Sample records for ms post stimulus

  1. Time-resolved neuroimaging of visual short term memory consolidation by post-perceptual attention shifts.

    PubMed

    Hecht, Marcus; Thiemann, Ulf; Freitag, Christine M; Bender, Stephan

    2016-01-15

    Post-perceptual cues can enhance visual short term memory encoding even after the offset of the visual stimulus. However, both the mechanisms by which the sensory stimulus characteristics are buffered as well as the mechanisms by which post-perceptual selective attention enhances short term memory encoding remain unclear. We analyzed late post-perceptual event-related potentials (ERPs) in visual change detection tasks (100ms stimulus duration) by high-resolution ERP analysis to elucidate these mechanisms. The effects of early and late auditory post-cues (300ms or 850ms after visual stimulus onset) as well as the effects of a visual interference stimulus were examined in 27 healthy right-handed adults. Focusing attention with post-perceptual cues at both latencies significantly improved memory performance, i.e. sensory stimulus characteristics were available for up to 850ms after stimulus presentation. Passive watching of the visual stimuli without auditory cue presentation evoked a slow negative wave (N700) over occipito-temporal visual areas. N700 was strongly reduced by a visual interference stimulus which impeded memory maintenance. In contrast, contralateral delay activity (CDA) still developed in this condition after the application of auditory post-cues and was thereby dissociated from N700. CDA and N700 seem to represent two different processes involved in short term memory encoding. While N700 could reflect visual post processing by automatic attention attraction, CDA may reflect the top-down process of searching selectively for the required information through post-perceptual attention. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Visual awareness suppression by pre-stimulus brain stimulation; a neural effect.

    PubMed

    Jacobs, Christianne; Goebel, Rainer; Sack, Alexander T

    2012-01-02

    Transcranial magnetic stimulation (TMS) has established the functional relevance of early visual cortex (EVC) for visual awareness with great temporal specificity non-invasively in conscious human volunteers. Many studies have found a suppressive effect when TMS was applied over EVC 80-100 ms after the onset of the visual stimulus (post-stimulus TMS time window). Yet, few studies found task performance to also suffer when TMS was applied even before visual stimulus presentation (pre-stimulus TMS time window). This pre-stimulus TMS effect, however, remains controversially debated and its origin had mainly been ascribed to TMS-induced eye-blinking artifacts. Here, we applied chronometric TMS over EVC during the execution of a visual discrimination task, covering an exhaustive range of visual stimulus-locked TMS time windows ranging from -80 pre-stimulus to 300 ms post-stimulus onset. Electrooculographical (EoG) recordings, sham TMS stimulation, and vertex TMS stimulation controlled for different types of non-neural TMS effects. Our findings clearly reveal TMS-induced masking effects for both pre- and post-stimulus time windows, and for both objective visual discrimination performance and subjective visibility. Importantly, all effects proved to be still present after post hoc removal of eye blink trials, suggesting a neural origin for the pre-stimulus TMS suppression effect on visual awareness. We speculate based on our data that TMS exerts its pre-stimulus effect via generation of a neural state which interacts with subsequent visual input. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Effects of attention bias modification with short and long stimulus-duration: A randomized experiment with individuals with subclinical social anxiety.

    PubMed

    Liang, Chi-Wen; Hsu, Wen-Yau

    2016-06-30

    This study investigated the differential effects of two attention bias modification (ABM) with different stimulus durations. Seventy-two undergraduates with subclinical social anxiety were randomly assigned to one of four conditions: an ABM condition with either a 100-ms or a 500-ms stimulus duration (ABM-100/ ABM-500) or an attention placebo (AP) condition with either a 100-ms or a 500-ms stimulus duration (AP-100/ AP-500). Participants completed the pre-assessments, eight attentional training sessions, and post-assessments. A modified Posner paradigm was used to assess changes in attentional processing. After completion of attentional training, the ABM-100 group significantly speeded up their responses to 100-ms invalid trials, regardless of the word type. The ABM-100 group also exhibited significant reduced latencies to 500-ms invalid social threat trials and a marginally significant reduced latencies to 500-ms invalid neutral trials. The ABM-500 group showed significant reduced latencies to 500-ms invalid social threat trials. Both ABMs significantly reduced participants' fear of negative evaluations and interactional anxiousness relative to their comparative AP. The effects on social anxiety did not differ between the two ABMs. This study suggests that although both ABMs using short and long stimulus durations reduce some aspects of social anxiety, they influence participants' attentional disengagement in different ways. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Pre-stimulus EEG oscillations correlate with perceptual alternation of speech forms.

    PubMed

    Barraza, Paulo; Jaume-Guazzini, Francisco; Rodríguez, Eugenio

    2016-05-27

    Speech perception is often seen as a passive process guided by physical stimulus properties. However, ongoing brain dynamics could influence the subsequent perceptual organization of the speech, to an as yet unknown extent. To elucidate this issue, we analyzed EEG oscillatory activity before and immediately after the repetitive auditory presentation of words inducing the so-called verbal transformation effect (VTE), or spontaneous alternation of meanings due to its rapid repetition. Subjects indicated whether the meaning of the bistable word changed or not. For the Reversal more than for the Stable condition, results show a pre-stimulus local alpha desynchronization (300-50ms), followed by an early post-stimulus increase of local beta synchrony (0-80ms), and then a late increase and decrease of local alpha (200-340ms) and beta (360-440ms) synchrony respectively. Additionally, the ERPs showed that reversal positivity (RP) and reversal negativity components (RN), along with a late positivity complex (LPC) correlate with switching between verbal forms. Our results show how the ongoing dynamics brain is actively involved in the perceptual organization of the speech, destabilizing verbal perceptual states, and facilitating the perceptual regrouping of the elements composing the linguistic auditory stimulus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Cortical sources of visual evoked potentials during consciousness of executive processes.

    PubMed

    Babiloni, Claudio; Vecchio, Fabrizio; Iacoboni, Marco; Buffo, Paola; Eusebi, Fabrizio; Rossini, Paolo Maria

    2009-03-01

    What is the timing of cortical activation related to consciousness of visuo-spatial executive functions? Electroencephalographic data (128 channels) were recorded in 13 adults. Cue stimulus briefly appeared on right or left (equal probability) monitor side for a period, inducing about 50% of recognitions. It was then masked and followed (2 s) by a central visual go stimulus. Left (right) mouse button had to be clicked after right (left) cue stimulus. This "inverted" response indexed executive processes. Afterward, subjects said "seen" if they had detected the cue stimulus or "not seen" when it was missed. Sources of event-related potentials (ERPs) were estimated by LORETA software. The inverted responses were about 95% in seen trials and about 60% in not seen trials. Cue stimulus evoked frontal-parietooccipital potentials, having the same peak latencies in the seen and not seen data. Maximal difference in amplitude of the seen and not seen ERPs was detected at about +300-ms post-stimulus (P3). P3 sources were higher in amplitude in the seen than not seen trials in dorsolateral prefrontal, premotor and parietooccipital areas. This was true in dorsolateral prefrontal and premotor cortex even when percentage of the inverted responses and reaction time were paired in the seen and not seen trials. These results suggest that, in normal subjects, the primary consciousness enhances the efficacy of visuo-spatial executive processes and is sub-served by a late (100- to 400-ms post-stimulus) enhancement of the neural synchronization in frontal areas.

  6. Electrophysiological indices of brain activity to content and function words in discourse.

    PubMed

    Neumann, Yael; Epstein, Baila; Shafer, Valerie L

    2016-09-01

    An increase in positivity of event-related potentials (ERPs) at the lateral anterior sites has been hypothesized to be an index of semantic and discourse processing, with the right lateral anterior positivity (LAP) showing particular sensitivity to discourse factors. However, the research investigating the LAP is limited; it is unclear whether the effect is driven by word class (function word versus content word) or by a more general process of structure building triggered by elements of a determiner phrase (DP). To examine the neurophysiological indices of semantic/discourse integration using two different word categories (function versus content word) in the discourse contexts and to contrast processing of these word categories in meaningful versus nonsense contexts. Planned comparisons of ERPs time locked to a function word stimulus 'the' and a content word stimulus 'cats' in sentence-initial position were conducted in both discourse and nonsense contexts to examine the time course of processing following these word forms. A repeated-measures analysis of variance (ANOVA) for the Discourse context revealed a significant interaction of condition and site due to greater positivity for 'the' relative to 'cats' at anterior and superior sites. In the Nonsense context, there was a significant interaction of condition, time and site due to greater positivity for 'the' relative to 'cats' at anterior sites from 150 to 350 ms post-stimulus offset and at superior sites from 150 to 200 ms post-stimulus offset. Overall, greater positivity for both 'the' and 'cats' was observed in the discourse relative to the nonsense context beginning approximately 150 ms post-stimulus offset. Additionally, topographical analyses were highly correlated for the two word categories when processing meaningful discourse. This topographical pattern could be characterized as a prominent right LAP. The LAP was attenuated when the target stimulus word initiated a nonsense context. The results of this study support the view that the right LAP is an index of general discourse processing rather than an index of word class. These findings demonstrate that the LAP can be used to study discourse processing in populations with compromised metalinguistic skills, such as adults with aphasia or traumatic brain injury. © 2016 Royal College of Speech and Language Therapists.

  7. Disruption of visual awareness during the attentional blink is reflected by selective disruption of late-stage neural processing

    PubMed Central

    Harris, Joseph A.; McMahon, Alex R.; Woldorff, Marty G.

    2015-01-01

    Any information represented in the brain holds the potential to influence behavior. It is therefore of broad interest to determine the extent and quality of neural processing of stimulus input that occurs with and without awareness. The attentional blink is a useful tool for dissociating neural and behavioral measures of perceptual visual processing across conditions of awareness. The extent of higher-order visual information beyond basic sensory signaling that is processed during the attentional blink remains controversial. To determine what neural processing at the level of visual-object identification occurs in the absence of awareness, electrophysiological responses to images of faces and houses were recorded both within and outside of the attentional blink period during a rapid serial visual presentation (RSVP) stream. Electrophysiological results were sorted according to behavioral performance (correctly identified targets versus missed targets) within these blink and non-blink periods. An early index of face-specific processing (the N170, 140–220 ms post-stimulus) was observed regardless of whether the subject demonstrated awareness of the stimulus, whereas a later face-specific effect with the same topographic distribution (500–700 ms post-stimulus) was only seen for accurate behavioral discrimination of the stimulus content. The present findings suggest a multi-stage process of object-category processing, with only the later phase being associated with explicit visual awareness. PMID:23859644

  8. Context-dependent lexical ambiguity resolution: MEG evidence for the time-course of activity in left inferior frontal gyrus and posterior middle temporal gyrus.

    PubMed

    Mollo, Giovanna; Jefferies, Elizabeth; Cornelissen, Piers; Gennari, Silvia P

    An MEG study investigated the role of context in semantic interpretation by examining the comprehension of ambiguous words in contexts leading to different interpretations. We compared high-ambiguity words in minimally different contexts (to bowl, the bowl) to low-ambiguity counterparts (the tray, to flog). Whole brain beamforming revealed the engagement of left inferior frontal gyrus (LIFG) and posterior middle temporal gyrus (LPMTG). Points of interest analyses showed that both these sites showed a stronger response to verb-contexts by 200 ms post-stimulus and displayed overlapping ambiguity effects that were sustained from 300 ms onwards. The effect of context was stronger for high-ambiguity words than for low-ambiguity words at several different time points, including within the first 100 ms post-stimulus. Unlike LIFG, LPMTG also showed stronger responses to verb than noun contexts in low-ambiguity trials. We argue that different functional roles previously attributed to LIFG and LPMTG are in fact played out at different periods during processing. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  9. Interaction of paired cortical and peripheral nerve stimulation on human motor neurons.

    PubMed

    Poon, David E; Roy, Francois D; Gorassini, Monica A; Stein, Richard B

    2008-06-01

    This paper contrasts responses in the soleus muscle of normal human subjects to two major inputs: the tibial nerve (TN) and the corticospinal tract. Paired transcranial magnetic stimulation (TMS) of the motor cortex at intervals of 10-25 ms strongly facilitated the motor evoked potential (MEP) produced by the second stimulus. In contrast, paired TN stimulation produced a depression of the reflex response to the second stimulus. Direct activation of the pyramidal tract did not facilitate a second response, suggesting that the MEP facilitation observed using paired TMS occurred in the cortex. A TN stimulus also depressed a subsequent MEP. Since the TN stimulus depressed both inputs, the mechanism is probably post-synaptic, such as afterhyperpolarization of motor neurons. Presynaptic mechanisms, such as homosynaptic depression, would only affect the pathway used as a conditioning stimulus. When TN and TMS pulses were paired, the largest facilitation occurred when TMS preceded TN by about 5 ms, which is optimal for summation of the two pathways at the level of the spinal motor neurons. A later, smaller facilitation occurred when a single TN stimulus preceded TMS by 50-60 ms, an interval that allows enough time for the sensory afferent input to reach the sensory cortex and be relayed to the motor cortex. Other work indicates that repetitively pairing nerve stimuli and TMS at these intervals, known as paired associative stimulation, produces long-term increases in the MEP and may be useful in strengthening residual pathways after damage to the central nervous system.

  10. Cortical Neural Synchronization Underlies Primary Visual Consciousness of Qualia: Evidence from Event-Related Potentials

    PubMed Central

    Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Millán-Calenti, José Carlos; Del Percio, Claudio; Buján, Ana

    2016-01-01

    This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between “seen” trials and “not seen” trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expression, and written words). Results showed the typical visual ERP components in both “seen” and “not seen” trials. There was no statistical difference in the ERP peak latencies between the “seen” and “not seen” trials, suggesting a similar timing of the cortical neural synchronization regardless the primary visual consciousness. In contrast, ERP sources showed differences between “seen” and “not seen” trials. For the visuospatial stimuli, the primary consciousness was related to higher activity in dorsal occipital and parietal sources at about 400 ms post-stimulus. For the emotional face expressions, there was greater activity in parietal and frontal sources at about 180 ms post-stimulus. For the written letters, there was higher activity in occipital, parietal and temporal sources at about 230 ms post-stimulus. These results hint that primary visual consciousness is associated with an enhanced cortical neural synchronization having entirely different spatiotemporal characteristics as a function of the features of the visual stimuli and possibly, the relative qualia (i.e., visuospatial, face expression, and words). In this framework, the dorsal visual stream may be synchronized in association with the primary consciousness of visuospatial and emotional face contents. Analogously, both dorsal and ventral visual streams may be synchronized in association with the primary consciousness of linguistic contents. In this line of reasoning, the ensemble of the cortical neural networks underpinning the single visual features would constitute a sort of multi-dimensional palette of colors, shapes, regions of the visual field, movements, emotional face expressions, and words. The synchronization of one or more of these cortical neural networks, each with its peculiar timing, would produce the primary consciousness of one or more of the visual features of the scene. PMID:27445750

  11. Words and pictures: An electrophysiological investigation of domain specific processing in native Chinese and English speakers

    PubMed Central

    Yum, Yen Na; Holcomb, Phillip J.; Grainger, Jonathan

    2011-01-01

    Comparisons of word and picture processing using Event-Related Potentials (ERPs) are contaminated by gross physical differences between the two types of stimuli. In the present study, we tackle this problem by comparing picture processing with word processing in an alphabetic and a logographic script, that are also characterized by gross physical differences. Native Mandarin Chinese speakers viewed pictures (line drawings) and Chinese characters (Experiment 1), native English speakers viewed pictures and English words (Experiment 2), and naïve Chinese readers (native English speakers) viewed pictures and Chinese characters (Experiment 3) in a semantic categorization task. The varying pattern of differences in the ERPs elicited by pictures and words across the three experiments provided evidence for i) script-specific processing arising between 150–200 ms post-stimulus onset, ii) domain-specific but script-independent processing arising between 200–300 ms post-stimulus onset, and iii) processing that depended on stimulus meaningfulness in the N400 time window. The results are interpreted in terms of differences in the way visual features are mapped onto higher-level representations for pictures and words in alphabetic and logographic writing systems. PMID:21439991

  12. Earthquake experience interference effects in a modified Stroop task: an ERP study.

    PubMed

    Wei, Dongtao; Qiu, Jiang; Tu, Shen; Tian, Fang; Su, Yanhua; Luo, Yuejia

    2010-05-03

    The effects of the modified Stroop task on ERP were investigated in 20 subjects who had experienced the Sichuan earthquake and a matched control group. ERP data showed that Incongruent stimuli elicited a more negative ERP deflection (N300-450) than did Congruent stimuli between 300 and 450 ms post-stimulus in the earthquake group but not found in the control group, and the N300-450 might reflect conflict monitor (the information of color and meaning do not match) in the early phase of perception identification due to their sensitivity to the external stimulus. Then, Incongruent stimuli elicited a more negative ERP deflection than did Congruent stimuli between 450 and 650 ms post-stimulus in both the groups. Dipole source analysis showed that the N450-650 was mainly generated in the ACC contributed to this effect in the control group, which might be related to monitor and conflict resolution. However, in the earthquake group, the N450-650 was generated in the thalamus, which might be involved in inhibiting and compensating of the ACC which may be related to conflict resolution process. 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Does the Brain Detect 3G Mobile Phone Radiation Peaks? An Explorative In-Depth Analysis of an Experimental Study

    PubMed Central

    Roggeveen, Suzanne; van Os, Jim; Lousberg, Richel

    2015-01-01

    This study aimed to investigate whether third generation mobile phone radiation peaks result in event related potentials. Thirty-one healthy females participated. In this single-blind, cross-over design, a 15 minute mobile phone exposure was compared to two 15 minute sham phone conditions, one preceding and one following the exposure condition. Each participant was measured on two separate days, where mobile phone placement was varied between the ear and heart. EEG activity and radiofrequency radiation were recorded jointly. Epochs of 1200ms, starting 200ms before and lasting until 1000ms after the onset of a radiation peak, were extracted from the exposure condition. Control epochs were randomly selected from the two sham phone conditions. The main a-priori hypothesis to be tested concerned an increase of the area in the 240-500ms post-stimulus interval, in the exposure session with ear-placement. Using multilevel regression analyses the placement*exposure interaction effect was significant for the frontal and central cortical regions, indicating that only in the mobile phone exposure with ear-placement an enlarged cortical reactivity was found. Post-hoc analyses based on visual inspection of the ERPs showed a second significantly increased area between 500-1000ms post-stimulus for almost every EEG location measured. It was concluded that, when a dialing mobile phone is placed on the ear, its radiation, although unconsciously, is electrically detected by the brain. The question of whether or not this cortical reactivity results in a negative health outcome has to be answered in future longitudinal experiments. PMID:25962168

  14. Does the Brain Detect 3G Mobile Phone Radiation Peaks? An Explorative In-Depth Analysis of an Experimental Study.

    PubMed

    Roggeveen, Suzanne; van Os, Jim; Lousberg, Richel

    2015-01-01

    This study aimed to investigate whether third generation mobile phone radiation peaks result in event related potentials. Thirty-one healthy females participated. In this single-blind, cross-over design, a 15 minute mobile phone exposure was compared to two 15 minute sham phone conditions, one preceding and one following the exposure condition. Each participant was measured on two separate days, where mobile phone placement was varied between the ear and heart. EEG activity and radiofrequency radiation were recorded jointly. Epochs of 1200 ms, starting 200 ms before and lasting until 1000 ms after the onset of a radiation peak, were extracted from the exposure condition. Control epochs were randomly selected from the two sham phone conditions. The main a-priori hypothesis to be tested concerned an increase of the area in the 240-500 ms post-stimulus interval, in the exposure session with ear-placement. Using multilevel regression analyses the placement*exposure interaction effect was significant for the frontal and central cortical regions, indicating that only in the mobile phone exposure with ear-placement an enlarged cortical reactivity was found. Post-hoc analyses based on visual inspection of the ERPs showed a second significantly increased area between 500-1000 ms post-stimulus for almost every EEG location measured. It was concluded that, when a dialing mobile phone is placed on the ear, its radiation, although unconsciously, is electrically detected by the brain. The question of whether or not this cortical reactivity results in a negative health outcome has to be answered in future longitudinal experiments.

  15. Dissociating Long and Short-term Memory in Three-Month-Old Infants Using the Mismatch Response to Voice Stimuli

    PubMed Central

    Zinke, Katharina; Thöne, Leonie; Bolinger, Elaina M.; Born, Jan

    2018-01-01

    Auditory event-related potentials (ERPs) have been successfully used in adults as well as in newborns to discriminate recall of longer-term and shorter-term memories. Specifically the Mismatch Response (MMR) to deviant stimuli of an oddball paradigm is larger if the deviant stimuli are highly familiar (i.e., retrieved from long-term memory) than if they are unfamiliar, representing an immediate change to the standard stimuli kept in short-term memory. Here, we aimed to extend previous findings indicating a differential MMR to familiar and unfamiliar deviants in newborns (Beauchemin et al., 2011), to 3-month-old infants who are starting to interact more with their social surroundings supposedly based on forming more (social) long-term representations. Using a voice discrimination paradigm, each infant was repeatedly presented with the word “baby” (400 ms, interstimulus interval: 600 ms, 10 min overall duration) pronounced by three different female speakers. One voice that was unfamiliar to the infants served as the frequently presented “standard” stimulus, whereas another unfamiliar voice served as the “unfamiliar deviant” stimulus, and the voice of the infant’s mother served as the “familiar deviant.” Data collection was successful for 31 infants (mean age = 100 days). The MMR was determined by the difference between the ERP to standard stimuli and the ERP to the unfamiliar and familiar deviant, respectively. The MMR to the familiar deviant (mother’s voice) was larger, i.e., more positive, than that to the unfamiliar deviant between 100 and 400 ms post-stimulus over the frontal and central cortex. However, a genuine MMR differentiating, as a positive deflection, between ERPs to familiar deviants and standard stimuli was only found in the 300–400 ms interval. On the other hand, a genuine MMR differentiating, as a negative deflection, between ERPs to unfamiliar deviants from ERPs to standard stimuli was revealed for the 200–300 ms post-stimulus interval. Overall results confirm a differential MMR response to unfamiliar and familiar deviants in 3-month-olds, with the earlier negative MMR to unfamiliar deviants likely reflecting change detection based on comparison processes in short-term memory, and the later positive MMR to familiar deviants reflecting subsequent long-term memory-based processing of stimulus relevance. PMID:29441032

  16. Dissociating Long and Short-term Memory in Three-Month-Old Infants Using the Mismatch Response to Voice Stimuli.

    PubMed

    Zinke, Katharina; Thöne, Leonie; Bolinger, Elaina M; Born, Jan

    2018-01-01

    Auditory event-related potentials (ERPs) have been successfully used in adults as well as in newborns to discriminate recall of longer-term and shorter-term memories. Specifically the Mismatch Response (MMR) to deviant stimuli of an oddball paradigm is larger if the deviant stimuli are highly familiar (i.e., retrieved from long-term memory) than if they are unfamiliar, representing an immediate change to the standard stimuli kept in short-term memory. Here, we aimed to extend previous findings indicating a differential MMR to familiar and unfamiliar deviants in newborns (Beauchemin et al., 2011), to 3-month-old infants who are starting to interact more with their social surroundings supposedly based on forming more (social) long-term representations. Using a voice discrimination paradigm, each infant was repeatedly presented with the word "baby" (400 ms, interstimulus interval: 600 ms, 10 min overall duration) pronounced by three different female speakers. One voice that was unfamiliar to the infants served as the frequently presented "standard" stimulus, whereas another unfamiliar voice served as the "unfamiliar deviant" stimulus, and the voice of the infant's mother served as the "familiar deviant." Data collection was successful for 31 infants (mean age = 100 days). The MMR was determined by the difference between the ERP to standard stimuli and the ERP to the unfamiliar and familiar deviant, respectively. The MMR to the familiar deviant (mother's voice) was larger, i.e., more positive, than that to the unfamiliar deviant between 100 and 400 ms post-stimulus over the frontal and central cortex. However, a genuine MMR differentiating, as a positive deflection, between ERPs to familiar deviants and standard stimuli was only found in the 300-400 ms interval. On the other hand, a genuine MMR differentiating, as a negative deflection, between ERPs to unfamiliar deviants from ERPs to standard stimuli was revealed for the 200-300 ms post-stimulus interval. Overall results confirm a differential MMR response to unfamiliar and familiar deviants in 3-month-olds, with the earlier negative MMR to unfamiliar deviants likely reflecting change detection based on comparison processes in short-term memory, and the later positive MMR to familiar deviants reflecting subsequent long-term memory-based processing of stimulus relevance.

  17. An electrophysiological study of task demands on concreteness effects: evidence for dual coding theory.

    PubMed

    Welcome, Suzanne E; Paivio, Allan; McRae, Ken; Joanisse, Marc F

    2011-07-01

    We examined ERP responses during the generation of word associates or mental images in response to concrete and abstract concepts. Of interest were the predictions of dual coding theory (DCT), which proposes that processing lexical concepts depends on functionally independent but interconnected verbal and nonverbal systems. ERP responses were time-locked to either stimulus onset or response to compensate for potential latency differences across conditions. During word associate generation, but not mental imagery, concrete items elicited a greater N400 than abstract items. A concreteness effect emerged at a later time point during the mental imagery task. Data were also analyzed using time-frequency analysis that investigated synchronization of neuronal populations over time during processing. Concrete words elicited an enhanced late going desynchronization of theta-band power (723-938 ms post stimulus onset) during associate generation. During mental imagery, abstract items elicited greater delta-band power from 800 to 1,000 ms following stimulus onset, theta-band power from 350 to 205 ms before response, and alpha-band power from 900 to 800 ms before response. Overall, the findings support DCT in suggesting that lexical concepts are not amodal and that concreteness effects are modulated by tasks that focus participants on verbal versus nonverbal, imagery-based knowledge.

  18. Self-triggered assistive stimulus training improves step initiation in persons with Parkinson’s disease

    PubMed Central

    2013-01-01

    Background Prior studies demonstrated that hesitation-prone persons with Parkinson’s disease (PDs) acutely improve step initiation using a novel self-triggered stimulus that enhances lateral weight shift prior to step onset. PDs showed reduced anticipatory postural adjustment (APA) durations, earlier step onsets, and faster 1st step speed immediately following stimulus exposure. Objective This study investigated the effects of long-term stimulus exposure. Methods Two groups of hesitation-prone subjects with Parkinson’s disease (PD) participated in a 6-week step-initiation training program involving one of two stimulus conditions: 1) Drop. The stance-side support surface was lowered quickly (1.5 cm); 2) Vibration. A short vibration (100 ms) was applied beneath the stance-side support surface. Stimuli were self-triggered by a 5% reduction in vertical force under the stance foot during the APA. Testing was at baseline, immediately post-training, and 6 weeks post-training. Measurements included timing and magnitude of ground reaction forces, and step speed and length. Results Both groups improved their APA force modulation after training. Contrary to previous results, neither group showed reduced APA durations or earlier step onset times. The vibration group showed 55% increase in step speed and a 39% increase in step length which were retained 6 weeks post-training. The drop group showed no stepping-performance improvements. Conclusions The acute sensitivity to the quickness-enhancing effects of stimulus exposure demonstrated in previous studies was supplanted by improved force modulation following prolonged stimulus exposure. The results suggest a potential approach to reduce the severity of start hesitation in PDs, but further study is needed to understand the relationship between short- and long-term effects of stimulus exposure. PMID:23363975

  19. Neural Correlates of Audiovisual Integration of Semantic Category Information

    ERIC Educational Resources Information Center

    Hu, Zhonghua; Zhang, Ruiling; Zhang, Qinglin; Liu, Qiang; Li, Hong

    2012-01-01

    Previous studies have found a late frontal-central audiovisual interaction during the time period about 150-220 ms post-stimulus. However, it is unclear to which process is this audiovisual interaction related: to processing of acoustical features or to classification of stimuli? To investigate this question, event-related potentials were recorded…

  20. Electrophysiological correlates of stimulus-driven reorienting deficits after interference with right parietal cortex during a spatial attention task: a TMS-EEG study

    PubMed Central

    Capotosto, Paolo; Corbetta, Maurizio; Romani, Gian Luca; Babiloni, Claudio

    2013-01-01

    Transcranial magnetic stimulation (TMS) interference over right intraparietal sulcus (IPS) causally disrupts behaviorally and electroencephalographic (EEG) rhythmic correlates of endogenous spatial orienting prior to visual target presentation (Capotosto et al. 2009; 2011). Here we combine data from our previous studies to examine whether right parietal TMS during spatial orienting also impairs stimulus-driven re-orienting or the ability to efficiently process unattended stimuli, i.e. stimuli outside the current focus of attention. Healthy subjects (N=24) performed a Posner spatial cueing task while their EEG activity was being monitored. Repetitive TMS (rTMS) was applied for 150 milliseconds (ms) simultaneously to the presentation of a central arrow directing spatial attention to the location of an upcoming visual target. Right IPS-rTMS impaired target detection, especially for stimuli presented at unattended locations; it also caused a modulation of the amplitude of parieto-occipital positive ERPs peaking at about 480 ms (P3) post-target. The P3 significantly decreased for unattended targets, and significantly increased for attended targets after right IPS-rTMS as compared to Sham stimulation. Similar effects were obtained for left IPS stimulation albeit in a smaller group of subjects. We conclude that disruption of anticipatory processes in right IPS has prolonged effects that persist during target processing. The P3 decrement may reflect interference with post-decision processes that are part of stimulus-driven re-orienting. Right IPS is a node of functional interaction between endogenous spatial orienting and stimulus-driven re-orienting processes in human vision. PMID:22905824

  1. Effects of a 20-Min Nap Post Normal and Jet Lag Conditions on P300 Components in Athletes.

    PubMed

    Petit, Elisabeth; Bourdin, Hubert; Tio, Grégory; Yenil, Omer; Haffen, Emmanuel; Mougin, Fabienne

    2018-05-14

    Post-lunch sleepiness belongs to biological rhythms. Athletes take a nap to counteract afternoon circadian nadir, in prevision of disturbed sleep. This study examined the effects of brief post-lunch nap on vigilance in young and healthy athletes. The P300 components, physiological and cognitive performances were assessed either after nap or rest, following a night of normal sleep (NSC) or simulated jet lag condition (5-h advance-JLC). P300 wave is the positive deflection at about 300 ms in response to a rare stimulus, representing higher information processing. P300 amplitude reflects the amount of attention allocated whereas P300 latency reflects time spent on stimulus classification. P300 amplitude was significantly increased (Fz:11.14±3.0vs9.05±3.2 µV; p<0.05) and P300 latency was shorter (Pz:327.16±18.0vs344.90±17.0 ms; p<0.01) after nap in NSC. These changes were accompanied by lower subjective sleepiness (19.7±9.6vs27.5±16.5; p<0.05) and decrease in mean reaction times (MRT: divided attention, 645.1±74.2vs698±80.4 ms; p<0.05). In contrast, in JLC, only P300 amplitudes (Fz:10.30±3.1vs7.54±3.3 µV; p<0.01 and Cz: 11.48±3.1vs9.77±3.6 µV; p<0.05) increased but P300 latencies or MRT did not improve. These results indicated improvements in speed of stimulus evaluation time. Napping positively impacts on cognitive processing, especially when subjects are on normal sleep schedules. A nap should be planned for athletes whose performance requires speedy and accurate decisions. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Switching between univalent task-sets in schizophrenia: ERP evidence of an anticipatory task-set reconfiguration deficit.

    PubMed

    Karayanidis, Frini; Nicholson, Rebecca; Schall, Ulrich; Meem, Lydia; Fulham, Ross; Michie, Patricia T

    2006-10-01

    The present study used behavioral and event-related potential (ERP) indices of task-switching to examine whether schizophrenia patients have a specific deficit in anticipatory task-set reconfiguration. Participants switched between univalent tasks in an alternating runs paradigms with blocked response-stimulus interval (RSI) manipulation (150, 300, 600, and 1200ms). Nineteen high functioning people with schizophrenia were compared to controls that were matched for age, gender, education and premorbid IQ estimate. Schizophrenia patients had overall increased RT, but no increase in corrected RT switch cost. In the schizophrenia group, ERPs showed reduced activation of the differential positivity in anticipation of switch trial at the optimal 600ms RSI and reduced activation of the frontal post-stimulus switch negativity at both 600 and 1200ms RSI compared to the control group. Despite no behavioral differences in task switching performance, anticipatory and stimulus-triggered ERP indices of task-switching suggest group differences in processing of switch and repeat trials, especially at longer RSI conditions that for control participants provide opportunity for anticipatory activation of task-set reconfiguration processes. These results are compatible with impaired implementation of endogenously driven processes in schizophrenia and greater reliance on external task cues, especially at long preparation intervals.

  3. The Timing of the Cognitive Cycle

    PubMed Central

    Madl, Tamas; Baars, Bernard J.; Franklin, Stan

    2011-01-01

    We propose that human cognition consists of cascading cycles of recurring brain events. Each cognitive cycle senses the current situation, interprets it with reference to ongoing goals, and then selects an internal or external action in response. While most aspects of the cognitive cycle are unconscious, each cycle also yields a momentary “ignition” of conscious broadcasting. Neuroscientists have independently proposed ideas similar to the cognitive cycle, the fundamental hypothesis of the LIDA model of cognition. High-level cognition, such as deliberation, planning, etc., is typically enabled by multiple cognitive cycles. In this paper we describe a timing model LIDA's cognitive cycle. Based on empirical and simulation data we propose that an initial phase of perception (stimulus recognition) occurs 80–100 ms from stimulus onset under optimal conditions. It is followed by a conscious episode (broadcast) 200–280 ms after stimulus onset, and an action selection phase 60–110 ms from the start of the conscious phase. One cognitive cycle would therefore take 260–390 ms. The LIDA timing model is consistent with brain evidence indicating a fundamental role for a theta-gamma wave, spreading forward from sensory cortices to rostral corticothalamic regions. This posteriofrontal theta-gamma wave may be experienced as a conscious perceptual event starting at 200–280 ms post stimulus. The action selection component of the cycle is proposed to involve frontal, striatal and cerebellar regions. Thus the cycle is inherently recurrent, as the anatomy of the thalamocortical system suggests. The LIDA model fits a large body of cognitive and neuroscientific evidence. Finally, we describe two LIDA-based software agents: the LIDA Reaction Time agent that simulates human performance in a simple reaction time task, and the LIDA Allport agent which models phenomenal simultaneity within timeframes comparable to human subjects. While there are many models of reaction time performance, these results fall naturally out of a biologically and computationally plausible cognitive architecture. PMID:21541015

  4. Extinction of the soleus H reflex induced by conditioning stimulus given after test stimulus.

    PubMed

    Hiraoka, Koichi

    2002-02-01

    To quantify the extinction of the soleus H reflex induced by a conditioning stimulus above the motor threshold to the post-tibial nerve applied 10-12 ms after a test stimulus (S2 method). Ten healthy subjects participated. The sizes of extinction induced by a test stimulus above the motor threshold (conventional method) and by the S2 method were measured. The size of the conditioned H reflex decreased as the intensity of the S2 conditioning stimulus increased. The decrease was less than that induced by the conventional method. The difference between the two methods correlated highly with the amount of orthodromically activated recurrent inhibition. When the S2 conditioning stimulus evoked an M wave that was roughly half of the maximum M wave, the decrease in the size of the conditioned H reflex depended on the size of the unconditioned H reflex. The S2 method allows us to observe extinction without changing the intensity of the test stimulus. The amount of the extinction depends partially on the size of the unconditioned H reflex. The difference in the sizes of extinction between the S2 and conventional methods should relate to recurrent inhibition.

  5. Deficit of entropy modulation of the EEG in schizophrenia associated to cognitive performance and symptoms. A replication study.

    PubMed

    Molina, Vicente; Bachiller, Alejandro; Gomez-Pilar, Javier; Lubeiro, Alba; Hornero, Roberto; Cea-Cañas, Benjamín; Valcárcel, César; Haidar, Mahmoun-Karim; Poza, Jesús

    2018-05-01

    Spectral entropy (SE) is a measurement from information theory field that provides an estimation of EEG regularity and may be useful as a summary of its spectral properties. Previous studies using small samples reported a deficit of EEG entropy modulation in schizophrenia during cognitive activity. The present study is aimed at replicating this finding in a larger sample, to explore its cognitive and clinical correlates and to discard antipsychotic treatment as the main source of that deficit. We included 64 schizophrenia patients (21 first episodes, FE) and 65 healthy controls. We computed SE during performance of an odd-ball paradigm, at the windows prior (-300 to 0ms) and following (150 to 450ms) stimulus presentation. Modulation of SE was defined as the difference between post- and pre-stimulus windows. In comparison to controls, patients showed a deficit of SE modulation over frontal and central regions, also shown by FE patients. Baseline SE did not differ between patients and controls. Modulation deficit was directly associated with cognitive deficits and negative symptoms, and inversely with positive symptoms. SE modulation was not related to antipsychotic doses. Patients also showed a smaller change of median frequency (i.e., smaller slowing of oscillatory activity) of the EEG from pre- to post-stimulus windows. These results support that a deficit of fast modulation contributes to cognitive deficits and symptoms in schizophrenia patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Spatio-temporal dynamics of brain mechanisms in aversive classical conditioning: high-density event-related potential and brain electrical tomography analyses.

    PubMed

    Pizzagalli, Diego A; Greischar, Lawrence L; Davidson, Richard J

    2003-01-01

    Social cognition, including complex social judgments and attitudes, is shaped by individual learning experiences, where affect often plays a critical role. Aversive classical conditioning-a form of associative learning involving a relationship between a neutral event (conditioned stimulus, CS) and an aversive event (unconditioned stimulus, US)-represents a well-controlled paradigm to study how the acquisition of socially relevant knowledge influences behavior and the brain. Unraveling the temporal unfolding of brain mechanisms involved appears critical for an initial understanding about how social cognition operates. Here, 128-channel ERPs were recorded in 50 subjects during the acquisition phase of a differential aversive classical conditioning paradigm. The CS+ (two fearful faces) were paired 50% of the time with an aversive noise (CS upward arrow + /Paired), whereas in the remaining 50% they were not (CS upward arrow + /Unpaired); the CS- (two different fearful faces) were never paired with the noise. Scalp ERP analyses revealed differences between CS upward arrow + /Unpaired and CS- as early as approximately 120 ms post-stimulus. Tomographic source localization analyses revealed early activation modulated by the CS+ in the ventral visual pathway (e.g. fusiform gyrus, approximately 120 ms), right middle frontal gyrus (approximately 176 ms), and precuneus (approximately 240 ms). At approximately 120 ms, the CS- elicited increased activation in the left insula and left middle frontal gyrus. These findings not only confirm a critical role of prefrontal, insular, and precuneus regions in aversive conditioning, but they also suggest that biologically and socially salient information modulates activation at early stages of the information processing flow, and thus furnish initial insight about how affect and social judgments operate.

  7. Selecting the best tone-pip stimulus-envelope time for estimating an objective middle-latency response threshold for low- and middle-tone sensorineural hearing losses.

    PubMed

    Xu, Z M; De Vel, E; Vinck, B; Van Cauwenberge, P

    1995-01-01

    The effects of rise-fall and plateau times for the Pa component of the middle-latency response (MLR) were investigated in normally hearing subjects, and an objective MLR threshold was measured in patients with low- and middle-tone hearing losses, using a selected stimulus-envelope time. Our results showed that the stimulus-envelope time (the rise-fall time and plateau time groups) affected the Pa component of the MLR (quality was determined by the (chi 2-test and amplitude by the F-test). The 4-2-4 tone-pips produced good Pa quality by visual inspection. However, our data revealed no statistically significant Na-Pa amplitude differences between the two subgroups studied when comparing the 2- and 4-ms rise-fall times and the 0- and 2-ms plateau times. In contrast, Na-Pa became significantly smaller from the 4-ms to the 6-ms rise-fall time and from the 2-ms to the 4-ms plateau time (paired t-test). This result allowed us to select the 2- or 4-ms rise-fall time and the 0- or 2-ms plateau time without influencing amplitude. Analysis of the stimulus spectral characteristics demonstrated that a rise-fall time of at least 2ms could prevent spectral splatter and indicated that a stimulus with a 5-ms rise-fall time had a greater frequency-specificity than a stimulus of 2-ms rise-fall time. When considering the synchronous discharge and frequency-specificity of MLR, our findings show that a rise-fall time of four periods with a plateau of two periods is an acceptable compromise for estimating the objective MLR threshold.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. How personal standards perfectionism and evaluative concerns perfectionism affect the error positivity and post-error behavior with varying stimulus visibility.

    PubMed

    Drizinsky, Jessica; Zülch, Joachim; Gibbons, Henning; Stahl, Jutta

    2016-10-01

    Error detection is required in order to correct or avoid imperfect behavior. Although error detection is beneficial for some people, for others it might be disturbing. We investigated Gaudreau and Thompson's (Personality and Individual Differences, 48, 532-537, 2010) model, which combines personal standards perfectionism (PSP) and evaluative concerns perfectionism (ECP). In our electrophysiological study, 43 participants performed a combination of a modified Simon task, an error awareness paradigm, and a masking task with a variation of stimulus onset asynchrony (SOA; 33, 67, and 100 ms). Interestingly, relative to low-ECP participants, high-ECP participants showed a better post-error accuracy (despite a worse classification accuracy) in the high-visibility SOA 100 condition than in the two low-visibility conditions (SOA 33 and SOA 67). Regarding the electrophysiological results, first, we found a positive correlation between ECP and the amplitude of the error positivity (Pe) under conditions of low stimulus visibility. Second, under the condition of high stimulus visibility, we observed a higher Pe amplitude for high-ECP-low-PSP participants than for high-ECP-high-PSP participants. These findings are discussed within the framework of the error-processing avoidance hypothesis of perfectionism (Stahl, Acharki, Kresimon, Völler, & Gibbons, International Journal of Psychophysiology, 97, 153-162, 2015).

  9. Using Single-trial EEG to Predict and Analyze Subsequent Memory

    PubMed Central

    Noh, Eunho; Herzmann, Grit; Curran, Tim; de Sa, Virginia R.

    2013-01-01

    We show that it is possible to successfully predict subsequent memory performance based on single-trial EEG activity before and during item presentation in the study phase. Two-class classification was conducted to predict subsequently remembered vs. forgotten trials based on subjects’ responses in the recognition phase. The overall accuracy across 18 subjects was 59.6 % by combining pre- and during-stimulus information. The single-trial classification analysis provides a dimensionality reduction method to project the high-dimensional EEG data onto a discriminative space. These projections revealed novel findings in the pre- and during-stimulus period related to levels of encoding. It was observed that the pre-stimulus information (specifically oscillatory activity between 25–35Hz) −300 to 0 ms before stimulus presentation and during-stimulus alpha (7–12 Hz) information between 1000–1400 ms after stimulus onset distinguished between recollection and familiarity while the during-stimulus alpha information and temporal information between 400–800 ms after stimulus onset mapped these two states to similar values. PMID:24064073

  10. Consciousness and arousal effects on emotional face processing as revealed by brain oscillations. A gamma band analysis.

    PubMed

    Balconi, Michela; Lucchiari, Claudio

    2008-01-01

    It remains an open question whether it is possible to assign a single brain operation or psychological function for facial emotion decoding to a certain type of oscillatory activity. Gamma band activity (GBA) offers an adequate tool for studying cortical activation patterns during emotional face information processing. In the present study brain oscillations were analyzed in response to facial expression of emotions. Specifically, GBA modulation was measured when twenty subjects looked at emotional (angry, fearful, happy, and sad faces) or neutral faces in two different conditions: supraliminal (10 ms) vs subliminal (150 ms) stimulation (100 target-mask pairs for each condition). The results showed that both consciousness and significance of the stimulus in terms of arousal can modulate the power synchronization (ERD decrease) during 150-350 time range: an early oscillatory event showed its peak at about 200 ms post-stimulus. GBA was enhanced by supraliminal more than subliminal elaboration, as well as more by high arousal (anger and fear) than low arousal (happiness and sadness) emotions. Finally a left-posterior dominance for conscious elaboration was found, whereas right hemisphere was discriminant in emotional processing of face in comparison with neutral face.

  11. Are objects the same as groups? ERP correlates of spatial attentional guidance by irrelevant feature similarity.

    PubMed

    Kasai, Tetsuko; Moriya, Hiroki; Hirano, Shingo

    2011-07-05

    It has been proposed that the most fundamental units of attentional selection are "objects" that are grouped according to Gestalt factors such as similarity or connectedness. Previous studies using event-related potentials (ERPs) have shown that object-based attention is associated with modulations of the visual-evoked N1 component, which reflects an early cortical mechanism that is shared with spatial attention. However, these studies only examined the case of perceptually continuous objects. The present study examined the case of separate objects that are grouped according to feature similarity (color, shape) by indexing lateralized potentials at posterior sites in a sustained-attention task that involved bilateral stimulus arrays. A behavioral object effect was found only for task-relevant shape similarity. Electrophysiological results indicated that attention was guided to the task-irrelevant side of the visual field due to achromatic-color similarity in N1 (155-205 ms post-stimulus) and early N2 (210-260 ms) and due to shape similarity in early N2 and late N2 (280-400 ms) latency ranges. These results are discussed in terms of selection mechanisms and object/group representations. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Age-related Differences in Pre- and Post-synaptic Motor Cortex Inhibition are Task Dependent.

    PubMed

    Opie, George M; Ridding, Michael C; Semmler, John G

    2015-01-01

    Previous research has shown age-related differences in short- (SICI) and long-interval intracortical inhibition (LICI) in both resting and active hand muscles, suggesting that healthy ageing influences post-synaptic motor cortex inhibition. However, it is not known how the ageing process effects the pre-synaptic interaction of SICI by LICI, and how these pre- and post-synaptic intracortical inhibitory circuits are modulated by the performance of different motor tasks in older adults. To examine age-related differences in pre- and post-synaptic motor cortex inhibition at rest, and during index finger abduction and precision grip. In 13 young (22.3 ± 3.8 years) and 15 old (73.7 ± 4.0 years) adults, paired-pulse transcranial magnetic stimulation (TMS) was used to measure SICI (2 ms inter-stimulus interval; ISI) and LICI (100 and 150 ms ISI), whereas triple-pulse TMS was used to investigate SICI when primed by LICI. We found no age-related difference in SICI at rest or during index finger abduction, but significantly greater SICI in older subjects during precision grip. Older adults showed reduced LICI in resting muscle (at an ISI of 150 ms), with no age-related differences in LICI during either task. When SICI was primed by LICI, disinhibition of motor cortex was reduced in older adults at rest (100 ms ISI) and during index finger abduction (150 ms ISI), but not during precision grip. Our results support age-related differences in pre- and post-synaptic motor cortex inhibition, which may contribute to impaired hand function during task performance in older adults. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Attention distributed across sensory modalities enhances perceptual performance

    PubMed Central

    Mishra, Jyoti; Gazzaley, Adam

    2012-01-01

    This study investigated the interaction between top-down attentional control and multisensory processing in humans. Using semantically congruent and incongruent audiovisual stimulus streams, we found target detection to be consistently improved in the setting of distributed audiovisual attention versus focused visual attention. This performance benefit was manifested as faster reaction times for congruent audiovisual stimuli, and as accuracy improvements for incongruent stimuli, resulting in a resolution of stimulus interference. Electrophysiological recordings revealed that these behavioral enhancements were associated with reduced neural processing of both auditory and visual components of the audiovisual stimuli under distributed vs. focused visual attention. These neural changes were observed at early processing latencies, within 100–300 ms post-stimulus onset, and localized to auditory, visual, and polysensory temporal cortices. These results highlight a novel neural mechanism for top-down driven performance benefits via enhanced efficacy of sensory neural processing during distributed audiovisual attention relative to focused visual attention. PMID:22933811

  14. Subliminal perception of complex visual stimuli.

    PubMed

    Ionescu, Mihai Radu

    2016-01-01

    Rationale: Unconscious perception of various sensory modalities is an active subject of research though its function and effect on behavior is uncertain. Objective: The present study tried to assess if unconscious visual perception could occur with more complex visual stimuli than previously utilized. Methods and Results: Videos containing slideshows of indifferent complex images with interspersed frames of interest of various durations were presented to 24 healthy volunteers. The perception of the stimulus was evaluated with a forced-choice questionnaire while awareness was quantified by self-assessment with a modified awareness scale annexed to each question with 4 categories of awareness. At values of 16.66 ms of stimulus duration, conscious awareness was not possible and answers regarding the stimulus were random. At 50 ms, nonrandom answers were coupled with no self-reported awareness suggesting unconscious perception of the stimulus. At larger durations of stimulus presentation, significantly correct answers were coupled with a certain conscious awareness. Discussion: At values of 50 ms, unconscious perception is possible even with complex visual stimuli. Further studies are recommended with a focus on a range of interest of stimulus duration between 50 to 16.66 ms.

  15. Multi- and unisensory visual flash illusions.

    PubMed

    Courtney, Jon R; Motes, Michael A; Hubbard, Timothy L

    2007-01-01

    The role of stimulus structure in multisensory and unisensory interactions was examined. When a flash (17 ms) was accompanied by multiple tones (each 7 ms, SOA < or =100 ms) multiple flashes were reported, and this effect has been suggested to reflect the role of stimulus continuity in multisensory interactions. In experiments 1 and 2 we examined if stimulus continuity would affect concurrently presented stimuli. When a relatively longer flash (317 ms) was accompanied by multiple tones (each 7 ms), observers reported perceiving multiple flashes. In experiment 3 we tested whether a flash presented near fixation would induce an illusory flash further in the periphery. One flash (17 ms) presented 5 degrees below fixation was reported as multiple flashes if presented with two flashes (each 17 ms, SOA =100 ms) 2 degrees above fixation. The extent to which these data support a phenomenological continuity principle and whether this principle applies to unisensory perception is discussed.

  16. The question of simultaneity in multisensory integration

    NASA Astrophysics Data System (ADS)

    Leone, Lynnette; McCourt, Mark E.

    2012-03-01

    Early reports of audiovisual (AV) multisensory integration (MI) indicated that unisensory stimuli must evoke simultaneous physiological responses to produce decreases in reaction time (RT) such that for unisensory stimuli with unequal RTs the stimulus eliciting the faster RT had to be delayed relative to the stimulus eliciting the slower RT. The "temporal rule" states that MI depends on the temporal proximity of unisensory stimuli, the neural responses to which must fall within a window of integration. Ecological validity demands that MI should occur only for simultaneous events (which may give rise to non-simultaneous neural activations). However, spurious neural response simultaneities which are unrelated to singular environmental multisensory occurrences must somehow be rejected. Using an RT/race model paradigm we measured AV MI as a function of stimulus onset asynchrony (SOA: +/-200 ms, 50 ms intervals) under fully dark adapted conditions for visual (V) stimuli that were either weak (scotopic 525 nm flashes; 511 ms mean RT) or strong (photopic 630 nm flashes; 356 ms mean RT). Auditory (A) stimulus (1000 Hz pure tone) intensity was constant. Despite the 155 ms slower mean RT to the scotopic versus photopic stimulus, facilitative AV MI in both conditions nevertheless occurred exclusively at an SOA of 0 ms. Thus, facilitative MI demands both physical and physiological simultaneity. We consider the mechanisms by which the nervous system may take account of variations in response latency arising from changes in stimulus intensity in order to selectively integrate only those physiological simultaneities that arise from physical simultaneities.

  17. The effects of prepulse-blink reflex trial repetition and prepulse change on blink reflex modification at short and long lead intervals.

    PubMed

    Lipp, O V; Siddle, D A

    1998-01-01

    Prepulse inhibition and facilitation of the blink reflex are said to reflect different responses elicited by the lead stimulus, transient detection and orienting response respectively. Two experiments investigated the effects of trial repetition and lead stimulus change on blink modification. It was hypothesized that these manipulations will affect orienting and thus blink facilitation to a greater extent than they will affect transient detection and thus blink inhibition. In Experiment 1 (N = 64), subjects were trained with a sequence of 12 lead stimulus and 12 blink stimulus alone presentations, and 24 lead stimulus-blink stimulus pairings. Lead interval was 120 ms for 12 of the trials and 2000 ms for the other 12. For half the subjects this sequence was followed by a change in pitch of the lead stimulus. In Experiment 2 (N = 64), subjects were trained with a sequence of 36 blink alone stimuli and 36 lead stimulus-blink stimulus pairings. The lead interval was 120 ms for half the subjects and 2000 ms for the other half. The pitch of the lead stimulus on prestimulus trials 31-33 was changed for half the subjects in each group. In both experiments, the amount of blink inhibition decreased during training whereas the amount of blink facilitation remained unchanged. Lead stimulus change had no effect on blink modification in either experiment although it resulted in enhanced skin conductance responses and greater heart rate deceleration in Experiment 2. The present results are not consistent with the notion that blink facilitation is linked to orienting whereas blink inhibition reflects a transient detection mechanism.

  18. The time course from gender categorization to gender-stereotype activation.

    PubMed

    Zhang, Xiaobin; Li, Qiong; Sun, Shan; Zuo, Bin

    2018-02-01

    Social categorization is the foundation of stereotype activation, and the process from social categorization to stereotype activation is rapid. However, the time from social categorization to stereotype activation is unknown. This study involves a real-time measurement of the time course of gender-stereotype activation beginning with gender categorization using event-related potential technology with a face as the priming stimulus. We found that 195 ms after a face stimulus was presented, brain waves stimulated by male or female gender categorization showed a clear separation, with male faces stimulating larger N200 waves. In addition, 475 ms after a face stimulus appeared or 280 ms after the gendercategorization process occurred, gender-stereotype-consistent and gender-stereotype-inconsistent stimuli were distinct, with gender-stereotype-inconsistent stimuli inducing larger N400 waves. These results indicate that during gender-stereotype activation by face perception, gender categorization occurs approximately 195 ms after seeing a face stimulus and a gender stereotype is activated at approximately 475 ms.

  19. Memory timeline: Brain ERP C250 (not P300) is an early biomarker of short-term storage.

    PubMed

    Chapman, Robert M; Gardner, Margaret N; Mapstone, Mark; Dupree, Haley M; Antonsdottir, Inga M

    2015-04-16

    Brain event-related potentials (ERPs) offer a quantitative link between neurophysiological activity and cognitive performance. ERPs were measured while young adults performed a task that required storing a relevant stimulus in short-term memory. Using principal components analysis, ERP component C250 (maximum at 250 ms post-stimulus) was extracted from a set of ERPs that were separately averaged for various task conditions, including stimulus relevancy and stimulus sequence within a trial. C250 was more positive in response to task-specific stimuli that were successfully stored in short-term memory. This relationship between C250 and short-term memory storage of a stimulus was confirmed by a memory probe recall test where the behavioral recall of a stimulus was highly correlated with its C250 amplitude. ERP component P300 (and its subcomponents of P3a and P3b, which are commonly thought to represent memory operations) did not show a pattern of activation reflective of storing task-relevant stimuli. C250 precedes the P300, indicating that initial short-term memory storage may occur earlier than previously believed. Additionally, because C250 is so strongly predictive of a stimulus being stored in short-term memory, C250 may provide a strong index of early memory operations. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Human single-neuron responses at the threshold of conscious recognition

    PubMed Central

    Quiroga, R. Quian; Mukamel, R.; Isham, E. A.; Malach, R.; Fried, I.

    2008-01-01

    We studied the responses of single neurons in the human medial temporal lobe while subjects viewed familiar faces, animals, and landmarks. By progressively shortening the duration of stimulus presentation, coupled with backward masking, we show two striking properties of these neurons. (i) Their responses are not statistically different for the 33-ms, 66-ms, and 132-ms stimulus durations, and only for the 264-ms presentations there is a significantly higher firing. (ii) These responses follow conscious perception, as indicated by the subjects' recognition report. Remarkably, when recognized, a single snapshot as brief as 33 ms was sufficient to trigger strong single-unit responses far outlasting stimulus presentation. These results suggest that neurons in the medial temporal lobe can reflect conscious recognition by “all-or-none” responses. PMID:18299568

  1. "Missing links" in borderline personality disorder: loss of neural synchrony relates to lack of emotion regulation and impulse control.

    PubMed

    Williams, Leanne M; Sidis, Anna; Gordon, Evian; Meares, Russell A

    2006-05-01

    Symptoms of borderline personality disorder (BPD) may reflect distinct breakdowns in the integration of posterior and frontal brain networks. We used a high temporal resolution measure (40-Hz gamma phase synchrony) of brain activity to examine the connectivity of brain function in BPD. Unmedicated patients with BPD (n = 15) and age-and sex-matched healthy control subjects (n = 15) undertook a task requiring discrimination of salient from background tones. In response to salient stimuli, the magnitude and latency of peak gamma phase synchrony for early (0-150 ms post stimulus) and late (250-500 ms post stimulus) phases were calculated for frontal and posterior regions and for left and right hemispheres. We recorded skin conductance responses (SCRs) and reaction time (RT) simultaneously to examine the contribution of arousal and performance. Compared with controls, patients with BPD had a significant delay in early posterior gamma synchrony and a reduction in right hemisphere late gamma synchrony in response to salient stimuli. Both SCR onset and RT were also delayed in BPD, but independently from differences in synchrony. The delay in posterior synchrony was associated with cognitive symptoms, and reduced right hemisphere synchrony was associated with impulsivity. These findings suggest that distinct impairments in the functional connectivity of neural systems for orienting to salient input underlie core dimensions of cognitive disturbance and poor impulse control in BPD.

  2. Old-new ERP effects and remote memories: the late parietal effect is absent as recollection fails whereas the early mid-frontal effect persists as familiarity is retained

    PubMed Central

    Tsivilis, Dimitris; Allan, Kevin; Roberts, Jenna; Williams, Nicola; Downes, John Joseph; El-Deredy, Wael

    2015-01-01

    Understanding the electrophysiological correlates of recognition memory processes has been a focus of research in recent years. This study investigated the effects of retention interval on recognition memory by comparing memory for objects encoded four weeks (remote) or 5 min (recent) before testing. In Experiment 1, event related potentials (ERPs) were acquired while participants performed a yes-no recognition memory task involving remote, recent and novel objects. Relative to correctly rejected new items, remote and recent hits showed an attenuated frontal negativity from 300–500 ms post-stimulus. This effect, also known as the FN400, has been previously associated with familiarity memory. Recent and remote recognition ERPs did not differ from each other at this time-window. By contrast, recent but not remote recognition showed increased parietal positivity from around 500 ms post-stimulus. This late parietal effect (LPE), which is considered a correlate of recollection-related processes, also discriminated between recent and remote memories. A second, behavioral experiment confirmed that remote memories unlike recent memories were based almost exclusively on familiarity. These findings support the idea that the FN400 and LPE are indices of familiarity and recollection memory, respectively and show that remote and recent memories are functionally and anatomically distinct. PMID:26528163

  3. Characterizing an ERP correlate of intentions understanding using a sequential comic strips paradigm.

    PubMed

    Vistoli, D; Passerieux, C; El Zein, M; Clumeck, C; Braun, S; Brunet-Gouet, E

    2015-08-01

    Chronometric properties of theory of mind and intentions understanding more specifically are well documented. Notably, it was demonstrated using magnetoencephalography that the brain regions involved were recruited as soon as 200 ms post-stimulus. We used event-related potentials (ERPs) to characterize an electrophysiological marker of attribution of intentions. We also explored the robustness of this ERP signature under two conditions corresponding to either explicit instructions to focus on others' intentions or implicit instructions with no reference to mental states. Two matched groups of 16 healthy volunteers each received either explicit or no instructions about intentions and performed a nonverbal attribution of intentions task based on sequential four-image comic strips depicting either intentional or physical causality. A bilateral posterior positive component, ranging from 250 to 650 ms post-stimulus, showed greater amplitude in intentional than in physical condition (the intention ERP effect). This effect occurs during the third image only, suggesting that it reflects the integration of information depicted in the third image to the contextual cues given by the first two. The intention effect was similar in the two groups of subjects. Overall, our results identify a clear ERP marker of the first hundreds of milliseconds of intentions processing probably related to a contextual integrative mechanism and suggest its robustness by showing its blindness to task demands manipulation.

  4. Spike-frequency adaptation in the inferior colliculus.

    PubMed

    Ingham, Neil J; McAlpine, David

    2004-02-01

    We investigated spike-frequency adaptation of neurons sensitive to interaural phase disparities (IPDs) in the inferior colliculus (IC) of urethane-anesthetized guinea pigs using a stimulus paradigm designed to exclude the influence of adaptation below the level of binaural integration. The IPD-step stimulus consists of a binaural 3,000-ms tone, in which the first 1,000 ms is held at a neuron's least favorable ("worst") IPD, adapting out monaural components, before being stepped rapidly to a neuron's most favorable ("best") IPD for 300 ms. After some variable interval (1-1,000 ms), IPD is again stepped to the best IPD for 300 ms, before being returned to a neuron's worst IPD for the remainder of the stimulus. Exponential decay functions fitted to the response to best-IPD steps revealed an average adaptation time constant of 52.9 +/- 26.4 ms. Recovery from adaptation to best IPD steps showed an average time constant of 225.5 +/- 210.2 ms. Recovery time constants were not correlated with adaptation time constants. During the recovery period, adaptation to a 2nd best-IPD step followed similar kinetics to adaptation during the 1st best-IPD step. The mean adaptation time constant at stimulus onset (at worst IPD) was 34.8 +/- 19.7 ms, similar to the 38.4 +/- 22.1 ms recorded to contralateral stimulation alone. Individual time constants after stimulus onset were correlated with each other but not with time constants during the best-IPD step. We conclude that such binaurally derived measures of adaptation reflect processes that occur above the level of exclusively monaural pathways, and subsequent to the site of primary binaural interaction.

  5. Perception and the strongest sensory memory trace of multi-stable displays both form shortly after the stimulus onset.

    PubMed

    Pastukhov, Alexander

    2016-02-01

    We investigated the relation between perception and sensory memory of multi-stable structure-from-motion displays. The latter is an implicit visual memory that reflects a recent history of perceptual dominance and influences only the initial perception of multi-stable displays. First, we established the earliest time point when the direction of an illusory rotation can be reversed after the display onset (29-114 ms). Because our display manipulation did not bias perception towards a specific direction of illusory rotation but only signaled the change in motion, this means that the perceptual dominance was established no later than 29-114 ms after the stimulus onset. Second, we used orientation-selectivity of sensory memory to establish which display orientation produced the strongest memory trace and when this orientation was presented during the preceding prime interval (80-140 ms). Surprisingly, both estimates point towards the time interval immediately after the display onset, indicating that both perception and sensory memory form at approximately the same time. This suggests a tighter integration between perception and sensory memory than previously thought, warrants a reconsideration of its role in visual perception, and indicates that sensory memory could be a unique behavioral correlate of the earlier perceptual inference that can be studied post hoc.

  6. Selective processing of multiple features in the human brain: effects of feature type and salience.

    PubMed

    McGinnis, E Menton; Keil, Andreas

    2011-02-09

    Identifying targets in a stream of items at a given constant spatial location relies on selection of aspects such as color, shape, or texture. Such attended (target) features of a stimulus elicit a negative-going event-related brain potential (ERP), termed Selection Negativity (SN), which has been used as an index of selective feature processing. In two experiments, participants viewed a series of Gabor patches in which targets were defined as a specific combination of color, orientation, and shape. Distracters were composed of different combinations of color, orientation, and shape of the target stimulus. This design allows comparisons of items with and without specific target features. Consistent with previous ERP research, SN deflections extended between 160-300 ms. Data from the subsequent P3 component (300-450 ms post-stimulus) were also examined, and were regarded as an index of target processing. In Experiment A, predominant effects of target color on SN and P3 amplitudes were found, along with smaller ERP differences in response to variations of orientation and shape. Manipulating color to be less salient while enhancing the saliency of the orientation of the Gabor patch (Experiment B) led to delayed color selection and enhanced orientation selection. Topographical analyses suggested that the location of SN on the scalp reliably varies with the nature of the to-be-attended feature. No interference of non-target features on the SN was observed. These results suggest that target feature selection operates by means of electrocortical facilitation of feature-specific sensory processes, and that selective electrocortical facilitation is more effective when stimulus saliency is heightened.

  7. The interplay of holistic shape, local feature and color information in object categorization.

    PubMed

    Rokszin, Adrienn Aranka; Győri-Dani, Dóra; Linnert, Szilvia; Krajcsi, Attila; Tompa, Tamás; Csifcsák, Gábor

    2015-07-01

    Although it is widely accepted that colors facilitate object and scene recognition under various circumstances, several studies found no effects of color removal in tasks requiring categorization of briefly presented animals in natural scenes. In this study, three experiments were performed to test the assumption that the discrepancy between empirical data is related to variations of the available meaningful global information such as object shapes and contextual cues. Sixty-one individuals categorized chromatic and achromatic versions of intact and scrambled images containing either cars or birds. While color removal did not affect the classification of intact stimuli, the recognition of moderately scrambled achromatic images was more difficult. This effect was accompanied by amplitude modulations of occipital event-related potentials emerging from approximately 150ms post-stimulus. Our results indicate that colors facilitate stimulus classification, but this effect becomes prominent only in cases when holistic processing is not sufficient for stimulus recognition. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses.

    PubMed

    Sperdin, Holger F; Spierer, Lucas; Becker, Robert; Michel, Christoph M; Landis, Theodor

    2015-04-01

    Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking. © 2014 Wiley Periodicals, Inc.

  9. Top-down knowledge modulates onset capture in a feedforward manner.

    PubMed

    Becker, Stefanie I; Lewis, Amanda J; Axtens, Jenna E

    2017-04-01

    How do we select behaviourally important information from cluttered visual environments? Previous research has shown that both top-down, goal-driven factors and bottom-up, stimulus-driven factors determine which stimuli are selected. However, it is still debated when top-down processes modulate visual selection. According to a feedforward account, top-down processes modulate visual processing even before the appearance of any stimuli, whereas others claim that top-down processes modulate visual selection only at a late stage, via feedback processing. In line with such a dual stage account, some studies found that eye movements to an irrelevant onset distractor are not modulated by its similarity to the target stimulus, especially when eye movements are launched early (within 150-ms post stimulus onset). However, in these studies the target transiently changed colour due to a colour after-effect that occurred during premasking, and the time course analyses were incomplete. The present study tested the feedforward account against the dual stage account in two eye tracking experiments, with and without colour after-effects (Exp. 1), as well when the target colour varied randomly and observers were informed of the target colour with a word cue (Exp. 2). The results showed that top-down processes modulated the earliest eye movements to the onset distractors (<150-ms latencies), without incurring any costs for selection of target matching distractors. These results unambiguously support a feedforward account of top-down modulation.

  10. The Role of Temporal Disparity on Audiovisual Integration in Low-Vision Individuals.

    PubMed

    Targher, Stefano; Micciolo, Rocco; Occelli, Valeria; Zampini, Massimiliano

    2017-12-01

    Recent findings have shown that sounds improve visual detection in low vision individuals when the audiovisual stimuli pairs of stimuli are presented simultaneously and from the same spatial position. The present study purports to investigate the temporal aspects of the audiovisual enhancement effect previously reported. Low vision participants were asked to detect the presence of a visual stimulus (yes/no task) presented either alone or together with an auditory stimulus at different stimulus onset asynchronies (SOAs). In the first experiment, the sound was presented either simultaneously or before the visual stimulus (i.e., SOAs 0, 100, 250, 400 ms). The results show that the presence of a task-irrelevant auditory stimulus produced a significant visual detection enhancement in all the conditions. In the second experiment, the sound was either synchronized with, or randomly preceded/lagged behind the visual stimulus (i.e., SOAs 0, ± 250, ± 400 ms). The visual detection enhancement was reduced in magnitude and limited only to the synchronous condition and to the condition in which the sound stimulus was presented 250 ms before the visual stimulus. Taken together, the evidence of the present study seems to suggest that audiovisual interaction in low vision individuals is highly modulated by top-down mechanisms.

  11. Dissociable effects of inter-stimulus interval and presentation duration on rapid face categorization.

    PubMed

    Retter, Talia L; Jiang, Fang; Webster, Michael A; Rossion, Bruno

    2018-04-01

    Fast periodic visual stimulation combined with electroencephalography (FPVS-EEG) has unique sensitivity and objectivity in measuring rapid visual categorization processes. It constrains image processing time by presenting stimuli rapidly through brief stimulus presentation durations and short inter-stimulus intervals. However, the selective impact of these temporal parameters on visual categorization is largely unknown. Here, we presented natural images of objects at a rate of 10 or 20 per second (10 or 20 Hz), with faces appearing once per second (1 Hz), leading to two distinct frequency-tagged EEG responses. Twelve observers were tested with three squarewave image presentation conditions: 1) with an ISI, a traditional 50% duty cycle at 10 Hz (50-ms stimulus duration separated by a 50-ms ISI); 2) removing the ISI and matching the rate, a 100% duty cycle at 10 Hz (100-ms duration with 0-ms ISI); 3) removing the ISI and matching the stimulus presentation duration, a 100% duty cycle at 20 Hz (50-ms duration with 0-ms ISI). The face categorization response was significantly decreased in the 20 Hz 100% condition. The conditions at 10 Hz showed similar face-categorization responses, peaking maximally over the right occipito-temporal (ROT) cortex. However, the onset of the 10 Hz 100% response was delayed by about 20 ms over the ROT region relative to the 10 Hz 50% condition, likely due to immediate forward-masking by preceding images. Taken together, these results help to interpret how the FPVS-EEG paradigm sets temporal constraints on visual image categorization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Electrocortical reactivity to negative and positive facial expressions in individuals with a family history of major depression.

    PubMed

    Watters, Anna J; Harris, Anthony W F; Williams, Leanne M

    2018-05-21

    Facial expressions signaling threat and mood-congruent loss have been used to probe abnormal neural reactivity in major depressive disorder (MDD) and may be implicated in genetic vulnerability to MDD. This study investigated electro-cortical reactivity to facial expressions 101 unaffected, adult first degree relatives of probands with MDD and non-relative controls (n = 101). We investigated event-related potentials (ERPs) to five facial expressions of basic emotion: fear, anger, disgust, sadness and happiness under both subliminal (masked) and conscious (unmasked) presentation conditions, and the source localization of group differences. In the conscious condition, controls showed a distinctly positive-going shift in responsive to negative versus happy faces, reflected in a greater positivity for the VPP frontally and the P300 parietally, and less negativity for the N200. By contrast, relatives showed less differentiation of emotions, reflected in less VPP and P300 positivity, particularly for anger and disgust, and which produced an enhanced N200 for sadness. These group differences were consistently source localized to the anterior cingulate cortex. The findings contribute new evidence for neural disruptions underlying the differentiation of salient emotions in familial risk for depression. These disruptions occur in the appraisal (∼200 ms post-stimulus) through to the context evaluation (∼300 ms+ post-stimulus) phases of of emotion processing, consistent with theories that risk for depression involves biased or attenuated processing of emotion. Copyright © 2018. Published by Elsevier B.V.

  13. Representational dynamics of object recognition: Feedforward and feedback information flows.

    PubMed

    Goddard, Erin; Carlson, Thomas A; Dermody, Nadene; Woolgar, Alexandra

    2016-03-01

    Object perception involves a range of visual and cognitive processes, and is known to include both a feedfoward flow of information from early visual cortical areas to higher cortical areas, along with feedback from areas such as prefrontal cortex. Previous studies have found that low and high spatial frequency information regarding object identity may be processed over different timescales. Here we used the high temporal resolution of magnetoencephalography (MEG) combined with multivariate pattern analysis to measure information specifically related to object identity in peri-frontal and peri-occipital areas. Using stimuli closely matched in their low-level visual content, we found that activity in peri-occipital cortex could be used to decode object identity from ~80ms post stimulus onset, and activity in peri-frontal cortex could also be used to decode object identity from a later time (~265ms post stimulus onset). Low spatial frequency information related to object identity was present in the MEG signal at an earlier time than high spatial frequency information for peri-occipital cortex, but not for peri-frontal cortex. We additionally used Granger causality analysis to compare feedforward and feedback influences on representational content, and found evidence of both an early feedfoward flow and later feedback flow of information related to object identity. We discuss our findings in relation to existing theories of object processing and propose how the methods we use here could be used to address further questions of the neural substrates underlying object perception. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Processing of prosodic changes in natural speech stimuli in school-age children.

    PubMed

    Lindström, R; Lepistö, T; Makkonen, T; Kujala, T

    2012-12-01

    Speech prosody conveys information about important aspects of communication: the meaning of the sentence and the emotional state or intention of the speaker. The present study addressed processing of emotional prosodic changes in natural speech stimuli in school-age children (mean age 10 years) by recording the electroencephalogram, facial electromyography, and behavioral responses. The stimulus was a semantically neutral Finnish word uttered with four different emotional connotations: neutral, commanding, sad, and scornful. In the behavioral sound-discrimination task the reaction times were fastest for the commanding stimulus and longest for the scornful stimulus, and faster for the neutral than for the sad stimulus. EEG and EMG responses were measured during non-attentive oddball paradigm. Prosodic changes elicited a negative-going, fronto-centrally distributed neural response peaking at about 500 ms from the onset of the stimulus, followed by a fronto-central positive deflection, peaking at about 740 ms. For the commanding stimulus also a rapid negative deflection peaking at about 290 ms from stimulus onset was elicited. No reliable stimulus type specific rapid facial reactions were found. The results show that prosodic changes in natural speech stimuli activate pre-attentive neural change-detection mechanisms in school-age children. However, the results do not support the suggestion of automaticity of emotion specific facial muscle responses to non-attended emotional speech stimuli in children. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Electrophysiological correlates of facial decision: insights from upright and upside-down Mooney-face perception.

    PubMed

    George, Nathalie; Jemel, Boutheina; Fiori, Nicole; Chaby, Laurence; Renault, Bernard

    2005-08-01

    We investigated the ERP correlates of the subjective perception of upright and upside-down ambiguous pictures as faces using two-tone Mooney stimuli in an explicit facial decision task (deciding whether a face is perceived or not in the display). The difficulty in perceiving upside-down Mooneys as faces was reflected by both lower rates of "Face" responses and delayed "Face" reaction times for upside-down relative to upright stimuli. The N170 was larger for the stimuli reported as "faces". It was also larger for the upright than the upside-down stimuli only when they were reported as faces. Furthermore, facial decision as well as stimulus orientation effects spread from 140-190 ms to 390-440 ms. The behavioural delay in 'Face' responses to upside-down stimuli was reflected in ERPs by later effect of facial decision for upside-down relative to upright Mooneys over occipito-temporal electrodes. Moreover, an orientation effect was observed only for the stimuli reported as faces; it yielded a marked hemispheric asymmetry, lasting from 140-190 ms to 390-440 ms post-stimulus onset in the left hemisphere and from 340-390 to 390-440 ms only in the right hemisphere. Taken together, the results supported a preferential involvement of the right hemisphere in the detection of faces, whatever their orientation. By contrast, the early orientation effect in the left hemisphere suggested that upside-down Mooney stimuli were processed as non face objects until facial decision was reached in this hemisphere. The present data show that face perception involves not only spatially but also temporally distributed activities in occipito-temporal regions.

  16. Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps

    PubMed Central

    Ransom, Christopher B; Ransom, Bruce R; Sontheimer, Harald

    2000-01-01

    We measured activity-dependent changes in [K+]o with K+-selective microelectrodes in adult rat optic nerve, a CNS white matter tract, to investigate the factors responsible for post-stimulus recovery of [K+]o.Post-stimulus recovery of [K+]o followed a double-exponential time course with an initial, fast time constant, τfast, of 0.9 ± 0.2 s (mean ±s.d.) and a later, slow time constant, τslow, of 4.2 ± 1 s following a 1 s, 100 Hz stimulus. τfast, but not τslow, decreased with increasing activity-dependent rises in [K+]o. τslow, but not τfast, increased with increasing stimulus duration.Post-stimulus recovery of [K+]o was temperature sensitive. The apparent temperature coefficients (Q10, 27–37°C) for the fast and slow components following a 1 s, 100 Hz stimulus were 1.7 and 2.6, respectively.Post-stimulus recovery of [K+]o was sensitive to Na+ pump inhibition with 50 μM strophanthidin. Following a 1 s, 100 Hz stimulus, 50 μM strophanthidin increased τfast and τslow by 81 and 464%, respectively. Strophanthidin reduced the temperature sensitivity of post-stimulus recovery of [K+]o.Post-stimulus recovery of [K+]o was minimally affected by the K+ channel blocker Ba2+ (0.2 mm). Following a 10 s, 100 Hz stimulus, 0.2 mm Ba2+ increased τfast and τslow by 24 and 18%, respectively.Stimulated increases in [K+]o were followed by undershoots of [K+]o. Post-stimulus undershoot amplitude increased with stimulus duration but was independent of the peak preceding [K+]o increase.These observations imply that two distinct processes contribute to post-stimulus recovery of [K+]o in central white matter. The results are compatible with a model of K+ removal that attributes the fast, initial phase of K+ removal to K+ uptake by glial Na+ pumps and the slower, sustained decline to K+ uptake via axonal Na+ pumps. PMID:10713967

  17. Noise-induced hearing loss alters the temporal dynamics of auditory-nerve responses

    PubMed Central

    Scheidt, Ryan E.; Kale, Sushrut; Heinz, Michael G.

    2010-01-01

    Auditory-nerve fibers demonstrate dynamic response properties in that they adapt to rapid changes in sound level, both at the onset and offset of a sound. These dynamic response properties affect temporal coding of stimulus modulations that are perceptually relevant for many sounds such as speech and music. Temporal dynamics have been well characterized in auditory-nerve fibers from normal-hearing animals, but little is known about the effects of sensorineural hearing loss on these dynamics. This study examined the effects of noise-induced hearing loss on the temporal dynamics in auditory-nerve fiber responses from anesthetized chinchillas. Post-stimulus time histograms were computed from responses to 50-ms tones presented at characteristic frequency and 30 dB above fiber threshold. Several response metrics related to temporal dynamics were computed from post-stimulus-time histograms and were compared between normal-hearing and noise-exposed animals. Results indicate that noise-exposed auditory-nerve fibers show significantly reduced response latency, increased onset response and percent adaptation, faster adaptation after onset, and slower recovery after offset. The decrease in response latency only occurred in noise-exposed fibers with significantly reduced frequency selectivity. These changes in temporal dynamics have important implications for temporal envelope coding in hearing-impaired ears, as well as for the design of dynamic compression algorithms for hearing aids. PMID:20696230

  18. Distributed Fading Memory for Stimulus Properties in the Primary Visual Cortex

    PubMed Central

    Singer, Wolf; Maass, Wolfgang

    2009-01-01

    It is currently not known how distributed neuronal responses in early visual areas carry stimulus-related information. We made multielectrode recordings from cat primary visual cortex and applied methods from machine learning in order to analyze the temporal evolution of stimulus-related information in the spiking activity of large ensembles of around 100 neurons. We used sequences of up to three different visual stimuli (letters of the alphabet) presented for 100 ms and with intervals of 100 ms or larger. Most of the information about visual stimuli extractable by sophisticated methods of machine learning, i.e., support vector machines with nonlinear kernel functions, was also extractable by simple linear classification such as can be achieved by individual neurons. New stimuli did not erase information about previous stimuli. The responses to the most recent stimulus contained about equal amounts of information about both this and the preceding stimulus. This information was encoded both in the discharge rates (response amplitudes) of the ensemble of neurons and, when using short time constants for integration (e.g., 20 ms), in the precise timing of individual spikes (≤∼20 ms), and persisted for several 100 ms beyond the offset of stimuli. The results indicate that the network from which we recorded is endowed with fading memory and is capable of performing online computations utilizing information about temporally sequential stimuli. This result challenges models assuming frame-by-frame analyses of sequential inputs. PMID:20027205

  19. TMS effects on subjective and objective measures of vision: stimulation intensity and pre- versus post-stimulus masking.

    PubMed

    de Graaf, Tom A; Cornelsen, Sonja; Jacobs, Christianne; Sack, Alexander T

    2011-12-01

    Transcranial magnetic stimulation (TMS) can be used to mask visual stimuli, disrupting visual task performance or preventing visual awareness. While TMS masking studies generally fix stimulation intensity, we hypothesized that varying the intensity of TMS pulses in a masking paradigm might inform several ongoing debates concerning TMS disruption of vision as measured subjectively versus objectively, and pre-stimulus (forward) versus post-stimulus (backward) TMS masking. We here show that both pre-stimulus TMS pulses and post-stimulus TMS pulses could strongly mask visual stimuli. We found no dissociations between TMS effects on the subjective and objective measures of vision for any masking window or intensity, ruling out the option that TMS intensity levels determine whether dissociations between subjective and objective vision are obtained. For the post-stimulus time window particularly, we suggest that these data provide new constraints for (e.g. recurrent) models of vision and visual awareness. Finally, our data are in line with the idea that pre-stimulus masking operates differently from conventional post-stimulus masking. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Identification of a novel dynamic red blindness in human by event-related brain potentials.

    PubMed

    Zhang, Jiahua; Kong, Weijia; Yang, Zhongle

    2010-12-01

    Dynamic color is an important carrier that takes information in some special occupations. However, up to the present, there are no available and objective tests to evaluate dynamic color processing. To investigate the characteristics of dynamic color processing, we adopted two patterns of visual stimulus called "onset-offset" which reflected static color stimuli and "sustained moving" without abrupt mode which reflected dynamic color stimuli to evoke event-related brain potentials (ERPs) in primary color amblyopia patients (abnormal group) and subjects with normal color recognition ability (normal group). ERPs were recorded by Neuroscan system. The results showed that in the normal group, ERPs in response to the dynamic red stimulus showed frontal positive amplitudes with a latency of about 180 ms, a negative peak at about 240 ms and a peak latency of the late positive potential (LPP) in a time window between 290 and 580 ms. In the abnormal group, ERPs in response to the dynamic red stimulus were fully lost and characterized by vanished amplitudes between 0 and 800 ms. No significant difference was noted in ERPs in response to the dynamic green and blue stimulus between the two groups (P>0.05). ERPs of the two groups in response to the static red, green and blue stimulus were not much different, showing a transient negative peak at about 170 ms and a peak latency of LPP in a time window between 350 and 650 ms. Our results first revealed that some subjects who were not identified as color blindness under static color recognition could not completely apperceive a sort of dynamic red stimulus by ERPs, which was called "dynamic red blindness". Furthermore, these results also indicated that low-frequency ERPs induced by "sustained moving" may be a good and new method to test dynamic color perception competence.

  1. The temporal dynamics of masked repetition picture priming effects: manipulations of stimulus-onset asynchrony (SOA) and prime duration

    PubMed Central

    Eddy, Marianna D.; Holcomb, Phillip J.

    2010-01-01

    The current study used event-related potentials (ERPs) and masked repetition priming to examine the time-course of picture processing. We manipulated the stimulus-onset asynchrony (110 ms, 230 ms, 350 ms, 470 ms) between repeated and unrepeated prime-target pairs while holding the prime duration constant (50 ms) (Experiment 1) as well as the prime duration (30 ms, 50 ms, 70 ms, 90 ms) (Experiment 2) with a constant SOA of 110 ms in a masked repetition priming paradigm with pictures. The aim of this study was to further elucidate the mechanisms underlying previously observed ERP components in masked priming with pictures. We found both the N/P190 and N400 are modulated by changes in prime duration and SOA, however, it appears that longer prime exposure rather than a longer SOA leads to more in-depth processing as indexed by larger N400 effects. PMID:20403342

  2. Near-infrared signals associated with electrical stimulation of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio; Chen, Debbie K.; Martin, Jeffrey M.; Sassaroli, Angelo; Bergethon, Peter R.

    2009-02-01

    We report our studies on the optical signals measured non-invasively on electrically stimulated peripheral nerves. The stimulation consists of the delivery of 0.1 ms current pulses, below the threshold for triggering any visible motion, to a peripheral nerve in human subjects (we have studied the sural nerve and the median nerve). In response to electrical stimulation, we observe an optical signal that peaks at about 100 ms post-stimulus, on a much longer time scale than the few milliseconds duration of the electrical response, or sensory nerve action potential (SNAP). While the 100 ms optical signal we measured is not a direct optical signature of neural activation, it is nevertheless indicative of a mediated response to neural activation. We argue that this may provide information useful for understanding the origin of the fast optical signal (also on a 100 ms time scale) that has been measured non-invasively in the brain in response to cerebral activation. Furthermore, the optical response to peripheral nerve activation may be developed into a diagnostic tool for peripheral neuropathies, as suggested by the delayed optical signals (average peak time: 230 ms) measured in patients with diabetic neuropathy with respect to normal subjects (average peak time: 160 ms).

  3. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    PubMed

    Cohen, Michael X; Ridderinkhof, K Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz), followed by a later alpha-band (8-12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  4. The emotional attentional blink: what we know so far

    PubMed Central

    McHugo, Maureen; Olatunji, Bunmi O.; Zald, David H.

    2013-01-01

    The emotional attentional blink (EAB), also known as emotion-induced blindness, refers to a phenomenon in which the brief appearance of a task-irrelevant, emotionally arousing image captures attention to such an extent that individuals cannot detect target stimuli for several hundred ms after the emotional stimulus. The EAB allows for mental chronometry of stimulus-driven attention and the time needed to disengage and refocus goal-directed attention. In this review, we discuss current evidence for the mechanisms through which the EAB occurs. Although the EAB shares some similarities to both surprise-induced blindness (SiB) and other paradigms for assessing emotion-attention interactions, it possesses features that are distinct from these paradigms, and thus appears to provide a unique measure of the influence of emotion on stimulus-driven attention. The neural substrates of the EAB are not completely understood, but neuroimaging and neuropsychological data suggest some possible neural mechanisms underlying the phenomenon. The importance of understanding the EAB is highlighted by recent evidence indicating that EAB tasks can detect altered sensitivity to disorder relevant stimuli in psychiatric conditions such as post-traumatic stress disorder (PTSD). PMID:23630482

  5. Healthy Aging Delays Scalp EEG Sensitivity to Noise in a Face Discrimination Task

    PubMed Central

    Rousselet, Guillaume A.; Gaspar, Carl M.; Pernet, Cyril R.; Husk, Jesse S.; Bennett, Patrick J.; Sekuler, Allison B.

    2010-01-01

    We used a single-trial ERP approach to quantify age-related changes in the time-course of noise sensitivity. A total of 62 healthy adults, aged between 19 and 98, performed a non-speeded discrimination task between two faces. Stimulus information was controlled by parametrically manipulating the phase spectrum of these faces. Behavioral 75% correct thresholds increased with age. This result may be explained by lower signal-to-noise ratios in older brains. ERP from each subject were entered into a single-trial general linear regression model to identify variations in neural activity statistically associated with changes in image structure. The fit of the model, indexed by R2, was computed at multiple post-stimulus time points. The time-course of the R2 function showed significantly delayed noise sensitivity in older observers. This age effect is reliable, as demonstrated by test–retest in 24 subjects, and started about 120 ms after stimulus onset. Our analyses suggest also a qualitative change from a young to an older pattern of brain activity at around 47 ± 4 years old. PMID:21833194

  6. The effect of synesthetic associations between the visual and auditory modalities on the Colavita effect.

    PubMed

    Stekelenburg, Jeroen J; Keetels, Mirjam

    2016-05-01

    The Colavita effect refers to the phenomenon that when confronted with an audiovisual stimulus, observers report more often to have perceived the visual than the auditory component. The Colavita effect depends on low-level stimulus factors such as spatial and temporal proximity between the unimodal signals. Here, we examined whether the Colavita effect is modulated by synesthetic congruency between visual size and auditory pitch. If the Colavita effect depends on synesthetic congruency, we expect a larger Colavita effect for synesthetically congruent size/pitch (large visual stimulus/low-pitched tone; small visual stimulus/high-pitched tone) than synesthetically incongruent (large visual stimulus/high-pitched tone; small visual stimulus/low-pitched tone) combinations. Participants had to identify stimulus type (visual, auditory or audiovisual). The study replicated the Colavita effect because participants reported more often the visual than auditory component of the audiovisual stimuli. Synesthetic congruency had, however, no effect on the magnitude of the Colavita effect. EEG recordings to congruent and incongruent audiovisual pairings showed a late frontal congruency effect at 400-550 ms and an occipitoparietal effect at 690-800 ms with neural sources in the anterior cingulate and premotor cortex for the 400- to 550-ms window and premotor cortex, inferior parietal lobule and the posterior middle temporal gyrus for the 690- to 800-ms window. The electrophysiological data show that synesthetic congruency was probably detected in a processing stage subsequent to the Colavita effect. We conclude that-in a modality detection task-the Colavita effect can be modulated by low-level structural factors but not by higher-order associations between auditory and visual inputs.

  7. Neural correlates of visualizations of concrete and abstract words in preschool children: a developmental embodied approach

    PubMed Central

    D’Angiulli, Amedeo; Griffiths, Gordon; Marmolejo-Ramos, Fernando

    2015-01-01

    The neural correlates of visualization underlying word comprehension were examined in preschool children. On each trial, a concrete or abstract word was delivered binaurally (part 1: post-auditory visualization), followed by a four-picture array (a target plus three distractors; part 2: matching visualization). Children were to select the picture matching the word they heard in part 1. Event-related potentials (ERPs) locked to each stimulus presentation and task interval were averaged over sets of trials of increasing word abstractness. ERP time-course during both parts of the task showed that early activity (i.e., <300 ms) was predominant in response to concrete words, while activity in response to abstract words became evident only at intermediate (i.e., 300–699 ms) and late (i.e., 700–1000 ms) ERP intervals. Specifically, ERP topography showed that while early activity during post-auditory visualization was linked to left temporo-parietal areas for concrete words, early activity during matching visualization occurred mostly in occipito-parietal areas for concrete words, but more anteriorly in centro-parietal areas for abstract words. In intermediate ERPs, post-auditory visualization coincided with parieto-occipital and parieto-frontal activity in response to both concrete and abstract words, while in matching visualization a parieto-central activity was common to both types of words. In the late ERPs for both types of words, the post-auditory visualization involved right-hemispheric activity following a “post-anterior” pathway sequence: occipital, parietal, and temporal areas; conversely, matching visualization involved left-hemispheric activity following an “ant-posterior” pathway sequence: frontal, temporal, parietal, and occipital areas. These results suggest that, similarly, for concrete and abstract words, meaning in young children depends on variably complex visualization processes integrating visuo-auditory experiences and supramodal embodying representations. PMID:26175697

  8. The Role of Visual and Semantic Properties in the Emergence of Category-Specific Patterns of Neural Response in the Human Brain.

    PubMed

    Coggan, David D; Baker, Daniel H; Andrews, Timothy J

    2016-01-01

    Brain-imaging studies have found distinct spatial and temporal patterns of response to different object categories across the brain. However, the extent to which these categorical patterns of response reflect higher-level semantic or lower-level visual properties of the stimulus remains unclear. To address this question, we measured patterns of EEG response to intact and scrambled images in the human brain. Our rationale for using scrambled images is that they have many of the visual properties found in intact images, but do not convey any semantic information. Images from different object categories (bottle, face, house) were briefly presented (400 ms) in an event-related design. A multivariate pattern analysis revealed categorical patterns of response to intact images emerged ∼80-100 ms after stimulus onset and were still evident when the stimulus was no longer present (∼800 ms). Next, we measured the patterns of response to scrambled images. Categorical patterns of response to scrambled images also emerged ∼80-100 ms after stimulus onset. However, in contrast to the intact images, distinct patterns of response to scrambled images were mostly evident while the stimulus was present (∼400 ms). Moreover, scrambled images were able to account only for all the variance in the intact images at early stages of processing. This direct manipulation of visual and semantic content provides new insights into the temporal dynamics of object perception and the extent to which different stages of processing are dependent on lower-level or higher-level properties of the image.

  9. Attitudes to the right- and left: frontal ERP asymmetries associated with stimulus valence and processing goals.

    PubMed

    Cunningham, William A; Espinet, Stacey D; DeYoung, Colin G; Zelazo, Philip David

    2005-12-01

    We used dense-array event-related potentials (ERP) to examine the time course and neural bases of evaluative processing. Participants made good vs. bad (evaluative) and abstract vs. concrete (nonevaluative) judgments of socially relevant concepts (e.g., "murder," "welfare"), and then rated all concepts for goodness and badness. Results revealed a late positive potential (LPP) beginning at about 475 ms post-stimulus and maximal over anterior sites. The LPP was lateralized (higher amplitude and shorter latency) on the right for concepts later rated bad, and on the left for concepts later rated good. Moreover, the degree of lateralization for the amplitude but not the latency was larger when participants were making evaluative judgments than when they were making nonevaluative judgments. These data are consistent with a model in which discrete regions of prefrontal cortex (PFC) are specialized for the evaluative processing of positive and negative stimuli.

  10. Modulation of auditory stimulus processing by visual spatial or temporal cue: an event-related potentials study.

    PubMed

    Tang, Xiaoyu; Li, Chunlin; Li, Qi; Gao, Yulin; Yang, Weiping; Yang, Jingjing; Ishikawa, Soushirou; Wu, Jinglong

    2013-10-11

    Utilizing the high temporal resolution of event-related potentials (ERPs), we examined how visual spatial or temporal cues modulated the auditory stimulus processing. The visual spatial cue (VSC) induces orienting of attention to spatial locations; the visual temporal cue (VTC) induces orienting of attention to temporal intervals. Participants were instructed to respond to auditory targets. Behavioral responses to auditory stimuli following VSC were faster and more accurate than those following VTC. VSC and VTC had the same effect on the auditory N1 (150-170 ms after stimulus onset). The mean amplitude of the auditory P1 (90-110 ms) in VSC condition was larger than that in VTC condition, and the mean amplitude of late positivity (300-420 ms) in VTC condition was larger than that in VSC condition. These findings suggest that modulation of auditory stimulus processing by visually induced spatial or temporal orienting of attention were different, but partially overlapping. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Altered Neural Activity during Semantic Object Memory Retrieval in Amnestic Mild Cognitive Impairment as Measured by Event-Related Potentials.

    PubMed

    Chiang, Hsueh-Sheng; Mudar, Raksha A; Pudhiyidath, Athula; Spence, Jeffrey S; Womack, Kyle B; Cullum, C Munro; Tanner, Jeremy A; Eroh, Justin; Kraut, Michael A; Hart, John

    2015-01-01

    Deficits in semantic memory in individuals with amnestic mild cognitive impairment (aMCI) have been previously reported, but the underlying neurobiological mechanisms remain to be clarified. We examined event-related potentials (ERPs) associated with semantic memory retrieval in 16 individuals with aMCI as compared to 17 normal controls using the Semantic Object Retrieval Task (EEG SORT). In this task, subjects judged whether pairs of words (object features) elicited retrieval of an object (retrieval trials) or not (non-retrieval trials). Behavioral findings revealed that aMCI subjects had lower accuracy scores and marginally longer reaction time compared to controls. We used a multivariate analytical technique (STAT-PCA) to investigate similarities and differences in ERPs between aMCI and control groups. STAT-PCA revealed a left fronto-temporal component starting at around 750 ms post-stimulus in both groups. However, unlike controls, aMCI subjects showed an increase in the frontal-parietal scalp potential that distinguished retrieval from non-retrieval trials between 950 and 1050 ms post-stimulus negatively correlated with the performance on the logical memory subtest of the Wechsler Memory Scale-III. Thus, individuals with aMCI were not only impaired in their behavioral performance on SORT relative to controls, but also displayed alteration in the corresponding ERPs. The altered neural activity in aMCI compared to controls suggests a more sustained and effortful search during object memory retrieval, which may be a potential marker indicating disease processes at the pre-dementia stage.

  12. Brain stem auditory-evoked response of the nonanesthetized dog.

    PubMed

    Marshall, A E

    1985-04-01

    The brain stem auditory evoked-response was measured from a group of 24 healthy dogs under conditions suitable for clinical diagnostic use. The waveforms were identified, and analysis of amplitude ratios, latencies, and interpeak latencies were done. The group was subdivided into subgroups based on tranquilization, nontranquilization, sex, and weight. Differences were not observed among any of these subgroups. All dogs responded to the click stimulus from 30 dB to 90 dB, but only 62.5% of the dogs responded at 5 dB. The total number of peaks averaged 1.6 at 5 dB, increased linearly to 6.5 at 50 dB, and remained at 6.5 to 90 dB. Frequency of recognizability of each wave was tabulated for each stimulus intensity tested; recognizability increased with increased stimulus intensity. Amplitudes of waves increased with increasing stimulus intensity, but were highly variable. The 4th wave had the greatest amplitude at the lower stimulus intensities, and the 1st wave had the greatest amplitude at the higher stimulus intensities. Amplitude ratio of the 1st to 5th wave was greater than 1 at less than or equal to 50 dB stimulus intensity, and was 1 for stimulus intensities greater than 50 dB. Interpeak latencies did not change relative to stimulus intensities. Peak latencies of each wave averaged at 5-dB hearing level for the 1st to 6th waves were 2.03, 2.72, 3.23, 4.14, 4.41, and 6.05 ms, respectively; latencies of these 6 waves at 90 dB were 0.92, 1.79, 2.46, 3.03, 3.47, and 4.86 ms, respectively. Latency decreased between 0.009 to 0.014 ms/dB for the waves.

  13. Neural Correlates of Face and Object Perception in an Awake Chimpanzee (Pan Troglodytes) Examined by Scalp-Surface Event-Related Potentials

    PubMed Central

    Fukushima, Hirokata; Hirata, Satoshi; Ueno, Ari; Matsuda, Goh; Fuwa, Kohki; Sugama, Keiko; Kusunoki, Kiyo; Hirai, Masahiro; Hiraki, Kazuo; Tomonaga, Masaki; Hasegawa, Toshikazu

    2010-01-01

    Background The neural system of our closest living relative, the chimpanzee, is a topic of increasing research interest. However, electrophysiological examinations of neural activity during visual processing in awake chimpanzees are currently lacking. Methodology/Principal Findings In the present report, skin-surface event-related brain potentials (ERPs) were measured while a fully awake chimpanzee observed photographs of faces and objects in two experiments. In Experiment 1, human faces and stimuli composed of scrambled face images were displayed. In Experiment 2, three types of pictures (faces, flowers, and cars) were presented. The waveforms evoked by face stimuli were distinguished from other stimulus types, as reflected by an enhanced early positivity appearing before 200 ms post stimulus, and an enhanced late negativity after 200 ms, around posterior and occipito-temporal sites. Face-sensitive activity was clearly observed in both experiments. However, in contrast to the robustly observed face-evoked N170 component in humans, we found that faces did not elicit a peak in the latency range of 150–200 ms in either experiment. Conclusions/Significance Although this pilot study examined a single subject and requires further examination, the observed scalp voltage patterns suggest that selective processing of faces in the chimpanzee brain can be detected by recording surface ERPs. In addition, this non-invasive method for examining an awake chimpanzee can be used to extend our knowledge of the characteristics of visual cognition in other primate species. PMID:20967284

  14. Cortical thickness as a contributor to abnormal oscillations in schizophrenia?

    PubMed

    Edgar, J Christopher; Chen, Yu-Han; Lanza, Matthew; Howell, Breannan; Chow, Vivian Y; Heiken, Kory; Liu, Song; Wootton, Cassandra; Hunter, Michael A; Huang, Mingxiong; Miller, Gregory A; Cañive, José M

    2014-01-01

    Although brain rhythms depend on brain structure (e.g., gray and white matter), to our knowledge associations between brain oscillations and structure have not been investigated in healthy controls (HC) or in individuals with schizophrenia (SZ). Observing function-structure relationships, for example establishing an association between brain oscillations (defined in terms of amplitude or phase) and cortical gray matter, might inform models on the origins of psychosis. Given evidence of functional and structural abnormalities in primary/secondary auditory regions in SZ, the present study examined how superior temporal gyrus (STG) structure relates to auditory STG low-frequency and 40 Hz steady-state activity. Given changes in brain activity as a function of age, age-related associations in STG oscillatory activity were also examined. Thirty-nine individuals with SZ and 29 HC were recruited. 40 Hz amplitude-modulated tones of 1 s duration were presented. MEG and T1-weighted sMRI data were obtained. Using the sources localizing 40 Hz evoked steady-state activity (300 to 950 ms), left and right STG total power and inter-trial coherence were computed. Time-frequency group differences and associations with STG structure and age were also examined. Decreased total power and inter-trial coherence in SZ were observed in the left STG for initial post-stimulus low-frequency activity (~ 50 to 200 ms, ~ 4 to 16 Hz) as well as 40 Hz steady-state activity (~ 400 to 1000 ms). Left STG 40 Hz total power and inter-trial coherence were positively associated with left STG cortical thickness in HC, not in SZ. Left STG post-stimulus low-frequency and 40 Hz total power were positively associated with age, again only in controls. Left STG low-frequency and steady-state gamma abnormalities distinguish SZ and HC. Disease-associated damage to STG gray matter in schizophrenia may disrupt the age-related left STG gamma-band function-structure relationships observed in controls.

  15. The temporal dynamics of masked repetition picture priming effects: manipulations of stimulus-onset asynchrony (SOA) and prime duration.

    PubMed

    Eddy, Marianna D; Holcomb, Phillip J

    2010-06-22

    The current study used event-related potentials (ERPs) and masked repetition priming to examine the time-course of picture processing. We manipulated the stimulus-onset asynchrony (110 ms, 230 ms, 350 ms, and 470 ms) between repeated and unrepeated prime-target pairs while holding the prime duration constant (50 ms) (Experiment 1) as well as the prime durations (30 ms, 50 ms, 70 ms, and 90 ms) (Experiment 2) with a constant SOA of 110 ms in a masked repetition priming paradigm with pictures. The aim of this study was to further elucidate the mechanisms underlying previously observed ERP components in masked priming with pictures. We found that both the N/P190 and N400 are modulated by changes in prime duration and SOA, however, it appears that longer prime exposure rather than a longer SOA leads to more in-depth processing as indexed by larger N400 effects. (c) 2010 Elsevier B.V. All rights reserved.

  16. Fixation to features and neural processing of facial expressions in a gender discrimination task

    PubMed Central

    Neath, Karly N.; Itier, Roxane J.

    2017-01-01

    Early face encoding, as reflected by the N170 ERP component, is sensitive to fixation to the eyes. Whether this sensitivity varies with facial expressions of emotion and can also be seen on other ERP components such as P1 and EPN, was investigated. Using eye-tracking to manipulate fixation on facial features, we found the N170 to be the only eye-sensitive component and this was true for fearful, happy and neutral faces. A different effect of fixation to features was seen for the earlier P1 that likely reflected general sensitivity to face position. An early effect of emotion (~120 ms) for happy faces was seen at occipital sites and was sustained until ~350 ms post-stimulus. For fearful faces, an early effect was seen around 80 ms followed by a later effect appearing at ~150 ms until ~300 ms at lateral posterior sites. Results suggests that in this emotion-irrelevant gender discrimination task, processing of fearful and happy expressions occurred early and largely independently of the eye-sensitivity indexed by the N170. Processing of the two emotions involved different underlying brain networks active at different times. PMID:26277653

  17. Stimulus-driven and knowledge-driven processes in attention to warbles

    NASA Astrophysics Data System (ADS)

    Dowling, W. Jay; Tillmann, Barbara

    2003-10-01

    Listeners identified warbles differing in amplitude-modulation rate (3-10 Hz). And measured RT while listeners maintained above 90% correct responses. After a practice session listeners identified target warbles following stimulus-driven or knowledge-driven cues. The stimulus-driven cue was a 250-ms ``beep'' at the target pitch (valid) or another pitch (invalid); the knowledge-driven cue was a midrange ``melody'' pointing to the target pitch (always valid). A 500-ms target warble followed the cue after delays of 0-500 ms (250-750 ms SOA). The listener pressed a key to indicate ``slow'' or ``fast.'' RTs were shortest at the briefest delay. In contrast to results from a memory task, RTs here were much shorter, and we found no evidence for IOR or attentional blink. Listeners began generating responses while the target was still sounding. Invalid ``beeps'' slowed responses at the briefest (but not the longer) delays; adding a valid ``beep'' to the valid ``melody'' did not speed responses.

  18. Neuronal responses to face-like stimuli in the monkey pulvinar.

    PubMed

    Nguyen, Minh Nui; Hori, Etsuro; Matsumoto, Jumpei; Tran, Anh Hai; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    The pulvinar nuclei appear to function as the subcortical visual pathway that bypasses the striate cortex, rapidly processing coarse facial information. We investigated responses from monkey pulvinar neurons during a delayed non-matching-to-sample task, in which monkeys were required to discriminate five categories of visual stimuli [photos of faces with different gaze directions, line drawings of faces, face-like patterns (three dark blobs on a bright oval), eye-like patterns and simple geometric patterns]. Of 401 neurons recorded, 165 neurons responded differentially to the visual stimuli. These visual responses were suppressed by scrambling the images. Although these neurons exhibited a broad response latency distribution, face-like patterns elicited responses with the shortest latencies (approximately 50 ms). Multidimensional scaling analysis indicated that the pulvinar neurons could specifically encode face-like patterns during the first 50-ms period after stimulus onset and classify the stimuli into one of the five different categories during the next 50-ms period. The amount of stimulus information conveyed by the pulvinar neurons and the number of stimulus-differentiating neurons were consistently higher during the second 50-ms period than during the first 50-ms period. These results suggest that responsiveness to face-like patterns during the first 50-ms period might be attributed to ascending inputs from the superior colliculus or the retina, while responsiveness to the five different stimulus categories during the second 50-ms period might be mediated by descending inputs from cortical regions. These findings provide neurophysiological evidence for pulvinar involvement in social cognition and, specifically, rapid coarse facial information processing. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Classic conditioning in aged rabbits: delay, trace, and long-delay conditioning.

    PubMed

    Solomon, P R; Groccia-Ellison, M E

    1996-06-01

    Young (0.5 years) and aged (2+, 3+, and 4+ years) rabbits underwent acquisition of the classically conditioned nictitating membrane response in a delay (500-ms conditioned stimulus [CS], 400-ms interstimulus interval [ISI]), long-delay (1,000-ms CS, 900-ms ISI), or trace (500-ms CS, 400-ms stimulus-free period) paradigm. Collapsing across age groups, there is a general tendency for animals to acquire trace conditioning more slowly than delay conditioning. Collapsing across conditioning paradigms, there is a general tendency for aged animals to acquire more slowly than younger animals. Of greater significance, however, are the age differences in the different conditioning paradigms. In the delay and long-delay paradigms, significant conditioning deficits first appeared in the 4(+)-year-old group. In the trace conditioning paradigm, significant conditioning deficits became apparent in the 2(+)-year-old animals.

  20. The dynamic-stimulus advantage of visual symmetry perception.

    PubMed

    Niimi, Ryosuke; Watanabe, Katsumi; Yokosawa, Kazuhiko

    2008-09-01

    It has been speculated that visual symmetry perception from dynamic stimuli involves mechanisms different from those for static stimuli. However, previous studies found no evidence that dynamic stimuli lead to active temporal processing and improve symmetry detection. In this study, four psychophysical experiments investigated temporal processing in symmetry perception using both dynamic and static stimulus presentations of dot patterns. In Experiment 1, rapid successive presentations of symmetric patterns (e.g., 16 patterns per 853 ms) produced more accurate discrimination of orientations of symmetry axes than static stimuli (single pattern presented through 853 ms). In Experiments 2-4, we confirmed that the dynamic-stimulus advantage depended upon presentation of a large number of unique patterns within a brief period (853 ms) in the dynamic conditions. Evidently, human vision takes advantage of temporal processing for symmetry perception from dynamic stimuli.

  1. Brain stem auditory-evoked response in the nonanesthetized horse and pony.

    PubMed

    Marshall, A E

    1985-07-01

    The brain stem auditory-evoked response (BAER) was measured in 10 horses and 7 ponies under conditions suitable for clinical diagnostic testing. Latencies of 5 vertex-positive peaks and interpeak latency and amplitude ratio on the 1st and 4th peaks were determined. Data from horses and ponies were analyzed separately and were compared. The stimulus was a click (n = 3,000) ranging from 10- to 90-dB hearing level (HL). Neither horses nor ponies responded with a BAER at 10 dB nor did they give reliable responses at less than 50 dB. The 2nd of the BAER waves appeared in the record at lower stimulus intensities than did the 1st wave for the horse and pony. Horses and ponies had a decreasing latency for all waves, as a result of increasing stimulus intensity. Latencies were shorter for the ponies than for the horses at all stimulus intensities for the 1st, 2nd, 3rd, and 4th waves, but not the 5th wave. At 60-dB HL, the mean latencies for the 1st through 5th wave, respectively, for the horse were 1.73, 3.08, 3.93, 4.98, and 6.00 ms and for the pony 1.48, 2.73, 3.50, 4.56, and 6.58 ms. Interpeak latencies, 1st to 4th wave, averaged 3.22 ms (horse) and 3.11 ms (pony) for all stimulus intensities from 50- to 90-dB HL and had a tendency to decrease slightly as stimulus intensity increased. Amplitude ratios (4th wave/1st wave) were less than 1 for all stimulus intensities in the horse. In the pony, the ratio was less than 1 at greater than or equal to 70-dB HL and greater than 1 at less than or equal to 60-dB HL.

  2. Effects of low-frequency repetitive transcranial magnetic stimulation on event-related potential P300

    NASA Astrophysics Data System (ADS)

    Torii, Tetsuya; Sato, Aya; Iwahashi, Masakuni; Iramina, Keiji

    2012-04-01

    The present study analyzed the effects of repetitive transcranial magnetic stimulation (rTMS) on brain activity. P300 latency of event-related potential (ERP) was used to evaluate the effects of low-frequency and short-term rTMS by stimulating the supramarginal gyrus (SMG), which is considered to be the related area of P300 origin. In addition, the prolonged stimulation effects on P300 latency were analyzed after applying rTMS. A figure-eight coil was used to stimulate left-right SMG, and intensity of magnetic stimulation was 80% of motor threshold. A total of 100 magnetic pulses were applied for rTMS. The effects of stimulus frequency at 0.5 or 1 Hz were determined. Following rTMS, an odd-ball task was performed and P300 latency of ERP was measured. The odd-ball task was performed at 5, 10, and 15 min post-rTMS. ERP was measured prior to magnetic stimulation as a control. Electroencephalograph (EEG) was measured at Fz, Cz, and Pz that were indicated by the international 10-20 electrode system. Results demonstrated that different effects on P300 latency occurred between 0.5-1 Hz rTMS. With 1 Hz low-frequency magnetic stimulation to the left SMG, P300 latency decreased. Compared to the control, the latency time difference was approximately 15 ms at Cz. This decrease continued for approximately 10 min post-rTMS. In contrast, 0.5 Hz rTMS resulted in delayed P300 latency. Compared to the control, the latency time difference was approximately 20 ms at Fz, and this delayed effect continued for approximately 15 min post-rTMS. Results demonstrated that P300 latency varied according to rTMS frequency. Furthermore, the duration of the effect was not similar for stimulus frequency of low-frequency rTMS.

  3. Tenotomy procedure alleviates the "slow to see" phenomenon in infantile nystagmus syndrome: model prediction and patient data.

    PubMed

    Wang, Z I; Dell'Osso, L F

    2008-06-01

    Our purpose was to perform a systematic study of the post-four-muscle-tenotomy procedure changes in target acquisition time by comparing predictions from the behavioral ocular motor system (OMS) model and data from infantile nystagmus syndrome (INS) patients. We studied five INS patients who underwent only tenotomy at the enthesis and reattachment at the original insertion of each (previously unoperated) horizontal rectus muscle for their INS treatment. We measured their pre- and post-tenotomy target acquisition changes using data from infrared reflection and high-speed digital video. Three key aspects were calculated and analyzed: the saccadic latency (Ls), the time to target acquisition after the target jump (Lt) and the normalized stimulus time within the cycle. Analyses were performed in MATLAB environment (The MathWorks, Natick, MA) using OMLAB software (OMtools, available from http://www.omlab.org). Model simulations were performed in MATLAB Simulink environment. The model simulation suggested an Lt reduction due to an overall foveation-quality improvement. Consistent with that prediction, improvement in Lt, ranging from approximately 200 ms to approximately 500 ms (average approximately 280 ms), was documented in all five patients post-tenotomy. The Lt improvement was not a result of a reduced Ls. INS patients acquired step-target stimuli faster post-tenotomy. This target acquisition improvement may be due to the elevated foveation quality resulting in less inherent variation in the input to the OMS. A refined behavioral OMS model, with "fast" and "slow" motor neuron pathways and a more physiological plant, successfully predicted this improved visual behavior and again demonstrated its utility in guiding ocular motor research.

  4. Cortical response tracking the conscious experience of threshold duration visual stimuli indicates visual perception is all or none

    PubMed Central

    Sekar, Krithiga; Findley, William M.; Poeppel, David; Llinás, Rodolfo R.

    2013-01-01

    At perceptual threshold, some stimuli are available for conscious access whereas others are not. Such threshold inputs are useful tools for investigating the events that separate conscious awareness from unconscious stimulus processing. Here, viewing unmasked, threshold-duration images was combined with recording magnetoencephalography to quantify differences among perceptual states, ranging from no awareness to ambiguity to robust perception. A four-choice scale was used to assess awareness: “didn’t see” (no awareness), “couldn’t identify” (awareness without identification), “unsure” (awareness with low certainty identification), and “sure” (awareness with high certainty identification). Stimulus-evoked neuromagnetic signals were grouped according to behavioral response choices. Three main cortical responses were elicited. The earliest response, peaking at ∼100 ms after stimulus presentation, showed no significant correlation with stimulus perception. A late response (∼290 ms) showed moderate correlation with stimulus awareness but could not adequately differentiate conscious access from its absence. By contrast, an intermediate response peaking at ∼240 ms was observed only for trials in which stimuli were consciously detected. That this signal was similar for all conditions in which awareness was reported is consistent with the hypothesis that conscious visual access is relatively sharply demarcated. PMID:23509248

  5. EEG Source Reconstruction Reveals Frontal-Parietal Dynamics of Spatial Conflict Processing

    PubMed Central

    Cohen, Michael X; Ridderinkhof, K. Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30–50 Hz), followed by a later alpha-band (8–12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4–8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions. PMID:23451201

  6. Adaptor Identity Modulates Adaptation Effects in Familiar Face Identification and Their Neural Correlates

    PubMed Central

    Walther, Christian; Schweinberger, Stefan R.; Kovács, Gyula

    2013-01-01

    Adaptation-related aftereffects (AEs) show how face perception can be altered by recent perceptual experiences. Along with contrastive behavioural biases, modulations of the early event-related potentials (ERPs) were typically reported on categorical levels. Nevertheless, the role of the adaptor stimulus per se for face identity-specific AEs is not completely understood and was therefore investigated in the present study. Participants were adapted to faces (S1s) varying systematically on a morphing continuum between pairs of famous identities (identities A and B), or to Fourier phase-randomized faces, and had to match the subsequently presented ambiguous faces (S2s; 50/50% identity A/B) to one of the respective original faces. We found that S1s identical with or near to the original identities led to strong contrastive biases with more identity B responses following A adaptation and vice versa. In addition, the closer S1s were to the 50/50% S2 on the morphing continuum, the smaller the magnitude of the AE was. The relation between S1s and AE was, however, not linear. Additionally, stronger AEs were accompanied by faster reaction times. Analyses of the simultaneously recorded ERPs revealed categorical adaptation effects starting at 100 ms post-stimulus onset, that were most pronounced at around 125–240 ms for occipito-temporal sites over both hemispheres. S1-specific amplitude modulations were found at around 300–400 ms. Response-specific analyses of ERPs showed reduced voltages starting at around 125 ms when the S1 biased perception in a contrastive way as compared to when it did not. Our results suggest that face identity AEs do not only depend on physical differences between S1 and S2, but also on perceptual factors, such as the ambiguity of S1. Furthermore, short-term plasticity of face identity processing might work in parallel to object-category processing, and is reflected in the first 400 ms of the ERP. PMID:23990908

  7. Effects of age, gender, and stimulus presentation period on visual short-term memory.

    PubMed

    Kunimi, Mitsunobu

    2016-01-01

    This study focused on age-related changes in visual short-term memory using visual stimuli that did not allow verbal encoding. Experiment 1 examined the effects of age and the length of the stimulus presentation period on visual short-term memory function. Experiment 2 examined the effects of age, gender, and the length of the stimulus presentation period on visual short-term memory function. The worst memory performance and the largest performance difference between the age groups were observed in the shortest stimulus presentation period conditions. The performance difference between the age groups became smaller as the stimulus presentation period became longer; however, it did not completely disappear. Although gender did not have a significant effect on d' regardless of the presentation period in the young group, a significant gender-based difference was observed for stimulus presentation periods of 500 ms and 1,000 ms in the older group. This study indicates that the decline in visual short-term memory observed in the older group is due to the interaction of several factors.

  8. Temporal changes in cortical activation during distraction from pain: a comparative LORETA study with conditioned pain modulation.

    PubMed

    Moont, Ruth; Crispel, Yonatan; Lev, Rina; Pud, Dorit; Yarnitsky, David

    2012-01-30

    Methods to cognitively distract subjects from pain and experimental paradigms to induce conditioned pain modulation (CPM; formerly termed diffuse noxious inhibitory controls or DNIC) have each highlighted activity changes in closely overlapping cortical areas. This is the first study, to our knowledge, to compare cortical activation changes during these 2 manipulations in the same experimental set-up. Our study sample included thirty healthy young right handed males capable of expressing CPM. We investigated brief consecutive time windows using 32-channel EEG-based sLORETA, to determine dynamic changes in localized cortical potentials evoked by phasic noxious heat stimuli to the left volar forearm. This was performed under visual cognitive distraction tasks and conditioning hot-water pain to the right hand (CPM), both individually and simultaneously. Previously we have shown that for CPM, there is increased activity in frontal cortical regions followed by reduced activation of the somatosensory areas, suggesting a pain inhibitory role for these frontal regions. We now observed that distraction caused a different extent of cortical activation; greater early activation of frontal areas (DLPFC, OFC and caudal ACC at 250-350 ms post-stimulus), yet lesser reduction in the somatosensory cortices, ACC, PCC and SMA after 350 ms post-stimulus, compared to CPM. Both CPM and distraction reduced subjective pain scores to a similar extent. Combining CPM and distraction further reduced pain ratings compared to CPM and distraction alone, supporting the dissimilarity of the mechanisms of pain modulation under these 2 manipulations. The results are discussed in terms of the differential functional roles of the prefrontal cortex. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Intracranial EEG correlates of implicit relational inference within the hippocampus.

    PubMed

    Reber, T P; Do Lam, A T A; Axmacher, N; Elger, C E; Helmstaedter, C; Henke, K; Fell, J

    2016-01-01

    Drawing inferences from past experiences enables adaptive behavior in future situations. Inference has been shown to depend on hippocampal processes. Usually, inference is considered a deliberate and effortful mental act which happens during retrieval, and requires the focus of our awareness. Recent fMRI studies hint at the possibility that some forms of hippocampus-dependent inference can also occur during encoding and possibly also outside of awareness. Here, we sought to further explore the feasibility of hippocampal implicit inference, and specifically address the temporal evolution of implicit inference using intracranial EEG. Presurgical epilepsy patients with hippocampal depth electrodes viewed a sequence of word pairs, and judged the semantic fit between two words in each pair. Some of the word pairs entailed a common word (e.g., "winter-red," "red-cat") such that an indirect relation was established in following word pairs (e.g., "winter-cat"). The behavioral results suggested that drawing inference implicitly from past experience is feasible because indirect relations seemed to foster "fit" judgments while the absence of indirect relations fostered "do not fit" judgments, even though the participants were unaware of the indirect relations. A event-related potential (ERP) difference emerging 400 ms post-stimulus was evident in the hippocampus during encoding, suggesting that indirect relations were already established automatically during encoding of the overlapping word pairs. Further ERP differences emerged later post-stimulus (1,500 ms), were modulated by the participants' responses and were evident during encoding and test. Furthermore, response-locked ERP effects were evident at test. These ERP effects could hence be a correlate of the interaction of implicit memory with decision-making. Together, the data map out a time-course in which the hippocampus automatically integrates memories from discrete but related episodes to implicitly influence future decision making. © 2015 Wiley Periodicals, Inc.

  10. INDUCED EEG GAMMA OSCILLATION ALIGNMENT IMPROVES DIFFERENTIATION BETWEEN AUTISM AND ADHD GROUP RESPONSES IN A FACIAL CATEGORIZATION TASK

    PubMed Central

    Gross, Eric; El-Baz, Ayman S.; Sokhadze, Guela E.; Sears, Lonnie; Casanova, Manuel F.; Sokhadze, Estate M.

    2012-01-01

    Introduction Children diagnosed with an autism spectrum disorder (ASD) often lack the ability to recognize and properly respond to emotional stimuli. Emotional deficits also characterize children with attention deficit/hyperactivity disorder (ADHD), in addition to exhibiting limited attention span. These abnormalities may effect a difference in the induced EEG gamma wave burst (35–45 Hz) peaked approximately 300–400 milliseconds following an emotional stimulus. Because induced gamma oscillations are not fixed at a definite point in time post-stimulus, analysis of averaged EEG data with traditional methods may result in an attenuated gamma burst power. Methods We used a data alignment technique to improve the averaged data, making it a better representation of the individual induced EEG gamma oscillations. A study was designed to test the response of a subject to emotional stimuli, presented in the form of emotional facial expression images. In a four part experiment, the subjects were instructed to identify gender in the first two blocks of the test, followed by differentiating between basic emotions in the final two blocks (i.e. anger vs. disgust). EEG data was collected from ASD (n=10), ADHD (n=9), and control (n=11) subjects via a 128 channel EGI system, and processed through a continuous wavelet transform and bandpass filter to isolate the gamma frequencies. A custom MATLAB code was used to align the data from individual trials between 200–600 ms post-stimulus, EEG site, and condition by maximizing the Pearson product-moment correlation coefficient between trials. The gamma power for the 400 ms window of maximum induced gamma burst was then calculated and compared between subject groups. Results and Conclusion Condition (anger/disgust recognition, gender recognition) × Alignment × Group (ADHD, ASD, Controls) interaction was significant at most of parietal topographies (e.g., P3–P4, P7–P8). These interactions were better manifested in the aligned data set. Our results show that alignment of the induced gamma oscillations improves sensitivity of this measure in differentiation of EEG responses to emotional facial stimuli in ADHD and ASD. PMID:22754277

  11. INDUCED EEG GAMMA OSCILLATION ALIGNMENT IMPROVES DIFFERENTIATION BETWEEN AUTISM AND ADHD GROUP RESPONSES IN A FACIAL CATEGORIZATION TASK.

    PubMed

    Gross, Eric; El-Baz, Ayman S; Sokhadze, Guela E; Sears, Lonnie; Casanova, Manuel F; Sokhadze, Estate M

    2012-01-01

    INTRODUCTION: Children diagnosed with an autism spectrum disorder (ASD) often lack the ability to recognize and properly respond to emotional stimuli. Emotional deficits also characterize children with attention deficit/hyperactivity disorder (ADHD), in addition to exhibiting limited attention span. These abnormalities may effect a difference in the induced EEG gamma wave burst (35-45 Hz) peaked approximately 300-400 milliseconds following an emotional stimulus. Because induced gamma oscillations are not fixed at a definite point in time post-stimulus, analysis of averaged EEG data with traditional methods may result in an attenuated gamma burst power. METHODS: We used a data alignment technique to improve the averaged data, making it a better representation of the individual induced EEG gamma oscillations. A study was designed to test the response of a subject to emotional stimuli, presented in the form of emotional facial expression images. In a four part experiment, the subjects were instructed to identify gender in the first two blocks of the test, followed by differentiating between basic emotions in the final two blocks (i.e. anger vs. disgust). EEG data was collected from ASD (n=10), ADHD (n=9), and control (n=11) subjects via a 128 channel EGI system, and processed through a continuous wavelet transform and bandpass filter to isolate the gamma frequencies. A custom MATLAB code was used to align the data from individual trials between 200-600 ms post-stimulus, EEG site, and condition by maximizing the Pearson product-moment correlation coefficient between trials. The gamma power for the 400 ms window of maximum induced gamma burst was then calculated and compared between subject groups. RESULTS AND CONCLUSION: Condition (anger/disgust recognition, gender recognition) × Alignment × Group (ADHD, ASD, Controls) interaction was significant at most of parietal topographies (e.g., P3-P4, P7-P8). These interactions were better manifested in the aligned data set. Our results show that alignment of the induced gamma oscillations improves sensitivity of this measure in differentiation of EEG responses to emotional facial stimuli in ADHD and ASD.

  12. Quantification of mid and late evoked sinks in laminar current source density profiles of columns in the primary auditory cortex

    PubMed Central

    Schaefer, Markus K.; Hechavarría, Julio C.; Kössl, Manfred

    2015-01-01

    Current source density (CSD) analysis assesses spatiotemporal synaptic activations at somatic and/or dendritic levels in the form of depolarizing current sinks. Whereas many studies have focused on the short (<50 ms) latency sinks, associated with thalamocortical projections, sinks with longer latencies have received less attention. Here, we analyzed laminar CSD patterns for the first 600 ms after stimulus onset in the primary auditory cortex of Mongolian gerbils. By applying an algorithm for contour calculation, three distinct mid and four late evoked sinks were identified in layers I, III, Va, VIa, and VIb. Our results further showed that the patterns of intracortical information-flow remained qualitatively similar for low and for high sound pressure level stimuli at the characteristic frequency (CF) as well as for stimuli ± 1 octave from CF. There were, however, differences associated with the strength, vertical extent, onset latency, and duration of the sinks for the four stimulation paradigms used. Stimuli one octave above the most sensitive frequency evoked a new, and quite reliable, sink in layer Va whereas low level stimulation led to the disappearance of the layer VIb sink. These data indicate the presence of input sources specifically activated in response to level and/or frequency parameters. Furthermore, spectral integration above vs. below the CF of neurons is asymmetric as illustrated by CSD profiles. These results are important because synaptic feedback associated with mid and late sinks—beginning at 50 ms post stimulus latency—is likely crucial for response modulation resulting from higher order processes like memory, learning or cognitive control. PMID:26557058

  13. Prestimulus alpha power predicts fidelity of sensory encoding in perceptual decision making.

    PubMed

    Lou, Bin; Li, Yun; Philiastides, Marios G; Sajda, Paul

    2014-02-15

    Pre-stimulus α power has been shown to correlate with the behavioral accuracy of perceptual decisions. In most cases, these correlations have been observed by comparing α power for different behavioral outcomes (e.g. correct vs incorrect trials). In this paper we investigate such covariation within the context of behaviorally-latent fluctuations in task-relevant post-stimulus neural activity. Specially we consider variations of pre-stimulus α power with post-stimulus EEG components in a two alternative forced choice visual discrimination task. EEG components, discriminative of stimulus class, are identified using a linear multivariate classifier and only the variability of the components for correct trials (regardless of stimulus class, and for nominally identical stimuli) are correlated with the corresponding pre-stimulus α power. We find a significant relationship between the mean and variance of the pre-stimulus α power and the variation of the trial-to-trial magnitude of an early post-stimulus EEG component. This relationship is not seen for a later EEG component that is also discriminative of stimulus class and which has been previously linked to the quality of evidence driving the decision process. Our results suggest that early perceptual representations, rather than temporally later neural correlates of the perceptual decision, are modulated by pre-stimulus state. © 2013 Elsevier Inc. All rights reserved.

  14. Prestimulus alpha power predicts fidelity of sensory encoding in perceptual decision making

    PubMed Central

    Lou, Bin; Li, Yun; Philiastides, Marios G.; Sajda, Paul

    2013-01-01

    Pre-stimulus α power has been shown to correlate with the behavioral accuracy of perceptual decisions. In most cases, these correlations have been observed by comparing α power for different behavioral outcomes (e.g. correct vs incorrect trials). In this paper we investigate such covariation within the context of behaviorally-latent fluctuations in task-relevant post-stimulus neural activity. Specially we consider variations of pre-stimulus α power with post-stimulus EEG components in a two alternative forced choice visual discrimination task. EEG components, discriminative of stimulus class, are identified using a linear multivariate classifier and only the variability of the components for correct trials (regardless of stimulus class, and for nominally identical stimuli) are correlated with the corresponding pre-stimulus α power. We find a significant relationship between the mean and variance of the pre-stimulus α power and the variation of the trial-to-trial magnitude of an early post-stimulus EEG component. This relationship is not seen for a later EEG component that is also discriminative of stimulus class and which has been previously linked to the quality of evidence driving the decision process. Our results suggest that early perceptual representations, rather than temporally later neural correlates of the perceptual decision, are modulated by pre-stimulus state. PMID:24185020

  15. Temporal Integration Windows in Neural Processing and Perception Aligned to Saccadic Eye Movements.

    PubMed

    Wutz, Andreas; Muschter, Evelyn; van Koningsbruggen, Martijn G; Weisz, Nathan; Melcher, David

    2016-07-11

    When processing dynamic input, the brain balances the opposing needs of temporal integration and sensitivity to change. We hypothesized that the visual system might resolve this challenge by aligning integration windows to the onset of newly arriving sensory samples. In a series of experiments, human participants observed the same sequence of two displays separated by a brief blank delay when performing either an integration or segregation task. First, using magneto-encephalography (MEG), we found a shift in the stimulus-evoked time courses by a 150-ms time window between task signals. After stimulus onset, multivariate pattern analysis (MVPA) decoding of task in occipital-parietal sources remained above chance for almost 1 s, and the task-decoding pattern interacted with task outcome. In the pre-stimulus period, the oscillatory phase in the theta frequency band was informative about both task processing and behavioral outcome for each task separately, suggesting that the post-stimulus effects were caused by a theta-band phase shift. Second, when aligning stimulus presentation to the onset of eye fixations, there was a similar phase shift in behavioral performance according to task demands. In both MEG and behavioral measures, task processing was optimal first for segregation and then integration, with opposite phase in the theta frequency range (3-5 Hz). The best fit to neurophysiological and behavioral data was given by a dampened 3-Hz oscillation from stimulus or eye fixation onset. The alignment of temporal integration windows to input changes found here may serve to actively organize the temporal processing of continuous sensory input. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Post-error action control is neurobehaviorally modulated under conditions of constant speeded response.

    PubMed

    Soshi, Takahiro; Ando, Kumiko; Noda, Takamasa; Nakazawa, Kanako; Tsumura, Hideki; Okada, Takayuki

    2014-01-01

    Post-error slowing (PES) is an error recovery strategy that contributes to action control, and occurs after errors in order to prevent future behavioral flaws. Error recovery often malfunctions in clinical populations, but the relationship between behavioral traits and recovery from error is unclear in healthy populations. The present study investigated the relationship between impulsivity and error recovery by simulating a speeded response situation using a Go/No-go paradigm that forced the participants to constantly make accelerated responses prior to stimuli disappearance (stimulus duration: 250 ms). Neural correlates of post-error processing were examined using event-related potentials (ERPs). Impulsivity traits were measured with self-report questionnaires (BIS-11, BIS/BAS). Behavioral results demonstrated that the commission error for No-go trials was 15%, but PES did not take place immediately. Delayed PES was negatively correlated with error rates and impulsivity traits, showing that response slowing was associated with reduced error rates and changed with impulsivity. Response-locked error ERPs were clearly observed for the error trials. Contrary to previous studies, error ERPs were not significantly related to PES. Stimulus-locked N2 was negatively correlated with PES and positively correlated with impulsivity traits at the second post-error Go trial: larger N2 activity was associated with greater PES and less impulsivity. In summary, under constant speeded conditions, error monitoring was dissociated from post-error action control, and PES did not occur quickly. Furthermore, PES and its neural correlate (N2) were modulated by impulsivity traits. These findings suggest that there may be clinical and practical efficacy of maintaining cognitive control of actions during error recovery under common daily environments that frequently evoke impulsive behaviors.

  17. Post-error action control is neurobehaviorally modulated under conditions of constant speeded response

    PubMed Central

    Soshi, Takahiro; Ando, Kumiko; Noda, Takamasa; Nakazawa, Kanako; Tsumura, Hideki; Okada, Takayuki

    2015-01-01

    Post-error slowing (PES) is an error recovery strategy that contributes to action control, and occurs after errors in order to prevent future behavioral flaws. Error recovery often malfunctions in clinical populations, but the relationship between behavioral traits and recovery from error is unclear in healthy populations. The present study investigated the relationship between impulsivity and error recovery by simulating a speeded response situation using a Go/No-go paradigm that forced the participants to constantly make accelerated responses prior to stimuli disappearance (stimulus duration: 250 ms). Neural correlates of post-error processing were examined using event-related potentials (ERPs). Impulsivity traits were measured with self-report questionnaires (BIS-11, BIS/BAS). Behavioral results demonstrated that the commission error for No-go trials was 15%, but PES did not take place immediately. Delayed PES was negatively correlated with error rates and impulsivity traits, showing that response slowing was associated with reduced error rates and changed with impulsivity. Response-locked error ERPs were clearly observed for the error trials. Contrary to previous studies, error ERPs were not significantly related to PES. Stimulus-locked N2 was negatively correlated with PES and positively correlated with impulsivity traits at the second post-error Go trial: larger N2 activity was associated with greater PES and less impulsivity. In summary, under constant speeded conditions, error monitoring was dissociated from post-error action control, and PES did not occur quickly. Furthermore, PES and its neural correlate (N2) were modulated by impulsivity traits. These findings suggest that there may be clinical and practical efficacy of maintaining cognitive control of actions during error recovery under common daily environments that frequently evoke impulsive behaviors. PMID:25674058

  18. Striate cortical contribution to the transcorneal electrically evoked response of the visual system.

    PubMed

    Shimazu, K; Miyake, Y; Fukatsu, Y; Watanabe, S

    1996-01-01

    Analyses of current-source-density (CSD) and multiple unit activity (MUA) in area 17 of the cat were performed to determine the sources of the cortical transcorneal electrically evoked response. Cortical field potential, CSD and MUA profiles were obtained with multi-electrodes. CSD findings include: current sinks (inward cell membrane current) within 20 ms latency, in layers 4 and 6 of the striate cortex; current sinks corresponding to N3 (negative component of the EER; latency, 35 ms) in layer 4 and lower layer 3 with current sources (outward cell membrane current) for N3 in the supragranular layers; current sinks with latency over 40 ms in the supragranular layers. In the layers 4 and 6, simultaneous MUA was seen. When the stimulus frequency was increased or with dual stimulation, the N3 current sinks were decreased. This indicates that N1 (latency, 9 ms) and N2 (latency, 20 ms) reflect near-field potentials in layers 4 and 6, generated by geniculocortical afferents, and that N3 is a post- and polysynaptic component. It is also suggested that dipoles composed of cell bodies and the apical dendrites of pyramidal cells of layer 3, generated by satellite cells in layer 4, play a major role in generating N3.

  19. Fixation to features and neural processing of facial expressions in a gender discrimination task.

    PubMed

    Neath, Karly N; Itier, Roxane J

    2015-10-01

    Early face encoding, as reflected by the N170 ERP component, is sensitive to fixation to the eyes. Whether this sensitivity varies with facial expressions of emotion and can also be seen on other ERP components such as P1 and EPN, was investigated. Using eye-tracking to manipulate fixation on facial features, we found the N170 to be the only eye-sensitive component and this was true for fearful, happy and neutral faces. A different effect of fixation to features was seen for the earlier P1 that likely reflected general sensitivity to face position. An early effect of emotion (∼120 ms) for happy faces was seen at occipital sites and was sustained until ∼350 ms post-stimulus. For fearful faces, an early effect was seen around 80 ms followed by a later effect appearing at ∼150 ms until ∼300 ms at lateral posterior sites. Results suggests that in this emotion-irrelevant gender discrimination task, processing of fearful and happy expressions occurred early and largely independently of the eye-sensitivity indexed by the N170. Processing of the two emotions involved different underlying brain networks active at different times. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Early differential sensitivity of evoked-potentials to local and global shape during the perception of three-dimensional objects.

    PubMed

    Leek, E Charles; Roberts, Mark; Oliver, Zoe J; Cristino, Filipe; Pegna, Alan J

    2016-08-01

    Here we investigated the time course underlying differential processing of local and global shape information during the perception of complex three-dimensional (3D) objects. Observers made shape matching judgments about pairs of sequentially presented multi-part novel objects. Event-related potentials (ERPs) were used to measure perceptual sensitivity to 3D shape differences in terms of local part structure and global shape configuration - based on predictions derived from hierarchical structural description models of object recognition. There were three types of different object trials in which stimulus pairs (1) shared local parts but differed in global shape configuration; (2) contained different local parts but shared global configuration or (3) shared neither local parts nor global configuration. Analyses of the ERP data showed differential amplitude modulation as a function of shape similarity as early as the N1 component between 146-215ms post-stimulus onset. These negative amplitude deflections were more similar between objects sharing global shape configuration than local part structure. Differentiation among all stimulus types was reflected in N2 amplitude modulations between 276-330ms. sLORETA inverse solutions showed stronger involvement of left occipitotemporal areas during the N1 for object discrimination weighted towards local part structure. The results suggest that the perception of 3D object shape involves parallel processing of information at local and global scales. This processing is characterised by relatively slow derivation of 'fine-grained' local shape structure, and fast derivation of 'coarse-grained' global shape configuration. We propose that the rapid early derivation of global shape attributes underlies the observed patterns of N1 amplitude modulations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Changes in event-related potentials in patients with first-episode schizophrenia and their siblings.

    PubMed

    Yang, Chengqing; Zhang, Tianhong; Li, Zezhi; Heeramun-Aubeeluck, Anisha; Liu, Na; Huang, Nan; Zhang, Jie; He, Leiying; Li, Hui; Tang, Yingying; Chen, Fazhan; Wang, Jijun; Lu, Zheng

    2017-01-17

    This study aimed to explore the characteristics of event-related potentials induced by facial emotion recognition in patients with first-episode schizophrenia and in their siblings. In this case-control study, 30 first-episode schizophrenia patients, 26 siblings, and 30 healthy controls were enrolled. They completed facial emotion recognition tasks from the Ekman Standard Faces Database as an induction for evoked potentials. Evoked potential data were obtained using a 64-channel electroencephalography system. Average evoked potential waveforms were computed from epochs for each stimulus type. The amplitudes and latency of the event-related potentials for P100 (positive potential 100 ms after stimulus onset), N170 (negative potential 170 ms after stimulus onset), and N250 (fronto-central peak) were investigated at O1, O2, P7, and P8 electrode locations. There were significant differences between the groups for P100 amplitude (F = 11.526, P < 0.001), electrode position (F = 450.592, P < 0.001), emotion (disgust vs. happiness vs. fear) (F = 1722.467, P < 0.001), and emotion intensity (low vs. moderate vs. high) (F = 1737.169, P < 0.001). Post hoc analysis showed significantly larger amplitudes in the schizophrenia group at the O1, O2, P7, and P8 electrode positions. There were no significant differences between the siblings of schizophrenia patients and the healthy controls. Patients with schizophrenia showed abnormalities in P100 amplitude, but similar results were not observed in their siblings. These results provide evidence of dysfunctional event-related potential patterns underlying facial emotion processing in patients with schizophrenia. P100 may be a characteristic index of schizophrenia.

  2. Neural correlates of the modified Stroop effect in post-traumatic stress disorder: an event-related potential study.

    PubMed

    Chen, Xiaoyi; Wei, Dongtao; Dupuis-Roy, Nicolas; Du, Xue; Qiu, Jiang; Zhang, Qinglin

    2012-12-19

    Previous studies have provided electrophysiological evidence for attentional abnormalities in patients with post-traumatic stress disorder (PTSD). The present study examined the electrophysiological activity of trauma-exposed patients with or without a PTSD during a modified Stroop task. The PTSD group showed a reduced P2 and P3 amplitude relative to the non-PTSD group under both the earthquake-related and earthquake-unrelated words conditions. Importantly, the earthquake-related words elicited a greater P3 amplitude (350-450 ms after stimulus) than did unrelated words in the non-PTSD group, whereas no significant difference was found in the PTSD group. This indicates that PTSD patients had some attention deficits compared with non-PTSD individuals, and that these attention deficits were not just limited to earthquake-related words.

  3. Rabbit electroretinograms evoked by 632.8nm laser flash stimuli

    NASA Astrophysics Data System (ADS)

    Yang, Zai-Fu; Chen, Hong-Xia; Wang, Jia-Rui; Guan, Bo-Lin; Yu, Guang-Yuan; Zhang, Xiao-Na; Zhang, Wen-Yuan; Yang, Jing-Geng

    2012-12-01

    The flash electroretinography is a standard electrophysiological method and widely employed in basic research and ophthalmology clinics, of which the stimulus is usually white flash from dome stimulator. However, little is known about the electroretinograms (ERGs) evoked by monochromatic laser flash stimuli. The goal of this research effort is to quantify the ERGs of dark-adapted New Zealand rabbits elicited by He-Ne laser flash with wavelength 632.8 nm. The flash field was a Maxwellian viewing disc with angular subtense of 8.5°, 13.3° or 20.2°. The stimulus duration was 12 ms, 22 ms, 70 ms or 220 ms. The laser flash power incident on the cornea varied from 2.2 nW through 22 mW. Under the condition of 20 ms stimulus duration and 20.2° flash field, the ERG of New Zealand rabbit was compared with that of Chinchilla gray rabbit. Results showed that for the ERG b-wave, with the increase of laser energy, the amplitude first increased, then met a trough and finally increased again, the implicit time decreased first and then met a platform. While for the ERG a-wave, the amplitude increased and the implicit time decreased monotonically. Longer stimulus duration led to lower b-wave amplitude under equal flash power level. The flash field size showed limited effect on the ERG, especially on the low energy end. As compared with the pigmented rabbit, the albino rabbit was more sensitive and the threshold energy for b-wave excitation was about 10 times lower.

  4. Effects of interstimulus intervals on behavioral, heart rate, and event-related potential indices of infant engagement and sustained attention

    PubMed Central

    Xie, Wanze; Richards, John E.

    2016-01-01

    Maximizing infant attention to stimulus presentation during an EEG or ERP experiment is important for making valid inferences about the neural correlates of infant cognition. The present study examined the effects of stimulus presentation interstimulus interval (ISI) on behavioral and physiological indices of infant attention including infants’ fixation to visual presentation, the amount of heart rate (HR) change during sustained attention, and ERP components. This study compared an ISI that is typically used in infant EEG/ERP studies (e.g., 1,500–2,000 ms) with two shorter durations (400–600 ms and 600–1,000 ms). Thirty-six infants were tested cross-sectionally at 3, 4.5, and 6 months. It was found that using the short (400–600 ms) and medium (600–1,000 ms) ISIs resulted in more visually fixated trials and reduced frequency of fixation disengagement per experimental block. We also found larger HR changes during sustained attention to both of the shorter ISIs compared with the long ISI, and larger ERP responses when using the medium ISI compared to using the short and long ISIs. These data suggest that utilizing an optimal ISI (e.g., 600– 1,000 ms), which increases the presentation complexity and provides sufficient time for information processing, can promote infant engagement and sustained attention during stimulus presentation. PMID:27159263

  5. Emotion self-regulation and empathy depend upon longer stimulus exposure.

    PubMed

    Ikezawa, Satoru; Corbera, Silvia; Wexler, Bruce E

    2014-10-01

    Observation of others in pain induces positive elevation (pain effect) in late event-related potentials (ERP). This effect is associated with top-down attention regulating processes. It has previously been shown that stimulus exposure duration can affect top-down attentional modulation of response to threat-related stimuli. We investigated the effect of exposure duration on ERP response to others in pain. Two late ERP components, P3 and late positive potentials (LPP), from 18 healthy people were measured while they viewed pictures of hands in painful or neutral situations for either 200 or 500 ms, during two task conditions (pain judgment and counting hands). P3 and LPP pain effects during the pain judgment condition were significantly greater with 500 ms than 200 ms stimulus presentation. Ours is the first study to suggest that engagement of empathy-related self-regulatory processes reflected in late potentials requires longer exposure to the pain-related stimulus. Although this is important information about the relationship between early sensory and subsequent brain processing, and about engagement of self-regulatory processes, the neural basis of this time-dependence remains unclear. It might be important to investigate the relationship between stimulus duration and empathic response in clinical populations where issues of self-regulation, empathic response and speed of information processing exist. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Affective picture processing: An integrative review of ERP findings

    PubMed Central

    Olofsson, Jonas K.; Nordin, Steven; Sequeira, Henrique; Polich, John

    2008-01-01

    The review summarizes and integrates findings from 40 years of event-related potential (ERP) studies using pictures that differ in valence (unpleasant-to-pleasant) and arousal (low-to-high) and that are used to elicit emotional processing. Affective stimulus factors primarily modulate ERP component amplitude, with little change in peak latency observed. Arousal effects are consistently obtained, and generally occur at longer latencies. Valence effects are inconsistently reported at several latency ranges, including very early components. Some affective ERP modulations vary with recording methodology, stimulus factors, as well as task-relevance and emotional state. Affective ERPs have been linked theoretically to attention orientation for unpleasant pictures at earlier components (< 300 ms). Enhanced stimulus processing has been associated with memory encoding for arousing pictures of assumed intrinsic motivational relevance, with task-induced differences contributing to emotional reactivity at later components (> 300 ms). Theoretical issues, stimulus factors, task demands, and individual differences are discussed. PMID:18164800

  7. Brain-heart coupling at the P300 latency is linked to anterior cingulate cortex and insula--a cardio-electroencephalographic covariance tracing study.

    PubMed

    Panitz, Christian; Wacker, Jan; Stemmler, Gerhard; Mueller, Erik M

    2013-09-01

    Prior work on the coupling of cortical and cardiac responses to feedback demonstrated that feedback-evoked single-trial EEG magnitudes 300 ms post-stimulus predict the degree of subsequent cardiac acceleration. The main goal of the current study was to explore the neural sources of this phenomenon using (a) independent component analysis in conjunction with dipole fitting and (b) low resolution electromagnetic tomography (LORETA) in N=14 participants who performed a gambling task with feedback presented after each trial. It was shown that independent components localized near anterior cingulate cortex produced robust within-subjects correlations with feedback-evoked heart-period, suggesting that anterior cingulate cortex activity 300ms after feedback presentation predicts the strength of subsequent cardiac acceleration. Moreover, interindividual differences in evoked left insular cortex LORETA-estimated activity at around 300ms moderated within-subjects EEG-heart period correlations. These results suggest that key regions of central autonomic control are involved in cortico-cardiac coupling evoked by feedback stimuli. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Strategic allocation of attention reduces temporally predictable stimulus conflict

    PubMed Central

    Appelbaum, L. Gregory; Boehler, Carsten N.; Won, Robert; Davis, Lauren; Woldorff, Marty G.

    2013-01-01

    Humans are able to continuously monitor environmental situations and adjust their behavioral strategies to optimize performance. Here we investigate the behavioral and brain adjustments that occur when conflicting stimulus elements are, or are not, temporally predictable. Event-related potentials (ERPs) were collected while manual-response variants of the Stroop task were performed in which the stimulus onset asynchronies (SOAs) between the relevant-color and irrelevant-word stimulus components were either randomly intermixed, or held constant, within each experimental run. Results indicated that the size of both the neural and behavioral effects of stimulus incongruency varied with the temporal arrangement of the stimulus components, such that the random-SOA arrangements produced the greatest incongruency effects at the earliest irrelevant-first SOA (−200 ms) and the constant-SOA arrangements produced the greatest effects with simultaneous presentation. These differences in conflict processing were accompanied by rapid (~150 ms) modulations of the sensory ERPs to the irrelevant distracter components when they occurred consistently first. These effects suggest that individuals are able to strategically allocate attention in time to mitigate the influence of a temporally predictable distracter. As these adjustments are instantiated by the subjects without instruction, they reveal a form of rapid strategic learning for dealing with temporally predictable stimulus incongruency. PMID:22360623

  9. Dissociation of binding and learning processes.

    PubMed

    Moeller, Birte; Frings, Christian

    2017-11-01

    A single encounter of a stimulus together with a response can result in a short-lived association between the stimulus and the response [sometimes called an event file, see Hommel, Müsseler, Aschersleben, & Prinz, (2001) Behavioral and Brain Sciences, 24, 910-926]. The repetition of stimulus-response pairings typically results in longer lasting learning effects indicating stimulus-response associations (e.g., Logan & Etherton, (1994) Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 1022-1050]. An important question is whether or not what has been described as stimulus-response binding in action control research is actually identical with an early stage of incidental learning (e.g., binding might be seen as single-trial learning). Here, we present evidence that short-lived binding effects can be distinguished from learning of longer lasting stimulus-response associations. In two experiments, participants always responded to centrally presented target letters that were flanked by response irrelevant distractor letters. Experiment 1 varied whether distractors flanked targets on the horizontal or vertical axis. Binding effects were larger for a horizontal than for a vertical distractor-target configuration, while stimulus configuration did not influence incidental learning of longer lasting stimulus-response associations. In Experiment 2, the duration of the interval between response n - 1 and presentation of display n (500 ms vs. 2000 ms) had opposing influences on binding and learning effects. Both experiments indicate that modulating factors influence stimulus-response binding and incidental learning effects in different ways. We conclude that distinct underlying processes should be assumed for binding and incidental learning effects.

  10. Psychophysical estimation of speed discrimination. II. Aging effects

    NASA Astrophysics Data System (ADS)

    Raghuram, Aparna; Lakshminarayanan, Vasudevan; Khanna, Ritu

    2005-10-01

    We studied the effects of aging on a speed discrimination task using a pair of first-order drifting luminance gratings. Two reference speeds of 2 and 8 deg/s were presented at stimulus durations of 500 ms and 1000 ms. The choice of stimulus parameters, etc., was determined in preliminary experiments and described in Part I. Thresholds were estimated using a two-alternative-forced-choice staircase methodology. Data were collected from 16 younger subjects (mean age 24 years) and 17 older subjects (mean age 71 years). Results showed that thresholds for speed discrimination were higher for the older age group. This was especially true at stimulus duration of 500 ms for both slower and faster speeds. This could be attributed to differences in temporal integration of speed with age. Visual acuity and contrast sensitivity were not statistically observed to mediate age differences in the speed discrimination thresholds. Gender differences were observed in the older age group, with older women having higher thresholds.

  11. Cortical thickness as a contributor to abnormal oscillations in schizophrenia?☆

    PubMed Central

    Edgar, J. Christopher; Chen, Yu-Han; Lanza, Matthew; Howell, Breannan; Chow, Vivian Y.; Heiken, Kory; Liu, Song; Wootton, Cassandra; Hunter, Michael A.; Huang, Mingxiong; Miller, Gregory A.; Cañive, José M.

    2013-01-01

    Introduction Although brain rhythms depend on brain structure (e.g., gray and white matter), to our knowledge associations between brain oscillations and structure have not been investigated in healthy controls (HC) or in individuals with schizophrenia (SZ). Observing function–structure relationships, for example establishing an association between brain oscillations (defined in terms of amplitude or phase) and cortical gray matter, might inform models on the origins of psychosis. Given evidence of functional and structural abnormalities in primary/secondary auditory regions in SZ, the present study examined how superior temporal gyrus (STG) structure relates to auditory STG low-frequency and 40 Hz steady-state activity. Given changes in brain activity as a function of age, age-related associations in STG oscillatory activity were also examined. Methods Thirty-nine individuals with SZ and 29 HC were recruited. 40 Hz amplitude-modulated tones of 1 s duration were presented. MEG and T1-weighted sMRI data were obtained. Using the sources localizing 40 Hz evoked steady-state activity (300 to 950 ms), left and right STG total power and inter-trial coherence were computed. Time–frequency group differences and associations with STG structure and age were also examined. Results Decreased total power and inter-trial coherence in SZ were observed in the left STG for initial post-stimulus low-frequency activity (~ 50 to 200 ms, ~ 4 to 16 Hz) as well as 40 Hz steady-state activity (~ 400 to 1000 ms). Left STG 40 Hz total power and inter-trial coherence were positively associated with left STG cortical thickness in HC, not in SZ. Left STG post-stimulus low-frequency and 40 Hz total power were positively associated with age, again only in controls. Discussion Left STG low-frequency and steady-state gamma abnormalities distinguish SZ and HC. Disease-associated damage to STG gray matter in schizophrenia may disrupt the age-related left STG gamma-band function–structure relationships observed in controls. PMID:24371794

  12. A Variable Oscillator Underlies the Measurement of Time Intervals in the Rostral Medial Prefrontal Cortex during Classical Eyeblink Conditioning in Rabbits.

    PubMed

    Caro-Martín, C Rocío; Leal-Campanario, Rocío; Sánchez-Campusano, Raudel; Delgado-García, José M; Gruart, Agnès

    2015-11-04

    We were interested in determining whether rostral medial prefrontal cortex (rmPFC) neurons participate in the measurement of conditioned stimulus-unconditioned stimulus (CS-US) time intervals during classical eyeblink conditioning. Rabbits were conditioned with a delay paradigm consisting of a tone as CS. The CS started 50, 250, 500, 1000, or 2000 ms before and coterminated with an air puff (100 ms) directed at the cornea as the US. Eyelid movements were recorded with the magnetic search coil technique and the EMG activity of the orbicularis oculi muscle. Firing activities of rmPFC neurons were recorded across conditioning sessions. Reflex and conditioned eyelid responses presented a dominant oscillatory frequency of ≈12 Hz. The firing rate of each recorded neuron presented a single peak of activity with a frequency dependent on the CS-US interval (i.e., ≈12 Hz for 250 ms, ≈6 Hz for 500 ms, and≈3 Hz for 1000 ms). Interestingly, rmPFC neurons presented their dominant firing peaks at three precise times evenly distributed with respect to CS start and also depending on the duration of the CS-US interval (only for intervals of 250, 500, and 1000 ms). No significant neural responses were recorded at very short (50 ms) or long (2000 ms) CS-US intervals. rmPFC neurons seem not to encode the oscillatory properties characterizing conditioned eyelid responses in rabbits, but are probably involved in the determination of CS-US intervals of an intermediate range (250-1000 ms). We propose that a variable oscillator underlies the generation of working memories in rabbits. The way in which brains generate working memories (those used for the transient processing and storage of newly acquired information) is still an intriguing question. Here, we report that the firing activities of neurons located in the rostromedial prefrontal cortex recorded in alert behaving rabbits are controlled by a dynamic oscillator. This oscillator generated firing frequencies in a variable band of 3-12 Hz depending on the conditioned stimulus-unconditioned stimulus intervals (1 s, 500 ms, 250 ms) selected for classical eyeblink conditioning of behaving rabbits. Shorter (50 ms) and longer (2 s) intervals failed to activate the oscillator and prevented the acquisition of conditioned eyelid responses. This is an unexpected mechanism to generate sustained firing activities in neural circuits generating working memories. Copyright © 2015 the authors 0270-6474/15/3514809-13$15.00/0.

  13. Integration time for the perception of depth from motion parallax.

    PubMed

    Nawrot, Mark; Stroyan, Keith

    2012-04-15

    The perception of depth from relative motion is believed to be a slow process that "builds-up" over a period of observation. However, in the case of motion parallax, the potential accuracy of the depth estimate suffers as the observer translates during the viewing period. Our recent quantitative model for the perception of depth from motion parallax proposes that relative object depth (d) can be determined from retinal image motion (dθ/dt), pursuit eye movement (dα/dt), and fixation distance (f) by the formula: d/f≈dθ/dα. Given the model's dynamics, it is important to know the integration time required by the visual system to recover dα and dθ, and then estimate d. Knowing the minimum integration time reveals the incumbent error in this process. A depth-phase discrimination task was used to determine the time necessary to perceive depth-sign from motion parallax. Observers remained stationary and viewed a briefly translating random-dot motion parallax stimulus. Stimulus duration varied between trials. Fixation on the translating stimulus was monitored and enforced with an eye-tracker. The study found that relative depth discrimination can be performed with presentations as brief as 16.6 ms, with only two stimulus frames providing both retinal image motion and the stimulus window motion for pursuit (mean range=16.6-33.2 ms). This was found for conditions in which, prior to stimulus presentation, the eye was engaged in ongoing pursuit or the eye was stationary. A large high-contrast masking stimulus disrupted depth-discrimination for stimulus presentations less than 70-75 ms in both pursuit and stationary conditions. This interval might be linked to ocular-following response eye-movement latencies. We conclude that neural mechanisms serving depth from motion parallax generate a depth estimate much more quickly than previously believed. We propose that additional sluggishness might be due to the visual system's attempt to determine the maximum dθ/dα ratio for a selection of points on a complicated stimulus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The role of the right posterior parietal cortex in temporal order judgment.

    PubMed

    Woo, Sung-Ho; Kim, Ki-Hyun; Lee, Kyoung-Min

    2009-03-01

    Perceived order of two consecutive stimuli may not correspond to the order of their physical onsets. Such a disagreement presumably results from a difference in the speed of stimulus processing toward central decision mechanisms. Since previous evidence suggests that the right posterior parietal cortex (PPC) plays a role in modulating the processing speed of a visual target, we applied single-pulse TMS over the region in 14 normal subjects, while they judged the temporal order of two consecutive visual stimuli. Stimulus-onset-asynchrony (SOA) randomly varied between -100 and 100 ms in 20-ms steps (with a positive SOA when a target appeared on the right hemi-field before the other on the left), and a point of subjective simultaneity was measured for individual subjects. TMS stimulation was time-locked at 50, 100, 150, and 200 ms after the onset of the first stimulus, and results in trials with TMS on right PPC were compared with those in trials without TMS. TMS over the right PPC delayed the detection of a visual target in the contralateral, i.e., left hemi-field by 24 (+/-7 SE) ms and 16 (+/-4 SE) ms, when the stimulation was given at 50 and 100 ms after the first target onset. In contrast, TMS on the left PPC was not effective. These results show that the right PPC is important in a timely detection of a target appearing on the left visual field, especially in competition with another target simultaneously appearing in the opposite field.

  15. Stimulus train duration but not attention moderates γ-band entrainment abnormalities in schizophrenia

    PubMed Central

    Hamm, Jordan P.; Bobilev, Anastasia M.; Hayrynen, Lauren K.; Hudgens-Haney, Matthew E.; Oliver, William T.; Parker, David A.; McDowell, Jennifer E.; Buckley, Peter A.; Clementz, Brett A.

    2017-01-01

    Electroencephalographic (EEG) studies of auditory steady-state responses (aSSRs) non-invasively probe gamma-band (40-Hz) oscillatory capacity in sensory cortex with high signal-to-noise ratio. Consistent reports of reduced 40-Hz aSSRs in persons with schizophrenia (SZ) indicate its potential as an efficient biomarker for the disease, but studies have been limited to passive or indirect listening contexts with stereotypically short (500ms) stimulus trains. An inability to modulate sensorineural processing in accord with behavioral goals or within the sensory environmental context may represent a fundamental deficit in SZ, but whether and how this deficit relates to reduced aSSRs is unknown. We systematically varied stimulus duration and attentional contexts to further mature the 40-Hz aSSR as biomarker for future translational or mechanistic studies. Eighteen SZ and 18 healthy subjects (H) were presented binaural pure-tones with or without sinusoidal amplitude modulation at 40-Hz. Stimulus duration (500-ms or 1500-ms) and attention (via a button press task) were varied across 4 separate blocks. Evoked potentials recorded with dense-array EEGs were analyzed in the time-frequency domain. SZ displayed reduced 40-Hz aSSRs to typical stimulation parameters, replicating previous findings. In H, aSSRs were reduced when stimuli were presented in longer trains and were slightly enhanced by attention. Only the former modulation was impaired in SZ and correlated with sensory discrimination performance. Thus, gamma-band aSSRs are modulated by both attentional and stimulus duration contexts, but only modulations related to physical stimulus properties are abnormal in SZ, supporting its status as a biomarker of psychotic perceptual disturbance involving non-attentional sensori-cortical circuits. PMID:25868936

  16. Task choice and semantic interference in picture naming.

    PubMed

    Piai, Vitória; Roelofs, Ardi; Schriefers, Herbert

    2015-05-01

    Evidence from dual-task performance indicates that speakers prefer not to select simultaneous responses in picture naming and another unrelated task, suggesting a response selection bottleneck in naming. In particular, when participants respond to tones with a manual response and name pictures with superimposed semantically related or unrelated distractor words, semantic interference in naming tends to be constant across stimulus onset asynchronies (SOAs) between the tone stimulus and the picture-word stimulus. In the present study, we examine whether semantic interference in picture naming depends on SOA in case of a task choice (naming the picture vs reading the word of a picture-word stimulus) based on tones. This situation requires concurrent processing of the tone stimulus and the picture-word stimulus, but not a manual response to the tones. On each trial, participants either named a picture or read aloud a word depending on the pitch of a tone, which was presented simultaneously with picture-word onset or 350 ms or 1000 ms before picture-word onset. Semantic interference was present with tone pre-exposure, but absent when tone and picture-word stimulus were presented simultaneously. Against the background of the available studies, these results support an account according to which speakers tend to avoid concurrent response selection, but can engage in other types of concurrent processing, such as task choices. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Sensorimotor synchronization: neurophysiological markers of the asynchrony in a finger-tapping task.

    PubMed

    Bavassi, Luz; Kamienkowski, Juan E; Sigman, Mariano; Laje, Rodrigo

    2017-01-01

    Sensorimotor synchronization (SMS) is a form of referential behavior in which an action is coordinated with a predictable external stimulus. The neural bases of the synchronization ability remain unknown, even in the simpler, paradigmatic task of finger tapping to a metronome. In this task the subject is instructed to tap in synchrony with a periodic sequence of brief tones, and the time difference between each response and the corresponding stimulus tone (asynchrony) is recorded. We make a step towards the identification of the neurophysiological markers of SMS by recording high-density EEG event-related potentials and the concurrent behavioral response-stimulus asynchronies during an isochronous paced finger-tapping task. Using principal component analysis, we found an asymmetry between the traces for advanced and delayed responses to the stimulus, in accordance with previous behavioral observations from perturbation studies. We also found that the amplitude of the second component encodes the higher-level percept of asynchrony 100 ms after the current stimulus. Furthermore, its amplitude predicts the asynchrony of the next step, past 300 ms from the previous stimulus, independently of the period length. Moreover, the neurophysiological processing of synchronization errors is performed within a fixed-duration interval after the stimulus. Our results suggest that the correction of a large asynchrony in a periodic task and the recovery of synchrony after a perturbation could be driven by similar neural processes.

  18. Facing Challenges in Differential Classical Conditioning Research: Benefits of a Hybrid Design for Simultaneous Electrodermal and Electroencephalographic Recording.

    PubMed

    Pastor, M Carmen; Rehbein, Maimu Alissa; Junghöfer, Markus; Poy, Rosario; López, Raul; Moltó, Javier

    2015-01-01

    Several challenges make it difficult to simultaneously investigate central and autonomous nervous system correlates of conditioned stimulus (CS) processing in classical conditioning paradigms. Such challenges include, for example, the discrepant requirements of electroencephalography (EEG) and electrodermal activity (EDA) recordings with regard to multiple repetitions of conditions and sufficient trial duration. Here, we propose a MultiCS conditioning set-up, in which we increased the number of CSs, decreased the number of learning trials, and used trials of short and long durations for meeting requirements of simultaneous EEG-EDA recording in a differential aversive conditioning task. Forty-eight participants underwent MultiCS conditioning, in which four neutral faces (CS+) were paired four times each with aversive electric stimulation (unconditioned stimulus) during acquisition, while four different neutral faces (CS-) remained unpaired. When comparing after relative to before learning measurements, EEG revealed an enhanced centro-posterior positivity to CS+ vs. CS- during 368-600 ms, and subjective ratings indicated CS+ to be less pleasant and more arousing than CS-. Furthermore, changes in CS valence and arousal were strong enough to bias subjective ratings when faces of CS+/CS- identity were displayed with different emotional expression (happy, angry) in a post-experimental behavioral task. In contrast to a persistent neural and evaluative CS+/CS- differentiation that sustained multiple unreinforced CS presentations, electrodermal differentiation was rapidly extinguished. Current results suggest that MultiCS conditioning provides a promising paradigm for investigating pre-post-learning changes under minimal influences of extinction and overlearning of simple stimulus features. Our data also revealed methodological pitfalls, such as the possibility of occurring artifacts when combining different acquisition systems for central and peripheral psychophysiological measures.

  19. Facing Challenges in Differential Classical Conditioning Research: Benefits of a Hybrid Design for Simultaneous Electrodermal and Electroencephalographic Recording

    PubMed Central

    Pastor, M. Carmen; Rehbein, Maimu Alissa; Junghöfer, Markus; Poy, Rosario; López, Raul; Moltó, Javier

    2015-01-01

    Several challenges make it difficult to simultaneously investigate central and autonomous nervous system correlates of conditioned stimulus (CS) processing in classical conditioning paradigms. Such challenges include, for example, the discrepant requirements of electroencephalography (EEG) and electrodermal activity (EDA) recordings with regard to multiple repetitions of conditions and sufficient trial duration. Here, we propose a MultiCS conditioning set-up, in which we increased the number of CSs, decreased the number of learning trials, and used trials of short and long durations for meeting requirements of simultaneous EEG–EDA recording in a differential aversive conditioning task. Forty-eight participants underwent MultiCS conditioning, in which four neutral faces (CS+) were paired four times each with aversive electric stimulation (unconditioned stimulus) during acquisition, while four different neutral faces (CS−) remained unpaired. When comparing after relative to before learning measurements, EEG revealed an enhanced centro-posterior positivity to CS+ vs. CS− during 368–600 ms, and subjective ratings indicated CS+ to be less pleasant and more arousing than CS−. Furthermore, changes in CS valence and arousal were strong enough to bias subjective ratings when faces of CS+/CS− identity were displayed with different emotional expression (happy, angry) in a post-experimental behavioral task. In contrast to a persistent neural and evaluative CS+/CS− differentiation that sustained multiple unreinforced CS presentations, electrodermal differentiation was rapidly extinguished. Current results suggest that MultiCS conditioning provides a promising paradigm for investigating pre–post-learning changes under minimal influences of extinction and overlearning of simple stimulus features. Our data also revealed methodological pitfalls, such as the possibility of occurring artifacts when combining different acquisition systems for central and peripheral psychophysiological measures. PMID:26106318

  20. Adaptation in the auditory midbrain of the barn owl (Tyto alba) induced by tonal double stimulation.

    PubMed

    Singheiser, Martin; Ferger, Roland; von Campenhausen, Mark; Wagner, Hermann

    2012-02-01

    During hunting, the barn owl typically listens to several successive sounds as generated, for example, by rustling mice. As auditory cells exhibit adaptive coding, the earlier stimuli may influence the detection of the later stimuli. This situation was mimicked with two double-stimulus paradigms, and adaptation was investigated in neurons of the barn owl's central nucleus of the inferior colliculus. Each double-stimulus paradigm consisted of a first or reference stimulus and a second stimulus (probe). In one paradigm (second level tuning), the probe level was varied, whereas in the other paradigm (inter-stimulus interval tuning), the stimulus interval between the first and second stimulus was changed systematically. Neurons were stimulated with monaural pure tones at the best frequency, while the response was recorded extracellularly. The responses to the probe were significantly reduced when the reference stimulus and probe had the same level and the inter-stimulus interval was short. This indicated response adaptation, which could be compensated for by an increase of the probe level of 5-7 dB over the reference level, if the latter was in the lower half of the dynamic range of a neuron's rate-level function. Recovery from adaptation could be best fitted with a double exponential showing a fast (1.25 ms) and a slow (800 ms) component. These results suggest that neurons in the auditory system show dynamic coding properties to tonal double stimulation that might be relevant for faithful upstream signal propagation. Furthermore, the overall stimulus level of the masker also seems to affect the recovery capabilities of auditory neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  1. From cognitive motor preparation to visual processing: The benefits of childhood fitness to brain health.

    PubMed

    Berchicci, M; Pontifex, M B; Drollette, E S; Pesce, C; Hillman, C H; Di Russo, F

    2015-07-09

    The association between a fit body and a fit brain in children has led to a rise of behavioral and neuroscientific research. Yet, the relation of cardiorespiratory fitness on premotor neurocognitive preparation with early visual processing has received little attention. Here, 41 healthy, lower and higher fit preadolescent children were administered a modified version of the Eriksen flanker task while electroencephalography (EEG) and behavioral measures were recorded. Event-related potentials (ERPs) locked to the stimulus onset with an earlier than usual baseline (-900/-800 ms) allowed investigation of both the usual post-stimulus (i.e., the P1, N1 and P2) as well as the pre-stimulus ERP components, such as the Bereitschaftspotential (BP) and the prefrontal negativity (pN component). At the behavioral level, aerobic fitness was associated response accuracy, with higher fit children being more accurate than lower fit children. Fitness-related differences selectively emerged at prefrontal brain regions during response preparation, with larger pN amplitude for higher than lower fit children, and at early perceptual stages after stimulus onset, with larger P1 and N1 amplitudes in higher relative to lower fit children. Collectively, the results suggest that the benefits of being aerobically fit appear at the stage of cognitive preparation prior to stimulus presentation and the behavioral response during the performance of a task that challenges cognitive control. Further, it is likely that enhanced activity in prefrontal brain areas may improve cognitive control of visuo-motor tasks, allowing for stronger proactive inhibition and larger early allocation of selective attention resources on relevant external stimuli. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Early correlates of visual awareness following orientation and colour rivalry.

    PubMed

    Veser, Sandra; O'Shea, Robert P; Schröger, Erich; Trujillo-Barreto, Nelson J; Roeber, Urte

    2008-10-01

    Binocular rivalry occurs when dissimilar images are presented to corresponding retinal regions of the two eyes: visibility alternates irregularly between the two images, interspersed by brief transitions when parts of both may be visible. We measured event-related potentials (ERPs) following binocular rivalry by changing the stimulus viewed by one eye to be identical to that in the other eye, eliciting binocular fusion. Because of the rivalry, observers either saw the change, when it happened to the visible stimulus, or did not see the change, when it happened to the invisible stimulus. The earliest ERP differences between visible and invisible changes occurred after about 100 ms (P1) when the rivalry was between stimuli differing in orientation, and after about 200 ms (N1) when the rivalry was between stimuli differing in colour. These differences originated from ventro-lateral temporal and prefrontal areas. We conclude that the rivalling stimulus property influences the timing of modulation of correlates of visual awareness in a property-independent cortical network.

  3. Post-conflict slowing: cognitive adaptation after conflict processing.

    PubMed

    Verguts, Tom; Notebaert, Wim; Kunde, Wilfried; Wühr, Peter

    2011-02-01

    The aftereffects of error and conflict (i.e., stimulus or response incongruency) have been extensively studied in the cognitive control literature. Each has been characterized by its own behavioral signature on the following trial. Conflict leads to a reduced congruency effect (Gratton effect), whereas an error leads to increased response time (post-error slowing). The reason for this dissociation has remained unclear. Here, we show that post-conflict slowing is not typically observed because it is masked by the processing of the irrelevant stimulus dimension. We demonstrate that post-conflict slowing does occur when tested in pure trials where helpful or detrimental impacts from irrelevant stimulus dimensions are removed (i.e., univalent stimuli).

  4. The effects of associative and semantic priming in the lexical decision task.

    PubMed

    Perea, Manuel; Rosa, Eva

    2002-08-01

    Four lexical decision experiments were conducted to examine under which conditions automatic semantic priming effects can be obtained. Experiments 1 and 2 analyzed associative/semantic effects at several very short stimulus-onset asynchronies (SOAs), whereas Experiments 3 and 4 used a single-presentation paradigm at two response-stimulus intervals (RSIs). Experiment 1 tested associatively related pairs from three semantic categories (synonyms, antonyms, and category coordinates). The results showed reliable associative priming effects at all SOAs. In addition, the correlation between associative strength and magnitude of priming was significant only at the shortest SOA (66 ms). When prime-target pairs were semantically but not associatively related (Experiment 2), reliable priming effects were obtained at SOAs of 83 ms and longer. Using the single-presentation paradigm with a short RSI (200 ms, Experiment 3), the priming effect was equal in size for associative + semantic and for semantic-only pairs (a 21-ms effect). When the RSI was set much longer (1,750 ms, Experiment 4), only the associative + semantic pairs showed a reliable priming effect (23 ms). The results are interpreted in the context of models of semantic memory.

  5. When Wine and Apple Both Help the Production of Grapes: ERP Evidence for Post-lexical Semantic Facilitation in Picture Naming

    PubMed Central

    Python, Grégoire; Fargier, Raphaël; Laganaro, Marina

    2018-01-01

    Background: Producing a word in referential naming requires to select the right word in our mental lexicon among co-activated semantically related words. The mechanisms underlying semantic context effects during speech planning are still controversial, particularly for semantic facilitation which investigation remains under-represented in contrast to the plethora of studies dealing with interference. Our aim is to study the time-course of semantic facilitation in picture naming, using a picture-word “interference” paradigm and event-related potentials (ERPs). Methods: We compared two different types of semantic relationships, associative and categorical, in a single word priming and a double word priming paradigm. The primes were presented visually with a long negative Stimulus Onset Asynchrony (SOA), which is expected to cause facilitation. Results: Shorter naming latencies were observed after both associative and categorical primes, as compared to unrelated primes, and even shorter latencies after two primes. Electrophysiological results showed relatively late modulations of waveform amplitudes for both types of primes (beginning ~330 ms post picture onset with a single prime and ~275 ms post picture onset with two primes), corresponding to a shift in latency of similar topographic maps across conditions. Conclusion: The present results are in favor of a post-lexical locus of semantic facilitation for associative and categorical priming in picture naming and confirm that semantic facilitation is as relevant as semantic interference to inform on word production. The post-lexical locus argued here might be related to self-monitoting or/and to modulations at the level of word-form planning, without excluding the participation of strategic processes. PMID:29692716

  6. Adults' age-related differences in strategy perseveration are modulated by response-stimulus intervals and problem features.

    PubMed

    Lemaire, Patrick; Brun, Fleur

    2014-10-01

    Ageing results in the tendency of older adults to repeat the same strategy across consecutive problems more often than young adults, even when such strategy perseveration is not appropriate. Here, we examined how these age-related differences in strategy perseveration are modulated by response-stimulus intervals and problem characteristics. We asked participants to select the best strategy while accomplishing a computational estimation task (i.e., provide approximate sums to two-digit addition problems like 38 + 74). We found that participants repeated the same strategy across consecutive problems more often when the duration between their response and next problem display was short (300 ms) than when it was long (1300 ms). We also found more strategy perseverations in older than in young adults under short Response-Stimulus Intervals, but not under long Response-Stimulus Intervals. Finally, age-related differences in strategy perseveration decreased when problem features helped participants to select the best strategy. These modulations of age-related differences in strategy perseveration by response-stimulus intervals and characteristics of target problems are important for furthering our understanding of mechanisms underlying strategy perseveration and, more generally, ageing effects on strategy selection.

  7. Limits to the usability of iconic memory

    PubMed Central

    Rensink, Ronald A.

    2014-01-01

    Human vision briefly retains a trace of a stimulus after it disappears. This trace—iconic memory—is often believed to be a surrogate for the original stimulus, a representational structure that can be used as if the original stimulus were still present. To investigate its nature, a flicker-search paradigm was developed that relied upon a full scan (rather than partial report) of its contents. Results show that for visual search it can indeed act as a surrogate, with little cost for alternating between visible and iconic representations. However, the duration over which it can be used depends on the type of task: some tasks can use iconic memory for at least 240 ms, others for only about 190 ms, while others for no more than about 120 ms. The existence of these different limits suggests that iconic memory may have multiple layers, each corresponding to a particular level of the visual hierarchy. In this view, the inability to use a layer of iconic memory may reflect an inability to maintain feedback connections to the corresponding representation. PMID:25221539

  8. Limits to the usability of iconic memory.

    PubMed

    Rensink, Ronald A

    2014-01-01

    Human vision briefly retains a trace of a stimulus after it disappears. This trace-iconic memory-is often believed to be a surrogate for the original stimulus, a representational structure that can be used as if the original stimulus were still present. To investigate its nature, a flicker-search paradigm was developed that relied upon a full scan (rather than partial report) of its contents. Results show that for visual search it can indeed act as a surrogate, with little cost for alternating between visible and iconic representations. However, the duration over which it can be used depends on the type of task: some tasks can use iconic memory for at least 240 ms, others for only about 190 ms, while others for no more than about 120 ms. The existence of these different limits suggests that iconic memory may have multiple layers, each corresponding to a particular level of the visual hierarchy. In this view, the inability to use a layer of iconic memory may reflect an inability to maintain feedback connections to the corresponding representation.

  9. Semantic priming effects in a lexical decision task: comparing third graders and college students in two different stimulus onset asynchronies.

    PubMed

    Holderbaum, Candice Steffen; de Salles, Jerusa Fumagalli

    2011-11-01

    Differences in the semantic priming effect comparing child and adult performance have been found by some studies. However, these differences are not well established, mostly because of the variety of methods used by researchers around the world. One of the main issues concerns the absence of semantic priming effects on children at stimulus onset asynchrony (SOA) smaller than 300ms. The aim of this study was to compare the semantic priming effect between third graders and college students at two different SOAs: 250ms and 500ms. Participants performed lexical decisions to targets which were preceded by semantic related or unrelated primes. Semantic priming effects were found at both SOAs in the third graders' group and in college students. Despite the fact that there was no difference between groups in the magnitude of semantic priming effects when SOA was 250ms, at the 500ms SOA their magnitude was bigger in children, corroborating previous studies. Hypotheses which could explain the presence of semantic priming effects in children's performance when SOA was 250ms are discussed, as well as hypotheses for the larger magnitude of semantic priming effects in children when SOA was 500ms.

  10. Divided visual attention: A comparison of patients with multiple sclerosis and controls, assessed with an optokinetic nystagmus suppression task.

    PubMed

    Williams, Isla M; Schofield, Peter; Khade, Neha; Abel, Larry A

    2016-12-01

    Multiple sclerosis (MS) frequently causes impairment of cognitive function. We compared patients with MS with controls on divided visual attention tasks. The MS patients' and controls' stare optokinetic nystagmus (OKN) was recorded in response to a 24°/s full field stimulus. Suppression of the OKN response, judged by the gain, was measured during tasks dividing visual attention between the fixation target and a second stimulus, central or peripheral, static or dynamic. All participants completed the Audio Recorded Cognitive Screen. MS patients had lower gain on the baseline stare OKN. OKN suppression in divided attention tasks was the same in MS patients as in controls but in both groups was better maintained in static than in dynamic tasks. In only dynamic tasks, older age was associated with less effective OKN suppression. MS patients had lower scores on a timed attention task and on memory. There was no significant correlation between attention or memory and eye movement parameters. Attention, a complex multifaceted construct, has different neural combinations for each task. Despite impairments on some measures of attention, MS patients completed the divided visual attention tasks normally. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fast and slow readers of the Hebrew language show divergence in brain response ∼200 ms post stimulus: an ERP study.

    PubMed

    Korinth, Sebastian Peter; Breznitz, Zvia

    2014-01-01

    Higher N170 amplitudes to words and to faces were recently reported for faster readers of German. Since the shallow German orthography allows phonological recoding of single letters, the reported speed advantages might have their origin in especially well-developed visual processing skills of faster readers. In contrast to German, adult readers of Hebrew are forced to process letter chunks up to whole words. This dependence on more complex visual processing might have created ceiling effects for this skill. Therefore, the current study examined whether also in the deep Hebrew orthography visual processing skills as reflected by N170 amplitudes explain reading speed differences. Forty university students, native speakers of Hebrew without reading impairments, accomplished a lexical decision task (i.e., deciding whether a visually presented stimulus represents a real or a pseudo word) and a face decision task (i.e., deciding whether a face was presented complete or with missing facial features) while their electroencephalogram was recorded from 64 scalp positions. In both tasks stronger event related potentials (ERPs) were observed for faster readers in time windows at about 200 ms. Unlike in previous studies, ERP waveforms in relevant time windows did not correspond to N170 scalp topographies. The results support the notion of visual processing ability as an orthography independent marker of reading proficiency, which advances our understanding about regular and impaired reading development.

  12. Rapid discrimination of visual scene content in the human brain.

    PubMed

    Anokhin, Andrey P; Golosheykin, Simon; Sirevaag, Erik; Kristjansson, Sean; Rohrbaugh, John W; Heath, Andrew C

    2006-06-06

    The rapid evaluation of complex visual environments is critical for an organism's adaptation and survival. Previous studies have shown that emotionally significant visual scenes, both pleasant and unpleasant, elicit a larger late positive wave in the event-related brain potential (ERP) than emotionally neutral pictures. The purpose of the present study was to examine whether neuroelectric responses elicited by complex pictures discriminate between specific, biologically relevant contents of the visual scene and to determine how early in the picture processing this discrimination occurs. Subjects (n = 264) viewed 55 color slides differing in both scene content and emotional significance. No categorical judgments or responses were required. Consistent with previous studies, we found that emotionally arousing pictures, regardless of their content, produce a larger late positive wave than neutral pictures. However, when pictures were further categorized by content, anterior ERP components in a time window between 200 and 600 ms following stimulus onset showed a high selectivity for pictures with erotic content compared to other pictures regardless of their emotional valence (pleasant, neutral, and unpleasant) or emotional arousal. The divergence of ERPs elicited by erotic and non-erotic contents started at 185 ms post-stimulus in the fronto-central midline region, with a later onset in parietal regions. This rapid, selective, and content-specific processing of erotic materials and its dissociation from other pictures (including emotionally positive pictures) suggests the existence of a specialized neural network for prioritized processing of a distinct category of biologically relevant stimuli with high adaptive and evolutionary significance.

  13. Rapid discrimination of visual scene content in the human brain

    PubMed Central

    Anokhin, Andrey P.; Golosheykin, Simon; Sirevaag, Erik; Kristjansson, Sean; Rohrbaugh, John W.; Heath, Andrew C.

    2007-01-01

    The rapid evaluation of complex visual environments is critical for an organism's adaptation and survival. Previous studies have shown that emotionally significant visual scenes, both pleasant and unpleasant, elicit a larger late positive wave in the event-related brain potential (ERP) than emotionally neutral pictures. The purpose of the present study was to examine whether neuroelectric responses elicited by complex pictures discriminate between specific, biologically relevant contents of the visual scene and to determine how early in the picture processing this discrimination occurs. Subjects (n=264) viewed 55 color slides differing in both scene content and emotional significance. No categorical judgments or responses were required. Consistent with previous studies, we found that emotionally arousing pictures, regardless of their content, produce a larger late positive wave than neutral pictures. However, when pictures were further categorized by content, anterior ERP components in a time window between 200−600 ms following stimulus onset showed a high selectivity for pictures with erotic content compared to other pictures regardless of their emotional valence (pleasant, neutral, and unpleasant) or emotional arousal. The divergence of ERPs elicited by erotic and non-erotic contents started at 185 ms post-stimulus in the fronto-central midline regions, with a later onset in parietal regions. This rapid, selective, and content-specific processing of erotic materials and its dissociation from other pictures (including emotionally positive pictures) suggests the existence of a specialized neural network for prioritized processing of a distinct category of biologically relevant stimuli with high adaptive and evolutionary significance. PMID:16712815

  14. Stroboscopic Training Enhances Anticipatory Timing.

    PubMed

    Smith, Trevor Q; Mitroff, Stephen R

    The dynamic aspects of sports often place heavy demands on visual processing. As such, an important goal for sports training should be to enhance visual abilities. Recent research has suggested that training in a stroboscopic environment, where visual experiences alternate between visible and obscured, may provide a means of improving attentional and visual abilities. The current study explored whether stroboscopic training could impact anticipatory timing - the ability to predict where a moving stimulus will be at a specific point in time. Anticipatory timing is a critical skill for both sports and non-sports activities, and thus finding training improvements could have broad impacts. Participants completed a pre-training assessment that used a Bassin Anticipation Timer to measure their abilities to accurately predict the timing of a moving visual stimulus. Immediately after this initial assessment, the participants completed training trials, but in one of two conditions. Those in the Control condition proceeded as before with no change. Those in the Strobe condition completed the training trials while wearing specialized eyewear that had lenses that alternated between transparent and opaque (rate of 100ms visible to 150ms opaque). Post-training assessments were administered immediately after training, 10-minutes after training, and 10-days after training. Compared to the Control group, the Strobe group was significantly more accurate immediately after training, was more likely to respond early than to respond late immediately after training and 10 minutes later, and was more consistent in their timing estimates immediately after training and 10 minutes later.

  15. Regular, brief mindfulness meditation practice improves electrophysiological markers of attentional control

    PubMed Central

    Moore, Adam; Gruber, Thomas; Derose, Jennifer; Malinowski, Peter

    2012-01-01

    Mindfulness-based meditation practices involve various attentional skills, including the ability to sustain and focus ones attention. During a simple mindful breathing practice, sustained attention is required to maintain focus on the breath while cognitive control is required to detect mind wandering. We thus hypothesized that regular, brief mindfulness training would result in improvements in the self-regulation of attention and foster changes in neuronal activity related to attentional control. A longitudinal randomized control group EEG study was conducted. At baseline (T1), 40 meditation naïve participants were randomized into a wait list group and a meditation group, who received three hours mindfulness meditation training. Twenty-eight participants remained in the final analysis. At T1, after eight weeks (T2) and after 16 weeks (T3), all participants performed a computerized Stroop task (a measure of attentional control) while the 64-channel EEG was recorded. Between T1 and T3 the meditators were requested to meditate daily for 10 min. Event-related potential (ERP) analysis highlighted two between group effects that developed over the course of the 16-week mindfulness training. An early effect at left and right posterior sites 160–240 ms post-stimulus indicated that meditation practice improved the focusing of attentional resources. A second effect at central posterior sites 310–380 ms post-stimulus reflects that meditation practice reduced the recruitment of resources during object recognition processes, especially for incongruent stimuli. Scalp topographies and source analyses (Variable Resolution Electromagnetic Tomography, VARETA) indicate relevant changes in neural sources, pertaining to left medial and lateral occipitotemporal areas for the early effect and right lateral occipitotemporal and inferior temporal areas for the later effect. The results suggest that mindfulness meditation may alter the efficiency of allocating cognitive resources, leading to improved self-regulation of attention. PMID:22363278

  16. Effects of Sound Frequency on Audiovisual Integration: An Event-Related Potential Study.

    PubMed

    Yang, Weiping; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Ren, Yanna; Takahashi, Satoshi; Wu, Jinglong

    2015-01-01

    A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190-210 ms, for 1 kHz stimuli from 170-200 ms, for 2.5 kHz stimuli from 140-200 ms, 5 kHz stimuli from 100-200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300-340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies.

  17. Neural Responses in Parietal and Occipital Areas in Response to Visual Events Are Modulated by Prior Multisensory Stimuli

    PubMed Central

    Innes-Brown, Hamish; Barutchu, Ayla; Crewther, David P.

    2013-01-01

    The effect of multi-modal vs uni-modal prior stimuli on the subsequent processing of a simple flash stimulus was studied in the context of the audio-visual ‘flash-beep’ illusion, in which the number of flashes a person sees is influenced by accompanying beep stimuli. EEG recordings were made while combinations of simple visual and audio-visual stimuli were presented. The experiments found that the electric field strength related to a flash stimulus was stronger when it was preceded by a multi-modal flash/beep stimulus, compared to when it was preceded by another uni-modal flash stimulus. This difference was found to be significant in two distinct timeframes – an early timeframe, from 130–160 ms, and a late timeframe, from 300–320 ms. Source localisation analysis found that the increased activity in the early interval was localised to an area centred on the inferior and superior parietal lobes, whereas the later increase was associated with stronger activity in an area centred on primary and secondary visual cortex, in the occipital lobe. The results suggest that processing of a visual stimulus can be affected by the presence of an immediately prior multisensory event. Relatively long-lasting interactions generated by the initial auditory and visual stimuli altered the processing of a subsequent visual stimulus. PMID:24391939

  18. On the high frequency transfer of mechanical stimuli from the surface of the head to the macular neuroepithelium of the mouse.

    PubMed

    Jones, Timothy A; Lee, Choongheon; Gaines, G Christopher; Grant, J W Wally

    2015-04-01

    Vestibular macular sensors are activated by a shearing motion between the otoconial membrane and underlying receptor epithelium. Shearing motion and sensory activation in response to an externally induced head motion do not occur instantaneously. The mechanically reactive elastic and inertial properties of the intervening tissue introduce temporal constraints on the transfer of the stimulus to sensors. Treating the otoconial sensory apparatus as an overdamped second-order mechanical system, we measured the governing long time constant (Τ(L)) for stimulus transfer from the head surface to epithelium. This provided the basis to estimate the corresponding upper cutoff for the frequency response curve for mouse otoconial organs. A velocity step excitation was used as the forcing function. Hypothetically, the onset of the mechanical response to a step excitation follows an exponential rise having the form Vel(shear) = U(1-e(-t/TL)), where U is the applied shearing velocity step amplitude. The response time of the otoconial apparatus was estimated based on the activation threshold of macular neural responses to step stimuli having durations between 0.1 and 2.0 ms. Twenty adult C57BL/6 J mice were evaluated. Animals were anesthetized. The head was secured to a shaker platform using a non-invasive head clip or implanted skull screws. The shaker was driven to produce a theoretical forcing step velocity excitation at the otoconial organ. Vestibular sensory evoked potentials (VsEPs) were recorded to measure the threshold for macular neural activation. The duration of the applied step motion was reduced systematically from 2 to 0.1 ms and response threshold determined for each duration (nine durations). Hypothetically, the threshold of activation will increase according to the decrease in velocity transfer occurring at shorter step durations. The relationship between neural threshold and stimulus step duration was characterized. Activation threshold increased exponentially as velocity step duration decreased below 1.0 ms. The time constants associated with the exponential curve were Τ(L) = 0.50 ms for the head clip coupling and T(L) = 0.79 ms for skull screw preparation. These corresponded to upper -3 dB frequency cutoff points of approximately 318 and 201 Hz, respectively. T(L) ranged from 224 to 379 across individual animals using the head clip coupling. The findings were consistent with a second-order mass-spring mechanical system. Threshold data were also fitted to underdamped models post hoc. The underdamped fits suggested natural resonance frequencies on the order of 278 to 448 Hz as well as the idea that macular systems in mammals are less damped than generally acknowledged. Although estimated indirectly, it is argued that these time constants reflect largely if not entirely the mechanics of transfer to the sensory apparatus. The estimated governing time constant of 0.50 ms for composite data predicts high frequency cutoffs of at least 318 Hz for the intact otoconial apparatus of the mouse.

  19. Cortical processing of tactile stimuli applied in quick succession across the fingertips: temporal evolution of dipole sources revealed by magnetoencephalography.

    PubMed

    Karageorgiou, Elissaios; Koutlas, Ioannis G; Alonso, Aurelio A; Leuthold, Arthur C; Lewis, Scott M; Georgopoulos, Apostolos P

    2008-08-01

    We used magnetoencephalography (MEG) in 10 healthy human subjects to study cortical responses to tactile stimuli applied to the fingertips of digits 2-5 of the right hand. Each stimulus lasted 50 ms and was produced by air-driven elastic membranes. Four-hundred stimuli were delivered on each finger in three temporal patterns (conditions). In the "Discrete" condition, stimuli were applied to each finger repetitively with an interstimulus interval (ISI) of 1-2 s. In the "Continuous" condition, stimuli were applied to the fingers sequentially as four-stimulus trains with zero ISI and 1-2 s intervening between trains. Finally, in the "Gap" condition, stimuli were applied as in the Continuous condition but with an ISI of 50 ms. A sensation of tactile motion across fingers (digit 2 --> digit 5) was reported by all subjects in the Continuous and Gap conditions. Cortical responses were extracted as single equivalent current dipoles over a period of 1 s following stimulus onset. In all three conditions, initial responses in left primary somatosensory cortex (SI) were observed ~20 to 50 ms after stimulus onset and were followed by additional left SI responses and bilateral responses in the secondary somatosensory cortex (SII). In addition, in the Continuous and Gap conditions, there was an activation of the precentral gyrus, the temporal aspects of which depended on the temporal relation of the administered stimuli, as follows. An ISI of 0 ms led to activation of the precentral gyrus shortly after the second stimulation, whereas an ISI of 50 ms led to activation of the precentral gyrus after the third stimulation. The current findings support results from previous studies on temporal activity patterns in SI and SII, verify the participation of the precentral gyrus during tactile motion perception and, in addition, reveal aspects of integration of sequential sensory stimulations over nonadjacent areas as well as temporal activity patterns in the postcentral and precentral gyri.

  20. Isolating spectral cues in amplitude and quasi-frequency modulation discrimination by reducing stimulus duration.

    PubMed

    Borucki, Ewa; Berg, Bruce G

    2017-05-01

    This study investigated the psychophysical effects of distortion products in a listening task traditionally used to estimate the bandwidth of phase sensitivity. For a 2000 Hz carrier, estimates of modulation depth necessary to discriminate amplitude modulated (AM) tones and quasi-frequency modulated (QFM) were measured in a two interval forced choice task as a function modulation frequency. Temporal modulation transfer functions were often non-monotonic at modulation frequencies above 300 Hz. This was likely to be due to a spectral cue arising from the interaction of auditory distortion products and the lower sideband of the stimulus complex. When the stimulus duration was decreased from 200 ms to 20 ms, thresholds for low-frequency modulators rose to near-chance levels, whereas thresholds in the region of non-monotonicities were less affected. The decrease in stimulus duration appears to hinder the listener's ability to use temporal cues in order to discriminate between AM and QFM, whereas spectral information derived from distortion product cues appears more resilient. Copyright © 2017. Published by Elsevier B.V.

  1. Tracking the first two seconds: three stages of visual information processing?

    PubMed

    Jacob, Jane; Breitmeyer, Bruno G; Treviño, Melissa

    2013-12-01

    We compared visual priming and comparison tasks to assess information processing of a stimulus during the first 2 s after its onset. In both tasks, a 13-ms prime was followed at varying SOAs by a 40-ms probe. In the priming task, observers identified the probe as rapidly and accurately as possible; in the comparison task, observers determined as rapidly and accurately as possible whether or not the probe and prime were identical. Priming effects attained a maximum at an SOA of 133 ms and then declined monotonically to zero by 700 ms, indicating reliance on relatively brief visuosensory (iconic) memory. In contrast, the comparison effects yielded a multiphasic function, showing a maximum at 0 ms followed by a minimum at 133 ms, followed in turn by a maximum at 240 ms and another minimum at 720 ms, and finally a third maximum at 1,200 ms before declining thereafter. The results indicate three stages of prime processing that we take to correspond to iconic visible persistence, iconic informational persistence, and visual working memory, with the first two used in the priming task and all three in the comparison task. These stages are related to stages presumed to underlie stimulus processing in other tasks, such as those giving rise to the attentional blink.

  2. Stimulus-driven attention, threat bias, and sad bias in youth with a history of an anxiety disorder or depression

    PubMed Central

    Sylvester, Chad M.; Hudziak, James J.; Gaffrey, Michael S.; Barch, Deanna M.; Luby, Joan L.

    2015-01-01

    Attention biases towards threatening and sad stimuli are associated with pediatric anxiety and depression, respectively. The basic cognitive mechanisms associated with attention biases in youth, however, remain unclear. Here, we tested the hypothesis that threat bias (selective attention for threatening versus neutral stimuli) but not sad bias relies on stimulus-driven attention. We collected measures of stimulus-driven attention, threat bias, sad bias, and current clinical symptoms in youth with a history of an anxiety disorder and/or depression (ANX/DEP; n=40) as well as healthy controls (HC; n=33). Stimulus-driven attention was measured with a non-emotional spatial orienting task, while threat bias and sad bias were measured at a short time interval (150 ms) with a spatial orienting task using emotional faces and at a longer time interval (500 ms) using a dot-probe task. In ANX/DEP but not HC, early attention bias towards threat was negatively correlated with later attention bias to threat, suggesting that early threat vigilance was associated with later threat avoidance. Across all subjects, stimulus-driven orienting was not correlated with early threat bias but was negatively correlated with later threat bias, indicating that rapid stimulus-driven orienting is linked to later threat avoidance. No parallel relationships were detected for sad bias. Current symptoms of depression but not anxiety were related to decreased stimulus-driven attention. Together, these results are consistent with the hypothesis that threat bias but not sad bias relies on stimulus-driven attention. These results inform the design of attention bias modification programs that aim to reverse threat biases and reduce symptoms associated with pediatric anxiety and depression. PMID:25702927

  3. Stimulus-Driven Attention, Threat Bias, and Sad Bias in Youth with a History of an Anxiety Disorder or Depression.

    PubMed

    Sylvester, Chad M; Hudziak, James J; Gaffrey, Michael S; Barch, Deanna M; Luby, Joan L

    2016-02-01

    Attention biases towards threatening and sad stimuli are associated with pediatric anxiety and depression, respectively. The basic cognitive mechanisms associated with attention biases in youth, however, remain unclear. Here, we tested the hypothesis that threat bias (selective attention for threatening versus neutral stimuli) but not sad bias relies on stimulus-driven attention. We collected measures of stimulus-driven attention, threat bias, sad bias, and current clinical symptoms in youth with a history of an anxiety disorder and/or depression (ANX/DEP; n = 40) as well as healthy controls (HC; n = 33). Stimulus-driven attention was measured with a non-emotional spatial orienting task, while threat bias and sad bias were measured at a short time interval (150 ms) with a spatial orienting task using emotional faces and at a longer time interval (500 ms) using a dot-probe task. In ANX/DEP but not HC, early attention bias towards threat was negatively correlated with later attention bias to threat, suggesting that early threat vigilance was associated with later threat avoidance. Across all subjects, stimulus-driven orienting was not correlated with early threat bias but was negatively correlated with later threat bias, indicating that rapid stimulus-driven orienting is linked to later threat avoidance. No parallel relationships were detected for sad bias. Current symptoms of depression but not anxiety were related to decreased stimulus-driven attention. Together, these results are consistent with the hypothesis that threat bias but not sad bias relies on stimulus-driven attention. These results inform the design of attention bias modification programs that aim to reverse threat biases and reduce symptoms associated with pediatric anxiety and depression.

  4. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs

    PubMed Central

    Ponnath, Abhilash; Farris, Hamilton E.

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3–10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene. PMID:25120437

  5. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    PubMed

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  6. Least-squares (LS) deconvolution of a series of overlapping cortical auditory evoked potentials: a simulation and experimental study

    NASA Astrophysics Data System (ADS)

    Bardy, Fabrice; Van Dun, Bram; Dillon, Harvey; Cowan, Robert

    2014-08-01

    Objective. To evaluate the viability of disentangling a series of overlapping ‘cortical auditory evoked potentials’ (CAEPs) elicited by different stimuli using least-squares (LS) deconvolution, and to assess the adaptation of CAEPs for different stimulus onset-asynchronies (SOAs). Approach. Optimal aperiodic stimulus sequences were designed by controlling the condition number of matrices associated with the LS deconvolution technique. First, theoretical considerations of LS deconvolution were assessed in simulations in which multiple artificial overlapping responses were recovered. Second, biological CAEPs were recorded in response to continuously repeated stimulus trains containing six different tone-bursts with frequencies 8, 4, 2, 1, 0.5, 0.25 kHz separated by SOAs jittered around 150 (120-185), 250 (220-285) and 650 (620-685) ms. The control condition had a fixed SOA of 1175 ms. In a second condition, using the same SOAs, trains of six stimuli were separated by a silence gap of 1600 ms. Twenty-four adults with normal hearing (<20 dB HL) were assessed. Main results. Results showed disentangling of a series of overlapping responses using LS deconvolution on simulated waveforms as well as on real EEG data. The use of rapid presentation and LS deconvolution did not however, allow the recovered CAEPs to have a higher signal-to-noise ratio than for slowly presented stimuli. The LS deconvolution technique enables the analysis of a series of overlapping responses in EEG. Significance. LS deconvolution is a useful technique for the study of adaptation mechanisms of CAEPs for closely spaced stimuli whose characteristics change from stimulus to stimulus. High-rate presentation is necessary to develop an understanding of how the auditory system encodes natural speech or other intrinsically high-rate stimuli.

  7. Visually evoked changes in the rat retinal blood flow measured with Doppler optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tan, Bingyao; Mason, Erik; MacLellan, Ben; Bizheva, Kostadinka

    2017-02-01

    Visually evoked changes of retinal blood flow can serve as an important research tool to investigate eye disease such as glaucoma and diabetic retinopathy. In this study we used a combined, research-grade, high-resolution Doppler OCT+ERG system to study changes in the retinal blood flow (RBF) and retinal neuronal activity in response to visual stimuli of different intensities, durations and type (flicker vs single flash). Specifically, we used white light stimuli of 10 ms and 200 ms single flash, 1s and 2s for flickers stimuli of 20% duty cycle. The study was conducted in-vivo in pigmented rats. Both single flash (SF) and flicker stimuli caused increase in the RBF. The 10 ms SF stimulus did not generate any consistent measurable response, while the 200 ms SF of the same intensity generated 4% change in the RBF peaking at 1.5 s after the stimulus onset. Single flash stimuli introduced 2x smaller change in RBF and 30% earlier RBF peak response compared to flicker stimuli of the same intensity and duration. Doubling the intensity of SF or flicker stimuli increased the RBF peak magnitude by 1.5x. Shortening the flicker stimulus duration by 2x increased the RBF recovery rate by 2x, however, had no effect on the rate of RBF change from baseline to peak.

  8. Disruption of trace conditioning of the nictitating membrane response in rabbits by central cholinergic blockade.

    PubMed

    Kaneko, T; Thompson, R F

    1997-05-01

    Central muscarinic cholinergic involvement in classical conditioning of eyeblink responses was determined in trace and delay paradigms. Rabbits were trained on a trace procedure in which a 250-ms tone conditioned stimulus (CS) and a 100-ms air-puff unconditioned stimulus (UCS) were presented with a 500-ms trace interval. Each training session day consisted of ten tone alone, ten air-puff alone and 80 paired CS-UCS trials. Scopolamine hydrochloride at doses of 0.03 and 0.1 mg/0.5 ml per kg, s.c. dose-dependently disrupted acquisition of conditioned responses. Rabbits that were treated with scopolamine and failed to learn showed a gradual increase in conditioned responses during an additional training period with saline injections and no transfer from earlier training. Scopolamine methyl bromide, which does not appreciably cross the blood-brain barrier, showed no effects in the trace conditioning paradigm at a dose of 0.1 mg/kg, s.c., indicating central cholinergic blockade is responsible for the suppressive effect of scopolamine. Scopolamine hydrochloride at a dose of 0.1 mg/kg, s.c. did not block acquisition in the delay procedure with a 250-ms inter-stimulus interval, although the rate of acquisition was somewhat reduced by the drug. These data are the first to demonstrate that classical conditioning of the eyeblink response in the trace procedure is highly sensitive to central cholinergic deficits.

  9. Electrophysiological Correlates of Individual Differences in Perception of Audiovisual Temporal Asynchrony

    PubMed Central

    Kaganovich, Natalya; Schumaker, Jennifer

    2016-01-01

    Sensitivity to the temporal relationship between auditory and visual stimuli is key to efficient audiovisual integration. However, even adults vary greatly in their ability to detect audiovisual temporal asynchrony. What underlies this variability is currently unknown. We recorded event-related potentials (ERPs) while participants performed a simultaneity judgment task on a range of audiovisual (AV) and visual-auditory (VA) stimulus onset asynchronies (SOAs) and compared ERP responses in good and poor performers to the 200 ms SOA, which showed the largest individual variability in the number of synchronous perceptions. Analysis of ERPs to the VA200 stimulus yielded no significant results. However, those individuals who were more sensitive to the AV200 SOA had significantly more positive voltage between 210 and 270 ms following the sound onset. In a follow-up analysis, we showed that the mean voltage within this window predicted approximately 36% of variability in sensitivity to AV temporal asynchrony in a larger group of participants. The relationship between the ERP measure in the 210-270 ms window and accuracy on the simultaneity judgment task also held for two other AV SOAs with significant individual variability - 100 and 300 ms. Because the identified window was time-locked to the onset of sound in the AV stimulus, we conclude that sensitivity to AV temporal asynchrony is shaped to a large extent by the efficiency in the neural encoding of sound onsets. PMID:27094850

  10. β1-Adrenoceptor in the Central Amygdala Is Required for Unconditioned Stimulus-Induced Drug Memory Reconsolidation

    PubMed Central

    Zhu, Huiwen; Zhou, Yiming; Liu, Zhiyuan; Chen, Xi; Li, Yanqing; Liu, Xing; Ma, Lan

    2018-01-01

    Abstract Background Drug memories become labile and reconsolidated after retrieval by presentation of environmental cues (conditioned stimulus) or drugs (unconditioned stimulus). Whether conditioned stimulus and unconditioned stimulus retrieval trigger different memory reconsolidation processes is not clear. Methods Protein synthesis inhibitor or β-adrenergic receptor (β-AR) antagonist was systemically administrated or intra-central amygdala infused immediately after cocaine reexposure in cocaine-conditioned place preference or self-administration mice models. β-ARs were selectively knocked out in the central amygdala to further confirm the role of β-adrenergic receptor in cocaine reexposure-induced memory reconsolidation of cocaine-conditioned place preference. Results Cocaine reexposure triggered de novo protein synthesis dependent memory reconsolidation of cocaine-conditioned place preference. Cocaine-priming-induced reinstatement was also impaired with post cocaine retrieval manipulation, in contrast to the relapse behavior with post context retrieval manipulation. Cocaine retrieval, but not context retrieval, induced central amygdala activation. Protein synthesis inhibitor or β1-adrenergic receptor antagonist infused in the central amygdala after cocaine retrieval, but not context retrieval, inhibited memory reconsolidation and reinstatement. β1-adrenergic receptor knockout in the central amygdala suppressed cocaine retrieval-triggered memory reconsolidation and reinstatement of cocaine conditioned place preference. β1-adrenergic receptor antagonism after cocaine retrieval also impaired reconsolidation and reinstatement of cocaine self-administration. Conclusions Cocaine reward memory triggered by unconditioned stimulus retrieval is distinct from conditioned stimulus retrieval. Unconditioned stimulus retrieval induced reconsolidation of cocaine reward memory depends on β1-adrenergic signaling in the central amygdala. Post unconditioned stimulus retrieval manipulation can prevent drug memory reconsolidation and relapse to cocaine, thus providing a potential strategy for the prevention of substance addiction. Significance Statement It is well known that drug memories become labile and reconsolidated upon retrieval by the presentation of conditioned stimulus (CS) or unconditioned stimulus (US). Whether CS and US retrieval trigger different memory reconsolidation processes is unknown. In this study, we found that US retrieval, but not CS retrieval, triggered memory reconsolidation of cocaine-conditioned place preference dependent on β1-AR and de novo protein synthesis in the central amygdala. Furthermore, cocaine priming-induced reinstatement was impaired with post US retrieval manipulation in contrast to the relapse behavior with post CS retrieval manipulation. In cocaine self-administration, β1-AR antagonism after US retrieval also impaired reconsolidation and reinstatement. Our study indicates that reconsolidation of cocaine reward memory triggered by US retrieval is distinct from CS retrieval. US retrieval induced reconsolidation of cocaine reward memory depends on β1-adrenergic signaling in the central amygdala. PMID:29216351

  11. Delayed P100-Like Latencies in Multiple Sclerosis: A Preliminary Investigation Using Visual Evoked Spread Spectrum Analysis

    PubMed Central

    Kiiski, Hanni S. M.; Ní Riada, Sinéad; Lalor, Edmund C.; Gonçalves, Nuno R.; Nolan, Hugh; Whelan, Robert; Lonergan, Róisín; Kelly, Siobhán; O'Brien, Marie Claire; Kinsella, Katie; Bramham, Jessica; Burke, Teresa; Ó Donnchadha, Seán; Hutchinson, Michael; Tubridy, Niall; Reilly, Richard B.

    2016-01-01

    Conduction along the optic nerve is often slowed in multiple sclerosis (MS). This is typically assessed by measuring the latency of the P100 component of the Visual Evoked Potential (VEP) using electroencephalography. The Visual Evoked Spread Spectrum Analysis (VESPA) method, which involves modulating the contrast of a continuous visual stimulus over time, can produce a visually evoked response analogous to the P100 but with a higher signal-to-noise ratio and potentially higher sensitivity to individual differences in comparison to the VEP. The main objective of the study was to conduct a preliminary investigation into the utility of the VESPA method for probing and monitoring visual dysfunction in multiple sclerosis. The latencies and amplitudes of the P100-like VESPA component were compared between healthy controls and multiple sclerosis patients, and multiple sclerosis subgroups. The P100-like VESPA component activations were examined at baseline and over a 3-year period. The study included 43 multiple sclerosis patients (23 relapsing-remitting MS, 20 secondary-progressive MS) and 42 healthy controls who completed the VESPA at baseline. The follow-up sessions were conducted 12 months after baseline with 24 MS patients (15 relapsing-remitting MS, 9 secondary-progressive MS) and 23 controls, and again at 24 months post-baseline with 19 MS patients (13 relapsing-remitting MS, 6 secondary-progressive MS) and 14 controls. The results showed P100-like VESPA latencies to be delayed in multiple sclerosis compared to healthy controls over the 24-month period. Secondary-progressive MS patients had most pronounced delay in P100-like VESPA latency relative to relapsing-remitting MS and controls. There were no longitudinal P100-like VESPA response differences. These findings suggest that the VESPA method is a reproducible electrophysiological method that may have potential utility in the assessment of visual dysfunction in multiple sclerosis. PMID:26726800

  12. Transformation of the neural code for tactile detection from thalamus to cortex.

    PubMed

    Vázquez, Yuriria; Salinas, Emilio; Romo, Ranulfo

    2013-07-09

    To understand how sensory-driven neural activity gives rise to perception, it is essential to characterize how various relay stations in the brain encode stimulus presence. Neurons in the ventral posterior lateral (VPL) nucleus of the somatosensory thalamus and in primary somatosensory cortex (S1) respond to vibrotactile stimulation with relatively slow modulations (∼100 ms) of their firing rate. In addition, faster modulations (∼10 ms) time-locked to the stimulus waveform are observed in both areas, but their contribution to stimulus detection is unknown. Furthermore, it is unclear whether VPL and S1 neurons encode stimulus presence with similar accuracy and via the same response features. To address these questions, we recorded single neurons while trained monkeys judged the presence or absence of a vibrotactile stimulus of variable amplitude, and their activity was analyzed with a unique decoding method that is sensitive to the time scale of the firing rate fluctuations. We found that the maximum detection accuracy of single neurons is similar in VPL and S1. However, VPL relies more heavily on fast rate modulations than S1, and as a consequence, the neural code in S1 is more tolerant: its performance degrades less when the readout method or the time scale of integration is suboptimal. Therefore, S1 neurons implement a more robust code, one less sensitive to the temporal integration window used to infer stimulus presence downstream. The differences between VPL and S1 responses signaling the appearance of a stimulus suggest a transformation of the neural code from thalamus to cortex.

  13. Retrieval and Monitoring Processes during Visual Working Memory: An ERP Study of the Benefit of Visual Semantics

    PubMed Central

    Orme, Elizabeth; Brown, Louise A.; Riby, Leigh M.

    2017-01-01

    In this study, we examined electrophysiological indices of episodic remembering whilst participants recalled novel shapes, with and without semantic content, within a visual working memory paradigm. The components of interest were the parietal episodic (PE; 400–800 ms) and late posterior negativity (LPN; 500–900 ms), as these have previously been identified as reliable markers of recollection and post-retrieval monitoring, respectively. Fifteen young adults completed a visual matrix patterns task, assessing memory for low and high semantic visual representations. Matrices with either low semantic or high semantic content (containing familiar visual forms) were briefly presented to participants for study (1500 ms), followed by a retention interval (6000 ms) and finally a same/different recognition phase. The event-related potentials of interest were tracked from the onset of the recognition test stimuli. Analyses revealed equivalent amplitude for the earlier PE effect for the processing of both low and high semantic stimulus types. However, the LPN was more negative-going for the processing of the low semantic stimuli. These data are discussed in terms of relatively ‘pure’ and complete retrieval of high semantic items, where support can readily be recruited from semantic memory. However, for the low semantic items additional executive resources, as indexed by the LPN, are recruited when memory monitoring and uncertainty exist in order to recall previously studied items more effectively. PMID:28725203

  14. Retrieval and Monitoring Processes during Visual Working Memory: An ERP Study of the Benefit of Visual Semantics.

    PubMed

    Orme, Elizabeth; Brown, Louise A; Riby, Leigh M

    2017-01-01

    In this study, we examined electrophysiological indices of episodic remembering whilst participants recalled novel shapes, with and without semantic content, within a visual working memory paradigm. The components of interest were the parietal episodic (PE; 400-800 ms) and late posterior negativity (LPN; 500-900 ms), as these have previously been identified as reliable markers of recollection and post-retrieval monitoring, respectively. Fifteen young adults completed a visual matrix patterns task, assessing memory for low and high semantic visual representations. Matrices with either low semantic or high semantic content (containing familiar visual forms) were briefly presented to participants for study (1500 ms), followed by a retention interval (6000 ms) and finally a same/different recognition phase. The event-related potentials of interest were tracked from the onset of the recognition test stimuli. Analyses revealed equivalent amplitude for the earlier PE effect for the processing of both low and high semantic stimulus types. However, the LPN was more negative-going for the processing of the low semantic stimuli. These data are discussed in terms of relatively 'pure' and complete retrieval of high semantic items, where support can readily be recruited from semantic memory. However, for the low semantic items additional executive resources, as indexed by the LPN, are recruited when memory monitoring and uncertainty exist in order to recall previously studied items more effectively.

  15. The Different Inhibition of Return (IOR) Effects of Emergency Managerial Experts and Novices: An Event-Related Potentials Study

    PubMed Central

    Cao, Rong; Wu, Lü; Wang, Shuzhen

    2017-01-01

    Inhibition of return (IOR) is an important effect of attention. However, the IOR of emergency managerial experts is unknown. By employing emergency and natural scene pictures in expert-novice paradigm, the present study explored the neural activity underlying the IOR effects for emergency managerial experts and novices. In behavioral results, there were no differences of IOR effects between novices and emergency managerial experts, while the event-related potentials (ERPs) results were different between novices and experts. In Experiment 1 (novice group), ERPs results showed no any IOR was robust at both stimulus-onset asynchrony (SOA) of 200 ms and 400 ms. In Experiment 2 (expert group), ERPs results showed an enhanced N2 at SOA of 200 ms and attenuated P3 at cued location in the right parietal lobe and adjacent brain regions than uncued location at SOA of 200 ms. The findings of the two experiments showed that, relative to the novices, IOR for the emergency managerial experts was robust, and dominated in the right parietal lobe and adjacent brain regions, suggesting more flexible attentional processing and higher visual search efficiency of the emergency managerial experts. The findings indicate that the P3, possible N2, over the right parietal lobe and adjacent brain regions are the biological indicators for IOR elicited by post-cued emergency pictures for emergency managerial experts. PMID:28588459

  16. Reflexes in the shoulder muscles elicited from the human coracoacromial ligament.

    PubMed

    Diederichsen, Louise Pyndt; Nørregaard, Jesper; Krogsgaard, Michael; Fischer-Rasmussen, Torsten; Dyhre-Poulsen, Poul

    2004-09-01

    Morphological studies have demonstrated mechanoreceptors in the capsuloligamentous structures of the shoulder joint, however knowledge of the role these joint receptors play in the control of shoulder stability is limited. We therefore investigated the effect of electrically induced afferent activity from mechanoreceptors in the coracoacromial ligament (CAL) on the activity of voluntary activated shoulder muscles in healthy humans. In study I, wire electrodes, for electrical stimulation, were inserted into the CAL in eight normal shoulders. In study II, a needle electrode was inserted into the CAL in seven normal shoulders. Electric activity was recorded from eight shoulder muscles by surface and intramuscular electrodes. During isometric contractions, electrical stimulation was applied to the CAL at two different stimulus intensities, a weak stimulus (stim-1) and a stronger stimulus (stim-2). In both experiments, electrical stimulation of the CAL elicited a general inhibition in the voluntary activated shoulder muscles. In study I the average latencies (mean+/-SE) of the muscular inhibition were 66+/-4 ms (stim-1) and 62+/-4 ms (stim-2) during isometric flexion and 73+/-3 ms (stim-1) and 73+/-5 ms (stim-2) during isometric extension. In study II the average latency (mean+/-SE) of the response was 66+/-4 ms (stim-1) during isometric flexion. Our results demonstrated a response, probably of reflex origin, from mechanoreceptors in the CAL to the shoulder muscles. The existence of this synaptic connection between mechanoreceptors in CAL and the shoulder muscles suggest a role of these receptors in muscle coordination and in the functional joint stability.

  17. Effects of Sound Frequency on Audiovisual Integration: An Event-Related Potential Study

    PubMed Central

    Yang, Weiping; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Ren, Yanna; Takahashi, Satoshi; Wu, Jinglong

    2015-01-01

    A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190–210 ms, for 1 kHz stimuli from 170–200 ms, for 2.5 kHz stimuli from 140–200 ms, 5 kHz stimuli from 100–200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300–340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies. PMID:26384256

  18. Neural Correlates of Stimulus Response and Stimulus Outcome Shifting in Healthy Participants and MS Patients

    ERIC Educational Resources Information Center

    Hildebrandt, Helmut; Fink, Frauke; Eling, Paul; Stuke, Heiner; Klein, Jan; Lentschig, Markus; Kastrup, Andreas; Thiel, Christiane; Breckel, Thomas

    2013-01-01

    Introduction: Adaptation to changing situations can be mediated by two strategies: (1) Evaluation of a "response" and (2) Evaluation of "outcome" values in relation to objects. Previous studies indicate that response shifting is associated with a network comprising the left frontal cortex and parietal cortex connected by the superior longitudinal…

  19. Saccade-synchronized rapid attention shifts in macaque visual cortical area MT.

    PubMed

    Yao, Tao; Treue, Stefan; Krishna, B Suresh

    2018-03-06

    While making saccadic eye-movements to scan a visual scene, humans and monkeys are able to keep track of relevant visual stimuli by maintaining spatial attention on them. This ability requires a shift of attentional modulation from the neuronal population representing the relevant stimulus pre-saccadically to the one representing it post-saccadically. For optimal performance, this trans-saccadic attention shift should be rapid and saccade-synchronized. Whether this is so is not known. We trained two rhesus monkeys to make saccades while maintaining covert attention at a fixed spatial location. We show that the trans-saccadic attention shift in cortical visual medial temporal (MT) area is well synchronized to saccades. Attentional modulation crosses over from the pre-saccadic to the post-saccadic neuronal representation by about 50 ms after a saccade. Taking response latency into account, the trans-saccadic attention shift is well timed to maintain spatial attention on relevant stimuli, so that they can be optimally tracked and processed across saccades.

  20. Spatio-Temporal Brain Mapping of Motion-Onset VEPs Combined with fMRI and Retinotopic Maps

    PubMed Central

    Pitzalis, Sabrina; Strappini, Francesca; De Gasperis, Marco; Bultrini, Alessandro; Di Russo, Francesco

    2012-01-01

    Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR). PMID:22558222

  1. A relationship between bruxism and orofacial-dystonia? A trigeminal electrophysiological approach in a case report of pineal cavernoma.

    PubMed

    Frisardi, Gianni; Iani, Cesare; Sau, Gianfranco; Frisardi, Flavio; Leornadis, Carlo; Lumbau, Aurea; Enrico, Paolo; Sirca, Donatella; Staderini, Enrico Maria; Chessa, Giacomo

    2013-10-28

    In some clinical cases, bruxism may be correlated to central nervous system hyperexcitability, suggesting that bruxism may represent a subclinical form of dystonia. To examine this hypothesis, we performed an electrophysiological evaluation of the excitability of the trigeminal nervous system in a patient affected by pineal cavernoma with pain symptoms in the orofacial region and pronounced bruxism. Electrophysiological studies included bilateral electrical transcranial stimulation of the trigeminal roots, analysis of the jaw jerk reflex, recovery cycle of masseter inhibitory reflex, and a magnetic resonance imaging study of the brain. The neuromuscular responses of the left- and right-side bilateral trigeminal motor potentials showed a high degree of symmetry in latency (1.92 ms and 1.96 ms, respectively) and amplitude (11 mV and 11.4 mV, respectively), whereas the jaw jerk reflex amplitude of the right and left masseters was 5.1 mV and 8.9 mV, respectively. The test stimulus for the recovery cycle of masseter inhibitory reflex evoked both silent periods at an interstimulus interval of 150 ms. The duration of the second silent period evoked by the test stimulus was 61 ms and 54 ms on the right and left masseters, respectively, which was greater than that evoked by the conditioning stimulus (39 ms and 35 ms, respectively). We found evidence of activation and peripheral sensitization of the nociceptive fibers, the primary and secondary nociceptive neurons in the central nervous system, and the endogenous pain control systems (including both the inhibitory and facilitatory processes), in the tested subject. These data suggest that bruxism and central orofacial pain can coexist, but are two independent symptoms, which may explain why numerous experimental and clinical studies fail to reach unequivocal conclusions.

  2. A relationship between bruxism and orofacial-dystonia? A trigeminal electrophysiological approach in a case report of pineal cavernoma

    PubMed Central

    2013-01-01

    Background In some clinical cases, bruxism may be correlated to central nervous system hyperexcitability, suggesting that bruxism may represent a subclinical form of dystonia. To examine this hypothesis, we performed an electrophysiological evaluation of the excitability of the trigeminal nervous system in a patient affected by pineal cavernoma with pain symptoms in the orofacial region and pronounced bruxism. Methods Electrophysiological studies included bilateral electrical transcranial stimulation of the trigeminal roots, analysis of the jaw jerk reflex, recovery cycle of masseter inhibitory reflex, and a magnetic resonance imaging study of the brain. Results The neuromuscular responses of the left- and right-side bilateral trigeminal motor potentials showed a high degree of symmetry in latency (1.92 ms and 1.96 ms, respectively) and amplitude (11 mV and 11.4 mV, respectively), whereas the jaw jerk reflex amplitude of the right and left masseters was 5.1 mV and 8.9 mV, respectively. The test stimulus for the recovery cycle of masseter inhibitory reflex evoked both silent periods at an interstimulus interval of 150 ms. The duration of the second silent period evoked by the test stimulus was 61 ms and 54 ms on the right and left masseters, respectively, which was greater than that evoked by the conditioning stimulus (39 ms and 35 ms, respectively). Conclusions We found evidence of activation and peripheral sensitization of the nociceptive fibers, the primary and secondary nociceptive neurons in the central nervous system, and the endogenous pain control systems (including both the inhibitory and facilitatory processes), in the tested subject. These data suggest that bruxism and central orofacial pain can coexist, but are two independent symptoms, which may explain why numerous experimental and clinical studies fail to reach unequivocal conclusions. PMID:24165294

  3. Attention that covers letters is necessary for the left-lateralization of an early print-tuned ERP in Japanese hiragana.

    PubMed

    Okumura, Yasuko; Kasai, Tetsuko; Murohashi, Harumitsu

    2015-03-01

    Extensive experience with reading develops expertise in acquiring information from print, and this is reflected in specific enhancement of the left-lateralized N170 component in event-related potentials. The N170 is generally considered to reflect visual/orthographic processing; while modulations of its left-lateralization related to phonological processes have also been indicated. However, in our previous study, N170-like response to Hiragana strings lacked left-lateralization when the stimuli were completely task-irrelevant in rapid-presentation sequences [Okumura et al. (2014). Early print-tuned ERP response with minimal involvement of linguistic processing in Japanese Hiragana strings. Neuroreport 25, 410-414]. This suggests that, despite the highly transparent character-to-syllable correspondence, the phonological mapping of Hiragana strings requires some kind of attention toward print. To verify this notion, the present study examined ERPs under the same experimental condition as in the previous study, except that the task required attention to a stimulus attribute (i.e., color). As a result, Hiragana words and nonwords elicited left-lateralized negative deflection in the occipito-temporal region during 130-170ms post-stimulus in comparison to symbol strings, but only when the print had a narrow intercharacter spacing. Moreover, we observed the enhancement of very early occipital ERP in response to words during 70-100ms. The present results suggest that visual attention plays a role in early print processing, which may contribute to our understanding of the mechanisms that underlie expert as well as impaired reading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Visual Presentation Effects on Identification of Multiple Environmental Sounds

    PubMed Central

    Masakura, Yuko; Ichikawa, Makoto; Shimono, Koichi; Nakatsuka, Reio

    2016-01-01

    This study examined how the contents and timing of a visual stimulus affect the identification of mixed sounds recorded in a daily life environment. For experiments, we presented four environment sounds as auditory stimuli for 5 s along with a picture or a written word as a visual stimulus that might or might not denote the source of one of the four sounds. Three conditions of temporal relations between the visual stimuli and sounds were used. The visual stimulus was presented either: (a) for 5 s simultaneously with the sound; (b) for 5 s, 1 s before the sound (SOA between the audio and visual stimuli was 6 s); or (c) for 33 ms, 1 s before the sound (SOA was 1033 ms). Participants reported all identifiable sounds for those audio–visual stimuli. To characterize the effects of visual stimuli on sound identification, the following were used: the identification rates of sounds for which the visual stimulus denoted its sound source, the rates of other sounds for which the visual stimulus did not denote the sound source, and the frequency of false hearing of a sound that was not presented for each sound set. Results of the four experiments demonstrated that a picture or a written word promoted identification of the sound when it was related to the sound, particularly when the visual stimulus was presented for 5 s simultaneously with the sounds. However, a visual stimulus preceding the sounds had a benefit only for the picture, not for the written word. Furthermore, presentation with a picture denoting a sound simultaneously with the sound reduced the frequency of false hearing. These results suggest three ways that presenting a visual stimulus affects identification of the auditory stimulus. First, activation of the visual representation extracted directly from the picture promotes identification of the denoted sound and suppresses the processing of sounds for which the visual stimulus did not denote the sound source. Second, effects based on processing of the conceptual information promote identification of the denoted sound and suppress the processing of sounds for which the visual stimulus did not denote the sound source. Third, processing of the concurrent visual representation suppresses false hearing. PMID:26973478

  5. The influence of cue-task association and location on switch cost and alternating-switch cost.

    PubMed

    Arbuthnott, Katherine D; Woodward, Todd S

    2002-03-01

    Task-switching performance is strongly influenced by whether the imperative stimulus uniquely specifies which task to perform: Switch cost is substantial with bivalent stimuli but is greatly reduced with univalent stimuli, suggesting that available contextual information influences processing in task-switching situations. The present study examined whether task-relevant information provided by task cues influences the magnitude of switch cost in a parallel manner. Cues presented 500 ms prior to a trivalent stimulus indicated which of three tasks to perform. These cues either had a preexisting association with the to-be-performed task (verbal cues), or a recently learned association with the task (spatial and shape cues). The results paralleled the effects of stimulus bivalence: substantial switch cost with recently learned cue-task associations and greatly reduced switch cost with preexisting cue-task associations. This suggests that both stimulus-based and cue-based information can activate the relevant task set, possibly providing external support to endogenous control processes. Alternating-switch cost, a greater cost for switching back to a recently abandoned task, was also observed with both preexisting and recently learned cue-task associations, but only when all tasks were presented in a consistent spatial location. When spatial location was used to cue the to-be-performed tasks, no alternating-switch cost was observed, suggesting that different processes may be involved when tasks are uniquely located in space. Specification of the nature of these processes may prove to be complex, as post-hoc inspection of the data suggested that for the spatial cue condition, the alternating-switch cost may oscillate between cost and benefit, depending on the relevant task.

  6. Morphosyntax can modulate the N400 component: Event related potentials to gender-marked post-nominal adjectives

    PubMed Central

    Guajardo, Lourdes F.; Wicha, Nicole Y. Y.

    2014-01-01

    Event-related potential studies of grammatical gender agreement often report a left anterior negativity (LAN) when agreement violations occur. Some studies have shown that during sentence comprehension gender violations can also interact with semantic processing to modulate a negativity associated with processing meaning – the N400. Given that the LAN and N400 overlap in time, they are identified by their scalp distributions and purported functional roles. Critically, grammatical gender violations also elicit a right posterior positivity that can overlap temporally with and potentially affect the scalp distribution of the LAN/N400. We measured the effect of grammatical gender violations in the LAN/N400 window and late positive component (LPC) during comprehension of Spanish sentences. A post-nominal adjective could either make sense or not, and either agree or disagree in gender with the preceding noun. We observed a negativity to gender agreement violations in the LAN/N400 window (300–500 ms post stimulus onset) that was smaller than the semantic-congruity N400, but overlapped with it in time and distribution. The early portion of the LPC to gender violations was modulated by sentence constraint, occurring as early as 450ms in highly constraining sentences. A subadditive interaction occurred at the later portion of the LPC with equivalent effects for single and double violations (gender and semantics), reflecting a general stage of reprocessing. Overall, our data support models of language comprehension whereby both semantic and morphosyntactic information can affect processing at similar time points. PMID:24462934

  7. Morphosyntax can modulate the N400 component: event related potentials to gender-marked post-nominal adjectives.

    PubMed

    Guajardo, Lourdes F; Wicha, Nicole Y Y

    2014-05-01

    Event-related potential studies of grammatical gender agreement often report a left anterior negativity (LAN) when agreement violations occur. Some studies have shown that during sentence comprehension gender violations can also interact with semantic processing to modulate a negativity associated with processing meaning - the N400. Given that the LAN and N400 overlap in time, they are identified by their scalp distributions and purported functional roles. Critically, grammatical gender violations also elicit a right posterior positivity that can overlap temporally and potentially affect the scalp distribution of the LAN/N400. We measured the effect of grammatical gender violations in the LAN/N400 window and late positive component (LPC) during comprehension of Spanish sentences. A post-nominal adjective could either make sense or not, and either agree or disagree in gender with the preceding noun. We observed a negativity to gender agreement violations in the LAN/N400 window (300-500ms post stimulus onset) that was smaller than the semantic-congruity N400, but overlapped with it in time and distribution. The early portion of the LPC to gender violations was modulated by sentence constraint, occurring as early as 450ms in highly constraining sentences. A subadditive interaction occurred at the later portion of the LPC with equivalent effects for single and double violations (gender and semantics), reflecting a general stage of reprocessing. Overall, our data support models of language comprehension whereby both semantic and morphosyntactic information can affect processing at similar time points. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. On the Role of Mentalizing Processes in Aesthetic Appreciation: An ERP Study.

    PubMed

    Beudt, Susan; Jacobsen, Thomas

    2015-01-01

    We used event-related brain potentials to explore the impact of mental perspective taking on processes of aesthetic appreciation of visual art. Participants (non-experts) were first presented with information about the life and attitudes of a fictitious artist. Subsequently, they were cued trial-wise to make an aesthetic judgment regarding an image depicting a piece of abstract art either from their own perspective or from the imagined perspective of the fictitious artist [i.e., theory of mind (ToM) condition]. Positive self-referential judgments were made more quickly and negative self-referential judgments were made more slowly than the corresponding judgments from the imagined perspective. Event-related potential analyses revealed significant differences between the two tasks both within the preparation period (i.e., during the cue-stimulus interval) and within the stimulus presentation period. For the ToM condition we observed a relative centro-parietal negativity during the preparation period (700-330 ms preceding picture onset) and a relative centro-parietal positivity during the stimulus presentation period (700-1100 ms after stimulus onset). These findings suggest that different subprocesses are involved in aesthetic appreciation and judgment of visual abstract art from one's own vs. from another person's perspective.

  9. Parallel processing of general and specific threat during early stages of perception

    PubMed Central

    2016-01-01

    Differential processing of threat can consummate as early as 100 ms post-stimulus. Moreover, early perception not only differentiates threat from non-threat stimuli but also distinguishes among discrete threat subtypes (e.g. fear, disgust and anger). Combining spatial-frequency-filtered images of fear, disgust and neutral scenes with high-density event-related potentials and intracranial source estimation, we investigated the neural underpinnings of general and specific threat processing in early stages of perception. Conveyed in low spatial frequencies, fear and disgust images evoked convergent visual responses with similarly enhanced N1 potentials and dorsal visual (middle temporal gyrus) cortical activity (relative to neutral cues; peaking at 156 ms). Nevertheless, conveyed in high spatial frequencies, fear and disgust elicited divergent visual responses, with fear enhancing and disgust suppressing P1 potentials and ventral visual (occipital fusiform) cortical activity (peaking at 121 ms). Therefore, general and specific threat processing operates in parallel in early perception, with the ventral visual pathway engaged in specific processing of discrete threats and the dorsal visual pathway in general threat processing. Furthermore, selectively tuned to distinctive spatial-frequency channels and visual pathways, these parallel processes underpin dimensional and categorical threat characterization, promoting efficient threat response. These findings thus lend support to hybrid models of emotion. PMID:26412811

  10. Early multisensory interactions affect the competition among multiple visual objects.

    PubMed

    Van der Burg, Erik; Talsma, Durk; Olivers, Christian N L; Hickey, Clayton; Theeuwes, Jan

    2011-04-01

    In dynamic cluttered environments, audition and vision may benefit from each other in determining what deserves further attention and what does not. We investigated the underlying neural mechanisms responsible for attentional guidance by audiovisual stimuli in such an environment. Event-related potentials (ERPs) were measured during visual search through dynamic displays consisting of line elements that randomly changed orientation. Search accuracy improved when a target orientation change was synchronized with an auditory signal as compared to when the auditory signal was absent or synchronized with a distractor orientation change. The ERP data show that behavioral benefits were related to an early multisensory interaction over left parieto-occipital cortex (50-60 ms post-stimulus onset), which was followed by an early positive modulation (80-100 ms) over occipital and temporal areas contralateral to the audiovisual event, an enhanced N2pc (210-250 ms), and a contralateral negative slow wave (CNSW). The early multisensory interaction was correlated with behavioral search benefits, indicating that participants with a strong multisensory interaction benefited the most from the synchronized auditory signal. We suggest that an auditory signal enhances the neural response to a synchronized visual event, which increases the chances of selection in a multiple object environment. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. The Impact of Perceptual Load on the Non-Conscious Processing of Fearful Faces

    PubMed Central

    Wang, Lili; Feng, Chunliang; Mai, Xiaoqin; Jia, Lina; Zhu, Xiangru; Luo, Wenbo; Luo, Yue-jia

    2016-01-01

    Emotional stimuli can be processed without consciousness. In the current study, we used event-related potentials (ERPs) to assess whether perceptual load influences non-conscious processing of fearful facial expressions. Perceptual load was manipulated using a letter search task with the target letter presented at the fixation point, while facial expressions were presented peripherally and masked to prevent conscious awareness. The letter string comprised six letters (X or N) that were identical (low load) or different (high load). Participants were instructed to discriminate the letters at fixation or the facial expression (fearful or neutral) in the periphery. Participants were faster and more accurate at detecting letters in the low load condition than in the high load condition. Fearful faces elicited a sustained positivity from 250 ms to 700 ms post-stimulus over fronto-central areas during the face discrimination and low-load letter discrimination conditions, but this effect was completely eliminated during high-load letter discrimination. Our findings imply that non-conscious processing of fearful faces depends on perceptual load, and attentional resources are necessary for non-conscious processing. PMID:27149273

  12. [Positive potentials of the human brain at different stages of preparation of a visually triggered saccade].

    PubMed

    Slavutskaia, M V; Shul'govskiĭ, V V

    2003-01-01

    The EEG of 10 right-handed subjects preceding saccades with mean values of latent periods were selected and averaged. Two standard paradigms of presentation of visual stimuli (central fixation stimulus-peripheral target succession): with a 200-ms inerstimulus interval (GAP) and successive single step (SS). During the period of central fixation, two kinds of positive potentials were observed: fast potentials of "inermediate" positivity (IP) developing 600-400 ms prior to saccade onset and fast potentials of "leading" positivity (LP), which immediately preceded the offset of the central fixation stimulus. Peak latency of the LP potentials was 300 ms prior to saccade onset in the SS paradigm and 400 ms in the GAP paradigm. These potentials were predominantly recorded in the frontal and frontosagittal cortical areas. Decrease in the latency by 30-50 ms in the GAP paradigm was associated with more pronounced positive potentials during the fixation period and absence of the initiation potential P-1' (or decrease in its amplitude). The obtained evidence suggest that the fast positive presaccadic potentials are of a complex nature related to attention, anticipation, motor preparation, decision making, saccadic initiation, and backward afferentation.

  13. Comparison for younger and older adults: Stimulus temporal asynchrony modulates audiovisual integration.

    PubMed

    Ren, Yanna; Ren, Yanling; Yang, Weiping; Tang, Xiaoyu; Wu, Fengxia; Wu, Qiong; Takahashi, Satoshi; Ejima, Yoshimichi; Wu, Jinglong

    2018-02-01

    Recent research has shown that the magnitudes of responses to multisensory information are highly dependent on the stimulus structure. The temporal proximity of multiple signal inputs is a critical determinant for cross-modal integration. Here, we investigated the influence that temporal asynchrony has on audiovisual integration in both younger and older adults using event-related potentials (ERP). Our results showed that in the simultaneous audiovisual condition, except for the earliest integration (80-110ms), which occurred in the occipital region for older adults was absent for younger adults, early integration was similar for the younger and older groups. Additionally, late integration was delayed in older adults (280-300ms) compared to younger adults (210-240ms). In audition‑leading vision conditions, the earliest integration (80-110ms) was absent in younger adults but did occur in older adults. Additionally, after increasing the temporal disparity from 50ms to 100ms, late integration was delayed in both younger (from 230 to 290ms to 280-300ms) and older (from 210 to 240ms to 280-300ms) adults. In the audition-lagging vision conditions, integration only occurred in the A100V condition for younger adults and in the A50V condition for older adults. The current results suggested that the audiovisual temporal integration pattern differed between the audition‑leading and audition-lagging vision conditions and further revealed the varying effect of temporal asynchrony on audiovisual integration in younger and older adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Elevating Endogenous GABA Levels with GAT-1 Blockade Modulates Evoked but Not Induced Responses in Human Visual Cortex

    PubMed Central

    Muthukumaraswamy, Suresh D; Myers, Jim F M; Wilson, Sue J; Nutt, David J; Hamandi, Khalid; Lingford-Hughes, Anne; Singh, Krish D

    2013-01-01

    The electroencephalographic/magnetoencephalographic (EEG/MEG) signal is generated primarily by the summation of the postsynaptic currents of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons. Here we investigated the relative sensitivity of visual evoked and induced responses to altered levels of endogenous GABAergic inhibition. To do this, we pharmacologically manipulated the GABA system using tiagabine, which blocks the synaptic GABA transporter 1, and so increases endogenous GABA levels. In a single-blinded and placebo-controlled crossover study of 15 healthy participants, we administered either 15 mg of tiagabine or a placebo. We recorded whole-head MEG, while participants viewed a visual grating stimulus, before, 1, 3 and 5 h post tiagabine ingestion. Using beamformer source localization, we reconstructed responses from early visual cortices. Our results showed no change in either stimulus-induced gamma-band amplitude increases or stimulus-induced alpha amplitude decreases. However, the same data showed a 45% reduction in the evoked response component at ∼80 ms. These data demonstrate that, in early visual cortex the evoked response shows a greater sensitivity compared with induced oscillations to pharmacologically increased endogenous GABA levels. We suggest that previous studies correlating GABA concentrations as measured by magnetic resonance spectroscopy to gamma oscillation frequency may reflect underlying variations such as interneuron/inhibitory synapse density rather than functional synaptic GABA concentrations. PMID:23361120

  15. Impairment of willed actions and use of advance information for movement preparation in schizophrenia

    PubMed Central

    Fuller, R.; Jahanshahi, M.

    1999-01-01

    OBJECTIVES—To assess willed actions in patients with schizophrenia using reaction time (RT) tasks that differ in the degree to which they involve volitionally controlled versus stimulus driven responses.
METHODS—Ten patients diagnosed with schizophrenia and 13 normal controls of comparable age were tested. Subjects performed a visual simple RT (SRT), an uncued four choice reaction time (CRT), and a fully cued four choice RT task. A stimulus 1(S1)−stimulus 2(S2) paradigm was used. The warning signal/precue (S1) preceded the imperative stimulus (S2) by either 0 (no warning signal or precue) 200, 800, 1600, or 3200ms.
RESULTS—The patients with schizophrenia had significantly slower RTs and movement times than normal subjects across all RT tasks. The unwarned SRT trials were significantly faster than the uncued CRT trials for both groups. For both groups, fully cued CRTs were significantly faster than the uncued CRTs. However, the S1−S2 interval had a differential effect on CRTs in the two groups. For the normal subjects fully cued CRTs and SRTs were equivalent when S1-S2 intervals were 800 ms or longer. A similar pattern of effects was not seen in the patients with schizophrenia, for whom the fully cued CRT were unexpectedly equivalent to SRT for the 200 ms interval and expectedly for the 1600 ms S1-S2 interval, but not the 3200 or 800 ms intervals.
CONCLUSIONS—Patients with schizophrenia were able to use advance information inherent in SRT or provided by the precue in fully cued CRT to speed up RT relative to uncued CRT. However, in the latter task, in which the volitional demands of preprogramming are higher since a different response has to be prepared on each trial, patients showed some unusual and inconsistent interval effects suggesting instability of attentional set. It is possible that future studies using RT tasks with higher volitional demands in patients with predominance of negative signs may disclose greater deficits in willed action in schizophrenia.

 PMID:10201424

  16. Visual Motion Processing Subserves Faster Visuomotor Reaction in Badminton Players.

    PubMed

    Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas

    2017-06-01

    Athletes participating in ball or racquet sports have to respond to visual stimuli under critical time pressure. Previous studies used visual contrast stimuli to determine visual perception and visuomotor reaction in athletes and nonathletes; however, ball and racquet sports are characterized by motion rather than contrast visual cues. Because visual contrast and motion signals are processed in different cortical regions, this study aimed to determine differences in perception and processing of visual motion between athletes and nonathletes. Twenty-five skilled badminton players and 28 age-matched nonathletic controls participated in this study. Using a 64-channel EEG system, we investigated visual motion perception/processing in the motion-sensitive middle temporal (MT) cortical area in response to radial motion of different velocities. In a simple visuomotor reaction task, visuomotor transformation in Brodmann area 6 (BA6) and BA4 as well as muscular activation (EMG onset) and visuomotor reaction time (VMRT) were investigated. Stimulus- and response-locked potentials were determined to differentiate between perceptual and motor-related processes. As compared with nonathletes, athletes showed earlier EMG onset times (217 vs 178 ms, P < 0.001), accompanied by a faster VMRT (274 vs 243 ms, P < 0.001). Furthermore, athletes showed an earlier stimulus-locked peak activation of MT (200 vs 182 ms, P = 0.002) and BA6 (161 vs 137 ms, P = 0.009). Response-locked peak activation in MT was later in athletes (-7 vs 26 ms, P < 0.001), whereas no group differences were observed in BA6 and BA4. Multiple regression analyses with stimulus- and response-locked cortical potentials predicted EMG onset (r = 0.83) and VMRT (r = 0.77). The athletes' superior visuomotor performance in response to visual motion is primarily related to visual perception and, to a minor degree, to motor-related processes.

  17. Fast and singular muscle responses initiate the startle response of Pantodon buchholzi (Osteoglossomorpha).

    PubMed

    Starosciak, A K; Kalola, R P; Perkins, K P; Riley, J A; Saidel, W M

    2008-01-01

    The startle response of Pantodon buchholzi, the African butterfly fish, is a complete or incomplete ballistic jump resulting from abduction of the pectoral fins. This study analyzed the neuromuscular basis for such a jump by recording in vivo electromyograms (emgs) from the muscles of abduction, the muscularis abductor superficialis (MAS) and the muscularis abductor profundus (MAP). The motor neurons innervating the MAS muscle were localized by retrograde transport of biocytin. The latency between stimulus and the evoked emg in the MAS was less than 5 ms; the latency of the MAP was about 6.5 ms. A single emg was recorded per jump. High speed video demonstrated that onset of a startle movement began within 10 ms of the onset of fin abduction. The emg associated with this movement is short (<2 ms) and followed by a variably-shaped, slower and smaller potential of 10-30 ms duration. The brief period between stimulus and startle response of Pantodon suggests a Mauthner neuron-related response, only with the behavior occurring in the vertical plane. The MAS may act only in a startle response, whereas the MAP might have a role in other behaviors. Elicited jumping habituates after a single trial. Electrophysiological evidence is presented indicating that the innervating motor neurons are suppressed for seconds following a stimulus. The neurons innervating the MAS are located at the medullary-spinal cord junction and possess an average radius of approximately 17.9 mum. These fish have been historically described as 'fresh water' flying fish. As a single emg occurs per startle response, repetitive pectoral activity generating flying cannot be supported. Pantodon 'flight' is ballistic. Copyright 2007 S. Karger AG, Basel.

  18. Factors influencing the latency of simple reaction time

    PubMed Central

    Woods, David L.; Wyma, John M.; Yund, E. William; Herron, Timothy J.; Reed, Bruce

    2015-01-01

    Simple reaction time (SRT), the minimal time needed to respond to a stimulus, is a basic measure of processing speed. SRTs were first measured by Francis Galton in the 19th century, who reported visual SRT latencies below 190 ms in young subjects. However, recent large-scale studies have reported substantially increased SRT latencies that differ markedly in different laboratories, in part due to timing delays introduced by the computer hardware and software used for SRT measurement. We developed a calibrated and temporally precise SRT test to analyze the factors that influence SRT latencies in a paradigm where visual stimuli were presented to the left or right hemifield at varying stimulus onset asynchronies (SOAs). Experiment 1 examined a community sample of 1469 subjects ranging in age from 18 to 65. Mean SRT latencies were short (231, 213 ms when corrected for hardware delays) and increased significantly with age (0.55 ms/year), but were unaffected by sex or education. As in previous studies, SRTs were prolonged at shorter SOAs and were slightly faster for stimuli presented in the visual field contralateral to the responding hand. Stimulus detection time (SDT) was estimated by subtracting movement initiation time, measured in a speeded finger tapping test, from SRTs. SDT latencies averaged 131 ms and were unaffected by age. Experiment 2 tested 189 subjects ranging in age from 18 to 82 years in a different laboratory using a larger range of SOAs. Both SRTs and SDTs were slightly prolonged (by 7 ms). SRT latencies increased with age while SDT latencies remained stable. Precise computer-based measurements of SRT latencies show that processing speed is as fast in contemporary populations as in the Victorian era, and that age-related increases in SRT latencies are due primarily to slowed motor output. PMID:25859198

  19. Dynamical evolution of motion perception.

    PubMed

    Kanai, Ryota; Sheth, Bhavin R; Shimojo, Shinsuke

    2007-03-01

    Motion is defined as a sequence of positional changes over time. However, in perception, spatial position and motion dynamically interact with each other. This reciprocal interaction suggests that the perception of a moving object itself may dynamically evolve following the onset of motion. Here, we show evidence that the percept of a moving object systematically changes over time. In experiments, we introduced a transient gap in the motion sequence or a brief change in some feature (e.g., color or shape) of an otherwise smoothly moving target stimulus. Observers were highly sensitive to the gap or transient change if it occurred soon after motion onset (< or =200 ms), but significantly less so if it occurred later (> or = 300 ms). Our findings suggest that the moving stimulus is initially perceived as a time series of discrete potentially isolatable frames; later failures to perceive change suggests that over time, the stimulus begins to be perceived as a single, indivisible gestalt integrated over space as well as time, which could well be the signature of an emergent stable motion percept.

  20. Auditory evoked magnetic fields to speech stimuli in newborns--effect of sleep stages.

    PubMed

    Pihko, E; Sambeth, A; Leppänen, P H T; Okada, Y; Lauronen, L

    2004-11-30

    The aim of the study was to examine whether a newborn can detect changes in a speech stimulus consisting of a fricative followed by a vowel /su/. In addition, we studied possible effect of the two sleep stages (active and quiet sleep) on the evoked magnetic responses. In young children (6 years), the same stimulus evokes a prominent deflection, consisting of two peaks. The first one (P1m) is evoked by the beginning of the fricative consonant and has a latency of about 145 ms. The second peak (P2m) with a latency of 340 ms, is evoked by the switch to the vowel. In newborns (n = 10), the waveform resembled that of the older children but latencies of the corresponding peaks were longer, 190 and 435 ms, correspondingly. The results suggest that already the newborn brain detects the change inside the auditory speech stimulus, namely the fricative sound changing into a vowel. However, the immaturity of the brain is reflected in the prolonged latencies. In addition, the responses were higher in amplitude in quiet sleep than in active sleep (F (1.9) = 36.5; p < 0.0002). This is in line with the enhanced somatosensory magnetic fields to tactile stimulation in quiet compared to active sleep in newborns.

  1. From perception to action: phase-locked gamma oscillations correlate with reaction times in a speeded response task

    PubMed Central

    Fründ, Ingo; Busch, Niko A; Schadow, Jeanette; Körner, Ursula; Herrmann, Christoph S

    2007-01-01

    Background Phase-locked gamma oscillations have so far mainly been described in relation to perceptual processes such as sensation, attention or memory matching. Due to its very short latency (≈90 ms) such oscillations are a plausible candidate for very rapid integration of sensory and motor processes. Results We measured EEG in 13 healthy participants in a speeded reaction task. Participants had to press a button as fast as possible whenever a visual stimulus was presented. The stimulus was always identical and did not have to be discriminated from other possible stimuli. In trials in which the participants showed a fast response, a slow negative potential over central electrodes starting approximately 800 ms before the response and highly phase-locked gamma oscillations over central and posterior electrodes between 90 and 140 ms after the stimulus were observed. In trials in which the participants showed a slow response, no slow negative potential was observed and phase-locked gamma oscillations were significantly reduced. Furthermore, for slow response trials the phase-locked gamma oscillations were significantly delayed with respect to fast response trials. Conclusion These results indicate the relevance of phase-locked gamma oscillations for very fast (not necessarily detailed) integration processes. PMID:17439642

  2. Post-Coma Persons with Extensive Multiple Disabilities Use Microswitch Technology to Access Selected Stimulus Events or Operate a Radio Device

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Alberti, Gloria; Oliva, Doretta; Megna, Gianfranco; Iliceto, Carla; Damiani, Sabino; Ricci, Irene; Spica, Antonella

    2011-01-01

    The present two studies extended research evidence on the use of microswitch technology by post-coma persons with multiple disabilities. Specifically, Study I examined whether three adults with a diagnosis of minimally conscious state and multiple disabilities could use microswitches as tools to access brief, selected stimulus events. Study II…

  3. A method for achieving an order-of-magnitude increase in the temporal resolution of a standard CRT computer monitor.

    PubMed

    Fiesta, Matthew P; Eagleman, David M

    2008-09-15

    As the frequency of a flickering light is increased, the perception of flicker is replaced by the perception of steady light at what is known as the critical flicker fusion threshold (CFFT). This threshold provides a useful measure of the brain's information processing speed, and has been used in medicine for over a century both for diagnostic and drug efficacy studies. However, the hardware for presenting the stimulus has not advanced to take advantage of computers, largely because the refresh rates of typical monitors are too slow to provide fine-grained changes in the alternation rate of a visual stimulus. For example, a cathode ray tube (CRT) computer monitor running at 100Hz will render a new frame every 10 ms, thus restricting the period of a flickering stimulus to multiples of 20 ms. These multiples provide a temporal resolution far too low to make precise threshold measurements, since typical CFFT values are in the neighborhood of 35 ms. We describe here a simple and novel technique to enable alternating images at several closely-spaced periods on a standard monitor. The key to our technique is to programmatically control the video card to dynamically reset the refresh rate of the monitor. Different refresh rates allow slightly different frame durations; this can be leveraged to vastly increase the resolution of stimulus presentation times. This simple technique opens new inroads for experiments on computers that require more finely-spaced temporal resolution than a monitor at a single, fixed refresh rate can allow.

  4. Motion sickness increases the risk of accidental hypothermia.

    PubMed

    Nobel, Gerard; Eiken, Ola; Tribukait, Arne; Kölegård, Roger; Mekjavic, Igor B

    2006-09-01

    Motion sickness (MS) has been found to increase body-core cooling during immersion in 28 degrees C water, an effect ascribed to attenuation of the cold-induced peripheral vasoconstriction (Mekjavic et al. in J Physiol 535(2):619-623, 2001). The present study tested the hypothesis that a more profound cold stimulus would override the MS effect on peripheral vasoconstriction and hence on the core cooling rate. Eleven healthy subjects underwent two separate head-out immersions in 15 degrees C water. In the control trial (CN), subjects were immersed after baseline measurements. In the MS-trial, subjects were rendered motion sick prior to immersion, by using a rotating chair in combination with a regimen of standardized head movements. During immersion in the MS-trial, subjects were exposed to an optokinetic stimulus (rotating drum). At 5-min intervals subjects rated their temperature perception, thermal comfort and MS discomfort. During immersion mean skin temperature, rectal temperature, the difference in temperature between the non-immersed right forearm and 3rd finger of the right hand (DeltaTff), oxygen uptake and heart rate were recorded. In the MS-trial, rectal temperature decreased substantially faster (33%, P < 0.01). Also, the DeltaTff response, an index of peripheral vasomotor tone, as well as the oxygen uptake, indicative of the shivering response, were significantly attenuated (P < 0.01 and P < 0.001, respectively) by MS. Thus, MS may predispose individuals to hypothermia by enhancing heat loss and attenuating heat production. This might have significant implications for survival in maritime accidents.

  5. [Analysis of electrically evoked response (EER) in relation to the central visual pathway of the cat (1). Wave shape of the cat EER].

    PubMed

    Fukatsu, Y; Miyake, Y; Sugita, S; Saito, A; Watanabe, S

    1990-11-01

    To analyze the Electrically evoked response (EER) in relation to the central visual pathway, the authors studied the properties of wave patterns and peak latencies of EER in 35 anesthetized adult cats. The cat EER showed two early positive waves on outward current (cornea cathode) stimulus and three or four early positive waves on inward current (cornea anode) stimulus. These waves were recorded within 50 ms after stimulus onset, and were the most consistent components in cat EER. The stimulus threshold for EER showed a less individual variation than amplitude. The difference of stimulus threshold between outward and inward current stimulus was also essentially negligible. The stimulus threshold was higher in early components than in late components. The peak latency of EER became shorter and the amplitude became higher, as the stimulus intensity was increased. However, this tendency was reversed and some wavelets started to appear when the stimulus was extremely strong. The recording using short stimulus duration and bipolar electrodes enabled us to reduce the electrical artifact of EER. These results obtained from cats were compared with those of humans and rabbits.

  6. About turn: how object orientation affects categorisation and mental rotation.

    PubMed

    Milivojevic, Branka; Hamm, Jeff P; Corballis, Michael C

    2011-11-01

    High-density ERPs evoked by rotated alphanumeric characters were examined to determine how neural processing is affected by stimulus orientation during letter/digit classifications and during mirror/normal discriminations. The former task typically produces response times that are unaffected by stimulus orientation while the latter is thought to require mental rotation. Sensitivity to orientation was first observed around 100-140 ms and this effect was attributed to differences in low-level features between vertical and oblique orientations. Subsequently, character misorientation amplified the N170, a neural marker of object classification, between 160 and 220 ms. Top-down processing is reflected in the ERPs beginning at 280-320 ms and this time range may reflect binding of ventral and dorsal stream information. In the case of mirror-normal discrimination these top-down processes can lead to mental rotation between 340 and 700 ms. Therefore, although neural processing reflects object orientation, these effects do not translate into increases in reaction-times or impaired accuracy for categorisation, and precede those that do in the mental-rotation task. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Deviance detection by a P3-like response in rat posterior parietal cortex

    PubMed Central

    Imada, Allicia; Morris, Allyn; Wiest, Michael C.

    2013-01-01

    To better understand sensory processing in frontal and parietal cortex of the rat, and to further assess the rat as a model of human frontal-parietal processing, we recorded local field potentials (LFPs) from microelectrode arrays implanted in medio-dorsal frontal, and posterior parietal cortex of awake rats as they were presented with a succession of frequent “standard” tones and infrequent “oddball” tones. Extending previous results from surface recordings we found, after controlling for the frequencies of the standard and oddball tones, that rat frontal and parietal-evoked LFPs (eLFPs) exhibit significantly larger N1 (~40 ms latency), P2 (~100 ms), N2 (~160 ms), P3E (~200–240 ms), and P3L (~300–500 ms) amplitudes after an oddball tone. These neural oddball effects could contribute to the automatic allocation of attention to rare stimuli. To determine whether these enhanced responses to rare stimuli could be accounted for in terms of stimulus-specific neural adaptation (SSA), we also recorded during single-tone control sessions involving frequent standard, or infrequent oddball beeps alone. We compared the difference between rare-tone and frequent-tone response amplitudes in the two-tone context (oddball effect) or single-tone context which isolates the contribution of SSA (SSA effect). An analysis of variance (ANOVA) revealed a significant main effect of tone context on rare-tone response enhancements, showing that the rare-tone enhancements were stronger in the two-tone context than the single-tone context. This difference between tone contexts was greatest at the early P3E peak (200–240 ms post-beep) in parietal cortex, suggesting true deviance detection by this evoked response component, which cannot be accounted for in terms of simple models of SSA. PMID:23316147

  8. How chemical information processing interferes with face processing: a magnetoencephalographic study.

    PubMed

    Walla, Peter; Mayer, Dagmar; Deecke, Lüder; Lang, Wilfried

    2005-01-01

    Magnetic field changes related to face encoding were recorded in 20 healthy young participants. Faces had to be deeply encoded under four kinds of simultaneous nasal chemical stimulation. Neutral room air, phenyl ethyl alcohol (PEA, rose flavor), carbon dioxide (CO2, pain), and hydrogen sulfide (H2S, rotten eggs flavor) were used as chemical stimuli. PEA and H2S represented odor stimuli, whereas CO2 was used for trigeminal stimulation (pain sensation). After the encoding of faces, the respective recognition performances were tested focusing on recognition effects related to specific chemical stimulation during encoding. The number of correctly recognized faces (hits) varied between chemical conditions. PEA stimulation during face encoding significantly increased the number of hits compared to the control condition. H2S also led to an increased mean number of hits, whereas simultaneous CO2 administration during face encoding resulted in a reduction. Analysis of the physiological data revealed two latency regions of interest. Compared to the control condition, both olfactory stimulus conditions resulted in reduced activity components peaking at about 260 ms after stimulus onset, whereas CO2 produced a strongly pronounced enhanced activity component peaking at about 700 ms after stimulus onset. Both olfactory conditions elicited only weak enhanced activities at about 700 ms, and CO2 did not show any difference activity at 260 ms after stimulus onset compared to the control condition. It is concluded that the early activity differences represent subconscious olfactory information processing leading to enhanced memory performances irrespective of the hedonic value, at least if they are only subconsciously processed. The later activity is suggested to reflect conscious CO2 perception negatively affecting face encoding and therefore leading to reduced subsequent face recognition. We interpret that conscious processing of nasal chemical stimulation competes with deep face encoding with respect to cortical resources, whereas subconscious processing of nasal chemical stimulation does not.

  9. Stimulus Onset Asynchrony and the Timeline of Word Recognition: Event-Related Potentials during Sentence Reading

    ERIC Educational Resources Information Center

    Dambacher, Michael; Dimigen, Olaf; Braun, Mario; Wille, Kristin; Jacobs, Arthur M.; Kliegl, Reinhold

    2012-01-01

    Three ERP experiments examined the effect of word presentation rate (i.e., stimulus onset asynchrony, SOA) on the time course of word frequency and predictability effects in sentence reading. In Experiments 1 and 2, sentences were presented word-by-word in the screen center at an SOA of 700 and 490ms, respectively. While these rates are typical…

  10. Effects of set-size and selective spatial attention on motion processing.

    PubMed

    Dobkins, K R; Bosworth, R G

    2001-05-01

    In order to investigate the effects of divided attention and selective spatial attention on motion processing, we obtained direction-of-motion thresholds using a stochastic motion display under various attentional manipulations and stimulus durations (100-600 ms). To investigate divided attention, we compared motion thresholds obtained when a single motion stimulus was presented in the visual field (set-size=1) to those obtained when the motion stimulus was presented amongst three confusable noise distractors (set-size=4). The magnitude of the observed detriment in performance with an increase in set-size from 1 to 4 could be accounted for by a simple decision model based on signal detection theory, which assumes that attentional resources are not limited in capacity. To investigate selective attention, we compared motion thresholds obtained when a valid pre-cue alerted the subject to the location of the to-be-presented motion stimulus to those obtained when no pre-cue was provided. As expected, the effect of pre-cueing was large when the visual field contained noise distractors, an effect we attribute to "noise reduction" (i.e. the pre-cue allows subjects to exclude irrelevant distractors that would otherwise impair performance). In the single motion stimulus display, we found a significant benefit of pre-cueing only at short durations (< or =150 ms), a result that can potentially be explained by a "time-to-orient" hypothesis (i.e. the pre-cue improves performance by eliminating the time it takes to orient attention to a peripheral stimulus at its onset, thereby increasing the time spent processing the stimulus). Thus, our results suggest that the visual motion system can analyze several stimuli simultaneously without limitations on sensory processing per se, and that spatial pre-cueing serves to reduce the effects of distractors and perhaps increase the effective processing time of the stimulus.

  11. Gait bradykinesia in Parkinson's disease: a change in the motor program which controls the synergy of gait.

    PubMed

    Warabi, Tateo; Furuyama, Hiroyasu; Sugai, Eri; Kato, Masamichi; Yanagisawa, Nobuo

    2018-01-01

    This study examined how gait bradykinesia is changed by the motor programming in Parkinson's disease. Thirty-five idiopathic Parkinson's disease patients and nine age-matched healthy subjects participated in this study. After the patients fixated on a visual-fixation target (conditioning-stimulus), the voluntary-gait was triggered by a visual on-stimulus. While the subject walked on a level floor, soleus, tibialis anterior EMG latencies, and the y-axis-vector of the sole-floor reaction force were examined. Three paradigms were used to distinguish between the off-/on-latencies. The gap-task: the visual-fixation target was turned off; 200 ms before the on-stimulus was engaged (resulting in a 200 ms-gap). EMG latency was not influenced by the visual-fixation target. The overlap-task: the on-stimulus was turned on during the visual-fixation target presentation (200 ms-overlap). The no-gap-task: the fixation target was turned off and the on-stimulus was turned on simultaneously. The onset of EMG pause following the tonic soleus EMG was defined as the off-latency of posture (termination). The onset of the tibialis anterior EMG burst was defined as the on-latency of gait (initiation). In the gap-task, the on-latency was unchanged in all of the subjects. In Parkinson's disease, the visual-fixation target prolonged both the off-/on-latencies in the overlap-task. In all tasks, the off-latency was prolonged and the off-/on-latencies were unsynchronized, which changed the synergic movement to a slow, short-step-gait. The synergy of gait was regulated by two independent sensory-motor programs of the off- and on-latency levels. In Parkinson's disease, the delayed gait initiation was due to the difficulty in terminating the sensory-motor program which controls the subject's fixation. The dynamic gait bradykinesia was involved in the difficulty (long off-latency) in terminating the motor program of the prior posture/movement.

  12. Stimulus Competition in Pre/Post and Online Ratings in an Evaluative Learning Design

    ERIC Educational Resources Information Center

    Purkis, Helena M.; Lipp, Ottmar V.

    2010-01-01

    Evaluative learning is said to differ from Pavlovian associative learning in that it reflects stimulus contiguity, not contingency. Thus, evaluative learning should not be subject to stimulus competition, a proposal tested in the current experiments. Participants were presented in elemental and compound training phases with pictures of shapes as…

  13. The Effects of Televised Political Advertisements on Voter Perceptions about Candidates.

    ERIC Educational Resources Information Center

    Baskin, Otis Wayne

    This study investigated whether candidate images could be designated as primarily either stimulus- or perceiver-determined and if a multiple regression model could be constructed to predict candidate image ratings from pre-stimulus perceptions of the candidate's party and post-stimulus ratings of the advertisement. One hundred twenty subjects were…

  14. Delayed Post-ischemic Conditioning Significantly Improves the Outcome after Retinal Ischemia

    PubMed Central

    Dreixler, John C.; Poston, Jacqueline N.; Shaikh, Afzhal R.; Alexander, Michael; Tupper, Kelsey Y.; Marcet, Marcus M.; Bernaudin, Myriam; Roth, Steven

    2011-01-01

    In previous studies, it was shown that post-conditioning, a transient period of brief ischemia following prolonged severe ischemia in the retina, could provide significant improvement in post-ischemic recovery, attenuation of cell loss, and decreased apoptosis. These studies showed that post-conditioning effectively prevented damage after retinal ischemia when it was instituted early (within one hour) in the post-ischemic period. While post-ischemic conditioning holds high promise of clinical translation, patients often present late after the onset of retinal ischemia and therefore immediate application of this anti-ischemic maneuver is generally not feasible. In this study, we examined the hypothesis that application of a post-conditioning stimulus at 24 h or greater following the end of prolonged ischemia would decrease the extent of ischemic injury. Ischemia was induced in rat retina in vivo. Recovery after ischemia followed by 5 minutes of post-conditioning brief ischemia 24 or 48 h after prolonged ischemia was assessed functionally (electroretinography) and histologically at 7 days after ischemia and post-conditioning or sham post-conditioning. We found that the brief ischemic stimulus applied 24, but not 48 h after prolonged ischemia significantly improved functional recovery and decreased histological damage induced by prolonged ischemia. We conclude that within a defined time window, delayed post-ischemic conditioning ameliorated post-ischemic injury in rats. Compared to earlier studies, the present work demonstrates for the first time the novel ability of a significantly delayed ischemic stimulus to provide robust neuroprotection in the retina following ischemia. PMID:21501608

  15. The effects of paired associative stimulation on knee extensor motor excitability of individuals post-stroke: A pilot study

    PubMed Central

    Rogers, Lynn M.; Brown, David A.; Stinear, James W.

    2012-01-01

    Objective Paired associative stimulation (PAS) modulates bilateral distal lower limb motor pathways during walking. We assessed the effects of inhibitory PAS applied to the vastus medialis (VM) motor pathways of chronic stroke patients. Methods PAS consisted of 120 electrical stimuli applied to the femoral nerve paired with transcranial magnetic stimulation (TMS) of the lower limb primary motor cortex so that the estimated arrival of the afferent volley occurred 8 ms after delivery of the magnetic stimulus. Stimulus pairs were delivered to the non-paretic VM motor system of 11 chronic stroke patients and the right limb motor system of 11 non-impaired subjects at 0.19 Hz. The effects of PAS on VM motor pathway excitability and muscle activity were assessed during pedaling. TMS-induced motor evoked potential (MEP) amplitudes and the percent of VM activity in the flexion phase of active pedaling (%FLEXVM) was examined before and after PAS. Results Inhibitory PAS reduced VM MEP amplitudes in the target limb (p < 0.05) of both groups, while post-PAS paretic VM MEP amplitudes increased for some patients and decreased for others. Group mean paretic limb %FLEXVM was not altered by inhibitory PAS. Conclusions These results indicate PAS can be used to manipulate motor cortical excitability in proximal lower limb representations, however the sign of induced modulation was unpredictable and cyclic muscle activity was not modified. Significance The study has important implications for the development of therapies involving non-invasive brain stimulation to modify abnormal motor behavior following stroke. PMID:21130032

  16. The effects of paired associative stimulation on knee extensor motor excitability of individuals post-stroke: a pilot study.

    PubMed

    Rogers, Lynn M; Brown, David A; Stinear, James W

    2011-06-01

    Paired associative stimulation (PAS) modulates bilateral distal lower limb motor pathways during walking. We assessed the effects of inhibitory PAS applied to the vastus medialis (VM) motor pathways of chronic stroke patients. PAS consisted of 120 electrical stimuli applied to the femoral nerve paired with transcranial magnetic stimulation (TMS) of the lower limb primary motor cortex so that the estimated arrival of the afferent volley occurred 8 ms after delivery of the magnetic stimulus. Stimulus pairs were delivered to the non-paretic VM motor system of 11 chronic stroke patients and the right limb motor system of 11 non-impaired subjects at 0.19 Hz. The effects of PAS on VM motor pathway excitability and muscle activity were assessed during pedaling. TMS-induced motor evoked potential (MEP) amplitudes and the percent of VM activity in the flexion phase of active pedaling (% FLEXVM) was examined before and after PAS. Inhibitory PAS reduced VM MEP amplitudes in the target limb (p<0.05) of both groups, while post-PAS paretic VM MEP amplitudes increased for some patients and decreased for others. Group mean paretic limb % FLEXVM was not altered by inhibitory PAS. These results indicate PAS can be used to manipulate motor cortical excitability in proximal lower limb representations, however the sign of induced modulation was unpredictable and cyclic muscle activity was not modified. The study has important implications for the development of therapies involving non-invasive brain stimulation to modify abnormal motor behavior following stroke. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Stimulus-driven attentional capture by subliminal onset cues.

    PubMed

    Schoeberl, Tobias; Fuchs, Isabella; Theeuwes, Jan; Ansorge, Ulrich

    2015-04-01

    In two experiments, we tested whether subliminal abrupt onset cues capture attention in a stimulus-driven way. An onset cue was presented 16 ms prior to the stimulus display that consisted of clearly visible color targets. The onset cue was presented either at the same side as the target (the valid cue condition) or on the opposite side of the target (the invalid cue condition). Because the onset cue was presented 16 ms before other placeholders were presented, the cue was subliminal to the participant. To ensure that this subliminal cue captured attention in a stimulus-driven way, the cue's features did not match the top-down attentional control settings of the participants: (1) The color of the cue was always different than the color of the non-singleton targets ensuring that a top-down set for a specific color or for a singleton would not match the cue, and (2) colored targets and distractors had the same objective luminance (measured by the colorimeter) and subjective lightness (measured by flicker photometry), preventing a match between the top-down set for target and cue contrast. Even though a match between the cues and top-down settings was prevented, in both experiments, the cues captured attention, with faster response times in valid than invalid cue conditions (Experiments 1 and 2) and faster response times in valid than the neutral conditions (Experiment 2). The results support the conclusion that subliminal cues capture attention in a stimulus-driven way.

  18. Hormonal Regulation of Extinction: Implication for Mechanisms of Gender Difference in PTSD

    DTIC Science & Technology

    2009-09-01

    role of gonadal hormones in the regulation of Pavlovian fear conditioning and its extinction. Pavlovian fear conditioning and its extinction serve...learning in Pavlovian fear conditioning involves training with the presentation of an innocuous stimulus (the conditioned stimulus – CS) that is associated...GD, Schlinger BA, Fanselow MS (1998) Testicular hormones do not regulate sexually dimorphic Pavlovian fear conditioning or perforant- path long-term

  19. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities

    NASA Astrophysics Data System (ADS)

    Samba, R.; Herrmann, T.; Zeck, G.

    2015-02-01

    Objective. The aim of this study was to compare two different microelectrode materials—the conductive polymer composite poly-3,4-ethylenedioxythiophene (PEDOT)-carbon nanotube(CNT) and titanium nitride (TiN)—at activating spikes in retinal ganglion cells in whole mount rat retina through stimulation of the local retinal network. Stimulation efficacy of the microelectrodes was analyzed by comparing voltage, current and transferred charge at stimulation threshold. Approach. Retinal ganglion cell spikes were recorded by a central electrode (30 μm diameter) in the planar grid of an electrode array. Extracellular stimulation (monophasic, cathodic, 0.1-1.0 ms) of the retinal network was performed using constant voltage pulses applied to the eight surrounding electrodes. The stimulation electrodes were equally spaced on the four sides of a square (400 × 400 μm). Threshold voltage was determined as the pulse amplitude required to evoke network-mediated ganglion cell spiking in a defined post stimulus time window in 50% of identical stimulus repetitions. For the two electrode materials threshold voltage, transferred charge at threshold, maximum current and the residual current at the end of the pulse were compared. Main results. Stimulation of retinal interneurons using PEDOT-CNT electrodes is achieved with lower stimulation voltage and requires lower charge transfer as compared to TiN. The key parameter for effective stimulation is a constant current over at least 0.5 ms, which is obtained by PEDOT-CNT electrodes at lower stimulation voltage due to its faradaic charge transfer mechanism. Significance. In neuroprosthetic implants, PEDOT-CNT may allow for smaller electrodes, effective stimulation in a safe voltage regime and lower energy-consumption. Our study also indicates, that the charge transferred at threshold or the charge injection capacity per se does not determine stimulation efficacy.

  20. On the Role of Mentalizing Processes in Aesthetic Appreciation: An ERP Study

    PubMed Central

    Beudt, Susan; Jacobsen, Thomas

    2015-01-01

    We used event-related brain potentials to explore the impact of mental perspective taking on processes of aesthetic appreciation of visual art. Participants (non-experts) were first presented with information about the life and attitudes of a fictitious artist. Subsequently, they were cued trial-wise to make an aesthetic judgment regarding an image depicting a piece of abstract art either from their own perspective or from the imagined perspective of the fictitious artist [i.e., theory of mind (ToM) condition]. Positive self-referential judgments were made more quickly and negative self-referential judgments were made more slowly than the corresponding judgments from the imagined perspective. Event-related potential analyses revealed significant differences between the two tasks both within the preparation period (i.e., during the cue-stimulus interval) and within the stimulus presentation period. For the ToM condition we observed a relative centro-parietal negativity during the preparation period (700–330 ms preceding picture onset) and a relative centro-parietal positivity during the stimulus presentation period (700–1100 ms after stimulus onset). These findings suggest that different subprocesses are involved in aesthetic appreciation and judgment of visual abstract art from one’s own vs. from another person’s perspective. PMID:26617506

  1. Distinct Gamma-Band Components Reflect the Short-Term Memory Maintenance of Different Sound Lateralization Angles

    PubMed Central

    Heidegger, Tonio; Wibral, Michael; Altmann, Christian F.; Lutzenberger, Werner

    2008-01-01

    Oscillatory activity in human electro- or magnetoencephalogram has been related to cortical stimulus representations and their modulation by cognitive processes. Whereas previous work has focused on gamma-band activity (GBA) during attention or maintenance of representations, there is little evidence for GBA reflecting individual stimulus representations. The present study aimed at identifying stimulus-specific GBA components during auditory spatial short-term memory. A total of 28 adults were assigned to 1 of 2 groups who were presented with only right- or left-lateralized sounds, respectively. In each group, 2 sample stimuli were used which differed in their lateralization angles (15° or 45°) with respect to the midsagittal plane. Statistical probability mapping served to identify spectral amplitude differences between 15° versus 45° stimuli. Distinct GBA components were found for each sample stimulus in different sensors over parieto-occipital cortex contralateral to the side of stimulation peaking during the middle 200–300 ms of the delay phase. The differentiation between “preferred” and “nonpreferred” stimuli during the final 100 ms of the delay phase correlated with task performance. These findings suggest that the observed GBA components reflect the activity of distinct networks tuned to spatial sound features which contribute to the maintenance of task-relevant information in short-term memory. PMID:18252742

  2. The effect of early-life stress on airway inflammation in adult mice.

    PubMed

    Vig, Rattanjeet; Gordon, John R; Thébaud, Bernard; Befus, A Dean; Vliagoftis, Harissios

    2010-01-01

    Neonatal stress induces permanent physiological changes that may influence the immune system. Early-life stress increases asthma disease severity in children. We investigated the effects of early-life stress on allergic airway inflammation using a murine model of asthma coupled to maternal separation as an early-life stress stimulus. Maternally separated (MS) and unseparated control (CON) mice were sensitized with ovalbumin (OVA) beginning at day 31 after birth. Challenging mice with OVA increased airway hyperresponsiveness (AHR) and the number of inflammatory cells recovered in the bronchoalveolar lavage (BAL), compared to saline-challenged mice. Challenging MS mice with OVA resulted in less total inflammatory cells, eosinophils, interferon-gamma, and interleukin-4 in BAL compared to CON mice. However, MS mice challenged with OVA exhibited AHR similar to CON mice challenged with OVA. In contrast, an enhanced stress protocol (MS+) involving removal of pups from their home cages following the removal of the dam resulted in inflammatory cell accumulation and cytokine levels in the BAL similar to CON mice and higher than MS mice. These findings indicate that the effect of early-life psychological factors on the development of airway inflammatory diseases such as asthma is very complex and depends on the quality of the psychological stress stimulus.

  3. Phrenic nerve conduction studies: normative data and technical aspects.

    PubMed

    Maranhão, Analucia Abreu; Carvalho, Sonia Regina da Silva; Caetano, Marcelo Ribeiro; Alamy, Alexandre Hofke; Peixoto, Eduardo Mesquita; Filgueiras, Pedro Del Esporte Peçanha

    2017-12-01

    The aim of the present study was to define normative data of phrenic nerve conduction parameters of a healthy population. Phrenic nerve conduction studies were performed in 27 healthy volunteers. The normative limits for expiratory phrenic nerve compound muscle action potential were: amplitude (0.47 mv - 0.83 mv), latency (5.74 ms - 7.10 ms), area (6.20 ms/mv - 7.20 ms/mv) and duration (18.30 ms - 20.96 ms). Inspiratory normative limits were: amplitude (0.67 mv - 1.11 mv), latency (5.90 ms - 6.34 ms), area (5.62 ms/mv - 6.72 ms/mv) and duration (13.77 ms - 15.37 ms). The best point of phrenic nerve stimulus in the neck varies among individuals between the medial and lateral border of the clavicular head of the sternocleidomastoid muscle and stimulation of both sites, then choosing the best phrenic nerve response, seems to be the appropriate procedure.

  4. Reduced BOLD response to periodic visual stimulation.

    PubMed

    Parkes, Laura M; Fries, Pascal; Kerskens, Christian M; Norris, David G

    2004-01-01

    The blood oxygenation level-dependent (BOLD) response to entrained neuronal firing in the human visual cortex and lateral geniculate nuclei was investigated. Periodic checkerboard flashes at a range of frequencies (4-20 Hz) were used to drive the visual cortex neurons into entrained oscillatory firing. This is compared to a checkerboard flashing aperiodically, with the same average number of flashes per unit time. A magnetoencephalography (MEG) measurement was made to confirm that the periodic paradigm elicited entrainment. We found that for frequencies of 10 and 15 Hz, the periodic stimulus gave a smaller BOLD response than for the aperiodic stimulus. Detailed investigation at 15 Hz showed that the aperiodic stimulus gave a similar BOLD increase regardless of the magnitude of jitter (+/-17 ms compared to +/-33 ms), indicating that flashes need to be precise to at least 17 ms to maintain entrainment. This is also evidence that for aperiodic stimuli, the amplitude of the BOLD response ordinarily reflects the total number of flashes per unit time, irrespective of the precise spacing between them, suggesting that entrainment is the main cause of the BOLD reduction in the periodic condition. The results indicate that, during entrainment, there is a reduction in the neuronal metabolic demand. We suggest that because of the selective frequency band of this effect, it could be connected to synchronised reverberations around an internal feedback loop.

  5. From episodic to habitual prospective memory: ERP-evidence for a linear transition

    PubMed Central

    Meier, Beat; Matter, Sibylle; Baumann, Brigitta; Walter, Stefan; Koenig, Thomas

    2014-01-01

    Performing a prospective memory task repeatedly changes the nature of the task from episodic to habitual. The goal of the present study was to investigate the neural basis of this transition. In two experiments, we contrasted event-related potentials (ERPs) evoked by correct responses to prospective memory targets in the first, more episodic part of the experiment with those of the second, more habitual part of the experiment. Specifically, we tested whether the early, middle, or late ERP-components, which are thought to reflect cue detection, retrieval of the intention, and post-retrieval processes, respectively, would be changed by routinely performing the prospective memory task. The results showed a differential ERP effect in the middle time window (450–650 ms post-stimulus). Source localization using low resolution brain electromagnetic tomography analysis suggests that the transition was accompanied by an increase of activation in the posterior parietal and occipital cortex. These findings indicate that habitual prospective memory involves retrieval processes guided more strongly by parietal brain structures. In brief, the study demonstrates that episodic and habitual prospective memory tasks recruit different brain areas. PMID:25071519

  6. Event-related oscillations (EROs) and event-related potentials (ERPs) comparison in facial expression recognition.

    PubMed

    Balconi, Michela; Pozzoli, Uberto

    2007-09-01

    The study aims to explore the significance of event-related potentials (ERPs) and event-related brain oscillations (EROs) (delta, theta, alpha, beta, gamma power) in response to emotional (fear, happiness, sadness) when compared with neutral faces during 180-250 post-stimulus time interval. The ERP results demonstrated that the emotional face elicited a negative peak at approximately 230 ms (N2). Moreover, EEG measures showed that motivational significance of face (emotional vs. neutral) could modulate the amplitude of EROs, but only for some frequency bands (i.e. theta and gamma bands). In a second phase, we considered the resemblance of the two EEG measures by a regression analysis. It revealed that theta and gamma oscillations mainly effect as oscillation activity at the N2 latency. Finally, a posterior increased power of theta was found for emotional faces.

  7. Cultures differ in the ability to enhance affective neural responses.

    PubMed

    Varnum, Michael E W; Hampton, Ryan S

    2017-10-01

    The present study (N = 55) used an event-related potential paradigm to investigate whether cultures differ in the ability to upregulate affective responses. Using stimuli selected from the International Affective Picture System, we found that European-Americans (N = 29) enhanced central-parietal late positive potential (LPP) (400-800 ms post-stimulus) responses to affective stimuli when instructed to do so, whereas East Asians (N = 26) did not. We observed cultural differences in the ability to enhance central-parietal LPP responses for both positively and negativelyvalenced stimuli, and the ability to enhance these two types of responses was positively correlated for Americans but negatively for East Asians. These results are consistent with the notion that cultural variations in norms and values regarding affective expression and experiences shape how the brain regulates emotions.

  8. Word form Encoding in Chinese Word Naming and Word Typing

    ERIC Educational Resources Information Center

    Chen, Jenn-Yeu; Li, Cheng-Yi

    2011-01-01

    The process of word form encoding was investigated in primed word naming and word typing with Chinese monosyllabic words. The target words shared or did not share the onset consonants with the prime words. The stimulus onset asynchrony (SOA) was 100 ms or 300 ms. Typing required the participants to enter the phonetic letters of the target word,…

  9. Driving with Intuition: A Preregistered Study about the EEG Anticipation of Simulated Random Car Accidents

    PubMed Central

    Duma, Gian Marco; Mento, Giovanni; Manari, Tommaso; Martinelli, Massimiliano

    2017-01-01

    The study of neural pre-stimulus or “anticipatory” activity opened a new window for understanding how the brain actively constructs the forthcoming reality. Usually, experimental paradigms designed to study anticipatory activity make use of stimuli. The purpose of the present study is to expand the study of neural anticipatory activity upon the temporal occurrence of dichotomic, statistically unpredictable (random) stimuli within an ecological experimental paradigm. To this purpose, we used a simplified driving simulation including two possible, randomly-presented trial types: a car crash end trial and a no car crash end trial. Event Related Potentials (ERP) were extracted -3,000 ms before stimulus onset. We identified a fronto-central negativity starting around 1,000 ms before car crash presentation. By contrast, a whole-scalp distributed positivity characterized the anticipatory activity observed before the end of the trial in the no car crash end condition. The present data are in line with the hypothesis that the brain may also anticipate dichotomic, statistically unpredictable stimuli, relaying onto different pre-stimulus ERP activity. Possible integration with car-smart-systems is also suggested. PMID:28103303

  10. Larger Stimuli Require Longer Processing Time for Perception.

    PubMed

    Kanai, Ryota; Dalmaijer, Edwin S; Sherman, Maxine T; Kawakita, Genji; Paffen, Chris L E

    2017-05-01

    The time it takes for a stimulus to reach awareness is often assessed by measuring reaction times (RTs) or by a temporal order judgement (TOJ) task in which perceived timing is compared against a reference stimulus. Dissociations of RT and TOJ have been reported earlier in which increases in stimulus intensity such as luminance intensity results in a decrease of RT, whereas perceived perceptual latency in a TOJ task is affected to a lesser degree. Here, we report that a simple manipulation of stimulus size has stronger effects on perceptual latency measured by TOJ than on motor latency measured by RT tasks. When participants were asked to respond to the appearance of a simple stimulus such as a luminance blob, the perceptual latency measured against a standard reference stimulus was up to 40 ms longer for a larger stimulus. In other words, the smaller stimulus was perceived to occur earlier than the larger one. RT on the other hand was hardly affected by size. The TOJ results were further replicated in a simultaneity judgement task, suggesting that the effects of size are not due to TOJ-specific response biases but more likely reflect an effect on perceived timing.

  11. Time course of spatial and feature selective attention for partly-occluded objects.

    PubMed

    Kasai, Tetsuko; Takeya, Ryuji

    2012-07-01

    Attention selects objects/groups as the most fundamental units, and this may be achieved by an attention-spreading mechanism. Previous event-related potential (ERP) studies have found that attention-spreading is reflected by a decrease in the N1 spatial attention effect. The present study tested whether the electrophysiological attention effect is associated with the perception of object unity or amodal completion through the use of partly-occluded objects. ERPs were recorded in 14 participants who were required to pay attention to their left or right visual field and to press a button for a target shape in the attended field. Bilateral stimuli were presented rapidly, and were separated, connected, or connected behind an occluder. Behavioral performance in the connected and occluded conditions was worse than that in the separated condition, indicating that attention spread over perceptual object representations after amodal completion. Consistently, the late N1 spatial attention effect (180-220 ms post-stimulus) and the early phase (230-280 ms) of feature selection effects (target N2) at contralateral sites decreased, equally for the occluded and connected conditions, while the attention effect in the early N1 latency (140-180 ms) shifted most positively for the occluded condition. These results suggest that perceptual organization processes for object recognition transiently modulate spatial and feature selection processes in the visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Activity of left inferior frontal gyrus related to word repetition effects: LORETA imaging with 128-channel EEG and individual MRI.

    PubMed

    Kim, Young Youn; Lee, Boreom; Shin, Yong Wook; Kwon, Jun Soo; Kim, Myung-Sun

    2006-02-01

    We investigated the brain substrate of word repetition effects on the implicit memory task using low-resolution electromagnetic tomography (LORETA) with high-density 128-channel EEG and individual MRI as a realistic head model. Thirteen right-handed, healthy subjects performed a word/non-word discrimination task, in which the words and non-words were presented visually, and some of the words appeared twice with a lag of one or five items. All of the subjects exhibited word repetition effects with respect to the behavioral data, in which a faster reaction time was observed to the repeated word (old word) than to the first presentation of the word (new word). The old words elicited more positive-going potentials than the new words, beginning at 200 ms and lasting until 500 ms post-stimulus. We conducted source reconstruction using LORETA at a latency of 400 ms with the peak mean global field potentials and used statistical parametric mapping for the statistical analysis. We found that the source elicited by the old words exhibited a statistically significant current density reduction in the left inferior frontal gyrus. This is the first study to investigate the generators of word repetition effects using voxel-by-voxel statistical mapping of the current density with individual MRI and high-density EEG.

  13. An evil face? Verbal evaluative multi-CS conditioning enhances face-evoked mid-latency magnetoencephalographic responses

    PubMed Central

    Junghöfer, Markus; Rehbein, Maimu Alissa; Maitzen, Julius; Schindler, Sebastian

    2017-01-01

    Abstract Humans have a remarkable capacity for rapid affective learning. For instance, using first-order US such as odors or electric shocks, magnetoencephalography (MEG) studies of multi-CS conditioning demonstrate enhanced early (<150 ms) and mid-latency (150–300 ms) visual evoked responses to affectively conditioned faces, together with changes in stimulus evaluation. However, particularly in social contexts, human affective learning is often mediated by language, a class of complex higher-order US. To elucidate mechanisms of this type of learning, we investigate how face processing changes following verbal evaluative multi-CS conditioning. Sixty neutral expression male faces were paired with phrases about aversive crimes (30) or neutral occupations (30). Post conditioning, aversively associated faces evoked stronger magnetic fields in a mid-latency interval between 220 and 320 ms, localized primarily in left visual cortex. Aversively paired faces were also rated as more arousing and more unpleasant, evaluative changes occurring both with and without contingency awareness. However, no early MEG effects were found, implying that verbal evaluative conditioning may require conceptual processing and does not engage rapid, possibly sub-cortical, pathways. Results demonstrate the efficacy of verbal evaluative multi-CS conditioning and indicate both common and distinct neural mechanisms of first- and higher-order multi-CS conditioning, thereby informing theories of associative learning. PMID:28008078

  14. An evil face? Verbal evaluative multi-CS conditioning enhances face-evoked mid-latency magnetoencephalographic responses.

    PubMed

    Junghöfer, Markus; Rehbein, Maimu Alissa; Maitzen, Julius; Schindler, Sebastian; Kissler, Johanna

    2017-04-01

    Humans have a remarkable capacity for rapid affective learning. For instance, using first-order US such as odors or electric shocks, magnetoencephalography (MEG) studies of multi-CS conditioning demonstrate enhanced early (<150 ms) and mid-latency (150-300 ms) visual evoked responses to affectively conditioned faces, together with changes in stimulus evaluation. However, particularly in social contexts, human affective learning is often mediated by language, a class of complex higher-order US. To elucidate mechanisms of this type of learning, we investigate how face processing changes following verbal evaluative multi-CS conditioning. Sixty neutral expression male faces were paired with phrases about aversive crimes (30) or neutral occupations (30). Post conditioning, aversively associated faces evoked stronger magnetic fields in a mid-latency interval between 220 and 320 ms, localized primarily in left visual cortex. Aversively paired faces were also rated as more arousing and more unpleasant, evaluative changes occurring both with and without contingency awareness. However, no early MEG effects were found, implying that verbal evaluative conditioning may require conceptual processing and does not engage rapid, possibly sub-cortical, pathways. Results demonstrate the efficacy of verbal evaluative multi-CS conditioning and indicate both common and distinct neural mechanisms of first- and higher-order multi-CS conditioning, thereby informing theories of associative learning. © The Author (2016). Published by Oxford University Press.

  15. Upright face-preferential high-gamma responses in lower-order visual areas: evidence from intracranial recordings in children

    PubMed Central

    Matsuzaki, Naoyuki; Schwarzlose, Rebecca F.; Nishida, Masaaki; Ofen, Noa; Asano, Eishi

    2015-01-01

    Behavioral studies demonstrate that a face presented in the upright orientation attracts attention more rapidly than an inverted face. Saccades toward an upright face take place in 100-140 ms following presentation. The present study using electrocorticography determined whether upright face-preferential neural activation, as reflected by augmentation of high-gamma activity at 80-150 Hz, involved the lower-order visual cortex within the first 100 ms post-stimulus presentation. Sampled lower-order visual areas were verified by the induction of phosphenes upon electrical stimulation. These areas resided in the lateral-occipital, lingual, and cuneus gyri along the calcarine sulcus, roughly corresponding to V1 and V2. Measurement of high-gamma augmentation during central (circular) and peripheral (annular) checkerboard reversal pattern stimulation indicated that central-field stimuli were processed by the more polar surface whereas peripheral-field stimuli by the more anterior medial surface. Upright face stimuli, compared to inverted ones, elicited up to 23% larger augmentation of high-gamma activity in the lower-order visual regions at 40-90 ms. Upright face-preferential high-gamma augmentation was more highly correlated with high-gamma augmentation for central than peripheral stimuli. Our observations are consistent with the hypothesis that lower-order visual regions, especially those for the central field, are involved in visual cues for rapid detection of upright face stimuli. PMID:25579446

  16. Pre-cue Fronto-Occipital Alpha Phase and Distributed Cortical Oscillations Predict Failures of Cognitive Control

    PubMed Central

    Hamm, Jordan P.; Dyckman, Kara A.; McDowell, Jennifer E.; Clementz, Brett A.

    2012-01-01

    Cognitive control is required for correct performance on antisaccade tasks, including the ability to inhibit an externally driven ocular motor repsonse (a saccade to a peripheral stimulus) in favor of an internally driven ocular motor goal (a saccade directed away from a peripheral stimulus). Healthy humans occasionally produce errors during antisaccade tasks, but the mechanisms associated with such failures of cognitive control are uncertain. Most research on cognitive control failures focuses on post-stimulus processing, although a growing body of literature highlights a role of intrinsic brain activity in perceptual and cognitive performance. The current investigation used dense array electroencephalography and distributed source analyses to examine brain oscillations across a wide frequency bandwidth in the period prior to antisaccade cue onset. Results highlight four important aspects of ongoing and preparatory brain activations that differentiate error from correct antisaccade trials: (i) ongoing oscillatory beta (20–30Hz) power in anterior cingulate prior to trial initiation (lower for error trials), (ii) instantaneous phase of ongoing alpha-theta (7Hz) in frontal and occipital cortices immediately before trial initiation (opposite between trial types), (iii) gamma power (35–60Hz) in posterior parietal cortex 100 ms prior to cue onset (greater for error trials), and (iv) phase locking of alpha (5–12Hz) in parietal and occipital cortices immediately prior to cue onset (lower for error trials). These findings extend recently reported effects of pre-trial alpha phase on perception to cognitive control processes, and help identify the cortical generators of such phase effects. PMID:22593071

  17. Colour categories are reflected in sensory stages of colour perception when stimulus issues are resolved.

    PubMed

    Forder, Lewis; He, Xun; Franklin, Anna

    2017-01-01

    Debate exists about the time course of the effect of colour categories on visual processing. We investigated the effect of colour categories for two groups who differed in whether they categorised a blue-green boundary colour as the same- or different-category to a reliably-named blue colour and a reliably-named green colour. Colour differences were equated in just-noticeable differences to be equally discriminable. We analysed event-related potentials for these colours elicited on a passive visual oddball task and investigated the time course of categorical effects on colour processing. Support for category effects was found 100 ms after stimulus onset, and over frontal sites around 250 ms, suggesting that colour naming affects both early sensory and later stages of chromatic processing.

  18. Colour categories are reflected in sensory stages of colour perception when stimulus issues are resolved

    PubMed Central

    He, Xun; Franklin, Anna

    2017-01-01

    Debate exists about the time course of the effect of colour categories on visual processing. We investigated the effect of colour categories for two groups who differed in whether they categorised a blue-green boundary colour as the same- or different-category to a reliably-named blue colour and a reliably-named green colour. Colour differences were equated in just-noticeable differences to be equally discriminable. We analysed event-related potentials for these colours elicited on a passive visual oddball task and investigated the time course of categorical effects on colour processing. Support for category effects was found 100 ms after stimulus onset, and over frontal sites around 250 ms, suggesting that colour naming affects both early sensory and later stages of chromatic processing. PMID:28542426

  19. Effects of Spontaneous Locomotion on the Cricket's Walking Response to a Wind Stimulus

    NASA Astrophysics Data System (ADS)

    Gras, Heribert; Bartels, Anke

    Tethered walking crickets often respond to single wind puffs (50ms duration) directed from 45° left or right to the abdominal cerci with a short running bout of about 300ms, followed by normal locomotion. To test for an effect of the current behavioral state on the running response, we applied wind stimuli when the insect attained a predefined translatorial and/or rotatorial velocity during spontaneous walking. The latency, duration, and velocity profile of the running bout always proved to be constant, representing a reflexlike all-or-nothing reaction, while the probability of this response was low after even brief standing and increased with the forward speed of spontaneous walking at the moment of stimulation. In contrast, the current rotatorial speed did not affect the stimulus response.

  20. Comparing the temporal dynamics of thematic and taxonomic processing using event-related potentials.

    PubMed

    Savic, Olivera; Savic, Andrej M; Kovic, Vanja

    2017-01-01

    We report the results of a study comparing the temporal dynamics of thematic and taxonomic knowledge activation in a picture-word priming paradigm using event-related potentials. Although we found no behavioral differences between thematic and taxonomic processing, ERP data revealed distinct patterns of N400 and P600 amplitude modulation for thematic and taxonomic priming. Thematically related target stimuli elicited less negativity than taxonomic targets between 280-460 ms after stimulus onset, suggesting easier semantic processing of thematic than taxonomic relationships. Moreover, P600 mean amplitude was significantly increased for taxonomic targets between 520-600 ms, consistent with a greater need for stimulus reevaluation in that condition. These results offer novel evidence in favor of a dissociation between thematic and taxonomic thinking in the early phases of conceptual evaluation.

  1. STDP allows fast rate-modulated coding with Poisson-like spike trains.

    PubMed

    Gilson, Matthieu; Masquelier, Timothée; Hugues, Etienne

    2011-10-01

    Spike timing-dependent plasticity (STDP) has been shown to enable single neurons to detect repeatedly presented spatiotemporal spike patterns. This holds even when such patterns are embedded in equally dense random spiking activity, that is, in the absence of external reference times such as a stimulus onset. Here we demonstrate, both analytically and numerically, that STDP can also learn repeating rate-modulated patterns, which have received more experimental evidence, for example, through post-stimulus time histograms (PSTHs). Each input spike train is generated from a rate function using a stochastic sampling mechanism, chosen to be an inhomogeneous Poisson process here. Learning is feasible provided significant covarying rate modulations occur within the typical timescale of STDP (~10-20 ms) for sufficiently many inputs (~100 among 1000 in our simulations), a condition that is met by many experimental PSTHs. Repeated pattern presentations induce spike-time correlations that are captured by STDP. Despite imprecise input spike times and even variable spike counts, a single trained neuron robustly detects the pattern just a few milliseconds after its presentation. Therefore, temporal imprecision and Poisson-like firing variability are not an obstacle to fast temporal coding. STDP provides an appealing mechanism to learn such rate patterns, which, beyond sensory processing, may also be involved in many cognitive tasks.

  2. STDP Allows Fast Rate-Modulated Coding with Poisson-Like Spike Trains

    PubMed Central

    Hugues, Etienne

    2011-01-01

    Spike timing-dependent plasticity (STDP) has been shown to enable single neurons to detect repeatedly presented spatiotemporal spike patterns. This holds even when such patterns are embedded in equally dense random spiking activity, that is, in the absence of external reference times such as a stimulus onset. Here we demonstrate, both analytically and numerically, that STDP can also learn repeating rate-modulated patterns, which have received more experimental evidence, for example, through post-stimulus time histograms (PSTHs). Each input spike train is generated from a rate function using a stochastic sampling mechanism, chosen to be an inhomogeneous Poisson process here. Learning is feasible provided significant covarying rate modulations occur within the typical timescale of STDP (∼10–20 ms) for sufficiently many inputs (∼100 among 1000 in our simulations), a condition that is met by many experimental PSTHs. Repeated pattern presentations induce spike-time correlations that are captured by STDP. Despite imprecise input spike times and even variable spike counts, a single trained neuron robustly detects the pattern just a few milliseconds after its presentation. Therefore, temporal imprecision and Poisson-like firing variability are not an obstacle to fast temporal coding. STDP provides an appealing mechanism to learn such rate patterns, which, beyond sensory processing, may also be involved in many cognitive tasks. PMID:22046113

  3. Event-related potential effects of superior action anticipation in professional badminton players.

    PubMed

    Jin, Hua; Xu, Guiping; Zhang, John X; Gao, Hongwei; Ye, Zuoer; Wang, Pin; Lin, Huiyan; Mo, Lei; Lin, Chong-De

    2011-04-04

    The ability to predict the trajectory of a ball based on the opponent's body kinematics has been shown to be critical to high-performing athletes in many sports. However, little is known about the neural correlates underlying such superior ability in action anticipation. The present event-related potential study compared brain responses from professional badminton players and non-player controls when they watched video clips of badminton games and predicted a ball's landing position. Replicating literature findings, the players made significantly more accurate judgments than the controls and showed better action anticipation. Correspondingly, they showed enlarged amplitudes of two ERP components, a P300 peaking around 350ms post-stimulus with a parietal scalp distribution and a P2 peaking around 250ms with a posterior-occipital distribution. The P300 effect was interpreted to reflect primed access and/or directing of attention to game-related memory representations in the players facilitating their online judgment of related actions. The P2 effect was suggested to reflect some generic learning effects. The results identify clear neural responses that differentiate between different levels of action anticipation associated with sports expertise. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. A massively asynchronous, parallel brain.

    PubMed

    Zeki, Semir

    2015-05-19

    Whether the visual brain uses a parallel or a serial, hierarchical, strategy to process visual signals, the end result appears to be that different attributes of the visual scene are perceived asynchronously--with colour leading form (orientation) by 40 ms and direction of motion by about 80 ms. Whatever the neural root of this asynchrony, it creates a problem that has not been properly addressed, namely how visual attributes that are perceived asynchronously over brief time windows after stimulus onset are bound together in the longer term to give us a unified experience of the visual world, in which all attributes are apparently seen in perfect registration. In this review, I suggest that there is no central neural clock in the (visual) brain that synchronizes the activity of different processing systems. More likely, activity in each of the parallel processing-perceptual systems of the visual brain is reset independently, making of the brain a massively asynchronous organ, just like the new generation of more efficient computers promise to be. Given the asynchronous operations of the brain, it is likely that the results of activities in the different processing-perceptual systems are not bound by physiological interactions between cells in the specialized visual areas, but post-perceptually, outside the visual brain.

  5. Emotionally negative pictures increase attention to a subsequent auditory stimulus.

    PubMed

    Tartar, Jaime L; de Almeida, Kristen; McIntosh, Roger C; Rosselli, Monica; Nash, Allan J

    2012-01-01

    Emotionally negative stimuli serve as a mechanism of biological preparedness to enhance attention. We hypothesized that emotionally negative stimuli would also serve as motivational priming to increase attention resources for subsequent stimuli. To that end, we tested 11 participants in a dual sensory modality task, wherein emotionally negative pictures were contrasted with emotionally neutral pictures and each picture was followed 600 ms later by a tone in an auditory oddball paradigm. Each trial began with a picture displayed for 200 ms; half of the trials began with an emotionally negative picture and half of the trials began with an emotionally neutral picture; 600 ms following picture presentation, the participants heard either an oddball tone or a standard tone. At the end of each trial (picture followed by tone), the participants categorized, with a button press, the picture and tone combination. As expected, and consistent with previous studies, we found an enhanced visual late positive potential (latency range=300-700 ms) to the negative picture stimuli. We further found that compared to neutral pictures, negative pictures resulted in early attention and orienting effects to subsequent tones (measured through an enhanced N1 and N2) and sustained attention effects only to the subsequent oddball tones (measured through late processing negativity, latency range=400-700 ms). Number pad responses to both the picture and tone category showed the shortest response latencies and greatest percentage of correct picture-tone categorization on the negative picture followed by oddball tone trials. Consistent with previous work on natural selective attention, our results support the idea that emotional stimuli can alter attention resource allocation. This finding has broad implications for human attention and performance as it specifically shows the conditions in which an emotionally negative stimulus can result in extended stimulus evaluation. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Human haptic perception is interrupted by explorative stops of milliseconds

    PubMed Central

    Grunwald, Martin; Muniyandi, Manivannan; Kim, Hyun; Kim, Jung; Krause, Frank; Mueller, Stephanie; Srinivasan, Mandayam A.

    2014-01-01

    Introduction: The explorative scanning movements of the hands have been compared to those of the eyes. The visual process is known to be composed of alternating phases of saccadic eye movements and fixation pauses. Descriptive results suggest that during the haptic exploration of objects short movement pauses occur as well. The goal of the present study was to detect these “explorative stops” (ES) during one-handed and two-handed haptic explorations of various objects and patterns, and to measure their duration. Additionally, the associations between the following variables were analyzed: (a) between mean exploration time and duration of ES, (b) between certain stimulus features and ES frequency, and (c) the duration of ES during the course of exploration. Methods: Five different Experiments were used. The first two Experiments were classical recognition tasks of unknown haptic stimuli (A) and of common objects (B). In Experiment C space-position information of angle legs had to be perceived and reproduced. For Experiments D and E the PHANToM haptic device was used for the exploration of virtual (D) and real (E) sunken reliefs. Results: In each Experiment we observed explorative stops of different average durations. For Experiment A: 329.50 ms, Experiment B: 67.47 ms, Experiment C: 189.92 ms, Experiment D: 186.17 ms and Experiment E: 140.02 ms. Significant correlations were observed between exploration time and the duration of the ES. Also, ES occurred more frequently, but not exclusively, at defined stimulus features like corners, curves and the endpoints of lines. However, explorative stops do not occur every time a stimulus feature is explored. Conclusions: We assume that ES are a general aspect of human haptic exploration processes. We have tried to interpret the occurrence and duration of ES with respect to the Hypotheses-Rebuild-Model and the Limited Capacity Control System theory. PMID:24782797

  7. Forward Masking of the Speech-Evoked Auditory Brainstem Response.

    PubMed

    Hodge, Sarah E; Menezes, Denise C; Brown, Kevin D; Grose, John H

    2018-02-01

    The hypothesis tested was that forward masking of the speech-evoked auditory brainstem response (sABR) increases peak latency as an inverse function of masker-signal interval (Δt), and that the overall persistence of forward masking is age dependent. Older listeners exhibit deficits in forward masking. If forward-masked sABRs provide an objective measure of the susceptibility of speech sounds to prior stimulation, then this provides a novel approach to examining the age dependence of temporal processing. A /da/ stimulus forward masked by speech-shaped noise (Δt = 4-64 ms) was used to measure sABRs in 10 younger and nine older participants. Forward masking of subsegments of the /da/ stimulus (Δt = 16 ms) and click trains (Δt = 0-64 ms) was also measured. Forward-masked sABRs from young participants showed an increase in latency with decreasing Δt for the initial peak. Latency shifts for later peaks were smaller and more uniform. None of the peak latencies returned to baseline by Δt = 64 ms. Forward-masked /da/ subsegments showed peak latency shifts that did not depend simply on peak position, while forward-masked click trains showed latency shifts that were dependent on click position. The sABRs from older adults were less robust but confirmed the viability of the approach. Forward masking of the sABR provides an objective measure of the susceptibility of the auditory system to prior stimulation. Failure of recovery functions to return to baseline suggests an interaction between forward masking by the prior masker and temporal effects within the stimulus itself.

  8. Salience of Somatosensory Stimulus Modulating External-to-Internal Orienting Attention.

    PubMed

    Peng, Jiaxin; Chan, Sam C C; Chau, Bolton K H; Yu, Qiuhua; Chan, Chetwyn C H

    2017-01-01

    Shifting between one's external and internal environments involves orienting attention. Studies on differentiating subprocesses associated with external-to-internal orienting attention are limited. This study aimed to reveal the characteristics of the disengagement, shifting and reengagement subprocesses by using somatosensory external stimuli and internally generated images. Study participants were to perceive nociceptive external stimuli (External Low (E L ) or External High (E H )) induced by electrical stimulations (50 ms) followed by mentally rehearsing learned subnociceptive images (Internal Low (I L ) and Internal High (I H )). Behavioral responses and EEG signals of the participants were recorded. The three significant components elicited were: fronto-central negativity (FCN; 128-180 ms), fronto-central P2 (200-260 ms), and central P3 (320-380 ms), which reflected the three subprocesses, respectively. Differences in the FCN and P2 amplitudes during the orienting to the subnociceptive images revealed only in the E H but not E L stimulus condition that are new findings. The results indicated that modulations of the disengagement and shifting processes only happened if the external nociceptive stimuli were of high salience and the external-to-internal incongruence was large. The reengaging process reflected from the amplitude of P3 correlated significantly with attenuation of the pain intensity felt from the external nociceptive stimuli. These findings suggested that the subprocesses underlying external-to-internal orienting attention serve different roles. Disengagement subprocess tends to be stimulus dependent, which is bottom-up in nature. Shifting and reengagement tend to be top-down subprocesses, which taps on cognitive control. This subprocess may account for the attenuation effects on perceived pain intensity after orienting attention.

  9. Ventricular stimulus site influences dynamic dispersion of repolarization in the intact human heart

    PubMed Central

    Orini, Michele; Simon, Ron B.; Providência, Rui; Khan, Fakhar Z.; Segal, Oliver R.; Babu, Girish G.; Bradley, Richard; Rowland, Edward; Ahsan, Syed; Chow, Anthony W.; Lowe, Martin D.; Taggart, Peter

    2016-01-01

    The spatial variation in restitution properties in relation to varying stimulus site is poorly defined. This study aimed to investigate the effect of varying stimulus site on apicobasal and transmural activation time (AT), action potential duration (APD) and repolarization time (RT) during restitution studies in the intact human heart. Ten patients with structurally normal hearts, undergoing clinical electrophysiology studies, were enrolled. Decapolar catheters were placed apex to base in the endocardial right ventricle (RVendo) and left ventricle (LVendo), and an LV branch of the coronary sinus (LVepi) for transmural recording. S1–S2 restitution protocols were performed pacing RVendo apex, LVendo base, and LVepi base. Overall, 725 restitution curves were analyzed, 74% of slopes had a maximum slope of activation recovery interval (ARI) restitution (Smax) > 1 (P < 0.001); mean Smax = 1.76. APD was shorter in the LVepi compared with LVendo, regardless of pacing site (30-ms difference during RVendo pacing, 25-ms during LVendo, and 48-ms during LVepi; 50th quantile, P < 0.01). Basal LVepi pacing resulted in a significant transmural gradient of RT (77 ms, 50th quantile: P < 0.01), due to loss of negative transmural AT-APD coupling (mean slope 0.63 ± 0.3). No significant transmural gradient in RT was demonstrated during endocardial RV or LV pacing, with preserved negative transmural AT-APD coupling (mean slope −1.36 ± 1.9 and −0.71 ± 0.4, respectively). Steep ARI restitution slopes predominate in the normal ventricle and dynamic ARI; RT gradients exist that are modulated by the site of activation. Epicardial stimulation to initiate ventricular activation promotes significant transmural gradients of repolarization that could be proarrhythmic. PMID:27371682

  10. Salience of Somatosensory Stimulus Modulating External-to-Internal Orienting Attention

    PubMed Central

    Peng, Jiaxin; Chan, Sam C. C.; Chau, Bolton K. H.; Yu, Qiuhua; Chan, Chetwyn C. H.

    2017-01-01

    Shifting between one’s external and internal environments involves orienting attention. Studies on differentiating subprocesses associated with external-to-internal orienting attention are limited. This study aimed to reveal the characteristics of the disengagement, shifting and reengagement subprocesses by using somatosensory external stimuli and internally generated images. Study participants were to perceive nociceptive external stimuli (External Low (EL) or External High (EH)) induced by electrical stimulations (50 ms) followed by mentally rehearsing learned subnociceptive images (Internal Low (IL) and Internal High (IH)). Behavioral responses and EEG signals of the participants were recorded. The three significant components elicited were: fronto-central negativity (FCN; 128–180 ms), fronto-central P2 (200–260 ms), and central P3 (320–380 ms), which reflected the three subprocesses, respectively. Differences in the FCN and P2 amplitudes during the orienting to the subnociceptive images revealed only in the EH but not EL stimulus condition that are new findings. The results indicated that modulations of the disengagement and shifting processes only happened if the external nociceptive stimuli were of high salience and the external-to-internal incongruence was large. The reengaging process reflected from the amplitude of P3 correlated significantly with attenuation of the pain intensity felt from the external nociceptive stimuli. These findings suggested that the subprocesses underlying external-to-internal orienting attention serve different roles. Disengagement subprocess tends to be stimulus dependent, which is bottom-up in nature. Shifting and reengagement tend to be top-down subprocesses, which taps on cognitive control. This subprocess may account for the attenuation effects on perceived pain intensity after orienting attention. PMID:28970787

  11. Trading off switch costs and stimulus availability benefits: An investigation of voluntary task-switching behavior in a predictable dynamic multitasking environment.

    PubMed

    Mittelstädt, Victor; Miller, Jeff; Kiesel, Andrea

    2018-03-09

    In the present study, we introduce a novel, self-organized task-switching paradigm that can be used to study more directly the determinants of switching. Instead of instructing participants to randomly switch between tasks, as in the classic voluntary task-switching paradigm (Arrington & Logan, 2004), we instructed participants to optimize their task performance in a voluntary task-switching environment in which the stimulus associated with the previously selected task appeared in each trial after a delay. Importantly, the stimulus onset asynchrony (SOA) increased further with each additional repetition of this task, whereas the stimulus needed for a task switch was always immediately available. We conducted two experiments with different SOA increments (i.e., Exp. 1a = 50 ms, Exp. 1b = 33 ms) to see whether this procedure would induce switching behavior, and we explored how people trade off switch costs against the increasing availability of the stimulus needed for a task repetition. We observed that participants adapted their behavior to the different task environments (i.e., SOA increments) and that participants switched tasks when the SOA in task switches approximately matched the switch costs. Moreover, correlational analyses indicated relations between individual switch costs and individual switch rates across participants. Together, these results demonstrate that participants were sensitive to the increased availability of switch stimuli in deciding whether to switch or to repeat, which in turn demonstrates flexible adaptive task selection behavior. We suggest that performance limitations in task switching interact with the task environment to influence switching behavior.

  12. Dorsolateral prefrontal cortex bridges bilateral primary somatosensory cortices during cross-modal working memory.

    PubMed

    Zhao, Di; Ku, Yixuan

    2018-05-01

    Neural activity in the dorsolateral prefrontal cortex (DLPFC) has been suggested to integrate information from distinct sensory areas. However, how the DLPFC interacts with the bilateral primary somatosensory cortices (SIs) in tactile-visual cross-modal working memory has not yet been established. In the present study, we applied single-pulse transcranial magnetic stimulation (sp-TMS) over the contralateral DLPFC and bilateral SIs of human participants at various time points, while they performed a tactile-visual delayed matching-to-sample task with a 2-second delay. sp-TMS over the contralateral DLPFC or the contralateral SI at either an sensory encoding stage [i.e. 100 ms after the onset of a vibrotactile sample stimulus (200-ms duration)] or an early maintenance stage (i.e. 300 ms after the onset), significantly impaired the accuracy of task performance; sp-TMS over the contralateral DLPFC or the ipsilateral SI at a late maintenance stage (1600 ms and 1900 ms) also significantly disrupted the performance. Furthermore, at 300 ms after the onset of the vibrotactile sample stimulus, there was a significant correlation between the deteriorating effects of sp-TMS over the contralateral SI and the contralateral DLPFC. These results imply that the DLPFC and the bilateral SIs play causal roles at distinctive stages during cross-modal working memory, while the contralateral DLPFC communicates with the contralateral SI in the early delay, and cooperates with the ipsilateral SI in the late delay. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Time-order errors and standard-position effects in duration discrimination: An experimental study and an analysis by the sensation-weighting model.

    PubMed

    Hellström, Åke; Rammsayer, Thomas H

    2015-10-01

    Studies have shown that the discriminability of successive time intervals depends on the presentation order of the standard (St) and the comparison (Co) stimuli. Also, this order affects the point of subjective equality. The first effect is here called the standard-position effect (SPE); the latter is known as the time-order error. In the present study, we investigated how these two effects vary across interval types and standard durations, using Hellström's sensation-weighting model to describe the results and relate them to stimulus comparison mechanisms. In Experiment 1, four modes of interval presentation were used, factorially combining interval type (filled, empty) and sensory modality (auditory, visual). For each mode, two presentation orders (St-Co, Co-St) and two standard durations (100 ms, 1,000 ms) were used; half of the participants received correctness feedback, and half of them did not. The interstimulus interval was 900 ms. The SPEs were negative (i.e., a smaller difference limen for St-Co than for Co-St), except for the filled-auditory and empty-visual 100-ms standards, for which a positive effect was obtained. In Experiment 2, duration discrimination was investigated for filled auditory intervals with four standards between 100 and 1,000 ms, an interstimulus interval of 900 ms, and no feedback. Standard duration interacted with presentation order, here yielding SPEs that were negative for standards of 100 and 1,000 ms, but positive for 215 and 464 ms. Our findings indicate that the SPE can be positive as well as negative, depending on the interval type and standard duration, reflecting the relative weighting of the stimulus information, as is described by the sensation-weighting model.

  14. Influence of transcutaneous electrical nerve stimulation conditions on disynaptic reciprocal Ia inhibition and presynaptic inhibition in healthy adults.

    PubMed

    Takeda, Kazuya; Tanabe, Shigeo; Koyama, Soichiro; Ushiroyama, Kosuke; Naoi, Yuki; Motoya, Ikuo; Sakurai, Hiroaki; Kanada, Yoshikiyo

    2017-03-01

    This study investigated the influence of stimulus conditions of transcutaneous electrical nerve stimulation (TENS) on disynaptic reciprocal Ia inhibition (RI) and presynaptic inhibition (D1 inhibition) in healthy adults. Eight healthy participants received TENS (stimulus frequencies of 50, 100, and 200 Hz) over the deep peroneal nerve and tibialis anterior (TA) muscle in the resting condition for 30 min. At pre- and post-intervention, the RI from the TA to the soleus (SOL) and D1 inhibition of the SOL alpha motor neuron were assessed by evoked electromyography. The results showed that RI was not changed by TENS at any stimulus frequency condition. Conversely, D1 inhibition was significantly changed by TENS regardless of the stimulus frequency. The present results and previous studies pertaining to RI suggest that the resting condition might strongly influence the lack of pre- vs. post-intervention change in the RI. Regarding the D1 inhibition, the present results suggest that the effect of TENS might be caused by post-tetanic potentiation. The knowledge gained from the present study might contribute to a better understanding of fundamental studies of TENS in healthy adults and its clinical application for stroke survivors.

  15. Behavioral performance follows the time course of neural facilitation and suppression during cued shifts of feature-selective attention.

    PubMed

    Andersen, S K; Müller, M M

    2010-08-03

    A central question in the field of attention is whether visual processing is a strictly limited resource, which must be allocated by selective attention. If this were the case, attentional enhancement of one stimulus should invariably lead to suppression of unattended distracter stimuli. Here we examine voluntary cued shifts of feature-selective attention to either one of two superimposed red or blue random dot kinematograms (RDKs) to test whether such a reciprocal relationship between enhancement of an attended and suppression of an unattended stimulus can be observed. The steady-state visual evoked potential (SSVEP), an oscillatory brain response elicited by the flickering RDKs, was measured in human EEG. Supporting limited resources, we observed both an enhancement of the attended and a suppression of the unattended RDK, but this observed reciprocity did not occur concurrently: enhancement of the attended RDK started at 220 ms after cue onset and preceded suppression of the unattended RDK by about 130 ms. Furthermore, we found that behavior was significantly correlated with the SSVEP time course of a measure of selectivity (attended minus unattended) but not with a measure of total activity (attended plus unattended). The significant deviations from a temporally synchronized reciprocity between enhancement and suppression suggest that the enhancement of the attended stimulus may cause the suppression of the unattended stimulus in the present experiment.

  16. Effect of ethanol on the visual-evoked potential in rat: dynamics of ON and OFF responses.

    PubMed

    Dulinskas, Redas; Buisas, Rokas; Vengeliene, Valentina; Ruksenas, Osvaldas

    2017-01-01

    The effect of acute ethanol administration on the flash visual-evoked potential (VEP) was investigated in numerous studies. However, it is still unclear which brain structures are responsible for the differences observed in stimulus onset (ON) and offset (OFF) responses and how these responses are modulated by ethanol. The aim of our study was to investigate the pattern of ON and OFF responses in the visual system, measured as amplitude and latency of each VEP component following acute administration of ethanol. VEPs were recorded at the onset and offset of a 500 ms visual stimulus in anesthetized male Wistar rats. The effect of alcohol on VEP latency and amplitude was measured for one hour after injection of 2 g/kg ethanol dose. Three VEP components - N63, P89 and N143 - were analyzed. Our results showed that, except for component N143, ethanol increased the latency of both ON and OFF responses in a similar manner. The latency of N143 during OFF response was not affected by ethanol but its amplitude was reduced. Our study demonstrated that the activation of the visual system during the ON response to a 500 ms visual stimulus is qualitatively different from that during the OFF response. Ethanol interfered with processing of the stimulus duration at the level of the visual cortex and reduced the activation of cortical regions.

  17. Myoelectric stimulation on peroneal muscles resists simulated ankle sprain motion.

    PubMed

    Fong, Daniel Tik-Pui; Chu, Vikki Wing-Shan; Chan, Kai-Ming

    2012-07-26

    The inadequate reaction time of the peroneal muscles in response to an incorrect foot contact event has been proposed as one of the etiological factors contributing to ankle joint inversion injury. Thus, the current study aimed to investigate the efficacy of a myoelectric stimulation applied to the peroneal muscles in the prevention of a simulated ankle inversion trauma. Ten healthy male subjects performed simulated inversion and supination tests on a pair of mechanical sprain simulators. An electrical signal was delivered to the peroneal muscles of the subjects through a pair of electrode pads. The start of the stimulus was synchronized with the drop of the sprain simulator's platform. In order to determine the maximum delay time which the stimulus could still resist the simulated ankle sprain motion, different delay time were test (0, 5, 10, and 15ms). Together with the control trial (no stimulus), there were 5 testing conditions for both simulated inversion and supination test. The effect was quantified by the drop in maximum ankle tilting angle and angular velocity, as determined by a motion analysis system with a standard laboratory procedure. Results showed that the myoelectric stimulation was effective in all conditions except the one with myoelectric stimulus delayed for 15ms in simulated supination test. It is concluded that myoelectric stimulation on peroneal muscles could resist an ankle spraining motion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Audiovisual Temporal Processing and Synchrony Perception in the Rat.

    PubMed

    Schormans, Ashley L; Scott, Kaela E; Vo, Albert M Q; Tyker, Anna; Typlt, Marei; Stolzberg, Daniel; Allman, Brian L

    2016-01-01

    Extensive research on humans has improved our understanding of how the brain integrates information from our different senses, and has begun to uncover the brain regions and large-scale neural activity that contributes to an observer's ability to perceive the relative timing of auditory and visual stimuli. In the present study, we developed the first behavioral tasks to assess the perception of audiovisual temporal synchrony in rats. Modeled after the parameters used in human studies, separate groups of rats were trained to perform: (1) a simultaneity judgment task in which they reported whether audiovisual stimuli at various stimulus onset asynchronies (SOAs) were presented simultaneously or not; and (2) a temporal order judgment task in which they reported whether they perceived the auditory or visual stimulus to have been presented first. Furthermore, using in vivo electrophysiological recordings in the lateral extrastriate visual (V2L) cortex of anesthetized rats, we performed the first investigation of how neurons in the rat multisensory cortex integrate audiovisual stimuli presented at different SOAs. As predicted, rats ( n = 7) trained to perform the simultaneity judgment task could accurately (~80%) identify synchronous vs. asynchronous (200 ms SOA) trials. Moreover, the rats judged trials at 10 ms SOA to be synchronous, whereas the majority (~70%) of trials at 100 ms SOA were perceived to be asynchronous. During the temporal order judgment task, rats ( n = 7) perceived the synchronous audiovisual stimuli to be "visual first" for ~52% of the trials, and calculation of the smallest timing interval between the auditory and visual stimuli that could be detected in each rat (i.e., the just noticeable difference (JND)) ranged from 77 ms to 122 ms. Neurons in the rat V2L cortex were sensitive to the timing of audiovisual stimuli, such that spiking activity was greatest during trials when the visual stimulus preceded the auditory by 20-40 ms. Ultimately, given that our behavioral and electrophysiological results were consistent with studies conducted on human participants and previous recordings made in multisensory brain regions of different species, we suggest that the rat represents an effective model for studying audiovisual temporal synchrony at both the neuronal and perceptual level.

  19. Audiovisual Temporal Processing and Synchrony Perception in the Rat

    PubMed Central

    Schormans, Ashley L.; Scott, Kaela E.; Vo, Albert M. Q.; Tyker, Anna; Typlt, Marei; Stolzberg, Daniel; Allman, Brian L.

    2017-01-01

    Extensive research on humans has improved our understanding of how the brain integrates information from our different senses, and has begun to uncover the brain regions and large-scale neural activity that contributes to an observer’s ability to perceive the relative timing of auditory and visual stimuli. In the present study, we developed the first behavioral tasks to assess the perception of audiovisual temporal synchrony in rats. Modeled after the parameters used in human studies, separate groups of rats were trained to perform: (1) a simultaneity judgment task in which they reported whether audiovisual stimuli at various stimulus onset asynchronies (SOAs) were presented simultaneously or not; and (2) a temporal order judgment task in which they reported whether they perceived the auditory or visual stimulus to have been presented first. Furthermore, using in vivo electrophysiological recordings in the lateral extrastriate visual (V2L) cortex of anesthetized rats, we performed the first investigation of how neurons in the rat multisensory cortex integrate audiovisual stimuli presented at different SOAs. As predicted, rats (n = 7) trained to perform the simultaneity judgment task could accurately (~80%) identify synchronous vs. asynchronous (200 ms SOA) trials. Moreover, the rats judged trials at 10 ms SOA to be synchronous, whereas the majority (~70%) of trials at 100 ms SOA were perceived to be asynchronous. During the temporal order judgment task, rats (n = 7) perceived the synchronous audiovisual stimuli to be “visual first” for ~52% of the trials, and calculation of the smallest timing interval between the auditory and visual stimuli that could be detected in each rat (i.e., the just noticeable difference (JND)) ranged from 77 ms to 122 ms. Neurons in the rat V2L cortex were sensitive to the timing of audiovisual stimuli, such that spiking activity was greatest during trials when the visual stimulus preceded the auditory by 20–40 ms. Ultimately, given that our behavioral and electrophysiological results were consistent with studies conducted on human participants and previous recordings made in multisensory brain regions of different species, we suggest that the rat represents an effective model for studying audiovisual temporal synchrony at both the neuronal and perceptual level. PMID:28119580

  20. Switch Costs Occur at Lemma Stage When Bilinguals Name Digits: Evidence from Language-Switching and Event-Related Potentials.

    PubMed

    Chang, Song; Xie, Jiushu; Li, Li; Wang, Ruiming; Liu, Ming

    2016-01-01

    Switch costs are generally found in language switching tasks. However, the locus where switch costs occur during bilingual language production remains unclear. Several studies that used a cued language-switching paradigm have attempted to investigate this question in bilingual language production, but researchers have not reached a consensus. Moreover, we are interested in where switch costs occur when language selection occurs after lemma activation. Previous studies have not investigated this question because most previous studies presented language cues before or along with the stimuli. Therefore, we used a modified cued language-switching paradigm with a combined event-related potentials (ERPs) technique to explore the locus of switch costs during bilingual language production. The cue and stimulus were separated and presented in two different presentation sequences in which Indonesian-Chinese bilingual speakers were instructed to name digits in their L1 or L2 according to the color of the cue. The ERPs related to the cue and stimulus for two presentation sequences were measured. In the stimulus-cue sequence, the analysis that was time-locked to cues revealed a reversed switch cost as early as 220 ms after the cue onset; furthermore, a switch cost was shown in L1 with a late stage post-cue onset. The results suggested that when language selection occurred after lemma activation, the switch costs mainly occurred at the lemma selection stage. In the cue-stimulus sequence, the analysis that was time-locked to cues did not reveal significant main effects of switching, whereas the analysis that was time-locked to digits yielded a switch cost, again indicating that switch costs mainly occurred at the lemma selection stage rather than at the language task schema competition stage. Overall, our results indicated that when bilinguals spoke digits aloud in the language switching task, switch costs mainly occurred at the lemma selection stage.

  1. From bird to sparrow: Learning-induced modulations in fine-grained semantic discrimination.

    PubMed

    De Meo, Rosanna; Bourquin, Nathalie M-P; Knebel, Jean-François; Murray, Micah M; Clarke, Stephanie

    2015-09-01

    Recognition of environmental sounds is believed to proceed through discrimination steps from broad to more narrow categories. Very little is known about the neural processes that underlie fine-grained discrimination within narrow categories or about their plasticity in relation to newly acquired expertise. We investigated how the cortical representation of birdsongs is modulated by brief training to recognize individual species. During a 60-minute session, participants learned to recognize a set of birdsongs; they improved significantly their performance for trained (T) but not control species (C), which were counterbalanced across participants. Auditory evoked potentials (AEPs) were recorded during pre- and post-training sessions. Pre vs. post changes in AEPs were significantly different between T and C i) at 206-232ms post stimulus onset within a cluster on the anterior part of the left superior temporal gyrus; ii) at 246-291ms in the left middle frontal gyrus; and iii) 512-545ms in the left middle temporal gyrus as well as bilaterally in the cingulate cortex. All effects were driven by weaker activity for T than C species. Thus, expertise in discriminating T species modulated early stages of semantic processing, during and immediately after the time window that sustains the discrimination between human vs. animal vocalizations. Moreover, the training-induced plasticity is reflected by the sharpening of a left lateralized semantic network, including the anterior part of the temporal convexity and the frontal cortex. Training to identify birdsongs influenced, however, also the processing of C species, but at a much later stage. Correct discrimination of untrained sounds seems to require an additional step which results from lower-level features analysis such as apperception. We therefore suggest that the access to objects within an auditory semantic category is different and depends on subject's level of expertise. More specifically, correct intra-categorical auditory discrimination for untrained items follows the temporal hierarchy and transpires in a late stage of semantic processing. On the other hand, correct categorization of individually trained stimuli occurs earlier, during a period contemporaneous with human vs. animal vocalization discrimination, and involves a parallel semantic pathway requiring expertise. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The Personal Anthology: A Stimulus for Exploratory Reading.

    ERIC Educational Resources Information Center

    Sullivan, Anne McCrary

    1988-01-01

    Explains the use of the personal anthology to stimulate wide reading and hold students accountable for what they read. Identifies strategies for and results of using the personal anthology in English instruction. (MS)

  3. Comparing the temporal dynamics of thematic and taxonomic processing using event-related potentials

    PubMed Central

    Savic, Olivera; Savic, Andrej M.; Kovic, Vanja

    2017-01-01

    We report the results of a study comparing the temporal dynamics of thematic and taxonomic knowledge activation in a picture-word priming paradigm using event-related potentials. Although we found no behavioral differences between thematic and taxonomic processing, ERP data revealed distinct patterns of N400 and P600 amplitude modulation for thematic and taxonomic priming. Thematically related target stimuli elicited less negativity than taxonomic targets between 280–460 ms after stimulus onset, suggesting easier semantic processing of thematic than taxonomic relationships. Moreover, P600 mean amplitude was significantly increased for taxonomic targets between 520–600 ms, consistent with a greater need for stimulus reevaluation in that condition. These results offer novel evidence in favor of a dissociation between thematic and taxonomic thinking in the early phases of conceptual evaluation. PMID:29236767

  4. Network rhythms influence the relationship between spike-triggered local field potential and functional connectivity

    PubMed Central

    Maunsell, John H.R.

    2012-01-01

    Characterizing the functional connectivity between neurons is key for understanding brain function. We recorded spikes and local field potentials (LFP) from multi-electrode arrays implanted in monkey visual cortex to test the hypotheses that spikes generated outward traveling LFP waves and the strength of functional connectivity depended on stimulus contrast, as described recently. These hypotheses were proposed based on the observation that the latency of the peak negativity of the spike-triggered LFP average (STA) increased with distance between the spike and LFP electrodes, and the magnitude of the STA negativity and the distance over which it was observed decreased with increasing stimulus contrast. Detailed analysis of the shape of the STA, however, revealed contributions from two distinct sources – a transient negativity in the LFP locked to the spike (∼0 ms) that attenuated rapidly with distance, and a low frequency rhythm with peak negativity ∼25 ms after the spike that attenuated slowly with distance. The overall negative peak of the LFP, which combined both these components, shifted from ∼0 to ∼25 ms going from electrodes near the spike to electrodes far from the spike, giving an impression of a traveling wave, although the shift was fully explained by changing contributions from the two fixed components. The low frequency rhythm was attenuated during stimulus presentations, decreasing the overall magnitude of the STA. These results highlight the importance of accounting for the network activity while using STAs to determine functional connectivity. PMID:21880928

  5. The ventral tegmental area modulates intracortical microstimulation (ICMS)-evoked M1 activity in a time-dependent manner.

    PubMed

    Kunori, Nobuo; Kajiwara, Riichi; Takashima, Ichiro

    2016-03-11

    Intracortical microstimulation (ICMS)-evoked neural activity combined with ventral tegmental area (VTA) stimulation was studied in rat primary motor cortex (M1). We used voltage-sensitive dye (VSD) imaging to analyze the spatiotemporal dynamics of M1 activity following VTA-M1 paired stimulation. VTA stimulation was preceded by M1 ICMS at inter-stimulus intervals (ISIs) of 15-350ms. VSD imaging showed an excitatory-inhibitory sequence of neural activity after composing VTA stimulus- and ICMS-induced M1 neural activity. To evaluate the net ICMS M1 response, the optical response to unpaired VTA stimulation was subtracted from the VTA-M1 paired response. This revealed that the net ICMS-evoked M1 neural activity was inhibited when the ISI was 30-50ms, but highly facilitated when the ISI was 100-350ms. These results suggest that VTA modulates M1 excitability in the order of tens to hundreds of milliseconds and might directly affect the motor command generation process in the M1. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. An Electrophysiological Signature of Unconscious Recognition Memory

    PubMed Central

    Voss, Joel L.; Paller, Ken A.

    2009-01-01

    Contradicting the common assumption that accurate recognition reflects explicit-memory processing, we describe evidence for recognition lacking two hallmark explicit-memory features: awareness of memory retrieval and facilitation by attentive encoding. Kaleidoscope images were encoded in conjunction with an attentional diversion and subsequently recognized more accurately than those encoded without diversion. Confidence in recognition was superior following attentive encoding, though recognition was remarkably accurate when people claimed to be unaware of memory retrieval. This “implicit recognition” was associated with frontal-occipital negative brain potentials at 200-400 ms post-stimulus-onset, which were spatially and temporally distinct from positive brain potentials corresponding to explicit recollection and familiarity. This dissociation between behavioral and electrophysiological characteristics of “implicit recognition” versus explicit recognition indicates that a neurocognitive mechanism with properties similar to those that produce implicit memory can be operative in standard recognition tests. People can accurately discriminate repeat stimuli from new stimuli without necessarily knowing it. PMID:19198606

  7. Neural Dynamics Underlying Target Detection in the Human Brain

    PubMed Central

    Bansal, Arjun K.; Madhavan, Radhika; Agam, Yigal; Golby, Alexandra; Madsen, Joseph R.

    2014-01-01

    Sensory signals must be interpreted in the context of goals and tasks. To detect a target in an image, the brain compares input signals and goals to elicit the correct behavior. We examined how target detection modulates visual recognition signals by recording intracranial field potential responses from 776 electrodes in 10 epileptic human subjects. We observed reliable differences in the physiological responses to stimuli when a cued target was present versus absent. Goal-related modulation was particularly strong in the inferior temporal and fusiform gyri, two areas important for object recognition. Target modulation started after 250 ms post stimulus, considerably after the onset of visual recognition signals. While broadband signals exhibited increased or decreased power, gamma frequency power showed predominantly increases during target presence. These observations support models where task goals interact with sensory inputs via top-down signals that influence the highest echelons of visual processing after the onset of selective responses. PMID:24553944

  8. Double dissociation of the anterior and posterior dorsomedial caudate-putamen in the acquisition and expression of associative learning with the nicotine stimulus.

    PubMed

    Charntikov, Sergios; Pittenger, Steven T; Swalve, Natashia; Li, Ming; Bevins, Rick A

    2017-07-15

    Tobacco use is the leading cause of preventable deaths worldwide. This habit is not only debilitating to individual users but also to those around them (second-hand smoking). Nicotine is the main addictive component of tobacco products and is a moderate stimulant and a mild reinforcer. Importantly, besides its unconditional effects, nicotine also has conditioned stimulus effects that may contribute to the tenacity of the smoking habit. Because the neurobiological substrates underlying these processes are virtually unexplored, the present study investigated the functional involvement of the dorsomedial caudate putamen (dmCPu) in learning processes with nicotine as an interoceptive stimulus. Rats were trained using the discriminated goal-tracking task where nicotine injections (0.4 mg/kg; SC), on some days, were paired with intermittent (36 per session) sucrose deliveries; sucrose was not available on interspersed saline days. Pre-training excitotoxic or post-training transient lesions of anterior or posterior dmCPu were used to elucidate the role of these areas in acquisition or expression of associative learning with nicotine stimulus. Pre-training lesion of p-dmCPu inhibited acquisition while post-training lesions of p-dmCPu attenuated the expression of associative learning with the nicotine stimulus. On the other hand, post-training lesions of a-dmCPu evoked nicotine-like responding following saline treatment indicating the role of this area in disinhibition of learned motor behaviors. These results, for the first time, show functionally distinct involvement of a- and p-dmCPu in various stages of associative learning using nicotine stimulus and provide an initial account of neural plasticity underlying these learning processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Does temporal contiguity moderate contingency learning in a speeded performance task?

    PubMed

    Schmidt, James R; De Houwer, Jan

    2012-01-01

    In four experiments, we varied the time between the onset of distracting nonwords and target colour words in a word-word version of the colour-word contingency learning paradigm. Contingencies were created by pairing a distractor nonword more often with one target colour word than with other colour words. A contingency effect corresponds to faster responses to the target colour word on high-contingency trials (i.e., distractor nonword followed by the target colour word with which it appears most often) than on low-contingency trials (i.e., distractor nonword followed by a target colour word with which it appears only occasionally). Roughly equivalent-sized contingency effects were found at stimulus-onset asynchronies (SOAs) of 50, 250, and 450 ms in Experiment 1, and 50, 500, and 1,000 ms in Experiment 2. In Experiment 3, a contingency effect was observed at SOAs of -50, -200, and -350 ms. In Experiment 4, interstimulus interval (ISI) was varied along with SOA, and learning was equivalent for 200-, 700-, and 1,200-ms SOAs. Together, these experiments suggest that the distracting stimulus does not need to be presented in close temporal contiguity with the response to induce learning. Relations to past research on causal judgement and implications for further contingency learning research are discussed.

  10. Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains.

    PubMed

    Nourski, Kirill V; Abbas, Paul J; Miller, Charles A; Robinson, Barbara K; Jeng, Fuh-Cherng

    2005-04-01

    This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. Subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded from the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and, for a particular electric stimulus level, at high acoustic noise levels.

  11. Implicit and explicit categorization of natural scenes.

    PubMed

    Codispoti, Maurizio; Ferrari, Vera; De Cesarei, Andrea; Cardinale, Rossella

    2006-01-01

    Event-related potential (ERP) studies have consistently found that emotionally arousing (pleasant and unpleasant) pictures elicit a larger late positive potential (LPP) than neutral pictures in a window from 400 to 800 ms after picture onset. In addition, an early ERP component has been reported to vary with emotional arousal in a window from about 150 to 300 ms with affective, compared to neutral stimuli, prompting significantly less positivity over occipito-temporal sites. Similar early and late ERP components have been found in explicit categorization tasks, suggesting that selective attention to target features results in similar cortical changes. Several studies have shown that the affective modulation of the LPP persisted even when the same pictures are repeated several times, when they are presented as distractors, or when participants are engaged in a competing task. These results indicate that categorization of affective stimuli is an obligatory process. On the other hand, perceptual factors (e.g., stimulus size) seem to affect the early ERP component but not the affective modulation of the LPP. Although early and late ERP components vary with stimulus relevance, given that they are differentially affected by stimulus and task manipulations, they appear to index different facets of picture processing.

  12. The time-course of the cross-modal semantic modulation of visual picture processing by naturalistic sounds and spoken words.

    PubMed

    Chen, Yi-Chuan; Spence, Charles

    2013-01-01

    The time-course of cross-modal semantic interactions between pictures and either naturalistic sounds or spoken words was compared. Participants performed a speeded picture categorization task while hearing a task-irrelevant auditory stimulus presented at various stimulus onset asynchronies (SOAs) with respect to the visual picture. Both naturalistic sounds and spoken words gave rise to cross-modal semantic congruency effects (i.e., facilitation by semantically congruent sounds and inhibition by semantically incongruent sounds, as compared to a baseline noise condition) when the onset of the sound led that of the picture by 240 ms or more. Both naturalistic sounds and spoken words also gave rise to inhibition irrespective of their semantic congruency when presented within 106 ms of the onset of the picture. The peak of this cross-modal inhibitory effect occurred earlier for spoken words than for naturalistic sounds. These results therefore demonstrate that the semantic priming of visual picture categorization by auditory stimuli only occurs when the onset of the sound precedes that of the visual stimulus. The different time-courses observed for naturalistic sounds and spoken words likely reflect the different processing pathways to access the relevant semantic representations.

  13. Changes in stimulus and response AC/A ratio with vision therapy in Convergence Insufficiency.

    PubMed

    Singh, Neeraj Kumar; Mani, Revathy; Hussaindeen, Jameel Rizwana

    To evaluate the changes in the stimulus and response Accommodative Convergence to Accommodation (AC/A) ratio following vision therapy (VT) in Convergence Insufficiency (CI). Stimulus and response AC/A ratio were measured on twenty five CI participants, pre and post 10 sessions of VT. Stimulus AC/A ratio was measured using the gradient method and response AC/A ratio was calculated using modified Thorington technique with accommodative responses measured using WAM-5500 open-field autorefractor. The gradient stimulus and response AC/A cross-link ratios were compared with thirty age matched controls. Mean age of the CI and control participants were 23.3±5.2 years and 22.7±4.2 years, respectively. The mean stimulus and response AC/A ratio for CI pre therapy was 2.2±0.72 and 6.3±2.0 PD/D that changed to 4.2±0.9 and 8.28±3.31 PD/D respectively post vision therapy and these changes were statistically significant (paired t-test; p<0.001). The mean stimulus and response AC/A ratio for controls was 3.1±0.81 and 8.95±2.5 PD/D respectively. Stimulus and response AC/A ratio increased following VT, accompanied by clinically significant changes in vergence and accommodation parameters in subjects with convergence insufficiency. This represents the plasticity of the AC/A crosslink ratios that could be achieved with vision therapy in CI. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  14. Disruption of medial septum and diagonal bands of Broca cholinergic projections to the ventral hippocampus disrupt auditory fear memory.

    PubMed

    Staib, Jennifer M; Della Valle, Rebecca; Knox, Dayan K

    2018-07-01

    In classical fear conditioning, a neutral conditioned stimulus (CS) is paired with an aversive unconditioned stimulus (US), which leads to a fear memory. If the CS is repeatedly presented without the US after fear conditioning, the formation of an extinction memory occurs, which inhibits fear memory expression. A previous study has demonstrated that selective cholinergic lesions in the medial septum and vertical limb of the diagonal bands of Broca (MS/vDBB) prior to fear and extinction learning disrupt contextual fear memory discrimination and acquisition of extinction memory. MS/vDBB cholinergic neurons project to a number of substrates that are critical for fear and extinction memory. However, it is currently unknown which of these efferent projections are critical for contextual fear memory discrimination and extinction memory. To address this, we induced cholinergic lesions in efferent targets of MS/vDBB cholinergic neurons. These included the dorsal hippocampus (dHipp), ventral hippocampus (vHipp), medial prefrontal cortex (mPFC), and in the mPFC and dHipp combined. None of these lesion groups exhibited deficits in contextual fear memory discrimination or extinction memory. However, vHipp cholinergic lesions disrupted auditory fear memory. Because MS/vDBB cholinergic neurons are the sole source of acetylcholine in the vHipp, these results suggest that MS/vDBB cholinergic input to the vHipp is critical for auditory fear memory. Taken together with previous findings, the results of this study suggest that MS/vDBB cholinergic neurons are critical for fear and extinction memory, though further research is needed to elucidate the role of MS/vDBB cholinergic neurons in these types of emotional memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. The influence of expertise and of physical complexity on visual short-term memory consolidation.

    PubMed

    Sun, Huiming; Zimmer, Hubert D; Fu, Xiaolan

    2011-04-01

    We investigated whether the expertise of a perceiver and the physical complexity of a stimulus influence consolidation of visual short-term memory (VSTM) in a S1-S2 (Stimulus 1-Stimulus 2) change detection task. Consolidation is assumed to make transient perceptual representations in VSTM more durable, and it is investigated by postexposure of a mask shortly after offset of the perceived stimulus (S1; 17 to 483 ms). We presented colours, Chinese characters, pseudocharacters, and novel symbols to novices (Germans) or experts of Chinese language (Chinese readers). Physical complexity was manipulated by the number of strokes. Unfamiliar material was remembered worse than familiar material (Experiments 1, 2, and 3). For novices the absolute VSTM performance was better for physically simple than for complex material, whereas for experts the complexity did not matter-Chinese readers memorized Chinese characters (Experiment 3). Articulatory suppression did not change these effects (Experiment 2). We always observed a strong effect of SOA, but this effect was influenced neither by physical complexity nor by expertise; only the length of the interstimulus interval between S1 and the mask was relevant. This was observed even with short stimulus onset asynchrony (SOA) of 100 ms (Experiment 2) and in comparing colours and characters (Experiment 5). However, masks impaired memory if they were presented at the locations of the to-be-memorized items, but not beside them-that is, interference was location-based (Experiment 6). We explain the effect of SOA by the assumption that it takes time to stop encoding of information presented at item locations with the offset of S1. The increasing resistance against interference by irrelevant material appears as consolidation of S1.

  16. Resisting false recognition: An ERP study of lure discrimination.

    PubMed

    Morcom, Alexa M

    2015-10-22

    There is keen interest in what enables rememberers to differentiate true from false memories and which strategies are likely to be the most effective. This study measured electrical brain activity while healthy young adults performed a mnemonic discrimination task, deciding whether color pictures had been studied, were similar to studied pictures (lures), or were new. Between 500 and 800 ms post-stimulus, event-related potentials (ERPs) for correctly recognized studied pictures and falsely recognized lures compared to those for correctly rejected novel items had a left centroparietal scalp distribution. This was typical of the parietal old/new effect associated with recollection, and in line with previous evidence that similar lures may elicit false or phantom recollection as opposed to just familiarity. There was no evidence of a parietal effect for correctly rejected lures as would be expected if recall-to-reject was used. The ERP old/new effects for lures also varied with individual differences in performance. Parietal effects for falsely recognized lures were larger in better performers, who successfully rejected a greater number of lures as "similar". The better performers also showed more pronounced right frontocentral old/new effects between 800 and 1100 ms for correctly rejected and falsely recognized similar lures. The enhancement of false recollection in better performers implies false recognition of lures occurred only when more specific information was recovered about the study episodic. Together, the findings suggest reliance on recollection to decide that items were studied, supported by post-retrieval processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Marfan syndrome patient experiences as ascertained through postings on social media sites.

    PubMed

    Kelleher, Erin; Giampietro, Philip F; Moreno, Megan A

    2015-11-01

    Marfan syndrome (MS) is a connective tissue disorder that affects thousands of adolescents [Population Reference Bureau, 2013]. Some adolescent patients with MS may use social media to express their experiences and emotions, but little is known about what patients choose to share online. To investigate social media content related to Marfan syndrome we used search terms "Marfan syndrome" and "Marfans" on six different social media sites. The top five recent and popular posts for each site were collected and coded weekly for five weeks. Posts were excluded if they were reshared content or not in English. A codebook was developed using an iterative process to categorize posts and comments. Out of 300 posts collected 147 posts (49.0%) were included for evaluation. Categories of displayed content included personal pictures, memes and pictures featuring symptoms of MS (41.5%) and personal MS experiences (27.1% of posts). One quarter of the posts specifically mentioned a positive experience or how thankful the profile owner was for their life. A unique category of posts (13.7%) referenced Austin Carlile, a celebrity singer with MS, as a role model. Physicians and healthcare providers may consider using social media to understand common MS concerns and to place future health education materials. © 2015 Wiley Periodicals, Inc.

  18. Afferent thermosensory function in relapsing-remitting multiple sclerosis following exercise-induced increases in body temperature.

    PubMed

    Filingeri, Davide; Chaseling, Georgia; Hoang, Phu; Barnett, Michael; Davis, Scott L; Jay, Ollie

    2017-08-01

    What is the central question of this study? Between 60 and 80% of multiple sclerosis (MS) patients experience transient worsening of symptoms with increased body temperature (heat sensitivity). As sensory abnormalities are common in MS, we asked whether afferent thermosensory function is altered in MS following exercise-induced increases in body temperature. What is the main finding and its importance? Increases in body temperature of as little as ∼0.4°C were sufficient to decrease cold, but not warm, skin thermosensitivity (∼10%) in MS, across a wider temperature range than in age-matched healthy individuals. These findings provide new evidence on the impact of heat sensitivity on afferent function in MS, which could be useful for clinical evaluation of this neurological disease. In multiple sclerosis (MS), increases in body temperature result in transient worsening of clinical symptoms (heat sensitivity or Uhthoff's phenomenon). Although the impact of heat sensitivity on efferent physiological function has been investigated, the effects of heat stress on afferent sensory function in MS are unknown. Hence, we quantified afferent thermosensory function in MS following exercise-induced increases in body temperature with a new quantitative sensory test. Eight relapsing-remitting MS patients (three men and five women; 51.4 ± 9.1 years of age; Expanded Disability Status Scale score 2.8 ± 1.1) and eight age-matched control (CTR) subjects (five men and three women; 47.4 ± 9.1 years of age) rated the perceived magnitude of two cold (26 and 22°C) and two warm stimuli (34 and 38°C) applied to the dorsum of the hand before and after 30 min cycling in the heat (30°C air; 30% relative humidity). Exercise produced similar increases in mean body temperature in MS [+0.39°C (95% CI: +0.21, +0.53) P = 0.001] and CTR subjects [+0.41°C (95% CI: +0.25, +0.58) P = 0.001]. These changes were sufficient to decrease thermosensitivity significantly to all cold [26°C stimulus, -9.1% (95% CI: -17.0, -1.5), P = 0.006; 22°C stimulus, -10.6% (95% CI: -17.3, -3.7), P = 0.027], but not warm, stimuli in MS. Contrariwise, CTR subjects showed sensitivity reductions to colder stimuli only [22°C stimulus, -9.7% (95% CI: -16.4, -3.1), P = 0.011]. The observation that reductions in thermal sensitivity in MS were confined to the myelinated cold-sensitive pathway and extended across a wider (including milder and colder) temperature range than what is observed in CTR subjects provides new evidence on the impact of rising body temperature on afferent neural function in MS. Also, our findings support the use of our new approach to investigate afferent sensory function in MS during heat stress. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  19. Intracellular responses of onset chopper neurons in the ventral cochlear nucleus to tones: evidence for dual-component processing.

    PubMed

    Paolini, A G; Clark, G M

    1999-05-01

    Intracellular responses of onset chopper neurons in the ventral cochlear nucleus to tones: evidence for dual-component processing. The ventral cochlear nucleus (VCN) contains a heterogeneous collection of cell types reflecting the multiple processing tasks undertaken by this nucleus. This in vivo study in the rat used intracellular recordings and dye filling to examine membrane potential changes and firing characteristics of onset chopper (OC) neurons to acoustic stimulation (50 ms pure tones, 5 ms r/f time). Stable impalements were made from 15 OC neurons, 7 identified as multipolar cells. Neurons responded to characteristic frequency (CF) tones with sustained depolarization below spike threshold. With increasing stimulus intensity, the depolarization during the initial 10 ms of the response became peaked, and with further increases in intensity the peak became narrower. Onset spikes were generated during this initial depolarization. Tones presented below CF resulted in a broadening of this initial depolarizing component with high stimulus intensities required to initiate onset spikes. This initial component was followed by a sustained depolarizing component lasting until stimulus cessation. The amplitude of the sustained depolarizing component was greatest when frequencies were presented at high intensities below CF resulting in increased action potential firing during this period when compared with comparable high intensities at CF. During the presentation of tones at or above the high-frequency edge of a cell's response area, hyperpolarization was evident during the sustained component. The presence of hyperpolarization and the differences seen in the level of sustained depolarization during CF and off CF tones suggests that changes in membrane responsiveness between the initial and sustained components may be attributed to polysynaptic inhibitory mechanisms. The dual-component processing resulting from convergent auditory nerve excitation and polysynaptic inhibition enables OC neurons to respond in a unique fashion to intensity and frequency features contained within an acoustic stimulus.

  20. Physiologic and biochemical measurements and response to noxious stimulation at various concentrations of MS-222 in koi (Cyprinus carpio).

    PubMed

    Stockman, Jonathan; Weber, Ernest Scott P; Kass, Philip H; Pascoe, Peter J; Paul-Murphy, Joanne

    2013-01-01

    To evaluate the physiological effect and response to noxious stimulation at five concentrations of MS-222 in koi (Cyprinus carpio). Prospective experimental study. Twenty-one healthy adult unknown sex koi fish weighing mean 450±SD 120 g. Each fish was exposed to five different concentrations of MS-222 (50, 70, 110, 150 and 190 mg L(-1) ) in a random sequence during the same anaesthetic event. For each concentration of MS-222, vital functions such as heart rate (HR) (via Doppler) and opercular rate (OpR) were recorded after a standardized induction period. Response to two noxious stimuli in the form of haemostat clamp pressure applied on the tail and the lip was evaluated, and blood was drawn to measure biochemical and blood gas values. Decrease in response to noxious stimulation with an increase of MS-222 concentration both for the lip (p=0.0027) and the tail (p<0.0001) stimulus was observed. Biochemical values were unaffected by the concentration of MS-222 with the exception of lactate concentration which was weakly correlated with the duration of anaesthesia (r=0.31, p<0.001) and the number of times the fish was clamped or bled prior to sampling (r=0.23, p<0.001). Opercular rate decreased with the increase in anaesthetic concentration, and HR was not affected. Our results indicated a decrease in response to stimulus and a decrease in OpR that were associated with increased concentrations of MS-222. This may assist in establishing anaesthetic protocols using MS-222 in fish and supports the use of supramaximal pressure stimuli to teleost fish under variable MS-222 concentrations as a model for future studies. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  1. Compound Stimulus Extinction Reduces Spontaneous Recovery in Humans

    ERIC Educational Resources Information Center

    Coelho, Cesar A. O.; Dunsmoor, Joseph E.; Phelps, Elizabeth A.

    2015-01-01

    Fear-related behaviors are prone to relapse following extinction. We tested in humans a compound extinction design ("deepened extinction") shown in animal studies to reduce post-extinction fear recovery. Adult subjects underwent fear conditioning to a visual and an auditory conditioned stimulus (CSA and CSB, respectively) separately…

  2. Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging.

    PubMed Central

    Blamire, A M; Ogawa, S; Ugurbil, K; Rothman, D; McCarthy, G; Ellermann, J M; Hyder, F; Rattner, Z; Shulman, R G

    1992-01-01

    We report the use of high-speed magnetic resonance imaging to follow the changes in image intensity in the human visual cortex during stimulation by a flashing checkerboard stimulus. Measurements were made in a 2.1-T, 1-m-diameter magnet, part of a Bruker Biospec spectrometer that we had programmed to do echo-planar imaging. A 15-cm-diameter surface coil was used to transmit and receive signals. Images were acquired during periods of stimulation from 2 s to 180 s. Images were acquired in 65.5 ms in a 10-mm slice with in-plane voxel size of 6 x 3 mm. Repetition time (TR) was generally 2 s, although for the long flashing periods, TR = 8 s was used. Voxels were located onto an inversion recovery image taken with 2 x 2 mm in-plane resolution. Image intensity increased after onset of the stimulus. The mean change in signal relative to the prestimulation level (delta S/S) was 9.7% (SD = 2.8%, n = 20) with an echo time of 70 ms. Irrespective of the period of stimulation, the increase in magnetic resonance signal intensity was delayed relative to the stimulus. The mean delay measured from the start of stimulation for each protocol was as follows: 2-s stimulation, delay = 3.5 s (SD = 0.5 s, n = 10) (the delay exceeds stimulus duration); 20- to 24-s stimulation, delay = 5 s (SD = 2 s, n = 20). PMID:1438317

  3. Orienting attention in visual space by nociceptive stimuli: investigation with a temporal order judgment task based on the adaptive PSI method.

    PubMed

    Filbrich, Lieve; Alamia, Andrea; Burns, Soline; Legrain, Valéry

    2017-07-01

    Despite their high relevance for defending the integrity of the body, crossmodal links between nociception, the neural system specifically coding potentially painful information, and vision are still poorly studied, especially the effects of nociception on visual perception. This study investigated if, and in which time window, a nociceptive stimulus can attract attention to its location on the body, independently of voluntary control, to facilitate the processing of visual stimuli occurring in the same side of space as the limb on which the visual stimulus was applied. In a temporal order judgment task based on an adaptive procedure, participants judged which of two visual stimuli, one presented next to either hand in either side of space, had been perceived first. Each pair of visual stimuli was preceded (by 200, 400, or 600 ms) by a nociceptive stimulus applied either unilaterally on one single hand, or bilaterally, on both hands simultaneously. Results show that, as compared to the bilateral condition, participants' judgments were biased to the advantage of the visual stimuli that occurred in the same side of space as the hand on which a unilateral, nociceptive stimulus was applied. This effect was present in a time window ranging from 200 to 600 ms, but importantly, biases increased with decreasing time interval. These results suggest that nociceptive stimuli can affect the perceptual processing of spatially congruent visual inputs.

  4. Ground Reaction Forces and Gait Parameters during Motorized and Non-Motorized Treadmill Walking and Runing on the International Space Station Treadmill

    NASA Technical Reports Server (NTRS)

    Hagan, Ronald Donald; Norcross, Jason; DeWitt, John; Lee, Stuart M.; McCleary, Frank; Edwards, W. Brent

    2006-01-01

    Both motorized (T-M) and non-motorized (T-NM) treadmill locomotion are used on the International Space Station (ISS) as countermeasures to the deleterious effects of prolonged weightlessness. However, the ground reaction forces (GRF) and gait parameters of these exercise modes have not been examined. The purpose of this study was to determine if differences in GRF and gait parameters exist while walking (1.34 m/s) and running (3.13 m/s) on T-M and T-NM. Dissimilar GRF and gait parameters suggest that T-M and T-NM locomotion may elicit different physiologic effects. T-NM may result in a reduced stimulus to bone formation due to a lower LR, but an increased energy cost as a result of shorter, more frequent strides. Therefore, the usage of each mode should depend upon the desired training stimulus.

  5. Right-hemispheric dominance for processing extended non-linguistic frequency transitions.

    PubMed

    McKibbin, Katherine; Elias, Lorin J; Saucier, Deborah M; Engebregston, Delaine

    2003-11-01

    The left hemisphere is specialized for most linguistic tasks and the right hemisphere is specialized for many non-linguistic tasks, but the cause of these functional asymmetries is unknown. One of the stimulus factors that appears to influence these asymmetries is the rate at which stimuli change. In the present experiment, 41 participants completed the Fused Dichotic Words Test (FDWT) and a non-linguistic Frequency Transition Task (FTT) wherein the Frequency Transitions (FTs) were either rapid (40 ms) or relatively slow (200 ms). There was a right hemisphere advantage for slow FTs when the change was at the front of the stimulus, but no corresponding left hemisphere advantage for the rapid FTs. There was no relationship between either FTT and the left hemisphere advantage exhibited on the FDWT. This finding provides support for the position that the right hemisphere dominates tasks that require temporal processing over relatively long periods of time.

  6. Stopping mechanism for capsule endoscope using electrical stimulus.

    PubMed

    Woo, Sang Hyo; Kim, Tae Wan; Cho, Jin Ho

    2010-01-01

    An ingestible capsule, which has the ability to stop at certain locations in the small intestine, was designed and implemented to monitor intestinal diseases. The proposed capsule can contract the small intestine by using electrical stimuli; this contraction causes the capsule to stop when the maximum static frictional force (MSFF) is larger than the force of natural peristalsis. In vitro experiments were carried out to verify the feasibility of the capsule, and the results showed that the capsule was successfully stopped in the small intestine. Various electrodes and electrical stimulus parameters were determined on the basis of the MSFF. A moderate increment of the MSFF (12.7 +/- 4.6 gf at 5 V, 10 Hz, and 5 ms) and the maximum increment of the MSFF (56.5 +/- 9.77 gf at 20 V, 10 Hz, and 5 ms) were obtained, and it is sufficient force to stop the capsule.

  7. Event-related fields evoked by vocal response inhibition: a comparison of younger and older adults.

    PubMed

    Castro-Meneses, Leidy J; Johnson, Blake W; Sowman, Paul F

    2016-06-01

    The current study examined event-related fields (ERFs) evoked by vocal response inhibition in a stimulus-selective stop-signal task. We compared inhibition-related ERFs across a younger and an older group of adults. Behavioural results revealed that stop-signal reaction times (RTs), go-RTs, ignore-stop RTs and failed stop RTs were longer in the older, relative to the younger group by 38, 123, 149 and 116 ms, respectively. The amplitude of the ERF M2 peak (approximately 200 ms after the stop signal) evoked on successful stop trials was larger compared to that evoked on both failed stop and ignore-stop trials. The M4 peak (approximately 450 ms after stop signal) was of larger amplitude in both successful and failed stops compared to ignore-stop trials. In the older group, the M2, M3 and M4 peaks were smaller in amplitude and peaked later in time (by 24, 50 and 76 ms, respectively). We demonstrate that vocal response inhibition-related ERFs exhibit a similar temporal evolution to those previously described for manual response inhibition: an early peak at 200 ms (i.e. M2) that differentiates successful from failed stopping, and a later peak (i.e. M4) that is consistent with a neural marker of response checking and error processing. Across groups, our data support a more general decline of stimulus processing speed with age.

  8. Emotion Separation Is Completed Early and It Depends on Visual Field Presentation

    PubMed Central

    Liu, Lichan; Ioannides, Andreas A.

    2010-01-01

    It is now apparent that the visual system reacts to stimuli very fast, with many brain areas activated within 100 ms. It is, however, unclear how much detail is extracted about stimulus properties in the early stages of visual processing. Here, using magnetoencephalography we show that the visual system separates different facial expressions of emotion well within 100 ms after image onset, and that this separation is processed differently depending on where in the visual field the stimulus is presented. Seven right-handed males participated in a face affect recognition experiment in which they viewed happy, fearful and neutral faces. Blocks of images were shown either at the center or in one of the four quadrants of the visual field. For centrally presented faces, the emotions were separated fast, first in the right superior temporal sulcus (STS; 35–48 ms), followed by the right amygdala (57–64 ms) and medial pre-frontal cortex (83–96 ms). For faces presented in the periphery, the emotions were separated first in the ipsilateral amygdala and contralateral STS. We conclude that amygdala and STS likely play a different role in early visual processing, recruiting distinct neural networks for action: the amygdala alerts sub-cortical centers for appropriate autonomic system response for fight or flight decisions, while the STS facilitates more cognitive appraisal of situations and links appropriate cortical sites together. It is then likely that different problems may arise when either network fails to initiate or function properly. PMID:20339549

  9. Time-Resolved Influences of Functional DAT1 and COMT Variants on Visual Perception and Post-Processing

    PubMed Central

    Bender, Stephan; Rellum, Thomas; Freitag, Christine; Resch, Franz; Rietschel, Marcella; Treutlein, Jens; Jennen-Steinmetz, Christine; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred

    2012-01-01

    Background Dopamine plays an important role in orienting and the regulation of selective attention to relevant stimulus characteristics. Thus, we examined the influences of functional variants related to dopamine inactivation in the dopamine transporter (DAT1) and catechol-O-methyltransferase genes (COMT) on the time-course of visual processing in a contingent negative variation (CNV) task. Methods 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version). Early and late CNV as well as preceding visual evoked potential components were assessed. Results Significant additive main effects of DAT1 and COMT on the occipito-temporal early CNV were observed. In addition, there was a trend towards an interaction between the two polymorphisms. Source analysis showed early CNV generators in the ventral visual stream and in frontal regions. There was a strong negative correlation between occipito-temporal visual post-processing and the frontal early CNV component. The early CNV time interval 500–1000 ms after the visual cue was specifically affected while the preceding visual perception stages were not influenced. Conclusions Late visual potentials allow the genomic imaging of dopamine inactivation effects on visual post-processing. The same specific time-interval has been found to be affected by DAT1 and COMT during motor post-processing but not motor preparation. We propose the hypothesis that similar dopaminergic mechanisms modulate working memory encoding in both the visual and motor and perhaps other systems. PMID:22844499

  10. Time-resolved influences of functional DAT1 and COMT variants on visual perception and post-processing.

    PubMed

    Bender, Stephan; Rellum, Thomas; Freitag, Christine; Resch, Franz; Rietschel, Marcella; Treutlein, Jens; Jennen-Steinmetz, Christine; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred

    2012-01-01

    Dopamine plays an important role in orienting and the regulation of selective attention to relevant stimulus characteristics. Thus, we examined the influences of functional variants related to dopamine inactivation in the dopamine transporter (DAT1) and catechol-O-methyltransferase genes (COMT) on the time-course of visual processing in a contingent negative variation (CNV) task. 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version). Early and late CNV as well as preceding visual evoked potential components were assessed. Significant additive main effects of DAT1 and COMT on the occipito-temporal early CNV were observed. In addition, there was a trend towards an interaction between the two polymorphisms. Source analysis showed early CNV generators in the ventral visual stream and in frontal regions. There was a strong negative correlation between occipito-temporal visual post-processing and the frontal early CNV component. The early CNV time interval 500-1000 ms after the visual cue was specifically affected while the preceding visual perception stages were not influenced. Late visual potentials allow the genomic imaging of dopamine inactivation effects on visual post-processing. The same specific time-interval has been found to be affected by DAT1 and COMT during motor post-processing but not motor preparation. We propose the hypothesis that similar dopaminergic mechanisms modulate working memory encoding in both the visual and motor and perhaps other systems.

  11. Does an intraneural interface short-term implant for robotic hand control modulate sensorimotor cortical integration? An EEG-TMS co-registration study on a human amputee.

    PubMed

    Ferreri, F; Ponzo, D; Vollero, L; Guerra, A; Di Pino, G; Petrichella, S; Benvenuto, A; Tombini, M; Rossini, L; Denaro, L; Micera, S; Iannello, G; Guglielmelli, E; Denaro, V; Rossini, P M

    2014-01-01

    Following limb amputation, central and peripheral nervous system relays partially maintain their functions and can be exploited for interfacing prostheses. The aim of this study is to investigate, for the first time by means of an EEG-TMS co-registration study, whether and how direct bidirectional connection between brain and hand prosthesis impacts on sensorimotor cortical topography. Within an experimental protocol for robotic hand control, a 26 years-old, left-hand amputated male was selected to have implanted four intrafascicular electrodes (tf-LIFEs-4) in the median and ulnar nerves of the stump for 4 weeks. Before tf-LIFE-4s implant (T0) and after the training period, once electrodes have been removed (T1), experimental subject's cortico-cortical excitability, connectivity and plasticity were tested via a neuronavigated EEG-TMS experiment. The statistical analysis clearly demonstrated a significant modulation (with t-test p < 0.0001) of EEG activity between 30 and 100 ms post-stimulus for the stimulation of the right hemisphere. When studying individual latencies in that time range, a global amplitude modulation was found in most of the TMS-evoked potentials; particularly, the GEE analysis showed significant differences between T0 and T1 condition at 30 ms (p < 0.0404), 46 ms (p < 0.0001) and 60 ms (p < 0.007) latencies. Finally, also a clear local decrement in N46 amplitude over C4 was evident. No differences between conditions were observed for the stimulation of the left hemisphere. The results of this study confirm the hypothesis that bidirectional neural interface could redirect cortical areas -deprived of their original input/output functions- toward restorative neuroplasticity. This reorganization strongly involves bi-hemispheric networks and intracortical and transcortical modulation of GABAergic inhibition.

  12. Sandwich masking eliminates both visual awareness of faces and face-specific brain activity through a feedforward mechanism.

    PubMed

    Harris, Joseph A; Wu, Chien-Te; Woldorff, Marty G

    2011-06-07

    It is generally agreed that considerable amounts of low-level sensory processing of visual stimuli can occur without conscious awareness. On the other hand, the degree of higher level visual processing that occurs in the absence of awareness is as yet unclear. Here, event-related potential (ERP) measures of brain activity were recorded during a sandwich-masking paradigm, a commonly used approach for attenuating conscious awareness of visual stimulus content. In particular, the present study used a combination of ERP activation contrasts to track both early sensory-processing ERP components and face-specific N170 ERP activations, in trials with versus without awareness. The electrophysiological measures revealed that the sandwich masking abolished the early face-specific N170 neural response (peaking at ~170 ms post-stimulus), an effect that paralleled the abolition of awareness of face versus non-face image content. Furthermore, however, the masking appeared to render a strong attenuation of earlier feedforward visual sensory-processing signals. This early attenuation presumably resulted in insufficient information being fed into the higher level visual system pathways specific to object category processing, thus leading to unawareness of the visual object content. These results support a coupling of visual awareness and neural indices of face processing, while also demonstrating an early low-level mechanism of interference in sandwich masking.

  13. Quantifying Ca2+ release and inactivation of Ca2+ release in fast- and slow-twitch muscles.

    PubMed

    Barclay, C J

    2012-12-01

    The aims of this study were to quantify the Ca(2+) release underlying twitch contractions of mammalian fast- and slow-twitch muscle and to comprehensively describe the transient inactivation of Ca(2+) release following a stimulus. Experiments were performed using bundles of fibres from mouse extensor digitorum longus (EDL) and soleus muscles. Ca(2+) release was quantified from the amount of ATP used to remove Ca(2+) from the myoplasm following stimulation. ATP turnover by crossbridges was blocked pharmacologically (N-benzyl-p-toluenesulphonamide for EDL, blebbistatin for soleus) and muscle heat production was used as an index of Ca(2+) pump ATP turnover. At 20°C, Ca(2+) release in response to a single stimulus was 34 and 84 μmol (kg muscle)(-1) for soleus and EDL, respectively, and increased with temperature (30°C: soleus, 61 μmol kg(-1); EDL, 168 μmol kg(-1)). Delivery of another stimulus within 100 ms of the first produced a smaller Ca(2+) release. The maximum magnitude of the decrease in Ca(2+) release was greater in EDL than soleus. Ca(2+) release recovered with an exponential time course which was faster in EDL (mean time constant at 20°C, 32.1 ms) than soleus (65.6 ms) and faster at 30°C than at 20°C. The amounts of Ca(2+) released and crossbridge cycles performed are consistent with a scheme in which Ca(2+) binding to troponin-C allowed an average of ∼1.7 crossbridge cycles in the two muscles.

  14. Quantifying Ca2+ release and inactivation of Ca2+ release in fast- and slow-twitch muscles

    PubMed Central

    Barclay, C J

    2012-01-01

    The aims of this study were to quantify the Ca2+ release underlying twitch contractions of mammalian fast- and slow-twitch muscle and to comprehensively describe the transient inactivation of Ca2+ release following a stimulus. Experiments were performed using bundles of fibres from mouse extensor digitorum longus (EDL) and soleus muscles. Ca2+ release was quantified from the amount of ATP used to remove Ca2+ from the myoplasm following stimulation. ATP turnover by crossbridges was blocked pharmacologically (N-benzyl-p-toluenesulphonamide for EDL, blebbistatin for soleus) and muscle heat production was used as an index of Ca2+ pump ATP turnover. At 20°C, Ca2+ release in response to a single stimulus was 34 and 84 μmol (kg muscle)−1 for soleus and EDL, respectively, and increased with temperature (30°C: soleus, 61 μmol kg−1; EDL, 168 μmol kg−1). Delivery of another stimulus within 100 ms of the first produced a smaller Ca2+ release. The maximum magnitude of the decrease in Ca2+ release was greater in EDL than soleus. Ca2+ release recovered with an exponential time course which was faster in EDL (mean time constant at 20°C, 32.1 ms) than soleus (65.6 ms) and faster at 30°C than at 20°C. The amounts of Ca2+ released and crossbridge cycles performed are consistent with a scheme in which Ca2+ binding to troponin-C allowed an average of ∼1.7 crossbridge cycles in the two muscles. PMID:23027818

  15. Inhibition of voluntary saccadic eye movement commands by abrupt visual onsets.

    PubMed

    Edelman, Jay A; Xu, Kitty Z

    2009-03-01

    Saccadic eye movements are made both to explore the visual world and to react to sudden sensory events. We studied the ability for humans to execute a voluntary (i.e., nonstimulus-driven) saccade command in the face of a suddenly appearing visual stimulus. Subjects were required to make a saccade to a memorized location when a central fixation point disappeared. At varying times relative to fixation point disappearance a visual distractor appeared at a random location. When the distractor appeared at locations distant from the target virtually no saccades were initiated in a 30- to 40-ms interval beginning 70-80 ms after appearance of the distractor. If the distractor was presented slightly earlier relative to saccade initiation then saccades tended to have smaller amplitudes, with velocity profiles suggesting that the distractor terminated them prematurely. In contrast, distractors appearing close to the saccade target elicited express saccade-like movements 70-100 ms after their appearance, although the saccade endpoint was generally scarcely affected by the distractor. An additional experiment showed that these effects were weaker when the saccade was made to a visible target in a delayed task and still weaker when the saccade itself was made in response to the abrupt appearance of a visual stimulus. A final experiment revealed that the effect is smaller, but quite evident, for very small stimuli. These results suggest that the transient component of a visual response can briefly but almost completely suppress a voluntary saccade command, but only when the stimulus evoking that response is distant from the saccade goal.

  16. Development of Sensitivity to Audiovisual Temporal Asynchrony during Mid-Childhood

    PubMed Central

    Kaganovich, Natalya

    2015-01-01

    Temporal proximity is one of the key factors determining whether events in different modalities are integrated into a unified percept. Sensitivity to audiovisual temporal asynchrony has been studied in adults in great detail. However, how such sensitivity matures during childhood is poorly understood. We examined perception of audiovisual temporal asynchrony in 7-8-year-olds, 10-11-year-olds, and adults by using a simultaneity judgment task (SJT). Additionally, we evaluated whether non-verbal intelligence, verbal ability, attention skills, or age influenced children's performance. On each trial, participants saw an explosion-shaped figure and heard a 2 kHz pure tone. These occurred at the following stimulus onset asynchronies (SOAs) - 0, 100, 200, 300, 400, and 500 ms. In half of all trials, the visual stimulus appeared first (VA condition) while in another half, the auditory stimulus appeared first (AV condition). Both groups of children were significantly more likely than adults to perceive asynchronous events as synchronous at all SOAs exceeding 100 ms, in both VA and AV conditions. Furthermore, only adults exhibited a significant shortening of RT at long SOAs compared to medium SOAs. Sensitivities to the VA and AV temporal asynchronies showed different developmental trajectories, with 10-11-year-olds outperforming 7-8-year-olds at the 300-500 ms SOAs, but only in the AV condition. Lastly, age was the only predictor of children's performance on the SJT. These results provide an important baseline against which children with developmental disorders associated with impaired audiovisual temporal function, such as autism, specific language impairment, and dyslexia may be compared. PMID:26569563

  17. A novel escapable social interaction test reveals that social behavior and mPFC activation during an escapable social encounter are altered by post-weaning social isolation and are dependent on the aggressiveness of the stimulus rat.

    PubMed

    Goodell, Dayton J; Ahern, Megan A; Baynard, Jessica; Wall, Vanessa L; Bland, Sondra T

    2017-01-15

    Post-weaning social isolation (PSI) has been shown to increase aggressive behavior and alter medial prefrontal cortex (mPFC) function in social species such as rats. Here we developed a novel escapable social interaction test (ESIT) allowing for the quantification of escape and social behaviors in addition to mPFC activation in response to an aggressive or nonaggressive stimulus rat. Male rats were exposed to 3 weeks of PSI (ISO) or group (GRP) housing, and exposed to 3 trials, with either no trial, all trials, or the last trial only with a stimulus rat. Analysis of social behaviors indicated that ISO rats spent less time in the escape chamber and more time engaged in social interaction, aggressive grooming, and boxing than did GRP rats. Interestingly, during the third trial all rats engaged in more of the quantified social behaviors and spent less time escaping in response to aggressive but not nonaggressive stimulus rats. Rats exposed to nonaggressive stimulus rats on the third trial had greater c-fos and ARC immunoreactivity in the mPFC than those exposed to an aggressive stimulus rat. Conversely, a social encounter produced an increase in large PSD-95 punctae in the mPFC independently of trial number, but only in ISO rats exposed to an aggressive stimulus rat. The results presented here demonstrate that PSI increases interaction time and aggressive behaviors during escapable social interaction, and that the aggressiveness of the stimulus rat in a social encounter is an important component of behavioral and neural outcomes for both isolation and group-reared rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A novel escapable social interaction test reveals that social behavior and mPFC activation during an escapable social encounter are altered by post-weaning social isolation and are dependent on the aggressiveness of the stimulus rat

    PubMed Central

    Goodell, Dayton J.; Ahern, Megan A.; Baynard, Jessica; Wall, Vanessa L.; Bland, Sondra T.

    2016-01-01

    Post-weaning social isolation (PSI) has been shown to increase aggressive behavior and alter medial prefrontal cortex (mPFC) function in social species such as rats. Here we developed a novel escapable social interaction test (ESIT) allowing for the quantification of escape and social behaviors in addition to mPFC activation in response to an aggressive or nonaggressive stimulus rat. Male rats were exposed to 3 weeks of PSI (ISO) or group (GRP) housing, and exposed to 3 trials, with either no trial, all trials, or the last trial only with a stimulus rat. Analysis of social behaviors indicated that ISO rats spent less time in the escape chamber and more time engaged in social interaction, aggressive grooming, and boxing than did GRP rats. Interestingly, during the third trial all rats engaged in more of the quantified social behaviors and spent less time escaping in response to aggressive but not nonaggressive stimulus rats. Rats exposed to nonaggressive stimulus rats on the third trial had greater c-fos and ARC immunoreactivity in the mPFC than those exposed to an aggressive stimulus rat. Conversely, a social encounter produced an increase in large PSD-95 punctae in the mPFC independently of trial number, but only in ISO rats exposed to an aggressive stimulus rat. The results presented here demonstrate that PSI increases interaction time and aggressive behaviors during escapable social interaction, and that the aggressiveness of the stimulus rat in a social encounter is an important component of behavioral and neural outcomes for both isolation and group-reared rats. PMID:27633556

  19. Responding for sucrose and wheel-running reinforcement: effect of body weight manipulation.

    PubMed

    Belke, Terry W

    2004-02-27

    As body weight increases, the excitatory strength of a stimulus signaling an opportunity to run should weaken to a greater degree than that of a stimulus signaling an opportunity to eat. To test this hypothesis, six male albino Wistar rats were placed in running wheels and exposed to a fixed interval 30-s schedule that produced either a drop of 15% sucrose solution or the opportunity to run for 15s as reinforcing consequences for lever pressing. Each reinforcer type was signaled by a different stimulus. The effect of varying body weight on responding maintained by these two reinforcers was investigated by systematically increasing and decreasing post-session food amounts. The initial body weight was 335 g. Body weights were increased to approximately 445 g and subsequently returned to 335 g. As body weight increased, overall and local lever-pressing rates decreased while post-reinforcement pauses lengthened. Analysis of post-reinforcement pauses and local lever-pressing rates in terms of transitions between successive reinforcers revealed that local response rates in the presence of stimuli signaling upcoming wheel and sucrose reinforcers were similarly affected. However, pausing in the presence of the stimulus signaling a wheel-running reinforcer lengthened to a greater extent than did pausing in the presence of the stimulus signaling sucrose. This result suggests that as body weight approaches ad-lib levels, the likelihood of initiation of responding to obtain an opportunity to run approaches zero and the animal "rejects" the opportunity to run in a manner similar to the rejection of less preferred food items in studies of food selectivity.

  20. [Pattern-reversal electroretinogram (PERG): a normative study in adults].

    PubMed

    Alves, Letícia Dourado; Berezovsky, Adriana; Sacai, Paula Yuri; Pereira, Josenilson Martins; Salomão, Solange Rios

    2010-01-01

    To determine normative values for pattern-reversal electroretinogram (PERG) in healthy adult volunteers according to the standard protocol recommended by the International Society for Clinical Electrophysiology of Vision-ISCEV. Participants were 30 healthy volunteers (15 males) with ages from 18 to 61 years (mean= 30.8 +/- 8.7 yrs.; median= 29.5 yrs). Inclusion criteria were: visual acuity of 0.0 logMAR (20/20 Snellen) in each eye, absence of visual complaints, absence of media opacities, negative history for ocular or neurological diseases, negative family history for ocular and informed consent. PERG was recorded from each eye in a darkened room at 1 m from a high resolution display monitor. Stimuli were monochromatic checkerboards subtending 60, 15 e 7.5 minutes of visual angle reversing at 1.9 Hz. Responses were obtained from modified disposable fiber electrodes developed at UNIFESP. Latency (ms) for N35, P50 and N95 components as well as peak-to-peak amplitudes (microV) for N35-P50 and P50-N95 were determined. For normative values only one randomly chosen eye was included. Normal limits were calculated as 97.5% percentiles for latency and 2.5% percentile for amplitudes for each stimulus size. Normal limits for N35, P50 and N95 latencies for 60', 15' and 7.5' stimuli were respectively: N35 - 40.1; 39.9 and 41.3 ms; P50 - 60.5; 64.4 and 65.6 ms and N95 - 103.4; 104.6 and 104.6 ms. For amplitude the normative values for N35-P50 and P50-N95 for 60', 15' and 7.5' were respectively: N35-P50 - 1.7; 1.6 and 0.9 microV; P50-N95 - 3.8; 2.8 and 1.5 microV. No gender differences were found either for latency or for amplitude in the three stimulus sizes. There was no correlation between PERG latency and amplitude with age, except for P50 amplitude for stimulus 15'(r=0.39; P=0.035). Normative values were determined for PERG parameters of amplitude and latency for three stimulus sizes. These parameters are important for evaluating the normal functioning of retinal ganglion cells and the macula. The normative values obtained in this study are comparable to previous studies in the literature.

  1. Differential activation of motor units in the wrist extensor muscles during the tonic vibration reflex in man.

    PubMed Central

    Romaiguère, P; Vedel, J P; Azulay, J P; Pagni, S

    1991-01-01

    1. Single motor unit activity was recorded in the extensor carpi radialis longus and extensor carpi radialis brevis muscles of five healthy human subjects, using metal microelectrodes. 2. Motor units were characterized on the basis of their twitch contraction times and their force recruitment thresholds during voluntary imposed-ramp contractions. 3. The discharge patterns of forty-three motor units were studied during tonic vibration reflex elicited by prolonged (150 s) trains of vibration (30 Hz) applied to the distal tendons of the muscles. The temporal relationships between the individual small tendon taps of the vibratory stimulus and the motor unit impulses were analysed on dot raster displays and post-stimulus time histograms. 4. After tendon taps, the impulses of motor units with long twitch contraction times (mean +/- S.D., 47.2 +/- 10.7 ms) and low recruitment thresholds (0.88 +/- 0.6 N) formed a single narrow peak (P1) with a latency (22.7 +/- 1.4 ms) which was comparable to that of the tendon jerk in the extensor carpi radialis muscles. These motor units were named 'P1 units'. On the other hand, the response of motor units with shorter twitch contraction times (31.1 +/- 3.3 ms) and higher recruitment thresholds (3.21 +/- 1.3 N) showed two peaks: a short latency (23.4 +/- 1.3 ms) P1 peak similar to the previous one and a P2 peak occurring 9.4 +/- 1.2 ms later. These motor units were named 'P1-P2 units'. 5. When the reflex contraction increased slowly, the P1 peaks of 'P1-P2 units' were clearly predominant at the beginning of the contraction, during the rising phase of the motor unit discharge frequency, while the P2 peaks became predominant when the units had reached their maximal discharge frequency. 6. Increasing the tendon vibration frequency (35, 55, 75, 95 Hz) did not modify the 'P1 unit' discharge pattern. Due to interference between vibration period and peak latencies, increasing the vibration frequency caused the P1 and P2 peaks of 'P1-P2 units' to overlap. 7. Superficial cutaneous stimulation of the dorsal side of the forearm during tendon vibration noticeably decreased the P1 peaks in both types of motor units. In the P2 peaks it could result in either a decrease or an increase but the average effect was a slight increase. 8. When applied 10 s before tendon vibration, cutaneous stimulation considerably suppressed the tonic vibration reflex.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1822565

  2. Non-invasive detection of language-related prefrontal high gamma band activity with beamforming MEG.

    PubMed

    Hashimoto, Hiroaki; Hasegawa, Yuka; Araki, Toshihiko; Sugata, Hisato; Yanagisawa, Takufumi; Yorifuji, Shiro; Hirata, Masayuki

    2017-10-27

    High gamma band (>50 Hz) activity is a key oscillatory phenomenon of brain activation. However, there has not been a non-invasive method established to detect language-related high gamma band activity. We used a 160-channel whole-head magnetoencephalography (MEG) system equipped with superconducting quantum interference device (SQUID) gradiometers to non-invasively investigate neuromagnetic activities during silent reading and verb generation tasks in 15 healthy participants. Individual data were divided into alpha (8-13 Hz), beta (13-25 Hz), low gamma (25-50 Hz), and high gamma (50-100 Hz) bands and analysed with the beamformer method. The time window was consecutively moved. Group analysis was performed to delineate common areas of brain activation. In the verb generation task, transient power increases in the high gamma band appeared in the left middle frontal gyrus (MFG) at the 550-750 ms post-stimulus window. We set a virtual sensor on the left MFG for time-frequency analysis, and high gamma event-related synchronization (ERS) induced by a verb generation task was demonstrated at 650 ms. In contrast, ERS in the high gamma band was not detected in the silent reading task. Thus, our study successfully non-invasively measured language-related prefrontal high gamma band activity.

  3. A massively asynchronous, parallel brain

    PubMed Central

    Zeki, Semir

    2015-01-01

    Whether the visual brain uses a parallel or a serial, hierarchical, strategy to process visual signals, the end result appears to be that different attributes of the visual scene are perceived asynchronously—with colour leading form (orientation) by 40 ms and direction of motion by about 80 ms. Whatever the neural root of this asynchrony, it creates a problem that has not been properly addressed, namely how visual attributes that are perceived asynchronously over brief time windows after stimulus onset are bound together in the longer term to give us a unified experience of the visual world, in which all attributes are apparently seen in perfect registration. In this review, I suggest that there is no central neural clock in the (visual) brain that synchronizes the activity of different processing systems. More likely, activity in each of the parallel processing-perceptual systems of the visual brain is reset independently, making of the brain a massively asynchronous organ, just like the new generation of more efficient computers promise to be. Given the asynchronous operations of the brain, it is likely that the results of activities in the different processing-perceptual systems are not bound by physiological interactions between cells in the specialized visual areas, but post-perceptually, outside the visual brain. PMID:25823871

  4. Simple and powerful visual stimulus generator.

    PubMed

    Kremlácek, J; Kuba, M; Kubová, Z; Vít, F

    1999-02-01

    We describe a cheap, simple, portable and efficient approach to visual stimulation for neurophysiology which does not need any special hardware equipment. The method based on an animation technique uses the FLI autodesk animator format. This form of the animation is replayed by a special program ('player') providing synchronisation pulses toward recording system via parallel port. The 'player is running on an IBM compatible personal computer under MS-DOS operation system and stimulus is displayed on a VGA computer monitor. Various stimuli created with this technique for visual evoked potentials (VEPs) are presented.

  5. Partially supervised P300 speller adaptation for eventual stimulus timing optimization: target confidence is superior to error-related potential score as an uncertain label

    NASA Astrophysics Data System (ADS)

    Zeyl, Timothy; Yin, Erwei; Keightley, Michelle; Chau, Tom

    2016-04-01

    Objective. Error-related potentials (ErrPs) have the potential to guide classifier adaptation in BCI spellers, for addressing non-stationary performance as well as for online optimization of system parameters, by providing imperfect or partial labels. However, the usefulness of ErrP-based labels for BCI adaptation has not been established in comparison to other partially supervised methods. Our objective is to make this comparison by retraining a two-step P300 speller on a subset of confident online trials using naïve labels taken from speller output, where confidence is determined either by (i) ErrP scores, (ii) posterior target scores derived from the P300 potential, or (iii) a hybrid of these scores. We further wish to evaluate the ability of partially supervised adaptation and retraining methods to adjust to a new stimulus-onset asynchrony (SOA), a necessary step towards online SOA optimization. Approach. Eleven consenting able-bodied adults attended three online spelling sessions on separate days with feedback in which SOAs were set at 160 ms (sessions 1 and 2) and 80 ms (session 3). A post hoc offline analysis and a simulated online analysis were performed on sessions two and three to compare multiple adaptation methods. Area under the curve (AUC) and symbols spelled per minute (SPM) were the primary outcome measures. Main results. Retraining using supervised labels confirmed improvements of 0.9 percentage points (session 2, p < 0.01) and 1.9 percentage points (session 3, p < 0.05) in AUC using same-day training data over using data from a previous day, which supports classifier adaptation in general. Significance. Using posterior target score alone as a confidence measure resulted in the highest SPM of the partially supervised methods, indicating that ErrPs are not necessary to boost the performance of partially supervised adaptive classification. Partial supervision significantly improved SPM at a novel SOA, showing promise for eventual online SOA optimization.

  6. Auditory post-processing in a passive listening task is deficient in Alzheimer's disease.

    PubMed

    Bender, Stephan; Bluschke, Annet; Dippel, Gabriel; Rupp, André; Weisbrod, Matthias; Thomas, Christine

    2014-01-01

    To investigate whether automatic auditory post-processing is deficient in patients with Alzheimer's disease and is related to sensory gating. Event-related potentials were recorded during a passive listening task to examine the automatic transient storage of auditory information (short click pairs). Patients with Alzheimer's disease were compared to a healthy age-matched control group. A young healthy control group was included to assess effects of physiological aging. A bilateral frontal negativity in combination with deep temporal positivity occurring 500 ms after stimulus offset was reduced in patients with Alzheimer's disease, but was unaffected by physiological aging. Its amplitude correlated with short-term memory capacity, but was independent of sensory gating in healthy elderly controls. Source analysis revealed a dipole pair in the anterior temporal lobes. Results suggest that auditory post-processing is deficient in Alzheimer's disease, but is not typically related to sensory gating. The deficit could neither be explained by physiological aging nor by problems in earlier stages of auditory perception. Correlations with short-term memory capacity and executive control tasks suggested an association with memory encoding and/or overall cognitive control deficits. An auditory late negative wave could represent a marker of auditory working memory encoding deficits in Alzheimer's disease. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Pre-stimulus thalamic theta power predicts human memory formation.

    PubMed

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Richardson-Klavehn, Alan; Hinrichs, Hermann; Heinze, Hans-Jochen; Knight, Robert T; Rugg, Michael D

    2016-09-01

    Pre-stimulus theta (4-8Hz) power in the hippocampus and neocortex predicts whether a memory for a subsequent event will be formed. Anatomical studies reveal thalamus-hippocampal connectivity, and lesion, neuroimaging, and electrophysiological studies show that memory processing involves the dorsomedial (DMTN) and anterior thalamic nuclei (ATN). The small size and deep location of these nuclei have limited real-time study of their activity, however, and it is unknown whether pre-stimulus theta power predictive of successful memory formation is also found in these subcortical structures. We recorded human electrophysiological data from the DMTN and ATN of 7 patients receiving deep brain stimulation for refractory epilepsy. We found that greater pre-stimulus theta power in the right DMTN was associated with successful memory encoding, predicting both behavioral outcome and post-stimulus correlates of successful memory formation. In particular, significant correlations were observed between right DMTN theta power and both frontal theta and right ATN gamma (32-50Hz) phase alignment, and frontal-ATN theta-gamma cross-frequency coupling. We draw the following primary conclusions. Our results provide direct electrophysiological evidence in humans of a role for the DMTN as well as the ATN in memory formation. Furthermore, prediction of subsequent memory performance by pre-stimulus thalamic oscillations provides evidence that post-stimulus differences in thalamic activity that index successful and unsuccessful encoding reflect brain processes specifically underpinning memory formation. Finally, the findings broaden the understanding of brain states that facilitate memory encoding to include subcortical as well as cortical structures. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Subliminal influence on preferences? A test of evaluative conditioning for brief visual conditioned stimuli using auditory unconditioned stimuli

    PubMed Central

    2017-01-01

    In the field of evaluative conditioning (EC), two opposing theories—propositional single-process theory versus dual-process theory—are currently being discussed in the literature. The present set of experiments test a crucial prediction to adjudicate between these two theories: Dual-process theory postulates that evaluative conditioning can occur without awareness of the contingency between conditioned stimulus (CS) and unconditioned stimulus (US); in contrast, single-process propositional theory postulates that EC requires CS-US contingency awareness. In a set of three studies, we experimentally manipulate contingency awareness by presenting the CSs very briefly, thereby rendering it unlikely to be processed consciously. We address potential issues with previous studies on EC with subliminal or near-threshold CSs that limited their interpretation. Across two experiments, we consistently found an EC effect for CSs presented for 1000 ms and consistently failed to find an EC effect for briefly presented CSs. In a third pre-registered experiment, we again found evidence for an EC effect with CSs presented for 1000 ms, and we found some indication for an EC effect for CSs presented for 20 ms. PMID:28989730

  9. Subliminal influence on preferences? A test of evaluative conditioning for brief visual conditioned stimuli using auditory unconditioned stimuli.

    PubMed

    Heycke, Tobias; Aust, Frederik; Stahl, Christoph

    2017-09-01

    In the field of evaluative conditioning (EC), two opposing theories-propositional single-process theory versus dual-process theory-are currently being discussed in the literature. The present set of experiments test a crucial prediction to adjudicate between these two theories: Dual-process theory postulates that evaluative conditioning can occur without awareness of the contingency between conditioned stimulus (CS) and unconditioned stimulus (US); in contrast, single-process propositional theory postulates that EC requires CS-US contingency awareness. In a set of three studies, we experimentally manipulate contingency awareness by presenting the CSs very briefly, thereby rendering it unlikely to be processed consciously. We address potential issues with previous studies on EC with subliminal or near-threshold CSs that limited their interpretation. Across two experiments, we consistently found an EC effect for CSs presented for 1000 ms and consistently failed to find an EC effect for briefly presented CSs. In a third pre-registered experiment, we again found evidence for an EC effect with CSs presented for 1000 ms, and we found some indication for an EC effect for CSs presented for 20 ms.

  10. Occipital MEG Activity in the Early Time Range (<300 ms) Predicts Graded Changes in Perceptual Consciousness.

    PubMed

    Andersen, Lau M; Pedersen, Michael N; Sandberg, Kristian; Overgaard, Morten

    2016-06-01

    Two electrophysiological components have been extensively investigated as candidate neural correlates of perceptual consciousness: An early, occipitally realized component occurring 130-320 ms after stimulus onset and a late, frontally realized component occurring 320-510 ms after stimulus onset. Recent studies have suggested that the late component may not be uniquely related to perceptual consciousness, but also to sensory expectations, task associations, and selective attention. We conducted a magnetoencephalographic study; using multivariate analysis, we compared classification accuracies when decoding perceptual consciousness from the 2 components using sources from occipital and frontal lobes. We found that occipital sources during the early time range were significantly more accurate in decoding perceptual consciousness than frontal sources during both the early and late time ranges. These results are the first of its kind where the predictive values of the 2 components are quantitatively compared, and they provide further evidence for the primary importance of occipital sources in realizing perceptual consciousness. The results have important consequences for current theories of perceptual consciousness, especially theories emphasizing the role of frontal sources. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Auditory stream segregation with multi-tonal complexes in hearing-impaired listeners

    NASA Astrophysics Data System (ADS)

    Rogers, Deanna S.; Lentz, Jennifer J.

    2004-05-01

    The ability to segregate sounds into different streams was investigated in normally hearing and hearing-impaired listeners. Fusion and fission boundaries were measured using 6-tone complexes with tones equally spaced in log frequency. An ABA-ABA- sequence was used in which A represents a multitone complex ranging from either 250-1000 Hz (low-frequency region) or 1000-4000 Hz (high-frequency region). B also represents a multitone complex with same log spacing as A. Multitonal complexes were 100 ms in duration with 20-ms ramps, and- represents a silent interval of 100 ms. To measure the fusion boundary, the first tone of the B stimulus was either 375 Hz (low) or 1500 Hz (high) and shifted downward in frequency with each progressive ABA triplet until the listener pressed a button indicating that a ``galloping'' rhythm was heard. When measuring the fusion boundary, the first tone of the B stimulus was 252 or 1030 Hz and shifted upward with each triplet. Listeners then pressed a button when the ``galloping rhythm ended.'' Data suggest that hearing-impaired subjects have different fission and fusion boundaries than normal-hearing listeners. These data will be discussed in terms of both peripheral and central factors.

  12. A window on perception: Response times of odontocete cetaceans in audiometric tests

    NASA Astrophysics Data System (ADS)

    Blackwood, Diane J.; Ridgway, Sam H.; Evans, William E.

    2002-05-01

    A standard psychometric measurement is response time, the interval elapsing between a stimulus and a response. While studies of response time have been published for humans and other terrestrial mammals, this study marks the first report of response times for odontocete cetaceans at threshold in an audiometric task. Two white whales (Delphinapterus leucas) and four Atlantic bottlenose dolphins (Tursiops truncatus) were given audiometric tests to determine masked hearing thresholds. Animals were tested at 26 frequencies over a range from 200 Hz to 100 kHz using pure tones. The test tone amplitudes covered a range of 20 dB re 1 microPascal including the hearing threshold of the animal at that frequency. Hearing thresholds varied from 87.5 dB to 125.5 dB depending on frequency, masking noise intensity and individual animal. Data was analyzed to determine characteristic relationships between response time and amplitude of test tone for each frequency and animal. The two whales responded significantly slower (640 ms, 0.001) than the four dolphins (430 ms). As in terrestrial animals, reaction time became shorter as stimulus strength increased. At threshold, median response time across frequencies within each animal varied about 150 ms.

  13. Maintenance steroid use at 30 days post-transplant and outcomes of pediatric heart transplantation: A propensity matched analysis of the Pediatric Heart Transplant Study database.

    PubMed

    Auerbach, Scott R; Kukreja, Manisha; Gilbert, Deborah; Bastardi, Heather; Feingold, Brian; Knecht, Kenneth; Kaufman, Beth D; Brown, Robert N; Miyamoto, Shelley D

    2015-08-01

    Maintenance steroid (MS) use in pediatric heart transplantation is variable. The purpose of this study was to evaluate the impact of MS use on graft outcomes. All patients <18 years old in the Pediatric Heart Transplant Study database at the time of first heart transplant between 1993 and 2011 who survived ≥30 days post-transplant and were from centers with a protocolized approach to MS use were included (N = 2,178). Patients were grouped by MS use at 30 days post-transplant as MS+ or MS- (no MS use). Propensity score analysis was used to generate matched groups of MS+ and MS- patients based on pre-transplant and peri-transplant factors. Kaplan-Meier survival analysis was used to compare freedom from graft loss, graft loss secondary to rejection, rejection, rejection with severe hemodynamic compromise (RSHC), malignancy, and infection between groups. Of patients, 1,393 (64%) were MS+ and 785 (36%) were MS-. There were 315 MS- patients who had propensity matched MS+ controls. Kaplan-Meier estimates showed no difference in graft loss (p = 0.9) or graft loss secondary to rejection (p = 0.09). At 1 year post-transplant, there was no difference in freedom from rejection (p = 0.15) or malignancy (p = 0.07), but there was lower freedom from RSHC and infection in the MS- group (p = 0.05 and p = 0.02, respectively). MS use at 30 days post-transplant was not associated with enhanced graft survival after pediatric heart transplant. MS- patients had a higher incidence of RSHC and infection. These risks should be taken into consideration when determining MS use for pediatric recipients of heart transplants. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  14. Gap Detection in School-Age Children and Adults: Center Frequency and Ramp Duration

    PubMed Central

    Porter, Heather L.; Hall, Joseph W.; Grose, John H.

    2017-01-01

    Purpose The age at which gap detection becomes adultlike differs, depending on the stimulus characteristics. The present study evaluated whether the developmental trajectory differs as a function of stimulus frequency region or duration of the onset and offset ramps bounding the gap. Method Thresholds were obtained for wideband noise (500–4500 Hz) with 4- or 40-ms raised-cosine ramps and for a 25-Hz-wide low-fluctuation narrowband noise centered on either 500 or 5000 Hz with 40-ms ramps. Stimuli were played continuously at 70 dB SPL, and the task was to indicate which of 3 intervals contained a gap. Listeners were 5.2- to 15.1-year-old children (n = 40) and adults (n = 10) with normal hearing. Results Regardless of listener age, gap detection thresholds for the wideband noise tended to be lower when gaps were shaped using 4-ms rather than 40-ms ramps. Thresholds also tended to be lower for the low-fluctuation narrowband noise centered on 5000 Hz than 500 Hz. Performance reached adult levels after 11 years of age for all 4 stimuli. Maturation was not uniform across individuals, however; a subset of young children performed like adults, including some 5-year-olds. Conclusion For these stimuli, the developmental trajectory was similar regardless of narrowband noise center frequency or wideband noise onset and offset ramp duration. PMID:28056469

  15. Relation of Young Infants' Reaching Behavior to Stimulus Distance and Solidity

    ERIC Educational Resources Information Center

    Field, Jeffery

    1976-01-01

    The reaching behavior of 12 infants in the presence of solid objects and pictures of objects placed within and beyond possible contact distance was videotaped in three sessions at 15, 19, and 24 weeks of age. (Author/MS)

  16. Evidence for enhanced multi-component behaviour in Tourette syndrome - an EEG study.

    PubMed

    Brandt, Valerie C; Stock, Ann-Kathrin; Münchau, Alexander; Beste, Christian

    2017-08-10

    Evidence suggests that Tourette syndrome is characterized by an increase in dopamine transmission and structural as well as functional changes in fronto-striatal circuits that might lead to enhanced multi-component behaviour integration. Behavioural and neurophysiological data regarding multi-component behaviour was collected from 15 patients with Tourette syndrome (mean age = 30.40 ± 11.10) and 15 healthy controls (27.07 ± 5.44), using the stop-change task. In this task, participants are asked to sometimes withhold responses to a Go stimulus (stop cue) and change hands to respond to an alternative Go stimulus (change cue). Different onset asynchronies between stop and change cues were implemented (0 and 300 ms) in order to vary task difficulty. Tourette patients responded more accurately than healthy controls when there was no delay between stop and change stimulus, while there was no difference in the 300 ms delay condition. This performance advantage was reflected in a smaller P3 event related potential. Enhanced multi-component behaviour in Tourette syndrome is likely based on an enhanced ability to integrate information from multiple sources and translate it into an appropriate response sequence. This may be a consequence of chronic tic control in these patients, or a known fronto-striatal networks hyperconnectivity in Tourette syndrome.

  17. Lateralization of noise-burst trains based on onset and ongoing interaural delays.

    PubMed

    Freyman, Richard L; Balakrishnan, Uma; Zurek, Patrick M

    2010-07-01

    The lateralization of 250-ms trains of brief noise bursts was measured using an acoustic pointing technique. Stimuli were designed to assess the contribution of the interaural time delay (ITD) of the onset binaural burst relative to that of the ITDs in the ongoing part of the train. Lateralization was measured by listeners' adjustments of the ITD of a pointer stimulus, a 50-ms burst of noise, to match the lateral position of the target train. Results confirmed previous reports of lateralization dominance by the onset burst under conditions in which the train is composed of frozen tokens and the ongoing part contains multiple ambiguous interaural delays. In contrast, lateralization of ongoing trains in which fresh noise tokens were used for each set of two alternating (left-leading/right-leading) binaural pairs followed the ITD of the first pair in each set, regardless of the ITD of the onset burst of the entire stimulus and even when the onset burst was removed by gradual gating. This clear lateralization of a long-duration stimulus with ambiguous interaural delay cues suggests precedence mechanisms that involve not only the interaural cues at the beginning of a sound, but also the pattern of cues within an ongoing sound.

  18. Bundling Post-Acute Care Services into MS-DRG Payments

    PubMed Central

    Vertrees, James C.; Averill, Richard F.; Eisenhandler, Jon; Quain, Anthony; Switalski, James

    2013-01-01

    Objective A bundled hospital payment system that encompasses both acute and post-acute care has been proposed as a means of creating financial incentives in the Medicare fee-for-service system to foster care coordination and to improve the current disorganized system of post care. The objective of this study was to evaluate the statistical stability of alternative designs of a hospital payment system that includes post-acute care services to determine the feasibility of using a combined hospital and post-acute care bundle as a unit of payment. Methods The Medicare Severity-Diagnosis Related Groups (MS-DRGs) were subdivided into clinical subclasses that measured a patient's chronic illness burden to test whether a patient's chronic illness burden had a substantial impact on post-acute care expenditures. Using Medicare data the statistical performance of the MS-DRGs with and without the chronic illness subclasses was evaluated across a wide range of post-acute care windows and combinations of post-acute care service bundles using both submitted charges and Medicare payments. Results The statistical performance of the MS-DRGs as measured by R2 was consistently better when the chronic illness subclasses are included indicating that MS-DRGs by themselves are an inadequate unit of payment for post-acute care payment bundles. In general, R2 values increased as the post-acute care window length increased and decreased as more services were added to the post-acute care bundle. Discussion The study results suggest that it is feasible to develop a payment system that incorporates significant post-acute care services into the MS-DRG inpatient payment bundle. This expansion of the basic DRG payment approach can provide a strong financial incentive for providers to better coordinate care potentially leading to improved efficiency and outcome quality. PMID:24753970

  19. A Pilot Study of Women’s Affective Responses to Common and Uncommon Forms of Aerobic Exercise

    PubMed Central

    Stevens, Courtney J.; Smith, Jane Ellen; Bryan, Angela D.

    2015-01-01

    Objective To test the extent to which participants exposed to an uncommon versus common exercise stimulus would result in more favourable affect at post task. Design Experimental design. Participants, (N = 120) American women aged 18–45 years, were randomly assigned to complete 30-minutes of either the uncommon (HOOP; n = 58) or common (WALK; n = 62) exercise stimulus. Main Outcome Measures Self-reported affect and intentions for future exercise were measured before and after the 30-minute exercise bout. Results Analyses of covariance (ANCOVA) were run to compare post-task affect across the HOOP and WALK conditions. At post-task, participants assigned to HOOP reported more positively valenced affect, higher ratings of positive activated affect, lower ratings of negative deactivated affect, and stronger intentions for future aerobic exercise compared to participants assigned to WALK. Conclusions Participants who completed an uncommon bout of aerobic exercise (HOOP) reported more favourable affect post-exercise, as well as stronger intentions for future exercise, compared to participants who completed a common bout of aerobic exercise (WALK). Future work using a longitudinal design is needed to understand the relationships between familiarity with an exercise stimulus, affective responses to exercise, motivation for future exercise behaviour, and exercise maintenance over time. PMID:26394246

  20. Four-choice sound localization abilities of two Florida manatees, Trichechus manatus latirostris.

    PubMed

    Colbert, Debborah E; Gaspard, Joseph C; Reep, Roger; Mann, David A; Bauer, Gordon B

    2009-07-01

    The absolute sound localization abilities of two Florida manatees (Trichechus manatus latirostris) were measured using a four-choice discrimination paradigm, with test locations positioned at 45 deg., 90 deg., 270 deg. and 315 deg. angles relative to subjects facing 0 deg. Three broadband signals were tested at four durations (200, 500, 1000, 3000 ms), including a stimulus that spanned a wide range of frequencies (0.2-20 kHz), one stimulus that was restricted to frequencies with wavelengths shorter than their interaural time distances (6-20 kHz) and one that was limited to those with wavelengths longer than their interaural time distances (0.2-2 kHz). Two 3000 ms tonal signals were tested, including a 4 kHz stimulus, which is the midpoint of the 2.5-5.9 kHz fundamental frequency range of manatee vocalizations and a 16 kHz stimulus, which is in the range of manatee best-hearing sensitivity. Percentage correct within the broadband conditions ranged from 79% to 93% for Subject 1 and from 51% to 93% for Subject 2. Both performed above chance with the tonal signals but had much lower accuracy than with broadband signals, with Subject 1 at 44% and 33% and Subject 2 at 49% and 32% at the 4 kHz and 16 kHz conditions, respectively. These results demonstrate that manatees are able to localize frequency bands with wavelengths that are both shorter and longer than their interaural time distances and suggest that they have the ability to localize both manatee vocalizations and recreational boat engine noises.

  1. Acute electrophysiologic consequences of pyridostigmine inhibition of cholinesterase in humans.

    PubMed

    Zimerman, L I; Liberman, A; Castro, R R T; Ribeiro, J P; Nóbrega, A C L

    2010-02-01

    The cardiovascular electrophysiologic basis for the action of pyridostigmine, an acetylcholinesterase inhibitor, has not been investigated. The objective of the present study was to determine the cardiac electrophysiologic effects of a single dose of pyridostigmine bromide in an open-label, quasi-experimental protocol. Fifteen patients who had been indicated for diagnostic cardiac electrophysiologic study underwent two studies just before and 90-120 min after the oral administration of pyridostigmine (45 mg). Pyridostigmine was well tolerated by all patients. Wenckebach nodal anterograde atrioventricular point and basic cycle were not altered by pyridostigmine. Sinus recovery time (ms) was shorter during a 500-ms cycle stimulation (pre: 326 +/- 45 vs post: 235 +/- 47; P = 0.003) but not during 400-ms (pre: 275 +/- 28 vs post: 248 +/- 32; P = 0.490) or 600-ms (pre: 252 +/- 42 vs post: 179 +/- 26; P = 0.080) cycle stimulation. Pyridostigmine increased the ventricular refractory period (ms) during the 400-ms cycle stimulation (pre: 238 +/- 7 vs post: 245 +/- 9; P = 0.028) but not during the 500-ms (pre: 248 +/- 7 vs post: 253 +/- 9; P = 0.150) or 600-ms (pre: 254 +/- 8 vs post: 259 +/- 8; P = 0.255) cycle stimulation. We conclude that pyridostigmine did not produce conduction disturbances and, indeed, increased the ventricular refractory period at higher heart rates. While the effect explains previous results showing the anti-arrhythmic action of pyridostigmine, the clinical impact on long-term outcomes requires further investigation.

  2. Coactivation of response initiation processes with redundant signals.

    PubMed

    Maslovat, Dana; Hajj, Joëlle; Carlsen, Anthony N

    2018-05-14

    During reaction time (RT) tasks, participants respond faster to multiple stimuli from different modalities as compared to a single stimulus, a phenomenon known as the redundant signal effect (RSE). Explanations for this effect typically include coactivation arising from the multiple stimuli, which results in enhanced processing of one or more response production stages. The current study compared empirical RT data with the predictions of a model in which initiation-related activation arising from each stimulus is additive. Participants performed a simple wrist extension RT task following either a visual go-signal, an auditory go-signal, or both stimuli with the auditory stimulus delayed between 0 and 125 ms relative to the visual stimulus. Results showed statistical equivalence between the predictions of an additive initiation model and the observed RT data, providing novel evidence that the RSE can be explained via a coactivation of initiation-related processes. It is speculated that activation summation occurs at the thalamus, leading to the observed facilitation of response initiation. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The adequate stimulus for avian short latency vestibular responses to linear translation

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Jones, S. M.; Colbert, S.

    1998-01-01

    Transient linear acceleration stimuli have been shown to elicit eighth nerve vestibular compound action potentials in birds and mammals. The present study was undertaken to better define the nature of the adequate stimulus for neurons generating the response in the chicken (Gallus domesticus). In particular, the study evaluated the question of whether the neurons studied are most sensitive to the maximum level of linear acceleration achieved or to the rate of change in acceleration (da/dt, or jerk). To do this, vestibular response thresholds were measured as a function of stimulus onset slope. Traditional computer signal averaging was used to record responses to pulsed linear acceleration stimuli. Stimulus onset slope was systematically varied. Acceleration thresholds decreased with increasing stimulus onset slope (decreasing stimulus rise time). When stimuli were expressed in units of jerk (g/ms), thresholds were virtually constant for all stimulus rise times. Moreover, stimuli having identical jerk magnitudes but widely varying peak acceleration levels produced virtually identical responses. Vestibular response thresholds, latencies and amplitudes appear to be determined strictly by stimulus jerk magnitudes. Stimulus attributes such as peak acceleration or rise time alone do not provide sufficient information to predict response parameter quantities. Indeed, the major response parameters were shown to be virtually independent of peak acceleration levels or rise time when these stimulus features were isolated and considered separately. It is concluded that the neurons generating short latency vestibular evoked potentials do so as "jerk encoders" in the chicken. Primary afferents classified as "irregular", and which traditionally fall into the broad category of "dynamic" or "phasic" neurons, would seem to be the most likely candidates for the neural generators of short latency vestibular compound action potentials.

  4. Vertical eye position-dependence of the human vestibuloocular reflex during passive and active yaw head rotations.

    PubMed

    Thurtell, M J; Black, R A; Halmagyi, G M; Curthoys, I S; Aw, S T

    1999-05-01

    Vertical eye position-dependence of the human vestibuloocular reflex during passive and active yaw head rotations. The effect of vertical eye-in-head position on the compensatory eye rotation response to passive and active high acceleration yaw head rotations was examined in eight normal human subjects. The stimuli consisted of brief, low amplitude (15-25 degrees ), high acceleration (4,000-6,000 degrees /s2) yaw head rotations with respect to the trunk (peak velocity was 150-350 degrees /s). Eye and head rotations were recorded in three-dimensional space using the magnetic search coil technique. The input-output kinematics of the three-dimensional vestibuloocular reflex (VOR) were assessed by finding the difference between the inverted eye velocity vector and the head velocity vector (both referenced to a head-fixed coordinate system) as a time series. During passive head impulses, the head and eye velocity axes aligned well with each other for the first 47 ms after the onset of the stimulus, regardless of vertical eye-in-head position. After the initial 47-ms period, the degree of alignment of the eye and head velocity axes was modulated by vertical eye-in-head position. When fixation was on a target 20 degrees up, the eye and head velocity axes remained well aligned with each other. However, when fixation was on targets at 0 and 20 degrees down, the eye velocity axis tilted forward relative to the head velocity axis. During active head impulses, the axis tilt became apparent within 5 ms of the onset of the stimulus. When fixation was on a target at 0 degrees, the velocity axes remained well aligned with each other. When fixation was on a target 20 degrees up, the eye velocity axis tilted backward, when fixation was on a target 20 degrees down, the eye velocity axis tilted forward. The findings show that the VOR compensates very well for head motion in the early part of the response to unpredictable high acceleration stimuli-the eye position- dependence of the VOR does not become apparent until 47 ms after the onset of the stimulus. In contrast, the response to active high acceleration stimuli shows eye position-dependence from within 5 ms of the onset of the stimulus. A model using a VOR-Listing's law compromise strategy did not accurately predict the patterns observed in the data, raising questions about how the eye position-dependence of the VOR is generated. We suggest, in view of recent findings, that the phenomenon could arise due to the effects of fibromuscular pulleys on the functional pulling directions of the rectus muscles.

  5. Electric stimulus duration alters network-mediated responses depending on retinal ganglion cell type

    NASA Astrophysics Data System (ADS)

    Im, Maesoon; Werginz, Paul; Fried, Shelley I.

    2018-06-01

    Objective. To improve the quality of artificial vision that arises from retinal prostheses, it is important to bring electrically-elicited neural activity more in line with the physiological signaling patterns that arise normally in the healthy retina. Our previous study reported that indirect activation produces a closer match to physiological responses in ON retinal ganglion cells (RGCs) than in OFF cells (Im and Fried 2015 J. Physiol. 593 3677-96). This suggests that a preferential activation of ON RGCs would shape the overall retinal response closer to natural signaling. Recently, we found that changes to the rate at which stimulation was delivered could bias responses towards a stronger ON component (Im and Fried 2016a J. Neural Eng. 13 025002), raising the possibility that changes to other stimulus parameters can similarly bias towards stronger ON responses. Here, we explore the effects of changing stimulus duration on the responses in ON and OFF types of brisk transient (BT) and brisk sustained (BS) RGCs. Approach. We used cell-attached patch clamp to record RGC spiking in the isolated rabbit retina. Targeted RGCs were first classified as ON or OFF type by their light responses, and further sub-classified as BT or BS types by their responses to both light and electric stimuli. Spiking in targeted RGCs was recorded in response to electric pulses with durations varying from 5 to100 ms. Stimulus amplitude was adjusted at each duration to hold total charge constant for all experiments. Main results. We found that varying stimulus durations modulated responses differentially for ON versus OFF cells: in ON cells, spike counts decreased significantly with increasing stimulus duration while in OFF cells the changes were more modest. The maximum ratio of ON versus OFF responses occurred at a duration of ~10 ms. The difference in response strength for BT versus BS cells was much larger in ON cells than in OFF cells. Significance. The stimulation rates preferred by subjects during clinical trials are similar to the rates that maximize the ON/OFF response ratio in in vitro testing (Im and Fried 2016a J. Neural Eng. 13 025002). Here, we determine the stimulus duration that produces the strongest bias towards ON responses and speculate that it will further enhance clinical effectiveness.

  6. Electrophysiological evidence for phenomenal consciousness.

    PubMed

    Revonsuo, Antti; Koivisto, Mika

    2010-09-01

    Abstract Recent evidence from event-related brain potentials (ERPs) lends support to two central theses in Lamme's theory. The earliest ERP correlate of visual consciousness appears over posterior visual cortex around 100-200 ms after stimulus onset. Its scalp topography and time window are consistent with recurrent processing in the visual cortex. This electrophysiological correlate of visual consciousness is mostly independent of later ERPs reflecting selective attention and working memory functions. Overall, the ERP evidence supports the view that phenomenal consciousness of a visual stimulus emerges earlier than access consciousness, and that attention and awareness are served by distinct neural processes.

  7. Band limited chirp stimulation in vestibular evoked myogenic potentials.

    PubMed

    Walther, Leif Erik; Cebulla, Mario

    2016-10-01

    Air conducted vestibular evoked myogenic potentials (VEMP) can be elicited by various low frequency and intense sound stimuli, mainly clicks or short tone bursts (STB). Chirp stimuli are increasingly used in diagnostic audiological evaluations as an effective means to obtain acoustically evoked responses in narrowed or extended frequency ranges. We hypothesized in this study that band limited chirp stimulation, which covers the main sensitivity range of sound sensitive otolithic afferents (around 500 Hz), might be useful for application in cervical and ocular VEMP to air conduction. For this purpose we designed a chirp stimulus ranging 250-1000 Hz (up chirp). The chirp stimulus was delivered with a stimulus intensity of 100 dB nHL in normal subjects (n = 10) and patients with otolith involvement (vestibular neuritis) (n = 6). Amplitudes of the designed chirp ("CW-VEMP-chirp, 250-1000 Hz") were compared with amplitudes of VEMPs evoked by click stimuli (0.1 ms) and a short tone burst (STB, 1-2-1, 8 ms, 500 Hz). CVEMPs and oVEMPs were detectable in 9 of 10 normal individuals. Statistical evaluation in healthy patients revealed significantly larger cVEMP and oVEMP amplitudes for CW-VEMP-chirp (250-1000 Hz) stimuli. CVEMP amplitudes evoked by CW-VEMP-chirp (250-1000 Hz) showed a high stability in comparison with click and STB stimulation. CW-VEMP-chirp (250-1000 Hz) showed abnormal cVEMP and oVEMP amplitudes in patients with vestibular neuritis, with the same properties as click and STB stimulated VEMPs. We conclude that the designed CW-VEMP-chirp (250-1000 Hz) is an effective stimulus which can be further used in VEMP diagnostic. Since a chirp stimulus can be easily varied in its properties, in particular with regard to frequency, this might be a promising tool for further investigations.

  8. Subliminal and Supraliminal Processing of Facial Expression of Emotions: Brain Oscillation in the Left/Right Frontal Area

    PubMed Central

    Balconi, Michela; Ferrari, Chiara

    2012-01-01

    The unconscious effects of an emotional stimulus have been highlighted by a vast amount of research, whereover it remains questionable whether it is possible to assign a specific function to cortical brain oscillations in the unconscious perception of facial expressions of emotions. Alpha band variation was monitored within the right- and left-cortical side when subjects consciously (supraliminal stimulation) or unconsciously (subliminal stimulation) processed facial patterns. Twenty subjects looked at six facial expressions of emotions (anger, fear, surprise, disgust, happiness, sadness, and neutral) under two different conditions: supraliminal (200 ms) vs. subliminal (30 ms) stimulation (140 target-mask pairs for each condition). The results showed that conscious/unconscious processing and the significance of the stimulus can modulate the alpha power. Moreover, it was found that there was an increased right frontal activity for negative emotions vs. an increased left response for positive emotion. The significance of facial expressions was adduced to elucidate cortical different responses to emotional types. PMID:24962767

  9. Body image concern and selective attention to disgusting and non-self appearance-related stimuli.

    PubMed

    Onden-Lim, Melissa; Wu, Ray; Grisham, Jessica R

    2012-09-01

    Although selective attention to one's own appearance has been widely documented in studies of body dysmorphic disorder (BDD), little is known about attentional bias toward non-self appearance-related stimuli in BDD. Furthermore, despite reports of heightened experience of disgust in BDD, it is unknown whether these individuals differentially attend to disgusting stimuli and whether disgust is important in processing of unattractive stimuli. We used a dot probe procedure to investigate the relationship between dysmorphic concern, a defining feature of BDD, and selective attention to faces, attractive, unattractive and disgusting images in a female heterosexual student population (N=92). At the long stimulus presentation (1000 ms), dysmorphic concern was positively associated with attention to faces in general and attractive appearance-related images. In contrast, at the short stimulus presentation (200 ms), there was a positive association between dysmorphic concern and disgusting images. Implications for theoretical models of BDD are discussed. Copyright © 2012. Published by Elsevier Ltd.

  10. Associative and semantic priming effects occur at very short stimulus-onset asynchronies in lexical decision and naming.

    PubMed

    Perea, M; Gotor, A

    1997-02-01

    Prior research has found significant associative/semantic priming effects at very short stimulus-onset asynchronies (SOAs) in experimental tasks such as lexical decision, but not in naming tasks (however, see Lukatela and Turvey, 1994). In this paper, the time course of associative priming effects was analyzed a several very short SOAs (33, 50, and 67 ms), using the masked priming paradigm (Forster and Davis, 1984), both in lexical decision (Experiment 1) and naming (Experiment 2). The results show small--but significant--associative priming effects in both tasks. Additionally, using the masked priming procedure at the 67 ms SOA. Experiments 3 and 4, shows facilitatory priming effects for both associatively and semantically (unassociated) related pairs in lexical decision and naming tasks. That is, automatic priming can be semantic. Taken together our data appear to support interactive models of word recognition in which semantic activation may influence the early stages of word processing.

  11. Ultrafast endocytosis at mouse hippocampal synapses

    NASA Astrophysics Data System (ADS)

    Watanabe, Shigeki; Rost, Benjamin R.; Camacho-Pérez, Marcial; Davis, M. Wayne; Söhl-Kielczynski, Berit; Rosenmund, Christian; Jorgensen, Erik M.

    2013-12-01

    To sustain neurotransmission, synaptic vesicles and their associated proteins must be recycled locally at synapses. Synaptic vesicles are thought to be regenerated approximately 20s after fusion by the assembly of clathrin scaffolds or in approximately 1s by the reversal of fusion pores via `kiss-and-run' endocytosis. Here we use optogenetics to stimulate cultured hippocampal neurons with a single stimulus, rapidly freeze them after fixed intervals and examine the ultrastructure using electron microscopy--`flash-and-freeze' electron microscopy. Docked vesicles fuse and collapse into the membrane within 30ms of the stimulus. Compensatory endocytosis occurs within 50 to 100ms at sites flanking the active zone. Invagination is blocked by inhibition of actin polymerization, and scission is blocked by inhibiting dynamin. Because intact synaptic vesicles are not recovered, this form of recycling is not compatible with kiss-and-run endocytosis; moreover, it is 200-fold faster than clathrin-mediated endocytosis. It is likely that `ultrafast endocytosis' is specialized to restore the surface area of the membrane rapidly.

  12. Subliminal and supraliminal processing of facial expression of emotions: brain oscillation in the left/right frontal area.

    PubMed

    Balconi, Michela; Ferrari, Chiara

    2012-03-26

    The unconscious effects of an emotional stimulus have been highlighted by a vast amount of research, whereover it remains questionable whether it is possible to assign a specific function to cortical brain oscillations in the unconscious perception of facial expressions of emotions. Alpha band variation was monitored within the right- and left-cortical side when subjects consciously (supraliminal stimulation) or unconsciously (subliminal stimulation) processed facial patterns. Twenty subjects looked at six facial expressions of emotions (anger, fear, surprise, disgust, happiness, sadness, and neutral) under two different conditions: supraliminal (200 ms) vs. subliminal (30 ms) stimulation (140 target-mask pairs for each condition). The results showed that conscious/unconscious processing and the significance of the stimulus can modulate the alpha power. Moreover, it was found that there was an increased right frontal activity for negative emotions vs. an increased left response for positive emotion. The significance of facial expressions was adduced to elucidate cortical different responses to emotional types.

  13. Ambiguous Figures – What Happens in the Brain When Perception Changes But Not the Stimulus

    PubMed Central

    Kornmeier, Jürgen; Bach, Michael

    2011-01-01

    During observation of ambiguous figures our perception reverses spontaneously although the visual information stays unchanged. Research on this phenomenon so far suffered from the difficulty to determine the instant of the endogenous reversals with sufficient temporal precision. A novel experimental paradigm with discontinuous stimulus presentation improved on previous temporal estimates of the reversal event by a factor of three. It revealed that disambiguation of ambiguous visual information takes roughly 50 ms or two loops of recurrent neural activity. Further, the decision about the perceptual outcome has taken place at least 340 ms before the observer is able to indicate the consciously perceived reversal manually. We provide a short review about physiological studies on multistable perception with a focus on electrophysiological data. We further present a new perspective on multistable perception that can easily integrate previous apparently contradicting explanatory approaches. Finally we propose possible extensions toward other research fields where ambiguous figure perception may be useful as an investigative tool. PMID:22461773

  14. Objective measurement of subjective tinnitus using the acoustic change complex.

    PubMed

    Han, Ji-Hye; Won, Joong Yeon; Hong, Sung Kwang; Kim, Ja Hee; Kim, Eun Soo; Kim, Hyung-Jong; Lee, Hyo-Jeong

    2017-01-01

    At present, there is no objective method for diagnosing subjective sensorineural tinnitus. Recently, the acoustic change complex (ACC) has been used to evaluate neural detection of sounds. Thus, the present study aimed to examine whether the ACC can reflect cortical detection and discrimination of sounds matched with tinnitus frequencies. We hypothesized that the ACC to change stimuli matched with tinnitus frequencies would be decreased in tinnitus patients because the tinnitus interferes with the perception of acoustic changes. To test the hypothesis, 96 ears of normal-hearing (NH) tinnitus patients and controls were tested. Among the tinnitus patients, 33 ears with a tinnitus frequency of 8 kHz constituted the tinnitus group, and the remaining 63 ears with no experience of tinnitus were allocated to the control group. For the 4 kHz non-tinnitus matched frequency, a subset of tinnitus (n = 17) and NH (n = 47) subjects was tested. The acoustic stimuli were pure tones with a total duration of 500 ms consisting of a 1 kHz tone in the first 250 ms and a second tone of either 8 kHz or 4 kHz in the latter 250 ms. The normalized amplitude of the ACC (naACC) was calculated separately for the amplitude of the N1'-P2' complex evoked by an 8 kHz or 4 kHz change stimulus and for the amplitude of the N1-P2 complex elicited by the initial 1 kHz background stimulus. Our results showed that the naACC to an 8 kHz stimulus in the tinnitus group was significantly smaller than those to 4 kHz and 8 kHz in normal controls. Additionally, in the tinnitus group, the naACC to 4 kHz was greater compared to 8 kHz. The receiver operating characteristic (ROC) curve analysis conducted for naACC to 8 kHz at UCL revealed a fair degree of diagnostic efficacy. Overall, our results indicated that the ACC to a change stimulus matched with the tinnitus frequency can provide an objective measure of frequency-specific tinnitus.

  15. Vestibular-dependent inter-stimulus interval effects on sound evoked potentials of central origin.

    PubMed

    Todd, N P M; Govender, S; Colebatch, J G

    2016-11-01

    Todd et al. (2014ab) have recently demonstrated the presence of vestibular-dependent contributions to auditory evoked potentials (AEPs) when passing through the vestibular threshold as determined by vestibular evoked myogenic potentials (VEMPs), including a particular deflection labeled as an N42/P52 prior to the long-latency AEPs N1 and P2. In this paper we report the results of an experiment to determine the effect of inter-stimulus interval (ISI) and regularity on potentials recorded above and below VEMP threshold. Five healthy, right-handed subjects were recruited and evoked potentials were recorded to binaurally presented sound stimulation, above and below vestibular threshold, at seven stimulus rates with ISIs of 212, 300, 424, 600, 848, 1200 and 1696 ms. The inner five intervals, i.e. 300, 424, 600, 848, 1200 ms, were presented twice in both regular and irregular conditions. ANOVA on the global field power (GFP) were conducted for each of four waves, N42, P52, N1 and P2 with factors of intensity, ISI and regularity. Both N42 and P52 waves showed significant ANOVA effects of intensity but no other main effects or interactions. In contrast both N1 and P2 showed additional effects of ISI, as well as intensity, and evidence of non-linear interactions between ISI and intensity. A source analysis was carried out consistent with prior work suggesting that when above vestibular threshold, in addition to bilateral superior temporal cortex, ocular, cerebellar and cingulate sources are recruited. Further statistical analysis of the source currents indicated that the origin of the interactions with intensity may be the ISI sensitivity of the vestibular-dependent sources. This in turn may reflect a specific vestibular preference for stimulus rates associated with locomotion, i.e. rates close to 2 Hz, or ISIs close to 500 ms, where saccular afferents show increased gain and the corresponding reflexes are most sensitive. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Objective measurement of subjective tinnitus using the acoustic change complex

    PubMed Central

    Han, Ji-Hye; Won, Joong Yeon; Hong, Sung Kwang; Kim, Ja Hee; Kim, Eun Soo; Kim, Hyung-Jong

    2017-01-01

    At present, there is no objective method for diagnosing subjective sensorineural tinnitus. Recently, the acoustic change complex (ACC) has been used to evaluate neural detection of sounds. Thus, the present study aimed to examine whether the ACC can reflect cortical detection and discrimination of sounds matched with tinnitus frequencies. We hypothesized that the ACC to change stimuli matched with tinnitus frequencies would be decreased in tinnitus patients because the tinnitus interferes with the perception of acoustic changes. To test the hypothesis, 96 ears of normal-hearing (NH) tinnitus patients and controls were tested. Among the tinnitus patients, 33 ears with a tinnitus frequency of 8 kHz constituted the tinnitus group, and the remaining 63 ears with no experience of tinnitus were allocated to the control group. For the 4 kHz non-tinnitus matched frequency, a subset of tinnitus (n = 17) and NH (n = 47) subjects was tested. The acoustic stimuli were pure tones with a total duration of 500 ms consisting of a 1 kHz tone in the first 250 ms and a second tone of either 8 kHz or 4 kHz in the latter 250 ms. The normalized amplitude of the ACC (naACC) was calculated separately for the amplitude of the N1’-P2’ complex evoked by an 8 kHz or 4 kHz change stimulus and for the amplitude of the N1-P2 complex elicited by the initial 1 kHz background stimulus. Our results showed that the naACC to an 8 kHz stimulus in the tinnitus group was significantly smaller than those to 4 kHz and 8 kHz in normal controls. Additionally, in the tinnitus group, the naACC to 4 kHz was greater compared to 8 kHz. The receiver operating characteristic (ROC) curve analysis conducted for naACC to 8 kHz at UCL revealed a fair degree of diagnostic efficacy. Overall, our results indicated that the ACC to a change stimulus matched with the tinnitus frequency can provide an objective measure of frequency-specific tinnitus. PMID:29176873

  17. Distinct cortical codes and temporal dynamics for conscious and unconscious percepts

    PubMed Central

    Salti, Moti; Monto, Simo; Charles, Lucie; King, Jean-Remi; Parkkonen, Lauri; Dehaene, Stanislas

    2015-01-01

    The neural correlates of consciousness are typically sought by comparing the overall brain responses to perceived and unperceived stimuli. However, this comparison may be contaminated by non-specific attention, alerting, performance, and reporting confounds. Here, we pursue a novel approach, tracking the neuronal coding of consciously and unconsciously perceived contents while keeping behavior identical (blindsight). EEG and MEG were recorded while participants reported the spatial location and visibility of a briefly presented target. Multivariate pattern analysis demonstrated that considerable information about spatial location traverses the cortex on blindsight trials, but that starting ≈270 ms post-onset, information unique to consciously perceived stimuli, emerges in superior parietal and superior frontal regions. Conscious access appears characterized by the entry of the perceived stimulus into a series of additional brain processes, each restricted in time, while the failure of conscious access results in the breaking of this chain and a subsequent slow decay of the lingering unconscious activity. DOI: http://dx.doi.org/10.7554/eLife.05652.001 PMID:25997100

  18. Timing, timing, timing: Fast decoding of object information from intracranial field potentials in human visual cortex

    PubMed Central

    Liu, Hesheng; Agam, Yigal; Madsen, Joseph R.; Kreiman, Gabriel

    2010-01-01

    Summary The difficulty of visual recognition stems from the need to achieve high selectivity while maintaining robustness to object transformations within hundreds of milliseconds. Theories of visual recognition differ in whether the neuronal circuits invoke recurrent feedback connections or not. The timing of neurophysiological responses in visual cortex plays a key role in distinguishing between bottom-up and top-down theories. Here we quantified at millisecond resolution the amount of visual information conveyed by intracranial field potentials from 912 electrodes in 11 human subjects. We could decode object category information from human visual cortex in single trials as early as 100 ms post-stimulus. Decoding performance was robust to depth rotation and scale changes. The results suggest that physiological activity in the temporal lobe can account for key properties of visual recognition. The fast decoding in single trials is compatible with feed-forward theories and provides strong constraints for computational models of human vision. PMID:19409272

  19. Multiple effects of sentential constraint on word processing

    PubMed Central

    Federmeier, Kara D.; Wlotko, Edward W.; De Ochoa-Dewald, Esmeralda; Kutas, Marta

    2009-01-01

    Behavioral and electrophysiological studies have uncovered different patterns of constraint effects on the processing of words in sentences. Whereas response time measures have indicated a reduced scope of facilitation from strongly constraining contexts, event-related brain potential (ERP) measures have instead revealed enhanced facilitation for semantically related endings in such sentences. Given this disparity, and the concomitant possibility of functionally separable stages of context effects, the current study jointly examined expectancy (cloze probability) and constraint effects on the ERP response to words. Expected and unexpected (but plausible) words completed strongly and weakly constraining sentences; unexpected items were matched for contextual fit across the two levels of constraint and were semantically unrelated to the most expected endings. N400 amplitudes were graded by expectancy but unaffected by constraint and seemed to index the benefit of contextual information. However, a later effect, in the form of increased frontal positivity from 500 to 900 ms post-stimulus-onset, indicated a possible cost associated with the processing of unexpected words in strongly constraining contexts. PMID:16901469

  20. A neural signature of the unique hues

    PubMed Central

    Forder, Lewis; Bosten, Jenny; He, Xun; Franklin, Anna

    2017-01-01

    Since at least the 17th century there has been the idea that there are four simple and perceptually pure “unique” hues: red, yellow, green, and blue, and that all other hues are perceived as mixtures of these four hues. However, sustained scientific investigation has not yet provided solid evidence for a neural representation that separates the unique hues from other colors. We measured event-related potentials elicited from unique hues and the ‘intermediate’ hues in between them. We find a neural signature of the unique hues 230 ms after stimulus onset at a post-perceptual stage of visual processing. Specifically, the posterior P2 component over the parieto-occipital lobe peaked significantly earlier for the unique than for the intermediate hues (Z = −2.9, p = 0.004). Having identified a neural marker for unique hues, fundamental questions about the contribution of neural hardwiring, language and environment to the unique hues can now be addressed. PMID:28186142

  1. Correlates of a single cortical action potential in the epidural EEG

    PubMed Central

    Teleńczuk, Bartosz; Baker, Stuart N; Kempter, Richard; Curio, Gabriel

    2015-01-01

    To identify the correlates of a single cortical action potential in surface EEG, we recorded simultaneously epidural EEG and single-unit activity in the primary somatosensory cortex of awake macaque monkeys. By averaging over EEG segments coincident with more than hundred thousand single spikes, we found short-lived (≈ 0.5 ms) triphasic EEG deflections dominated by high-frequency components > 800 Hz. The peak-to-peak amplitude of the grand-averaged spike correlate was 80 nV, which matched theoretical predictions, while single-neuron amplitudes ranged from 12 to 966 nV. Combining these estimates with post-stimulus-time histograms of single-unit responses to median-nerve stimulation allowed us to predict the shape of the evoked epidural EEG response and to estimate the number of contributing neurons. These findings establish spiking activity of cortical neurons as a primary building block of high-frequency epidural EEG, which thus can serve as a quantitative macroscopic marker of neuronal spikes. PMID:25554430

  2. Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data.

    PubMed

    Calhoun, V D; Adali, T; Pearlson, G D; Kiehl, K A

    2006-04-01

    Event-related potential (ERP) studies of the brain's response to infrequent, target (oddball) stimuli elicit a sequence of physiological events, the most prominent and well studied being a complex, the P300 (or P3) peaking approximately 300 ms post-stimulus for simple stimuli and slightly later for more complex stimuli. Localization of the neural generators of the human oddball response remains challenging due to the lack of a single imaging technique with good spatial and temporal resolution. Here, we use independent component analyses to fuse ERP and fMRI modalities in order to examine the dynamics of the auditory oddball response with high spatiotemporal resolution across the entire brain. Initial activations in auditory and motor planning regions are followed by auditory association cortex and motor execution regions. The P3 response is associated with brainstem, temporal lobe, and medial frontal activity and finally a late temporal lobe "evaluative" response. We show that fusing imaging modalities with different advantages can provide new information about the brain.

  3. Balanced bilinguals favor lexical processing in their opaque language and conversion system in their shallow language.

    PubMed

    Buetler, Karin A; de León Rodríguez, Diego; Laganaro, Marina; Müri, René; Nyffeler, Thomas; Spierer, Lucas; Annoni, Jean-Marie

    2015-11-01

    Referred to as orthographic depth, the degree of consistency of grapheme/phoneme correspondences varies across languages from high in shallow orthographies to low in deep orthographies. The present study investigates the impact of orthographic depth on reading route by analyzing evoked potentials to words in a deep (French) and shallow (German) language presented to highly proficient bilinguals. ERP analyses to German and French words revealed significant topographic modulations 240-280 ms post-stimulus onset, indicative of distinct brain networks engaged in reading over this time window. Source estimations revealed that these effects stemmed from modulations of left insular, inferior frontal and dorsolateral regions (German>French) previously associated to phonological processing. Our results show that reading in a shallow language was associated to a stronger engagement of phonological pathways than reading in a deep language. Thus, the lexical pathways favored in word reading are reinforced by phonological networks more strongly in the shallow than deep orthography. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Oligosynaptic inhibition of group Ia afferents from brachioradialis to triceps brachii motor neurons in humans.

    PubMed

    Sato, Toshiaki; Nito, Mitsuhiro; Suzuki, Katsuhiko; Fujii, Hiromi; Hashizume, Wataru; Miyasaka, Takuji; Shindo, Masaomi; Naito, Akira

    2018-01-01

    This study examines effects of low-threshold afferents from the brachioradialis (BR) on excitability of triceps brachii (TB) motor neurons in humans. We evaluated the effects using a post stimulus time histogram (PSTH) and electromyogram averaging (EMG-A) methods in 13 healthy human participants. Electrical conditioning stimulation to the radial nerve branch innervating BR with the intensity below the motor threshold was delivered. In the PSTH study, the stimulation produced a trough (inhibition) in 36/69 TB motor units for all the participants. A cutaneous stimulation never provoked such inhibition. The central latency of the inhibition was 1.5 ± 0.5 ms longer than that of the homonymous facilitation. In the EMG-A study, the stimulation produced inhibition in EMG-A of TB in all participants. The inhibition diminished with a tonic vibration stimulation to BR. These findings suggest that oligosynaptic inhibition mediated by group Ia afferents from BR to TB exists in humans. Muscle Nerve 57: 122-128, 2018. © 2017 Wiley Periodicals, Inc.

  5. Oscillatory brain dynamics associated with the automatic processing of emotion in words.

    PubMed

    Wang, Lin; Bastiaansen, Marcel

    2014-10-01

    This study examines the automaticity of processing the emotional aspects of words, and characterizes the oscillatory brain dynamics that accompany this automatic processing. Participants read emotionally negative, neutral and positive nouns while performing a color detection task in which only perceptual-level analysis was required. Event-related potentials and time frequency representations were computed from the concurrently measured EEG. Negative words elicited a larger P2 and a larger late positivity than positive and neutral words, indicating deeper semantic/evaluative processing of negative words. In addition, sustained alpha power suppressions were found for the emotional compared to neutral words, in the time range from 500 to 1000ms post-stimulus. These results suggest that sustained attention was allocated to the emotional words, whereas the attention allocated to the neutral words was released after an initial analysis. This seems to hold even when the emotional content of the words is task-irrelevant. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Temporal expectancy in the context of a theory of visual attention.

    PubMed

    Vangkilde, Signe; Petersen, Anders; Bundesen, Claus

    2013-10-19

    Temporal expectation is expectation with respect to the timing of an event such as the appearance of a certain stimulus. In this paper, temporal expectancy is investigated in the context of the theory of visual attention (TVA), and we begin by summarizing the foundations of this theoretical framework. Next, we present a parametric experiment exploring the effects of temporal expectation on perceptual processing speed in cued single-stimulus letter recognition with unspeeded motor responses. The length of the cue-stimulus foreperiod was exponentially distributed with one of six hazard rates varying between blocks. We hypothesized that this manipulation would result in a distinct temporal expectation in each hazard rate condition. Stimulus exposures were varied such that both the temporal threshold of conscious perception (t0 ms) and the perceptual processing speed (v letters s(-1)) could be estimated using TVA. We found that the temporal threshold t0 was unaffected by temporal expectation, but the perceptual processing speed v was a strikingly linear function of the logarithm of the hazard rate of the stimulus presentation. We argue that the effects on the v values were generated by changes in perceptual biases, suggesting that our perceptual biases are directly related to our temporal expectations.

  7. Atypical auditory refractory periods in children from lower socio-economic status backgrounds: ERP evidence for a role of selective attention.

    PubMed

    Stevens, Courtney; Paulsen, David; Yasen, Alia; Neville, Helen

    2015-02-01

    Previous neuroimaging studies indicate that lower socio-economic status (SES) is associated with reduced effects of selective attention on auditory processing. Here, we investigated whether lower SES is also associated with differences in a stimulus-driven aspect of auditory processing: the neural refractory period, or reduced amplitude response at faster rates of stimulus presentation. Thirty-two children aged 3 to 8 years participated, and were divided into two SES groups based on maternal education. Event-related brain potentials were recorded to probe stimuli presented at interstimulus intervals (ISIs) of 200, 500, or 1000 ms. These probes were superimposed on story narratives when attended and ignored, permitting a simultaneous experimental manipulation of selective attention. Results indicated that group differences in refractory periods differed as a function of attention condition. Children from higher SES backgrounds showed full neural recovery by 500 ms for attended stimuli, but required at least 1000 ms for unattended stimuli. In contrast, children from lower SES backgrounds showed similar refractory effects to attended and unattended stimuli, with full neural recovery by 500 ms. Thus, in higher SES children only, one functional consequence of selective attention is attenuation of the response to unattended stimuli, particularly at rapid ISIs, altering basic properties of the auditory refractory period. Together, these data indicate that differences in selective attention impact basic aspects of auditory processing in children from lower SES backgrounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The contribution of perceptual factors and training on varying audiovisual integration capacity.

    PubMed

    Wilbiks, Jonathan M P; Dyson, Benjamin J

    2018-06-01

    The suggestion that the capacity of audiovisual integration has an upper limit of 1 was challenged in 4 experiments using perceptual factors and training to enhance the binding of auditory and visual information. Participants were required to note a number of specific visual dot locations that changed in polarity when a critical auditory stimulus was presented, under relatively fast (200-ms stimulus onset asynchrony [SOA]) and slow (700-ms SOA) rates of presentation. In Experiment 1, transient cross-modal congruency between the brightness of polarity change and pitch of the auditory tone was manipulated. In Experiment 2, sustained chunking was enabled on certain trials by connecting varying dot locations with vertices. In Experiment 3, training was employed to determine if capacity would increase through repeated experience with an intermediate presentation rate (450 ms). Estimates of audiovisual integration capacity (K) were larger than 1 during cross-modal congruency at slow presentation rates (Experiment 1), during perceptual chunking at slow and fast presentation rates (Experiment 2), and, during an intermediate presentation rate posttraining (Experiment 3). Finally, Experiment 4 showed a linear increase in K using SOAs ranging from 100 to 600 ms, suggestive of quantitative rather than qualitative changes in the mechanisms in audiovisual integration as a function of presentation rate. The data compromise the suggestion that the capacity of audiovisual integration is limited to 1 and suggest that the ability to bind sounds to sights is contingent on individual and environmental factors. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. Muscle activation and the isokinetic torque-velocity relationship of the human triceps surae.

    PubMed

    Harridge, S D; White, M J

    1993-01-01

    The influence of muscle activation and the time allowed for torque generation on the angle-specific torque-velocity relationship of the triceps surae was studied during plantar flexion using supramaximal electrical stimulation and a release technique on six male subjects [mean (SD) age 25 (4) years]. Torque-velocity data were obtained under different levels of constant muscle activation by varying the stimulus frequency and the time allowed for isometric torque generation prior to release and isokinetic shortening. To eliminate the effects of the frequency response on absolute torque the isokinetic data were normalized to the maximum isometric torque values at 0.44 rad. There were no significant differences in the normalized torques generated at any angular velocity using stimulus frequencies of 20, 50 or 80 Hz. When the muscle was stimulated at 50 Hz the torques obtained after a 400 ms and 1 s pre-release isometric contraction did not differ significantly. However, with no pre-release contraction significantly less torque was generated at all angular velocities beyond 1.05 rad.s-1 when compared with either the 200, 400 ms or 1 s condition. With a 200 ms pre-release contraction significantly less torque was generated at angular velocities beyond 1.05 rad.s-1 when compared with the 400 ms or 1 s conditions. It would seem that the major factor governing the shape of the torque-velocity curve at a constant level of muscle activation is the time allowed for torque generation.

  10. The influence of iris color on the pupillary light reflex.

    PubMed

    Bergamin, O; Schoetzau, A; Sugimoto, K; Zulauf, M

    1998-08-01

    This study was carried out to investigate the effect of iris color on the pupillary light reflex (PLR) in normal healthy volunteers. Pupil perimetry was performed on 50 healthy volunteers with the Octopus 1-2-3 automated perimeter. Within the 30-deg visual field, 33 test locations were investigated four times. Stimulus parameters were Goldmann size V (1.72 degrees), intensity 1632 cd/m2, stimulus time 200 ms, background illumination 0 cd/m2, and interstimulus interval 3 s. Pupillometric parameters studied were initial pupil size, amplitude (magnitude of pupillary contraction), latency time, contraction time, pre-PLR movement, contraction velocity, and redilation velocity. Pupillometric parameters were investigated by analysis of variance by the independent variables blue and brown irides. Iris color (blue vs brown) influenced statistically significantly (P < 0.05) amplitude (0.504 mm vs 0.594 mm), contraction time (401 ms vs 407 ms), contraction velocity (13.75 mm2/s vs 16.01 mm2/s), and redilation velocity (4.80 mm2/s vs 5.66 mm2/s). Iris color did not influence initial pupil size (4.78 mm vs 4.83 mm), latency time (520 mm vs 521 ms), and pre-PLR movement (0.328 mm2/s vs 0.325 mm2/s). Pupillary contraction amplitude and velocity depended on iris color, whereas pupil size and latency time were independent of iris color. Therefore, iris color might be considered when, evaluating pupillary movements in pupil perimetry.

  11. Eye coding mechanisms in early human face event-related potentials.

    PubMed

    Rousselet, Guillaume A; Ince, Robin A A; van Rijsbergen, Nicola J; Schyns, Philippe G

    2014-11-10

    In humans, the N170 event-related potential (ERP) is an integrated measure of cortical activity that varies in amplitude and latency across trials. Researchers often conjecture that N170 variations reflect cortical mechanisms of stimulus coding for recognition. Here, to settle the conjecture and understand cortical information processing mechanisms, we unraveled the coding function of N170 latency and amplitude variations in possibly the simplest socially important natural visual task: face detection. On each experimental trial, 16 observers saw face and noise pictures sparsely sampled with small Gaussian apertures. Reverse-correlation methods coupled with information theory revealed that the presence of the eye specifically covaries with behavioral and neural measurements: the left eye strongly modulates reaction times and lateral electrodes represent mainly the presence of the contralateral eye during the rising part of the N170, with maximum sensitivity before the N170 peak. Furthermore, single-trial N170 latencies code more about the presence of the contralateral eye than N170 amplitudes and early latencies are associated with faster reaction times. The absence of these effects in control images that did not contain a face refutes alternative accounts based on retinal biases or allocation of attention to the eye location on the face. We conclude that the rising part of the N170, roughly 120-170 ms post-stimulus, is a critical time-window in human face processing mechanisms, reflecting predominantly, in a face detection task, the encoding of a single feature: the contralateral eye. © 2014 ARVO.

  12. Linguistic category structure influences early auditory processing: Converging evidence from mismatch responses and cortical oscillations.

    PubMed

    Scharinger, Mathias; Monahan, Philip J; Idsardi, William J

    2016-03-01

    While previous research has established that language-specific knowledge influences early auditory processing, it is still controversial as to what aspects of speech sound representations determine early speech perception. Here, we propose that early processing primarily depends on information propagated top-down from abstractly represented speech sound categories. In particular, we assume that mid-vowels (as in 'bet') exert less top-down effects than the high-vowels (as in 'bit') because of their less specific (default) tongue height position as compared to either high- or low-vowels (as in 'bat'). We tested this assumption in a magnetoencephalography (MEG) study where we contrasted mid- and high-vowels, as well as the low- and high-vowels in a passive oddball paradigm. Overall, significant differences between deviants and standards indexed reliable mismatch negativity (MMN) responses between 200 and 300ms post-stimulus onset. MMN amplitudes differed in the mid/high-vowel contrasts and were significantly reduced when a mid-vowel standard was followed by a high-vowel deviant, extending previous findings. Furthermore, mid-vowel standards showed reduced oscillatory power in the pre-stimulus beta-frequency band (18-26Hz), compared to high-vowel standards. We take this as converging evidence for linguistic category structure to exert top-down influences on auditory processing. The findings are interpreted within the linguistic model of underspecification and the neuropsychological predictive coding framework. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Predictive cues for auditory stream formation in humans and monkeys.

    PubMed

    Aggelopoulos, Nikolaos C; Deike, Susann; Selezneva, Elena; Scheich, Henning; Brechmann, André; Brosch, Michael

    2017-12-18

    Auditory perception is improved when stimuli are predictable, and this effect is evident in a modulation of the activity of neurons in the auditory cortex as shown previously. Human listeners can better predict the presence of duration deviants embedded in stimulus streams with fixed interonset interval (isochrony) and repeated duration pattern (regularity), and neurons in the auditory cortex of macaque monkeys have stronger sustained responses in the 60-140 ms post-stimulus time window under these conditions. Subsequently, the question has arisen whether isochrony or regularity in the sensory input contributed to the enhancement of the neuronal and behavioural responses. Therefore, we varied the two factors isochrony and regularity independently and measured the ability of human subjects to detect deviants embedded in these sequences as well as measuring the responses of neurons the primary auditory cortex of macaque monkeys during presentations of the sequences. The performance of humans in detecting deviants was significantly increased by regularity. Isochrony enhanced detection only in the presence of the regularity cue. In monkeys, regularity increased the sustained component of neuronal tone responses in auditory cortex while isochrony had no consistent effect. Although both regularity and isochrony can be considered as parameters that would make a sequence of sounds more predictable, our results from the human and monkey experiments converge in that regularity has a greater influence on behavioural performance and neuronal responses. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Two-tone suppression in the cricket, Eunemobius carolinus (Gryllidae, Nemobiinae)

    NASA Astrophysics Data System (ADS)

    Farris, Hamilton E.; Hoy, Ronald R.

    2002-03-01

    Sounds with frequencies >15 kHz elicit an acoustic startle response (ASR) in flying crickets (Eunemobius carolinus). Although frequencies <15 kHz do not elicit the ASR when presented alone, when presented with ultrasound (40 kHz), low-frequency stimuli suppress the ultrasound-induced startle. Thus, using methods similar to those in masking experiments, we used two-tone suppression to assay sensitivity to frequencies in the audio band. Startle suppression was tuned to frequencies near 5 kHz, the frequency range of male calling songs. Similar to equal loudness contours measured in humans, however, equal suppression contours were not parallel, as the equivalent rectangular bandwidth of suppression tuning changed with increases in ultrasound intensity. Temporal integration of suppressor stimuli was measured using nonsimultaneous presentations of 5-ms pulses of 6 and 40 kHz. We found that no suppression occurs when the suppressing tone is >2 ms after and >5 ms before the ultrasound stimulus, suggesting that stimulus overlap is a requirement for suppression. When considered together with our finding that the intensity of low-frequency stimuli required for suppression is greater than that produced by singing males, the overlap requirement suggests that two-tone suppression functions to limit the ASR to sounds containing only ultrasound and not to broadband sounds that span the audio and ultrasound range.

  15. The spatial reliability of task-irrelevant sounds modulates bimodal audiovisual integration: An event-related potential study.

    PubMed

    Li, Qi; Yu, Hongtao; Wu, Yan; Gao, Ning

    2016-08-26

    The integration of multiple sensory inputs is essential for perception of the external world. The spatial factor is a fundamental property of multisensory audiovisual integration. Previous studies of the spatial constraints on bimodal audiovisual integration have mainly focused on the spatial congruity of audiovisual information. However, the effect of spatial reliability within audiovisual information on bimodal audiovisual integration remains unclear. In this study, we used event-related potentials (ERPs) to examine the effect of spatial reliability of task-irrelevant sounds on audiovisual integration. Three relevant ERP components emerged: the first at 140-200ms over a wide central area, the second at 280-320ms over the fronto-central area, and a third at 380-440ms over the parieto-occipital area. Our results demonstrate that ERP amplitudes elicited by audiovisual stimuli with reliable spatial relationships are larger than those elicited by stimuli with inconsistent spatial relationships. In addition, we hypothesized that spatial reliability within an audiovisual stimulus enhances feedback projections to the primary visual cortex from multisensory integration regions. Overall, our findings suggest that the spatial linking of visual and auditory information depends on spatial reliability within an audiovisual stimulus and occurs at a relatively late stage of processing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. High-frequency gamma activity (80-150 Hz) is increased in human cortex during selective attention

    PubMed Central

    Ray, Supratim; Niebur, Ernst; Hsiao, Steven S.; Sinai, Alon; Crone, Nathan E.

    2008-01-01

    Objective: To study the role of gamma oscillations (>30 Hz) in selective attention using subdural electrocorticography (ECoG) in humans. Methods: We recorded ECoG in human subjects implanted with subdural electrodes for epilepsy surgery. Sequences of auditory tones and tactile vibrations of 800 ms duration were presented asynchronously, and subjects were asked to selectively attend to one of the two stimulus modalities in order to detect an amplitude increase at 400 ms in some of the stimuli. Results: Event-related ECoG gamma activity was greater over auditory cortex when subjects attended auditory stimuli and was greater over somatosensory cortex when subjects attended vibrotactile stimuli. Furthermore, gamma activity was also observed over prefrontal cortex when stimuli appeared in either modality, but only when they were attended. Attentional modulation of gamma power began ∼400 ms after stimulus onset, consistent with the temporal demands on attention. The increase in gamma activity was greatest at frequencies between 80 and 150 Hz, in the so-called high gamma frequency range. Conclusions: There appears to be a strong link between activity in the high-gamma range (80-150 Hz) and selective attention. Significance: Selective attention is correlated with increased activity in a frequency range that is significantly higher than what has been reported previously using EEG recordings. PMID:18037343

  17. [Postsynaptic reactions of cerebral cortex neurons, activated by nociceptive afferents during stimulation of the Raphe nuclei].

    PubMed

    Labakhua, T Sh; Dzhanashiia, T K; Gedevanishvili, G I; Dzhokhadze, L D; Tkemaladze, T T; Abzianidze, I V

    2012-01-01

    On cats, we studied the influence of stimulation of the Raphe nuclei (RN) on postsynaptic processes evoked in neurons of the somatosensory cortex by stimulation of nociceptive (intensive stimulation of the tooth pulp) and non-nociceptive (moderate stimulation of the ventroposteromedial--VPN--nucleus of the thalamus) afferent inputs. 6 cells, selectively excited by stimulation of nocciceptors and 9 cells, activated by both the above nociceptive and non-nociceptive influences (nociceptive and convergent neurons, respectively) were recorded intracellular. In neurons of both groups, responses to nociceptive stimulation (of sufficient intensity) looked like an EPSP-spike-IPSP (the letter of significant duration, up to 200-300 ms) compleх. Conditioning stimulation of the RN which preceded test stimulus applied to the tooth pulp or VPM nucleus by 100 to 800 ms, induced 40-60 % decrease of the IPSP amplitude only, while maхimal effect of influence, in both cases, was noted within intervals of 300-800 ms between conditioning and test stimulus. During stimulation of the RN, serotonin released via receptor and second messengers, provides postsynaptic modulation of GABAergic system, decreasing the IPSP amplitude which occurs after stimulation of both the tooth pulp and VPM thalamic nucleus. This process may be realized trough either pre- or postsynaptic mechanisms.

  18. The influence of prior experience and expected timing on vibrotactile discrimination

    PubMed Central

    Karim, Muhsin; Harris, Justin A.; Langdon, Angela; Breakspear, Michael

    2013-01-01

    Vibrotactile discrimination tasks involve perceptual judgements on stimulus pairs separated by a brief interstimulus interval (ISI). Despite their apparent simplicity, decision making during these tasks is biased by prior experience in a manner that is not well understood. A striking example is when participants perform well on trials where the first stimulus is closer to the mean of the stimulus-set than the second stimulus, and perform comparatively poorly when the first stimulus is further from the stimulus mean. This “time-order effect” suggests that participants implicitly encode the mean of the stimulus-set and use this internal standard to bias decisions on any given trial. For relatively short ISIs, the magnitude of the time-order effect typically increases with the distance of the first stimulus from the global mean. Working from the premise that the time-order effect reflects the loss of precision in working memory representations, we predicted that the influence of the time-order effect, and this superimposed “distance” effect, would monotonically increase for trials with longer ISIs. However, by varying the ISI across four intervals (300, 600, 1200, and 2400 ms) we instead found a complex, non-linear dependence of the time-order effect on both the ISI and the distance, with the time-order effect being paradoxically stronger at short ISIs. We also found that this relationship depended strongly on participants' prior experience of the ISI (from previous task titration). The time-order effect not only depends on participants' expectations concerning the distribution of stimuli, but also on the expected timing of the trials. PMID:24399927

  19. The neural dynamics of stimulus and response conflict processing as a function of response complexity and task demands

    PubMed Central

    Donohue, Sarah E.; Appelbaum, Lawrence G.; McKay, Cameron C.; Woldorff, Marty G.

    2016-01-01

    Both stimulus and response conflict can disrupt behavior by slowing response times and decreasing accuracy. Although several neural activations have been associated with conflict processing, it is unclear how specific any of these are to the type of stimulus conflict or the amount of response conflict. Here, we recorded electrical brain activity, while manipulating the type of stimulus conflict in the task (spatial [Flanker] versus semantic [Stroop]) and the amount of response conflict (two versus four response choices). Behaviorally, responses were slower to incongruent versus congruent stimuli across all task and response types, along with overall slowing for higher response-mapping complexity. The earliest incongruency-related neural effect was a short-duration frontally-distributed negativity at ~200 ms that was only present in the Flanker spatial-conflict task. At longer latencies, the classic fronto-central incongruency-related negativity ‘Ninc’ was observed for all conditions, which was larger and ~100 ms longer in duration with more response options. Further, the onset of the motor-related lateralized readiness potential (LRP) was earlier for the two vs. four response sets, indicating that smaller response sets enabled faster motor-response preparation. The late positive complex (LPC) was present in all conditions except the two-response Stroop task, suggesting this late conflict-related activity is not specifically related to task type or response-mapping complexity. Importantly, across tasks and conditions, the LRP onset at or before the conflict-related Ninc, indicating that motor preparation is a rapid, automatic process that interacts with the conflict-detection processes after it has begun. Together, these data highlight how different conflict-related processes operate in parallel and depend on both the cognitive demands of the task and the number of response options. PMID:26827917

  20. The precedence effect for lateralization at low sensation levels.

    PubMed

    Goverts, S T; Houtgast, T; van Beek, H H

    2000-10-01

    Using dichotic signals presented by headphone, stimulus onset dominance (the precedence effect) for lateralization at low sensation levels was investigated for five normal hearing subjects. Stimuli were based on 2400-Hz low pass filtered 5-ms noise bursts. We used the paradigm, as described by Aoki and Houtgast (Hear. Res., 59 (1992) 25-30) and Houtgast and Aoki (Hear. Res., 72 (1994) 29-36), in which the stimulus is divided into a leading and a lagging part with opposite lateralization cues (i.e. an interaural time delay of 0.2 ms). The occurrence of onset dominance was investigated by measuring lateral perception of the stimulus, with fixed equal duration of leading and lagging part, while decreasing absolute signal level or adding a filtered white noise with the signal level set at 65 dBA. The dominance of the leading part was quantified by measuring the perceived lateral position of the stimulus as a function of the relative duration of the leading (and thus the lagging) part. This was done at about 45 dB SL without masking noise and also at a signal-to-noise ratio resulting in a sensation level of 10 dB. The occurrence and strength of the precedence effect was found to depend on sensation level, which was decreased either by lowering the signal level or by adding noise. With the present paradigm, besides a decreased lateralization accuracy, a decrease in the precedence effect was found for sensation levels below about 30-40 dB. In daily-life conditions, with a sensation level in noise of typically 10 dB, the onset dominance was still manifest, albeit degraded to some extent.

  1. The neural dynamics of stimulus and response conflict processing as a function of response complexity and task demands.

    PubMed

    Donohue, Sarah E; Appelbaum, Lawrence G; McKay, Cameron C; Woldorff, Marty G

    2016-04-01

    Both stimulus and response conflict can disrupt behavior by slowing response times and decreasing accuracy. Although several neural activations have been associated with conflict processing, it is unclear how specific any of these are to the type of stimulus conflict or the amount of response conflict. Here, we recorded electrical brain activity, while manipulating the type of stimulus conflict in the task (spatial [Flanker] versus semantic [Stroop]) and the amount of response conflict (two versus four response choices). Behaviorally, responses were slower to incongruent versus congruent stimuli across all task and response types, along with overall slowing for higher response-mapping complexity. The earliest incongruency-related neural effect was a short-duration frontally-distributed negativity at ~200 ms that was only present in the Flanker spatial-conflict task. At longer latencies, the classic fronto-central incongruency-related negativity 'N(inc)' was observed for all conditions, but was larger and ~100 ms longer in duration with more response options. Further, the onset of the motor-related lateralized readiness potential (LRP) was earlier for the two vs. four response sets, indicating that smaller response sets enabled faster motor-response preparation. The late positive complex (LPC) was present in all conditions except the two-response Stroop task, suggesting this late conflict-related activity is not specifically related to task type or response-mapping complexity. Importantly, across tasks and conditions, the LRP onset at or before the conflict-related N(inc), indicating that motor preparation is a rapid, automatic process that interacts with the conflict-detection processes after it has begun. Together, these data highlight how different conflict-related processes operate in parallel and depend on both the cognitive demands of the task and the number of response options. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Exploring the oxidation and iron binding profile of a cyclodextrin encapsulated quercetin complex unveiled a controlled complex dissociation through a chemical stimulus.

    PubMed

    Diamantis, Dimitrios A; Ramesova, Sarka; Chatzigiannis, Christos M; Degano, Ilaria; Gerogianni, Paraskevi S; Karadima, Constantina; Perikleous, Sonia; Rekkas, Dimitrios; Gerothanassis, Ioannis P; Galaris, Dimitrios; Mavromoustakos, Thomas; Valsami, Georgia; Sokolova, Romana; Tzakos, Andreas G

    2018-06-07

    Flavonoids possess a rich polypharmacological profile and their biological role is linked to their oxidation state protecting DNA from oxidative stress damage. However, their bioavailability is hampered due to their poor aqueous solubility. This can be surpassed through encapsulation to supramolecular carriers as cyclodextrin (CD). A quercetin- 2HP-β-CD complex has been formerly reported by us. However, once the flavonoid is in its 2HP-β-CD encapsulated state its oxidation potential, its decomplexation mechanism, its potential to protect DNA damage from oxidative stress remained elusive. To unveil this, an array of biophysical techniques was used. The quercetin-2HP-β-CD complex was evaluated through solubility and dissolution experiments, electrochemical and spectroelectrochemical studies (Cyclic Voltammetry) UV-Vis spectroscopy, HPLC-ESI-MS/MS and HPLC-DAD, fluorescence spectroscopy, NMR Spectroscopy, theoretical calculations (density functional theory (DFT)) and biological evaluation of the protection offered against H 2 O 2 -induced DNA damage. Encapsulation of quercetin inside the supramolecule's cavity enhanced its solubility and oxidation profile is retained in its encapsulated state. Although the protective ability of the quercetin-2HP-β-CD complex against H 2 O 2 was diminished, iron serves as a chemical stimulus to dissociate the complex and release quercetin. We found that in a quercetin-2HP-β-CD inclusion complex quercetin retains its oxidation profile similarly to its native state, while iron can operate as a chemical stimulus to release quercetin from its host cavity. The oxidation profile of a natural product once it is encapsulated in a supramolecular cyclodextrin carrier as also it was discovered that decomplexation can be triggered by a chemical stimulus. Copyright © 2018. Published by Elsevier B.V.

  3. Functional analysis of ultra high information rates conveyed by rat vibrissal primary afferents

    PubMed Central

    Chagas, André M.; Theis, Lucas; Sengupta, Biswa; Stüttgen, Maik C.; Bethge, Matthias; Schwarz, Cornelius

    2013-01-01

    Sensory receptors determine the type and the quantity of information available for perception. Here, we quantified and characterized the information transferred by primary afferents in the rat whisker system using neural system identification. Quantification of “how much” information is conveyed by primary afferents, using the direct method (DM), a classical information theoretic tool, revealed that primary afferents transfer huge amounts of information (up to 529 bits/s). Information theoretic analysis of instantaneous spike-triggered kinematic stimulus features was used to gain functional insight on “what” is coded by primary afferents. Amongst the kinematic variables tested—position, velocity, and acceleration—primary afferent spikes encoded velocity best. The other two variables contributed to information transfer, but only if combined with velocity. We further revealed three additional characteristics that play a role in information transfer by primary afferents. Firstly, primary afferent spikes show preference for well separated multiple stimuli (i.e., well separated sets of combinations of the three instantaneous kinematic variables). Secondly, neurons are sensitive to short strips of the stimulus trajectory (up to 10 ms pre-spike time), and thirdly, they show spike patterns (precise doublet and triplet spiking). In order to deal with these complexities, we used a flexible probabilistic neuron model fitting mixtures of Gaussians to the spike triggered stimulus distributions, which quantitatively captured the contribution of the mentioned features and allowed us to achieve a full functional analysis of the total information rate indicated by the DM. We found that instantaneous position, velocity, and acceleration explained about 50% of the total information rate. Adding a 10 ms pre-spike interval of stimulus trajectory achieved 80–90%. The final 10–20% were found to be due to non-linear coding by spike bursts. PMID:24367295

  4. Human discrimination of visual direction of motion with and without smooth pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Krukowski, Anton E.; Pirog, Kathleen A.; Beutter, Brent R.; Brooks, Kevin R.; Stone, Leland S.

    2003-01-01

    It has long been known that ocular pursuit of a moving target has a major influence on its perceived speed (Aubert, 1886; Fleischl, 1882). However, little is known about the effect of smooth pursuit on the perception of target direction. Here we compare the precision of human visual-direction judgments under two oculomotor conditions (pursuit vs. fixation). We also examine the impact of stimulus duration (200 ms vs. 800 ms) and absolute direction (cardinal vs. oblique). Our main finding is that direction discrimination thresholds in the fixation and pursuit conditions are indistinguishable. Furthermore, the two oculomotor conditions showed oblique effects of similar magnitudes. These data suggest that the neural direction signals supporting perception are the same with or without pursuit, despite remarkably different retinal stimulation. During fixation, the stimulus information is restricted to large, purely peripheral retinal motion, while during steady-state pursuit, the stimulus information consists of small, unreliable foveal retinal motion and a large efference-copy signal. A parsimonious explanation of our findings is that the signal limiting the precision of direction judgments is a neural estimate of target motion in head-centered (or world-centered) coordinates (i.e., a combined retinal and eye motion signal) as found in the medial superior temporal area (MST), and not simply an estimate of retinal motion as found in the middle temporal area (MT).

  5. Stimulus dependent properties of mammalian cochlear hair cell mechanoelectrical transduction

    NASA Astrophysics Data System (ADS)

    Scharr, A. L.; Ricci, Anthony

    2018-05-01

    Cochlear hair cell stereocilia move semi-independently, shaping the force transfer to mechanoelectrical transduction (MET) channels, as indicated by the MET current response. Semi-independent movement of stereocilia was evoked by stimulating inner hair cell (IHC) bundles from acutely dissected rat cochlea with stiff probes ranging in size from 1 to 10 µm. MET current responses were recorded using whole-cell patch-clamp electrophysiology. Small probes directly displaced stereocilia they contacted, and recruited adjacent stereocilia depending on stimulus magnitude. We inferred that the recruitment of stereocilia resulted in less uniform and less synchronous movement. Step displacements using smaller probes resulted in smaller current responses (from 1 nA for large probes to 0.3 nA for small, p <.0001), slower rate of current activation, as measured from the linear portion (from 4 nA/ms to 1 nA/ms, p <.0001), slower time constants of adaptation, as measured from double exponential fits from peak to steady state current (fast component: from 0.6 to 1.2 ms, p =.004; slow component: from 8 ms to 12 ms, p =.001) and less complete adaptation (from 95% to 30%, p <.0001). These results indicate that the mechanical properties of less coherent bundles greatly affect force transfer to MET channels as indicated by the electrical response of the cell. Thus, outer hair cells (OHCs), with their bundles embedded in the tectorial membrane, may exhibit synchronous MET activation and therefore time-dependent adaptation where fast adaptation provides a high pass filter. Hair cells with free standing bundles, like inner hair cells (IHC), may exhibit more asynchronous MET activation and adaptation, in which case adaptation would not provide this additional filter.

  6. Negative, but not positive emotional images modulate the startle response independent of conscious awareness.

    PubMed

    Reagh, Zachariah M; Knight, David C

    2013-08-01

    The emotional response to a threat is influenced by the valence of other stimuli in the environment. This emotional modulation of the threat-elicited response occurs even when negative valence stimuli are not consciously perceived. Relatively little prior research has investigated whether nonconsciously perceived positive valence stimuli modify the response to a threat, and the work that has been completed is in need of additional rigorous testing of stimulus and valence perception. The current study presented images of negative, neutral, and positive valence (1,000 ms and 17 ms durations), followed by a mask. A startle probe (100 dB whitenoise) was presented during 33% of each trial type while eyeblink electromyography (EMG) and skin conductance response (SCR) were measured. During the study, participants rated the emotional content of each image to assess valence perception. Participants accurately classified the valence of 1,000 ms images, but not 17 ms images. Further, participants performed at chance levels on an independent postexperimental forced-choice perception task using 17 ms masked images, indicating they were unable to perceive the valence and content of these images. Greater EMG and SCR were elicited by the startle probe during perceived and unperceived negative images compared to perceived and unperceived positive and neutral images. In addition, perceived, but not unperceived positive images diminished startle responses. The current findings suggest that images of negative valence potentiate the startle response in the absence of conscious stimulus perception. However, the attenuation of the startle response by positive images appears to require perception of the emotional valence of an image. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  7. Short latency compound action potentials from mammalian gravity receptor organs

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Jones, S. M.

    1999-01-01

    Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50 inverted question mark omitted inverted question mark000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.

  8. An electrophysiological study of the mental rotation of polygons.

    PubMed

    Pierret, A; Peronnet, F; Thevenet, M

    1994-05-09

    Reaction times and event-related potentials (ERPs) were recorded during a task requiring subjects to decide whether two sequentially presented polygons had the same shape regardless of differences in orientation. Reaction times increased approximately linearly with angular departure from upright orientation, which suggests that mental rotation was involved in the comparison process. The ERPs showed, between 665 and 1055 ms, a late posterior negativity also increasing with angular disparity from upright, which we assumed to reflect mental rotation. Two other activities were exhibited, from 265 to 665 ms, which may be related either to an evaluation of the stimulus or a predetermination of its orientation, and from 1055 to 1600 ms attributed to the decision process.

  9. Cortical oscillations related to processing congruent and incongruent grapheme-phoneme pairs.

    PubMed

    Herdman, Anthony T; Fujioka, Takako; Chau, Wilkin; Ross, Bernhard; Pantev, Christo; Picton, Terence W

    2006-05-15

    In this study, we investigated changes in cortical oscillations following congruent and incongruent grapheme-phoneme stimuli. Hiragana graphemes and phonemes were simultaneously presented as congruent or incongruent audiovisual stimuli to native Japanese-speaking participants. The discriminative reaction time was 57 ms shorter for congruent than incongruent stimuli. Analysis of MEG responses using synthetic aperture magnetometry (SAM) revealed that congruent stimuli evoked larger 2-10 Hz activity in the left auditory cortex within the first 250 ms after stimulus onset, and smaller 2-16 Hz activity in bilateral visual cortices between 250 and 500 ms. These results indicate that congruent visual input can modify cortical activity in the left auditory cortex.

  10. Coincidence-enhanced stochastic resonance: experimental evidence challenges the psychophysical theory behind stochastic resonance.

    PubMed

    Perez, Claudio A; Cohn, Theodore E; Medina, Leonel E; Donoso, José R

    2007-08-31

    Stochastic resonance (SR) is the counterintuitive phenomenon in which noise enhances detection of sub-threshold stimuli. The SR psychophysical threshold theory establishes that the required amplitude to exceed the sensory threshold barrier can be reached by adding noise to a sub-threshold stimulus. The aim of this study was to test the SR theory by comparing detection results from two different randomly-presented stimulus conditions. In the first condition, optimal noise was present during the whole attention interval; in the second, the optimal noise was restricted to the same time interval as the stimulus. SR threshold theory predicts no difference between the two conditions because noise helps the sub-threshold stimulus to reach threshold in both cases. The psychophysical experimental method used a 300 ms rectangular force pulse as a stimulus within an attention interval of 1.5 s, applied to the index finger of six human subjects in the two distinct conditions. For all subjects we show that in the condition in which the noise was present only when synchronized with the stimulus, detection was better (p<0.05) than in the condition in which the noise was delivered throughout the attention interval. These results provide the first direct evidence that SR threshold theory is incomplete and that a new phenomenon has been identified, which we call Coincidence-Enhanced Stochastic Resonance (CESR). We propose that CESR might occur because subject uncertainty is reduced when noise points at the same temporal window as the stimulus.

  11. Hemispheric contributions to language reorganisation: An MEG study of neuroplasticity in chronic post stroke aphasia.

    PubMed

    Mohr, Bettina; MacGregor, Lucy J; Difrancesco, Stephanie; Harrington, Karen; Pulvermüller, Friedemann; Shtyrov, Yury

    2016-12-01

    Previous studies have demonstrated that efficient neurorehabilitation in post stroke aphasia leads to clinical language improvements and promotes neuroplasticity. Brain areas frequently implicated in functional restitution of language after stroke comprise perilesional sites in the left hemisphere and homotopic regions in the right hemisphere. However, the neuronal mechanisms underlying therapy-induced language restitution are still largely unclear. In this study, magnetoencephalography was used to investigate neurophysiological changes in a group of chronic aphasia patients who underwent intensive language action therapy (ILAT), also known as constraint-induced aphasia therapy (CIAT). Before and immediately after ILAT, patients' language and communication skills were assessed and their brain responses were recorded during a lexical magnetic mismatch negativity (MMNm) paradigm, presenting familiar spoken words and meaningless pseudowords. After the two-week therapy interval, patients showed significant clinical improvements of language and communication skills. Spatio-temporal dynamics of neuronal changes revealed a significant increase in word-specific neuro-magnetic MMNm activation around 200ms after stimulus identification points. This enhanced brain response occurred specifically for words and was most pronounced over perilesional areas in the left hemisphere. Therapy-related changes in neuromagnetic activation for words in both hemispheres significantly correlated with performance on a clinical language test. The findings indicate that functional recovery of language in chronic post stroke aphasia is associated with neuroplastic changes in both cerebral hemispheres, with stronger left-hemispheric contribution during automatic stages of language processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The priming of priming: Evidence that the N400 reflects context-dependent post-retrieval word integration in working memory.

    PubMed

    Steinhauer, Karsten; Royle, Phaedra; Drury, John E; Fromont, Lauren A

    2017-06-09

    Which cognitive processes are reflected by the N400 in ERPs is still controversial. Various recent articles (Lau et al., 2008; Brouwer et al., 2012) have revived the idea that only lexical pre-activation processes (such as automatic spreading activation, ASA) are strongly supported, while post-lexical integrative processes are not. Challenging this view, the present ERP study replicates a behavioral study by McKoon and Ratcliff (1995) who demonstrated that a prime-target pair such as finger - hand shows stronger priming when a majority of other pairs in the list share the analogous semantic relationship (here: part-whole), even at short stimulus onset asynchronies (250ms). We created lists with four different types of semantic relationship (synonyms, part-whole, category-member, and opposites) and compared priming for pairs in a consistent list with those in an inconsistent list as well as unrelated items. Highly significant N400 reductions were found for both relatedness priming (unrelated vs. inconsistent) and relational priming (inconsistent vs. consistent). These data are taken as strong evidence that N400 priming effects are not exclusively carried by ASA-like mechanisms during lexical retrieval but also include post-lexical integration in working memory. We link the present findings to a neurocomputational model for relational reasoning (Knowlton et al., 2012) and to recent discussions of context-dependent conceptual activations (Yee and Thompson-Schill, 2016). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The contribution of waveform interactions to the perception of concurrent vowels.

    PubMed

    Assmann, P F; Summerfield, Q

    1994-01-01

    Models of the auditory and phonetic analysis of speech must account for the ability of listeners to extract information from speech when competing voices are present. When two synthetic vowels are presented simultaneously and monaurally, listeners can exploit cues provided by a difference in fundamental frequency (F0) between the vowels to help determine their phonemic identities. Three experiments examined the effects of stimulus duration on the perception of such "double vowels." Experiment 1 confirmed earlier findings that a difference in F0 provides a smaller advantage when the duration of the stimulus is brief (50 ms rather than 200 ms). With brief stimuli, there may be insufficient time for attentional mechanisms to switch from the "dominant" member of the pair to the "nondominant" vowel. Alternatively, brief segments may restrict the availability of cues that are distributed over the time course of a longer segment of a double vowel. In experiment 1, listeners did not perform better when the same 50-ms segment was presented four times in succession (with 100-ms silent intervals) rather than only once, suggesting that limits on attention switching do not underlie the duration effect. However, performance improved in some conditions when four successive 50-ms segments were extracted from the 200-ms double vowels and presented in sequence, again with 100-ms silent intervals. Similar improvements were observed in experiment 2 between performance with the first 50-ms segment and one or more of the other three segments when the segments were presented individually. Experiment 3 demonstrated that part of the improvement observed in experiments 1 and 2 could be attributed to waveform interactions that either reinforce or attenuate harmonics that lie near vowel formants. Such interactions were beneficial only when the difference in F0 was small (0.25-1 semitone). These results are compatible with the idea that listeners benefit from small differences in F0 by performing a sequence of analyses of different time segments of a double vowel to determine where the formants of the constituent vowels are best defined.

  14. Neural Correlates of Emotion Processing in Word Detection Task

    PubMed Central

    Zhao, Wenshuang; Chen, Liang; Zhou, Chunxia; Luo, Wenbo

    2018-01-01

    In our previous study, we have proposed a three-stage model of emotion processing; in the current study, we investigated whether the ERP component may be different when the emotional content of stimuli is task-irrelevant. In this study, a dual-target rapid serial visual presentation (RSVP) task was used to investigate how the emotional content of words modulates the time course of neural dynamics. Participants performed the task in which affectively positive, negative, and neutral adjectives were rapidly presented while event-related potentials (ERPs) were recorded from 18 undergraduates. The N170 component was enhanced for negative words relative to positive and neutral words. This indicates that automatic processing of negative information occurred at an early perceptual processing stage. In addition, later brain potentials such as the late positive potential (LPP) were only enhanced for positive words in the 480–580-ms post-stimulus window, while a relatively large amplitude signal was elicited by positive and negative words between 580 and 680 ms. These results indicate that different types of emotional content are processed distinctly at different time windows of the LPP, which is in contrast with the results of studies on task-relevant emotional processing. More generally, these findings suggest that a negativity bias to negative words remains to be found in emotion-irrelevant tasks, and that the LPP component reflects dynamic separation of emotion valence. PMID:29887824

  15. Prediction of truly random future events using analysis of prestimulus electroencephalographic data

    NASA Astrophysics Data System (ADS)

    Baumgart, Stephen L.; Franklin, Michael S.; Jimbo, Hiroumi K.; Su, Sharon J.; Schooler, Jonathan

    2017-05-01

    Our hypothesis is that pre-stimulus physiological data can be used to predict truly random events tied to perceptual stimuli (e.g., lights and sounds). Our experiment presents light and sound stimuli to a passive human subject while recording electrocortical potentials using a 32-channel Electroencephalography (EEG) system. For every trial a quantum random number generator (qRNG) chooses from three possible selections with equal probability: a light stimulus, a sound stimulus, and no stimulus. Time epochs are defined preceding and post-ceding each stimulus for which mean average potentials were computed across all trials for the three possible stimulus types. Data from three regions of the brain are examined. In all three regions mean potential for light stimuli was generally enhanced relative to baseline during the period starting approximately 2 seconds before the stimulus. For sound stimuli, mean potential decreased relative to baseline during the period starting approximately 2 seconds before the stimulus. These changes from baseline may indicated the presence of evoked potentials arising from the stimulus. A P200 peak was observed in data recorded from frontal electrodes. The P200 is a well-known potential arising from the brain's processing of visual stimuli and its presence represents a replication of a known neurological phenomenon.

  16. Bone loss during long term space flight is prevented by the application of a short term impulsive mechanical stimulus

    NASA Astrophysics Data System (ADS)

    Goodship, A. E.; Cunningham, J. L.; Oganov, V.; Darling, J.; Miles, A. W.; Owen, G. W.

    In long term space flight, the mechanical forces applied to the skeleton are substantially reduced and are altered in character. This reduced skeletal loading results in a reduction in bone mass. Exercise techmques currently used in space can maintain muscle mass but the mechanical stimulus provided by this exercise does not prevent bone loss. By applying an external impulsive load for a short period each day, which is intended to mimic the heel strike transient, to the lower limb of an astronaut during a long term space flight (5 months), this study tests the hypothesis that the bone cells can be activated by an appropriate external mechanical stimulus to maintain bone mass throughout prolonged periods of weightlessness. A mechanical loading device was developed to produce a loading of the os-calcis similar to that observed during the heel strike transient. The device is activated by the astronaut to provide a transient load to the heel of one leg whilst providing an equivalent exercising load to the other leg. During the EUROMIR95 mission on the MIR space station, an astronaut used this device for a short period daily throughout the duration of the mission. Pre- and post-flight measurements of bone mineral density (BMD) of the os-calcis and femoral neck of the astronaut were made to determine the efficacy of the device in preventing loss of bone mineral during the mission. On the os-calcis which received the mechanical stimulus, BMD was maintained throughout the period of the flight, while it was reduced by up to 7% on the os-calcis which received no stimulus. Post-flight, BMD in both the stimulated and non-stimulated os-calcis reduces, the extent of this reduction however is less in the stimulated os-calcis. For the femoral neck, the mechanical Stimulation does not produce a positive effect. On the os-calcis which received the mechanical stimulus, BMD was maintained throughout the period of the flight, while it was reduced by up to 7% on the os-calcis which received no stimulus. Post-flight, BMD in both the stimulated and non-stimulated os-calcis reduces, the extent of this reduction however is less in the stimulated os-calcis. For the femoral neck, the mechanical stimulation does not produce a positive effect.

  17. Auditory Discrimination of Frequency Ratios: The Octave Singularity

    ERIC Educational Resources Information Center

    Bonnard, Damien; Micheyl, Christophe; Semal, Catherine; Dauman, Rene; Demany, Laurent

    2013-01-01

    Sensitivity to frequency ratios is essential for the perceptual processing of complex sounds and the appreciation of music. This study assessed the effect of ratio simplicity on ratio discrimination for pure tones presented either simultaneously or sequentially. Each stimulus consisted of four 100-ms pure tones, equally spaced in terms of…

  18. Prenatal exposure to multiple pesticides is associated with auditory brainstem response at 9months in a cohort study of Chinese infants.

    PubMed

    Sturza, Julie; Silver, Monica K; Xu, Lin; Li, Mingyan; Mai, Xiaoqin; Xia, Yankai; Shao, Jie; Lozoff, Betsy; Meeker, John

    2016-01-01

    Pesticides are associated with poorer neurodevelopmental outcomes, but little is known about the effects on sensory functioning. Auditory brainstem response (ABR) and pesticide data were available for 27 healthy, full-term 9-month-old infants participating in a larger study of early iron deficiency and neurodevelopment. Cord blood was analyzed by gas chromatography-mass spectrometry for levels of 20 common pesticides. The ABR forward-masking condition consisted of a click stimulus (masker) delivered via ear canal transducers followed by an identical stimulus delayed by 8, 16, or 64 milliseconds (ms). ABR peak latencies were evaluated as a function of masker-stimulus time interval. Shorter wave latencies reflect faster neural conduction, more mature auditory pathways, and greater degree of myelination. Linear regression models were used to evaluate associations between total number of pesticides detected and ABR outcomes. We considered an additive or synergistic effect of poor iron status by stratifying our analysis by newborn ferritin (based on median split). Infants in the sample were highly exposed to pesticides; a mean of 4.1 pesticides were detected (range 0-9). ABR Wave V latency and central conduction time (CCT) were associated with the number of pesticides detected in cord blood for the 64ms and non-masker conditions. A similar pattern seen for CCT from the 8ms and 16ms conditions, although statistical significance was not reached. Increased pesticide exposure was associated with longer latency. The relation between number of pesticides detected in cord blood and CCT depended on the infant's cord blood ferritin level. Specifically, the relation was present in the lower cord blood ferritin group but not the higher cord blood ferritin group. ABR processing was slower in infants with greater prenatal pesticide exposure, indicating impaired neuromaturation. Infants with lower cord blood ferritin appeared to be more sensitive to the effects of prenatal pesticide exposure on ABR latency delay, suggesting an additive or multiplicative effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Prenatal exposure to multiple pesticides is associated with auditory brainstem response at 9 months in a cohort study of Chinese infants

    PubMed Central

    Sturza, Julie; Silver, Monica K.; Xu, Lin; Li, Mingyan; Mai, Xiaoqin; Xia, Yankai; Shao, Jie; Lozoff, Betsy; Meeker, John

    2016-01-01

    Background Pesticides are associated with poorer neurodevelopmental outcomes, but little is known about the effects on sensory functioning. Methods Auditory brainstem response (ABR) and pesticide data were available for 27 healthy, full-term 9-month-old infants participating in a larger study of early iron deficiency and neurodevelopment. Cord blood was analyzed by gas chromatography-mass spectrometry for levels of 20 common pesticides. The ABR forward-masking condition consisted of a click stimulus (masker) delivered via ear canal transducers followed by an identical stimulus delayed by 8, 16, or 64 milliseconds (ms). ABR peak latencies were evaluated as a function of masker-stimulus time interval. Shorter wave latencies reflect faster neural conduction, more mature auditory pathways, and greater degree of myelination. Linear regression models were used to evaluate associations between total number of pesticides detected and ABR outcomes. We considered an additive or synergistic effect of poor iron status by stratifying our analysis by newborn ferritin (based on median split). Results Infants in the sample were highly exposed to pesticides; a mean of 4.1 pesticides were detected (range 0-9). ABR Wave V latency and central conduction time (CCT) were associated with the number of pesticides detected in cord blood for the 64ms and non-masker conditions. A similar pattern seen for CCT from the 8ms and 16ms conditions, although statistical significance was not reached. Increased pesticide exposure was associated with longer latency. The relation between number of pesticides detected in cord blood and CCT depended on the infant’s cord blood ferritin level. Specifically, the relation was present in the lower cord blood ferritin group but not the higher cord blood ferritin group. Conclusions ABR processing was slower in infants with greater prenatal pesticide exposure, indicating impaired neuromaturation. Infants with lower cord blood ferritin appeared to be more sensitive to the effects of prenatal pesticide exposure on ABR latency delay, suggesting an additive or multiplicative effect. PMID:27166702

  20. Anticipation increases tactile stimulus processing in the ipsilateral primary somatosensory cortex.

    PubMed

    van Ede, Freek; de Lange, Floris P; Maris, Eric

    2014-10-01

    Stimulus anticipation improves perception. To account for this improvement, we investigated how stimulus processing is altered by anticipation. In contrast to a large body of previous work, we employed a demanding perceptual task and investigated sensory responses that occur beyond early evoked activity in contralateral primary sensory areas: Stimulus-induced modulations of neural oscillations. For this, we recorded magnetoencephalography in 19 humans while they performed a cued tactile identification task involving the identification of either a proximal or a distal stimulation on the fingertips. We varied the cue-target interval between 0 and 1000 ms such that tactile targets occurred at various degrees of anticipation. This allowed us to investigate the influence of anticipation on stimulus processing in a parametric fashion. We observed that anticipation increases the stimulus-induced response (suppression of beta-band oscillations) originating from the ipsilateral primary somatosensory cortex. This occurs in the period in which the tactile memory trace is analyzed and is correlated with the anticipation-induced improvement in tactile perception. We propose that this ipsilateral response indicates distributed processing across bilateral primary sensory cortices, of which the extent increases with anticipation. This constitutes a new and potentially important mechanism contributing to perception and its improvement following anticipation. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Prioritization of arbitrary faces associated to self: An EEG study.

    PubMed

    Woźniak, Mateusz; Kourtis, Dimitrios; Knoblich, Günther

    2018-01-01

    Behavioral and neuroimaging studies have demonstrated that people process preferentially self-related information such as an image of their own face. Furthermore, people rapidly incorporate stimuli into their self-representation even if these stimuli do not have an intrinsic relation to self. In the present study, we investigated the time course of the processes involved in preferential processing of self-related information. In two EEG experiments three unfamiliar faces were identified with verbal labels as either the participant, a friend, or a stranger. Afterwards, participants judged whether two stimuli presented in succession (ISI = 1500ms) matched. In experiment 1, faces were followed by verbal labels and in experiment 2, labels were followed by faces. Both experiments showed the same pattern of behavioral and electrophysiological results. If the first stimulus (face or label) was associated with self, reaction times were faster and the late frontal positivity following the first stimulus was more pronounced. The self-association of the second stimulus (label or face) did not affect response times. However, the central-parietal P3 following presentation of the second stimulus was more pronounced when the second stimulus was preceded by self-related first stimulus. These results indicate that even unfamiliar faces that are associated to self can activate a self-representation. Once the self-representation has been activated the processing of ensuing stimuli is facilitated, irrespective of whether they are associated with the self.

  2. Prioritization of arbitrary faces associated to self: An EEG study

    PubMed Central

    Kourtis, Dimitrios; Knoblich, Günther

    2018-01-01

    Behavioral and neuroimaging studies have demonstrated that people process preferentially self-related information such as an image of their own face. Furthermore, people rapidly incorporate stimuli into their self-representation even if these stimuli do not have an intrinsic relation to self. In the present study, we investigated the time course of the processes involved in preferential processing of self-related information. In two EEG experiments three unfamiliar faces were identified with verbal labels as either the participant, a friend, or a stranger. Afterwards, participants judged whether two stimuli presented in succession (ISI = 1500ms) matched. In experiment 1, faces were followed by verbal labels and in experiment 2, labels were followed by faces. Both experiments showed the same pattern of behavioral and electrophysiological results. If the first stimulus (face or label) was associated with self, reaction times were faster and the late frontal positivity following the first stimulus was more pronounced. The self-association of the second stimulus (label or face) did not affect response times. However, the central-parietal P3 following presentation of the second stimulus was more pronounced when the second stimulus was preceded by self-related first stimulus. These results indicate that even unfamiliar faces that are associated to self can activate a self-representation. Once the self-representation has been activated the processing of ensuing stimuli is facilitated, irrespective of whether they are associated with the self. PMID:29293670

  3. [Allocation of attentional resource and monitoring processes under rapid serial visual presentation].

    PubMed

    Nishiura, K

    1998-08-01

    With the use of rapid serial visual presentation (RSVP), the present study investigated the cause of target intrusion errors and functioning of monitoring processes. Eighteen students participated in Experiment 1, and 24 in Experiment 2. In Experiment 1, different target intrusion errors were found depending on different kinds of letters --romaji, hiragana, and kanji. In Experiment 2, stimulus set size and context information were manipulated in an attempt to explore the cause of post-target intrusion errors. Results showed that as stimulus set size increased, the post-target intrusion errors also increased, but contextual information did not affect the errors. Results concerning mean report probability indicated that increased allocation of attentional resource to response-defining dimension was the cause of the errors. In addition, results concerning confidence rating showed that monitoring of temporal and contextual information was extremely accurate, but it was not so for stimulus information. These results suggest that attentional resource is different from monitoring resource.

  4. Adaptive Wiener filtering for improved acquisition of distortion product otoacoustic emissions.

    PubMed

    Ozdamar, O; Delgado, R E; Rahman, S; Lopez, C

    1998-01-01

    An innovative acoustic noise canceling method using adaptive Wiener filtering (AWF) was developed for improved acquisition of distortion product otoacoustic emissions (DPOAEs). The system used one microphone placed in the test ear for the primary signal. Noise reference signals were obtained from three different sources: (a) pre-stimulus response from the test ear microphone, (b) post-stimulus response from a microphone placed near the head of the subject and (c) post-stimulus response obtained from a microphone placed in the subject's nontest ear. In order to improve spectral estimation, block averaging of a different number of single sweep responses was used. DPOAE data were obtained from 11 ears of healthy newborns in a well-baby nursery of a hospital under typical noise conditions. Simultaneously obtained recordings from all three microphones were digitized, stored and processed off-line to evaluate the effects of AWF with respect to DPOAE detection and signal-to-noise ratio (SNR) improvement. Results show that compared to standard DPOAE processing, AWF improved signal detection and improved SNR.

  5. Complementary b/y fragment ion pairs from post-source decay of metastable YahO for calibration of MALDI-TOF-TOF-MS/MS

    USDA-ARS?s Scientific Manuscript database

    Complementary b/y fragment ion pairs from post-source decay (PSD) of metastable YahO protein ion were evaluated for use in the calibration of MALDI-TOF-TOF for tandem mass spectrometry (MS/MS). The yahO gene from pathogenic Escherichia coli O157:H7 strain EDL933 was cloned into a pBAD18 plasmid vect...

  6. TRICAINE METHANESULFONATE (MS-222) SEDATION AND ANESTHESIA IN THE PURPLE-SPINED SEA URCHIN (ARBACIA PUNCTULATA).

    PubMed

    Applegate, Jeffrey R; Dombrowski, Daniel S; Christian, Larry Shane; Bayer, Meredith P; Harms, Craig A; Lewbart, Gregory A

    2016-12-01

    The purple-spined sea urchin ( Arbacia punctulata ) is commonly found in shallow waters of the western Atlantic Ocean from the New England area of the United States to the Caribbean. Sea urchins play a major role in ocean ecology, echinoculture, and biomedical research. Additionally, sea urchins are commonly displayed in public aquaria. Baseline parameters were developed in unanesthetized urchins for righting reflex (time to regain oral recumbency) and spine response time to tactile stimulus. Tricaine methanesulfonate (MS-222) was used to sedate and anesthetize purple-spined sea urchins and assess sedation and anesthetic parameters, including adhesion to and release from a vertical surface, times to loss of response to tactile stimulus and recovery of righting reflex, and qualitative observations of induction of spawning and position of spines and pseudopodia. Sedation and anesthetic parameters were evaluated in 11 individuals in three circumstances: unaltered aquarium water for baseline behaviors, 0.4 g/L MS-222, and 0.8 g/L MS-222. Induction was defined as the release from a vertical surface with the loss of righting reflex, sedation as loss of righting reflex with retained tactile spine response, anesthesia as loss of righting reflex and loss of tactile spine response, and recovery as voluntary return to oral recumbency. MS-222 proved to be an effective sedative and anesthetic for the purple-spined sea urchin at 0.4 and 0.8 g/L, respectively. Sodium bicarbonate used to buffer MS-222 had no measurable sedative effects when used alone. Anesthesia was quickly reversed with transfer of each individual to anesthesia-free seawater, and no anesthetic-related mortality occurred. The parameters assessed in this study provide a baseline for sea urchin anesthesia and may provide helpful comparisons to similar species and populations that are in need of anesthesia for surgical procedures or research.

  7. Age-related changes in cognitive conflict processing: an event-related potential study.

    PubMed

    Mager, Ralph; Bullinger, Alex H; Brand, Serge; Schmidlin, Maria; Schärli, Heinz; Müller-Spahn, Franz; Störmer, Robert; Falkenstein, Michael

    2007-12-01

    Cognitive tasks involving conflicting stimuli and responses are associated with an early age-related decline in performance. Conflict and conflict-induced interference can be stimulus- or response-related. In classical stimulus-response compatibility tasks, such as the Stroop task, the event-related potential (ERP) usually reveals a greater negativity on incongruent versus congruent trials which has often been linked with conflict processing. However, it is unclear whether this negativity is related to stimulus- or response-related conflict, thus rendering the meaning of age-related changes inconclusive. In the present study, a modified Stroop task was used to focus on stimulus-related interference processes while excluding response-related interference. Since we intended to study work-relevant effects ERPs and performance were determined in young (about 30 years old) and middle-aged (about 50 years old) healthy subjects (total n=80). In the ERP, a broad negativity developed after incongruent versus congruent stimuli between 350 and 650 ms. An age-related increase of the latency and amplitude of this negativity was observed. These results indicate age-related alterations in the processing of conflicting stimuli already in middle age.

  8. The impact of the stimulus features and task instructions on facial processing in social anxiety: an ERP investigation.

    PubMed

    Peschard, Virginie; Philippot, Pierre; Joassin, Frédéric; Rossignol, Mandy

    2013-04-01

    Social anxiety has been characterized by an attentional bias towards threatening faces. Electrophysiological studies have demonstrated modulations of cognitive processing from 100 ms after stimulus presentation. However, the impact of the stimulus features and task instructions on facial processing remains unclear. Event-related potentials were recorded while high and low socially anxious individuals performed an adapted Stroop paradigm that included a colour-naming task with non-emotional stimuli, an emotion-naming task (the explicit task) and a colour-naming task (the implicit task) on happy, angry and neutral faces. Whereas the impact of task factors was examined by contrasting an explicit and an implicit emotional task, the effects of perceptual changes on facial processing were explored by including upright and inverted faces. The findings showed an enhanced P1 in social anxiety during the three tasks, without a moderating effect of the type of task or stimulus. These results suggest a global modulation of attentional processing in performance situations. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Stimulus induced reset of 40-Hz auditory steady-state responses.

    PubMed

    Ross, B; Herdman, A T; Pantev, C

    2004-11-30

    Auditory steady-state responses (ASSR) were evoked with 40-Hz amplitude modulated 500-Hz tones. An additional impulse-like noise stimulus (2,000 +/- 500 Hz) with spectrum clearly distinct from the one of the AM sound, induced pronounced perturbations in the ASSR. The effect of the interfering noise was interpreted as (1) reset of the ASSR because of a sudden loss in phase coherence, (2) a decrease in signal power immediately after presentation of the noise impulse, and (3) a modulation of ASSR amplitude and phase resembling the time course of the ASSR onset. The time-course of the ASSR onset was interpreted as reflecting temporal integration over several 100 ms. The reset of the ASSR was discussed as a powerful mechanism, which allows for fast reaction to a short stimulus change that overcomes the disadvantage of the ASSR's long integration time constant.

  10. Stimulus onset predictability modulates proactive action control in a Go/No-go task

    PubMed Central

    Berchicci, Marika; Lucci, Giuliana; Spinelli, Donatella; Di Russo, Francesco

    2015-01-01

    The aim of the study was to evaluate whether the presence/absence of visual cues specifying the onset of an upcoming, action-related stimulus modulates pre-stimulus brain activity, associated with the proactive control of goal-directed actions. To this aim we asked 12 subjects to perform an equal probability Go/No-go task with four stimulus configurations in two conditions: (1) uncued, i.e., without any external information about the timing of stimulus onset; and (2) cued, i.e., with external visual cues providing precise information about the timing of stimulus onset. During task both behavioral performance and event-related potentials (ERPs) were recorded. Behavioral results showed faster response times in the cued than uncued condition, confirming existing literature. ERPs showed novel results in the proactive control stage, that started about 1 s before the motor response. We observed a slow rising prefrontal positive activity, more pronounced in the cued than the uncued condition. Further, also pre-stimulus activity of premotor areas was larger in cued than uncued condition. In the post-stimulus period, the P3 amplitude was enhanced when the time of stimulus onset was externally driven, confirming that external cueing enhances processing of stimulus evaluation and response monitoring. Our results suggest that different pre-stimulus processing come into play in the two conditions. We hypothesize that the large prefrontal and premotor activities recorded with external visual cues index the monitoring of the external stimuli in order to finely regulate the action. PMID:25964751

  11. Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact

    PubMed Central

    Kent, A R; Grill, W M

    2012-01-01

    Deep brain stimulation (DBS) is an effective treatment for movement disorders, but the selection of stimulus parameters is a clinical burden and often yields sub-optimal outcomes for patients. Measurement of electrically evoked compound action potentials (ECAPs) during DBS could offer insight into the type and spatial extent of neural element activation and provide a potential feedback signal for the rational selection of stimulus parameters and closed-loop DBS. However, recording ECAPs presents a significant technical challenge due to the large stimulus artefact, which can saturate recording amplifiers and distort short latency ECAP signals. We developed DBS-ECAP recording instrumentation combining commercial amplifiers and circuit elements in a serial configuration to reduce the stimulus artefact and enable high fidelity recording. We used an electrical circuit equivalent model of the instrumentation to understand better the sources of the stimulus artefact and the mechanisms of artefact reduction by the circuit elements. In vitro testing validated the capability of the instrumentation to suppress the stimulus artefact and increase gain by a factor of 1,000 to 5,000 compared to a conventional biopotential amplifier. The distortion of mock ECAP (mECAP) signals was measured across stimulation parameters, and the instrumentation enabled high fidelity recording of mECAPs with latencies of only 0.5 ms for DBS pulse widths of 50 to 100 μs/phase. Subsequently, the instrumentation was used to record in vivo ECAPs, without contamination by the stimulus artefact, during thalamic DBS in an anesthetized cat. The characteristics of the physiological ECAP were dependent on stimulation parameters. The novel instrumentation enables high fidelity ECAP recording and advances the potential use of the ECAP as a feedback signal for the tuning of DBS parameters. PMID:22510375

  12. Effects of soccer vs swim training on bone formation in sedentary middle-aged women.

    PubMed

    Mohr, Magni; Helge, Eva W; Petersen, Liljan F; Lindenskov, Annika; Weihe, Pál; Mortensen, Jann; Jørgensen, Niklas R; Krustrup, Peter

    2015-12-01

    The present study examined the effects of 15 weeks of soccer training and two different swimming training protocols on bone turnover in sedentary middle-aged women. Eighty-three premenopausal mildly hypertensive women [age: 45 ± 6 (± SD) years, height: 165 ± 6 cm, weight: 80.0 ± 14.1 kg, body fat: 42.6 ± 5.7 %, systolic blood pressure/diastolic blood pressure: 138 ± 6/85 ± 3 mmHg] were randomized into soccer training (SOC, n = 21), high-intensity intermittent swimming (HS, n = 21), moderate-intensity swimming (MS, n = 21) intervention groups, and a control group (C, n = 20). The training groups completed three sessions per week for 15 weeks. DXA scans were performed and resting blood samples were drawn pre- and post-intervention. In SOC, plasma osteocalcin, procollagen type I N propeptide and C-terminal telopeptide increased (P < 0.05) by 37 ± 15, 52 ± 23 and 42 ± 18 %, respectively, with no changes in MS, HS and C. The intervention-induced increase in SOC was larger (P < 0.05) than in MS, HS and C. In SOC, leg BMC increased (P < 0.05) by 3.1 ± 4.5 %, with a larger increase in SOC than in C. Femoral shaft and trochanter bone mineral density (BMD) increased (P < 0.05) by 1.7 ± 1.9 and 2.4 ± 2.9 %, respectively, in SOC, with a greater (P < 0.05) change in SOC than in MS and C, whereas total body and total leg BMD did not change in any of the groups. In conclusion, 15 weeks of soccer training with sedentary middle-aged women caused marked increases in bone turnover markers, with concomitant increases in leg bone mass. No changes in bone formation and resorption markers were seen after prolonged submaximal or high-intensity intermittent swimming training. Thus, soccer training appears to provide a powerful osteogenic stimulus in middle-aged women.

  13. Payoff Information Biases a Fast Guess Process in Perceptual Decision Making under Deadline Pressure: Evidence from Behavior, Evoked Potentials, and Quantitative Model Comparison.

    PubMed

    Noorbaloochi, Sharareh; Sharon, Dahlia; McClelland, James L

    2015-08-05

    We used electroencephalography (EEG) and behavior to examine the role of payoff bias in a difficult two-alternative perceptual decision under deadline pressure in humans. The findings suggest that a fast guess process, biased by payoff and triggered by stimulus onset, occurred on a subset of trials and raced with an evidence accumulation process informed by stimulus information. On each trial, the participant judged whether a rectangle was shifted to the right or left and responded by squeezing a right- or left-hand dynamometer. The payoff for each alternative (which could be biased or unbiased) was signaled 1.5 s before stimulus onset. The choice response was assigned to the first hand reaching a squeeze force criterion and reaction time was defined as time to criterion. Consistent with a fast guess account, fast responses were strongly biased toward the higher-paying alternative and the EEG exhibited an abrupt rise in the lateralized readiness potential (LRP) on a subset of biased payoff trials contralateral to the higher-paying alternative ∼ 150 ms after stimulus onset and 50 ms before stimulus information influenced the LRP. This rise was associated with poststimulus dynamometer activity favoring the higher-paying alternative and predicted choice and response time. Quantitative modeling supported the fast guess account over accounts of payoff effects supported in other studies. Our findings, taken with previous studies, support the idea that payoff and prior probability manipulations produce flexible adaptations to task structure and do not reflect a fixed policy for the integration of payoff and stimulus information. Humans and other animals often face situations in which they must make choices based on uncertain sensory information together with information about expected outcomes (gains or losses) about each choice. We investigated how differences in payoffs between available alternatives affect neural activity, overt choice, and the timing of choice responses. In our experiment, in which participants were under strong time pressure, neural and behavioral findings together with model fitting suggested that our human participants often made a fast guess toward the higher reward rather than integrating stimulus and payoff information. Our findings, taken with findings from other studies, support the idea that payoff and prior probability manipulations produce flexible adaptations to task structure and do not reflect a fixed policy. Copyright © 2015 the authors 0270-6474/15/3510989-23$15.00/0.

  14. Male Smokers' and Non-Smokers' Response Inhibition in Go/No-Go Tasks: Effect of Three Task Parameters

    PubMed Central

    Zhao, Xin; Liu, Xiaoting; Zan, Xiangyi; Jin, Ge; Maes, Joseph H. R.

    2016-01-01

    Impaired response inhibition plays a major role in many addictive behaviors. However, in studies using go/no-go tasks, findings regarding the presence of response inhibition deficits in nicotine-dependent individuals are mixed. This might be due to differences between studies on a number of task parameters. Here we aimed to identify task conditions under which go/no-go task performance deficits can be observed in smokers and to characterize the nature of such deficits. Sixty-one male students (30 smokers, 31 non-smokers) performed a go/no-go task while independently manipulating three task parameters: (1) percentage no-go trials (50% or 25%), (2) stimulus presentation time (600 ms or 200 ms), and (3) nature of no-go stimuli (cigarette related or cigarette unrelated). Three measures, reaction time on go trials and percentage correct responses on go and no-go trials, served as performance indicators. Under 200-ms but not 600-ms stimulus presentation conditions, the smokers responded faster on go trials and made more errors on both go and no-go trials than the non-smokers did. These differences occurred irrespective of the percentage of no-go trials and nature of no-go stimuli. The accuracy differences disappeared after controlling for the response time differences, suggesting a strong speed-accuracy trade-off. This study contributes to unraveling the conditions under which smokers display impaired inhibition performance and helps to characterize the nature of this impairment. Under task conditions prompting fast responding, smokers are more prone to increase response speed and to make more errors than non-smokers. PMID:27500831

  15. Visual motion direction is represented in population-level neural response as measured by magnetoencephalography.

    PubMed

    Kaneoke, Y; Urakawa, T; Kakigi, R

    2009-05-19

    We investigated whether direction information is represented in the population-level neural response evoked by the visual motion stimulus, as measured by magnetoencephalography. Coherent motions with varied speed, varied direction, and different coherence level were presented using random dot kinematography. Peak latency of responses to motion onset was inversely related to speed in all directions, as previously reported, but no significant effect of direction on latency changes was identified. Mutual information entropy (IE) calculated using four-direction response data increased significantly (>2.14) after motion onset in 41.3% of response data and maximum IE was distributed at approximately 20 ms after peak response latency. When response waveforms showing significant differences (by multivariate discriminant analysis) in distribution of the three waveform parameters (peak amplitude, peak latency, and 75% waveform width) with stimulus directions were analyzed, 87 waveform stimulus directions (80.6%) were correctly estimated using these parameters. Correct estimation rate was unaffected by stimulus speed, but was affected by coherence level, even though both speed and coherence affected response amplitude similarly. Our results indicate that speed and direction of stimulus motion are represented in the distinct properties of a response waveform, suggesting that the human brain processes speed and direction separately, at least in part.

  16. Temporal expectancy in the context of a theory of visual attention

    PubMed Central

    Vangkilde, Signe; Petersen, Anders; Bundesen, Claus

    2013-01-01

    Temporal expectation is expectation with respect to the timing of an event such as the appearance of a certain stimulus. In this paper, temporal expectancy is investigated in the context of the theory of visual attention (TVA), and we begin by summarizing the foundations of this theoretical framework. Next, we present a parametric experiment exploring the effects of temporal expectation on perceptual processing speed in cued single-stimulus letter recognition with unspeeded motor responses. The length of the cue–stimulus foreperiod was exponentially distributed with one of six hazard rates varying between blocks. We hypothesized that this manipulation would result in a distinct temporal expectation in each hazard rate condition. Stimulus exposures were varied such that both the temporal threshold of conscious perception (t0 ms) and the perceptual processing speed (v letters s−1) could be estimated using TVA. We found that the temporal threshold t0 was unaffected by temporal expectation, but the perceptual processing speed v was a strikingly linear function of the logarithm of the hazard rate of the stimulus presentation. We argue that the effects on the v values were generated by changes in perceptual biases, suggesting that our perceptual biases are directly related to our temporal expectations. PMID:24018716

  17. S100B protein in benzodiazepine overdose.

    PubMed

    Ambrozic, J; Bunc, M; Osredkar, J; Brvar, M

    2008-02-01

    Severe benzodiazepine overdose can result in coma and respiratory depression that might cause brain hypoxia, necrosis and delayed post-anoxic leucoencephalopathy with permanent neurological sequelae. The aim of this study was to assess the possible role of S100B, a structural protein of astroglial cells, as a biochemical marker of brain injury in acute benzodiazepine overdose. Serum S100B determination was performed in 38 consecutive patients admitted to the emergency department (ED) in Ljubljana with benzodiazepine overdose. The level of consciousness and respiratory insufficiency on the scene were assessed by responsiveness to a verbal stimulus and pulse oximetry. Blood samples were taken immediately after arrival at the ED and S100B concentrations were measured with a commercial immunoluminometric assay. 20 healthy sex- and age-matched volunteers formed a control group. There were significant differences in S100B levels between the control group and the patients with benzodiazepine overdose according to their responsiveness to a verbal stimulus. Post hoc test results showed that S100B levels in patients with benzodiazepine overdose who were unresponsive to a verbal stimulus were significantly higher than those in patients responsive to a verbal stimulus (median 0.31 vs 0.11 microg/l; p = 0.001). Both groups of patients with benzodiazepine overdose had significantly higher S100B levels than the control group (median 0.07 microg/; both p = 0.001). Arterial oxygen saturation of patients with benzodiazepine overdose unresponsive to a verbal stimulus was significantly lower than in patients responsive to a verbal stimulus (median 83% vs 94%; p = 0.001). There was no significant difference in the systolic blood pressure of patients with benzodiazepine overdose responsive or unresponsive to a verbal stimulus. Raised levels of S100B protein are associated with depressed levels of consciousness and respiratory insufficiency in patients with benzodiazepine overdose.

  18. Simultaneous chromatic and luminance human electroretinogram responses.

    PubMed

    Parry, Neil R A; Murray, Ian J; Panorgias, Athanasios; McKeefry, Declan J; Lee, Barry B; Kremers, Jan

    2012-07-01

    The parallel processing of information forms an important organisational principle of the primate visual system. Here we describe experiments which use a novel chromatic–achromatic temporal compound stimulus to simultaneously identify colour and luminance specific signals in the human electroretinogram (ERG). Luminance and chromatic components are separated in the stimulus; the luminance modulation has twice the temporal frequency of the chromatic modulation. ERGs were recorded from four trichromatic and two dichromatic subjects (1 deuteranope and 1 protanope). At isoluminance, the fundamental (first harmonic) response was elicited by the chromatic component in the stimulus. The trichromatic ERGs possessed low-pass temporal tuning characteristics, reflecting the activity of parvocellular post-receptoral mechanisms. There was very little first harmonic response in the dichromats' ERGs. The second harmonic response was elicited by the luminance modulation in the compound stimulus and showed, in all subjects, band-pass temporal tuning characteristic of magnocellular activity. Thus it is possible to concurrently elicit ERG responses from the human retina which reflect processing in both chromatic and luminance pathways. As well as providing a clear demonstration of the parallel nature of chromatic and luminance processing in the human retina, the differences that exist between ERGs from trichromatic and dichromatic subjects point to the existence of interactions between afferent post-receptoral pathways that are in operation from the earliest stages of visual processing.

  19. Single-Trial Normalization for Event-Related Spectral Decomposition Reduces Sensitivity to Noisy Trials

    PubMed Central

    Grandchamp, Romain; Delorme, Arnaud

    2011-01-01

    In electroencephalography, the classical event-related potential model often proves to be a limited method to study complex brain dynamics. For this reason, spectral techniques adapted from signal processing such as event-related spectral perturbation (ERSP) – and its variant event-related synchronization and event-related desynchronization – have been used over the past 20 years. They represent average spectral changes in response to a stimulus. These spectral methods do not have strong consensus for comparing pre- and post-stimulus activity. When computing ERSP, pre-stimulus baseline removal is usually performed after averaging the spectral estimate of multiple trials. Correcting the baseline of each single-trial prior to averaging spectral estimates is an alternative baseline correction method. However, we show that this method leads to positively skewed post-stimulus ERSP values. We eventually present new single-trial-based ERSP baseline correction methods that perform trial normalization or centering prior to applying classical baseline correction methods. We show that single-trial correction methods minimize the contribution of artifactual data trials with high-amplitude spectral estimates and are robust to outliers when performing statistical inference testing. We then characterize these methods in terms of their time–frequency responses and behavior compared to classical ERSP methods. PMID:21994498

  20. HABITABLE ZONES OF POST-MAIN SEQUENCE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    Once a star leaves the main sequence and becomes a red giant, its Habitable Zone (HZ) moves outward, promoting detectable habitable conditions at larger orbital distances. We use a one-dimensional radiative-convective climate and stellar evolutionary models to calculate post-MS HZ distances for a grid of stars from 3700 to 10,000 K (∼M1 to A5 stellar types) for different stellar metallicities. The post-MS HZ limits are comparable to the distances of known directly imaged planets. We model the stellar as well as planetary atmospheric mass loss during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) phases for super-Moons tomore » super-Earths. A planet can stay between 200 million years up to 9 Gyr in the post-MS HZ for our hottest and coldest grid stars, respectively, assuming solar metallicity. These numbers increase for increased stellar metallicity. Total atmospheric erosion only occurs for planets in close-in orbits. The post-MS HZ orbital distances are within detection capabilities of direct imaging techniques.« less

  1. Time-Course of the Ethanol-like Discriminative Stimulus Effects of Abused Inhalants in Mice

    PubMed Central

    Bowen, Scott E.

    2009-01-01

    Abused solvents have effects similar to those of abused depressant drugs. This experiment evaluated the time course of the discriminative stimulus effects of toluene and 1,1,1-trichloroethane (TRI). Mice were trained to discriminate between i.p. injections of ethanol (EtOH;1.25 g/kg) and saline in a two-lever operant task in which responding was under the control of a fixed-ratio 20 schedule. After 20-min inhalation exposures to toluene (500–6000 ppm) or TRI (1,000–12,000 ppm), stimulus generalization was examined at 0, 5, 10, 20, and 40 min post-exposure. Ethanol doses ≥ 0.25 g/kg produced increases in EtOH-lever responding with full substitution occurring immediately after testing for doses between 1.25 and 2.5 g/kg. Toluene and TRI produced increased EtOH-lever responding at 0–10 min post exposure with some EtOH-lever responding occurring up to 20-min post exposure. Response rates were not decreased for any concentration of toluene or TRI immediately following inhalant exposure but several concentrations elevated rates from 5–40 min post exposure. These results confirm and extend previous studies and show these solvents produce similar effects in EtOH-lever responding but with potency differences. The time-dependent differences in EtOH-lever responding suggest that as solvents are cleared from the body, the EtOH-like subjective effects also fade. PMID:18722399

  2. Quantitative analysis of serotonin secreted by human embryonic stem cells-derived serotonergic neurons via pH-mediated online stacking-CE-ESI-MRM.

    PubMed

    Zhong, Xuefei; Hao, Ling; Lu, Jianfeng; Ye, Hui; Zhang, Su-Chun; Li, Lingjun

    2016-04-01

    A CE-ESI-MRM-based assay was developed for targeted analysis of serotonin released by human embryonic stem cells-derived serotonergic neurons in a chemically defined environment. A discontinuous electrolyte system was optimized for pH-mediated online stacking of serotonin. Combining with a liquid-liquid extraction procedure, LOD of serotonin in the Krebs'-Ringer's solution by CE-ESI-MS/MS on a 3D ion trap MS was0.15 ng/mL. The quantitative results confirmed the serotonergic identity of the in vitro developed neurons and the capacity of these neurons to release serotonin in response to stimulus. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Temporal dynamics of figure-ground segregation in human vision.

    PubMed

    Neri, Peter; Levi, Dennis M

    2007-01-01

    The segregation of figure from ground is arguably one of the most fundamental operations in human vision. Neural signals reflecting this operation appear in cortex as early as 50 ms and as late as 300 ms after presentation of a visual stimulus, but it is not known when these signals are used by the brain to construct the percepts of figure and ground. We used psychophysical reverse correlation to identify the temporal window for figure-ground signals in human perception and found it to lie within the range of 100-160 ms. Figure enhancement within this narrow temporal window was transient rather than sustained as may be expected from measurements in single neurons. These psychophysical results prompt and guide further electrophysiological studies.

  4. Introducing the Event Related Fixed Interval Area (ERFIA) Multilevel Technique: a Method to Analyze the Complete Epoch of Event-Related Potentials at Single Trial Level

    PubMed Central

    Vossen, Catherine J.; Vossen, Helen G. M.; Marcus, Marco A. E.; van Os, Jim; Lousberg, Richel

    2013-01-01

    In analyzing time-locked event-related potentials (ERPs), many studies have focused on specific peaks and their differences between experimental conditions. In theory, each latency point after a stimulus contains potentially meaningful information, regardless of whether it is peak-related. Based on this assumption, we introduce a new concept which allows for flexible investigation of the whole epoch and does not primarily focus on peaks and their corresponding latencies. For each trial, the entire epoch is partitioned into event-related fixed-interval areas under the curve (ERFIAs). These ERFIAs, obtained at single trial level, act as dependent variables in a multilevel random regression analysis. The ERFIA multilevel method was tested in an existing ERP dataset of 85 healthy subjects, who underwent a rating paradigm of 150 painful and non-painful somatosensory electrical stimuli. We modeled the variability of each consecutive ERFIA with a set of predictor variables among which were stimulus intensity and stimulus number. Furthermore, we corrected for latency variations of the P2 (260 ms). With respect to known relationships between stimulus intensity, habituation, and pain-related somatosensory ERP, the ERFIA method generated highly comparable results to those of commonly used methods. Notably, effects on stimulus intensity and habituation were also observed in non-peak-related latency ranges. Further, cortical processing of actual stimulus intensity depended on the intensity of the previous stimulus, which may reflect pain-memory processing. In conclusion, the ERFIA multilevel method is a promising tool that can be used to study event-related cortical processing. PMID:24224018

  5. Identifiable Orthographically Similar Word Primes Interfere in Visual Word Identification

    ERIC Educational Resources Information Center

    Burt, Jennifer S.

    2009-01-01

    University students participated in five experiments concerning the effects of unmasked, orthographically similar, primes on visual word recognition in the lexical decision task (LDT) and naming tasks. The modal prime-target stimulus onset asynchrony (SOA) was 350 ms. When primes were words that were orthographic neighbors of the targets, and…

  6. Ideomotor compatibility in the psychological refractory period effect: 29 years of oversimplification

    NASA Technical Reports Server (NTRS)

    Lien, Mei-Ching; Proctor, Robert W.; Allen, Philip A.

    2002-01-01

    Four experiments examined whether the psychological refractory period (PRP) effect can be eliminated with ideomotor compatible (IM) but not stimulus-response compatible (SR) tasks, as reported by A. G. Greenwald and H. G. Shulman (1973). Their tasks were used: a left or right movement to a left- or right-pointing arrow (IM) or to the word left or right (SR) for Task 1; saying "A" or "B" (IM) or "1" or "2" (SR) to an auditory A or B for Task 2. The stimulus onset asynchronies were 0, 100, 200, 300, 500, and 1,000 ms in Experiment 1, and only 0, 100, 200, and 1,000 ms in Experiments 2-4. The arrow was in the center of the screen in Experiments 1-3 and to the left or right in Experiment 4. As in Greenwald and Shulman's Experiment 2, the instructions stated that most often the 2 stimuli would be presented simultaneously. A PRP effect was obtained in all conditions, most likely because response-selection decisions are required even for IM tasks.

  7. In the Blink of an Eye: Investigating the Role of Awareness in Fear Responding by Measuring the Latency of Startle Potentiation

    PubMed Central

    Åsli, Ole; Flaten, Magne A.

    2012-01-01

    The latency of startle reflex potentiation may shed light on the aware and unaware processes underlying associative learning, especially associative fear learning. We review research suggesting that single-cue delay classical conditioning is independent of awareness of the contingency between the conditioned stimulus (CS) and the unconditioned stimulus (US). Moreover, we discuss research that argues that conditioning independent of awareness has not been proven. Subsequently, three studies from our lab are presented that have investigated the role of awareness in classical conditioning, by measuring the minimum latency from CS onset to observed changes in reflexive behavior. In sum, research using this method shows that startle is potentiated 30 to 100 ms after CS onset following delay conditioning. Following trace fear conditioning, startle is potentiated 1500 ms after CS presentation. These results indicate that the process underlying delay conditioned responding is independent of awareness, and that trace fear conditioned responding is dependent on awareness. Finally, this method of investigating the role of awareness is discussed and future research possibilities are proposed. PMID:24962686

  8. Ideomotor compatibility in the psychological refractory period effect: 29 years of oversimplification.

    PubMed

    Lien, Mei-Ching; Proctor, Robert W; Allen, Philip A

    2002-04-01

    Four experiments examined whether the psychological refractory period (PRP) effect can be eliminated with ideomotor compatible (IM) but not stimulus-response compatible (SR) tasks, as reported by A. G. Greenwald and H. G. Shulman (1973). Their tasks were used: a left or right movement to a left- or right-pointing arrow (IM) or to the word left or right (SR) for Task 1; saying "A" or "B" (IM) or "1" or "2" (SR) to an auditory A or B for Task 2. The stimulus onset asynchronies were 0, 100, 200, 300, 500, and 1,000 ms in Experiment 1, and only 0, 100, 200, and 1,000 ms in Experiments 2-4. The arrow was in the center of the screen in Experiments 1-3 and to the left or right in Experiment 4. As in Greenwald and Shulman's Experiment 2, the instructions stated that most often the 2 stimuli would be presented simultaneously. A PRP effect was obtained in all conditions, most likely because response-selection decisions are required even for IM tasks.

  9. Rapid Simultaneous Enhancement of Visual Sensitivity and Perceived Contrast during Saccade Preparation

    PubMed Central

    Rolfs, Martin; Carrasco, Marisa

    2012-01-01

    Humans and other animals with foveate vision make saccadic eye movements to prioritize the visual analysis of behaviorally relevant information. Even before movement onset, visual processing is selectively enhanced at the target of a saccade, presumably gated by brain areas controlling eye movements. Here we assess concurrent changes in visual performance and perceived contrast before saccades, and show that saccade preparation enhances perception rapidly, altering early visual processing in a manner akin to increasing the physical contrast of the visual input. Observers compared orientation and contrast of a test stimulus, appearing briefly before a saccade, to a standard stimulus, presented previously during a fixation period. We found simultaneous progressive enhancement in both orientation discrimination performance and perceived contrast as time approached saccade onset. These effects were robust as early as 60 ms after the eye movement was cued, much faster than the voluntary deployment of covert attention (without eye movements), which takes ~300 ms. Our results link the dynamics of saccade preparation, visual performance, and subjective experience and show that upcoming eye movements alter visual processing by increasing the signal strength. PMID:23035086

  10. Comparing the effects of an acute bout of physical exercise with an acute bout of interactive mental and physical exercise on electrophysiology and executive functioning in younger and older adults.

    PubMed

    Dimitrova, Julia; Hogan, Michael; Khader, Patrick; O'Hora, Denis; Kilmartin, Liam; Walsh, Jane C; Roche, Richard; Anderson-Hanley, Cay

    2017-10-01

    Physical exercise has been shown to improve cognitive and neural functioning in older adults. The current study compared the effects of an acute bout of physical exercise with a bout of interactive mental and physical exercise (i.e., "exergaming") on executive (Stroop) task performance and event-related potential (ERP) amplitudes in younger and older adults. Results revealed enhanced executive task performance in younger and older adults after exercise, with no differences in performance between exercise conditions. Stroop (RT) performance in older adults improved more than in younger adults from pre- to post-exercise. A significant increase in EEG amplitude from pre- to post-exercise was found at the Cz site from 320 to 700 ms post-stimulus for both younger and older adults, with older adults demonstrating a larger Stroop interference effect. While younger adults exhibited overall greater EEG amplitudes than older adults, they showed no differences between congruent and incongruent trials (i.e., minimal interference). Compared to peers with higher BMI (body mass index), older adults with lower BMI showed a greater reduction in Stroop interference effects from pre- to post-exercise. The beneficial effects of an acute bout of physical exercise on cognitive and neural functioning in younger and older adults were confirmed, with no difference between standard exercise and exergaming. Findings suggest that BMI, sometimes used as a proxy for fitness level, may modulate benefits that older adults derive from an acute bout of exercise. Findings have implications for future research that seeks to investigate unique effects of exergaming when compared to standard physical exercise.

  11. Neural and cognitive face-selective markers: An integrative review.

    PubMed

    Yovel, Galit

    2016-03-01

    Faces elicit robust and selective neural responses in the primate brain. These neural responses have been investigated with functional MRI and EEG in numerous studies, which have reported face-selective activations in the occipital-temporal cortex and an electrophysiological face-selective response that peaks 170 ms after stimulus onset at occipital-temporal sites. Evidence for face-selective processes has also been consistently reported in cognitive studies, which investigated the face inversion effect, the composite face effect and the left visual field (LVF) superiority. These cognitive effects indicate that the perceptual representation that we generate for faces differs from the representation that is generated for inverted faces or non-face objects. In this review, I will show that the fMRI and ERP face-selective responses are strongly associated with these three well-established behavioral face-selective measures. I will further review studies that examined the relationship between fMRI and EEG face-selective measures suggesting that they are strongly linked. Taken together these studies imply that a holistic representation of a face is generated at 170 ms after stimulus onset over the right hemisphere. These findings, which reveal a strong link between the various and complementary cognitive and neural measures of face processing, allow to characterize where, when and how faces are represented during the first 200 ms of face processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Valence interacts with the early ERP old/new effect and arousal with the sustained ERP old/new effect for affective pictures.

    PubMed

    Van Strien, Jan W; Langeslag, Sandra J E; Strekalova, Nadja J; Gootjes, Liselotte; Franken, Ingmar H A

    2009-01-28

    To examine whether valence and arousal influence recognition memory during early automatic or during more sustained processes, event-related brain potentials (ERPs) of 21 women were recorded while they made old/new judgments in a continuous recognition task with pictures from the International Affective Picture System. The pictures were presented twice and differed in emotional valence and arousal. The P1 peak and four time windows were investigated: 200-300 ms, 300-400 ms, 400-600 ms, and 750-1000 ms after stimulus onset. There was a robust old/new effect starting in the 200-300 ms epoch and lasting all time windows. The valence effect was mainly present in the P1 peak and the 200-400 ms epoch, whereas the arousal effect was found in the 300-1000 ms epoch. Exploratory sLORETA analyses dissociated valence-dependent ventromedial prefrontal activity and arousal-dependent occipital activity in the 350-380 ms time window. Valence interacted with the 200-400 ms old/new effect at central and frontal sites. Arousal interacted with the 750-1000 ms old/new effect at posterior sites. It is concluded that valence influences fast recognition memory, while arousal may influence sustained encoding.

  13. Exploring potential social influences on brain potentials during anticipation of tactile stimulation.

    PubMed

    Shen, Guannan; Saby, Joni N; Drew, Ashley R; Marshall, Peter J

    2017-03-15

    This study explored interpersonal influences on electrophysiological responses during the anticipation of tactile stimulation. It is well-known that broad, negative-going potentials are present in the event-related potential (ERP) between a forewarning cue and a tactile stimulus. It has also been shown that the alpha-range mu rhythm shows a lateralized desynchronization over central electrode sites during anticipation of tactile stimulation of the hand. The current study used a tactile discrimination task in which a visual cue signaled that an upcoming stimulus would either be delivered 1500ms later to the participant's hand, to a task partner's hand, or to neither person. For the condition in which participants anticipated the tactile stimulation to their own hand, a negative potential (contingent negative variation, CNV) was observed in the ERP at central sites in the 1000ms prior to the tactile stimulus. Significant mu rhythm desynchronization was also present in the same time window. The magnitudes of the ERPs and of the mu desynchronization were greater in the contralateral than in the ipsilateral hemisphere prior to right hand stimulation. Similar ERP and EEG changes were not present when the visual cue indicated that stimulation would be delivered to the task partner or to neither person. The absence of social influences during anticipation of tactile stimulation, and the relationship between the two brain signatures of anticipatory attention (CNV and mu rhythm) are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The effect of anesthetization and urinary bladder catheterization on renal function of rainbow trout

    USGS Publications Warehouse

    Hunn, J.B.; Willford, W.A.

    1970-01-01

    1. Rainbow trout were anesthetized with MS-222 (Sandoz) or methylpentynol and catheterized. Urine was collected at selected intervals up to 48 hr. 2. Effects of MS-222 anesthesia on urine flow and composition were isolated from the stress of catheterization by re-anesthetizing the fish 18 to 20 hr post catheterization. 3. Urine output patterns were similar following MS-222 or methylpentynol anesthesia and catheterization. Highest urine flows were measured 4 to 8 hr post treatment. The highest urine output after re-anesthetization with MS-222 was observed 2 to 4 hr post-anesthesia. 4. Highest concentrations of Na2+, K+, Ca2+, Cl- and inorganic PO4 in the urine were measured in the first 2 hr after anesthesia and catheterization. 5. Flow rates and chemical composition of urine indicate that "normal" renal function is re-established 12 to 24 hr post-treatment.

  15. Perception time and movement time in dolphin pulsing and whistling

    NASA Astrophysics Data System (ADS)

    Ridgway, Sam; Carder, Donald

    2002-05-01

    Auditory/vocal response time was separated into perception time (PT) and movement time (MT) in trials with bottlenose dolphins (Tursiops truncatus)-two males and one female. Pressure catheters accepted into the nasal cavity by each dolphin recorded the pressure increase that preceded sound production. Time from acoustic stimulus onset to onset of pressure rise was recorded as PT (range 57 to 314 ms) and pressure rise onset to dolphin sound onset was recorded as MT (range 63 to 363 ms). Blindfolded dolphins trained to report a target by whistling often responded before completion of their 200- to 800-ms echolocation click trains. Detection of the target, indicated by whistling, before termination of the animal's own click train, suggests that dolphins do not voluntarily respond to each successive click but rather set a rhythm such that each click is emitted about 20 ms after the target echo arrives.

  16. Magnetoencephalographic responses to illusory figures: early evoked gamma is affected by processing of stimulus features.

    PubMed

    Herrmann, C S; Mecklinger, A

    2000-12-01

    We examined evoked and induced responses in event-related fields and gamma activity in the magnetoencephalogram (MEG) during a visual classification task. The objective was to investigate the effects of target classification and the different levels of discrimination between certain stimulus features. We performed two experiments, which differed only in the subjects' task while the stimuli were identical. In Experiment 1, subjects responded by a button-press to rare Kanizsa squares (targets) among Kanizsa triangles and non-Kanizsa figures (standards). This task requires the processing of both stimulus features (colinearity and number of inducer disks). In Experiment 2, the four stimuli of Experiment 1 were used as standards and the occurrence of an additional stimulus without any feature overlap with the Kanizsa stimuli (a rare and highly salient red fixation cross) had to be detected. Discrimination of colinearity and number of inducer disks was not necessarily required for task performance. We applied a wavelet-based time-frequency analysis to the data and calculated topographical maps of the 40 Hz activity. The early evoked gamma activity (100-200 ms) in Experiment 1 was higher for targets as compared to standards. In Experiment 2, no significant differences were found in the gamma responses to the Kanizsa figures and non-Kanizsa figures. This pattern of results suggests that early evoked gamma activity in response to visual stimuli is affected by the targetness of a stimulus and the need to discriminate between the features of a stimulus.

  17. Temporal structure in the light response of relay cells in the dorsal lateral geniculate nucleus of the cat.

    PubMed Central

    Funke, K; Wörgötter, F

    1995-01-01

    1. The spike interval pattern during the light responses of 155 on- and 81 off-centre cells of the dorsal lateral geniculate nucleus (LGN) was studied in anaesthetized and paralysed cats by the use of a novel analysis. Temporally localized interval distributions were computed from a 100 ms time window, which was shifted along the time axis in 10 ms steps, resulting in a 90% overlap between two adjacent windows. For each step the interval distribution was computed inside the time window with 1 ms resolution, and plotted as a greyscale-coded pixel line orthogonal to the time axis. For visual stimulation, light or dark spots of different size and contrast were presented with different background illumination levels. 2. Two characteristic interval patterns were observed during the sustained response component of the cells. Mainly on-cells (77%) responded with multimodal interval distributions, resulting in elongated 'bands' in the 2-dimensional time window plots. In similar situations, the interval distributions for most (71%) off-cells were rather wide and featureless. In those cases where interval bands (i.e. multimodal interval distributions) were observed for off-cells (14%), they were always much wider than for the on-cells. This difference between the on- and off-cell population was independent of the background illumination and the contrast of the stimulus. Y on-cells also tended to produce wider interval bands than X on-cells. 3. For most stimulation situations the first interval band was centred around 6-9 ms, which has been called the fundamental interval; higher order bands are multiples thereof. The fundamental interval shifted towards larger sizes with decreasing stimulus contrast. Increasing stimulus size, on the other hand, resulted in a redistribution of the intervals into higher order bands, while at the same time the location of the fundamental interval remained largely unaffected. This was interpreted as an effect of the increasing surround inhibition at the geniculate level, by which individual retinal EPSPs were cancelled. A changing level of adaptation can result in a mixed shift/redistribution effect because of the changing stimulus contrast and changing level of tonic inhibition. 4. The occurrence of interval bands is not directly related to the shape of the autocorrelation function, which can be flat, weakly oscillatory or strongly oscillatory, regardless of the interval band pattern. 5. A simple computer model was devised to account for the observed cell behaviour. The model is highly robust against parameter variations.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 15 PMID:7562612

  18. fMRI paradigm designing and post-processing tools

    PubMed Central

    James, Jija S; Rajesh, PG; Chandran, Anuvitha VS; Kesavadas, Chandrasekharan

    2014-01-01

    In this article, we first review some aspects of functional magnetic resonance imaging (fMRI) paradigm designing for major cognitive functions by using stimulus delivery systems like Cogent, E-Prime, Presentation, etc., along with their technical aspects. We also review the stimulus presentation possibilities (block, event-related) for visual or auditory paradigms and their advantage in both clinical and research setting. The second part mainly focus on various fMRI data post-processing tools such as Statistical Parametric Mapping (SPM) and Brain Voyager, and discuss the particulars of various preprocessing steps involved (realignment, co-registration, normalization, smoothing) in these software and also the statistical analysis principles of General Linear Modeling for final interpretation of a functional activation result. PMID:24851001

  19. Differential Processing of Consonance and Dissonance within the Human Superior Temporal Gyrus.

    PubMed

    Foo, Francine; King-Stephens, David; Weber, Peter; Laxer, Kenneth; Parvizi, Josef; Knight, Robert T

    2016-01-01

    The auditory cortex is well-known to be critical for music perception, including the perception of consonance and dissonance. Studies on the neural correlates of consonance and dissonance perception have largely employed non-invasive electrophysiological and functional imaging techniques in humans as well as neurophysiological recordings in animals, but the fine-grained spatiotemporal dynamics within the human auditory cortex remain unknown. We recorded electrocorticographic (ECoG) signals directly from the lateral surface of either the left or right temporal lobe of eight patients undergoing neurosurgical treatment as they passively listened to highly consonant and highly dissonant musical chords. We assessed ECoG activity in the high gamma (γhigh, 70-150 Hz) frequency range within the superior temporal gyrus (STG) and observed two types of cortical sites of interest in both hemispheres: one type showed no significant difference in γhigh activity between consonant and dissonant chords, and another type showed increased γhigh responses to dissonant chords between 75 and 200 ms post-stimulus onset. Furthermore, a subset of these sites exhibited additional sensitivity towards different types of dissonant chords, and a positive correlation between changes in γhigh power and the degree of stimulus roughness was observed in both hemispheres. We also observed a distinct spatial organization of cortical sites in the right STG, with dissonant-sensitive sites located anterior to non-sensitive sites. In sum, these findings demonstrate differential processing of consonance and dissonance in bilateral STG with the right hemisphere exhibiting robust and spatially organized sensitivity toward dissonance.

  20. Differential Processing of Consonance and Dissonance within the Human Superior Temporal Gyrus

    PubMed Central

    Foo, Francine; King-Stephens, David; Weber, Peter; Laxer, Kenneth; Parvizi, Josef; Knight, Robert T.

    2016-01-01

    The auditory cortex is well-known to be critical for music perception, including the perception of consonance and dissonance. Studies on the neural correlates of consonance and dissonance perception have largely employed non-invasive electrophysiological and functional imaging techniques in humans as well as neurophysiological recordings in animals, but the fine-grained spatiotemporal dynamics within the human auditory cortex remain unknown. We recorded electrocorticographic (ECoG) signals directly from the lateral surface of either the left or right temporal lobe of eight patients undergoing neurosurgical treatment as they passively listened to highly consonant and highly dissonant musical chords. We assessed ECoG activity in the high gamma (γhigh, 70–150 Hz) frequency range within the superior temporal gyrus (STG) and observed two types of cortical sites of interest in both hemispheres: one type showed no significant difference in γhigh activity between consonant and dissonant chords, and another type showed increased γhigh responses to dissonant chords between 75 and 200 ms post-stimulus onset. Furthermore, a subset of these sites exhibited additional sensitivity towards different types of dissonant chords, and a positive correlation between changes in γhigh power and the degree of stimulus roughness was observed in both hemispheres. We also observed a distinct spatial organization of cortical sites in the right STG, with dissonant-sensitive sites located anterior to non-sensitive sites. In sum, these findings demonstrate differential processing of consonance and dissonance in bilateral STG with the right hemisphere exhibiting robust and spatially organized sensitivity toward dissonance. PMID:27148011

  1. Charting the functional relevance of Broca's area for visual word recognition and picture naming in Dutch using fMRI-guided TMS.

    PubMed

    Wheat, Katherine L; Cornelissen, Piers L; Sack, Alexander T; Schuhmann, Teresa; Goebel, Rainer; Blomert, Leo

    2013-05-01

    Magnetoencephalography (MEG) has shown pseudohomophone priming effects at Broca's area (specifically pars opercularis of left inferior frontal gyrus and precentral gyrus; LIFGpo/PCG) within ∼100ms of viewing a word. This is consistent with Broca's area involvement in fast phonological access during visual word recognition. Here we used online transcranial magnetic stimulation (TMS) to investigate whether LIFGpo/PCG is necessary for (not just correlated with) visual word recognition by ∼100ms. Pulses were delivered to individually fMRI-defined LIFGpo/PCG in Dutch speakers 75-500ms after stimulus onset during reading and picture naming. Reading and picture naming reactions times were significantly slower following pulses at 225-300ms. Contrary to predictions, there was no disruption to reading for pulses before 225ms. This does not provide evidence in favour of a functional role for LIFGpo/PCG in reading before 225ms in this case, but does extend previous findings in picture stimuli to written Dutch words. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Validating the Accuracy of Reaction Time Assessment on Computer-Based Tablet Devices.

    PubMed

    Schatz, Philip; Ybarra, Vincent; Leitner, Donald

    2015-08-01

    Computer-based assessment has evolved to tablet-based devices. Despite the availability of tablets and "apps," there is limited research validating their use. We documented timing delays between stimulus presentation and (simulated) touch response on iOS devices (3rd- and 4th-generation Apple iPads) and Android devices (Kindle Fire, Google Nexus, Samsung Galaxy) at response intervals of 100, 250, 500, and 1,000 milliseconds (ms). Results showed significantly greater timing error on Google Nexus and Samsung tablets (81-97 ms), than Kindle Fire and Apple iPads (27-33 ms). Within Apple devices, iOS 7 obtained significantly lower timing error than iOS 6. Simple reaction time (RT) trials (250 ms) on tablet devices represent 12% to 40% error (30-100 ms), depending on the device, which decreases considerably for choice RT trials (3-5% error at 1,000 ms). Results raise implications for using the same device for serial clinical assessment of RT using tablets, as well as the need for calibration of software and hardware. © The Author(s) 2015.

  3. 40 CFR Appendix A to Subpart C of... - Alternative Testing Methods Approved for Analyses Under the Safe Drinking Water Act

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Spectrometry (GC/MS) 525.3 24 Carbofuran High-performance liquid chromatography (HPLC) with post-column... (HPLC) with Post-Column Derivatization and Fluorescence Detection 6651 B 6651 B 6651 B-00, B-05... Chromatography/Mass Spectrometry (GC/MS) 525.3 24 Oxamyl High-performance liquid chromatography (HPLC) with post...

  4. On the Use of Lexical Stress in Reading Spanish

    ERIC Educational Resources Information Center

    Gutierrez-Palma, Nicolas; Palma-Reyes, Alfonso

    2008-01-01

    This paper investigates whether or not lexical stress is used for lexical access in Spanish. A lexical decision task and a masking priming procedure were used to compare correctly-versus-incorrectly stressed words (e.g., "tecla-TECLA vs. tecla-TECLA"). SOA (Stimulus Onset Asynchrony) was manipulated at 33, 66, 100, and 143 ms. The results showed…

  5. Exploiting Degrees of Inflectional Ambiguity: Stem Form and the Time Course of Morphological Processing

    ERIC Educational Resources Information Center

    Jarvikivi, Juhani; Pyykkonen, Pirita; Niemi, Jussi

    2009-01-01

    The authors compared sublexical and supralexical approaches to morphological processing with unambiguous and ambiguous inflected words and words with ambiguous stems in 3 masked and unmasked priming experiments in Finnish. Experiment 1 showed equal facilitation for all prime types with a short 60-ms stimulus onset asynchrony (SOA) but significant…

  6. Hemispheric Asymmetries for Temporal Information Processing: Transient Detection versus Sustained Monitoring

    ERIC Educational Resources Information Center

    Okubo, Matia; Nicholls, Michael E. R.

    2008-01-01

    This study investigated functional differences in the processing of visual temporal information between the left and right hemispheres (LH and RH). Participants indicated whether or not a checkerboard pattern contained a temporal gap lasting between 10 and 40 ms. When the stimulus contained a temporal signal (i.e. a gap), responses were more…

  7. Stimulus and recording variables and their effects on mammalian vestibular evoked potentials

    NASA Technical Reports Server (NTRS)

    Jones, Sherri M.; Subramanian, Geetha; Avniel, Wilma; Guo, Yuqing; Burkard, Robert F.; Jones, Timothy A.

    2002-01-01

    Linear vestibular evoked potentials (VsEPs) measure the collective neural activity of the gravity receptor organs in the inner ear that respond to linear acceleration transients. The present study examined the effects of electrode placement, analog filtering, stimulus polarity and stimulus rate on linear VsEP thresholds, latencies and amplitudes recorded from mice. Two electrode-recording montages were evaluated, rostral (forebrain) to 'mastoid' and caudal (cerebellum) to 'mastoid'. VsEP thresholds and peak latencies were identical between the two recording sites; however, peak amplitudes were larger for the caudal recording montage. VsEPs were also affected by filtering. Results suggest optimum high pass filter cutoff at 100-300 Hz, and low pass filter cutoff at 10,000 Hz. To evaluate stimulus rate, linear jerk pulses were presented at 9.2, 16, 25, 40 and 80 Hz. At 80 Hz, mean latencies were longer (0.350-0.450 ms) and mean amplitudes reduced (0.8-1.8 microV) for all response peaks. In 50% of animals, late peaks (P3, N3) disappeared at 80 Hz. The results offer options for VsEP recording protocols. Copyright 2002 Elsevier Science B.V.

  8. Early (M170) activation of face-specific cortex by face-like objects.

    PubMed

    Hadjikhani, Nouchine; Kveraga, Kestutis; Naik, Paulami; Ahlfors, Seppo P

    2009-03-04

    The tendency to perceive faces in random patterns exhibiting configural properties of faces is an example of pareidolia. Perception of 'real' faces has been associated with a cortical response signal arising at approximately 170 ms after stimulus onset, but what happens when nonface objects are perceived as faces? Using magnetoencephalography, we found that objects incidentally perceived as faces evoked an early (165 ms) activation in the ventral fusiform cortex, at a time and location similar to that evoked by faces, whereas common objects did not evoke such activation. An earlier peak at 130 ms was also seen for images of real faces only. Our findings suggest that face perception evoked by face-like objects is a relatively early process, and not a late reinterpretation cognitive phenomenon.

  9. A different pattern of lateralised brain activity during processing of loved faces in men and women: a MEG study.

    PubMed

    Tiedt, Hannes O; Beier, Klaus M; Lueschow, Andreas; Pauls, Alfred; Weber, Joachim E

    2014-12-01

    Viewing personally familiar and loved faces evokes a distinct pattern of brain activity as demonstrated by research employing imaging and electrophysiological methods. The aim of the current investigation was to study the perception of loved faces combined with recalling past emotional experiences using whole-head magnetoencephalograpy (MEG). Twenty-eight participants (fourteen female) viewed photographs of their romantic partner as well as of two long-term friends while imagining a positive emotional encounter with the respective person. Face-stimuli evoked a slow and sustained shift of magnetic activity from 300ms post-stimulus onwards which differentiated loved from friends' faces in female participants and left-sided sensors only. This late-latency evoked magnetic field resembled (as its magnetic counterpart) ERP-modulations by affective content and memory, most notably the late positive potential (LPP). We discuss our findings in the light of studies suggesting greater responsiveness to affective cues in women as well as sex differences in autobiographical and emotional memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. When Less is More: Feedback, Priming, and the Pseudoword Superiority Effect

    PubMed Central

    Massol, Stéphanie; Midgley, Katherine J.; Holcomb, Phillip J.; Grainger, Jonathan

    2011-01-01

    The present study combined masked priming with electrophysiological recordings to investigate orthographic priming effects with nonword targets. Targets were pronounceable nonwords (e.g., STRENG) or consonant strings (e.g., STRBNG), that both differed from a real word by a single letter substitution (STRONG). Targets were preceded by related primes that could be the same as the target (e.g., streng – STRENG, strbng-STRBNG) or the real word neighbor of the target (e.g., strong – STRENG, strong-STRBNG). Independently of priming, pronounceable nonwords were associated with larger negativities than consonant strings, starting at 290 ms post-target onset. Overall, priming effects were stronger and more long-lasting with pronounceable nonwords than consonant strings. However, consonant string targets showed an early effect of word neighbor priming in the absence of an effect of repetition priming, whereas pronounceable nonwords showed both repetition and word neighbor priming effects in the same time window. This pattern of priming effects is taken as evidence for feedback from whole-word orthographic representations activated by the prime stimulus that influences bottom-up processing of prelexical representations during target processing. PMID:21354110

  11. Atypical long-latency auditory event-related potentials in a subset of children with specific language impairment

    PubMed Central

    Bishop, Dorothy VM; Hardiman, Mervyn; Uwer, Ruth; von Suchodoletz, Waldemar

    2007-01-01

    It has been proposed that specific language impairment (SLI) is the consequence of low-level abnormalities in auditory perception. However, studies of long-latency auditory ERPs in children with SLI have generated inconsistent findings. A possible reason for this inconsistency is the heterogeneity of SLI. The intraclass correlation (ICC) has been proposed as a useful statistic for evaluating heterogeneity because it allows one to compare an individual's auditory ERP with the grand average waveform from a typically developing reference group. We used this method to reanalyse auditory ERPs from a sample previously described by Uwer, Albrecht and von Suchodoletz (2002). In a subset of children with receptive SLI, there was less correspondence (i.e. lower ICC) with the normative waveform (based on the control grand average) than for typically developing children. This poorer correspondence was seen in responses to both tone and speech stimuli for the period 100–228 ms post stimulus onset. The effect was lateralized and seen at right- but not left-sided electrodes. PMID:17683344

  12. Nefopam hydrochloride loaded microspheres for post-operative pain management: synthesis, physicochemical characterization and in-vivo evaluation.

    PubMed

    Sharma, Neelam; Arora, Sandeep; Madan, Jitender

    2018-02-01

    Once-daily oral dosage of nefopam hydrochloride loaded sustained release microspheres (NPH-MS) was investigated as novel therapeutic strategy for post-operative pain management. Microspheres were synthesized using poly-3-hydroxybutyrate and poly-(ɛ-caprolactone) by double emulsion solvent evaporation technique. NPH-MS were characterized through FTIR, PXRD and SEM. In-vitro drug release study revealed sustained behavior till 24 h. Haemolysis was <5% which signified haemocompatibility of formulation. ED50 in rat tail-flick anti-nociceptive test was found ∼18.12 mg/kg. In post-operative pain model, reversal of mechanical allodynia and thermal hyperalgesia by NPH-MS was statistically significant (p < .001) as compared with NPH till 24 h post-dose.

  13. Divided attention can enhance early-phase memory encoding: the attentional boost effect and study trial duration.

    PubMed

    Mulligan, Neil W; Spataro, Pietro

    2015-07-01

    Divided attention during encoding typically produces marked reductions in later memory. The attentional boost effect (ABE) is a surprising variation on this phenomenon. In this paradigm, each study stimulus (e.g., a word) is presented along with a target or a distractor (e.g., different colored circles) in a detection task. Later memory is better for stimuli co-occurring with targets. The present experiments indicate that the ABE arises during an early phase of memory encoding that involves initial stimulus perception and comprehension rather than at a later phase entailing controlled, elaborative rehearsal. Experiment 1 demonstrated that the ABE was robust at a short study duration (700 ms) and did not increase with increasing study trial durations (1,500 ms and 4,000 ms). Furthermore, the target condition is boosted to the level of memory performance in a full-attention condition for the short duration but not the long duration. Both results followed from the early-phase account. This account also predicts that for very short study times (limiting the influence of late-phase controlled encoding and thus minimizing the usual negative effect of divided attention), the target condition will produce better memory than will the full-attention condition. Experiment 2 used a study time of 400 ms and found that words presented with targets lead to greater recognition accuracy than do either words presented with distractors or words in the full-attention condition. Consistent with the early-phase account, a divided attention condition actually produced superior memory than did the full-attention condition, a very unusual but theoretically predicted result. (c) 2015 APA, all rights reserved.

  14. PSEUDOBULBAR AFFECT IN MULTIPLE SCLEROSIS PATIENTS.

    PubMed

    Vidović, Viktor; Rovazdi, Merisanda Časar; Kraml, Oto; Kes, Vanja Bašić

    2015-06-01

    The aim of the study was to determine the prevalence of pseudobulbar affect (PBA) in patients with multiple sclerosis (MS) and to analyze the link between PBA and patient age, sex, clinical course of MS, disease duration and degree of disability. The study was conducted on 79 MS patients that underwent inpatient rehabilitation at the Lipik Special Hospital for Medical Rehabilitation in the period from August 15, 2014 to February 15, 2015. PBA is a term used for an emotional disinhibition syndrome characterized by sudden and involuntary episodes of crying or laughing which are not in proportion to the stimulus applied or occur without stimulus. The condition can be present in patients with various neurological disorders, such as amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, patients having recovered from stroke, or following traumatic brain injury. The estimated prevalence in patients with MS ranges from 10% to 46.2%. As a measuring instrument in the study, we used the Center for Neurologic Study-Lability Scale (CNS-LS), where a sum 17 denoted positive finding. The total number of respondents was 79, of which 33 (41.8%) met the CNS-LS criteria for the diagnosis of PBA. There was no statistically significant correlation between PBA, age and degree of disability, although PBA was more common in women and in patients with a secondary progressive form of the disease. We found that 42.4% of respondents with positive CNS-LS criteria for PBA did not inform their neurologist on the presence of sudden mood changes. The high frequency of PBA and the fact that a significant proportion of patients did not inform the neurologist on their affective disturbances call for an active approach to diagnosis and treatment.

  15. Improving the Performance of an Auditory Brain-Computer Interface Using Virtual Sound Sources by Shortening Stimulus Onset Asynchrony

    PubMed Central

    Sugi, Miho; Hagimoto, Yutaka; Nambu, Isao; Gonzalez, Alejandro; Takei, Yoshinori; Yano, Shohei; Hokari, Haruhide; Wada, Yasuhiro

    2018-01-01

    Recently, a brain-computer interface (BCI) using virtual sound sources has been proposed for estimating user intention via electroencephalogram (EEG) in an oddball task. However, its performance is still insufficient for practical use. In this study, we examine the impact that shortening the stimulus onset asynchrony (SOA) has on this auditory BCI. While very short SOA might improve its performance, sound perception and task performance become difficult, and event-related potentials (ERPs) may not be induced if the SOA is too short. Therefore, we carried out behavioral and EEG experiments to determine the optimal SOA. In the experiments, participants were instructed to direct attention to one of six virtual sounds (target direction). We used eight different SOA conditions: 200, 300, 400, 500, 600, 700, 800, and 1,100 ms. In the behavioral experiment, we recorded participant behavioral responses to target direction and evaluated recognition performance of the stimuli. In all SOA conditions, recognition accuracy was over 85%, indicating that participants could recognize the target stimuli correctly. Next, using a silent counting task in the EEG experiment, we found significant differences between target and non-target sound directions in all but the 200-ms SOA condition. When we calculated an identification accuracy using Fisher discriminant analysis (FDA), the SOA could be shortened by 400 ms without decreasing the identification accuracies. Thus, improvements in performance (evaluated by BCI utility) could be achieved. On average, higher BCI utilities were obtained in the 400 and 500-ms SOA conditions. Thus, auditory BCI performance can be optimized for both behavioral and neurophysiological responses by shortening the SOA. PMID:29535602

  16. Emotion based attentional priority for storage in visual short-term memory.

    PubMed

    Simione, Luca; Calabrese, Lucia; Marucci, Francesco S; Belardinelli, Marta Olivetti; Raffone, Antonino; Maratos, Frances A

    2014-01-01

    A plethora of research demonstrates that the processing of emotional faces is prioritised over non-emotive stimuli when cognitive resources are limited (this is known as 'emotional superiority'). However, there is debate as to whether competition for processing resources results in emotional superiority per se, or more specifically, threat superiority. Therefore, to investigate prioritisation of emotional stimuli for storage in visual short-term memory (VSTM), we devised an original VSTM report procedure using schematic (angry, happy, neutral) faces in which processing competition was manipulated. In Experiment 1, display exposure time was manipulated to create competition between stimuli. Participants (n = 20) had to recall a probed stimulus from a set size of four under high (150 ms array exposure duration) and low (400 ms array exposure duration) perceptual processing competition. For the high competition condition (i.e. 150 ms exposure), results revealed an emotional superiority effect per se. In Experiment 2 (n = 20), we increased competition by manipulating set size (three versus five stimuli), whilst maintaining a constrained array exposure duration of 150 ms. Here, for the five-stimulus set size (i.e. maximal competition) only threat superiority emerged. These findings demonstrate attentional prioritisation for storage in VSTM for emotional faces. We argue that task demands modulated the availability of processing resources and consequently the relative magnitude of the emotional/threat superiority effect, with only threatening stimuli prioritised for storage in VSTM under more demanding processing conditions. Our results are discussed in light of models and theories of visual selection, and not only combine the two strands of research (i.e. visual selection and emotion), but highlight a critical factor in the processing of emotional stimuli is availability of processing resources, which is further constrained by task demands.

  17. Following the time course of face gender and expression processing: a task-dependent ERP study.

    PubMed

    Valdés-Conroy, Berenice; Aguado, Luis; Fernández-Cahill, María; Romero-Ferreiro, Verónica; Diéguez-Risco, Teresa

    2014-05-01

    The effects of task demands and the interaction between gender and expression in face perception were studied using event-related potentials (ERPs). Participants performed three different tasks with male and female faces that were emotionally inexpressive or that showed happy or angry expressions. In two of the tasks (gender and expression categorization) facial properties were task-relevant while in a third task (symbol discrimination) facial information was irrelevant. Effects of expression were observed on the visual P100 component under all task conditions, suggesting the operation of an automatic process that is not influenced by task demands. The earliest interaction between expression and gender was observed later in the face-sensitive N170 component. This component showed differential modulations by specific combinations of gender and expression (e.g., angry male vs. angry female faces). Main effects of expression and task were observed in a later occipito-temporal component peaking around 230 ms post-stimulus onset (EPN or early posterior negativity). Less positive amplitudes in the presence of angry faces and during performance of the gender and expression tasks were observed. Finally, task demands also modulated a positive component peaking around 400 ms (LPC, or late positive complex) that showed enhanced amplitude for the gender task. The pattern of results obtained here adds new evidence about the sequence of operations involved in face processing and the interaction of facial properties (gender and expression) in response to different task demands. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Reduced audiovisual recalibration in the elderly.

    PubMed

    Chan, Yu Man; Pianta, Michael J; McKendrick, Allison M

    2014-01-01

    Perceived synchrony of visual and auditory signals can be altered by exposure to a stream of temporally offset stimulus pairs. Previous literature suggests that adapting to audiovisual temporal offsets is an important recalibration to correctly combine audiovisual stimuli into a single percept across a range of source distances. Healthy aging results in synchrony perception over a wider range of temporally offset visual and auditory signals, independent of age-related unisensory declines in vision and hearing sensitivities. However, the impact of aging on audiovisual recalibration is unknown. Audiovisual synchrony perception for sound-lead and sound-lag stimuli was measured for 15 younger (22-32 years old) and 15 older (64-74 years old) healthy adults using a method-of-constant-stimuli, after adapting to a stream of visual and auditory pairs. The adaptation pairs were either synchronous or asynchronous (sound-lag of 230 ms). The adaptation effect for each observer was computed as the shift in the mean of the individually fitted psychometric functions after adapting to asynchrony. Post-adaptation to synchrony, the younger and older observers had average window widths (±standard deviation) of 326 (±80) and 448 (±105) ms, respectively. There was no adaptation effect for sound-lead pairs. Both the younger and older observers, however, perceived more sound-lag pairs as synchronous. The magnitude of the adaptation effect in the older observers was not correlated with how often they saw the adapting sound-lag stimuli as asynchronous. Our finding demonstrates that audiovisual synchrony perception adapts less with advancing age.

  19. Reduced audiovisual recalibration in the elderly

    PubMed Central

    Chan, Yu Man; Pianta, Michael J.; McKendrick, Allison M.

    2014-01-01

    Perceived synchrony of visual and auditory signals can be altered by exposure to a stream of temporally offset stimulus pairs. Previous literature suggests that adapting to audiovisual temporal offsets is an important recalibration to correctly combine audiovisual stimuli into a single percept across a range of source distances. Healthy aging results in synchrony perception over a wider range of temporally offset visual and auditory signals, independent of age-related unisensory declines in vision and hearing sensitivities. However, the impact of aging on audiovisual recalibration is unknown. Audiovisual synchrony perception for sound-lead and sound-lag stimuli was measured for 15 younger (22–32 years old) and 15 older (64–74 years old) healthy adults using a method-of-constant-stimuli, after adapting to a stream of visual and auditory pairs. The adaptation pairs were either synchronous or asynchronous (sound-lag of 230 ms). The adaptation effect for each observer was computed as the shift in the mean of the individually fitted psychometric functions after adapting to asynchrony. Post-adaptation to synchrony, the younger and older observers had average window widths (±standard deviation) of 326 (±80) and 448 (±105) ms, respectively. There was no adaptation effect for sound-lead pairs. Both the younger and older observers, however, perceived more sound-lag pairs as synchronous. The magnitude of the adaptation effect in the older observers was not correlated with how often they saw the adapting sound-lag stimuli as asynchronous. Our finding demonstrates that audiovisual synchrony perception adapts less with advancing age. PMID:25221508

  20. Numerosity processing in early visual cortex.

    PubMed

    Fornaciai, Michele; Brannon, Elizabeth M; Woldorff, Marty G; Park, Joonkoo

    2017-08-15

    While parietal cortex is thought to be critical for representing numerical magnitudes, we recently reported an event-related potential (ERP) study demonstrating selective neural sensitivity to numerosity over midline occipital sites very early in the time course, suggesting the involvement of early visual cortex in numerosity processing. However, which specific brain area underlies such early activation is not known. Here, we tested whether numerosity-sensitive neural signatures arise specifically from the initial stages of visual cortex, aiming to localize the generator of these signals by taking advantage of the distinctive folding pattern of early occipital cortices around the calcarine sulcus, which predicts an inversion of polarity of ERPs arising from these areas when stimuli are presented in the upper versus lower visual field. Dot arrays, including 8-32dots constructed systematically across various numerical and non-numerical visual attributes, were presented randomly in either the upper or lower visual hemifields. Our results show that neural responses at about 90ms post-stimulus were robustly sensitive to numerosity. Moreover, the peculiar pattern of polarity inversion of numerosity-sensitive activity at this stage suggested its generation primarily in V2 and V3. In contrast, numerosity-sensitive ERP activity at occipito-parietal channels later in the time course (210-230ms) did not show polarity inversion, indicating a subsequent processing stage in the dorsal stream. Overall, these results demonstrate that numerosity processing begins in one of the earliest stages of the cortical visual stream. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Electrophysiological signatures of event words: Dissociating syntactic and semantic category effects in lexical processing.

    PubMed

    Lapinskaya, Natalia; Uzomah, Uchechukwu; Bedny, Marina; Lau, Ellen

    2016-12-01

    Numerous theories have been proposed regarding the brain's organization and retrieval of lexical information. Neurophysiological dissociations in processing different word classes, particularly nouns and verbs, have been extensively documented, supporting the contribution of grammatical class to lexical organization. However, the contribution of semantic properties to these processing differences is still unresolved. We aim to isolate this contribution by comparing ERPs to verbs (e.g. wade), object nouns (e.g. cookie), and event nouns (e.g. concert) in a paired similarity judgment task, as event nouns share grammatical category with object nouns but some semantic properties with verbs. We find that event nouns pattern with verbs in eliciting a more positive response than object nouns across left anterior electrodes 300-500ms after word presentation. This time-window has been strongly linked to lexical-semantic access by prior electrophysiological work. Thus, the similarity of the response to words referring to concepts with more complex participant structure and temporal continuity extends across grammatical class (event nouns and verbs), and contrasts with the words that refer to objects (object nouns). This contrast supports a semantic, as well as syntactic, contribution to the differential neural organization and processing of lexical items. We also observed a late (500-800ms post-stimulus) posterior positivity for object nouns relative to event nouns and verbs at the second word of each pair, which may reflect the impact of semantic properties on the similarity judgment task. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Striatal-Limbic Activation is Associated with Intensity of Anticipatory Anxiety

    PubMed Central

    Yang, Hongyu; Spence, Jeffrey S.; Devous, Michael D.; Briggs, Richard W.; Goyal, Aman; Xiao, Hong; Yadav, Hardik; Adinoff, Bryon

    2013-01-01

    Anxiety experienced in anticipation of impending aversive events induces striatal-limbic activation. However, previous functional magnetic imaging (fMRI) studies of anticipatory anxiety have utilized post-test measures of anxiety, making a direct association between neural activation and distress problematic. This paradigm was designed to assess the BOLD response to an aversive conditioned stimulus while simultaneously measuring subjective anxiety. Fifteen male healthy subjects (45.5±8.5 years old) were studied. A high threat conditioned stimulus (CS) was paired with either an unpredictable, highly aversive (painful) or a non-aversive (non-painful) unconditioned stimulus and compared to a low threat CS paired with a predictable, non-aversive stimulus. Neural response was assessed with fMRI, and subjective anxiety (1 to 4) was recorded upon the presentation of each CS. High subjective ratings of real-time anticipatory anxiety (2, 3, and 4), relative to low anticipatory anxiety (1), elicited increased activation in the bilateral striatum, bilateral orbital frontal cortex, left anterior insula, and anterior cingulate cortex (ACC) and decreased activation in the posterior cingulate cortex (PCC). The amplitude of BOLD signal change generally paralleled the subjective rating of anxiety. Real-time measures of anticipatory anxiety confirm previous reports, using post-test measures of anxiety, of striatal-limbic activation during anticipatory anxiety while simultaneously demonstrating an increase in BOLD response in parallel with heightened anxiety. PMID:23137803

  3. Simultaneous chromatic and luminance human electroretinogram responses

    PubMed Central

    Parry, Neil R A; Murray, Ian J; Panorgias, Athanasios; McKeefry, Declan J; Lee, Barry B; Kremers, Jan

    2012-01-01

    The parallel processing of information forms an important organisational principle of the primate visual system. Here we describe experiments which use a novel chromatic–achromatic temporal compound stimulus to simultaneously identify colour and luminance specific signals in the human electroretinogram (ERG). Luminance and chromatic components are separated in the stimulus; the luminance modulation has twice the temporal frequency of the chromatic modulation. ERGs were recorded from four trichromatic and two dichromatic subjects (1 deuteranope and 1 protanope). At isoluminance, the fundamental (first harmonic) response was elicited by the chromatic component in the stimulus. The trichromatic ERGs possessed low-pass temporal tuning characteristics, reflecting the activity of parvocellular post-receptoral mechanisms. There was very little first harmonic response in the dichromats’ ERGs. The second harmonic response was elicited by the luminance modulation in the compound stimulus and showed, in all subjects, band-pass temporal tuning characteristic of magnocellular activity. Thus it is possible to concurrently elicit ERG responses from the human retina which reflect processing in both chromatic and luminance pathways. As well as providing a clear demonstration of the parallel nature of chromatic and luminance processing in the human retina, the differences that exist between ERGs from trichromatic and dichromatic subjects point to the existence of interactions between afferent post-receptoral pathways that are in operation from the earliest stages of visual processing. PMID:22586211

  4. COMMUNICATION: Electrophysiological response dynamics during focal cortical infarction

    NASA Astrophysics Data System (ADS)

    Chiganos, Terry C., Jr.; Jensen, Winnie; Rousche, Patrick J.

    2006-12-01

    While the intracellular processes of hypoxia-induced necrosis and the intercellular mechanisms of post-ischemic neurotoxicity associated with stroke are well documented, the dynamic electrophysiological (EP) response of neurons within the core or periinfarct zone remains unclear. The present study validates a method for continuous measurement of the local EP responses during focal cortical infarction induced via photothrombosis. Single microwire electrodes were acutely implanted into the primary auditory cortex of eight rats. Multi-unit neural activity, evoked via a continuous 2 Hz click stimulus, was recorded before, during and after infarction to assess neuronal function in response to local, permanent ischemia. During sham infarction, the average stimulus-evoked peak firing rate over 20 min remained stable at 495.5 ± 14.5 spikes s-1, indicating temporal stability of neural function under normal conditions. Stimulus-evoked peak firing was reliably reduced to background levels (firing frequency in the absence of stimulus) following initiation of photothrombosis over a period of 439 ± 92 s. The post-infarction firing patterns exhibited unique temporal degradation of the peak firing rate, suggesting a variable response to ischemic challenge. Despite the inherent complexity of cerebral ischemia secondary to microvascular occlusion, complete loss of EP function consistently occurred 300-600 s after photothrombosis. The results suggest that microwire recording during photothrombosis provides a simple and highly efficacious strategy for assessing the electrophysiological dynamics of cortical infarction.

  5. A Comparative Study Between Modified Starch and Xanthan Gum Thickeners in Post-Stroke Oropharyngeal Dysphagia.

    PubMed

    Vilardell, N; Rofes, L; Arreola, V; Speyer, R; Clavé, P

    2016-04-01

    Thickeners are used in post-stroke oropharyngeal dysphagia (OD) as a compensatory therapeutic strategy against aspirations. To compare the therapeutic effects of modified starch (MS) and xanthan gum (XG) thickeners on swallow safety and efficacy in chronic post-stroke OD patients using clinical and videofluoroscopic (VFS) assessment. Patients were studied by clinical assessment (volume-viscosity swallow test, V-VST) and VFS using 3 volumes (5, 10, 20 mL) and 3 viscosities (liquid, nectar and spoon thick), comparing MS and XG. We studied 122 patients (46MS, 76XG). (A) V-VST showed that both thickeners similarly improved safety of swallow. Prevalence of safe swallowing significantly increased with enhanced viscosity (P < 0.001 vs liquid), MS: 47.83 % at liquid, 84.93 % at nectar and 92.96 % at spoon thick; XG: 55.31 % at liquid, 77.78 % at nectar and 97.84 % at spoon thick. Patients on MS reported higher prevalence of pharyngeal residue at spoon-thick viscosities. (B) VFS: increasing bolus viscosity with either thickener increased prevalence of safe swallows (P < 0.001 vs liquid), MS: 30.25 % liquid, 61.07 % nectar and 92.64 % spoon thick; XG: 29.12 % liquid, 71.30 % nectar and 89.91 % spoon thick. Penetration-aspiration scale score was significantly reduced with increased viscosity with both thickeners. MS increased oral and pharyngeal residues at nectar and spoon-thick viscosities but XG did not. Timing of airway protection mechanisms and bolus velocity were not affected by either thickener. Increasing bolus viscosity with MS and XG thickeners strongly and similarly improved safety of swallow in chronic post-stroke OD by a compensatory mechanism; in contrast only MS thickeners increased oropharyngeal residue.

  6. Auditory brainstem responses in the Eastern Screech Owl: An estimate of auditory thresholds

    USGS Publications Warehouse

    Brittan-Powell, E.F.; Lohr, B.; Hahn, D.C.; Dooling, R.J.

    2005-01-01

    The auditory brainstem response (ABR), a measure of neural synchrony, was used to estimate auditory sensitivity in the eastern screech owl (Megascops asio). The typical screech owl ABR waveform showed two to three prominent peaks occurring within 5 ms of stimulus onset. As sound pressure levels increased, the ABR peak amplitude increased and latency decreased. With an increasing stimulus presentation rate, ABR peak amplitude decreased and latency increased. Generally, changes in the ABR waveform to stimulus intensity and repetition rate are consistent with the pattern found in several avian families. The ABR audiogram shows that screech owls hear best between 1.5 and 6.4 kHz with the most acute sensitivity between 4?5.7 kHz. The shape of the average screech owl ABR audiogram is similar to the shape of the behaviorally measured audiogram of the barn owl, except at the highest frequencies. Our data also show differences in overall auditory sensitivity between the color morphs of screech owls.

  7. Time-to-contact estimation of accelerated stimuli is based on first-order information.

    PubMed

    Benguigui, Nicolas; Ripoll, Hubert; Broderick, Michael P

    2003-12-01

    The goal of this study was to test whether 1st-order information, which does not account for acceleration, is used (a) to estimate the time to contact (TTC) of an accelerated stimulus after the occlusion of a final part of its trajectory and (b) to indirectly intercept an accelerated stimulus with a thrown projectile. Both tasks require the production of an action on the basis of predictive information acquired before the arrival of the stimulus at the target and allow the experimenter to make quantitative predictions about the participants' use (or nonuse) of 1st-order information. The results show that participants do not use information about acceleration and that they commit errors that rely quantitatively on 1st-order information even when acceleration is psychophysically detectable. In the indirect interceptive task, action is planned about 200 ms before the initiation of the movement, at which time the 1st-order TTC attains a critical value. ((c) 2003 APA, all rights reserved)

  8. Automatic processing of pragmatic information in the human brain: a mismatch negativity study.

    PubMed

    Zhao, Ming; Liu, Tao; Chen, Feiyan

    2018-05-23

    Language comprehension involves pragmatic information processing, which allows world knowledge to influence the interpretation of a sentence. This study explored whether pragmatic information can be automatically processed during spoken sentence comprehension. The experiment adopted the mismatch negativity (MMN) paradigm to capture the neurophysiological indicators of automatic processing of spoken sentences. Pragmatically incorrect ('Foxes have wings') and correct ('Butterflies have wings') sentences were used as the experimental stimuli. In condition 1, the pragmatically correct sentence was the deviant and the pragmatically incorrect sentence was the standard stimulus, whereas the opposite case was presented in condition 2. The experimental results showed that, compared with the condition that the pragmatically correct sentence is the deviant stimulus, when the condition that the pragmatically incorrect sentence is the deviant stimulus MMN effects were induced within 60-120 and 220-260 ms. The results indicated that the human brain can monitor for incorrect pragmatic information in the inattentive state and can automatically process pragmatic information at the beginning of spoken sentence comprehension.

  9. A high-throughput urinalysis of abused drugs based on a SPE-LC-MS/MS method coupled with an in-house developed post-analysis data treatment system.

    PubMed

    Cheng, Wing-Chi; Yau, Tsan-Sang; Wong, Ming-Kei; Chan, Lai-Ping; Mok, Vincent King-Kuen

    2006-10-16

    A rapid urinalysis system based on SPE-LC-MS/MS with an in-house post-analysis data management system has been developed for the simultaneous identification and semi-quantitation of opiates (morphine, codeine), methadone, amphetamines (amphetamine, methylamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA)), 11-benzodiazepines or their metabolites and ketamine. The urine samples are subjected to automated solid phase extraction prior to analysis by LC-MS (Finnigan Surveyor LC connected to a Finnigan LCQ Advantage) fitted with an Alltech Rocket Platinum EPS C-18 column. With a single point calibration at the cut-off concentration for each analyte, simultaneous identification and semi-quantitation for the above mentioned drugs can be achieved in a 10 min run per urine sample. A computer macro-program package was developed to automatically retrieve appropriate data from the analytical data files, compare results with preset values (such as cut-off concentrations, MS matching scores) of each drug being analyzed and generate user-defined Excel reports to indicate all positive and negative results in batch-wise manner for ease of checking. The final analytical results are automatically copied into an Access database for report generation purposes. Through the use of automation in sample preparation, simultaneous identification and semi-quantitation by LC-MS/MS and a tailored made post-analysis data management system, this new urinalysis system significantly improves the quality of results, reduces the post-data treatment time, error due to data transfer and is suitable for high-throughput laboratory in batch-wise operation.

  10. Post-coma persons with extensive multiple disabilities use microswitch technology to access selected stimulus events or operate a radio device.

    PubMed

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; Alberti, Gloria; Oliva, Doretta; Megna, Gianfranco; Iliceto, Carla; Damiani, Sabino; Ricci, Irene; Spica, Antonella

    2011-01-01

    The present two studies extended research evidence on the use of microswitch technology by post-coma persons with multiple disabilities. Specifically, Study I examined whether three adults with a diagnosis of minimally conscious state and multiple disabilities could use microswitches as tools to access brief, selected stimulus events. Study II assessed whether an adult, who had emerged from a minimally conscious state but was affected by multiple disabilities, could manage the use of a radio device via a microswitch-aided program. Results showed that the participants of Study I had a significant increase of microswitch responding during the intervention phases. The participant of Study II learned to change radio stations and seemed to spend different amounts of session time on the different stations available (suggesting preferences among the programs characterizing them). The importance of microswitch technology for assisting post-coma persons with multiple disabilities to positively engage with their environment was discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Self-face Captures, Holds, and Biases Attention.

    PubMed

    Wójcik, Michał J; Nowicka, Maria M; Kotlewska, Ilona; Nowicka, Anna

    2017-01-01

    The implicit self-recognition process may take place already in the pre-attentive stages of perception. After a silent stimulus has captured attention, it is passed on to the attentive stage where it can affect decision making and responding. Numerous studies show that the presence of self-referential information affects almost every cognitive level. These effects may share a common and fundamental basis in an attentional mechanism, conceptualized as attentional bias: the exaggerated deployment of attentional resources to a salient stimulus. A gold standard in attentional bias research is the dot-probe paradigm. In this task, a prominent stimulus (cue) and a neutral stimulus are presented in different spatial locations, followed by the presentation of a target. In the current study we aimed at investigating whether the self-face captures, holds and biases attention when presented as a task-irrelevant stimulus. In two dot-probe experiments coupled with the event-related potential (ERP) technique we analyzed the following relevant ERPs components: N2pc and SPCN which reflect attentional shifts and the maintenance of attention, respectively. An inter-stimulus interval separating face-cues and probes (800 ms) was introduced only in the first experiment. In line with our predictions, in Experiment 1 the self-face elicited the N2pc and the SPCN component. In Experiment 2 in addition to N2pc, an attentional bias was observed. Our results indicate that unintentional self-face processing disables the top-down control setting to filter out distractors, thus leading to the engagement of attentional resources and visual short-term memory.

  12. Neural timing signal for precise tactile timing judgments

    PubMed Central

    Watanabe, Junji; Nishida, Shin'ya

    2016-01-01

    The brain can precisely encode the temporal relationship between tactile inputs. While behavioural studies have demonstrated precise interfinger temporal judgments, the underlying neural mechanism remains unknown. Computationally, two kinds of neural responses can act as the information source. One is the phase-locked response to the phase of relatively slow inputs, and the other is the response to the amplitude change of relatively fast inputs. To isolate the contributions of these components, we measured performance of a synchrony judgment task for sine wave and amplitude-modulation (AM) wave stimuli. The sine wave stimulus was a low-frequency sinusoid, with the phase shifted in the asynchronous stimulus. The AM wave stimulus was a low-frequency sinusoidal AM of a 250-Hz carrier, with only the envelope shifted in the asynchronous stimulus. In the experiment, three stimulus pairs, two synchronous ones and one asynchronous one, were sequentially presented to neighboring fingers, and participants were asked to report which one was the asynchronous pair. We found that the asynchrony of AM waves could be detected as precisely as single impulse pair, with the threshold asynchrony being ∼20 ms. On the other hand, the asynchrony of sine waves could not be detected at all in the range from 5 to 30 Hz. Our results suggest that the timing signal for tactile judgments is provided not by the stimulus phase information but by the envelope of the response of the high-frequency-sensitive Pacini channel (PC), although they do not exclude a possible contribution of the envelope of non-PCs. PMID:26843600

  13. Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex

    PubMed Central

    Prakash, Neal; Biag, Jonathan D.; Sheth, Sameer A.; Mitsuyama, Satoshi; Theriot, Jeremy; Ramachandra, Chaithanya; Toga, Arthur W.

    2007-01-01

    Background Mechanisms of neurovascular coupling—the relationship between neuronal chemoelectrical activity and compensatory metabolic and hemodynamic changes—appear to be preserved across species from rats to humans despite differences in scale. However, previous work suggests that the highly cellular dense mouse somatosensory cortex has different functional hemodynamic changes compared to other species. Methods We developed novel hardware and software for 2-dimensional optical spectroscopy (2DOS). Optical changes at four simultaneously recorded wavelengths were measured in both rat and mouse primary somatosensory cortex (S1) evoked by forepaw stimulation to create four spectral maps. The spectral maps were converted to maps of deoxy-, oxy-, and total-hemoglobin (HbR, HbO, and HbT) concentration changes using the modified Beer-Lambert law and phantom HbR and HbO absorption spectra. Results Functional hemodynamics were different in mouse versus rat neocortex. On average, hemodynamics were as expected in rat primary somatosensory cortex (S1): the fractional change in the log of HbT concentration increased monophasically 2 s after stimulus, whereas HbO changes mirrored HbR changes, with HbO showing a small initial dip at 0.5 s followed by a large increase 3.0 s post stimulus. In contrast, mouse S1 showed a novel type of stimulus-evoked hemodynamic response, with prolonged, concurrent, monophasic increases in HbR and HbT and a parallel decrease in HbO that all peaked 3.5–4.5 s post stimulus onset. For rats, at any given time point the average size and shape of HbO and HbR forepaw maps were the same, whereas surface veins distorted the shape of the HbT map. For mice, HbO, HbR, and HbT forepaw maps were generally the same size and shape at any post-stimulus time point. Conclusions 2DOS using image splitting optics is feasible across species for brain mapping and quantifying the map topography of cortical hemodynamics. These results suggest that during physiologic stimulation, different species and/or cortical architecture may give rise to different hemodynamic changes during neurovascular coupling. PMID:17574868

  14. Phonological encoding in speech-sound disorder: evidence from a cross-modal priming experiment.

    PubMed

    Munson, Benjamin; Krause, Miriam O P

    2017-05-01

    Psycholinguistic models of language production provide a framework for determining the locus of language breakdown that leads to speech-sound disorder (SSD) in children. To examine whether children with SSD differ from their age-matched peers with typical speech and language development (TD) in the ability phonologically to encode lexical items that have been accessed from memory. Thirty-six children (18 with TD, 18 with SSD) viewed pictures while listening to interfering words (IW) or a non-linguistic auditory stimulus presented over headphones either 150 ms before, concurrent with or 150 ms after picture presentation. The phonological similarity of the IW and the pictures' names varied. Picture-naming latency, accuracy and duration were tallied. All children named pictures more quickly in the presence of an IW identical to the picture's name than in the other conditions. At the +150 ms stimulus onset asynchrony, pictures were named more quickly when the IW shared phonemes with the picture's name than when they were phonologically unrelated to the picture's name. The size of this effect was similar for children with SSD and children with TD. Variation in the magnitude of inhibition and facilitation on cross-modal priming tasks across children was more strongly affected by the size of the expressive and receptive lexicons than by speech-production accuracy. Results suggest that SSD is not associated with reduced phonological encoding ability, at least as it is reflected by cross-modal naming tasks. © 2016 Royal College of Speech and Language Therapists.

  15. The effects of alcohol on the recognition of facial expressions and microexpressions of emotion: enhanced recognition of disgust and contempt.

    PubMed

    Felisberti, Fatima; Terry, Philip

    2015-09-01

    The study compared alcohol's effects on the recognition of briefly displayed facial expressions of emotion (so-called microexpressions) with expressions presented for a longer period. Using a repeated-measures design, we tested 18 participants three times (counterbalanced), after (i) a placebo drink, (ii) a low-to-moderate dose of alcohol (0.17 g/kg women; 0.20 g/kg men) and (iii) a moderate-to-high dose of alcohol (0.52 g/kg women; 0.60 g/kg men). On each session, participants were presented with stimuli representing six emotions (happiness, sadness, anger, fear, disgust and contempt) overlaid on a generic avatar in a six-alternative forced-choice paradigm. A neutral expression (1 s) preceded and followed a target expression presented for 200 ms (microexpressions) or 400 ms. Participants mouse clicked the correct answer. The recognition of disgust was significantly better after the high dose of alcohol than after the low dose or placebo drinks at both durations of stimulus presentation. A similar profile of effects was found for the recognition of contempt. There were no effects on response latencies. Alcohol can increase sensitivity to expressions of disgust and contempt. Such effects are not dependent on stimulus duration up to 400 ms and may reflect contextual modulation of alcohol's effects on emotion recognition. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Emotional Granularity Effects on Event-Related Brain Potentials during Affective Picture Processing.

    PubMed

    Lee, Ja Y; Lindquist, Kristen A; Nam, Chang S

    2017-01-01

    There is debate about whether emotional granularity , the tendency to label emotions in a nuanced and specific manner, is merely a product of labeling abilities, or a systematic difference in the experience of emotion during emotionally evocative events. According to the Conceptual Act Theory of Emotion (CAT) (Barrett, 2006), emotional granularity is due to the latter and is a product of on-going temporal differences in how individuals categorize and thus make meaning of their affective states. To address this question, the present study investigated the effects of individual differences in emotional granularity on electroencephalography-based brain activity during the experience of emotion in response to affective images. Event-related potentials (ERP) and event-related desynchronization and synchronization (ERD/ERS) analysis techniques were used. We found that ERP responses during the very early (60-90 ms), middle (270-300 ms), and later (540-570 ms) moments of stimulus presentation were associated with individuals' level of granularity. We also observed that highly granular individuals, compared to lowly granular individuals, exhibited relatively stable desynchronization of alpha power (8-12 Hz) and synchronization of gamma power (30-50 Hz) during the 3 s of stimulus presentation. Overall, our results suggest that emotional granularity is related to differences in neural processing throughout emotional experiences and that high granularity could be associated with access to executive control resources and a more habitual processing of affective stimuli, or a kind of "emotional complexity." Implications for models of emotion are also discussed.

  17. Crowding during restricted and free viewing

    PubMed Central

    Wallace, Julian M.; Chiu, Michael K.; Nandy, Anirvan S.; Tjan, Bosco S.

    2013-01-01

    Crowding impairs the perception of form in peripheral vision. It is likely to be a key limiting factor of form vision in patients without central vision. Crowding has been extensively studied in normally sighted individuals, typically with a stimulus duration of a few hundred milliseconds to avoid eye movements. These restricted testing conditions do not reflect the natural behavior of a patient with central field loss. Could unlimited stimulus duration and unrestricted eye movements change the properties of crowding in any fundamental way? We studied letter identification in the peripheral vision of normally sighted observers in three conditions: (i) a fixation condition with a brief stimulus presentation of 250 ms, (ii) another fixation condition but with an unlimited viewing time, and (iii) an unrestricted eye movement condition with an artificial central scotoma and an unlimited viewing time. In all conditions, contrast thresholds were measured as a function of target-to-flanker spacing, from which we estimated the spatial extent of crowding in terms of critical spacing. We found that presentation duration beyond 250 ms had little effect on critical spacing with stable gaze. With unrestricted eye movements and a simulated central scotoma, we found a large variability in critical spacing across observers, but more importantly, the variability in critical spacing was well correlated with the variability in target eccentricity. Our results assure that the large body of findings on crowding made with briefly presented stimuli remains relevant to conditions where viewing time is unconstrained. Our results further suggest that impaired oculomotor control associated with central vision loss can confound peripheral form vision beyond the limits imposed by crowding. PMID:23563172

  18. Expansion and Compression of Time Correlate with Information Processing in an Enumeration Task.

    PubMed

    Wutz, Andreas; Shukla, Anuj; Bapi, Raju S; Melcher, David

    2015-01-01

    Perception of temporal duration is subjective and is influenced by factors such as attention and context. For example, unexpected or emotional events are often experienced as if time subjectively expands, suggesting that the amount of information processed in a unit of time can be increased. Time dilation effects have been measured with an oddball paradigm in which an infrequent stimulus is perceived to last longer than standard stimuli in the rest of the sequence. Likewise, time compression for the oddball occurs when the duration of the standard items is relatively brief. Here, we investigated whether the amount of information processing changes when time is perceived as distorted. On each trial, an oddball stimulus of varying numerosity (1-14 items) and duration was presented along with standard items that were either short (70 ms) or long (1050 ms). Observers were instructed to count the number of dots within the oddball stimulus and to judge its relative duration with respect to the standards on that trial. Consistent with previous results, oddballs were reliably perceived as temporally distorted: expanded for longer standard stimuli blocks and compressed for shorter standards. The occurrence of these distortions of time perception correlated with perceptual processing; i.e. enumeration accuracy increased when time was perceived as expanded and decreased with temporal compression. These results suggest that subjective time distortions are not epiphenomenal, but reflect real changes in sensory processing. Such short-term plasticity in information processing rate could be evolutionarily advantageous in optimizing perception and action during critical moments.

  19. Neurophysiological signature of effective anticipatory task-set control: a task-switching investigation.

    PubMed

    Lavric, Aureliu; Mizon, Guy A; Monsell, Stephen

    2008-09-01

    Changing between cognitive tasks requires a reorganization of cognitive processes. Behavioural evidence suggests this can occur in advance of the stimulus. However, the existence or detectability of an anticipatory task-set reconfiguration process remains controversial, in part because several neuroimaging studies have not detected extra brain activity during preparation for a task switch relative to a task repeat. In contrast, electrophysiological studies have identified potential correlates of preparation for a task switch, but their interpretation is hindered by the scarcity of evidence on their relationship to performance. We aimed to: (i) identify the brain potential(s) reflecting effective preparation for a task-switch in a task-cuing paradigm that shows clear behavioural evidence for advance preparation, and (ii) characterize this activity by means of temporal segmentation and source analysis. Our results show that when advance preparation was effective (as indicated by fast responses), a protracted switch-related component, manifesting itself as widespread posterior positivity and concurrent right anterior negativity, preceded stimulus onset for approximately 300 ms, with sources primarily in the left lateral frontal, right inferior frontal and temporal cortices. When advance preparation was ineffective (as implied by slow responses), or made impossible by a short cue-stimulus interval (CSI), a similar component, with lateral prefrontal generators, peaked approximately 300 ms poststimulus. The protracted prestimulus component (which we show to be distinct from P3 or contingent negative variation, CNV) also correlated over subjects with a behavioural measure of preparation. Furthermore, its differential lateralization for word and picture cues was consistent with a role for verbal self-instruction in preparatory task-set reconfiguration.

  20. Post-acquisition data mining techniques for LC-MS/MS-acquired data in drug metabolite identification.

    PubMed

    Dhurjad, Pooja Sukhdev; Marothu, Vamsi Krishna; Rathod, Rajeshwari

    2017-08-01

    Metabolite identification is a crucial part of the drug discovery process. LC-MS/MS-based metabolite identification has gained widespread use, but the data acquired by the LC-MS/MS instrument is complex, and thus the interpretation of data becomes troublesome. Fortunately, advancements in data mining techniques have simplified the process of data interpretation with improved mass accuracy and provide a potentially selective, sensitive, accurate and comprehensive way for metabolite identification. In this review, we have discussed the targeted (extracted ion chromatogram, mass defect filter, product ion filter, neutral loss filter and isotope pattern filter) and untargeted (control sample comparison, background subtraction and metabolomic approaches) post-acquisition data mining techniques, which facilitate the drug metabolite identification. We have also discussed the importance of integrated data mining strategy.

  1. A new calibrant for MALDI-TOF-TOF-PSD-MS/MS of non-digested proteins for top-down proteomic analysis

    USDA-ARS?s Scientific Manuscript database

    RATIONALE: Matrix-assisted laser desorption/ionization (MALDI) time-of-flight-time-of-flight (TOF-TOF) tandem mass spectrometry (MS/MS) has seen increasing use for post-source decay (PSD)-MS/MS analysis of non-digested protein ions for top-down proteomic identification. However, there is no commonl...

  2. Near-peer teaching programme for medical students.

    PubMed

    Gottlieb, Zoe; Epstein, Samantha; Richards, Jeremy

    2017-06-01

    Near-peer teaching (NPT) is increasingly recognised as an effective method for teaching and learning within medical education. We describe a student-as-teacher programme developed for fourth-year students (MS4s) helping to deliver the second-year Respiratory Pathophysiology course at our medical school. Twelve MS4s were paired with faculty members to co-teach one or two small group case-based sessions for second-year students (MS2s). Beforehand, MS4s attended an orientation session and workshop, reviewing skills and strategies for teaching effectively. Following each teaching session co-taught by MS4s, both MS4s and MS2s completed multiple-choice surveys evaluating the MS4's teaching skills and the experience overall. MS4s also wrote reflection essays describing their experiences. Faculty member co-teachers completed a 12-question feedback form for MS4s during the session. We received 114 post-session MS2 surveys, 13 post-session MS4 surveys and 13 post-session faculty staff evaluations. The majority of MS2s reported that MS4s enhanced their understanding of the material, and considered the quality of MS4 teaching to be 'good' or 'outstanding'. Nearly all of the MS4s enjoyed their experiences and believed that the programme improved their teaching skills. Time management was the most common challenge cited by both MS4s and faculty member co-teachers. These data demonstrate that NPT is valuable for both MS2s and MS4s: MS2s benefited from the social and cognitive congruence afforded by near-peer teachers, whereas MS4s used this experience to build and enhance their skills as educators. These results support the continued involvement of MS4s in this second-year course, as well as broadening the scope of and opportunities for student teaching at our medical school and beyond. Near-peer teaching is recognised as an effective method for teaching and learning within medical education. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  3. Distress improves after mindfulness training for progressive MS: A pilot randomised trial.

    PubMed

    Bogosian, A; Chadwick, P; Windgassen, S; Norton, S; McCrone, P; Mosweu, I; Silber, E; Moss-Morris, R

    2015-08-01

    Mindfulness-based interventions have been shown to effectively reduce anxiety, depression and pain in patients with chronic physical illnesses. We assessed the potential effectiveness and cost-effectiveness of a specially adapted Skype distant-delivered mindfulness intervention, designed to reduce distress for people affected by primary and secondary progressive MS. Forty participants were randomly assigned to the eight-week intervention (n = 19) or a waiting-list control group (n = 21). Participants completed standardised questionnaires to measure mood, impact of MS and symptom severity, quality of life and service costs at baseline, post-intervention and three-month follow-up. Distress scores were lower in the intervention group compared with the control group at post-intervention and follow-up (p < 0.05), effect size -0.67 post-intervention and -0.97 at follow-up. Mean scores for pain, fatigue, anxiety, depression and impact of MS were reduced for the mindfulness group compared with control group at post-therapy and follow-up; effect sizes ranged from -0.27 to -0.99 post-intervention and -0.29 to -1.12 at follow-up. There were no differences in quality-adjusted life years, but an 87.4% probability that the intervention saves on service costs and improves outcome. A mindfulness intervention delivered through Skype video conferences appears accessible, feasible and potentially effective and cost-effective for people with progressive MS. © The Author(s), 2015.

  4. POSTMan (POST-translational modification analysis), a software application for PTM discovery.

    PubMed

    Arntzen, Magnus Ø; Osland, Christoffer Leif; Raa, Christopher Rasch-Olsen; Kopperud, Reidun; Døskeland, Stein-Ove; Lewis, Aurélia E; D'Santos, Clive S

    2009-03-01

    Post-translationally modified peptides present in low concentrations are often not selected for CID, resulting in no sequence information for these peptides. We have developed a software POSTMan (POST-translational Modification analysis) allowing post-translationally modified peptides to be targeted for fragmentation. The software aligns LC-MS runs (MS(1) data) between individual runs or within a single run and isolates pairs of peptides which differ by a user defined mass difference (post-translationally modified peptides). The method was validated for acetylated peptides and allowed an assessment of even the basal protein phosphorylation of phenylalanine hydroxylase (PHA) in intact cells.

  5. Out of sight but not out of mind: the neurophysiology of iconic memory in the superior temporal sulcus.

    PubMed

    Keysers, C; Xiao, D-K; Foldiak, P; Perrett, D I

    2005-05-01

    Iconic memory, the short-lasting visual memory of a briefly flashed stimulus, is an important component of most models of visual perception. Here we investigate what physiological mechanisms underlie this capacity by showing rapid serial visual presentation (RSVP) sequences with and without interstimulus gaps to human observers and macaque monkeys. For gaps of up to 93 ms between consecutive images, human observers and neurones in the temporal cortex of macaque monkeys were found to continue processing a stimulus as if it was still present on the screen. The continued firing of neurones in temporal cortex may therefore underlie iconic memory. Based on these findings, a neurophysiological vision of iconic memory is presented.

  6. Task Switching in a Hierarchical Task Structure: Evidence for the Fragility of the Task Repetition Benefit

    ERIC Educational Resources Information Center

    Lien, Mei-Ching; Ruthruff, Eric

    2004-01-01

    This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms.…

  7. Segmentation precedes face categorization under suboptimal conditions.

    PubMed

    Van Den Boomen, Carlijn; Fahrenfort, Johannes J; Snijders, Tineke M; Kemner, Chantal

    2015-01-01

    Both categorization and segmentation processes play a crucial role in face perception. However, the functional relation between these subprocesses is currently unclear. The present study investigates the temporal relation between segmentation-related and category-selective responses in the brain, using electroencephalography (EEG). Surface segmentation and category content were both manipulated using texture-defined objects, including faces. This allowed us to study brain activity related to segmentation and to categorization. In the main experiment, participants viewed texture-defined objects for a duration of 800 ms. EEG results revealed that segmentation-related responses precede category-selective responses. Three additional experiments revealed that the presence and timing of categorization depends on stimulus properties and presentation duration. Photographic objects were presented for a long and short (92 ms) duration and evoked fast category-selective responses in both cases. On the other hand, presentation of texture-defined objects for a short duration only evoked segmentation-related but no category-selective responses. Category-selective responses were much slower when evoked by texture-defined than by photographic objects. We suggest that in case of categorization of objects under suboptimal conditions, such as when low-level stimulus properties are not sufficient for fast object categorization, segmentation facilitates the slower categorization process.

  8. Segmentation precedes face categorization under suboptimal conditions

    PubMed Central

    Van Den Boomen, Carlijn; Fahrenfort, Johannes J.; Snijders, Tineke M.; Kemner, Chantal

    2015-01-01

    Both categorization and segmentation processes play a crucial role in face perception. However, the functional relation between these subprocesses is currently unclear. The present study investigates the temporal relation between segmentation-related and category-selective responses in the brain, using electroencephalography (EEG). Surface segmentation and category content were both manipulated using texture-defined objects, including faces. This allowed us to study brain activity related to segmentation and to categorization. In the main experiment, participants viewed texture-defined objects for a duration of 800 ms. EEG results revealed that segmentation-related responses precede category-selective responses. Three additional experiments revealed that the presence and timing of categorization depends on stimulus properties and presentation duration. Photographic objects were presented for a long and short (92 ms) duration and evoked fast category-selective responses in both cases. On the other hand, presentation of texture-defined objects for a short duration only evoked segmentation-related but no category-selective responses. Category-selective responses were much slower when evoked by texture-defined than by photographic objects. We suggest that in case of categorization of objects under suboptimal conditions, such as when low-level stimulus properties are not sufficient for fast object categorization, segmentation facilitates the slower categorization process. PMID:26074838

  9. A phase response curve to single bright light pulses in human subjects

    NASA Technical Reports Server (NTRS)

    Khalsa, Sat Bir S.; Jewett, Megan E.; Cajochen, Christian; Czeisler, Charles A.

    2003-01-01

    The circadian pacemaker is differentially sensitive to the resetting effects of retinal light exposure, depending upon the circadian phase at which the light exposure occurs. Previously reported human phase response curves (PRCs) to single bright light exposures have employed small sample sizes, and were often based on relatively imprecise estimates of circadian phase and phase resetting. In the present study, 21 healthy, entrained subjects underwent pre- and post-stimulus constant routines (CRs) in dim light (approximately 2-7 lx) with maintained wakefulness in a semi-recumbent posture. The 6.7 h bright light exposure stimulus consisted of alternating 6 min fixed gaze (approximately 10 000 lx) and free gaze (approximately 5000-9000 lx) exposures. Light exposures were scheduled across the circadian cycle in different subjects so as to derive a PRC. Plasma melatonin was used to determine the phase of the onset, offset, and midpoint of the melatonin profiles during the CRs. Phase shifts were calculated as the difference in phase between the pre- and post-stimulus CRs. The resultant PRC of the midpoint of the melatonin rhythm revealed a characteristic type 1 PRC with a significant peak-to-trough amplitude of 5.02 h. Phase delays occurred when the light stimulus was centred prior to the critical phase at the core body temperature minimum, phase advances occurred when the light stimulus was centred after the critical phase, and no phase shift occurred at the critical phase. During the subjective day, no prolonged 'dead zone' of photic insensitivity was apparent. Phase shifts derived using the melatonin onsets showed larger magnitudes than those derived from the melatonin offsets. These data provide a comprehensive characterization of the human PRC under highly controlled laboratory conditions.

  10. Thulium fibre laser nerve stimulation and its application in human pain research

    NASA Astrophysics Data System (ADS)

    Warnaby, Catherine E.

    Experimental pain induction, in combination with psychophysical and functional imaging techniques, allows the controlled study of the mechanisms, pathways and brain areas involved in the processing of noxious stimuli. Laser nerve stimulation provides an excellent stimulus that selectively activates the Adelta and C nociceptors with only low concurrent activity in the warmth system. Thulium fibre laser systems, operating near 2mum, offer several advantages over other pain stimulators including the CO[2] and Tm:YAG laser systems. These advantages include direct absorption at the location of the nociceptors, reduced likelihood of tissue damage, improved compatibility with fMRI, and wavelength tunability. The main aims of the thesis were to apply an initial thulium fibre laser system to pain activation studies in healthy subjects and confirm the potential advantages. A 1D finite difference photothermal model confirmed that thulium fibre laser radiation is absorbed throughout the expected location of the nociceptors and produces a lower surface temperature than CO[2] radiation. In order to produce a temperature rise of 9°C at 150mum, thulium radiation induces a surface temperature rise of 12°C compared to 21°C surface temperature rise using CO[2] radiation. The use of thulium fibre radiation greatly reduces the likelihood of tissue damage and first-degree burns when compared to CO[2] radiation. The spatial temperature gradient and the surface temperature rise were also found to be strongly dependent on the thulium fibre laser emission wavelength, which implies that wavelength tuning may be used to obtain the optimum stimulus wavelength in the 2mum region. The 5W initial fibre laser system was fully characterised before application to human pain studies and was shown to have excellent reproducibility of the stimulus parameters, with short-term and long-term deviations of the pulse energy of 5% and 8% of the mean respectively. The thulium fibre laser emits radiation over a 38nm wavelength range from 2.006-2.044mum. The initial system was used successfully to elicit painful sensations and laser evoked potentials (LEPs), which showed the expected dependence on the laser stimulus parameters. In agreement with the modelled results, beam diameters from 5-8mm for a 150ms pulse duration were found to elicit painful responses while minimising tissue damage. Psychophysical assessment of the pain threshold energy and energy density in ten volunteers, using the modified staircase technique and the method of constant stimuli, also showed the expected dependence on the laser beam diameter over this range. The topographical distribution of the LEPs elicited by the thulium fibre laser and a CO[2] pain stimulator were found to be very similar. However, statistically significant differences in the peak latencies of the LEP components were observed. The peak latency of the N2, P2 and P3 components elicited by the thulium fibre laser were found to be longer by 44ms, 52ms and 78ms respectively than those elicited by the CO[2] laser across five volunteers. These latency differences are believed to be due to the difference in beam diameter of the two stimuli, which produces an increase in local spatial summation for the CO[2] laser stimuli. The effectiveness of the thulium fibre laser as a controlled pain stimulator for human pain research has been confirmed. Using the current thulium fibre laser stimulation system, the optimum stimulus parameters are provided by a beam diameter of 6mm and a pulse duration of 150ms. However, further application of the current system to human pain research is limited by the available output power and the delivery of the thulium radiation to the subject. Suggestions are made for further work using an improved thulium fibre laser system with an increased output power of 20W, optical fibre delivery and wavelength tuning.

  11. Short-term memory in zebrafish (Danio rerio).

    PubMed

    Jia, Jason; Fernandes, Yohaan; Gerlai, Robert

    2014-08-15

    Learning and memory represent perhaps the most complex behavioral phenomena. Although their underlying mechanisms have been extensively analyzed, only a fraction of the potential molecular components have been identified. The zebrafish has been proposed as a screening tool with which mechanisms of complex brain functions may be systematically uncovered. However, as a relative newcomer in behavioral neuroscience, the zebrafish has not been well characterized for its cognitive and mnemonic features, thus learning and/or memory screens with adults have not been feasible. Here we study short-term memory of adult zebrafish. We show animated images of conspecifics (the stimulus) to the experimental subject during 1 min intervals on ten occasions separated by different (2, 4, 8 or 16 min long) inter-stimulus intervals (ISI), a between subject experimental design. We quantify the distance of the subject from the image presentation screen during each stimulus presentation interval, during each of the 1-min post-stimulus intervals immediately following the stimulus presentations and during each of the 1-min intervals furthest away from the last stimulus presentation interval and just before the next interval (pre-stimulus interval), respectively. Our results demonstrate significant retention of short-term memory even in the longest ISI group but suggest no acquisition of reference memory. Because in the employed paradigm both stimulus presentation and behavioral response quantification is computer automated, we argue that high-throughput screening for drugs or mutations that alter short-term memory performance of adult zebrafish is now becoming feasible. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Early (N170) activation of face-specific cortex by face-like objects

    PubMed Central

    Hadjikhani, Nouchine; Kveraga, Kestutis; Naik, Paulami; Ahlfors, Seppo P.

    2009-01-01

    The tendency to perceive faces in random patterns exhibiting configural properties of faces is an example of pareidolia. Perception of ‘real’ faces has been associated with a cortical response signal arising at about 170ms after stimulus onset; but what happens when non-face objects are perceived as faces? Using magnetoencephalography (MEG), we found that objects incidentally perceived as faces evoked an early (165ms) activation in the ventral fusiform cortex, at a time and location similar to that evoked by faces, whereas common objects did not evoke such activation. An earlier peak at 130 ms was also seen for images of real faces only. Our findings suggest that face perception evoked by face-like objects is a relatively early process, and not a late re-interpretation cognitive phenomenon. PMID:19218867

  13. Trait behavioral approach sensitivity (BAS) relates to early (<150 ms) electrocortical responses to appetitive stimuli.

    PubMed

    Gable, Philip A; Harmon-Jones, Eddie

    2013-10-01

    Much past research has focused on how traits related to the behavioral inhibition system (BIS) and avoidance motivation influence the almost obligatory attentional processing of aversive stimuli as measured as early as 100 ms into stimulus processing. These results fit with the functional importance assigned to the negativity bias. But do traits related to the behavioral approach system (BAS) influence attentional processing with similar rapidity? The present study addressed this unanswered question by testing whether trait BAS relates to event-related potentials (ERP) involved in rapid motivated attentional processing to appetitive stimuli. Results indicated that individual differences in BAS were correlated with larger ERP amplitudes as early as 100 ms into the processing of appetitive pictures. These results provide the first evidence linking trait approach motivational tendencies to very early stages of motivated attentional processing.

  14. Adaptive synchronization and anticipatory dynamical systems

    NASA Astrophysics Data System (ADS)

    Yang, Ying-Jen; Chen, Chun-Chung; Lai, Pik-Yin; Chan, C. K.

    2015-09-01

    Many biological systems can sense periodical variations in a stimulus input and produce well-timed, anticipatory responses after the input is removed. Such systems show memory effects for retaining timing information in the stimulus and cannot be understood from traditional synchronization consideration of passive oscillatory systems. To understand this anticipatory phenomena, we consider oscillators built from excitable systems with the addition of an adaptive dynamics. With such systems, well-timed post-stimulus responses similar to those from experiments can be obtained. Furthermore, a well-known model of working memory is shown to possess similar anticipatory dynamics when the adaptive mechanism is identified with synaptic facilitation. The last finding suggests that this type of oscillator can be common in neuronal systems with plasticity.

  15. Adaptive synchronization and anticipatory dynamical systems.

    PubMed

    Yang, Ying-Jen; Chen, Chun-Chung; Lai, Pik-Yin; Chan, C K

    2015-09-01

    Many biological systems can sense periodical variations in a stimulus input and produce well-timed, anticipatory responses after the input is removed. Such systems show memory effects for retaining timing information in the stimulus and cannot be understood from traditional synchronization consideration of passive oscillatory systems. To understand this anticipatory phenomena, we consider oscillators built from excitable systems with the addition of an adaptive dynamics. With such systems, well-timed post-stimulus responses similar to those from experiments can be obtained. Furthermore, a well-known model of working memory is shown to possess similar anticipatory dynamics when the adaptive mechanism is identified with synaptic facilitation. The last finding suggests that this type of oscillator can be common in neuronal systems with plasticity.

  16. An evaluation of the DRI-ETG EIA method for the determination of ethyl glucuronide concentrations in clinical and post-mortem urine.

    PubMed

    Turfus, Sophie C; Vo, Tu; Niehaus, Nadia; Gerostamoulos, Dimitri; Beyer, Jochen

    2013-06-01

    A commercial enzyme immunoassay for the qualitative and semi-quantitative measurement of ethyl glucuronide (EtG) in urine was evaluated. Post-mortem (n=800), and clinical urine (n=200) samples were assayed using a Hitachi 902 analyzer. The determined concentrations were compared with those obtained using a previously published liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of EtG and ethyl sulfate. Using a cut-off of 0.5 µg/ml and LC-MS/MS limit of reporting of 0.1 µg/ml, there was a sensitivity of 60.8% and a specificity of 100% for clinical samples. For post-mortem samples, sensitivity and specificity were 82.4% and 97.1%, respectively. When reducing the cut-off to 0.1 µg/ml, the sensitivity and specificity were 83.3% and 100% for clinical samples whereas for post-mortem samples the sensitivity and specificity were 90.3 % and 88.3 %, respectively. The best trade-offs between sensitivity and specificity for LC-MS/MS limits of reporting of 0.5 and 0.1 µg/ml were achieved when using immunoassay cut-offs of 0.3 and 0.092 µg/ml, respectively. There was good correlation between quantitative results obtained by both methods but analysis of samples by LC-MS/MS gave higher concentrations than by enzyme immunoassay (EIA), with a statistically significant proportional bias (P<0.0001, Deming regression) for both sample types. The immunoassay is reliable for the qualitative and semi-quantitative presumptive detection of ethyl glucuronide in urine. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Facilitated early cortical processing of nude human bodies.

    PubMed

    Alho, Jussi; Salminen, Nelli; Sams, Mikko; Hietanen, Jari K; Nummenmaa, Lauri

    2015-07-01

    Functional brain imaging has identified specialized neural systems supporting human body perception. Responses to nude vs. clothed bodies within this system are amplified. However, it remains unresolved whether nude and clothed bodies are processed by same cerebral networks or whether processing of nude bodies recruits additional affective and arousal processing areas. We recorded simultaneous MEG and EEG while participants viewed photographs of clothed and nude bodies. Global field power revealed a peak ∼145ms after stimulus onset to both clothed and nude bodies, and ∼205ms exclusively to nude bodies. Nude-body-sensitive responses were centered first (100-200ms) in the extrastriate and fusiform body areas, and subsequently (200-300ms) in affective-motivational areas including insula and anterior cingulate cortex. We conclude that visibility of sexual features facilitates early cortical processing of human bodies, the purpose of which is presumably to trigger sexual behavior and ultimately ensure reproduction. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Rapid and highly resolving associative affective learning: convergent electro- and magnetoencephalographic evidence from vision and audition.

    PubMed

    Steinberg, Christian; Bröckelmann, Ann-Kathrin; Rehbein, Maimu; Dobel, Christian; Junghöfer, Markus

    2013-03-01

    Various pathway models for emotional processing suggest early prefrontal contributions to affective stimulus evaluation. Yet, electrophysiological evidence for such rapid modulations is still sparse. In a series of four MEG/EEG studies which investigated associative learning in vision and audition using a novel MultiCS Conditioning paradigm, many different neutral stimuli (faces, tones) were paired with aversive and appetitive events in only two to three learning instances. Electrophysiological correlates of neural activity revealed highly significant amplified processing for conditioned stimuli within distributed prefrontal and sensory cortical networks. In both, vision and audition, affect-specific responses occurred in two successive waves of rapid (vision: 50-80 ms, audition: 25-65 ms) and mid-latency (vision: >130 ms, audition: >100 ms) processing. Interestingly, behavioral measures indicated that MultiCS Conditioning successfully prevented contingency awareness. We conclude that affective processing rapidly recruits highly elaborate and widely distributed networks with substantial capacity for fast learning and excellent resolving power. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Post-Coma Persons with Motor and Communication/Consciousness Impairments Choose among Environmental Stimuli and Request Stimulus Repetitions via Assistive Technology

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Buonocunto, Francesca; Sacco, Valentina; Colonna, Fabio; Navarro, Jorge; Lanzilotti, Crocifissa; Oliva, Doretta; Megna, Gianfranco

    2010-01-01

    This study assessed whether a program based on microswitch and computer technology would enable three post-coma participants (adults) with motor and communication/consciousness impairments to choose among environmental stimuli and request their repetition whenever they so desired. Within each session, 16 stimuli (12 preferred and 4 non-preferred)…

  20. Does air gas aesthesiometry generate a true mechanical stimulus for corneal sensitivity measurement?

    PubMed

    Nosch, Daniela S; Pult, Heiko; Albon, Julie; Purslow, Christine; Murphy, Paul J

    2018-03-01

    Belmonte Ocular Pain Meter (OPM) air jet aesthesiometry overcomes some of the limitations of the Cochet-Bonnet aesthesiometer. However, for true mechanical corneal sensitivity measurement, the airflow stimulus temperature of the aesthesiometer must equal ocular surface temperature (OST), to avoid additional response from temperature-sensitive nerves. The aim of this study was to determine: (A) the stimulus temperature inducing no or least change in OST; and (B) to evaluate if OST remains unchanged with different stimulus durations and airflow rates. A total of 14 subjects (mean age 25.14 ± 2.18 years; seven women) participated in this clinical cohort study: (A) OST was recorded using an infrared camera (FLIR A310) during the presentation of airflow stimuli, at five temperatures, ambient temperature (AT) +5°C, +10°C, +15°C, +20°C and +30°C, using the OPM aesthesiometer (duration three seconds; over a four millimetre distance; airflow rate 60 ml/min); and (B) OST measurements were repeated with two stimulus temperatures (AT +10°C and +15°C) while varying stimulus durations (three seconds and five seconds) and airflow rates (30, 60, 80 and 100 ml/min). Inclusion criteria were age <40 years, no contact lens wear, absence of ocular disease including dry eye, and no use of artificial tears. Repeated measures (analysis of variance) and appropriate post-hoc t-tests were applied. (A) Stimulus temperatures of AT +10°C and +15°C induced the least changes in OST (-0.20 ± 0.13°C and 0.08 ± 0.05°C). (B) OST changes were statistically significant with both stimulus temperatures and increased with increasing airflow rates (p < 0.001), and were more marked with stimulus temperature AT +10°C. A true mechanical threshold for corneal sensitivity cannot be established with the air stimulus of the Belmonte OPM because its air jet stimulus with mechanical setting is likely to have a thermal component. Appropriate stimulus selection for an air jet aesthesiometer must incorporate stimulus temperature control that can vary with stimulus duration and airflow rate. © 2017 Optometry Australia.

  1. Pirate Stealth or Inattentional Blindness? The Effects of Target Relevance and Sustained Attention on Security Monitoring for Experienced and Naïve Operators

    PubMed Central

    Näsholm, Erika; Rohlfing, Sarah; Sauer, James D.

    2014-01-01

    Closed Circuit Television (CCTV) operators are responsible for maintaining security in various applied settings. However, research has largely ignored human factors that may contribute to CCTV operator error. One important source of error is inattentional blindness – the failure to detect unexpected but clearly visible stimuli when attending to a scene. We compared inattentional blindness rates for experienced (84 infantry personnel) and naïve (87 civilians) operators in a CCTV monitoring task. The task-relevance of the unexpected stimulus and the length of the monitoring period were manipulated between participants. Inattentional blindness rates were measured using typical post-event questionnaires, and participants' real-time descriptions of the monitored event. Based on the post-event measure, 66% of the participants failed to detect salient, ongoing stimuli appearing in the spatial field of their attentional focus. The unexpected task-irrelevant stimulus was significantly more likely to go undetected (79%) than the unexpected task-relevant stimulus (55%). Prior task experience did not inoculate operators against inattentional blindness effects. Participants' real-time descriptions revealed similar patterns, ruling out inattentional amnesia accounts. PMID:24465932

  2. Post-Extinction Conditional Stimulus Valence Predicts Reinstatement Fear: Relevance for Long Term Outcomes of Exposure Therapy

    PubMed Central

    Zbozinek, Tomislav D.; Hermans, Dirk; Prenoveau, Jason M.; Liao, Betty; Craske, Michelle G.

    2014-01-01

    Exposure therapy for anxiety disorders is translated from fear conditioning and extinction. While exposure therapy is effective in treating anxiety, fear sometimes returns after exposure. One pathway for return of fear is reinstatement: unsignaled unconditional stimuli following completion of extinction. The present study investigated the extent to which valence of the conditional stimulus (CS+) after extinction predicts return of CS+ fear after reinstatement. Participants (N = 84) engaged in a differential fear conditioning paradigm and were randomized to reinstatement or non-reinstatement. We hypothesized that more negative post-extinction CS+ valence would predict higher CS+ fear after reinstatement relative to non-reinstatement and relative to extinction retest. Results supported the hypotheses and suggest that strategies designed to decrease negative valence of the CS+ may reduce the return of fear via reinstatement following exposure therapy. PMID:24957680

  3. Spatial attention facilitates assembly of the briefest percepts: Electrophysiological evidence from color fusion.

    PubMed

    Akyürek, Elkan G; van Asselt, E Manon

    2015-12-01

    When two different color stimuli are presented in rapid succession, the resulting percept is sometimes that of a mixture of both colors, due to a perceptual process called color fusion. Although color fusion might seem to occur very early in the visual pathway, and only happens across the briefest of stimulus presentation intervals (< 50 ms), the present study showed that spatial attention can alter the fusion process. In a series of experiments, spatial cues were presented that either validly indicated the location of a pair of (different) color stimuli in successive stimulus arrays, or did not, pointing toward isoluminant gray distractors in the other visual hemifield. Increased color fusion was observed for valid cues across a range of stimulus durations, at the expense of individual color reports. By contrast, perception of repeated, same-color stimulus pairs did not change, suggesting that the enhancement was specific to fusion, not color discrimination per se. Electrophysiological measures furthermore showed that the amplitude of the N1, N2pc, and P3 components of the ERP were differentially modulated during the perception of individual and fused colors, as a function of cueing and stimulus duration. Fusion itself, collapsed across cueing conditions, was reflected uniquely in N1 amplitude. Overall, the results suggest that spatial attention enhances color fusion and decreases competition between stimuli, constituting an adaptive slowdown in service of temporal integration. © 2015 Society for Psychophysiological Research.

  4. Methods for building an inexpensive computer-controlled olfactometer for temporally precise experiments

    PubMed Central

    Lundström, Johan N.; Gordon, Amy R.; Alden, Eva C.; Boesveldt, Sanne; Albrecht, Jessica

    2010-01-01

    Many human olfactory experiments call for fast and stable stimulus-rise times as well as exact and stable stimulus-onset times. Due to these temporal demands, an olfactometer is often needed. However, an olfactometer is a piece of equipment that either comes with a high price tag or requires a high degree of technical expertise to build and/or to run. Here, we detail the construction of an olfactometer that is constructed almost exclusively with “off-the-shelf” parts, requires little technical knowledge to build, has relatively low price tags, and is controlled by E-Prime, a turnkey-ready and easily-programmable software commonly used in psychological experiments. The olfactometer can present either solid or liquid odor sources, and it exhibits a fast stimulus-rise time and a fast and stable stimulus-onset time. We provide a detailed description of the olfactometer construction, a list of its individual parts and prices, as well as potential modifications to the design. In addition, we present odor onset and concentration curves as measured with a photoionization detector, together with corresponding GC/MS analyses of signal-intensity drop (5.9%) over a longer period of use. Finally, we present data from behavioral and psychophysiological recordings demonstrating that the olfactometer is suitable for use during event-related EEG experiments. PMID:20688109

  5. Code-modulated visual evoked potentials using fast stimulus presentation and spatiotemporal beamformer decoding.

    PubMed

    Wittevrongel, Benjamin; Van Wolputte, Elia; Van Hulle, Marc M

    2017-11-08

    When encoding visual targets using various lagged versions of a pseudorandom binary sequence of luminance changes, the EEG signal recorded over the viewer's occipital pole exhibits so-called code-modulated visual evoked potentials (cVEPs), the phase lags of which can be tied to these targets. The cVEP paradigm has enjoyed interest in the brain-computer interfacing (BCI) community for the reported high information transfer rates (ITR, in bits/min). In this study, we introduce a novel decoding algorithm based on spatiotemporal beamforming, and show that this algorithm is able to accurately identify the gazed target. Especially for a small number of repetitions of the coding sequence, our beamforming approach significantly outperforms an optimised support vector machine (SVM)-based classifier, which is considered state-of-the-art in cVEP-based BCI. In addition to the traditional 60 Hz stimulus presentation rate for the coding sequence, we also explore the 120 Hz rate, and show that the latter enables faster communication, with a maximal median ITR of 172.87 bits/min. Finally, we also report on a transition effect in the EEG signal following the onset of the stimulus sequence, and recommend to exclude the first 150 ms of the trials from decoding when relying on a single presentation of the stimulus sequence.

  6. Top-down proteomic identification of bacterial protein biomarkers and toxins using MALDI-TOF-TOF-MS/MS and post-source decay

    USDA-ARS?s Scientific Manuscript database

    Matrix-assisted laser desorption/ionization time-of-flight-time-of-flight mass spectrometry(MALDI-TOF-TOF-MS)has provided new capabilities for the rapid identification of digested and non-digested proteins. The tandem (MS/MS) capability of TOF-TOF instruments allows precursor ion selection/isolation...

  7. Neural correlates of cross-domain affective priming.

    PubMed

    Zhang, Qin; Li, Xiaohua; Gold, Brian T; Jiang, Yang

    2010-05-06

    The affective priming effect has mostly been studied using reaction time (RT) measures; however, the neural bases of affective priming are not well established. To understand the neural correlates of cross-domain emotional stimuli presented rapidly, we obtained event-related potential (ERP) measures during an affective priming task using short SOA (stimulus onset asynchrony) conditions. Two sets of 480 picture-word pairs were presented at SOAs of either 150ms or 250ms between prime and target stimuli. Participants decided whether the valence of each target word was pleasant or unpleasant. Behavioral results from both SOA conditions were consistent with previous reports of affective priming, with longer RTs for incongruent than congruent pairs at SOAs of 150ms (771 vs. 738ms) and 250ms (765 vs. 720ms). ERP results revealed that the N400 effect (associated with incongruent pairs in affective processing) occurred at anterior scalp regions at an SOA of 150ms, and this effect was only observed for negative target words across the scalp at an SOA of 250ms. In contrast, late positive potentials (LPPs) (associated with attentional resource allocation) occurred across the scalp at an SOA of 250ms. LPPs were only observed for positive target words at posterior parts of the brain at an SOA of 150ms. Our finding of ERP signatures at very short SOAs provides the first neural evidence that affective pictures can exert an automatic influence on the evaluation of affective target words. Copyright 2010 Elsevier B.V. All rights reserved.

  8. More Attention to Attention? An Eye-Tracking Investigation of Selection of Perceptual Attributes during a Task Switch

    ERIC Educational Resources Information Center

    Longman, Cai S.; Lavric, Aureliu; Monsell, Stephen

    2013-01-01

    Switching tasks prolongs response times, an effect reduced but not eliminated by active preparation. To explore the role of attentional selection of the relevant stimulus attribute in these task-switch costs, we measured eye fixations in participants cued to identify either a face or a letter displayed on its forehead. With only 200 ms between cue…

  9. A Funny Thing Happened on the Way to Articulation: N400 Attenuation despite Behavioral Interference in Picture Naming

    ERIC Educational Resources Information Center

    Blackford, Trevor; Holcomb, Phillip J.; Grainger, Jonathan; Kuperberg, Gina R.

    2012-01-01

    We measured Event-Related Potentials (ERPs) and naming times to picture targets preceded by masked words (stimulus onset asynchrony: 80 ms) that shared one of three different types of relationship with the names of the pictures: (1) Identity related, in which the prime was the name of the picture ("socks"--[picture of socks]), (2) Phonemic Onset…

  10. Conditioning stimulation techniques for enhancement of transcranially elicited evoked motor responses.

    PubMed

    Journée, H-L; Polak, H E; De Kleuver, M

    2007-12-01

    In spite of the use of multipulse, transcranial electrical stimulation (TES) is still insufficient in a subgroup of patients to elicit motor-evoked potentials during intraoperative neurophysiological monitoring (IONM). Classic facilitation methods used in awake patients are precluded under general anaesthesia. Conditioning techniques can be used in this situation. To present clinical experimental data and models of motor-neuron (MN) excitability for homonymous and heteronymous conditioning and discuss their applications in IONM. Data were obtained in a prospective study on multipulse TES-conditioning of the monosynaptic H-reflex and double multipulse TES. The principle of facilitation by conditioning stimulation is to apply a test stimulus when motor neurons (MNs) have been made maximally excitable by a conditioning stimulus. Both conditioning and test stimuli recruit separate populations of MNs. The overlapping fraction of MNs controls the efficacy of facilitation. Heteronymous conditioning stimulation, which is performed at a different site from the test stimulus, is illustrated by the TES-conditioned H-reflex (HR). Autonomous conditioning stimulation, which is performed at the same stimulation site, is illustrated by double-train TES (dt-TES). The facilitating curves obtained by conditioning stimulation are often 3-modal and show peaks of facilitation at short intertrain intervals (S-ITIs) of 10ms and between 15 and 20ms and at longer intertrain intervals (L-ITI) of over 100ms. The facilitation curves from HR and dt-TES are not always identical since different alphaMN pools are involved. Dt-TES is often successful in neurologically impaired patients whereas facilitation of the HR can be used when conditioned by TES at subthreshold levels allowing continuous IONM without movement in the surgical field. Alternatively, facilitation by conditioning from peripheral-nerve stimulation can be used for selective transmission of subthreshold TES motor responses to peripheral muscles, permitting motor-monitoring by a so-called selective motor-gating technique. Facilitation techniques offer many possibilities in IONM by enhancing low-amplitude TES-MEP responses. They can also selectively enhance responses in a few muscle groups for the reduction of movement.

  11. Stimulus dependent neural oscillatory patterns show reliable statistical identification of autism spectrum disorder in a face perceptual decision task.

    PubMed

    Castelhano, João; Tavares, Paula; Mouga, Susana; Oliveira, Guiomar; Castelo-Branco, Miguel

    2018-05-01

    Electroencephalographic biomarkers have been widely investigated in autism, in the search for diagnostic, prognostic and therapeutic outcome measures. Here we took advantage of the information available in temporal oscillatory patterns evoked by simple perceptual decisions to investigate whether stimulus dependent oscillatory signatures can be used as potential biomarkers in autism spectrum disorder (ASD). We studied an extensive set of stimuli (9 categories of faces) and performed data driven classification (Support vector machine, SVM) of ASD vs. Controls with features based on the EEG power responses. We carried out an extensive time-frequency and synchrony analysis of distinct face categories requiring different processing mechanisms in terms of non-holistic vs. holistic processing. We found that the neuronal oscillatory responses of low gamma frequency band, locked to photographic and abstract two-tone (Mooney) face stimulus presentation are decreased in ASD vs. the control group. We also found decreased time-frequency (TF) responses in the beta band in ASD after 350 ms, possibly related to motor preparation. On the other hand, synchrony in the 30-45 Hz band showed a distinct spatial pattern in ASD. These power changes enabled accurate classification of ASD with an SVM approach. SVM accuracy was approximately 85%. ROC curves showed about 94% AUC (area under the curve). Combination of Mooney and Photographic face stimuli evoked features enabled a better separation between groups, reaching an AUC of 98.6%. We identified a relative decrease in EEG responses to face stimuli in ASD in the beta (15-30 Hz; >350 ms) and gamma (30-45 Hz; 55-80 Hz; 50-350 ms) frequency ranges. These can be used as input of a machine learning approach to separate between groups with high accuracy. Future studies can use EEG time-frequency patterns evoked by particular types of faces as a diagnostic biomarker and potentially as outcome measures in therapeutic trials. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  12. Stimulus-dependent modulation of spike burst length in cat striate cortical cells.

    PubMed

    DeBusk, B C; DeBruyn, E J; Snider, R K; Kabara, J F; Bonds, A B

    1997-07-01

    Burst activity, defined by groups of two or more spikes with intervals of < or = 8 ms, was analyzed in responses to drifting sinewave gratings elicited from striate cortical neurons in anesthetized cats. Bursting varied broadly across a population of 507 simple and complex cells. Half of this population had > or = 42% of their spikes contained in bursts. The fraction of spikes in bursts did not vary as a function of average firing rate and was stationary over time. Peaks in the interspike interval histograms were found at both 3-5 ms and 10-30 ms. In many cells the locations of these peaks were independent of firing rate, indicating a quantized control of firing behavior at two different time scales. The activity at the shorter time scale most likely results from intrinsic properties of the cell membrane, and that at the longer scale from recurrent network excitation. Burst frequency (bursts per s) and burst length (spikes per burst) both depended on firing rate. Burst frequency was essentially linear with firing rate, whereas burst length was a nonlinear function of firing rate and was also governed by stimulus orientation. At a given firing rate, burst length was greater for optimal orientations than for nonoptimal orientations. No organized orientation dependence was seen in bursts from lateral geniculate nucleus cells. Activation of cortical contrast gain control at low response amplitudes resulted in no burst length modulation, but burst shortening at optimal orientations was found in responses characterized by supersaturation. At a given firing rate, cortical burst length was shortened by microinjection of gamma-aminobutyric acid (GABA), and bursts became longer in the presence of N-methyl-bicuculline, a GABA(A) receptor blocker. These results are consistent with a model in which responses are reduced at nonoptimal orientations, at least in part, by burst shortening that is mediated by GABA. A similar mechanism contributes to response supersaturation at high contrasts via recruitment of inhibitory responses that are tuned to adjacent orientations. Burst length modulation can serve as a form of coding by supporting dynamic, stimulus-dependent reorganization of the effectiveness of individual network connections.

  13. Selective Defects of Visual Tracking in Progressive Supranuclear Palsy (PSP): Implications for mechanisms of motion vision

    PubMed Central

    Joshi, Anand C.; Riley, David E.; Mustari, Michael J.; Cohen, Mark L.; Leigh, R. John

    2010-01-01

    Smooth ocular tracking of a moving visual stimulus comprises a range of responses that encompass the ocular following response (OFR), a pre-attentive, short-latency mechanism, and smooth pursuit, which directs the retinal fovea at the moving stimulus. In order to determine how interdependent these two forms of ocular tracking are, we studied vertical OFR in progressive supranuclear palsy (PSP), a parkinsonian disorder in which vertical smooth pursuit is known to be impaired. We measured eye movements of 9 patients with PSP and 12 healthy control subjects. Subjects viewed vertically moving sine-wave gratings that had a temporal frequency of 16.7 Hz, contrast of 32%, and spatial frequencies of 0.17, 0.27 or 0.44 cycles/°. We measured OFR amplitude as change in eye position in the 70 – 150 ms, open-loop interval following stimulus onset. Vertical smooth pursuit was studied as subjects attempted to track a 0.27 cycles/° grating moving sinusoidally through several cycles at frequencies between 0.1 – 2.5 Hz. We found that OFR amplitude, and its dependence on spatial frequency, was similar in PSP patients (group mean 0.10°) and control subjects (0.11°), but the latency to onset of OFR was greater for PSP patients (group mean 99 ms) than control subjects (90 ms). When OFR amplitude was re-measured, taking into account the increased latency in PSP patients, there was still no difference from control subjects. We confirmed that smooth pursuit was consistently impaired in PSP; group mean tracking gain at 0.7 Hz was 0.29 for PSP patients and 0.63 for controls. Neither PSP patients nor control subjects showed any correlation between OFR amplitude and smooth-pursuit gain. We propose that OFR is spared because it is generated by low-level motion processing that is dependent on posterior cerebral cortex, which is less affected in PSP. Conversely, smooth pursuit depends more on projections from frontal cortex to the pontine nuclei, both of which are involved in PSP. The accessory optic pathway, which is heavily involved in PSP, seems unlikely to contribute to the OFR in humans. PMID:20123108

  14. F157. HIERARCHICAL PREDICTION ERRORS DURING AUDITORY MISMATCH UNDER PHARMACOLOGICAL MANIPULATIONS: A COMPUTATIONAL SINGLE-TRIAL EEG ANALYSIS

    PubMed Central

    Weber, Lilian; Diaconescu, Andreea; Tomiello, Sara; Schöbi, Dario; Iglesias, Sandra; Mathys, Christoph; Haker, Helene; Stefanics, Gabor; Schmidt, André; Kometer, Michael; Vollenweider, Franz X; Stephan, Klaas Enno

    2018-01-01

    Abstract Background A central theme of contemporary neuroscience is the notion that the brain embodies a generative model of its sensory inputs to infer on the underlying environmental causes, and that it uses hierarchical prediction errors (PEs) to continuously update this model. In two pharmacological EEG studies, we investigate trial-wise hierarchical PEs during the auditory mismatch negativity (MMN), an electrophysiological response to unexpected events, which depends on NMDA-receptor mediated plasticity and has repeatedly been shown to be reduced in schizophrenia. Methods Study1: Reanalysis of 64 channel EEG data from a previously published MMN study (Schmidt et al., 2012) using a placebo-controlled, within-subject design (N=19) to examine the effect of S-ketamine. Study2: 64 channel EEG data recorded during MMN (between subjects, double-blind, placebo-controlled design, N=73), to examine the effects of amisulpride and biperiden. Using the Hierarchical Gaussian Filter, a Bayesian learning model, we extracted trial-by-trial PE estimates on two hierarchical levels. These served as regressors in a GLM of trial-wise EEG signals at the sensor level. Results We find strong correlations of EEG with both PEs in both samples: lower-level PEs show effects early on (Study1: 133ms post-stimulus, Study2: 177ms), higher-level PEs later (Study1: 240ms, Study2: 450ms). The temporal order of these signatures thus mimics the hierarchical relationship of the PEs, as proposed by our computational model, where lower level beliefs need to be updated before learning can ensue on higher levels. Ketamine significantly reduced the representation of the higher-level PE in Study1. (Study2 has not been unblinded.) Discussion These studies present first evidence for hierarchical PEs during MMN and demonstrate that single-trial analyses guided by a computational model can distinguish different types (levels) of PEs, which are differentially linked to neuromodulators of demonstrated relevance for schizophrenia. Our analysis approach thus provides better mechanistic interpretability of pharmacological MMN studies, which will hopefully support the development of computational assays for diagnosis and treatment predictions in schizophrenia.

  15. Predictive Physiological Anticipation Preceding Seemingly Unpredictable Stimuli: A Meta-Analysis

    PubMed Central

    Mossbridge, Julia; Tressoldi, Patrizio; Utts, Jessica

    2012-01-01

    This meta-analysis of 26 reports published between 1978 and 2010 tests an unusual hypothesis: for stimuli of two or more types that are presented in an order designed to be unpredictable and that produce different post-stimulus physiological activity, the direction of pre-stimulus physiological activity reflects the direction of post-stimulus physiological activity, resulting in an unexplained anticipatory effect. The reports we examined used one of two paradigms: (1) randomly ordered presentations of arousing vs. neutral stimuli, or (2) guessing tasks with feedback (correct vs. incorrect). Dependent variables included: electrodermal activity, heart rate, blood volume, pupil dilation, electroencephalographic activity, and blood oxygenation level dependent (BOLD) activity. To avoid including data hand-picked from multiple different analyses, no post hoc experiments were considered. The results reveal a significant overall effect with a small effect size [fixed effect: overall ES = 0.21, 95% CI = 0.15–0.27, z = 6.9, p < 2.7 × 10−12; random effects: overall (weighted) ES = 0.21, 95% CI = 0.13–0.29, z = 5.3, p < 5.7 × 10−8]. Higher quality experiments produced a quantitatively larger effect size and a greater level of significance than lower quality studies. The number of contrary unpublished reports that would be necessary to reduce the level of significance to chance (p > 0.05) was conservatively calculated to be 87 reports. We explore alternative explanations and examine the potential linkage between this unexplained anticipatory activity and other results demonstrating meaningful pre-stimulus activity preceding behaviorally relevant events. We conclude that to further examine this currently unexplained anticipatory activity, multiple replications arising from different laboratories using the same methods are necessary. The cause of this anticipatory activity, which undoubtedly lies within the realm of natural physical processes (as opposed to supernatural or paranormal ones), remains to be determined. PMID:23109927

  16. Encoding of a spectrally-complex communication sound in the bullfrog's auditory nerve.

    PubMed

    Schwartz, J J; Simmons, A M

    1990-02-01

    1. A population study of eighth nerve responses in the bullfrog, Rana catesbeiana, was undertaken to analyze how the eighth nerve codes the complex spectral and temporal structure of the species-specific advertisement call over a biologically-realistic range of intensities. Synthetic advertisement calls were generated by Fourier synthesis and presented to individual eighth nerve fibers of anesthetized bullfrogs. Fiber responses were analyzed by calculating rate responses based on post-stimulus-time (PST) histograms and temporal responses based on Fourier transforms of period histograms. 2. At stimulus intensities of 70 and 80 dB SPL, normalized rate responses provide a fairly good representation of the complex spectral structure of the stimulus, particularly in the low- and mid-frequency range. At higher intensities, rate responses saturate, and very little of the spectral structure of the complex stimulus can be seen in the profile of rate responses of the population. 3. Both AP and BP fibers phase-lock strongly to the fundamental (100 Hz) of the complex stimulus. These effects are relatively resistant to changes in stimulus intensity. Only a small number of fibers synchronize to the low-frequency spectral energy in the stimulus. The underlying spectral complexity of the stimulus is not accurately reflected in the timing of fiber firing, presumably because firing is 'captured' by the fundamental frequency. 4. Plots of average localized synchronized rate (ALSR), which combine both spectral and temporal information, show a similar, low-pass shape at all stimulus intensities. ALSR plots do not generally provide an accurate representation of the structure of the advertisement call. 5. The data suggest that anuran peripheral auditory fibers may be particularly sensitive to the amplitude envelope of sounds.

  17. Longer exercise duration delays post-exercise recovery of cardiac parasympathetic but not sympathetic indices.

    PubMed

    Michael, Scott; Jay, Ollie; Graham, Kenneth S; Davis, Glen M

    2017-09-01

    This study investigated non-invasive indices of post-exercise parasympathetic reactivation (using heart rate variability, HRV) and sympathetic withdrawal (using systolic time intervals, STI) following different exercise durations. 13 healthy males (age 26.4 ± 4.7 years) cycled at 70% heart rate (HR) reserve for two durations-8 min (SHORT) and 32 min (LONG)-on separate occasions: HRV (including natural logarithm of root mean square of successive differences, Ln-RMSSD) and STI (including pre-ejection period, PEP) were assessed throughout 10 min seated recovery. Exercise HR was similar between SHORT and LONG (146 ± 7 and 147 ± 6 b min -1 , respectively; p = 0.173), as was HR deceleration during 10 min recovery (p = 0.199). HR remained elevated above baseline (p < 0.001) throughout recovery for both trials (SHORT 82 ± 13 b min -1 ; LONG 86 ± 10 b min -1 , at 10 min post-exercise). Ln-RMSSD was similar at end-exercise between trials (SHORT 1.10 ± 0.30 ms; LONG 1.05 ± 0.73 ms; p = 0.656), though it recovered more rapidly following SHORT (p = 0.010), with differences apparent from 1 min (SHORT 2.29 ± 1.08 ms; LONG 1.85 ± 0.82 ms; p = 0.005) to 10 min post-exercise (SHORT 2.89 ± 0.80 ms; LONG 2.46 ± 0.70 ms; p = 0.007). Ln-RMSSD remained suppressed below baseline throughout recovery following both trials (p < 0.001). PEP was the same at end exercise for both trials (70 ± 6 ms), with exercise duration having no effect on recovery (p = 0.659). By 10 min post-exercise, PEP increased to 130 ± 21 ms (SHORT) and 131 ± 20 ms (LONG), which was similar to baseline (p ≥ 0.143). Prolonged exercise duration attenuated the recovery of HRV indices of parasympathetic reactivation, but did not influence STI indices of sympathetic withdrawal. Therefore, duration must be considered when investigating post-exercise HRV. Monitoring these measures simultaneously can provide insights not revealed by underlying HR or either measure alone.

  18. Reward modulates oculomotor competition between differently valued stimuli.

    PubMed

    Bucker, Berno; Silvis, Jeroen D; Donk, Mieke; Theeuwes, Jan

    2015-03-01

    The present work explored the effects of reward in the well-known global effect paradigm in which two objects appear simultaneously in close spatial proximity. The experiment consisted of three phases (i) a pre-training phase that served as a baseline, (ii) a reward-training phase to associate differently colored stimuli with high, low and no reward value, and (iii) a post-training phase in which rewards were no longer delivered, to examine whether objects previously associated with higher reward value attracted the eyes more strongly than those associated with low or no reward value. Unlike previous reward studies, the differently valued objects directly competed with each other on the same trial. The results showed that initially eye movements were not biased towards any particular stimulus, while in the reward-training phase, eye movements started to land progressively closer towards stimuli that were associated with a high reward value. Even though rewards were no longer delivered, this bias remained robustly present in the post-training phase. A time course analysis showed that the effect of reward was present for the fastest saccades (around 170 ms) and increased with increasing latency. Although strategic effects for slower saccades cannot be ruled out, we suggest that fast oculomotor responses became habituated and were no longer under strategic attentional control. Together the results imply that reward affects oculomotor competition in favor of stimuli previously associated high reward, when multiple reward associated objects compete for selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Functional Dissociation of Latency-Variable, Stimulus- and Response-Locked Target P3 Sub-components in Task-Switching.

    PubMed

    Brydges, Christopher R; Barceló, Francisco

    2018-01-01

    Cognitive control warrants efficient task performance in dynamic and changing environments through adjustments in executive attention, stimulus and response selection. The well-known P300 component of the human event-related potential (ERP) has long been proposed to index "context-updating"-critical for cognitive control-in simple target detection tasks. However, task switching ERP studies have revealed both target P3 (300-350 ms) and later sustained P3-like potentials (400-1,200 ms) to first targets ensuing transition cues, although it remains unclear whether these target P3-like potentials also reflect context updating operations. To address this question, we applied novel single-trial EEG analyses-residue iteration decomposition (RIDE)-in order to disentangle target P3 sub-components in a sample of 22 young adults while they either repeated or switched (updated) task rules. The rationale was to revise the context updating hypothesis of P300 elicitation in the light of new evidence suggesting that "the context" consists of not only the sensory units of stimulation, but also associated motor units, and intermediate low- and high-order sensorimotor units, all of which may need to be dynamically updated on a trial by trial basis. The results showed functionally distinct target P3-like potentials in stimulus-locked, response-locked, and intermediate RIDE component clusters overlying parietal and frontal regions, implying multiple functionally distinct, though temporarily overlapping context updating operations. These findings support a reformulated version of the context updating hypothesis, and reveal a rich family of distinct target P3-like sub-components during the reactive control of target detection in task-switching, plausibly indexing the complex and dynamic workings of frontoparietal cortical networks subserving cognitive control.

  20. Early and late beta-band power reflect audiovisual perception in the McGurk illusion

    PubMed Central

    Senkowski, Daniel; Keil, Julian

    2015-01-01

    The McGurk illusion is a prominent example of audiovisual speech perception and the influence that visual stimuli can have on auditory perception. In this illusion, a visual speech stimulus influences the perception of an incongruent auditory stimulus, resulting in a fused novel percept. In this high-density electroencephalography (EEG) study, we were interested in the neural signatures of the subjective percept of the McGurk illusion as a phenomenon of speech-specific multisensory integration. Therefore, we examined the role of cortical oscillations and event-related responses in the perception of congruent and incongruent audiovisual speech. We compared the cortical activity elicited by objectively congruent syllables with incongruent audiovisual stimuli. Importantly, the latter elicited a subjectively congruent percept: the McGurk illusion. We found that early event-related responses (N1) to audiovisual stimuli were reduced during the perception of the McGurk illusion compared with congruent stimuli. Most interestingly, our study showed a stronger poststimulus suppression of beta-band power (13–30 Hz) at short (0–500 ms) and long (500–800 ms) latencies during the perception of the McGurk illusion compared with congruent stimuli. Our study demonstrates that auditory perception is influenced by visual context and that the subsequent formation of a McGurk illusion requires stronger audiovisual integration even at early processing stages. Our results provide evidence that beta-band suppression at early stages reflects stronger stimulus processing in the McGurk illusion. Moreover, stronger late beta-band suppression in McGurk illusion indicates the resolution of incongruent physical audiovisual input and the formation of a coherent, illusory multisensory percept. PMID:25568160

  1. Early and late beta-band power reflect audiovisual perception in the McGurk illusion.

    PubMed

    Roa Romero, Yadira; Senkowski, Daniel; Keil, Julian

    2015-04-01

    The McGurk illusion is a prominent example of audiovisual speech perception and the influence that visual stimuli can have on auditory perception. In this illusion, a visual speech stimulus influences the perception of an incongruent auditory stimulus, resulting in a fused novel percept. In this high-density electroencephalography (EEG) study, we were interested in the neural signatures of the subjective percept of the McGurk illusion as a phenomenon of speech-specific multisensory integration. Therefore, we examined the role of cortical oscillations and event-related responses in the perception of congruent and incongruent audiovisual speech. We compared the cortical activity elicited by objectively congruent syllables with incongruent audiovisual stimuli. Importantly, the latter elicited a subjectively congruent percept: the McGurk illusion. We found that early event-related responses (N1) to audiovisual stimuli were reduced during the perception of the McGurk illusion compared with congruent stimuli. Most interestingly, our study showed a stronger poststimulus suppression of beta-band power (13-30 Hz) at short (0-500 ms) and long (500-800 ms) latencies during the perception of the McGurk illusion compared with congruent stimuli. Our study demonstrates that auditory perception is influenced by visual context and that the subsequent formation of a McGurk illusion requires stronger audiovisual integration even at early processing stages. Our results provide evidence that beta-band suppression at early stages reflects stronger stimulus processing in the McGurk illusion. Moreover, stronger late beta-band suppression in McGurk illusion indicates the resolution of incongruent physical audiovisual input and the formation of a coherent, illusory multisensory percept. Copyright © 2015 the American Physiological Society.

  2. Lateralization of Frequency-Specific Networks for Covert Spatial Attention to Auditory Stimuli

    PubMed Central

    Thorpe, Samuel; D'Zmura, Michael

    2011-01-01

    We conducted a cued spatial attention experiment to investigate the time–frequency structure of human EEG induced by attentional orientation of an observer in external auditory space. Seven subjects participated in a task in which attention was cued to one of two spatial locations at left and right. Subjects were instructed to report the speech stimulus at the cued location and to ignore a simultaneous speech stream originating from the uncued location. EEG was recorded from the onset of the directional cue through the offset of the inter-stimulus interval (ISI), during which attention was directed toward the cued location. Using a wavelet spectrum, each frequency band was then normalized by the mean level of power observed in the early part of the cue interval to obtain a measure of induced power related to the deployment of attention. Topographies of band specific induced power during the cue and inter-stimulus intervals showed peaks over symmetric bilateral scalp areas. We used a bootstrap analysis of a lateralization measure defined for symmetric groups of channels in each band to identify specific lateralization events throughout the ISI. Our results suggest that the deployment and maintenance of spatially oriented attention throughout a period of 1,100 ms is marked by distinct episodes of reliable hemispheric lateralization ipsilateral to the direction in which attention is oriented. An early theta lateralization was evident over posterior parietal electrodes and was sustained throughout the ISI. In the alpha and mu bands punctuated episodes of parietal power lateralization were observed roughly 500 ms after attentional deployment, consistent with previous studies of visual attention. In the beta band these episodes show similar patterns of lateralization over frontal motor areas. These results indicate that spatial attention involves similar mechanisms in the auditory and visual modalities. PMID:21630112

  3. Functional Dissociation of Latency-Variable, Stimulus- and Response-Locked Target P3 Sub-components in Task-Switching

    PubMed Central

    Brydges, Christopher R.; Barceló, Francisco

    2018-01-01

    Cognitive control warrants efficient task performance in dynamic and changing environments through adjustments in executive attention, stimulus and response selection. The well-known P300 component of the human event-related potential (ERP) has long been proposed to index “context-updating”—critical for cognitive control—in simple target detection tasks. However, task switching ERP studies have revealed both target P3 (300–350 ms) and later sustained P3-like potentials (400–1,200 ms) to first targets ensuing transition cues, although it remains unclear whether these target P3-like potentials also reflect context updating operations. To address this question, we applied novel single-trial EEG analyses—residue iteration decomposition (RIDE)—in order to disentangle target P3 sub-components in a sample of 22 young adults while they either repeated or switched (updated) task rules. The rationale was to revise the context updating hypothesis of P300 elicitation in the light of new evidence suggesting that “the context” consists of not only the sensory units of stimulation, but also associated motor units, and intermediate low- and high-order sensorimotor units, all of which may need to be dynamically updated on a trial by trial basis. The results showed functionally distinct target P3-like potentials in stimulus-locked, response-locked, and intermediate RIDE component clusters overlying parietal and frontal regions, implying multiple functionally distinct, though temporarily overlapping context updating operations. These findings support a reformulated version of the context updating hypothesis, and reveal a rich family of distinct target P3-like sub-components during the reactive control of target detection in task-switching, plausibly indexing the complex and dynamic workings of frontoparietal cortical networks subserving cognitive control. PMID:29515383

  4. Effects of Electrical and Mechanical Overstimulus on Spontaneous Oscillations in Hair Bundles

    NASA Astrophysics Data System (ADS)

    Kao, Albert; Strimbu, C. Elliott; Bozovic, Dolores

    2011-11-01

    Spontaneous oscillations constitute one of the manifestations of the active process operant in hair cells and provides a sensitive probe for their internal dynamics. The influx of ions into the stereocilia can be modulated by applying an electrical current across the epithelium and has been previously shown to strongly affect the oscillatory profiles. We applied strong transient stimuli and demonstrated that they can induce a transition from the oscillatory to the quiescent state, an effect that can last over several seconds post stimulus cessation. The dynamics of recovery to the oscillatory state was found to be dependent on the amplitude and the duration of the stimulus. Similar dynamics were observed after high-amplitude mechanical stimulus, which mimics the effects of loud sound on an individual bundle.

  5. 40 CFR Appendix A to Subpart C of... - Alternative Testing Methods Approved for Analyses Under the Safe Drinking Water Act

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Chromatography/Mass Spectrometry (GC/MS) 525.3 24 Carbofuran High-performance liquid chromatography (HPLC) with... (HPLC) with Post-Column Derivatization and Fluorescence Detection 6651 B 6651 B 6651 B-00. Heptachlor... Spectrometry (GC/MS) 525.3 24 Oxamyl High-performance liquid chromatography (HPLC) with post-column...

  6. Effect of Interocular Delay on Disparity-Selective V1 Neurons: Relationship to Stereoacuity and the Pulfrich Effect

    PubMed Central

    Read, Jenny C. A.; Cumming, Bruce G.

    2006-01-01

    The temporal properties of disparity-sensitive neurons place important temporal constraints on stereo matching. We examined these constraints by measuring the responses of disparity-selective neurons in striate cortex of awake behaving monkeys to random-dot stereograms that contained interocular delays. Disparity selectivity was gradually abolished by increasing interocular delay (when the delay exceeds the integration time, the inputs from the 2 eyes become uncorrelated). The amplitude of the disparity-selective response was a Gaussian function of interocular delay, with a mean of 16 ms (±5 ms, SD). Psychophysical measures of stereoacuity, in both monkey and human observers, showed a closely similar dependency on time, suggesting that temporal integration in V1 neurons is what determines psychophysical matching constraints over time. There was a slight but consistent asymmetry in the neuronal responses, as if the optimum stimulus is one in which the right stimulus leads by about 4 ms. Because all recordings were made in the left hemisphere, this probably reflects nasotemporal differences in conduction times; psychophysical data are compatible with this interpretation. In only a few neurons (5/72), interocular delay caused a change in the preferred disparity. Such tilted disparity/delay profiles have been invoked previously to explain depth perception in the stroboscopic version of the Pulfrich effect (and other variants). However, the great majority of the neurons did not show tilted disparity/delay profiles. This suggests that either the activity of these neurons is ignored when viewing Pulfrich stimuli, or that current theories relating neuronal properties to perception in the Pulfrich effect need to be reevaluated. PMID:15788521

  7. Spatiotemporal dynamics of similarity-based neural representations of facial identity.

    PubMed

    Vida, Mark D; Nestor, Adrian; Plaut, David C; Behrmann, Marlene

    2017-01-10

    Humans' remarkable ability to quickly and accurately discriminate among thousands of highly similar complex objects demands rapid and precise neural computations. To elucidate the process by which this is achieved, we used magnetoencephalography to measure spatiotemporal patterns of neural activity with high temporal resolution during visual discrimination among a large and carefully controlled set of faces. We also compared these neural data to lower level "image-based" and higher level "identity-based" model-based representations of our stimuli and to behavioral similarity judgments of our stimuli. Between ∼50 and 400 ms after stimulus onset, face-selective sources in right lateral occipital cortex and right fusiform gyrus and sources in a control region (left V1) yielded successful classification of facial identity. In all regions, early responses were more similar to the image-based representation than to the identity-based representation. In the face-selective regions only, responses were more similar to the identity-based representation at several time points after 200 ms. Behavioral responses were more similar to the identity-based representation than to the image-based representation, and their structure was predicted by responses in the face-selective regions. These results provide a temporally precise description of the transformation from low- to high-level representations of facial identity in human face-selective cortex and demonstrate that face-selective cortical regions represent multiple distinct types of information about face identity at different times over the first 500 ms after stimulus onset. These results have important implications for understanding the rapid emergence of fine-grained, high-level representations of object identity, a computation essential to human visual expertise.

  8. Timing in audiovisual speech perception: A mini review and new psychophysical data.

    PubMed

    Venezia, Jonathan H; Thurman, Steven M; Matchin, William; George, Sahara E; Hickok, Gregory

    2016-02-01

    Recent influential models of audiovisual speech perception suggest that visual speech aids perception by generating predictions about the identity of upcoming speech sounds. These models place stock in the assumption that visual speech leads auditory speech in time. However, it is unclear whether and to what extent temporally-leading visual speech information contributes to perception. Previous studies exploring audiovisual-speech timing have relied upon psychophysical procedures that require artificial manipulation of cross-modal alignment or stimulus duration. We introduce a classification procedure that tracks perceptually relevant visual speech information in time without requiring such manipulations. Participants were shown videos of a McGurk syllable (auditory /apa/ + visual /aka/ = perceptual /ata/) and asked to perform phoneme identification (/apa/ yes-no). The mouth region of the visual stimulus was overlaid with a dynamic transparency mask that obscured visual speech in some frames but not others randomly across trials. Variability in participants' responses (~35 % identification of /apa/ compared to ~5 % in the absence of the masker) served as the basis for classification analysis. The outcome was a high resolution spatiotemporal map of perceptually relevant visual features. We produced these maps for McGurk stimuli at different audiovisual temporal offsets (natural timing, 50-ms visual lead, and 100-ms visual lead). Briefly, temporally-leading (~130 ms) visual information did influence auditory perception. Moreover, several visual features influenced perception of a single speech sound, with the relative influence of each feature depending on both its temporal relation to the auditory signal and its informational content.

  9. Experience-Dependent Hemispheric Specialization of Letters and Numbers is Revealed in Early Visual Processing

    PubMed Central

    Park, Joonkoo; Chiang, Crystal; Brannon, Elizabeth M.; Woldorff, Marty G.

    2014-01-01

    Recent functional magnetic resonance imaging research has demonstrated that letters and numbers are preferentially processed in distinct regions and hemispheres in the visual cortex. In particular, the left visual cortex preferentially processes letters compared to numbers, while the right visual cortex preferentially processes numbers compared to letters. Because letters and numbers are cultural inventions and are otherwise physically arbitrary, such a double dissociation is strong evidence for experiential effects on neural architecture. Here, we use the high temporal resolution of event-related potentials (ERPs) to investigate the temporal dynamics of the neural dissociation between letters and numbers. We show that the divergence between ERP traces to letters and numbers emerges very early in processing. Letters evoked greater N1 waves (latencies 140–170 ms) than did numbers over left occipital channels, while numbers evoked greater N1s than letters over the right, suggesting letters and numbers are preferentially processed in opposite hemispheres early in visual encoding. Moreover, strings of letters, but not single letters, elicited greater P2 ERP waves, (starting around 250 ms) than numbers did over the left hemisphere, suggesting that the visual cortex is tuned to selectively process combinations of letters, but not numbers, further along in the visual processing stream. Additionally, the processing of both of these culturally defined stimulus types differentiated from similar but unfamiliar visual stimulus forms (false fonts) even earlier in the processing stream (the P1 at 100 ms). These findings imply major cortical specialization processes within the visual system driven by experience with reading and mathematics. PMID:24669789

  10. Distinct roles of the cortical layers of area V1 in figure-ground segregation.

    PubMed

    Self, Matthew W; van Kerkoerle, Timo; Supèr, Hans; Roelfsema, Pieter R

    2013-11-04

    What roles do the different cortical layers play in visual processing? We recorded simultaneously from all layers of the primary visual cortex while monkeys performed a figure-ground segregation task. This task can be divided into different subprocesses that are thought to engage feedforward, horizontal, and feedback processes at different time points. These different connection types have different patterns of laminar terminations in V1 and can therefore be distinguished with laminar recordings. We found that the visual response started 40 ms after stimulus presentation in layers 4 and 6, which are targets of feedforward connections from the lateral geniculate nucleus and distribute activity to the other layers. Boundary detection started shortly after the visual response. In this phase, boundaries of the figure induced synaptic currents and stronger neuronal responses in upper layer 4 and the superficial layers ~70 ms after stimulus onset, consistent with the hypothesis that they are detected by horizontal connections. In the next phase, ~30 ms later, synaptic inputs arrived in layers 1, 2, and 5 that receive feedback from higher visual areas, which caused the filling in of the representation of the entire figure with enhanced neuronal activity. The present results reveal unique contributions of the different cortical layers to the formation of a visual percept. This new blueprint of laminar processing may generalize to other tasks and to other areas of the cerebral cortex, where the layers are likely to have roles similar to those in area V1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Emotional Granularity Effects on Event-Related Brain Potentials during Affective Picture Processing

    PubMed Central

    Lee, Ja Y.; Lindquist, Kristen A.; Nam, Chang S.

    2017-01-01

    There is debate about whether emotional granularity, the tendency to label emotions in a nuanced and specific manner, is merely a product of labeling abilities, or a systematic difference in the experience of emotion during emotionally evocative events. According to the Conceptual Act Theory of Emotion (CAT) (Barrett, 2006), emotional granularity is due to the latter and is a product of on-going temporal differences in how individuals categorize and thus make meaning of their affective states. To address this question, the present study investigated the effects of individual differences in emotional granularity on electroencephalography-based brain activity during the experience of emotion in response to affective images. Event-related potentials (ERP) and event-related desynchronization and synchronization (ERD/ERS) analysis techniques were used. We found that ERP responses during the very early (60–90 ms), middle (270–300 ms), and later (540–570 ms) moments of stimulus presentation were associated with individuals’ level of granularity. We also observed that highly granular individuals, compared to lowly granular individuals, exhibited relatively stable desynchronization of alpha power (8–12 Hz) and synchronization of gamma power (30–50 Hz) during the 3 s of stimulus presentation. Overall, our results suggest that emotional granularity is related to differences in neural processing throughout emotional experiences and that high granularity could be associated with access to executive control resources and a more habitual processing of affective stimuli, or a kind of “emotional complexity.” Implications for models of emotion are also discussed. PMID:28392761

  12. Correlation of Visually Evoked Functional and Blood Flow Changes in the Rat Retina Measured With a Combined OCT+ERG System.

    PubMed

    Tan, Bingyao; Mason, Erik; MacLellan, Benjamin; Bizheva, Kostadinka K

    2017-03-01

    To correlate visually evoked functional and blood flow changes in the rat retina measured simultaneously with a combined optical coherence tomography and electroretinography system (OCT+ERG). Male Brown Norway (n = 6) rats were dark adapted and anesthetized with ketamine/xylazine. Visually evoked changes in the retinal blood flow (RBF) and functional response were measured simultaneously with an OCT+ERG system with 3-μm axial resolution in retinal tissue and 47-kHz image acquisition rate. Both single flash (10 and 200 ms) and flicker (10 Hz, 20% duty cycle, 1- and 2-second duration) stimuli were projected onto the retina with a custom visual stimulator, integrated into the OCT imaging probe. Total axial RBF was calculated from circular Doppler OCT scans by integrating over the arterial and venal flow. Temporary increase in the RBF was observed with the 10- and 200-ms continuous stimuli (∼1% and ∼4% maximum RBF change, respectively) and the 10-Hz flicker stimuli (∼8% for 1-second duration and ∼10% for 2-second duration). Doubling the flicker stimulus duration resulted in ∼25% increase in the RBF peak magnitude with no significant change in the peak latency. Single flash (200 ms) and flicker (10 Hz, 1 second) stimuli of the same illumination intensity and photon flux resulted in ∼2× larger peak RBF magnitude and ∼25% larger RBF peak latency for the flicker stimulus. Short, single flash and flicker stimuli evoked measureable RBF changes with larger RBF magnitude and peak latency observed for the flicker stimuli.

  13. Modulations of the executive control network by stimulus onset asynchrony in a Stroop task

    PubMed Central

    2013-01-01

    Background Manipulating task difficulty is a useful way of elucidating the functional recruitment of the brain’s executive control network. In a Stroop task, pre-exposing the irrelevant word using varying stimulus onset asynchronies (‘negative’ SOAs) modulates the amount of behavioural interference and facilitation, suggesting disparate mechanisms of cognitive processing in each SOA. The current study employed a Stroop task with three SOAs (−400, -200, 0 ms), using functional magnetic resonance imaging to investigate for the first time the neural effects of SOA manipulation. Of specific interest were 1) how SOA affects the neural representation of interference and facilitation; 2) response priming effects in negative SOAs; and 3) attentional effects of blocked SOA presentation. Results The results revealed three regions of the executive control network that were sensitive to SOA during Stroop interference; the 0 ms SOA elicited the greatest activation of these areas but experienced relatively smaller behavioural interference, suggesting that the enhanced recruitment led to more efficient conflict processing. Response priming effects were localized to the right inferior frontal gyrus, which is consistent with the idea that this region performed response inhibition in incongruent conditions to overcome the incorrectly-primed response, as well as more general action updating and response preparation. Finally, the right superior parietal lobe was sensitive to blocked SOA presentation and was most active for the 0 ms SOA, suggesting that this region is involved in attentional control. Conclusions SOA exerted both trial-specific and block-wide effects on executive processing, providing a unique paradigm for functional investigations of the cognitive control network. PMID:23902451

  14. Lock-and-key mechanisms of cerebellar memory recall based on rebound currents.

    PubMed

    Wetmore, Daniel Z; Mukamel, Eran A; Schnitzer, Mark J

    2008-10-01

    A basic question for theories of learning and memory is whether neuronal plasticity suffices to guide proper memory recall. Alternatively, information processing that is additional to readout of stored memories might occur during recall. We formulate a "lock-and-key" hypothesis regarding cerebellum-dependent motor memory in which successful learning shapes neural activity to match a temporal filter that prevents expression of stored but inappropriate motor responses. Thus, neuronal plasticity by itself is necessary but not sufficient to modify motor behavior. We explored this idea through computational studies of two cerebellar behaviors and examined whether deep cerebellar and vestibular nuclei neurons can filter signals from Purkinje cells that would otherwise drive inappropriate motor responses. In eyeblink conditioning, reflex acquisition requires the conditioned stimulus (CS) to precede the unconditioned stimulus (US) by >100 ms. In our biophysical models of cerebellar nuclei neurons this requirement arises through the phenomenon of postinhibitory rebound depolarization and matches longstanding behavioral data on conditioned reflex timing and reliability. Although CS-US intervals<100 ms may induce Purkinje cell plasticity, cerebellar nuclei neurons drive conditioned responses only if the CS-US training interval was >100 ms. This bound reflects the minimum time for deinactivation of rebound currents such as T-type Ca2+. In vestibulo-ocular reflex adaptation, hyperpolarization-activated currents in vestibular nuclei neurons may underlie analogous dependence of adaptation magnitude on the timing of visual and vestibular stimuli. Thus, the proposed lock-and-key mechanisms link channel kinetics to recall performance and yield specific predictions of how perturbations to rebound depolarization affect motor expression.

  15. Timing in Audiovisual Speech Perception: A Mini Review and New Psychophysical Data

    PubMed Central

    Venezia, Jonathan H.; Thurman, Steven M.; Matchin, William; George, Sahara E.; Hickok, Gregory

    2015-01-01

    Recent influential models of audiovisual speech perception suggest that visual speech aids perception by generating predictions about the identity of upcoming speech sounds. These models place stock in the assumption that visual speech leads auditory speech in time. However, it is unclear whether and to what extent temporally-leading visual speech information contributes to perception. Previous studies exploring audiovisual-speech timing have relied upon psychophysical procedures that require artificial manipulation of cross-modal alignment or stimulus duration. We introduce a classification procedure that tracks perceptually-relevant visual speech information in time without requiring such manipulations. Participants were shown videos of a McGurk syllable (auditory /apa/ + visual /aka/ = perceptual /ata/) and asked to perform phoneme identification (/apa/ yes-no). The mouth region of the visual stimulus was overlaid with a dynamic transparency mask that obscured visual speech in some frames but not others randomly across trials. Variability in participants' responses (∼35% identification of /apa/ compared to ∼5% in the absence of the masker) served as the basis for classification analysis. The outcome was a high resolution spatiotemporal map of perceptually-relevant visual features. We produced these maps for McGurk stimuli at different audiovisual temporal offsets (natural timing, 50-ms visual lead, and 100-ms visual lead). Briefly, temporally-leading (∼130 ms) visual information did influence auditory perception. Moreover, several visual features influenced perception of a single speech sound, with the relative influence of each feature depending on both its temporal relation to the auditory signal and its informational content. PMID:26669309

  16. Speed tuning of motion segmentation and discrimination

    NASA Technical Reports Server (NTRS)

    Masson, G. S.; Mestre, D. R.; Stone, L. S.

    1999-01-01

    Motion transparency requires that the visual system distinguish different motion vectors and selectively integrate similar motion vectors over space into the perception of multiple surfaces moving through or over each other. Using large-field (7 degrees x 7 degrees) displays containing two populations of random-dots moving in the same (horizontal) direction but at different speeds, we examined speed-based segmentation by measuring the speed difference above which observers can perceive two moving surfaces. We systematically investigated this 'speed-segmentation' threshold as a function of speed and stimulus duration, and found that it increases sharply for speeds above approximately 8 degrees/s. In addition, speed-segmentation thresholds decrease with stimulus duration out to approximately 200 ms. In contrast, under matched conditions, speed-discrimination thresholds stay low at least out to 16 degrees/s and decrease with increasing stimulus duration at a faster rate than for speed segmentation. Thus, motion segmentation and motion discrimination exhibit different speed selectivity and different temporal integration characteristics. Results are discussed in terms of the speed preferences of different neuronal populations within the primate visual cortex.

  17. Neural plasticity associated with recently versus often heard objects.

    PubMed

    Bourquin, Nathalie M-P; Spierer, Lucas; Murray, Micah M; Clarke, Stephanie

    2012-09-01

    In natural settings the same sound source is often heard repeatedly, with variations in spectro-temporal and spatial characteristics. We investigated how such repetitions influence sound representations and in particular how auditory cortices keep track of recently vs. often heard objects. A set of 40 environmental sounds was presented twice, i.e. as prime and as repeat, while subjects categorized the corresponding sound sources as living vs. non-living. Electrical neuroimaging analyses were applied to auditory evoked potentials (AEPs) comparing primes vs. repeats (effect of presentation) and the four experimental sections. Dynamic analysis of distributed source estimations revealed i) a significant main effect of presentation within the left temporal convexity at 164-215 ms post-stimulus onset; and ii) a significant main effect of section in the right temporo-parietal junction at 166-213 ms. A 3-way repeated measures ANOVA (hemisphere×presentation×section) applied to neural activity of the above clusters during the common time window confirmed the specificity of the left hemisphere for the effect of presentation, but not that of the right hemisphere for the effect of section. In conclusion, spatio-temporal dynamics of neural activity encode the temporal history of exposure to sound objects. Rapidly occurring plastic changes within the semantic representations of the left hemisphere keep track of objects heard a few seconds before, independent of the more general sound exposure history. Progressively occurring and more long-lasting plastic changes occurring predominantly within right hemispheric networks, which are known to code for perceptual, semantic and spatial aspects of sound objects, keep track of multiple exposures. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Human auditory event-related potentials predict duration judgments.

    PubMed

    Bendixen, Alexandra; Grimm, Sabine; Schröger, Erich

    2005-08-05

    Internal clock models postulate a pulse accumulation process underlying timing activities, with more accumulated pulses resulting in longer perceived durations. We investigated whether this accumulation is reflected in the amplitude of event-related brain potentials (ERPs) elicited by auditory stimuli with durations of 400-600 ms. In a duration discrimination paradigm, we found more negative amplitudes to physically identical stimuli when they were judged as longer than the memorized standard duration (500 ms) as compared to being classified as shorter. This sustained negativity was already developing during the first 100 ms after stimulus onset. It could not be explained as a bias to respond with a particular hand (lateralized readiness potential), but rather reflects a processing difference between the tones to be judged as shorter or longer. Our results are in line with models of time processing which assume that higher numbers of accumulated pulses of a temporal processor result in an increase in perceived duration.

  19. Attractive faces temporally modulate visual attention

    PubMed Central

    Nakamura, Koyo; Kawabata, Hideaki

    2014-01-01

    Facial attractiveness is an important biological and social signal on social interaction. Recent research has demonstrated that an attractive face captures greater spatial attention than an unattractive face does. Little is known, however, about the temporal characteristics of visual attention for facial attractiveness. In this study, we investigated the temporal modulation of visual attention induced by facial attractiveness by using a rapid serial visual presentation. Fourteen male faces and two female faces were successively presented for 160 ms, respectively, and participants were asked to identify two female faces embedded among a series of multiple male distractor faces. Identification of a second female target (T2) was impaired when a first target (T1) was attractive compared to neutral or unattractive faces, at 320 ms stimulus onset asynchrony (SOA); identification was improved when T1 was attractive compared to unattractive faces at 640 ms SOA. These findings suggest that the spontaneous appraisal of facial attractiveness modulates temporal attention. PMID:24994994

  20. Perceptual reversals during binocular rivalry: ERP components and their concomitant source differences.

    PubMed

    Britz, Juliane; Pitts, Michael A

    2011-11-01

    We used an intermittent stimulus presentation to investigate event-related potential (ERP) components associated with perceptual reversals during binocular rivalry. The combination of spatiotemporal ERP analysis with source imaging and statistical parametric mapping of the concomitant source differences yielded differences in three time windows: reversals showed increased activity in early visual (∼120 ms) and in inferior frontal and anterior temporal areas (∼400-600 ms) and decreased activity in the ventral stream (∼250-350 ms). The combination of source imaging and statistical parametric mapping suggests that these differences were due to differences in generator strength and not generator configuration, unlike the initiation of reversals in right inferior parietal areas. These results are discussed within the context of the extensive network of brain areas that has been implicated in the initiation, implementation, and appraisal of bistable perceptual reversals. Copyright © 2011 Society for Psychophysiological Research.

Top