent fragmentation of drug molecule in both TA and MS techniques; consequently the choice of the correct pathway of such fragmentation knowing this structural session of bonds can be used to decide the active sites of this drug responsible for its chemical, biological and medical reactivity.
MIDAS: a database-searching algorithm for metabolite identification in metabolomics.
Wang, Yingfeng; Kora, Guruprasad; Bowen, Benjamin P; Pan, Chongle
2014-10-07
A database searching approach can be used for metabolite identification in metabolomics by matching measured tandem mass spectra (MS/MS) against the predicted fragments of metabolites in a database. Here, we present the open-source MIDAS algorithm (Metabolite Identification via Database Searching). To evaluate a metabolite-spectrum match (MSM), MIDAS first enumerates possible fragments from a metabolite by systematic bond dissociation, then calculates the plausibility of the fragments based on their fragmentation pathways, and finally scores the MSM to assess how well the experimental MS/MS spectrum from collision-induced dissociation (CID) is explained by the metabolite's predicted CID MS/MS spectrum. MIDAS was designed to search high-resolution tandem mass spectra acquired on time-of-flight or Orbitrap mass spectrometer against a metabolite database in an automated and high-throughput manner. The accuracy of metabolite identification by MIDAS was benchmarked using four sets of standard tandem mass spectra from MassBank. On average, for 77% of original spectra and 84% of composite spectra, MIDAS correctly ranked the true compounds as the first MSMs out of all MetaCyc metabolites as decoys. MIDAS correctly identified 46% more original spectra and 59% more composite spectra at the first MSMs than an existing database-searching algorithm, MetFrag. MIDAS was showcased by searching a published real-world measurement of a metabolome from Synechococcus sp. PCC 7002 against the MetaCyc metabolite database. MIDAS identified many metabolites missed in the previous study. MIDAS identifications should be considered only as candidate metabolites, which need to be confirmed using standard compounds. To facilitate manual validation, MIDAS provides annotated spectra for MSMs and labels observed mass spectral peaks with predicted fragments. The database searching and manual validation can be performed online at http://midas.omicsbio.org.
Loss of H2 and CO from protonated aldehydes in electrospray ionization mass spectrometry.
Neta, Pedatsur; Simón-Manso, Yamil; Liang, Yuxue; Stein, Stephen E
2014-09-15
Electrospray ionization mass spectrometry (ESI-MS) of many protonated aldehydes shows loss of CO as a major fragmentation pathway. However, we find that certain aldehydes undergo loss of H2 followed by reaction with water in the collision cell. This complicates interpretation of tandem mass (MS/MS) spectra and affects multiple reaction monitoring (MRM) results. 3-Formylchromone and other aldehydes were dissolved in acetonitrile/water/formic acid and studied by ESI-MS to record their MS(2) and MS(n) spectra in several mass spectrometers (QqQ, QTOF, ion trap (IT), and Orbitrap HCD). Certain product ions were found to react with water and the rate of reaction was determined in the IT instrument using zero collision energy and variable activation times. Theoretical calculations were performed to help with the interpretation of the fragmentation mechanism. Protonated 3-formylchromones and 3-formylcoumarins undergo loss of H2 as a major fragmentation route to yield a ketene cation, which reacts with water to form a protonated carboxylic acid. In general, protonated aldehydes which contain a vicinal group that forms a hydrogen bridge with the formyl group undergo significant loss of H2. Subsequent losses of CO and C3O are also observed. Theoretical calculations suggest mechanistic details for these losses. Loss of H2 is a major fragmentation channel for protonated 3-formychromones and certain other aldehydes and it is followed by reaction with water to produce a protonated carboxylic acid, which undergoes subsequent fragmentation. This presents a problem for reference libraries and raises concerns about MRM results. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.
Touriño, Sonia; Fuguet, Elisabet; Jáuregui, Olga; Saura-Calixto, Fulgencio; Cascante, Marta; Torres, Josep Lluís
2008-11-01
Grape antioxidant dietary fiber (GADF) is a dietary supplement that combines the benefits of both fiber and antioxidants that help prevent cancer and cardiovascular diseases. The antioxidant polyphenolic components in GADF probably help prevent cancer in the digestive tract, where they are bioavailable. Mass spectrometry coupled to liquid chromatography is a powerful tool for the analysis of complex plant derivatives such as GADF. We use a combination of MS techniques, namely liquid chromatography/electrospray ionization time-of-flight mass spectrometry (LC/ESI-TOF-MS) and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) on a triple quadrupole, for the identification of the polyphenolic constituents of the soluble fraction of GADF. First, we separated the mixture into four fractions which were tested for phenolic constituents using the TOF system in the full scan mode. The high sensitivity and resolution of the TOF detector over the triple quadrupole facilitate the preliminary characterization of the fractions. Then we used LC/ESI-MS/MS to identify the individual phenols through MS/MS experiments (product ion scan, neutral loss scan, precursor ion scan). Finally, most of the identities were unequivocally confirmed by accurate mass measurements on the TOF spectrometer. LC/ESI-TOF-MS combined with MS/MS correctly identifies the bioactive polyphenolic components from the soluble fraction of GADF. High-resolution TOF-MS is particularly useful for identifying the structure of compounds with the same LC/ESI-MS/MS fragmentation patterns.
MS/MS analysis and imaging of lipids across Drosophila brain using secondary ion mass spectrometry.
Phan, Nhu T N; Munem, Marwa; Ewing, Andrew G; Fletcher, John S
2017-06-01
Lipids are abundant biomolecules performing central roles to maintain proper functioning of cells and biological bodies. Due to their highly complex composition, it is critical to obtain information of lipid structures in order to identify particular lipids which are relevant for a biological process or metabolic pathway under study. Among currently available molecular identification techniques, MS/MS in secondary ion mass spectrometry (SIMS) imaging has been of high interest in the bioanalytical community as it allows visualization of intact molecules in biological samples as well as elucidation of their chemical structures. However, there have been few applications using SIMS and MS/MS owing to instrumental challenges for this capability. We performed MS and MS/MS imaging to study the lipid structures of Drosophila brain using the J105 and 40-keV Ar 4000 + gas cluster ion source, with the novelty being the use of MS/MS SIMS analysis of intact lipids in the fly brain. Glycerophospholipids were identified by MS/MS profiling. MS/MS was also used to characterize diglyceride fragment ions and to identify them as triacylglyceride fragments. Moreover, MS/MS imaging offers a unique possibility for detailed elucidation of biomolecular distribution with high accuracy based on the ion images of its fragments. This is particularly useful in the presence of interferences which disturb the interpretation of biomolecular localization. Graphical abstract MS/MS was performed during time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of Drosophila melongaster (fruit fly) to elucidate the structure and origin of different chemical species in the brain including a range of different phospholipid classes (PC, PI, PE) and di- and triacylglycerides (DAG & TAG) species where reference MS/MS spectra provided a potential means of discriminating between the isobaric [M-OH] + ion of DAGs and the [M-RCO] + ion of TAGs.
Gun Testing Ballistics Issues for Insensitive Munitions Fragment Impact Testing
NASA Astrophysics Data System (ADS)
Baker, Ernest; Schultz, Emmanuel; NATO Munitions Safety Information Analysis Centre Team
2017-06-01
The STANAG 4496 Ed. 1 Fragment Impact, Munitions Test Procedure is normally conducted by gun launching a projectile for attack against a munition. The purpose of this test is to assess the reaction of a munition impacted by a fragment. The test specifies a standardized projectile (fragment) with a standard test velocity of 2530+/-90 m/s, or an alternate test velocity of 1830+/-60 m/s. The standard test velocity can be challenging to achieve and has several loosely defined and undefined characteristics that can affect the test item response. This publication documents the results of an international review of the STANAG 4496 related to the fragment impact test. To perform the review, MSIAC created a questionnaire in conjunction with the custodian of this STANAG and sent it to test centers. Fragment velocity variation, projectile tilt upon impact and aim point variation were identified as observed gun testing issues. Achieving 2530 m/s consistently and cost effectively can be challenging. The aim point of impact of the fragment is chosen with the objective of obtaining the most violent reaction. No tolerance for aim point is specified, although aim point variation can be a source for IM response variation. Fragment tilt on impact is also unspecified. The standard fragment fabricated from a variety of different steels which have a significant margin for mechanical properties. These, as well as other gun testing issues, have significant implications to resulting IM response.
Zhang, Jian-Long; Kubanek, Julia; Hay, Mark E.; Aalbersberg, William; Ye, Wen-Cai; Jiang, Ren-Wang
2011-01-01
Tydemania expeditionis Weber-van Bosse (Udoteaceae) is a weakly calcified green alga. In the present paper, liquid chromatography coupled with photodiode array detection and electrospray mass spectrometry was developed to identify the fingerprint components. A total of four triterpenoid sulfates and three hydroxy fatty acids in the ethyl acetate fraction of the crude extract were structurally characterized on the basis of retention time, online UV spectrum and mass fragmentation pattern. Furthermore, detailed LC-MS analysis revealed two new hydroxy fatty acids, which were then prepared and characterized by extensive NMR analyses. The proposed method provides a scientific and technical platform for the rapid identification of triterpenoid sulfates and hydroxy fatty acids in similar marine algae and terrestrial plants. PMID:21915955
Es-Safi, Nour-Eddine; Kerhoas, Lucien; Ducrot, Paul-Henri
2007-01-01
Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the mass spectral study of a series of six naturally occurring iridoids through in-source fragmentation of the protonated [M+H]+, deprotonated [M--H]- and sodiated [M+Na]+ ions. This led to the unambiguous determination of the molecular masses of the studied compounds and allowed CID spectra of the molecular ions to be obtained. Valuable structural information regarding the nature of both the glycoside and the aglycone moiety was thus obtained. Glycosidic cleavage and ring cleavages of both aglycone and sugar moieties were the major fragmentation pathways observed during CID, where the losses of small molecules, the cinnamoyl and the cinnamate parts were also observed. The formation of the ionized aglycones, sugars and their product ions was thus obtained giving information on their basic skeleton. The protonated, i.e. [M+H]+ and deprotonated [M--H]-, ions were found to fragment mainly by glycosidic cleavages. MS/MS spectra of the [M+Na]+ ions gave complementary information for the structural characterization of the studied compounds. Unlike the dissociation of protonated molecular ions, that of sodiated molecules also provided sodiated sugar fragments where the C0+ fragment corresponding to the glucose ion was obtained as base peak for all the studied compounds. Copyright (c) 2007 John Wiley & Sons, Ltd.
Use of CID/ETD Mass Spectrometry to Analyze Glycopeptides
Mechref, Yehia
2013-01-01
Collision-induced dissociation (CID) tandem mass spectrometry (MS) does not allow the characterization of glycopeptides because of the fragmentation of their glycan structures and limited fragmentation of peptide backbones. Electron-transfer dissociation (ETD) tandem MS, on the other hand, offers an alternative approach allowing the fragmentation of only peptide backbones of glycopeptides. Characterization of glycopeptides using both CID and ETD is summarized in this unit. While CID provide information related to the composition of glycan moiety attached to a peptide backbone, ETD permits de novo sequencing of peptides, since it prompts only peptide backbone fragmentation while keeping posttranslational modifications intact. Radical anions transfer of electrons to peptide backbone which induces cleavage of the N-Cα bond is observed in ETD. The glycan moiety is retained on the peptide backbone, largely unaffected by the ETD process. Accordingly, ETD allows not only the identification of the amino acid sequence of a glycopeptide, but also the unambiguous assignment of its glycosylation site. When data acquired from both fragmentation techniques are combined, it is possible to characterize comprehensively the entire glycopeptide. This is achieved using an instrument capable of alternating between CID and ETD experiments during an LC-MS/MS analysis. This unit discusses the different fragmentation of glycopeptides observed in CID and ETD. Tables of residue masses associated with oxonium ions observed in CID are provided to help in the interpretation of CID mass spectra. The utility of both CID and ETD for better characterization of glycopeptides are demonstrated for a model glycoprotein. PMID:22470127
Kageyama, Shinji; Shinmura, Kazuya; Yamamoto, Hiroko; Goto, Masanori; Suzuki, Koichi; Tanioka, Fumihiko; Tsuneyoshi, Toshihiro; Sugimura, Haruhiko
2008-04-01
The PCR-based DNA fingerprinting method called the methylation-sensitive amplified fragment length polymorphism (MS-AFLP) analysis is used for genome-wide scanning of methylation status. In this study, we developed a method of fluorescence-labeled MS-AFLP (FL-MS-AFLP) analysis by applying a fluorescence-labeled primer and fluorescence-detecting electrophoresis apparatus to the existing method of MS-AFLP analysis. The FL-MS-AFLP analysis enables quantitative evaluation of more than 350 random CpG loci per run. It was shown to allow evaluation of the differences in methylation level of blood DNA of gastric cancer patients and evaluation of hypermethylation and hypomethylation in DNA from gastric cancer tissue in comparison with adjacent non-cancerous tissue.
Cao, Mingshu; Fraser, Karl; Rasmussen, Susanne
2013-10-31
Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced dissociation (CID) fragmentation of selected precursor ions. These fragment ions can assist in structural inference for metabolites of low molecular weight. Computational investigations of fragmentation spectra have increasingly received attention in metabolomics and various public databases house such data. We have developed an R package "iontree" that can capture, store and analyze MS2 and MS3 mass spectral data from high throughput metabolomics experiments. The package includes functions for ion tree construction, an algorithm (distMS2) for MS2 spectral comparison, and tools for building platform-independent ion tree (MS2/MS3) libraries. We have demonstrated the utilization of the package for the systematic analysis and annotation of fragmentation spectra collected in various metabolomics platforms, including direct infusion mass spectrometry, and liquid chromatography coupled with either low resolution or high resolution mass spectrometry. Assisted by the developed computational tools, we have demonstrated that spectral trees can provide informative evidence complementary to retention time and accurate mass to aid with annotating unknown peaks. These experimental spectral trees once subjected to a quality control process, can be used for querying public MS2 databases or de novo interpretation. The putatively annotated spectral trees can be readily incorporated into reference libraries for routine identification of metabolites.
Xia, Bing; Zhou, Yan; Liu, Xin; Xiao, Juan; Liu, Qing; Gu, Yucheng; Ding, Lisheng
2012-06-15
Carbohydrates are good source of drugs and play important roles in metabolism processes and cellular interactions in organisms. Distinguishing monosaccharide isomers in saccharide derivates is an important and elementary work in investigating saccharides. It is important to develop a fast, simple and direct method for this purpose, which is described in this study. Stock solutions of monosaccharide with a concentration of 400 μM and sodium chloride at a concentration of 10 μM were made in water/methanol (50:50, v/v). The samples were subjected to electrospray ionization ion-trap tandem mass spectrometry (ESI-MS) and the detected [2M + Na - H(2)O](+) ions were further investigated by tandem mass spectrometry (MS/MS), followed by applying principal component analysis (PCA) on the obtained MS/MS data sets. The MS/MS spectra of the [2M + Na - H(2)O](+) ions at m/z 365 for hexoses and m/z 305 for pentoses yielded unambiguous fragment patterns, while rhamnose can be directly identified by its ESI-MS [M + Na](+) ion at m/z 187. PCA showed clustering of MS/MS data of identical monosaccharide samples obtained from different experiments. By using this method, the monosaccharide in daucosterol hydrolysate was successfully identified. A new strategy was developed for differentiation of the monosaccharides using ESI-MS/MS and PCA. In MS/MS spectra, the [2M + Na - H(2)O](+) ions yielded unambiguous distinction. PCA of the archived MS/MS data sets was applied to demonstrate the spatial resolution of the studied samples. This method presented a simple and reliable way for distinguishing monosaccharides by ESI-MS/MS. Copyright © 2012 John Wiley & Sons, Ltd.
Fast atom bombardment tandem mass spectrometry of carotenoids
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Breeman, R.B.; Schmitz, H.H.; Schwartz, S.J.
Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenesmore » formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.« less
NASA Astrophysics Data System (ADS)
Zheng, Wei; Wang, Fangxu; Zhao, Yang; Sun, Xinguang; Kang, Liping; Fan, Ziquan; Qiao, Lirui; Yan, Renyi; Liu, Shuchen; Ma, Baiping
2017-08-01
A strategy for rapid identification of the chemical constituents from crude extracts of Tribulus terrestris was proposed using an informatics platform for the UHPLC/Q-TOF MSE data analyses. This strategy mainly utilizes neutral losses, characteristic fragments, and in-house library to rapidly identify the structure of the compounds. With this strategy, rapid characterization of the chemical components of T. terrestris from Beijing, China was successfully achieved. A total of 82 steroidal saponins and nine flavonoids were identified or tentatively identified from T. terrestris. Among them, 15 new components were deduced based on retention times and characteristic MS fragmentation patterns. Furthermore, the chemical components of T. terrestris, including the other two samples from Xinjiang Uygur Autonomous region, China, and Rome, Italy, were also identified with this strategy. Altogether, 141 chemical components were identified from these three samples, of which 39 components were identified or tentatively identified as new compounds, including 35 groups of isomers. It demonstrated that this strategy provided an efficient protocol for the rapid identification of chemical constituents in complex samples such as traditional Chinese medicines (TCMs) by UHPLC/Q-TOF MSE with informatics platform. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Vogel, Alexander L.; Äijälä, Mikko; Ehn, Mikael; Junninen, Heikki; Petäjä, Tuukka; Worsnop, Douglas R.; Kulmala, Markku; Williams, Jonathan; Schneider, Johannes; Hoffmann, Thorsten
2013-04-01
Emission of biogenic volatile organic compounds (BVOCs) by the vegetation and subsequent atmospheric oxidation leads to the formation of secondary organic aerosol (SOA). Therefore, forests are a main source of aerosols which have significant impact on the earth's climate.[1] The oxidation of BVOCs results in a variety of mostly unidentified organic species in trace level concentrations, which partition between gas- and particle-phase. Organic acids are of particular importance for the particle-phase fraction, since the higher oxidation state and molecular mass, compared to the corresponding precursors, is accompanied by a much lower volatility. Until now, only limited instrumentation exists for the simultaneous online analysis of organic acids in gas- and particle-phase. Here we show the first field application of an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI-IT-MS) in combination with a miniature Versatile Aerosol Concentration Enrichment System (mVACES) for measuring organic acids in gas- and particle-phase[2]. The benefits of the online APCI-IT-MS are soft ionization with low fragmentation, high time resolution and less sampling artifacts than in the common procedure of taking filter samples, extraction and subsequent detection with LC-MS. Furthermore, the capability to perform online MSn of isolated m/z ratios from ambient and laboratory generated aerosol leads to an improved understanding of the composition of secondary organic aerosol. The here described measurements were conducted during the HUMPPA-COPEC 2010 campaign at Hyytiälä, Finland and during the INUIT campaign 2012 on Mt. Kleiner Feldberg, Germany. By merging APCI-IT-MS data with data from the Aerodyné C-ToF-AMS, it can be observed that the gas- to particle-partitioning of organic acids strongly depends on the fraction of aerosol which is organic matter, as it is predicted by a partitioning model[3]. High observed gas-phase concentrations of organic acids at Hyytiälä are a strong hint for unidentified species. This can be supported by MSn observations, where the fragmentation pattern from Hyytiälä show different signals compared to the fragmentation pattern from the same m/z ratio at the Taunus Observatory and from chamber terpene ozonolysis. Literature: [1] Tunved, P. et al. (2006) Science 312, 261-263. [2] Vogel, A. L. et al. (2012) Atmos. Meas. Tech. Discuss. 5, 6147-6182. [3] Pankow, J. F. (1994) Atmos. Env. 28, 189-193.
Lu, Jianghai; He, Chunji; He, Genye; Wang, Xiaobing; Xu, Youxuan; Wu, Yun; Dong, Ying; Ouyang, Gangfeng
2014-07-01
In this study, tamoxifen metabolic profiles were investigated carefully. Tamoxifen was administered to two healthy male volunteers and one female patient suffering from breast cancer. Urinary extracts were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry using full scan and targeted MS/MS techniques with accurate mass measurement. Chromatographic peaks for potential metabolites were selected by using the theoretical [M + H](+) as precursor ion in full-scan experiment and m/z 72, 58 or 44 as characteristic product ions for N,N-dimethyl, N-desmethyl and N,N-didesmethyl metabolites in targeted MS/MS experiment, respectively. Tamoxifen and 37 metabolites were detected in extraction study samples. Chemical structures of seven unreported metabolites were elucidated particularly on the basis of fragmentation patterns observed for these metabolites. Several metabolic pathways containing mono- and di-hydroxylation, methoxylation, N-desmethylation, N,N-didesmethylation, oxidation and combinations were suggested. All the metabolites were detected in the urine samples up to 1 week. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Charles, Laurence; Cavallo, Gianni; Monnier, Valérie; Oswald, Laurence; Szweda, Roza; Lutz, Jean-François
2017-06-01
In order to improve their MS/MS sequencing, structure of sequence-controlled synthetic polymers can be optimized based on considerations regarding their fragmentation behavior in collision-induced dissociation conditions, as demonstrated here for two digitally encoded polymer families. In poly(triazole amide)s, the main dissociation route proceeded via cleavage of the amide bond in each monomer, hence allowing the chains to be safely sequenced. However, a competitive cleavage of an ether bond in a tri(ethylene glycol) spacer placed between each coding moiety complicated MS/MS spectra while not bringing new structural information. Changing the tri(ethylene glycol) spacer to an alkyl group of the same size allowed this unwanted fragmentation pathway to be avoided, hence greatly simplifying the MS/MS reading step for such undecyl-based poly(triazole amide)s. In poly(alkoxyamine phosphodiester)s, a single dissociation pathway was achieved with repeating units containing an alkoxyamine linkage, which, by very low dissociation energy, made any other chemical bonds MS/MS-silent. Structure of these polymers was further tailored to enhance the stability of those precursor ions with a negatively charged phosphate group per monomer in order to improve their MS/MS readability. Increasing the size of both the alkyl coding moiety and the nitroxide spacer allowed sufficient distance between phosphate groups for all of them to be deprotonated simultaneously. Because the charge state of product ions increased with their polymerization degree, MS/MS spectra typically exhibited groups of fragments at one or the other side of the precursor ion depending on the original α or ω end-group they contain, allowing sequence reconstruction in a straightforward manner. [Figure not available: see fulltext.
Jaiswal, Rakesh; Müller, Heiko; Müller, Anja; Karar, Mohamed Gamaleldin Elsadig; Kuhnert, Nikolai
2014-12-01
The chlorogenic acids, chlorogenic acid glycosides and flavonoids of the leaves of Lonicera henryi L. (Caprifoliaceae) were investigated qualitatively by liquid chromatography tandem mass spectrometry. Thirty-one chlorogenic acids and their glycosides were detected and characterized to their regioisomeric level on the basis of their unique fragmentation pattern in the negative ion mode tandem MS spectra. All of them were extracted for the first time from this source and thirteen of them were not reported previously in nature. For the positive identification of chlorogenic acid glycosides by LC-MS(n), multiple reaction monitoring and targeted MS(n) experiments were performed. We have developed an LC-MS(n) method for the systematic identification of chlorogenic acid glycosides and were also able to discriminate between chlorogenic acids and their isobaric glycosides. It was also possible to discriminate between 5-O-(3'-O-caffeoyl glucosyl)quinic acid and 5-O-(4'-O-caffeoyl glucosyl)quinic acid by LC-MS(n). This method can be applied for the rapid and positive identification of chlorogenic acids and their glycosides in plant materials, food and beverages. Copyright © 2014 Elsevier Ltd. All rights reserved.
Moore, Katherine N; Garvin, Demetra; Thomas, Brian F; Grabenauer, Megan
2017-09-01
Synthetic cannabinoids are sprayed onto plant material and smoked for their marijuana-like effects. Clandestine manufacturers modify synthetic cannabinoid structures by creating closely related analogs. Forensic laboratories are tasked with detection of these analog compounds, but targeted analytical methods are often thwarted by the structural modifications. Here, direct analysis in real time coupled to accurate mass time-of-flight mass spectrometry (DART-TOF-MS) in combination with liquid chromatography quadruple time-of-flight mass spectrometry (LC-QTOF-MS) are presented as a screening and nontargeted confirmation method, respectively. Methanol extracts of herbal material were run using both methods. Spectral data from four different herbal products were evaluated by comparing fragmentation pattern, accurate mass and retention time to available reference standards. JWH-018, JWH-019, AM2201, JWH-122, 5F-AKB48, AKB48-N-(4-pentenyl) analog, UR144, and XLR11 were identified in the products. Results demonstrate that DART-TOF-MS affords a useful approach for rapid screening of herbal products for the presence and identification of synthetic cannabinoids. © 2017 American Academy of Forensic Sciences.
Abidi, S.L.; Ha, S.C.; Rosen, R.T.
1990-01-01
Reversed-phase high-performance liquid chromatography—thermospray mass spectrometric (HPLC—MS) characteristics of four sets of lactonic complexes (one 4-butyrolactones and three dilactone complexes) derived from antimycin A were investigated. Three types of 8-hydroxy analogues were also included in the study. Pairs of a–b structures isomeric at the 8-acyloxy ester side-chains were best separated with a high-efficiency octadecylsilica column prior to analysis by HPLC—MS. Mass spectra of the a–b pairs each with identical molecular weights exhibited virtually indistinguishable fragmentation patterns, although their relative intensities were not superimposable. In some cases, HPLC—MS of the title compounds yielded mass chromatograms showing the minor components more easily recognizable than the HPLC—UV counter parts because of the apparent higher ionization efficiency of the minor isomers and increased resolution of subcomponents in the MS system. Under the mobile phase conditions employed, analyte ionization occurred with variable degrees of gas phase ammonolysis depending upon the ammonia concentration of the buffer. Potential applicability of the on-line HPLC—MS technique for the characterization of components in mixtures of antimycin analogues and isomers is demonstrated.
NASA Astrophysics Data System (ADS)
Zayed, M. A.; Hawash, M. F.; Fahmey, M. A.; El-Habeeb, Abeer A.
2007-11-01
Sertraline (C 17H 17Cl 2N) as an antidepressant drug was investigated using thermal analysis (TA) measurements (TG/DTG and DTA) in comparison with electron impact (EI) mass spectral (MS) fragmentation at 70 eV. Semi-empirical MO-calculations, using PM3 procedure, has been carried out on neutral molecule and positively charged species. These calculations included bond length, bond order, bond strain, partial charge distribution and heats of formation (Δ Hf). Also, in the present work sertraline-iodine product was prepared and its structure was investigated using elemental analyses, IR, 1H NMR, 13C NMR, MS and TA. It was also subjected to molecular orbital calculations (MOC) in order to confirm its fragmentation behavior by both MS and TA in comparison with the sertraline parent drug. In MS of sertraline the initial rupture occurred was CH 3NH 2+ fragment ion via H-rearrangement while in sertraline-iodine product the initial rupture was due to the loss of I + and/or HI + fragment ions followed by CH 2dbnd NH + fragment ion loss. In thermal analyses (TA) the initial rupture in sertraline is due to the loss of C 6H 3Cl 2 followed by the loss of CH 3-NH forming tetraline molecule which thermally decomposed to give C 4H 8, C 6H 6 or the loss of H 2 forming naphthalene molecule which thermally sublimated. In sertraline-iodine product as a daughter the initial thermal rupture is due to successive loss of HI and CH 3NH followed by the loss of C 6H 5HI and HCl. Sertraline biological activity increases with the introduction of iodine into its skeleton. The activities of the drug and its daughter are mainly depend upon their fragmentation to give their metabolites in vivo systems, which are very similar to the identified fragments in both MS and TA. The importance of the present work is also due to the decision of the possible mechanism of fragmentation of the drug and its daughter and its confirmation by MOC.
Luedemann, Alexander; Strassburg, Katrin; Erban, Alexander; Kopka, Joachim
2008-03-01
Typical GC-MS-based metabolite profiling experiments may comprise hundreds of chromatogram files, which each contain up to 1000 mass spectral tags (MSTs). MSTs are the characteristic patterns of approximately 25-250 fragment ions and respective isotopomers, which are generated after gas chromatography (GC) by electron impact ionization (EI) of the separated chemical molecules. These fragment ions are subsequently detected by time-of-flight (TOF) mass spectrometry (MS). MSTs of profiling experiments are typically reported as a list of ions, which are characterized by mass, chromatographic retention index (RI) or retention time (RT), and arbitrary abundance. The first two parameters allow the identification, the later the quantification of the represented chemical compounds. Many software tools have been reported for the pre-processing, the so-called curve resolution and deconvolution, of GC-(EI-TOF)-MS files. Pre-processing tools generate numerical data matrices, which contain all aligned MSTs and samples of an experiment. This process, however, is error prone mainly due to (i) the imprecise RI or RT alignment of MSTs and (ii) the high complexity of biological samples. This complexity causes co-elution of compounds and as a consequence non-selective, in other words impure MSTs. The selection and validation of optimal fragment ions for the specific and selective quantification of simultaneously eluting compounds is, therefore, mandatory. Currently validation is performed in most laboratories under human supervision. So far no software tool supports the non-targeted and user-independent quality assessment of the data matrices prior to statistical analysis. TagFinder may fill this gap. TagFinder facilitates the analysis of all fragment ions, which are observed in GC-(EI-TOF)-MS profiling experiments. The non-targeted approach allows the discovery of novel and unexpected compounds. In addition, mass isotopomer resolution is maintained by TagFinder processing. This feature is essential for metabolic flux analyses and highly useful, but not required for metabolite profiling. Whenever possible, TagFinder gives precedence to chemical means of standardization, for example, the use of internal reference compounds for retention time calibration or quantitative standardization. In addition, external standardization is supported for both compound identification and calibration. The workflow of TagFinder comprises, (i) the import of fragment ion data, namely mass, time and arbitrary abundance (intensity), from a chromatography file interchange format or from peak lists provided by other chromatogram pre-processing software, (ii) the annotation of sample information and grouping of samples into classes, (iii) the RI calculation, (iv) the binning of observed fragment ions of equal mass from different chromatograms into RI windows, (v) the combination of these bins, so-called mass tags, into time groups of co-eluting fragment ions, (vi) the test of time groups for intensity correlated mass tags, (vii) the data matrix generation and (viii) the extraction of selective mass tags supported by compound identification. Thus, TagFinder supports both non-targeted fingerprinting analyses and metabolite targeted profiling. Exemplary TagFinder workspaces and test data sets are made available upon request to the contact authors. TagFinder is made freely available for academic use from http://www-en.mpimp-golm.mpg.de/03-research/researchGroups/01-dept1/Root_Metabolism/smp/TagFinder/index.html.
Fagerquist, Clifton K; Zaragoza, William J; Sultan, Omar; Woo, Nathan; Quiñones, Beatriz; Cooley, Michael B; Mandrell, Robert E
2014-05-01
We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption ionization (MALDI)-tandem time of flight (TOF-TOF) tandem mass spectrometry (MS/MS) and top-down proteomic analysis. STEC strains were induced to overexpress Stx2 by overnight culturing on solid agar supplemented with either ciprofloxacin or mitomycin C. Harvested cells were lysed by bead beating, and unfractionated bacterial cell lysates were ionized by MALDI. The A2 fragment of the A subunit and the mature B subunit of Stx2 were analyzed by MS/MS. Sequence-specific fragment ions were used to identify amino acid subtypes of Stx2 using top-down proteomic analysis using software developed in-house at the U.S. Department of Agriculture (USDA). Stx2 subtypes (a, c, d, f, and g) were identified on the basis of the mass of the A2 fragment and the B subunit as well as from their sequence-specific fragment ions by MS/MS (postsource decay). Top-down proteomic identification was in agreement with DNA sequencing of the full Stx2 operon (stx2) for all strains. Top-down results were also compared to a bioassay using a Vero-d2EGFP cell line. Our results suggest that top-down proteomic identification is a rapid, highly specific technique for distinguishing Stx2 subtypes.
Zaragoza, William J.; Sultan, Omar; Woo, Nathan; Quiñones, Beatriz; Cooley, Michael B.; Mandrell, Robert E.
2014-01-01
We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption ionization (MALDI)–tandem time of flight (TOF-TOF) tandem mass spectrometry (MS/MS) and top-down proteomic analysis. STEC strains were induced to overexpress Stx2 by overnight culturing on solid agar supplemented with either ciprofloxacin or mitomycin C. Harvested cells were lysed by bead beating, and unfractionated bacterial cell lysates were ionized by MALDI. The A2 fragment of the A subunit and the mature B subunit of Stx2 were analyzed by MS/MS. Sequence-specific fragment ions were used to identify amino acid subtypes of Stx2 using top-down proteomic analysis using software developed in-house at the U.S. Department of Agriculture (USDA). Stx2 subtypes (a, c, d, f, and g) were identified on the basis of the mass of the A2 fragment and the B subunit as well as from their sequence-specific fragment ions by MS/MS (postsource decay). Top-down proteomic identification was in agreement with DNA sequencing of the full Stx2 operon (stx2) for all strains. Top-down results were also compared to a bioassay using a Vero-d2EGFP cell line. Our results suggest that top-down proteomic identification is a rapid, highly specific technique for distinguishing Stx2 subtypes. PMID:24584253
ToF-SIMS Parallel Imaging MS/MS of Lipid Species in Thin Tissue Sections.
Bruinen, Anne Lisa; Fisher, Gregory L; Heeren, Ron M A
2017-01-01
Unambiguous identification of detected species is essential in complex biomedical samples. To date, there are not many mass spectrometry imaging techniques that can provide both high spatial resolution and identification capabilities. A new and patented imaging tandem mass spectrometer, exploiting the unique characteristics of the nanoTOF II (Physical Electronics, USA) TOF-SIMS TRIFT instrument, was developed to address this.Tandem mass spectrometry is based on the selection of precursor ions from the full secondary ion spectrum (MS 1 ), followed by energetic activation and fragmentation, and collection of the fragment ions to obtain a tandem MS spectrum (MS 2 ). The PHI NanoTOF II mass spectrometer is equipped with a high-energy collision induced dissociation (CID) fragmentation cell as well as a second time-of-flight analyzer developed for simultaneous ToF-SIMS and tandem MS imaging experiments.We describe here the results of a ToF-SIMS imaging experiment on a thin tissue section of an infected zebrafish as a model organism for tuberculosis. The focus is on the obtained ion distribution plot of a fatty acid as well as its identification by tandem mass spectrometry.
Identification of Organics in Ice Grains from Enceladus
NASA Astrophysics Data System (ADS)
Khawaja, N.; Postberg, F.; Reviol, R.; Nölle, L.; Klenner, F.; Srama, R.
2015-12-01
The Cosmic Dust Analyzer (CDA) aboard the Cassini spacecraft performs in-situ measurements of the chemical composition of icy dust grains impinging onto the target surface. The instrument recorded cationic Time-of-Flight (ToF) mass spectra of organic-bearing ice grains emitted from Enceladus at different impact velocities causing different molecular fragmentation patterns [1,2]. Here we present a detailed analysis of these spectra (Type-2) to identify the composition of organic material embedded in Enceladus ice grains. The organic compounds display a great compositional diversity, which indicates varying contributions of several organic species. The spectra analysis is supported by a large-scale laboratory ground campaign yielding a library of analogue spectra for organic material embedded in a water ice matrix. To mimic the identified pattern of cationic fragments in organic enriched spectra we use a laboratory setup: Infrared Free Liquid MALDI ToF Mass Spectrometer (IR-FL-MALDI-ToF-MS). An infrared laser is used to disperse a liquid micro-beam of a water-solution to get cationic fragments. The laser energy is adjusted to simulate different impact velocities of ice particles on CDA [3]. So far we have identified characteristic fragment patterns of at least three classes of organic molecules: (i) aromatic species, (ii) amines, and (iii) carbonyl group species. (i) ice grains containing aromatic species are identified by a series of characteristic aromatic fragment cations (ii) ice grains containing amines are identified by a pronounced ammonium cation and (iii) ice grains containing carbonyl compounds are specified by a characteristic acylium cation in conjunction with certain others mass lines. Besides aromatic, amine and carbonyl species, Type-2 spectra also show contributions from other, yet un-specified, organic species. Typically, fragment cations of aromatic compounds are stable at impact velocities up-to 15km/s whereas cations of amines and carbonyl species are stable at velocities below 8km/s. Work is in progress to quantify concentrations of the identified species and to assign yet un-specified organic mass lines in Type 2 spectra. Ref: [1]Postberg et al., Icarus-193,2008. [2]Postberg et al., Nature-459,2009. [3]Beinsen, A., University of Göttingen, Dissertation (2011).
Maher, Simon; Jjunju, Fred P. M.; Damon, Deidre E.; Gorton, Hannah; Maher, Yosef S.; Syed, Safaraz U.; Heeren, Ron M. A.; Young, Iain S.; Taylor, Stephen; Badu-Tawiah, Abraham K.
2016-01-01
Metaldehyde is extensively used worldwide as a contact and systemic molluscicide for controlling slugs and snails in a wide range of agricultural and horticultural crops. Contamination of surface waters due to run-off, coupled with its moderate solubility in water, has led to increased concentration of the pesticide in the environment. In this study, for the first time, rapid analysis (<~1 minute) of metaldehyde residues in water is demonstrated using paper spray mass spectrometry (PS-MS). The observed precursor molecular ions of metaldehyde were confirmed from tandem mass spectrometry (MS/MS) experiments by studying the fragmentation patterns produced via collision-induced dissociation. The signal intensity ratios of the most abundant MS/MS transitions for metaldehyde (177 → 149 for protonated ion) and atrazine (221 → 179) were found to be linear in the range 0.01 to 5 ng/mL. Metaldehyde residues were detectable in environmental water samples at low concentration (LOD < 0.1 ng/mL using reactive PS-MS), with a relative standard deviation <10% and an R2 value >0.99, without any pre-concentration/separation steps. This result is of particular importance for environmental monitoring and water quality analysis providing a potential means of rapid screening to ensure safe drinking water. PMID:27767044
Software Analysis of Uncorrelated MS1 Peaks for Discovery of Post-Translational Modifications
NASA Astrophysics Data System (ADS)
Pascal, Bruce D.; West, Graham M.; Scharager-Tapia, Catherina; Flefil, Ricardo; Moroni, Tina; Martinez-Acedo, Pablo; Griffin, Patrick R.; Carvalloza, Anthony C.
2015-12-01
The goal in proteomics to identify all peptides in a complex mixture has been largely addressed using various LC MS/MS approaches, such as data dependent acquisition, SRM/MRM, and data independent acquisition instrumentation. Despite these developments, many peptides remain unsequenced, often due to low abundance, poor fragmentation patterns, or data analysis difficulties. Many of the unidentified peptides exhibit strong evidence in high resolution MS1 data and are frequently post-translationally modified, playing a significant role in biological processes. Proteomics Workbench (PWB) software was developed to automate the detection and visualization of all possible peptides in MS1 data, reveal candidate peptides not initially identified, and build inclusion lists for subsequent MS2 analysis to uncover new identifications. We used this software on existing data on the autophagy regulating kinase Ulk1 as a proof of concept for this method, as we had already manually identified a number of phosphorylation sites Dorsey, F. C. et al (J. Proteome. Res. 8(11), 5253-5263 (2009)). PWB found all previously identified sites of phosphorylation. The software has been made freely available at
Dahl, Jeffrey H; van Breemen, Richard B
2010-09-15
A rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed for the measurement of urinary 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)), a biomarker of lipid peroxidation. Because urine contains numerous F(2) prostaglandin isomers, each with identical mass and similar mass spectrometric fragmentation patterns, chromatographic separation of 8-iso-PGF(2alpha) from its isomers is necessary for its quantitative analysis using MS/MS. We were able to achieve this separation using an isocratic LC method with a run time of less than 9min, which is at least threefold faster than previous methods, while maintaining sensitivity, accuracy, precision, and reliability. The limits of detection and quantitation were 53 and 178pg/ml urine, respectively. We compared our method with a commercially available affinity purification and enzyme immunoassay kit and found both assays to be in agreement. Despite the high sensitivity of the enzyme immunoassay method, it is more expensive and has a narrower dynamic range than LC-MS/MS. Our method was optimized for rapid measurement of 8-iso-PGF(2alpha) in urine, and it is ideally suited for clinical sample analysis. 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Slegers, Catherine; Maquille, Aubert; Deridder, Véronique; Sonveaux, Etienne; Habib Jiwan, Jean-Louis; Tilquin, Bernard
2006-09-01
E-beam and gamma products from the radiolysis of aqueous solutions of (±)-metoprolol tartrate, saturated in nitrogen, are analyzed by HPLC with on-line mass and UV detectors. The structures of 10 radiolytic products common to e-beam and gamma irradiations are elucidated by comparing their fragmentation pattern to that of (±)-metoprolol. Two of the radiolytic products are also metabolites. Different routes for the formation of the radiolytic products are proposed.
Schweiggert, Ute; Kammerer, Dietmar R; Carle, Reinhold; Schieber, Andreas
2005-01-01
Carotenoids and carotenoid esters were extracted from red pepper pods (Capsicum annuum L.) without saponification. Among the 42 compounds detected, 4 non-esterified, 11 mono- and 17 diesters were characterized based on their retention times, UV/Vis spectra and their fragmentation patterns in collision-induced dissociation experiments in atmospheric pressure chemical ionization mass spectrometry (APCI-MS). Positive and negative ion mode measurements were used for the characterization of major and minor carotenoids and their esters. Capsanthin esterified with lauric, palmitic and myristic acids represented the predominant compounds in the red pepper extracts. Additionally, three beta-cryptoxanthin and one zeaxanthin monoester were tentatively identified in red pepper pods for the first time. Furthermore, the specific fragmentation patterns of capsanthin-laurate-myristate and capsanthin-myristate-palmitate were used for the distinction of both regioisomers. The results obtained from LC-DAD-APCI-MSn experiments demonstrated that the carotenoid profile of red pepper pods is considerably more complex than considered hitherto. Copyright (c) 2005 John Wiley & Sons, Ltd.
THCVA-A - a new additional marker for illegal cannabis consumption.
Radünz, Lars; Westphal, Folker; Maser, Edmund; Rochholz, Gertrud
2012-02-10
The aim of the present investigations was to find markers for differentiating between the consumption of illegal cannabis products and legal medication containing fully synthetic Δ9-tetrahydrocannabinol (Δ9-THC), e.g., Marinol capsules. Δ9-Tetrahydrocannabinolic acid A (Δ9-THCA-A) and Δ9-tetrahydrocannabivarinic acid A (Δ9-THCVA-A) were taken into consideration for analysis, because these substances are the precursors of Δ9-THC and Δ9-tetrahydrocannabivarin (Δ9-THCV) in plant material of Cannabis sativa and are not contained in medical THC formulations. Whereas Δ9-THCA-A is an already well investigated substance, there is little analytical data on Δ9-THCVA-A. The reason for the presented investigations was a case in which a man was tested positive for Δ9-THC during a routine traffic control claiming that the positive serum sample resulted from the intake of a THC medication (Marinol) and not from consuming illegal cannabis products. Sample preparation consisted of a protein precipitation with acetonitrile. Analysis was carried out on a Thermo Fisher LCQ Deca ion trap LC-MS-MS-system using electron spray ionization (ESI) in negative mode. MS(2)- and MS(3)-full scan spectra were recorded for Δ9-THCA-A and Δ9-THCVA-A starting from [M-H](-). Reference spectra were obtained by measuring a Δ9-THCA-A reference solution and an ethanolic cannabis extract for Δ9-THCVA-A as there is no reference material for this cannabinoid available on the market yet. Main transitions for Δ9-THCA-A were m/z 357→313 and 339 in the MS(2)-spectrum and m/z 313→245 and 191 in the MS(3)-spectrum. Fragmentation pattern of Δ9-THCVA-A was identical with a difference of 28 amu less for the precursor ion as well as the fragments due to a shorter alkyl side chain in the molecule (MS(2): m/z 329→285 and 311; MS(3): m/z 285→217 and 163). The two plant cannabinoids Δ9-THCA-A and Δ9-THCVA-A could be detected in the serum sample by LC-MS-MS which proved the intake of illegal cannabis products derived from plant material of C. sativa in the described case. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
A Glycomics Platform for the Analysis of Permethylated Oligosaccharide Alditols
Costello, Catherine E.; Contado-Miller, Joy May; Cipollo, John F.
2007-01-01
This communication reports the development of an LC/MS platform for the analysis of permethylated oligosaccharide alditols that, for the first time, demonstrates routine online oligosaccharide isomer separation of these compounds prior to introduction into the mass spectrometer. The method leverages a high resolution liquid chromatography system with the superior fragmentation pattern characteristics of permethylated oligosaccharide alditols that are dissociated under low-energy collision conditions using quadrupole orthogonal time-of-flight (QoTOF) instrumentation and up to pseudo MS3 mass spectrometry. Glycoforms, including isomers, are readily identified and their structures assigned. The isomer-specific spectra include highly informative cross-ring and elimination fragments, branch position specific signatures and glycosidic bond fragments, thus facilitating linkage, branch and sequence assignment. The method is sensitive and can be applied using as little as 40 fmol of derivatized oligosaccharide. Because permethylation renders oligosaccharides nearly chemically equivalent in the mass spectrometer, the method is semi-quantitative and, in this regard, is comparable to methods reported using high field NMR and capillary electrophoresis. In this post - genomic age, the importance of glycosylation in biological processes has become clear. The nature of many of the important questions in glycomics is such that sample material is often extremely limited, thus necessitating the development of highly sensitive methods for rigorous structural assignment of the oligosaccharides in complex mixtures. The glycomics platform presented here fulfills these criteria and should lead to more facile glycomics analyses. PMID:17719235
Arnould, Mark A; Buehner, Rita W; Wesdemiotis, Chrys; Vargas, Rafael
2005-01-01
Electrospray ionization of polyesters composed of isophthalic acid and neopentyl glycol produces carboxylate anions in negative mode and mainly sodium ion adducts in positive mode. A tandem mass spectrometry (MS/MS) study of these ions in a quadrupole ion trap shows that the collisionally activated dissociation pathways of the anions are simpler than those of the corresponding cations. Charge-remote fragmentations predominate in both cases, but the spectra obtained in negative mode are devoid of the complicating cation exchange observed in positive mode. MS/MS of the Na(+) adducts gives rise to a greater number of fragments but not necessarily more structural information. In either positive or negative mode, polyester oligomers with different end groups fragment by similar mechanisms. The observed fragments are consistent with rearrangements initiated by the end groups. Single-stage ESI mass spectra also are more complex in positive mode because of extensive H/Na substitutions; this is also true for matrix-assisted laser desorption ionization (MALDI) mass spectra. Hence, formation and analysis of anions might be the method of choice for determining block length, end group structure and copolymer sequence, provided the polyester contains at least one carboxylic acid end group that is ionizable to anions.
Characterization of exopolymers of aquatic bacteria by pyrolysis-mass spectrometry
NASA Technical Reports Server (NTRS)
Ford, T.; Sacco, E.; Black, J.; Kelley, T.; Goodacre, R.; Berkeley, R. C.; Mitchell, R.
1991-01-01
Exopolymers from a diverse collection of marine and freshwater bacteria were characterized by pyrolysis-mass spectrometry (Py-MS). Py-MS provides spectra of pyrolysis fragments that are characteristic of the original material. Analysis of the spectra by multivariate statistical techniques (principal component and canonical variate analysis) separated these exopolymers into distinct groups. Py-MS clearly distinguished characteristic fragments, which may be derived from components responsible for functional differences between polymers. The importance of these distinctions and the relevance of pyrolysis information to exopolysaccharide function in aquatic bacteria is discussed.
Zhou, Yao; Yang, Huiqin; Shi, Yiyin; Chen, Jiaxian; Zhu, Jian; Deng, Xiaojun; Guo, Dehua
2017-09-08
A method was developed for the simultaneous determination of six strobilurin fungicide ( E -metominostrobin, azoxystrobin, kresoxim-methyl, picoxystrobin, pyraclostrobin and trifloxystrobin) residues in orange, banana, apple and pineapple samples by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The fragmentation routes of all the compounds were explained by the aid of a fragment predicting software ACD Lab/MS Fragmenter. The samples were extracted by acetonitrile, then cleaned up by amino solid phase extraction cartridges (SupelClean LC-NH 2 ). The extracts were separated on a ACQUITY UPLC BEH C 18 column (50 mm×2.1 mm, 1.7 μm) with gradient elution. Acetonitrile containing 0.1% (v/v) formic acid and 10 mmol/L ammonium acetate containing 0.1% (v/v) formic acid were used as mobile phases. The samples were detected by electrospray ionization (ESI)-MS/MS in positive ion and multiple reaction monitoring (MRM) mode, quantified by external standard method. Good linearities were obtained in the range of 5-100 μg/L (for pyraclostrobin, 1-20 μg/L) with correlation coefficients ( r 2 ) greater than 0.999. The recoveries ranged from 60.4% to 120% with the relative standard deviations between 2.15% and 15.1% ( n =6). The developed method can meet the inspection of the six strobilurin residues in the orange, banana, apple and pineapple samples.
Weesepoel, Yannick; Vincken, Jean-Paul; Pop, Raluca Maria; Liu, Kun; Gruppen, Harry
2013-07-01
The microalga Haematococcus pluvialis produces the pigment astaxanthin mainly in esterified form with a multitude of fatty acids, which results in a complex mixture of carotenol mono- and diesters. For rapid fingerprinting of these esters, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) might be an alternative to traditional chromatographic separation combined with MS. Investigation of ionization and fragmentation of astaxanthin mono- and diester palmitate standards in MALDI-TOF/TOF-MS showed that sodium adduct parent masses [M + Na](+) gave much simpler MS(2) spectra than radical / protonated [M](+●) / [M + H](+) parents. [M + Na](+) fragments yielded diagnostic polyene-specific eliminations and fatty acid neutral losses, whereas [M](+●) / [M + H](+) fragmentation resulted in a multitude of non-diagnostic daughters. For diesters, a benzonium fragment, formed by polyene elimination, was required for identification of the second fatty acid attached to the astaxanthin backbone. Parents were forced into [M + Na](+) ionization by addition of sodium acetate, and best signal-to-noise ratios were obtained in the 0.1 to 1.0 mM range. This method was applied to fingerprinting astaxanthin esters in a crude H. pluvialis extract. Prior to MALDI-TOF/TOF-MS, the extract was fractionated by normal phase Flash chromatography to obtain fractions enriched in mono- and diesters and to remove pheophytin a, which compromised monoester signals. All 12 types of all-trans esterified esters found in LC were identified with MALDI-TOF/TOF-MS, with the exception of two minor monoesters. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Es-Safi, Nour-Eddine; Essassi, El Mokhtar; Massoui, Mohamed; Banoub, Joseph
Mass spectrometry is an important tool for the identification and structural elucidation of natural and synthesized compounds. Its high sensitivity and the possibility of coupling liquid chromatography with mass spectrometry detection make it a technique of choice for the investigation of complex mixtures like raw natural extracts. The mass spectrometer is a universal detector that can achieve very high sensitivity and provide information on the molecular mass. More detailed information can be subsequently obtained by resorting to collision-induced dissociation tandem mass spectrometry (CID-MS/MS). In this review, the application of mass spectrometric techniques for the identification of natural and synthetic compounds is presented. The gas-phase fragmentation patterns of a series of four natural flavonoid glycosides, three synthesized benzodiazepines and two synthesized quinoxalinone derivatives were investigated using electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry techniques. Exact accurate masses were measured using a modorate resolution quadrupole orthogonal time-of-flight QqTOF-MS/MS hybrid mass spectrometer instrument. Confirmation of the molecular masses and the chemical structures of the studied compounds were achieved by exploring the gas-phase breakdown routes of the ionized molecules. This was rationalized by conducting low-energy collision CID-MS/MS analyses (product ion- and precursor ion scans) using a conventional quadrupole hexapole-quadrupole (QhQ) tandem mass spectrometer.
Rapid glucosinolate detection and identification using accurate mass MS-MS
USDA-ARS?s Scientific Manuscript database
Currently, there is a demand for accurate evaluation of brassica plat species for their glucosinolate content. An optimized method has been developed for detecting and identifying glucosinolates in plant extracts using MS-MS fragmentation with ion trap collision induced dissociation (CID) and higher...
Sioud, Salim; Kharbatia, Najeh; Amad, Maan H; Zhu, Zhiyong; Cabanetos, Clement; Lesimple, Alain; Beaujuge, Pierre
2014-11-30
The formation of ions during atmospheric pressure photoionization (APPI) mass spectrometry in the positive mode usually provides radical cations and/or protonated species. Intriguingly, during the analysis of some N-alkyl-substituted thieno[3,4-c]pyrrole-4,6-dione (TPD) derivatives synthesized in our laboratory, unusual [M-H](+) ion peaks were observed. In this work we investigate the formation of [M-H](+) ions observed under APPI conditions. Multiple experimental parameters, including the type of ionization source, the composition of the solvent, the type of dopant, the infusion flow rate, and the length of the alkyl side chain were investigated to determine their effects on the formation of [M-H](+) ions. In addition, a comparison study of the gas-phase tandem mass spectrometric (MS/MS) fragmentation of [M + H](+) vs [M-H](+) ions and computational approaches were used. [M-H](+) ions were observed under APPI conditions. The type of dopant and the length of the alkyl chain affected the formation of these ions. MS/MS fragmentation of [M-H](+) and [M + H](+) ions exhibited completely different patterns. Theoretical calculations revealed that the loss of hydrogen molecules from the [M + H](+) ions is the most favourable condition under which to form [M-H](+) ions. [M-H](+) ions were detected in all the TPD derivatives studied here under the special experimental conditions during APPI, using a halogenated benzene dopant, and TPD containing substituted N-alkyl side chains with a minimum of four carbon atoms. Density functional theory calculations showed that for [M-H](+) ions to be formed under these conditions, the loss of hydrogen molecules from the [M + H](+) ions is proposed to be necessary. Copyright © 2014 John Wiley & Sons, Ltd.
Sparbier, Katrin; Asperger, Arndt; Resemann, Anja; Kessler, Irina; Koch, Sonja; Wenzel, Thomas; Stein, Günter; Vorwerg, Lars; Suckau, Detlev; Kostrzewa, Markus
2007-01-01
Comprehensive proteomic analyses require efficient and selective pre-fractionation to facilitate analysis of post-translationally modified peptides and proteins, and automated analysis workflows enabling the detection, identification, and structural characterization of the corresponding peptide modifications. Human serum contains a high number of glycoproteins, comprising several orders of magnitude in concentration. Thereby, isolation and subsequent identification of low-abundant glycoproteins from serum is a challenging task. selective capturing of glycopeptides and -proteins was attained by means of magnetic particles specifically functionalized with lectins or boronic acids that bind to various structural motifs. Human serum was incubated with differentially functionalized magnetic micro-particles (lectins or boronic acids), and isolated proteins were digested with trypsin. Subsequently, the resulting complex mixture of peptides and glycopeptides was subjected to LC-MALDI analysis and database searching. In parallel, a second magnetic bead capturing was performed on the peptide level to separate and analyze by LC-MALDI intact glycopeptides, both peptide sequence and glycan structure. Detection of glycopeptides was achieved by means of a software algorithm that allows extraction and characterization of potential glycopeptide candidates from large LC-MALDI-MS/MS data sets, based on N-glycopeptide-specific fragmentation patterns and characteristic fragment mass peaks, respectively. By means of fast and simple glycospecific capturing applied in conjunction with extensive LC-MALDI-MS/MS analysis and novel data analysis tools, a high number of low-abundant proteins were identified, comprising known or predicted glycosylation sites. According to the specific binding preferences of the different types of beads, complementary results were obtained from the experiments using either magnetic ConA-, LCA-, WGA-, and boronic acid beads, respectively. PMID:17916798
Carlsson, Henrik; von Stedingk, Hans; Nilsson, Ulrika; Törnqvist, Margareta
2014-12-15
Electrophilically reactive compounds have the ability to form adducts with nucleophilic sites in DNA and proteins, constituting a risk for toxic effects. Mass spectrometric detection of adducts to N-terminal valine in hemoglobin (Hb) after detachment by modified Edman degradation procedures is one approach for in vivo monitoring of exposure to electrophilic compounds/metabolites. So far, applications have been limited to one or a few selected reactive species, such as acrylamide and its metabolite glycidamide. This article presents a novel screening strategy for unknown Hb adducts to be used as a basis for an adductomic approach. The method is based on a modified Edman procedure, FIRE, specifically developed for LC-MS/MS analysis of N-terminal valine adducts in Hb detached as fluorescein thiohydantoin (FTH) derivatives. The aim is to detect and identify a priori unknown Hb adducts in human blood samples. Screening of valine adducts was performed by stepwise scanning of precursor ions in small mass increments, monitoring four fragments common for the FTH derivative of valine with different N-substitutions in the multiple-reaction mode, covering a mass range of 135 Da (m/z 503-638). Samples from six smokers and six nonsmokers were analyzed. Control experiments were performed to compare these results with known adducts and to check for artifactual formation of adducts. In all samples of smokers and nonsmokers, seven adducts were identified, of which six have previously been studied. Nineteen unknown adducts were observed, and 14 of those exhibited fragmentation patterns similar to earlier studied FTH derivatives of adducts to valine. Identification of the unknown adducts will be the focus of future work. The presented methodology is a promising screening tool using Hb adducts to indicate exposure to potentially toxic electrophilic compounds and metabolites.
Wang, Weihao; Zhao, Ye; Jing, Wenguang; Zhang, Jun; Xiao, Hui; Zha, Qin; Liu, An
2015-03-01
Dioscorea panthaica is a traditional Chinese medicinal herb used in the treatment of various physiological conditions, including cardiovascular disease, gastropathy and hypertension. Steroidal saponins (SS) are the main active ingredients of this herb and have effects on myocardial ischemia and cancer. The phytochemical evaluation of SS is both time-consuming and laborious, and the isolation and structural determination steps can be especially demanding. For this reason, the development of new methods to accelerate the processes involved in the identification, isolation and structural elucidation of SS is highly desirable. In this study, a new ultrahigh performance liquid chromatography-ion trap mass spectrometry (UHPLC-IT/MS(n)) method has been developed for the identification of the SS in D. panthaica Prain et Burkill. Notably, the current method can distinguish between spirostanol and furostanol-type compounds based on the fragmentation patterns observed by electrospray ionization-ion trap mass spectrometry (ESI-IT/MS(n)) analysis. UHPLC-IT/MS(n) was used to conduct a detailed investigation of the number, structural class and order of the sugar moieties in the sugar chains of the SS present in D. panthaica. The established fragmentation features were used to analyze the compounds found in the 65% ethanol fraction of the water extracts of D. panthaica. Twenty-three SS were identified, including 11 potential new compounds and six groups of isomers. Two of these newly identified SS were selected as representative examples, and their chemical structures were confirmed by (1)H and (13)C NMR analyses. This newly developed UHPLC-IT/MS(n) method therefore allowed for the efficient identification, isolation and structural determination of the SS in D. panthaica. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhao, Yuan Yuan; Liu, Xin; Boyd, Jessica M; Qin, Feng; Li, Jianjun; Li, Xing-Fang
2009-01-01
We report a nanoelectrospray ionization (nESI) with high-field asymmetric waveform ion mobility spectrometry (FAIMS) and tandem mass spectrometry (MS-MS) method for determination of small molecules of m/z 50 to 200 and its potential application in environmental analysis. Integration of nESI with FAIMS and MS-MS combines the advantages of these three techniques into one method. The nESI provides efficient sample introduction and ionization and allows for collection of multiple data from only microliters of samples. The FAIMS provides rapid separation, reduces or eliminates background interference, and improves the signal-to-noise ratio as much as 10-fold over nESI-MS-MS. The tandem quadrupole time-of-flight MS detection provides accurate mass and mass spectral measurements for structural identification. Characteristics of FAIMS compensation voltage (CV) spectra of seven nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosodi-n-butylamine (NDBA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were analyzed. The optimal CV of the nitrosamines (at DV -4000 V) were: -1.6 V, NDBA; 2.6 V, NDPA; 6.6 V, NPip; 8.8 V, NDEA; 13.2 V, NPyr; 14.4 V, NMEA; and 19.4 V, NDMA. Fragmentation patterns of the seven nitrosamines in the nESI-FAIMS-MS-MS were also obtained. The specific CV and MS-MS spectra resulted in positive identification of NPyr and NPip in a treated water sample, demonstrating the potential application of this technique in environmental analysis.
Higashi, Tatsuya; Ogawa, Shoujiro
2016-09-01
Sensitive and specific methods for the detection, characterization and quantification of endogenous steroids in body fluids or tissues are necessary for the diagnosis, pathological analysis and treatment of many diseases. Recently, liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) has been widely used for these purposes due to its specificity and versatility. However, the ESI efficiency and fragmentation behavior of some steroids are poor, which lead to a low sensitivity. Chemical derivatization is one of the most effective methods to improve the detection characteristics of steroids in ESI-MS/MS. Based on this background, this article reviews the recent advances in chemical derivatization for the trace quantification of steroids in biological samples by LC/ESI-MS/MS. The derivatization in ESI-MS/MS is based on tagging a proton-affinitive or permanently charged moiety on the target steroid. Introduction/formation of a fragmentable moiety suitable for the selected reaction monitoring by the derivatization also enhances the sensitivity. The stable isotope-coded derivatization procedures for the steroid analysis are also described. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wu, Shiaw-Lin; Hühmer, Andreas F R; Hao, Zhiqi; Karger, Barry L
2007-11-01
We have expanded our recent on-line LC-MS platform for large peptide analysis to combine collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced (CRCID) species derived from ETD to determine sites of phosphorylation and glycosylation modifications, as well as the sequence of large peptide fragments (i.e., 2000-10,000 Da) from complex proteins, such as beta-casein, epidermal growth factor receptor (EGFR), and tissue plasminogen activator (t-PA) at the low femtomol level. The incorporation of an additional CID activation step for a charge-reduced species, isolated from ETD fragment ions, improved ETD fragmentation when precursor ions with high m/z (approximately >1000) were automatically selected for fragmentation. Specifically, the identification of the exact phosphorylation sites was strengthened by the extensive coverage of the peptide sequence with a near-continuous product ion series. The identification of N-linked glycosylation sites in EGFR and an O-linked glycosylation site in t-PA were also improved through the enhanced identification of the peptide backbone sequence of the glycosylated precursors. The new strategy is a good starting survey scan to characterize enzymatic peptide mixtures over a broad range of masses using LC-MS with data-dependent acquisition, as the three activation steps can provide complementary information to each other. In general, large peptides can be extensively characterized by the ETD and CRCID steps, including sites of modification from the generated, near-continuous product ion series, supplemented by the CID-MS2 step. At the same time, small peptides (e.g.,
Bruderer, Tobias; Varesio, Emmanuel; Hidasi, Anita O; Duchoslav, Eva; Burton, Lyle; Bonner, Ron; Hopfgartner, Gérard
2018-03-01
High-quality mass spectral libraries have become crucial in mass spectrometry-based metabolomics. Here, we investigate a workflow to generate accurate mass discrete and composite spectral libraries for metabolite identification and for SWATH mass spectrometry data processing. Discrete collision energy (5-100 eV) accurate mass spectra were collected for 532 metabolites from the human metabolome database (HMDB) by flow injection analysis and compiled into composite spectra over a large collision energy range (e.g., 10-70 eV). Full scan response factors were also calculated. Software tools based on accurate mass and predictive fragmentation were specially developed and found to be essential for construction and quality control of the spectral library. First, elemental compositions constrained by the elemental composition of the precursor ion were calculated for all fragments. Secondly, all possible fragments were generated from the compound structure and were filtered based on their elemental compositions. From the discrete spectra, it was possible to analyze the specific fragment form at each collision energy and it was found that a relatively large collision energy range (10-70 eV) gives informative MS/MS spectra for library searches. From the composite spectra, it was possible to characterize specific neutral losses as radical losses using in silico fragmentation. Radical losses (generating radical cations) were found to be more prominent than expected. From 532 metabolites, 489 provided a signal in positive mode [M+H] + and 483 in negative mode [M-H] - . MS/MS spectra were obtained for 399 compounds in positive mode and for 462 in negative mode; 329 metabolites generated suitable spectra in both modes. Using the spectral library, LC retention time, response factors to analyze data-independent LC-SWATH-MS data allowed the identification of 39 (positive mode) and 72 (negative mode) metabolites in a plasma pool sample (total 92 metabolites) where 81 previously were reported in HMDB to be found in plasma. Graphical abstract Library generation workflow for LC-SWATH MS, using collision energy spread, accurate mass, and fragment annotation.
Kasamatsu, Masaaki; Igawa, Takao; Suzuki, Shinichi; Suzuki, Yasuhiro
2018-01-01
Since fragments of concrete can be evidence of crime, a determination of whether or not they come from the same origin is required. The authors focused on nitric acid-soluble components in the fragments of concrete. As a result of qualitative analysis with ICP-MS, it was confirmed that elements such as Cu, Zn, Rb, Sr, Zr, Ba, La, Ce, Nd, and Pb were contained in the fragments. After the nitric acid-soluble components in the fragments of concrete were separated by dissolving them in nitric acid, the concentrations of these elements in the dissolved solution were quantitatively determined by ICP-MS. The concentration ratios of nine elements compared to La were used as indicators. By comparing these indicators, it was possible to discriminate between the fragments of concrete.
Fingerprints of Both Watson-Crick and Hoogsteen Isomers of the Isolated (Cytosine-Guanine)H+ Pair.
Cruz-Ortiz, Andrés F; Rossa, Maximiliano; Berthias, Francis; Berdakin, Matías; Maitre, Philippe; Pino, Gustavo A
2017-11-16
Gas phase protonated guanine-cytosine (CGH + ) pair was generated using an electrospray ionization source from solutions at two different pH (5.8 and 3.2). Consistent evidence from MS/MS fragmentation patterns and differential ion mobility spectra (DIMS) point toward the presence of two isomers of the CGH + pair, whose relative populations depend strongly on the pH of the solution. Gas phase infrared multiphoton dissociation (IRMPD) spectroscopy in the 900-1900 cm -1 spectral range further confirms that the Watson-Crick isomer is preferentially produced (91%) at pH = 5.8, while the Hoogsteen isomer predominates (66%) at pH = 3.2). These fingerprint signatures are expected to be useful for the development of new analytical methodologies and to trigger isomer selective photochemical studies of protonated DNA base pairs.
Non-Target Screening of Veterinary Drugs Using Tandem Mass Spectrometry on SmartMass
NASA Astrophysics Data System (ADS)
Xia, Bing; Liu, Xin; Gu, Yu-Cheng; Zhang, Zhao-Hui; Wang, Hai-Yan; Ding, Li-Sheng; Zhou, Yan
2013-05-01
Non-target screening of veterinary drugs using tandem mass spectrometric data was performed on the SmartMass platform. This newly developed software uses the characteristic fragmentation patterns (CFP) to identify chemicals, especially those containing particular substructures. A mixture of 17 sulfonamides was separated by ultra performance liquid chromatography (UPLC), and SmartMass was used to process the tandem mass spectrometry (MS/MS) data acquired on an Orbitrap mass spectrometer. The data were automatically extracted, and each sulfonamide was recognized and analyzed with a prebuilt analysis rule. By using this software, over 98 % of the false candidate structures were eliminated, and all the correct structures were found within the top 10 of the ranking lists. Furthermore, SmartMass could also be used to identify slightly modified contraband drugs and metabolites with simple prebuilt rules. [Figure not available: see fulltext.
Positive and negative ion mode ESI-MS and MS/MS for studying drug-DNA complexes
NASA Astrophysics Data System (ADS)
Rosu, Frédéric; Pirotte, Sophie; Pauw, Edwin De; Gabelica, Valérie
2006-07-01
We report systematic investigation of duplex DNA complexes with minor groove binders (Hoechsts 33258 and 33342, netropsin and DAPI) and intercalators (daunomycin, doxorubicin, actinomycin D, ethidium, cryptolepine, neocryptolepine, m-Amsacrine, proflavine, ellipticine and mitoxantrone) by ESI-MS and ESI-MS/MS in the negative ion mode and in the positive ion mode. The apparent solution phase equilibrium binding constants can be determined by measuring relative intensities in the ESI-MS spectrum. While negative ion mode gives reliable results, positive ion mode gives a systematic underestimation of the binding constants and even a complete suppression of the complexes for intercalators lacking functional groups capable of interacting in the grooves. In the second part of the paper we systematically compare MS/MS fragmentation channels and breakdown curves in the positive and the negative modes, and discuss the possible uses and caveats of MS/MS in drug-DNA complexes. In the negative mode, the drugs can be separated in three groups: (1) those that leave the complex with no net charge; (2) those that leave the complex with a negative charge; and (3) those that remain attached on the strands upon dissociation of the duplex due to their positive charge. In the positive ion mode, all complexes fragment via the loss of protonated drug. Information on the stabilization of the complex by drug-DNA noncovalent interactions can be obtained straightforwardly only in the case of neutral drug loss. In all other cases, proton affinity (in the positive ion mode), gas-phase basicity (in the negative ion mode) and coulombic repulsion are the major factors influencing the fragmentation channel and the dissociation kinetics.
Nam, Jungjoo; Kwon, Hyuksu; Jang, Inae; Jeon, Aeran; Moon, Jingyu; Lee, Sun Young; Kang, Dukjin; Han, Sang Yun; Moon, Bongjin; Oh, Han Bin
2015-02-01
We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.e. o-TEMPO-Bz(Br)-C(O)-peptide, allows unambiguous distinction of the N-terminal peptide fragments from the C-terminal fragments through the unique bromine doublet isotopic signature. Furthermore, bromine substitution does not alter the overall radical-driven peptide backbone dissociation pathways of o-TEMPO-Bz-C(O)-peptide. From a practical perspective, the presence of the bromine isotopic signature in the N-terminal peptide fragments in TEMPO-assisted FRIPS MS represents a useful and cost-effective opportunity for de novo peptide sequencing. Copyright © 2015 John Wiley & Sons, Ltd.
Lesiak, Ashton D; Cody, Robert B; Dane, A John; Musah, Rabi A
2015-09-01
Plant species identification based on the morphological features of plant parts is a well-established science in botany. However, species identification from seeds has largely been unexplored, despite the fact that the seeds contain all of the genetic information that distinguishes one plant from another. Using seeds of genus Datura plants, we show here that the mass spectrum-derived chemical fingerprints for seeds of the same species are similar. On the other hand, seeds from different species within the same genus display distinct chemical signatures, even though they may contain similar characteristic biomarkers. The intraspecies chemical signature similarities on the one hand, and interspecies fingerprint differences on the other, can be processed by multivariate statistical analysis methods to enable rapid species-level identification and differentiation. The chemical fingerprints can be acquired rapidly and in a high-throughput manner by direct analysis in real time mass spectrometry (DART-MS) analysis of the seeds in their native form, without use of a solvent extract. Importantly, knowledge of the identity of the detected molecules is not required for species level identification. However, confirmation of the presence within the seeds of various characteristic tropane and other alkaloids, including atropine, scopolamine, scopoline, tropine, tropinone, and tyramine, was accomplished by comparison of the in-source collision-induced dissociation (CID) fragmentation patterns of authentic standards, to the fragmentation patterns observed in the seeds when analyzed under similar in-source CID conditions. The advantages, applications, and implications of the chemometric processing of DART-MS derived seed chemical signatures for species level identification and differentiation are discussed.
Iron meteorite fragment studied by atomic and nuclear analytical methods
NASA Astrophysics Data System (ADS)
Cesnek, Martin; Štefánik, Milan; Kmječ, Tomáš; Miglierini, Marcel
2016-10-01
Chemical and structural compositions of a fragment of Sikhote-Alin iron meteorite were investigated by X-ray fluorescence analysis (XRF), neutron activation analysis (NAA) and Mössbauer spectroscopy (MS). XRF and NAA revealed the presence of chemical elements which are characteristic for iron meteorites. XRF also showed a significant amount of Si and Al on the surface of the fragment. MS spectra revealed possible presence of α-Fe(Ni, Co) phase with different local Ni concentration. Furthermore, paramagnetic singlet was detected in Mössbauer spectra recorded at room temperature and at 4.2 K.
Correlation between y-type ions observed in ion trap and triple quadrupole mass spectrometers.
Sherwood, Carly A; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Vitek, Olga; Martin, Daniel B
2009-09-01
Multiple reaction monitoring mass spectrometry (MRM-MS) is a technique for high-sensitivity targeted analysis. In proteomics, MRM-MS can be used to monitor and quantify a peptide based on the production of expected fragment peaks from the selected peptide precursor ion. The choice of which fragment ions to monitor in order to achieve maximum sensitivity in MRM-MS can potentially be guided by existing MS/MS spectra. However, because the majority of discovery experiments are performed on ion trap platforms, there is concern in the field regarding the generalizability of these spectra to MRM-MS on a triple quadrupole instrument. In light of this concern, many operators perform an optimization step to determine the most intense fragments for a target peptide on a triple quadrupole mass spectrometer. We have addressed this issue by targeting, on a triple quadrupole, the top six y-ion peaks from ion trap-derived consensus library spectra for 258 doubly charged peptides from three different sample sets and quantifying the observed elution curves. This analysis revealed a strong correlation between the y-ion peak rank order and relative intensity across platforms. This suggests that y-type ions obtained from ion trap-based library spectra are well-suited for generating MRM-MS assays for triple quadrupoles and that optimization is not required for each target peptide.
Wang, Xiupin; Peng, Qingzhi; Li, Peiwu; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen; Zhang, Liangxiao
2016-10-12
High complexity of identification for non-target triacylglycerols (TAGs) is a major challenge in lipidomics analysis. To identify non-target TAGs, a powerful tool named accurate MS(n) spectrometry generating so-called ion trees is used. In this paper, we presented a technique for efficient structural elucidation of TAGs on MS(n) spectral trees produced by LTQ Orbitrap MS(n), which was implemented as an open source software package, or TIT. The TIT software was used to support automatic annotation of non-target TAGs on MS(n) ion trees from a self-built fragment ion database. This database includes 19108 simulate TAG molecules from a random combination of fatty acids and corresponding 500582 self-built multistage fragment ions (MS ≤ 3). Our software can identify TAGs using a "stage-by-stage elimination" strategy. By utilizing the MS(1) accurate mass and referenced RKMD, the TIT software can discriminate unique elemental composition candidates. The regiospecific isomers of fatty acyl chains will be distinguished using MS(2) and MS(3) fragment spectra. We applied the algorithm to the selection of 45 TAG standards and demonstrated that the molecular ions could be 100% correctly assigned. Therefore, the TIT software could be applied to TAG identification in complex biological samples such as mouse plasma extracts. Copyright © 2016 Elsevier B.V. All rights reserved.
Chithra, S; Jasim, B; Anisha, C; Mathew, Jyothis; Radhakrishnan, E K
2014-05-01
Piper nigrum is very remarkable for its medicinal properties due to the presence of metabolites like piperine. Emerging understanding on the biosynthetic potential of endophytic fungi suggests the possibility to have piperine producing fungi in P. nigrum. In the current study, endophytic fungi isolated from P. nigrum were screened for the presence of piperine by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This resulted in the identification of a Mycosphaerella sp. with the ability to produce piperine extracellularly. The biosynthesis of piperine (C17H19NO3) by the endophytic fungal isolate was confirmed by the presence of m/z 286.1 (M + H(+)) in the LC-MS/MS analysis using positive mode ionization. This was further supported by the presence of specific fragment ions with masses 135, 143, 171 and 201 formed due to the fragmentation of piperine present in the fungal extract.
NASA Technical Reports Server (NTRS)
Mikouchi, T.; Takenouchi, A.; Zolensky, M. E.; Hoffmann, V. H.
2018-01-01
Almahata Sitta meteorites are unique polymict breccia, comprising of many different meteorite groups as individual fragments dominated by ureilite lithologies and are considered to be recovered fragments of the asteroid 2008TC3. Recently, two unusual Almahata Sitta samples (MS-MU-011 and MS-MU-012) have been reported that show close petrogenetic relationships to ureilites. MS-MU-011 is a trachyandesite mainly composed of feldspar (plagioclase and anorthoclase) and pyroxene (pigeonite and augite) having ureilitic oxygen isotopic ratios. MS-MU-012 is the first ureilite example (unbrecciated) containing primary plagioclase crystals. The findings of these two rock types are important to better understand formation conditions of ureilites and the evolution of their parent body(s). In this abstract we discuss formation conditions of these ureilite-related rocks using redox state estimate by Fe valence states of plagioclase and olivine cooling rate calculations.
NASA Astrophysics Data System (ADS)
Kuo, Chu-Wei; Guu, Shih-Yun; Khoo, Kay-Hooi
2018-04-01
High sensitivity identification of sulfated glycans carried on specific sites of glycoproteins is an important requisite for investigation of molecular recognition events involved in diverse biological processes. However, aiming for resolving site-specific glycosylation of sulfated glycopeptides by direct LC-MS2 sequencing is technically most challenging. Other than the usual limiting factors such as lower abundance and ionization efficiency compared to analysis of non-glycosylated peptides, confident identification of sulfated glycopeptides among the more abundant non-sulfated glycopeptides requires additional considerations in the selective enrichment and detection strategies. Metal oxide has been applied to enrich phosphopeptides and sialylated glycopeptides, but its use to capture sulfated glycopeptides has not been investigated. Likewise, various complementary MS2 fragmentation modes have yet to be tested against sialylated and non-sialylated sulfoglycopeptides due to limited appropriate sample availability. In this study, we have investigated the feasibility of sequencing tryptic sulfated N-glycopeptide and its MS2 fragmentation characteristics by first optimizing the enrichment methods to allow efficient LC-MS detection and MS2 analysis by a combination of CID, HCD, ETD, and EThcD on hybrid and tribrid Orbitrap instruments. Characteristic sulfated glyco-oxonium ions and direct loss of sulfite from precursors were detected as evidences of sulfate modification. It is anticipated that the technical advances demonstrated in this study would allow a feasible extension of our sulfoglycomic analysis to sulfoglycoproteomics. [Figure not available: see fulltext.
Wang, Jian; Anania, Veronica G.; Knott, Jeff; Rush, John; Lill, Jennie R.; Bourne, Philip E.; Bandeira, Nuno
2014-01-01
The combination of chemical cross-linking and mass spectrometry has recently been shown to constitute a powerful tool for studying protein–protein interactions and elucidating the structure of large protein complexes. However, computational methods for interpreting the complex MS/MS spectra from linked peptides are still in their infancy, making the high-throughput application of this approach largely impractical. Because of the lack of large annotated datasets, most current approaches do not capture the specific fragmentation patterns of linked peptides and therefore are not optimal for the identification of cross-linked peptides. Here we propose a generic approach to address this problem and demonstrate it using disulfide-bridged peptide libraries to (i) efficiently generate large mass spectral reference data for linked peptides at a low cost and (ii) automatically train an algorithm that can efficiently and accurately identify linked peptides from MS/MS spectra. We show that using this approach we were able to identify thousands of MS/MS spectra from disulfide-bridged peptides through comparison with proteome-scale sequence databases and significantly improve the sensitivity of cross-linked peptide identification. This allowed us to identify 60% more direct pairwise interactions between the protein subunits in the 20S proteasome complex than existing tools on cross-linking studies of the proteasome complexes. The basic framework of this approach and the MS/MS reference dataset generated should be valuable resources for the future development of new tools for the identification of linked peptides. PMID:24493012
Hernández, Félix; Grimalt, Susana; Pozo, Oscar J; Sancho, Juan V
2009-07-01
In this paper we illustrate the use of two different methodologies to investigate the presence of pesticide metabolites in parent pesticide-positive food samples, using ultra-high-pressure liquid chromatography coupled to hybrid quadrupole time-of-flight (UHPLC-QTOF) mass spectrometry. First, a common fragmentation pathway between the parent pesticide and its metabolites has been considered to search for metabolites in two positive market samples (imazalil in lemon, chlorpyrifos in grape). Secondly, olive oil samples from field residue trials were used for automated application of comparative software (MetaboLynx), which was used with treated and untreated samples to search for expected and unexpected metabolites of phosmet. One of the main objectives when using these approaches was to avoid the tedious manual searching for potential metabolites within the huge amount of information contained in the total ion chromatogram acquired by TOF MS. The common fragmentation approach applied to TOF MS full-acquisition data, considering an enhanced fragmentation in the collision cell, has allowed the discovery of two metabolites of imazalil (1-[2-(2,4-dichlorophenyl)-2-hydroxyethyl]-1H-imidazole and 1-[2-(2,4-dichlorophenyl)-2-oxoethyl]-1H-imidazole) in a lemon positive sample, as well as another two metabolites of chlorpyrifos (chlorpyrifos-oxon and 3,5,6-trichloro-2-pyridinol) in a grape positive sample. Moreover, MetaboLynx application to TOF MS data, without promoting fragmentation, from treated and untreated olive oil samples has been helpful in detecting the metabolite phosmet-oxon. In both strategies, every metabolite detected by TOF MS was confirmed using QTOF and/or triple quadrupole instruments. Accurate masses given by TOF MS together with the valuable information on product ions given by QTOF MS/MS experiments were crucial for the unambiguous identification of metabolites.
Polet, Michael; Van Gansbeke, Wim; Van Eenoo, Peter; Deventer, Koen
2016-02-28
The detection of new anabolic steroid metabolites and new designer steroids is a challenging task in doping analysis. Switching from electron ionization gas chromatography triple quadrupole mass spectrometry (GC/EI-MS/MS) to chemical ionization (CI) has proven to be an efficient way to increase the sensitivity of GC/MS/MS analyses and facilitate the detection of anabolic steroids. CI also extends the possibilities of GC/MS/MS analyses as the molecular ion is retained in its protonated form due to the softer ionization. In EI it can be difficult to find previously unknown but expected metabolites due to the low abundance or absence of the molecular ion and the extensive (and to a large extent unpredictable) fragmentation. The main aim of this work was to study the CI and collision-induced dissociation (CID) behavior of a large number of anabolic androgenic steroids (AAS) as their trimethylsilyl derivatives in order to determine correlations between structures and CID fragmentation. Clarification of these correlations is needed for the elucidation of structures of unknown steroids and new metabolites. The ionization and CID behavior of 65 AAS have been studied using GC/CI-MS/MS with ammonia as the reagent gas. Glucuronidated AAS reference standards were first hydrolyzed to obtain their free forms. Afterwards, all the standards were derivatized to their trimethylsilyl forms. Full scan and product ion scan analyses were used to examine the ionization and CID behavior. Full scan and product ion scan analyses revealed clear correlations between AAS structure and the obtained mass spectra. These correlations were confirmed by analysis of multiple hydroxylated, methylated, chlorinated and deuterated analogs. AAS have been divided into three groups according to their ionization behavior and into seven groups according to their CID behavior. Correlations between fragmentation and structure were revealed and fragmentation pathways were postulated. Copyright © 2016 John Wiley & Sons, Ltd.
Kumar, Sunil; Singh, Awantika; Bajpai, Vikas; Srivastava, Mukesh; Singh, Bhim Pratap; Kumar, Brijesh
2016-12-01
Rauwolfia species (Apocynaceae) are medicinal plants well known worldwide due to its potent bioactive monoterpene indole alkaloids (MIAs) such as reserpine, ajmalicine, ajmaline, serpentine and yohimbine. Reserpine, ajmalicine and ajmaline are powerful antihypertensive, tranquilizing agents used in hypertension. Yohimbine is an aphrodisiac used in dietary supplements. As there is no report on the comparative and comprehensive phytochemical investigation of the roots of Rauwolfia species, we have developed an efficient and reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for ethanolic root extract of Rauwolfia species to elucidate the fragmentation pathways for dereplication of bioactive MIAs using high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (HPLC-ESI-QTOF-MS/MS) in positive ion mode. We identified and established diagnostic fragment ions and fragmentation pathways using reserpine, ajmalicine, ajmaline, serpentine and yohimbine. The MS/MS spectra of reserpine, ajmalicine, and ajmaline showed C -ring-cleavage whereas E -ring cleavage was observed in serpentine via Retro Diels Alder (RDA). A total of 47 bioactive MIAs were identified and characterized on the basis of their molecular formula, exact mass measurements and MS/MS analysis. Reserpine, ajmalicine, ajmaline, serpentine and yohimbine were unambiguously identified by comparison with their authentic standards and other 42 MIAs were tentatively identified and characterized from the roots of Rauwolfia hookeri, Rauwolfia micrantha, Rauwolfia serpentina, Rauwolfia verticillata, Rauwolfia tetraphylla and Rauwolfia vomitoria . Application of LC-MS followed by principal component analysis (PCA) has been successfully used to discriminate among six Rauwolfia species.
Schober, Yvonne; Wahl, Hans Günther; Renz, Harald; Nockher, Wolfgang Andreas
2017-01-01
Cellular fatty acid (FA) profiles have been acknowledged as biomarkers in various human diseases. Nevertheless, common FA analysis by gas chromatography mass spectrometry (GC-MS) requires long analysis time. Hence, there is a need for feasible methods for high throughput analysis in clinical studies. FA was extracted from red blood cells (RBC) and derivatized to fatty acid methyl esters (FAME). A method using gas chromatography tandem mass spectrometry (GC-MS/MS) with ammonia-induced chemical ionization (CI) was developed for the analysis of FA profiles in human RBC. We compared this method with classical single GC-MS using electron impact ionization (EI). The FA profiles of 703 RBC samples were determined by GC-MS/MS. In contrast to EI ammonia-induced CI resulted in adequate amounts of molecular ions for further fragmentation of FAME. Specific fragments for confident quantification and fragmentation were determined for 45 FA. The GC-MS/MS method has a total run time of 9min compared to typical analysis times of up to 60min in conventional GC-MS. Intra and inter assay variations were <10% for all FA analyzed. Analysis of RBC FA composition revealed an age-dependent increase of the omega-3 eicosapentaenoic and docosahexaenoic acid, and a decline of the omega-6 linoleic acid with a corresponding rise of the omega-3 index. The combination of ammonia-induced CI and tandem mass spectrometry after GC separation allows for high-throughput, robust and confident analysis of FA profiles in the clinical laboratory. Copyright © 2016. Published by Elsevier B.V.
Zhang, Zhenbin; Dovichi, Norman J
2018-02-25
The effects of MS1 injection time, MS2 injection time, dynamic exclusion time, intensity threshold, and isolation width were investigated on the numbers of peptide and protein identifications for single-shot bottom-up proteomics analysis using CZE-MS/MS analysis of a Xenopus laevis tryptic digest. An electrokinetically pumped nanospray interface was used to couple a linear-polyacrylamide coated capillary to a Q Exactive HF mass spectrometer. A sensitive method that used a 1.4 Th isolation width, 60,000 MS2 resolution, 110 ms MS2 injection time, and a top 7 fragmentation produced the largest number of identifications when the CZE loading amount was less than 100 ng. A programmable autogain control method (pAGC) that used a 1.4 Th isolation width, 15,000 MS2 resolution, 110 ms MS2 injection time, and top 10 fragmentation produced the largest number of identifications for CZE loading amounts greater than 100 ng; 7218 unique peptides and 1653 protein groups were identified from 200 ng by using the pAGC method. The effect of mass spectrometer conditions on the performance of UPLC-MS/MS was also investigated. A fast method that used a 1.4 Th isolation width, 30,000 MS2 resolution, 45 ms MS2 injection time, and top 12 fragmentation produced the largest number of identifications for 200 ng UPLC loading amount (6025 unique peptides and 1501 protein groups). This is the first report where the identification number for CZE surpasses that of the UPLC at the 200 ng loading level. However, more peptides (11476) and protein groups (2378) were identified by using UPLC-MS/MS when the sample loading amount was increased to 2 μg with the fast method. To exploit the fast scan speed of the Q-Exactive HF mass spectrometer, higher sample loading amounts are required for single-shot bottom-up proteomics analysis using CZE-MS/MS. Copyright © 2017 Elsevier B.V. All rights reserved.
Nagao, Junya; Miyashita, Masahiro; Nakagawa, Yoshiaki; Miyagawa, Hisashi
2015-08-01
La1 is a 73-residue cysteine-rich peptide isolated from the scorpion Liocheles australasiae venom. Although La1 is the most abundant peptide in the venom, its biological function remains unknown. Here, we describe a method for efficient chemical synthesis of La1 using the native chemical ligation (NCL) strategy, in which three peptide components of less than 40 residues were sequentially ligated. The peptide thioester necessary for NCL was synthesized using an aromatic N-acylurea approach with Fmoc-SPPS. After completion of sequential NCL, disulfide bond formation was carried out using a dialysis method, in which the linear peptide dissolved in an acidic solution was dialyzed against a slightly alkaline buffer to obtain correctly folded La1. Next, we determined the disulfide bonding pattern of La1. Enzymatic and chemical digests of La1 without reduction of disulfide bonds were analyzed by liquid chromatography/mass spectrometry (LC/MS), which revealed two of four disulfide bond linkages. The remaining two linkages were assigned based on MS/MS analysis of a peptide fragment containing two disulfide bonds. Consequently, the disulfide bonding pattern of La1 was found to be similar to that of a von Willebrand factor type C (VWC) domain. To our knowledge, this is the first report of the experimental determination of the disulfide bonding pattern of peptides having a single VWC domain as well as their chemical synthesis. La1 synthesized in this study will be useful for investigation of its biological role in the venom. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
Lakshmanan, Rajeswari; Wolff, Jeremy J.; Alvarado, Rudy; Loo, Joseph A.
2014-01-01
A comparison of different data-independent fragmentation methods combined with liquid chromatography (LC) coupled to high resolution Fourier-transform ion cyclotron resonance (FT-ICR) tandem mass spectrometry (MS) is presented for top-down MS of protein mixtures. Proteins composing the 20S and 19S proteasome complex and their post-translational modifications were identified using a 15-Tesla FT-ICR mass spectrometer. The data-independent fragmentation modes with LC timescales allowed for higher duty cycle measurements that better suit on-line LC-FT-ICR-MS. Protein top-down dissociation was effected by funnel-skimmer collisionally activated dissociation (FS-CAD) and CASI (Continuous Accumulation of Selected Ions)-CAD. The N-terminus for 9 out of the 14 20S proteasome proteins were found to be modified, and the α3 protein was found to be phosphorylated; these results are consistent with previous reports. Mass measurement accuracy with the LC-FT-ICR system for the 20–30 kDa 20S proteasome proteins was 1 ppm. The intact mass of the 100 kDa Rpn1 subunit from the 19S proteasome complex regulatory particle was measured with a deviation of 17 ppm. The CASI-CAD technique is a complementary tool for intact protein fragmentation and is an effective addition to the growing inventory of dissociation methods which are compatible with on-line protein separation coupled to FT-ICR MS. PMID:24478249
Girod, Marion; Phan, Trang N T; Charles, Laurence
2008-08-01
Electrospray ionization tandem mass spectrometry has been used to characterize the microstructure of a nitroxide-mediated poly(ethylene oxide)/polystyrene block copolymer, called SG1-capped PEO-b-PS. The main dissociation route of co-oligomers adducted with lithium or silver cation was observed to proceed via the homolytic cleavage of a C-ON bond, aimed at undergoing reversible homolysis during nitroxide mediated polymerization. This cleavage results in the elimination of the terminal SG1 end-group as a radical, inducing a complete depolymerization process of the PS block from the so-formed radical cation. These successive eliminations of styrene molecules allowed a straightforward determination of the PS block size. An alternative fragmentation pathway of the radical cation was shown to provide structural information on the junction group between the two blocks. Proposed dissociation mechanisms were supported by accurate mass measurements. Structural information on the SG1 end-group could be reached from weak abundance fragment ions detected in the low m/z range of the MS/MS spectrum. Amongst fragments typically expected from PS dissociation, only beta ions were produced. Moreover, specific dissociation of the PEO block was not observed to occur in MS/MS, suggesting that these rearrangement reactions do not compete effectively with dissociations of the odd-electron fragment ions. Information about the PEO block length and the initiated end-group were obtained in MS(3) experiments.
Contreras, María Del Mar; Bribi, Noureddine; Gómez-Caravaca, Ana María; Gálvez, Julio; Segura-Carretero, Antonio
2017-01-01
Two analytical platforms, gas chromatography (GC) coupled to quadrupole-time-of-flight (QTOF) mass spectrometry (MS) and reversed-phase ultrahigh performance liquid chromatography (UHPLC) coupled to diode array (DAD) and QTOF detection, were applied in order to study the alkaloid profile of Fumaria capreolata . The use of these mass analyzers enabled tentatively identifying the alkaloids by matching their accurate mass signals and suggested molecular formulae with those previously reported in libraries and databases. Moreover, the proposed structures were corroborated by studying their fragmentation pattern obtained by both platforms. In this way, 8 and 26 isoquinoline alkaloids were characterized using GC-QTOF-MS and RP-UHPLC-DAD-QTOF-MS, respectively, and they belonged to the following subclasses: protoberberine, protopine, aporphine, benzophenanthridine, spirobenzylisoquinoline, morphinandienone, and benzylisoquinoline. Moreover, the latter analytical method was selected to determine at 280 nm the concentration of protopine (9.6 ± 0.7 mg/g), a potential active compound of the extract. In conclusion, although GC-MS has been commonly used for the analysis of this type of phytochemicals, RP-UHPLC-DAD-QTOF-MS provided essential complementary information. This analytical method can be applied for the quality control of phytopharmaceuticals containing Fumaria extracts currently found in the market.
Bribi, Noureddine; Gómez-Caravaca, Ana María
2017-01-01
Two analytical platforms, gas chromatography (GC) coupled to quadrupole-time-of-flight (QTOF) mass spectrometry (MS) and reversed-phase ultrahigh performance liquid chromatography (UHPLC) coupled to diode array (DAD) and QTOF detection, were applied in order to study the alkaloid profile of Fumaria capreolata. The use of these mass analyzers enabled tentatively identifying the alkaloids by matching their accurate mass signals and suggested molecular formulae with those previously reported in libraries and databases. Moreover, the proposed structures were corroborated by studying their fragmentation pattern obtained by both platforms. In this way, 8 and 26 isoquinoline alkaloids were characterized using GC-QTOF-MS and RP-UHPLC-DAD-QTOF-MS, respectively, and they belonged to the following subclasses: protoberberine, protopine, aporphine, benzophenanthridine, spirobenzylisoquinoline, morphinandienone, and benzylisoquinoline. Moreover, the latter analytical method was selected to determine at 280 nm the concentration of protopine (9.6 ± 0.7 mg/g), a potential active compound of the extract. In conclusion, although GC-MS has been commonly used for the analysis of this type of phytochemicals, RP-UHPLC-DAD-QTOF-MS provided essential complementary information. This analytical method can be applied for the quality control of phytopharmaceuticals containing Fumaria extracts currently found in the market. PMID:29348751
Characterization and content of flavonol derivatives of Allium ursinum L. plant.
Oszmiański, J; Kolniak-Ostek, J; Wojdyło, A
2013-01-09
The phenolic compounds were extracted from green and yellow leaves, stalks, and seeds of garlic ( Allium ursinum L.). The extracts were analyzed by liquid chromatography-photodiode array detector-electrospray ionization-tandem mass spectrometry (LC-PDA-ESI-MS/MS). In total, 21 compounds were detected. The flavonol derivatives were identified on the basis of their ultraviolet (UV) spectra and fragmentation patterns in collision-induced dissociation experiments. On the basis of accurate MS and MS/MS data, six compounds were newly identified in bear's garlic, mainly the kaempferol derivatives. As far as the investigated parts of garlic are concerned, the kaempferol derivatives were found to be predominant in yellow leaves [2362.96 mg/100 g of dry matter (dm)], followed by green leaves (1856.31 mg/100 g of dm). Seeds contained the minimal phenolic compounds, less than stalks. The yellow leaves of A. ursinum possessed a much larger content of compounds acylated with p-coumaric acid than green leaves (1299.97 versus 855.67 mg/100 g of dm, respectively). The stalks and seeds contained much more non-acetylated than acetylated flavonoid glycosides with p-coumaric acid compounds (162.4 versus 62.82 mg/100 g of dm and 105.49 versus 24.18 mg/100 g of dm, respectively).
MS/MS Automated Selected Ion Chromatograms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monroe, Matthew
2005-12-12
This program can be used to read a LC-MS/MS data file from either a Finnigan ion trap mass spectrometer (.Raw file) or an Agilent Ion Trap mass spectrometer (.MGF and .CDF files) and create a selected ion chromatogram (SIC) for each of the parent ion masses chosen for fragmentation. The largest peak in each SIC is also identified, with reported statistics including peak elution time, height, area, and signal to noise ratio. It creates several output files, including a base peak intensity (BPI) chromatogram for the survey scan, a BPI for the fragmentation scans, an XML file containing the SICmore » data for each parent ion, and a "flat file" (ready for import into a database) containing summaries of the SIC data statistics.« less
Longitudinal Urinary Protein Variability in Participants of the Space Flight Simulation Program.
Khristenko, Nina A; Larina, Irina M; Domon, Bruno
2016-01-04
Urine is a valuable material for the diagnosis of renal pathologies and to investigate the effects of their treatment. However, the variability in protein abundance in the context of normal homeostasis remains a major challenge in urinary proteomics. In this study, the analysis of urine samples collected from healthy individuals, rigorously selected to take part in the MARS-500 spaceflight simulation program, provided a unique opportunity to estimate normal concentration ranges for an extended set of urinary proteins. In order to systematically identify and reliably quantify peptides/proteins across a large sample cohort, a targeted mass spectrometry method was developed. The performance of parallel reaction monitoring (PRM) analyses was improved by implementing tight control of the monitoring windows during LC-MS/MS runs, using an on-the-fly correction routine. Matching the experimentally obtained MS/MS spectra with reference fragmentation patterns allowed dependable peptide identifications to be made. Following optimization and evaluation, the targeted method was applied to investigate protein abundance variability in 56 urine samples, collected from six volunteers participating in the MARS-500 program. The intrapersonal protein concentration ranges were determined for each individual and showed unexpectedly high abundance variation, with an average difference of 1 order of magnitude.
NASA Astrophysics Data System (ADS)
Gerpe, Alejandra; Piro, Oscar E.; Cerecetto, Hugo; González, Mercedes
2007-12-01
A series of indazole N1-oxide derivatives has been spectroscopically studied in solution using 1H, 13C, and 15N NMR based on pulsed field gradient selected PFG 1H sbnd X (X = 13C and 15N) gHMQC and gHMBC experiments. Some indazoles were prepared using a new methodology to compare its spectral and structural data with the indazole N1-oxide parent compounds. The 13C resonances of the indazole N1-oxide carbon 3 and 7a demonstrate the N-oxide push-electron capability. The 15N resonances of the indazole N-oxide, nitrogen 1, are near to 30 ppm more shielded than the corresponding values in the indazole heterocycle (deoxygenated form). Moreover, the structures of one indazole and one indazole N-oxide were unambiguously confirmed by X-ray crystallography. The solid state structures were contrasted with the theoretical ones obtained in vacuo at different calculus level. The aromaticity of the derivatives was studied analyzing the H sbnd H coupling constants of indazole's aromatic hydrogens and measuring C sbnd C distances in the solid state. The fragmentation that takes place in EI/MS was gathered for all the indazole N-oxide derivatives and the general fragmentation pattern analyzed.
Ferrar, Imma; Barber, Larry B.; Thurman, E. Michael
2009-01-01
An analytical method for the identification of eight plant phytoestrogens (biochanin A, coumestrol, daidzein, equol, formononetin, glycitein, genistein and prunetin) in soy products and wastewater samples was developed using gas chromatography coupled with ion trap mass spectrometry (GC/MS–MS). The phytoestrogens were derivatized as their trimethylsilyl ethers with trimethylchlorosilane (TMCS) and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA). The phytoestrogens were isolated from all samples with liquid–liquid extraction using ethyl acetate. Daidzein-d4 and genistein-d4 labeled standards were used as internal standards before extraction and derivatization. The fragmentation patterns of the phytoestrogens were investigated by isolating and fragmenting the precursor ions in the ion-trap and a typical fragmentation involved the loss of a methyl and a carbonyl group. Two characteristic fragment ions for each analyte were chosen for identification and confirmation. The developed methodology was applied to the identification and confirmation of phytoestrogens in soy milk, in wastewater effluent from a soy-milk processing plant, and in wastewater (influent and effluent) from a treatment plant. Detected concentrations of genistein ranged from 50,000 μg/L and 2000 μg/L in soy milk and in wastewater from a soy-plant, respectively, to 20 μg/L and <1 μg/L for influent and effluent from a wastewater treatment plant, respectively.
Broeckling, Corey D.; Ganna, Andrea; Layer, Mark; ...
2016-09-08
Liquid chromatography coupled to electrospray ionization-mass spectrometry (LC–ESI-MS) is a versatile and robust platform for metabolomic analysis. However, while ESI is a soft ionization technique, in-source phenomena including multimerization, nonproton cation adduction, and in-source fragmentation complicate interpretation of MS data. Here, we report chromatographic and mass spectrometric behavior of 904 authentic standards collected under conditions identical to a typical nontargeted profiling experiment. The data illustrate that the often high level of complexity in MS spectra is likely to result in misinterpretation during the annotation phase of the experiment and a large overestimation of the number of compounds detected. However, ourmore » analysis of this MS spectral library data indicates that in-source phenomena are not random but depend at least in part on chemical structure. These nonrandom patterns enabled predictions to be made as to which in-source signals are likely to be observed for a given compound. Using the authentic standard spectra as a training set, we modeled the in-source phenomena for all compounds in the Human Metabolome Database to generate a theoretical in-source spectrum and retention time library. A novel spectral similarity matching platform was developed to facilitate efficient spectral searching for nontargeted profiling applications. Taken together, this collection of experimental spectral data, predictive modeling, and informatic tools enables more efficient, reliable, and transparent metabolite annotation.« less
Broeckling, Corey D.; Ganna, Andrea; Layer, Mark; ...
2016-08-25
Liquid chromatography coupled to electrospray ionization-mass spectrometry (LC–ESI-MS) is a versatile and robust platform for metabolomic analysis. However, while ESI is a soft ionization technique, in-source phenomena including multimerization, nonproton cation adduction, and in-source fragmentation complicate interpretation of MS data. Here, we report chromatographic and mass spectrometric behavior of 904 authentic standards collected under conditions identical to a typical nontargeted profiling experiment. The data illustrate that the often high level of complexity in MS spectra is likely to result in misinterpretation during the annotation phase of the experiment and a large overestimation of the number of compounds detected. However, ourmore » analysis of this MS spectral library data indicates that in-source phenomena are not random but depend at least in part on chemical structure. These nonrandom patterns enabled predictions to be made as to which in-source signals are likely to be observed for a given compound. Using the authentic standard spectra as a training set, we modeled the in-source phenomena for all compounds in the Human Metabolome Database to generate a theoretical in-source spectrum and retention time library. A novel spectral similarity matching platform was developed to facilitate efficient spectral searching for nontargeted profiling applications. Taken together, this collection of experimental spectral data, predictive modeling, and informatic tools enables more efficient, reliable, and transparent metabolite annotation.« less
NASA Astrophysics Data System (ADS)
Hagan, Nathan A.; Cornish, Timothy J.; Pilato, Robert S.; van Houten, Kelly A.; Antoine, Miquel D.; Lippa, Timothy P.; Becknell, Alan F.; Demirev, Plamen A.
2008-12-01
Two desorption ionization mass spectrometry (MS) techniques - ultraviolet laser desorption/ionization (LDI) and desorption electrospray ionization (DESI) - have been used to detect and identify low-volatility organophosphates when deposited on surfaces or loaded into the pore volume of porous inorganic or polymeric organic powders. The insecticides malathion and dicrotophos were chosen for this study as simulants of low vapor pressure chemical warfare agents which are inherently difficult to detect directly by traditional methods. Both liquid and powdered forms of either insecticide were readily detected by LDI or DESI MS. LDI MS was performed on a miniaturized home-built time-of-flight (TOF) mass spectrometer and a commercial TOF/TOF instrument. For DESI MS, a home-built ion source was interfaced to a commercial quadrupole ion trap. In LDI, intact molecular ion signatures could be acquired by using an appropriate cationizing agent and powder additive in positive ion mode. Tandem MS was used to confirm the identity of each analyte based on the observed characteristic fragmentation pattern. In DESI, less than 100 pg of the liquid insecticides spotted on clean surfaces were detected, while detection limits for the powder-loaded preparations were lower than 1 [mu]g. The effects of sample surface, salt additives, nanoparticle admixtures, and analyte solubility on the LDI and DESI MS sensitivity have been investigated as well.
Chen, Jianzhong; Green, Kari B; Nichols, Kelly K
2015-01-01
A series of different types of wax esters (represented by RCOOR′) were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS3 (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2]+, [RCO]+ and [RCO – H2O]+ that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: 1) [RCOOH2]+ for saturated wax esters, 2) [RCOOH2]+, [RCO]+ and [RCO – H2O]+ for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and 3) [RCOOH2]+ and [RCO]+ for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R′]+ and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2]+ ions for all types of wax esters and [R′ – 2H]+ ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions. PMID:26178197
Chen, Jianzhong; Green, Kari B; Nichols, Kelly K
2015-08-01
A series of different types of wax esters (represented by RCOOR') were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS(3) (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2](+), [RCO](+) and [RCO-H2O](+) that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: (1) [RCOOH2](+) for saturated wax esters, (2) [RCOOH2](+), [RCO](+) and [RCO-H2O](+) for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and (3) [RCOOH2](+) and [RCO](+) for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R'](+) and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2](+) ions for all types of wax esters and [R'-2H](+) ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions.
Kumar, Sunil; Singh, Awantika; Bajpai, Vikas; Kumar, Brijesh
2016-01-25
Monoterpene indole alkaloids (MIAs) are medicinally important class of compounds abundant in the roots of Rauwolfia species (Apocynaceae). MIAs such as yohimbine (aphrodisiac agent) and reserpine (antihypertensive, tranquilizer) are the official drugs included in Model List of Essential Drugs of World Health Organization (WHO). Therefore, we have attempt to identify and characterize the MIAs in the crude extracts of six Rauwolfia species using ultrahigh-performance liquid chromatography coupled with Orbitrap Velos Pro hybrid mass spectrometer. The identity of the MIAs were construed using the high resolution tandem mass spectrometry (HRMS/MS) spectra of standard compounds 'yohimbine' and 'reserpine' in higher energy collisional dissociation (HCD) and collision-induced dissociation (CID) modes. The diagnostic fragment ions found in HCD mode was highly affected by variation of normalized collision energy (NCE) and gave few product ions ('C-F') while CID produced intense and more diagnostic product ions ('A-F'). Consequently, CID-MS/MS mode provided significantly more structural information about basic skeleton and therefore the recommended mode for analysis of MIAs. Furthermore, six diagnostic fragmentation pathways were established by multi-stage mass analysis (MS(n) (n=5)) analysis which gave information regarding the substitution. Fragment ions 'A-F' revealed the number and position of substituents on indole and terpene moieties. The proposed diagnostic fragmentation pathways have been successfully applied for identification and characterization of MIAs in crude root extracts of six Rauwolfia species. Ten bioactive reserpine class of MIAs were tentatively identified and characterized on the basis of chromatographic and mass spectrometric features as well as HRMS/MS an MS(n) (n=4) analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Identification and Quantification of Alkaloid in KHR98 and Fragmentation Pathways in HPLC-Q-TOF-MS.
Long, Jiakun; Wang, Yang; Xu, Chen; Liu, Tingting; Duan, Gengli; Yu, Yingjia
2018-05-01
Uncaria rhynchophylla is woody climber plant distributed mainly in China and Japan, the stems and hooks of which can be collected as "Gou-Teng" for the treatment of hyperpyrexia, epilepsy and preeclampsia. Fudan University first manufactured KHR98, the extract of Uncaria rhynchophylla. In order to study the active components and structural information of KHR98, we established a HPLC coupled with quadrupole time-of-flight (Q-TOF)-MS method for rapid analysis of alkaloids. In qualitative analysis, a total of eight compounds, including four known alkaloids and four unknown components, were detected and identified. The fragmentation behaviors, such as the fragment ion information and the fragmentation pathways of the eight components were summarized simultaneously, and the concentration of the above components was determined by HPLC-MS method. The quantitative method was proved to be reproducible, precise and accurate. This study shed light on the standardization and quality control of the KHR98 and provided a foundation for the further research on pharmacology, follow-up clinical research and New Drug Applications.
Li, Yong; Wu, Xianfu; Li, Jianbei; Wang, Yinghong; Yu, Shishan; Lv, Haining; Qu, Jing; Abliz, Zeper; Liu, Jing; Liu, Yuanyan; Du, Dan
2010-02-01
Cardiac glycosides are a class of naturally occurring compounds that are characterized by some interesting biological activities and are widely distributed in the plant kingdom and can also be found in some animals. There is an interest in the chemical characterization of these molecules due to their toxicity and their use in medicines. In the study reported here, a combination of electrospray ionization tandem mass spectrometry with high-performance liquid chromatography equipped with diode-array detector (HPLC-DAD/ESI-MS(n)), and hyphenation to both liquid chromatography and nuclear magnetic resonance spectroscopy (HPLC/NMR) were utilized for the on-line analyses of cardiac glycosides from Periploca forrestii. The fragmentation patterns and (1)H NMR spectra of nine isolated cardiac glycosides were investigated; their fragmentation rules and (1)H NMR spectral characteristics were summarized and applied to the structural identification of similar constituents in fractions from P. forrestii. As a result, a total of nine trace cardiac glycosides were tentatively determined by analyses of accurate molecular masses, representative fragment ions and characteristic (1)H NMR signals provided by HPLC/high-resolution mass spectrometry (HRMS), HPLC-DAD/ESI-MS(n) and HPLC/(1)H NMR experiments, respectively. Of these, eight (2-9) are new compounds and one (1) is reported from P. forrestii for the first time. Results of the present study can benefit the rapid identification and targeted isolation of new cardiac glycosides from crude plant extracts. 2009 Elsevier B.V. All rights reserved.
Jin, Chunfen; Viidanoja, Jyrki; Li, Mingzhe; Zhang, Yuyang; Ikonen, Elias; Root, Andrew; Romanczyk, Mark; Manheim, Jeremy; Dziekonski, Eric; Kenttämaa, Hilkka I
2016-11-01
Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] + ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.
NASA Astrophysics Data System (ADS)
Durbin, Kenneth R.; Skinner, Owen S.; Fellers, Ryan T.; Kelleher, Neil L.
2015-05-01
Gaseous fragmentation of intact proteins is multifaceted and can be unpredictable by current theories in the field. Contributing to the complexity is the multitude of precursor ion states and fragmentation channels. Terminal fragment ions can be re-fragmented, yielding product ions containing neither terminus, termed internal fragment ions. In an effort to better understand and capitalize upon this fragmentation process, we collisionally dissociated the high (13+), middle (10+), and low (7+) charge states of electrosprayed ubiquitin ions. Both terminal and internal fragmentation processes were quantified through step-wise increases of voltage potential in the collision cell. An isotope fitting algorithm matched observed product ions to theoretical terminal and internal fragment ions. At optimal energies for internal fragmentation of the 10+, nearly 200 internal fragments were observed; on average each of the 76 residues in ubiquitin was covered by 24.1 internal fragments. A pertinent finding was that formation of internal ions occurs at similar energy thresholds as terminal b- and y-ion types in beam-type activation. This large amount of internal fragmentation is frequently overlooked during top-down mass spectrometry. As such, we present several new approaches to visualize internal fragments through modified graphical fragment maps. With the presented advances of internal fragment ion accounting and visualization, the total percentage of matched fragment ions increased from approximately 40% to over 75% in a typical beam-type MS/MS spectrum. These sequence coverage improvements offer greater characterization potential for whole proteins with no needed experimental changes and could be of large benefit for future high-throughput intact protein analysis.
Analysis of Bacterial Lipooligosaccharides by MALDI-TOF MS with Traveling Wave Ion Mobility
NASA Astrophysics Data System (ADS)
Phillips, Nancy J.; John, Constance M.; Jarvis, Gary A.
2016-07-01
Lipooligosaccharides (LOS) are major microbial virulence factors displayed on the outer membrane of rough-type Gram-negative bacteria. These amphipathic glycolipids are comprised of two domains, a core oligosaccharide linked to a lipid A moiety. Isolated LOS samples are generally heterogeneous mixtures of glycoforms, with structural variability in both domains. Traditionally, the oligosaccharide and lipid A components of LOS have been analyzed separately following mild acid hydrolysis, although important acid-labile moieties can be cleaved. Recently, an improved method was introduced for analysis of intact LOS by MALDI-TOF MS using a thin layer matrix composed of 2,4,6-trihydroxyacetophenone (THAP) and nitrocellulose. In addition to molecular ions, the spectra show in-source "prompt" fragments arising from regiospecific cleavage between the lipid A and oligosaccharide domains. Here, we demonstrate the use of traveling wave ion mobility spectrometry (TWIMS) for IMS-MS and IMS-MS/MS analyses of intact LOS from Neisseria spp. ionized by MALDI. Using IMS, the singly charged prompt fragments for the oligosaccharide and lipid A domains of LOS were readily separated into resolved ion plumes, permitting the extraction of specific subspectra, which led to increased confidence in assigning compositions and improved detection of less abundant ions. Moreover, IMS separation of precursor ions prior to collision-induced dissociation (CID) generated time-aligned, clean MS/MS spectra devoid of fragments from interfering species. Incorporating IMS into the profiling of intact LOS by MALDI-TOF MS exploits the unique domain structure of the molecule and offers a new means of extracting more detailed information from the analysis.
Attrition of limestone by impact loading in fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabrizio Scala; Fabio Montagnaro; Piero Salatino
2007-09-15
The present study addresses limestone attrition and fragmentation associated with impact loading, a process which may occur extensively in various regions of fluidized bed (FB) combustors/gasifiers, primarily the jetting region of the bottom bed, the exit region of the riser, and the cyclone. An experimental protocol for the characterization of the propensity of limestone to undergo attrition/fragmentation by impact loading is reported. The application of the protocol is demonstrated with reference to an Italian limestone whose primary fragmentation and attrition by surface wear have already been characterized in previous studies. The experimental procedure is based on the characterization of themore » amount and particle size distribution of the debris generated upon the impact of samples of sorbent particles against a target. Experiments were carried out at a range of particle impact velocities between 10 and 45 m/s, consistent with jet velocities corresponding to typical pressure drops across FB gas distributors. The protocol has been applied to either raw or preprocessed limestone samples. In particular, the effect of calcination, sulfation, and calcination/recarbonation cycles on the impact damage suffered by sorbent particles has been assessed. The measurement of particle voidage and pore size distribution by mercury intrusion was also accomplished to correlate fragmentation with the structural properties of the sorbent samples. Fragmentation by impact loading of the limestone is significant. Lime displays the largest propensity to undergo impact damage, followed by the sorbent sulfated to exhaustion, the recarbonated sorbent, and the raw limestone. Fragmentation of the raw limestone and of the sulfated lime follows a pattern typical of the failure of brittle materials. The fragmentation behavior of lime and recarbonated lime better conforms to a disintegration failure mode, with an extensive generation of very fine fragments. 27 refs., 9 figs. 1 tab.« less
Mekonnen, Tessema F; Panne, Ulrich; Koch, Matthias
2018-04-01
Biotransformation processes of fluopyram (FLP), a new succinate dehydrogenase inhibitor (SDHI) fungicide, were investigated by electrochemistry (EC) coupled online to liquid chromatography (LC) and electrospray mass spectrometry (ESI-MS). Oxidative phase I metabolite production was achieved using an electrochemical flow-through cell equipped with a boron-doped diamond (BDD) electrode. Structural elucidation and prediction of oxidative metabolism pathways were assured by retention time, isotopic patterns, fragmentation, and accurate mass measurements using EC/LC/MS, LC-MS/MS, and/or high-resolution mass spectrometry (HRMS). The results obtained by EC were compared with conventional in vitro studies by incubating FLP with rat and human liver microsomes (RLM, HLM). Known phase I metabolites of FLP (benzamide, benzoic acid, 7-hydroxyl, 8-hydroxyl, 7,8-dihydroxyl FLP, lactam FLP, pyridyl acetic acid, and Z/E-olefin FLP) were successfully simulated by EC/LC/MS. New metabolites including an imide, hydroxyl lactam, and 7-hydroxyl pyridyl acetic acid oxidative metabolites were predicted for the first time in our study using EC/LC/MS and liver microsomes. We found oxidation by dechlorination to be one of the major metabolism mechanisms of FLP. Thus, our results revealed that EC/LC/MS-based metabolic elucidation was more advantageous on time and cost of analysis and enabled matrix-free detection with valuable information about the mechanisms and intermediates of metabolism processes. Graphical abstract Oxidative metabolism of fluopyram.
What Hinders Electron Transfer Dissociation (ETD) of DNA Cations?
NASA Astrophysics Data System (ADS)
Hari, Yvonne; Leumann, Christian J.; Schürch, Stefan
2017-12-01
Radical activation methods, such as electron transfer dissociation (ETD), produce structural information complementary to collision-induced dissociation. Herein, electron transfer dissociation of 3-fold protonated DNA hexamers was studied to gain insight into the fragmentation mechanism. The fragmentation patterns of a large set of DNA hexamers confirm cytosine as the primary target of electron transfer. The reported data reveal backbone cleavage by internal electron transfer from the nucleobase to the phosphate linker leading either to a•/ w or d/ z• ion pairs. This reaction pathway contrasts with previous findings on the dissociation processes after electron capture by DNA cations, suggesting multiple, parallel dissociation channels. However, all these channels merely result in partial fragmentation of the precursor ion because the charge-reduced DNA radical cations are quite stable. Two hypotheses are put forward to explain the low dissociation yield of DNA radical cations: it is either attributed to non-covalent interactions between complementary fragments or to the stabilization of the unpaired electron in stacked nucleobases. MS3 experiments suggest that the charge-reduced species is the intact oligonucleotide. Moreover, introducing abasic sites significantly increases the dissociation yield of DNA cations. Consequently, the stabilization of the unpaired electron by π-π-stacking provides an appropriate rationale for the high intensity of DNA radical cations after electron transfer. [Figure not available: see fulltext.
Identification of Vitamin D3 Oxidation Products Using High-Resolution and Tandem Mass Spectrometry.
Mahmoodani, Fatemeh; Perera, Conrad O; Abernethy, Grant; Fedrizzi, Bruno; Greenwood, David; Chen, Hong
2018-03-19
In a successful fortification program, the stability of micronutrients added to the food is one of the most important factors. The added vitamin D3 is known to sometimes decline during storage of fortified milks, and oxidation through fatty acid lipoxidation could be suspected as the likely cause. Identification of vitamin D3 oxidation products (VDOPs) in natural foods is a challenge due to the low amount of their contents and their possible transformation to other compounds during analysis. The main objective of this study was to find a method to extract VDOPs in simulated whole milk powder and to identify these products using LTQ-ion trap, Q-Exactive Orbitrap and triple quadrupole mass spectrometry. The multistage mass spectrometry (MS n ) spectra can help to propose plausible schemes for unknown compounds and their fragmentations. With the growth of combinatorial libraries, mass spectrometry (MS) has become an important analytical technique because of its speed of analysis, sensitivity, and accuracy. This study was focused on identifying the fragmentation rules for some VDOPs by incorporating MS data with in silico calculated MS fragmentation pathways. Diels-Alder derivatization was used to enhance the sensitivity and selectivity for the VDOPs' identification. Finally, the confirmed PTAD-derivatized target compounds were separated and analyzed using ESI(+)-UHPLC-MS/MS in multiple reaction monitoring (MRM) mode. Graphical Abstract ᅟ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yufeng; Tolic, Nikola; Purvine, Samuel O.
2011-11-07
The peptidome (i.e. processed and degraded forms of proteins) of e.g. blood can potentially provide insights into disease processes, as well as a source of candidate biomarkers that are unobtainable using conventional bottom-up proteomics approaches. MS dissociation methods, including CID, HCD, and ETD, can each contribute distinct identifications using conventional peptide identification methods (Shen et al. J. Proteome Res. 2011), but such samples still pose significant analysis and informatics challenges. In this work, we explored a simple approach for better utilization of high accuracy fragment ion mass measurements provided e.g. by FT MS/MS and demonstrate significant improvements relative to conventionalmore » descriptive and probabilistic scores methods. For example, at the same FDR level we identified 20-40% more peptides than SEQUEST and Mascot scoring methods using high accuracy fragment ion information (e.g., <10 mass errors) from CID, HCD, and ETD spectra. Species identified covered >90% of all those identified from SEQUEST, Mascot, and MS-GF scoring methods. Additionally, we found that the merging the different fragment spectra provided >60% more species using the UStags method than achieved previously, and enabled >1000 peptidome components to be identified from a single human blood plasma sample with a 0.6% peptide-level FDR, and providing an improved basis for investigation of potentially disease-related peptidome components.« less
Ferrer, I.; Furlong, E.T.
2001-01-01
A novel methodology was developed for the determination of alkyl (C12, C14, and C16) dimethylbenzylammonium chloride (benzalkonium chloride or BAC, Chemical Abstract Service number: 8001-54-5) in water samples. This method is based on solid-phase extraction (SPE) using polymeric cartridges, followed by high-performance liquid chromatography/ion trap mass spectrometry (LC/MS) and tandem mass spectrometry(MS/MS) detection, equipped with an electrospray interface in positive ion mode. Chromatographic separation was achieved for three BAC homologues by using a C18 column and a gradient of acetonitrile/10 millimolar aqueous ammonium formate. Total method recoveries were higher than 71% in different water matrices. The main ions observed by LC/MS were at mass-to-charge ratios (m/z) of 304, 332, and 360, which correspond to the molecular ions of the C12, C14, and C16 alkyl BAC, respectively. The unequivocal structural identification of these compounds in water samples was performed by LC/MS/MS after isolation and subsequent fragmentation of each molecular ion. The main fragmentation observed for the three different homologues corresponded to the loss of the toluyl group in the chemical structure, which leads to the fragment ions at m/z 212, 240, and 268 and a tropylium ion, characteristic of all homologues, at m/z 91. Detection limits for the methodology developed in this work were in the low nanogram-per-liter range. Concentration levels of BAC - ranging from 1.2 to 36.6 micrograms per liter - were found in surface-water samples collected downstream from different wastewater-treatment discharges, thus indicating its input and persistence through the wastewater-treatment process.
Matsuo, Yosuke; Takahara, Kentaro; Sago, Yuki; Kushiro, Masayo; Nagashima, Hitoshi; Nakagawa, Hiroyuki
2015-01-01
The existence of glucose conjugates of fumonisin B2 (FB2) and fumonisin B3 (FB3) in corn powder was confirmed for the first time. These “bound-fumonisins” (FB2 and FB3 bound to glucose) were identified as N-(1-deoxy-d-fructos-1-yl) fumonisin B2 (NDfrc-FB2) and N-(1-deoxy-d-fructos-1-yl) fumonisin B3 (NDfrc-FB3) respectively, based on the accurate mass measurements of characteristic ions and fragmentation patterns using high-resolution liquid chromatography-Orbitrap mass spectrometry (LC-Orbitrap MS) analysis. Treatment on NDfrc-FB2 and NDfrc-FB3 with the o-phthalaldehyde (OPA) reagent also supported that d-glucose binding to FB2 and FB3 molecules occurred to their primary amine residues. PMID:26389955
Paz, Beatriz; Riobó, Pilar; Souto, María L; Gil, Laura V; Norte, Manuel; Fernández, José J; Franco, José M
2006-11-01
The toxin composition of a culture of the dinoflagellate Protoceratium reticulatum was investigated using LC-FLD, after derivatization with DMEQ-TAD (4-(2-(6,7-dimethoxy-4-methyl-3-oxo-3,4-dihydroquinoxalimylethyl)-1,2,4-triazoline-3,5-dione)). Besides yessotoxin (YTX), the new YTX analogue, glycoyessotoxin A (G-YTXA) was detected in culture medium as well as in cells. The conditions for extraction were optimized and the production profile established. Retention time of the resulting fluorescent G-YTXA adduct was identified by comparison of the appropriate standard. Additionally, both G-YTXA and the DMEQ-TAD-G-YTXA adduct were confirmed by LC-MS showing ion peaks at m/z 1273 [M-2Na+H](-) and m/z 1618 [M-2Na+H](-), respectively. The LC-MS(n) displayed a fragmentation pattern similar to that of the YTX series.
Wang, Chengjian; Qiang, Shan; Jin, Wanjun; Song, Xuezheng; Zhang, Ying; Huang, Linjuan; Wang, Zhongfu
2018-06-06
Glycoproteins play pivotal roles in a series of biological processes and their glycosylation patterns need to be structurally and functionally characterized. However, the lack of versatile methods to release N-glycans as functionalized forms has been undermining glycomics studies. Here a novel method is developed for dissociation of N-linked glycans from glycoproteins for analysis by MS and online LC/MS. This new method employs aqueous ammonia solution containing NaBH 3 CN as the reaction medium to release glycans from glycoproteins as 1-amino-alditol forms. The released glycans are conveniently labeled with 9-fluorenylmethyloxycarbonyl (Fmoc) and analyzed by ESI-MS and online LC/MS. Using the method, the neutral and acidic N-glycans were successfully released without peeling degradation of the core α-1,3-fucosylated structure or detectable de-N-acetylation, revealing its general applicability to various types of N-glycans. The Fmoc-derivatized N-glycans derived from chicken ovalbumin, Fagopyrum esculentum Moench Pollen and FBS were successfully analyzed by online LC/MS to distinguish isomers. The 1-amino-alditols were also permethylated to form quaternary ammonium cations at the reducing end, which enhance the MS sensitivity and are compatible with sequential multi-stage mass spectrometry (MS n ) fragmentation for glycan sequencing. The Fmoc-labeled N-glycans were further permethylated to produce methylated carbamates for determination of branches and linkages by sequential MS n fragmentation. N-Glycosylation represents one of the most common post-translational modification forms and plays pivotal roles in the structural and functional regulation of proteins in various biological activities, relating closely to human health and diseases. As a type of informational molecule, the N-glycans of glycoproteins participate directly in the molecular interactions between glycan epitopes and their corresponding protein receptors. Detailed structural and functional characterization of different types of N-glycans is essential for understanding the functional mechanisms of many biological activities and the pathologies of many diseases. Here we describe a simple, versatile method to indistinguishably release all types of N-glycans as functionalized forms without remarkable side reactions, enabling convenient, rapid analysis and preparation of released N-glycans from various complex biological samples. It is very valuable for studies on the complicated structure-function relationship of N-glycans, as well as for the search of N-glycan biomarkers of some major diseases and N-glycan related targets of some drugs. Copyright © 2018. Published by Elsevier B.V.
Lin, Zhiwei
2014-01-01
The infrared spectra of (1'S, 6'S)-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0] non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid hydrochloride salt (CLF-HCl) were studied and compared with free base. Their fragmentation pathways were investigated using tandem mass spectrometric (MS/MS) techniques on Fourier-transform ion cyclotron resonance spectrum, and many characteristic fragment ions were found. Copyright © 2013 Elsevier B.V. All rights reserved.
A Comprehensive, Open-source Platform for Mass Spectrometry-based Glycoproteomics Data Analysis.
Liu, Gang; Cheng, Kai; Lo, Chi Y; Li, Jun; Qu, Jun; Neelamegham, Sriram
2017-11-01
Glycosylation is among the most abundant and diverse protein post-translational modifications (PTMs) identified to date. The structural analysis of this PTM is challenging because of the diverse monosaccharides which are not conserved among organisms, the branched nature of glycans, their isomeric structures, and heterogeneity in the glycan distribution at a given site. Glycoproteomics experiments have adopted the traditional high-throughput LC-MS n proteomics workflow to analyze site-specific glycosylation. However, comprehensive computational platforms for data analyses are scarce. To address this limitation, we present a comprehensive, open-source, modular software for glycoproteomics data analysis called GlycoPAT (GlycoProteomics Analysis Toolbox; freely available from www.VirtualGlycome.org/glycopat). The program includes three major advances: (1) "SmallGlyPep," a minimal linear representation of glycopeptides for MS n data analysis. This format allows facile serial fragmentation of both the peptide backbone and PTM at one or more locations. (2) A novel scoring scheme based on calculation of the "Ensemble Score (ES)," a measure that scores and rank-orders MS/MS spectrum for N- and O-linked glycopeptides using cross-correlation and probability based analyses. (3) A false discovery rate (FDR) calculation scheme where decoy glycopeptides are created by simultaneously scrambling the amino acid sequence and by introducing artificial monosaccharides by perturbing the original sugar mass. Parallel computing facilities and user-friendly GUIs (Graphical User Interfaces) are also provided. GlycoPAT is used to catalogue site-specific glycosylation on simple glycoproteins, standard protein mixtures and human plasma cryoprecipitate samples in three common MS/MS fragmentation modes: CID, HCD and ETD. It is also used to identify 960 unique glycopeptides in cell lysates from prostate cancer cells. The results show that the simultaneous consideration of peptide and glycan fragmentation is necessary for high quality MS n spectrum annotation in CID and HCD fragmentation modes. Additionally, they confirm the suitability of GlycoPAT to analyze shotgun glycoproteomics data. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Mass spectrometry analysis of etch products from CR-39 plastic irradiated by heavy ions
NASA Astrophysics Data System (ADS)
Kodaira, S.; Nanjo, D.; Kawashima, H.; Yasuda, N.; Konishi, T.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Naka, S.; Ota, S.; Ideguchi, Y.; Hasebe, N.; Mori, Y.; Yamauchi, T.
2012-09-01
As a feasibility study, gas chromatography-mass spectrometry (GC-MS) and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) have been applied to analyze etch products of CR-39 plastic (one of the most frequently used solid states nuclear track detector) for the understanding of track formation and etching mechanisms by heavy ion irradiation. The etch products of irradiated CR-39 dissolved in sodium hydroxide solution (NaOH) contain radiation-induced fragments. For the GC-MS analysis, we found peaks of diethylene glycol (DEG) and a small but a definitive peak of ethylene glycol (EG) in the etch products from CR-39 irradiated by 60 MeV N ion beams. The etch products of unirradiated CR-39 showed a clear peak of DEG, but no other significant peaks were found. DEG is known to be released from the CR-39 molecule as a fragment by alkaline hydrolysis reaction of the polymer. We postulate that EG was formed as a result of the breaking of the ether bond (C-O-C) of the DEG part of the CR-39 polymer by the irradiation. The mass distribution of polyallylalcohol was obtained from the etch products from irradiated and unirradiated CR-39 samples by MALDI-MS analysis. Polyallylalcohol, with the repeating mass interval of m/z = 58 Da (dalton) between m/z = 800 and 3500, was expected to be produced from CR-39 by alkaline hydrolysis. We used IAA as a matrix to assist the ionization of organic analyte in MALDI-MS analysis and found that peaks from IAA covered mass spectrum in the lower m/z region making difficult to identify CR-39 fragment peaks which were also be seen in the same region. The mass spectrometry analysis using GC-MS and MALDI-MS will be powerful tools to investigate the radiation-induced polymeric fragments and helping to understand the track formation mechanism in CR-39 by heavy ions.
Identification of hydroxyropivacaine glucuronide in equine urine by ESI+/MS/MS.
Harkins, J D; Karpiesiuk, W; Tobin, T; Dirikolu, L; Lehner, A F
2000-01-01
Ropivacaine is a local anesthetic that has a high potential for abuse in racing horses. It can be recovered from urine collected after administration as a hydroxylated metabolite following beta-glucuronidase treatment of the urine. Based on these findings, it has been inferred that ropivacaine is present in equine urine as a glucuronide metabolite; however, these metabolites have never been directly identified. Using ESI+/MS/MS, the presence of a [M+H]+ molecular ion of m/z 467 was demonstrated in urine corresponding to the calculated mass of a hydroxyropivacaine glucuronide +1. The abundance of this ion diminished after glucuronidase treatment with concomitant appearance of a m/z 291 peak, which is consistent with its hydrolysis to hydroxyropivacaine. In further work, the m/z 467 material was fragmented in the MS/MS system, yielding fragments interpretable as hydroxyropivacaine glucuronide. These data are consistent with the presence of a hydroxyropivacaine glucuronide in equine urine and constitute the first direct demonstration of a specific glucuronide metabolite in equine urine. PMID:10935884
Röst, Hannes L; Liu, Yansheng; D'Agostino, Giuseppe; Zanella, Matteo; Navarro, Pedro; Rosenberger, George; Collins, Ben C; Gillet, Ludovic; Testa, Giuseppe; Malmström, Lars; Aebersold, Ruedi
2016-09-01
Next-generation mass spectrometric (MS) techniques such as SWATH-MS have substantially increased the throughput and reproducibility of proteomic analysis, but ensuring consistent quantification of thousands of peptide analytes across multiple liquid chromatography-tandem MS (LC-MS/MS) runs remains a challenging and laborious manual process. To produce highly consistent and quantitatively accurate proteomics data matrices in an automated fashion, we developed TRIC (http://proteomics.ethz.ch/tric/), a software tool that utilizes fragment-ion data to perform cross-run alignment, consistent peak-picking and quantification for high-throughput targeted proteomics. TRIC reduced the identification error compared to a state-of-the-art SWATH-MS analysis without alignment by more than threefold at constant recall while correcting for highly nonlinear chromatographic effects. On a pulsed-SILAC experiment performed on human induced pluripotent stem cells, TRIC was able to automatically align and quantify thousands of light and heavy isotopic peak groups. Thus, TRIC fills a gap in the pipeline for automated analysis of massively parallel targeted proteomics data sets.
Gao, Liang-Liang; Guo, Tao; Xu, Xu-Dong; Yang, Jun-Shan
2017-07-01
Rhubarb contains biologically active compounds such as anthraquinones, anthrones, stilbenes and tannins. A rapid and efficient UPLC/Q-TOF-MS/MS method was developed and applied towards identifying the constituents of Rheum tanguticum Maxim. ex Balf. for the first time. Chemical constituents were separated and investigated by UPLC/Q-TOF-MS/MS in the negative ion mode. The ESI-MS 2 fragmentation pathways of four types of compounds were interpreted, providing a very useful guidance for the characterisation of different types of compounds. Based on the exact mass information, fragmentation characteristic and LC retention time of 7 reference standards, 30 constituents were tentatively identified from the methanol extract of R. tanguticum. Among them, seven compounds were described for the first time from R. tanguticum and two from the genus Rheum were described for the first time. The analytical tool used here is valuable for the rapid separation and identification of multiple and minor constituents in methanol extracts of R. tanguticum.
Wan, Jian-Bo; Zhang, Qing-Wen; Hong, Si-Jia; Li, Peng; Li, Shao-Ping; Wang, Yi-Tao
2012-05-16
A pressurized liquid extraction (PLE) and high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) method was developed for the qualitative determination of saponins in different parts of P. notoginseng, including rhizome, root, fibre root, seed, stem, leaf and flower. The samples were extracted using PLE. The analysis was achieved on a Zorbax SB-C18 column with gradient elution of acetonitrile and 8 mM aqueous ammonium acetate as mobile phase. The mass spectrometer was operated in the negative ion mode using the electrospray ionization, and a collision induced dissociation (CID) experiment was also carried out to aid the identification of compounds. Forty one saponins were identified in different parts of P. notoginseng according to the fragmentation patterns and literature reports, among them, 21 saponins were confirmed by comparing the retention time and ESI-MS data with those of standard compounds. The results showed that the chemical characteristics were obviously diverse in different parts of P. notoginseng, which is helpful for pharmacological evaluation and quality control of P. notoginseng.
2-Deoxy-2-fluoro-d-glucose metabolism in Arabidopsis thaliana
Fatangare, Amol; Paetz, Christian; Saluz, Hanspeter; Svatoš, Aleš
2015-01-01
2-Deoxy-2-fluoro-d-glucose (FDG) is glucose analog routinely used in clinical and animal radiotracer studies to trace glucose uptake but it has rarely been used in plants. Previous studies analyzed FDG translocation and distribution pattern in plants and proposed that FDG could be used as a tracer for photoassimilates in plants. Elucidating FDG metabolism in plants is a crucial aspect for establishing its application as a radiotracer in plant imaging. Here, we describe the metabolic fate of FDG in the model plant species Arabidopsis thaliana. We fed FDG to leaf tissue and analyzed leaf extracts using MS and NMR. On the basis of exact mono-isotopic masses, MS/MS fragmentation, and NMR data, we identified 2-deoxy-2-fluoro-gluconic acid, FDG-6-phosphate, 2-deoxy-2-fluoro-maltose, and uridine-diphosphate-FDG as four major end products of FDG metabolism. Glycolysis and starch degradation seemed to be the important pathways for FDG metabolism. We showed that FDG metabolism in plants is considerably different than animal cells and goes beyond FDG-phosphate as previously presumed. PMID:26579178
Wang, Ming-Juan; Li, Ya-Ping; Wang, Yan; Li, Jin; Hu, Chang-Qin; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin
2013-10-01
Reversed-phase liquid chromatography coupled with photo-diode array (PDA) detection and electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to characterize the components of meleumycin, a 16-membered macrolide antibiotic produced by fermentation. In total 31 components were characterized in commercial samples, including 12 impurities that had never been reported before and 12 others that were partially characterized. The structures of these unknown compounds were deduced by comparison of their fragmentation patterns with those of known components. Their ultraviolet spectra and chromatographic behavior were used to confirm the proposed structures: e.g. λmax shift from 232 nm to 282 nm would indicate the presence of an α-, β-, γ-, δ-unsaturated ketone instead of a normal α-, β-, γ-, δ-unsaturated alcohol in the 16-membered ring of the examined components. Compared to other methods, this LC/MS(n) method is particularly advantageous to characterize minor components at trace levels in multi-components antibiotics, in terms of sensitivity and efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.
Strand, Malin; Hedström, Martin; Seth, Henrik; McEvoy, Eric G.; Jacobsson, Erik; Göransson, Ulf; Andersson, Håkan S.; Sundberg, Per
2016-01-01
We test previous claims that the bacteria Vibrio alginolyticus produces tetrodotoxin (TTX) when living in symbiosis with the nemertean Lineus longissimus by a setup with bacteria cultivation for TTX production. Toxicity experiments on the shore crab, Carcinus maenas, demonstrated the presence of a paralytic toxin, but evidence from LC-MS and electrophysiological measurements of voltage-gated sodium channel–dependent nerve conductance in male Wistar rat tissue showed conclusively that this effect did not originate from TTX. However, a compound of similar molecular weight was found, albeit apparently non-toxic, and with different LC retention time and MS/MS fragmentation pattern than those of TTX. We conclude that C. maenas paralysis and death likely emanate from a compound <5 kDa, and via a different mechanism of action than that of TTX. The similarity in mass between TTX and the Vibrio-produced low-molecular-weight, non-toxic compound invokes that thorough analysis is required when assessing TTX production. Based on our findings, we suggest that re-examination of some published claims of TTX production may be warranted. PMID:27023570
Annotation and Structural Analysis of Sialylated Human Milk Oligosaccharides
Wu, Shuai; Grimm, Rudolf; German, J. Bruce; Lebrilla, Carlito B.
2011-01-01
Sialylated human milk oligosaccharides (SHMOs) are important components of human milk oligosaccharides. Sialic acids are typically found on the nonreducing end and are known binding sites for pathogens and aid in neonates’ brain development. Due to their negative charge and hydrophilic nature, they also help modulate cell-cell interactions. It has also been shown that sialic acids are involved in regulating the immune response and aid in brain development. In this study, the enriched SHMOs from pooled milk sample were analyzed by HPLC-Chip/QTOF MS. The instrument employs a microchip-based nano-LC column packed with porous graphitized carbon (PGC) to provide excellent isomer separation for SHMOs with highly reproducible retention time. The precursor ions were further examined with collision-induced dissociation (CID). By applying the proper collision energy, isomers can be readily differentiated by diagnostic peaks and characteristic fragmentation patterns. A set of 30 SHMO structures with retention times, accurate masses and MS/MS spectra was deduced and incorporated into an HMO library. When combined with previously determined neutral components, a library with over 70 structures is obtained allowing high-throughput oligosaccharide structure identification. PMID:21133381
Counterfeit Adderall Containing Aceclofenac from Internet Pharmacies.
Gaudiano, Maria Cristina; Borioni, Anna; Antoniella, Eleonora; Valvo, Luisa
2016-07-01
A nontargeted approach based on liquid chromatography equipped with a quadrupole time-of-flight mass detector (LC-MS Q-TOF) joined to nuclear magnetic resonance (NMR) analysis allowed rapid identification and quantification of the anti-inflammatory drug aceclofenac in illegal Adderall tablets. The largest chromatographic peak had m/z = 354.030 and m/z = 376.012 matching, respectively, the ionic structures (M + H) + and (M + Na) + of a molecule M. The accurate mass data generated the molecular formula C 16 H 13 Cl 2 NO 4 . A screening of the pharmaceutical active substances having that molecular formula together with the MS/MS fragmentation pattern suggested aceclofenac. Aceclofenac structure was unambiguously confirmed by 1 H and 13 C NMR experiments. The aceclofenac content was 90 mg/tablet (RSD 2%) as detected by quantitative NMR. Information on the identity and content of illegal drugs is required for legal purposes; it supports in evaluating the effective impact on users safety, and it is useful for control laboratories using a targeted approach in their analytical activities. © 2016 American Academy of Forensic Sciences.
Kumar, K; Siva, Bandi; Sarma, V U M; Mohabe, Satish; Reddy, A Madhusudana; Boustie, Joel; Tiwari, Ashok K; Rao, N Rama; Babu, K Suresh
2018-07-15
Comparative phytochemical analysis of five lichen species [Parmotrema tinctorum (Delise ex Nyl.) Hale, P. andinum (Mull. Arg.) Hale, P. praesorediosum (Nyl.) Hale, P. grayanum (Hue) Hale, P. austrosinense (Zahlbr.) Hale] of Parmotrema genus were performed using two complementary UPLC-MS systems. The first system consists of high resolution UPLC-QToF-MS/MS spectrometer and the second system consisted of UPLC-MS/MS in Multiple Reaction Monitoring (MRM) mode for quantitative analysis of major constituents in the selected lichen species. The individual compounds (47 compounds) were identified using Q-ToF-MS/MS, via comparison of the exact molecular masses from their MS/MS spectra, the comparison of literature data and retention times to those of standard compounds which were isolated from crude extract of abundant lichen, P. tinctorum. The analysis also allowed us to identify unknown peaks/compounds, which were further characterized by their mass fragmentation studies. The quantitative MRM analysis was useful to have a better discrimination of species according to their chemical profile. Moreover, the determination of antioxidant activities (ABTS + inhibition) and Advance Glycation Endproducts (AGEs) inhibition carried out for the crude extracts revealed a potential antiglycaemic activity to be confirmed for P. austrosinense. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Nai-Yu; Lee, Hsiao-Hui; Chang, Zee-Fen; Tsay, Yeou-Guang
2015-09-10
It has been observed that a modified peptide and its non-modified counterpart, when analyzed with reverse phase liquid chromatography, usually share a very similar elution property [1-3]. Inasmuch as this property is common to many different types of protein modifications, we propose an informatics-based approach, featuring the generation of segmental average mass spectra ((sa)MS), that is capable of locating different types of modified peptides in two-dimensional liquid chromatography-mass spectrometric (LC-MS) data collected for regular protease digests from proteins in gels or solutions. To enable the localization of these peptides in the LC-MS map, we have implemented a set of computer programs, or the (sa)MS package, that perform the needed functions, including generating a complete set of segmental average mass spectra, compiling the peptide inventory from the Sequest/TurboSequest results, searching modified peptide candidates and annotating a tandem mass spectrum for final verification. Using ROCK2 as an example, our programs were applied to identify multiple types of modified peptides, such as phosphorylated and hexosylated ones, which particularly include those peptides that could have been ignored due to their peculiar fragmentation patterns and consequent low search scores. Hence, we demonstrate that, when complemented with peptide search algorithms, our approach and the entailed computer programs can add the sequence information needed for bolstering the confidence of data interpretation by the present analytical platforms and facilitate the mining of protein modification information out of complicated LC-MS/MS data. Copyright © 2015 Elsevier B.V. All rights reserved.
Ms2lda.org: web-based topic modelling for substructure discovery in mass spectrometry.
Wandy, Joe; Zhu, Yunfeng; van der Hooft, Justin J J; Daly, Rónán; Barrett, Michael P; Rogers, Simon
2017-09-14
We recently published MS2LDA, a method for the decomposition of sets of molecular fragment data derived from large metabolomics experiments. To make the method more widely available to the community, here we present ms2lda.org, a web application that allows users to upload their data, run MS2LDA analyses and explore the results through interactive visualisations. Ms2lda.org takes tandem mass spectrometry data in many standard formats and allows the user to infer the sets of fragment and neutral loss features that co-occur together (Mass2Motifs). As an alternative workflow, the user can also decompose a dataset onto predefined Mass2Motifs. This is accomplished through the web interface or programmatically from our web service. The website can be found at http://ms2lda.org , while the source code is available at https://github.com/sdrogers/ms2ldaviz under the MIT license. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
DETERMINATION OF 16 LARGEST PEAKS IN COMMERCIAL TECHNICAL TOXAPHENE BY GC/MS
Under typical temperature and high vacuum associated with GC/MS technique, Toxaphene decomposes and produces countless fragments which are impractical to quantify. A GC/MS method has been developed using the lowest possible temperature to resolve more peaks and lower the interfer...
Asakawa, Daiki; Takahashi, Hidenori; Iwamoto, Shinichi; Tanaka, Koichi
2018-05-09
Mass spectrometry with hydrogen-radical-mediated fragmentation techniques has been used for the sequencing of proteins/peptides. The two methods, matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) and hydrogen attachment/abstraction dissociation (HAD) are known as hydrogen-radical-mediated fragmentation techniques. MALDI-ISD occurs during laser induced desorption processes, whereas HAD utilizes the association of hydrogen with peptide ions in the gas phase. In this study, the general mechanisms of MALDI-ISD and HAD of peptides were investigated. We demonstrated the fragmentation of four model peptides and investigated the fragment formation pathways using density functional theory (DFT) calculations. The current experimental and computational joint study indicated that MALDI-ISD and HAD produce aminoketyl radical intermediates, which immediately undergo radical-induced cleavage at the N-Cα bond located on the C-terminal side of the radical site, leading to the c'/z˙ fragment pair. In the case of MALDI-ISD, the z˙ fragments undergo a subsequent reaction with the matrix to give z' and matrix adducts of the z fragments. In contrast, the c' and z˙ fragments react with hydrogen atoms during the HAD processes, and various fragment species, such as c˙, c', z˙ and z', were observed in the HAD-MS/MS mass spectra.
Tandem Mass Spectrometry of Modified and Platinated Oligoribonucleotides
NASA Astrophysics Data System (ADS)
Nyakas, Adrien; Stucki, Silvan R.; Schürch, Stefan
2011-05-01
Therapeutic approaches for treatment of various diseases aim at the interruption of transcription or translation. Modified oligonucleotides, such as 2'- O-methyl- and methylphosphonate-derivatives, exhibit high resistance against cellular nucleases, thus rendering application for, e.g., antigene or antisense purposes possible. Other approaches are based on administration of cross-linking agents, such as cis-diamminedichloroplatinum(II) (cisplatin, DDP), which is still the most widely used anticancer drug worldwide. Due to the formation of 1,2-intrastrand cross links at adjacent guanines, replication of the double-strand is disturbed, thus resulting in significant cytotoxicity. Evidence for the gas-phase dissociation mechanism of platinated RNA is given, based on nano-electrospray ionization high-resolution multistage tandem mass spectrometry (MS n ). Confirmation was found by investigating the fragmentation pattern of platinated and unplatinated 2'-methoxy oligoribonucleotide hexamers and their corresponding methylphosphonate derivatives. Platinated 2'-methoxy oligoribonucleotides exhibit a similar gas-phase dissociation behavior as the corresponding DNA and RNA sequences, with the 3'-C-O bond adjacent to the vicinal guanines being cleaved preferentially, leading to wx-ion formation. By examination of the corresponding platinated methylphosphonate derivatives of the 2'-methoxy oligoribonucleotides, the key role of the negatively charged phosphate oxygen atoms in direct proximity to the guanines was proven. The significant alteration of fragmentation due to platination is demonstrated by comparison of the fragment ion patterns of unplatinated and platinated 2'- O-methyl- and 2'- O-methyl methylphosphonate oligoribonucleotides, and the results obtained by H/D exchange experiments.
Proposal for a common nomenclature for fragment ions in mass spectra of lipids
Hartler, Jürgen; Christiansen, Klaus; Gallego, Sandra F.; Peng, Bing; Ahrends, Robert
2017-01-01
Advances in mass spectrometry-based lipidomics have in recent years prompted efforts to standardize the annotation of the vast number of lipid molecules that can be detected in biological systems. These efforts have focused on cataloguing, naming and drawing chemical structures of intact lipid molecules, but have provided no guidelines for annotation of lipid fragment ions detected using tandem and multi-stage mass spectrometry, albeit these fragment ions are mandatory for structural elucidation and high confidence lipid identification, especially in high throughput lipidomics workflows. Here we propose a nomenclature for the annotation of lipid fragment ions, describe its implementation and present a freely available web application, termed ALEX123 lipid calculator, that can be used to query a comprehensive database featuring curated lipid fragmentation information for more than 430,000 potential lipid molecules from 47 lipid classes covering five lipid categories. We note that the nomenclature is generic, extendable to stable isotope-labeled lipid molecules and applicable to automated annotation of fragment ions detected by most contemporary lipidomics platforms, including LC-MS/MS-based routines. PMID:29161304
Proposal for a common nomenclature for fragment ions in mass spectra of lipids.
Pauling, Josch K; Hermansson, Martin; Hartler, Jürgen; Christiansen, Klaus; Gallego, Sandra F; Peng, Bing; Ahrends, Robert; Ejsing, Christer S
2017-01-01
Advances in mass spectrometry-based lipidomics have in recent years prompted efforts to standardize the annotation of the vast number of lipid molecules that can be detected in biological systems. These efforts have focused on cataloguing, naming and drawing chemical structures of intact lipid molecules, but have provided no guidelines for annotation of lipid fragment ions detected using tandem and multi-stage mass spectrometry, albeit these fragment ions are mandatory for structural elucidation and high confidence lipid identification, especially in high throughput lipidomics workflows. Here we propose a nomenclature for the annotation of lipid fragment ions, describe its implementation and present a freely available web application, termed ALEX123 lipid calculator, that can be used to query a comprehensive database featuring curated lipid fragmentation information for more than 430,000 potential lipid molecules from 47 lipid classes covering five lipid categories. We note that the nomenclature is generic, extendable to stable isotope-labeled lipid molecules and applicable to automated annotation of fragment ions detected by most contemporary lipidomics platforms, including LC-MS/MS-based routines.
Riccardi Sirtori, Federico; Caronni, Dannica; Colombo, Maristella; Dalvit, Claudio; Paolucci, Mauro; Regazzoni, Luca; Visco, Carlo; Fogliatto, Gianpaolo
2015-08-30
ESI-MS is a well established technique for the study of biopolymers (nucleic acids, proteins) and their non covalent adducts, due to its capacity to detect ligand-target complexes in the gas phase and allows inference of ligand-target binding in solution. In this article we used this approach to investigate the interaction of ligands to the Heat Shock Protein 90 (Hsp90). This enzyme is a molecular chaperone involved in the folding and maturation of several proteins which has been subjected in the last years to intensive drug discovery efforts due to its key role in cancer. In particular, reference compounds, with a broad range of dissociation constants from 40pM to 100μM, were tested to assess the reliability of ESI-MS for the study of protein-ligand complexes. A good agreement was found between the values measured with a fluorescence polarization displacement assay and those determined by mass spectrometry. After this validation step we describe the setup of a medium throughput screening method, based on ESI-MS, suitable to explore interactions of therapeutic relevance biopolymers with chemical libraries. Our approach is based on an automated flow injection ESI-MS method (AFI-MS) and has been applied to screen the Nerviano Medical Sciences proprietary fragment library of about 2000 fragments against Hsp90. In order to discard false positive hits and to discriminate those of them interacting with the N-terminal ATP binding site, competition experiments were performed using a reference inhibitor. Gratifyingly, this group of hits matches with the ligands previously identified by NMR FAXS techniques and confirmed by X-ray co-crystallization experiments. These results support the use of AFI-MS for the screening of medium size libraries, including libraries of small molecules with low affinity typically used in fragment based drug discovery. AFI-MS is a valid alternative to other techniques with the additional opportunities to identify compounds interacting with unpredicted or allosteric sites, without the need of any binding probes. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Yanna; Pereira, Alberto Dos Santos; Martin, Jonathan W
2015-04-21
The presence of unknown organofluorine compounds in environmental samples has prompted the development of nontargeted analytical methods capable of detecting new perfluoroalkyl and polyfluoroalkyl substances (PFASs). By combining high volume injection with high performance liquid chromatography (HPLC) and ultrahigh resolution Orbitrap mass spectrometry, a sensitive (0.003-0.2 ng F/mL for model mass-labeled PFASs) untargeted workflow was developed for discovery and characterization of novel PFASs in water. In the first step, up to 5 mL of water is injected to in-line solid phase extraction, chromatographed by HPLC, and detected by electrospray ionization with mass spectral acquisition in parallel modes cycling back and forth: (i) full scan with ultrahigh resolving power (RP = 120,000, mass accuracy ≤3 ppm), and (ii) in-source fragmentation flagging scans designed to yield marker fragment ions including [C2F5](-) (m/z 118.992), [C3F7](-) (m/z 168.988), [SO4H](-) (m/z 96.959), and [Cl](-) (m/z 34.9). For flagged PFASs, plausible empirical formulas were generated from accurate masses, isotopic patterns, and fragment ions. In the second step, another injection is made to collect high resolution MS/MS spectra of suspect PFAS ions, allowing further confirmation of empirical formulas while also enabling preliminary structural characterization. The method was validated by applying it to an industrial wastewater, and 36 new PFASs were discovered. Of these, 26 were confidently assigned to 3 new PFAS classes that have not previously been reported in the environment: polyfluorinated sulfates (CnFn+3Hn-2SO4(-); n = 5, 7, 9, 11, 13, and 15), chlorine substituted perfluorocarboxylates (ClCnF2nCO2(-); n = 4-11), and hydro substituted perfluorocarboxylates (HCnF2nCO2(-); n = 5-16). Application of the technique to environmental water samples is now warranted.
Chen, Xin; Qin, Shanshan; Chen, Shuai; Li, Jinlong; Li, Lixin; Wang, Zhongling; Wang, Quan; Lin, Jianping; Yang, Cheng; Shui, Wenqing
2015-01-01
In fragment-based lead discovery (FBLD), a cascade combining multiple orthogonal technologies is required for reliable detection and characterization of fragment binding to the target. Given the limitations of the mainstream screening techniques, we presented a ligand-observed mass spectrometry approach to expand the toolkits and increase the flexibility of building a FBLD pipeline especially for tough targets. In this study, this approach was integrated into a FBLD program targeting the HCV RNA polymerase NS5B. Our ligand-observed mass spectrometry analysis resulted in the discovery of 10 hits from a 384-member fragment library through two independent screens of complex cocktails and a follow-up validation assay. Moreover, this MS-based approach enabled quantitative measurement of weak binding affinities of fragments which was in general consistent with SPR analysis. Five out of the ten hits were then successfully translated to X-ray structures of fragment-bound complexes to lay a foundation for structure-based inhibitor design. With distinctive strengths in terms of high capacity and speed, minimal method development, easy sample preparation, low material consumption and quantitative capability, this MS-based assay is anticipated to be a valuable addition to the repertoire of current fragment screening techniques. PMID:25666181
Ornelas, Juan Francisco; Sosa, Victoria; Soltis, Douglas E.; Daza, Juan M.; González, Clementina; Soltis, Pamela S.; Gutiérrez-Rodríguez, Carla; de los Monteros, Alejandro Espinosa; Castoe, Todd A.; Bell, Charles; Ruiz-Sanchez, Eduardo
2013-01-01
Comparative phylogeography can elucidate the influence of historical events on current patterns of biodiversity and can identify patterns of co-vicariance among unrelated taxa that span the same geographic areas. Here we analyze temporal and spatial divergence patterns of cloud forest plant and animal species and relate them to the evolutionary history of naturally fragmented cloud forests–among the most threatened vegetation types in northern Mesoamerica. We used comparative phylogeographic analyses to identify patterns of co-vicariance in taxa that share geographic ranges across cloud forest habitats and to elucidate the influence of historical events on current patterns of biodiversity. We document temporal and spatial genetic divergence of 15 species (including seed plants, birds and rodents), and relate them to the evolutionary history of the naturally fragmented cloud forests. We used fossil-calibrated genealogies, coalescent-based divergence time inference, and estimates of gene flow to assess the permeability of putative barriers to gene flow. We also used the hierarchical Approximate Bayesian Computation (HABC) method implemented in the program msBayes to test simultaneous versus non-simultaneous divergence of the cloud forest lineages. Our results show shared phylogeographic breaks that correspond to the Isthmus of Tehuantepec, Los Tuxtlas, and the Chiapas Central Depression, with the Isthmus representing the most frequently shared break among taxa. However, dating analyses suggest that the phylogeographic breaks corresponding to the Isthmus occurred at different times in different taxa. Current divergence patterns are therefore consistent with the hypothesis of broad vicariance across the Isthmus of Tehuantepec derived from different mechanisms operating at different times. This study, coupled with existing data on divergence cloud forest species, indicates that the evolutionary history of contemporary cloud forest lineages is complex and often lineage-specific, and thus difficult to capture in a simple conservation strategy. PMID:23409165
Dolle, Ashwini B; Jagadeesh, Narasimhappagari; Bhaumik, Suman; Prakash, Sunita; Biswal, Himansu S; Gowd, Konkallu Hanumae
2018-06-15
The modes of cleavage of lanthionine/methyllanthionine bridges under electron transfer dissociation (ETD) were investigated using synthetic and natural lantipeptides. Knowledge of the mass spectrometric fragmentation of lanthionine/methyllanthionine bridges may assist in the development of analytical methods for the rapid discovery of new lantibiotics. The present study strengthens the advantage of ETD in the characterization of posttranslational modifications of peptides and proteins. Synthetic and natural lantipeptides were obtained by desulfurization of peptide disulfides and cyanogen bromide digestion of the lantibiotic nisin, respectively. These peptides were subjected to electrospray ionization collision-induced dissociation tandem mass spectrometry (CID-MS/MS) and ETD-MS/MS using an HCT ultra ETDII ion trap mass spectrometer. MS 3 CID was performed on the desired product ions to prove cleavage of the lanthionine/methyllanthionine bridge during ETD-MS/MS. ETD has advantages over CID in the cleavage of the side chain of lanthionine/methyllanthionine bridges. The cleavage of the N-Cα backbone peptide bond followed by C-terminal side chain of the lanthionine bridge results in formation of c •+ and z + ions. Cleavage at the preceding peptide bond to the C-terminal side chain of lanthionine/methyllanthionine bridges yields specific fragments with the cysteine/methylcysteine thiyl radical and dehydroalanine. ETD successfully cleaves the lanthionine/methyllanthionine bridges of synthetic and natural lantipeptides. Diagnostic fragment ions of ETD cleavage of lanthionine/methyllanthionine bridges are the N-terminal cysteine/methylcysteine thiyl radical and C-terminal dehydroalanine. Detection of the cysteine/methylcysteine thiyl radical and dehydroalanine in combined ETD-CID-MS may be used for the rapid identification of lantipeptide natural products. Copyright © 2018 John Wiley & Sons, Ltd.
New dehydropyrrolizidine alkaloids isolated from a Crotalaria and two Cryptantha species
USDA-ARS?s Scientific Manuscript database
The advent of HPLC-esi(+)MS and MS/MS techniques for detection of potential DHPAs, and their N-oxides, within complex plant secondary metabolite mixtures is based upon a recognition of characteristic mass fragment ions derived from the even-mass, protonated molecules (Colegate et al. 2005). This rea...
USDA-ARS?s Scientific Manuscript database
Cultures of Fusarium sporotrichioides were extracted and subjected to evaluation by high performance liquid chromatography – tandem mass spectrometry (LC-MS/MS). Along with the expected T-2 and HT-2 toxins, compounds 162 m/z higher than the toxins were observed. Fragmentation behavior of the larger ...
Leenheer, J.A.; Rostad, C.E.; Gates, Paul M.; Furlong, E.T.; Ferrer, I.
2001-01-01
Molecular weight distributions of fulvic acid from the Suwannee River, Georgia, were investigated by electrospray ionization/quadrupole mass spectrometry (ESI/QMS), and fragmentation pathways of specific fulvic acid masses were investigated by electrospray ionization/ion trap multistage tandem mass spectrometry (ESI/MST/MS). ESI/QMS studies of the free acid form of low molecular weight poly(carboxylic acid) standards in 75% methanol/25% water mobile phase found that negative ion detection gave the optimum generation of parent ions that can be used for molecular weight determinations. However, experiments with poly(acrylic acid) mixtures and specific high molecular weight standards found multiply charged negative ions that gave a low bias to molecular mass distributions. The number of negative charges on a molecule is dependent on the distance between charges. ESI/MST/MS of model compounds found characteristic water loss from alcohol dehydration and anhydride formation, as well as CO2 loss from decarboxylation, and CO loss from ester structures. Application of these fragmentation pathways to specific masses of fulvic acid isolated and fragmented by ESI/MST/MS is indicative of specific structures that can serve as a basis for future structural confirmation after these hypothesized structures are synthesized.
Liu, Ai-Hua; Guo, Hui; Ye, Min; Lin, Yan-Hua; Sun, Jiang-Hao; Xu, Man; Guo, De-An
2007-08-17
By using HPLC-diode array detection-electrospray ion trap tandem mass spectrometry (HPLC-DAD-ESI-MS(n)) in negative ion mode, we have analyzed the fragmentation pathways of 11 phenolic acids which were isolated from Danshen. Then the extract of Danshen was analyzed, and a total of 42 phenolic acids, including sixteen new minor constituents, were identified or tentatively identified for the first time. A new solid-phase extraction (SPE) method, new HPLC separation method, new liquid chromatography (LC)-MS and LC-MS(n) (n=3-5) data and proposed fragmentation pathways, LC retention time for phenolic acids are reported.
NASA Astrophysics Data System (ADS)
Ashwood, Christopher; Lin, Chi-Hung; Thaysen-Andersen, Morten; Packer, Nicolle H.
2018-03-01
Profiling cellular protein glycosylation is challenging due to the presence of highly similar glycan structures that play diverse roles in cellular physiology. As the anomericity and the exact linkage type of a single glycosidic bond can influence glycan function, there is a demand for improved and automated methods to confirm detailed structural features and to discriminate between structurally similar isomers, overcoming a significant bottleneck in the analysis of data generated by glycomics experiments. We used porous graphitized carbon-LC-ESI-MS/MS to separate and detect released N- and O-glycan isomers from mammalian model glycoproteins using negative mode resonance activation CID-MS/MS. By interrogating similar fragment spectra from closely related glycan isomers that differ only in arm position and sialyl linkage, product fragment ions for discrimination between these features were discovered. Using the Skyline software, at least two diagnostic fragment ions of high specificity were validated for automated discrimination of sialylation and arm position in N-glycan structures, and sialylation in O-glycan structures, complementing existing structural diagnostic ions. These diagnostic ions were shown to be useful for isomer discrimination using both linear and 3D ion trap mass spectrometers when analyzing complex glycan mixtures from cell lysates. Skyline was found to serve as a useful tool for automated assessment of glycan isomer discrimination. This platform-independent workflow can potentially be extended to automate the characterization and quantitation of other challenging glycan isomers. [Figure not available: see fulltext.
Madsen, Henrik T; Søgaard, Erik G
2012-01-01
To study the reaction between hydrogen sulphide and 1,3,5-tri-(2-hydroxyethyl)-hexahydro-s-triazine, which is an often used hydrogen sulphide scavenger, electro spray ionisation mass spectrometry (ESI-MS) was used. The investigation was carried out in positive mode, and tandem mass spectrometry was used to investigate the nature of unknown peaks in the mass spectra. The reaction was found to proceed as expected from theory with the triazine reacting with hydrogen sulphide to form the corresponding thiadiazine. This species subsequently reacted with a second hydrogen sulphide molecule to form the dithiazine species, hereby confirming previously obtained results and showing the ability of the ESI-MS method for studying the scavenging reaction. The final theoretical product s-trithiane was not detected. Furthermore, fragmentation products of thiadiazine and dithiazine were detected in the solution, and possible pathways and structures were suggested to describe the observed fragments. In these, thiadiazine fragmented to 2-(methylidene amino)-ethanol and 2-(1,3-thiazetidin-3-yl)-ethanol and N-(2-hydroxyethyl)-N-(sulfanylmethyl)-ethaniminium, which underwent a further fragmentation to N-methyl-N-(2-oxoethyl)-methaniminium. Dithiazine fragmented to N-methyl-N-(2-oxoethyl)-methaniminium as well. The by-product from this reaction is methanedithiol, which was not detected due to its low polarity.
Draper, John; Enot, David P; Parker, David; Beckmann, Manfred; Snowdon, Stuart; Lin, Wanchang; Zubair, Hassan
2009-01-01
Background Metabolomics experiments using Mass Spectrometry (MS) technology measure the mass to charge ratio (m/z) and intensity of ionised molecules in crude extracts of complex biological samples to generate high dimensional metabolite 'fingerprint' or metabolite 'profile' data. High resolution MS instruments perform routinely with a mass accuracy of < 5 ppm (parts per million) thus providing potentially a direct method for signal putative annotation using databases containing metabolite mass information. Most database interfaces support only simple queries with the default assumption that molecules either gain or lose a single proton when ionised. In reality the annotation process is confounded by the fact that many ionisation products will be not only molecular isotopes but also salt/solvent adducts and neutral loss fragments of original metabolites. This report describes an annotation strategy that will allow searching based on all potential ionisation products predicted to form during electrospray ionisation (ESI). Results Metabolite 'structures' harvested from publicly accessible databases were converted into a common format to generate a comprehensive archive in MZedDB. 'Rules' were derived from chemical information that allowed MZedDB to generate a list of adducts and neutral loss fragments putatively able to form for each structure and calculate, on the fly, the exact molecular weight of every potential ionisation product to provide targets for annotation searches based on accurate mass. We demonstrate that data matrices representing populations of ionisation products generated from different biological matrices contain a large proportion (sometimes > 50%) of molecular isotopes, salt adducts and neutral loss fragments. Correlation analysis of ESI-MS data features confirmed the predicted relationships of m/z signals. An integrated isotope enumerator in MZedDB allowed verification of exact isotopic pattern distributions to corroborate experimental data. Conclusion We conclude that although ultra-high accurate mass instruments provide major insight into the chemical diversity of biological extracts, the facile annotation of a large proportion of signals is not possible by simple, automated query of current databases using computed molecular formulae. Parameterising MZedDB to take into account predicted ionisation behaviour and the biological source of any sample improves greatly both the frequency and accuracy of potential annotation 'hits' in ESI-MS data. PMID:19622150
Tóth, Gergő; Barabás, Csenge; Tóth, Anita; Kéry, Ágnes; Béni, Szabolcs; Boldizsár, Imre; Varga, Erzsébet; Noszál, Béla
2016-06-01
In this study the polyphenolic composition of lilac flowers and fruits was determined for the first time. For the identification of compounds, accurate molecular masses and formulas, acquired by LC and ESI-TOF-MS and fragmentation pattern given by LC-ESI/MS/MS analyses, were used. Our chromatographic system in conjunction with tandem MS was found to be valuable in the rapid separation and determination of the multiple constituents in methanolic extracts of lilac flowers and fruits. Altogether 34 phenolics, comprising 18 secoiridoids, seven phenylpropanoids, four flavonoids and five low-molecular-weight phenols, were identified. As marker compounds two secoiridoids (oleuropein and nuzhenide), two phenylpropanoids (acteoside and echinacoside) and rutin were quantified by validated methods. As a result of quantitative analysis, it was confirmed that flowers contain significant amounts of phenylpropanoids (acteoside, 2.48%; echinacoside, 0.75%) and oleuropein (0.95%), while in fruits secoiridoid oleuropein (1.09%) and nuzhenide (0.42%) are the major secondary metabolites. The radical scavenging activities of the extracts and the constituents were investigated by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS [2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] assays. Both extracts show remarkable antioxidant activities. Our results clearly show that lilac flowers and fruits are inexpensive, readily available natural sources of phenolic compounds with pharmacological and cosmetic applications. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Evolution of a mass spectrometry-grade protease with PTM-directed specificity.
Tran, Duc T; Cavett, Valerie J; Dang, Vuong Q; Torres, Héctor L; Paegel, Brian M
2016-12-20
Mapping posttranslational modifications (PTMs), which diversely modulate biological functions, represents a significant analytical challenge. The centerpiece technology for PTM site identification, mass spectrometry (MS), requires proteolytic cleavage in the vicinity of a PTM to yield peptides for sequencing. This requirement catalyzed our efforts to evolve MS-grade mutant PTM-directed proteases. Citrulline, a PTM implicated in epigenetic and immunological function, made an ideal first target, because citrullination eliminates arginyl tryptic sites. Bead-displayed trypsin mutant genes were translated in droplets, the mutant proteases were challenged to cleave bead-bound fluorogenic probes of citrulline-dependent proteolysis, and the resultant beads (1.3 million) were screened. The most promising mutant efficiently catalyzed citrulline-dependent peptide bond cleavage (k cat /K M = 6.9 × 10 5 M -1 ⋅s -1 ). The resulting C-terminally citrullinated peptides generated characteristic isotopic patterns in MALDI-TOF MS, and both a fragmentation product y 1 ion corresponding to citrulline (176.1030 m/z) and diagnostic peak pairs in the extracted ion chromatograms of LC-MS/MS analysis. Using these signatures, we identified citrullination sites in protein arginine deiminase 4 (12 sites) and in fibrinogen (25 sites, two previously unknown). The unique mass spectral features of PTM-dependent proteolytic digest products promise a generalized PTM site-mapping strategy based on a toolbox of such mutant proteases, which are now accessible by laboratory evolution.
NASA Astrophysics Data System (ADS)
Almirall, Jose R.; Montero, Shirly; Furton, Kenneth G.
2002-08-01
The importance of glass as evidence of association between a crime event and a suspect has been recognized for some time. Glass is a fragile material that is often found at the scenes of crimes such as burglaries, hit-and-run accidents and violent crime offenses. The physical and chemical properties of glass can be used to differentiate between possible sources and as evidence of association between two fragments of glass thought to originate from the same source. Refractive index (RI) comparisons have been used for this purpose but due to the improved control over glass manufacturing processes, RI values often cannot differentiate glasses, even if the glass originates from different sources. Elemental analysis methods such as NAA, XRF, ICP-AES, and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) have also been used for the comparison of trace elemental compositions and these techniques have been shown to provide an improvement in the discrimination of glass fragments over RI comparisons alone. The multi-element capability and the sensitivity of ICP-MS combined with the simplified sample introduction of laser ablation prior to ion detection provides for an excellent and relatively non-destructive technique for elemental analysis of glass fragments. The methodology for solution analysis (digestion procedure) and solid sample analysis (laser ablation) of glass is reported and the analytical results are compared. An isotope dilution method is also reported as a high precision technique for elemental analysis of glass fragments. The optimum sampling parameters for laser ablation, for semi-quantitative analysis and element ratio comparisons are also presented. Finally, the results of a case involving the breaking of 15 vehicle windows in an airport parking lot and the association of a suspect to the breakings by the glass fragments found on his person are also presented.
Mass spectrometry combinations for structural characterization of sulfated-steroid metabolites.
Yan, Yuetian; Rempel, Don L; Holy, Timothy E; Gross, Michael L
2014-05-01
Steroid conjugates, which often occur as metabolites, are challenging to characterize. One application is female-mouse urine, where steroid conjugates serve as important ligands for the pheromone-sensing neurons. Although the two with the highest abundance in mouse urine were previously characterized with mass spectrometry (MS) and NMR to be sulfated steroids, many more exist but remain structurally unresolved. Given that their physical and chemical properties are similar, they are likely to have a sulfated steroid ring structure. Because these compounds occur in trace amounts in mouse urine and elsewhere, their characterization by NMR will be difficult. Thus, MS methods become the primary approach for determining structure. Here, we show that a combination of MS tools is effective for determining the structures of sulfated steroids. Using 4-pregnene analogs, we explored high-resolving power MS (HR-MS) to determine chemical formulae; HD exchange MS (HDX-MS) to determine number of active, exchangeable hydrogens (e.g., OH groups); methoxyamine hydrochloride (MOX) derivatization MS, or reactive desorption electrospray ionization with hydroxylamine to determine the number of carbonyl groups; and tandem MS (MS(n)), high-resolution tandem MS (HRMS/MS), and GC-MS to obtain structural details of the steroid ring. From the fragmentation studies, we deduced three major fragmentation rules for this class of sulfated steroids. We also show that a combined MS approach is effective for determining structure of steroid metabolites, with important implications for targeted metabolomics in general and for the study of mouse social communication in particular.
Webb, Ian K.; Chen, Tsung-Chi; Danielson, William F.; Ibrahim, Yehia M.; Tang, Keqi; Anderson, Gordon A.; Smith, Richard D.
2014-01-01
An ion mobility/time-of-flight mass spectrometer (IMS/TOF MS) platform that allows for resonant excitation collision induced dissociation (CID) is presented. Highly efficient, mass-resolved fragmentation without additional excitation of product ions was accomplished and over-fragmentation common in beam-type CID experiments was alleviated. A quadrupole ion guide was modified to apply a dipolar AC signal across a pair of rods for resonant excitation. The method was characterized with singly protonated methionine enkephalin and triply protonated peptide angiotensin I, yielding maximum CID efficiencies of 44% and 84%, respectively. The Mathieu qx,y parameter was set at 0.707 for these experiments to maximize pseudopotential well depths and CID efficiencies. Resonant excitation CID was compared to beam-type CID for the peptide mixture. The ability to apply resonant waveforms in mobility-resolved windows is demonstrated with a peptide mixture yielding fragmentation over a range of mass-to-charge (m/z) ratios within a single IMS-MS analysis. PMID:24470195
Drug screening in medical examiner casework by high-resolution mass spectrometry (UPLC-MSE-TOF).
Rosano, Thomas G; Wood, Michelle; Ihenetu, Kenneth; Swift, Thomas A
2013-10-01
Postmortem drug findings yield important analytical evidence in medical examiner casework, and chromatography coupled with nominal mass spectrometry (MS) serves as the predominant general unknown screening approach. We report screening by ultra performance liquid chromatography (UPLC) coupled with hybrid quadrupole time-of-flight mass spectrometer (MS(E)-TOF), with comparison to previously validated nominal mass UPLC-MS and UPLC-MS-MS methods. UPLC-MS(E)-TOF screening for over 950 toxicologically relevant drugs and metabolites was performed in a full-spectrum (m/z 50-1,000) mode using an MS(E) acquisition of both molecular and fragment ion data at low (6 eV) and ramped (10-40 eV) collision energies. Mass error averaged 1.27 ppm for a large panel of reference drugs and metabolites. The limit of detection by UPLC-MS(E)-TOF ranges from 0.5 to 100 ng/mL and compares closely with UPLC-MS-MS. The influence of column recovery and matrix effect on the limit of detection was demonstrated with ion suppression by matrix components correlating closely with early and late eluting reference analytes. Drug and metabolite findings by UPLC-MS(E)-TOF were compared with UPLC-MS and UPLC-MS-MS analyses of postmortem blood in 300 medical examiner cases. Positive findings by all methods totaled 1,528, with a detection rate of 57% by UPLC-MS, 72% by UPLC-MS-MS and 80% by combined UPLC-MS and UPLC-MS-MS screening. Compared with nominal mass screening methods, UPLC-MS(E)-TOF screening resulted in a 99% detection rate and, in addition, offered the potential for the detection of nontargeted analytes via high-resolution acquisition of molecular and fragment ion data.
Diterpenes and other constituents from Croton draco (Euphorbiaceae).
Murillo, R M; Jakupovic, J; Rivera, J; Castro, V H
2001-03-01
Croton draco (Euphorbiaceae) from Guadalupe, San José, Costa Rica was collected in July 1992 and phytochemically studied (leaves, seeds, wood, bark, sap and flowers separately). Commonly known compounds such as 1-hydroxyjunenol, p-hydroxybenzaldehyde, p-methoxybenzoic acid, 3,4,5-trimethoxycinnamyl alcohol, the coumarin scopoletin, the nor-terpenoids 9-dehydrovomifoliol and 2,3-dihydrovomifoliol were obtained. Taspine, two aporphinic alkaloids, the diterpenes 9(11)-dehydrokaurenic acid, hardwikiic acid, the corresponding new 12-oxo derivative as well as five clerodanes and a phorbol ester were also isolated. Three clerodanes were not previously described and their NMR spectroscopical data and MS fragmentation patterns are reported.
Characterization of linoleic acid nitration in human blood plasma by mass spectrometry.
Lima, Emersom S; Di Mascio, Paolo; Rubbo, Homero; Abdalla, Dulcineia S P
2002-08-27
Nitric oxide (*NO) is a pervasive free radical species that concentrates in lipophilic compartments to serve as a potent inhibitor of lipid and low-density lipoprotein oxidation processes. In this study, we synthesized, characterized, and detected nitrated derivatives of linoleic acid (18:2) in human blood plasma using high-pressure liquid chromatography coupled with electrospray ionization tandem mass spectrometry. While the reaction of nitronium tetrafluoroborate with 18:2 presented ions with a mass/charge (m/z) ratio of 324 in the negative ion mode, characteristic of nitrolinoleate (LNO(2)), the reaction of nitrite (NO(2)(-)) with linoleic acid hydroperoxide yielded nitrohydroxylinoleate (LNO(2)OH, m/z 340). Further analysis by MS/MS gave a major fragment at m/z 46, characteristic of a nitro group (-NO(2)) present in the parent ion. This was confirmed by using [(15)N]O(2), which gave products of m/z 325 and 341, that after fragmentation yielded a daughter ion at m/z 47. Moreover, a C-NO(2) structure was also demonstrated in LNO(2)OH by nuclear magnetic resonance spectroscopy ((15)N NMR, delta 375.9), as well as by infrared analysis in both LNO(2)OH (nu(max) = 3427, 1553, and 1374 cm(-1)) and LNO(2) (nu(max) = 1552 and 1373 cm(-1)). Stable products with m/z of 324 and 340, which possessed the same chromatographic characteristics and fragmentation pattern as synthesized standards, were found in human plasma of normolipidemic and hyperlipidemic donors. The presence of these novel nitrogen-containing oxidized lipid adducts in human plasma could represent "footprints" of the antioxidant action of *NO on lipid oxidation and/or a pro-oxidant and nitrating action of *NO-derived species.
Luo, Yanzhang; Mok, Tin Seak; Lin, Xiuxian; Zhang, Wanling; Cui, Yizhi; Guo, Jiahui; Chen, Xing; Zhang, Tao; Wang, Tong
2017-01-01
Nasopharyngeal carcinoma (NPC) is a serious threat to public health, and the biomarker discovery is of urgent needs. The data-independent mode (DIA) based sequential window acquisition of all theoretical fragment-ion spectra (SWATH) mass spectrometry (MS) has been proved to be precise in protein quantitation and efficient for cancer biomarker researches. In this study, we performed the first SWATH-MS analysis comparing the NPC and normal tissues. Spike-in stable isotope labeling by amino acids in cell culture (super-SILAC) MS was used as a shotgun reference. We identified and quantified 1414 proteins across all SWATH-MS analyses. We found that SWATH-MS had a unique feature to preferentially detect proteins with smaller molecular weights than either super-SILAC MS or human proteome background. With SWATH-MS, 29 significant differentially express proteins (DEPs) were identified. Among them, carbonic anhydrase 2 (CA2) was selected for further validation per novelty, MS quality and other supporting rationale. With the tissue microarray analysis, we found that CA2 had an AUC of 0.94 in differentiating NPC from normal tissue samples. In conclusion, SWATH-MS has unique features in proteome analysis, and it leads to the identification of CA2 as a potentially new diagnostic biomarker for NPC. PMID:28117408
Mina, Suzan A; Melek, Farouk R; Adeeb, Rania M; Hagag, Eman G
2016-11-01
In this study, a comparative liquid chromatography/mass spectroscopy (LC/ESI-MS/MS) profiling of different fractions of Ulmus parvifolia leaves and stems was performed. Identification of compounds was based on comparing the mass spectrometric information obtained including m/z values and individual compound fragmentation pattern to tandem mass spectral library search and literature data. Eleven compounds were tentatively identified in the different analyzed fractions. One of the major constituents of this plant was isolated and identified as Icariside E4 [dihydro-dehydro-diconiferyl alcohol-4-O-α-L-rhamnopyranoside] (5). The evaluation of anti-inflammatory activity of the total methanolic extract using nitric oxide inhibition on LPS-stimulated RAW 264.7 cells model strong anti-inflammatory activity with 17.5% inhibition of nitric oxide production versus 10% inhibition for dexamethasone. The cytotoxic activity of the methanolic extract and Icariside E4 was evaluated against four types of human cell lines using MTT assay. Icariside E4 showed cytotoxic effect against Hep-G2, MCF-7, and CACO-2 cell lines compared to a negligible activity for the total extract. The same extract showed a moderate antioxidant activity with SC50=362.5 μg/mL.
Emissions and Photochemistry of BVOCs in a Ponderosa Pine woodland
NASA Astrophysics Data System (ADS)
Kim, S.; Karl, T.; Rasmussen, R.; Apel, E.; Harley, P.; Waldo, S.; Roberts, S.; Guenther, A.
2008-12-01
We deployed two proton-transfer-reaction mass spectrometry instruments (PTR-MS, IONICON ANALYTIK) for ambient and branch enclosure measurements at the Manitou Experimental Forest, located in the Southern Rocky Mountain area as a part of the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen (BEACHON) field campaign in 2008. Vegetation at the field site is dominated by Ponderosa Pine. BVOC emissions from Ponderosa Pine along with temperature, photosynthetic photon flux density (ppfd), relative humidity, and CO2 uptake were measured from two branch-enclosures (shade and sun). Diurnal variations and the emission response to environmental conditions are described and compared to existing models. In addition, we analyzed the speciation of BVOCs from enclosures by GC-MS. We will present quantitative and qualitative characteristics of BVOC emissions from Ponderosa Pine and analytical characteristics of PTR-MS such as fragmentation patterns of semi-volatile compounds (sesquiterpene, bornyl acetate etc) that we identified as major emissions from the enclosures. BVOC emissions observed in the enclosures will be quantitatively compared to BVOC distributions in ambient air. We explore the presence of possibly unidentified BVOCs in the forest canopy by examining PTR-MS mass spectra of enclosure and ambient air samples based on mass scans between 40 - 210 amu.
Fragment screening of cyclin G-associated kinase by weak affinity chromatography.
Meiby, Elinor; Knapp, Stefan; Elkins, Jonathan M; Ohlson, Sten
2012-11-01
Fragment-based drug discovery (FBDD) has become a new strategy for drug discovery where lead compounds are evolved from small molecules. These fragments form low affinity interactions (dissociation constant (K(D)) = mM - μM) with protein targets, which require fragment screening methods of sufficient sensitivity. Weak affinity chromatography (WAC) is a promising new technology for fragment screening based on selective retention of fragments by a drug target. Kinases are a major pharmaceutical target, and FBDD has been successfully applied to several of these targets. In this work, we have demonstrated the potential to use WAC in combination with mass spectrometry (MS) detection for fragment screening of a kinase target-cyclin G-associated kinase (GAK). One hundred seventy fragments were selected for WAC screening by virtual screening of a commercial fragment library against the ATP-binding site of five different proteins. GAK protein was immobilized on a capillary HPLC column, and compound binding was characterized by frontal affinity chromatography. Compounds were screened in sets of 13 or 14, in combination with MS detection for enhanced throughput. Seventy-eight fragments (46 %) with K(D) < 200 μM were detected, including a few highly efficient GAK binders (K(D) of 2 μM; ligand efficiency = 0.51). Of special interest is that chiral screening by WAC may be possible, as two stereoisomeric fragments, which both contained one chiral center, demonstrated twin peaks. This ability, in combination with the robustness, sensitivity, and simplicity of WAC makes it a new method for fragment screening of considerable potential.
NASA Astrophysics Data System (ADS)
Malla, Spundana; Kadimisetty, Karteek; Fu, You-Jun; Choudhary, Dharamainder; Schenkman, John B.; Rusling, James F.
2017-01-01
Methylation of cytosine (C) at C-phosphate-guanine (CpG) sites enhances reactivity of DNA towards electrophiles. Mutations at CpG sites on the p53 tumor suppressor gene that can result from these adductions are in turn correlated with specific cancers. Here we describe the first restriction-enzyme-assisted LC-MS/MS sequencing study of the influence of methyl cytosines (MeC) on kinetics of p53 gene adduction by model metabolite benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), using methodology applicable to correlate gene damage sites for drug and pollutant metabolites with mutation sites. This method allows direct kinetic measurements by LC-MS/MS sequencing for oligonucleotides longer than 20 base pairs (bp). We used MeC and non-MeC (C) versions of a 32 bp exon 7 fragment of the p53 gene. Methylation of 19 cytosines increased the rate constant 3-fold for adduction on G at the major reactive CpG in codon 248 vs. the non-MeC fragment. Rate constants for non-CpG codons 244 and 243 were not influenced significantly by MeC. Conformational and hydrophobicity changes in the MeC-p53 exon 7 fragment revealed by CD spectra and molecular modeling increase the BPDE binding constant to G in codon 248 consistent with a pathway in which preceding reactant binding greatly facilitates the rate of covalent SN2 coupling.
Liu, Rong; Yin, Zhibin; Leng, Yixin; Hang, Wei; Huang, Benli
2018-01-01
Laser desorption laser postionization time-of-flight mass spectrometry (LDPI-TOFMS) was employed for direct analysis and determination of typical basic dyes. It was also used for the analysis and comprehensive understanding of complex materials such as blue ballpoint pen inks. Simultaneous emergences of fragmental and molecular information largely simplify and facilitate unambiguous identification of dyes via variable energy of 266nm postionization laser. More specifically, by optimizing postionization laser energy with the same energy of desorption laser, the structurally significant results show definite differences in the fragmentation patterns, which offer opportunities for discrimination of isomeric species with identical molecular weight. Moreover, relatively high spectra resolution can be acquired without the expense of sensitivity. In contrast to laser desorption/ionization mass spectrometry (LDI-MS), LDPI-MS simultaneously offers valuable molecular information about dyes in traces, solvents and additives about inks, thereby offering direct determination and comprehensive understanding of blue ballpoint inks and giving a high level of confidence to discriminate the complicated evidentiary samples. In addition, direct analysis of the inks not only allows the avoidance of the tedious sample preparation processes, significantly shortening the overall analysis time and improving throughput, but allows minimized sample consumption which is important for rare and precious samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Analysis of poly-beta-hydroxybutyrate in environmental samples by GC-MS/MS.
Elhottová, D; Tríska, J; Petersen, S O; Santrůcková, H
2000-05-01
Application of gas chromatography-mass spectrometry (GC-MS) can significantly improve trace analyses of compounds in complex matrices from natural environments compared to gas chromatography only. A GC-MS/MS technique for determination of poly-beta-hydroxybutyrate (PHB), a bacterial storage compound, has been developed and used for analysis of two soils stored for up to 319 d, fresh samples of sewage sludge, as well as a pure culture of Bacillus megaterium. Specific derivatization of beta-hydroxybutyrate (3-OH C4:0) PHB monomer units by N-tert-butyl-dimethylsilyl-N-methyltrifluoracetamide (MTBSTFA) improved chromatographic and mass spectrometric properties of the analyte. The diagnostic fragmentation scheme of the derivates tert-butyldimethylsilyl ester and ether of beta-hydroxybutyric acid (MTBSTFA-HB) essential for the PHB identification was shown. The ion trap MS was used, therefore the scan gave the best sensitivity and with MS/MS the noise decreased, so the S/N was better and also with second fragmentation the amount of ions increased compared to SIM. The detection limit for MTBSTFA-HB by GC-MS/MS was about 10(-13) g microL(-1) of injected volume, while by GC (FID) and GC-MS (scan) it was around 10(-10) g microL(-1) of injected volume. Sensitivity of GC-MS/MS measurements of PHB in arable soil and activated sludge samples was down to 10 pg of PHB g(-1) dry matter. Comparison of MTBSTFA-HB detection in natural soil sample by GC (FID), GC-MS (scan) and by GC-MS/MS demonstrated potentials and limitations of the individual measurement techniques.
Mass Spectrometry Combinations for Structural Characterization of Sulfated-Steroid Metabolites
NASA Astrophysics Data System (ADS)
Yan, Yuetian; Rempel, Don L.; Holy, Timothy E.; Gross, Michael L.
2014-05-01
Steroid conjugates, which often occur as metabolites, are challenging to characterize. One application is female-mouse urine, where steroid conjugates serve as important ligands for the pheromone-sensing neurons. Although the two with the highest abundance in mouse urine were previously characterized with mass spectrometry (MS) and NMR to be sulfated steroids, many more exist but remain structurally unresolved. Given that their physical and chemical properties are similar, they are likely to have a sulfated steroid ring structure. Because these compounds occur in trace amounts in mouse urine and elsewhere, their characterization by NMR will be difficult. Thus, MS methods become the primary approach for determining structure. Here, we show that a combination of MS tools is effective for determining the structures of sulfated steroids. Using 4-pregnene analogs, we explored high-resolving power MS (HR-MS) to determine chemical formulae; HD exchange MS (HDX-MS) to determine number of active, exchangeable hydrogens (e.g., OH groups); methoxyamine hydrochloride (MOX) derivatization MS, or reactive desorption electrospray ionization with hydroxylamine to determine the number of carbonyl groups; and tandem MS (MSn), high-resolution tandem MS (HRMS/MS), and GC-MS to obtain structural details of the steroid ring. From the fragmentation studies, we deduced three major fragmentation rules for this class of sulfated steroids. We also show that a combined MS approach is effective for determining structure of steroid metabolites, with important implications for targeted metabolomics in general and for the study of mouse social communication in particular.
Mass spectrometry combinations for structural characterization of sulfated-steroid metabolites
Yan, Yuetian; Rempel, Don; Holy, Timothy E.; Gross, Michael L.
2015-01-01
Steroid conjugates, which often occur as metabolites, are challenging to characterize. One application is female-mouse urine, where steroid conjugates serve as important ligands for the pheromone-sensing neurons. Although the two with the highest abundance in mouse urine were previously characterized with mass spectrometry (MS) and NMR to be sulfated steroids, many more exist but remain structurally unresolved. Given that their physical and chemical properties are similar, they are likely to have a sulfated steroid ring structure. Because these compounds occur in trace amounts in mouse urine and elsewhere, their characterization by NMR will be difficult. Thus, MS methods become the primary approach for determining structure. Here, we show that a combination of MS tools is effective for determining the structures of sulfated steroids. Using 4-pregnene analogs, we explored high-resolving power MS (HR-MS) to determine chemical formulae; HD exchange MS (HDX-MS) to determine number of active, exchangeable hydrogens (e.g., OH groups); methoxyamine hydrochloride (MOX) derivatization MS, or reactive desorption electrospray ionization with hydroxylamine to determine the number of carbonyl groups; and tandem MS (MSn), high-resolution tandem MS (HRMS/MS), and GC-MS to obtain structural details of the steroid ring. From the fragmentation studies, we deduced three major fragmentation rules for this class of sulfated steroids. We also show that a combined MS approach is effective for determining structure of steroid metabolites, with important implications for targeted metabolomics in general and for the study of mouse social communication in particular. PMID:24658800
Using In Silico Fragmentation to Improve Routine Residue Screening in Complex Matrices.
Kaufmann, Anton; Butcher, Patrick; Maden, Kathryn; Walker, Stephan; Widmer, Mirjam
2017-12-01
Targeted residue screening requires the use of reference substances in order to identify potential residues. This becomes a difficult issue when using multi-residue methods capable of analyzing several hundreds of analytes. Therefore, the capability of in silico fragmentation based on a structure database ("suspect screening") instead of physical reference substances for routine targeted residue screening was investigated. The detection of fragment ions that can be predicted or explained by in silico software was utilized to reduce the number of false positives. These "proof of principle" experiments were done with a tool that is integrated into a commercial MS vendor instrument operating software (UNIFI) as well as with a platform-independent MS tool (Mass Frontier). A total of 97 analytes belonging to different chemical families were separated by reversed phase liquid chromatography and detected in a data-independent acquisition (DIA) mode using ion mobility hyphenated with quadrupole time of flight mass spectrometry. The instrument was operated in the MS E mode with alternating low and high energy traces. The fragments observed from product ion spectra were investigated using a "chopping" bond disconnection algorithm and a rule-based algorithm. The bond disconnection algorithm clearly explained more analyte product ions and a greater percentage of the spectral abundance than the rule-based software (92 out of the 97 compounds produced ≥1 explainable fragment ions). On the other hand, tests with a complex blank matrix (bovine liver extract) indicated that the chopping algorithm reports significantly more false positive fragments than the rule based software. Graphical Abstract.
Sewram, V; Nair, J J; Nieuwoudt, T W; Leggott, N L; Shephard, G S
2000-11-03
An HPLC-MS-MS method with selected reaction monitoring (SRM) for the determination of patulin in apple juice samples is described. Mass spectrometric detection was accomplished following atmospheric pressure chemical ionization (APCI) in both positive and negative ion modes. Collision induced dissociation (CID) of the protonated molecular ion led initially to the loss of H2O (fragment m/z 137). At higher energies CO is lost from both the protonated parent molecule (fragment m/z 127) and the dehydrated molecular ion (fragment m/z 109). In contrast, CID of the deprotonated molecular ion led initially to the fragment at m/z 109 corresponding to the loss of either CO2 or acetaldehyde, followed at higher CID energy by the loss of H2O (fragment m/z 135) and CO (fragment m/z 125) from the deprotonated molecular ion. Detection in the negative ion mode proved superior and a linear response was observed over the injected range from 6 to 200 ng patulin. Apple juice samples spiked with patulin between 10 and 135 microg/l were analyzed following liquid-liquid extraction with ethyl acetate and clean up with sodium carbonate. Utilizing reversed-phase HPLC with acetonitrile-water (10:90) at 0.5 ml/min, levels down to 10 microg/l were readily quantified and a detection limit of 4 microg/l was attainable at a signal-to-noise (SIN) ratio of 4. The MS data for the spiked samples compared well to the UV data and when plotted against each other displayed a correlation coefficient (R) of 0.99.
Identification of Vitamin D3 Oxidation Products Using High-Resolution and Tandem Mass Spectrometry
NASA Astrophysics Data System (ADS)
Mahmoodani, Fatemeh; Perera, Conrad O.; Abernethy, Grant; Fedrizzi, Bruno; Greenwood, David; Chen, Hong
2018-03-01
In a successful fortification program, the stability of micronutrients added to the food is one of the most important factors. The added vitamin D3 is known to sometimes decline during storage of fortified milks, and oxidation through fatty acid lipoxidation could be suspected as the likely cause. Identification of vitamin D3 oxidation products (VDOPs) in natural foods is a challenge due to the low amount of their contents and their possible transformation to other compounds during analysis. The main objective of this study was to find a method to extract VDOPs in simulated whole milk powder and to identify these products using LTQ-ion trap, Q-Exactive Orbitrap and triple quadrupole mass spectrometry. The multistage mass spectrometry (MSn) spectra can help to propose plausible schemes for unknown compounds and their fragmentations. With the growth of combinatorial libraries, mass spectrometry (MS) has become an important analytical technique because of its speed of analysis, sensitivity, and accuracy. This study was focused on identifying the fragmentation rules for some VDOPs by incorporating MS data with in silico calculated MS fragmentation pathways. Diels-Alder derivatization was used to enhance the sensitivity and selectivity for the VDOPs' identification. Finally, the confirmed PTAD-derivatized target compounds were separated and analyzed using ESI(+)-UHPLC-MS/MS in multiple reaction monitoring (MRM) mode. [Figure not available: see fulltext.
Maslen, Sarah; Sadowski, Pawel; Adam, Alex; Lilley, Kathryn; Stephens, Elaine
2006-12-15
The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.
NASA Astrophysics Data System (ADS)
Rontani, Jean-François; Aubert, Claude; Belt, Simon T.
2015-09-01
EI mass fragmentation pathways of TMS derivatives οf 7α/β-hydroxy-dehydroabietic acids resulting from NaBH4-reduction of oxidation products of dehydroabietic acid (a component of conifers) were investigated and deduced by a combination of (1) low energy CID-GC-MS/MS, (2) deuterium labeling, (3) different derivatization methods, and (4) GC-QTOF accurate mass measurements. Having identified the main fragmentation pathways, the TMS-derivatized 7α/β-hydroxy-dehydroabietic acids could be quantified in multiple reaction monitoring (MRM) mode in sea ice and sediment samples collected from the Arctic. These newly characterized transformation products of dehydroabietic acid constitute potential tracers of biotic and abiotic degradation of terrestrial higher plants in the environment.
Searching molecular structure databases with tandem mass spectra using CSI:FingerID
Dührkop, Kai; Shen, Huibin; Meusel, Marvin; Rousu, Juho; Böcker, Sebastian
2015-01-01
Metabolites provide a direct functional signature of cellular state. Untargeted metabolomics experiments usually rely on tandem MS to identify the thousands of compounds in a biological sample. Today, the vast majority of metabolites remain unknown. We present a method for searching molecular structure databases using tandem MS data of small molecules. Our method computes a fragmentation tree that best explains the fragmentation spectrum of an unknown molecule. We use the fragmentation tree to predict the molecular structure fingerprint of the unknown compound using machine learning. This fingerprint is then used to search a molecular structure database such as PubChem. Our method is shown to improve on the competing methods for computational metabolite identification by a considerable margin. PMID:26392543
USDA-ARS?s Scientific Manuscript database
An integrated approach based on high resolution MS analysis (orbitrap), database (db) searching and MS/MS fragmentation prediction for the rapid identification of plant phenols is reported. The approach was firstly validated by using a mixture of phenolic standards (phenolic acids, flavones, flavono...
Annotation of Different Dehydrocatechin Oligomers by MS/MS and Their Occurrence in Black Tea.
Verloop, Annewieke J W; Gruppen, Harry; Vincken, Jean-Paul
2016-08-03
Dehydrocatechins (DhC's), oligomeric oxidation products of (epi)catechins, were formed in model incubations of epicatechin with mushroom tyrosinase. DhC oligomers up to tetramers were detected by reversed-phase ultrahigh-performance liquid chromatography mass spectrometry (RP-UHPLC-MS) analysis. Measurements with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) showed formation of oligomers up to at least 15 catechin subunits. Isomeric DhC's were obtained, and a method based on MS(2) fragment ratios was set up to distinguish between the different interflavanic configurations of the isomers. In the model incubation, 8 dehydrodicatechins (DhC2's) and 22 dehydrotricatechins (DhC3's) were tentatively annotated by their MS(2) signature fragments. Three different interflavanic configuration types were determined for the DhC2's. DhC2's and DhC3's were shown to occur in a black tea extract for the first time. For the DhC2's, at least two isomeric types, i.e., DhC β and DhC ε, could be annotated in black tea.
Hexose rearrangements upon fragmentation of N-glycopeptides and reductively aminated N-glycans.
Wuhrer, Manfred; Koeleman, Carolien A M; Deelder, André M
2009-06-01
Tandem mass spectrometry of glycans and glycoconjugates in protonated form is known to result in rearrangement reactions leading to internal residue loss. Here we studied the occurrence of hexose rearrangements in tandem mass spectrometry of N-glycopeptides and reductively aminated N-glycans by MALDI-TOF/TOF-MS/MS and ESI-ion trap-MS/MS. Fragmentation of proton adducts of oligomannosidic N-glycans of ribonuclease B that were labeled with 2-aminobenzamide and 2-aminobenzoic acid resulted in transfer of one to five hexose residues to the fluorescently tagged innermost N-acetylglucosamine. Glycopeptides from various biological sources with oligomannosidic glycans were likewise shown to undergo hexose rearrangement reactions, resulting in chitobiose cleavage products that have acquired one or two hexose moieties. Tryptic immunoglobulin G Fc-glycopeptides with biantennary N-glycans likewise showed hexose rearrangements resulting in hexose transfer to the peptide moiety retaining the innermost N-acetylglucosamine. Thus, as a general phenomenon, tandem mass spectrometry of reductively aminated glycans as well as glycopeptides may result in hexose rearrangements. This characteristic of glycopeptide MS/MS has to be considered when developing tools for de novo glycopeptide structural analysis.
Mating patterns and pollinator mobility are critical traits in forest fragmentation genetics
Breed, M F; Ottewell, K M; Gardner, M G; Marklund, M H K; Dormontt, E E; Lowe, A J
2015-01-01
Most woody plants are animal-pollinated, but the global problem of habitat fragmentation is changing the pollination dynamics. Consequently, the genetic diversity and fitness of the progeny of animal-pollinated woody plants sired in fragmented landscapes tend to decline due to shifts in plant-mating patterns (for example, reduced outcrossing rate, pollen diversity). However, the magnitude of this mating-pattern shift should theoretically be a function of pollinator mobility. We first test this hypothesis by exploring the mating patterns of three ecologically divergent eucalypts sampled across a habitat fragmentation gradient in southern Australia. We demonstrate increased selfing and decreased pollen diversity with increased fragmentation for two small-insect-pollinated eucalypts, but no such relationship for the mobile-bird-pollinated eucalypt. In a meta-analysis, we then show that fragmentation generally does increase selfing rates and decrease pollen diversity, and that more mobile pollinators tended to dampen these mating-pattern shifts. Together, our findings support the premise that variation in pollinator form contributes to the diversity of mating-pattern responses to habitat fragmentation. PMID:24002239
Thieme, Detlef; Sachs, Ulf; Sachs, Hans; Moore, Christine
2015-07-01
Formation of picolinic acid esters of hydroxylated drugs or their biotransformation products is a promising tool to improve their mass spectrometric ionization efficiency, alter their fragmentation behaviour and enhance sensitivity and specificity of their detection. The procedure was optimized and tested for the detection of cannabinoids, which proved to be most challenging when dealing with alternative specimens, for example hair and oral fluid. In particular, the detection of the THC metabolites hydroxyl-THC and carboxy-THC requires ultimate sensitivity because of their poor incorporation into hair or saliva. Both biotransformation products are widely accepted as incorporation markers to distinguish drug consumption from passive contamination. The derivatization procedure was carried out by adding a mixture of picolinic acid, 4-(dimethylamino)pyridine and 2-methyl-6-nitrobenzoic anhydride in tetrahydrofuran/triethylamine to the dry extraction residues. Resulting derivatives were found to be very stable and could be reconstituted in aqueous or organic buffers and subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). Owing to the complex consecutive fragmentation patterns, the application of multistage MS3 proved to be extremely useful for a sensitive identification of doubly picolinated hydroxy-THC in complex matrices. The detection limits - estimated by comparison of corresponding signal-to-noise ratios - increased by a factor of 100 following picolination. All other species examined, like cannabinol, THC, cannabidiol, and carboxy-THC, could also be derivatized exhibiting only moderate sensitivity improvements. The assay was systematically tested using hair samples and exemplarily applied to oral fluid. Concentrations of OH-THC identified in THC-positive hair samples ranged from 0.02 to 0.29pg/mg. Copyright © 2014 John Wiley & Sons, Ltd.
Wang, Yaqi; Jiao, Jiaojiao; Yang, Yuanzhen; Yang, Ming; Zheng, Qin
2018-04-30
The method of cell biospecific extraction coupled with UPLC/Q-TOF-MS has been developed as a tool for the screening and identification of potential immunological active components from Andrographis Herba (AH). In our study, a macrophage cell line (RAW264.7) was used to extract cell-combining compounds from the ethanol extract of AH. The cell binding system was then analyzed and identified by UPLC/Q-TOF-MS analysis. Finally, nine compounds, which could combine with macrophages, in an ethanol extract of AH were detected by comparing basic peak intensity (BPI) profiles of macrophages before and after treatment with AH. Then they were identified as Andrographidine E ( 1 ), Andrographidine D ( 2 ), Neoandrographolide ( 3 ), Dehydroandrographolide ( 4 ), 5, 7, 2′, 3′-tetramethoxyflavone ( 5 ), β-sitosterol ( 7 ), 5-hydroxy-7, 2′, 3′-trimethoxyflavone ( 8 ) and 5-hydroxy-7, 8, 2′, 3′-tetramethoxyflavone ( 9 ), which could classified into five flavonoids, three diterpene lactones, and one sterol. Their structures were recognized by their characteristic fragment ions and fragmentations pattern of diterpene lactones and flavonoids. Additionally, the activity of compounds 3 , 4 , and 7 was tested in vitro. Results showed that these three compounds could decrease the release of NO ( p < 0.01) in macrophages remarkably. Moreover, 3 , 4 , and 7 showed satisfactory dose-effect relationships and their IC 50 values were 9.03, 18.18, and 13.76 μg/mL, respectively. This study is the first reported work on the screening of immunological active components from AH. The potential immunological activity of flavonoids from AH has not been reported previously.
Tada, Atsuko; Ishizuki, Kyoko; Yamazaki, Takeshi; Sugimoto, Naoki; Akiyama, Hiroshi
2014-07-01
Natural ester-type gum bases, which are used worldwide as food additives, mainly consist of wax esters composed of long-chain fatty acids and long-chain fatty alcohols. There are many varieties of ester-type gum bases, and thus a useful method for their discrimination is needed in order to establish official specifications and manage their quality control. Herein is reported a rapid and simple method for the analysis of different ester-type gum bases used as food additives by high-temperature gas chromatography/mass spectrometry (GC/MS). With this method, the constituent wax esters in ester-type gum bases can be detected without hydrolysis and derivatization. The method was applied to the determination of 10 types of gum bases, including beeswax, carnauba wax, lanolin, and jojoba wax, and it was demonstrated that the gum bases derived from identical origins have specific and characteristic total ion chromatogram (TIC) patterns and ester compositions. Food additive gum bases were thus distinguished from one another based on their TIC patterns and then more clearly discriminated using simultaneous monitoring of the fragment ions corresponding to the fatty acid moieties of the individual molecular species of the wax esters. This direct high-temperature GC/MS method was shown to be very useful for the rapid and simple discrimination of varieties of ester-type gum bases used as food additives.
Tada, Atsuko; Ishizuki, Kyoko; Yamazaki, Takeshi; Sugimoto, Naoki; Akiyama, Hiroshi
2014-01-01
Natural ester-type gum bases, which are used worldwide as food additives, mainly consist of wax esters composed of long-chain fatty acids and long-chain fatty alcohols. There are many varieties of ester-type gum bases, and thus a useful method for their discrimination is needed in order to establish official specifications and manage their quality control. Herein is reported a rapid and simple method for the analysis of different ester-type gum bases used as food additives by high-temperature gas chromatography/mass spectrometry (GC/MS). With this method, the constituent wax esters in ester-type gum bases can be detected without hydrolysis and derivatization. The method was applied to the determination of 10 types of gum bases, including beeswax, carnauba wax, lanolin, and jojoba wax, and it was demonstrated that the gum bases derived from identical origins have specific and characteristic total ion chromatogram (TIC) patterns and ester compositions. Food additive gum bases were thus distinguished from one another based on their TIC patterns and then more clearly discriminated using simultaneous monitoring of the fragment ions corresponding to the fatty acid moieties of the individual molecular species of the wax esters. This direct high-temperature GC/MS method was shown to be very useful for the rapid and simple discrimination of varieties of ester-type gum bases used as food additives. PMID:25473499
Mass spectrometry and tandem mass spectrometry of citrus limonoids.
Tian, Qingguo; Schwartz, Steven J
2003-10-15
Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring structure. CAD of the adduct ion [M + H + NH3]+ of limonoid glucosides produced the aglycone moiety corresponding to each glucoside. The combination of mass spectrometry and tandem mass spectrometry provides a powerful technique for identification and characterization of citrus limonoids.
NASA Astrophysics Data System (ADS)
Thibault, P.; Pleasance, S.; Laycock, M. V.; Mackay, R. M.; Boyd, R. K.
1991-12-01
An inseparable mixture of two cysteine proteinases, isolated from the digestive tract of the American lobster, was investigated by ionspray mass spectrometry (ISP-MS), using a combination of infusion of intact proteins with on-line liquid chromatography--mass spectrometry (LC--MS) and LC--MS--MS analyses of tryptic digests. These data were interpreted by comparisons with predictions from results of molecular cloning of cysteine-proteinase-encoding messenger RNA sequences previously isolated from the lobster hepatopancreas. Investigations of the numbers of free thiol groups and of disulfide bonds were made by measuring the molecular weights of the alkylated proteins with and without prior reduction of disulfide bonds, and comparison with the corresponding data for the native proteins. Identification of tyrptic fragment peptides containing cysteine residues was facilitated by comparing LC--MS analyses of tryptic digests of denatured and of denatured and alkylated proteins, since such tryptic peptides are subject to shifts in both mass and retention time upon reduction and alkylation. Confirmation of amino acid sequences was obtained from fragment ion spectra of each tryptic peptide (alkylated or not) as it eluted from the column. Acquisition of such on-line LC--MS data was possible through use of the entire effluent from a standard 1 mm high performance liquid chromatography (HPLC) column by an IonsSpray® LC--MS interface (pneumatically assisted electrospray).
Schnöller, Johannes; Pittenauer, Ernst; Hutter, Herbert; Allmaier, Günter
2009-12-01
Commercial copper wire and its polymer insulation cladding was investigated for the presence of three synthetic antioxidants (ADK STAB AO412S, Irganox 1010 and Irganox MD 1024) by three different mass spectrometric techniques including electrospray ionization-ion trap-mass spectrometry (ESI-IT-MS), matrix-assisted laser desorption/ionization reflectron time-of-flight (TOF) mass spectrometry (MALDI-RTOF-MS) and reflectron TOF secondary ion mass spectrometry (RTOF-SIMS). The samples were analyzed either directly without any treatment (RTOF-SIMS) or after a simple liquid/liquid extraction step (ESI-IT-MS, MALDI-RTOF-MS and RTOF-SIMS). Direct analysis of the copper wire itself or of the insulation cladding by RTOF-SIMS allowed the detection of at least two of the three antioxidants but at rather low sensitivity as molecular radical cations and with fairly strong fragmentation (due to the highly energetic ion beam of the primary ion gun). ESI-IT- and MALDI-RTOF-MS-generated abundant protonated and/or cationized molecules (ammoniated or sodiated) from the liquid/liquid extract. Only ESI-IT-MS allowed simultaneous detection of all three analytes in the extract of insulation claddings. The latter two so-called 'soft' desorption/ionization techniques exhibited intense fragmentation only by applying low-energy collision-induced dissociation (CID) tandem MS on a multistage ion trap-instrument and high-energy CID on a tandem TOF-instrument (TOF/RTOF), respectively. Strong differences in the fragmentation behavior of the three analytes could be observed between the different CID spectra obtained from either the IT-instrument (collision energy in the very low eV range) or the TOF/RTOF-instrument (collision energy 20 keV), but both delivered important structural information. Copyright 2009 John Wiley & Sons, Ltd.
UPLC-MS-IT-TOF Identification of Circumdatins Produced by Aspergillus ochraceus.
González-Jartı N, Jesús M; Alfonso, Amparo; Sainz, María J; Vieytes, Mercedes R; Botana, Luis M
2017-06-14
A method based on the combined use of ultraperformance liquid chromatography coupled to mass spectrometry-ion trap-time-of-flight (UPLC-MS-IT-TOF) detection was employed to identify the metabolite production of Aspergillus ochraceus, which is the major cause of food and feed contamination due to ochratoxin A. Under the proposed chromatographic conditions, seven metabolites belonging to the family of circumdatins were separated and identified. Their initial identification was performed through the exact molecular formula, as a function of their accurate mass. Collision-induced dissociation was applied to predict precursor and product ions, and the elemental composition of each compound was obtained. The elimination of nitrogenous groups followed by successive losses of carbonyl groups is the common fragmentation pathway of circumdatins. With the fragmentation data obtained, an UPLC-MS/MS method was created and optimized to detect circumdatins in corn samples.
Gao, Boyan; Luo, Yinghua; Lu, Weiying; Liu, Jie; Zhang, Yaqiong; Yu, Liangli Lucy
2017-03-01
A supercritical CO 2 ultra-performance convergence chromatography (UPC 2 ) system was utilized with a quadrupole time-of-flight mass spectrometry (Q-TOF MS) to examine the triacylglycerol compositions of sunflower, corn and soybean oils. UPC 2 provided an excellent resolution and separation for the triacylglycerols, while the high performance Q-TOF MS system was able to provide the molecular weight and fragment ions information for triacylglycerol compound characterization. A total of 33 triacylglycerols were identified based on their elementary compositions and MS 2 fragment ion profiles, and their levels in the three oils were estimated. The combination of UPC 2 and Q-TOF MS may determine triacylglycerol compositions for oils and fats, and provide sn-position information for fatty acids, which may be important for food nutritional value and stability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhou, Da-Yong; Chen, De-Liang; Xu, Qing; Xue, Xing-Ya; Zhang, Fei-Fang; Liang, Xin-Miao
2007-04-11
Atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was operated in positive mode (PI) to characterize polymethoxylated flavonoids (PMFs) through its specific radical cations by collision-induced dissociation (CID). The fragments of [M + H - n x 15]+ produced by loss of one or more methyl group from the protonated molecule, as well as [M + H - 29]+, [M + H - 31]+, [M + H - 33]+, [M + H - 43]+, [M + H - 46]+, and [M + H - 61]+ fragment ions were detected, which were diagnostic for the polymethoxylated species, and could be adopted to form the multiple MS (MS(n)) "fingerprint" of PMFs. Based on this "fingerprint", 29 PMFs were screened out from extracts of Fructus aurantii, among which two of them were identified as sinensetin and tangeretin. It was proved that the PI was suitable for structural characterization of PMFs by APCI-MS(n).
Kolářová, L.; Nobilis, M.
2008-01-01
Applications of tandem mass spectrometry (MS/MS) techniques coupled with high-performance liquid chromatography (HPLC) in the identification and determination of phase I and phase II drug metabolites are reviewed with an emphasis on recent papers published predominantly within the last 6 years (2002–2007) reporting the employment of atmospheric pressure ionization techniques as the most promising approach for a sensitive detection, positive identification and quantitation of metabolites in complex biological matrices. This review is devoted to in vitro and in vivo drug biotransformation in humans and animals. The first step preceding an HPLC-MS bioanalysis consists in the choice of suitable sample preparation procedures (biomatrix sampling, homogenization, internal standard addition, deproteination, centrifugation, extraction). The subsequent step is the right optimization of chromatographic conditions providing the required separation selectivity, analysis time and also good compatibility with the MS detection. This is usually not accessible without the employment of the parent drug and synthesized or isolated chemical standards of expected phase I and sometimes also phase II metabolites. The incorporation of additional detectors (photodiode-array UV, fluorescence, polarimetric and others) between the HPLC and MS instruments can result in valuable analytical information supplementing MS results. The relation among the structural changes caused by metabolic reactions and corresponding shifts in the retention behavior in reversed-phase systems is discussed as supporting information for identification of the metabolite. The first and basic step in the interpretation of mass spectra is always the molecular weight (MW) determination based on the presence of protonated molecules [M+H]+ and sometimes adducts with ammonium or alkali-metal ions, observed in the positive-ion full-scan mass spectra. The MW determination can be confirmed by the [M-H]- ion for metabolites providing a signal in negative-ion mass spectra. MS/MS is a worthy tool for further structural characterization because of the occurrence of characteristic fragment ions, either MSn analysis for studying the fragmentation patterns using trap-based analyzers or high mass accuracy measurements for elemental composition determination using time of flight based or Fourier transform mass analyzers. The correlation between typical functional groups found in phase I and phase II drug metabolites and corresponding neutral losses is generalized and illustrated for selected examples. The choice of a suitable ionization technique and polarity mode in relation to the metabolite structure is discussed as well. PMID:18345532
Darii, Ekaterina; Alves, Sandra; Gimbert, Yves; Perret, Alain; Tabet, Jean-Claude
2017-03-15
Non-covalent complexes (NCC) between hexose monophosphates (HexP) and arginine (R) were analyzed using ESI MS and MS/MS in negative mode under different (hard, HC and soft, SC) desolvation conditions. High resolution mass spectrometry (HRMS) revealed the presence of different ionic species, namely, homo- and heteromultimers of R and HexP. Deprotonated heterodimers and corresponding sodiated species were enhanced under HC likely due to a decrease in available charge number associated with the reduction of H + /Na + exchange. The quantum calculations showed that the formation of covalent systems is very little exothermic, therefore, such systems are disfavored. Desolvation dependent CID spectra of deprotonated [(HexP+R)‒H] - complexes demonstrated that they can exist within the hydrogen bond (HB) and salt bridge (SB) forms, yielding either NCC separation or covalent bond cleavages, respectively. Although HB forms are the main species, they cannot survive under HC; therefore, the minor SB forms became detectable. Energy-resolved mass spectrometry (ERMS) experiments revealed diagnostic fragment ions from both SB and HB forms, providing evidence that these isomeric forms are inconvertible. SB formation should result from the ionic interactions of highly acidic group of HexP with strongly basic guanidine group of arginine and thus requires an arginine zwitterion (ZW) form. This was confirmed by quantum calculations. Ion-ion interactions are significantly affected by the presence of sodium cation as demonstrated by the fragmentation patterns of sodiated complex species. Regarding CID data, only SB between protonated amino group of R and deprotonated phosphate group of HexP could be suggested, but the primary amine is not enough basic then, the SB must be fleeting. Nevertheless, the observation of the covalent bond cleavages suggests the presence of structures with a free negative charge able to induce fragmentations. Indeed, according to quantum calculations, solvated salt (SS) systems involving Na + /COO - salt solvated by neutral phosphate and negative charge on sugar ring are preferentially formed. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Dong; Meng, Xiangjun; Ren, Tianming; Fawcett, John Paul; Wang, Hualu; Gu, Jingkai
2018-04-01
Sensitivity is generally an issue in bioassays of prostaglandins and their synthetic analogs due to their extremely low concentration in vivo. To improve the ionization efficiency of limaprost, an oral prostaglandin E1 (PGE1) synthetic analog, we investigated a charge reversal derivatization strategy in electrospray ionization mass spectrometry (ESI-MS). We established that the cholamine derivative exhibits much greater signal intensity in the positive-ion mode compared with limaprost in the negative ion mode. Collision-induced dissociation (CID) involved exclusive neutral mass loss and positive charge migration to form stable cationic product ions with the positive charge on the limaprost residue rather than on the modifying group. This has the effect of maintaining the efficiency and specificity of multiple reaction monitoring (MRM) and avoiding cross talk. CID fragmentation patterns of other limaprost derivatives allowed us to relate the dissociation tendency of different neutral leaving groups to an internal energy distribution scale based on the survival yield method. Knowledge of the energy involved in the production of stabilized positive ions will potentially assist the selection of suitable derivatization reagents for the analysis of a wide variety of lipid acids. [Figure not available: see fulltext.
Aryl sulfonates as neutral photoacid generators (PAGs) for EUV lithography
NASA Astrophysics Data System (ADS)
Sulc, Robert; Blackwell, James M.; Younkin, Todd R.; Putna, E. Steve; Esswein, Katherine; DiPasquale, Antonio G.; Callahan, Ryan; Tsubaki, Hideaki; Tsuchihashi, Tooru
2009-03-01
EUV lithography (EUVL) is a leading candidate for printing sub-32 nm hp patterns. In order for EUVL to be commercially viable at these dimensions, a continuous evolution of the photoresist material set is required to simultaneously meet the aggressive specifications for resolution, resist sensitivity, LWR, and outgassing rate. Alternative PAG designs, especially if tailored for EUVL, may aid in the formation of a material set that helps achieve these aggressive targets. We describe the preparation, characterization, and lithographic evaluation of aryl sulfonates as non-ionic or neutral photoacid generators (PAGs) for EUVL. Full lithographic characterization is reported for our first generation resist formulation using compound H, MAP-1H-2.5. It is benchmarked against MAP-1P-5.0, which contains the well-known sulfonium PAG, triphenylsulfonium triflate (compound P). Z-factor analysis indicates nZ32 = 81.4 and 16.8 respectively, indicating that our first generation aryl sulfonate formulations require about 4.8x improvement to match the results achieved with a model onium PAG. Improving the acid generation efficiency and use of the generated byproducts is key to the continued optimization of this class of PAGs. To that end, we believe EI-MS fragmentation patterns and molecular simulations can be used to understand and optimize the nature and efficiency of electron-induced PAG fragmentation.
Padilla-Sánchez, Juan A; Michael Thurman, E; Plaza-Bolaños, Patricia; Ferrer, Imma
2012-05-15
A study of pesticide transformation products (TPs) was carried out in soils of agricultural areas working under integrated pest management programs (IPMs). Bupirimate and cyromazine were the pesticides detected in soils after an initial pre-screening. The aim of this work was the identification of relevant TPs of these two pesticides. Soil samples were extracted by pressurized liquid extraction (PLE), using a mixture of ethyl acetate/methanol (3:1, v/v), and analyzed by ultra-high-pressure liquid chromatography coupled to hybrid quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS). For confirmation purposes, tandem mass spectrometry (MS(2) ) experiments were carried out using QTOF-MS, obtaining specific fragment structures of the pesticides and their degradates. Retention times and exact masses of the protonated molecules were used for the identification of the pesticides bupirimate (m/z 317.1642) and cyromazine (m/z 167.1040) and their respective TPs, namely ethirimol (m/z 210.1601) and melamine (m/z 127.0727). A novel strategy using pseudo-MS(3) experiments was developed to confirm the structure of bupirimate TP (ethirimol). This strategy consists of generating the particular TP in the ion source, via collision-induced fragmentation, and then performing MS/MS to the fragment ion formed in-source. Ethirimol and melamine were identified as degradation products of bupirimate and cyromazine, respectively. The study was applied to the analysis of 15 agricultural soil samples finding bupirimate and ethirimol in seven samples, cyromazine in one sample and melamine in four samples. Copyright © 2012 John Wiley & Sons, Ltd.
Li, Rui; Wu, Zhijun; Zhang, Fan; Ding, Lisheng
2006-01-01
Three pairs of isomers of aconite alkaloids from Aconitum nagarum var. lasiandrum have been investigated by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) employing ion-trap and quadrupole time-of-flight mass spectrometers in positive mode. Based on the differences of their fragmentation pathways and special fragment ions, three pairs of isomers of aconite alkaloids were differentiated. In addition, fragmentation laws of some veatchines and the discrepancy of fragmentation mechanisms between veatchine-type and aconitine-type alkaloid were also concluded. In the case of veatchines, a radical would be formed by homolysis of C18--C4 or C18--H bonds, followed by elimination of a series of C(2)H(2) and C(2)H(4). Moreover, the retro-Diels-Alder (RDA) reaction occurred in the E-ring and double-electron transfer triggered by the positive charge on C1 led to the formation of diagnostic ions at m/z 216. With regard to aconitine-type alkaloids, the N-substituent is not eliminated easily. Although there is no carbonyl group on some aconitine-type alkaloids, with hydroxyl and methoxyl on C15 and C16 respectively, CO was readily eliminated through tautomerization.
Travelling-wave ion mobility and negative ion fragmentation of high mannose N-glycans
Harvey, David J.; Scarff, Charlotte A.; Edgeworth, Matthew; Struwe, Weston B.; Pagel, Kevin; Thalassinos, Konstantinos; Crispin, Max; Scrivens, Jim
2016-01-01
The isomeric structure of high-mannose N-glycans can significantly impact biological recognition events. Here, the utility of travelling-wave ion mobility-mass spectrometry (TW IM-MS)for isomer separation of high-mannose N-glycans is investigated. Negative ion fragmentation using collision-induced dissociation (CID) gave more informative spectra than positive ion spectra with mass-different fragment ions characterizing many of the isomers. Isomer separation by ion mobility in both ionization modes was generally limited, with the arrival time distributions (ATD) often showing little sign of isomers. However, isomers could be partially resolved by plotting extracted fragment ATDs of the diagnostic fragment ions from the negative ion spectra and the fragmentation spectra of the isomers could be extracted by using ions from limited areas of the ATD peak. In some cases, asymmetric ATDs were observed but no isomers could be detected by fragmentation. In these cases, it was assumed that conformers were being separated. Collision cross sections (CCSs) of the isomers in positive and negative fragmentation mode were estimated from TW IM-MS data using dextran glycans as calibrant. More complete CCS data were achieved in negative ion mode by utilizing the diagnostic fragment ions. Examples of isomer separations are shown for N-glycans released from the well-characterized glycoproteins chicken ovalbumin, porcine thyroglobulin and gp120 from the human immunodeficiency virus. In addition to the cross sectional data, details of the negative ion collision-induced dissociation (CID) spectra of all resolved isomers are discussed. PMID:26956389
NASA Astrophysics Data System (ADS)
Auer, Gerald; Reuter, Markus; Hauzenberger, Christoph A.; Piller, Werner E.
2016-04-01
Rare earth elements (REE) are a commonly used proxy to reconstruct water chemistry and oxygen saturation during the formation history of authigenic and biogenic phosphates in marine environments. In the modern ocean REE exhibit a distinct pattern with enrichment of heavy REE and strong depletion in Cerium. Studies of ancient phosphates and carbonates, however, showed that this 'modern' pattern is only rarely present in the geological past. Consequently, the wide range of REE enrichment patterns found in ancient marine phosphates lead to the proposition that water chemistry had to have been radically different in the earth's past. A wealth of studies has already shown that both early and late diagenesis can strongly affect REE signatures in phosphates and severely alter primary marine signals. However, no previous research was conducted on how alteration processes occurring prior to final deposition affect marine phosphates. Herein we present a dataset of multiple LA-ICP-MS measurements of REE signatures in isolated phosphate and carbonate grains deposited in a carbonate ramp setting in the central Mediterranean Sea during the middle Miocene "Monterey event". The phosphates are represented by authigenic, biogenic and detrital grains emplaced in bioclastic grain- to packstones dominated by bryozoan and echinoderm fragments, as well as abundant benthic and planktic foraminifers. The results of 39 grain specific LA-ICP-MS measurements in three discrete rock samples reveals four markedly different REE patterns (normalized to the Post Archean Australian Shale standard) in terms of total enrichment and pattern shape. Analyses of REE diagenesis proxies show that diagenetic alteration affected the samples only to a minor degree. Considering grain shape and REE patterns together indicate that authigenic, detrital and biogenic phosphates have distinct REE patterns irrespective of the sample. Our results show that the observed REE patterns in phosphates only broadly reflect water chemistry under certain well constrained circumstances of primary authigenesis. Are these conditions not met, REE patterns are more likely to reflect complex enrichment processes that likely already started to occur during reworking over geologically relatively short time frames. Similarities in the REE patterns of clearly detrital and biogenic phosphate further suggest that the often observed 'hat-shaped' pattern in biogenic phosphates can easily result from increased middle REE (Neodymium to Holmium) scavenging during taphonomic processes prior to final deposition. Finally, cluster analysis coupled with sedimentological considerations proved a valuable tool for the characterization of REE patterns of phosphates in terms of their formation conditions and depositional history, such as the distinction of phosphates formed in situ from reworked and transported phosphate grains.
Quirantes-Piné, R; Funes, L; Micol, V; Segura-Carretero, A; Fernández-Gutiérrez, A
2009-07-10
High-performance liquid chromatography with diode array and electrospray ionization mass spectrometric detection was used to carry out the comprehensive characterization of a lemon verbena extract with demonstrated antioxidant and antiinflammatory activity. Two different MS techniques have been coupled to HPLC: on one hand, time-of-flight mass spectrometry, and on the other hand, tandem mass spectrometry on an ion-trap. The use of a small particle size C18 column (1.8 microm) provided a great resolution and made possible the separation of several isomers. The UV-visible spectrophotometry was used to delimit the class of phenolic compound and the accurate mass measurements on time-of-flight spectrometer enabled to identify the compounds present in the extract. Finally, the fragmentation pattern obtained in MS-MS experiments confirmed the proposed structures. This procedure was able to determine many well-known phenolic compounds present in lemon verbena such as verbascoside and its derivatives, diglucuronide derivatives of apigenin and luteolin, and eukovoside. Also gardoside, verbasoside, cistanoside F, theveside, campneoside I, chrysoeriol-7-diglucuronide, forsythoside A and acacetin-7-diglucuronide were found for the first time in lemon verbena.
Wasfi, I A; Boni, N S; Abdel Hadi, A; Elghazali, M; Zorob, O; Alkatheeri, N A; Barezaiq, I M
1998-06-01
The pharmacokinetics of flunixin were determined after an intravenous dose of 1.1 mg/kg body weight in six camels and 2.2 mg/kg body weight in four camels. The data obtained (mean +/- SEM) for the low and high dose, respectively, were as follows: The elimination half-lives (t1/2 beta) were 3.76 +/- 0.24 and 4.08 +/- 0.49 h, the steady state volumes of distribution (Vdss) were 320.61 +/- 38.53 and 348.84 +/- 35.36 mL/kg body weight, total body clearances (ClT) were 88.96 +/- 6.63 and 84.86 +/- 4.95 mL/h/kg body weight and renal clearances (Clr) were 0.52 +/- 0.09 and 0.62 +/- 0.18 mL/h/kg body weight. A hydroxylated metabolite of flunixin was identified by gas chromatography/mass spectrometry (GC/MS) under electron and chemical ionization and its major fragmentation pattern was verified by tandem mass spectrometry (GC/MS/MS) using neutral loss, daughter and parent scan modes. The detection times for flunixin and its hydroxylated metabolite in urine after an intravenous (i.v.) dose of 2.2 mg/kg body weight were 96 and 48 h, respectively.
Cho, Chul-Woong; Pham, Thi Phuong Thuy; Kim, Sok; Song, Myung-Hee; Chung, Yun-Jo; Yun, Yeoung-Sang
2016-03-01
The biodegradability and degradation pathways of 1-octyl-3-methylimidazolium cation [OMIM](+) by microbial community of wastewater treatment plant in Jeonju city, Korea were investigated. It was found that [OMIM](+) could be easily degraded by the microbial community. New degradation products and pathways of [OMIM](+) were identified, which are partially different from previous results (Green Chem. 2008, 10, 214-224). For the analysis of the degradation pathways and intermediates, the mass peaks observed in the range m/z of 50-300 were screened by using a tandem mass spectrometer (MS), and their fragmentation patterns were investigated by MS/MS. Surprisingly, we found three different degradation pathways of [OMIM](+), which were separated according to the initially oxidized position i.e. middle of the long alkyl chain, end of the long alkyl chain, and end of the short alkyl chain. The degradation pathways showed that the long and short alkyl chains of [OMIM](+) gradually degraded by repeating oxidation and carbon release. The results presented here shows that [OMIM](+) can be easily biodegraded through three different degradation pathways in wastewater treatment plants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xu, Xiaohui; Li, Daoyuan; Chi, Lequan; Du, Xuzhao; Bai, Xue; Chi, Lianli
2015-04-30
Low molecular weight heparins (LMWHs) are linear and highly charged carbohydrate polymers prepared by chemical or enzymatic depolymerization of heparin. Compared to unfractionated heparin (UFH), LMWHs are prevalently used as clinical anticoagulant drugs due to their lower side effects and better bioavailability. The work presented herein provides a rapid and powerful fragment mapping method for structural characterization of LMWHs. The chain fragments of two types of LMWHs, enoxaparin and nadroparin, were generated by controlled enzymatic digestion with each of heparinase I (Hep I, Enzyme Commission (EC) # 4.2.2.7), heparinase II (Hep II, no EC # assigned) and heparinase III (Hep III, EC # 4.2.2.8). Reversed phase ion pair high performance liquid chromatography (RPIP-HPLC) coupled with electrospray ion trap time-of-flight mass spectrometry (ESI-IT-TOF-MS) was used to profile the oligosaccharide chains ranging from disaccharides to decasaccharides. A database containing all theoretical structural compositions was established to assist the mass spectra interpretation. The six digests derived by three enzymes from two types of LMWHs exhibited distinguishable fingerprinting patterns. And a total of 94 enoxaparin fragments and 109 nadroparin fragments were detected and identified. Besides the common LMWH oligosaccharides, many components containing characteristic LMWH structures such as saturated L-idopyranosuronic acid, 2,5-anhydro-D-mannitol, 1,6-anhydro-D-aminopyranose, as well as odd number oligosaccharides were also revealed. Quantitative comparison of major components derived from innovator and generic nadroparin products was presented. This approach to profile LMWHs' fragments offers a highly reproducible, high resolution and information-rich tool for evaluating the quality of this category of anticoagulant drugs or comparing structural similarities among samples from various sources. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Cheng; He, Lidong; Li, Da-Wei; Bruschweiler-Li, Lei; Marshall, Alan G; Brüschweiler, Rafael
2017-10-06
Metabolite identification in metabolomics samples is a key step that critically impacts downstream analysis. We recently introduced the SUMMIT NMR/mass spectrometry (MS) hybrid approach for the identification of the molecular structure of unknown metabolites based on the combination of NMR, MS, and combinatorial cheminformatics. Here, we demonstrate the feasibility of the approach for an untargeted analysis of both a model mixture and E. coli cell lysate based on 2D/3D NMR experiments in combination with Fourier transform ion cyclotron resonance MS and MS/MS data. For 19 of the 25 model metabolites, SUMMIT yielded complete structures that matched those in the mixture independent of database information. Of those, seven top-ranked structures matched those in the mixture, and four of those were further validated by positive ion MS/MS. For five metabolites, not part of the 19 metabolites, correct molecular structural motifs could be identified. For E. coli, SUMMIT MS/NMR identified 20 previously known metabolites with three or more 1 H spins independent of database information. Moreover, for 15 unknown metabolites, molecular structural fragments were determined consistent with their spin systems and chemical shifts. By providing structural information for entire metabolites or molecular fragments, SUMMIT MS/NMR greatly assists the targeted or untargeted analysis of complex mixtures of unknown compounds.
Meng, Xiang-Qian; Zheng, Gui-Ling; Zhao, Chuan-De; Wan, Fang-Hao; Li, Chang-You
2017-08-01
In this study, we describe a cell line, Ms-10C, cloned from the line QAU-Ms-E-10 (simplified Ms-10), an embryonic line from Mythimna separata. The cloned cell line was significantly more sensitive to nucleopolyhedrovirus (NPV). Ms-10C cells were mainly spherical with a diameter of 14.42 ± 2.23 μm. DNA amplification fingerprinting (DAF) confirmed the profile of PCR-amplified bands of the cloned cell line was consistent with those of the parental cell line, Ms-10. The sequencing result of the mitochondrial cytochrome c oxidase I (mtCO I) fragment confirmed that the amplified 636-bps mtCOI fragment was 100% identical to that of M. separata. Its chromosomes exhibited the typical characters of lepidopteran cell lines. Its population doubling time was 42.2 h at 27°C. Ms-10C was more sensitive than Ms-10 to both Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and M. separata nucleopolyhedrovirus (MsNPV). At 4 d post infection, the infection rates of two viruses reached 94.2 and 92.3%, respectively. The availability of this cell clone strain will provide a useful tool for the basic research on nucleopolyhedrovirus and for potential application in expression of recombinant proteins with baculovirus expression vector system.
MALDI-MS/MS with Traveling Wave Ion Mobility for the Structural Analysis of N-Linked Glycans
NASA Astrophysics Data System (ADS)
Harvey, David J.; Scarff, Charlotte A.; Crispin, Max; Scanlan, Christopher N.; Bonomelli, Camille; Scrivens, James H.
2012-11-01
The preference for singly charged ion formation by MALDI makes it a better choice than electrospray ionization for profiling mixtures of N-glycans. For structural analysis, fragmentation of negative ions often yields more informative spectra than fragmentation of positive ones but such ions are more difficult to produce from neutral glycans under MALDI conditions. This work investigates conditions for the formation of both positive and negative ions by MALDI from N-linked glycans released from glycoproteins and their subsequent MS/MS and ion mobility behaviour. 2,4,6-Trihydroxyacetophenone (THAP) doped with ammonium nitrate was found to give optimal ion yields in negative ion mode. Ammonium chloride or phosphate also yielded prominent adducts but anionic carbohydrates such as sulfated N-glycans tended to ionize preferentially. Carbohydrates adducted with all three adducts (phosphate, chloride, and nitrate) produced good negative ion CID spectra but those adducted with iodide and sulfate did not yield fragment ions although they gave stronger signals. Fragmentation paralleled that seen following electrospray ionization providing superior spectra than could be obtained by PSD on MALDI-TOF instruments or with ion traps. In addition, ion mobility drift times of the adducted glycans and the ability of this technique to separate isomers also mirrored those obtained following ESI sample introduction. Ion mobility also allowed profiles to be obtained from samples whose MALDI spectra showed no evidence of such ions allowing the technique to be used in conditions where sample amounts were limiting. The method was applied to N-glycans released from the recombinant human immunodeficiency virus glycoprotein, gp120.
NASA Astrophysics Data System (ADS)
Mazzoleni, L. R.; Habib, D.; Zhao, Y.; Dalbec, M.; Samburova, V.; Hallar, G.; Zielinska, B.; Lowenthal, D.
2013-12-01
Water-soluble organic carbon (WSOC) is a complex mixture of thousands of organic compounds which may have significant influence on the climate-relevant properties of atmospheric aerosols. An improved understanding of the molecular composition of WSOC is needed to evaluate the effect of aerosol composition upon aerosol physical properties. Products of gas phase, aqueous phase and particle phase reactions contribute to pre-existing aerosol organic mass or nucleate new aerosol particles. Thus, ambient aerosols carry a complex array of WSOC components with variable chemical signatures depending upon its origin and aerosol life-cycle processes. In this work, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterize aerosol WSOC collected during the summer of 2010 at the Storm Peak Laboratory (3210 m a.s.l.) near Steamboat Springs, CO. Approximately 4000 molecular formulas were assigned in the mass range of m/z 100-800 after negative-ion electrospray ionization. The observed trends indicate significant non-oxidative accretion reaction pathways for the formation of high molecular weight WSOC components closely associated with terpene ozonolysis secondary organic aerosol (SOA). The aerosol WSOC was further characterized using ultrahigh resolution tandem MS analysis with infrared multiphoton dissociation to determine the functional groups and structural properties of 1700 WSOC species up to m/z 600. Due to the complex nature of the WSOC, multiple precursor ions were simultaneously fragmented. The exact mass measurements of the precursor and product ions facilitated molecular formula assignments and matching of neutral losses. The most important neutral losses are CO2, H2O, CH3OH, HNO3, CH3NO3, SO3 and SO4. The presence and frequency of these losses indicate the type of functional groups contained in the precursor structures. Consistent with the acidic nature of WSOC compounds, the most frequently observed losses were CO2 (~65%), H2O (~60%) and CH3OH (~40%). Several of the studied precursors had two or more losses associated with them and combinations of neutral losses such as, H4O2, CH2O3, C2H4O3 and C2O4. These neutral losses clearly indicate a multifunctional nature of the studied aerosol WSOC. Analysis of the fragment ions which were not associated with typical neutral losses indicates an overall aliphatic SOA-like structure with regular differences of 14 Da and 18 Da between low molecular weight fragment ions. Many of the fragment ions were observed in 85% or more of the MS2 spectra. The patterns observed in the low molecular weight fragment ions were very consistent over all of the mass spectra providing evidence for the significance of the non-oxidative accretion formation pathways.
Jjunju, Fred P M; Li, Anyin; Badu-Tawiah, Abraham; Wei, Pu; Li, Linfan; Ouyang, Zheng; Roqan, Iman S; Cooks, R Graham
2013-07-07
Paper spray (PS) ambient ionization is implemented using a portable mass spectrometer and applied to the detection of alkyl quaternary ammonium salts in a complex oil matrix. These salts are commonly used as active components in the formulation of corrosion inhibitors. They were identified in oil and confirmed by their fragmentation patterns recorded using tandem mass spectrometry (MS/MS). The cations of alkyl and benzyl-substituted quaternary ammonium salts showed characteristic neutral losses of CnH2n (n carbon number of the longest chain) and C7H8, respectively. Individual quaternary ammonium compounds were detected at low concentrations (<1 ng μL(-1)) and over a dynamic range of ∼5 pg μL(-1) to 500 pg μL(-1) (ppb). Direct detection of these compounds in complex oil samples without prior sample preparation or pre-concentration was also demonstrated using a home-built miniature mass spectrometer at levels below 1 ng μL(-1).
A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides*
Giese, Sven H.; Fischer, Lutz; Rappsilber, Juri
2016-01-01
Cross-linking/mass spectrometry resolves protein–protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)-cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique cross-linked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotope-labeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary cross-linked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers. PMID:26719564
NASA Astrophysics Data System (ADS)
Ma, Xin; Zhou, Mowei; Wysocki, Vicki H.
2014-03-01
Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at the maximum collision energy available in the instrument. Surface induced dissociation (SID) was applied to dissociate the two refractory protein complexes. Different charge state precursor ions of the two complexes were examined by CID and SID. The PHB dimer was successfully dissociated to monomers and the GDH hexamer formed trimeric subcomplexes that are informative of its quaternary structure. The unfolding of the precursor and the percentages of the distinct products suggest that the dissociation pathways vary for different charge states. The precursors at lower charge states (+21 for PHB dimer and +27 for GDH hexamer) produce a higher percentage of folded fragments and dissociate more symmetrically than the precusors at higher charge states (+29 for PHB dimer and +39 for GDH hexamer). The precursors at lower charge state may be more native-like than the higher charge state because a higher percentage of folded fragments and a lower percentage of highly charged unfolded fragments are detected. The combination of SID and charge reduction is shown to be a powerful tool for quaternary structure analysis of refractory noncovalent protein complexes, as illustrated by the data for PHB dimer and GDH hexamer.
Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments.
Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V; Rodriguez-Zas, Sandra L
2013-01-29
In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments.
Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments
Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V.; Rodriguez-Zas, Sandra L.
2013-01-01
In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments. PMID:24031159
Kato, Azusa; Hirata, Haruhisa; Ohashi, Yoshitami; Fujii, Kiyonaga; Mori, Kenji; Harada, Ken-ichi
2011-05-01
The anti-MRSA antibiotic, WAP-8294A, was isolated from the fermentation broth of Lysobacter sp. The major component, WAP-8294A2, is composed of 1 mol of Gly, L-Leu, L-Glu, D-Asn, D-Trp, D-threo-β-hydroxyasparagine, N-Me-D-Phe and N-Me-L-Val, and 2 mol of L-Ser, D-Orn and D-3-hydroxy-7-Me-octanoic acid. The structure of the WAP-8294A2 was mainly determined as a cyclic depsipeptide by 2D NMR experiments. However, it was difficult to use the NMR experiment to determine the minor components, A1, A4 and Ax13, isolated in small amounts. In the present study, ESI MS/MS was applied to the structure elucidation of these minor components. The structures of these minor components were determined on the basis of the fragmentation pattern of the product ions of WAP-8294A2 in the ESI MS/MS. As a result, it was confirmed that A1 and A4 had the same amino acid sequence as A2, while A1 and A4 had the 3-OH-octanoic acid and 3-OH-8-Me-nonanoic acid, respectively, in the place of the 3-OH-7-Me-octanoic acid in A2. In the structure of Ax13, it was found that Gly of A2 was changed to β-Ala of Ax13. © 2011 Japan Antibiotics Research Association All rights reserved
Zhang, Yi-Xuan; Li, Qiu-Yue; Yan, Li-Li; Shi, Yue
2011-08-15
Biflavonoids, a special class of flavonoids, are widely distributed in gymnosperm plants and have various biological activities. They are also major bioactive ingredients in Selaginella tamariscina. In this work, we report the use of high-performance liquid chromatography with a diode-array detector (HPLC-DAD) and electrospray ionization multi-stage tandem mass spectrometry (ESI-MS(n)) to study the fragmentation behavior of three main types of biflavonoids using seven biflavonoid reference compounds and analyze the biflavonoids in Selaginella tamariscina. The most useful fragmentations in terms of structural identification are those involving the C-ring cleavage of biflavonoids. For amentoflavone-type biflavonoids (containing flavonoid parts I and II), fragmentation on the flavonoid part II at positions 1/3 and 0/4 are the primary pathways, whereas the chances are greater for C-ring cleavage fragmentation occurring on flavonoid part I at positions 1/3 and 1/4 for robustaflavone-type biflavonoids. However, the predominant diagnostic ions of the specific C-O-C-connected hinokiflavone-type biflavonoids are a series of ions resulting from the rupture of the connective C-O bond. Based on the fragmentation patterns of these reference compounds, 17 biflavonoids were identified in an extract of Selaginella tamariscina, three of which have not been previously reported as constituents of this plant. This study provides a powerful approach for the online structural elucidation and identification of different types of biflavonoids and positional isomers from Selaginella tamariscina and other biflavonoids distributed in related plants and prescriptions. Copyright © 2011 John Wiley & Sons, Ltd.
Qin, Zhen-Xian; Zhang, Yu; Qi, Meng-Die; Zhang, Quan; Liu, Shuang; Li, Ming-Hui; Liu, Yong-Gang; Liu, Yong
2016-04-01
The study is aimed to analyze the chemical components in leaves of Chinese seabuckthorn and Tibetan seabuckthorn qualitatively and compare the differences between them by using ultra performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS).The chromatographic separation of the components was achieved ona Waters ACQUITY UPLC-T3 column (2.1 mm×100 mm, 1.7 μm)using gradient mobile phase consisting of acetonitrile (A) and aqueous solution (B). The identification of the separated compounds was performed on atandem mass spectrometry (MS/MS)by fragmentation patterns under the negative electrospray ionization. The parameters of ion source were as follows:capillary voltage, 2 000 V; Cone voltage, 40 V. The ion source temperature, 100 ℃; collision gas argon; sheath gas flow rate, 900 L•h⁻¹; sheath gas temperature, 450 ℃. Through the analysis of mass spectrometry data and with the help of literature data, a total of 35 compounds were detected and most of them were flavonoids. Among these compounds, 29 were common components for the two species, two components were unique to Chinese seabuckthorn and 4 were characteristic components of Tibetan seabuckthorn. The results indicated that the compositions of the two kinds of seabuckthorn leaves were quite similar. It is also demonstrated that UPLC/Q-TOF-MS method could be applied to rapidly and effectively analyze and speculate the compounds in leaves of Chinese seabuckthorn and Tibetan seabuckthorn. Copyright© by the Chinese Pharmaceutical Association.
Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H.
2015-01-01
Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with ‘Near’ distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal regimens will be a likely outcome of fragmentation. Conservation implications include possible manual interventions (manual manipulations of offspring dispersers and/or pollinators) in forest fragments to increase population recovery and genetic diversity retention. PMID:26000951
Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H
2015-01-01
Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with 'Near' distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal regimens will be a likely outcome of fragmentation. Conservation implications include possible manual interventions (manual manipulations of offspring dispersers and/or pollinators) in forest fragments to increase population recovery and genetic diversity retention.
Structure Annotation and Quantification of Wheat Seed Oxidized Lipids by High-Resolution LC-MS/MS.
Riewe, David; Wiebach, Janine; Altmann, Thomas
2017-10-01
Lipid oxidation is a process ubiquitous in life, but the direct and comprehensive analysis of oxidized lipids has been limited by available analytical methods. We applied high-resolution liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MS/MS) to quantify oxidized lipids (glycerides, fatty acids, phospholipids, lysophospholipids, and galactolipids) and implemented a platform-independent high-throughput-amenable analysis pipeline for the high-confidence annotation and acyl composition analysis of oxidized lipids. Lipid contents of 90 different naturally aged wheat ( Triticum aestivum ) seed stocks were quantified in an untargeted high-resolution LC-MS experiment, resulting in 18,556 quantitative mass-to-charge ratio features. In a posthoc liquid chromatography-tandem mass spectrometry experiment, high-resolution MS/MS spectra (5 mD accuracy) were recorded for 8,957 out of 12,080 putatively monoisotopic features of the LC-MS data set. A total of 353 nonoxidized and 559 oxidized lipids with up to four additional oxygen atoms were annotated based on the accurate mass recordings (1.5 ppm tolerance) of the LC-MS data set and filtering procedures. MS/MS spectra available for 828 of these annotations were analyzed by translating experimentally known fragmentation rules of lipids into the fragmentation of oxidized lipids. This led to the identification of 259 nonoxidized and 365 oxidized lipids by both accurate mass and MS/MS spectra and to the determination of acyl compositions for 221 nonoxidized and 295 oxidized lipids. Analysis of 15-year aged wheat seeds revealed increased lipid oxidation and hydrolysis in seeds stored in ambient versus cold conditions. © 2017 The author(s). All Rights Reserved.
Hagemeister, Timo; Linscheid, Michael
2002-07-01
The detection and fragmentation behaviour of adducts of the chemotherapeutic cis-diamminedichloroplatinum(II) (cisplatin) with the dinucleosidemonophosphates d(ApG), d(GpG) and d(TpC) as model compounds for DNA adducts in an ion trap with electrospray ionization were studied. Mainly the monofunctional adduct, the bifunctional adduct and the bifunctional adduct with platinum bridging two dinucleosidemonophosphates were detected. In addition, several more complex adducts were seen resulting from reactions among these species. Adduct formation was low in the case of d(TpC). Fragmentation could be controlled strongly by varying the temperature of the transfer capillary; furthermore, tandem mass spectrometric (MS/MS) experiments on both the monofunctional and the bifunctional adducts were performed. For the adducts of d(ApG) and d(GpG) losses of NH(3) and HCl were the most dominant reactions, followed by the losses of one, then another two units of 98 amu from the sugar-phosphate backbone, whereas d(TpC)-Pt predominantly forms the dinucleosidemonophosphate. In the gas phase, the conversion of the monofunctional into the bifunctional adducts through binding to another site in the dinucleotide accompanied by loss of NH(3) or HCl could also be observed. The removal of a ligand from the coordination sphere of the square-planar platinum complexes appeared to be the crucial step for the induction of further fragmentation of the dinucleotide ligand. MS(n) experiments of the bifunctional adducts of d(ApG) and d(GpG) revealed different fragmentation pathways involving the loss of phosphoric acid, metaphosphoric acid, deoxyribose units (intact or dehydrated) and the nucleobases in different orders, leaving characteristic binding site-determining fragments. Fragmentation of these ions was also performed, mainly resulting in fragmentation of the bases. The study confirmed the remarkable stability of the platinum-guanine bond compared with other nucleobases. Copyright 2002 John Wiley & Sons, Ltd.
Weak affinity chromatography for evaluation of stereoisomers in early drug discovery.
Duong-Thi, Minh-Dao; Bergström, Maria; Fex, Tomas; Svensson, Susanne; Ohlson, Sten; Isaksson, Roland
2013-07-01
In early drug discovery (e.g., in fragment screening), recognition of stereoisomeric structures is valuable and guides medicinal chemists to focus only on useful configurations. In this work, we concurrently screened mixtures of stereoisomers and estimated their affinities to a protein target (thrombin) using weak affinity chromatography-mass spectrometry (WAC-MS). Affinity determinations by WAC showed that minor changes in stereoisomeric configuration could have a major impact on affinity. The ability of WAC-MS to provide instant information about stereoselectivity and binding affinities directly from analyte mixtures is a great advantage in fragment library screening and drug lead development.
Fragmentation characteristics of hydroxycinnamic acids in ESI-MSn by density functional theory.
Yin, Zhi-Hui; Sun, Chang-Hai; Fang, Hong-Zhuang
2017-07-01
This work aims to analyze the electrospray ionization multistage mass spectrometry (ESI-MS n ) fragmentation characteristics of hydroxycinnamic acids (HCAs) in negative ion mode. The geometric parameters, energies, natural bond orbitals and frontier orbitals of fragments were calculated by density functional theory (DFT) to investigate mass spectral fragmentation mechanisms. The results showed that proton transfer always occurred during fragmentation of HCAs; their quasi-molecular ions ([M - H] - ) existed in more than one form and were mainly with the lowest energy. The fragmentation characteristics included the followings: (1) according to the different substitution position of phenolic hydroxyl group, the ring contraction reaction by CO elimination from benzene was in an increasingly difficult order: m-phenolic hydroxyl > p-phenolic hydroxyl > o-phenolic hydroxyl; and (2) ortho effect always occurred in o-dihydroxycinnamic acids (o-diHCAs), i.e. one phenolic hydroxyl group offered H + , which combined with the other one to lose H 2 O. In addition, there was a nucleophilic reaction during ring contraction in diHCAs that oxygen atom attacked the carbon atom binding with the other phenolic hydroxyl to lose CO 2 . The fragmentation characteristics and mechanism of HCAs could be used for analysis and identification of such compounds quickly and effectively, and as reference for structural analogues by ESI-MS. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
J. Rogan; T.M. Wright; J. Cardille; H. Pearsall; Y. Ogneva-Himmelberger; Rachel Riemann; Kurt Riitters; K. Partington
2016-01-01
Forest fragmentation has been studied extensively with respect to biodiversity loss, disruption of ecosystem services, and edge effects although the relationship between forest fragmentation and human activities is still not well understood. We classified the pattern of forests in Massachusetts using fragmentation indicators to address...
Nakayama, Hiroshi; Akiyama, Misaki; Taoka, Masato; Yamauchi, Yoshio; Nobe, Yuko; Ishikawa, Hideaki; Takahashi, Nobuhiro; Isobe, Toshiaki
2009-04-01
We present here a method to correlate tandem mass spectra of sample RNA nucleolytic fragments with an RNA nucleotide sequence in a DNA/RNA sequence database, thereby allowing tandem mass spectrometry (MS/MS)-based identification of RNA in biological samples. Ariadne, a unique web-based database search engine, identifies RNA by two probability-based evaluation steps of MS/MS data. In the first step, the software evaluates the matches between the masses of product ions generated by MS/MS of an RNase digest of sample RNA and those calculated from a candidate nucleotide sequence in a DNA/RNA sequence database, which then predicts the nucleotide sequences of these RNase fragments. In the second step, the candidate sequences are mapped for all RNA entries in the database, and each entry is scored for a function of occurrences of the candidate sequences to identify a particular RNA. Ariadne can also predict post-transcriptional modifications of RNA, such as methylation of nucleotide bases and/or ribose, by estimating mass shifts from the theoretical mass values. The method was validated with MS/MS data of RNase T1 digests of in vitro transcripts. It was applied successfully to identify an unknown RNA component in a tRNA mixture and to analyze post-transcriptional modification in yeast tRNA(Phe-1).
IMAGING MASS SPECTROMETRY OF A CORAL MICROBE INTERACTION WITH FUNGI
ZHAO, XILING; LIU, WEI-TING; APARICIO, MARYSTELLA; ATENCIO, LIBRADA; BALLESTEROS, JAVIER; SÁNCHEZ, JOEL; GAVILÁN, RONNIE G.; GUTIÉRREZ, MARCELINO; DORRESTEIN, PIETER C.
2013-01-01
Fungal infections are increasing worldwide, including in the aquatic environment. Microbiota that coexist with marine life can provide protection against fungal infections by secretion of metabolites with antifungal properties. Our laboratory has developed mass spectrometric methodologies with the goal of improving our functional understanding of microbial metabolites and guiding the discovery process of anti-infective agents from natural sources. GA40, a Bacillus amyloliquefaciens strain isolated from an octocoral in Panama, displayed antifungal activity against various terrestrial and marine fungal strains. Using matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS), the molecular species produced by this microbe were visualized in a side-by-side interaction with two representative fungal strains, Aspergillus fumigatus and Aspergillus niger. The visualization was performed directly on the agar without the need for extraction. By comparison of spatial distributions, relative intensities and m/z values of GA40 secreted metabolites in the fungal interactions versus singly grown control colonies, we obtained insight into the antifungal activity of secreted metabolites. Annotation of GA40 metabolites observed in MALDI-IMS was facilitated by MS/MS networking analysis, a mass spectrometric technique that clusters metabolites with similar MS/MS fragmentation patterns. This analysis established that the predominant GA40 metabolites belong to the iturin family. In a fungal inhibition assay of A. fumigatus, the GA40 iturin metabolites were found to be responsible for the antifungal properties of this Bacillus strain. PMID:23881443
NASA Astrophysics Data System (ADS)
Zhao, Tao; Crosta, Giovanni Battista; Dattola, Giuseppe; Utili, Stefano
2018-04-01
The dynamic fragmentation of jointed rock blocks during rockslide avalanches has been investigated by discrete element method simulations for a multiple arrangement of a rock block sliding over a simple slope geometry. The rock blocks are released along an inclined sliding plane and subsequently collide onto a flat horizontal plane at a sharp kink point. The contact force chains generated by the impact appear initially at the bottom frontal corner of the rock block and then propagate radially upward to the top rear part of the block. The jointed rock blocks exhibit evident contact force concentration and discontinuity of force wave propagation near the joint, associating with high energy dissipation of granular dynamics. The corresponding force wave propagation velocity can be less than 200 m/s, which is much smaller than that of an intact rock (1,316 m/s). The concentration of contact forces at the bottom leads to high rock fragmentation intensity and momentum boosts, facilitating the spreading of many fine fragments to the distal ends. However, the upper rock block exhibits very low rock fragmentation intensity but high energy dissipation due to intensive friction and damping, resulting in the deposition of large fragments near the slope toe. The size and shape of large fragments are closely related to the orientation and distribution of the block joints. The cumulative fragment size distribution can be well fitted by the Weibull's distribution function, with very gentle and steep curvatures at the fine and coarse size ranges, respectively. The numerical results of fragment size distribution can match well some experimental and field observations.
NASA Astrophysics Data System (ADS)
Zampolli, M.; Sternberg, R.; Szopa, C.; Pietrogrande, M. C.; Buch, A.; Dondi, F.; Raulin, F.
The search for optical activity in extraterrestrial sample is an important key for the study of the origin of life With this aim detection of chemical biomarkers i e of organic molecules which play an important role in biochemistry will be one of the main goals of future space missions To reach this goal an investigation of a GC-MS method based on the derivatization of amino acids by using a mixture of perfluorinated alcohols and perfluorinated anhydrides has been performed Amino acids are converted in their N O S -perfluoroacyl perfluoroalkyl esters in a single step procedure using different combinations of the derivatization reagents trifluoroacetic anhydride TFAA - 2 2 2-trifluoro-1-ethanol TFE TFAA-2 2 3 3 4 4 4-heptafluoro-1-butanol HFB heptafluorobutyric anhydride HFBA -HFB The obtained derivatives are analyzed using two different chiral columns a Chirasil-L-Val and a gammat cyclodextrin Rt- gamma -DEXsa stationary phases which show different and complementary enantiomeric selectivity The mass spectra of the derivatized compounds are studied and mass fragmentation patterns are proposed significant fragment ions can be identified to detect amino acid derivatives The obtained results are compared in terms of the enantiomeric separation achieved and mass spectrometric response Linearity studies and the measurement of the limit of detection LOD prove that the proposed method is suitable for a quantitative determination of several amino acids enantiomers 1 The use of a PTV Programmed Temperature Vaporiser
Al-Dulaymi, M; El-Aneed, A
2017-06-01
Diquaternary ammonium gemini surfactants have emerged as effective gene delivery vectors. A novel series of 11 peptide-modified compounds was synthesized, showing promising results in delivering genetic materials. The purpose of this work is to elucidate the tandem mass spectrometric (MS/MS) dissociation behavior of these novel molecules establishing a generalized MS/MS fingerprint. Exact mass measurements were achieved using a hybrid quadrupole orthogonal time-of-flight mass spectrometer, and a multi-stage MS/MS analysis was conducted using a triple quadrupole-linear ion trap mass spectrometer. Both instruments were operated in the positive ionization mode and are equipped with electrospray ionization. Abundant triply charged [M+H] 3+ species were observed in the single-stage analysis of all the evaluated compounds with mass accuracies of less than 8 ppm in mass error. MS/MS analysis showed that the evaluated gemini surfactants exhibited peptide-related dissociation characteristics because of the presence of amino acids within the compounds' spacer region. In particular, diagnostic product ions were originated from the neutral loss of ammonia from the amino acids' side chain resulting in the formation of pipecolic acid at the N-terminus part of the gemini surfactants. In addition, a charge-directed amide bond cleavage was initiated by the amino acids' side chain producing a protonated α-amino-ε-caprolactam ion and its complimentary C-terminus ion that contains quaternary amines. MS/MS and MS 3 analysis revealed common fragmentation behavior among all tested compounds, resulting in the production of a universal MS/MS fragmentation pathway. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Automatic Compound Annotation from Mass Spectrometry Data Using MAGMa
Ridder, Lars; van der Hooft, Justin J. J.; Verhoeven, Stefan
2014-01-01
The MAGMa software for automatic annotation of mass spectrometry based fragmentation data was applied to 16 MS/MS datasets of the CASMI 2013 contest. Eight solutions were submitted in category 1 (molecular formula assignments) and twelve in category 2 (molecular structure assignment). The MS/MS peaks of each challenge were matched with in silico generated substructures of candidate molecules from PubChem, resulting in penalty scores that were used for candidate ranking. In 6 of the 12 submitted solutions in category 2, the correct chemical structure obtained the best score, whereas 3 molecules were ranked outside the top 5. All top ranked molecular formulas submitted in category 1 were correct. In addition, we present MAGMa results generated retrospectively for the remaining challenges. Successful application of the MAGMa algorithm required inclusion of the relevant candidate molecules, application of the appropriate mass tolerance and a sufficient degree of in silico fragmentation of the candidate molecules. Furthermore, the effect of the exhaustiveness of the candidate lists and limitations of substructure based scoring are discussed. PMID:26819876
Automatic Compound Annotation from Mass Spectrometry Data Using MAGMa.
Ridder, Lars; van der Hooft, Justin J J; Verhoeven, Stefan
2014-01-01
The MAGMa software for automatic annotation of mass spectrometry based fragmentation data was applied to 16 MS/MS datasets of the CASMI 2013 contest. Eight solutions were submitted in category 1 (molecular formula assignments) and twelve in category 2 (molecular structure assignment). The MS/MS peaks of each challenge were matched with in silico generated substructures of candidate molecules from PubChem, resulting in penalty scores that were used for candidate ranking. In 6 of the 12 submitted solutions in category 2, the correct chemical structure obtained the best score, whereas 3 molecules were ranked outside the top 5. All top ranked molecular formulas submitted in category 1 were correct. In addition, we present MAGMa results generated retrospectively for the remaining challenges. Successful application of the MAGMa algorithm required inclusion of the relevant candidate molecules, application of the appropriate mass tolerance and a sufficient degree of in silico fragmentation of the candidate molecules. Furthermore, the effect of the exhaustiveness of the candidate lists and limitations of substructure based scoring are discussed.
Analysis of hydraulic fracturing additives by LC/Q-TOF-MS.
Ferrer, Imma; Thurman, E Michael
2015-08-01
The chemical additives used in fracturing fluids can be used as tracers of water contamination caused by hydraulic fracturing operations. For this purpose, a complete chemical characterization is necessary using advanced analytical techniques. Liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC/Q-TOF-MS) was used to identify chemical additives present in flowback and produced waters. Accurate mass measurements of main ions and fragments were used to characterize the major components of fracking fluids. Sodium adducts turned out to be the main molecular adduct ions detected for some additives due to oxygen-rich structures. Among the classes of chemical components analyzed by mass spectrometry include gels (guar gum), biocides (glutaraldehyde and alkyl dimethyl benzyl ammonium chloride), and surfactants (cocamidopropyl dimethylamines, cocamidopropyl hydroxysultaines, and cocamidopropyl derivatives). The capabilities of accurate mass and MS-MS fragmentation are explored for the unequivocal identification of these compounds. A special emphasis is given to the mass spectrometry elucidation approaches used to identify a major class of hydraulic fracturing compounds, surfactants.
A multicenter study benchmarks software tools for label-free proteome quantification.
Navarro, Pedro; Kuharev, Jörg; Gillet, Ludovic C; Bernhardt, Oliver M; MacLean, Brendan; Röst, Hannes L; Tate, Stephen A; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I; Aebersold, Ruedi; Tenzer, Stefan
2016-11-01
Consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH 2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from sequential window acquisition of all theoretical fragment-ion spectra (SWATH)-MS, which uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test data sets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation-window setups. For consistent evaluation, we developed LFQbench, an R package, to calculate metrics of precision and accuracy in label-free quantitative MS and report the identification performance, robustness and specificity of each software tool. Our reference data sets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics.
Alexander, Ashlin J; Bartel, Lee; Friesen, Lendra; Shipp, David; Chen, Joseph
2011-02-01
Cochlear implants (CIs) allow many profoundly deaf individuals to regain speech understanding. However, the ability to understand speech does not necessarily guarantee music enjoyment. Enabling a CI user to recover the ability to perceive and enjoy the complexity of music remains a challenge determined by many factors. (1) To construct a novel, attention-based, diagnostic software tool (Music EAR) for the assessment of music enjoyment and perception and (2) to compare the results among three listener groups. Thirty-six subjects completed the Music EAR assessment tool: 12 normal-hearing musicians (NHMs), 12 normal-hearing nonmusicians (NHnMs), and 12 CI listeners. Subjects were required to (1) rate enjoyment of musical excerpts at three complexity levels; (2) differentiate five instrumental timbres; (3) recognize pitch pattern variation; and (4) identify target musical patterns embedded holistically in a melody. Enjoyment scores for CI users were comparable to those for NHMs and superior to those for NHnMs and revealed that implantees enjoyed classical music most. CI users performed significantly poorer in all categories of music perception compared to normal-hearing listeners. Overall CI user scores were lowest in those tasks requiring increased attention. Two high-performing subjects matched or outperformed NHnMs in pitch and timbre perception tasks. The Music EAR assessment tool provides a unique approach to the measurement of music perception and enjoyment in CI users. Together with auditory training evidence, the results provide considerable hope for further recovery of music appreciation through methodical rehabilitation.
Hydrogen Exchange Mass Spectrometry
Mayne, Leland
2018-01-01
Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data. PMID:26791986
Bianco, Giuliana; Battista, Fabio; Buchicchio, Alessandro; Amarena, Concetta G; Schmitt-Kopplin, Philippe; Guerrieri, Antonio
2015-01-01
Arginine-vasopressin (AVP) and lysine-vasopressin (LVP) were analyzed by reversed-phase liquid chromatography/mass spectrometry (LC-MS) using Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) electrospray ionization (ESI) in the positive ion mode. LVP and AVP exhibited the protonated adduct [M+H](+) as the predominant ion at m/z 1056.43965 and at m/z 1084.44561, respectively. Infrared multiphoton dissociation (IRMPD), using a CO(2) laser source at a wavelength of 10.6 μm, was applied to protonated vasopressin molecules. The IRMPD mass spectra presented abundant mass fragments essential for a complete structural information. Several fragment ions, shared between two target molecules, are discussed in detail. Some previously unpublished fragments were identified unambiguously utilizing the high resolution and accurate mass information provided by the FT-ICR mass spectrometer. The opening of the disulfide loop and the cleavage of the peptide bonds within the ring were observed even under low-energy fragmentation conditions. Coupling the high-performance FT-ICR mass spectrometer with IRMPD as a contemporary fragmentation technique proved to be very promising for the structural characterization of vasopressin.
Maziejuk, M; Puton, J; Szyposzyńska, M; Witkiewicz, Z
2015-11-01
The subject of the work is the use of differential mobility spectrometry (DMS) for the detection of chemical warfare agents (CWA). Studies were performed for mustard gas, i.e., bis(2-chloroethyl)sulfide (HD), sarin, i.e., O-isopropyl methylphosphonofluoridate (GB) and methyl salicylate (MS) used as test compounds. Measurements were conducted with two ceramic DMS analyzers of different constructions allowing the generation of an electric field with an intensity of more than 120 Td. Detector signals were measured for positive and negative modes of operation in a temperature range from 0 to 80 °C. Fragmentations of ions containing analyte molecules were observed for all tested compounds. The effective temperatures of fragmentation estimated on the basis of dispersion plots were equal from about 148 °C for GB to 178 °C for MS. It was found that values of separation voltage (SV) and compensation voltage (CV) at which the fragmentation of sample ions is observed may be the parameters improving the certainty of detection for different analytes. The DMS analyzers enabling the observation of ion fragmentation can be successfully used for effective CWA detection. Copyright © 2015. Published by Elsevier B.V.
Zhang, Xinxin; Liang, Jinru; Liu, Jianli; Zhao, Ye; Gao, Juan; Sun, Wenji; Ito, Yoichiro
2014-01-01
In this study, a fingerprint of steroid saponins, the major bioactive constituents in the crude extracts from Dioscorea zingiberensis C. H. Wright (DZW), has been established for the first time by high-performance liquid chromatography coupled with evaporative light scattering detector (HPLC-ELSD) and the simultaneous characterization of the steroid saponins by high-performance liquid chromatography coupled with electrospray ionization-mass spectrometry and quadrupole tandem time-of-fight mass analyzers detection (HPLC-ESI-Q/TOF). These HPLC analyses were both carried out on a Welchrom C18 column (250 mm × 4.6 mm I.D., 5 μm) with a mobile phase composed of water and acetonitrile under gradient elution. There were 68 common characteristic peaks in the fingerprints, in which 12 of them were confirmed by comparing their mass spectra and retention times with those of the reference compounds. In order to identify the other unknown peaks, their fragmentation behaviors characteristic for the major groups of steroid saponins from DZW with six types of aglycone skeletons were discussed in detail, and possible MS/MS fragmentation pathways were proposed for aiding the structural identification of these components. According to the summarized fragmentation patterns, these peaks were tentatively assigned by matching their empirical molecular formula with those of the published compounds, or by elucidating their quasi-molecular ions and fragment ions referring to available literature information when the reference standards were unavailable. As a result, 22 steroid saponins were found in DZW for the first time. In addition, the quantitative analysis of the 12 known peaks was accomplished at the same time which indicated that there was a great variability in the amount of these active compounds in different batches in the crude extracts. This approach could demonstrate that the fingerprint could be considered to be a suitable tool to comprehensively improve the quality control of DZW, and the identification and structural elucidation of the peaks in the fingerprint may provide important experimental data for further pharmacological and clinical researches. PMID:24418811
Zhao, Xiangsheng; Wei, Jianhe; Yang, Meihua
2018-05-03
Morinda officinalis is an important herbal medicine and functional food, and its main constituents include anthraquinone and iridoid glycosides. Quantification of the main compounds is a necessary step to understand the quality and therapeutic properties of M. officinalis , but this has not yet been performed based on liquid chromatography/tandem mass spectrometry (LC-MS/MS). Analytes were extracted from M. officinalis by reflux method. Ultrahigh-performance liquid chromatography coupled with a triple quadrupole mass spectrometry (UPLC-QqQ-MS) using multiple reaction monitoring (MRM) mode was applied for quantification. Fragmentation pathways of deacetyl asperulosidic acid and rubiadin were investigated based on UPLC with quadrupole time-of-flight tandem mass spectrometry (Q/TOF-MS) in the MS E centroid mode. The method showed a good linearity over a wide concentration range (R² ≥ 0.9930). The limits of quantification of six compounds ranged from 2.6 to 27.57 ng/mL. The intra- and inter-day precisions of the investigated components exhibited an RSD within 4.5% with mean recovery rates of 95.32⁻99.86%. Contents of selected compounds in M. officinalis varied significantly depending on region. The fragmentation pathway of deacetyl asperulosidic and rubiadin was proposed. A selective and sensitive method was developed for determining six target compounds in M. officinalis by UPLC-MS/MS. Furthermore, the proposed method will be helpful for quality control and identification main compounds of M. officinalis .
Liu, Zhao-Ying; Huang, Ling-Li; Chen, Dong-Mei; Dai, Meng-Hong; Tao, Yan-Fei; Wang, Yu-Lian; Yuan, Zong-Hui
2010-02-01
The application of electrospray ionization hybrid ion trap/time-of-flight mass spectrometry coupled with high-performance liquid chromatography (LC/MS-IT-TOF) in the rapid characterization of in vitro metabolites of quinocetone was developed. Metabolites formed in rat liver microsomes were separated using a VP-ODS column with gradient elution. Multiple scans of metabolites in MS and MS(2) modes and accurate mass measurements were automatically performed simultaneously through data-dependent acquisition in only a 30-min analysis. Most measured mass errors were less than 10 ppm for both protonated molecules and fragment ions using external mass calibration. The elemental compositions of all fragment ions of quinocetone and its metabolites could be rapidly assigned based upon the known compositional elements of protonated molecules. The structure of metabolites were elucidated based on the combination of three techniques: agreement between their proposed structure, the accurate masses, and the elemental composition of ions in their mass spectra; comparison of their changes in accurate molecular masses and fragment ions with those of parent drug or metabolite; and the elemental compositions of lost mass numbers in proposed fragmentation pathways. Twenty-seven phase I metabolites were identified as 11 reduction metabolites, three direct hydroxylation metabolites, and 13 metabolites with a combination of reduction and hydroxylation. All metabolites except the N-oxide reduction metabolite M6 are new metabolites of quinocetone, which were not previously reported. The ability to conduct expected biotransformation profiling via tandem mass spectrometry coupled with accurate mass measurement, all in a single experimental run, is one of the most attractive features of this methodology. The results demonstrate the use of LC/MS-IT-TOF approach appears to be rapid, efficient, and reliable in structural characterization of drug metabolites.
Arru, G; Mameli, G; Deiana, G A; Rassu, A L; Piredda, R; Sechi, E; Caggiu, E; Bo, M; Nako, E; Urso, D; Mariotto, S; Ferrari, S; Zanusso, G; Monaco, S; Sechi, G; Sechi, L A
2018-03-31
Human endogenous retroviruses (HERV) K/W seem to play a role in fostering and exacerbation of some neurological diseases, including amyotrophic lateral sclerosis (ALS). Given these findings, the immunity response against HERV-K and HERV-W envelope surface (env-su) glycoprotein antigens in serum and cerebrospinal fluid (CSF) was investigated for ALS, multiple sclerosis (MS) and Alzheimer's disease patients and in healthy controls. Four antigenic peptides derived respectively from HERV-K and HERV-W env-su proteins were studied in 21 definite or probable ALS patients, 26 possible or definite relapsing-remitting MS patients, 18 patients with Alzheimer's disease and 39 healthy controls. An indirect enzyme-linked immunosorbent assay was set up to detect specific antibodies (Abs) against env-su peptides. Amongst the measured levels of Abs against the four different HERV-K peptide fragments, only HERV-K env-su 19-37 was significantly elevated in ALS compared to other groups, both in serum and CSF. Instead, amongst the Abs levels directed against the four different HERV-W peptide fragments, only HERV-W env-su 93-108 and HERV-W env-su 248-262 were significantly elevated, in the serum and CSF of the MS group compared to other groups. In ALS patients, the HERV-K env-su 19-37 Abs levels were significantly correlated with clinical measures of disease severity, both in serum and CSF. Increased circulating levels of Abs directed against the HERV-W env-su 93-108 and HERV-W env-su 248-262 peptide fragments could serve as possible biomarkers in patients with MS. Similarly, increased circulating levels of Abs directed against the HERV-K env-su 19-37 peptide fragment could serve as a possible early novel biomarker in patients with ALS. © 2018 EAN.
Shaik, Abdul Naveed; Grater, Richard; Lulla, Mukesh; Williams, David A; Gan, Lawrence L; Bohnert, Tonika; LeDuc, Barbara W
2016-01-01
Warfarin is an anticoagulant used in the treatment of thrombosis and thromboembolism. It is given as a racemic mixture of R and S enantiomers. These two enantiomers show differences in metabolism by CYPs: S-warfarin undergoes 7 hydroxylation by CYP2C9 and R-warfarin by CYP3A4 to form 10 hydroxy warfarin. In addition, warfarin is acted upon by different CYPs to form the minor metabolites 3'-hydroxy, 4'-hydroxy, 6-hydroxy, and 8-hydroxy warfarin. For analysis, separation of these metabolites is necessary since all have the same m/z ratio and similar fragmentation pattern. Enzyme kinetics for the formation of all of the six hydroxylated metabolites of warfarin from human liver microsomes were determined using an LC-MS/MS QTrap and LC-MS/MS with a differential mobility spectrometry (DMS) (SelexION™) interface to compare the kinetic parameters. These two methods were chosen to compare their selectivity and sensitivity. Substrate curves for 3'-OH, 4'-OH, 6-OH, 7-OH, 8-OH and 10-OH warfarin formation were generated to determine the kinetic parameters (Km and Vmax) in human liver microsomal preparations. The limit of quantitation (LOQ) for all the six hydroxylated metabolites of warfarin were in the range of 1-3nM using an LC-MS/MS QTrap method which had a run time of 22min. In contrast, the LOQ for all the six hydroxylated metabolites using DMS interface technology was 100nM with a run time of 2.8min. We compare these two MS methods and discuss the kinetics of metabolite formation for the metabolites generated from racemic warfarin. In addition, we show inhibition of major metabolic pathways of warfarin by sulfaphenazole and ketoconazole which are known specific inhibitors of CYP2C9 and CYP3A4 respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Panighel, Annarita; De Rosso, Mirko; Dalla Vedova, Antonio; Flamini, Riccardo
2015-02-28
Grape polyphenols are antioxidant compounds, markers in vine chemotaxonomy, and involved in color stabilization of red wines. Sugar acylation usually confers higher stability on glycoside derivatives and this effect is enhanced by an aromatic substituent such as p-coumaric acid. Until now, only p-coumaroyl anthocyanins have been found in grape. A method of 'suspect screening analysis' by ultra-high-performance liquid chromatography/high-resolution mass spectrometry (UHPLC/QTOFMS) has recently been developed to study grape metabolomics. In the present study, this approach was used to identify new polyphenols in grape by accurate mass measurement, MS/MS fragmentation, and study of correlations between fragments observed and putative structures. Three putative p-coumaroyl flavonoids were identified in Raboso Piave grape extract: a dihydrokaempferide-3-O-p-coumaroylhexoside-like flavanone, isorhamnetin-3-O-p-coumaroylglucoside, and a chrysoeriol-p-coumaroylhexoside-like flavone. Accurate MS provided structural characterization of functional groups, and literature data indicates their probable position in the molecule. A fragmentation scheme is proposed for each compound. Compounds were identified by overlapping various analytical methods according to recommendations in the MS-based metabolomics literature. Stereochemistry and the definitive position of substituents in the molecule can only be confirmed by isolation and characterization or synthesis of each compound. These findings suggest addressing research of acylated polyphenol glycosides to other grape varieties. Copyright © 2015 John Wiley & Sons, Ltd.
Findeisen, Peter; Thumfart, Jörg Oliver; Costina, Victor; Hofheinz, Ralf; Neumaier, Michael
2013-09-01
To determine the preanalytical quality of serum and plasma by monitoring the time-dependent ex vivo decay of a synthetic reporter peptide (RP) with liquid chromatography/mass spectrometry (LC/MS). Serum and plasma specimens were spiked with the RP and proteolytic fragments were monitored with LC/MS at different preanalytical time points ranging from 2 to 24 hours after blood withdrawal. The concentration of fragments changed in a time-dependent manner, and respective peptide profiles were used to classify specimens according to their preanalytical time span. Classification accuracy was high, with values always above 0.89 for areas under receiver operating characteristic curves. This "proteomics degradation clock" can be used to estimate the preanalytical quality of serum and plasma and might have impact on quality control procedures of biobanking repositories.
Dang, Xibei; Young, Nicolas L
2014-05-01
Ultraviolet photodissociation (UVPD) is a compelling fragmentation technique with great potential to enhance proteomics generally and top-down MS specifically. In this issue, Cannon et al. (Proteomics 2014, 14, XXXX-XXXX) use UVPD to perform top-down MS on several sequence variants of green fluorescent protein and compare the results to CID, higher energy collision induced dissociation, and electron transfer dissociation. As compared to the other techniques UVPD produces a wider variety of fragment ion types that are relatively evenly distributed across the protein sequences. Overall, their results demonstrate enhanced sequence coverage and higher confidence in sequence assignment via UVPD MS. Based on these and other recent results UVPD is certain to become an increasingly widespread and valuable tool for top-down proteomics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Albergaria Pereira, Bruna de Fátima; Tardy, Antoine; Monnier, Valérie; Guillaneuf, Yohann; Gigmes, Didier; Charles, Laurence
2015-12-15
In order to prevent side reactions while developing new polymerization processes, their mechanism has to be understood and one first key insight is the structure of the end-groups in polymeric by-products. The synthetic method scrutinized here is the nitroxide-mediated polymerization (NMP) of a cyclic ketene acetal, a promising alternative process to the production of polyesters. Polymer end-group characterization was performed by mass spectrometry (MS), combining elemental composition information derived from accurate mass data in the MS mode with fragmentation features recorded in the MS/MS mode. Electrospray was used as the ionization method to ensure the integrity of original chain terminations and a quadrupole time-of-flight (QTOF) instrument was employed for high-resolution mass measurements in both MS and tandem mass spectrometry (MS/MS) modes. Occurrence of side reactions in the studied polymerization method, first evidenced by an unusual increase in dispersity with conversion, was confirmed in MS with the detection of two polymeric impurities in addition to the expected species. Fragmentation rules were first established for this new polyester family in order to derive useful structural information from MS/MS data. In addition to a usual NMP by-product, the initiating group of the second polymeric impurities revealed the degradation of the nitroxide moiety. Unambiguous MS/MS identification of end-groups in by-products sampled from the polymerization medium allowed an unusual side reaction to be identified during the NMP preparation of polyesters. On-going optimization of the polymerization method aims at preventing this undesired process. Copyright © 2015 John Wiley & Sons, Ltd.
Yotsu-Yamashita, Mari; Abe, Yuka; Kudo, Yuta; Ritson-Williams, Raphael; Paul, Valerie J.; Konoki, Keiichi; Cho, Yuko; Adachi, Masaatsu; Imazu, Takuya; Nishikawa, Toshio; Isobe, Minoru
2013-01-01
Even though tetrodotoxin (TTX) is a widespread toxin in marine and terrestrial organisms, very little is known about the biosynthetic pathway used to produce it. By describing chemical structures of natural analogs of TTX, we can start to identify some of the precursors that might be important for TTX biosynthesis. In the present study, an analog of TTX, 5,11-dideoxyTTX, was identified for the first time in natural sources, the ovary of the pufferfish and the pharynx of a flatworm (planocerid sp. 1), by comparison with totally synthesized (−)-5,11-dideoxyTTX, using high resolution ESI-LC-MS. Based on the presence of 5,11-dideoxyTTX together with a series of known deoxy analogs, 5,6,11-trideoxyTTX, 6,11-dideoxyTTX, 11-deoxyTTX, and 5-deoxyTTX, in these animals, we predicted two routes of stepwise oxidation pathways in the late stages of biosynthesis of TTX. Furthermore, high resolution masses of the major fragment ions of TTX, 6,11-dideoxyTTX, and 5,6,11-trideoxyTTX were also measured, and their molecular formulas and structures were predicted to compare them with each other. Although both TTX and 5,6,11-trideoxyTTX give major fragment ions that are very close, m/z 162.0660 and 162.1020, respectively, they are distinguishable and predicted to be different molecular formulas. These data will be useful for identification of TTXs using high resolution LC-MS/MS. PMID:23924959
Marschallinger, Robert; Golaszewski, Stefan M; Kunz, Alexander B; Kronbichler, Martin; Ladurner, Gunther; Hofmann, Peter; Trinka, Eugen; McCoy, Mark; Kraus, Jörg
2014-01-01
In multiple sclerosis (MS) the individual disease courses are very heterogeneous among patients and biomarkers for setting the diagnosis and the estimation of the prognosis for individual patients would be very helpful. For this purpose, we are developing a multidisciplinary method and workflow for the quantitative, spatial, and spatiotemporal analysis and characterization of MS lesion patterns from MRI with geostatistics. We worked on a small data set involving three synthetic and three real-world MS lesion patterns, covering a wide range of possible MS lesion configurations. After brain normalization, MS lesions were extracted and the resulting binary 3-dimensional models of MS lesion patterns were subject to geostatistical indicator variography in three orthogonal directions. By applying geostatistical indicator variography, we were able to describe the 3-dimensional spatial structure of MS lesion patterns in a standardized manner. Fitting a model function to the empirical variograms, spatial characteristics of the MS lesion patterns could be expressed and quantified by two parameters. An orthogonal plot of these parameters enabled a well-arranged comparison of the involved MS lesion patterns. This method in development is a promising candidate to complement standard image-based statistics by incorporating spatial quantification. The work flow is generic and not limited to analyzing MS lesion patterns. It can be completely automated for the screening of radiological archives. Copyright © 2013 by the American Society of Neuroimaging.
Nowakiewicz, Aneta; Ziółkowska, Grażyna; Zięba, Przemysław; Gnat, Sebastian; Trościańczyk, Aleksandra; Adaszek, Łukasz
2017-01-01
The aim of this study was to characterize multidrug resistant E. faecalis strains from pigs of local origin and to analyse the relationship between resistance and genotypic and proteomic profiles by amplification of DNA fragments surrounding rare restriction sites (ADSRRS-fingerprinting) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI -TOF MS). From the total pool of Enterococcus spp. isolated from 90 pigs, we selected 36 multidrug resistant E. faecalis strains, which represented three different phenotypic resistance profiles. Phenotypic resistance to tetracycline, macrolides, phenicols, and lincomycin and high-level resistance to aminoglycosides were confirmed by the occurrence of at least one corresponding resistance gene in each strain. Based on the analysis of the genotypic and phenotypic resistance of the strains tested, five distinct resistance profiles were generated. As a complement of this analysis, profiles of virulence genes were determined and these profiles corresponded to the phenotypic resistance profiles. The demonstration of resistance to a wide panel of antimicrobials by the strains tested in this study indicates the need of typing to determine the spread of resistance also at the local level. It seems that in the case of E. faecalis, type and scope of resistance strongly determines the genotypic pattern obtained with the ADSRRS-fingerprinting method. The ADSRRS-fingerprinting analysis showed consistency of the genetic profiles with the resistance profiles, while analysis of data with the use of the MALDI- TOF MS method did not demonstrate direct reproduction of the clustering pattern obtained with this method. Our observations were confirmed by statistical analysis (Simpson’s index of diversity, Rand and Wallace coefficients). Even though the MALDI -TOF MS method showed slightly higher discrimination power than ADSRRS-fingerprinting, only the latter method allowed reproduction of the clustering pattern of isolates based on phenotypic resistance and analysis of resistance and virulence genes (Wallace coefficient 1.0). This feature seems to be the most useful for epidemiological purposes and short-term analysis. PMID:28135327
William T. Langford; Sarah E. Gergel; Thomas G. Dietterich; Warren Cohen
2006-01-01
Although habitat fragmentation is one of the greatest threats to biodiversity worldwide, virtually no attention has been paid to the quantification of error in fragmentation statistics. Landscape pattern indices (LPIs), such as mean patch size and number of patches, are routinely used to quantify fragmentation and are often calculated using remote sensing imagery that...
Avula, Bharathi; Wang, Yan-Hong; Wang, Mei; Ali, Zulfiqar; Smillie, Troy J.; Zweigenbaum, Jerry; Khan, Ikhlas A.
2017-01-01
Yam (Dioscorea spp.) is an important edible tuber plant used for medicinal purposes to promote health and longevity in Chinese tradition. Steroidal saponins were reported to be the major physiologically active constituents in yams. In this current work, the structural characteristics of steroidal saponins in methanolic extracts from dried rhizomes of two Dioscorea species (D. villosa L. and D. cayenensis Lam.) and dietary supplements have been identified and analyzed using UHPLC/QTOF-MS in both negative and positive ion modes. The fragmentation patterns of reference standards were determined and the steroidal saponins in the extracts were identified or tentatively characterized from their retention times and mass spectra. The fragments produced by collision-induced dissociation (CID) revealed the characteristic cleavage of glycosidic bonds, and the fragmentation pattern provided structural information about the sugars. Twenty-one saponins, including four tentatively identified compounds, were detected in the crude extracts of two Dioscorea species. These saponins can be used to distinguish D. villosa from D. cayenensis. For example, asperin and gracillin are found only in D. cayenensis, and dioscoreavilloside A and B and parvifloside are only found in D. villosa. This can be used to determine the presence or absence of D. villosa in commercial products, which may help determine the spiking of plant material, and/or prevent the use of potentially mislabeled or misidentified “Dioscorea” material. The analytical method also provided an alternative, fast method for quality control of Dioscorea species in dietary supplements. Principal component analysis showed that Dioscorea species and commercial products were easily distinguished. From this a partial least squares model was constructed to determine what species are in different products. PMID:24510365
A MS-lesion pattern discrimination plot based on geostatistics.
Marschallinger, Robert; Schmidt, Paul; Hofmann, Peter; Zimmer, Claus; Atkinson, Peter M; Sellner, Johann; Trinka, Eugen; Mühlau, Mark
2016-03-01
A geostatistical approach to characterize MS-lesion patterns based on their geometrical properties is presented. A dataset of 259 binary MS-lesion masks in MNI space was subjected to directional variography. A model function was fit to express the observed spatial variability in x, y, z directions by the geostatistical parameters Range and Sill. Parameters Range and Sill correlate with MS-lesion pattern surface complexity and total lesion volume. A scatter plot of ln(Range) versus ln(Sill), classified by pattern anisotropy, enables a consistent and clearly arranged presentation of MS-lesion patterns based on geometry: the so-called MS-Lesion Pattern Discrimination Plot. The geostatistical approach and the graphical representation of results are considered efficient exploratory data analysis tools for cross-sectional, follow-up, and medication impact analysis.
Propagating annotations of molecular networks using in silico fragmentation
da Silva, Ricardo R.; Wang, Mingxun; Fox, Evan; Balunas, Marcy J.; Klassen, Jonathan L.; Dorrestein, Pieter C.
2018-01-01
The annotation of small molecules is one of the most challenging and important steps in untargeted mass spectrometry analysis, as most of our biological interpretations rely on structural annotations. Molecular networking has emerged as a structured way to organize and mine data from untargeted tandem mass spectrometry (MS/MS) experiments and has been widely applied to propagate annotations. However, propagation is done through manual inspection of MS/MS spectra connected in the spectral networks and is only possible when a reference library spectrum is available. One of the alternative approaches used to annotate an unknown fragmentation mass spectrum is through the use of in silico predictions. One of the challenges of in silico annotation is the uncertainty around the correct structure among the predicted candidate lists. Here we show how molecular networking can be used to improve the accuracy of in silico predictions through propagation of structural annotations, even when there is no match to a MS/MS spectrum in spectral libraries. This is accomplished through creating a network consensus of re-ranked structural candidates using the molecular network topology and structural similarity to improve in silico annotations. The Network Annotation Propagation (NAP) tool is accessible through the GNPS web-platform https://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp. PMID:29668671
Edmands, William M B; Barupal, Dinesh K; Scalbert, Augustin
2015-03-01
MetMSLine represents a complete collection of functions in the R programming language as an accessible GUI for biomarker discovery in large-scale liquid-chromatography high-resolution mass spectral datasets from acquisition through to final metabolite identification forming a backend to output from any peak-picking software such as XCMS. MetMSLine automatically creates subdirectories, data tables and relevant figures at the following steps: (i) signal smoothing, normalization, filtration and noise transformation (PreProc.QC.LSC.R); (ii) PCA and automatic outlier removal (Auto.PCA.R); (iii) automatic regression, biomarker selection, hierarchical clustering and cluster ion/artefact identification (Auto.MV.Regress.R); (iv) Biomarker-MS/MS fragmentation spectra matching and fragment/neutral loss annotation (Auto.MS.MS.match.R) and (v) semi-targeted metabolite identification based on a list of theoretical masses obtained from public databases (DBAnnotate.R). All source code and suggested parameters are available in an un-encapsulated layout on http://wmbedmands.github.io/MetMSLine/. Readme files and a synthetic dataset of both X-variables (simulated LC-MS data), Y-variables (simulated continuous variables) and metabolite theoretical masses are also available on our GitHub repository. © The Author 2014. Published by Oxford University Press.
Edmands, William M. B.; Barupal, Dinesh K.; Scalbert, Augustin
2015-01-01
Summary: MetMSLine represents a complete collection of functions in the R programming language as an accessible GUI for biomarker discovery in large-scale liquid-chromatography high-resolution mass spectral datasets from acquisition through to final metabolite identification forming a backend to output from any peak-picking software such as XCMS. MetMSLine automatically creates subdirectories, data tables and relevant figures at the following steps: (i) signal smoothing, normalization, filtration and noise transformation (PreProc.QC.LSC.R); (ii) PCA and automatic outlier removal (Auto.PCA.R); (iii) automatic regression, biomarker selection, hierarchical clustering and cluster ion/artefact identification (Auto.MV.Regress.R); (iv) Biomarker—MS/MS fragmentation spectra matching and fragment/neutral loss annotation (Auto.MS.MS.match.R) and (v) semi-targeted metabolite identification based on a list of theoretical masses obtained from public databases (DBAnnotate.R). Availability and implementation: All source code and suggested parameters are available in an un-encapsulated layout on http://wmbedmands.github.io/MetMSLine/. Readme files and a synthetic dataset of both X-variables (simulated LC–MS data), Y-variables (simulated continuous variables) and metabolite theoretical masses are also available on our GitHub repository. Contact: ScalbertA@iarc.fr PMID:25348215
Usuki, Hirokazu; Yamamoto, Yukihiro; Kumagai, Yuya; Nitoda, Teruhiko; Kanzaki, Hiroshi; Hatanaka, Tadashi
2011-04-21
The reducing tetrasaccharide TMG-chitotriomycin (1) is an inhibitor of β-N-acetylglucosaminidase (GlcNAcase), produced by the actinomycete Streptomyces anulatus NBRC13369. The inhibitor shows a unique inhibitory spectrum, that is, selectivity toward enzymes from chitin-containing organisms such as insects and fungi. Nevertheless, its structure-selectivity relationship remains to be clarified. In this study, we conducted a structure-guided search of analogues of 1 in order to obtain diverse N,N,N-trimethylglucosaminium (TMG)-containing chitooligosaccharides. In this approach, the specific fragmentation profile of 1 on ESI-MS/MS analysis was used for the selective detection of desired compounds. As a result, two new analogues, named TMG-chitomonomycin (3) and TMG-chitobiomycin (2), were obtained from a culture filtrate of 1-producing Streptomyces. Their enzyme-inhibiting activity revealed that the potency and selectivity depended on the degree of polymerization of the reducing end GlcNAc units. Furthermore, a computational modeling study inspired the inhibitory mechanism of TMG-related compounds as a mimic of the substrate in the Michaelis complex of the GH20 enzyme. This study is an example of the successful application of a MS/MS experiment for structure-guided isolation of natural products.
Propagating annotations of molecular networks using in silico fragmentation.
da Silva, Ricardo R; Wang, Mingxun; Nothias, Louis-Félix; van der Hooft, Justin J J; Caraballo-Rodríguez, Andrés Mauricio; Fox, Evan; Balunas, Marcy J; Klassen, Jonathan L; Lopes, Norberto Peporine; Dorrestein, Pieter C
2018-04-01
The annotation of small molecules is one of the most challenging and important steps in untargeted mass spectrometry analysis, as most of our biological interpretations rely on structural annotations. Molecular networking has emerged as a structured way to organize and mine data from untargeted tandem mass spectrometry (MS/MS) experiments and has been widely applied to propagate annotations. However, propagation is done through manual inspection of MS/MS spectra connected in the spectral networks and is only possible when a reference library spectrum is available. One of the alternative approaches used to annotate an unknown fragmentation mass spectrum is through the use of in silico predictions. One of the challenges of in silico annotation is the uncertainty around the correct structure among the predicted candidate lists. Here we show how molecular networking can be used to improve the accuracy of in silico predictions through propagation of structural annotations, even when there is no match to a MS/MS spectrum in spectral libraries. This is accomplished through creating a network consensus of re-ranked structural candidates using the molecular network topology and structural similarity to improve in silico annotations. The Network Annotation Propagation (NAP) tool is accessible through the GNPS web-platform https://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp.
Ok, Kyung-Sun; Kim, Gwang Ha; Park, Do Youn; Lee, Hyun Jeong; Jeon, Hye Kyung; Baek, Dong Hoon; Lee, Bong Eun; Song, Geun Am
2016-01-01
Background/Aims Magnifying endoscopy with narrow band imaging (ME-NBI) is a useful modality for the detailed visualization of microsurface (MS) and microvascular (MV) structures in the gastrointestinal tract. This study aimed to determine whether the MS and MV patterns in ME-NBI differ according to the histologic type, invasion depth, and mucin phenotype of early gastric cancers (EGCs). Methods The MS and MV patterns of 160 lesions in 160 patients with EGC who underwent ME-NBI before endoscopic or surgical resection were prospectively collected and analyzed. EGCs were categorized as either differentiated or undifferentiated and as either mucosal or submucosal, and their mucin phenotypes were determined via immunohistochemistry of the tumor specimens. Results Differentiated tumors mainly displayed an oval and/or tubular MS pattern and a fine network or loop MV pattern, whereas undifferentiated tumors mainly displayed an absent MS pattern and a corkscrew MV pattern. The destructive MS pattern was associated with submucosal invasion, and this association was more prominent in the differentiated tumors than in the undifferentiated tumors. MUC5AC expression was increased in lesions with either a papillary or absent MS pattern and a corkscrew MV pattern, whereas MUC6 expression was increased in lesions with a papillary MS pattern and a loop MV pattern. CD10 expression was more frequent in lesions with a fine network MV pattern. Conclusions ME-NBI can be useful for predicting the histopathology and mucin phenotype of EGCs. PMID:27021504
Cherimolacyclopeptide D, a novel cycloheptapeptide from the seeds of Annona cherimola.
Wélé, Alassane; Ndoye, Idrissa; Zhang, Yanjun; Brouard, Jean-Paul; Bodo, Bernard
2005-03-01
In a chemical investigation of the seeds of Annona cherimola, a natural cyclic heptapeptide, cherimolacyclopeptide D, were isolated and purified by HPLC with three known cyclic peptides, cherimolacyclopeptides A, B and C. The structure was established by various analyses including MS/MS fragmentation, spectroscopic and chemical evidences.
Andromeda: a peptide search engine integrated into the MaxQuant environment.
Cox, Jürgen; Neuhauser, Nadin; Michalski, Annette; Scheltema, Richard A; Olsen, Jesper V; Mann, Matthias
2011-04-01
A key step in mass spectrometry (MS)-based proteomics is the identification of peptides in sequence databases by their fragmentation spectra. Here we describe Andromeda, a novel peptide search engine using a probabilistic scoring model. On proteome data, Andromeda performs as well as Mascot, a widely used commercial search engine, as judged by sensitivity and specificity analysis based on target decoy searches. Furthermore, it can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, such as highly phosphorylated peptides, and accommodates extremely large databases. The algorithms of Andromeda are provided. Andromeda can function independently or as an integrated search engine of the widely used MaxQuant computational proteomics platform and both are freely available at www.maxquant.org. The combination enables analysis of large data sets in a simple analysis workflow on a desktop computer. For searching individual spectra Andromeda is also accessible via a web server. We demonstrate the flexibility of the system by implementing the capability to identify cofragmented peptides, significantly improving the total number of identified peptides.
Schmidt, Susanne; Zietz, Michaela; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W; Krumbein, Angelika
2010-07-30
Kale is a member of the Brassicaceae family and has a complex profile of flavonoid glycosides. Therefore, kale is a suitable matrix to discuss in a comprehensive study the different fragmentation patterns of flavonoid glycosides. The wide variety of glycosylation and acylation patterns determines the health-promoting effects of these glycosides. The aim of this study is to investigate the naturally occurring flavonoids in kale. A total of 71 flavonoid glycosides of quercetin, kaempferol and isorhamnetin were identified using a high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry (HPLC-DAD/ESI-MS(n)) method. Of these 71 flavonol glycosides, 27 were non-acylated, 30 were monoacylated and 14 were diacylated. Non-acylated flavonol glycosides were present as mono-, di-, tri- and tetraglycosides. This is the first time that the occurrence of four different fragmentation patterns of non-acylated flavonol triglycosides has been reported in one matrix simultaneously. In addition, 44 flavonol glycosides were acylated with p-coumaric, caffeic, ferulic, hydroxyferulic or sinapic acid. While monoacylated glycosides existed as di-, tri- and tetraglycosides, diacylated glycosides occurred as tetra- and pentaglycosides. To the best of our knowledge, 28 compounds in kale are reported here for the first time. These include three acylated isorhamnetin glycosides (isorhamnetin-3-O-sinapoyl-sophoroside-7-O-D-glucoside, isorhamnetin-3-O-feruloyl-sophoroside-7-O-diglucoside and isorhamnetin-3-O-disinapoyl-triglucoside-7-O-diglucoside) and seven non-acylated isorhamnetin glycosides. Copyright 2010 John Wiley & Sons, Ltd.
Zeng, Hongxia; Wang, Fan; Zhu, Bingqi; Zhong, Weihui; Shan, Weiguang; Wang, Jian
2016-08-15
The structures of photodegradation impurities in cilnidipine were studied by liquid chromatography/Q-Orbitrap mass spectrometry (LC/Q-Orbitrap MS) for the further improvement of the official monographs in Pharmacopoeias. The complete fragmentation patterns of impurities were investigated to obtain their structural information. Two pathways of photodegradation of cilnidipine were also explored to clarify the source of impurities in cilnidipine. Chromatographic separation was performed on a Boston Group C18 column (250 mm × 4.6 mm, 5 μm). The mobile phase consisted of acetonitrile/H2 O at a ratio of 75:25 (v/v). In order to determine the m/z values of the molecular ions and formulas of all detected impurities, full scan LC/MS in both positive and negative ion modes was firstly performed using a Thermo LC system coupled with a Q-Orbitrap high-resolution mass spectrometer. LC/MS/MS analysis was also carried out on target compounds to obtain as much structural information as possible. Five novel photodegradation impurities of cilnidipine were separated and identified based on the high-resolution MS/MS data. Impurity III was synthesized and its structure was confirmed by (1) H-NMR and (13) C-NMR data. Two photodegradation pathways to produce different photodegradation impurities were also revealed in this study. Among those impurities, impurities II and III were the main impurities which existed in the cilnidipine available on the market. Impurity II (the Z-isomer) was mainly produced when cilnidipine powder was directly exposed to daylight while impurity III (containing a piperidine ring) was mainly produced when cilnidipine was exposed to daylight in an ethanolic solution. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Yang, Heejung; Lee, Dong Young; Kang, Kyo Bin; Kim, Jeom Yong; Kim, Sun Ok; Yoo, Young Hyo; Sung, Sang Hyun
2015-05-10
A dry purified extract of Panax ginseng (PEG) was prepared using a manufacturing process that includes column chromatography, acid hydrolysis, and an enzyme reaction. During the manufacturing process, the more polar ginsenosides were altered into less polar forms via cleavage of their sugar chains and structural modifications of the aglycones, such as hydroxylation and dehydroxylation. The structural changes of ginsenosides during the intermediate steps from dried ginseng extract (DGE) to PEG were monitored by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectroscopy (UPLC-QTOF/MS). 22 ginsenosides isolated from PEG were used as the reference standards for determining of unknown ginsenosides and further suggesting of the metabolic markers. The elution order of 22 ginsenosides based on the type of aglycones, and the location and number of sugar chains can be used for the structural elucidation of unknown ginsenosides. This information could be used in a dereplication process for quick and efficient identification of ginsenoside derivatives in ginseng preparations. A dereplication approach helped the identification of the metabolic markers in the UPLC-QTOF/MS chromatograms during the conversion process with multivariate analyses, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) plots. These metabolic markers were identified by comparing with the dereplication information of the reference standards of 22 ginsenosides, or they were assigned using the pattern of the MS/MS fragmented ions. Consequently, the developed metabolic profiling approach using UPLC-QTOF/MS and multivariate analysis represents a new method for providing quality control as well as useful criteria for a similarity evaluation of the manufacturing process of ginseng preparations. Copyright © 2015 Elsevier B.V. All rights reserved.
TAO, YI; LI, WENKUI; LIANG, WENZHONG; VAN BREEMEN, RICHARD B.
2009-01-01
Dietary supplements containing preparations of ginger roots/rhizomes (Zingiber officinale Roscoe) are being used by consumers, and clinical trials using ginger dietary supplements have been carried out to evaluate their anti-inflammatory or anti-emetic properties with inconsistent results. Chemical standardization of these products is needed for quality control and to facilitate the design of clinical trials and the evaluation of data from these studies. To address this issue, methods based on liquid chromatography-tandem mass spectrometry (LC-MS-MS) were developed for the detection, characterization and quantitative analysis of gingerol-related compounds in botanical dietary supplements containing ginger roots/rhizomes. During negative ion electrospray with collision induced-dissociation, the cleavage of the C4-C5 bond with a neutral loss of 194 u and benzylic cleavage leading to the neutral loss of 136 u were found to be class characteristic fragmentation patterns of the pharmacologically active gingerols or shogaols, respectively. Based on these results, an assay using LC-MS-MS with neutral loss scanning (loss of 194 u or 136 u) was developed that is suitable for the fingerprinting of ginger dietary supplements based on the selective detection of gingerols, shogaols, paradols, and gingerdiones. In addition, a quantitative assay based on LC-MS-MS with selected reaction monitoring was developed for the quantitative analysis of 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, and 10-shogaol in ginger dietary supplements. After method validation, the quantities of these compounds in three commercially available ginger dietary supplements were determined. This assay showed excellent sensitivity, accuracy and precision and may be used to address the need for quality control and standardization of ginger dietary supplements. PMID:19817455
Pan, Jingxi; Han, Jun; Borchers, Christoph H; Konermann, Lars
2009-09-09
Amide H/D exchange (HDX) mass spectrometry (MS) is widely used for protein structural studies. Traditionally, this technique involves protein labeling in D(2)O, followed by acid quenching, proteolytic digestion, and analysis of peptide deuteration levels by HPLC/MS. There is great interest in the development of alternative HDX approaches involving the top-down fragmentation of electrosprayed protein ions, instead of relying on enzymatic cleavage and solution-phase separations. A number of recent studies have demonstrated that electron capture dissociation (ECD) results in fragmentation of gaseous protein ions with little or no H/D scrambling. However, the successful application of this approach for in-depth protein conformational studies has not yet been demonstrated. The current work uses horse myoglobin as a model system for assessing the suitability of HDX-MS with top-down ECD for experiments of this kind. It is found that ECD can pinpoint the locations of protected amides with an average resolution of less than two residues for this 17 kDa protein. Native holo-myoglobin (hMb) shows considerable protection from exchange in all of its helices, whereas loops are extensively deuterated. Fraying is observable at some helix termini. Removal of the prosthetic heme group from hMb produces apo-myoglobin (aMb). Both hMb and aMb share virtually the same HDX protection pattern in helices A-E, whereas helix F is unfolded in aMb. In addition, destabilization is evident for some residues close to the beginning of helix G, the end of helix H, and the C-terminus of the protein. The structural changes reported herein are largely consistent with earlier NMR data for sperm whale myoglobin, although small differences between the two systems are evident. Our findings demonstrate that the level of structural information obtainable with top-down ECD for small to medium-sized proteins considerably surpasses that of traditional HDX-MS experiments, while at the same time greatly reducing undesired amide back exchange.
Discovery and identification of potential biomarkers of pediatric Acute Lymphoblastic Leukemia
Shi, Linan; Zhang, Jun; Wu, Peng; Feng, Kai; Li, Jing; Xie, Zhensheng; Xue, Peng; Cai, Tanxi; Cui, Ziyou; Chen, Xiulan; Hou, Junjie; Zhang, Jianzhong; Yang, Fuquan
2009-01-01
Background Acute lymphoblastic leukemia (ALL) is a common form of cancer in children. Currently, bone marrow biopsy is used for diagnosis. Noninvasive biomarkers for the early diagnosis of pediatric ALL are urgently needed. The aim of this study was to discover potential protein biomarkers for pediatric ALL. Methods Ninety-four pediatric ALL patients and 84 controls were randomly divided into a "training" set (45 ALL patients, 34 healthy controls) and a test set (49 ALL patients, 30 healthy controls and 30 pediatric acute myeloid leukemia (AML) patients). Serum proteomic profiles were measured using surface-enhanced laser desorption/ionization-time-of-flight mass spectroscopy (SELDI-TOF-MS). A classification model was established by Biomarker Pattern Software (BPS). Candidate protein biomarkers were purified by HPLC, identified by LC-MS/MS and validated using ProteinChip immunoassays. Results A total of 7 protein peaks (9290 m/z, 7769 m/z, 15110 m/z, 7564 m/z, 4469 m/z, 8937 m/z, 8137 m/z) were found with differential expression levels in the sera of pediatric ALL patients and controls using SELDI-TOF-MS and then analyzed by BPS to construct a classification model in the "training" set. The sensitivity and specificity of the model were found to be 91.8%, and 90.0%, respectively, in the test set. Two candidate protein peaks (7769 and 9290 m/z) were found to be down-regulated in ALL patients, where these were identified as platelet factor 4 (PF4) and pro-platelet basic protein precursor (PBP). Two other candidate protein peaks (8137 and 8937 m/z) were found up-regulated in the sera of ALL patients, and these were identified as fragments of the complement component 3a (C3a). Conclusion Platelet factor (PF4), connective tissue activating peptide III (CTAP-III) and two fragments of C3a may be potential protein biomarkers of pediatric ALL and used to distinguish pediatric ALL patients from healthy controls and pediatric AML patients. Further studies with additional populations or using pre-diagnostic sera are needed to confirm the importance of these findings as diagnostic markers of pediatric ALL. PMID:19291297
NASA Astrophysics Data System (ADS)
Calvano, Cosima Damiana; Cataldi, Tommaso R. I.; Kögel, Julius F.; Monopoli, Antonio; Palmisano, Francesco; Sundermeyer, Jorge
2017-08-01
The superbasic proton sponge 1,8-bis(tripyrrolidinylphosphazenyl)naphthalene (TPPN) has been successfully employed for the structural characterization of neutral saccharides, cyclodextrins, and saccharide alditols by matrix assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). Owing to its inherently high basicity, TPPN is capable of deprotonating neutral carbohydrates (M) providing an efficient and simple way to produce gas-phase [M - H]- ions. Highly informative negative ions MS/MS spectra showing several diagnostic fragment ions were obtained, mainly A-type cross-ring and C-type glycosidic cleavages. Indeed, cross-ring cleavages of monosaccharides with formation of 0,2A, 0,3A, 2,4A, 2,5A, 3,5A, and 0,3X product ions dominate the MS/MS spectra. A significant difference between reducing (e.g., lactose, maltose) and non-reducing disaccharides (e.g., sucrose, trehalose) was observed. Though disaccharides with the anomeric positions blocked give rise to deprotonated molecules, [M - H]-, at m/ z 341.1, reducing ones exhibited a peak at m/ z 340.1, most likely as radical anion, [M - H•- H]-•. The superiority of TPPN was clearly demonstrated by comparison with well recognized matrices, such as 2,5-dihydroxybenzoic acid and 2',4',6'-trihydroxyacetophenone (positive ion mode) and nor-harman (negative ion mode). MALDI MS/MS experiments on isotopically labeled sugars have greatly supported the interpretation of plausible fragmentation pathways.
Evaluation of novel derivatisation reagents for the analysis of oxysterols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crick, Peter J., E-mail: p.j.crick@swansea.ac.uk; Aponte, Jennifer; Bentley, T. William
2014-04-11
Graphical abstract: - Highlights: • New derivatisation reagents for LC–MS analysis of oxysterols. • New reagents based on Girard P give high ion-currents and informative LC–MS{sup n} spectra. • Permanent charge is vital for efficient MS{sup n} fragmentation. • New reagents offer greater scope for incorporation of isotope labels. - Abstract: Oxysterols are oxidised forms of cholesterol that are intermediates in the synthesis of bile acids and steroid hormones. They are also ligands to nuclear and G protein-coupled receptors. Analysis of oxysterols in biological systems is challenging due to their low abundance coupled with their lack of a strong chromophoremore » and poor ionisation characteristics in mass spectrometry (MS). We have previously used enzyme-assisted derivatisation for sterol analysis (EADSA) to identify and quantitate oxysterols in biological samples. This technique relies on tagging sterols with the Girard P reagent to introduce a charged quaternary ammonium group. Here, we have compared several modified Girard-like reagents and show that the permanent charge is vital for efficient MS{sup n} fragmentation. However, we find that the reagent can be extended to include sites for potential stable isotope labels without a loss of performance.« less
Pedras, M Soledade C; Adio, Adewale M; Suchy, Mojmir; Okinyo, Denis P O; Zheng, Qing-An; Jha, Mukund; Sarwar, Mohammed G
2006-11-10
We have analyzed 23 crucifer phytoalexins (e.g. brassinin, dioxibrassinin, cyclobrassinin, brassicanals A and C) by HPLC with diode array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) using both negative and positive ion modes. Positive ion mode ESI-MS appeared more sensitive than negative ion mode ESI-MS in detecting this group of compounds. A new HPLC separation method, new LC-MS and LC-MS(2) data and proposed fragmentation pathways, LC retention times, and UV spectra for selected compounds are reported.
Wisnewski, Adam V; Liu, Jian; Redlich, Carrie A; Nassar, Ala F
2018-02-15
Hexamethylene diisocyanate (HDI) is an important industrial chemical that can cause asthma, however pathogenic mechanisms remain unclear. Upon entry into the respiratory tract, HDI's N=C=O groups may undergo nucleophilic addition (conjugate) to host molecules (e.g. proteins), or instead react with water (hydrolyze), releasing CO 2 and leaving a primary amine in place of the original N=C=O. We hypothesized that (primary amine groups present on) hydrolyzed or partially hydrolyzed HDI may compete with proteins and water as a reaction target for HDI in solution, resulting in polymers that could be identified and characterized using LC-MS and LC-MS/MS. Analysis of the reaction products formed when HDI was mixed with a pH buffered, isotonic, protein containing solution identified multiple [M+H] + ions with m/z's and collision-induced dissociation (CID) fragmentation patterns consistent with those expected for dimers (259.25/285.23 m/z), and trimers (401.36/427.35 m/z) of partially hydrolyzed HDI (e.g. ureas/oligoureas). Human peripheral blood mononuclear cells (PBMCs) and monocyte-like U937, but not airway epithelial NCI-H292 cell lines cultured with these HDI ureas contained a novel 260.23 m/z [M+H] + ion. LC-MS/MS analysis of the 260.23 m/z [M+H] + ion suggest the formula C 13 H 29 N 3 O 2 and a structure containing partially hydrolyzed HDI, however definitive characterization will require further orthogonal analyses. Copyright © 2017 Elsevier Inc. All rights reserved.
Madsen, James A.; Ko, Byoung Joon; Xu, Hua; Iwashkiw, Jeremy A.; Robotham, Scott A.; Shaw, Jared B.; Feldman, Mario F.; Brodbelt, Jennifer S.
2013-01-01
O -glycopeptides are often acidic owing to the frequent occurrence of acidic saccharides in the glycan, rendering traditional proteomic workflows that rely on positive mode tandem mass spectrometry (MS/MS) less effective. In this report, we demonstrate the utility of negative mode ultraviolet photodissociation (UVPD) MS for the characterization of acidic O-linked glycopeptide anions. This method was evaluated for a series of singly- and multiply-deprotonated glycopeptides from the model glycoprotein kappa casein, resulting in production of both peptide and glycan product ions that afforded 100% sequence coverage of the peptide and glycan moieties from a single MS/MS event. The most abundant and frequent peptide sequence ions were a/x-type products, which, importantly, were found to retain the labile glycan modifications. The glycan-specific ions mainly arose from glycosidic bond cleavages (B, Y, C, and Z ions) in addition to some less common cross-ring cleavages. Based on the UVPD fragmentation patterns, an automated database searching strategy (based on the MassMatrix algorithm) was designed that is specific for the analysis of glycopeptide anions by UVPD. This algorithm was used to identify glycopeptides from mixtures of glycosylated and non-glycosylated peptides, sequence both glycan and peptide moieties simultaneously, and pinpoint the correct site(s) of glycosylation. This methodology was applied to uncover novel site-specificity of the O-linked glycosylated OmpA/MotB from the “superbug” A. baumannii to help aid in the elucidation of the functional role that protein glycosylation plays in pathogenesis. PMID:24006841
NASA Astrophysics Data System (ADS)
Adhikari, P. L.; Overton, E. B.; Maiti, K.; Wong, R. L.
2016-02-01
Petroleum biomarkers such as hopanes, steranes, and triaromatic steroids are more persistent than alkanes and aromatic compounds. Thus, they are often used to track spilled oil in the environments and as a proxy for weathering processes. The present study utilizes water samples, suspended and sinking particles, and seafloor sediments collected during 2011-2013 from various locations of the northern Gulf of Mexico with wide range of contaminated oil for Deepwater Horizon (DWH) oil fingerprinting. The MC252 source oil along with the samples collected in this study were analyzed using a gas chromatography coupled with a triple quadrupole mass spectrometry (GC/MS/MS) in Multiple Reaction Monitoring (MRM) mode and the results were compared with results from commonly used GC/MS selective ion monitoring (SIM) method. The results indicate that the MRM method separates interfering ions from interfering compounds and can be a powerful analytical strategy for a reliable identification and determination of trace levels of biomarkers in complex matrices. Source indicators such as the MRM fragment ion chromatograms of the biomarkers and their diagnostic ratios in samples were compared with the MC252 source oil. The preliminary results show that the biomarkers were below detection limits in dissolved samples. However, in few particulate and seafloor sediment samples, primarily from the immediate vicinity of the Macondo wellhead, contained their patterns. The results also illustrate that these biomarker compounds have been weathered within 1-3 years following the oil spill, and their DWH oil signature in some of these samples reflects this weathering.
Investigation of the biotransformation of osthole by liquid chromatography/tandem mass spectrometry.
Li, Jie; Chan, Wan
2013-02-23
Osthole is an active ingredient and one of the major coumarin compounds that were identified in the genus Cnidium moonnieri (L.) Cussion, the fruit of which was used as traditional Chinese medicine to treat male impotence, ringworm infection and blood stasis conventionally. Recent studies revealed that osthole has diverse pharmacological effects, such as improving male sexual dysfunction, anti-diabetes, and anti-hypertentions. The inhibition of thrombosis and platelet aggregation and protection of central nerve were also observed. On the other hand, the metabolism of osthole has not yet been investigated thoroughly. Herein the biotransformation of osthole in rat was investigated after oral administration of osthole by using efficient and sensitive ultra-performance liquid chromatography-tandem quadrupole-time of flight mass spectrometry (UPLC-QTOF/MS). Eighteen osthole metabolites and the parent drug were detected and identified in rat urine. Fourteen metabolites of osthole were identified and characterized for the first time. Structures of metabolites of osthole were elucidated by comparing fragment pattern under MS/MS scan and change of molecular weight with those of osthole. The main phase I metabolic pathways were summed as 7-demethylation, 8-dehydrogenation, hydroxylation on coumarin and 3,4-epoxide. Sulfate conjugates were detected as phase II metabolites of osthole. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vašinová Galiová, Michaela; Čopjaková, Renata; Škoda, Radek; Štěpánková, Kateřina; Vaňková, Michaela; Kuta, Jan; Prokeš, Lubomír; Kynický, Jindřich; Kanický, Viktor
2014-10-01
A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS.
Zidour, Mahammed; Chevalier, Mickaël; Belguesmia, Yanath; Cudennec, Benoit; Grard, Thierry; Drider, Djamel; Souissi, Sami; Flahaut, Christophe
2017-01-01
Copepods represent a major source of food for many aquatic species of commercial interest for aquaculture such as mysis shrimp and early stages of fishes. For the purpose of this study, the culturable mesophilic bacterial flora colonizing Acartia tonsa copepod eggs was isolated and identified. A total of 175 isolates were characterized based on their morphological and biochemical traits. The majority of these isolates (70%) were Gram-negative bacteria. Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) was used for rapid identification of bacterial isolates. Here, 58% of isolates were successfully identified at the genus level and among them, 54% were identified at the species level. These isolates belong to 12 different genera and 29 species. Five strains, identified as Bacillus pumilus, named 18 COPS, 35A COPS, 35R COPS, 38 COPS, and 40A COPS, showed strong antagonisms against several potential fish pathogens including Vibrio alginolyticus, V. anguillarum, Listeria monocytogenes, and Staphylococcus aureus. Furthermore, using a differential approach, we show that the antimicrobial activity of the 35R COPS strain is linked primarily to the production of antimicrobial compounds of the amicoumacin family, as demonstrated by the specific UV-absorbance and the MS/MS fragmentation patterns of these compounds. PMID:29085344
Ultra-Sensitive Elemental Analysis Using Plasmas 7.Application to Criminal Investigation
NASA Astrophysics Data System (ADS)
Suzuki, Yasuhiro
This paper describes the application of trace elemental analysis using ICP-AES and ICP-MS to criminal investigation. The comparison of trace elements, such as Rb, Sr, Zr, and so on, is effective for the forensic discrimination of glass fragments, which can be important physical evidence for connecting a suspect to a crime scene or to a victim. This procedure can be applied also to lead shotgun pellets by the removal of matrix lead as the sulfate precipitate after the dissolution of a pellet sample. The determination of a toxic element in bio-logical samples is required to prove that a victim ingested this element. Arsenous acids produced in Japan, China, Germany and Switzerland show characteristic patterns of trace elements characteristic to each country.
Teunissen, S F; Rosing, H; Seoane, M Dominguez; Brunsveld, L; Schellens, J H M; Schinkel, A H; Beijnen, J H
2011-06-01
A comprehensive overview is presented of currently known phase I metabolites of tamoxifen consisting of their systematic name and molecular structure. Reference standards are utilized to elucidate the MS(n) fragmentation patterns of these metabolites using a linear ion trap mass spectrometer. UV-absorption spectra are recorded and absorption maxima are defined. Serum extracts from ten breast cancer patients receiving 40mg tamoxifen once daily were qualitatively analyzed for tamoxifen phase I metabolites using a liquid chromatography-tandem mass spectrometry set-up. In total, 19 metabolites have been identified in these serum samples. Additionally a synthetic method for the preparation of the putative metabolite 3',4'-dihydroxytamoxifen is described. Copyright © 2011 Elsevier B.V. All rights reserved.
Bierla, Katarzyna; Flis-Borsuk, Anna; Suchocki, Piotr; Szpunar, Joanna; Lobinski, Ryszard
2016-06-22
The reaction of sunflower oil with selenite produces a complex mixture of selenitriglycerides with antioxidant and anticancer properties. To obtain insight into the identity and characteristics of the species formed, an analytical approach based on the combination of high-performance liquid chromatography (HPLC) with (78)Se-specific selenium detection by inductively coupled plasma mass spectrometry (ICP MS) and high-resolution (100 000), high mass accuracy (<1 ppm) molecule-specific detection by electrospray-Orbitrap MS(3) was developed. For the first time, a non-aqueous mobile phase gradient was used in reversed-phase HPLC-ICP MS for the separation of a complex mixture of selenospecies and a mathematical correction of the background signal was developed. The identical chromatographic conditions served for the sample introduction into electrospray MS. Two types of samples were analyzed: sunflower oil dissolved in isopropanol and methanol extract of the oil containing 65% selenium. HPLC-ICP MS showed 14 peaks, 11 of which could also be detected in the methanol extract. Isotopic patterns corresponding to molecules with one or two selenium atoms could be attributed by Orbitrap MS at the retention times corresponding to the HPLC-ICP MS peak apexes. Structural data for these species were acquired by MS(2) and MS(3) fragmentation of protonated or sodiated ions using high-energy collisional dissociation (HCD). A total of 11 selenium-containing triglycerol derivatives resulting from the oxidation of one or two double bonds of linoleic acid and analogous derivatives of glycerol-mixed linoleate(s)/oleinate(s) have been identified for the first time. The presence of these species was confirmed by the targeted analysis in the total oil isopropanol solution. Their identification corroborated the predicted elution order in reversed-phase chromatography: LLL (glycerol trilinoleate), LLO (glycerol dilinoleate-oleinate), LOO (glycerol linoleate-dioleinate), OOO (glycerol trioleinate), of which the extrapolation allowed for the prediction of the identity [glycerol dioleinate-stearate (OOS) and glycerol oleinate-distearate (OSS)] of the nonpolar species detected by ICP MS in the oil but not detected by electrospray MS.
Gallart-Ayala, H; Courant, F; Severe, S; Antignac, J-P; Morio, F; Abadie, J; Le Bizec, B
2013-09-24
Lipids represent an extended class of substances characterized by such high variety and complexity that makes their unified analyses by liquid chromatography coupled to either high resolution or tandem mass spectrometry (LC-HRMS or LC-MS/MS) a real challenge. In the present study, a new versatile methodology associating ultra high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-HRMS/MS) have been developed for a comprehensive analysis of lipids. The use of polarity switching and "all ion fragmentation" (AIF) have been two action levels particularly exploited to finally permit the detection and identification of a multi-class and multi-analyte extended range of lipids in a single run. For identification purposes, both higher energy collision dissociation (HCD) and in-source CID (collision induced dissociation) fragmentation were evaluated in order to obtain information about the precursor and product ions in the same spectra. This approach provides both class-specific and lipid-specific fragments, enhancing lipid identification. Finally, the developed method was applied for differential phenotyping of serum samples collected from pet dogs developing spontaneous malignant mammary tumors and health controls. A biological signature associated with the presence of cancer was then successfully revealed from this lipidome analysis, which required to be further investigated and confirmed at larger scale. Copyright © 2013 Elsevier B.V. All rights reserved.
Proteomics as a Quality Control Tool of Pharmaceutical Probiotic Bacterial Lysate Products
Klein, Günter; Schanstra, Joost P.; Hoffmann, Janosch; Mischak, Harald; Siwy, Justyna; Zimmermann, Kurt
2013-01-01
Probiotic bacteria have a wide range of applications in veterinary and human therapeutics. Inactivated probiotics are complex samples and quality control (QC) should measure as many molecular features as possible. Capillary electrophoresis coupled to mass spectrometry (CE/MS) has been used as a multidimensional and high throughput method for the identification and validation of biomarkers of disease in complex biological samples such as biofluids. In this study we evaluate the suitability of CE/MS to measure the consistency of different lots of the probiotic formulation Pro-Symbioflor which is a bacterial lysate of heat-inactivated Escherichia coli and Enterococcus faecalis. Over 5000 peptides were detected by CE/MS in 5 different lots of the bacterial lysate and in a sample of culture medium. 71 to 75% of the total peptide content was identical in all lots. This percentage increased to 87–89% when allowing the absence of a peptide in one of the 5 samples. These results, based on over 2000 peptides, suggest high similarity of the 5 different lots. Sequence analysis identified peptides of both E. coli and E. faecalis and peptides originating from the culture medium, thus confirming the presence of the strains in the formulation. Ontology analysis suggested that the majority of the peptides identified for E. coli originated from the cell membrane or the fimbrium, while peptides identified for E. faecalis were enriched for peptides originating from the cytoplasm. The bacterial lysate peptides as a whole are recognised as highly conserved molecular patterns by the innate immune system as microbe associated molecular pattern (MAMP). Sequence analysis also identified the presence of soybean, yeast and casein protein fragments that are part of the formulation of the culture medium. In conclusion CE/MS seems an appropriate QC tool to analyze complex biological products such as inactivated probiotic formulations and allows determining the similarity between lots. PMID:23840518
Breithaupt, Dietmar E
2004-06-16
Negative ion liquid chromatography-atmospheric pressure chemical ionization mass spectrometry [negative ion LC-(APCI)MS] was used for the identification of astaxanthin esters in extracts of commercial shrimp (Pandalus borealis) and dried microalga (Haematococcus pluvialis) samples. A cleanup step using a normal phase solid phase extraction (SPE) cartridge was applied prior to analysis. Recovery experiments with astaxanthin oleate as model compound proved the applicability of this step (98.5 +/- 7.6%; n = 4). The assignment of astaxanthin esters in negative ion LC-(APCI)MS was based on the detection of the molecular ion (M*-) and the formation of characteristic fragment ions, resulting from the loss of one or two fatty acids. Quantification of individual astaxanthin esters was performed using an astaxanthin calibration curve, which was found to be linear over the required range (1-51 micromol/L; r2 = 0.9996). Detection limits, based on the intensity of M*-, a signal-to-noise ratio of 3:1, and an injection volume of 20 microL, were estimated to be 0.05 microg/mL (free astaxanthin), 0.28 microg/mL (astaxanthin-C16:0), and 0.78 microg/mL (astaxanthin-C16:0/C16:0), respectively. This LC-(APCI)MS method allows for the first time the characterization of native astaxanthin esters in P. borealis and H. pluvialis without using time-consuming isolation steps with subsequent gas chromatographic analyses of fatty acid methyl esters. The results suggest that the pattern of astaxanthin-bound polyunsaturated fatty acids of P. borealis does not reflect the respective fatty acid pattern found in triacylglycerides. Application of the presented LC-(APCI)MS technique in common astaxanthin ester analysis will forestall erroneous xanthophyll ester assignment in natural sources.
Chen, Yuan; Watson, Heather M.; Gao, Junjie; Sinha, Sarmistha Halder; Cassady, Carolyn J.; Vincent, John B.
2011-01-01
Chromium was proposed to be an essential element over 50 y ago and was shown to have therapeutic potential in treating the symptoms of type 2 diabetes; however, its mechanism of action at a molecular level is unknown. One chromium-binding biomolecule, low-molecular weight chromium-binding substance (LMWCr or chromodulin), has been found to be biologically active in in vitro assays and proposed as a potential candidate for the in vivo biologically active form of chromium. Characterization of the organic component of LMWCr has proven difficult. Treating bovine LMWCr with trifluoroacetic acid followed by purification on a graphite powder micro-column generates a heptapeptide fragment of LMWCr. The peptide sequence of the fragment was analyzed by MS and tandem MS (MS/MS and MS/MS/MS) using collision-induced dissociation and post-source decay. Two candidate sequences, pEEEEGDD and pEEEGEDD (where pE is pyroglutamate), were identified from the MS/MS experiments; additional tandem MS suggests the sequence is pEEEEGDD. The N-terminal glutamate residues explain the inability to sequence LMWCr by the Edman method. Langmuir isotherms and Hill plots were used to analyze the binding constants of chromic ions to synthetic peptides similar in composition to apoLMWCr. The sequence pEEEEGDD was found to bind 4 chromic ions per peptide with nearly identical cooperativity and binding constants to those of apoLMWCr. This work should lead to further studies elucidating or eliminating a potential role for LMWCr in treating the symptoms of type 2 diabetes and other conditions resulting from improper carbohydrate and lipid metabolism. PMID:21593351
Sandjo, Louis P; Nascimento, Marcus V P Dos Santos; da Silva, Layzon A L; Munhoz, Antonio C M; Pollo, Luiz A E; Biavatti, Maique W; Ngadjui, Bonaventure T; Opatz, Till; Fröde, Tania S
2017-01-01
Triterpenes are one of the largest secondary metabolites groups spread in the plant kingdom with various skeletons. These metabolites have showed various bioactivities including anti-inflammatory activity. The study aims to explore the mass spectrometry fragmentation of donellanic acids A-C (DA A-C), three compounds identified from Donella ubanguiensis; in addition, the fragmentation behaviour of these metabolites will serve as a fingerprint to search and characterise triterpenes congeners in fruits, bark and wood crude extracts of D. ubanguiensis. This work was prompted by the anti-inflammatory activity on leukocyte migration, exudate concentrations and myeloperoxidase activity obtained for DA A-B. The bioactivity was performed on mouse model of pleurisy induced by carrageenan and the parameters were analysed by veterinarian automated cell counter and colorimetric assays. While the tandem mass analyses of DA A-C were carried out by a direct infusion ESI-QTOF-MS/MS, the extracts were studied by UPLC-ESI-QTOF-MS and UPLC-ESI-QTOF-MS/MS. DA A displayed interesting anti-inflammatory activity by inhibiting leukocyte migration, exudate concentrations and myeloperoxidase activity (p < 0.05) while DA B was weakly active (p > 0.05). Moreover, the diagnostic of the MS 2 behaviour of DA A-C in conjunction with the chromatograms and the obtained MS 2 data of the crude extract led to the characterisation of three cyclopropane triterpenes (T1-T3) and six saponins (T4-T9) from the fruits, the bark, and the wood extracts. Donella species deserve more investigation since metabolites related to the anti-inflammatory compound (DA A) could be identified. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
MRMaid, the web-based tool for designing multiple reaction monitoring (MRM) transitions.
Mead, Jennifer A; Bianco, Luca; Ottone, Vanessa; Barton, Chris; Kay, Richard G; Lilley, Kathryn S; Bond, Nicholas J; Bessant, Conrad
2009-04-01
Multiple reaction monitoring (MRM) of peptides uses tandem mass spectrometry to quantify selected proteins of interest, such as those previously identified in differential studies. Using this technique, the specificity of precursor to product transitions is harnessed for quantitative analysis of multiple proteins in a single sample. The design of transitions is critical for the success of MRM experiments, but predicting signal intensity of peptides and fragmentation patterns ab initio is challenging given existing methods. The tool presented here, MRMaid (pronounced "mermaid") offers a novel alternative for rapid design of MRM transitions for the proteomics researcher. The program uses a combination of knowledge of the properties of optimal MRM transitions taken from expert practitioners and literature with MS/MS evidence derived from interrogation of a database of peptide identifications and their associated mass spectra. The tool also predicts retention time using a published model, allowing ordering of transition candidates. By exploiting available knowledge and resources to generate the most reliable transitions, this approach negates the need for theoretical prediction of fragmentation and the need to undertake prior "discovery" MS studies. MRMaid is a modular tool built around the Genome Annotating Proteomic Pipeline framework, providing a web-based solution with both descriptive and graphical visualizations of transitions. Predicted transition candidates are ranked based on a novel transition scoring system, and users may filter the results by selecting optional stringency criteria, such as omitting frequently modified residues, constraining the length of peptides, or omitting missed cleavages. Comparison with published transitions showed that MRMaid successfully predicted the peptide and product ion pairs in the majority of cases with appropriate retention time estimates. As the data content of the Genome Annotating Proteomic Pipeline repository increases, the coverage and reliability of MRMaid are set to increase further. MRMaid is freely available over the internet as an executable web-based service at www.mrmaid.info.
MRMaid, the Web-based Tool for Designing Multiple Reaction Monitoring (MRM) Transitions*
Mead, Jennifer A.; Bianco, Luca; Ottone, Vanessa; Barton, Chris; Kay, Richard G.; Lilley, Kathryn S.; Bond, Nicholas J.; Bessant, Conrad
2009-01-01
Multiple reaction monitoring (MRM) of peptides uses tandem mass spectrometry to quantify selected proteins of interest, such as those previously identified in differential studies. Using this technique, the specificity of precursor to product transitions is harnessed for quantitative analysis of multiple proteins in a single sample. The design of transitions is critical for the success of MRM experiments, but predicting signal intensity of peptides and fragmentation patterns ab initio is challenging given existing methods. The tool presented here, MRMaid (pronounced “mermaid”) offers a novel alternative for rapid design of MRM transitions for the proteomics researcher. The program uses a combination of knowledge of the properties of optimal MRM transitions taken from expert practitioners and literature with MS/MS evidence derived from interrogation of a database of peptide identifications and their associated mass spectra. The tool also predicts retention time using a published model, allowing ordering of transition candidates. By exploiting available knowledge and resources to generate the most reliable transitions, this approach negates the need for theoretical prediction of fragmentation and the need to undertake prior “discovery” MS studies. MRMaid is a modular tool built around the Genome Annotating Proteomic Pipeline framework, providing a web-based solution with both descriptive and graphical visualizations of transitions. Predicted transition candidates are ranked based on a novel transition scoring system, and users may filter the results by selecting optional stringency criteria, such as omitting frequently modified residues, constraining the length of peptides, or omitting missed cleavages. Comparison with published transitions showed that MRMaid successfully predicted the peptide and product ion pairs in the majority of cases with appropriate retention time estimates. As the data content of the Genome Annotating Proteomic Pipeline repository increases, the coverage and reliability of MRMaid are set to increase further. MRMaid is freely available over the internet as an executable web-based service at www.mrmaid.info. PMID:19011259
Hayashi, Yukako; Ohara, Kazuaki; Taki, Rika; Saeki, Tomomi; Yamaguchi, Kentaro
2018-03-12
The crystalline sponge (CS) method, which employs single-crystal X-ray diffraction to determine the structure of an analyte present as a liquid or an oil and having a low melting point, was used in combination with laser desorption ionization mass spectrometry (LDI-MS). 1,3-Benzodioxole derivatives were encapsulated in CS and their structures were determined by combining X-ray crystallography and MS. After the X-ray analysis, the CS was subjected to imaging mass spectrometry (IMS) with an LDI spiral-time-of-flight mass spectrometer (TOF-MS). The ion detection area matched the microscopic image of the encapsulated CS. In addition, the accumulated 1D mass spectra showed that fragmentation of the guest molecule (hereafter, guest) can be easily visualized without any interference from the fragment ions of CS except for two strong ion peaks derived from the tridentate ligand TPT (2,4,6-tris(4-pyridyl)-1,3,5-triazine) of the CS and its fragment. X-ray analysis clearly showed the presence of the guest as well as the π-π, CH-halogen, and CH-O interactions between the guest and the CS framework. However, some guests remained randomly diffused in the nanopores of CS. In addition, the detection limit was less than sub-pmol order based on the weight and density of CS determined by X-ray analysis. Spectroscopic data, such as UV-vis and NMR, also supported the encapsulation of the guest through the interaction between the guest and CS components. The results denote that the CS-LDI-MS method, which combines CS, X-ray analysis and LDI-MS, is effective for structure determination.
Michalski, Annette; Damoc, Eugen; Lange, Oliver; Denisov, Eduard; Nolting, Dirk; Müller, Mathias; Viner, Rosa; Schwartz, Jae; Remes, Philip; Belford, Michael; Dunyach, Jean-Jacques; Cox, Juergen; Horning, Stevan; Mann, Matthias; Makarov, Alexander
2012-01-01
Although only a few years old, the combination of a linear ion trap with an Orbitrap analyzer has become one of the standard mass spectrometers to characterize proteins and proteomes. Here we describe a novel version of this instrument family, the Orbitrap Elite, which is improved in three main areas. The ion transfer optics has an ion path that blocks the line of sight to achieve more robust operation. The tandem MS acquisition speed of the dual cell linear ion trap now exceeds 12 Hz. Most importantly, the resolving power of the Orbitrap analyzer has been increased twofold for the same transient length by employing a compact, high-field Orbitrap analyzer that almost doubles the observed frequencies. An enhanced Fourier Transform algorithm—incorporating phase information—further doubles the resolving power to 240,000 at m/z 400 for a 768 ms transient. For top-down experiments, we combine a survey scan with a selected ion monitoring scan of the charge state of the protein to be fragmented and with several HCD microscans. Despite the 120,000 resolving power for SIM and HCD scans, the total cycle time is within several seconds and therefore suitable for liquid chromatography tandem MS. For bottom-up proteomics, we combined survey scans at 240,000 resolving power with data-dependent collision-induced dissociation of the 20 most abundant precursors in a total cycle time of 2.5 s—increasing protein identifications in complex mixtures by about 30%. The speed of the Orbitrap Elite furthermore allows scan modes in which complementary dissociation mechanisms are routinely obtained of all fragmented peptides. PMID:22159718
Su, Rui; Wang, Xinchen; Hou, Changming; Yang, Meiling; Huang, Keke; Chen, Huanwen
2017-09-01
Rapid qualitative and quantitative analysis of solid samples (e.g., pharmaceutical preparations) by using a small and low-resolution mass spectrometer without MS/MS function is still a challenge in ambient pressure ionization mass spectrometric analysis. Herein, a practically efficient method termed microwave-enhanced in-source decay (MEISD) using microwave plasma torch desorption ionization coupled with time-of-flight mass spectrometry (MPTDI-TOF MS) was developed for fast analysis of pharmaceutical tablets using a miniature TOF mass spectrometer without tandem mass function. The intensity of ISD fragmentation was evaluated under different microwave power values. Several factors, including desorption distance and time that might affect the signal intensity and fragmentation, were systematically investigated. It was observed that both the protonated molecular ions and major fragment ions from the active ingredients in tablets could be found in the full-scan mass spectra in positive ion mode, which were comparable to those obtained by a commercial LTQ-XL ion trap mass spectrometer. The structures of the ingredients could be elucidated in detail using the MEISD method, which promotes our understanding of the desorption/ionization processes in microwave plasma torch (MPT). Quantitative analysis of 10 tablets was achieved by full-scan MPTDI-TOF MS with low limit of detection (LOD, 0.763 mg/g), acceptable relative standard deviation (RSD < 7.33%, n =10), and 10 s for each tablet, showing promising applications in high throughput screening of counterfeit drugs. Graphical Abstract ᅟ.
Fabresse, Nicolas; Allard, Julien; Sardaby, Marine; Thompson, Adrian; Clutton, R Eddie; Eddleston, Michael; Alvarez, Jean-Claude
2017-08-15
Clinical evaluation of a colchicine specific antigen-binding fragment (Fab) in order to treat colchicine poisoning required the development of an accurate method allowing quantification of free and Fab-bound colchicine in plasma and urine, and free colchicine in tissues, to measure colchicine redistribution after Fab administration. Three methods have been developed for this purpose, and validated in plasma, urine and liver: total colchicine was determined after denaturation of Fab by dilution in water and heating; free colchicine was separated from Fab-bound colchicine by filtration with 30KDa micro-filters; tissues were homogenized in a tissue mixer. Deuterated colchicine was used as internal standard. Samples were extracted by liquid-liquid extraction and analyzed with a LC-MS/MS. LOQ were 0.5ng/mL in plasma and urine for free and total colchicine and 5pg/mg in tissues. The methods were linear in the 0.5-100ng/mL range in plasma and urine, and 5-300pg/mg in tissues with determination coefficients>0.99. Precision and accuracy of QC samples presented a CV<9.4%. The methods require only 200μL of sample and allow a high throughput due to short analytical run (2min). These methods were successfully applied to a pig intoxicated with colchicine and treated with colchicine specific Fab fragments. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Su, Rui; Wang, Xinchen; Hou, Changming; Yang, Meiling; Huang, Keke; Chen, Huanwen
2017-09-01
Rapid qualitative and quantitative analysis of solid samples (e.g., pharmaceutical preparations) by using a small and low-resolution mass spectrometer without MS/MS function is still a challenge in ambient pressure ionization mass spectrometric analysis. Herein, a practically efficient method termed microwave-enhanced in-source decay (MEISD) using microwave plasma torch desorption ionization coupled with time-of-flight mass spectrometry (MPTDI-TOF MS) was developed for fast analysis of pharmaceutical tablets using a miniature TOF mass spectrometer without tandem mass function. The intensity of ISD fragmentation was evaluated under different microwave power values. Several factors, including desorption distance and time that might affect the signal intensity and fragmentation, were systematically investigated. It was observed that both the protonated molecular ions and major fragment ions from the active ingredients in tablets could be found in the full-scan mass spectra in positive ion mode, which were comparable to those obtained by a commercial LTQ-XL ion trap mass spectrometer. The structures of the ingredients could be elucidated in detail using the MEISD method, which promotes our understanding of the desorption/ionization processes in microwave plasma torch (MPT). Quantitative analysis of 10 tablets was achieved by full-scan MPTDI-TOF MS with low limit of detection (LOD, 0.763 mg/g), acceptable relative standard deviation (RSD < 7.33%, n =10), and 10 s for each tablet, showing promising applications in high throughput screening of counterfeit drugs. [Figure not available: see fulltext.
Unassigned MS/MS Spectra: Who Am I?
Pathan, Mohashin; Samuel, Monisha; Keerthikumar, Shivakumar; Mathivanan, Suresh
2017-01-01
Recent advances in high resolution tandem mass spectrometry (MS) has resulted in the accumulation of high quality data. Paralleled with these advances in instrumentation, bioinformatics software have been developed to analyze such quality datasets. In spite of these advances, data analysis in mass spectrometry still remains critical for protein identification. In addition, the complexity of the generated MS/MS spectra, unpredictable nature of peptide fragmentation, sequence annotation errors, and posttranslational modifications has impeded the protein identification process. In a typical MS data analysis, about 60 % of the MS/MS spectra remains unassigned. While some of these could attribute to the low quality of the MS/MS spectra, a proportion can be classified as high quality. Further analysis may reveal how much of the unassigned MS spectra attribute to search space, sequence annotation errors, mutations, and/or posttranslational modifications. In this chapter, the tools used to identify proteins and ways to assign unassigned tandem MS spectra are discussed.
Heparan Sulfate Differences in Rheumatoid Arthritis versus Healthy Sera
López-Hoyos, Marcos; Seo, Youjin; Andaya, Armann; Leary, Julie A.
2015-01-01
Heparan sulfate (HS) is a complex and highly variable polysaccharide, expressed ubiquitously on the cell surface as HS proteoglycans (HSPGs), and found in the extracellular matrix as free HS fragments. Its heterogeneity due to various acetylation and sulfation patterns endows a multitude of functions. In animal tissues, HS interacts with a wide range of proteins to mediate numerous biological activities; given its multiple roles in inflammation processes, characterization of HS in human serum has significant potential for elucidating disease mechanisms. Historically, investigation of HS was limited by its low concentration in human serum, together with the complexity of the serum matrix. In this study, we used a modified mass spectrometry method to examine HS disaccharide profiles in the serum of 50 women with rheumatoid arthritis (RA), and compared our results to 51 sera from healthy women. Using various purification methods and online LC-MS/MS, we discovered statistically significant differences in the sulfation and acetylation patterns between populations. Since early diagnosis of RA is considered important in decelerating the disease's progression, identification of specific biomolecule characterizations may provide crucial information towards developing new therapies for suppressing the disease in its early stages. This is the first report of potential glycosaminoglycan biomarkers for RA found in human sera, while acknowledging the obvious fact that a larger population set, and more stringent collection parameters, will need to be investigated in the future. PMID:25217862
Wang, Xing-Juan; Jin, Hua-Liang; Liu, Ying
2010-11-01
To evaluate the relation between Pi-deficiency syndrome (PDS) pattern and metabolic syndrome (MS) in patients with polycystic ovarian syndrome (PCOS), for exploring their internal pathologic mechanism. Among the 102 PCOS patients, 22 complicated with MS (PCOS-MS) and 80 not complicated with MS (PCOS-NMS), the Chinese medicine syndrome pattern was differentiated as PDS in 50 patients and non-PDS in 52. The clinical data, in terms of fasting blood glucose (FBG), fasting insulin (FINS), waistline, body weight (BW), stature, blood pressure (BP), etc. was collected and compared and the relation between data was analyzed. Levels of FINS and homeostasis model of assessment for insulin resistence index (HOMA-IR), in PCOS-MS patients were significantly higher than those in PCOS-NMS patients, also higher in patients of PDS pattern than those of non-PDS pattern (P < 0.01); the occurrences of MS and PDS were highly positively correlated with levels of FINS and HOMA-IR (P < 0.01); incidence of MS in patients of PDS pattern was significantly higher than those in patients of non-PDS pattern (P < 0.05); presenting of PDS was positively related with the existence of MS (P < 0.05), but in case of the FINS or HOMA-IR factor being controlled, statistical meaning of the relativity between them turned to insignificant (P > 0.05). PCOS patients of PDS pattern are the high-risk population of MS, which might be related with the insulin resistance. So, early treatment of PCOS, especially on patients of PDS pattern, is of important significance for preventing the complication, as MS, of the disease.
More Than Just Oligomannose: An N-glycomic Comparison of Penicillium Species*
Hykollari, Alba; Jin, Chunsheng; Yan, Shi; Vanbeselaere, Jorick; Razzazi-Fazeli, Ebrahim
2016-01-01
N-glycosylation is an essential set of post-translational modifications of proteins; in the case of filamentous fungi, N-glycans are present on a range of secreted and cell wall proteins. In this study, we have compared the glycans released by peptide/N-glycosidase F from proteolysed cell pellets of three Penicillium species (P. dierckxii, P. nordicum and P. verrucosum that all belong to the Eurotiomycetes). Although the major structures are all within the range Hex5–11HexNAc2 as shown by mass spectrometry, variations in reversed-phase chromatograms and MS/MS fragmentation patterns are indicative of differences in the actual structure. Hydrofluoric acid and mannosidase treatments revealed that the oligomannosidic glycans were not only in part modified with phosphoethanolamine residues and outer chain och1-dependent mannosylation, but that bisecting galactofuranose was present in a species-dependent manner. These data are the first to specifically show the modification of N-glycans in fungi with zwitterionic moieties. Furthermore, our results indicate that mere mass spectrometric screening is insufficient to reveal the subtly complex nature of N-glycosylation even within a single fungal genus. PMID:26515459
Zhang, Junmei; Brodbelt, Jennifer S
2005-03-15
For detection and differentiation of isomeric flavonoids, electrospray ionization mass spectrometry is used to generate silver complexes of the type (Ag + flavonoid)+. Collisionally activated dissociation (CAD) of the resulting 1:1 silver/flavonoid complexes allows isomer differentiation of flavonoids. Eighteen flavonoid diglycosides constituting seven isomeric series are distinguishable from each other based on the CAD patterns of their silver complexes. Characteristic dissociation pathways allow identification of the site of glycosylation, the type of disaccharide (rutinose versus neohesperidose), and the type of aglycon (flavonol versus flavone versus flavanone). This silver complexation method is more universal than previous metal complexation methods, as intense silver complexes are observed even for flavonoids that lack the typical metal chelation sites. To demonstrate the feasibility of using silver complexation and tandem mass spectrometry to characterize flavonoids in complex mixtures, flavonoids extracted from grapefruit juice are separated by high-performance liquid chromatography and analyzed via a postcolumn complexation ESI-MS/MS strategy. Diagnostic fragmentation pathways of the silver complexes of the individual eluting flavonoids allow successful identification of the six flavonoids in the extract.
Sharma, Vandana; Walia, Suresh; Dhingra, Swaran; Kumar, Jitendra; Parmar, Balraj S
2006-10-01
A 60% azadirachtin-A concentrate has been obtained through repeated precipitation with hexane from a methanolic solution of a 20% concentrate. Azadirachtin-A (90%) has been obtained by medium-pressure liquid chromatography of the 60% concentrate with an RP-18 column and a methanol + water (1 + 1 by volume) solvent system. Catalytic hydrogenation of the 60 and 90% azadirachtin concentrates yielded the corresponding tetrahydroazadirachtin concentrates. Dihydroazadirachtin and tetrahydroazadirachtin formed during the first 5 h of hydrogenation were identified by LC-ESI-MS on the basis of their unique mass fragmentation pattern. The efficacy of tetrahydroazadirachtin concentrates in inhibiting the feeding and growth of Helicoverpa armigera (Hübner) larvae has been compared with that of azadirachtin concentrates. They were in general more active and deterred larvae from feeding at all concentrations. Tetrahydroazadirachtin-A (90%) and azadirachtin-A (90%) with respective IC(50) values of 280 and 390 mg L(-1) were effective as insect growth regulators, while tetrahydroazadirachtin-A (90%) displayed higher antifeedant activity (AI(50) 14 mg L(-1)) against the test insect.
ERIC Educational Resources Information Center
Price, Timothy Blaine
2010-01-01
Begun as an investigation of the linguistic and paleographic evidence on the Old Saxon Leipzig "Heliand" fragment, the dissertation encompasses three analyses spanning over a millennium of that manuscript's existence. First, a direct analysis clarifies errors in the published transcription (4.2). The corrections result from digital…
Hemmann, Jethro L.; Saurel, Olivier; Ochsner, Andrea M.; Stodden, Barbara K.; Kiefer, Patrick; Milon, Alain; Vorholt, Julia A.
2016-01-01
Methylobacterium extorquens AM1 uses dedicated cofactors for one-carbon unit conversion. Based on the sequence identities of enzymes and activity determinations, a methanofuran analog was proposed to be involved in formaldehyde oxidation in Alphaproteobacteria. Here, we report the structure of the cofactor, which we termed methylofuran. Using an in vitro enzyme assay and LC-MS, methylofuran was identified in cell extracts and further purified. From the exact mass and MS-MS fragmentation pattern, the structure of the cofactor was determined to consist of a polyglutamic acid side chain linked to a core structure similar to the one present in archaeal methanofuran variants. NMR analyses showed that the core structure contains a furan ring. However, instead of the tyramine moiety that is present in methanofuran cofactors, a tyrosine residue is present in methylofuran, which was further confirmed by MS through the incorporation of a 13C-labeled precursor. Methylofuran was present as a mixture of different species with varying numbers of glutamic acid residues in the side chain ranging from 12 to 24. Notably, the glutamic acid residues were not solely γ-linked, as is the case for all known methanofurans, but were identified by NMR as a mixture of α- and γ-linked amino acids. Considering the unusual peptide chain, the elucidation of the structure presented here sets the basis for further research on this cofactor, which is probably the largest cofactor known so far. PMID:26895963
2013-01-01
Background The SuoQuan formulae containing Fructus Alpiniae Oxyphyllae has been used to combat the urinary incontinence symptoms including frequency, urgency and nocturia for hundreds of years in China. However, the chemical information was not well characterized. The quality control marker constituent only focused on one single compound in the current Chinese Pharmacopeia. Hence it is prudent to identify and quantify the main constituents in this herbal product. This study aimed to analyze the main constituents using ultra-fast performance liquid chromatography coupled to tandem mass spectrometry (UFLC-MS/MS). Results Fourteen phytochemicals originated from five chemical classes constituents were identified by comparing the molecular mass, fragmentation pattern and retention time with those of the reference standards. A newly developed UFLC-MS/MS was validated demonstrating that the new assay was valid, reproducible and reliable. This method was successfully applied to simultaneously quantify the fourteen phytochemicals. Notably, the content of these constituents showed significant differences in three pharmaceutical preparations. The major constituent originated from each of chemical class was isolinderalactone, norisoboldine, nootkatone, yakuchinone A and apigenin-4’,7-dimethylther, respectively. The variation among these compounds was more than 1000 times. Furthermore, the significant content variation between the two different Suoquan pills was also observed. Conclusion The proposed method is sensitive and reliable; hence it can be used to analyze a variety of SuoQuan formulae products produced by different pharmaceutical manufacturers. PMID:23899222
Joo, Jeongmin; Wu, Zhexue; Lee, Boram; Shon, Jong Cheol; Lee, Taeho; Lee, In-Kyu; Sim, Taebo; Kim, Kyung-Hee; Kim, Nam Doo; Kim, Seong Heon; Liu, Kwang-Hyeon
2015-04-01
GSK5182 (4-[(Z)-1-[4-(2-dimethylaminoethyloxy)phenyl]-hydroxy-2-phenylpent-1-enyl]phenol) is a specific inverse agonist for estrogen-related receptor γ, a member of the orphan nuclear receptor family that has important functions in development and homeostasis. This study was performed to elucidate the metabolites of GSK5182 and to characterize the enzymes involved in its metabolism. Incubation of human liver microsomes with GSK5182 in the presence of NADPH resulted in the formation of three metabolites, M1, M2 and M3. M1 and M3 were identified as N-desmethyl-GSK5182 and GSK5182 N-oxide, respectively, on the basis of liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis. M2 was suggested to be hydroxy-GSK5182 through interpretation of its MS/MS fragmentation pattern. In addition, the specific cytochrome P450 (P450) and flavin-containing monooxygenase (FMO) isoforms responsible for GSK5182 oxidation to the three metabolites were identified using a combination of correlation analysis, chemical inhibition in human liver microsomes and metabolism by expressed recombinant P450 and FMO isoforms. GSK5182 N-demethylation and hydroxylation is mainly mediated by CYP3A4, whereas FMO1 and FMO3 contribute to the formation of GSK5182 N-oxide from GSK5182. The present data will be useful for understanding the pharmacokinetics and drug interactions of GSK5182 in vivo. Copyright © 2014 John Wiley & Sons, Ltd.
Wang, Nannan; Zhao, Xiaoning; Li, Yiran; Cheng, Congcong; Huai, Jiaxin; Bi, Kaishun; Dai, Ronghua
2018-06-01
To reveal the material basis of Huo Luo Xiao Ling Dan (HLXLD), a sensitive and selective ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) method was developed to identify the absorbed components and metabolites in rat plasma after oral administration of HLXLD. The plasma samples were pretreated by liquid-liquid extraction and separated on a Shim-pack XR-ODS C 18 column (75 × 3.0 mm, 2.2 μm) using a gradient elution program. With the optimized conditions and single sample injection of each positive or negative ion mode, a total of 109 compounds, including 78 prototype compounds and 31 metabolites, were identified or tentatively characterized. The fragmentation patterns of representative compounds were illustrated as well. The results indicated that aromatization and hydration were the main metabolic pathways of lactones and tanshinone-related metabolites; demethylation and oxidation were the major metabolic pathways of alkaloid-related compounds; methylation and sulfation were the main metabolic pathways of phenolic acid-related metabolites. It is concluded the developed UHPLC-Q-TOF/MS method with high sensitivity and resolution is suitable for identifying and characterizing the absorbed components and metabolites of HLXLD, and the results will provide essential data for further studying the relationship between the chemical components and pharmacological activity of HLXLD. Copyright © 2018 John Wiley & Sons, Ltd.
Roemmelt, Andreas T; Steuer, Andrea E; Poetzsch, Michael; Kraemer, Thomas
2014-12-02
Forensic and clinical toxicological screening procedures are employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques with information-dependent acquisition (IDA) approaches more and more often. It is known that the complexity of a sample and the IDA settings might prevent important compounds from being triggered. Therefore, data-independent acquisition (DIA) methods should be more suitable for systematic toxicological analysis (STA). The DIA method sequential window acquisition of all theoretical fragment-ion spectra (SWATH), which uses Q1 windows of 20-35 Da for data-independent fragmentation, was systematically investigated for its suitability for STA. Quality of SWATH-generated mass spectra were evaluated with regard to mass error, relative abundance of the fragments, and library hits. With the Q1 window set to 20-25 Da, several precursors pass Q1 at the same time and are fragmented, thus impairing the library search algorithms to a different extent: forward fit was less affected than reverse fit and purity fit. Mass error was not affected. The relative abundance of the fragments was concentration dependent for some analytes and was influenced by cofragmentation, especially of deuterated analogues. Also, the detection rate of IDA compared to SWATH was investigated in a forced coelution experiment (up to 20 analytes coeluting). Even using several different IDA settings, it was observed that IDA failed to trigger relevant compounds. Screening results of 382 authentic forensic cases revealed that SWATH's detection rate was superior to IDA, which failed to trigger ∼10% of the analytes.
He, Y; Li, Y; Lai, J; Wang, D; Zhang, J; Fu, P; Yang, X; Qi, L
2013-10-01
To examine the nationally-representative dietary patterns and their joint effects with physical activity on the likelihood of metabolic syndrome (MS) among 20,827 Chinese adults. CNNHS was a nationally representative cross-sectional observational study. Metabolic syndrome was defined according to the Joint Interim Statement definition. The "Green Water" dietary pattern, characterized by high intakes of rice and vegetables and moderate intakes in animal foods was related to the lowest prevalence of MS (15.9%). Compared to the "Green Water" dietary pattern, the "Yellow Earth" dietary pattern, characterized by high intakes of refined cereal products, tubers, cooking salt and salted vegetable was associated with a significantly elevated odds of MS (odds ratio 1.66, 95%CI: 1.40-1.96), after adjustment of age, sex, socioeconomic status and lifestyle factors. The "Western/new affluence" dietary pattern characterized by higher consumption of beef/lamb, fruit, eggs, poultry and seafood also significantly associated with MS (odds ratio: 1.37, 95%CI: 1.13-1.67). Physical activity showed significant interactions with the dietary patterns in relation to MS risk (P for interaction = 0.008). In the joint analysis, participants with the combination of sedentary activity with the "Yellow Earth" dietary pattern or the "Western/new affluence" dietary pattern both had more than three times (95%CI: 2.8-6.1) higher odds of MS than those with active activity and the "Green Water" dietary pattern. Our findings from the large Chinese national representative data indicate that dietary patterns affect the likelihood of MS. Combining healthy dietary pattern with active lifestyle may benefit more in prevention of MS. Copyright © 2012 Elsevier B.V. All rights reserved.
Activity budget and ranging patterns of Colobus vellerosus in forest fragments in central Ghana.
Wong, Sarah N P; Sicotte, Pascale
2007-01-01
The forest fragments surrounding the 192-ha Boabeng-Fiema Monkey Sanctuary (BFMS) in central Ghana contain small populations of Colobus vellerosus. Data were collected on activity budget, ranging patterns and habitat use of 3 groups living in these small fragments in August-November 2003, and compared to 3 BFMS groups. Fragment groups spent less time moving and more time resting than BFMS groups. Home ranges of fragment groups tended to be smaller than those of BFMS groups. Fragment and BFMS groups used similarly sized trees. Comparisons of activity budget and ranging between fragments and the BFMS suggest that fragment habitat quality was sufficient to sustain current numbers. These behavioral trends are consistent with a concurrent study that we conducted investigating ecological quality in the same fragments. Copyright 2007 S. Karger AG, Basel.
Tempest: GPU-CPU computing for high-throughput database spectral matching.
Milloy, Jeffrey A; Faherty, Brendan K; Gerber, Scott A
2012-07-06
Modern mass spectrometers are now capable of producing hundreds of thousands of tandem (MS/MS) spectra per experiment, making the translation of these fragmentation spectra into peptide matches a common bottleneck in proteomics research. When coupled with experimental designs that enrich for post-translational modifications such as phosphorylation and/or include isotopically labeled amino acids for quantification, additional burdens are placed on this computational infrastructure by shotgun sequencing. To address this issue, we have developed a new database searching program that utilizes the massively parallel compute capabilities of a graphical processing unit (GPU) to produce peptide spectral matches in a very high throughput fashion. Our program, named Tempest, combines efficient database digestion and MS/MS spectral indexing on a CPU with fast similarity scoring on a GPU. In our implementation, the entire similarity score, including the generation of full theoretical peptide candidate fragmentation spectra and its comparison to experimental spectra, is conducted on the GPU. Although Tempest uses the classical SEQUEST XCorr score as a primary metric for evaluating similarity for spectra collected at unit resolution, we have developed a new "Accelerated Score" for MS/MS spectra collected at high resolution that is based on a computationally inexpensive dot product but exhibits scoring accuracy similar to that of the classical XCorr. In our experience, Tempest provides compute-cluster level performance in an affordable desktop computer.
Allen, Felicity; Pon, Allison; Greiner, Russ; Wishart, David
2016-08-02
We describe a tool, competitive fragmentation modeling for electron ionization (CFM-EI) that, given a chemical structure (e.g., in SMILES or InChI format), computationally predicts an electron ionization mass spectrum (EI-MS) (i.e., the type of mass spectrum commonly generated by gas chromatography mass spectrometry). The predicted spectra produced by this tool can be used for putative compound identification, complementing measured spectra in reference databases by expanding the range of compounds able to be considered when availability of measured spectra is limited. The tool extends CFM-ESI, a recently developed method for computational prediction of electrospray tandem mass spectra (ESI-MS/MS), but unlike CFM-ESI, CFM-EI can handle odd-electron ions and isotopes and incorporates an artificial neural network. Tests on EI-MS data from the NIST database demonstrate that CFM-EI is able to model fragmentation likelihoods in low-resolution EI-MS data, producing predicted spectra whose dot product scores are significantly better than full enumeration "bar-code" spectra. CFM-EI also outperformed previously reported results for MetFrag, MOLGEN-MS, and Mass Frontier on one compound identification task. It also outperformed MetFrag in a range of other compound identification tasks involving a much larger data set, containing both derivatized and nonderivatized compounds. While replicate EI-MS measurements of chemical standards are still a more accurate point of comparison, CFM-EI's predictions provide a much-needed alternative when no reference standard is available for measurement. CFM-EI is available at https://sourceforge.net/projects/cfm-id/ for download and http://cfmid.wishartlab.com as a web service.
Juan-García, Ana; Font, Guillermina; Juan, Cristina; Picó, Yolanda
2009-11-15
Beta-casomorphins (b-CMs) are bioactive peptides derived from casein with opioid agonist effects similar to morphine. The use of electrospray (ESI) with quadrupole ion-trap mass spectrometry (QIT-MS) for these compounds in two matrices, cheese and milk, was examined. It was compared to a liquid chromatography (LC) coupled to mass spectrometry (LC-MS), and a "soft" ionisation technique, NanoMate, with selected ion monitoring (SIM), which are unreliable for the determination of trace casomorphins in derived milk products. b-CM mass fragmentation pathways were done for the four most common b-CMs: beta-casomorphin (1-5) bovine (b-CM-5), beta-casomorphin (1-7) bovine (b-CM-7), [D-Ala2, D-Pro4,Tyr5]-beta-casomorphin (1-5) amide (b-CM-10) and beta-casomorphin (1-5) amide [D-Ala2,Hyp4,Tyr5] (b-CM-11). The major product ions obtained in QIT-MS were used to construct fragmentation pathways for b-CMs. The different collision energies using automated nanoelectrospray ion source NanoMate and conventional LC in QIT-MS were studied. Calibration data for b-CMs, using spiked milk or cheese samples (10 g or 10 mL), were: NanoMate/MS (25-1000 microg/L), r(2)=0.998; NanoMate/MS(2) (5-1000 microg/L), r(2)=0.9992; NanoMate/MS(3) (2.5-1000 microg/L), r(2)=0.9998. Reproducibility data (% RSD, N=5) for NanoMate/MS(n) mode ranged between 2.0 at 500 microg/L and 7.0 at 10 microg/L.
NASA Astrophysics Data System (ADS)
Koelmel, Jeremy P.; Kroeger, Nicholas M.; Gill, Emily L.; Ulmer, Candice Z.; Bowden, John A.; Patterson, Rainey E.; Yost, Richard A.; Garrett, Timothy J.
2017-05-01
Untargeted omics analyses aim to comprehensively characterize biomolecules within a biological system. Changes in the presence or quantity of these biomolecules can indicate important biological perturbations, such as those caused by disease. With current technological advancements, the entire genome can now be sequenced; however, in the burgeoning fields of lipidomics, only a subset of lipids can be identified. The recent emergence of high resolution tandem mass spectrometry (HR-MS/MS), in combination with ultra-high performance liquid chromatography, has resulted in an increased coverage of the lipidome. Nevertheless, identifications from MS/MS are generally limited by the number of precursors that can be selected for fragmentation during chromatographic elution. Therefore, we developed the software IE-Omics to automate iterative exclusion (IE), where selected precursors using data-dependent topN analyses are excluded in sequential injections. In each sequential injection, unique precursors are fragmented until HR-MS/MS spectra of all ions above a user-defined intensity threshold are acquired. IE-Omics was applied to lipidomic analyses in Red Cross plasma and substantia nigra tissue. Coverage of the lipidome was drastically improved using IE. When applying IE-Omics to Red Cross plasma and substantia nigra lipid extracts in positive ion mode, 69% and 40% more molecular identifications were obtained, respectively. In addition, applying IE-Omics to a lipidomics workflow increased the coverage of trace species, including odd-chained and short-chained diacylglycerides and oxidized lipid species. By increasing the coverage of the lipidome, applying IE to a lipidomics workflow increases the probability of finding biomarkers and provides additional information for determining etiology of disease.
NASA Astrophysics Data System (ADS)
Barnes, Charles A.; Chiu, Norman H. L.
2009-01-01
Many chemical carcinogens and their in vivo activated metabolites react readily with genomic DNA, and form covalently bound carcinogen-DNA adducts. Clinically, carcinogen-DNA adducts have been linked to various cancer diseases. Among the current methods for DNA adduct analysis, mass spectroscopic method allows the direct measurement of unlabeled DNA adducts. The goal of this study is to explore the use of matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to determine the identity of carcinogen-DNA adducts. Two of the known carcinogenic DNA adducts, namely N-(2'-deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenyl-imidazo [4,5-b] pyridine (dG-C8-PhIP) and N-(2'-deoxyguanosin-8yl)-4-aminobiphenyl (dG-C8-ABP), were selected as our models. In MALDI-TOF MS measurements, the small matrix ion and its cluster ions did not interfere with the measurements of both selected dG adducts. To achieve a higher accuracy for the characterization of selected dG adducts, 1 keV collision energy in MALDI-TOF/TOF MS/MS was used to measure the adducts. In comparison to other MS/MS techniques with lower collision energies, more extensive precursor ion dissociations were observed. The detection of the corresponding fragment ions allowed the identities of guanine, PhIP or ABP, and the position of adduction to be confirmed. Some of the fragment ions of dG-C8-PhIP have not been reported by other MS/MS techniques.
Galaon, Toma; Vacaresteanu, Catalina; Anghel, Dan-Florin; David, Victor
2014-05-01
Nine important 1,4-benzodiazepines and zolpidem were characterized by liquid chromatography-mass spectrometry using a multimode ionization source able to generate ions using both electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), and a single quadrupole mass analyzer. An optimum chromatographic separation was applied for all target compounds in less than 8 minutes using a Zorbax Eclipse Plus column (100 × 4.6 mm, 3.5 µm) kept at 35°C and a 0.3% HCOOH/ACN/IPA (61:34:5) mobile phase pumped at 1 ml/min. Optimization of LC-MS method generated low limit of quantitation (LOQ) values situated in the range 0.3-20.5 ng/ml. Comparison between differences in method sensitivity, under specified chromatographic conditions, when using ESI-only, APCI-only, and simultaneous ESI-APCI ionization with such a multimode source was discussed. Mixed ESI-APCI(+) mode proved to be the most sensitive ionization generating an average 35% detector response increase compared to ESI-only ionization and 350% detector response increase with respect to APCI-only ionization. Characterization of the nine benzodiazepines and zolpidem concerning their MS fragmentation pathway following 'in-source' collision-induced dissociation is discussed in detail and some general trends regarding these fragmentations are set. Copyright © 2013 John Wiley & Sons, Ltd.
Saeidian, Hamdollah; Babri, Mehran; Abdoli, Morteza; Sarabadani, Mansour; Ashrafi, Davood; Naseri, Mohammad Taghi
2012-12-15
The availability of mass spectra and interpretation skills are essential for unambiguous identification of the Chemical Weapons Convention (CWC)-related chemicals. The O(S)-alkyl N,N-dimethyl alkylphosphono(thiolo)thionoamidates are included in the list of scheduled CWC-related compounds, but there are very few spectra from these compounds in the literature. This paper examines these spectra and their mass spectral fragmentation routes. The title chemicals were prepared through microsynthetic protocols and were analyzed using electron ionization mass spectrometry with gas chromatography as a MS-inlet system. Structures of fragments were confirmed using analysis of fragment ions of deuterated analogs, tandem mass spectrometry and density functional theory (DFT) calculations. Mass spectrometric studies revealed some interesting fragmentation pathways during the ionization process, such as alkene and amine elimination and McLafferty-type rearrangements. The most important fragmentation route of the chemicals is the thiono-thiolo rearrangement. DFT calculations are used to support MS results and to reveal relative preference formation of fragment ions. The retention indices (RIs) of all the studied compounds are also reported. Mass spectra of the synthesized compounds were investigated with the aim to enrich the Organization for the Prohibition of Chemical Weapons (OPCW) Central Analytical Database (OCAD) which may be used for detection and identification of CWC-related chemicals during on-site inspection and/or off-site analysis such as OPCW proficiency tests. Copyright © 2012 John Wiley & Sons, Ltd.
Complement is activated in progressive multiple sclerosis cortical grey matter lesions.
Watkins, Lewis M; Neal, James W; Loveless, Sam; Michailidou, Iliana; Ramaglia, Valeria; Rees, Mark I; Reynolds, Richard; Robertson, Neil P; Morgan, B Paul; Howell, Owain W
2016-06-22
The symptoms of multiple sclerosis (MS) are caused by damage to myelin and nerve cells in the brain and spinal cord. Inflammation is tightly linked with neurodegeneration, and it is the accumulation of neurodegeneration that underlies increasing neurological disability in progressive MS. Determining pathological mechanisms at play in MS grey matter is therefore a key to our understanding of disease progression. We analysed complement expression and activation by immunocytochemistry and in situ hybridisation in frozen or formalin-fixed paraffin-embedded post-mortem tissue blocks from 22 progressive MS cases and made comparisons to inflammatory central nervous system disease and non-neurological disease controls. Expression of the transcript for C1qA was noted in neurons and the activation fragment and opsonin C3b-labelled neurons and glia in the MS cortical and deep grey matter. The density of immunostained cells positive for the classical complement pathway protein C1q and the alternative complement pathway activation fragment Bb was significantly increased in cortical grey matter lesions in comparison to control grey matter. The number of cells immunostained for the membrane attack complex was elevated in cortical lesions, indicating complement activation to completion. The numbers of classical (C1-inhibitor) and alternative (factor H) pathway regulator-positive cells were unchanged between MS and controls, whilst complement anaphylatoxin receptor-bearing microglia in the MS cortex were found closely apposed to cortical neurons. Complement immunopositive neurons displayed an altered nuclear morphology, indicative of cell stress/damage, supporting our finding of significant neurodegeneration in cortical grey matter lesions. Complement is activated in the MS cortical grey matter lesions in areas of elevated numbers of complement receptor-positive microglia and suggests that complement over-activation may contribute to the worsening pathology that underlies the irreversible progression of MS.
USDA-ARS?s Scientific Manuscript database
Tandem mass spectrometry (MS/MS) of enzymatic digest has made possible identification of a wide variety of proteins and complex samples prepared by such techniques as RP-HPLC or 2-D gel electrophoresis. Success requires peptide fragmentation to be indicative of the peptide amino acid sequence. The f...
Theodorus H. de Koker; Philip J. Kersten
2002-01-01
The recent sequencing of the Phanerochaete chrysosporium genome presents many opportunities, including the possibility of rapidly correlating specific wood decay proteins of the fungus with the corresponding gene sequences. Here we compare mass fragments of trypsin digests, determined by MALDI-MS (Matrix Assisted Laser Desorption Ionization-Mass Spectrometry), with...
Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki
2014-05-06
A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs.
NASA Technical Reports Server (NTRS)
Getty, Stephanie; Brickerhoff, William; Cornish, Timothy; Ecelberger, Scott; Floyd, Melissa
2012-01-01
RATIONALE A miniature time-of-flight mass spectrometer has been adapted to demonstrate two-step laser desorption-ionization (LOI) in a compact instrument package for enhanced organics detection. Two-step LDI decouples the desorption and ionization processes, relative to traditional laser ionization-desorption, in order to produce low-fragmentation conditions for complex organic analytes. Tuning UV ionization laser energy allowed control ofthe degree of fragmentation, which may enable better identification of constituent species. METHODS A reflectron time-of-flight mass spectrometer prototype measuring 20 cm in length was adapted to a two-laser configuration, with IR (1064 nm) desorption followed by UV (266 nm) postionization. A relatively low ion extraction voltage of 5 kV was applied at the sample inlet. Instrument capabilities and performance were demonstrated with analysis of a model polycyclic aromatic hydrocarbon, representing a class of compounds important to the fields of Earth and planetary science. RESULTS L2MS analysis of a model PAH standard, pyrene, has been demonstrated, including parent mass identification and the onset o(tunable fragmentation as a function of ionizing laser energy. Mass resolution m/llm = 380 at full width at half-maximum was achieved which is notable for gas-phase ionization of desorbed neutrals in a highly-compact mass analyzer. CONCLUSIONS Achieving two-step laser mass spectrometry (L2MS) in a highly-miniature instrument enables a powerful approach to the detection and characterization of aromatic organics in remote terrestrial and planetary applications. Tunable detection of parent and fragment ions with high mass resolution, diagnostic of molecular structure, is possible on such a compact L2MS instrument. Selectivity of L2MS against low-mass inorganic salt interferences is a key advantage when working with unprocessed, natural samples, and a mechanism for the observed selectivity is presented.
Shen, Yufeng; Tolić, Nikola; Xie, Fang; Zhao, Rui; Purvine, Samuel O.; Schepmoes, Athena A.; Ronald, J. Moore; Anderson, Gordon A.; Smith, Richard D.
2011-01-01
We report on the effectiveness of CID, HCD, and ETD for LC-FT MS/MS analysis of peptides using a tandem linear ion trap-Orbitrap mass spectrometer. A range of software tools and analysis parameters were employed to explore the use of CID, HCD, and ETD to identify peptides isolated from human blood plasma without the use of specific “enzyme rules”. In the evaluation of an FDR-controlled SEQUEST scoring method, the use of accurate masses for fragments increased the numbers of identified peptides (by ~50%) compared to the use of conventional low accuracy fragment mass information, and CID provided the largest contribution to the identified peptide datasets compared to HCD and ETD. The FDR-controlled Mascot scoring method provided significantly fewer peptide identifications than with SEQUEST (by 1.3–2.3 fold) at the same confidence levels, and CID, HCD, and ETD provided similar contributions to identified peptides. Evaluation of de novo sequencing and the UStags method for more intense fragment ions revealed that HCD afforded more sequence consecutive residues (e.g., ≥7 amino acids) than either CID or ETD. Both the FDR-controlled SEQUEST and Mascot scoring methods provided peptide datasets that were affected by the decoy database and mass tolerances applied (e.g., the identical peptides between the datasets could be limited to ~70%), while the UStags method provided the most consistent peptide datasets (>90% overlap) with extremely low (near zero) numbers of false positive identifications. The m/z ranges in which CID, HCD, and ETD contributed the largest number of peptide identifications were substantially overlapping. This work suggests that the three peptide ion fragmentation methods are complementary, and that maximizing the number of peptide identifications benefits significantly from a careful match with the informatics tools and methods applied. These results also suggest that the decoy strategy may inaccurately estimate identification FDRs. PMID:21678914
The Study of Titanium and Zirconium Ions in Water by MPT-LTQ Mass Spectrometry in Negative Mode
Yang, Junqing; Zheng, Mei; Liu, Qiuju; Zhu, Meiling; Yang, Chushan; Zhang, Yan; Zhu, Zhiqiang
2017-01-01
Microwave plasma torches (MPTs) can be used as simple and low power-consumption ambient ion sources. When MPT-mass spectrometry (MPT-MS) is applied in the detection of some metal elements, the metallic ions exhibit some novel features which are significantly different with those obtained by the traditional inductively coupled plasma (ICP)-mass spectrometry (ICP-MS) and may be helpful for metal element analysis. As the representative elements of group IVA, titanium and zirconium are both of importance and value in modern industry, and they have impacts on human health. Here, we first provide a study on the complex anions of titanium and zirconium in water by using the MPT as ion source and a linear ion trap mass spectrometer (LTQ-MS). These complex anions were produced in the plasma flame by an aqueous solution flowing through the central tube of the MPT, and were introduced into the inlet of the mass spectrometry working in negative ion mode to get the feature mass spectrometric signals. Moreover, the feature fragment patterns of these ions in multi-step collision- induced dissociation processes have been explained. Under the optimized conditions, the limit of detection (LOD) using the MS2 (the second tandem mass spectrometry) procedure was estimated to be at the level of 10 μg/L for titanium and 20 μg/L for zirconium with linear dynamics ranges that cover at least two orders of magnitude, i.e., between 0–500 μg/L and 20–200 μg/L, respectively. These experimental data demonstrated that the MPT-MS is a promising and useful tool in field analysis of titanium and zirconium ions in water, and can be applied in many fields, such as environmental control, hydrogeology, and water quality inspection. In addition, MPT-MS could also be used as a supplement of ICP-MS for the rapid and on-site analysis of metal ions. PMID:28954404
Pan, Zhiran; Liang, Hailong; Liang, Chabhufi; Xu, Wen
2015-01-01
A method for qualitative analysis of constituents in Polygonum cuspidatum by ultra-high-pressure liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap MS) has been established. The methanol extract of Polygonum cuspidatumrn was separated on a Waters UPLC C18 column using acetonitrile-water (containing formic acid) eluting system and detected by LTQ-Orbitrap hybrid mass spectrometer in negative mode. The targeted components were further fragmented in LTQ and high accuracy data were acquired by Orbitrap MS. The summarized fragmentation pathways of typical reference components and a diagnostic fragment ions-searching-based strategy were used for detection and identification of the main phenolic components in Polygonum cuspidatum. Other clues such as nitrogen rule, even electron rule, degree of unsaturation rule and isotopic peak data were included for the structural elucidation as well. The whole analytical procedure was within 10 min and more than 30 components were identified or tentatively identified. This method is helpful for further phytochemical research and quality control on Polygonum cuspidatum and related preparations.
Evaluation of the New MALDI Matrix 4-Chloro-α-Cyanocinnamic Acid
Leszyk, John D.
2010-01-01
MALDI-TOF continues to be an important tool for many proteomic studies. Recently, a new rationally designed matrix 4-chloro-α-cyanocinnamic acid was introduced, which is reported to have superior performance as compared with the “gold standard” α-cyano-4-hydroxycinnamic acid (CHCA).1 In this study, the performance of this new matrix, using the Shimadzu Biotech Axima TOF2 (Shimadzu Biotech, Manchester, UK), was investigated. The overall sequence coverage as well as sensitivity of this matrix were compared with CHCA using standard protein tryptic digests. The performance of this matrix with labile peptides, such as phosphopeptides and 4-sulfophenyl isothiocynate-derivatized peptides, to facilitate de novo sequencing was also explored. This matrix was found to be better performing than CHCA in overall sensitivity and showed better sequence coverage at low-digest levels, partly as a result of less of a bias for arginine-containing peptides. It also showed as much as a tenfold improvement in sensitivity with labile peptides on standard stainless-steel targets. In addition, as a result of the much cooler nature of this matrix, labile peptides are readily seen intact with much less fragmentation in mass spectrometry (MS) mode. This matrix was also evaluated in the MS/MS fragmentation modes of post-source decay (PSD) and collisional-induced dissociation (CID). It was found that fragmentation occurs readily in CID, however as a result of the very cool nature of this new matrix, the PSD fragments were quite weak. This matrix promises to be an important addition to the already extensive array of MALDI matrices. PMID:20592871
NASA Astrophysics Data System (ADS)
Halim, Mohammad A.; Girod, Marion; MacAleese, Luke; Lemoine, Jérôme; Antoine, Rodolphe; Dugourd, Philippe
2016-09-01
Herein we report the successful implementation of the consecutive and simultaneous photodissociation with high (213 nm) and low (10.6 μm) energy photons (HiLoPD, high-low photodissociation) on ubiquitin in a quadrupole-Orbitrap mass spectrometer. Absorption of high-energy UV photon is dispersed over the whole protein and stimulates extensive C-Cα backbone fragmentation, whereas low-energy IR photon gradually increases the internal energy and thus preferentially dissociates the most labile amide (C-N) bonds. We noticed that simultaneous irradiation of UV and IR lasers on intact ubiquitin in a single MS/MS experiment provides a rich and well-balanced fragmentation array of a/x, b/y, and z ions. Moreover, secondary fragmentation from a/x and z ions leads to the formation of satellite side-chain ions (d, v, and w) and can help to distinguish isomeric residues in a protein. Implementation of high-low photodissociation in a high-resolution mass spectrometer may offer considerable benefits to promote a comprehensive portrait of protein characterization.
Centeno, José A; Rogers, Duane A; van der Voet, Gijsbert B; Fornero, Elisa; Zhang, Lingsu; Mullick, Florabel G; Chapman, Gail D; Olabisi, Ayodele O; Wagner, Dean J; Stojadinovic, Alexander; Potter, Benjamin K
2014-01-23
The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD) directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU), tungsten (W), lead (Pb), and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF), scanning electron microscopy (SEM), laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS), and confocal laser Raman microspectroscopy (CLRM). Quantitative chemical analysis of both fragments and available tissues was conducted employing ICP-MS. Over 800 fragments have been characterized and included as part of the Joint Pathology Center Embedded Fragment Registry. Most fragments were obtained from penetrating wounds sustained to the extremities, particularly soft tissue injuries. The majority of the fragments were primarily composed of a single metal such as iron, copper, or aluminum with traces of antimony, titanium, uranium, and lead. One case demonstrated tungsten in both the fragment and the connected tissue, together with lead. Capsular tissue and fragments from a case from the 1991 Kuwait conflict showed evidence of uranium that was further characterized by uranium isotopic ratios analysis to contain depleted uranium. The present study provides a systematic approach for obtaining a full chemical characterization of retained embedded fragments. Given the vast number of combat casualties with retained fragments, it is expected that fragment analysis will have significant implications for the optimal short and long-term care of wounded service members.
Embedded Fragments from U.S. Military Personnel—Chemical Analysis and Potential Health Implications
Centeno, José A.; Rogers, Duane A.; van der Voet, Gijsbert B.; Fornero, Elisa; Zhang, Lingsu; Mullick, Florabel G.; Chapman, Gail D.; Olabisi, Ayodele O.; Wagner, Dean J.; Stojadinovic, Alexander; Potter, Benjamin K.
2014-01-01
Background: The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD) directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. Objectives: The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. Methods: We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU), tungsten (W), lead (Pb), and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF), scanning electron microscopy (SEM), laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS), and confocal laser Raman microspectroscopy (CLRM). Quantitative chemical analysis of both fragments and available tissues was conducted employing ICP-MS. Results: Over 800 fragments have been characterized and included as part of the Joint Pathology Center Embedded Fragment Registry. Most fragments were obtained from penetrating wounds sustained to the extremities, particularly soft tissue injuries. The majority of the fragments were primarily composed of a single metal such as iron, copper, or aluminum with traces of antimony, titanium, uranium, and lead. One case demonstrated tungsten in both the fragment and the connected tissue, together with lead. Capsular tissue and fragments from a case from the 1991 Kuwait conflict showed evidence of uranium that was further characterized by uranium isotopic ratios analysis to contain depleted uranium. Conclusions: The present study provides a systematic approach for obtaining a full chemical characterization of retained embedded fragments. Given the vast number of combat casualties with retained fragments, it is expected that fragment analysis will have significant implications for the optimal short and long-term care of wounded service members. PMID:24464236
Flavonoid Constituents of Phlomis (Lamiaceae) Species Using Liquid Chromatography Mass Spectrometry.
Aghakhani, Fatemeh; Kharazian, Navaz; Lori Gooini, Zahra
2018-03-01
Phlomis is one of the medicinal genera of Lamiaceae. This genus has unique medicinal properties. Consequently, appropriate methods need to be described for the identification of the chemical compounds. A liquid chromatography tandem mass spectrometry (LC-MS/MS) technique on a triple quadrupole mass spectrometer (TQMS) was used for separation and identification of leaf flavonoid compounds for seven Phlomis species including Phlomis kurdia, Ph. aucheri, Ph. olivieri, Ph. bruguieri, Ph. persica, Ph. anisodonta and Ph. elliptica. The flavonoid solution of air-dried leaves (10.5 g) was extracted using 85% methanol. The chromatogram was treated with three systems: methanol-water, chloroform-methanol and acetic acid. The extracts were analysed using LC-MS/MS. The MS 2 detection was performed under negative mode electrospray ionisation (ESI). The identification of constituents was based on authentic references used in the identification process. A total of 35 chemical compounds were detected from which 32 were identified as flavonoids through comparison with published literature and reference standards. These compounds were distributed in four flavonoid classes. Flavones (12), flavonols (11), flavanones (8) and flavane (1) were the main groups appearing in almost all of the studied samples. The flavonoids such as naringenin, chrysoeriol, eriodictyol, dimethoxyflavanone, apigenin, luteolin, kaempferol and rhamnetin were in high proportions. Moreover, 22 flavonoid compounds were first reported in this study for Phlomis species. The fragmentation patterns of the compounds during collision induced dissociation (CID) clarified information of the compounds analysed. The detailed flavonoid compositions of Phlomis species provide the appropriate context from phytochemical and phytotherapeutics points of view. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Cao, Di; Wang, Qing; Jin, Jing; Qiu, Maosong; Zhou, Lian; Zhou, Xinghong; Li, Hui; Zhao, Zhongxiang
2018-03-01
Ilex pubescens Hook et Arn mainly contains triterpenoids that possess antithrombotic, anti-inflammatory and analgesic effects. Quantitative and qualitative analyses of the triterpenoids in I. pubescens can be useful for determining the authenticity and quality of raw materials and guiding its clinical preparation. To establish a method for rapid and comprehensive analysis of triterpenoids in I. pubescens using ultra-high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight-mass spectrometry (UPLC-ESI-QTOF-MS), which will also be applied to evaluate the contents of nine triterpenoids among root, root heartwood and root bark of I. pubescens to judge the value of the root bark to avoid wastage. UPLC-ESI-QTOF-MS data from the extracts of I. pubescens in negative mode were analysed using Peakview and Masterview software that provided molecular weight, mass errors, isotope pattern fit and MS/MS fragments for the identification of triterpenoids. The quantification of nine investigated compounds of I. pubescens was accomplished using MultiQuant software. A total of 33 triterpenoids, five phenolic acids, two lignans and a flavonol were characterised in only 14 min. The total content of the nine compounds in the root bark was generally slightly higher than that of the root and root heartwood, which has not been reported before. The developed UPLC-ESI-QTOF-MS method was proven to be rapid and comprehensive for simultaneous qualitative and quantitative analyses of the characteristic triterpenoids in I. pubescens. The results may provide a basis for holistic quality control and metabolic studies of I. pubescens, as well as serve as a reference for the analysis of other Ilex plants. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Peixoto, Maria Paula Garofo; Kaiser, Samuel; Verza, Simone Gasparin; de Resende, Pedro Ernesto; Treter, Janine; Pavei, Cabral; Borré, Gustavo Luís; Ortega, George González
2012-01-01
Ilex paraguariensis A. St. Hil. (mate) is known in several South American countries because of the use of its leaves in stimulant herbal beverages. High saponin contents were reported in mate leaves and unripe fruits that possess a dissimilar composition. Two LC-UV methods previously reported for mate saponins assay focused on mate leaves and the quantification of the less polar saponin fraction in mate fruits. To develop and validate a LC-UV method to assay the total content of saponins in unripe mate fruits and characterise the chemical structure of triterpenic saponins by UPLC/Q-TOF-MS. From unripe fruits of mate a crude ethanolic extract was prepared (EX40) and the mate saponin fraction (MSF) purified by solid phase extraction. The LC-UV method was validated using ilexoside II as external standard. UPLC/Q-TOF-MS was adjusted from the LC-UV method to obtain the fragmentation patterns of the main saponins present in unripe fruits. Both LC-UV and UPLC/Q-TOF-MS methods indicate a wide range of Ilex saponins polarity. The ilexoside II and total saponin content of EX40 were 8.20% (w/w) and 47.60% (w/w), respectively. The total saponin content in unripe fruits was 7.28% (w/w). The saponins present in MSF characterised by UPLC/Q-TOF-MS are derived mainly from ursolic/oleanolic, acetyl ursolic or pomolic acid. The validated LC-UV method was shown to be linear, precise, accurate and to cover several saponins previously isolated from Ilex species and could be applied for the quality control of unripe fruit saponins. Copyright © 2011 John Wiley & Sons, Ltd.
Lehotay, Steven J; Mastovska, Katerina; Lightfield, Alan R; Nuñez, Alberto; Dutko, Terry; Ng, Chilton; Bluhm, Louis
2013-10-25
A high-throughput qualitative screening and identification method for 9 aminoglycosides of regulatory interest has been developed, validated, and implemented for bovine kidney, liver, and muscle tissues. The method involves extraction at previously validated conditions, cleanup using disposable pipette extraction, and analysis by a 3 min ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. The drug analytes include neomycin, streptomycin, dihydrosptreptomycin, and spectinomycin, which have residue tolerances in bovine in the US, and kanamicin, gentamicin, apramycin, amikacin, and hygromycin, which do not have US tolerances established in bovine tissues. Tobramycin was used as an internal standard. An additional drug, paromomycin also was validated in the method, but it was dropped during implementation due to conversion of neomycin into paromomycin. Proposed fragmentation patterns for the monitored ions of each analyte were elucidated with the aid of high resolution MS using a quadrupole-time-of-flight instrument. Recoveries from spiking experiments at regulatory levels of concern showed that all analytes averaged 70-120% recoveries in all tissues, except hygromycin averaged 61% recovery. Lowest calibrated levels were as low as 0.005 μg/g in matrix extracts, which approximately corresponded to the limit of detection for screening purposes. Drug identifications at levels <0.05 μg/g were made in spiked and/or real samples for all analytes and tissues tested. Analyses of 60 samples from 20 slaughtered cattle previously screened positive for aminoglycosides showed that this method worked well in practice. The UHPLC-MS/MS method has several advantages compared to the previous microbial inhibition screening assay, especially for distinguishing individual drugs from a mixture and improving identification of gentamicin in tissue samples. Published by Elsevier B.V.
Su, Dian G. T.; Kao, Jeffrey L.-F.; Gross, Michael L.; Taylor, John-Stephen A.
2009-01-01
UVB irradiation of DNA produces photodimers in adjacent DNA bases and on rare occasions in non-adjacent bases. UVB irradiation (312 nm) of d(GTATCATGAGGTGC) gave rise to an unknown DNA photoproduct in approximately 40% yield at acidic pH of about 5. This product has a much shorter retention time in reverse phase HPLC compared to known dipyrimidine photoproducts of this sequence. A large upfield shift of two thymine H6 NMR signals and photoreversion to the parent ODN upon irradiation with 254 nm light indicates that the photoproduct is a cyclobutane thymine dimer. Exonuclease-coupled MS assay establishes that the photodimer forms between T2 and T7, which was confirmed by tandem mass spectrometric MS/MS identification of the endonuclease P1 digestion product d(T2[A3])=pd(T7[G8]). Acidic hydrolysis of the photoproduct gave a product with the same retention time on reverse phase HPLC and the same MS/MS fragmentation pattern as authentic Thy[c,a]Thy. 2D NOE NMR data are consistent with a cis-anti cyclobutane dimer between the 3′-sides of T2 and T7 in anti glycosyl conformations that had to have arisen from an inter-stand type reaction. In addition to pH-dependent, the photoproduct yield is highly sequence specific and concentration dependent, indicating that it results from a higher order folded structure. The efficient formation of this inter-strand-type photoproduct suggests the existence of a new type of folding motif and the possibility that this type of photoproduct might also form in other folded structures, such as G-quadruplexes and i-motif structures which can be now studied by the methods described. PMID:18680367
Graumann, Johannes; Scheltema, Richard A; Zhang, Yong; Cox, Jürgen; Mann, Matthias
2012-03-01
In the analysis of complex peptide mixtures by MS-based proteomics, many more peptides elute at any given time than can be identified and quantified by the mass spectrometer. This makes it desirable to optimally allocate peptide sequencing and narrow mass range quantification events. In computer science, intelligent agents are frequently used to make autonomous decisions in complex environments. Here we develop and describe a framework for intelligent data acquisition and real-time database searching and showcase selected examples. The intelligent agent is implemented in the MaxQuant computational proteomics environment, termed MaxQuant Real-Time. It analyzes data as it is acquired on the mass spectrometer, constructs isotope patterns and SILAC pair information as well as controls MS and tandem MS events based on real-time and prior MS data or external knowledge. Re-implementing a top10 method in the intelligent agent yields similar performance to the data dependent methods running on the mass spectrometer itself. We demonstrate the capabilities of MaxQuant Real-Time by creating a real-time search engine capable of identifying peptides "on-the-fly" within 30 ms, well within the time constraints of a shotgun fragmentation "topN" method. The agent can focus sequencing events onto peptides of specific interest, such as those originating from a specific gene ontology (GO) term, or peptides that are likely modified versions of already identified peptides. Finally, we demonstrate enhanced quantification of SILAC pairs whose ratios were poorly defined in survey spectra. MaxQuant Real-Time is flexible and can be applied to a large number of scenarios that would benefit from intelligent, directed data acquisition. Our framework should be especially useful for new instrument types, such as the quadrupole-Orbitrap, that are currently becoming available.
Graumann, Johannes; Scheltema, Richard A.; Zhang, Yong; Cox, Jürgen; Mann, Matthias
2012-01-01
In the analysis of complex peptide mixtures by MS-based proteomics, many more peptides elute at any given time than can be identified and quantified by the mass spectrometer. This makes it desirable to optimally allocate peptide sequencing and narrow mass range quantification events. In computer science, intelligent agents are frequently used to make autonomous decisions in complex environments. Here we develop and describe a framework for intelligent data acquisition and real-time database searching and showcase selected examples. The intelligent agent is implemented in the MaxQuant computational proteomics environment, termed MaxQuant Real-Time. It analyzes data as it is acquired on the mass spectrometer, constructs isotope patterns and SILAC pair information as well as controls MS and tandem MS events based on real-time and prior MS data or external knowledge. Re-implementing a top10 method in the intelligent agent yields similar performance to the data dependent methods running on the mass spectrometer itself. We demonstrate the capabilities of MaxQuant Real-Time by creating a real-time search engine capable of identifying peptides “on-the-fly” within 30 ms, well within the time constraints of a shotgun fragmentation “topN” method. The agent can focus sequencing events onto peptides of specific interest, such as those originating from a specific gene ontology (GO) term, or peptides that are likely modified versions of already identified peptides. Finally, we demonstrate enhanced quantification of SILAC pairs whose ratios were poorly defined in survey spectra. MaxQuant Real-Time is flexible and can be applied to a large number of scenarios that would benefit from intelligent, directed data acquisition. Our framework should be especially useful for new instrument types, such as the quadrupole-Orbitrap, that are currently becoming available. PMID:22171319
Ferreres, Federico; Gil-Izquierdo, Angel; Valentão, Patrícia; Andrade, Paula B
2011-11-30
The metabolite profiling of Gomphrena globosa inflorescences was performed by high-performance liquid chromatography-diode array detection/electrospray ionization multi-stage mass spectrometry (HPLC-DAD/ESI-MS(n)). Based on the fragmentation patterns, 24 phenolic compounds were characterized. The identified phenolics include p-coumaric and ferulic acids, quercetin, kaempferol, isorhamnetin, and hydroxylated 6,7-methylenedioxyflavone derivatives, as well as their aglycones, none of them reported before in the species. This is also the first time that tetrahydroxy-methylenedioxyflavone derivatives and acetylglycosides are described in nature. Betacyanins were also found. This study significantly extends the knowledge of the G. globosa metabolome, by providing further insights into its phenolic composition. Copyright © 2011 John Wiley & Sons, Ltd.
Pont, Laura; Benavente, Fernando; Barbosa, José; Sanz-Nebot, Victoria
2017-08-01
This paper describes an on-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry (IA-SPE-CE-MS) method using an immunoaffinity sorbent with Fab' antibody fragments (Fab'-IA) for the analysis of serum transthyretin (TTR), a homotetrameric protein (M r ~56,000) involved in different types of amyloidosis. The IA sorbent was prepared by covalent attachment of Fab' fragments obtained from a polyclonal IgG antibody against TTR to succinimidyl silica particles. The Fab'-IA-SPE-CE-MS methodology was first established analyzing TTR standard solutions. Under optimized conditions, repeatability and reproducibility were acceptable, the method was linear between 1 and 25µgmL -1 , limits of detection (LODs) were around 0.5µgmL -1 (50-fold lower than by CE-MS, ~25µgmL -1 ) and different TTR conformations were observed (folded and unfolded). The applicability of the developed method to screen for familial amyloidotic polyneuropathy type I (FAP-I), which is the most common hereditary systemic amyloidosis, was evaluated analyzing serum samples from healthy controls and FAP-I patients. For the analysis of sera, the most abundant proteins were precipitated with 5% (v/v) of phenol before Fab'-IA-SPE-CE-MS. The current method enhanced our previous results for the analysis of TTR using intact antibodies immobilized on magnetic beads. It allowed a slight improvement on LODs (2-fold), the detection of proteoforms found at lower concentrations and the preparation of microcartridges with extended durability. Copyright © 2017. Published by Elsevier B.V.
Mancera-Arteu, Montserrat; Giménez, Estela; Barbosa, José; Peracaula, Rosa; Sanz-Nebot, Victòria
2017-10-23
In this work, a μZIC-HILIC-MS/MS methodology was established in negative ion mode for the characterization of glycan isomers. The possibility to separate the glycan isomers by the μZIC-HILIC strategy coupled to a high resolution tandem mass spectrometry detection permitted us to obtain valuable information about each glycan structure. The most important diagnostic ion fragments previously described to characterize structural features of glycans, were evaluated in this study using hAGP as model glycoprotein. The assignation of hAGP glycan isomers performed in our previous work using the GRIL strategy in combination with exoglycosidase digestion [1] was used in this paper to confirm or discard some ion fragments reported in the literature and delve into the structural characterization of glycan isomers. Sialic acid as well as fucose linkage-type glycan isomers were assigned using this approach and daughter ions with higher diagnostic value were determined. The location of α2-3/α2-6 sialic acids on antennas and a deeper characterization of several highly sialylated tri- and tetraantennary glycans was also possible using the established MS/MS method. Moreover, relying on the characterization performed in Ref. [1], core and antenna fucosylation were differentiated in this work using specific ion fragments obtained in the tandem mass spectra. This methodology was also applied to hAGP purified from control and pathological serum samples, which corroborated its robustness and its potential for finding novel glycan-based biomarkers in patho-glycomic studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Wu, Lianming; Liu, David Q; Vogt, Frederick G
2006-01-01
Fragmentation mechanisms of trans-1,4-diphenyl-2-butene-1,4-dione were studied using a variety of mass spectrometric techniques. The major fragmentation pathways occur by various rearrangements by loss of H(2)O, CO, H(2)O and CO, and CO(2). The other fragmentation pathways via simple alpha cleavages were also observed but accounted for the minor dissociation channels in both a two-dimensional (2-D) linear ion trap and a quadrupole time-of-flight (Q-TOF) mass spectrometer. The elimination of CO(2) (rather than CH(3)CHO or C(3)H(8)), which was confirmed by an exact mass measurement using the Q-TOF instrument, represented a major fragmentation pathway in the 2-D linear ion trap mass spectrometer. However, the elimination of H(2)O and CO becomes more competitive in the beam-type Q-TOF instrument. The loss of CO is observed in both the MS(2) experiment of m/z 237 and the MS(3) experiment of m/z 219 but via the different transition states. The data suggest that the olefinic double bond in protonated trans-1,4-diphenyl-2-butene-1,4-dione plays a key role in stabilizing the rearrangement transition states and increasing the bond dissociation (cleavage) energy to give favorable rearrangement fragmentation pathways. Copyright (c) 2006 John Wiley & Sons, Ltd.
Zhang, Xinxin; Liang, Jinru; Liu, Jianli; Zhao, Ye; Gao, Juan; Sun, Wenji; Ito, Yoichiro
2014-03-01
In this study, a fingerprint of steroid saponins, the major bioactive constituents in the crude extracts from Dioscorea zingiberensis C. H. Wright (DZW), has been established for the first time by combined use of the following two methods: high-performance liquid chromatography coupled with evaporative light scattering detector (HPLC-ELSD) and the simultaneous characterization of the steroid saponins by high-performance liquid chromatography coupled with electrospray ionization-mass spectrometry and quadrupole tandem time-of-fight mass analyzers detection (HPLC-ESI-Q/TOF). All HPLC analyses were carried out on a Welchrom C18 column (250mm×4.6mm I.D., 5μm) with a mobile phase composed of water and acetonitrile under gradient elution. There were 68 common characteristic peaks in the fingerprints, in which 12 of them were confirmed by comparing their mass spectra and retention times with those of the reference compounds. In order to identify other unknown peaks, their fragmentation behaviors characteristic of the major groups of steroid saponins from DZW with six types of aglycone skeletons were discussed in detail, and possible MS/MS fragmentation pathways were proposed for aiding the structural identification of these components. According to the summarized fragmentation patterns, these peaks were tentatively assigned by matching their empirical molecular formula with those of the published compounds, or by elucidating their quasi-molecular ions and fragment ions referring to available literature information when the reference standards were unavailable. As a result, 22 new steroid saponins were found in DZW for the first time. In addition, the quantitative analysis of the nine (except for the reference compounds A, B, and C) known peaks was accomplished at the same time which indicated that there was a great variability in the amount of these active compounds in different batches in the crude extracts. This approach could demonstrate that the fingerprint could be considered to be a suitable tool to comprehensively improve the quality control of DZW. The identification and structural elucidation of the peaks in the fingerprint may provide important experimental data for further pharmacological and clinical researches. Copyright © 2014. Published by Elsevier B.V.
Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales
NASA Astrophysics Data System (ADS)
Mitchell, Matthew G. E.; Bennett, Elena M.; Gonzalez, Andrew
2015-09-01
Human actions, such as converting natural land cover to agricultural or urban land, result in the loss and fragmentation of natural habitat, with important consequences for the provision of ecosystem services. Such habitat loss is especially important for services that are supplied by fragments of natural land cover and that depend on flows of organisms, matter, or people across the landscape to produce benefits, such as pollination, pest regulation, recreation and cultural services. However, our quantitative knowledge about precisely how different patterns of landscape fragmentation might affect the provision of these types of services is limited. We used a simple, spatially explicit model to evaluate the potential impact of natural land cover loss and fragmentation on the provision of hypothetical ecosystem services. Based on current literature, we assumed that fragments of natural land cover provide ecosystem services to the area surrounding them in a distance-dependent manner such that ecosystem service flow depended on proximity to fragments. We modeled seven different patterns of natural land cover loss across landscapes that varied in the overall level of landscape fragmentation. Our model predicts that natural land cover loss will have strong and unimodal effects on ecosystem service provision, with clear thresholds indicating rapid loss of service provision beyond critical levels of natural land cover loss. It also predicts the presence of a tradeoff between maximizing ecosystem service provision and conserving natural land cover, and a mismatch between ecosystem service provision at landscape versus finer spatial scales. Importantly, the pattern of landscape fragmentation mitigated or intensified these tradeoffs and mismatches. Our model suggests that managing patterns of natural land cover loss and fragmentation could help influence the provision of multiple ecosystem services and manage tradeoffs and synergies between services across different human-dominated landscapes.
Zhang, Yu-Zhen; Zhang, Jia-Wei; Wang, Chong-Zhi; Zhou, Lian-Di; Zhang, Qi-Hui; Yuan, Chun-Su
2018-01-24
In this work, a modified pretreatment method using magnetic molecularly imprinted polymers (MMIPs) was successfully applied to study the metabolites of an important botanical with ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The MMIPs for glucoside-specific adsorption was used to identify metabolites of Pulsatilla chinensis in rat feces. Polymers were prepared by using Fe 3 O 4 nanoparticles as the supporting matrix, d-glucose as fragment template, and dopamine as the functional monomer and cross-linker. Results showed that MMIPs exhibited excellent extraction performance, large adsorption capacity (5.65 mg/g), fast kinetics (60 min), and magnetic separation. Furthermore, the MMIPs coupled with UPLC-Q-TOF-MS were successfully utilized for the identification of 17 compounds including 15 metabolites from the Pulsatilla saponin metabolic pool. This study provides a reliable protocol for the separation and identification of saponin metabolites in a complex biological sample, including those from herbal medicines.