Sample records for ms-based peptide sequencing

  1. MassSieve: Panning MS/MS peptide data for proteins

    PubMed Central

    Slotta, Douglas J.; McFarland, Melinda A.; Markey, Sanford P.

    2010-01-01

    We present MassSieve, a Java-based platform for visualization and parsimony analysis of single and comparative LC-MS/MS database search engine results. The success of mass spectrometric peptide sequence assignment algorithms has led to the need for a tool to merge and evaluate the increasing data set sizes that result from LC-MS/MS-based shotgun proteomic experiments. MassSieve supports reports from multiple search engines with differing search characteristics, which can increase peptide sequence coverage and/or identify conflicting or ambiguous spectral assignments. PMID:20564260

  2. Gapped Spectral Dictionaries and Their Applications for Database Searches of Tandem Mass Spectra*

    PubMed Central

    Jeong, Kyowon; Kim, Sangtae; Bandeira, Nuno; Pevzner, Pavel A.

    2011-01-01

    Generating all plausible de novo interpretations of a peptide tandem mass (MS/MS) spectrum (Spectral Dictionary) and quickly matching them against the database represent a recently emerged alternative approach to peptide identification. However, the sizes of the Spectral Dictionaries quickly grow with the peptide length making their generation impractical for long peptides. We introduce Gapped Spectral Dictionaries (all plausible de novo interpretations with gaps) that can be easily generated for any peptide length thus addressing the limitation of the Spectral Dictionary approach. We show that Gapped Spectral Dictionaries are small thus opening a possibility of using them to speed-up MS/MS searches. Our MS-GappedDictionary algorithm (based on Gapped Spectral Dictionaries) enables proteogenomics applications (such as searches in the six-frame translation of the human genome) that are prohibitively time consuming with existing approaches. MS-GappedDictionary generates gapped peptides that occupy a niche between accurate but short peptide sequence tags and long but inaccurate full length peptide reconstructions. We show that, contrary to conventional wisdom, some high-quality spectra do not have good peptide sequence tags and introduce gapped tags that have advantages over the conventional peptide sequence tags in MS/MS database searches. PMID:21444829

  3. UVnovo: A De Novo Sequencing Algorithm Using Single Series of Fragment Ions via Chromophore Tagging and 351 nm Ultraviolet Photodissociation Mass Spectrometry

    PubMed Central

    Robotham, Scott A.; Horton, Andrew P.; Cannon, Joe R.; Cotham, Victoria C.; Marcotte, Edward M.; Brodbelt, Jennifer S.

    2016-01-01

    De novo peptide sequencing by mass spectrometry represents an important strategy for characterizing novel peptides and proteins, in which a peptide’s amino acid sequence is inferred directly from the precursor peptide mass and tandem mass spectrum (MS/MS or MS3) fragment ions, without comparison to a reference proteome. This method is ideal for organisms or samples lacking a complete or well-annotated reference sequence set. One of the major barriers to de novo spectral interpretation arises from confusion of N- and C-terminal ion series due to the symmetry between b and y ion pairs created by collisional activation methods (or c, z ions for electron-based activation methods). This is known as the ‘antisymmetric path problem’ and leads to inverted amino acid subsequences within a de novo reconstruction. Here, we combine several key strategies for de novo peptide sequencing into a single high-throughput pipeline: high efficiency carbamylation blocks lysine side chains, and subsequent tryptic digestion and N-terminal peptide derivatization with the ultraviolet chromophore AMCA yields peptides susceptible to 351 nm ultraviolet photodissociation (UVPD). UVPD-MS/MS of the AMCA-modified peptides then predominantly produces y ions in the MS/MS spectra, specifically addressing the antisymmetric path problem. Finally, the program UVnovo applies a random forest algorithm to automatically learn from and then interpret UVPD mass spectra, passing results to a hidden Markov model for de novo sequence prediction and scoring. We show this combined strategy provides high performance de novo peptide sequencing, enabling the de novo sequencing of thousands of peptides from an E. coli lysate at high confidence. PMID:26938041

  4. A novel algorithm for validating peptide identification from a shotgun proteomics search engine.

    PubMed

    Jian, Ling; Niu, Xinnan; Xia, Zhonghang; Samir, Parimal; Sumanasekera, Chiranthani; Mu, Zheng; Jennings, Jennifer L; Hoek, Kristen L; Allos, Tara; Howard, Leigh M; Edwards, Kathryn M; Weil, P Anthony; Link, Andrew J

    2013-03-01

    Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has revolutionized the proteomics analysis of complexes, cells, and tissues. In a typical proteomic analysis, the tandem mass spectra from a LC-MS/MS experiment are assigned to a peptide by a search engine that compares the experimental MS/MS peptide data to theoretical peptide sequences in a protein database. The peptide spectra matches are then used to infer a list of identified proteins in the original sample. However, the search engines often fail to distinguish between correct and incorrect peptides assignments. In this study, we designed and implemented a novel algorithm called De-Noise to reduce the number of incorrect peptide matches and maximize the number of correct peptides at a fixed false discovery rate using a minimal number of scoring outputs from the SEQUEST search engine. The novel algorithm uses a three-step process: data cleaning, data refining through a SVM-based decision function, and a final data refining step based on proteolytic peptide patterns. Using proteomics data generated on different types of mass spectrometers, we optimized the De-Noise algorithm on the basis of the resolution and mass accuracy of the mass spectrometer employed in the LC-MS/MS experiment. Our results demonstrate De-Noise improves peptide identification compared to other methods used to process the peptide sequence matches assigned by SEQUEST. Because De-Noise uses a limited number of scoring attributes, it can be easily implemented with other search engines.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles, Kelly V.; Tang, Zuojian; Wang, Xuya

    Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations and splice variants identified in cancer cells are translated. Herein we therefore describe a proteogenomic data integration tool (QUILTS) and illustrate its application to whole genome, transcriptome and global MS peptide sequence datasets generated from a pair of luminal and basal-like breast cancer patient derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS process replicates. Despite over thirty sample replicates, only about 10% of all SNV (somatic andmore » germline) were detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNV without a detectable mRNA transcript were also observed demonstrating the transcriptome coverage was also incomplete (~80%). In contrast to germ-line variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than the luminal tumor raising the possibility of differential translation or protein degradation effects. In conclusion, the QUILTS program integrates DNA, RNA and peptide sequencing to assess the degree to which somatic mutations are translated and therefore biologically active. By identifying gaps in sequence coverage QUILTS benchmarks current technology and assesses progress towards whole cancer proteome and transcriptome analysis.« less

  6. Discovery of Neuropeptides in the Nematode Ascaris suum by Database Mining and Tandem Mass Spectrometry

    PubMed Central

    Jarecki, Jessica L.; Frey, Brian L.; Smith, Lloyd M.; Stretton, Antony O.

    2011-01-01

    Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to discover peptides in extracts of the large parasitic nematode Ascaris suum. This required the assembly of a new database of known and predicted peptides. In addition to those already sequenced, peptides were either previously predicted to be processed from precursor proteins identified in an A. suum library of expressed sequence tags (ESTs), or newly predicted from a library of A. suum genome survey sequences (GSSs). The predicted MS/MS fragmentation patterns of this collection of real and putative peptides were compared with the actual fragmentation patterns found in the MS/MS spectra of peptides fractionated by MS; this enabled individual peptides to be sequenced. Many previously identified peptides were found, and 21 novel peptides were discovered. Thus, this approach is very useful, despite the fact that the available GSS database is still preliminary, having only 1X coverage. PMID:21524146

  7. Extensive characterization of peptides from Panax ginseng C. A. Meyer using mass spectrometric approach.

    PubMed

    Ye, Xueting; Zhao, Nan; Yu, Xi; Han, Xiaoli; Gao, Huiyuan; Zhang, Xiaozhe

    2016-11-01

    Panax ginseng is an important herb that has clear effects on the treatment of diverse diseases. Until now, the natural peptide constitution of this herb remains unclear. Here, we conduct an extensive characterization of Ginseng peptidome using MS-based data mining and sequencing. The screen on the charge states of precursor ions indicated that Ginseng is a peptide-rich herb in comparison of a number of commonly used herbs. The Ginseng peptides were then extracted and submitted to nano-LC-MS/MS analysis using different fragmentation modes, including CID, high-energy collisional dissociation, and electron transfer dissociation. Further database search and de novo sequencing allowed the identification of total 308 peptides, some of which might have important biological activities. This study illustrates the abundance and sequences of endogenous Ginseng peptides, thus providing the information of more candidates for the screening of active compounds for future biological research and drug discovery studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Species Identification of Archaeological Skin Objects from Danish Bogs: Comparison between Mass Spectrometry-Based Peptide Sequencing and Microscopy-Based Methods

    PubMed Central

    Brandt, Luise Ørsted; Schmidt, Anne Lisbeth; Mannering, Ulla; Sarret, Mathilde; Kelstrup, Christian D.; Olsen, Jesper V.; Cappellini, Enrico

    2014-01-01

    Denmark has an extraordinarily large and well-preserved collection of archaeological skin garments found in peat bogs, dated to approximately 920 BC – AD 775. These objects provide not only the possibility to study prehistoric skin costume and technologies, but also to investigate the animal species used for the production of skin garments. Until recently, species identification of archaeological skin was primarily performed by light and scanning electron microscopy or the analysis of ancient DNA. However, the efficacy of these methods can be limited due to the harsh, mostly acidic environment of peat bogs leading to morphological and molecular degradation within the samples. We compared species assignment results of twelve archaeological skin samples from Danish bogs using Mass Spectrometry (MS)-based peptide sequencing, against results obtained using light and scanning electron microscopy. While it was difficult to obtain reliable results using microscopy, MS enabled the identification of several species-diagnostic peptides, mostly from collagen and keratins, allowing confident species discrimination even among taxonomically close organisms, such as sheep and goat. Unlike previous MS-based methods, mostly relying on peptide fingerprinting, the shotgun sequencing approach we describe aims to identify the complete extracted ancient proteome, without preselected specific targets. As an example, we report the identification, in one of the samples, of two peptides uniquely assigned to bovine foetal haemoglobin, indicating the production of skin from a calf slaughtered within the first months of its life. We conclude that MS-based peptide sequencing is a reliable method for species identification of samples from bogs. The mass spectrometry proteomics data were deposited in the ProteomeXchange Consortium with the dataset identifier PXD001029. PMID:25260035

  9. Concurrent Automated Sequencing of the Glycan and Peptide Portions of O-Linked Glycopeptide Anions by Ultraviolet Photodissociation Mass Spectrometry

    PubMed Central

    Madsen, James A.; Ko, Byoung Joon; Xu, Hua; Iwashkiw, Jeremy A.; Robotham, Scott A.; Shaw, Jared B.; Feldman, Mario F.; Brodbelt, Jennifer S.

    2013-01-01

    O -glycopeptides are often acidic owing to the frequent occurrence of acidic saccharides in the glycan, rendering traditional proteomic workflows that rely on positive mode tandem mass spectrometry (MS/MS) less effective. In this report, we demonstrate the utility of negative mode ultraviolet photodissociation (UVPD) MS for the characterization of acidic O-linked glycopeptide anions. This method was evaluated for a series of singly- and multiply-deprotonated glycopeptides from the model glycoprotein kappa casein, resulting in production of both peptide and glycan product ions that afforded 100% sequence coverage of the peptide and glycan moieties from a single MS/MS event. The most abundant and frequent peptide sequence ions were a/x-type products, which, importantly, were found to retain the labile glycan modifications. The glycan-specific ions mainly arose from glycosidic bond cleavages (B, Y, C, and Z ions) in addition to some less common cross-ring cleavages. Based on the UVPD fragmentation patterns, an automated database searching strategy (based on the MassMatrix algorithm) was designed that is specific for the analysis of glycopeptide anions by UVPD. This algorithm was used to identify glycopeptides from mixtures of glycosylated and non-glycosylated peptides, sequence both glycan and peptide moieties simultaneously, and pinpoint the correct site(s) of glycosylation. This methodology was applied to uncover novel site-specificity of the O-linked glycosylated OmpA/MotB from the “superbug” A. baumannii to help aid in the elucidation of the functional role that protein glycosylation plays in pathogenesis. PMID:24006841

  10. De novo protein sequencing by combining top-down and bottom-up tandem mass spectra.

    PubMed

    Liu, Xiaowen; Dekker, Lennard J M; Wu, Si; Vanduijn, Martijn M; Luider, Theo M; Tolić, Nikola; Kou, Qiang; Dvorkin, Mikhail; Alexandrova, Sonya; Vyatkina, Kira; Paša-Tolić, Ljiljana; Pevzner, Pavel A

    2014-07-03

    There are two approaches for de novo protein sequencing: Edman degradation and mass spectrometry (MS). Existing MS-based methods characterize a novel protein by assembling tandem mass spectra of overlapping peptides generated from multiple proteolytic digestions of the protein. Because each tandem mass spectrum covers only a short peptide of the target protein, the key to high coverage protein sequencing is to find spectral pairs from overlapping peptides in order to assemble tandem mass spectra to long ones. However, overlapping regions of peptides may be too short to be confidently identified. High-resolution mass spectrometers have become accessible to many laboratories. These mass spectrometers are capable of analyzing molecules of large mass values, boosting the development of top-down MS. Top-down tandem mass spectra cover whole proteins. However, top-down tandem mass spectra, even combined, rarely provide full ion fragmentation coverage of a protein. We propose an algorithm, TBNovo, for de novo protein sequencing by combining top-down and bottom-up MS. In TBNovo, a top-down tandem mass spectrum is utilized as a scaffold, and bottom-up tandem mass spectra are aligned to the scaffold to increase sequence coverage. Experiments on data sets of two proteins showed that TBNovo achieved high sequence coverage and high sequence accuracy.

  11. Electrospray-assisted laser desorption/ionization and tandem mass spectrometry of peptides and proteins.

    PubMed

    Peng, Ivory X; Shiea, Jentaie; Ogorzalek Loo, Rachel R; Loo, Joseph A

    2007-01-01

    We have constructed an electrospray-assisted laser desorption/ionization (ELDI) source which utilizes a nitrogen laser pulse to desorb intact molecules from matrix-containing sample solution droplets, followed by electrospray ionization (ESI) post-ionization. The ELDI source is coupled to a quadrupole ion trap mass spectrometer and allows sampling under ambient conditions. Preliminary data showed that ELDI produces ESI-like multiply charged peptides and proteins up to 29 kDa carbonic anhydrase and 66 kDa bovine albumin from single-protein solutions, as well as from complex digest mixtures. The generated multiply charged polypeptides enable efficient tandem mass spectrometric (MS/MS)-based peptide sequencing. ELDI-MS/MS of protein digests and small intact proteins was performed both by collisionally activated dissociation (CAD) and by nozzle-skimmer dissociation (NSD). ELDI-MS/MS may be a useful tool for protein sequencing analysis and top-down proteomics study, and may complement matrix-assisted laser desorption/ionization (MALDI)-based measurements. Copyright (c) 2007 John Wiley & Sons, Ltd.

  12. Site-Specific Pyrolysis Induced Cleavage at Aspartic Acid Residue in Peptides and Proteins

    PubMed Central

    Zhang, Shaofeng; Basile, Franco

    2011-01-01

    A simple and site-specific non-enzymatic method based on pyrolysis has been developed to cleave peptides and proteins. Pyrolytic cleavage was found to be specific and rapid as it induced a cleavage at the C-terminal side of aspartic acid in the temperature range of 220–250 °C in 10 seconds. Electrospray Ionization (ESI) mass spectrometry (MS) and tandem-MS (MS/MS) were used to characterize and identify pyrolysis cleavage products, confirming that sequence information is conserved after the pyrolysis process in both peptides and protein tested. This suggests that pyrolysis-induced cleavage at aspartyl residues can be used as a rapid protein digestion procedure for the generation of sequence specific protein biomarkers. PMID:17388620

  13. A Mass Spectrometry-Based Predictive Strategy Reveals ADAP1 is Phosphorylated at Tyrosine 364

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littrell, BobbiJo R

    The goal of this work was to identify phosphorylation sites within the amino acid sequence of human ADAP1. Using traditional mass spectrometry-based techniques we were unable to produce interpretable spectra demonstrating modification by phosphorylation. This prompted us to employ a strategy in which phosphorylated peptides were first predicted using peptide mapping followed by targeted MS/MS acquisition. ADAP1 was immunoprecipitated from extracts of HEK293 cells stably-transfected with ADAP1 cDNA. Immunoprecipitated ADAP1 was digested with proteolytic enzymes and analyzed by LC-MS in MS1 mode by high-resolution quadrupole time-of-flight mass spectrometry (QTOF-MS). Peptide molecular features were extracted using an untargeted data mining algorithm.more » Extracted peptide neutral masses were matched against the ADAP1 amino acid sequence with phosphorylation included as a predicted modification. Peptides with predicted phosphorylation sites were analyzed by targeted LC-MS2. Acquired MS2 spectra were then analyzed using database search engines to confirm phosphorylation. Spectra of phosphorylated peptides were validated by manual interpretation. Further confirmation was performed by manipulating phospho-peptide abundance using calf intestinal phosphatase (CIP) and the phorbol ester, phorbol 12-myristate 13-acetate (PMA). Of five predicted phosphopeptides, one, comprised of the sequence AVDRPMLPQEYAVEAHFK, was confirmed to be phosphorylated on a Tyrosine at position 364. Pre-treatment of cells with PMA prior to immunoprecipitation increased the ratio of phosphorylated to unphosphorylated peptide as determined by area counts of extracted ion chromatograms (EIC). Addition of CIP to immunoprecipitation reactions eliminated the phosphorylated form. A novel phosphorylation site was identified at Tyrosine 364. Phosphorylation at this site is increased by treatment with PMA. PMA promotes membrane translocation and activation of protein kinase C (PKC), indicating that Tyrosine 364 is phosphorylated by a PKC-dependent mechanism.« less

  14. Extensive characterization of Tupaia belangeri neuropeptidome using an integrated mass spectrometric approach.

    PubMed

    Petruzziello, Filomena; Fouillen, Laetitia; Wadensten, Henrik; Kretz, Robert; Andren, Per E; Rainer, Gregor; Zhang, Xiaozhe

    2012-02-03

    Neuropeptidomics is used to characterize endogenous peptides in the brain of tree shrews (Tupaia belangeri). Tree shrews are small animals similar to rodents in size but close relatives of primates, and are excellent models for brain research. Currently, tree shrews have no complete proteome information available on which direct database search can be allowed for neuropeptide identification. To increase the capability in the identification of neuropeptides in tree shrews, we developed an integrated mass spectrometry (MS)-based approach that combines methods including data-dependent, directed, and targeted liquid chromatography (LC)-Fourier transform (FT)-tandem MS (MS/MS) analysis, database construction, de novo sequencing, precursor protein search, and homology analysis. Using this integrated approach, we identified 107 endogenous peptides that have sequences identical or similar to those from other mammalian species. High accuracy MS and tandem MS information, with BLAST analysis and chromatographic characteristics were used to confirm the sequences of all the identified peptides. Interestingly, further sequence homology analysis demonstrated that tree shrew peptides have a significantly higher degree of homology to equivalent sequences in humans than those in mice or rats, consistent with the close phylogenetic relationship between tree shrews and primates. Our results provide the first extensive characterization of the peptidome in tree shrews, which now permits characterization of their function in nervous and endocrine system. As the approach developed fully used the conservative properties of neuropeptides in evolution and the advantage of high accuracy MS, it can be portable for identification of neuropeptides in other species for which the fully sequenced genomes or proteomes are not available.

  15. Mammoth and Mastodon collagen sequences; survival and utility

    NASA Astrophysics Data System (ADS)

    Buckley, M.; Larkin, N.; Collins, M.

    2011-04-01

    Near-complete collagen (I) sequences are proposed for elephantid and mammutid taxa, based upon available African elephant genomic data and supported with LC-MALDI-MS/MS and LC-ESI-MS/MS analyses of collagen digests from proboscidean bone. Collagen sequence coverage was investigated from several specimens of two extinct mammoths ( Mammuthus trogontherii and Mammuthus primigenius), the extinct American mastodon ( Mammut americanum), the extinct straight-tusked elephant ( Elephas ( Palaeoloxodon) antiquus) and extant Asian ( Elephas maximus) and African ( Loxodonta africana) elephants and compared between the two ionization techniques used. Two suspected mammoth fossils from the British Middle Pleistocene (Cromerian) deposits of the West Runton Forest Bed were analysed to investigate the potential use of peptide mass spectrometry for fossil identification. Despite the age of the fossils, sufficient peptides were obtained to identify these as elephantid, and sufficient sequence variation to discriminate elephantid and mammutid collagen (I). In-depth LC-MS analyses further failed to identify a peptide that could be used to reliably distinguish between the three genera of elephantids ( Elephas, Loxodonta and Mammuthus), an observation consistent with predicted amino acid substitution rates between these species.

  16. Incorporating sequence information into the scoring function: a hidden Markov model for improved peptide identification.

    PubMed

    Khatun, Jainab; Hamlett, Eric; Giddings, Morgan C

    2008-03-01

    The identification of peptides by tandem mass spectrometry (MS/MS) is a central method of proteomics research, but due to the complexity of MS/MS data and the large databases searched, the accuracy of peptide identification algorithms remains limited. To improve the accuracy of identification we applied a machine-learning approach using a hidden Markov model (HMM) to capture the complex and often subtle links between a peptide sequence and its MS/MS spectrum. Our model, HMM_Score, represents ion types as HMM states and calculates the maximum joint probability for a peptide/spectrum pair using emission probabilities from three factors: the amino acids adjacent to each fragmentation site, the mass dependence of ion types and the intensity dependence of ion types. The Viterbi algorithm is used to calculate the most probable assignment between ion types in a spectrum and a peptide sequence, then a correction factor is added to account for the propensity of the model to favor longer peptides. An expectation value is calculated based on the model score to assess the significance of each peptide/spectrum match. We trained and tested HMM_Score on three data sets generated by two different mass spectrometer types. For a reference data set recently reported in the literature and validated using seven identification algorithms, HMM_Score produced 43% more positive identification results at a 1% false positive rate than the best of two other commonly used algorithms, Mascot and X!Tandem. HMM_Score is a highly accurate platform for peptide identification that works well for a variety of mass spectrometer and biological sample types. The program is freely available on ProteomeCommons via an OpenSource license. See http://bioinfo.unc.edu/downloads/ for the download link.

  17. Meta sequence analysis of human blood peptides and their parent proteins.

    PubMed

    Bowden, Peter; Pendrak, Voitek; Zhu, Peihong; Marshall, John G

    2010-04-18

    Sequence analysis of the blood peptides and their qualities will be key to understanding the mechanisms that contribute to error in LC-ESI-MS/MS. Analysis of peptides and their proteins at the level of sequences is much more direct and informative than the comparison of disparate accession numbers. A portable database of all blood peptide and protein sequences with descriptor fields and gene ontology terms might be useful for designing immunological or MRM assays from human blood. The results of twelve studies of human blood peptides and/or proteins identified by LC-MS/MS and correlated against a disparate array of genetic libraries were parsed and matched to proteins from the human ENSEMBL, SwissProt and RefSeq databases by SQL. The reported peptide and protein sequences were organized into an SQL database with full protein sequences and up to five unique peptides in order of prevalence along with the peptide count for each protein. Structured query language or BLAST was used to acquire descriptive information in current databases. Sampling error at the level of peptides is the largest source of disparity between groups. Chi Square analysis of peptide to protein distributions confirmed the significant agreement between groups on identified proteins. Copyright 2010. Published by Elsevier B.V.

  18. High-throughput Database Search and Large-scale Negative Polarity Liquid Chromatography–Tandem Mass Spectrometry with Ultraviolet Photodissociation for Complex Proteomic Samples*

    PubMed Central

    Madsen, James A.; Xu, Hua; Robinson, Michelle R.; Horton, Andrew P.; Shaw, Jared B.; Giles, David K.; Kaoud, Tamer S.; Dalby, Kevin N.; Trent, M. Stephen; Brodbelt, Jennifer S.

    2013-01-01

    The use of ultraviolet photodissociation (UVPD) for the activation and dissociation of peptide anions is evaluated for broader coverage of the proteome. To facilitate interpretation and assignment of the resulting UVPD mass spectra of peptide anions, the MassMatrix database search algorithm was modified to allow automated analysis of negative polarity MS/MS spectra. The new UVPD algorithms were developed based on the MassMatrix database search engine by adding specific fragmentation pathways for UVPD. The new UVPD fragmentation pathways in MassMatrix were rigorously and statistically optimized using two large data sets with high mass accuracy and high mass resolution for both MS1 and MS2 data acquired on an Orbitrap mass spectrometer for complex Halobacterium and HeLa proteome samples. Negative mode UVPD led to the identification of 3663 and 2350 peptides for the Halo and HeLa tryptic digests, respectively, corresponding to 655 and 645 peptides that were unique when compared with electron transfer dissociation (ETD), higher energy collision-induced dissociation, and collision-induced dissociation results for the same digests analyzed in the positive mode. In sum, 805 and 619 proteins were identified via UVPD for the Halobacterium and HeLa samples, respectively, with 49 and 50 unique proteins identified in contrast to the more conventional MS/MS methods. The algorithm also features automated charge determination for low mass accuracy data, precursor filtering (including intact charge-reduced peaks), and the ability to combine both positive and negative MS/MS spectra into a single search, and it is freely open to the public. The accuracy and specificity of the MassMatrix UVPD search algorithm was also assessed for low resolution, low mass accuracy data on a linear ion trap. Analysis of a known mixture of three mitogen-activated kinases yielded similar sequence coverage percentages for UVPD of peptide anions versus conventional collision-induced dissociation of peptide cations, and when these methods were combined into a single search, an increase of up to 13% sequence coverage was observed for the kinases. The ability to sequence peptide anions and cations in alternating scans in the same chromatographic run was also demonstrated. Because ETD has a significant bias toward identifying highly basic peptides, negative UVPD was used to improve the identification of the more acidic peptides in conjunction with positive ETD for the more basic species. In this case, tryptic peptides from the cytosolic section of HeLa cells were analyzed by polarity switching nanoLC-MS/MS utilizing ETD for cation sequencing and UVPD for anion sequencing. Relative to searching using ETD alone, positive/negative polarity switching significantly improved sequence coverages across identified proteins, resulting in a 33% increase in unique peptide identifications and more than twice the number of peptide spectral matches. PMID:23695934

  19. PepLine: a software pipeline for high-throughput direct mapping of tandem mass spectrometry data on genomic sequences.

    PubMed

    Ferro, Myriam; Tardif, Marianne; Reguer, Erwan; Cahuzac, Romain; Bruley, Christophe; Vermat, Thierry; Nugues, Estelle; Vigouroux, Marielle; Vandenbrouck, Yves; Garin, Jérôme; Viari, Alain

    2008-05-01

    PepLine is a fully automated software which maps MS/MS fragmentation spectra of trypsic peptides to genomic DNA sequences. The approach is based on Peptide Sequence Tags (PSTs) obtained from partial interpretation of QTOF MS/MS spectra (first module). PSTs are then mapped on the six-frame translations of genomic sequences (second module) giving hits. Hits are then clustered to detect potential coding regions (third module). Our work aimed at optimizing the algorithms of each component to allow the whole pipeline to proceed in a fully automated manner using raw nucleic acid sequences (i.e., genomes that have not been "reduced" to a database of ORFs or putative exons sequences). The whole pipeline was tested on controlled MS/MS spectra sets from standard proteins and from Arabidopsis thaliana envelope chloroplast samples. Our results demonstrate that PepLine competed with protein database searching softwares and was fast enough to potentially tackle large data sets and/or high size genomes. We also illustrate the potential of this approach for the detection of the intron/exon structure of genes.

  20. Development of a dedicated peptide tandem mass spectral library for conservation science.

    PubMed

    Fremout, Wim; Dhaenens, Maarten; Saverwyns, Steven; Sanyova, Jana; Vandenabeele, Peter; Deforce, Dieter; Moens, Luc

    2012-05-30

    In recent years, the use of liquid chromatography tandem mass spectrometry (LC-MS/MS) on tryptic digests of cultural heritage objects has attracted much attention. It allows for unambiguous identification of peptides and proteins, and even in complex mixtures species-specific identification becomes feasible with minimal sample consumption. Determination of the peptides is commonly based on theoretical cleavage of known protein sequences and on comparison of the expected peptide fragments with those found in the MS/MS spectra. In this approach, complex computer programs, such as Mascot, perform well identifying known proteins, but fail when protein sequences are unknown or incomplete. Often, when trying to distinguish evolutionarily well preserved collagens of different species, Mascot lacks the required specificity. Complementary and often more accurate information on the proteins can be obtained using a reference library of MS/MS spectra of species-specific peptides. Therefore, a library dedicated to various sources of proteins in works of art was set up, with an initial focus on collagen rich materials. This paper discusses the construction and the advantages of this spectral library for conservation science, and its application on a number of samples from historical works of art. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Combinatorial Labeling Method for Improving Peptide Fragmentation in Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kuchibhotla, Bhanuramanand; Kola, Sankara Rao; Medicherla, Jagannadham V.; Cherukuvada, Swamy V.; Dhople, Vishnu M.; Nalam, Madhusudhana Rao

    2017-06-01

    Annotation of peptide sequence from tandem mass spectra constitutes the central step of mass spectrometry-based proteomics. Peptide mass spectra are obtained upon gas-phase fragmentation. Identification of the protein from a set of experimental peptide spectral matches is usually referred as protein inference. Occurrence and intensity of these fragment ions in the MS/MS spectra are dependent on many factors such as amino acid composition, peptide basicity, activation mode, protease, etc. Particularly, chemical derivatizations of peptides were known to alter their fragmentation. In this study, the influence of acetylation, guanidinylation, and their combination on peptide fragmentation was assessed initially on a lipase (LipA) from Bacillus subtilis followed by a bovine six protein mix digest. The dual modification resulted in improved fragment ion occurrence and intensity changes, and this resulted in the equivalent representation of b- and y-type fragment ions in an ion trap MS/MS spectrum. The improved representation has allowed us to accurately annotate the peptide sequences de novo. Dual labeling has significantly reduced the false positive protein identifications in standard bovine six peptide digest. Our study suggests that the combinatorial labeling of peptides is a useful method to validate protein identifications for high confidence protein inference. [Figure not available: see fulltext.

  2. Current trends in mass spectrometry of peptides and proteins: Application to veterinary and sports-doping control.

    PubMed

    van den Broek, Irene; Blokland, Marco; Nessen, Merel A; Sterk, Saskia

    2015-01-01

    Detection of misuse of peptides and proteins as growth promoters is a major issue for sport and food regulatory agencies. The limitations of current analytical detection strategies for this class of compounds, in combination with their efficacy in growth-promoting effects, make peptide and protein drugs highly susceptible to abuse by either athletes or farmers who seek for products to illicitly enhance muscle growth. Mass spectrometry (MS) for qualitative analysis of peptides and proteins is well-established, particularly due to tremendous efforts in the proteomics community. Similarly, due to advancements in targeted proteomic strategies and the rapid growth of protein-based biopharmaceuticals, MS for quantitative analysis of peptides and proteins is becoming more widely accepted. These continuous advances in MS instrumentation and MS-based methodologies offer enormous opportunities for detection and confirmation of peptides and proteins. Therefore, MS seems to be the method of choice to improve the qualitative and quantitative analysis of peptide and proteins with growth-promoting properties. This review aims to address the opportunities of MS for peptide and protein analysis in veterinary control and sports-doping control with a particular focus on detection of illicit growth promotion. An overview of potential peptide and protein targets, including their amino acid sequence characteristics and current MS-based detection strategies is, therefore, provided. Furthermore, improvements of current and new detection strategies with state-of-the-art MS instrumentation are discussed for qualitative and quantitative approaches. © 2013 Wiley Periodicals, Inc.

  3. Affinity selection of Nipah and Hendra virus-related vaccine candidates from a complex random peptide library displayed on bacteriophage virus-like particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peabody, David S.; Chackerian, Bryce; Ashley, Carlee

    The invention relates to virus-like particles of bacteriophage MS2 (MS2 VLPs) displaying peptide epitopes or peptide mimics of epitopes of Nipah Virus envelope glycoprotein that elicit an immune response against Nipah Virus upon vaccination of humans or animals. Affinity selection on Nipah Virus-neutralizing monoclonal antibodies using random sequence peptide libraries on MS2 VLPs selected peptides with sequence similarity to peptide sequences found within the envelope glycoprotein of Nipah itself, thus identifying the epitopes the antibodies recognize. The selected peptide sequences themselves are not necessarily identical in all respects to a sequence within Nipah Virus glycoprotein, and therefore may be referredmore » to as epitope mimics VLPs displaying these epitope mimics can serve as vaccine. On the other hand, display of the corresponding wild-type sequence derived from Nipah Virus and corresponding to the epitope mapped by affinity selection, may also be used as a vaccine.« less

  4. Brute-Force Approach for Mass Spectrometry-Based Variant Peptide Identification in Proteogenomics without Personalized Genomic Data

    NASA Astrophysics Data System (ADS)

    Ivanov, Mark V.; Lobas, Anna A.; Levitsky, Lev I.; Moshkovskii, Sergei A.; Gorshkov, Mikhail V.

    2018-02-01

    In a proteogenomic approach based on tandem mass spectrometry analysis of proteolytic peptide mixtures, customized exome or RNA-seq databases are employed for identifying protein sequence variants. However, the problem of variant peptide identification without personalized genomic data is important for a variety of applications. Following the recent proposal by Chick et al. (Nat. Biotechnol. 33, 743-749, 2015) on the feasibility of such variant peptide search, we evaluated two available approaches based on the previously suggested "open" search and the "brute-force" strategy. To improve the efficiency of these approaches, we propose an algorithm for exclusion of false variant identifications from the search results involving analysis of modifications mimicking single amino acid substitutions. Also, we propose a de novo based scoring scheme for assessment of identified point mutations. In the scheme, the search engine analyzes y-type fragment ions in MS/MS spectra to confirm the location of the mutation in the variant peptide sequence.

  5. Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS

    NASA Astrophysics Data System (ADS)

    Garabedian, Alyssa; Benigni, Paolo; Ramirez, Cesar E.; Baker, Erin S.; Liu, Tao; Smith, Richard D.; Fernandez-Lima, Francisco

    2018-05-01

    In the present work, the potential of trapped ion mobility spectrometry coupled to TOF mass spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In particular, a TIMS-MS workflow was developed for the detection and quantification of peptide biomarkers using internal heavy analogs, taking advantage of the high mobility resolution (R = 150-250) prior to mass analysis. Five peptide biomarkers were separated, identified, and quantified using offline nanoESI-TIMS-CID-TOF MS; the results were in good agreement with measurements using a traditional LC-ESI-MS/MS proteomics workflow. The TIMS-TOF MS analysis permitted peptide biomarker detection based on accurate mobility, mass measurements, and high sequence coverage for concentrations in the 10-200 nM range, while simultaneously achieving discovery measurements of not initially targeted peptides as markers from the same proteins and, eventually, other proteins. [Figure not available: see fulltext.

  6. Definition and characterization of a "trypsinosome" from specific peptide characteristics by nano-HPLC-MS/MS and in silico analysis of complex protein mixtures.

    PubMed

    Le Bihan, Thierry; Robinson, Mark D; Stewart, Ian I; Figeys, Daniel

    2004-01-01

    Although HPLC-ESI-MS/MS is rapidly becoming an indispensable tool for the analysis of peptides in complex mixtures, the sequence coverage it affords is often quite poor. Low protein expression resulting in peptide signal intensities that fall below the limit of detection of the MS system in combination with differences in peptide ionization efficiency plays a significant role in this. A second important factor stems from differences in physicochemical properties of each peptide and how these properties relate to chromatographic retention and ultimate detection. To identify and understand those properties, we compared data from experimentally identified peptides with data from peptides predicted by in silico digest of all corresponding proteins in the experimental set. Three different complex protein mixtures extracted were used to define a training set to evaluate the amino acid retention coefficients based on linear regression analysis. The retention coefficients were also compared with other previous hydrophobic and retention scale. From this, we have constructed an empirical model that can be readily used to predict peptides that are likely to be observed on our HPLC-ESI-MS/MS system based on their physicochemical properties. Finally, we demonstrated that in silico prediction of peptides and their retention coefficients can be used to generate an inclusion list for a targeted mass spectrometric identification of low abundance proteins in complex protein samples. This approach is based on experimentally derived data to calibrate the method and therefore may theoretically be applied to any HPLC-MS/MS system on which data are being generated.

  7. Comet: an open-source MS/MS sequence database search tool.

    PubMed

    Eng, Jimmy K; Jahan, Tahmina A; Hoopmann, Michael R

    2013-01-01

    Proteomics research routinely involves identifying peptides and proteins via MS/MS sequence database search. Thus the database search engine is an integral tool in many proteomics research groups. Here, we introduce the Comet search engine to the existing landscape of commercial and open-source database search tools. Comet is open source, freely available, and based on one of the original sequence database search tools that has been widely used for many years. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Peptides derivatized with bicyclic quaternary ammonium ionization tags. Sequencing via tandem mass spectrometry.

    PubMed

    Setner, Bartosz; Rudowska, Magdalena; Klem, Ewelina; Cebrat, Marek; Szewczuk, Zbigniew

    2014-10-01

    Improving the sensitivity of detection and fragmentation of peptides to provide reliable sequencing of peptides is an important goal of mass spectrometric analysis. Peptides derivatized by bicyclic quaternary ammonium ionization tags: 1-azabicyclo[2.2.2]octane (ABCO) or 1,4-diazabicyclo[2.2.2]octane (DABCO), are characterized by an increased detection sensitivity in electrospray ionization mass spectrometry (ESI-MS) and longer retention times on the reverse-phase (RP) chromatography columns. The improvement of the detection limit was observed even for peptides dissolved in 10 mM NaCl. Collision-induced dissociation tandem mass spectrometry of quaternary ammonium salts derivatives of peptides showed dominant a- and b-type ions, allowing facile sequencing of peptides. The bicyclic ionization tags are stable in collision-induced dissociation experiments, and the resulted fragmentation pattern is not significantly influenced by either acidic or basic amino acid residues in the peptide sequence. Obtained results indicate the general usefulness of the bicyclic quaternary ammonium ionization tags for ESI-MS/MS sequencing of peptides. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Dissociation Behavior of a TEMPO-Active Ester Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS) in Negative ESI-MS.

    PubMed

    Hage, Christoph; Ihling, Christian H; Götze, Michael; Schäfer, Mathias; Sinz, Andrea

    2017-01-01

    We have synthesized a homobifunctional amine-reactive cross-linking reagent, containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and a benzyl group (Bz), termed TEMPO-Bz-linker, to derive three-dimensional structural information of proteins. The aim for designing this novel cross-linker was to facilitate the mass spectrometric analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). In an initial study, we had investigated the fragmentation behavior of TEMPO-Bz-derivatized peptides upon collision activation in (+)-electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) experiments. In addition to the homolytic NO-C bond cleavage FRIPS pathway delivering the desired odd-electron product ions, an alternative heterolytic NO-C bond cleavage, resulting in even-electron product ions mechanism was found to be relevant. The latter fragmentation route clearly depends on the protonation of the TEMPO-Bz-moiety itself, which motivated us to conduct (-)-ESI-MS, CID-MS/MS, and MS 3 experiments of TEMPO-Bz-cross-linked peptides to further clarify the fragmentation behavior of TEMPO-Bz-peptide molecular ions. We show that the TEMPO-Bz-linker is highly beneficial for conducting FRIPS in negative ionization mode as the desired homolytic cleavage of the NO-C bond is the major fragmentation pathway. Based on characteristic fragments, the isomeric amino acids leucine and isoleucine could be discriminated. Interestingly, we observed pronounced amino acid side chain losses in cross-linked peptides if the cross-linked peptides contain a high number of acidic amino acids. Graphical Abstract ᅟ.

  10. The EIPeptiDi tool: enhancing peptide discovery in ICAT-based LC MS/MS experiments.

    PubMed

    Cannataro, Mario; Cuda, Giovanni; Gaspari, Marco; Greco, Sergio; Tradigo, Giuseppe; Veltri, Pierangelo

    2007-07-15

    Isotope-coded affinity tags (ICAT) is a method for quantitative proteomics based on differential isotopic labeling, sample digestion and mass spectrometry (MS). The method allows the identification and relative quantification of proteins present in two samples and consists of the following phases. First, cysteine residues are either labeled using the ICAT Light or ICAT Heavy reagent (having identical chemical properties but different masses). Then, after whole sample digestion, the labeled peptides are captured selectively using the biotin tag contained in both ICAT reagents. Finally, the simplified peptide mixture is analyzed by nanoscale liquid chromatography-tandem mass spectrometry (LC-MS/MS). Nevertheless, the ICAT LC-MS/MS method still suffers from insufficient sample-to-sample reproducibility on peptide identification. In particular, the number and the type of peptides identified in different experiments can vary considerably and, thus, the statistical (comparative) analysis of sample sets is very challenging. Low information overlap at the peptide and, consequently, at the protein level, is very detrimental in situations where the number of samples to be analyzed is high. We designed a method for improving the data processing and peptide identification in sample sets subjected to ICAT labeling and LC-MS/MS analysis, based on cross validating MS/MS results. Such a method has been implemented in a tool, called EIPeptiDi, which boosts the ICAT data analysis software improving peptide identification throughout the input data set. Heavy/Light (H/L) pairs quantified but not identified by the MS/MS routine, are assigned to peptide sequences identified in other samples, by using similarity criteria based on chromatographic retention time and Heavy/Light mass attributes. EIPeptiDi significantly improves the number of identified peptides per sample, proving that the proposed method has a considerable impact on the protein identification process and, consequently, on the amount of potentially critical information in clinical studies. The EIPeptiDi tool is available at http://bioingegneria.unicz.it/~veltri/projects/eipeptidi/ with a demo data set. EIPeptiDi significantly increases the number of peptides identified and quantified in analyzed samples, thus reducing the number of unassigned H/L pairs and allowing a better comparative analysis of sample data sets.

  11. Peptide Array X-Linking (PAX): A New Peptide-Protein Identification Approach

    PubMed Central

    Okada, Hirokazu; Uezu, Akiyoshi; Soderblom, Erik J.; Moseley, M. Arthur; Gertler, Frank B.; Soderling, Scott H.

    2012-01-01

    Many protein interaction domains bind short peptides based on canonical sequence consensus motifs. Here we report the development of a peptide array-based proteomics tool to identify proteins directly interacting with ligand peptides from cell lysates. Array-formatted bait peptides containing an amino acid-derived cross-linker are photo-induced to crosslink with interacting proteins from lysates of interest. Indirect associations are removed by high stringency washes under denaturing conditions. Covalently trapped proteins are subsequently identified by LC-MS/MS and screened by cluster analysis and domain scanning. We apply this methodology to peptides with different proline-containing consensus sequences and show successful identifications from brain lysates of known and novel proteins containing polyproline motif-binding domains such as EH, EVH1, SH3, WW domains. These results suggest the capacity of arrayed peptide ligands to capture and subsequently identify proteins by mass spectrometry is relatively broad and robust. Additionally, the approach is rapid and applicable to cell or tissue fractions from any source, making the approach a flexible tool for initial protein-protein interaction discovery. PMID:22606326

  12. Shotgun protein sequencing: assembly of peptide tandem mass spectra from mixtures of modified proteins.

    PubMed

    Bandeira, Nuno; Clauser, Karl R; Pevzner, Pavel A

    2007-07-01

    Despite significant advances in the identification of known proteins, the analysis of unknown proteins by MS/MS still remains a challenging open problem. Although Klaus Biemann recognized the potential of MS/MS for sequencing of unknown proteins in the 1980s, low throughput Edman degradation followed by cloning still remains the main method to sequence unknown proteins. The automated interpretation of MS/MS spectra has been limited by a focus on individual spectra and has not capitalized on the information contained in spectra of overlapping peptides. Indeed the powerful shotgun DNA sequencing strategies have not been extended to automated protein sequencing. We demonstrate, for the first time, the feasibility of automated shotgun protein sequencing of protein mixtures by utilizing MS/MS spectra of overlapping and possibly modified peptides generated via multiple proteases of different specificities. We validate this approach by generating highly accurate de novo reconstructions of multiple regions of various proteins in western diamondback rattlesnake venom. We further argue that shotgun protein sequencing has the potential to overcome the limitations of current protein sequencing approaches and thus catalyze the otherwise impractical applications of proteomics methodologies in studies of unknown proteins.

  13. Predicting intensity ranks of peptide fragment ions.

    PubMed

    Frank, Ari M

    2009-05-01

    Accurate modeling of peptide fragmentation is necessary for the development of robust scoring functions for peptide-spectrum matches, which are the cornerstone of MS/MS-based identification algorithms. Unfortunately, peptide fragmentation is a complex process that can involve several competing chemical pathways, which makes it difficult to develop generative probabilistic models that describe it accurately. However, the vast amounts of MS/MS data being generated now make it possible to use data-driven machine learning methods to develop discriminative ranking-based models that predict the intensity ranks of a peptide's fragment ions. We use simple sequence-based features that get combined by a boosting algorithm into models that make peak rank predictions with high accuracy. In an accompanying manuscript, we demonstrate how these prediction models are used to significantly improve the performance of peptide identification algorithms. The models can also be useful in the design of optimal multiple reaction monitoring (MRM) transitions, in cases where there is insufficient experimental data to guide the peak selection process. The prediction algorithm can also be run independently through PepNovo+, which is available for download from http://bix.ucsd.edu/Software/PepNovo.html.

  14. Predicting Intensity Ranks of Peptide Fragment Ions

    PubMed Central

    Frank, Ari M.

    2009-01-01

    Accurate modeling of peptide fragmentation is necessary for the development of robust scoring functions for peptide-spectrum matches, which are the cornerstone of MS/MS-based identification algorithms. Unfortunately, peptide fragmentation is a complex process that can involve several competing chemical pathways, which makes it difficult to develop generative probabilistic models that describe it accurately. However, the vast amounts of MS/MS data being generated now make it possible to use data-driven machine learning methods to develop discriminative ranking-based models that predict the intensity ranks of a peptide's fragment ions. We use simple sequence-based features that get combined by a boosting algorithm in to models that make peak rank predictions with high accuracy. In an accompanying manuscript, we demonstrate how these prediction models are used to significantly improve the performance of peptide identification algorithms. The models can also be useful in the design of optimal MRM transitions, in cases where there is insufficient experimental data to guide the peak selection process. The prediction algorithm can also be run independently through PepNovo+, which is available for download from http://bix.ucsd.edu/Software/PepNovo.html. PMID:19256476

  15. Binomial probability distribution model-based protein identification algorithm for tandem mass spectrometry utilizing peak intensity information.

    PubMed

    Xiao, Chuan-Le; Chen, Xiao-Zhou; Du, Yang-Li; Sun, Xuesong; Zhang, Gong; He, Qing-Yu

    2013-01-04

    Mass spectrometry has become one of the most important technologies in proteomic analysis. Tandem mass spectrometry (LC-MS/MS) is a major tool for the analysis of peptide mixtures from protein samples. The key step of MS data processing is the identification of peptides from experimental spectra by searching public sequence databases. Although a number of algorithms to identify peptides from MS/MS data have been already proposed, e.g. Sequest, OMSSA, X!Tandem, Mascot, etc., they are mainly based on statistical models considering only peak-matches between experimental and theoretical spectra, but not peak intensity information. Moreover, different algorithms gave different results from the same MS data, implying their probable incompleteness and questionable reproducibility. We developed a novel peptide identification algorithm, ProVerB, based on a binomial probability distribution model of protein tandem mass spectrometry combined with a new scoring function, making full use of peak intensity information and, thus, enhancing the ability of identification. Compared with Mascot, Sequest, and SQID, ProVerB identified significantly more peptides from LC-MS/MS data sets than the current algorithms at 1% False Discovery Rate (FDR) and provided more confident peptide identifications. ProVerB is also compatible with various platforms and experimental data sets, showing its robustness and versatility. The open-source program ProVerB is available at http://bioinformatics.jnu.edu.cn/software/proverb/ .

  16. Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garabedian, Alyssa; Benigni, Paolo; Ramirez, Cesar E.

    Abstract. In the present work, the potential of trapped ion mobility spectrometry coupled to TOF mass spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In particular, a TIMS-MS workflow was developed for the detection and quantification of peptide biomarkers using internal heavy analogs, taking advantage of the high mobility resolution (R = 150–250) prior to mass analysis. Five peptide biomarkers were separated, identified, and quantified using offline nanoESI-TIMSCID- TOF MS; the results were in good agreement with measurements using a traditional LC-ESI-MS/MS proteomics workflow. The TIMS-TOF MS analysis permitted peptidemore » biomarker detection based on accurate mobility, mass measurements, and high sequence coverage for concentrations in the 10–200 nM range, while simultaneously achieving discovery measurements« less

  17. Bromine isotopic signature facilitates de novo sequencing of peptides in free-radical-initiated peptide sequencing (FRIPS) mass spectrometry.

    PubMed

    Nam, Jungjoo; Kwon, Hyuksu; Jang, Inae; Jeon, Aeran; Moon, Jingyu; Lee, Sun Young; Kang, Dukjin; Han, Sang Yun; Moon, Bongjin; Oh, Han Bin

    2015-02-01

    We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.e. o-TEMPO-Bz(Br)-C(O)-peptide, allows unambiguous distinction of the N-terminal peptide fragments from the C-terminal fragments through the unique bromine doublet isotopic signature. Furthermore, bromine substitution does not alter the overall radical-driven peptide backbone dissociation pathways of o-TEMPO-Bz-C(O)-peptide. From a practical perspective, the presence of the bromine isotopic signature in the N-terminal peptide fragments in TEMPO-assisted FRIPS MS represents a useful and cost-effective opportunity for de novo peptide sequencing. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Application of the MIDAS approach for analysis of lysine acetylation sites.

    PubMed

    Evans, Caroline A; Griffiths, John R; Unwin, Richard D; Whetton, Anthony D; Corfe, Bernard M

    2013-01-01

    Multiple Reaction Monitoring Initiated Detection and Sequencing (MIDAS™) is a mass spectrometry-based technique for the detection and characterization of specific post-translational modifications (Unwin et al. 4:1134-1144, 2005), for example acetylated lysine residues (Griffiths et al. 18:1423-1428, 2007). The MIDAS™ technique has application for discovery and analysis of acetylation sites. It is a hypothesis-driven approach that requires a priori knowledge of the primary sequence of the target protein and a proteolytic digest of this protein. MIDAS essentially performs a targeted search for the presence of modified, for example acetylated, peptides. The detection is based on the combination of the predicted molecular weight (measured as mass-charge ratio) of the acetylated proteolytic peptide and a diagnostic fragment (product ion of m/z 126.1), which is generated by specific fragmentation of acetylated peptides during collision induced dissociation performed in tandem mass spectrometry (MS) analysis. Sequence information is subsequently obtained which enables acetylation site assignment. The technique of MIDAS was later trademarked by ABSciex for targeted protein analysis where an MRM scan is combined with full MS/MS product ion scan to enable sequence confirmation.

  19. Even-electron [M-H](+) ions generated by loss of AgH from argentinated peptides with N-terminal imine groups.

    PubMed

    Plaviak, Alexandra; Osburn, Sandra; Patterson, Khiry; van Stipdonk, Michael J

    2016-01-15

    Experiments were performed to probe the creation of apparent even-electron, [M-H](+) ions by CID of Ag-cationized peptides with N-terminal imine groups (Schiff bases). Imine-modified peptides were prepared using condensation reactions with aldehydes. Ag(+) -cationized precursors were generated by electrospray ionization (ESI). Tandem mass spectrometry (MS(n) ) and collision-induced dissociation (CID) were performed using a linear ion trap mass spectrometer. Loss of AgH from peptide [M + Ag](+) ions, at the MS/MS stage, creates closed-shell [M-H](+) ions from imine-modified peptides. Isotope labeling unambiguously identifies the imine C-H group as the source of H eliminated in AgH. Subsequent CID of the [M-H](+) ions generated sequence ions that are analogous to those produced from [M + H](+) ions of the imine-modified peptides. Experiments show (a) formation of novel even-electron peptide cations by CID and (b) the extent to which sequence ions (conventional b, a and y ions) are generated from peptides with fixed charge site and thus lacking a conventional mobile proton. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Seed storage proteins as a system for teaching protein identification by mass spectrometry in biochemistry laboratory.

    PubMed

    Wilson, Karl A; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed, requiring more time and expertise than instructors of large laboratory classes can devote. We have developed an experimental module for our Biochemistry Laboratory course that engages students in MS-based protein identification following protein separation by one-dimensional SDS-PAGE, a technique that is usually taught in this type of course. The module is based on soybean seed storage proteins, a relatively simple mixture of proteins present in high levels in the seed, allowing the identification of the main protein bands by MS/MS and in some cases, even by peptide mass fingerprinting. Students can identify their protein bands using software available on the Internet, and are challenged to deduce post-translational modifications that have occurred upon germination. A collection of mass spectral data and tutorials that can be used as a stand-alone computer-based laboratory module were also assembled. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  1. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry for peptide de novo amino acid sequencing for a seven-protein mixture by paired single-residue transposed Lys-N and Lys-C digestion.

    PubMed

    Guan, Xiaoyan; Brownstein, Naomi C; Young, Nicolas L; Marshall, Alan G

    2017-01-30

    Bottom-up tandem mass spectrometry (MS/MS) is regularly used in proteomics to identify proteins from a sequence database. De novo sequencing is also available for sequencing peptides with relatively short sequence lengths. We recently showed that paired Lys-C and Lys-N proteases produce peptides of identical mass and similar retention time, but different tandem mass spectra. Such parallel experiments provide complementary information, and allow for up to 100% MS/MS sequence coverage. Here, we report digestion by paired Lys-C and Lys-N proteases of a seven-protein mixture: human hemoglobin alpha, bovine carbonic anhydrase 2, horse skeletal muscle myoglobin, hen egg white lysozyme, bovine pancreatic ribonuclease, bovine rhodanese, and bovine serum albumin, followed by reversed-phase nanoflow liquid chromatography, collision-induced dissociation, and 14.5 T Fourier transform ion cyclotron resonance mass spectrometry. Matched pairs of product peptide ions of equal precursor mass and similar retention times from each digestion are compared, leveraging single-residue transposed information with independent interferences to confidently identify fragment ion types, residues, and peptides. Selected pairs of product ion mass spectra for de novo sequenced protein segments from each member of the mixture are presented. Pairs of the transposed product ions as well as complementary information from the parallel experiments allow for both high MS/MS coverage for long peptide sequences and high confidence in the amino acid identification. Moreover, the parallel experiments in the de novo sequencing reduce false-positive matches of product ions from the single-residue transposed peptides from the same segment, and thereby further improve the confidence in protein identification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Multi-species Identification of Polymorphic Peptide Variants via Propagation in Spectral Networks*

    PubMed Central

    Bandeira, Nuno

    2016-01-01

    Peptide and protein identification remains challenging in organisms with poorly annotated or rapidly evolving genomes, as are commonly encountered in environmental or biofuels research. Such limitations render tandem mass spectrometry (MS/MS) database search algorithms ineffective as they lack corresponding sequences required for peptide-spectrum matching. We address this challenge with the spectral networks approach to (1) match spectra of orthologous peptides across multiple related species and then (2) propagate peptide annotations from identified to unidentified spectra. We here present algorithms to assess the statistical significance of spectral alignments (Align-GF), reduce the impurity in spectral networks, and accurately estimate the error rate in propagated identifications. Analyzing three related Cyanothece species, a model organism for biohydrogen production, spectral networks identified peptides from highly divergent sequences from networks with dozens of variant peptides, including thousands of peptides in species lacking a sequenced genome. Our analysis further detected the presence of many novel putative peptides even in genomically characterized species, thus suggesting the possibility of gaps in our understanding of their proteomic and genomic expression. A web-based pipeline for spectral networks analysis is available at http://proteomics.ucsd.edu/software. PMID:27609420

  3. Characterization of on-target generated tryptic peptides from Giberella zeae conidia spore proteins by means of matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Dong, Hongjuan; Marchetti-Deschmann, Martina; Allmaier, Günter

    2014-01-01

    Traditionally characterization of microbial proteins is performed by a complex sequence of steps with the final step to be either Edman sequencing or mass spectrometry, which generally takes several weeks or months to be complete. In this work, we proposed a strategy for the characterization of tryptic peptides derived from Giberella zeae (anamorph: Fusarium graminearum) proteins in parallel to intact cell mass spectrometry (ICMS) in which no complicated and time-consuming steps were needed. Experimentally, after a simple washing treatment of the spores, the aliquots of the intact G. zeae macro conidia spores solution, were deposited two times onto one MALDI (matrix-assisted laser desorption ionization) mass spectrometry (MS) target (two spots). One spot was used for ICMS and the second spot was subject to a brief on-target digestion with bead-immobilized or non-immobilized trypsin. Subsequently, one spot was analyzed immediately by MALDI MS in the linear mode (ICMS) whereas the second spot containing the digested material was investigated by MALDI MS in the reflectron mode ("peptide mass fingerprint") followed by protonated peptide selection for MS/MS (post source decay (PSD) fragment ion) analysis. Based on the formed fragment ions of selected tryptic peptides a complete or partial amino acid sequence was generated by manual de novo sequencing. These sequence data were used for homology search for protein identification. Finally four different peptides of varying abundances have been identified successfully allowing the verification that our desorbed/ionized surface compounds were indeed derived from proteins. The presence of three different proteins could be found unambiguously. Interestingly, one of these proteins is belonging to the ribosomal superfamily which indicates that not only surface-associated proteins were digested. This strategy minimized the amount of time and labor required for obtaining deeper information on spore preparations within the nowadays widely used ICMS approach. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Defining the wheat gluten peptide fingerprint via a discovery and targeted proteomics approach.

    PubMed

    Martínez-Esteso, María José; Nørgaard, Jørgen; Brohée, Marcel; Haraszi, Reka; Maquet, Alain; O'Connor, Gavin

    2016-09-16

    Accurate, reliable and sensitive detection methods for gluten are required to support current EU regulations. The enforcement of legislative levels requires that measurement results are comparable over time and between methods. This is not a trivial task for gluten which comprises a large number of protein targets. This paper describes a strategy for defining a set of specific analytical targets for wheat gluten. A comprehensive proteomic approach was applied by fractionating wheat gluten using RP-HPLC (reversed phase high performance liquid chromatography) followed by a multi-enzymatic digestion (LysC, trypsin and chymotrypsin) with subsequent mass spectrometric analysis. This approach identified 434 peptide sequences from gluten. Peptides were grouped based on two criteria: unique to a single gluten protein sequence; contained known immunogenic and toxic sequences in the context of coeliac disease. An LC-MS/MS method based on selected reaction monitoring (SRM) was developed on a triple quadrupole mass spectrometer for the specific detection of the target peptides. The SRM based screening approach was applied to gluten containing cereals (wheat, rye, barley and oats) and non-gluten containing flours (corn, soy and rice). A unique set of wheat gluten marker peptides were identified and are proposed as wheat specific markers. The measurement of gluten in processed food products in support of regulatory limits is performed routinely. Mass spectrometry is emerging as a viable alternative to ELISA based methods. Here we outline a set of peptide markers that are representative of gluten and consider the end user's needs in protecting those with coeliac disease. The approach taken has been applied to wheat but can be easily extended to include other species potentially enabling the MS quantification of different gluten containing species from the identified markers. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. A framework for intelligent data acquisition and real-time database searching for shotgun proteomics.

    PubMed

    Graumann, Johannes; Scheltema, Richard A; Zhang, Yong; Cox, Jürgen; Mann, Matthias

    2012-03-01

    In the analysis of complex peptide mixtures by MS-based proteomics, many more peptides elute at any given time than can be identified and quantified by the mass spectrometer. This makes it desirable to optimally allocate peptide sequencing and narrow mass range quantification events. In computer science, intelligent agents are frequently used to make autonomous decisions in complex environments. Here we develop and describe a framework for intelligent data acquisition and real-time database searching and showcase selected examples. The intelligent agent is implemented in the MaxQuant computational proteomics environment, termed MaxQuant Real-Time. It analyzes data as it is acquired on the mass spectrometer, constructs isotope patterns and SILAC pair information as well as controls MS and tandem MS events based on real-time and prior MS data or external knowledge. Re-implementing a top10 method in the intelligent agent yields similar performance to the data dependent methods running on the mass spectrometer itself. We demonstrate the capabilities of MaxQuant Real-Time by creating a real-time search engine capable of identifying peptides "on-the-fly" within 30 ms, well within the time constraints of a shotgun fragmentation "topN" method. The agent can focus sequencing events onto peptides of specific interest, such as those originating from a specific gene ontology (GO) term, or peptides that are likely modified versions of already identified peptides. Finally, we demonstrate enhanced quantification of SILAC pairs whose ratios were poorly defined in survey spectra. MaxQuant Real-Time is flexible and can be applied to a large number of scenarios that would benefit from intelligent, directed data acquisition. Our framework should be especially useful for new instrument types, such as the quadrupole-Orbitrap, that are currently becoming available.

  6. A Framework for Intelligent Data Acquisition and Real-Time Database Searching for Shotgun Proteomics*

    PubMed Central

    Graumann, Johannes; Scheltema, Richard A.; Zhang, Yong; Cox, Jürgen; Mann, Matthias

    2012-01-01

    In the analysis of complex peptide mixtures by MS-based proteomics, many more peptides elute at any given time than can be identified and quantified by the mass spectrometer. This makes it desirable to optimally allocate peptide sequencing and narrow mass range quantification events. In computer science, intelligent agents are frequently used to make autonomous decisions in complex environments. Here we develop and describe a framework for intelligent data acquisition and real-time database searching and showcase selected examples. The intelligent agent is implemented in the MaxQuant computational proteomics environment, termed MaxQuant Real-Time. It analyzes data as it is acquired on the mass spectrometer, constructs isotope patterns and SILAC pair information as well as controls MS and tandem MS events based on real-time and prior MS data or external knowledge. Re-implementing a top10 method in the intelligent agent yields similar performance to the data dependent methods running on the mass spectrometer itself. We demonstrate the capabilities of MaxQuant Real-Time by creating a real-time search engine capable of identifying peptides “on-the-fly” within 30 ms, well within the time constraints of a shotgun fragmentation “topN” method. The agent can focus sequencing events onto peptides of specific interest, such as those originating from a specific gene ontology (GO) term, or peptides that are likely modified versions of already identified peptides. Finally, we demonstrate enhanced quantification of SILAC pairs whose ratios were poorly defined in survey spectra. MaxQuant Real-Time is flexible and can be applied to a large number of scenarios that would benefit from intelligent, directed data acquisition. Our framework should be especially useful for new instrument types, such as the quadrupole-Orbitrap, that are currently becoming available. PMID:22171319

  7. An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer.

    PubMed

    Ruggles, Kelly V; Tang, Zuojian; Wang, Xuya; Grover, Himanshu; Askenazi, Manor; Teubl, Jennifer; Cao, Song; McLellan, Michael D; Clauser, Karl R; Tabb, David L; Mertins, Philipp; Slebos, Robbert; Erdmann-Gilmore, Petra; Li, Shunqiang; Gunawardena, Harsha P; Xie, Ling; Liu, Tao; Zhou, Jian-Ying; Sun, Shisheng; Hoadley, Katherine A; Perou, Charles M; Chen, Xian; Davies, Sherri R; Maher, Christopher A; Kinsinger, Christopher R; Rodland, Karen D; Zhang, Hui; Zhang, Zhen; Ding, Li; Townsend, R Reid; Rodriguez, Henry; Chan, Daniel; Smith, Richard D; Liebler, Daniel C; Carr, Steven A; Payne, Samuel; Ellis, Matthew J; Fenyő, David

    2016-03-01

    Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations, and splice variants identified in cancer cells are translated. Herein, we apply a proteogenomic data integration tool (QUILTS) to illustrate protein variant discovery using whole genome, whole transcriptome, and global proteome datasets generated from a pair of luminal and basal-like breast-cancer-patient-derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS sample process replicates defined here as an independent tandem MS experiment using identical sample material. Despite analysis of over 30 sample process replicates, only about 10% of SNVs (somatic and germline) detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNVs without a detectable mRNA transcript were also observed, suggesting that transcriptome coverage was incomplete (∼80%). In contrast to germline variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than in the luminal tumor, raising the possibility of differential translation or protein degradation effects. In conclusion, this large-scale proteogenomic integration allowed us to determine the degree to which mutations are translated and identify gaps in sequence coverage, thereby benchmarking current technology and progress toward whole cancer proteome and transcriptome analysis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. MRM screening/biomarker discovery with linear ion trap MS: a library of human cancer-specific peptides.

    PubMed

    Yang, Xu; Lazar, Iulia M

    2009-03-27

    The discovery of novel protein biomarkers is essential in the clinical setting to enable early disease diagnosis and increase survivability rates. To facilitate differential expression analysis and biomarker discovery, a variety of tandem mass spectrometry (MS/MS)-based protein profiling techniques have been developed. For achieving sensitive detection and accurate quantitation, targeted MS screening approaches, such as multiple reaction monitoring (MRM), have been implemented. MCF-7 breast cancer protein cellular extracts were analyzed by 2D-strong cation exchange (SCX)/reversed phase liquid chromatography (RPLC) separations interfaced to linear ion trap MS detection. MS data were interpreted with the Sequest-based Bioworks software (Thermo Electron). In-house developed Perl-scripts were used to calculate the spectral counts and the representative fragment ions for each peptide. In this work, we report on the generation of a library of 9,677 peptides (p < 0.001), representing approximately 1,572 proteins from human breast cancer cells, that can be used for MRM/MS-based biomarker screening studies. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum (p-value, DeltaM, Xcorr, DeltaCn, Sp, no. of matching a, b, y ions in the spectrum), the retention time, and the top 10 most intense product ions that correspond to a given peptide. Only proteins identified by at least two spectral counts are listed. The experimental distribution of protein frequencies, as a function of molecular weight, closely matched the theoretical distribution of proteins in the human proteome, as provided in the SwissProt database. The amino acid sequence coverage of the identified proteins ranged from 0.04% to 98.3%. The highest-abundance proteins in the cellular extract had a molecular weight (MW)<50,000. Preliminary experiments have demonstrated that putative biomarkers, that are not detectable by conventional data dependent MS acquisition methods in complex un-fractionated samples, can be reliable identified with the information provided in this library. Based on the spectral count, the quality of a tandem mass spectrum and the m/z values for a parent peptide and its most abundant daughter ions, MRM conditions can be selected to enable the detection of target peptides and proteins.

  9. MRM screening/biomarker discovery with linear ion trap MS: a library of human cancer-specific peptides

    PubMed Central

    2009-01-01

    Background The discovery of novel protein biomarkers is essential in the clinical setting to enable early disease diagnosis and increase survivability rates. To facilitate differential expression analysis and biomarker discovery, a variety of tandem mass spectrometry (MS/MS)-based protein profiling techniques have been developed. For achieving sensitive detection and accurate quantitation, targeted MS screening approaches, such as multiple reaction monitoring (MRM), have been implemented. Methods MCF-7 breast cancer protein cellular extracts were analyzed by 2D-strong cation exchange (SCX)/reversed phase liquid chromatography (RPLC) separations interfaced to linear ion trap MS detection. MS data were interpreted with the Sequest-based Bioworks software (Thermo Electron). In-house developed Perl-scripts were used to calculate the spectral counts and the representative fragment ions for each peptide. Results In this work, we report on the generation of a library of 9,677 peptides (p < 0.001), representing ~1,572 proteins from human breast cancer cells, that can be used for MRM/MS-based biomarker screening studies. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum (p-value, DeltaM, Xcorr, DeltaCn, Sp, no. of matching a, b, y ions in the spectrum), the retention time, and the top 10 most intense product ions that correspond to a given peptide. Only proteins identified by at least two spectral counts are listed. The experimental distribution of protein frequencies, as a function of molecular weight, closely matched the theoretical distribution of proteins in the human proteome, as provided in the SwissProt database. The amino acid sequence coverage of the identified proteins ranged from 0.04% to 98.3%. The highest-abundance proteins in the cellular extract had a molecular weight (MW)<50,000. Conclusion Preliminary experiments have demonstrated that putative biomarkers, that are not detectable by conventional data dependent MS acquisition methods in complex un-fractionated samples, can be reliable identified with the information provided in this library. Based on the spectral count, the quality of a tandem mass spectrum and the m/z values for a parent peptide and its most abundant daughter ions, MRM conditions can be selected to enable the detection of target peptides and proteins. PMID:19327145

  10. LESSONS IN DE NOVO PEPTIDE SEQUENCING BY TANDEM MASS SPECTROMETRY

    PubMed Central

    Medzihradszky, Katalin F.; Chalkley, Robert J.

    2015-01-01

    Mass spectrometry has become the method of choice for the qualitative and quantitative characterization of protein mixtures isolated from all kinds of living organisms. The raw data in these studies are MS/MS spectra, usually of peptides produced by proteolytic digestion of a protein. These spectra are “translated” into peptide sequences, normally with the help of various search engines. Data acquisition and interpretation have both been automated, and most researchers look only at the summary of the identifications without ever viewing the underlying raw data used for assignments. Automated analysis of data is essential due to the volume produced. However, being familiar with the finer intricacies of peptide fragmentation processes, and experiencing the difficulties of manual data interpretation allow a researcher to be able to more critically evaluate key results, particularly because there are many known rules of peptide fragmentation that are not incorporated into search engine scoring. Since the most commonly used MS/MS activation method is collision-induced dissociation (CID), in this article we present a brief review of the history of peptide CID analysis. Next, we provide a detailed tutorial on how to determine peptide sequences from CID data. Although the focus of the tutorial is de novo sequencing, the lessons learned and resources supplied are useful for data interpretation in general. PMID:25667941

  11. Open-pNovo: De Novo Peptide Sequencing with Thousands of Protein Modifications.

    PubMed

    Yang, Hao; Chi, Hao; Zhou, Wen-Jing; Zeng, Wen-Feng; He, Kun; Liu, Chao; Sun, Rui-Xiang; He, Si-Min

    2017-02-03

    De novo peptide sequencing has improved remarkably, but sequencing full-length peptides with unexpected modifications is still a challenging problem. Here we present an open de novo sequencing tool, Open-pNovo, for de novo sequencing of peptides with arbitrary types of modifications. Although the search space increases by ∼300 times, Open-pNovo is close to or even ∼10-times faster than the other three proposed algorithms. Furthermore, considering top-1 candidates on three MS/MS data sets, Open-pNovo can recall over 90% of the results obtained by any one traditional algorithm and report 5-87% more peptides, including 14-250% more modified peptides. On a high-quality simulated data set, ∼85% peptides with arbitrary modifications can be recalled by Open-pNovo, while hardly any results can be recalled by others. In summary, Open-pNovo is an excellent tool for open de novo sequencing and has great potential for discovering unexpected modifications in the real biological applications.

  12. Simultaneous Detection of Human C-Terminal p53 Isoforms by Single Template Molecularly Imprinted Polymers (MIPs) Coupled with Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)-Based Targeted Proteomics.

    PubMed

    Jiang, Wenting; Liu, Liang; Chen, Yun

    2018-03-06

    Abnormal expression of C-terminal p53 isoforms α, β, and γ can cause the development of cancers including breast cancer. To date, much evidence has demonstrated that these isoforms can differentially regulate target genes and modulate their expression. Thus, quantification of individual isoforms may help to link clinical outcome to p53 status and to improve cancer patient treatment. However, there are few studies on accurate determination of p53 isoforms, probably due to sequence homology of these isoforms and also their low abundance. In this study, a targeted proteomics assay combining molecularly imprinted polymers (MIPs) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for simultaneous quantification of C-terminal p53 isoforms. Isoform-specific surrogate peptides (i.e., KPLDGEYFTLQIR (peptide-α) for isoform α, KPLDGEYFTLQDQTSFQK (peptide-β) for isoform β, and KPLDGEYFTLQMLLDLR (peptide-γ) for isoform γ) were first selected and used in both MIPs enrichment and mass spectrometric detection. The common sequence KPLDGEYFTLQ of these three surrogate peptides was used as single template in MIPs. In addition to optimization of imprinting conditions and characterization of the prepared MIPs, binding affinity and cross-reactivity of the MIPs for each surrogate peptide were also evaluated. As a result, a LOQ of 5 nM was achieved, which was >15-fold more sensitive than that without MIPs. Finally, the assay was validated and applied to simultaneous quantitative analysis of C-terminal p53 isoforms α, β, and γ in several human breast cell lines (i.e., MCF-10A normal cells, MCF-7 and MDA-MB-231 cancer cells, and drug-resistant MCF-7/ADR cancer cells). This study is among the first to employ single template MIPs and cross-reactivity phenomenon to select isoform-specific surrogate peptides and enable simultaneous quantification of protein isoforms in LC-MS/MS-based targeted proteomics.

  13. Peptidomics of Three Bothrops Snake Venoms: Insights Into the Molecular Diversification of Proteomes and Peptidomes*

    PubMed Central

    Tashima, Alexandre K.; Zelanis, André; Kitano, Eduardo S.; Ianzer, Danielle; Melo, Robson L.; Rioli, Vanessa; Sant'anna, Sávio S.; Schenberg, Ana C. G.; Camargo, Antônio C. M.; Serrano, Solange M. T.

    2012-01-01

    Snake venom proteomes/peptidomes are highly complex and maintenance of their integrity within the gland lumen is crucial for the expression of toxin activities. There has been considerable progress in the field of venom proteomics, however, peptidomics does not progress as fast, because of the lack of comprehensive venom sequence databases for analysis of MS data. Therefore, in many cases venom peptides have to be sequenced manually by MS/MS analysis or Edman degradation. This is critical for rare snake species, as is the case of Bothrops cotiara (BC) and B. fonsecai (BF), which are regarded as near threatened with extinction. In this study we conducted a comprehensive analysis of the venom peptidomes of BC, BF, and B. jararaca (BJ) using a combination of solid-phase extraction and reversed-phase HPLC to fractionate the peptides, followed by nano-liquid chromatography-tandem MS (LC-MS/MS) or direct infusion electrospray ionization-(ESI)-MS/MS or MALDI-MS/MS analyses. We detected marked differences in the venom peptidomes and identified peptides ranging from 7 to 39 residues in length by de novo sequencing. Forty-four unique sequences were manually identified, out of which 30 are new peptides, including 17 bradykinin-potentiating peptides, three poly-histidine-poly-glycine peptides and interestingly, 10 l-amino acid oxidase fragments. Some of the new bradykinin-potentiating peptides display significant bradykinin potentiating activity. Automated database search revealed fragments from several toxins in the peptidomes, mainly from l-amino acid oxidase, and allowed the determination of the peptide bond specificity of proteinases and amino acid occurrences for the P4-P4′ sites. We also demonstrate that the venom lyophilization/resolubilization process greatly increases the complexity of the peptidome because of the imbalance caused to the venom proteome and the consequent activity of proteinases on venom components. The use of proteinase inhibitors clearly showed different outcomes in the peptidome characterization and suggested that degradomic-peptidomic analysis of snake venoms is highly sensitive to the conditions of sampling procedures. PMID:22869554

  14. Purification and characterisation of a novel antistaphylococcal peptide (ASP-1) from Bacillus sp. URID 12.1.

    PubMed

    Chalasani, Ajay Ghosh; Roy, Utpal; Nema, Sushma

    2018-01-01

    A strong antistaphylococcal peptide (ASP-1) from Bacillus subtilis URID 12.1 strain that is active against cefoxitin- and methicillin-resistant Staphylococcus aureus clinical isolates was purified to homogeneity by solvent extraction, silica gel-based adsorption chromatography and reversed-phase high-performance liquid chromatography. The peptide sequence of ASP-1 as determined by MALDI-TOF/MS and ESI-FTICR-MS was acetylated Phe-Thr-Ala-Val-Dhb-Phe-Ile/Leu. The peptide was further analysed by alkaline hydrolysis, ESI-Q-TOF-MS and an ion mobility assay, which detected the presence of a lactone ring in the intact peptide and a cyclic nature, subsequently revealing the linearised peptide sequence as acPhe-Leu-Phe-Thr-Val-Ala-Dhb. Based on the molecular mass (804.5 Da), peptide sequence and amino acid composition, ASP-1 was identified as a lactone ring-containing peptide similar to TL-119, a poorly studied cyclic depsipeptide. Circular dichroism spectroscopy revealed its predominantly random structure in aqueous solution and its β-sheet conformation in methanol. Minimum inhibitory concentrations (MICs) of the purified peptide against S. aureus and methicillin-resistant S. aureus (MRSA) ranged from 2 µg/mL to 64 µg/mL. At sub-MICs and 1× MIC, ASP-1 showed a strong antibiofilm characteristic. ASP-1 at a concentration of 128 µg/mL did not show haemolytic activity, and no cytotoxicity was observed against hepatic carcinoma and breast carcinoma cell lines at the same concentration. Peptide ASP-1 with anti-MRSA and antibiofilm abilities and non-haemolytic and non-cytotoxic properties has not been reported previously. These findings suggest that it may serve as a lead molecule for developing alternative topical antibacterial agents. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  15. Isolation and identification of calcium-chelating peptides from Pacific cod skin gelatin and their binding properties with calcium.

    PubMed

    Wu, Wenfei; Li, Bafang; Hou, Hu; Zhang, Hongwei; Zhao, Xue

    2017-12-13

    A calcium-chelating peptide is considered to have the ability to improve calcium absorption. In this study, Pacific cod skin gelatin hydrolysates treated with trypsin for 120 min exhibited higher calcium-chelating activity. Sequential chromatography, involving hydroxyapatite affinity chromatography and reversed phase high performance liquid chromatography, was used for the purification of calcium-chelating peptides. Two novel peptides with the typical characteristics of collagen were sequenced as GDKGESGEAGER and GEKGEGGHR based on LC-HRMS/MS, which showed a high affinity to calcium. Calcium-peptide complexation was further characterized by ESI-MS (MS and MS/MS) and FTIR spectroscopy. The results showed that the complexation of the two peptides with calcium was conducted mainly at the ratio of 1 : 1. The amino terminal group and the peptide bond of the peptide backbone as well as the amino group of the lysine side chain and the carboxylate of the glutamate side chain were the possible calcium binding sites for the two peptides. Meanwhile, several amino acid side chain groups, including the hydroxyl (Ser) and carboxylate (Asp) of GDKGESGEAGER and the imine (His) of GEKGEGGHR, were crucial in the complexation. The arginine residue in GEKGEGGHR also participated in the calcium coordination. Additionally, several active fragments with calcium-chelating activity were obtained using MS/MS spectra, including GDKGESGEAGE, GEAGER, GEK, EKG and KGE. This study suggests that gelatin-derived peptides have the potential to be used as a calcium-chelating ingredient to combat calcium deficiency.

  16. Identification of novel bacteriophage peptides using a combination of gene sequence LC-MS-MS analysis and BLASTP

    USDA-ARS?s Scientific Manuscript database

    Introduction: In an effort to characterize novel bacteriophage with lytic activity against pathogenic E.coli associated with foodborne illness, gene sequencing and mass spectrometry have been used to identify expressed peptides which differentiate isolated bacteriophage from other known phage. Here,...

  17. Database-independent Protein Sequencing (DiPS) Enables Full-length de Novo Protein and Antibody Sequence Determination.

    PubMed

    Savidor, Alon; Barzilay, Rotem; Elinger, Dalia; Yarden, Yosef; Lindzen, Moshit; Gabashvili, Alexandra; Adiv Tal, Ophir; Levin, Yishai

    2017-06-01

    Traditional "bottom-up" proteomic approaches use proteolytic digestion, LC-MS/MS, and database searching to elucidate peptide identities and their parent proteins. Protein sequences absent from the database cannot be identified, and even if present in the database, complete sequence coverage is rarely achieved even for the most abundant proteins in the sample. Thus, sequencing of unknown proteins such as antibodies or constituents of metaproteomes remains a challenging problem. To date, there is no available method for full-length protein sequencing, independent of a reference database, in high throughput. Here, we present Database-independent Protein Sequencing, a method for unambiguous, rapid, database-independent, full-length protein sequencing. The method is a novel combination of non-enzymatic, semi-random cleavage of the protein, LC-MS/MS analysis, peptide de novo sequencing, extraction of peptide tags, and their assembly into a consensus sequence using an algorithm named "Peptide Tag Assembler." As proof-of-concept, the method was applied to samples of three known proteins representing three size classes and to a previously un-sequenced, clinically relevant monoclonal antibody. Excluding leucine/isoleucine and glutamic acid/deamidated glutamine ambiguities, end-to-end full-length de novo sequencing was achieved with 99-100% accuracy for all benchmarking proteins and the antibody light chain. Accuracy of the sequenced antibody heavy chain, including the entire variable region, was also 100%, but there was a 23-residue gap in the constant region sequence. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. A label-free internal standard method for the differential analysis of bioactive lupin proteins using nano HPLC-Chip coupled with Ion Trap mass spectrometry.

    PubMed

    Brambilla, Francesca; Resta, Donatella; Isak, Ilena; Zanotti, Marco; Arnoldi, Anna

    2009-01-01

    Quantitative proteomics based on MS is useful for pointing out the differences in some food proteomes relevant to human nutrition. Stable isotope label-free (SIF) techniques are suitable for comparing an unlimited number of samples by the use of relatively simple experimental workflows. We have developed an internal standard label-free method based on the intensities of peptide precursor ions from MS/MS spectra, collected in data dependent runs, for the simultaneous qualitative characterization and relative quantification of storage proteins of Lupinus albus seeds in protein extracts of four lupin cultivars (cv Adam, Arés, Lucky, Multitalia). The use of an innovative microfluidic system, the HPLC-Chip, coupled with a classical IT mass spectrometer, has allowed a complete qualitative characterization of all proteins. In particular, the homology search mode has permitted to identify single amino acid substitutions in the sequences of vicilins (beta-conglutin precursor and vicilin-like protein). The MS/MS sequencing of substituted peptides confirms the high heterogeneity of vicilins according to the peculiar characteristics of the vicilin-encoding gene family. Two suitable bioinformatics parameters were optimized for the differential analyses of the main bioactive proteins: the "normalized protein average of common reproducible peptides" (N-ACRP) for gamma-conglutin, which is a homogeneous protein, and the "normalized protein mean peptide spectral intensity" (N-MEAN) for the highly heterogenous class of the vicilins.

  19. Occurrence of C-Terminal Residue Exclusion in Peptide Fragmentation by ESI and MALDI Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dupré, Mathieu; Cantel, Sonia; Martinez, Jean; Enjalbal, Christine

    2012-02-01

    By screening a data set of 392 synthetic peptides MS/MS spectra, we found that a known C-terminal rearrangement was unexpectedly frequently occurring from monoprotonated molecular ions in both ESI and MALDI tandem mass spectrometry upon low and high energy collision activated dissociations with QqTOF and TOF/TOF mass analyzer configuration, respectively. Any residue localized at the C-terminal carboxylic acid end, even a basic one, was lost, provided that a basic amino acid such arginine and to a lesser extent histidine and lysine was present in the sequence leading to a fragment ion, usually depicted as (bn-1 + H2O) ion, corresponding to a shortened non-scrambled peptide chain. Far from being an epiphenomenon, such a residue exclusion from the peptide chain C-terminal extremity gave a fragment ion that was the base peak of the MS/MS spectrum in certain cases. Within the frame of the mobile proton model, the ionizing proton being sequestered onto the basic amino acid side chain, it is known that the charge directed fragmentation mechanism involved the C-terminal carboxylic acid function forming an anhydride intermediate structure. The same mechanism was also demonstrated from cationized peptides. To confirm such assessment, we have prepared some of the peptides that displayed such C-terminal residue exclusion as a C-terminal backbone amide. As expected in this peptide amide series, the production of truncated chains was completely suppressed. Besides, multiply charged molecular ions of all peptides recorded in ESI mass spectrometry did not undergo such fragmentation validating that any mobile ionizing proton will prevent such a competitive C-terminal backbone rearrangement. Among all well-known nondirect sequence fragment ions issued from non specific loss of neutral molecules (mainly H2O and NH3) and multiple backbone amide ruptures (b-type internal ions), the described C-terminal residue exclusion is highly identifiable giving raise to a single fragment ion in the high mass range of the MS/MS spectra. The mass difference between this signal and the protonated molecular ion corresponds to the mass of the C-terminal residue. It allowed a straightforward identification of the amino acid positioned at this extremity. It must be emphasized that a neutral residue loss can be misattributed to the formation of a ym-1 ion, i.e., to the loss of the N-terminal residue following the a1-ym-1 fragmentation channel. Extreme caution must be adopted when reading the direct sequence ion on the positive ion MS/MS spectra of singly charged peptides not to mix up the attribution of the N- and C-terminal amino acids. Although such peculiar fragmentation behavior is of obvious interest for de novo peptide sequencing, it can also be exploited in proteomics, especially for studies involving digestion protocols carried out with proteolytic enzymes other than trypsin (Lys-N, Glu-C, and Asp-N) that produce arginine-containing peptides.

  20. [Nano-ESI-MS/MS identification on differentiation-associated proteins in M1 mouse myeloid leukemia cells induced by IL-6].

    PubMed

    Xia, Qing; Wang, Hong-xia; Wang, Jie; Liu, Bing-yu; Hu, Mei-ru; Zhang, Xue-min; Shen, Bei-fen

    2004-10-01

    To identify two differentiation-associated proteins induced by rhIL-6 in M1 mouse myeloid leukemia cells. Protein spots were excised from 2-D gels and digested in-gel with trypsin. The trypsin lysis products were first analyzed by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) through peptide mass fingerprinting and then performed peptide sequencing by nano-electrospray ionization mass spectrometry/mass spectrometry (nano-ESI-MS/MS). The database search was finished with the Mascot search engine (http://www.matrixscience.co.uk) using the data processed through MaxEnt3 and MasSeq. The two proteins were not revealed by peptide mass fingerprint using MALDI-TOF-MS, while they were respectively identified as Destrin and Putative protein after the sequence of their trypic peptides were obtained by the nano-ESI-MS/MS techniques. Nano-ESI-MS/MS technique can successfully identify the two differentiation-associated proteins induced by rhIL-6 and has great advantage in protein analysis.

  1. Spectra library assisted de novo peptide sequencing for HCD and ETD spectra pairs.

    PubMed

    Yan, Yan; Zhang, Kaizhong

    2016-12-23

    De novo peptide sequencing via tandem mass spectrometry (MS/MS) has been developed rapidly in recent years. With the use of spectra pairs from the same peptide under different fragmentation modes, performance of de novo sequencing is greatly improved. Currently, with large amount of spectra sequenced everyday, spectra libraries containing tens of thousands of annotated experimental MS/MS spectra become available. These libraries provide information of the spectra properties, thus have the potential to be used with de novo sequencing to improve its performance. In this study, an improved de novo sequencing method assisted with spectra library is proposed. It uses spectra libraries as training datasets and introduces significant scores of the features used in our previous de novo sequencing method for HCD and ETD spectra pairs. Two pairs of HCD and ETD spectral datasets were used to test the performance of the proposed method and our previous method. The results show that this proposed method achieves better sequencing accuracy with higher ranked correct sequences and less computational time. This paper proposed an advanced de novo sequencing method for HCD and ETD spectra pair and used information from spectra libraries and significant improved previous similar methods.

  2. Rapid screening and identification of ACE inhibitors in snake venoms using at-line nanofractionation LC-MS.

    PubMed

    Mladic, Marija; de Waal, Tessa; Burggraaff, Lindsey; Slagboom, Julien; Somsen, Govert W; Niessen, Wilfried M A; Manjunatha Kini, R; Kool, Jeroen

    2017-10-01

    This study presents an analytical method for the screening of snake venoms for inhibitors of the angiotensin-converting enzyme (ACE) and a strategy for their rapid identification. The method is based on an at-line nanofractionation approach, which combines liquid chromatography (LC), mass spectrometry (MS), and pharmacology in one platform. After initial LC separation of a crude venom, a post-column flow split is introduced enabling parallel MS identification and high-resolution fractionation onto 384-well plates. The plates are subsequently freeze-dried and used in a fluorescence-based ACE activity assay to determine the ability of the nanofractions to inhibit ACE activity. Once the bioactive wells are identified, the parallel MS data reveals the masses corresponding to the activities found. Narrowing down of possible bioactive candidates is provided by comparison of bioactivity profiles after reversed-phase liquid chromatography (RPLC) and after hydrophilic interaction chromatography (HILIC) of a crude venom. Additional nanoLC-MS/MS analysis is performed on the content of the bioactive nanofractions to determine peptide sequences. The method described was optimized, evaluated, and successfully applied for screening of 30 snake venoms for the presence of ACE inhibitors. As a result, two new bioactive peptides were identified: pELWPRPHVPP in Crotalus viridis viridis venom with IC 50  = 1.1 μM and pEWPPWPPRPPIPP in Cerastes cerastes cerastes venom with IC 50  = 3.5 μM. The identified peptides possess a high sequence similarity to other bradykinin-potentiating peptides (BPPs), which are known ACE inhibitors found in snake venoms.

  3. Shotgun Protein Sequencing with Meta-contig Assembly*

    PubMed Central

    Guthals, Adrian; Clauser, Karl R.; Bandeira, Nuno

    2012-01-01

    Full-length de novo sequencing from tandem mass (MS/MS) spectra of unknown proteins such as antibodies or proteins from organisms with unsequenced genomes remains a challenging open problem. Conventional algorithms designed to individually sequence each MS/MS spectrum are limited by incomplete peptide fragmentation or low signal to noise ratios and tend to result in short de novo sequences at low sequencing accuracy. Our shotgun protein sequencing (SPS) approach was developed to ameliorate these limitations by first finding groups of unidentified spectra from the same peptides (contigs) and then deriving a consensus de novo sequence for each assembled set of spectra (contig sequences). But whereas SPS enables much more accurate reconstruction of de novo sequences longer than can be recovered from individual MS/MS spectra, it still requires error-tolerant matching to homologous proteins to group smaller contig sequences into full-length protein sequences, thus limiting its effectiveness on sequences from poorly annotated proteins. Using low and high resolution CID and high resolution HCD MS/MS spectra, we address this limitation with a Meta-SPS algorithm designed to overlap and further assemble SPS contigs into Meta-SPS de novo contig sequences extending as long as 100 amino acids at over 97% accuracy without requiring any knowledge of homologous protein sequences. We demonstrate Meta-SPS using distinct MS/MS data sets obtained with separate enzymatic digestions and discuss how the remaining de novo sequencing limitations relate to MS/MS acquisition settings. PMID:22798278

  4. Shotgun protein sequencing with meta-contig assembly.

    PubMed

    Guthals, Adrian; Clauser, Karl R; Bandeira, Nuno

    2012-10-01

    Full-length de novo sequencing from tandem mass (MS/MS) spectra of unknown proteins such as antibodies or proteins from organisms with unsequenced genomes remains a challenging open problem. Conventional algorithms designed to individually sequence each MS/MS spectrum are limited by incomplete peptide fragmentation or low signal to noise ratios and tend to result in short de novo sequences at low sequencing accuracy. Our shotgun protein sequencing (SPS) approach was developed to ameliorate these limitations by first finding groups of unidentified spectra from the same peptides (contigs) and then deriving a consensus de novo sequence for each assembled set of spectra (contig sequences). But whereas SPS enables much more accurate reconstruction of de novo sequences longer than can be recovered from individual MS/MS spectra, it still requires error-tolerant matching to homologous proteins to group smaller contig sequences into full-length protein sequences, thus limiting its effectiveness on sequences from poorly annotated proteins. Using low and high resolution CID and high resolution HCD MS/MS spectra, we address this limitation with a Meta-SPS algorithm designed to overlap and further assemble SPS contigs into Meta-SPS de novo contig sequences extending as long as 100 amino acids at over 97% accuracy without requiring any knowledge of homologous protein sequences. We demonstrate Meta-SPS using distinct MS/MS data sets obtained with separate enzymatic digestions and discuss how the remaining de novo sequencing limitations relate to MS/MS acquisition settings.

  5. Spectrum-to-Spectrum Searching Using a Proteome-wide Spectral Library*

    PubMed Central

    Yen, Chia-Yu; Houel, Stephane; Ahn, Natalie G.; Old, William M.

    2011-01-01

    The unambiguous assignment of tandem mass spectra (MS/MS) to peptide sequences remains a key unsolved problem in proteomics. Spectral library search strategies have emerged as a promising alternative for peptide identification, in which MS/MS spectra are directly compared against a reference library of confidently assigned spectra. Two problems relate to library size. First, reference spectral libraries are limited to rediscovery of previously identified peptides and are not applicable to new peptides, because of their incomplete coverage of the human proteome. Second, problems arise when searching a spectral library the size of the entire human proteome. We observed that traditional dot product scoring methods do not scale well with spectral library size, showing reduction in sensitivity when library size is increased. We show that this problem can be addressed by optimizing scoring metrics for spectrum-to-spectrum searches with large spectral libraries. MS/MS spectra for the 1.3 million predicted tryptic peptides in the human proteome are simulated using a kinetic fragmentation model (MassAnalyzer version2.1) to create a proteome-wide simulated spectral library. Searches of the simulated library increase MS/MS assignments by 24% compared with Mascot, when using probabilistic and rank based scoring methods. The proteome-wide coverage of the simulated library leads to 11% increase in unique peptide assignments, compared with parallel searches of a reference spectral library. Further improvement is attained when reference spectra and simulated spectra are combined into a hybrid spectral library, yielding 52% increased MS/MS assignments compared with Mascot searches. Our study demonstrates the advantages of using probabilistic and rank based scores to improve performance of spectrum-to-spectrum search strategies. PMID:21532008

  6. Quantitative proteome analysis using isobaric peptide termini labeling (IPTL).

    PubMed

    Arntzen, Magnus O; Koehler, Christian J; Treumann, Achim; Thiede, Bernd

    2011-01-01

    The quantitative comparison of proteome level changes across biological samples has become an essential feature in proteomics that remains challenging. We have recently introduced isobaric peptide termini labeling (IPTL), a novel strategy for isobaric quantification based on the derivatization of peptide termini with complementary isotopically labeled reagents. Unlike non-isobaric quantification methods, sample complexity at the MS level is not increased, providing improved sensitivity and protein coverage. The distinguishing feature of IPTL when comparing it to more established isobaric labeling methods (iTRAQ and TMT) is the presence of quantification signatures in all sequence-determining ions in MS/MS spectra, not only in the low mass reporter ion region. This makes IPTL a quantification method that is accessible to mass spectrometers with limited capabilities in the low mass range. Also, the presence of several quantification points in each MS/MS spectrum increases the robustness of the quantification procedure.

  7. Discovery of Undefined Protein Crosslinking Chemistry: A Comprehensive Methodology Utilizing 18O-labeling and Mass Spectrometry

    PubMed Central

    Liu, Min; Zhang, Zhongqi; Zang, Tianzhu; Spahr, Chris; Cheetham, Janet; Ren, Da; Sunny Zhou, Zhaohui

    2013-01-01

    Characterization of protein crosslinking, particularly without prior knowledge of the chemical nature and site of crosslinking, poses a significant challenge due to their intrinsic structural complexity and the lack of a comprehensive analytical approach. Towards this end, we have developed a generally applicable workflow—XChem-Finder that involves four stages. (1) Detection of crosslinked peptides via 18O-labeling at C-termini. (2) Determination of the putative partial sequences of each crosslinked peptide pair using a fragment ion mass database search against known protein sequences coupled with a de novo sequence tag search. (3) Extension to full sequences based on protease specificity, the unique combination of mass, and other constraints. (4) Deduction of crosslinking chemistry and site. The mass difference between the sum of two putative full-length peptides and the crosslinked peptide provides the formulas (elemental composition analysis) for the functional groups involved in each cross- linking. Combined with sequence restraint from MS/MS data, plausible crosslinking chemistry and site were inferred, and ultimately, confirmed by matching with all data. Applying our approach to a stressed IgG2 antibody, ten cross-linked peptides were discovered and found to be connected via thioether originating from disulfides at locations that had not been previously recognized. Furthermore, once the crosslink chemistry was revealed, a targeted crosslink search yielded four additional crosslinked peptides that all contain the C-terminus of the light chain. PMID:23634697

  8. Characterization of a molt-inhibiting hormone (MIH) of the crayfish, Orconectes limosus, by cDNA cloning and mass spectrometric analysis.

    PubMed

    Bulau, Patrick; Okuno, Atsuro; Thome, Elke; Schmitz, Tina; Peter-Katalinic, Jasna; Keller, Rainer

    2005-11-01

    The structure of the precursor of a molt-inhibiting hormone (MIH) of the American crayfish, Orconectes limosus was determined by cloning of a cDNA based on RNA from the neurosecretory perikarya of the X-organ in the eyestalk ganglia. The open reading frame includes the complete precursor sequence, consisting of a signal peptide of 29, and the MIH sequence of 77 amino acids. In addition, the mature peptide was isolated by HPLC from the neurohemal sinus gland and analyzed by ESI-MS and MALDI-TOF-MS peptide mapping. This showed that the mature peptide (Mass 8664.29 Da) consists of only 75 amino acids, having Ala75-NH2 as C-terminus. Thus, C-terminal Arg77 of the precursor is removed during processing, and Gly76 serves as an amide donor. Sequence comparison confirms this peptide as a novel member of the large family, which includes crustacean hyperglycaemic hormone (CHH), MIH and gonad (vitellogenesis)-inhibiting hormone (GIH/VIH). The lack of a CPRP (CHH-precursor related peptide) in the hormone precursor, the size and specific sequence characteristics show that Orl MIH belongs to the MIH/GIH(VIH) subgroup of this larger family. Comparison with the MIH of Procambarus clarkii, the only other MIH that has thus far been identified in freshwater crayfish, shows extremely high sequence conservation. Both MIHs differ in only one amino acid residue ( approximately 99% identity), whereas the sequence identity to several other known MIHs is between 40 and 46%.

  9. Examination of segmental average mass spectra from liquid chromatography-tandem mass spectrometric (LC-MS/MS) data enables screening of multiple types of protein modifications.

    PubMed

    Liu, Nai-Yu; Lee, Hsiao-Hui; Chang, Zee-Fen; Tsay, Yeou-Guang

    2015-09-10

    It has been observed that a modified peptide and its non-modified counterpart, when analyzed with reverse phase liquid chromatography, usually share a very similar elution property [1-3]. Inasmuch as this property is common to many different types of protein modifications, we propose an informatics-based approach, featuring the generation of segmental average mass spectra ((sa)MS), that is capable of locating different types of modified peptides in two-dimensional liquid chromatography-mass spectrometric (LC-MS) data collected for regular protease digests from proteins in gels or solutions. To enable the localization of these peptides in the LC-MS map, we have implemented a set of computer programs, or the (sa)MS package, that perform the needed functions, including generating a complete set of segmental average mass spectra, compiling the peptide inventory from the Sequest/TurboSequest results, searching modified peptide candidates and annotating a tandem mass spectrum for final verification. Using ROCK2 as an example, our programs were applied to identify multiple types of modified peptides, such as phosphorylated and hexosylated ones, which particularly include those peptides that could have been ignored due to their peculiar fragmentation patterns and consequent low search scores. Hence, we demonstrate that, when complemented with peptide search algorithms, our approach and the entailed computer programs can add the sequence information needed for bolstering the confidence of data interpretation by the present analytical platforms and facilitate the mining of protein modification information out of complicated LC-MS/MS data. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A novel peptide from the ACEI/BPP-CNP precursor in the venom of Crotalus durissus collilineatus.

    PubMed

    Higuchi, Shigesada; Murayama, Nobuhiro; Saguchi, Ken-ichi; Ohi, Hiroaki; Fujita, Yoshiaki; da Silva, Nelson Jorge; de Siqueira, Rodrigo José Bezerra; Lahlou, Saad; Aird, Steven D

    2006-10-01

    In crotaline venoms, angiotensin-converting enzyme inhibitors [ACEIs, also known as bradykinin potentiating peptides (BPPs)], are products of a gene coding for an ACEI/BPP-C-type natriuretic peptide (CNP) precursor. In the genes from Bothrops jararaca and Gloydius blomhoffii, ACEI/BPP sequences are repeated. Sequencing of a cDNA clone from venom glands of Crotalus durissus collilineatus showed that two ACEIs/BPPs are located together at the N-terminus, but without repeats. An additional sequence for CNP was unexpectedly found at the C-terminus. Homologous genes for the ACEI/BPP-CNP precursor suggest that most crotaline venoms contain both ACEIs/BPPs and CNP. The sequence of ACEIs/BPPs is separated from the CNP sequence by a long spacer sequence. Previously, there was no evidence that this spacer actually coded any expressed peptides. Aird and Kaiser (1986, unpublished) previously isolated and sequenced a peptide of 11 residues (TPPAGPDVGPR) from Crotalus viridis viridis venom. In the present study, analysis of the cDNA clone from C. d. collilineatus revealed a nearly identical sequence in the ACEI/BPP-CNP spacer. Fractionation of the crude venom by reverse phase HPLC (C(18)), and analysis of the fractions by mass spectrometry (MS) indicated a component of 1020.5 Da. Amino acid sequencing by MS/MS confirmed that C. d. collilineatus venom contains the peptide TPPAGPDGGPR. Its high proline content and paired proline residues are typical of venom hypotensive peptides, although it lacks the usual N-terminal pyroglutamate. It has no demonstrable hypotensive activity when injected intravenously in rats; however, its occurrence in the venoms of dissimilar species suggests that its presence is not accidental. Evidence suggests that these novel toxins probably activate anaphylatoxin C3a receptors.

  11. Engineering RNA phage MS2 virus-like particles for peptide display

    NASA Astrophysics Data System (ADS)

    Jordan, Sheldon Keith

    Phage display is a powerful and versatile technology that enables the selection of novel binding functions from large populations of randomly generated peptide sequences. Random sequences are genetically fused to a viral structural protein to produce complex peptide libraries. From a sufficiently complex library, phage bearing peptides with practically any desired binding activity can be physically isolated by affinity selection, and, since each particle carries in its genome the genetic information for its own replication, the selectants can be amplified by infection of bacteria. For certain applications however, existing phage display platforms have limitations. One such area is in the field of vaccine development, where the goal is to identify relevant epitopes by affinity-selection against an antibody target, and then to utilize them as immunogens to elicit a desired antibody response. Today, affinity selection is usually conducted using display on filamentous phages like M13. This technology provides an efficient means for epitope identification, but, because filamentous phages do not display peptides in the high-density, multivalent arrays the immune system prefers to recognize, they generally make poor immunogens and are typically useless as vaccines. This makes it necessary to confer immunogenicity by conjugating synthetic versions of the peptides to more immunogenic carriers. Unfortunately, when introduced into these new structural environments, the epitopes often fail to elicit relevant antibody responses. Thus, it would be advantageous to combine the epitope selection and immunogen functions into a single platform where the structural constraints present during affinity selection can be preserved during immunization. This dissertation describes efforts to develop a peptide display system based on the virus-like particles (VLPs) of bacteriophage MS2. Phage display technologies rely on (1) the identification of a site in a viral structural protein that is present on the surface of the virus particle and can accept foreign sequence insertions without disruption of protein folding and viral particle assembly, and (2) on the encapsidation of nucleic acid sequences encoding both the VLP and the peptide it displays. The experiments described here are aimed at satisfying the first of these two requirements by engineering efficient peptide display at two different sites in MS2 coat protein. First, we evaluated the suitability of the N-terminus of MS2 coat for peptide insertions. It was observed that random N-terminal 10-mer fusions generally disrupted protein folding and VLP assembly, but by bracketing the foreign sequences with certain specific dipeptides, these defects could be suppressed. Next, the suitability of a coat protein surface loop for foreign sequence insertion was tested. Specifically, random sequence peptides were inserted into the N-terminal-most AB-loop of a coat protein single-chain dimer. Again we found that efficient display required the presence of appropriate dipeptides bracketing the peptide insertion. Finally, it was shown that an N-terminal fusion that tended to interfere specifically with capsid assembly could be efficiently incorporated into mosaic particles when co-expressed with wild-type coat protein.

  12. Application of a fast sorting algorithm to the assignment of mass spectrometric cross-linking data.

    PubMed

    Petrotchenko, Evgeniy V; Borchers, Christoph H

    2014-09-01

    Cross-linking combined with MS involves enzymatic digestion of cross-linked proteins and identifying cross-linked peptides. Assignment of cross-linked peptide masses requires a search of all possible binary combinations of peptides from the cross-linked proteins' sequences, which becomes impractical with increasing complexity of the protein system and/or if digestion enzyme specificity is relaxed. Here, we describe the application of a fast sorting algorithm to search large sequence databases for cross-linked peptide assignments based on mass. This same algorithm has been used previously for assigning disulfide-bridged peptides (Choi et al., ), but has not previously been applied to cross-linking studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. PECAN: Library Free Peptide Detection for Data-Independent Acquisition Tandem Mass Spectrometry Data

    PubMed Central

    Ting, Ying S.; Egertson, Jarrett D.; Bollinger, James G.; Searle, Brian C.; Payne, Samuel H.; Noble, William Stafford; MacCoss, Michael J.

    2017-01-01

    In mass spectrometry-based shogun proteomics, data-independent acquisition (DIA) is an emerging technique for unbiased and reproducible measurement of protein mixtures. Without targeting a specific precursor ion, DIA MS/MS spectra are often highly multiplexed, containing product ions from multiple co-fragmenting precursors. Thus, detecting peptides directly from DIA data is challenging; most DIA data analyses require spectral libraries. Here we present a new library-free, peptide-centric tool PECAN that detects peptides directly from DIA data. PECAN reports evidence of detection based on product ion scoring, enabling detection of low abundance analytes with poor precursor ion signal. We benchmarked PECAN with chromatographic peak picking accuracy and peptide detection capability. We further validated PECAN detection with data-dependent acquisition and targeted analyses. Last, we used PECAN to build a library from DIA data and to query sequence variants. Together, these results show that PECAN detects peptides robustly and accurately from DIA data without using a library. PMID:28783153

  14. Combining De Novo Peptide Sequencing Algorithms, A Synergistic Approach to Boost Both Identifications and Confidence in Bottom-up Proteomics.

    PubMed

    Blank-Landeshammer, Bernhard; Kollipara, Laxmikanth; Biß, Karsten; Pfenninger, Markus; Malchow, Sebastian; Shuvaev, Konstantin; Zahedi, René P; Sickmann, Albert

    2017-09-01

    Complex mass spectrometry based proteomics data sets are mostly analyzed by protein database searches. While this approach performs considerably well for sequenced organisms, direct inference of peptide sequences from tandem mass spectra, i.e., de novo peptide sequencing, oftentimes is the only way to obtain information when protein databases are absent. However, available algorithms suffer from drawbacks such as lack of validation and often high rates of false positive hits (FP). Here we present a simple method of combining results from commonly available de novo peptide sequencing algorithms, which in conjunction with minor tweaks in data acquisition ensues lower empirical FDR compared to the analysis using single algorithms. Results were validated using state-of-the art database search algorithms as well specifically synthesized reference peptides. Thus, we could increase the number of PSMs meeting a stringent FDR of 5% more than 3-fold compared to the single best de novo sequencing algorithm alone, accounting for an average of 11 120 PSMs (combined) instead of 3476 PSMs (alone) in triplicate 2 h LC-MS runs of tryptic HeLa digestion.

  15. Systematic Optimization of Long Gradient Chromatography Mass Spectrometry for Deep Analysis of Brain Proteome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hong; Yang, Yanling; Li, Yuxin

    2015-02-06

    Development of high resolution liquid chromatography (LC) is essential for improving the sensitivity and throughput of mass spectrometry (MS)-based proteomics. Here we present systematic optimization of a long gradient LC-MS/MS platform to enhance protein identification from a complex mixture. The platform employed an in-house fabricated, reverse phase column (100 μm x 150 cm) coupled with Q Exactive MS. The column was capable of achieving a peak capacity of approximately 700 in a 720 min gradient of 10-45% acetonitrile. The optimal loading level was about 6 micrograms of peptides, although the column allowed loading as many as 20 micrograms. Gas phasemore » fractionation of peptide ions further increased the number of peptide identification by ~10%. Moreover, the combination of basic pH LC pre-fractionation with the long gradient LC-MS/MS platform enabled the identification of 96,127 peptides and 10,544 proteins at 1% protein false discovery rate in a postmortem brain sample of Alzheimer’s disease. As deep RNA sequencing of the same specimen suggested that ~16,000 genes were expressed, current analysis covered more than 60% of the expressed proteome. Further improvement strategies of the LC/LC-MS/MS platform were also discussed.« less

  16. A fossil protein chimera; difficulties in discriminating dinosaur peptide sequences from modern cross-contamination.

    PubMed

    Buckley, Michael; Warwood, Stacey; van Dongen, Bart; Kitchener, Andrew C; Manning, Phillip L

    2017-05-31

    A decade ago, reports that organic-rich soft tissue survived from dinosaur fossils were apparently supported by proteomics-derived sequence information of exceptionally well-preserved bone. This initial claim to the sequencing of endogenous collagen peptides from an approximately 68 Myr Tyrannosaurus rex fossil was highly controversial, largely on the grounds of potential contamination from either bacterial biofilms or from laboratory practice. In a subsequent study, collagen peptide sequences from an approximately 78 Myr Brachylophosaurus canadensis fossil were reported that have remained largely unchallenged. However, the endogeneity of these sequences relies heavily on a single peptide sequence, apparently unique to both dinosaurs. Given the potential for cross-contamination from modern bone analysed by the same team, here we extract collagen from bone samples of three individuals of ostrich, Struthio camelus The resulting LC-MS/MS data were found to match all of the proposed sequences for both the original Tyrannosaurus and Brachylophosaurus studies. Regardless of the true nature of the dinosaur peptides, our finding highlights the difficulty of differentiating such sequences with confidence. Our results not only imply that cross-contamination cannot be ruled out, but that appropriate measures to test for endogeneity should be further evaluated. © 2017 The Authors.

  17. A fossil protein chimera; difficulties in discriminating dinosaur peptide sequences from modern cross-contamination

    PubMed Central

    Warwood, Stacey; van Dongen, Bart; Kitchener, Andrew C.; Manning, Phillip L.

    2017-01-01

    A decade ago, reports that organic-rich soft tissue survived from dinosaur fossils were apparently supported by proteomics-derived sequence information of exceptionally well-preserved bone. This initial claim to the sequencing of endogenous collagen peptides from an approximately 68 Myr Tyrannosaurus rex fossil was highly controversial, largely on the grounds of potential contamination from either bacterial biofilms or from laboratory practice. In a subsequent study, collagen peptide sequences from an approximately 78 Myr Brachylophosaurus canadensis fossil were reported that have remained largely unchallenged. However, the endogeneity of these sequences relies heavily on a single peptide sequence, apparently unique to both dinosaurs. Given the potential for cross-contamination from modern bone analysed by the same team, here we extract collagen from bone samples of three individuals of ostrich, Struthio camelus. The resulting LC–MS/MS data were found to match all of the proposed sequences for both the original Tyrannosaurus and Brachylophosaurus studies. Regardless of the true nature of the dinosaur peptides, our finding highlights the difficulty of differentiating such sequences with confidence. Our results not only imply that cross-contamination cannot be ruled out, but that appropriate measures to test for endogeneity should be further evaluated. PMID:28566488

  18. Bimodal imprint chips for peptide screening: integration of high-throughput sequencing by MS and affinity analyses by surface plasmon resonance imaging.

    PubMed

    Wang, Weizhi; Li, Menglin; Wei, Zewen; Wang, Zihua; Bu, Xiangli; Lai, Wenjia; Yang, Shu; Gong, He; Zheng, Hui; Wang, Yuqiao; Liu, Ying; Li, Qin; Fang, Qiaojun; Hu, Zhiyuan

    2014-04-15

    Peptide probes and drugs have widespread applications in disease diagnostics and therapy. The demand for peptides ligands with high affinity and high specificity toward various targets has surged in the biomedical field in recent years. The traditional peptide screening procedure involves selection, sequencing, and characterization steps, and each step is manual and tedious. Herein, we developed a bimodal imprint microarray system to embrace the whole peptide screening process. Silver-sputtered silicon chip fabricated with microwell array can trap and pattern the candidate peptide beads in a one-well-one-bead manner. Peptides on beads were photocleaved in situ. A portion of the peptide in each well was transferred to a gold-coated chip to print the peptide array for high-throughput affinity analyses by surface plasmon resonance imaging (SPRi), and the peptide left in the silver-sputtered chip was ready for in situ single bead sequencing by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Using the bimodal imprint chip system, affinity peptides toward AHA were efficiently screened out from the 7 × 10(4) peptide library. The method provides a solution for high efficiency peptide screening.

  19. Proteomics as a Quality Control Tool of Pharmaceutical Probiotic Bacterial Lysate Products

    PubMed Central

    Klein, Günter; Schanstra, Joost P.; Hoffmann, Janosch; Mischak, Harald; Siwy, Justyna; Zimmermann, Kurt

    2013-01-01

    Probiotic bacteria have a wide range of applications in veterinary and human therapeutics. Inactivated probiotics are complex samples and quality control (QC) should measure as many molecular features as possible. Capillary electrophoresis coupled to mass spectrometry (CE/MS) has been used as a multidimensional and high throughput method for the identification and validation of biomarkers of disease in complex biological samples such as biofluids. In this study we evaluate the suitability of CE/MS to measure the consistency of different lots of the probiotic formulation Pro-Symbioflor which is a bacterial lysate of heat-inactivated Escherichia coli and Enterococcus faecalis. Over 5000 peptides were detected by CE/MS in 5 different lots of the bacterial lysate and in a sample of culture medium. 71 to 75% of the total peptide content was identical in all lots. This percentage increased to 87–89% when allowing the absence of a peptide in one of the 5 samples. These results, based on over 2000 peptides, suggest high similarity of the 5 different lots. Sequence analysis identified peptides of both E. coli and E. faecalis and peptides originating from the culture medium, thus confirming the presence of the strains in the formulation. Ontology analysis suggested that the majority of the peptides identified for E. coli originated from the cell membrane or the fimbrium, while peptides identified for E. faecalis were enriched for peptides originating from the cytoplasm. The bacterial lysate peptides as a whole are recognised as highly conserved molecular patterns by the innate immune system as microbe associated molecular pattern (MAMP). Sequence analysis also identified the presence of soybean, yeast and casein protein fragments that are part of the formulation of the culture medium. In conclusion CE/MS seems an appropriate QC tool to analyze complex biological products such as inactivated probiotic formulations and allows determining the similarity between lots. PMID:23840518

  20. A Novel MS-Cleavable Azo Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS)

    NASA Astrophysics Data System (ADS)

    Iacobucci, Claudio; Hage, Christoph; Schäfer, Mathias; Sinz, Andrea

    2017-10-01

    The chemical cross-linking/mass spectrometry (MS) approach is a growing research field in structural proteomics that allows gaining insights into protein conformations. It relies on creating distance constraints between cross-linked amino acid side chains that can further be used to derive protein structures. Currently, the most urgent task for designing novel cross-linking principles is an unambiguous and automated assignment of the created cross-linked products. Here, we introduce the homobifunctional, amine-reactive, and water soluble cross-linker azobisimidoester (ABI) as a prototype of a novel class of cross-linkers. The ABI-linker possesses an innovative modular scaffold combining the benefits of collisional activation lability with open shell chemistry. This MS-cleavable cross-linker can be efficiently operated via free radical initiated peptide sequencing (FRIPS) in positive ionization mode. Our proof-of-principle study challenges the gas phase behavior of the ABI-linker for the three amino acids, lysine, leucine, and isoleucine, as well as the model peptide thymopentin. The isomeric amino acids leucine and isoleucine could be discriminated by their characteristic side chain fragments. Collisional activation experiments were conducted via positive electrospray ionization (ESI) on two Orbitrap mass spectrometers. The ABI-mediated formation of odd electron product ions in MS/MS and MS3 experiments was evaluated and compared with a previously described azo-based cross-linker. All cross-linked products were amenable to automated analysis by the MeroX software, underlining the future potential of the ABI-linker for structural proteomics studies. [Figure not available: see fulltext.

  1. Characterization of the Organic Component of Low-Molecular-Weight Chromium-Binding Substance and Its Binding of Chromium123

    PubMed Central

    Chen, Yuan; Watson, Heather M.; Gao, Junjie; Sinha, Sarmistha Halder; Cassady, Carolyn J.; Vincent, John B.

    2011-01-01

    Chromium was proposed to be an essential element over 50 y ago and was shown to have therapeutic potential in treating the symptoms of type 2 diabetes; however, its mechanism of action at a molecular level is unknown. One chromium-binding biomolecule, low-molecular weight chromium-binding substance (LMWCr or chromodulin), has been found to be biologically active in in vitro assays and proposed as a potential candidate for the in vivo biologically active form of chromium. Characterization of the organic component of LMWCr has proven difficult. Treating bovine LMWCr with trifluoroacetic acid followed by purification on a graphite powder micro-column generates a heptapeptide fragment of LMWCr. The peptide sequence of the fragment was analyzed by MS and tandem MS (MS/MS and MS/MS/MS) using collision-induced dissociation and post-source decay. Two candidate sequences, pEEEEGDD and pEEEGEDD (where pE is pyroglutamate), were identified from the MS/MS experiments; additional tandem MS suggests the sequence is pEEEEGDD. The N-terminal glutamate residues explain the inability to sequence LMWCr by the Edman method. Langmuir isotherms and Hill plots were used to analyze the binding constants of chromic ions to synthetic peptides similar in composition to apoLMWCr. The sequence pEEEEGDD was found to bind 4 chromic ions per peptide with nearly identical cooperativity and binding constants to those of apoLMWCr. This work should lead to further studies elucidating or eliminating a potential role for LMWCr in treating the symptoms of type 2 diabetes and other conditions resulting from improper carbohydrate and lipid metabolism. PMID:21593351

  2. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  3. Bioaccessible peptides released by in vitro gastrointestinal digestion of fermented goat milks.

    PubMed

    Moreno-Montoro, Miriam; Jauregi, Paula; Navarro-Alarcón, Miguel; Olalla-Herrera, Manuel; Giménez-Martínez, Rafael; Amigo, Lourdes; Miralles, Beatriz

    2018-06-01

    In this study, ultrafiltered goat milks fermented with the classical starter bacteria Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarus subsp. thermophilus or with the classical starter plus the Lactobacillus plantarum C4 probiotic strain were analyzed using ultra-high performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) and/or high performance liquid chromatography-ion trap (HPLC-IT-MS/MS). Partial overlapping of the identified sequences with regard to fermentation culture was observed. Evaluation of the cleavage specificity suggested a lower proteolytic activity of the probiotic strain. Some of the potentially identified peptides had been previously reported as angiotensin-converting enzyme (ACE) inhibitory, antioxidant, and antibacterial and might account for the in vitro activity previously reported for these fermented milks. Simulated digestion of the products was conducted in the presence of a dialysis membrane to retrieve the bioaccessible peptide fraction. Some sequences with reported physiological activity resisted digestion but were found in the non-dialyzable fraction. However, new forms released by digestion, such as the antioxidant α s1 -casein 144 YFYPQL 149 , the antihypertensive α s2 -casein 90 YQKFPQY 96 , and the antibacterial α s2 -casein 165 LKKISQ 170 , were found in the dialyzable fraction of both fermented milks. Moreover, in the fermented milk including the probiotic strain, the k-casein dipeptidyl peptidase IV inhibitor (DPP-IV) 51 INNQFLPYPY 60 as well as additional ACE inhibitory or antioxidant sequences could be identified. With the aim of anticipating further biological outcomes, quantitative structure activity relationship (QSAR) analysis was applied to the bioaccessible fragments and led to potential ACE inhibitory sequences being proposed. Graphical abstract Ultrafiltered goat milks were fermented with the classical starter bacteria (St) and with St plus the L. plantarum C4 probiotic strain. Samples were analyzed using HPLC-IT-MS/MS and UPLC-Q-TOF-MS/MS. After simulated digestion and dialysis, some of the active sequences remained and new peptides with reported beneficial activities were released.

  4. Identification of Alternative Splice Variants Using Unique Tryptic Peptide Sequences for Database Searches.

    PubMed

    Tran, Trung T; Bollineni, Ravi C; Strozynski, Margarita; Koehler, Christian J; Thiede, Bernd

    2017-07-07

    Alternative splicing is a mechanism in eukaryotes by which different forms of mRNAs are generated from the same gene. Identification of alternative splice variants requires the identification of peptides specific for alternative splice forms. For this purpose, we generated a human database that contains only unique tryptic peptides specific for alternative splice forms from Swiss-Prot entries. Using this database allows an easy access to splice variant-specific peptide sequences that match to MS data. Furthermore, we combined this database without alternative splice variant-1-specific peptides with human Swiss-Prot. This combined database can be used as a general database for searching of LC-MS data. LC-MS data derived from in-solution digests of two different cell lines (LNCaP, HeLa) and phosphoproteomics studies were analyzed using these two databases. Several nonalternative splice variant-1-specific peptides were found in both cell lines, and some of them seemed to be cell-line-specific. Control and apoptotic phosphoproteomes from Jurkat T cells revealed several nonalternative splice variant-1-specific peptides, and some of them showed clear quantitative differences between the two states.

  5. Selection of Collision Energies in Proteomics Mass Spectrometry Experiments for Best Peptide Identification: Study of Mascot Score Energy Dependence Reveals Double Optimum.

    PubMed

    Révész, Ágnes; Rokob, Tibor András; Jeanne Dit Fouque, Dany; Turiák, Lilla; Memboeuf, Antony; Vékey, Károly; Drahos, László

    2018-05-04

    Collision energy is a key parameter determining the information content of beam-type collision induced dissociation tandem mass spectrometry (MS/MS) spectra, and its optimal choice largely affects successful peptide and protein identification in MS-based proteomics. For an MS/MS spectrum, quality of peptide match based on sequence database search, often characterized in terms of a single score, is a complex function of spectrum characteristics, and its collision energy dependence has remained largely unexplored. We carried out electrospray ionization-quadrupole-time of flight (ESI-Q-TOF)-MS/MS measurements on 2807 peptides from tryptic digests of HeLa and E. coli at 21 different collision energies. Agglomerative clustering of the resulting Mascot score versus energy curves revealed that only few of them display a single, well-defined maximum; rather, they feature either a broad plateau or two clear peaks. Nonlinear least-squares fitting of one or two Gaussian functions allowed the characteristic energies to be determined. We found that the double peaks and the plateaus in Mascot score can be associated with the different energy dependence of b- and y-type fragment ion intensities. We determined that the energies for optimum Mascot scores follow separate linear trends for the unimodal and bimodal cases with rather large residual variance even after differences in proton mobility are taken into account. This leaves room for experiment optimization and points to the possible influence of further factors beyond m/ z.

  6. Characterisation of Maillard reaction products derived from LEKFD--a pentapeptide found in β-lactoglobulin sequence, glycated with glucose--by tandem mass spectrometry, molecular orbital calculations and gel filtration chromatography coupled with continuous photodiode array.

    PubMed

    Yamaguchi, Keiko; Homma, Takeshi; Nomi, Yuri; Otsuka, Yuzuru

    2014-02-15

    Maillard reaction peptides (MRPs) contribute to taste, aroma, colour, texture and biological activity. However, peptide degradation or the cross-linking of MRPs in the Maillard reaction has not been investigated clearly. A peptide of LEKFD, a part of β-lactoglobulin, was heated at 110 °C for 24h with glucose and the reaction products were analysed by HPLC with ODS, ESI-MS, ESI-MS/MS and HPLC with gel-filtration column and DAD detector. In the HPLC fractions, an imminium ion of LEK*FD, a pyrylium ion or a hydroxymethyl furylium ion of LEK*FD, and KFD and EK were detected by ESI-MS. Therefore, those products may be produced by the Maillard reaction. The molecular orbital of glycated LEKFD at the lysine epsilon-amino residue with Schiff base form was calculated by MOPAC. HPLC with gel-filtration column showed cross-linking and degradation of peptides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Effects of a Proline Endopeptidase on the Detection and Quantitation of Gluten by Antibody-Based Methods during the Fermentation of a Model Sorghum Beer.

    PubMed

    Panda, Rakhi; Fiedler, Katherine L; Cho, Chung Y; Cheng, Raymond; Stutts, Whitney L; Jackson, Lauren S; Garber, Eric A E

    2015-12-09

    The effectiveness of a proline endopeptidase (PEP) in hydrolyzing gluten and its putative immunopathogenic sequences was examined using antibody-based methods and mass spectrometry (MS). Based on the results of the antibody-based methods, fermentation of wheat gluten containing sorghum beer resulted in a reduction in the detectable gluten concentration. The addition of PEP further reduced the gluten concentration. Only one sandwich ELISA was able to detect the apparent low levels of gluten present in the beers. A competitive ELISA using a pepsin-trypsin hydrolysate calibrant was unreliable because the peptide profiles of the beers were inconsistent with that of the hydrolysate calibrant. Analysis by MS indicated that PEP enhanced the loss of a fragment of an immunopathogenic 33-mer peptide in the beer. However, Western blot results indicated partial resistance of the high molecular weight (HMW) glutenins to the action of PEP, questioning the ability of PEP in digesting all immunopathogenic sequences present in gluten.

  8. A harmonized immunoassay with liquid chromatography-mass spectrometry analysis in egg allergen determination.

    PubMed

    Nimata, Masaomi; Okada, Hideki; Kurihara, Kei; Sugimoto, Tsukasa; Honjoh, Tsutomu; Kuroda, Kazuhiko; Yano, Takeo; Tachibana, Hirofumi; Shoji, Masahiro

    2018-01-01

    Food allergy is a serious health issue worldwide. Implementing allergen labeling regulations is extremely challenging for regulators, food manufacturers, and analytical kit manufacturers. Here we have developed an "amino acid sequence immunoassay" approach to ELISA. The new ELISA comprises of a monoclonal antibody generated via an analyte specific peptide antigen and sodium lauryl sulfate/sulfite solution. This combination enables the antibody to access the epitope site in unfolded analyte protein. The newly developed ELISA recovered 87.1%-106.4% ovalbumin from ovalbumin-incurred model processed foods, thereby demonstrating its applicability as practical egg allergen determination. Furthermore, the comparison of LC-MS/MS and the new ELISA, which targets the amino acid sequence conforming to the LC-MS/MS detection peptide, showed a good agreement. Consequently the harmonization of two methods was demonstrated. The complementary use of the new ELISA and LC-MS analysis can offer a wide range of practical benefits in terms of easiness, cost, accuracy, and efficiency in food allergen analysis. In addition, the new assay is attractive in respect to its easy antigen preparation and predetermined specificity. Graphical abstract The ELISA composing of the monoclonal antibody targeting the amino acid sequence conformed to LC-MS detection peptide, and the protein conformation unfolding reagent was developed. In ovalbumin determination, the developed ELISA showed a good agreement with LC-MS analysis. Consequently the harmonization of immunoassay with LC-MS analysis by using common target amino acid sequence was demonstrated.

  9. Derivatization of peptides as quaternary ammonium salts for sensitive detection by ESI-MS.

    PubMed

    Cydzik, Marzena; Rudowska, Magdalena; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2011-06-01

    A series of model peptides in the form of quaternary ammonium salts at the N-terminus was efficiently prepared by the solid-phase synthesis. Tandem mass spectrometric analysis of the peptide quaternary ammonium derivatives was shown to provide sequence confirmation and enhanced detection. We designed the 2-(1,4-diazabicyclo[2.2.2] octylammonium)acetyl quaternary ammonium group which does not suffer from neutral losses during MS/MS experiments. The presented quaternization of 1,4-diazabicyclo[2.2.2]octane (DABCO) by iodoacetylated peptides is relatively easy and compatible with standard solid-phase peptide synthesis. This methodology offers a novel sensitive approach to analyze peptides and other compounds. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.

  10. Tandem MS Analysis of Selenamide-Derivatized Peptide Ions

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Zhang, Hao; Cui, Weidong; Chen, Hao

    2011-09-01

    Our previous study showed that selenamide reagents such as ebselen and N-(phenylseleno)phthalimide (NPSP) can be used for selective and rapid derivatization of protein/peptide thiols in high conversion yield. This paper reports the systematic investigation of MS/MS dissociation behaviors of selenamide-derivatized peptide ions upon collision induced dissociation (CID) and electron transfer dissociation (ETD). In the positive ion mode, derivatized peptide ions exhibit tag-dependent CID dissociation pathways. For instance, ebselen-derivatized peptide ions preferentially undergo Se-S bond cleavage upon CID to produce a characteristic fragment ion, the protonated ebselen ( m/z 276), which allows selective identification of thiol peptides from protein digest as well as selective detection of thiol proteins from protein mixture using precursor ion scan (PIS). In contrast, NPSP-derivatized peptide ions retain their phenylselenenyl tags during CID, which is useful in sequencing peptides and locating cysteine residues. In the negative ion CID mode, both types of tags are preferentially lost via the Se-S cleavage, analogous to the S-S bond cleavage during CID of disulfide-containing peptide anions. In consideration of the convenience in preparing selenamide-derivatized peptides and the similarity of Se-S of the tag to the S-S bond, we also examined ETD of the derivatized peptide ions to probe the mechanism for electron-based ion dissociation. Interestingly, facile cleavage of Se-S bond occurs to the peptide ions carrying either protons or alkali metal ions, while backbone cleavage to form c/z ions is severely inhibited. These results are in agreement with the Utah-Washington mechanism proposed for depicting electron-based ion dissociation processes.

  11. Expert system for computer-assisted annotation of MS/MS spectra.

    PubMed

    Neuhauser, Nadin; Michalski, Annette; Cox, Jürgen; Mann, Matthias

    2012-11-01

    An important step in mass spectrometry (MS)-based proteomics is the identification of peptides by their fragment spectra. Regardless of the identification score achieved, almost all tandem-MS (MS/MS) spectra contain remaining peaks that are not assigned by the search engine. These peaks may be explainable by human experts but the scale of modern proteomics experiments makes this impractical. In computer science, Expert Systems are a mature technology to implement a list of rules generated by interviews with practitioners. We here develop such an Expert System, making use of literature knowledge as well as a large body of high mass accuracy and pure fragmentation spectra. Interestingly, we find that even with high mass accuracy data, rule sets can quickly become too complex, leading to over-annotation. Therefore we establish a rigorous false discovery rate, calculated by random insertion of peaks from a large collection of other MS/MS spectra, and use it to develop an optimized knowledge base. This rule set correctly annotates almost all peaks of medium or high abundance. For high resolution HCD data, median intensity coverage of fragment peaks in MS/MS spectra increases from 58% by search engine annotation alone to 86%. The resulting annotation performance surpasses a human expert, especially on complex spectra such as those of larger phosphorylated peptides. Our system is also applicable to high resolution collision-induced dissociation data. It is available both as a part of MaxQuant and via a webserver that only requires an MS/MS spectrum and the corresponding peptides sequence, and which outputs publication quality, annotated MS/MS spectra (www.biochem.mpg.de/mann/tools/). It provides expert knowledge to beginners in the field of MS-based proteomics and helps advanced users to focus on unusual and possibly novel types of fragment ions.

  12. Expert System for Computer-assisted Annotation of MS/MS Spectra*

    PubMed Central

    Neuhauser, Nadin; Michalski, Annette; Cox, Jürgen; Mann, Matthias

    2012-01-01

    An important step in mass spectrometry (MS)-based proteomics is the identification of peptides by their fragment spectra. Regardless of the identification score achieved, almost all tandem-MS (MS/MS) spectra contain remaining peaks that are not assigned by the search engine. These peaks may be explainable by human experts but the scale of modern proteomics experiments makes this impractical. In computer science, Expert Systems are a mature technology to implement a list of rules generated by interviews with practitioners. We here develop such an Expert System, making use of literature knowledge as well as a large body of high mass accuracy and pure fragmentation spectra. Interestingly, we find that even with high mass accuracy data, rule sets can quickly become too complex, leading to over-annotation. Therefore we establish a rigorous false discovery rate, calculated by random insertion of peaks from a large collection of other MS/MS spectra, and use it to develop an optimized knowledge base. This rule set correctly annotates almost all peaks of medium or high abundance. For high resolution HCD data, median intensity coverage of fragment peaks in MS/MS spectra increases from 58% by search engine annotation alone to 86%. The resulting annotation performance surpasses a human expert, especially on complex spectra such as those of larger phosphorylated peptides. Our system is also applicable to high resolution collision-induced dissociation data. It is available both as a part of MaxQuant and via a webserver that only requires an MS/MS spectrum and the corresponding peptides sequence, and which outputs publication quality, annotated MS/MS spectra (www.biochem.mpg.de/mann/tools/). It provides expert knowledge to beginners in the field of MS-based proteomics and helps advanced users to focus on unusual and possibly novel types of fragment ions. PMID:22888147

  13. Quantification of peptides from immunoglobulin constant and variable regions by LC-MRM MS for assessment of multiple myeloma patients.

    PubMed

    Remily-Wood, Elizabeth R; Benson, Kaaron; Baz, Rachid C; Chen, Y Ann; Hussein, Mohamad; Hartley-Brown, Monique A; Sprung, Robert W; Perez, Brianna; Liu, Richard Z; Yoder, Sean J; Teer, Jamie K; Eschrich, Steven A; Koomen, John M

    2014-10-01

    Quantitative MS assays for Igs are compared with existing clinical methods in samples from patients with plasma cell dyscrasias, for example, multiple myeloma (MM). Using LC-MS/MS data, Ig constant region peptides, and transitions were selected for LC-MRM MS. Quantitative assays were used to assess Igs in serum from 83 patients. RNA sequencing and peptide-based LC-MRM are used to define peptides for quantification of the disease-specific Ig. LC-MRM assays quantify serum levels of Igs and their isoforms (IgG1-4, IgA1-2, IgM, IgD, and IgE, as well as kappa (κ) and lambda (λ) light chains). LC-MRM quantification has been applied to single samples from a patient cohort and a longitudinal study of an IgE patient undergoing treatment, to enable comparison with existing clinical methods. Proof-of-concept data for defining and monitoring variable region peptides are provided using the H929 MM cell line and two MM patients. LC-MRM assays targeting constant region peptides determine the type and isoform of the involved Ig and quantify its expression; the LC-MRM approach has improved sensitivity compared with the current clinical method, but slightly higher inter-assay variability. Detection of variable region peptides is a promising way to improve Ig quantification, which could produce a dramatic increase in sensitivity over existing methods, and could further complement current clinical techniques. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Accurate inclusion mass screening: a bridge from unbiased discovery to targeted assay development for biomarker verification.

    PubMed

    Jaffe, Jacob D; Keshishian, Hasmik; Chang, Betty; Addona, Theresa A; Gillette, Michael A; Carr, Steven A

    2008-10-01

    Verification of candidate biomarker proteins in blood is typically done using multiple reaction monitoring (MRM) of peptides by LC-MS/MS on triple quadrupole MS systems. MRM assay development for each protein requires significant time and cost, much of which is likely to be of little value if the candidate biomarker is below the detection limit in blood or a false positive in the original discovery data. Here we present a new technology, accurate inclusion mass screening (AIMS), designed to provide a bridge from unbiased discovery to MS-based targeted assay development. Masses on the software inclusion list are monitored in each scan on the Orbitrap MS system, and MS/MS spectra for sequence confirmation are acquired only when a peptide from the list is detected with both the correct accurate mass and charge state. The AIMS experiment confirms that a given peptide (and thus the protein from which it is derived) is present in the plasma. Throughput of the method is sufficient to qualify up to a hundred proteins/week. The sensitivity of AIMS is similar to MRM on a triple quadrupole MS system using optimized sample preparation methods (low tens of ng/ml in plasma), and MS/MS data from the AIMS experiments on the Orbitrap can be directly used to configure MRM assays. The method was shown to be at least 4-fold more efficient at detecting peptides of interest than undirected LC-MS/MS experiments using the same instrumentation, and relative quantitation information can be obtained by AIMS in case versus control experiments. Detection by AIMS ensures that a quantitative MRM-based assay can be configured for that protein. The method has the potential to qualify large number of biomarker candidates based on their detection in plasma prior to committing to the time- and resource-intensive steps of establishing a quantitative assay.

  15. Tempest: Accelerated MS/MS database search software for heterogeneous computing platforms

    PubMed Central

    Adamo, Mark E.; Gerber, Scott A.

    2017-01-01

    MS/MS database search algorithms derive a set of candidate peptide sequences from in-silico digest of a protein sequence database, and compute theoretical fragmentation patterns to match these candidates against observed MS/MS spectra. The original Tempest publication described these operations mapped to a CPU-GPU model, in which the CPU generates peptide candidates that are asynchronously sent to a discrete GPU to be scored against experimental spectra in parallel (Milloy et al., 2012). The current version of Tempest expands this model, incorporating OpenCL to offer seamless parallelization across multicore CPUs, GPUs, integrated graphics chips, and general-purpose coprocessors. Three protocols describe how to configure and run a Tempest search, including discussion of how to leverage Tempest's unique feature set to produce optimal results. PMID:27603022

  16. De novo peptide sequencing using CID and HCD spectra pairs.

    PubMed

    Yan, Yan; Kusalik, Anthony J; Wu, Fang-Xiang

    2016-10-01

    In tandem mass spectrometry (MS/MS), there are several different fragmentation techniques possible, including, collision-induced dissociation (CID) higher energy collisional dissociation (HCD), electron-capture dissociation (ECD), and electron transfer dissociation (ETD). When using pairs of spectra for de novo peptide sequencing, the most popular methods are designed for CID (or HCD) and ECD (or ETD) spectra because of the complementarity between them. Less attention has been paid to the use of CID and HCD spectra pairs. In this study, a new de novo peptide sequencing method is proposed for these spectra pairs. This method includes a CID and HCD spectra merging criterion and a parent mass correction step, along with improvements to our previously proposed algorithm for sequencing merged spectra. Three pairs of spectral datasets were used to investigate and compare the performance of the proposed method with other existing methods designed for single spectrum (HCD or CID) sequencing. Experimental results showed that full-length peptide sequencing accuracy was increased significantly by using spectra pairs in the proposed method, with the highest accuracy reaching 81.31%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Proteomic analysis of sweet algerian apricot kernels (Prunus armeniaca L.) by combinatorial peptide ligand libraries and LC-MS/MS.

    PubMed

    Ghorab, Hamida; Lammi, Carmen; Arnoldi, Anna; Kabouche, Zahia; Aiello, Gilda

    2018-01-15

    An investigation on the proteome of the sweet kernel of apricot, based on equalisation with combinatorial peptide ligand libraries (CPLLs), SDS-PAGE, nLC-ESI-MS/MS, and database search, permitted identifying 175 proteins. Gene ontology analysis indicated that their main molecular functions are in nucleotide binding (20.9%), hydrolase activities (10.6%), kinase activities (7%), and catalytic activity (5.6%). A protein-protein association network analysis using STRING software permitted to build an interactomic map of all detected proteins, characterised by 34 interactions. In order to forecast the potential health benefits deriving from the consumption of these proteins, the two most abundant, i.e. Prunin 1 and 2, were enzymatically digested in silico predicting 10 and 14 peptides, respectively. Searching their sequences in the database BIOPEP, it was possible to suggest a variety of bioactivities, including dipeptidyl peptidase-IV (DPP-IV) and angiotensin converting enzyme I (ACE) inhibition, glucose uptake stimulation and antioxidant properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mass Spectrometry and Ion Mobility Characterization of Bioactive Peptide-Synthetic Polymer Conjugates.

    PubMed

    Alalwiat, Ahlam; Tang, Wen; Gerişlioğlu, Selim; Becker, Matthew L; Wesdemiotis, Chrys

    2017-01-17

    The bioconjugate BMP2-(PEO-HA) 2 , composed of a dendron with two monodisperse poly(ethylene oxide) (PEO) branches terminated by a hydroxyapatite binding peptide (HA), and a focal point substituted with a bone growth stimulating peptide (BMP2), has been comprehensively characterized by mass spectrometry (MS) methods, encompassing matrix-assisted laser desorption ionization (MALDI), electrospray ionization (ESI), tandem mass spectrometry (MS 2 ), and ion mobility mass spectrometry (IM-MS). MS 2 experiments using different ion activation techniques validated the sequences of the synthetic, bioactive peptides HA and BMP2, which contained highly basic amino acid residues either at the N-terminus (BMP2) or C-terminus (HA). Application of MALDI-MS, ESI-MS, and IM-MS to the polymer-peptide biomaterial confirmed its composition. Collision cross-section measurements and molecular modeling indicated that BMP2-(PEO-HA) 2 exists in several folded and extended conformations, depending on the degree of protonation. Protonation of all basic sites of the hybrid material nearly doubles its conformational space and accessible surface area.

  19. A recombinant isoform of the Ole e 7 olive pollen allergen assembled by de novo mass spectrometry retains the allergenic ability of the natural allergen.

    PubMed

    Oeo-Santos, Carmen; Mas, Salvador; Benedé, Sara; López-Lucendo, María; Quiralte, Joaquín; Blanca, Miguel; Mayorga, Cristobalina; Villalba, Mayte; Barderas, Rodrigo

    2018-06-05

    The allergenic non-specific lipid transfer protein Ole e 7 from olive pollen is a major allergen associated with severe symptoms in areas with high olive pollen levels. Despite its clinical importance, its cloning and recombinant production has been unable by classical approaches. This study aimed at determining by mass-spectrometry based proteomics its complete amino acid sequence for its subsequent expression and characterization. To this end, the natural protein was in-2D-gel tryptic digested, and CID and HCD fragmentation spectra obtained by nLC-MS/MS analyzed using PEAKS software. Thirteen out of the 457 de novo sequenced peptides obtained allowed assembling its full-length amino acid sequence. Then, Ole e 7-encoding cDNA was synthesized and cloned in pPICZαA vector for its expression in Pichia pastoris yeast. The analyses by Circular Dichroism, and WB, ELISA and cell-based tests using sera and blood from olive pollen-sensitized patients showed that rOle e 7 mostly retained the structural, allergenic and antigenic properties of the natural allergen. In summary, rOle e 7 allergen assembled by de novo peptide sequencing by MS behaved immunologically similar to the natural allergen scarcely isolated from pollen. Olive pollen is an important cause of allergy. The non-specific lipid binding protein Ole e 7 is a major allergen with a high incidence and a phenotype associated to severe clinical symptoms. Despite its relevance, its cloning and recombinant expression has been unable by classical techniques. Here, we have inferred the primary amino acid sequence of Ole e 7 by mass-spectrometry. We separated Ole e 7 isolated from pollen by 2DE. After in-gel digestion with trypsin and a direct analysis by nLC-MS/MS in an LTQ-Orbitrap Velos, we got the complete de novo sequenced peptides repertoire that allowed the assembling of the primary sequence of Ole e 7. After its protein expression, purification to homogeneity, and structural and immunological characterization using sera from olive pollen allergic patients and cell-based assays, we observed that the recombinant allergen retained the antigenic and allergenic properties of the natural allergen. Collectively, we show that the recombinant protein assembled by proteomics would be suitable for a better in vitro diagnosis of olive pollen allergic patients. Copyright © 2018. Published by Elsevier B.V.

  20. Sequence-Specific Model for Peptide Retention Time Prediction in Strong Cation Exchange Chromatography.

    PubMed

    Gussakovsky, Daniel; Neustaeter, Haley; Spicer, Victor; Krokhin, Oleg V

    2017-11-07

    The development of a peptide retention prediction model for strong cation exchange (SCX) separation on a Polysulfoethyl A column is reported. Off-line 2D LC-MS/MS analysis (SCX-RPLC) of S. cerevisiae whole cell lysate was used to generate a retention dataset of ∼30 000 peptides, sufficient for identifying the major sequence-specific features of peptide retention mechanisms in SCX. In contrast to RPLC/hydrophilic interaction liquid chromatography (HILIC) separation modes, where retention is driven by hydrophobic/hydrophilic contributions of all individual residues, SCX interactions depend mainly on peptide charge (number of basic residues at acidic pH) and size. An additive model (incorporating the contributions of all 20 residues into the peptide retention) combined with a peptide length correction produces a 0.976 R 2 value prediction accuracy, significantly higher than the additive models for either HILIC or RPLC. Position-dependent effects on peptide retention for different residues were driven by the spatial orientation of tryptic peptides upon interaction with the negatively charged surface functional groups. The positively charged N-termini serve as a primary point of interaction. For example, basic residues (Arg, His, Lys) increase peptide retention when located closer to the N-terminus. We also found that hydrophobic interactions, which could lead to a mixed-mode separation mechanism, are largely suppressed at 20-30% of acetonitrile in the eluent. The accuracy of the final Sequence-Specific Retention Calculator (SSRCalc) SCX model (∼0.99 R 2 value) exceeds all previously reported predictors for peptide LC separations. This also provides a solid platform for method development in 2D LC-MS protocols in proteomics and peptide retention prediction filtering of false positive identifications.

  1. Seed Storage Proteins as a System for Teaching Protein Identification by Mass Spectrometry in Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Wilson, Karl A.; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed,…

  2. POSTMan (POST-translational modification analysis), a software application for PTM discovery.

    PubMed

    Arntzen, Magnus Ø; Osland, Christoffer Leif; Raa, Christopher Rasch-Olsen; Kopperud, Reidun; Døskeland, Stein-Ove; Lewis, Aurélia E; D'Santos, Clive S

    2009-03-01

    Post-translationally modified peptides present in low concentrations are often not selected for CID, resulting in no sequence information for these peptides. We have developed a software POSTMan (POST-translational Modification analysis) allowing post-translationally modified peptides to be targeted for fragmentation. The software aligns LC-MS runs (MS(1) data) between individual runs or within a single run and isolates pairs of peptides which differ by a user defined mass difference (post-translationally modified peptides). The method was validated for acetylated peptides and allowed an assessment of even the basal protein phosphorylation of phenylalanine hydroxylase (PHA) in intact cells.

  3. On-line LC-MS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with post-translational modifications.

    PubMed

    Wu, Shiaw-Lin; Hühmer, Andreas F R; Hao, Zhiqi; Karger, Barry L

    2007-11-01

    We have expanded our recent on-line LC-MS platform for large peptide analysis to combine collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced (CRCID) species derived from ETD to determine sites of phosphorylation and glycosylation modifications, as well as the sequence of large peptide fragments (i.e., 2000-10,000 Da) from complex proteins, such as beta-casein, epidermal growth factor receptor (EGFR), and tissue plasminogen activator (t-PA) at the low femtomol level. The incorporation of an additional CID activation step for a charge-reduced species, isolated from ETD fragment ions, improved ETD fragmentation when precursor ions with high m/z (approximately >1000) were automatically selected for fragmentation. Specifically, the identification of the exact phosphorylation sites was strengthened by the extensive coverage of the peptide sequence with a near-continuous product ion series. The identification of N-linked glycosylation sites in EGFR and an O-linked glycosylation site in t-PA were also improved through the enhanced identification of the peptide backbone sequence of the glycosylated precursors. The new strategy is a good starting survey scan to characterize enzymatic peptide mixtures over a broad range of masses using LC-MS with data-dependent acquisition, as the three activation steps can provide complementary information to each other. In general, large peptides can be extensively characterized by the ETD and CRCID steps, including sites of modification from the generated, near-continuous product ion series, supplemented by the CID-MS2 step. At the same time, small peptides (e.g.,

  4. A two-step database search method improves sensitivity in peptide sequence matches for metaproteomics and proteogenomics studies.

    PubMed

    Jagtap, Pratik; Goslinga, Jill; Kooren, Joel A; McGowan, Thomas; Wroblewski, Matthew S; Seymour, Sean L; Griffin, Timothy J

    2013-04-01

    Large databases (>10(6) sequences) used in metaproteomic and proteogenomic studies present challenges in matching peptide sequences to MS/MS data using database-search programs. Most notably, strict filtering to avoid false-positive matches leads to more false negatives, thus constraining the number of peptide matches. To address this challenge, we developed a two-step method wherein matches derived from a primary search against a large database were used to create a smaller subset database. The second search was performed against a target-decoy version of this subset database merged with a host database. High confidence peptide sequence matches were then used to infer protein identities. Applying our two-step method for both metaproteomic and proteogenomic analysis resulted in twice the number of high confidence peptide sequence matches in each case, as compared to the conventional one-step method. The two-step method captured almost all of the same peptides matched by the one-step method, with a majority of the additional matches being false negatives from the one-step method. Furthermore, the two-step method improved results regardless of the database search program used. Our results show that our two-step method maximizes the peptide matching sensitivity for applications requiring large databases, especially valuable for proteogenomics and metaproteomics studies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. HPLC-ESI-MS/MS analysis of hemoglobin peptides in tryptic digests of dried-blood spot extracts detects HbS, HbC, HbD, HbE, HbO-Arab, and HbG-Philadelphia mutations.

    PubMed

    Haynes, Christopher A; Guerra, Stephanie L; Fontana, Jessalyn C; DeJesús, Víctor R

    2013-09-23

    Hemoglobinopathies are mutations resulting in abnormal globin chain structure; some have clinically significant outcomes such as anemia or reduced lifespan. Five β-globin mutations are (c.20A>T, p.E6V), (c.19G>A, p. E6K), (c.79G>A, p.E26K), (c.364G>C, p.E121Q), and (c.364G>A, p.E121K), resulting in HbS (sickle-cell hemoglobin), HbC, HbE, HbD-Los Angeles, and HbO-Arab, respectively. One α-globin mutation is (c.[207C>G or 207C>A], p.N68K), resulting in HbG-Philadelphia. HPLC-ESI-MS/MS analysis of dried-blood spot (DBS) punches from newborns extracted with a trypsin-containing solution provides greater than 90% coverage of α-, β-, and γ-globin amino acid sequences. Because the (c.20A>T, p.E6V), (c.19G>A, p. E6K), (c.79G>A, p.E26K), (c.364G>C, p.E121Q), (c.364G>A, p.E121K), and (c.[207C>G or 207C>A], p.N68K) mutations generate globin peptides with novel amino acid sequences, detecting one of these peptides in DBS extracts is indicative of the presence of a hemoglobinopathy in the newborn. The method described here can distinguish normal β-globin peptides from the mutant HbS, HbC, HbE, HbD-Los Angeles and HbO-Arab peptides, as well as normal α-globin peptide from the mutant HbG-Philadelphia peptide, allowing the identification of unaffected heterozygotes such as HbAS, and of compound heterozygotes such as HbASG-Philadelphia. This HPLC-ESI-MS/MS analytical approach provides information that is not available from traditional hemoglobin analyses such as isoelectric focusing and HPLC-UV. It is also capable of determining the amino acid sequence of hemoglobin peptides, potentially allowing the detection of numerous hemoglobinopathies resulting from point mutations. Published by Elsevier B.V.

  6. Magnetic bead-based salivary peptidome profiling for periodontal-orthodontic treatment

    PubMed Central

    2012-01-01

    Background Patients with periodontitis seek periodontal-orthodontic treatment to address certain functional and aesthetic problems. However, little is known of the effect of periodontitis on orthodontic treatment. Thus, we compared the differences in peptide mass fingerprints of orthodontic patients with and without periodontitis by MALDI-TOF MS using a magnetic bead-based peptidome analysis of saliva samples. In this way, we aimed to identify and explore a panel of differentially-expressed specific peptides. Results Saliva samples from 24 patients (eight orthodontic patients without periodontitis, eight with periodontitis and another eight with periodontitis but no orthodontic treatment) were analyzed, and peptide mass fingerprints were created by scanning MS signals using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) combined with magnetic beads. Nine mass peaks showed significant differences. Orthodontic patients in the group without periodontal disease showed higher mass peaks for seven peptides of the nine, whereas the mass peaks for the other two peptides were higher in the periodontal-orthodontic patients. Besides, these differentially-expressed peptides were sequenced. Conclusions The elucidated candidate biomarkers indicated interactions between periodontal condition and orthodontic treatment and their contributions to the changes of saliva protein profiles. Our results provide novel insight into the altered salivary protein profile during periodontal-orthodontic treatment, and may lead to the development of a therapeutic monitoring strategy for periodontics and orthodontics. PMID:23126675

  7. Combinatorial Approach for Large-scale Identification of Linked Peptides from Tandem Mass Spectrometry Spectra*

    PubMed Central

    Wang, Jian; Anania, Veronica G.; Knott, Jeff; Rush, John; Lill, Jennie R.; Bourne, Philip E.; Bandeira, Nuno

    2014-01-01

    The combination of chemical cross-linking and mass spectrometry has recently been shown to constitute a powerful tool for studying protein–protein interactions and elucidating the structure of large protein complexes. However, computational methods for interpreting the complex MS/MS spectra from linked peptides are still in their infancy, making the high-throughput application of this approach largely impractical. Because of the lack of large annotated datasets, most current approaches do not capture the specific fragmentation patterns of linked peptides and therefore are not optimal for the identification of cross-linked peptides. Here we propose a generic approach to address this problem and demonstrate it using disulfide-bridged peptide libraries to (i) efficiently generate large mass spectral reference data for linked peptides at a low cost and (ii) automatically train an algorithm that can efficiently and accurately identify linked peptides from MS/MS spectra. We show that using this approach we were able to identify thousands of MS/MS spectra from disulfide-bridged peptides through comparison with proteome-scale sequence databases and significantly improve the sensitivity of cross-linked peptide identification. This allowed us to identify 60% more direct pairwise interactions between the protein subunits in the 20S proteasome complex than existing tools on cross-linking studies of the proteasome complexes. The basic framework of this approach and the MS/MS reference dataset generated should be valuable resources for the future development of new tools for the identification of linked peptides. PMID:24493012

  8. Gaining knowledge from previously unexplained spectra-application of the PTM-Explorer software to detect PTM in HUPO BPP MS/MS data.

    PubMed

    Chamrad, Daniel C; Körting, Gerhard; Schäfer, Heike; Stephan, Christian; Thiele, Herbert; Apweiler, Rolf; Meyer, Helmut E; Marcus, Katrin; Blüggel, Martin

    2006-09-01

    A novel software tool named PTM-Explorer has been applied to LC-MS/MS datasets acquired within the Human Proteome Organisation (HUPO) Brain Proteome Project (BPP). PTM-Explorer enables automatic identification of peptide MS/MS spectra that were not explained in typical sequence database searches. The main focus was detection of PTMs, but PTM-Explorer detects also unspecific peptide cleavage, mass measurement errors, experimental modifications, amino acid substitutions, transpeptidation products and unknown mass shifts. To avoid a combinatorial problem the search is restricted to a set of selected protein sequences, which stem from previous protein identifications using a common sequence database search. Prior to application to the HUPO BPP data, PTM-Explorer was evaluated on excellently manually characterized and evaluated LC-MS/MS data sets from Alpha-A-Crystallin gel spots obtained from mouse eye lens. Besides various PTMs including phosphorylation, a wealth of experimental modifications and unspecific cleavage products were successfully detected, completing the primary structure information of the measured proteins. Our results indicate that a large amount of MS/MS spectra that currently remain unidentified in standard database searches contain valuable information that can only be elucidated using suitable software tools.

  9. Aptamer based peptide enrichment for quantitative analysis of gonadotropin-releasing hormone by LC-MS/MS.

    PubMed

    Richards, S L; Cawley, A T; Cavicchioli, R; Suann, C J; Pickford, R; Raftery, M J

    2016-04-01

    Over recent years threats to racing have expanded to include naturally occurring biological molecules, such as peptides and proteins, and their synthetic analogues. Traditionally, antibodies have been used to enable detection of these compounds as they allow purification and concentration of the analyte of interest. The rapid expansion of peptide-based therapeutics necessitates a similarly rapid development of suitable antibodies or other means of enrichment. Potential alternative enrichment strategies include the use of aptamers, which offer the significant advantage of chemical synthesis once the nucleic acid sequence is known. A method was developed for the enrichment, detection and quantitation of gonadotropin-releasing hormone (GnRH) in equine urine using aptamer-based enrichment and LC-MS/MS. The method achieved comparable limits of detection (1 pg/mL) and quantification (2.5 pg/mL) to previously published antibody-based enrichment methods. The intra- and inter-assay precision achieved was less than 10% at both 5 and 20 pg/mL, and displayed a working dynamic range of 2.5-100 pg/mL. Significant matrix enhancement (170 ± 8%) and low analytical recovery (29 ± 15%) was observed, although the use of an isotopically heavy labelled GnRH peptide, GnRH (Pro(13)C5,(15)N), as the internal standard provides compensation for these parameters. Within the current limits of detection GnRH was detectable up to 1h post administration in urine and identification of a urinary catabolite extended this detection window to 4h. Based on the results of this preliminary investigation we propose the use of aptamers as a viable alternative to antibodies in the enrichment of peptide targets from equine urine. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Epsilon-Q: An Automated Analyzer Interface for Mass Spectral Library Search and Label-Free Protein Quantification.

    PubMed

    Cho, Jin-Young; Lee, Hyoung-Joo; Jeong, Seul-Ki; Paik, Young-Ki

    2017-12-01

    Mass spectrometry (MS) is a widely used proteome analysis tool for biomedical science. In an MS-based bottom-up proteomic approach to protein identification, sequence database (DB) searching has been routinely used because of its simplicity and convenience. However, searching a sequence DB with multiple variable modification options can increase processing time, false-positive errors in large and complicated MS data sets. Spectral library searching is an alternative solution, avoiding the limitations of sequence DB searching and allowing the detection of more peptides with high sensitivity. Unfortunately, this technique has less proteome coverage, resulting in limitations in the detection of novel and whole peptide sequences in biological samples. To solve these problems, we previously developed the "Combo-Spec Search" method, which uses manually multiple references and simulated spectral library searching to analyze whole proteomes in a biological sample. In this study, we have developed a new analytical interface tool called "Epsilon-Q" to enhance the functions of both the Combo-Spec Search method and label-free protein quantification. Epsilon-Q performs automatically multiple spectral library searching, class-specific false-discovery rate control, and result integration. It has a user-friendly graphical interface and demonstrates good performance in identifying and quantifying proteins by supporting standard MS data formats and spectrum-to-spectrum matching powered by SpectraST. Furthermore, when the Epsilon-Q interface is combined with the Combo-Spec search method, called the Epsilon-Q system, it shows a synergistic function by outperforming other sequence DB search engines for identifying and quantifying low-abundance proteins in biological samples. The Epsilon-Q system can be a versatile tool for comparative proteome analysis based on multiple spectral libraries and label-free quantification.

  11. Structural Characterization and Absolute Quantification of Microcystin Peptides Using Collision-Induced and Ultraviolet Photo-Dissociation Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Attard, Troy J.; Carter, Melissa D.; Fang, Mengxuan; Johnson, Rudolph C.; Reid, Gavin E.

    2018-05-01

    Microcystin (MC) peptides produced by cyanobacteria pose a hepatotoxic threat to human health upon ingestion from contaminated drinking water. While rapid MC identification and quantification in contaminated body fluids or tissue samples is important for patient treatment and outcomes, conventional immunoassay-based measurement strategies typically lack the specificity required for unambiguous determination of specific MC variants, whose toxicity can significantly vary depending on their structures. Furthermore, the unambiguous identification and accurate quantitation of MC variants using tandem mass spectrometry (MS/MS)-based methods can be limited due to a current lack of appropriate stable isotope-labeled internal standards. To address these limitations, we have systematically examined here the sequence and charge state dependence to the formation and absolute abundance of both "global" and "variant-specific" product ions from representative MC-LR, MC-YR, MC-RR, and MC-LA peptides, using higher-energy collisional dissociation (HCD)-MS/MS, ion-trap collision-induced dissociation (CID)-MS/MS and CID-MS3, and 193 nm ultraviolet photodissociation (UPVD)-MS/MS. HCD-MS/MS was found to provide the greatest detection sensitivity for both global and variant-specific product ions in each of the MC variants, except for MC-YR where a variant-specific product uniquely formed via UPVD-MS/MS was observed with the greatest absolute abundance. A simple methodology for the preparation and characterization of 18O-stable isotope-labeled MC reference materials for use as internal standards was also developed. Finally, we have demonstrated the applicability of the methods developed herein for absolute quantification of MC-LR present in human urine samples, using capillary scale liquid chromatography coupled with ultra-high resolution / accurate mass spectrometry and HCD-MS/MS.

  12. PIPI: PTM-Invariant Peptide Identification Using Coding Method.

    PubMed

    Yu, Fengchao; Li, Ning; Yu, Weichuan

    2016-12-02

    In computational proteomics, the identification of peptides with an unlimited number of post-translational modification (PTM) types is a challenging task. The computational cost associated with database search increases exponentially with respect to the number of modified amino acids and linearly with respect to the number of potential PTM types at each amino acid. The problem becomes intractable very quickly if we want to enumerate all possible PTM patterns. To address this issue, one group of methods named restricted tools (including Mascot, Comet, and MS-GF+) only allow a small number of PTM types in database search process. Alternatively, the other group of methods named unrestricted tools (including MS-Alignment, ProteinProspector, and MODa) avoids enumerating PTM patterns with an alignment-based approach to localizing and characterizing modified amino acids. However, because of the large search space and PTM localization issue, the sensitivity of these unrestricted tools is low. This paper proposes a novel method named PIPI to achieve PTM-invariant peptide identification. PIPI belongs to the category of unrestricted tools. It first codes peptide sequences into Boolean vectors and codes experimental spectra into real-valued vectors. For each coded spectrum, it then searches the coded sequence database to find the top scored peptide sequences as candidates. After that, PIPI uses dynamic programming to localize and characterize modified amino acids in each candidate. We used simulation experiments and real data experiments to evaluate the performance in comparison with restricted tools (i.e., Mascot, Comet, and MS-GF+) and unrestricted tools (i.e., Mascot with error tolerant search, MS-Alignment, ProteinProspector, and MODa). Comparison with restricted tools shows that PIPI has a close sensitivity and running speed. Comparison with unrestricted tools shows that PIPI has the highest sensitivity except for Mascot with error tolerant search and ProteinProspector. These two tools simplify the task by only considering up to one modified amino acid in each peptide, which results in a higher sensitivity but has difficulty in dealing with multiple modified amino acids. The simulation experiments also show that PIPI has the lowest false discovery proportion, the highest PTM characterization accuracy, and the shortest running time among the unrestricted tools.

  13. Site-specific N-glycosylation analysis: matrix-assisted laser desorption/ionization quadrupole-quadrupole time-of-flight tandem mass spectral signatures for recognition and identification of glycopeptides.

    PubMed

    Krokhin, Oleg; Ens, Werner; Standing, Kenneth G; Wilkins, John; Perreault, Hélène

    2004-01-01

    The identification of glycosylation sites in proteins is often possible through a combination of proteolytic digestion, separation, mass spectrometry (MS) and tandem MS (MS/MS). Liquid chromatography (LC) in combination with MS/MS has been a reliable method for detecting glycopeptides in digestion mixtures, and for assigning glycosylation sites and glycopeptide sequences. Direct interfacing of LC with MS relies on electrospray ionization, which produces ions with two, three or four charges for most proteolytic peptides and glycopeptides. MS/MS spectra of such glycopeptide ions often lead to ambiguous interpretation if deconvolution to the singly charged level is not used. In contrast, the matrix-assisted laser desorption/ionization (MALDI) technique usually produces singly charged peptide and glycopeptide ions. These ions require an extended m/z range, as provided by the quadrupole-quadrupole time-of-flight (QqTOF) instrument used in these experiments, but the main advantages of studying singly charged ions are the simplicity and consistency of the MS/MS spectra. A first aim of the present study is to develop methods to recognize and use glycopeptide [M+H]+ ions as precursors for MS/MS, and thus for glycopeptide/glycoprotein identification as part of wider proteomics studies. Secondly, this article aims at demonstrating the usefulness of MALDI-MS/MS spectra of N-glycopeptides. Mixtures of diverse types of proteins, obtained commercially, were prepared and subjected to reduction, alkylation and tryptic digestion. Micro-column reversed-phase separation allowed deposition of several fractions on MALDI plates, followed by MS and MS/MS analysis of all peptides. Glycopeptide fractions were identified after MS by their specific m/z spacing patterns (162, 203, 291 u) between glycoforms, and then analyzed by MS/MS. In most cases, MS/MS spectra of [M+H]+ ions of glycopeptides featured peaks useful for determining sugar composition, peptide sequence, and thus probable glycosylation site. Peptide-related product ions could be used in database search procedures and allowed the identification of the glycoproteins. Copyright 2004 John Wiley & Sons, Ltd.

  14. Characterization of alanine to valine sequence variants in the Fc region of nivolumab biosimilar produced in Chinese hamster ovary cells.

    PubMed

    Li, Yantao; Fu, Tuo; Liu, Tao; Guo, Huaizu; Guo, Qingcheng; Xu, Jin; Zhang, Dapeng; Qian, Weizhu; Dai, Jianxin; Li, Bohua; Guo, Yajun; Hou, Sheng; Wang, Hao

    2016-07-01

    Nivolumab is a therapeutic fully human IgG4 antibody to programmed death 1 (PD-1). In this study, a nivolumab biosimilar, which was produced in our laboratory, was analyzed and characterized. Sequence variants that contain undesired amino acid sequences may cause concern during biosimilar bioprocess development. We found that low levels of sequence variants were detected in the heavy chain of the nivolumab biosimilar by ultra performance liquid chromatography (UPLC) and tandem mass spectrometry. It was further identified with UPLC-MS/MS by IdeS or trypsin digestion. The sequence variant was confirmed through addition of synthetic mutant peptide. Subsequently, the mixing base signal of normal and mutant sequence was detected through DNA sequencing. The relative levels of mutant A424V in the Fc region of the heavy chain have been detected and demonstrated to be 12.25% and 13.54%, via base peak intensity (BPI) and UV chromatography of the tryptic peptide mapping, respectively. A424V variant was also quantified by real-time PCR (RT-PCR) at the DNA and RNA level, which was 19.2% and 16.8%, respectively. The relative content of the mutant was consistent at the DNA, RNA and protein level, indicating that the A424V mutation may have little influence at transcriptional or translational levels. These results demonstrate that orthogonal state-of-the-art techniques such as LC- UV- MS and RT-PCR should be implemented to characterize recombinant proteins and cell lines for development of biosimilars. Our study suggests that it is important to establish an integrated and effective analytical method to monitor and characterize sequence variants during antibody drug development, especially for antibody biosimilar products.

  15. Development of a Trypanosoma cruzi strain typing assay using MS2 peptide spectral libraries (Tc-STAMS2)

    PubMed Central

    de Oliveira, Gilberto Santos; Kawahara, Rebeca; Rosa-Fernandes, Livia; Avila, Carla Cristi; Teixeira, Marta M. G.; Larsen, Martin R.

    2018-01-01

    Background Chagas disease also known as American trypanosomiasis is caused by the protozoan Trypanosoma cruzi. Over the last 30 years, Chagas disease has expanded from a neglected parasitic infection of the rural population to an urbanized chronic disease, becoming a potentially emergent global health problem. T. cruzi strains were assigned to seven genetic groups (TcI-TcVI and TcBat), named discrete typing units (DTUs), which represent a set of isolates that differ in virulence, pathogenicity and immunological features. Indeed, diverse clinical manifestations (from asymptomatic to highly severe disease) have been attempted to be related to T.cruzi genetic variability. Due to that, several DTU typing methods have been introduced. Each method has its own advantages and drawbacks such as high complexity and analysis time and all of them are based on genetic signatures. Recently, a novel method discriminated bacterial strains using a peptide identification-free, genome sequence-independent shotgun proteomics workflow. Here, we aimed to develop a Trypanosoma cruzi Strain Typing Assay using MS/MS peptide spectral libraries, named Tc-STAMS2. Methods/Principal findings The Tc-STAMS2 method uses shotgun proteomics combined with spectral library search to assign and discriminate T. cruzi strains independently on the genome knowledge. The method is based on the construction of a library of MS/MS peptide spectra built using genotyped T. cruzi reference strains. For identification, the MS/MS peptide spectra of unknown T. cruzi cells are identified using the spectral matching algorithm SpectraST. The Tc-STAMS2 method allowed correct identification of all DTUs with high confidence. The method was robust towards different sample preparations, length of chromatographic gradients and fragmentation techniques. Moreover, a pilot inter-laboratory study showed the applicability to different MS platforms. Conclusions and significance This is the first study that develops a MS-based platform for T. cruzi strain typing. Indeed, the Tc-STAMS2 method allows T. cruzi strain typing using MS/MS spectra as discriminatory features and allows the differentiation of TcI-TcVI DTUs. Similar to genomic-based strategies, the Tc-STAMS2 method allows identification of strains within DTUs. Its robustness towards different experimental and biological variables makes it a valuable complementary strategy to the current T. cruzi genotyping assays. Moreover, this method can be used to identify DTU-specific features correlated with the strain phenotype. PMID:29608573

  16. Development of a Trypanosoma cruzi strain typing assay using MS2 peptide spectral libraries (Tc-STAMS2).

    PubMed

    de Oliveira, Gilberto Santos; Kawahara, Rebeca; Rosa-Fernandes, Livia; Mule, Simon Ngao; Avila, Carla Cristi; Teixeira, Marta M G; Larsen, Martin R; Palmisano, Giuseppe

    2018-04-01

    Chagas disease also known as American trypanosomiasis is caused by the protozoan Trypanosoma cruzi. Over the last 30 years, Chagas disease has expanded from a neglected parasitic infection of the rural population to an urbanized chronic disease, becoming a potentially emergent global health problem. T. cruzi strains were assigned to seven genetic groups (TcI-TcVI and TcBat), named discrete typing units (DTUs), which represent a set of isolates that differ in virulence, pathogenicity and immunological features. Indeed, diverse clinical manifestations (from asymptomatic to highly severe disease) have been attempted to be related to T.cruzi genetic variability. Due to that, several DTU typing methods have been introduced. Each method has its own advantages and drawbacks such as high complexity and analysis time and all of them are based on genetic signatures. Recently, a novel method discriminated bacterial strains using a peptide identification-free, genome sequence-independent shotgun proteomics workflow. Here, we aimed to develop a Trypanosoma cruzi Strain Typing Assay using MS/MS peptide spectral libraries, named Tc-STAMS2. The Tc-STAMS2 method uses shotgun proteomics combined with spectral library search to assign and discriminate T. cruzi strains independently on the genome knowledge. The method is based on the construction of a library of MS/MS peptide spectra built using genotyped T. cruzi reference strains. For identification, the MS/MS peptide spectra of unknown T. cruzi cells are identified using the spectral matching algorithm SpectraST. The Tc-STAMS2 method allowed correct identification of all DTUs with high confidence. The method was robust towards different sample preparations, length of chromatographic gradients and fragmentation techniques. Moreover, a pilot inter-laboratory study showed the applicability to different MS platforms. This is the first study that develops a MS-based platform for T. cruzi strain typing. Indeed, the Tc-STAMS2 method allows T. cruzi strain typing using MS/MS spectra as discriminatory features and allows the differentiation of TcI-TcVI DTUs. Similar to genomic-based strategies, the Tc-STAMS2 method allows identification of strains within DTUs. Its robustness towards different experimental and biological variables makes it a valuable complementary strategy to the current T. cruzi genotyping assays. Moreover, this method can be used to identify DTU-specific features correlated with the strain phenotype.

  17. Temperature-dependent instability of the cTnI subunit in NIST SRM2921 characterized by tryptic peptide mapping.

    PubMed

    van der Burgt, Yuri E M; Cobbaert, Christa M; Dalebout, Hans; Smit, Nico; Deelder, André M

    2012-08-01

    In this study temperature-dependent instability of the cTnI subunit of the three-protein complex NIST SRM2921 was demonstrated using a mass spectrometric tryptic peptide mapping approach. The results were compared to the cTnI subunit obtained as a protein standard from Calbiochem with identical amino acid sequence. Both the three-protein complex from NIST as well as the cTnI subunit were incubated at elevated temperatures and then evaluated with respect to the primary sequence. The corresponding peptide maps were analyzed using LC-MS/MS. From a Mascot database search in combination with "semiTrypsin" tolerance it was found that two peptide backbone cleavages had occurred in subunit cTnI in NIST SRM2921 material upon incubation at 37°C, namely between amino acids at 148/149 and 194/195. The Calbiochem standard did not show increased levels of "unexpected" peptides in tryptic peptide maps. One of the two peptide backbone cleavages could also be monitored using a "single-step" MALDI-MS approach, i.e. without the need for peptide separation. The amount of degradation appeared rather constant in replicate temperature-instability experiments. However, for accurate quantification internal labelled standards are needed. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. The identification of disulfides in ricin D using proteolytic cleavage followed by negative-ion nano-electrospray ionization mass spectrometry of the peptide fragments.

    PubMed

    Tran, T T Nha; Brinkworth, Craig S; Bowie, John H

    2015-01-30

    To use negative-ion nano-electrospray ionization mass spectrometry of peptides from the tryptic digest of ricin D, to provide sequence information; in particular, to identify disulfide position and connectivity. Negative-ion fragmentations of peptides from the tryptic digest of ricin D was studied using a Waters QTOF2 mass spectrometer operating in MS and MS(2) modes. Twenty-three peptides were obtained following high-performance liquid chromatography and studied by negative-ion mass spectrometry covering 73% of the amino-acid residues of ricin D. Five disulfide-containing peptides were identified, three intermolecular and two intramolecular disulfide-containing peptides. The [M-H](-) anions of the intermolecular disulfides undergo facile cleavage of the disulfide units to produce fragment peptides. In negative-ion collision-induced dissociation (CID) these source-formed anions undergo backbone cleavages, which provide sequencing information. The two intramolecular disulfides were converted proteolytically into intermolecular disulfides, which were identified as outlined above. The positions of the five disulfide groups in ricin D may be determined by characteristic negative-ion cleavage of the disulfide groups, while sequence information may be determined using the standard negative-ion backbone cleavages of the resulting cleaved peptides. Negative-ion mass spectrometry can also be used to provide partial sequencing information for other peptides (i.e. those not containing Cys) using the standard negative-ion backbone cleavages of these peptides. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Complementation of UPLC-Q-TOF-MS and CESI-Q-TOF-MS on identification and determination of peptides from bovine lactoferrin.

    PubMed

    Chen, Hui; Shi, Pujie; Fan, Fengjiao; Tu, Maolin; Xu, Zhe; Xu, Xianbing; Du, Ming

    2018-05-01

    Digested peptides of bovine lactoferrin as the functional hydrolysates were identified by the Q-TOF tandem mass spectrometry (Q-TOF-MS) coupled with ultra performance liquid chromatograph (UPLC) and capillary electrophoresis (CE). The former (UPLC-Q-TOF-MS) identified 106 peptides while the latter (CE-Q-TOF-MS) characterized 102 peptides after comparison of peptides in terms of their molecular weight (MW), mass-to-charge ratio (m/z), and isoelectric point (pI). In addition, the hydrophilic value, net charge (q), and molecular radius (r) of the peptides were calculated, and a correlation analysis of the two methods was conducted between the retention time (RT) and r/q ratio of the peptides in order to elucidate the different separation principles of the unique peptides. It was shown that the peptides with larger hydrophilic value were beneficial to be separated by UPLC, while the peptides with larger r/q ratio were beneficial to be separated by CE. Combination of the above mentioned two complementary techniques have confidently improved the sequence coverage of lactoferrin and enhanced the identification of peptides, which makes it up to 65.8% in this study. Copyright © 2018. Published by Elsevier B.V.

  20. Mass Spectrometric Determination of ILPR G-quadruplex Binding Sites in Insulin and IGF-2

    PubMed Central

    Xiao, JunFeng

    2009-01-01

    The insulin-linked polymorphic region (ILPR) of the human insulin gene promoter region forms G-quadruplex structures in vitro. Previous studies show that insulin and insulin-like growth factor-2 (IGF-2) exhibit high affinity binding in vitro to 2-repeat sequences of ILPR variants a and h, but negligible binding to variant i. Two-repeat sequences of variants a and h form intramolecular G-quadruplex structures that are not evidenced for variant i. Here we report on the use of protein digestion combined with affinity capture and MALDI-MS detection to pinpoint ILPR binding sites in insulin and IGF-2. Peptides captured by ILPR variants a and h were sequenced by MALDI-MS/MS, LC-MS and in silico digestion. On-bead digestion of insulin-ILPR variant a complexes supported the conclusions. The results indicate that the sequence VCG(N)RGF is generally present in the captured peptides and is likely involved in the affinity binding interactions of the proteins with the ILPR G-quadruplexes. The significance of arginine in the interactions was studied by comparing the affinities of synthesized peptides VCGERGF and VCGEAGF with ILPR variant a. Peptides from other regions of the proteins that are connected through disulfide linkages were also detected in some capture experiments. Identification of binding sites could facilitate design of DNA binding ligands for capture and detection of insulin and IGF-2. The interactions may have biological significance as well. PMID:19747845

  1. Targeted Feature Detection for Data-Dependent Shotgun Proteomics

    PubMed Central

    2017-01-01

    Label-free quantification of shotgun LC–MS/MS data is the prevailing approach in quantitative proteomics but remains computationally nontrivial. The central data analysis step is the detection of peptide-specific signal patterns, called features. Peptide quantification is facilitated by associating signal intensities in features with peptide sequences derived from MS2 spectra; however, missing values due to imperfect feature detection are a common problem. A feature detection approach that directly targets identified peptides (minimizing missing values) but also offers robustness against false-positive features (by assigning meaningful confidence scores) would thus be highly desirable. We developed a new feature detection algorithm within the OpenMS software framework, leveraging ideas and algorithms from the OpenSWATH toolset for DIA/SRM data analysis. Our software, FeatureFinderIdentification (“FFId”), implements a targeted approach to feature detection based on information from identified peptides. This information is encoded in an MS1 assay library, based on which ion chromatogram extraction and detection of feature candidates are carried out. Significantly, when analyzing data from experiments comprising multiple samples, our approach distinguishes between “internal” and “external” (inferred) peptide identifications (IDs) for each sample. On the basis of internal IDs, two sets of positive (true) and negative (decoy) feature candidates are defined. A support vector machine (SVM) classifier is then trained to discriminate between the sets and is subsequently applied to the “uncertain” feature candidates from external IDs, facilitating selection and confidence scoring of the best feature candidate for each peptide. This approach also enables our algorithm to estimate the false discovery rate (FDR) of the feature selection step. We validated FFId based on a public benchmark data set, comprising a yeast cell lysate spiked with protein standards that provide a known ground-truth. The algorithm reached almost complete (>99%) quantification coverage for the full set of peptides identified at 1% FDR (PSM level). Compared with other software solutions for label-free quantification, this is an outstanding result, which was achieved at competitive quantification accuracy and reproducibility across replicates. The FDR for the feature selection was estimated at a low 1.5% on average per sample (3% for features inferred from external peptide IDs). The FFId software is open-source and freely available as part of OpenMS (www.openms.org). PMID:28673088

  2. Targeted Feature Detection for Data-Dependent Shotgun Proteomics.

    PubMed

    Weisser, Hendrik; Choudhary, Jyoti S

    2017-08-04

    Label-free quantification of shotgun LC-MS/MS data is the prevailing approach in quantitative proteomics but remains computationally nontrivial. The central data analysis step is the detection of peptide-specific signal patterns, called features. Peptide quantification is facilitated by associating signal intensities in features with peptide sequences derived from MS2 spectra; however, missing values due to imperfect feature detection are a common problem. A feature detection approach that directly targets identified peptides (minimizing missing values) but also offers robustness against false-positive features (by assigning meaningful confidence scores) would thus be highly desirable. We developed a new feature detection algorithm within the OpenMS software framework, leveraging ideas and algorithms from the OpenSWATH toolset for DIA/SRM data analysis. Our software, FeatureFinderIdentification ("FFId"), implements a targeted approach to feature detection based on information from identified peptides. This information is encoded in an MS1 assay library, based on which ion chromatogram extraction and detection of feature candidates are carried out. Significantly, when analyzing data from experiments comprising multiple samples, our approach distinguishes between "internal" and "external" (inferred) peptide identifications (IDs) for each sample. On the basis of internal IDs, two sets of positive (true) and negative (decoy) feature candidates are defined. A support vector machine (SVM) classifier is then trained to discriminate between the sets and is subsequently applied to the "uncertain" feature candidates from external IDs, facilitating selection and confidence scoring of the best feature candidate for each peptide. This approach also enables our algorithm to estimate the false discovery rate (FDR) of the feature selection step. We validated FFId based on a public benchmark data set, comprising a yeast cell lysate spiked with protein standards that provide a known ground-truth. The algorithm reached almost complete (>99%) quantification coverage for the full set of peptides identified at 1% FDR (PSM level). Compared with other software solutions for label-free quantification, this is an outstanding result, which was achieved at competitive quantification accuracy and reproducibility across replicates. The FDR for the feature selection was estimated at a low 1.5% on average per sample (3% for features inferred from external peptide IDs). The FFId software is open-source and freely available as part of OpenMS ( www.openms.org ).

  3. Transcript and proteomic analysis of developing white lupin (Lupinus albus L.) roots

    PubMed Central

    Tian, Li; Peel, Gregory J; Lei, Zhentian; Aziz, Naveed; Dai, Xinbin; He, Ji; Watson, Bonnie; Zhao, Patrick X; Sumner, Lloyd W; Dixon, Richard A

    2009-01-01

    Background White lupin (Lupinus albus L.) roots efficiently take up and accumulate (heavy) metals, adapt to phosphate deficiency by forming cluster roots, and secrete antimicrobial prenylated isoflavones during development. Genomic and proteomic approaches were applied to identify candidate genes and proteins involved in antimicrobial defense and (heavy) metal uptake and translocation. Results A cDNA library was constructed from roots of white lupin seedlings. Eight thousand clones were randomly sequenced and assembled into 2,455 unigenes, which were annotated based on homologous matches in the NCBInr protein database. A reference map of developing white lupin root proteins was established through 2-D gel electrophoresis and peptide mass fingerprinting. High quality peptide mass spectra were obtained for 170 proteins. Microsomal membrane proteins were separated by 1-D gel electrophoresis and identified by LC-MS/MS. A total of 74 proteins were putatively identified by the peptide mass fingerprinting and the LC-MS/MS methods. Genomic and proteomic analyses identified candidate genes and proteins encoding metal binding and/or transport proteins, transcription factors, ABC transporters and phenylpropanoid biosynthetic enzymes. Conclusion The combined EST and protein datasets will facilitate the understanding of white lupin's response to biotic and abiotic stresses and its utility for phytoremediation. The root ESTs provided 82 perfect simple sequence repeat (SSR) markers with potential utility in breeding white lupin for enhanced agronomic traits. PMID:19123941

  4. Mass spectrometric survey of peptides in cephalopods with an emphasis on the FMRFamide-related peptides.

    PubMed

    Sweedler, J V; Li, L; Floyd, P; Gilly, W

    2000-12-01

    A matrix-assisted laser desorption/ionization (MALDI) mass spectrometric (MS) survey of the major peptides in the stellar, fin and pallial nerves and the posterior chromatophore lobe of the cephalopods Sepia officinalis, Loligo opalescens and Dosidicus gigas has been performed. Although a large number of putative peptides are distinct among the three species, several molecular masses are conserved. In addition to peptides, characterization of the lipid content of the nerves is reported, and these lipid peaks account for many of the lower molecular masses observed. One conserved set of peaks corresponds to the FMRFamide-related peptides (FRPs). The Loligo opalescens FMRFa gene has been sequenced. It encodes a 331 amino acid residue prohormone that is processed into 14 FRPs, which are both predicted by the nucleotide sequence and confirmed by MALDI MS. The FRPs predicted by this gene (FMRFa, FLRFa/FIRFa and ALSGDAFLRFa) are observed in all three species, indicating that members of this peptide family are highly conserved across cephalopods.

  5. Functional characterization of a synthetic hydrophilic antifungal peptide derived from the marine snail Cenchritis muricatus.

    PubMed

    López-Abarrategui, Carlos; Alba, Annia; Silva, Osmar N; Reyes-Acosta, Osvaldo; Vasconcelos, Ilka M; Oliveira, Jose T A; Migliolo, Ludovico; Costa, Maysa P; Costa, Carolina R; Silva, Maria R R; Garay, Hilda E; Dias, Simoni C; Franco, Octávio L; Otero-González, Anselmo J

    2012-04-01

    Antimicrobial peptides have been found in mollusks and other sea animals. In this report, a crude extract of the marine snail Cenchritis muricatus was evaluated against human pathogens responsible for multiple deleterious effects and diseases. A peptide of 1485.26 Da was purified by reversed-phase HPLC and functionally characterized. This trypsinized peptide was sequenced by MS/MS technology, and a sequence (SRSELIVHQR), named Cm-p1 was recovered, chemically synthesized and functionally characterized. This peptide demonstrated the capacity to prevent the development of yeasts and filamentous fungi. Otherwise, Cm-p1 displayed no toxic effects against mammalian cells. Molecular modeling analyses showed that this peptide possible forms a single hydrophilic α-helix and the probable cationic residue involved in antifungal activity action is proposed. The data reported here demonstrate the importance of sea animals peptide discovery for biotechnological tools development that could be useful in solving human health and agribusiness problems. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  6. Analysis of secreted proteins from Aspergillus flavus.

    PubMed

    Medina, Martha L; Haynes, Paul A; Breci, Linda; Francisco, Wilson A

    2005-08-01

    MS/MS techniques in proteomics make possible the identification of proteins from organisms with little or no genome sequence information available. Peptide sequences are obtained from tandem mass spectra by matching peptide mass and fragmentation information to protein sequence information from related organisms, including unannotated genome sequence data. This peptide identification data can then be grouped and reconstructed into protein data. In this study, we have used this approach to study protein secretion by Aspergillus flavus, a filamentous fungus for which very little genome sequence information is available. A. flavus is capable of degrading the flavonoid rutin (quercetin 3-O-glycoside), as the only source of carbon via an extracellular enzyme system. In this continuing study, a proteomic analysis was used to identify secreted proteins from A. flavus when grown on rutin. The growth media glucose and potato dextrose were used to identify differentially expressed secreted proteins. The secreted proteins were analyzed by 1- and 2-DE and MS/MS. A total of 51 unique A. flavus secreted proteins were identified from the three growth conditions. Ten proteins were unique to rutin-, five to glucose- and one to potato dextrose-grown A. flavus. Sixteen secreted proteins were common to all three media. Fourteen identifications were of hypothetical proteins or proteins of unknown functions. To our knowledge, this is the first extensive proteomic study conducted to identify the secreted proteins from a filamentous fungus.

  7. Science of Decision Making: A Data-Modeling Approach

    DTIC Science & Technology

    2013-10-01

    were separated on a capillary column using the Dionex UltiMate 3000 (Sunnyvale, CA). The resolved peptides were then sprayed into a linear ion trap...database (3–5). These algorithms assign a peptide sequence, along with a matching score of the experimental ion product mass spectrum, to a theoretical ion ...Bacterial Sample Processing Samples were prepared for liquid chromatography (LC) tandem MS (LC– MS/MS) in a similar manner to that previously reported

  8. Mass Spectrometric Identification of the Arginine and Lysine deficient Proline Rich Glutamine Rich Wheat Storage Proteins

    USDA-ARS?s Scientific Manuscript database

    Tandem mass spectrometry (MS/MS) of enzymatic digest has made possible identification of a wide variety of proteins and complex samples prepared by such techniques as RP-HPLC or 2-D gel electrophoresis. Success requires peptide fragmentation to be indicative of the peptide amino acid sequence. The f...

  9. Tempest: Accelerated MS/MS Database Search Software for Heterogeneous Computing Platforms.

    PubMed

    Adamo, Mark E; Gerber, Scott A

    2016-09-07

    MS/MS database search algorithms derive a set of candidate peptide sequences from in silico digest of a protein sequence database, and compute theoretical fragmentation patterns to match these candidates against observed MS/MS spectra. The original Tempest publication described these operations mapped to a CPU-GPU model, in which the CPU (central processing unit) generates peptide candidates that are asynchronously sent to a discrete GPU (graphics processing unit) to be scored against experimental spectra in parallel. The current version of Tempest expands this model, incorporating OpenCL to offer seamless parallelization across multicore CPUs, GPUs, integrated graphics chips, and general-purpose coprocessors. Three protocols describe how to configure and run a Tempest search, including discussion of how to leverage Tempest's unique feature set to produce optimal results. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  10. Peptides Labeled with Pyridinium Salts for Sensitive Detection and Sequencing by Electrospray Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Waliczek, Mateusz; Kijewska, Monika; Rudowska, Magdalena; Setner, Bartosz; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2016-11-01

    Mass spectrometric analysis of trace amounts of peptides may be problematic due to the insufficient ionization efficiency resulting in limited sensitivity. One of the possible ways to overcome this problem is the application of ionization enhancers. Herein we developed new ionization markers based on 2,4,6-triphenylpyridinium and 2,4,6-trimethylpyridinium salts. Using of inexpensive and commercially available pyrylium salt allows selective derivatization of primary amino groups, especially those sterically unhindered, such as ɛ-amino group of lysine. The 2,4,6-triphenylpyridinium modified peptides generate in MS/MS experiments an abundant protonated 2,4,6-triphenylpyridinium ion. This fragment is a promising reporter ion for the multiple reactions monitoring (MRM) analysis. In addition, the fixed positive charge of the pyridinium group enhances the ionization efficiency. Other advantages of the proposed ionization enhancers are the simplicity of derivatization of peptides and the possibility of convenient incorporation of isotopic labels into derivatized peptides.

  11. The SysteMHC Atlas project

    PubMed Central

    Shao, Wenguang; Pedrioli, Patrick G A; Wolski, Witold; Scurtescu, Cristian; Schmid, Emanuel; Courcelles, Mathieu; Schuster, Heiko; Kowalewski, Daniel; Marino, Fabio; Arlehamn, Cecilia S L; Vaughan, Kerrie; Peters, Bjoern; Sette, Alessandro; Ottenhoff, Tom H M; Meijgaarden, Krista E; Nieuwenhuizen, Natalie; Kaufmann, Stefan H E; Schlapbach, Ralph; Castle, John C; Nesvizhskii, Alexey I; Nielsen, Morten; Deutsch, Eric W; Campbell, David S; Moritz, Robert L; Zubarev, Roman A; Ytterberg, Anders Jimmy; Purcell, Anthony W; Marcilla, Miguel; Paradela, Alberto; Wang, Qi; Costello, Catherine E; Ternette, Nicola; van Veelen, Peter A; van Els, Cécile A C M; de Souza, Gustavo A; Sollid, Ludvig M; Admon, Arie; Stevanovic, Stefan; Rammensee, Hans-Georg; Thibault, Pierre; Perreault, Claude; Bassani-Sternberg, Michal

    2018-01-01

    Abstract Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts. PMID:28985418

  12. Evaluating the effect of database inflation in proteogenomic search on sensitive and reliable peptide identification.

    PubMed

    Li, Honglan; Joh, Yoon Sung; Kim, Hyunwoo; Paek, Eunok; Lee, Sang-Won; Hwang, Kyu-Baek

    2016-12-22

    Proteogenomics is a promising approach for various tasks ranging from gene annotation to cancer research. Databases for proteogenomic searches are often constructed by adding peptide sequences inferred from genomic or transcriptomic evidence to reference protein sequences. Such inflation of databases has potential of identifying novel peptides. However, it also raises concerns on sensitive and reliable peptide identification. Spurious peptides included in target databases may result in underestimated false discovery rate (FDR). On the other hand, inflation of decoy databases could decrease the sensitivity of peptide identification due to the increased number of high-scoring random hits. Although several studies have addressed these issues, widely applicable guidelines for sensitive and reliable proteogenomic search have hardly been available. To systematically evaluate the effect of database inflation in proteogenomic searches, we constructed a variety of real and simulated proteogenomic databases for yeast and human tandem mass spectrometry (MS/MS) data, respectively. Against these databases, we tested two popular database search tools with various approaches to search result validation: the target-decoy search strategy (with and without a refined scoring-metric) and a mixture model-based method. The effect of separate filtering of known and novel peptides was also examined. The results from real and simulated proteogenomic searches confirmed that separate filtering increases the sensitivity and reliability in proteogenomic search. However, no one method consistently identified the largest (or the smallest) number of novel peptides from real proteogenomic searches. We propose to use a set of search result validation methods with separate filtering, for sensitive and reliable identification of peptides in proteogenomic search.

  13. Use of CID/ETD Mass Spectrometry to Analyze Glycopeptides

    PubMed Central

    Mechref, Yehia

    2013-01-01

    Collision-induced dissociation (CID) tandem mass spectrometry (MS) does not allow the characterization of glycopeptides because of the fragmentation of their glycan structures and limited fragmentation of peptide backbones. Electron-transfer dissociation (ETD) tandem MS, on the other hand, offers an alternative approach allowing the fragmentation of only peptide backbones of glycopeptides. Characterization of glycopeptides using both CID and ETD is summarized in this unit. While CID provide information related to the composition of glycan moiety attached to a peptide backbone, ETD permits de novo sequencing of peptides, since it prompts only peptide backbone fragmentation while keeping posttranslational modifications intact. Radical anions transfer of electrons to peptide backbone which induces cleavage of the N-Cα bond is observed in ETD. The glycan moiety is retained on the peptide backbone, largely unaffected by the ETD process. Accordingly, ETD allows not only the identification of the amino acid sequence of a glycopeptide, but also the unambiguous assignment of its glycosylation site. When data acquired from both fragmentation techniques are combined, it is possible to characterize comprehensively the entire glycopeptide. This is achieved using an instrument capable of alternating between CID and ETD experiments during an LC-MS/MS analysis. This unit discusses the different fragmentation of glycopeptides observed in CID and ETD. Tables of residue masses associated with oxonium ions observed in CID are provided to help in the interpretation of CID mass spectra. The utility of both CID and ETD for better characterization of glycopeptides are demonstrated for a model glycoprotein. PMID:22470127

  14. Identification of single amino acid substitutions (SAAS) in neuraminidase from influenza a virus (H1N1) via mass spectrometry analysis coupled with de novo peptide sequencing.

    PubMed

    Peng, Qisheng; Wang, Zijian; Wu, Donglin; Li, Xiaoou; Liu, Xiaofeng; Sun, Wanchun; Liu, Ning

    2016-08-01

    Amino acid substitutions in the neuraminidase of the influenza virus are the main cause of the emergence of resistance to zanamivir or oseltamivir during seasonal influenza treatment; they are the result of non-synonymous mutations in the viral genome that can be successfully detected by polymer chain reaction (PCR)-based approaches. There is always an urgent need to detect variation in amino acid sequences directly at the protein level. Mass spectrometry coupled with de novo sequencing has been explored as an alternative and straightforward strategy for detecting amino acid substitutions, as well - this approach is the primary focus of the present study. Influenza virus (A/Puerto Rico/8/1934 H1N1) propagated in embryonated chicken eggs was purified by ultracentrifugation, followed by PNGase F treatment. The deglycosylated virion was lysed and separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The gel band corresponding to neuraminidase was picked up and subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. LC-MS/MS analyses, coupled with manual de novo sequencing, allowed the determination of three amino acid substitutions: R346K, S349 N, and S370I/L, in the neuraminidase from the influenza virus (A/Puerto Rico/8/1934 H1N1), which were located in three mutated peptides of the neuraminidase: YGNGVWIGK, TKNHSSR, and PNGWTETDI/LK, respectively. We found that the amino acid substitutions in the proteins of RNA viruses (including influenza A virus) resulting from non-synonymous gene mutations can indeed be directly analyzed via mass spectrometry, and that manual interpretation of the MS/MS data may be beneficial. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Direct mass spectrometric peptide profiling and sequencing of nervous tissues to identify peptides involved in male copulatory behavior in Lymnaea stagnalis

    NASA Astrophysics Data System (ADS)

    Dreisewerd, Klaus; Kingston, Robert; Geraerts, Wijnand P. M.; Li, Ka Wan

    1997-12-01

    Matrix-assisted laser desorption mass spectrometry (MALDI-MS) was performed directly on a small piece of single penis nerve of the pond snail, Lymnaea stagnalis, and reveals the presence of complex peptide profiles, including many hitherto undescribed peptides. Two of the peptides have molecular weights corresponding exactly to the previously described Lymnaea small cardioactive peptides (SCP) A and B. We confirmed their identities by structural characterization of the two peptides directly from a single penis nerve by matrix-assisted laser desorption ionization high-energy collision tandem MS analysis. MALDI-MS of nervous tissues also demonstrates that a cluster of central neurons, which send their axons to the penis nerve, contain the two peptides. As the penis nerve is the nerve that innervates the penis complex, we propose that the peptides are involved in the modulation of male copulatory processes. A bioassay indeed showed that the peptides increase the contraction frequency of the vas deference in a dose-dependent manner. The results demonstrate the potential of direct MALDI-MS analysis of nervous tissue to complement or substitute conventional biochemical techniques for the identification and localization of neuropeptides.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qibin; Petyuk, Vladislav A.; Schepmoes, Athena A.

    Non-enzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. While electron transfer dissociation (ETD) has been shown to outperform collision-induced dissociation (CID) in sequencing glycated peptides by tandem mass spectrometry, ETD instrumentation is not yet available in all laboratories. In this study, we evaluated different advanced CID techniques (i.e., neutral-loss triggered MS3 and multi-stage activation) during LC-MSn analyses of Amadori-modified peptides enriched from human serum glycated in vitro. During neutral-loss triggered MS3 experiments, MS3 scans triggered by neutral-losses of 3 H2O or 3 H2O + HCHO produced similar results in terms of glycatedmore » peptide identifications. However, neutral losses of 3 H2O resulted in significantly more glycated peptide identifications during multi-stage activation experiments. Overall, the multi-stage activation approach produced more glycated peptide identifications, while the neutral-loss triggered MS3 approach resulted in much higher specificity. Both techniques offer a viable alternative to ETD for identifying glycated peptides when that method is unavailable.« less

  17. Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry.

    PubMed

    Freudenmann, Lena Katharina; Marcu, Ana; Stevanović, Stefan

    2018-07-01

    The entirety of human leukocyte antigen (HLA)-presented peptides is referred to as the HLA ligandome of a cell or tissue, in tumours often termed immunopeptidome. Mapping the tumour immunopeptidome by mass spectrometry (MS) comprehensively views the pathophysiologically relevant antigenic signature of human malignancies. MS is an unbiased approach stringently filtering the candidates to be tested as opposed to epitope prediction algorithms. In the setting of peptide-specific immunotherapies, MS-based strategies significantly diminish the risk of lacking clinical benefit, as they yield highly enriched amounts of truly presented peptides. Early immunopeptidomic efforts were severely limited by technical sensitivity and manual spectra interpretation. The technological progress with development of orbitrap mass analysers and enhanced chromatographic performance led to vast improvements in mass accuracy, sensitivity, resolution, and speed. Concomitantly, bioinformatic tools were developed to process MS data, integrate sequencing results, and deconvolute multi-allelic datasets. This enabled the immense advancement of tumour immunopeptidomics. Studying the HLA-presented peptide repertoire bears high potential for both answering basic scientific questions and translational application. Mapping the tumour HLA ligandome has started to significantly contribute to target identification for the design of peptide-specific cancer immunotherapies in clinical trials and compassionate need treatments. In contrast to prediction algorithms, rare HLA allotypes and HLA class II can be adequately addressed when choosing MS-guided target identification platforms. Herein, we review the identification of tumour HLA ligands focusing on sources, methods, bioinformatic data analysis, translational application, and provide an outlook on future developments. © 2018 John Wiley & Sons Ltd.

  18. Characterization of a mixture of lobster digestive cysteine proteinases by ionspray mass spectrometry and tryptic mapping with LC--MS and LC--MS--MS

    NASA Astrophysics Data System (ADS)

    Thibault, P.; Pleasance, S.; Laycock, M. V.; Mackay, R. M.; Boyd, R. K.

    1991-12-01

    An inseparable mixture of two cysteine proteinases, isolated from the digestive tract of the American lobster, was investigated by ionspray mass spectrometry (ISP-MS), using a combination of infusion of intact proteins with on-line liquid chromatography--mass spectrometry (LC--MS) and LC--MS--MS analyses of tryptic digests. These data were interpreted by comparisons with predictions from results of molecular cloning of cysteine-proteinase-encoding messenger RNA sequences previously isolated from the lobster hepatopancreas. Investigations of the numbers of free thiol groups and of disulfide bonds were made by measuring the molecular weights of the alkylated proteins with and without prior reduction of disulfide bonds, and comparison with the corresponding data for the native proteins. Identification of tyrptic fragment peptides containing cysteine residues was facilitated by comparing LC--MS analyses of tryptic digests of denatured and of denatured and alkylated proteins, since such tryptic peptides are subject to shifts in both mass and retention time upon reduction and alkylation. Confirmation of amino acid sequences was obtained from fragment ion spectra of each tryptic peptide (alkylated or not) as it eluted from the column. Acquisition of such on-line LC--MS data was possible through use of the entire effluent from a standard 1 mm high performance liquid chromatography (HPLC) column by an IonsSpray® LC--MS interface (pneumatically assisted electrospray).

  19. Use of synthetic peptide libraries for the H-2Kd binding motif identification.

    PubMed

    Quesnel, A; Casrouge, A; Kourilsky, P; Abastado, J P; Trudelle, Y

    1995-01-01

    To identify Kd-binding peptides, an approach based on small peptide libraries has been developed. These peptide libraries correspond to all possible single-amino acid variants of a particular Kd-binding peptide, SYIPSAEYI, an analog of the Plasmodium berghei 252-260 antigenic peptide SYIPSAEKI. In the parent sequence, each position is replaced by all the genetically encoded amino acids (except cysteine). The multiple analog syntheses are performed either by the Divide Couple and Recombine method or by the Single Resin method and generate mixtures containing 19 peptides. The present report deals with the synthesis, the purification, the chemical characterization by amino acid analysis and electrospray mass spectrometry (ES-MS), and the application of such mixtures in binding tests with a soluble, functionally empty, single-chain H-2Kd molecule denoted SC-Kd. For each mixture, bound peptides were eluted and analyzed by sequencing. Since the binding tests were realized in noncompetitive conditions, our results show that a much broader set of peptides bind to Kd than expected from previous studies. This may be of practical importance when looking for low affinity peptides such as tumor peptides capable of eliciting protective immune response.

  20. Identification of ACE-inhibitory peptides from Phaseolus vulgaris after in vitro gastrointestinal digestion.

    PubMed

    Tagliazucchi, Davide; Martini, Serena; Bellesia, Andrea; Conte, Angela

    2015-01-01

    The objective of this study was to identify the angiotensin I-converting enzyme (ACE)-inhibitory peptides released from thermally treated Phaseolus vulgaris (pinto) whole beans after in vitro gastrointestinal digestion. The degree of hydrolysis increased during digestion reaching a value of 50% at the end of the pancreatic digestion. The <3 kDa fraction of the postpancreatic sample showed high ACE-inhibitory activity (IC50 = 105.6 ± 2.1 μg of peptides/mL). Peptides responsible for the ACE-inhibitory activity were isolated by reverse-phase high-performance liquid chromatography (HPLC). Three fractions, showing the highest inhibitory activity, were selected for tandem mass spectrometry (MS/MS) experiments. Eleven of the identified sequences have previously been described as ACE-inhibitors. Most of the identified bioactive peptides have a hydrophobic amino acid, (iso)leucine or phenylalanine, or proline at the C-terminal position, which is crucial for their ACE-inhibitory activity. The sequence of some peptides allowed us to anticipate the presence of ACE-inhibitory activity.

  1. sapFinder: an R/Bioconductor package for detection of variant peptides in shotgun proteomics experiments.

    PubMed

    Wen, Bo; Xu, Shaohang; Sheynkman, Gloria M; Feng, Qiang; Lin, Liang; Wang, Quanhui; Xu, Xun; Wang, Jun; Liu, Siqi

    2014-11-01

    Single nucleotide variations (SNVs) located within a reading frame can result in single amino acid polymorphisms (SAPs), leading to alteration of the corresponding amino acid sequence as well as function of a protein. Accurate detection of SAPs is an important issue in proteomic analysis at the experimental and bioinformatic level. Herein, we present sapFinder, an R software package, for detection of the variant peptides based on tandem mass spectrometry (MS/MS)-based proteomics data. This package automates the construction of variation-associated databases from public SNV repositories or sample-specific next-generation sequencing (NGS) data and the identification of SAPs through database searching, post-processing and generation of HTML-based report with visualized interface. sapFinder is implemented as a Bioconductor package in R. The package and the vignette can be downloaded at http://bioconductor.org/packages/devel/bioc/html/sapFinder.html and are provided under a GPL-2 license. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Overview of the HUPO Plasma Proteome Project: Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omenn, Gilbert; States, David J.; Adamski, Marcin

    2005-08-13

    HUPO initiated the Plasma Proteome Project (PPP) in 2002. Its pilot phase has (1) evaluated advantages and limitations of many depletion, fractionation, and MS technology platforms; (2) compared PPP reference specimens of human serum and EDTA, heparin, and citrate-anticoagulated plasma; and (3) created a publicly-available knowledge base (www.bioinformatics. med.umich.edu/hupo/ppp; www.ebi.ac.uk/pride). Thirty-five participating laboratories in 13 countries submitted datasets. Working groups addressed (a) specimen stability and protein concentrations; (b) protein identifications from 18 MS/MS datasets; (c) independent analyses from raw MS-MS spectra; (d) search engine performance, subproteome analyses, and biological insights; (e) antibody arrays; and (f) direct MS/SELDI analyses. MS-MS datasetsmore » had 15 710 different International Protein Index (IPI) protein IDs; our integration algorithm applied to multiple matches of peptide sequences yielded 9504 IPI proteins identified with one or more peptides and 3020 proteins identified with two or more peptides (the Core Dataset). These proteins have been characterized with Gene Ontology, InterPro, Novartis Atlas, OMIM, and immunoassay based concentration determinations. The database permits examination of many other subsets, such as 1274 proteins identified with three or more peptides. Reverse protein to DNA matching identified proteins for 118 previously unidentified ORFs. We recommend use of plasma instead of serum, with EDTA (or citrate) for anticoagulation. To improve resolution, sensitivity and reproducibility of peptide identifications and protein matches, we recommend combinations of depletion, fractionation, and MS/MS technologies, with explicit criteria for evaluation of spectra, use of search algorithms, and integration of homologous protein matches. This Special Issue of PROTEOMICS presents papers integral to the collaborative analysis plus many reports of supplementary work on various aspects of the PPP workplan. These PPP results on complexity, dynamic range, incomplete sampling, false-positive matches, and integration of diverse datasets for plasma and serum proteins lay a foundation for development and validation of circulating protein biomarkers in health and disease.« less

  3. Analysis of non-enzymatically glycated peptides: neutral-loss-triggered MS3 versus multi-stage activation tandem mass spectrometry

    PubMed Central

    Zhang, Qibin; Petyuk, Vladislav A.; Schepmoes, Athena A.; Orton, Daniel J.; Monroe, Matthew E.; Yang, Feng; Smith, Richard D.; Metz, Thomas O.

    2009-01-01

    Non-enzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. While electron transfer dissociation (ETD) has been shown to outperform collision-induced dissociation (CID) in sequencing glycated peptides by tandem mass spectrometry, ETD instrumentation is not yet widely available and often suffers from significantly lower sensitivity than CID. In this study, we evaluated different advanced CID techniques (i.e., neutral-loss-triggered MS3 and multi-stage activation) during liquid chromatography/multi-stage mass spectrometric (LC/MSn) analyses of Amadori-modified peptides enriched from human serum glycated in vitro. During neutral-loss-triggered MS3 experiments, MS3 scans triggered by neutral losses of 3 H2O or 3 H2O + HCHO produced similar results in terms of glycated peptide identifications. However, neutral losses of 3 H2O resulted in significantly more glycated peptide identifications during multi-stage activation experiments. Overall, the multi-stage activation approach produced more glycated peptide identifications, while the neutral-loss-triggered MS3 approach resulted in much higher specificity. Both techniques are viable alternatives to ETD for identifying glycated peptides. PMID:18763275

  4. Identification, Characterization, and Recombinant Expression of Epidermicin NI01, a Novel Unmodified Bacteriocin Produced by Staphylococcus epidermidis That Displays Potent Activity against Staphylococci

    PubMed Central

    Sandiford, Stephanie

    2012-01-01

    We describe the discovery, purification, characterization, and expression of an antimicrobial peptide, epidermicin NI01, which is an unmodified bacteriocin produced by Staphylococcus epidermidis strain 224. It is a highly cationic, hydrophobic, plasmid-encoded peptide that exhibits potent antimicrobial activity toward a wide range of pathogenic Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), enterococci, and biofilm-forming S. epidermidis strains. Purification of the peptide was achieved using a combination of hydrophobic interaction, cation exchange, and high-performance liquid chromatography (HPLC). Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) analysis yielded a molecular mass of 6,074 Da, and partial sequence data of the peptide were elucidated using a combination of tandem mass spectrometry (MS/MS) and de novo sequencing. The draft genome sequence of the producing strain was obtained using 454 pyrosequencing technology, thus enabling the identification of the structural gene using the de novo peptide sequence data previously obtained. Epidermicin NI01 contains 51 residues with four tryptophan and nine lysine residues, and the sequence showed approximately 50% identity to peptides lacticin Z, lacticin Q, and aureocin A53, all of which belong to a new family of unmodified type II-like bacteriocins. The peptide is active in the nanomolar range against S. epidermidis, MRSA isolates, and vancomycin-resistant enterococci. Other unique features displayed by epidermicin include a high degree of protease stability and the ability to retain antimicrobial activity over a pH range of 2 to 10, and exposure to the peptide does not result in development of resistance in susceptible isolates. In this study we also show the structural gene alone can be cloned into Escherichia coli strain BL21(DE3), and expression yields active peptide. PMID:22155816

  5. Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic-peptidomic analysis: comparison of peptide identification methods

    PubMed Central

    Shen, Yufeng; Tolić, Nikola; Xie, Fang; Zhao, Rui; Purvine, Samuel O.; Schepmoes, Athena A.; Ronald, J. Moore; Anderson, Gordon A.; Smith, Richard D.

    2011-01-01

    We report on the effectiveness of CID, HCD, and ETD for LC-FT MS/MS analysis of peptides using a tandem linear ion trap-Orbitrap mass spectrometer. A range of software tools and analysis parameters were employed to explore the use of CID, HCD, and ETD to identify peptides isolated from human blood plasma without the use of specific “enzyme rules”. In the evaluation of an FDR-controlled SEQUEST scoring method, the use of accurate masses for fragments increased the numbers of identified peptides (by ~50%) compared to the use of conventional low accuracy fragment mass information, and CID provided the largest contribution to the identified peptide datasets compared to HCD and ETD. The FDR-controlled Mascot scoring method provided significantly fewer peptide identifications than with SEQUEST (by 1.3–2.3 fold) at the same confidence levels, and CID, HCD, and ETD provided similar contributions to identified peptides. Evaluation of de novo sequencing and the UStags method for more intense fragment ions revealed that HCD afforded more sequence consecutive residues (e.g., ≥7 amino acids) than either CID or ETD. Both the FDR-controlled SEQUEST and Mascot scoring methods provided peptide datasets that were affected by the decoy database and mass tolerances applied (e.g., the identical peptides between the datasets could be limited to ~70%), while the UStags method provided the most consistent peptide datasets (>90% overlap) with extremely low (near zero) numbers of false positive identifications. The m/z ranges in which CID, HCD, and ETD contributed the largest number of peptide identifications were substantially overlapping. This work suggests that the three peptide ion fragmentation methods are complementary, and that maximizing the number of peptide identifications benefits significantly from a careful match with the informatics tools and methods applied. These results also suggest that the decoy strategy may inaccurately estimate identification FDRs. PMID:21678914

  6. Assigning Peptide Disulfide Linkage Pattern Among Regio-Isomers via Methoxy Addition to Disulfide and Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Durand, Kirt L.; Tan, Lei; Stinson, Craig A.; Love-Nkansah, Chasity B.; Ma, Xiaoxiao; Xia, Yu

    2017-06-01

    Pinpointing disulfide linkage pattern is critical in the characterization of proteins and peptides consisting of multiple disulfide bonds. Herein, we report a method based on coupling online disulfide modification and tandem mass spectrometry (MS/MS) to distinguish peptide disulfide regio-isomers. Such a method relies on a new disulfide bond cleavage reaction in solution, involving methanol as a reactant and 254 nm ultraviolet (UV) irradiation. This reaction leads to selective cleavage of a disulfide bond and formation of sulfenic methyl ester (-SOCH3) at one cysteine residue and a thiol (-SH) at the other. Under low energy collision-induced dissociation (CID), cysteine sulfenic methyl ester motif produces a signature methanol loss (-32 Da), allowing its identification from other possible isomeric structures such as S-hydroxylmethyl (-SCH2OH) and methyl sulfoxide (-S(O)-CH3). Since disulfide bond can be selectively cleaved and modified upon methoxy addition, subsequent MS2 CID of the methoxy addition product provides enhanced sequence coverage as demonstrated by the analysis of bovine insulin. More importantly, this reaction does not induce disulfide scrambling, likely due to the fact that radical intermediates are not involved in the process. An approach based on methoxy addition followed by MS3 CID has been developed for assigning disulfide linkage patterns in peptide disulfide regio-isomers. This methodology was successfully applied to characterizing peptide systems having two disulfide bonds and three disulfide linkage isomers: side-by-side, overlapped, and looped-within-a-loop configurations. [Figure not available: see fulltext.

  7. Peptidomic strategy for purification and identification of potential ACE-inhibitory and antioxidant peptides in Tetradesmus obliquus microalgae.

    PubMed

    Montone, Carmela Maria; Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Piovesana, Susy; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2018-06-01

    Microalgae are unicellular marine organisms that have promoted complex biochemical pathways to survive in greatly competitive marine environments. They could contain significant amounts of high-quality proteins which, because of their structural diversity, contain a range of yet undiscovered novel bioactive peptides. In this work, a peptidomic platform was developed for the separation and identification of bioactive peptides in protein hydrolysates. In this work, a peptidomic platform was developed for the extraction, separation, and identification of bioactive peptides in protein hydrolysates. Indeed, extraction of proteins from recalcitrant tissues is still a challenge due to their strong cell walls and high levels of non-protein interfering compounds. Therefore, seven different protein extraction protocols, based on mechanical and chemical methods, were tested in order to produce high-quality protein extracts. Proteins obtained by means of the best protocol, consisting of milling the recalcitrant tissue with glass beads, were subjected to enzymatic digestion with Alcalase® and subsequently the hydrolysate was purified by two-dimensional semi-preparative reversed phase liquid chromatography. Fractions were assayed for antioxidant and antihypertensive activities and only the most active ones were finally analyzed by RP nanoHPLC-MS/MS. Around 500 peptide sequences were identified in these fractions. The identified peptides were subjected to an in silico analysis by PeptideRanker algorithm in order to assign a score of bioactivity probability. Twenty-five sequenced peptides were found with potential antioxidant and angiotensin-converting-enzyme-inhibitory activities. Four of these peptides, WPRGYFL, GPDRPKFLGPF, WYGPDRPKFL, SDWDRF, were selected for synthesis and in vitro tested for specific bioactivity, exhibiting good values of antioxidant and ACE-inhibitory activity. Graphical abstract Workflow showing the entire peptidomic approach developed for identification of bioactive peptides in microalgae.

  8. The 4-pyridylmethyl ester as a protecting group for glutamic and aspartic acids: 'flipping' peptide charge states for characterization by positive ion mode ESI-MS.

    PubMed

    Garapati, Sriramya; Burns, Colin S

    2014-03-01

    Use of the 4-pyridylmethyl ester group for side-chain protection of glutamic acid residues in solid-phase peptide synthesis enables switching of the charge state of a peptide from negative to positive, thus making detection by positive ion mode ESI-MS possible. The pyridylmethyl ester moiety is readily removed from peptides in high yield by hydrogenation. Combining the 4-pyridylmethyl ester protecting group with benzyl ester protection reduces the number of the former needed to produce a net positive charge and allows for purification by RP HPLC. This protecting group is useful in the synthesis of highly acidic peptide sequences, which are often beset by problems with purification by standard RP HPLC and characterization by ESI-MS. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  9. A simple protocol for combinatorial cyclic depsipeptide libraries sequencing by matrix-assisted laser desorption/ionisation mass spectrometry.

    PubMed

    Gurevich-Messina, Juan M; Giudicessi, Silvana L; Martínez-Ceron, María C; Acosta, Gerardo; Erra-Balsells, Rosa; Cascone, Osvaldo; Albericio, Fernando; Camperi, Silvia A

    2015-01-01

    Short cyclic peptides have a great interest in therapeutic, diagnostic and affinity chromatography applications. The screening of 'one-bead-one-peptide' combinatorial libraries combined with mass spectrometry (MS) is an excellent tool to find peptides with affinity for any target protein. The fragmentation patterns of cyclic peptides are quite more complex than those of their linear counterparts, and the elucidation of the resulting tandem mass spectra is rather more difficult. Here, we propose a simple protocol for combinatorial cyclic libraries synthesis and ring opening before MS analysis. In this strategy, 4-hydroxymethylbenzoic acid, which forms a benzyl ester with the first amino acid, was used as the linker. A glycolamidic ester group was incorporated after the combinatorial positions by adding glycolic acid. The library synthesis protocol consisted in the following: (i) incorporation of Fmoc-Asp[2-phenylisopropyl (OPp)]-OH to Ala-Gly-oxymethylbenzamide-ChemMatrix, (ii) synthesis of the combinatorial library, (iii) assembly of a glycolic acid, (iv) couple of an Ala residue in the N-terminal, (v) removal of OPp, (vi) peptide cyclisation through side chain Asp and N-Ala amino terminus and (vii) removal of side chain protecting groups. In order to simultaneously open the ring and release each peptide, benzyl and glycolamidic esters were cleaved with ammonia. Peptide sequences could be deduced from the tandem mass spectra of each single bead evaluated. The strategy herein proposed is suitable for the preparation of one-bead-one-cyclic depsipeptide libraries that can be easily open for its sequencing by matrix-assisted laser desorption/ionisation MS. It employs techniques and reagents frequently used in a broad range of laboratories without special expertise in organic synthesis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  10. High-throughput bioconjugation for enhanced 193 nm photodissociation via droplet phase initiated ion/ion chemistry using a front-end dual spray reactor.

    PubMed

    Cotham, Victoria C; Shaw, Jared B; Brodbelt, Jennifer S

    2015-09-15

    Fast online chemical derivatization of peptides with an aromatic label for enhanced 193 nm ultraviolet photodissociation (UVPD) is demonstrated using a dual electrospray reactor implemented on the front-end of a linear ion trap (LIT) mass spectrometer. The reactor facilitates the intersection of protonated peptides with a second population of chromogenic 4-formyl-1,3-benzenedisulfonic acid (FBDSA) anions to promote real-time formation of ion/ion complexes at atmospheric pressure. Subsequent collisional activation of the ion/ion intermediate results in Schiff base formation generated via reaction between a primary amine in the peptide cation and the aldehyde moiety of the FBDSA anion. Utilizing 193 nm UVPD as the subsequent activation step in the MS(3) workflow results in acquisition of greater primary sequence information relative to conventional collision induced dissociation (CID). Furthermore, Schiff-base-modified peptides exhibit on average a 20% increase in UVPD efficiency compared to their unmodified counterparts. Due to the efficiency of covalent labeling achieved with the dual spray reactor, we demonstrate that this strategy can be integrated into a high-throughput LC-MS(n) workflow for rapid derivatization of peptide mixtures.

  11. Optimal selection of epitopes for TXP-immunoaffinity mass spectrometry.

    PubMed

    Planatscher, Hannes; Supper, Jochen; Poetz, Oliver; Stoll, Dieter; Joos, Thomas; Templin, Markus F; Zell, Andreas

    2010-06-25

    Mass spectrometry (MS) based protein profiling has become one of the key technologies in biomedical research and biomarker discovery. One bottleneck in MS-based protein analysis is sample preparation and an efficient fractionation step to reduce the complexity of the biological samples, which are too complex to be analyzed directly with MS. Sample preparation strategies that reduce the complexity of tryptic digests by using immunoaffinity based methods have shown to lead to a substantial increase in throughput and sensitivity in the proteomic mass spectrometry approach. The limitation of using such immunoaffinity-based approaches is the availability of the appropriate peptide specific capture antibodies. Recent developments in these approaches, where subsets of peptides with short identical terminal sequences can be enriched using antibodies directed against short terminal epitopes, promise a significant gain in efficiency. We show that the minimal set of terminal epitopes for the coverage of a target protein list can be found by the formulation as a set cover problem, preceded by a filtering pipeline for the exclusion of peptides and target epitopes with undesirable properties. For small datasets (a few hundred proteins) it is possible to solve the problem to optimality with moderate computational effort using commercial or free solvers. Larger datasets, like full proteomes require the use of heuristics.

  12. Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates.

    PubMed

    Nongonierma, Alice B; Paolella, Sara; Mudgil, Priti; Maqsood, Sajid; FitzGerald, Richard J

    2018-04-01

    Nine novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides (FLQY, FQLGASPY, ILDKEGIDY, ILELA, LLQLEAIR, LPVP, LQALHQGQIV, MPVQA and SPVVPF) were identified in camel milk proteins hydrolysed with trypsin. This was achieved using a sequential approach combining liquid chromatography tandem mass spectrometry (LC-MS/MS), qualitative/quantitative structure activity relationship (QSAR) and confirmatory studies with synthetic peptides. The most potent camel milk protein-derived DPP-IV inhibitory peptides, LPVP and MPVQA, had DPP-IV half maximal inhibitory concentrations (IC 50 ) of 87.0 ± 3.2 and 93.3 ± 8.0 µM, respectively. DPP-IV inhibitory peptide sequences identified within camel and bovine milk protein hydrolysates generated under the same hydrolysis conditions differ. This was linked to differences in enzyme selectivity for peptide bond cleavage of camel and bovine milk proteins as well as dissimilarities in their amino acid sequences. Camel milk proteins contain novel DPP-IV inhibitory peptides which may play a role in the regulation of glycaemia in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger.

    PubMed

    Wright, James C; Sugden, Deana; Francis-McIntyre, Sue; Riba-Garcia, Isabel; Gaskell, Simon J; Grigoriev, Igor V; Baker, Scott E; Beynon, Robert J; Hubbard, Simon J

    2009-02-04

    Proteomic data is a potentially rich, but arguably unexploited, data source for genome annotation. Peptide identifications from tandem mass spectrometry provide prima facie evidence for gene predictions and can discriminate over a set of candidate gene models. Here we apply this to the recently sequenced Aspergillus niger fungal genome from the Joint Genome Institutes (JGI) and another predicted protein set from another A.niger sequence. Tandem mass spectra (MS/MS) were acquired from 1d gel electrophoresis bands and searched against all available gene models using Average Peptide Scoring (APS) and reverse database searching to produce confident identifications at an acceptable false discovery rate (FDR). 405 identified peptide sequences were mapped to 214 different A.niger genomic loci to which 4093 predicted gene models clustered, 2872 of which contained the mapped peptides. Interestingly, 13 (6%) of these loci either had no preferred predicted gene model or the genome annotators' chosen "best" model for that genomic locus was not found to be the most parsimonious match to the identified peptides. The peptides identified also boosted confidence in predicted gene structures spanning 54 introns from different gene models. This work highlights the potential of integrating experimental proteomics data into genomic annotation pipelines much as expressed sequence tag (EST) data has been. A comparison of the published genome from another strain of A.niger sequenced by DSM showed that a number of the gene models or proteins with proteomics evidence did not occur in both genomes, further highlighting the utility of the method.

  14. The SysteMHC Atlas project.

    PubMed

    Shao, Wenguang; Pedrioli, Patrick G A; Wolski, Witold; Scurtescu, Cristian; Schmid, Emanuel; Vizcaíno, Juan A; Courcelles, Mathieu; Schuster, Heiko; Kowalewski, Daniel; Marino, Fabio; Arlehamn, Cecilia S L; Vaughan, Kerrie; Peters, Bjoern; Sette, Alessandro; Ottenhoff, Tom H M; Meijgaarden, Krista E; Nieuwenhuizen, Natalie; Kaufmann, Stefan H E; Schlapbach, Ralph; Castle, John C; Nesvizhskii, Alexey I; Nielsen, Morten; Deutsch, Eric W; Campbell, David S; Moritz, Robert L; Zubarev, Roman A; Ytterberg, Anders Jimmy; Purcell, Anthony W; Marcilla, Miguel; Paradela, Alberto; Wang, Qi; Costello, Catherine E; Ternette, Nicola; van Veelen, Peter A; van Els, Cécile A C M; Heck, Albert J R; de Souza, Gustavo A; Sollid, Ludvig M; Admon, Arie; Stevanovic, Stefan; Rammensee, Hans-Georg; Thibault, Pierre; Perreault, Claude; Bassani-Sternberg, Michal; Aebersold, Ruedi; Caron, Etienne

    2018-01-04

    Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. SpirPep: an in silico digestion-based platform to assist bioactive peptides discovery from a genome-wide database.

    PubMed

    Anekthanakul, Krittima; Hongsthong, Apiradee; Senachak, Jittisak; Ruengjitchatchawalya, Marasri

    2018-04-20

    Bioactive peptides, including biological sources-derived peptides with different biological activities, are protein fragments that influence the functions or conditions of organisms, in particular humans and animals. Conventional methods of identifying bioactive peptides are time-consuming and costly. To quicken the processes, several bioinformatics tools are recently used to facilitate screening of the potential peptides prior their activity assessment in vitro and/or in vivo. In this study, we developed an efficient computational method, SpirPep, which offers many advantages over the currently available tools. The SpirPep web application tool is a one-stop analysis and visualization facility to assist bioactive peptide discovery. The tool is equipped with 15 customized enzymes and 1-3 miscleavage options, which allows in silico digestion of protein sequences encoded by protein-coding genes from single, multiple, or genome-wide scaling, and then directly classifies the peptides by bioactivity using an in-house database that contains bioactive peptides collected from 13 public databases. With this tool, the resulting peptides are categorized by each selected enzyme, and shown in a tabular format where the peptide sequences can be tracked back to their original proteins. The developed tool and webpages are coded in PHP and HTML with CSS/JavaScript. Moreover, the tool allows protein-peptide alignment visualization by Generic Genome Browser (GBrowse) to display the region and details of the proteins and peptides within each parameter, while considering digestion design for the desirable bioactivity. SpirPep is efficient; it takes less than 20 min to digest 3000 proteins (751,860 amino acids) with 15 enzymes and three miscleavages for each enzyme, and only a few seconds for single enzyme digestion. Obviously, the tool identified more bioactive peptides than that of the benchmarked tool; an example of validated pentapeptide (FLPIL) from LC-MS/MS was demonstrated. The web and database server are available at http://spirpepapp.sbi.kmutt.ac.th . SpirPep, a web-based bioactive peptide discovery application, is an in silico-based tool with an overview of the results. The platform is a one-stop analysis and visualization facility; and offers advantages over the currently available tools. This tool may be useful for further bioactivity analysis and the quantitative discovery of desirable peptides.

  16. pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning.

    PubMed

    Zhou, Xie-Xuan; Zeng, Wen-Feng; Chi, Hao; Luo, Chunjie; Liu, Chao; Zhan, Jianfeng; He, Si-Min; Zhang, Zhifei

    2017-12-05

    In tandem mass spectrometry (MS/MS)-based proteomics, search engines rely on comparison between an experimental MS/MS spectrum and the theoretical spectra of the candidate peptides. Hence, accurate prediction of the theoretical spectra of peptides appears to be particularly important. Here, we present pDeep, a deep neural network-based model for the spectrum prediction of peptides. Using the bidirectional long short-term memory (BiLSTM), pDeep can predict higher-energy collisional dissociation, electron-transfer dissociation, and electron-transfer and higher-energy collision dissociation MS/MS spectra of peptides with >0.9 median Pearson correlation coefficients. Further, we showed that intermediate layer of the neural network could reveal physicochemical properties of amino acids, for example the similarities of fragmentation behaviors between amino acids. We also showed the potential of pDeep to distinguish extremely similar peptides (peptides that contain isobaric amino acids, for example, GG = N, AG = Q, or even I = L), which were very difficult to distinguish using traditional search engines.

  17. Casein Hydrolysates by Lactobacillus brevis and Lactococcus lactis Proteases: Peptide Profile Discriminates Strain-Dependent Enzyme Specificity.

    PubMed

    Bounouala, Fatima Zohra; Roudj, Salima; Karam, Nour-Eddine; Recio, Isidra; Miralles, Beatriz

    2017-10-25

    Casein from ovine and bovine milk were hydrolyzed with two extracellular protease preparations from Lactobacillus brevis and Lactococcus lactis. The hydrolysates were analyzed by HPLC-MS/MS for peptide identification. A strain-dependent peptide profile could be observed, regardless of the casein origin, and the specificity of these two proteases could be computationally ascribed. The cleavage pattern yielding phenylalanine, leucine, or tyrosine at C-terminal appeared both at L. lactis and Lb. brevis hydrolysates. However, the cleavage C-terminal to lysine was favored with Lb. brevis protease. The hydrolysates showed ACE-inhibitory activity with IC 50 in the 16-70 μg/mL range. Ovine casein hydrolysates yielded greater ACE-inhibitory activity. Previously described antihypertensive and opioid peptides were found in these ovine and bovine casein hydrolysates and prediction of the antihypertensive activity of the sequences based on quantitative structure and activity relationship (QSAR) was performed. This approach might represent a useful classification tool regarding health-related properties prior to further purification.

  18. A sensitive mass spectrometric method for hypothesis-driven detection of peptide post-translational modifications: multiple reaction monitoring-initiated detection and sequencing (MIDAS).

    PubMed

    Unwin, Richard D; Griffiths, John R; Whetton, Anthony D

    2009-01-01

    The application of a targeted mass spectrometric workflow to the sensitive identification of post-translational modifications is described. This protocol employs multiple reaction monitoring (MRM) to search for all putative peptides specifically modified in a target protein. Positive MRMs trigger an MS/MS experiment to confirm the nature and site of the modification. This approach, termed MIDAS (MRM-initiated detection and sequencing), is more sensitive than approaches using neutral loss scanning or precursor ion scanning methodologies, due to a more efficient use of duty cycle along with a decreased background signal associated with MRM. We describe the use of MIDAS for the identification of phosphorylation, with a typical experiment taking just a couple of hours from obtaining a peptide sample. With minor modifications, the MIDAS method can be applied to other protein modifications or unmodified peptides can be used as a MIDAS target.

  19. Pepitome: evaluating improved spectral library search for identification complementarity and quality assessment

    PubMed Central

    Dasari, Surendra; Chambers, Matthew C.; Martinez, Misti A.; Carpenter, Kristin L.; Ham, Amy-Joan L.; Vega-Montoto, Lorenzo J.; Tabb, David L.

    2012-01-01

    Spectral libraries have emerged as a viable alternative to protein sequence databases for peptide identification. These libraries contain previously detected peptide sequences and their corresponding tandem mass spectra (MS/MS). Search engines can then identify peptides by comparing experimental MS/MS scans to those in the library. Many of these algorithms employ the dot product score for measuring the quality of a spectrum-spectrum match (SSM). This scoring system does not offer a clear statistical interpretation and ignores fragment ion m/z discrepancies in the scoring. We developed a new spectral library search engine, Pepitome, which employs statistical systems for scoring SSMs. Pepitome outperformed the leading library search tool, SpectraST, when analyzing data sets acquired on three different mass spectrometry platforms. We characterized the reliability of spectral library searches by confirming shotgun proteomics identifications through RNA-Seq data. Applying spectral library and database searches on the same sample revealed their complementary nature. Pepitome identifications enabled the automation of quality analysis and quality control (QA/QC) for shotgun proteomics data acquisition pipelines. PMID:22217208

  20. Novel members of the adipokinetic hormone family in beetles of the superfamily Scarabaeoidea.

    PubMed

    Gäde, Gerd; Šimek, Petr; Marco, Heather G

    2016-12-01

    Eight beetle species of the superfamily Scarabaeoidea were investigated with respect to peptides belonging to the adipokinetic hormone (AKH) family in their neurohemal organs, the corpora cardiaca (CC). The following beetle families are represented: Scarabaeidae, Lucanidae, and Geotrupidae. AKH peptides were identified through a heterospecific trehalose-mobilizing bioassay and by sequence analyses, using liquid chromatography coupled to positive electrospray mass spectrometry (LC-ESI-MS) and analysis of the tandem MS 2 spectra obtained by collision-induced dissociation. All the beetle species have octapeptide AKHs; some have two AKHs, while others have only one. Novel AKH members were found in Euoniticellus intermedius and Circellium bacchus (family Scarabaeidae), as well as in Dorcus parallelipipedus (family Lucanidae). Two species of the family Geotrupidae and two species of the Scarabaeidae subfamily Cetoniinae contain one known AKH peptide, Melme-CC, while E. intermedius produces a novel peptide code named Euoin-AKH: pEINFTTGWamide. Two AKH peptides were each identified in CC of C. bacchus and D. parallelipipedus: the novel Cirba-AKH: pEFNFSAGWamide and the known peptide, Scade-CC-I in the former, and the novel Dorpa-AKH: pEVNYSPVW amide and the known peptide, Melme-CC in the latter. Kheper bonelli (subfamily Scarabaeinae) also has two AKHs, the known Scade-CC-I and Scade-CC-II. All the novel peptides were synthesized and the amino acid sequence assignments were unequivocally confirmed by co-elution of the synthetic peptides with their natural equivalent, and identical MS parameters of the two forms. The novel synthetic peptides are all active in inducing hypertrehalosemia in cockroaches.

  1. A statistical method for assessing peptide identification confidence in accurate mass and time tag proteomics

    PubMed Central

    Stanley, Jeffrey R.; Adkins, Joshua N.; Slysz, Gordon W.; Monroe, Matthew E.; Purvine, Samuel O.; Karpievitch, Yuliya V.; Anderson, Gordon A.; Smith, Richard D.; Dabney, Alan R.

    2011-01-01

    Current algorithms for quantifying peptide identification confidence in the accurate mass and time (AMT) tag approach assume that the AMT tags themselves have been correctly identified. However, there is uncertainty in the identification of AMT tags, as this is based on matching LC-MS/MS fragmentation spectra to peptide sequences. In this paper, we incorporate confidence measures for the AMT tag identifications into the calculation of probabilities for correct matches to an AMT tag database, resulting in a more accurate overall measure of identification confidence for the AMT tag approach. The method is referred to as Statistical Tools for AMT tag Confidence (STAC). STAC additionally provides a Uniqueness Probability (UP) to help distinguish between multiple matches to an AMT tag and a method to calculate an overall false discovery rate (FDR). STAC is freely available for download as both a command line and a Windows graphical application. PMID:21692516

  2. Sequencing of T-superfamily conotoxins from Conus virgo: pyroglutamic acid identification and disulfide arrangement by MALDI mass spectrometry.

    PubMed

    Mandal, Amit Kumar; Ramasamy, Mani Ramakrishnan Santhana; Sabareesh, Varatharajan; Openshaw, Matthew E; Krishnan, Kozhalmannom S; Balaram, Padmanabhan

    2007-08-01

    De novo mass spectrometric sequencing of two Conus peptides, Vi1359 and Vi1361, from the vermivorous cone snail Conus virgo, found off the southern Indian coast, is presented. The peptides, whose masses differ only by 2 Da, possess two disulfide bonds and an amidated C-terminus. Simple chemical modifications and enzymatic cleavage coupled with matrix assisted laser desorption ionization (MALDI) mass spectrometric analysis aided in establishing the sequences of Vi1359, ZCCITIPECCRI-NH(2), and Vi1361, ZCCPTMPECCRI-NH(2), which differ only at residues 4 and 6 (Z = pyroglutamic acid). The presence of the pyroglutamyl residue at the N-terminus was unambiguously identified by chemical hydrolysis of the cyclic amide, followed by esterification. The presence of Ile residues in both the peptides was confirmed from high-energy collision induced dissociation (CID) studies, using the observation of w(n)- and d(n)-ions as a diagnostic. Differential cysteine labeling, in conjunction with MALDI-MS/MS, permitted establishment of disulfide connectivity in both peptides as Cys2-Cys9 and Cys3-Cys10. The cysteine pattern clearly reveals that the peptides belong to the class of T-superfamily conotoxins, in particular the T-1 superfamily.

  3. Use of a Designed Peptide Array To Infer Dissociation Trends for Nontryptic Peptides in Quadrupole Ion Trap and Quadrupole Time-of-Flight Mass Spectrometry

    DOE PAGES

    Gaucher, Sara P.; Morrow, Jeffrey A.; Faulon, Jean-Loup M.

    2007-09-14

    Observed peptide gas-phase fragmentation patterns are a complex function of many variables. In order to systematically probe this phenomenon, an array of 40 peptides was synthesized for study. The array of sequences was designed to hold certain variables (peptide length) constant and randomize or balance others (peptide amino acid distribution and position). A high-quality tandem mass spectrometry (MS/MS) data set was acquired for each peptide for all observed charge states on multiple MS instruments, quadrupole-time-of-flight and quadrupole ion trap. The data were analyzed as a function of total charge state and number of mobile protons. Previously known dissociation trends weremore » observed, validating our approach. In addition, the general influence of basic amino acids on dissociation could be determined because, in contrast to the more widely studied tryptic peptides, the amino acids H, K, and R were positionally distributed. Interestingly, our results suggest that cleavage at all basic amino acids is suppressed when a mobile proton is available. Cleavage at H becomes favored only under conditions where a partially mobile proton is present, a caveat to the previously reported trend of enhanced cleavage at H. In conclusion, all acquired data were used as a benchmark to determine how well these sequences would have been identified in a database search using a common algorithm, Mascot.« less

  4. Analysis of the endogenous peptide profile of milk: identification of 248 mainly casein-derived peptides.

    PubMed

    Baum, Florian; Fedorova, Maria; Ebner, Jennifer; Hoffmann, Ralf; Pischetsrieder, Monika

    2013-12-06

    Milk is an excellent source of bioactive peptides. However, the composition of the native milk peptidome has only been partially elucidated. The present study applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) directly or after prefractionation of the milk peptides by reverse-phase high-performance liquid chromatography (RP-HPLC) or OFFGEL fractionation for the comprehensive analysis of the peptide profile of raw milk. The peptide sequences were determined by MALDI-TOF/TOF or nano-ultra-performance liquid chromatography-nanoelectrospray ionization-LTQ-Orbitrap-MS. Direct MALDI-TOF-MS analysis led to the assignment of 57 peptides. Prefractionation by both complementary methods led to the assignment of another 191 peptides. Most peptides originate from α(S1)-casein, followed by β-casein, and α(S2)-casein. κ-Casein and whey proteins seem to play only a minor role as peptide precursors. The formation of many, but not all, peptides could be explained by the activity of the endogenous peptidases, plasmin or cathepsin D, B, and G. Database searches revealed the presence of 22 peptides with established physiological function, including those with angiotensin-converting-enzyme (ACE) inhibitory, immunomodulating, or antimicrobial activity.

  5. Fragmentations of [M-H]- anions of peptides containing tyrosine sulfate. Does the sulfate group rearrange? A joint experimental and theoretical study.

    PubMed

    Tran, T T Nha; Wang, Tianfang; Hack, Sandra; Bowie, John H

    2013-05-30

    To investigate the fragmentations in the negative-ion electrospray mass spectra of peptides containing tyrosine sulfate. Possible fragmentation mechanisms were explored using a Waters QTOF2 tandem mass spectrometer in concert with calculations at the CAM-B3LYP/6-311++g(d,p) level of theory. The major negative ion formed in the ESI-MS of peptides containing tyrosine sulfate is [(M-H)-SO3](-) and this process normally yields the base peak of the spectrum. The basic backbone cleavages of [(M-H)-SO3](-) allowed the sequence of the peptide to be determined. Rearrangement reactions involving the formation of HOSO3(-) and [(M-H)-H2SO4](-) yielded minor peaks with relative abundances ≤ 10% and ≤ 2%, respectively. The mass spectra of the [M-H](-) and [(M-H)-SO3](-) anions of peptides containing tyrosine sulfate allowed the position of the tyrosine sulfate group to be determined, together with the amino acid sequence of the peptide. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Context-Sensitive Markov Models for Peptide Scoring and Identification from Tandem Mass Spectrometry

    PubMed Central

    Grover, Himanshu; Wallstrom, Garrick; Wu, Christine C.

    2013-01-01

    Abstract Peptide and protein identification via tandem mass spectrometry (MS/MS) lies at the heart of proteomic characterization of biological samples. Several algorithms are able to search, score, and assign peptides to large MS/MS datasets. Most popular methods, however, underutilize the intensity information available in the tandem mass spectrum due to the complex nature of the peptide fragmentation process, thus contributing to loss of potential identifications. We present a novel probabilistic scoring algorithm called Context-Sensitive Peptide Identification (CSPI) based on highly flexible Input-Output Hidden Markov Models (IO-HMM) that capture the influence of peptide physicochemical properties on their observed MS/MS spectra. We use several local and global properties of peptides and their fragment ions from literature. Comparison with two popular algorithms, Crux (re-implementation of SEQUEST) and X!Tandem, on multiple datasets of varying complexity, shows that peptide identification scores from our models are able to achieve greater discrimination between true and false peptides, identifying up to ∼25% more peptides at a False Discovery Rate (FDR) of 1%. We evaluated two alternative normalization schemes for fragment ion-intensities, a global rank-based and a local window-based. Our results indicate the importance of appropriate normalization methods for learning superior models. Further, combining our scores with Crux using a state-of-the-art procedure, Percolator, we demonstrate the utility of using scoring features from intensity-based models, identifying ∼4-8 % additional identifications over Percolator at 1% FDR. IO-HMMs offer a scalable and flexible framework with several modeling choices to learn complex patterns embedded in MS/MS data. PMID:23289783

  7. Comparison of two methods for purification of enterocin B, a bacteriocin produced by Enterococcus faecium W3.

    PubMed

    Dündar, Halil; Atakay, Mehmet; Çelikbıçak, Ömür; Salih, Bekir; Bozoğlu, Faruk

    2015-01-01

    This study aimed to compare two different approaches for the purification of enterocin B from Enterococcus faecium strain W3 based on the observation that the bacteriocin was found both in cell associated form and in culture supernatant. The first approach employed ammonium sulfate precipitation, cation-exchange chromatography, and sequential reverse-phase high-performance liquid chromatography. The latter approach exploited a pH-mediated cell adsorption-desorption method to extract cell-bound bacteriocin, and one run of reverse-phase chromatography. The first method resulted in purification of enterocin B with a recovery of 4% of the initial bacteriocin activity found in culture supernatant. MALDI-TOF MS analysis and de novo peptide sequencing of the purified bacteriocin confirmed that the active peptide was enterocin B. The second method achieved the purification of enterocin B with a higher recovery (16%) and enabled us to achieve pure bacteriocin within a shorter period of time by avoiding time consuming purification protocols. The purity and identity of the active peptide were confirmed again by matrix-assisted laser desorption/ionization time-of flight (MALDI-TOF) mass spectrometry (MS) analysis. Although both approaches were satisfactory to obtain a sufficient amount of enterocin B for use in MS and amino acid sequence analysis, the latter was proved to be applicable in large-scale and rapid purification of enterocin B.

  8. PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, Ying S.; Egertson, Jarrett D.; Bollinger, James G.

    Data-independent acquisition (DIA) is an emerging mass spectrometry (MS)-based technique for unbiased and reproducible measurement of protein mixtures. DIA tandem mass spectrometry spectra are often highly multiplexed, containing product ions from multiple cofragmenting precursors. Detecting peptides directly from DIA data is therefore challenging; most DIA data analyses require spectral libraries. Here we present PECECAN (http://pecan.maccosslab.org), a library-free, peptide-centric tool that robustly and accurately detects peptides directly from DIA data. PECECAN reports evidence of detection based on product ion scoring, which enables detection of low-abundance analytes with poor precursor ion signal. We demonstrate the chromatographic peak picking accuracy and peptide detectionmore » capability of PECECAN, and we further validate its detection with data-dependent acquisition and targeted analyses. Lastly, we used PECECAN to build a plasma proteome library from DIA data and to query known sequence variants.« less

  9. Proteomics analysis of "Rovabiot Excel", a secreted protein cocktail from the filamentous fungus Penicillium funiculosum grown under industrial process fermentation.

    PubMed

    Guais, Olivier; Borderies, Gisèle; Pichereaux, Carole; Maestracci, Marc; Neugnot, Virginie; Rossignol, Michel; François, Jean Marie

    2008-12-01

    MS/MS techniques are well customized now for proteomic analysis, even for non-sequenced organisms, since peptide sequences obtained by these methods can be matched with those found in databases from closely related sequenced organisms. We used this approach to characterize the protein content of the "Rovabio Excel", an enzymatic cocktail produced by Penicillium funiculosum that is used as feed additive in animal nutrition. Protein separation by bi-dimensional electrophoresis yielded more than 100 spots, from which 37 proteins were unambiguously assigned from peptide sequences. By one-dimensional SDS-gel electrophoresis, 34 proteins were identified among which 8 were not found in the 2-DE analysis. A third method, termed 'peptidic shotgun', which consists in a direct treatment of the cocktail by trypsin followed by separation of the peptides on two-dimensional liquid chromatography, resulted in the identification of two additional proteins not found by the two other methods. Altogether, more than 50 proteins, among which several glycosylhydrolytic, hemicellulolytic and proteolytic enzymes, were identified by combining three separation methods in this enzymatic cocktail. This work confirmed the power of proteome analysis to explore the genome expression of a non-sequenced fungus by taking advantage of sequences from phylogenetically related filamentous fungi and pave the way for further functional analysis of P. funiculosum.

  10. Identification of cross-reactive B-cell epitopes between Bos d 9.0101(Bos Taurus) and Gly m 5.0101 (Glycine max) by epitope mapping MALDI-TOF MS.

    PubMed

    Candreva, Ángela María; Ferrer-Navarro, Mario; Bronsoms, Silvia; Quiroga, Alejandra; Curciarello, Renata; Cauerhff, Ana; Petruccelli, Silvana; Docena, Guillermo Horacio; Trejo, Sebastián Alejandro

    2017-08-01

    Exposure to cow's milk constitutes one of the most common causes of food allergy. In addition, exposure to soy proteins has become relevant in a restricted proportion of milk allergic pediatric patients treated with soy formulae as a dairy substitute, because of the cross-allergenicity described between soy and milk proteins. We have previously identified several cross-reactive allergens between milk and soy that may explain this intolerance. The purpose of the present work was to identify epitopes in the purified αS1-casein and the recombinant soy allergen Gly m 5.0101 (Gly m 5) using an α-casein-specific monoclonal antibody (1D5 mAb) through two different approaches for epitope mapping, to understand cross-reactivity between milk and soy. The 1D5 mAb was immobilized onto magnetic beads, incubated with the peptide mixture previously obtained by enzymatic digestion of the allergens, and the captured peptides were identified by MALDI-TOF MS analysis. On a second approach, the peptide mixture was resolved by RP-HPLC and immunodominant peptides were identified by dot blot with the mAb. Finally, recognized peptides were sequenced by MALDI-TOF MS. This novel MS based approach led us to identify and characterize four peptides on α-casein and three peptides on Gly m 5 with a common core motif. Information obtained from these cross-reactive epitopes allows us to gain valuable insight into the molecular mechanisms of cross-reactivity, to further develop new and more effective vaccines for food allergy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Integrated protein analysis platform based on column switch recycling size exclusion chromatography, microenzymatic reactor and microRPLC-ESI-MS/MS.

    PubMed

    Yuan, Huiming; Zhou, Yuan; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2009-10-30

    An integrated platform with the combination of proteins and peptides separation was established via the unit of on-line proteins digestion, by which proteins were in sequence separated by column switch recycling size exclusion chromatography (csrSEC), on-line digested by an immobilized trypsin microreactor, trapped and desalted by two parallel C8 precolumns, separated by microRPLC with the linear gradient of organic modifier concentration, and identified by ESI-MS/MS. A 6-protein mixture, with Mr ranging from 10 kDa to 80 kDa, was used to evaluate the performance of the integrated platform, and all proteins were identified with sequence coverage over 5.67%. Our experimental results demonstrate that such an integrated platform is of advantages such as good time compatibility, high peak capacity, and facile automation, which might be a promising approach for proteome study.

  12. Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger

    PubMed Central

    Wright, James C; Sugden, Deana; Francis-McIntyre, Sue; Riba-Garcia, Isabel; Gaskell, Simon J; Grigoriev, Igor V; Baker, Scott E; Beynon, Robert J; Hubbard, Simon J

    2009-01-01

    Background Proteomic data is a potentially rich, but arguably unexploited, data source for genome annotation. Peptide identifications from tandem mass spectrometry provide prima facie evidence for gene predictions and can discriminate over a set of candidate gene models. Here we apply this to the recently sequenced Aspergillus niger fungal genome from the Joint Genome Institutes (JGI) and another predicted protein set from another A.niger sequence. Tandem mass spectra (MS/MS) were acquired from 1d gel electrophoresis bands and searched against all available gene models using Average Peptide Scoring (APS) and reverse database searching to produce confident identifications at an acceptable false discovery rate (FDR). Results 405 identified peptide sequences were mapped to 214 different A.niger genomic loci to which 4093 predicted gene models clustered, 2872 of which contained the mapped peptides. Interestingly, 13 (6%) of these loci either had no preferred predicted gene model or the genome annotators' chosen "best" model for that genomic locus was not found to be the most parsimonious match to the identified peptides. The peptides identified also boosted confidence in predicted gene structures spanning 54 introns from different gene models. Conclusion This work highlights the potential of integrating experimental proteomics data into genomic annotation pipelines much as expressed sequence tag (EST) data has been. A comparison of the published genome from another strain of A.niger sequenced by DSM showed that a number of the gene models or proteins with proteomics evidence did not occur in both genomes, further highlighting the utility of the method. PMID:19193216

  13. Biological Nanoplatforms for Self-Assembled Electronics

    DTIC Science & Technology

    2015-03-24

    as M13 , a virus that infects Escherichia coli. Approximately one billion different amino acid sequences are displayed on different viruses in the...sequence when contained within a phage M13 coat protein sequence, not chemically linked to the surface of phage MS2 VLPs. Thus, binding properties may...gallium arsenide in a bacteriophage M13 phage display library, MS2 VLPs modified with the metal binding peptides do not display the same activity

  14. Tempest: GPU-CPU computing for high-throughput database spectral matching.

    PubMed

    Milloy, Jeffrey A; Faherty, Brendan K; Gerber, Scott A

    2012-07-06

    Modern mass spectrometers are now capable of producing hundreds of thousands of tandem (MS/MS) spectra per experiment, making the translation of these fragmentation spectra into peptide matches a common bottleneck in proteomics research. When coupled with experimental designs that enrich for post-translational modifications such as phosphorylation and/or include isotopically labeled amino acids for quantification, additional burdens are placed on this computational infrastructure by shotgun sequencing. To address this issue, we have developed a new database searching program that utilizes the massively parallel compute capabilities of a graphical processing unit (GPU) to produce peptide spectral matches in a very high throughput fashion. Our program, named Tempest, combines efficient database digestion and MS/MS spectral indexing on a CPU with fast similarity scoring on a GPU. In our implementation, the entire similarity score, including the generation of full theoretical peptide candidate fragmentation spectra and its comparison to experimental spectra, is conducted on the GPU. Although Tempest uses the classical SEQUEST XCorr score as a primary metric for evaluating similarity for spectra collected at unit resolution, we have developed a new "Accelerated Score" for MS/MS spectra collected at high resolution that is based on a computationally inexpensive dot product but exhibits scoring accuracy similar to that of the classical XCorr. In our experience, Tempest provides compute-cluster level performance in an affordable desktop computer.

  15. EPOR-Based Purification and Analysis of Erythropoietin Mimetic Peptides from Human Urine by Cys-Specific Cleavage and LC/MS/MS

    NASA Astrophysics Data System (ADS)

    Vogel, Matthias; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2015-09-01

    The development of a new class of erythropoietin mimetic agents (EMA) for treating anemic conditions has been initiated with the discovery of oligopeptides capable of dimerizing the erythropoietin (EPO) receptor and thus stimulating erythropoiesis. The most promising amino acid sequences have been mounted on various different polymeric structures or carrier molecules to obtain highly active EPO-like drugs exhibiting beneficial and desirable pharmacokinetic profiles. Concomitant with creating new therapeutic options, erythropoietin mimetic peptide (EMP)-based drug candidates represent means to artificially enhance endurance performance and necessitate coverage by sports drug testing methods. Therefore, the aim of the present study was to develop a strategy for the comprehensive detection of EMPs in doping controls, which can be used complementary to existing protocols. Three model EMPs were used to provide proof-of-concept data. Following EPO receptor-facilitated purification of target analytes from human urine, the common presence of the cysteine-flanked core structure of EMPs was exploited to generate diagnostic peptides with the aid of a nonenzymatic cleavage procedure. Sensitive detection was accomplished by targeted-SIM/data-dependent MS2 analysis. Method characterization was conducted for the EMP-based drug peginesatide concerning specificity, linearity, precision, recovery, stability, ion suppression/enhancement, and limit of detection (LOD, 0.25 ng/mL). Additionally, first data for the identification of the erythropoietin mimetic peptides EMP1 and BB68 were generated, demonstrating the multi-analyte testing capability of the presented approach.

  16. The Use of Ammonium Formate as a Mobile-Phase Modifier for LC-MS/MS Analysis of Tryptic Digests

    PubMed Central

    Johnson, Darryl; Boyes, Barry; Orlando, Ron

    2013-01-01

    A major challenge facing current mass spectrometry (MS)-based proteomics research is the large concentration range displayed in biological systems, which far exceeds the dynamic range of commonly available mass spectrometers. One approach to overcome this limitation is to improve online reversed-phase liquid chromatography (RP-LC) separation methodologies. LC mobile-phase modifiers are used to improve peak shape and increase sample load tolerance. Trifluoroacetic acid (TFA) is a commonly used mobile-phase modifier, as it produces peptide separations that are far superior to other additives. However, TFA leads to signal suppression when incorporated with electrospray ionization (ESI), and thus, other modifiers, such as formic acid (FA), are used for LC-MS applications. FA exhibits significantly less signal suppression, but is not as effective of a modifier as TFA. An alternative mobile-phase modifier is the combination of FA and ammonium formate (AF), which has been shown to improve peptide separations. The ESI-MS compatibility of this modifier has not been investigated, particularly for proteomic applications. This work compares the separation metrics of mobile phases modified with FA and FA/AF and explores the use of FA/AF for the LC-MS analysis of tryptic digests. Standard tryptic-digest peptides were used for comparative analysis of peak capacity and sample load tolerance. The compatibility of FA/AF in proteomic applications was examined with the analysis of soluble proteins from canine prostate carcinoma tissue. Overall, the use of FA/AF improved online RP-LC separations and led to significant increases in peptide identifications with improved protein sequence coverage. PMID:24294112

  17. The use of ammonium formate as a mobile-phase modifier for LC-MS/MS analysis of tryptic digests.

    PubMed

    Johnson, Darryl; Boyes, Barry; Orlando, Ron

    2013-12-01

    A major challenge facing current mass spectrometry (MS)-based proteomics research is the large concentration range displayed in biological systems, which far exceeds the dynamic range of commonly available mass spectrometers. One approach to overcome this limitation is to improve online reversed-phase liquid chromatography (RP-LC) separation methodologies. LC mobile-phase modifiers are used to improve peak shape and increase sample load tolerance. Trifluoroacetic acid (TFA) is a commonly used mobile-phase modifier, as it produces peptide separations that are far superior to other additives. However, TFA leads to signal suppression when incorporated with electrospray ionization (ESI), and thus, other modifiers, such as formic acid (FA), are used for LC-MS applications. FA exhibits significantly less signal suppression, but is not as effective of a modifier as TFA. An alternative mobile-phase modifier is the combination of FA and ammonium formate (AF), which has been shown to improve peptide separations. The ESI-MS compatibility of this modifier has not been investigated, particularly for proteomic applications. This work compares the separation metrics of mobile phases modified with FA and FA/AF and explores the use of FA/AF for the LC-MS analysis of tryptic digests. Standard tryptic-digest peptides were used for comparative analysis of peak capacity and sample load tolerance. The compatibility of FA/AF in proteomic applications was examined with the analysis of soluble proteins from canine prostate carcinoma tissue. Overall, the use of FA/AF improved online RP-LC separations and led to significant increases in peptide identifications with improved protein sequence coverage.

  18. A Quantitative Tool to Distinguish Isobaric Leucine and Isoleucine Residues for Mass Spectrometry-Based De Novo Monoclonal Antibody Sequencing

    NASA Astrophysics Data System (ADS)

    Poston, Chloe N.; Higgs, Richard E.; You, Jinsam; Gelfanova, Valentina; Hale, John E.; Knierman, Michael D.; Siegel, Robert; Gutierrez, Jesus A.

    2014-07-01

    De novo sequencing by mass spectrometry (MS) allows for the determination of the complete amino acid (AA) sequence of a given protein based on the mass difference of detected ions from MS/MS fragmentation spectra. The technique relies on obtaining specific masses that can be attributed to characteristic theoretical masses of AAs. A major limitation of de novo sequencing by MS is the inability to distinguish between the isobaric residues leucine (Leu) and isoleucine (Ile). Incorrect identification of Ile as Leu or vice versa often results in loss of activity in recombinant antibodies. This functional ambiguity is commonly resolved with costly and time-consuming AA mutation and peptide sequencing experiments. Here, we describe a set of orthogonal biochemical protocols, which experimentally determine the identity of Ile or Leu residues in monoclonal antibodies (mAb) based on the selectivity that leucine aminopeptidase shows for n-terminal Leu residues and the cleavage preference for Leu by chymotrypsin. The resulting observations are combined with germline frequencies and incorporated into a logistic regression model, called Predictor for Xle Sites (PXleS) to provide a statistical likelihood for the identity of Leu at an ambiguous site. We demonstrate that PXleS can generate a probability for an Xle site in mAbs with 96% accuracy. The implementation of PXleS precludes the expression of several possible sequences and, therefore, reduces the overall time and resources required to go from spectra generation to a biologically active sequence for a mAb when an Ile or Leu residue is in question.

  19. A quantitative tool to distinguish isobaric leucine and isoleucine residues for mass spectrometry-based de novo monoclonal antibody sequencing.

    PubMed

    Poston, Chloe N; Higgs, Richard E; You, Jinsam; Gelfanova, Valentina; Hale, John E; Knierman, Michael D; Siegel, Robert; Gutierrez, Jesus A

    2014-07-01

    De novo sequencing by mass spectrometry (MS) allows for the determination of the complete amino acid (AA) sequence of a given protein based on the mass difference of detected ions from MS/MS fragmentation spectra. The technique relies on obtaining specific masses that can be attributed to characteristic theoretical masses of AAs. A major limitation of de novo sequencing by MS is the inability to distinguish between the isobaric residues leucine (Leu) and isoleucine (Ile). Incorrect identification of Ile as Leu or vice versa often results in loss of activity in recombinant antibodies. This functional ambiguity is commonly resolved with costly and time-consuming AA mutation and peptide sequencing experiments. Here, we describe a set of orthogonal biochemical protocols, which experimentally determine the identity of Ile or Leu residues in monoclonal antibodies (mAb) based on the selectivity that leucine aminopeptidase shows for n-terminal Leu residues and the cleavage preference for Leu by chymotrypsin. The resulting observations are combined with germline frequencies and incorporated into a logistic regression model, called Predictor for Xle Sites (PXleS) to provide a statistical likelihood for the identity of Leu at an ambiguous site. We demonstrate that PXleS can generate a probability for an Xle site in mAbs with 96% accuracy. The implementation of PXleS precludes the expression of several possible sequences and, therefore, reduces the overall time and resources required to go from spectra generation to a biologically active sequence for a mAb when an Ile or Leu residue is in question.

  20. Taste, umami-enhance effect and amino acid sequence of peptides separated from silkworm pupa hydrolysate.

    PubMed

    Yu, Zilin; Jiang, Hongrui; Guo, Rongcan; Yang, Bo; You, Gang; Zhao, Mouming; Liu, Xiaoling

    2018-06-01

    Four umami peptides were separated and purified by ultrafiltration, gel filtration chromatography and identified by ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS), the amino acid sequences of four peptides are Val-Pro-Tyr (VPY), Thr-Ala-Tyr (TAY), Ala-Ala-Pro-Tyr (AAPY) and Gly-Phe-Pro (GFP). The result illustrates that the umami amino acids are not the content of umami peptides, but bitter amino acids are included. The threshold of VPY, TAY, AAPY and GFP were 1.65 mmol/L, 1.76 mmol/L, 2.97 mmol/L and 6.26 mmol/L, respectively. The peptide TAY, VPY and AAPY had an umami-enhancement effect on the monosodium glutamate (MSG) + sodium chloride (NaCl) solution, their concentrations were 2.5 g/L, 5 g/L and 5 g/L, respectively, while GFP has no significant umami-enhancement effect in solution. In addition, the peptides have better taste than its composing amino acids, which indicates that the taste of peptide does not depend on its composing amino acids. Copyright © 2018. Published by Elsevier Ltd.

  1. Isotope-labeled cross-linkers and Fourier transform ion cyclotron resonance mass spectrometry for structural analysis of a protein/peptide complex.

    PubMed

    Ihling, Christian; Schmidt, Andreas; Kalkhof, Stefan; Schulz, Daniela M; Stingl, Christoph; Mechtler, Karl; Haack, Michael; Beck-Sickinger, Annette G; Cooper, Dermot M F; Sinz, Andrea

    2006-08-01

    For structural studies of proteins and their complexes, chemical cross-linking combined with mass spectrometry presents a promising strategy to obtain structural data of protein interfaces from low quantities of proteins within a short time. We explore the use of isotope-labeled cross-linkers in combination with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry for a more efficient identification of cross-linker containing species. For our studies, we chose the calcium-independent complex between calmodulin and a 25-amino acid peptide from the C-terminal region of adenylyl cyclase 8 containing an "IQ-like motif." Cross-linking reactions between calmodulin and the peptide were performed in the absence of calcium using the amine-reactive, isotope-labeled (d0 and d4) cross-linkers BS3 (bis[sulfosuccinimidyl]suberate) and BS2G (bis[sulfosuccinimidyl]glutarate). Tryptic in-gel digestion of excised gel bands from covalently cross-linked complexes resulted in complicated peptide mixtures, which were analyzed by nano-HPLC/nano-ESI-FTICR mass spectrometry. In cases where more than one reactive functional group, e.g., amine groups of lysine residues, is present in a sequence stretch, MS/MS analysis is a prerequisite for unambiguously identifying the modified residues. MS/MS experiments revealed two lysine residues in the central alpha-helix of calmodulin as well as three lysine residues both in the C-terminal and N-terminal lobes of calmodulin to be cross-linked with one single lysine residue of the adenylyl cyclase 8 peptide. Further cross-linking studies will have to be conducted to propose a structural model for the calmodulin/peptide complex, which is formed in the absence of calcium. The combination of using isotope-labeled cross-linkers, determining the accurate mass of intact cross-linked products, and verifying the amino acid sequences of cross-linked species by MS/MS presents a convenient approach that offers the perspective to obtain structural data of protein assemblies within a few days.

  2. Expansion and diversification of the MSDIN family of cyclic peptide genes in the poisonous agarics Amanita phalloides and A. bisporigera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulman, Jane A.; Childs, Kevin L.; Sgambelluri, R. Michael

    Here, the cyclic peptide toxins of Amanita mushrooms, such as α-amanitin and phalloidin, are encoded by the “MSDIN” gene family and ribosomally biosynthesized. Based on partial genome sequence and PCR analysis, some members of the MSDIN family were previously identified in Amanita bisporigera, and several other members are known from other species of Amanita. However, the complete complement in any one species, and hence the genetic capacity for these fungi to make cyclic peptides, remains unknown. As a result, draft genome sequences of two cyclic peptide-producing mushrooms, the “Death Cap” A. phalloides and the “Destroying Angel” A. bisporigera, were obtained.more » Each species has ~30 MSDIN genes, most of which are predicted to encode unknown cyclic peptides. Some MSDIN genes were duplicated in one or the other species, but only three were common to both species. A gene encoding cycloamanide B, a previously described nontoxic cyclic heptapeptide, was also present in A. phalloides, but genes for antamanide and cycloamanides A, C, and D were not. In A. bisporigera, RNA expression was observed for 20 of the MSDIN family members. Based on their predicted sequences, novel cyclic peptides were searched for by LC/MS/MS in extracts of A. phalloides. The presence of two cyclic peptides, named cycloamanides E and F with structures cyclo(SFFFPVP) and cyclo(IVGILGLP), was thereby demonstrated. Of the MSDIN genes reported earlier from another specimen of A. bisporigera, 9 of 14 were not found in the current genome assembly. Differences between previous and current results for the complement of MSDIN genes and cyclic peptides in the two fungi probably represents natural variation among geographically dispersed isolates of A. phalloides and among the members of the poorly defined A. bisporigera species complex. Both A. phalloides and A. bisporigera contain two prolyl oligopeptidase genes, one of which (POPB) is probably dedicated to cyclic peptide biosynthesis as it is in Galerina marginata. Finally, the MSDIN gene family has expanded and diverged rapidly in Amanita section Phalloideae. Together, A. bisporigera and A. phalloides are predicted to have the capacity to make more than 50 cyclic hexa-, hepta-,octa-, nona- and decapeptides.« less

  3. Expansion and diversification of the MSDIN family of cyclic peptide genes in the poisonous agarics Amanita phalloides and A. bisporigera

    DOE PAGES

    Pulman, Jane A.; Childs, Kevin L.; Sgambelluri, R. Michael; ...

    2016-12-15

    Here, the cyclic peptide toxins of Amanita mushrooms, such as α-amanitin and phalloidin, are encoded by the “MSDIN” gene family and ribosomally biosynthesized. Based on partial genome sequence and PCR analysis, some members of the MSDIN family were previously identified in Amanita bisporigera, and several other members are known from other species of Amanita. However, the complete complement in any one species, and hence the genetic capacity for these fungi to make cyclic peptides, remains unknown. As a result, draft genome sequences of two cyclic peptide-producing mushrooms, the “Death Cap” A. phalloides and the “Destroying Angel” A. bisporigera, were obtained.more » Each species has ~30 MSDIN genes, most of which are predicted to encode unknown cyclic peptides. Some MSDIN genes were duplicated in one or the other species, but only three were common to both species. A gene encoding cycloamanide B, a previously described nontoxic cyclic heptapeptide, was also present in A. phalloides, but genes for antamanide and cycloamanides A, C, and D were not. In A. bisporigera, RNA expression was observed for 20 of the MSDIN family members. Based on their predicted sequences, novel cyclic peptides were searched for by LC/MS/MS in extracts of A. phalloides. The presence of two cyclic peptides, named cycloamanides E and F with structures cyclo(SFFFPVP) and cyclo(IVGILGLP), was thereby demonstrated. Of the MSDIN genes reported earlier from another specimen of A. bisporigera, 9 of 14 were not found in the current genome assembly. Differences between previous and current results for the complement of MSDIN genes and cyclic peptides in the two fungi probably represents natural variation among geographically dispersed isolates of A. phalloides and among the members of the poorly defined A. bisporigera species complex. Both A. phalloides and A. bisporigera contain two prolyl oligopeptidase genes, one of which (POPB) is probably dedicated to cyclic peptide biosynthesis as it is in Galerina marginata. Finally, the MSDIN gene family has expanded and diverged rapidly in Amanita section Phalloideae. Together, A. bisporigera and A. phalloides are predicted to have the capacity to make more than 50 cyclic hexa-, hepta-,octa-, nona- and decapeptides.« less

  4. Deamidation in ricin studied by capillary zone electrophoresis- and liquid chromatography-mass spectrometry.

    PubMed

    Bergström, Tomas; Fredriksson, Sten-Åke; Nilsson, Calle; Åstot, Crister

    2015-01-01

    Deamidation in ricin, a toxin present in castor beans from the plant Ricinus communis, was investigated using capillary zone electrophoresis (CZE) and liquid chromatography coupled to high resolution mass spectrometry. Potential sites for deamidation, converting asparagine (Asn) into aspartic or isoaspartic acid (Asp or isoAsp), were identified in silico based on the protein sequence motifs and tertiary structure. In parallel, CZE- and LC-MS-based screening were performed on the digested toxin to detect deamidated peptides. The use of CZE-MS was critical for the separation of small native/deamidated peptide pairs. Selected peptides were subjected to a detailed analysis by tandem mass spectrometry to verify the presence of deamidation and determine its exact position. In the ricin preparation studied, deamidation was confirmed and located to three asparagine residues: Asn54 in the A-chain, and Asn42 and Asn60 in the B-chain. Possible in vitro deamidation occurring during sample preparation was monitored using a synthetic peptide with a known and rapid rate of deamidation. Finally, we showed that the isoelectric diversity previously reported in ricin is related to the level of deamidation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Cloning and characterization of 2S albumin, Car i 1, a major allergen in pecan.

    PubMed

    Sharma, Girdhari M; Irsigler, Andre; Dhanarajan, Pushparani; Ayuso, Rosalia; Bardina, Luda; Sampson, Hugh A; Roux, Kenneth H; Sathe, Shridhar K

    2011-04-27

    Although pecans are associated with IgE-mediated food allergies, the allergens responsible remain to be identified and characterized. The 2S albumin gene was amplified from the pecan cDNA library. Dot-blots were used to screen the recombinant protein with pecan allergic patients' serum. The affinity purified native protein was analyzed by Edman sequencing and mass spectrometry/mass spectrometry (MS/MS) analysis. Cross-reactivity with walnut was determined by inhibition enzyme-linked immunosorbent assay (ELISA). Sequential epitopes were determined by probing the overlapping peptides with three different patients' serum pool. The 3-dimensional homology model was generated, and the locations of the pecan epitopes were compared with those of known sequential epitopes on other allergenic tree nut homologues. Of 28 patients tested by dot-blot, 22 (79%) bound to 2S albumin, designated as Car i 1. Edman sequencing and the MS/MS sequencing of native 2S albumin confirmed the identity of recombinant (r) Car i 1. Both pecan and walnut protein extracts inhibited the IgE-binding to rCar i 1. Sequential epitope mapping indicated weak, moderate, and strong reactivity against 12, 7, and 5 peptides, respectively. Of the 11 peptides recognized by all serum pools, 5 peptides were strongly reactive and located in 3 discrete regions of the Car i 1 (amino acids 43-57, 67-78, and 106-120). Three-dimensional modeling revealed IgE-reactive epitopes to be solvent accessible and share significant homology with other tree nuts providing a possible basis for previously observed cross-reactivity.

  6. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins.

    PubMed

    Ferro, Myriam; Brugière, Sabine; Salvi, Daniel; Seigneurin-Berny, Daphné; Court, Magali; Moyet, Lucas; Ramus, Claire; Miras, Stéphane; Mellal, Mourad; Le Gall, Sophie; Kieffer-Jaquinod, Sylvie; Bruley, Christophe; Garin, Jérôme; Joyard, Jacques; Masselon, Christophe; Rolland, Norbert

    2010-06-01

    Recent advances in the proteomics field have allowed a series of high throughput experiments to be conducted on chloroplast samples, and the data are available in several public databases. However, the accurate localization of many chloroplast proteins often remains hypothetical. This is especially true for envelope proteins. We went a step further into the knowledge of the chloroplast proteome by focusing, in the same set of experiments, on the localization of proteins in the stroma, the thylakoids, and envelope membranes. LC-MS/MS-based analyses first allowed building the AT_CHLORO database (http://www.grenoble.prabi.fr/protehome/grenoble-plant-proteomics/), a comprehensive repertoire of the 1323 proteins, identified by 10,654 unique peptide sequences, present in highly purified chloroplasts and their subfractions prepared from Arabidopsis thaliana leaves. This database also provides extensive proteomics information (peptide sequences and molecular weight, chromatographic retention times, MS/MS spectra, and spectral count) for a unique chloroplast protein accurate mass and time tag database gathering identified peptides with their respective and precise analytical coordinates, molecular weight, and retention time. We assessed the partitioning of each protein in the three chloroplast compartments by using a semiquantitative proteomics approach (spectral count). These data together with an in-depth investigation of the literature were compiled to provide accurate subplastidial localization of previously known and newly identified proteins. A unique knowledge base containing extensive information on the proteins identified in envelope fractions was thus obtained, allowing new insights into this membrane system to be revealed. Altogether, the data we obtained provide unexpected information about plastidial or subplastidial localization of some proteins that were not suspected to be associated to this membrane system. The spectral counting-based strategy was further validated as the compartmentation of well known pathways (for instance, photosynthesis and amino acid, fatty acid, or glycerolipid biosynthesis) within chloroplasts could be dissected. It also allowed revisiting the compartmentation of the chloroplast metabolism and functions.

  7. Characterization and application of enterocin RM6, a bacteriocin from Enterococcus faecalis.

    PubMed

    Huang, En; Zhang, Liwen; Chung, Yoon-Kyung; Zheng, Zuoxing; Yousef, Ahmed E

    2013-01-01

    Use of bacteriocins in food preservation has received great attention in recent years. The goal of this study is to characterize enterocin RM6 from Enterococcus faecalis OSY-RM6 and investigate its efficacy against Listeria monocytogenes in cottage cheese. Enterocin RM6 was purified from E. faecalis culture supernatant using ion exchange column, multiple C18-silica cartridges, followed by reverse-phase high-performance liquid chromatography. The molecular weight of enterocin RM6 is 7145.0823 as determined by mass spectrometry (MS). Tandem mass spectrometry (MS/MS) analysis revealed that enterocin RM6 is a 70-residue cyclic peptide with a head-to-tail linkage between methionine and tryptophan residues. The peptide sequence of enterocin RM6 was further confirmed by sequencing the structural gene of the peptide. Enterocin RM6 is active against Gram-positive bacteria, including L. monocytogenes, Bacillus cereus, and methicillin-resistant Staphylococcus aureus (MRSA). Enterocin RM6 (final concentration in cottage cheese, 80 AU/mL) caused a 4-log reduction in population of L. monocytogenes inoculated in cottage cheese within 30 min of treatment. Therefore, enterocin RM6 has potential applications as a potent antimicrobial peptide against foodborne pathogens in food.

  8. Characterization and Application of Enterocin RM6, a Bacteriocin from Enterococcus faecalis

    PubMed Central

    Chung, Yoon-Kyung; Yousef, Ahmed E.

    2013-01-01

    Use of bacteriocins in food preservation has received great attention in recent years. The goal of this study is to characterize enterocin RM6 from Enterococcus faecalis OSY-RM6 and investigate its efficacy against Listeria monocytogenes in cottage cheese. Enterocin RM6 was purified from E. faecalis culture supernatant using ion exchange column, multiple C18-silica cartridges, followed by reverse-phase high-performance liquid chromatography. The molecular weight of enterocin RM6 is 7145.0823 as determined by mass spectrometry (MS). Tandem mass spectrometry (MS/MS) analysis revealed that enterocin RM6 is a 70-residue cyclic peptide with a head-to-tail linkage between methionine and tryptophan residues. The peptide sequence of enterocin RM6 was further confirmed by sequencing the structural gene of the peptide. Enterocin RM6 is active against Gram-positive bacteria, including L. monocytogenes, Bacillus cereus, and methicillin-resistant Staphylococcus aureus (MRSA). Enterocin RM6 (final concentration in cottage cheese, 80 AU/mL) caused a 4-log reduction in population of L. monocytogenes inoculated in cottage cheese within 30 min of treatment. Therefore, enterocin RM6 has potential applications as a potent antimicrobial peptide against foodborne pathogens in food. PMID:23844357

  9. Instant Integrated Ultradeep Quantitative-structural Membrane Proteomics Discovered Post-translational Modification Signatures for Human Cys-loop Receptor Subunit Bias*

    PubMed Central

    Zhang, Xi

    2016-01-01

    Neurotransmitter ligand-gated ion channels (LGICs) are widespread and pivotal in brain functions. Unveiling their structure-function mechanisms is crucial to drive drug discovery, and demands robust proteomic quantitation of expression, post-translational modifications (PTMs) and dynamic structures. Yet unbiased digestion of these modified transmembrane proteins—at high efficiency and peptide reproducibility—poses the obstacle. Targeting both enzyme-substrate contacts and PTMs for peptide formation and detection, we devised flow-and-detergent-facilitated protease and de-PTM digestions for deep sequencing (FDD) method that combined omni-compatible detergent, tandem immobilized protease/PNGase columns, and Cys-selective reduction/alkylation, to achieve streamlined ultradeep peptide preparation within minutes not days, at high peptide reproducibility and low abundance-bias. FDD transformed enzyme-protein contacts into equal catalytic travel paths through enzyme-excessive columns regardless of protein abundance, removed products instantly preventing inhibition, tackled intricate structures via sequential multiple micro-digestions along the flow, and precisely controlled peptide formation by flow rate. Peptide-stage reactions reduced steric bias; low contamination deepened MS/MS scan; distinguishing disulfide from M oxidation and avoiding gain/loss artifacts unmasked protein-endogenous oxidation states. Using a recent interactome of 285-kDa human GABA type A receptor, this pilot study validated FDD platform's applicability to deep sequencing (up to 99% coverage), H/D-exchange and TMT-based structural mapping. FDD discovered novel subunit-specific PTM signatures, including unusual nontop-surface N-glycosylations, that may drive subunit biases in human Cys-loop LGIC assembly and pharmacology, by redefining subunit/ligand interfaces and connecting function domains. PMID:27073180

  10. Primary structure of the abundant seed albumin of Theobroma cacao by mass spectrometry.

    PubMed

    Kochhar, S; Gartenmann, K; Juillerat, M A

    2000-11-01

    The most abundant albumin present in seeds of Theobroma cacao was purified to apparent homogeneity as judged by high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS), sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and NH(2)-terminal sequence analysis. Tryptic peptide mass fingerprinting of the purified protein by HPLC/ESI-MS showed the presence of 16 masses that matched the expected tryptic peptides corresponding to 95% of the translated amino acid sequence from the cDNA of the 21 kDa cocoa albumin. Collision-induced dissociation MS/MS analysis of the C-terminal peptide isolated from the CNBr cleavage products provided unequivocal evidence that the mature cocoa albumin protein is nine amino acid residues shorter than expected from the reported cDNA of its corresponding gene. The experimentally determined M(r) value of 20234 was in excellent agreement with the truncated version of the amino acid sequence. The purified cocoa albumin inhibited the catalytic activities of bovine trypsin and chymotrypsin. The inhibition was stoichiometric with 1 mol of trypsin or chymotrypsin being inhibited by 1 mol of inhibitor with apparent dissociation constants (K(i)) of 9.5 x 10(-8) and 2. 3 x 10(-6) M, respectively, for inhibitor binding at pH 8.5 and 37 degrees C. No inhibition of the catalytic activities of subtilisin, papain, pepsin, and cocoa endoproteases was detected under their optimal reaction conditions.

  11. Mass Spectrometry of Single GABAergic Somatic Motorneurons Identifies a Novel Inhibitory Peptide, As-NLP-22, in the Nematode Ascaris suum.

    PubMed

    Konop, Christopher J; Knickelbine, Jennifer J; Sygulla, Molly S; Wruck, Colin D; Vestling, Martha M; Stretton, Antony O W

    2015-12-01

    Neuromodulators have become an increasingly important component of functional circuits, dramatically changing the properties of both neurons and synapses to affect behavior. To explore the role of neuropeptides in Ascaris suum behavior, we devised an improved method for cleanly dissecting single motorneuronal cell bodies from the many other cell processes and hypodermal tissue in the ventral nerve cord. We determined their peptide content using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). The reduced complexity of the peptide mixture greatly aided the detection of peptides; peptide levels were sufficient to permit sequencing by tandem MS from single cells. Inhibitory motorneurons, known to be GABAergic, contain a novel neuropeptide, As-NLP-22 (SLASGRWGLRPamide). From this sequence and information from the A. suum expressed sequence tag (EST) database, we cloned the transcript (As-nlp-22) and synthesized a riboprobe for in situ hybridization, which labeled the inhibitory motorneurons; this validates the integrity of the dissection method, showing that the peptides detected originate from the cells themselves and not from adhering processes from other cells (e.g., synaptic terminals). Synthetic As-NLP-22 has potent inhibitory activity on acetylcholine-induced muscle contraction as well as on basal muscle tone. Both of these effects are dose-dependent: the inhibitory effect on ACh contraction has an IC50 of 8.3 × 10(-9) M. When injected into whole worms, As-NLP-22 produces a dose-dependent inhibition of locomotory movements and, at higher levels, complete paralysis. These experiments demonstrate the utility of MALDI TOF/TOF MS in identifying novel neuromodulators at the single-cell level. Graphical Abstract ᅟ.

  12. Mass Spectrometry of Single GABAergic Somatic Motorneurons Identifies a Novel Inhibitory Peptide, As-NLP-22, in the Nematode Ascaris suum

    NASA Astrophysics Data System (ADS)

    Konop, Christopher J.; Knickelbine, Jennifer J.; Sygulla, Molly S.; Wruck, Colin D.; Vestling, Martha M.; Stretton, Antony O. W.

    2015-12-01

    Neuromodulators have become an increasingly important component of functional circuits, dramatically changing the properties of both neurons and synapses to affect behavior. To explore the role of neuropeptides in Ascaris suum behavior, we devised an improved method for cleanly dissecting single motorneuronal cell bodies from the many other cell processes and hypodermal tissue in the ventral nerve cord. We determined their peptide content using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). The reduced complexity of the peptide mixture greatly aided the detection of peptides; peptide levels were sufficient to permit sequencing by tandem MS from single cells. Inhibitory motorneurons, known to be GABAergic, contain a novel neuropeptide, As-NLP-22 (SLASGRWGLRPamide). From this sequence and information from the A. suum expressed sequence tag (EST) database, we cloned the transcript ( As-nlp-22) and synthesized a riboprobe for in situ hybridization, which labeled the inhibitory motorneurons; this validates the integrity of the dissection method, showing that the peptides detected originate from the cells themselves and not from adhering processes from other cells (e.g., synaptic terminals). Synthetic As-NLP-22 has potent inhibitory activity on acetylcholine-induced muscle contraction as well as on basal muscle tone. Both of these effects are dose-dependent: the inhibitory effect on ACh contraction has an IC50 of 8.3 × 10-9 M. When injected into whole worms, As-NLP-22 produces a dose-dependent inhibition of locomotory movements and, at higher levels, complete paralysis. These experiments demonstrate the utility of MALDI TOF/TOF MS in identifying novel neuromodulators at the single-cell level.

  13. Phosphopeptidomics Reveals Differential Phosphorylation States and Novel SxE Phosphosite Motifs of Neuropeptides in Dense Core Secretory Vesicles

    NASA Astrophysics Data System (ADS)

    Lietz, Christopher B.; Toneff, Thomas; Mosier, Charles; Podvin, Sonia; O'Donoghue, Anthony J.; Hook, Vivian

    2018-05-01

    Neuropeptides are vital for cell-cell communication and function in the regulation of the nervous and endocrine systems. They are generated by post-translational modification (PTM) steps resulting in small active peptides generated from prohormone precursors. Phosphorylation is a significant PTM for the bioactivity of neuropeptides. From the known diversity of distinct neuropeptide functions, it is hypothesized that the extent of phosphorylation varies among different neuropeptides. To assess this hypothesis, neuropeptide-containing dense core secretory vesicles from bovine adrenal medullary chromaffin cells were subjected to global phosphopeptidomics analyses by liquid chromatography (LC)-mass spectrometry (MS/MS). Phosphopeptides were identified directly by LC-MS/MS and indirectly by phosphatase treatment followed by LC-MS/MS. The data identified numerous phosphorylated peptides derived from neuropeptide precursors such as chromogranins, secretogranins, proenkephalin and pro-NPY. Phosphosite occupancies were observed at high and low levels among identified peptides and many of the high occupancy phosphopeptides represent prohormone-derived peptides with currently unknown bioactivities. Peptide sequence analyses demonstrated SxE as the most prevalent phosphorylation site motif, corresponding to phosphorylation sites of the Fam20C protein kinase known to be present in the secretory pathway. The range of high to low phosphosite occupancies for neuropeptides demonstrates cellular regulation of neuropeptide phosphorylation. [Figure not available: see fulltext.

  14. Ca(2+) -complex stability of GAPAGPLIVPY peptide in gas and aqueous phase, investigated by affinity capillary electrophoresis and molecular dynamics simulations and compared to mass spectrometric results.

    PubMed

    Nachbar, Markus; El Deeb, Sami; Mozafari, Mona; Alhazmi, Hassan A; Preu, Lutz; Redweik, Sabine; Lehmann, Wolf Dieter; Wätzig, Hermann

    2016-03-01

    Strong, sequence-specific gas-phase bindings between proline-rich peptides and alkaline earth metal ions in nanoESI-MS experiments were reported by Lehmann et al. (Rapid Commun. Mass Spectrom. 2006, 20, 2404-2410), however its relevance for physiological-like aqueous phase is uncertain. Therefore, the complexes should also be studied in aqueous solution and the relevance of the MS method for binding studies be evaluated. A mobility shift ACE method was used for determining the binding between the small peptide GAPAGPLIVPY and various metal ions in aqueous solution. The findings were compared to the MS results and further explained using computational methods. While the MS data showed a strong alkaline earth ion binding, the ACE results showed nonsignificant binding. The proposed vacuum state complex also decomposed during a molecular dynamic simulation in aqueous solution. This study shows that the formed stable peptide-metal ion adducts in the gas phase by ESI-MS does not imply the existence of analogous adducts in the aqueous phase. Comparing peptide-metal ion interaction under the gaseous MS and aqueous ACE conditions showed huge difference in binding behavior. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Phosphopeptidomics Reveals Differential Phosphorylation States and Novel SxE Phosphosite Motifs of Neuropeptides in Dense Core Secretory Vesicles

    NASA Astrophysics Data System (ADS)

    Lietz, Christopher B.; Toneff, Thomas; Mosier, Charles; Podvin, Sonia; O'Donoghue, Anthony J.; Hook, Vivian

    2018-03-01

    Neuropeptides are vital for cell-cell communication and function in the regulation of the nervous and endocrine systems. They are generated by post-translational modification (PTM) steps resulting in small active peptides generated from prohormone precursors. Phosphorylation is a significant PTM for the bioactivity of neuropeptides. From the known diversity of distinct neuropeptide functions, it is hypothesized that the extent of phosphorylation varies among different neuropeptides. To assess this hypothesis, neuropeptide-containing dense core secretory vesicles from bovine adrenal medullary chromaffin cells were subjected to global phosphopeptidomics analyses by liquid chromatography (LC)-mass spectrometry (MS/MS). Phosphopeptides were identified directly by LC-MS/MS and indirectly by phosphatase treatment followed by LC-MS/MS. The data identified numerous phosphorylated peptides derived from neuropeptide precursors such as chromogranins, secretogranins, proenkephalin and pro-NPY. Phosphosite occupancies were observed at high and low levels among identified peptides and many of the high occupancy phosphopeptides represent prohormone-derived peptides with currently unknown bioactivities. Peptide sequence analyses demonstrated SxE as the most prevalent phosphorylation site motif, corresponding to phosphorylation sites of the Fam20C protein kinase known to be present in the secretory pathway. The range of high to low phosphosite occupancies for neuropeptides demonstrates cellular regulation of neuropeptide phosphorylation. [Figure not available: see fulltext.

  16. Large Scale Mass Spectrometry-based Identifications of Enzyme-mediated Protein Methylation Are Subject to High False Discovery Rates*

    PubMed Central

    Hart-Smith, Gene; Yagoub, Daniel; Tay, Aidan P.; Pickford, Russell; Wilkins, Marc R.

    2016-01-01

    All large scale LC-MS/MS post-translational methylation site discovery experiments require methylpeptide spectrum matches (methyl-PSMs) to be identified at acceptably low false discovery rates (FDRs). To meet estimated methyl-PSM FDRs, methyl-PSM filtering criteria are often determined using the target-decoy approach. The efficacy of this methyl-PSM filtering approach has, however, yet to be thoroughly evaluated. Here, we conduct a systematic analysis of methyl-PSM FDRs across a range of sample preparation workflows (each differing in their exposure to the alcohols methanol and isopropyl alcohol) and mass spectrometric instrument platforms (each employing a different mode of MS/MS dissociation). Through 13CD3-methionine labeling (heavy-methyl SILAC) of Saccharomyces cerevisiae cells and in-depth manual data inspection, accurate lists of true positive methyl-PSMs were determined, allowing methyl-PSM FDRs to be compared with target-decoy approach-derived methyl-PSM FDR estimates. These results show that global FDR estimates produce extremely unreliable methyl-PSM filtering criteria; we demonstrate that this is an unavoidable consequence of the high number of amino acid combinations capable of producing peptide sequences that are isobaric to methylated peptides of a different sequence. Separate methyl-PSM FDR estimates were also found to be unreliable due to prevalent sources of false positive methyl-PSMs that produce high peptide identity score distributions. Incorrect methylation site localizations, peptides containing cysteinyl-S-β-propionamide, and methylated glutamic or aspartic acid residues can partially, but not wholly, account for these false positive methyl-PSMs. Together, these results indicate that the target-decoy approach is an unreliable means of estimating methyl-PSM FDRs and methyl-PSM filtering criteria. We suggest that orthogonal methylpeptide validation (e.g. heavy-methyl SILAC or its offshoots) should be considered a prerequisite for obtaining high confidence methyl-PSMs in large scale LC-MS/MS methylation site discovery experiments and make recommendations on how to reduce methyl-PSM FDRs in samples not amenable to heavy isotope labeling. Data are available via ProteomeXchange with the data identifier PXD002857. PMID:26699799

  17. Reagent for Evaluating Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Performance in Bottom-Up Proteomic Experiments.

    PubMed

    Beri, Joshua; Rosenblatt, Michael M; Strauss, Ethan; Urh, Marjeta; Bereman, Michael S

    2015-12-01

    We present a novel proteomic standard for assessing liquid chromatography-tandem mass spectrometry (LC-MS/MS) instrument performance, in terms of chromatographic reproducibility and dynamic range within a single LC-MS/MS injection. The peptide mixture standard consists of six peptides that were specifically synthesized to cover a wide range of hydrophobicities (grand average hydropathy (GRAVY) scores of -0.6 to 1.9). A combination of stable isotope labeled amino acids ((13)C and (15)N) were inserted to create five isotopologues. By combining these isotopologues at different ratios, they span four orders of magnitude within each distinct peptide sequence. Each peptide, from lightest to heaviest, increases in abundance by a factor of 10. We evaluate several metrics on our quadrupole orbitrap instrument using the 6 × 5 LC-MS/MS reference mixture spiked into a complex lysate background as a function of dynamic range, including mass measurement accuracy (MMA) and the linear range of quantitation of MS1 and parallel reaction monitoring experiments. Detection and linearity of the instrument routinely spanned three orders of magnitude across the gradient (500 fmol to 0.5 fmol on column) and no systematic trend was observed for MMA of targeted peptides as a function of abundance by analysis of variance analysis (p = 0.17). Detection and linearity of the fifth isotopologue (i.e., 0.05 fmol on column) was dependent on the peptide and instrument scan type (MS1 vs PRM). We foresee that this standard will serve as a powerful method to conduct both intra-instrument performance monitoring/evaluation, technology development, and inter-instrument comparisons.

  18. Preserved Proteins from Extinct Bison latifrons Identified by Tandem Mass Spectrometry; Hydroxylysine Glycosides are a Common Feature of Ancient Collagen*

    PubMed Central

    Hill, Ryan C.; Wither, Matthew J.; Nemkov, Travis; Barrett, Alexander; D'Alessandro, Angelo; Dzieciatkowska, Monika; Hansen, Kirk C.

    2015-01-01

    Bone samples from several vertebrates were collected from the Ziegler Reservoir fossil site, in Snowmass Village, Colorado, and processed for proteomics analysis. The specimens come from Pleistocene megafauna Bison latifrons, dating back ∼120,000 years. Proteomics analysis using a simplified sample preparation procedure and tandem mass spectrometry (MS/MS) was applied to obtain protein identifications. Several bioinformatics resources were used to obtain peptide identifications based on sequence homology to extant species with annotated genomes. With the exception of soil sample controls, all samples resulted in confident peptide identifications that mapped to type I collagen. In addition, we analyzed a specimen from the extinct B. latifrons that yielded peptide identifications mapping to over 33 bovine proteins. Our analysis resulted in extensive fibrillar collagen sequence coverage, including the identification of posttranslational modifications. Hydroxylysine glucosylgalactosylation, a modification thought to be involved in collagen fiber formation and bone mineralization, was identified for the first time in an ancient protein dataset. Meta-analysis of data from other studies indicates that this modification may be common in well-preserved prehistoric samples. Additional peptide sequences from extracellular matrix (ECM) and non-ECM proteins have also been identified for the first time in ancient tissue samples. These data provide a framework for analyzing ancient protein signatures in well-preserved fossil specimens, while also contributing novel insights into the molecular basis of organic matter preservation. As such, this analysis has unearthed common posttranslational modifications of collagen that may assist in its preservation over time. The data are available via ProteomeXchange with identifier PXD001827. PMID:25948757

  19. Sensitive electrospray mass spectrometry analysis of one-bead-one-compound peptide libraries labeled by quaternary ammonium salts.

    PubMed

    Bąchor, Remigiusz; Cydzik, Marzena; Rudowska, Magdalena; Kluczyk, Alicja; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2012-08-01

    A rapid and straightforward method for high-throughput analysis of single resin beads from one-bead-one-compound combinatorial libraries with high resolution electrospray ionization tandem mass spectrometry (HR ESI-MS/MS) is presented. The application of an efficient method of peptide derivatization by quaternary ammonium salts (QAS) formation increases ionization efficiency and reduces the detection limit, allowing analysis of trace amounts of compounds by ESI-MS. Peptides, synthesized on solid support, contain a new cleavable linker composed of a Peg spacer (9-aza-3,6,12,15-tetraoxa-10-on-heptadecanoic acid), lysine with ɛ-amino group marked by the N,N,N-triethylglycine salt, and methionine, which makes possible the selective cleavage by cyanogen bromide. Even a small portion of peptides derivatized by QAS cleaved from a single resin bead is sufficient for sequencing by HR ESI-MS/MS experiments. The developed strategy was applied to a small training library of α chymotrypsin substrates. The obtained results confirm the applicability of the proposed method in combinatorial chemistry.

  20. High-Density Peptide Microarray Analysis of IgG Autoantibody Reactivities in Serum and Cerebrospinal Fluid of Multiple Sclerosis Patients*

    PubMed Central

    Hecker, Michael; Fitzner, Brit; Wendt, Matthias; Lorenz, Peter; Flechtner, Kristin; Steinbeck, Felix; Schröder, Ina; Thiesen, Hans-Jürgen; Zettl, Uwe Klaus

    2016-01-01

    Intrathecal immunoglobulin G (IgG) synthesis and oligoclonal IgG bands in cerebrospinal fluid (CSF) are hallmarks of multiple sclerosis (MS), but the antigen specificities remain enigmatic. Our study is the first investigating the autoantibody repertoire in paired serum and CSF samples from patients with relapsing-remitting MS (RRMS), primary progressive MS (PPMS), and other neurological diseases by the use of high-density peptide microarrays. Protein sequences of 45 presumed MS autoantigens (e.g. MOG, MBP, and MAG) were represented on the microarrays by overlapping 15mer peptides. IgG reactivities were screened against a total of 3991 peptides, including also selected viral epitopes. The measured antibody reactivities were highly individual but correlated for matched serum and CSF samples. We found 54 peptides to be recognized significantly more often by serum or CSF antibodies from MS patients compared with controls (p values <0.05). The results for RRMS and PPMS clearly overlapped. However, PPMS patients presented a broader peptide-antibody signature. The highest signals were detected for a peptide mapping to a region of the Epstein-Barr virus protein EBNA1 (amino acids 392–411), which is homologous to the N-terminal part of human crystallin alpha-B. Our data confirmed several known MS-associated antigens and epitopes, and they delivered additional potential linear epitopes, which await further validation. The peripheral and intrathecal humoral immune response in MS is polyspecific and includes antibodies that are also found in serum of patients with other diseases. Further studies are required to assess the pathogenic relevance of autoreactive and anti-EBNA1 antibodies as well as their combinatorial value as biomarkers for MS. PMID:26831522

  1. Evaluation of the New MALDI Matrix 4-Chloro-α-Cyanocinnamic Acid

    PubMed Central

    Leszyk, John D.

    2010-01-01

    MALDI-TOF continues to be an important tool for many proteomic studies. Recently, a new rationally designed matrix 4-chloro-α-cyanocinnamic acid was introduced, which is reported to have superior performance as compared with the “gold standard” α-cyano-4-hydroxycinnamic acid (CHCA).1 In this study, the performance of this new matrix, using the Shimadzu Biotech Axima TOF2 (Shimadzu Biotech, Manchester, UK), was investigated. The overall sequence coverage as well as sensitivity of this matrix were compared with CHCA using standard protein tryptic digests. The performance of this matrix with labile peptides, such as phosphopeptides and 4-sulfophenyl isothiocynate-derivatized peptides, to facilitate de novo sequencing was also explored. This matrix was found to be better performing than CHCA in overall sensitivity and showed better sequence coverage at low-digest levels, partly as a result of less of a bias for arginine-containing peptides. It also showed as much as a tenfold improvement in sensitivity with labile peptides on standard stainless-steel targets. In addition, as a result of the much cooler nature of this matrix, labile peptides are readily seen intact with much less fragmentation in mass spectrometry (MS) mode. This matrix was also evaluated in the MS/MS fragmentation modes of post-source decay (PSD) and collisional-induced dissociation (CID). It was found that fragmentation occurs readily in CID, however as a result of the very cool nature of this new matrix, the PSD fragments were quite weak. This matrix promises to be an important addition to the already extensive array of MALDI matrices. PMID:20592871

  2. Enhanced detection of type C botulinum neurotoxin by the Endopep-MS assay through optimization of peptide substrates

    PubMed Central

    Wang, Dongxia; Krilich, Joan; Baudys, Jakub; Barr, John R.; Kalb, Suzanne R.

    2015-01-01

    It is essential to have a simple, quick and sensitive method for the detection and quantification of botulinum neurotoxins, the most toxic substances and the causative agents of botulism. Type C botulinum neurotoxin (BoNT/C) represents one of the seven members of distinctive BoNT serotypes (A to G) that cause botulism in animals and avians. Here we report the development of optimized peptide substrates for improving the detection of BoNT/C and /CD mosaic toxins using an Endopep-MS assay, a mass spectrometry-based method that is able to rapidly and sensitively detect and differentiate all types of BoNTs by extracting the toxin with specific antibodies and detecting the unique cleavage products of peptide substrates. Based on the sequence of a short SNAP-25 peptide, we conducted optimization through a comprehensive process including length determination, terminal modification, single and multiple amino acid residue substitution, and incorporation of unnatural amino acid residues. Our data demonstrate that an optimal peptide provides a more than 200-fold improvement over the substrate currently used in the Endopep-MS assay for the detection of BoNT/C1 and /CD mosaic. Using the new substrate in a four-hour cleavage reaction, the limit of detection for the BoNT/C1 complex spiked in buffer, serum and milk samples was determined to be 0.5, 0.5 and 1 mouseLD50/mL, respectively, representing a similar or higher sensitivity than that obtained by traditional mouse bioassay. PMID:25913863

  3. A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics

    PubMed Central

    Nesvizhskii, Alexey I.

    2010-01-01

    This manuscript provides a comprehensive review of the peptide and protein identification process using tandem mass spectrometry (MS/MS) data generated in shotgun proteomic experiments. The commonly used methods for assigning peptide sequences to MS/MS spectra are critically discussed and compared, from basic strategies to advanced multi-stage approaches. A particular attention is paid to the problem of false-positive identifications. Existing statistical approaches for assessing the significance of peptide to spectrum matches are surveyed, ranging from single-spectrum approaches such as expectation values to global error rate estimation procedures such as false discovery rates and posterior probabilities. The importance of using auxiliary discriminant information (mass accuracy, peptide separation coordinates, digestion properties, and etc.) is discussed, and advanced computational approaches for joint modeling of multiple sources of information are presented. This review also includes a detailed analysis of the issues affecting the interpretation of data at the protein level, including the amplification of error rates when going from peptide to protein level, and the ambiguities in inferring the identifies of sample proteins in the presence of shared peptides. Commonly used methods for computing protein-level confidence scores are discussed in detail. The review concludes with a discussion of several outstanding computational issues. PMID:20816881

  4. Identification of Potent ACE Inhibitory Peptides from Wild Almond Proteins.

    PubMed

    Mirzapour, Mozhgan; Rezaei, Karamatollah; Sentandreu, Miguel Angel

    2017-10-01

    In this study, the production, fractionation, purification and identification of ACE (angiotensin-I-converting enzyme) inhibitory peptides from wild almond (Amygdalus scoparia) proteins were investigated. Wild almond proteins were hydrolyzed using 5 different enzymes (pepsin, trypsin, chymotrypsin, alcalase and flavourzyme) and assayed for their ACE inhibitory activities. The degree of ACE inhibiting activity obtained after hydrolysis was found to be in the following order: alcalase > chymotrypsin > trypsin/pepsin > flavourzyme. The hydrolysates obtained from alcalase (IC 50 = 0.8 mg/mL) were fractionated by sequential ultrafiltration at 10 and 3 kDa cutoff values and the most active fraction (<3 kDa) was further separated using reversed phase high-performance liquid chromatography (RP-HPLC). Peptide sequence identifications were carried out on highly potential fractions obtained from RP-HPLC by means of liquid chromatography coupled to electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS). Sequencing of ACE inhibitory peptides present in the fraction 26 of RP-HPLC resulted in the identification of 3 peptide sequences (VVNE, VVTR, and VVGVD) not reported previously in the literature. Sequence identification of fractions 40 and 42 from RP-HPLC, which showed the highest ACE inhibitory activities (84.1% and 86.9%, respectively), resulted in the identification of more than 40 potential ACE inhibitory sequences. The results indicate that wild almond protein is a rich source of potential antihypertensive peptides and can be suggested for applications in functional foods and drinks with respect to hindrance and mitigation of hypertension after in vivo assessment. This study has shown the potential of wild almond proteins as good sources for producing ACE-inhibitory active peptides. According to this finding, peptides with higher ACE inhibitory activities could be released during the gastrointestinal digestion and contribute to the health- promoting activities of this natural protein source. © 2017 Institute of Food Technologists®.

  5. Trimethylation enhancement using diazomethane (TrEnDi): rapid on-column quaternization of peptide amino groups via reaction with diazomethane significantly enhances sensitivity in mass spectrometry analyses via a fixed, permanent positive charge.

    PubMed

    Wasslen, Karl V; Tan, Le Hoa; Manthorpe, Jeffrey M; Smith, Jeffrey C

    2014-04-01

    Defining cellular processes relies heavily on elucidating the temporal dynamics of proteins. To this end, mass spectrometry (MS) is an extremely valuable tool; different MS-based quantitative proteomics strategies have emerged to map protein dynamics over the course of stimuli. Herein, we disclose our novel MS-based quantitative proteomics strategy with unique analytical characteristics. By passing ethereal diazomethane over peptides on strong cation exchange resin within a microfluidic device, peptides react to contain fixed, permanent positive charges. Modified peptides display improved ionization characteristics and dissociate via tandem mass spectrometry (MS(2)) to form strong a2 fragment ion peaks. Process optimization and determination of reactive functional groups enabled a priori prediction of MS(2) fragmentation patterns for modified peptides. The strategy was tested on digested bovine serum albumin (BSA) and successfully quantified a peptide that was not observable prior to modification. Our method ionizes peptides regardless of proton affinity, thus decreasing ion suppression and permitting predictable multiple reaction monitoring (MRM)-based quantitation with improved sensitivity.

  6. Endogenous peptide profile for elucidating biosynthetic processing of the ghrelin precursor.

    PubMed

    Tsuchiya, Takashi; Iwakura, Hiroshi; Minamino, Naoto; Kangawa, Kenji; Sasaki, Kazuki

    2017-09-02

    Ghrelin is an orexigenic peptide primarily produced by gastric endocrine cells. The biosynthetic cleavage site of ghrelin has been well documented, but how its downstream region undergoes proteolytic processing remains poorly explored. Here, we provide the first snapshot of endogenous peptides from the ghrelin precursor by profiling the secretopeptidome of cultured mouse ghrelin-producing cells during exocytosis. Mapping of MS/MS sequenced peptides to the precursor highlighted three atypical monobasic processing sites, including the established C-terminus of ghrelin and the N-terminal cleavage site for obestatin, a putative 23-amino-acid C-terminally amidated peptide. However, we found that mouse obestatin does not occur in the form originally reported, but that a different amidation site is used to generate a shorter peptide. These data can be extended to study and characterize the precursor-derived peptides located downstream of ghrelin in different biological contexts. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Mass spectrometry methods for the analysis of biodegradable hybrid materials

    NASA Astrophysics Data System (ADS)

    Alalwiat, Ahlam

    This dissertation focuses on the characterization of hybrid materials and surfactant blends by using mass spectrometry (MS), tandem mass spectrometry (MS/MS), liquid chromatography (LC), and ion mobility (IM) spectrometry combined with measurement and simulation of molecular collision cross sections. Chapter II describes the principles and the history of mass spectrometry (MS) and liquid chromatography (LC). Chapter III introduces the materials and instrumentation used to complete this dissertation. In chapter IV, two hybrid materials containing poly(t-butyl acrylate) (PtBA) or poly(acrylic acid) (PAA) blocks attached to a hydrophobic peptide rich in valine and glycine (VG2), as well as the poly(acrylic acid) (PAA) and VG2 peptide precursor materials, are characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), electrospray ionization mass spectrometry (ESI-MS) and ion mobility mass spectrometry (IM-MS). Collision cross-sections and molecular modeling have been used to determine the final architecture of both hybrid materials. Chapter V investigates a different hybrid material, [BMP-2(HA)2 ], comprised of a dendron with two polyethylene glycol (PEG) branches terminated by a hydroxyapatite binding peptide (HA), and a focal point substituted with a bone morphogenic protein mimicking peptide (BMP-2). MALDI-MS, ESI-MS and IM-MS have been used to characterize the HA and BMP-2 peptides. Collisionally activated dissociation (CAD) and electron transfer dissociation (ETD) have been employed in double stage (i.e. tandem) mass spectrometry (MS/MS) experiments to confirm the sequences of the two peptides HA and BMP-2. The MALDI-MS, ESI-MS and IM-MS methods were also applied to characterize the [BMP-2(HA)2] hybrid material. Collision cross-section measurements and molecular modeling indicated that [BMP-2(HA)2] can attain folded or extended conformation, depending on its degree of protonation (charge state). Chapter VI focuses on the analysis of alkyl polyglycoside (APG) surfactants by MALDI-MS and ESI-MS, MS/MS, and by combining MS and with ion mobility (IM) and/or ultra-performance liquid chromatography (UPLC) separation in LC-IM and LC-IM-MS experiments. Chapter VII summaries this dissertation's findings.

  8. Tandem mass spectrometry for the detection of plant pathogenic fungi and the effects of database composition on protein inferences.

    PubMed

    Padliya, Neerav D; Garrett, Wesley M; Campbell, Kimberly B; Tabb, David L; Cooper, Bret

    2007-11-01

    LC-MS/MS has demonstrated potential for detecting plant pathogens. Unlike PCR or ELISA, LC-MS/MS does not require pathogen-specific reagents for the detection of pathogen-specific proteins and peptides. However, the MS/MS approach we and others have explored does require a protein sequence reference database and database-search software to interpret tandem mass spectra. To evaluate the limitations of database composition on pathogen identification, we analyzed proteins from cultured Ustilago maydis, Phytophthora sojae, Fusarium graminearum, and Rhizoctonia solani by LC-MS/MS. When the search database did not contain sequences for a target pathogen, or contained sequences to related pathogens, target pathogen spectra were reliably matched to protein sequences from nontarget organisms, giving an illusion that proteins from nontarget organisms were identified. Our analysis demonstrates that when database-search software is used as part of the identification process, a paradox exists whereby additional sequences needed to detect a wide variety of possible organisms may lead to more cross-species protein matches and misidentification of pathogens.

  9. Evolution of a mass spectrometry-grade protease with PTM-directed specificity.

    PubMed

    Tran, Duc T; Cavett, Valerie J; Dang, Vuong Q; Torres, Héctor L; Paegel, Brian M

    2016-12-20

    Mapping posttranslational modifications (PTMs), which diversely modulate biological functions, represents a significant analytical challenge. The centerpiece technology for PTM site identification, mass spectrometry (MS), requires proteolytic cleavage in the vicinity of a PTM to yield peptides for sequencing. This requirement catalyzed our efforts to evolve MS-grade mutant PTM-directed proteases. Citrulline, a PTM implicated in epigenetic and immunological function, made an ideal first target, because citrullination eliminates arginyl tryptic sites. Bead-displayed trypsin mutant genes were translated in droplets, the mutant proteases were challenged to cleave bead-bound fluorogenic probes of citrulline-dependent proteolysis, and the resultant beads (1.3 million) were screened. The most promising mutant efficiently catalyzed citrulline-dependent peptide bond cleavage (k cat /K M = 6.9 × 10 5 M -1 ⋅s -1 ). The resulting C-terminally citrullinated peptides generated characteristic isotopic patterns in MALDI-TOF MS, and both a fragmentation product y 1 ion corresponding to citrulline (176.1030 m/z) and diagnostic peak pairs in the extracted ion chromatograms of LC-MS/MS analysis. Using these signatures, we identified citrullination sites in protein arginine deiminase 4 (12 sites) and in fibrinogen (25 sites, two previously unknown). The unique mass spectral features of PTM-dependent proteolytic digest products promise a generalized PTM site-mapping strategy based on a toolbox of such mutant proteases, which are now accessible by laboratory evolution.

  10. Isolation and determination of the primary structure of a lectin protein from the serum of the American alligator (Alligator mississippiensis).

    PubMed

    Darville, Lancia N F; Merchant, Mark E; Maccha, Venkata; Siddavarapu, Vivekananda Reddy; Hasan, Azeem; Murray, Kermit K

    2012-02-01

    Mass spectrometry in conjunction with de novo sequencing was used to determine the amino acid sequence of a 35kDa lectin protein isolated from the serum of the American alligator that exhibits binding to mannose. The protein N-terminal sequence was determined using Edman degradation and enzymatic digestion with different proteases was used to generate peptide fragments for analysis by liquid chromatography tandem mass spectrometry (LC MS/MS). Separate analysis of the protein digests with multiple enzymes enhanced the protein sequence coverage. De novo sequencing was accomplished using MASCOT Distiller and PEAKS software and the sequences were searched against the NCBI database using MASCOT and BLAST to identify homologous peptides. MS analysis of the intact protein indicated that it is present primarily as monomer and dimer in vitro. The isolated 35kDa protein was ~98% sequenced and found to have 313 amino acids and nine cysteine residues and was identified as an alligator lectin. The alligator lectin sequence was aligned with other lectin sequences using DIALIGN and ClustalW software and was found to exhibit 58% and 59% similarity to both human and mouse intelectin-1. The alligator lectin exhibited strong binding affinities toward mannan and mannose as compared to other tested carbohydrates. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Serological profiling of the EBV immune response in Chronic Fatigue Syndrome using a peptide microarray.

    PubMed

    Loebel, Madlen; Eckey, Maren; Sotzny, Franziska; Hahn, Elisabeth; Bauer, Sandra; Grabowski, Patricia; Zerweck, Johannes; Holenya, Pavlo; Hanitsch, Leif G; Wittke, Kirsten; Borchmann, Peter; Rüffer, Jens-Ulrich; Hiepe, Falk; Ruprecht, Klemens; Behrends, Uta; Meindl, Carola; Volk, Hans-Dieter; Reimer, Ulf; Scheibenbogen, Carmen

    2017-01-01

    Epstein-Barr-Virus (EBV) plays an important role as trigger or cofactor for various autoimmune diseases. In a subset of patients with Chronic Fatigue Syndrome (CFS) disease starts with infectious mononucleosis as late primary EBV-infection, whereby altered levels of EBV-specific antibodies can be observed in another subset of patients. We performed a comprehensive mapping of the IgG response against EBV comparing 50 healthy controls with 92 CFS patients using a microarray platform. Patients with multiple sclerosis (MS), systemic lupus erythematosus (SLE) and cancer-related fatigue served as controls. 3054 overlapping peptides were synthesised as 15-mers from 14 different EBV proteins. Array data was validated by ELISA for selected peptides. Prevalence of EBV serotypes was determined by qPCR from throat washing samples. EBV type 1 infections were found in patients and controls. EBV seroarray profiles between healthy controls and CFS were less divergent than that observed for MS or SLE. We found significantly enhanced IgG responses to several EBNA-6 peptides containing a repeat sequence in CFS patients compared to controls. EBNA-6 peptide IgG responses correlated well with EBNA-6 protein responses. The EBNA-6 repeat region showed sequence homologies to various human proteins. Patients with CFS had a quite similar EBV IgG antibody response pattern as healthy controls. Enhanced IgG reactivity against an EBNA-6 repeat sequence and against EBNA-6 protein is found in CFS patients. Homologous sequences of various human proteins with this EBNA-6 repeat sequence might be potential targets for antigenic mimicry.

  12. CE-microreactor-CE-MS/MS for protein analysis

    PubMed Central

    Schoenherr, Regine M.; Ye, Mingliang; Vannatta, Michael

    2008-01-01

    We present a proof-of-principle for a fully automated bottom-up approach to protein characterization. Proteins are first separated by capillary electrophoresis. A pepsin microreactor is incorporated into the distal end of this capillary. Peptides formed in the reactor are transferred to a second capillary, where they are separated by capillary electrophoresis and characterized by mass spectrometry. While peptides generated from one digestion are being separated in the second capillary, the next protein fraction undergoes digestion in the microreactor. The migration time in the first dimension capillary is characteristic of the protein while migration time in the second dimension is characteristic of the peptide. Spot capacity for the two-dimensional separation is 590. A MS/MS analysis of a mixture of cytochrome C and myoglobin generated Mascot MOWSE scores of 107 for cytochrome C and 58 for myoglobin. The sequence coverages were 48% and 22%, respectively. PMID:17295444

  13. Spectrum-based method to generate good decoy libraries for spectral library searching in peptide identifications.

    PubMed

    Cheng, Chia-Ying; Tsai, Chia-Feng; Chen, Yu-Ju; Sung, Ting-Yi; Hsu, Wen-Lian

    2013-05-03

    As spectral library searching has received increasing attention for peptide identification, constructing good decoy spectra from the target spectra is the key to correctly estimating the false discovery rate in searching against the concatenated target-decoy spectral library. Several methods have been proposed to construct decoy spectral libraries. Most of them construct decoy peptide sequences and then generate theoretical spectra accordingly. In this paper, we propose a method, called precursor-swap, which directly constructs decoy spectral libraries directly at the "spectrum level" without generating decoy peptide sequences by swapping the precursors of two spectra selected according to a very simple rule. Our spectrum-based method does not require additional efforts to deal with ion types (e.g., a, b or c ions), fragment mechanism (e.g., CID, or ETD), or unannotated peaks, but preserves many spectral properties. The precursor-swap method is evaluated on different spectral libraries and the results of obtained decoy ratios show that it is comparable to other methods. Notably, it is efficient in time and memory usage for constructing decoy libraries. A software tool called Precursor-Swap-Decoy-Generation (PSDG) is publicly available for download at http://ms.iis.sinica.edu.tw/PSDG/.

  14. Instant Integrated Ultradeep Quantitative-structural Membrane Proteomics Discovered Post-translational Modification Signatures for Human Cys-loop Receptor Subunit Bias.

    PubMed

    Zhang, Xi

    2016-12-01

    Neurotransmitter ligand-gated ion channels (LGICs) are widespread and pivotal in brain functions. Unveiling their structure-function mechanisms is crucial to drive drug discovery, and demands robust proteomic quantitation of expression, post-translational modifications (PTMs) and dynamic structures. Yet unbiased digestion of these modified transmembrane proteins-at high efficiency and peptide reproducibility-poses the obstacle. Targeting both enzyme-substrate contacts and PTMs for peptide formation and detection, we devised flow-and-detergent-facilitated protease and de-PTM digestions for deep sequencing (FDD) method that combined omni-compatible detergent, tandem immobilized protease/PNGase columns, and Cys-selective reduction/alkylation, to achieve streamlined ultradeep peptide preparation within minutes not days, at high peptide reproducibility and low abundance-bias. FDD transformed enzyme-protein contacts into equal catalytic travel paths through enzyme-excessive columns regardless of protein abundance, removed products instantly preventing inhibition, tackled intricate structures via sequential multiple micro-digestions along the flow, and precisely controlled peptide formation by flow rate. Peptide-stage reactions reduced steric bias; low contamination deepened MS/MS scan; distinguishing disulfide from M oxidation and avoiding gain/loss artifacts unmasked protein-endogenous oxidation states. Using a recent interactome of 285-kDa human GABA type A receptor, this pilot study validated FDD platform's applicability to deep sequencing (up to 99% coverage), H/D-exchange and TMT-based structural mapping. FDD discovered novel subunit-specific PTM signatures, including unusual nontop-surface N-glycosylations, that may drive subunit biases in human Cys-loop LGIC assembly and pharmacology, by redefining subunit/ligand interfaces and connecting function domains. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Direct Identification of Tyrosine Sulfation by using Ultraviolet Photodissociation Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Robinson, Michelle R.; Moore, Kevin L.; Brodbelt, Jennifer S.

    2014-08-01

    Sulfation is a common post-translational modification of tyrosine residues in eukaryotes; however, detection using traditional liquid chromatography-mass spectrometry (LC-MS) methods is challenging based on poor ionization efficiency in the positive ion mode and facile neutral loss upon collisional activation. In the present study, 193 nm ultraviolet photodissociation (UVPD) is applied to sulfopeptide anions to generate diagnostic sequence ions, which do not undergo appreciable neutral loss of sulfate even using higher energy photoirradiation parameters. At the same time, neutral loss of SO3 is observed from the precursor and charge-reduced precursor ions, a spectral feature that is useful for differentiating tyrosine sulfation from the nominally isobaric tyrosine phosphorylation. LC-MS detection limits for UVPD analysis in the negative mode were determined to be around 100 fmol for three sulfated peptides, caerulein, cionin, and leu-enkephalin. The LC-UVPD-MS method was applied for analysis of bovine fibrinogen, and its key sulfated peptide was confidently identified.

  16. Direct Identification of Tyrosine Sulfation by using Ultraviolet Photodissociation Mass Spectrometry

    PubMed Central

    Robinson, Michelle R.; Moore, Kevin L.; Brodbelt, Brodbelt

    2014-01-01

    Sulfation is a common post-translational modification of tyrosine residues in eukaryotes; however, detection using traditional liquid chromatography-mass spectrometry (LC-MS) methods is challenging based on poor ionization efficiency in the positive ion mode and facile neutral loss upon collisional activation. In the present study, 193 nm ultraviolet photodissociation (UVPD) is applied to sulfopeptide anions to generate diagnostic sequence ions which do not undergo appreciable neutral loss of sulfate even using higher energy photoirradiation parameters. At the same time, neutral loss of sulfate is observed from the precursor and charge reduced precursor ions, a spectral feature that is useful for differentiating tyrosine sulfation from the nominally isobaric tyrosine phosphorylation. LC-MS detection limits for UVPD analysis in the negative mode were determined to be around 100 fmol for three sulfated peptides, caerulein, cionin, and leu-enkephalin. The LC-UVPD-MS method was applied for analysis of bovine fibrinogen, and its key sulfated peptide was confidently identified. PMID:24845354

  17. Quantitative Assessment of In-solution Digestion Efficiency Identifies Optimal Protocols for Unbiased Protein Analysis*

    PubMed Central

    León, Ileana R.; Schwämmle, Veit; Jensen, Ole N.; Sprenger, Richard R.

    2013-01-01

    The majority of mass spectrometry-based protein quantification studies uses peptide-centric analytical methods and thus strongly relies on efficient and unbiased protein digestion protocols for sample preparation. We present a novel objective approach to assess protein digestion efficiency using a combination of qualitative and quantitative liquid chromatography-tandem MS methods and statistical data analysis. In contrast to previous studies we employed both standard qualitative as well as data-independent quantitative workflows to systematically assess trypsin digestion efficiency and bias using mitochondrial protein fractions. We evaluated nine trypsin-based digestion protocols, based on standard in-solution or on spin filter-aided digestion, including new optimized protocols. We investigated various reagents for protein solubilization and denaturation (dodecyl sulfate, deoxycholate, urea), several trypsin digestion conditions (buffer, RapiGest, deoxycholate, urea), and two methods for removal of detergents before analysis of peptides (acid precipitation or phase separation with ethyl acetate). Our data-independent quantitative liquid chromatography-tandem MS workflow quantified over 3700 distinct peptides with 96% completeness between all protocols and replicates, with an average 40% protein sequence coverage and an average of 11 peptides identified per protein. Systematic quantitative and statistical analysis of physicochemical parameters demonstrated that deoxycholate-assisted in-solution digestion combined with phase transfer allows for efficient, unbiased generation and recovery of peptides from all protein classes, including membrane proteins. This deoxycholate-assisted protocol was also optimal for spin filter-aided digestions as compared with existing methods. PMID:23792921

  18. UniNovo: a universal tool for de novo peptide sequencing.

    PubMed

    Jeong, Kyowon; Kim, Sangtae; Pevzner, Pavel A

    2013-08-15

    Mass spectrometry (MS) instruments and experimental protocols are rapidly advancing, but de novo peptide sequencing algorithms to analyze tandem mass (MS/MS) spectra are lagging behind. Although existing de novo sequencing tools perform well on certain types of spectra [e.g. Collision Induced Dissociation (CID) spectra of tryptic peptides], their performance often deteriorates on other types of spectra, such as Electron Transfer Dissociation (ETD), Higher-energy Collisional Dissociation (HCD) spectra or spectra of non-tryptic digests. Thus, rather than developing a new algorithm for each type of spectra, we develop a universal de novo sequencing algorithm called UniNovo that works well for all types of spectra or even for spectral pairs (e.g. CID/ETD spectral pairs). UniNovo uses an improved scoring function that captures the dependences between different ion types, where such dependencies are learned automatically using a modified offset frequency function. The performance of UniNovo is compared with PepNovo+, PEAKS and pNovo using various types of spectra. The results show that the performance of UniNovo is superior to other tools for ETD spectra and superior or comparable with others for CID and HCD spectra. UniNovo also estimates the probability that each reported reconstruction is correct, using simple statistics that are readily obtained from a small training dataset. We demonstrate that the estimation is accurate for all tested types of spectra (including CID, HCD, ETD, CID/ETD and HCD/ETD spectra of trypsin, LysC or AspN digested peptides). UniNovo is implemented in JAVA and tested on Windows, Ubuntu and OS X machines. UniNovo is available at http://proteomics.ucsd.edu/Software/UniNovo.html along with the manual.

  19. Integrated CZE-ESI-MS/MS system with an immobilized trypsin microreactor for online digestion and analysis of picogram amounts of RAW 264.7 cell lysate

    PubMed Central

    Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J.

    2013-01-01

    A capillary zone electrophoresis (CZE) electrospray ionization (ESI) tandem mass spectrometry (MS/MS) system was integrated with an immobilized trypsin microreactor. The system was evaluated and then applied for online digestion and analysis of picogram loadings of RAW 264.7 cell lysate. Protein samples were dissolved in a buffer containing 50% (v/v) acetonitrile (ACN), and then directly loaded into the capillary for digestion, followed by CZE separation and MS/MS identification. The organic solvent (50% (v/v) ACN) assisted the immobilized trypsin digestion and simplified the protein sample preparation protocol. Neither protein reduction nor alkylation steps were employed, which minimized sample loss and contamination. The integrated CZE-ESI-MS/MS system generated confident identification of bovine serum albumin (BSA) with 19% sequence coverage and 14 peptide IDs when 20 fmole was loaded. When only 1 fmole BSA was injected, one BSA peptide was consistently detected. For the analysis of a standard protein mixture, the integrated system produced efficient protein digestion and confident identification for proteins with different molecular weights and isoelectric points when low fmole amount was loaded for each protein. We further applied the system for triplicate analysis of a RAW 264.7 cell lysate; 2 ± 1 and 7 ± 2 protein groups were confidently identified from only 300 pg and 3 ng loadings, respectively. The 300 pg sample loading corresponds to the protein content of three RAW 264.7 cells. In addition to high sensitivity analysis, the integrated CZE-ESI-MS/MS system produces good reproducibility in terms of peptide and protein IDs, peptide migration time, and peptide intensity. PMID:23510126

  20. Sequencing of Oligourea Foldamers by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bathany, Katell; Owens, Neil W.; Guichard, Gilles; Schmitter, Jean-Marie

    2013-03-01

    This study is focused on sequence analysis of peptidomimetic helical oligoureas by means of tandem mass spectrometry, to build a basis for de novo sequencing for future high-throughput combinatorial library screening of oligourea foldamers. After the evaluation of MS/MS spectra obtained for model compounds with either MALDI or ESI sources, we found that the MALDI-TOF-TOF instrument gave more satisfactory results. MS/MS spectra of oligoureas generated by decay of singly charged precursor ions show major ion series corresponding to fragmentation across both CO-NH and N'H-CO urea bonds. Oligourea backbones fragment to produce a pattern of a, x, b, and y type fragment ions. De novo decoding of spectral information is facilitated by the occurrence of low mass reporter ions, representative of constitutive monomers, in an analogous manner to the use of immonium ions for peptide sequencing.

  1. Design and application of a data-independent precursor and product ion repository.

    PubMed

    Thalassinos, Konstantinos; Vissers, Johannes P C; Tenzer, Stefan; Levin, Yishai; Thompson, J Will; Daniel, David; Mann, Darrin; DeLong, Mark R; Moseley, M Arthur; America, Antoine H; Ottens, Andrew K; Cavey, Greg S; Efstathiou, Georgios; Scrivens, James H; Langridge, James I; Geromanos, Scott J

    2012-10-01

    The functional design and application of a data-independent LC-MS precursor and product ion repository for protein identification, quantification, and validation is conceptually described. The ion repository was constructed from the sequence search results of a broad range of discovery experiments investigating various tissue types of two closely related mammalian species. The relative high degree of similarity in protein complement, ion detection, and peptide and protein identification allows for the analysis of normalized precursor and product ion intensity values, as well as standardized retention times, creating a multidimensional/orthogonal queryable, qualitative, and quantitative space. Peptide ion map selection for identification and quantification is primarily based on replication and limited variation. The information is stored in a relational database and is used to create peptide- and protein-specific fragment ion maps that can be queried in a targeted fashion against the raw or time aligned ion detections. These queries can be conducted either individually or as groups, where the latter affords pathway and molecular machinery analysis of the protein complement. The presented results also suggest that peptide ionization and fragmentation efficiencies are highly conserved between experiments and practically independent of the analyzed biological sample when using similar instrumentation. Moreover, the data illustrate only minor variation in ionization efficiency with amino acid sequence substitutions occurring between species. Finally, the data and the presented results illustrate how LC-MS performance metrics can be extracted and utilized to ensure optimal performance of the employed analytical workflows.

  2. Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function.

    PubMed

    Busk, P K; Pilgaard, B; Lezyk, M J; Meyer, A S; Lange, L

    2017-04-12

    Carbohydrate-active enzymes are found in all organisms and participate in key biological processes. These enzymes are classified in 274 families in the CAZy database but the sequence diversity within each family makes it a major task to identify new family members and to provide basis for prediction of enzyme function. A fast and reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interest as demonstrated for the glycosyl hydrolase and the lytic polysaccharide monooxygenase families. This approach not only assigns the enzymes to families but also provides functional prediction of the enzymes with high accuracy. We identified conserved peptides for all enzyme families in the CAZy database with Peptide Pattern Recognition. The conserved peptides were matched to protein sequence for de novo annotation and functional prediction of carbohydrate-active enzymes with the Hotpep method. Annotation of protein sequences from 12 bacterial and 16 fungal genomes to families with Hotpep had an accuracy of 0.84 (measured as F1-score) compared to semiautomatic annotation by the CAZy database whereas the dbCAN HMM-based method had an accuracy of 0.77 with optimized parameters. Furthermore, Hotpep provided a functional prediction with 86% accuracy for the annotated genes. Hotpep is available as a stand-alone application for MS Windows. Hotpep is a state-of-the-art method for automatic annotation and functional prediction of carbohydrate-active enzymes.

  3. Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate.

    PubMed

    Agrawal, Himani; Joshi, Robin; Gupta, Mahesh

    2016-08-01

    Pearl millet (Pennisetum glaucum) is a rich source of protein, used for present study to hydrolyze protein, peptide separation and its functional activity. Antioxidative bioactive peptide was successfully identified from pearl millet using trypsin enzyme. Different antioxidative potential of isolated peptide were assessed based on activity of DPPH radical, ABTS radical, hydroxyl radical, Fe(2+) chelating ability and reducing power. Bioactive peptide separated by gel-filtration chromatography, showed the higher antioxidant activity as tested by different free radicals. The activity of pearl millet protein hydrolysate fraction was found for DPPH assay (67.66%), ABTS assay (78.81%), Fe(2+) chelating ability (51.20%), hydroxyl assay (60.95%) and reducing power (0.375nm) was further purified using reversed-phase UFLC and subjected to matrix assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) for sequential identification of the peptide. The sequence SDRDLLGPNNQYLPK was identified as antioxidant peptide. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Integration of electrochemistry with ultra-performance liquid chromatography/mass spectrometry.

    PubMed

    Cai, Yi; Zheng, Qiuling; Liu, Yong; Helmy, Roy; Loo, Joseph A; Chen, Hao

    2015-01-01

    This study presents the development of ultra-performance liquid chromatography (UPLC) mass spectrometry (MS) combined with electrochemistry (EC) for the first time and its application for the structural analysis of proteins/peptides that contain disulfide bonds. In our approach, a protein/peptide mixture sample undergoes a fast UPLC separation and subsequent electrochemical reduction in an electrochemical flow cell followed by online MS and tandem mass spectrometry (MS/MS) analyses. The electrochemical cell is coupled to the mass spectrometer using our recently developed desorption electrospray ionization (DESI) interface. Using this UPLC/EC/DESI-MS method, peptides that contain disulfide bonds can be differentiated from those without disulfide bonds, as the former are electroactive and reducible. MS/MS analysis of the disulfide-reduced peptide ions provides increased information on the sequence and disulfide-linkage pattern. In a reactive DESI- MS detection experiment in which a supercharging reagent was used to dope the DESI spray solvent, increased charging was obtained for the UPLC-separated proteins. Strikingly, upon online electrolytic reduction, supercharged proteins (e.g., α-lactalbumin) showed even higher charging, which will be useful in top- down protein structure MS analysis as increased charges are known to promote protein ion dissociation. Also, the separation speed and sensitivity are enhanced by approximately 1(~)2 orders of magnitude by using UPLC for the liquid chromatography (LC)/EC/MS platform, in comparison to the previously used high- performance liquid chromatography (HPLC). This UPLC/EC/DESI-MS method combines the power of fast UPLC separation, fast electrochemical conversion, and online MS structural analysis for a potentially valuable tool for proteomics research and bioanalysis.

  5. Integration of Electrochemistry with Ultra Performance Liquid Chromatography/Mass Spectrometry (UPLC/MS)

    PubMed Central

    Cai, Yi; Zheng, Qiuling; Liu, Yong; Helmy, Roy; Loo, Joseph A.; Chen, Hao

    2015-01-01

    This study presents the development of ultra-performance liquid chromatography/mass spectrometry (UPLC/MS) combined with electrochemistry (EC) for the first time and its application for the structural analysis of disulfide bond-containing proteins/peptides. In our approach, a protein/peptide mixture sample undergoes fast UPLC separation and subsequent electrochemical reduction in an electrochemical flow cell followed by online MS and MS/MS analyses. The electrochemical cell is coupled to MS using our recently developed desorption electrospray ionization (DESI) interface. Using this UPLC/EC/DESI-MS method, disulfide bond-containing peptides can be differentiated from those without disulfide bonds as the former are electroactive and reducible. Tandem MS analysis of the disulfide-reduced peptide ions provides increased sequence and disulfide linkage pattern information. In a reactive DESI-MS detection experiment in which a supercharging reagent was used to dope the DESI spray solvent, increased charging was obtained for the UPLC-separated proteins. Strikingly, upon online electrolytic reduction, supercharged proteins (e.g., α-lactalbumin) showed even higher charging, which would be useful in top-down protein structure analysis as increased charges are known to promote protein ion dissociation. Also, the separation speed and sensitivity are enhanced by approximately 1~2 orders of magnitude by using UPLC for the LC/EC/MS platform, in comparison to the previously used high performance liquid chromatography (HPLC). This UPLC/EC/DESI-MS method combines the power of fast UPLC separation, fast electrochemical conversion and online MS structural analysis for a potentially valuable tool for proteomics research and bioanalysis. PMID:26307715

  6. Peptidomic Identification of Cysteine-Rich Peptides from Plants.

    PubMed

    Hemu, Xinya; Serra, Aida; Darwis, Dina A; Cornvik, Tobias; Sze, Siu Kwan; Tam, James P

    2018-01-01

    Plant cysteine-rich peptides (CRPs) constitute a majority of plant-derived peptides with high molecular diversity. This protocol describes a rapid and efficient peptidomic approach to identify a whole spectrum of CRPs in a plant extract and decipher their molecular diversity and bioprocessing mechanism. Cyclotides from C. ternatea are used as the model CRPs to demonstrate our methodology. Cyclotides exist naturally in both cyclic and linear forms, although the linear forms (acyclotide) are generally present at much lower concentrations. Both cyclotides and acyclotides require linearization of their backbone prior to fragmentation and sequencing. A novel and practical three-step chemoenzymatic treatment was developed to linearize and distinguish both forms: (1) N-terminal acetylation that pre-labels the acyclotides; (2) conversion of Cys into pseudo-Lys through aziridine-mediated S-alkylation to reduce disulfide bonds and to increase the net charge of peptides; and (3) opening of cyclic backbones by the novel asparaginyl endopeptidase butelase 2 that cleaves at the native bioprocessing site. The treated peptides are subsequently analyzed by liquid chromatography coupled to mass spectrometry using electron transfer dissociation fragmentation and sequences are identified by matching the MS/MS spectra directly with the transcriptomic database.

  7. Tissue-specific Proteogenomic Analysis of Plutella xylostella Larval Midgut Using a Multialgorithm Pipeline*

    PubMed Central

    Zhu, Xun; Xie, Shangbo; Armengaud, Jean; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Wu, Qingjun; Wang, Shaoli; Xia, Jixing; He, Rongjun; Zhang, Youjun

    2016-01-01

    The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest. PMID:26902207

  8. Unassigned MS/MS Spectra: Who Am I?

    PubMed

    Pathan, Mohashin; Samuel, Monisha; Keerthikumar, Shivakumar; Mathivanan, Suresh

    2017-01-01

    Recent advances in high resolution tandem mass spectrometry (MS) has resulted in the accumulation of high quality data. Paralleled with these advances in instrumentation, bioinformatics software have been developed to analyze such quality datasets. In spite of these advances, data analysis in mass spectrometry still remains critical for protein identification. In addition, the complexity of the generated MS/MS spectra, unpredictable nature of peptide fragmentation, sequence annotation errors, and posttranslational modifications has impeded the protein identification process. In a typical MS data analysis, about 60 % of the MS/MS spectra remains unassigned. While some of these could attribute to the low quality of the MS/MS spectra, a proportion can be classified as high quality. Further analysis may reveal how much of the unassigned MS spectra attribute to search space, sequence annotation errors, mutations, and/or posttranslational modifications. In this chapter, the tools used to identify proteins and ways to assign unassigned tandem MS spectra are discussed.

  9. Analysis of Glycoproteins in Human Serum by Means of Glycospecific Magnetic Bead Separation and LC-MALDI-TOF/TOF Analysis with Automated Glycopeptide Detection

    PubMed Central

    Sparbier, Katrin; Asperger, Arndt; Resemann, Anja; Kessler, Irina; Koch, Sonja; Wenzel, Thomas; Stein, Günter; Vorwerg, Lars; Suckau, Detlev; Kostrzewa, Markus

    2007-01-01

    Comprehensive proteomic analyses require efficient and selective pre-fractionation to facilitate analysis of post-translationally modified peptides and proteins, and automated analysis workflows enabling the detection, identification, and structural characterization of the corresponding peptide modifications. Human serum contains a high number of glycoproteins, comprising several orders of magnitude in concentration. Thereby, isolation and subsequent identification of low-abundant glycoproteins from serum is a challenging task. selective capturing of glycopeptides and -proteins was attained by means of magnetic particles specifically functionalized with lectins or boronic acids that bind to various structural motifs. Human serum was incubated with differentially functionalized magnetic micro-particles (lectins or boronic acids), and isolated proteins were digested with trypsin. Subsequently, the resulting complex mixture of peptides and glycopeptides was subjected to LC-MALDI analysis and database searching. In parallel, a second magnetic bead capturing was performed on the peptide level to separate and analyze by LC-MALDI intact glycopeptides, both peptide sequence and glycan structure. Detection of glycopeptides was achieved by means of a software algorithm that allows extraction and characterization of potential glycopeptide candidates from large LC-MALDI-MS/MS data sets, based on N-glycopeptide-specific fragmentation patterns and characteristic fragment mass peaks, respectively. By means of fast and simple glycospecific capturing applied in conjunction with extensive LC-MALDI-MS/MS analysis and novel data analysis tools, a high number of low-abundant proteins were identified, comprising known or predicted glycosylation sites. According to the specific binding preferences of the different types of beads, complementary results were obtained from the experiments using either magnetic ConA-, LCA-, WGA-, and boronic acid beads, respectively. PMID:17916798

  10. Andromeda: a peptide search engine integrated into the MaxQuant environment.

    PubMed

    Cox, Jürgen; Neuhauser, Nadin; Michalski, Annette; Scheltema, Richard A; Olsen, Jesper V; Mann, Matthias

    2011-04-01

    A key step in mass spectrometry (MS)-based proteomics is the identification of peptides in sequence databases by their fragmentation spectra. Here we describe Andromeda, a novel peptide search engine using a probabilistic scoring model. On proteome data, Andromeda performs as well as Mascot, a widely used commercial search engine, as judged by sensitivity and specificity analysis based on target decoy searches. Furthermore, it can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, such as highly phosphorylated peptides, and accommodates extremely large databases. The algorithms of Andromeda are provided. Andromeda can function independently or as an integrated search engine of the widely used MaxQuant computational proteomics platform and both are freely available at www.maxquant.org. The combination enables analysis of large data sets in a simple analysis workflow on a desktop computer. For searching individual spectra Andromeda is also accessible via a web server. We demonstrate the flexibility of the system by implementing the capability to identify cofragmented peptides, significantly improving the total number of identified peptides.

  11. Sulfo-NHS-SS-biotin derivatization: a versatile tool for MALDI mass analysis of PTMs in lysine-rich proteins.

    PubMed

    Markoutsa, Stavroula; Bahr, Ute; Papasotiriou, Dimitrios G; Häfner, Ann-Kathrin; Karas, Michael; Sorg, Bernd L

    2014-03-01

    The discovery of PTMs in proteins by MS requires nearly complete sequence coverage of the detected proteolytic peptides. Unfortunately, mass spectrometric analysis of the desired sequence fragments is often impeded due to low ionization efficiency and/or signal suppression in complex samples. When several lysine residues are in close proximity tryptic peptides may be too short for mass analysis. Moreover, modified peptides often appear in low stoichiometry and need to be enriched before analysis. We present here how the use of sulfo-NHS-SS-biotin derivatization of lysine side chain can help to detect PTMs in lysine-rich proteins. This label leads to a mass shift which can be adjusted by reduction of the SS bridge and alkylation with different reagents. Low intensity peptides can be enriched by use of streptavidin beads. Using this method, the functionally relevant protein kinase A phosphorylation site in 5-lipoxygenase was detected for the first time by MS. Additionally, methylation and acetylation could be unambiguously determined in histones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Comparative proteomic analysis of male and female venoms from the Cuban scorpion Rhopalurus junceus.

    PubMed

    Rodríguez-Ravelo, Rodolfo; Batista, Cesar V F; Coronas, Fredy I V; Zamudio, Fernando Z; Hernández-Orihuela, Lorena; Espinosa-López, Georgina; Ruiz-Urquiola, Ariel; Possani, Lourival D

    2015-12-01

    A complete mass spectrometry analysis of venom components from male and female scorpions of the species Rhophalurus junceus of Cuba is reported. In the order of 200 individual molecular masses were identified in both venoms, from which 63 are identical in male and females genders. It means that a significant difference of venom components exists between individuals of different sexes, but the most abundant components are present in both sexes. The relative abundance of identical components is different among the genders. Three well defined groups of different peptides were separated and identified. The first group corresponds to peptides with molecular masses of 1000-2000 Da; the second to peptides with 3500-4500 Da molecular weight, and the third with 6500-8000 Da molecular weights. A total of 86 peptides rich in disulfide bridges were found in the venoms, 27 with three disulfide bridges and 59 with four disulfide bridges. LC-MS/MS analysis allowed the identification and amino acid sequence determination of 31 novel peptides in male venom. Two new putative K(+)-channel peptides were sequences by Edman degradation. They contain 37 amino acid residues, packed by three disulfide bridges and were assigned the systematic numbers: α-KTx 1.18 and α-KTx 2.15. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Use of synthetic analogues in confirmation of structure of the peptide antibiotics Maltacines

    NASA Astrophysics Data System (ADS)

    Hagelin, Gunnar; Indrevoll, Bård; Hoeg-Jensen, Thomas

    2007-12-01

    Maltacines comprise a family of cyclic peptide lactone antibiotics produced by a strain of Bacillus subtilis. The previously proposed amino acid sequences of the linear ring-opened molecules show similarity to the lipopeptide antibiotic Fengycin IX that is also produced by a strain of B. subtilisE There were some discrepancies in the Maltacin data that could not be explained. To address this and gain more information into the structure of the linear ring-opened Maltacines, the two members D1c, E1b and Fengycin IX acid were synthesised and their MS2, MS3 and MS4 spectra compared. The similarity of the product ion spectra of Maltacin and Fengycin IX acid revealed that proline occupies an internal position in Maltacin. This finding led to revision of the interpretation of the amino acid sequences of the Maltacines. The proposed new structures of the Maltacines shows that the cyclic part of the molecules is the same as in Fengycin IX acid and Fengycin XII acid, but they have unique N-terminal sequences not found in Fengycins, and thus represent novel lipopeptide antibiotics.

  14. Independent highly sensitive characterization of asparagine deamidation and aspartic acid isomerization by sheathless CZE-ESI-MS/MS.

    PubMed

    Gahoual, Rabah; Beck, Alain; François, Yannis-Nicolas; Leize-Wagner, Emmanuelle

    2016-02-01

    Amino acids residues are commonly submitted to various physicochemical modifications occurring at physiological pH and temperature. Post-translational modifications (PTMs) require comprehensive characterization because of their major influence on protein structure and involvement in numerous in vivo process or signaling. Mass spectrometry (MS) has gradually become an analytical tool of choice to characterize PTMs; however, some modifications are still challenging because of sample faint modification levels or difficulty to separate an intact peptide from modified counterparts before their transfer to the ionization source. Here, we report the implementation of capillary zone electrophoresis coupled to electrospray ionization tandem mass spectrometry (CZE-ESI-MS/MS) by the intermediate of a sheathless interfacing for independent and highly sensitive characterization of asparagine deamidation (deaN) and aspartic acid isomerization (isoD). CZE selectivity regarding deaN and isoD was studied extensively using different sets of synthetic peptides based on actual tryptic peptides. Results demonstrated CZE ability to separate the unmodified peptide from modified homologous exhibiting deaN, isoD or both independently with a resolution systematically superior to 1.29. Developed CZE-ESI-MS/MS method was applied for the characterization of monoclonal antibodies and complex protein mixture. Conserved CZE selectivity could be demonstrated even for complex samples, and foremost results obtained showed that CZE selectivity is similar regardless of the composition of the peptide. Separation of modified peptides prior to the MS analysis allowed to characterize and estimate modification levels of the sample independently for deaN and isoD even for peptides affected by both modifications and, as a consequence, enables to distinguish the formation of l-aspartic acid or d-aspartic acid generated from deaN. Separation based on peptide modification allowed, as supported by the ESI efficiency provided by CZE-ESI-MS/MS properties, and enabled to characterize and estimate studied PTMs with an unprecedented sensitivity and proved the relevance of implementing an electrophoretic driven separation for MS-based peptide analysis. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Baltikinin: A New Myotropic Tryptophyllin-3 Peptide Isolated from the Skin Secretion of the Purple-Sided Leaf Frog, Phyllomedusa baltea

    PubMed Central

    Shi, Daning; Xi, Xinping; Wang, Lei; Gao, Yitian; Ma, Chengbang; Chen, Hang; Zhou, Mei; Chen, Tianbao; Shaw, Chris

    2016-01-01

    Here we report the identification of a novel tryptophyllin-3 peptide with arterial smooth muscle relaxation activity from the skin secretion of the purple-sided leaf frog, Phyllomedusa baltea. This new peptide was named baltikinin and had the following primary structure, pGluDKPFGPPPIYPV, as determined by tandem mass spectrometry (MS/MS) fragmentation sequencing and from cloned skin precursor-encoding cDNA. A synthetic replicate of baltikinin was found to have a similar potency to bradykinin in relaxing arterial smooth muscle (half maximal effective concentration (EC50) is 7.2 nM). These data illustrate how amphibian skin secretions can continue to provide novel potent peptides that act through functional targets in mammalian tissues. PMID:27399779

  16. Conformational and Functional Effects Induced by D- and L-Amino Acid Epimerization on a Single Gene Encoded Peptide from the Skin Secretion of Hypsiboas punctatus

    PubMed Central

    de Magalhães, Mariana T. Q.; Barbosa, Eder A.; Prates, Maura V.; Verly, Rodrigo M.; Munhoz, Victor Hugo O.; de Araújo, Ivan E.; Bloch, Carlos

    2013-01-01

    Skin secretion of Hypsiboas punctatus is the source of a complex mixture of bioactive compounds where peptides and small proteins prevail, similarly to many other amphibians. Among dozens of molecules isolated from H. punctatus in a proteomic based approach, we report here the structural and functional studies of a novel peptide named Phenylseptin (FFFDTLKNLAGKVIGALT-NH2) that was purified as two naturally occurring D- and L-Phes configurations. The amino acid epimerization and C-terminal amidation for both molecules were confirmed by a combination of techniques including reverse-phase UFLC, ion mobility mass spectrometry, high resolution MS/MS experiments, Edman degradation, cDNA sequencing and solid-phase peptide synthesis. RMSD analysis of the twenty lowest-energy 1H NMR structures of each peptide revealed a major 90° difference between the two backbones at the first four N-terminal residues and substantial orientation changes of their respective side chains. These structural divergences were considered to be the primary cause of the in vitro quantitative differences in antimicrobial activities between the two molecules. Finally, both molecules elicited equally aversive reactions in mice when delivered orally, an effect that depended entirely on peripheral gustatory pathways. PMID:23565145

  17. DeMix Workflow for Efficient Identification of Cofragmented Peptides in High Resolution Data-dependent Tandem Mass Spectrometry*

    PubMed Central

    Zhang, Bo; Pirmoradian, Mohammad; Chernobrovkin, Alexey; Zubarev, Roman A.

    2014-01-01

    Based on conventional data-dependent acquisition strategy of shotgun proteomics, we present a new workflow DeMix, which significantly increases the efficiency of peptide identification for in-depth shotgun analysis of complex proteomes. Capitalizing on the high resolution and mass accuracy of Orbitrap-based tandem mass spectrometry, we developed a simple deconvolution method of “cloning” chimeric tandem spectra for cofragmented peptides. Additional to a database search, a simple rescoring scheme utilizes mass accuracy and converts the unwanted cofragmenting events into a surprising advantage of multiplexing. With the combination of cloning and rescoring, we obtained on average nine peptide-spectrum matches per second on a Q-Exactive workbench, whereas the actual MS/MS acquisition rate was close to seven spectra per second. This efficiency boost to 1.24 identified peptides per MS/MS spectrum enabled analysis of over 5000 human proteins in single-dimensional LC-MS/MS shotgun experiments with an only two-hour gradient. These findings suggest a change in the dominant “one MS/MS spectrum - one peptide” paradigm for data acquisition and analysis in shotgun data-dependent proteomics. DeMix also demonstrated higher robustness than conventional approaches in terms of lower variation among the results of consecutive LC-MS/MS runs. PMID:25100859

  18. Mass Spectrometric Evidence of Malonaldehyde and 4-Hydroxynonenal Adductions to Radical-Scavenging Soy Peptides

    PubMed Central

    Zhao, Jing; Chen, Jing; Zhu, Haining; Xiong, Youling L.

    2012-01-01

    Antioxidative peptides in food systems are potential targets of lipid oxidation-generated reactive aldehydes, such as malonaldehyde (MDA) and 4-hydroxynonenal (HNE). In this study, covalent modifications on radical-scavenging peptides prepared from soy protein hydrolysate by MDA and HNE were characterized by liquid chromatography–electrospray ionization-mass spectrometry (LC-ESI-MS/MS). MS/MS analyses detected the formation of Schiff base type adducts of MDA on the side chain groups of lysine, histidine, arginine, glutamine, and asparagine residues as well as the N-termini of peptides. MDA also formed a fluorescent product with lysine residues. HNE adducted on lysine residues through Schiff base formation and on histidine, arginine, glutamine, and asparagine residues mainly through Michael addition. In spite of the extensive MDA modification, peptide cross-linking by this potential mechanism was undetectable. PMID:22946674

  19. Simulated gastrointestinal digestion of Pru ar 3 apricot allergen: assessment of allergen resistance and characterization of the peptides by ultra-performance liquid chromatography/electrospray ionisation mass spectrometry.

    PubMed

    Prandi, Barbara; Farioli, Laura; Tedeschi, Tullia; Pastorello, Elide Anna; Sforza, Stefano

    2012-12-30

    Non-specific lipid transfer proteins (ns-LTPs) are major food allergens of the Rosaceae family. The severity of allergic reactions often relates to resistance of the allergen to digestion. Thus, it is important to evaluate the digestibility of these proteins and characterise the peptides generated in the gastrointestinal tract. Simulated gastrointestinal digestion of purified allergen Pru ar 3 was performed using pepsin for the gastric phase in aqueous HCl at pH = 2 and chymotrypsin and trypsin for the intestinal phase in aqueous NH(4)HCO(3) at pH = 7.8. The peptide mixture obtained was analysed by ultra-performance liquid chromatography/electrospray ionisation mass spectrometry (UPLC/ESI-MS). Peptide sequences were identified by comparing their molecular mass to that obtained by in silico digestion, and were confirmed by the ions obtained by in-source fragmentation. Semi-quantification was performed for the intact protein by comparison with internal standards. The resistance to gastrointestinal digestion of Pru ar 3 allergen was evaluated to be 9%. This value is consistent with that found for grape LTP, but much lower than the resistance found for peach LTP (35%). All the peptides generated were identified by ESI-MS on the basis of their molecular mass and from the ions generated from in-source fragmentation. Apart from low molecular mass peptides, five high molecular mass peptides (4500-7000 Da) containing disulphide bridges were identified. ESI-MS of the intact protein indicated a less compact folded structure when compared to that of the homologous peach LTP. An extensive characterisation of the peptides generated from the gastrointestinal digestion of Pru ar 3 allergen was performed here for the first time via UPLC/ESI-MS analysis. The digestibility of the allergen was evaluated and compared with that of other LTPs, demonstrating that only a small amount of undigested protein remains, and that specific proteolytic action involves immunodominant epitopes. These data might explain the lower allergenicity of apricot LTP compared to peach LTP, despite their high sequence homology. Copyright © 2012 John Wiley & Sons, Ltd.

  20. MS2PIP prediction server: compute and visualize MS2 peak intensity predictions for CID and HCD fragmentation.

    PubMed

    Degroeve, Sven; Maddelein, Davy; Martens, Lennart

    2015-07-01

    We present an MS(2) peak intensity prediction server that computes MS(2) charge 2+ and 3+ spectra from peptide sequences for the most common fragment ions. The server integrates the Unimod public domain post-translational modification database for modified peptides. The prediction model is an improvement of the previously published MS(2)PIP model for Orbitrap-LTQ CID spectra. Predicted MS(2) spectra can be downloaded as a spectrum file and can be visualized in the browser for comparisons with observations. In addition, we added prediction models for HCD fragmentation (Q-Exactive Orbitrap) and show that these models compute accurate intensity predictions on par with CID performance. We also show that training prediction models for CID and HCD separately improves the accuracy for each fragmentation method. The MS(2)PIP prediction server is accessible from http://iomics.ugent.be/ms2pip. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Paenibacillus polymyxa PKB1 produces variants of polymyxin B-type antibiotics.

    PubMed

    Shaheen, Mohamed; Li, Jingru; Ross, Avena C; Vederas, John C; Jensen, Susan E

    2011-12-23

    Polymyxins are cationic lipopeptide antibiotics active against many species of Gram-negative bacteria. We sequenced the gene cluster for polymyxin biosynthesis from Paenibacillus polymyxa PKB1. The 40.8 kb gene cluster comprises three nonribosomal peptide synthetase-encoding genes and two ABC transporter-like genes. Disruption of a peptide synthetase gene abolished all antibiotic production, whereas deletion of one or both transporter genes only reduced antibiotic production. Computational analysis of the peptide synthetase modules suggested that the enzyme system produces variant forms of polymyxin B (1 and 2), with D-2,4-diaminobutyrate instead of L-2,4-diaminobutyrate in amino acid position 3. Two antibacterial metabolites were resolved by HPLC and identified by high-resolution mass spectrometry and MS/MS sequencing as the expected variants 3 and 4 of polymyxin B(1) (1) and B(2) (2). Stereochemical analysis confirmed the presence of both D-2,4-diaminobutyrate and L-2,4-diaminobutyrate residues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. A global comparability approach for biosimilar monoclonal antibodies using LC-tandem MS based proteomics.

    PubMed

    Chen, Shun-Li; Wu, Shiaw-Lin; Huang, Li-Juan; Huang, Jia-Bao; Chen, Shu-Hui

    2013-06-01

    Liquid chromatography-tandem mass spectrometry-based proteomics for peptide mapping and sequencing was used to characterize the marketed monoclonal antibody trastuzumab and compare it with two biosimilar products, mAb A containing D359E and L361M variations at the Fc site and mAb B without variants. Complete sequence coverage (100%) including disulfide linkages, glycosylations and other commonly occurring modifications (i.e., deamidation, oxidation, dehydration and K-clipping) were identified using maps generated from multi-enzyme digestions. In addition to the targeted comparison for the relative populations of targeted modification forms, a non-targeted approach was used to globally compare ion intensities in tryptic maps. The non-targeted comparison provided an extra-dimensional view to examine any possible differences related to variants or modifications. A peptide containing the two variants in mAb A, D359E and L361M, was revealed using the non-targeted comparison of the tryptic maps. In contrast, no significant differences were observed when trastuzumab was self-compared or compared with mAb B. These results were consistent with the data derived from peptide sequencing via collision induced dissociation/electron transfer dissociation. Thus, combined targeted and non-targeted approaches using powerful mass spectrometry-based proteomic tools hold great promise for the structural characterization of biosimilar products. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Improved Detection of Botulinum Neurotoxin Serotype A by Endopep-MS through Peptide Substrate Modification

    PubMed Central

    Wang, Dongxia; Baudys, Jakub; Ye, Yiming; Rees, Jon C.; Barr, John R.; Pirkle, James L.; Kalb, Suzanne R.

    2015-01-01

    Botulinum neurotoxins (BoNTs) are a family of seven toxin serotypes that are the most toxic substances known to man. Intoxication with BoNT causes flaccid paralysis and can lead to death if untreated with serotype specific antibodies. Supportive care, including ventilation, may be necessary. Rapid and sensitive detection of BoNT is necessary for timely clinical confirmation of clinical botulism. Previously, our laboratory developed a fast and sensitive mass spectrometry (MS) method termed the Endopep-MS assay. The BoNT serotypes are rapidly detected and differentiated by extracting the toxin with serotype specific antibodies and detecting the unique and serotype specific cleavage products of peptide substrates that mimic the sequence of the BoNT native targets. To further improve the sensitivity of the Endopep-MS assay, we report here the optimization of the substrate peptide for the detection of BoNT/A. Modifications on the terminal groups of the original peptide substrate with acetylation and amidation significantly improved the detection of BoNT/A cleavage products. The replacement of some internal amino acid residues with single or multiple substitutions led to further improvement. An optimized peptide increased assay sensitivity five fold with toxin spiked into buffer solution or different biological matrices. PMID:23017875

  4. Mapping the primary structure of copper/topaquinone-containing methylamine oxidase from Aspergillus niger.

    PubMed

    Lenobel, R; Sebela, M; Frébort, I

    2005-01-01

    The amino acid sequence of methylamine oxidase (MeAO) from the fungus Aspergillus niger was analyzed using mass spectrometry (MS). First, MeAO was characterized by an accurate molar mass of 72.4 kDa of the monomer measured using MALDI-TOF-MS and by a pI value of 5.8 determined by isoelectric focusing. MALDI-TOF-MS revealed a clear peptide mass fingerprint after tryptic digestion, which did not provide any relevant hit when searched against a nonredundant protein database and was different from that of A. niger amine oxidase AO-I. Tandem mass spectrometry with electrospray ionization coupled to liquid chromatography allowed unambiguous reading of six peptide sequences (11-19 amino acids) and seven sequence tags (4-15 amino acids), which were used for MS BLAST homology searching. MeAO was found to be largely homologous to a hypothetical protein AN7641.2 (EMBL/GenBank protein-accession code EAA61827) from Aspergillus nidulans FGSC A4 with a theoretical molar mass of 76.46 kDa and pI 6.14, which belongs to the superfamily of copper amine oxidases. The protein AN7641.2 is only little homologous to the amine oxidase AO-I (32% identity, 49 % similarity).

  5. Human milk peptides differentiate between the preterm and term infant and across varying lactational stages.

    PubMed

    Dingess, Kelly A; de Waard, Marita; Boeren, Sjef; Vervoort, Jacques; Lambers, Tim T; van Goudoever, Johannes B; Hettinga, Kasper

    2017-10-18

    Variations in endogenous peptide profiles, functionality, and the enzymes responsible for the formation of these peptides in human milk are understudied. Additionally, there is a lack of knowledge regarding peptides in donor human milk, which is used to feed preterm infants when mother's own milk is not (sufficiently) available. To assess this, 29 human milk samples from the Dutch Human Milk Bank were analyzed as three groups, preterm late lactation stage (LS) (n = 12), term early (n = 8) and term late LS (n = 9). Gestational age (GA) groups were defined as preterm (24-36 weeks) and term (≥37 weeks). LS was determined as days postpartum as early (16-36 days) or late (55-88 days). Peptides, analyzed by LC-MS/MS, and parent proteins (proteins from matched peptide sequences) were identified and quantified, after which peptide functionality and the enzymes responsible for protein cleavage were determined. A total of 16 different parent proteins were identified from human milk, with no differences by GA or LS. We identified 1104 endogenous peptides, of which, the majority were from the parent proteins β-casein, polymeric immunoglobulin receptor, α s1 -casein, osteopontin, and κ-casein. The absolute number of peptides differed by GA and LS with 30 and 41 differing sequences respectively (p < 0.05) Odds likelihood tests determined that 32 peptides had a predicted bioactive functionality, with no significant differences between groups. Enzyme prediction analysis showed that plasmin/trypsin enzymes most likely cleaved the identified human milk peptides. These results explain some of the variation in endogenous peptides in human milk, leading to future targets that may be studied for functionality.

  6. TEMPO-Assisted Free Radical-Initiated Peptide Sequencing Mass Spectrometry (FRIPS MS) in Q-TOF and Orbitrap Mass Spectrometers: Single-Step Peptide Backbone Dissociations in Positive Ion Mode

    NASA Astrophysics Data System (ADS)

    Jang, Inae; Lee, Sun Young; Hwangbo, Song; Kang, Dukjin; Lee, Hookeun; Kim, Hugh I.; Moon, Bongjin; Oh, Han Bin

    2017-01-01

    The present study demonstrates that one-step peptide backbone fragmentations can be achieved using the TEMPO [2-(2,2,6,6-tetramethyl piperidine-1-oxyl)]-assisted free radical-initiated peptide sequencing (FRIPS) mass spectrometry in a hybrid quadrupole time-of-flight (Q-TOF) mass spectrometer and a Q-Exactive Orbitrap instrument in positive ion mode, in contrast to two-step peptide fragmentation in an ion-trap mass spectrometer (reference Anal. Chem. 85, 7044-7051 (30)). In the hybrid Q-TOF and Q-Exactive instruments, higher collisional energies can be applied to the target peptides, compared with the low collisional energies applied by the ion-trap instrument. The higher energy deposition and the additional multiple collisions in the collision cell in both instruments appear to result in one-step peptide backbone dissociations in positive ion mode. This new finding clearly demonstrates that the TEMPO-assisted FRIPS approach is a very useful tool in peptide mass spectrometry research.

  7. A Graph-Centric Approach for Metagenome-Guided Peptide and Protein Identification in Metaproteomics

    PubMed Central

    Tang, Haixu; Li, Sujun; Ye, Yuzhen

    2016-01-01

    Metaproteomic studies adopt the common bottom-up proteomics approach to investigate the protein composition and the dynamics of protein expression in microbial communities. When matched metagenomic and/or metatranscriptomic data of the microbial communities are available, metaproteomic data analyses often employ a metagenome-guided approach, in which complete or fragmental protein-coding genes are first directly predicted from metagenomic (and/or metatranscriptomic) sequences or from their assemblies, and the resulting protein sequences are then used as the reference database for peptide/protein identification from MS/MS spectra. This approach is often limited because protein coding genes predicted from metagenomes are incomplete and fragmental. In this paper, we present a graph-centric approach to improving metagenome-guided peptide and protein identification in metaproteomics. Our method exploits the de Bruijn graph structure reported by metagenome assembly algorithms to generate a comprehensive database of protein sequences encoded in the community. We tested our method using several public metaproteomic datasets with matched metagenomic and metatranscriptomic sequencing data acquired from complex microbial communities in a biological wastewater treatment plant. The results showed that many more peptides and proteins can be identified when assembly graphs were utilized, improving the characterization of the proteins expressed in the microbial communities. The additional proteins we identified contribute to the characterization of important pathways such as those involved in degradation of chemical hazards. Our tools are released as open-source software on github at https://github.com/COL-IU/Graph2Pro. PMID:27918579

  8. Expanding proteome coverage with orthogonal-specificity α-Lytic proteases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Jesse G.; Kim, Sangtae; Maltby, David A.

    2014-03-01

    Bottom-up proteomics studies traditionally involve proteome digestion with a single protease, trypsin. However, trypsin alone does not generate peptides that encompass the entire proteome. Alternative proteases have been explored, but most have specificity for charged amino acid side chains. Therefore, additional proteases that improve proteome coverage by cleavage at sequences complimentary to trypsin may increase proteome coverage. We demonstrate the novel application of two proteases for bottom-up proteomics: wild type alpha-lytic protease (WaLP), and an active site mutant of WaLP, M190A alpha-lytic protease (MaLP). We assess several relevant factors including MS/MS fragmentation, peptide length, peptide yield, and protease specificity. Bymore » combining data from separate digestions with trypsin, LysC, WaLP, and MaLP, proteome coverage was increased 101% compared to trypsin digestion alone. To demonstrate how the gained sequence coverage can access additional PTM information, we show identification of a number of novel phosphorylation sites in the S. pombe proteome and include an illustrative example from the protein MPD2, wherein two novel sites are identified, one in a tryptic peptide too short to identify and the other in a sequence devoid of tryptic sites. The specificity of WaLP and MaLP for aliphatic amino acid side chains was particularly valuable for coverage of membrane protein sequences, which increased 350% when the data from trypsin, LysC, WaLP, and MaLP were combined.« less

  9. Cloning and characterization of an 11S legumin, Car i 4, a major allergen in pecan.

    PubMed

    Sharma, Girdhari M; Irsigler, Andre; Dhanarajan, Pushparani; Ayuso, Rosalia; Bardina, Luda; Sampson, Hugh A; Roux, Kenneth H; Sathe, Shridhar K

    2011-09-14

    Among tree nut allergens, pecan allergens remain to be identified and characterized. The objective was to demonstrate the IgE-binding ability of pecan 11S legumin and characterize its sequential IgE-binding epitopes. The 11S legumin gene was amplified from a pecan cDNA library and expressed as a fusion protein in Escherichia coli. The native 11S legumin in pecan extract was identified by mass spectrometry/mass spectrometry (MS/MS). Sequential epitopes were determined by probing the overlapping peptides with three serum pools prepared from different patients' sera. A three-dimensional model was generated using almond legumin as a template and compared with known sequential epitopes on other allergenic tree nut homologues. Of 28 patients tested by dot blot, 16 (57%) bound to 11S legumin, designated Car i 4. MS/MS sequencing of native 11S legumin identified 33 kDa acidic and 20-22 kDa basic subunits. Both pecan and walnut seed protein extracts inhibited IgE binding to recombinant Car i 4, suggesting cross-reactivity with Jug r 4. Sequential epitope mapping results of Car i 4 revealed weak, moderate, and strong reactivity of serum pools against 10, 5, and 4 peptides, respectively. Seven peptides were recognized by all three serum pools, of which two were strongly reactive. The strongly reactive peptides were located in three discrete regions of the Car i 4 acidic subunit sequence (residues 118-132, 208-219, and 238-249). Homology modeling of Car i 4 revealed significant overlapping regions shared in common with other tree nut legumins.

  10. STEPS: a grid search methodology for optimized peptide identification filtering of MS/MS database search results.

    PubMed

    Piehowski, Paul D; Petyuk, Vladislav A; Sandoval, John D; Burnum, Kristin E; Kiebel, Gary R; Monroe, Matthew E; Anderson, Gordon A; Camp, David G; Smith, Richard D

    2013-03-01

    For bottom-up proteomics, there are wide variety of database-searching algorithms in use for matching peptide sequences to tandem MS spectra. Likewise, there are numerous strategies being employed to produce a confident list of peptide identifications from the different search algorithm outputs. Here we introduce a grid-search approach for determining optimal database filtering criteria in shotgun proteomics data analyses that is easily adaptable to any search. Systematic Trial and Error Parameter Selection--referred to as STEPS--utilizes user-defined parameter ranges to test a wide array of parameter combinations to arrive at an optimal "parameter set" for data filtering, thus maximizing confident identifications. The benefits of this approach in terms of numbers of true-positive identifications are demonstrated using datasets derived from immunoaffinity-depleted blood serum and a bacterial cell lysate, two common proteomics sample types. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Quantitative Structure-Activity Relationship Modeling Coupled with Molecular Docking Analysis in Screening of Angiotensin I-Converting Enzyme Inhibitory Peptides from Qula Casein Hydrolysates Obtained by Two-Enzyme Combination Hydrolysis.

    PubMed

    Lin, Kai; Zhang, Lanwei; Han, Xue; Meng, Zhaoxu; Zhang, Jianming; Wu, Yifan; Cheng, Dayou

    2018-03-28

    In this study, Qula casein derived from yak milk casein was hydrolyzed using a two-enzyme combination approach, and high angiotensin I-converting enzyme (ACE) inhibitory activity peptides were screened by quantitative structure-activity relationship (QSAR) modeling integrated with molecular docking analysis. Hydrolysates (<3 kDa) derived from combinations of thermolysin + alcalase and thermolysin + proteinase K demonstrated high ACE inhibitory activities. Peptide sequences in hydrolysates derived from these two combinations were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). On the basis of the QSAR modeling prediction, a total of 16 peptides were selected for molecular docking analysis. The docking study revealed that four of the peptides (KFPQY, MPFPKYP, MFPPQ, and QWQVL) bound the active site of ACE. These four novel peptides were chemically synthesized, and their IC 50 was determined. Among these peptides, KFPQY showed the highest ACE inhibitory activity (IC 50 = 12.37 ± 0.43 μM). Our study indicated that Qula casein presents an excellent source to produce ACE inhibitory peptides.

  12. Classification of Ancient Mammal Individuals Using Dental Pulp MALDI-TOF MS Peptide Profiling

    PubMed Central

    Tran, Thi-Nguyen-Ny; Aboudharam, Gérard; Gardeisen, Armelle; Davoust, Bernard; Bocquet-Appel, Jean-Pierre; Flaudrops, Christophe; Belghazi, Maya; Raoult, Didier; Drancourt, Michel

    2011-01-01

    Background The classification of ancient animal corpses at the species level remains a challenging task for forensic scientists and anthropologists. Severe damage and mixed, tiny pieces originating from several skeletons may render morphological classification virtually impossible. Standard approaches are based on sequencing mitochondrial and nuclear targets. Methodology/Principal Findings We present a method that can accurately classify mammalian species using dental pulp and mass spectrometry peptide profiling. Our work was organized into three successive steps. First, after extracting proteins from the dental pulp collected from 37 modern individuals representing 13 mammalian species, trypsin-digested peptides were used for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. The resulting peptide profiles accurately classified every individual at the species level in agreement with parallel cytochrome b gene sequencing gold standard. Second, using a 279–modern spectrum database, we blindly classified 33 of 37 teeth collected in 37 modern individuals (89.1%). Third, we classified 10 of 18 teeth (56%) collected in 15 ancient individuals representing five mammal species including human, from five burial sites dating back 8,500 years. Further comparison with an upgraded database comprising ancient specimen profiles yielded 100% classification in ancient teeth. Peptide sequencing yield 4 and 16 different non-keratin proteins including collagen (alpha-1 type I and alpha-2 type I) in human ancient and modern dental pulp, respectively. Conclusions/Significance Mass spectrometry peptide profiling of the dental pulp is a new approach that can be added to the arsenal of species classification tools for forensics and anthropology as a complementary method to DNA sequencing. The dental pulp is a new source for collagen and other proteins for the species classification of modern and ancient mammal individuals. PMID:21364886

  13. De novo peptide sequencing by deep learning

    PubMed Central

    Tran, Ngoc Hieu; Zhang, Xianglilan; Xin, Lei; Shan, Baozhen; Li, Ming

    2017-01-01

    De novo peptide sequencing from tandem MS data is the key technology in proteomics for the characterization of proteins, especially for new sequences, such as mAbs. In this study, we propose a deep neural network model, DeepNovo, for de novo peptide sequencing. DeepNovo architecture combines recent advances in convolutional neural networks and recurrent neural networks to learn features of tandem mass spectra, fragment ions, and sequence patterns of peptides. The networks are further integrated with local dynamic programming to solve the complex optimization task of de novo sequencing. We evaluated the method on a wide variety of species and found that DeepNovo considerably outperformed state of the art methods, achieving 7.7–22.9% higher accuracy at the amino acid level and 38.1–64.0% higher accuracy at the peptide level. We further used DeepNovo to automatically reconstruct the complete sequences of antibody light and heavy chains of mouse, achieving 97.5–100% coverage and 97.2–99.5% accuracy, without assisting databases. Moreover, DeepNovo is retrainable to adapt to any sources of data and provides a complete end-to-end training and prediction solution to the de novo sequencing problem. Not only does our study extend the deep learning revolution to a new field, but it also shows an innovative approach in solving optimization problems by using deep learning and dynamic programming. PMID:28720701

  14. Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics

    PubMed Central

    Brusniak, Mi-Youn; Bodenmiller, Bernd; Campbell, David; Cooke, Kelly; Eddes, James; Garbutt, Andrew; Lau, Hollis; Letarte, Simon; Mueller, Lukas N; Sharma, Vagisha; Vitek, Olga; Zhang, Ning; Aebersold, Ruedi; Watts, Julian D

    2008-01-01

    Background Quantitative proteomics holds great promise for identifying proteins that are differentially abundant between populations representing different physiological or disease states. A range of computational tools is now available for both isotopically labeled and label-free liquid chromatography mass spectrometry (LC-MS) based quantitative proteomics. However, they are generally not comparable to each other in terms of functionality, user interfaces, information input/output, and do not readily facilitate appropriate statistical data analysis. These limitations, along with the array of choices, present a daunting prospect for biologists, and other researchers not trained in bioinformatics, who wish to use LC-MS-based quantitative proteomics. Results We have developed Corra, a computational framework and tools for discovery-based LC-MS proteomics. Corra extends and adapts existing algorithms used for LC-MS-based proteomics, and statistical algorithms, originally developed for microarray data analyses, appropriate for LC-MS data analysis. Corra also adapts software engineering technologies (e.g. Google Web Toolkit, distributed processing) so that computationally intense data processing and statistical analyses can run on a remote server, while the user controls and manages the process from their own computer via a simple web interface. Corra also allows the user to output significantly differentially abundant LC-MS-detected peptide features in a form compatible with subsequent sequence identification via tandem mass spectrometry (MS/MS). We present two case studies to illustrate the application of Corra to commonly performed LC-MS-based biological workflows: a pilot biomarker discovery study of glycoproteins isolated from human plasma samples relevant to type 2 diabetes, and a study in yeast to identify in vivo targets of the protein kinase Ark1 via phosphopeptide profiling. Conclusion The Corra computational framework leverages computational innovation to enable biologists or other researchers to process, analyze and visualize LC-MS data with what would otherwise be a complex and not user-friendly suite of tools. Corra enables appropriate statistical analyses, with controlled false-discovery rates, ultimately to inform subsequent targeted identification of differentially abundant peptides by MS/MS. For the user not trained in bioinformatics, Corra represents a complete, customizable, free and open source computational platform enabling LC-MS-based proteomic workflows, and as such, addresses an unmet need in the LC-MS proteomics field. PMID:19087345

  15. Structural Characterization and Disulfide Assignment of Spider Peptide Phα1β by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wormwood, Kelly L.; Ngounou Wetie, Armand Gatien; Gomez, Marcus Vinicius; Ju, Yue; Kowalski, Paul; Mihasan, Marius; Darie, Costel C.

    2018-05-01

    Native Phα1β is a peptide purified from the venom of the armed spider Phoneutria nigriventer that has been shown to have an extensive analgesic effect with fewer side effects than ω-conotoxin MVIIA. Recombinant Phα1β mimics the effects of the native Phα1β. Because of this, it has been suggested that Phα1β may have potential to be used as a therapeutic for controlling persistent pathological pain. The amino acid sequence of Phα1β is known; however, the exact structure and disulfide arrangement has yet to be determined. Determination of the disulfide linkages and exact structure could greatly assist in pharmacological analysis and determination of why this peptide is such an effective analgesic. Here, we used biochemical and mass spectrometry approaches to determine the disulfide linkages present in the recombinant Phα1β peptide. Using a combination of MALDI-MS, direct infusion ESI-MS, and nanoLC-MS/MS analysis of the undigested recombinant Phα1β peptide and digested with AspN, trypsin, or AspN/trypsin, we were able to identify and confirm all six disulfide linkages present in the peptide as Cys1-2, Cys3-4, Cys5-6, Cys7-8, Cys9-10, and Cys11-12. These results were also partially confirmed in the native Phα1β peptide. These experiments provide essential structural information about Phα1β and may assist in providing insight into the peptide's analgesic effect with very low side effects. [Figure not available: see fulltext.

  16. Structural Characterization and Disulfide Assignment of Spider Peptide Phα1β by Mass Spectrometry.

    PubMed

    Wormwood, Kelly L; Ngounou Wetie, Armand Gatien; Gomez, Marcus Vinicius; Ju, Yue; Kowalski, Paul; Mihasan, Marius; Darie, Costel C

    2018-05-01

    Native Phα1β is a peptide purified from the venom of the armed spider Phoneutria nigriventer that has been shown to have an extensive analgesic effect with fewer side effects than ω-conotoxin MVIIA. Recombinant Phα1β mimics the effects of the native Phα1β. Because of this, it has been suggested that Phα1β may have potential to be used as a therapeutic for controlling persistent pathological pain. The amino acid sequence of Phα1β is known; however, the exact structure and disulfide arrangement has yet to be determined. Determination of the disulfide linkages and exact structure could greatly assist in pharmacological analysis and determination of why this peptide is such an effective analgesic. Here, we used biochemical and mass spectrometry approaches to determine the disulfide linkages present in the recombinant Phα1β peptide. Using a combination of MALDI-MS, direct infusion ESI-MS, and nanoLC-MS/MS analysis of the undigested recombinant Phα1β peptide and digested with AspN, trypsin, or AspN/trypsin, we were able to identify and confirm all six disulfide linkages present in the peptide as Cys1-2, Cys3-4, Cys5-6, Cys7-8, Cys9-10, and Cys11-12. These results were also partially confirmed in the native Phα1β peptide. These experiments provide essential structural information about Phα1β and may assist in providing insight into the peptide's analgesic effect with very low side effects. Graphical Abstract ᅟ.

  17. Structural Characterization and Disulfide Assignment of Spider Peptide Phα1β by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wormwood, Kelly L.; Ngounou Wetie, Armand Gatien; Gomez, Marcus Vinicius; Ju, Yue; Kowalski, Paul; Mihasan, Marius; Darie, Costel C.

    2018-04-01

    Native Phα1β is a peptide purified from the venom of the armed spider Phoneutria nigriventer that has been shown to have an extensive analgesic effect with fewer side effects than ω-conotoxin MVIIA. Recombinant Phα1β mimics the effects of the native Phα1β. Because of this, it has been suggested that Phα1β may have potential to be used as a therapeutic for controlling persistent pathological pain. The amino acid sequence of Phα1β is known; however, the exact structure and disulfide arrangement has yet to be determined. Determination of the disulfide linkages and exact structure could greatly assist in pharmacological analysis and determination of why this peptide is such an effective analgesic. Here, we used biochemical and mass spectrometry approaches to determine the disulfide linkages present in the recombinant Phα1β peptide. Using a combination of MALDI-MS, direct infusion ESI-MS, and nanoLC-MS/MS analysis of the undigested recombinant Phα1β peptide and digested with AspN, trypsin, or AspN/trypsin, we were able to identify and confirm all six disulfide linkages present in the peptide as Cys1-2, Cys3-4, Cys5-6, Cys7-8, Cys9-10, and Cys11-12. These results were also partially confirmed in the native Phα1β peptide. These experiments provide essential structural information about Phα1β and may assist in providing insight into the peptide's analgesic effect with very low side effects. [Figure not available: see fulltext.

  18. Antimicrobial peptides from skin secretions of Hypsiboas pulchellus (Anura: Hylidae).

    PubMed

    Siano, Alvaro; Húmpola, María Verónica; de Oliveira, Eliandre; Albericio, Fernando; Simonetta, Arturo C; Lajmanovich, Rafael; Tonarelli, Georgina G

    2014-04-25

    The skin of many amphibians produces a large repertoire of antimicrobial peptides that are crucial in the first line of defense against microbial invasion. Despite the immense richness of wild amphibians in Argentina, knowledge about peptides with antimicrobial properties is limited to a few species. Here we used LC-MS-MS to analyze samples of Hypsiboas pulchellus skin with the aim to identify antimicrobial peptides in the mass range of 1000 to 2000 Da. Twenty-three novel sequences were identified by MS, three of which were selected for chemical synthesis and further studies. The three synthetic peptides, named P1-Hp-1971, P2-Hp-1935, and P3-Hp-1891, inhibited the growth of two ATCC strains: Escherichia coli (MIC: 16, 33, and 17 μM, respectively) and Staphylococcus aureus (MIC: 8, 66, and 17 μM, respectively). P1-Hp-1971 and P3-Hp-1891 were the most active peptides. P1-Hp-1971, which showed the highest therapeutic indices (40 for E. coli and 80 for S. aureus), is a proline-glycine-rich peptide with a highly unordered structure, while P3-Hp-1891 adopts an amphipathic α-helical structure in the presence of 2,2,2-trifluoroethanol and anionic liposomes. This is the first peptidomic study of Hypsiboas pulchellus skin secretions to allow the identification of antimicrobial peptides.

  19. Proteomic analysis of the cyanobacterium of the Azolla symbiosis: identity, adaptation, and NifH modification.

    PubMed

    Ekman, Martin; Tollbäck, Petter; Bergman, Birgitta

    2008-01-01

    Cyanobacteria are able to form stable nitrogen-fixing symbioses with diverse eukaryotes. To extend our understanding of adaptations imposed by plant hosts, two-dimensional gel electrophoresis and mass spectrometry (MS) were used for comparative protein expression profiling of a cyanobacterium (cyanobiont) dwelling in leaf cavities of the water-fern Azolla filiculoides. Homology-based protein identification using peptide mass fingerprinting [matrix-assisted laser desorption ionization-time of flight (MALDI-TOF-MS)], tandem MS analyses, and sequence homology searches resulted in an identification success rate of 79% of proteins analysed in the unsequenced cyanobiont. Compared with a free-living strain, processes related to energy production, nitrogen and carbon metabolism, and stress-related functions were up-regulated in the cyanobiont while photosynthesis and metabolic turnover rates were down-regulated, stressing a slow heterotrophic mode of growth, as well as high heterocyst frequencies and nitrogen-fixing capacities. The first molecular data set on the nature of the NifH post-translational modification in cyanobacteria was also obtained: peptide mass spectra of the protein demonstrated the presence of a 300-400 Da protein modification localized to a specific 13 amino acid sequence, within the part of the protein that is ADP-ribosylated in other bacteria and close to the active site of nitrogenase. Furthermore, the distribution of the highest scoring database hits for the identified proteins points to the possibility of using proteomic data in taxonomy.

  20. Sulfonium Ion Derivatization, Isobaric Stable Isotope Labeling and Data Dependent CID- and ETD-MS/MS for Enhanced Phosphopeptide Quantitation, Identification and Phosphorylation Site Characterization

    PubMed Central

    Lu, Yali; Zhou, Xiao; Stemmer, Paul M.; Reid, Gavin E.

    2014-01-01

    An amine specific peptide derivatization strategy involving the use of novel isobaric stable isotope encoded ‘fixed charge’ sulfonium ion reagents, coupled with an analysis strategy employing capillary HPLC, ESI-MS, and automated data dependent ion trap CID-MS/MS, -MS3, and/or ETD-MS/MS, has been developed for the improved quantitative analysis of protein phosphorylation, and for identification and characterization of their site(s) of modification. Derivatization of 50 synthetic phosphopeptides with S,S′-dimethylthiobutanoylhydroxysuccinimide ester iodide (DMBNHS), followed by analysis using capillary HPLC-ESI-MS, yielded an average 2.5-fold increase in ionization efficiencies and a significant increase in the presence and/or abundance of higher charge state precursor ions compared to the non-derivatized phosphopeptides. Notably, 44% of the phosphopeptides (22 of 50) in their underivatized states yielded precursor ions whose maximum charge states corresponded to +2, while only 8% (4 of 50) remained at this maximum charge state following DMBNHS derivatization. Quantitative analysis was achieved by measuring the abundances of the diagnostic product ions corresponding to the neutral losses of ‘light’ (S(CH3)2) and ‘heavy’ (S(CD3)2) dimethylsulfide exclusively formed upon CID-MS/MS of isobaric stable isotope labeled forms of the DMBNHS derivatized phosphopeptides. Under these conditions, the phosphate group stayed intact. Access for a greater number of peptides to provide enhanced phosphopeptide sequence identification and phosphorylation site characterization was achieved via automated data-dependent CID-MS3 or ETD-MS/MS analysis due to the formation of the higher charge state precursor ions. Importantly, improved sequence coverage was observed using ETD-MS/MS following introduction of the sulfonium ion fixed charge, but with no detrimental effects on ETD fragmentation efficiency. PMID:21952753

  1. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes

    PubMed Central

    Zhang, Yanling; Zhang, Yong; Adachi, Jun; Olsen, Jesper V.; Shi, Rong; de Souza, Gustavo; Pasini, Erica; Foster, Leonard J.; Macek, Boris; Zougman, Alexandre; Kumar, Chanchal; Wiśniewski, Jacek R.; Jun, Wang; Mann, Matthias

    2007-01-01

    Mass spectrometry (MS)-based proteomics has become a powerful technology to map the protein composition of organelles, cell types and tissues. In our department, a large-scale effort to map these proteomes is complemented by the Max-Planck Unified (MAPU) proteome database. MAPU contains several body fluid proteomes; including plasma, urine, and cerebrospinal fluid. Cell lines have been mapped to a depth of several thousand proteins and the red blood cell proteome has also been analyzed in depth. The liver proteome is represented with 3200 proteins. By employing high resolution MS and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools. PMID:17090601

  2. SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries.

    PubMed

    Wu, Jemma X; Song, Xiaomin; Pascovici, Dana; Zaw, Thiri; Care, Natasha; Krisp, Christoph; Molloy, Mark P

    2016-07-01

    The use of data-independent acquisition methods such as SWATH for mass spectrometry based proteomics is usually performed with peptide MS/MS assay libraries which enable identification and quantitation of peptide peak areas. Reference assay libraries can be generated locally through information dependent acquisition, or obtained from community data repositories for commonly studied organisms. However, there have been no studies performed to systematically evaluate how locally generated or repository-based assay libraries affect SWATH performance for proteomic studies. To undertake this analysis, we developed a software workflow, SwathXtend, which generates extended peptide assay libraries by integration with a local seed library and delivers statistical analysis of SWATH-quantitative comparisons. We designed test samples using peptides from a yeast extract spiked into peptides from human K562 cell lysates at three different ratios to simulate protein abundance change comparisons. SWATH-MS performance was assessed using local and external assay libraries of varying complexities and proteome compositions. These experiments demonstrated that local seed libraries integrated with external assay libraries achieve better performance than local assay libraries alone, in terms of the number of identified peptides and proteins and the specificity to detect differentially abundant proteins. Our findings show that the performance of extended assay libraries is influenced by the MS/MS feature similarity of the seed and external libraries, while statistical analysis using multiple testing corrections increases the statistical rigor needed when searching against large extended assay libraries. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries*

    PubMed Central

    Wu, Jemma X.; Song, Xiaomin; Pascovici, Dana; Zaw, Thiri; Care, Natasha; Krisp, Christoph; Molloy, Mark P.

    2016-01-01

    The use of data-independent acquisition methods such as SWATH for mass spectrometry based proteomics is usually performed with peptide MS/MS assay libraries which enable identification and quantitation of peptide peak areas. Reference assay libraries can be generated locally through information dependent acquisition, or obtained from community data repositories for commonly studied organisms. However, there have been no studies performed to systematically evaluate how locally generated or repository-based assay libraries affect SWATH performance for proteomic studies. To undertake this analysis, we developed a software workflow, SwathXtend, which generates extended peptide assay libraries by integration with a local seed library and delivers statistical analysis of SWATH-quantitative comparisons. We designed test samples using peptides from a yeast extract spiked into peptides from human K562 cell lysates at three different ratios to simulate protein abundance change comparisons. SWATH-MS performance was assessed using local and external assay libraries of varying complexities and proteome compositions. These experiments demonstrated that local seed libraries integrated with external assay libraries achieve better performance than local assay libraries alone, in terms of the number of identified peptides and proteins and the specificity to detect differentially abundant proteins. Our findings show that the performance of extended assay libraries is influenced by the MS/MS feature similarity of the seed and external libraries, while statistical analysis using multiple testing corrections increases the statistical rigor needed when searching against large extended assay libraries. PMID:27161445

  4. N-Protonated Isomers and Coulombic Barriers to Dissociation of Doubly Protonated Ala8Arg

    NASA Astrophysics Data System (ADS)

    Haeffner, Fredrik; Irikura, Karl K.

    2017-10-01

    Collision-induced dissociation (or tandem mass spectrometry, MS/MS) of a protonated peptide results in a spectrum of fragment ions that is useful for inferring amino acid sequence. This is now commonplace and a foundation of proteomics. The underlying chemical and physical processes are believed to be those familiar from physical organic chemistry and chemical kinetics. However, first-principles predictions remain intractable because of the conflicting necessities for high accuracy (to achieve qualitatively correct kinetics) and computational speed (to compensate for the high cost of reliable calculations on such large molecules). To make progress, shortcuts are needed. Inspired by the popular mobile proton model, we have previously proposed a simplified theoretical model in which the gas-phase fragmentation pattern of protonated peptides reflects the relative stabilities of N-protonated isomers, thus avoiding the need for transition-state information. For singly protonated Ala n ( n = 3-11), the resulting predictions were in qualitative agreement with the results from low-energy MS/MS experiments. Here, the comparison is extended to a model tryptic peptide, doubly protonated Ala8Arg. This is of interest because doubly protonated tryptic peptides are the most important in proteomics. In comparison with experimental results, our model seriously overpredicts the degree of backbone fragmentation at N9. We offer an improved model that corrects this deficiency. The principal change is to include Coulombic barriers, which hinder the separation of the product cations from each other. Coulombic barriers may be equally important in MS/MS of all multiply charged peptide ions. [Figure not available: see fulltext.

  5. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis)

    PubMed Central

    2013-01-01

    Background Advances in DNA sequencing and proteomics have facilitated quantitative comparisons of snake venom composition. Most studies have employed one approach or the other. Here, both Illumina cDNA sequencing and LC/MS were used to compare the transcriptomes and proteomes of two pit vipers, Protobothrops flavoviridis and Ovophis okinavensis, which differ greatly in their biology. Results Sequencing of venom gland cDNA produced 104,830 transcripts. The Protobothrops transcriptome contained transcripts for 103 venom-related proteins, while the Ovophis transcriptome contained 95. In both, transcript abundances spanned six orders of magnitude. Mass spectrometry identified peptides from 100% of transcripts that occurred at higher than contaminant (e.g. human keratin) levels, including a number of proteins never before sequenced from snakes. These transcriptomes reveal fundamentally different envenomation strategies. Adult Protobothrops venom promotes hemorrhage, hypotension, incoagulable blood, and prey digestion, consistent with mammalian predation. Ovophis venom composition is less readily interpreted, owing to insufficient pharmacological data for venom serine and metalloproteases, which comprise more than 97.3% of Ovophis transcripts, but only 38.0% of Protobothrops transcripts. Ovophis venom apparently represents a hybrid strategy optimized for frogs and small mammals. Conclusions This study illustrates the power of cDNA sequencing combined with MS profiling. The former quantifies transcript composition, allowing detection of novel proteins, but cannot indicate which proteins are actually secreted, as does MS. We show, for the first time, that transcript and peptide abundances are correlated. This means that MS can be used for quantitative, non-invasive venom profiling, which will be beneficial for studies of endangered species. PMID:24224955

  6. Accurate localization and relative quantification of arginine methylation using nanoflow liquid chromatography coupled to electron transfer dissociation and orbitrap mass spectrometry.

    PubMed

    Wang, Hao; Straubinger, Robert M; Aletta, John M; Cao, Jin; Duan, Xiaotao; Yu, Haoying; Qu, Jun

    2009-03-01

    Protein arginine (Arg) methylation serves an important functional role in eucaryotic cells, and typically occurs in domains consisting of multiple Arg in close proximity. Localization of methylarginine (MA) within Arg-rich domains poses a challenge for mass spectrometry (MS)-based methods; the peptides are highly charged under electrospray ionization (ESI), which limits the number of sequence-informative products produced by collision induced dissociation (CID), and loss of the labile methylation moieties during CID precludes effective fragmentation of the peptide backbone. Here the fragmentation behavior of Arg-rich peptides was investigated comprehensively using electron-transfer dissociation (ETD) and CID for both methylated and unmodified glycine-/Arg-rich peptides (GAR), derived from residues 679-695 of human nucleolin, which contains methylation motifs that are widely-represented in biological systems. ETD produced abundant information for sequencing and MA localization, whereas CID failed to provide credible identification for any available charge state (z = 2-4). Nevertheless, CID produced characteristic neutral losses that can be employed to distinguish among different types of MA, as suggested by previous works and confirmed here with product ion scans of high accuracy/resolution by an LTQ/Orbitrap. To analyze MA-peptides in relatively complex mixtures, a method was developed that employs nano-LC coupled to alternating CID/ETD for peptide sequencing and MA localization/characterization, and an Orbitrap for accurate precursor measurement and relative quantification of MA-peptide stoichiometries. As proof of concept, GAR-peptides methylated in vitro by protein arginine N-methyltransferases PRMT1 and PRMT7 were analyzed. It was observed that PRMT1 generated a number of monomethylated (MMA) and asymmetric-dimethylated peptides, while PRMT7 produced predominantly MMA peptides and some symmetric-dimethylated peptides. This approach and the results may advance understanding of the actions of PRMTs and the functional significance of Arg methylation patterns.

  7. Accurate Localization and Relative Quantification of Arginine Methylation Using Nanoflow Liquid Chromatography Coupled to Electron Transfer Dissociation and Orbitrap Mass Spectrometry

    PubMed Central

    Wang, Hao; Straubinger, Robert M.; Aletta, John M.; Cao, Jin; Duan, Xiaotao; Yu, Haoying; Qu, Jun

    2012-01-01

    Protein arginine (Arg) methylation serves an important functional role in eukaryotic cells, and typically occurs in domains consisting of multiple Arg in close proximity. Localization of methylarginine (MA) within Arg-rich domains poses a challenge for mass spectrometry (MS)-based methods; the peptides are highly-charged under electrospray ionization (ESI), which limits the number of sequence-informative products produced by collision induced dissociation (CID), and loss of the labile methylation moieties during CID precludes effective fragmentation of the peptide backbone. Here the fragmentation behavior of Arg-rich peptides was investigated comprehensively using electron transfer dissociation (ETD) and CID for both methylated and unmodified glycine-/Arg-rich peptides (GAR), derived from residues 679-695 of human nucleolin, which contains methylation motifs that are widely-represented in biological systems. ETD produced abundant information for sequencing and MA localization, whereas CID failed to provide credible identification for any available charge state (z=2-4). Nevertheless, CID produced characteristic neutral losses that can be employed to distinguish among different types of MA, as suggested by previous works and confirmed here with product ion scans of high accuracy/resolution by an LTQ/Orbitrap. To analyze MA-peptides in relatively complex mixtures, a method was developed that employs nano-LC coupled to alternating CID/ETD for peptide sequencing and MA localization/characterization, and an Orbitrap for accurate precursor measurement and relative quantification of MA-peptide stoichiometries. As proof of concept, GAR-peptides methylated in vitro by protein arginine N-methyltransferases PRMT1 and PRMT7 were analyzed. It was observed that PRMT1 generated a number of monomethylated (MMA) and asymmetric-dimethylated peptides, while PRMT7 produced predominantly MMA peptides and some symmetric-dimethylated peptides. This approach and the results may advance understanding of the actions of PRMTs and the functional significance of Arg methylation patterns. PMID:19110445

  8. The NISTmAb tryptic peptide spectral library for monoclonal antibody characterization.

    PubMed

    Dong, Qian; Liang, Yuxue; Yan, Xinjian; Markey, Sanford P; Mirokhin, Yuri A; Tchekhovskoi, Dmitrii V; Bukhari, Tallat H; Stein, Stephen E

    2018-04-01

    We describe the creation of a mass spectral library composed of all identifiable spectra derived from the tryptic digest of the NISTmAb IgG1κ. The library is a unique reference spectral collection developed from over six million peptide-spectrum matches acquired by liquid chromatography-mass spectrometry (LC-MS) over a wide range of collision energy. Conventional one-dimensional (1D) LC-MS was used for various digestion conditions and 20- and 24-fraction two-dimensional (2D) LC-MS studies permitted in-depth analyses of single digests. Computer methods were developed for automated analysis of LC-MS isotopic clusters to determine the attributes for all ions detected in the 1D and 2D studies. The library contains a selection of over 12,600 high-quality tandem spectra of more than 3,300 peptide ions identified and validated by accurate mass, differential elution pattern, and expected peptide classes in peptide map experiments. These include a variety of biologically modified peptide spectra involving glycosylated, oxidized, deamidated, glycated, and N/C-terminal modified peptides, as well as artifacts. A complete glycation profile was obtained for the NISTmAb with spectra for 58% and 100% of all possible glycation sites in the heavy and light chains, respectively. The site-specific quantification of methionine oxidation in the protein is described. The utility of this reference library is demonstrated by the analysis of a commercial monoclonal antibody (adalimumab, Humira®), where 691 peptide ion spectra are identifiable in the constant regions, accounting for 60% coverage for both heavy and light chains. The NIST reference library platform may be used as a tool for facile identification of the primary sequence and post-translational modifications, as well as the recognition of LC-MS method-induced artifacts for human and recombinant IgG antibodies. Its development also provides a general method for creating comprehensive peptide libraries of individual proteins.

  9. The NISTmAb tryptic peptide spectral library for monoclonal antibody characterization

    PubMed Central

    Dong, Qian; Liang, Yuxue; Yan, Xinjian; Markey, Sanford P.; Mirokhin, Yuri A.; Tchekhovskoi, Dmitrii V.; Bukhari, Tallat H.; Stein, Stephen E.

    2018-01-01

    ABSTRACT We describe the creation of a mass spectral library composed of all identifiable spectra derived from the tryptic digest of the NISTmAb IgG1κ. The library is a unique reference spectral collection developed from over six million peptide-spectrum matches acquired by liquid chromatography-mass spectrometry (LC-MS) over a wide range of collision energy. Conventional one-dimensional (1D) LC-MS was used for various digestion conditions and 20- and 24-fraction two-dimensional (2D) LC-MS studies permitted in-depth analyses of single digests. Computer methods were developed for automated analysis of LC-MS isotopic clusters to determine the attributes for all ions detected in the 1D and 2D studies. The library contains a selection of over 12,600 high-quality tandem spectra of more than 3,300 peptide ions identified and validated by accurate mass, differential elution pattern, and expected peptide classes in peptide map experiments. These include a variety of biologically modified peptide spectra involving glycosylated, oxidized, deamidated, glycated, and N/C-terminal modified peptides, as well as artifacts. A complete glycation profile was obtained for the NISTmAb with spectra for 58% and 100% of all possible glycation sites in the heavy and light chains, respectively. The site-specific quantification of methionine oxidation in the protein is described. The utility of this reference library is demonstrated by the analysis of a commercial monoclonal antibody (adalimumab, Humira®), where 691 peptide ion spectra are identifiable in the constant regions, accounting for 60% coverage for both heavy and light chains. The NIST reference library platform may be used as a tool for facile identification of the primary sequence and post-translational modifications, as well as the recognition of LC-MS method-induced artifacts for human and recombinant IgG antibodies. Its development also provides a general method for creating comprehensive peptide libraries of individual proteins. PMID:29425077

  10. Fragmentations of [M-H]- anions of peptides containing Ser sulfate. A joint experimental and theoretical study.

    PubMed

    Tran, T T Nha; Wang, Tianfang; Hack, Sandra; Bowie, John H

    2013-11-15

    To determine the negative-ion cleavages from [M-H](-) ions of Ser sulfate-containing peptides using experiment and theory in concert. Fragmentations were explored using a Waters QTOF2 mass spectrometer in negative-ion electrospray mode, together with calculations at the CAM-B3LYP/6-311++g(d,p) level of theory. Peptides used in this study were: GS(SO3H)(OH) 1 GS(SO3H)(OCH3) 1a GAVS(SO3H)(OH) 2 GAVS(SO3H)(OCH3) 2a GLS(SO3H)(GVA(OH) 3 GLS(SO3H)GDA(OH) 4 GLS(SO3H)GS(SO3H)A(OH) 5. Previously, it has been shown that a peptide containing a Tyr sulfate group shows [(M-H)(-) -SO3] as the base peak. Only a small peak was observed corresponding to HOSO3(-) (formed following rearrangement of the sulfate). A Ser sulfate-containing peptide, in contrast, shows pronounced peaks due to cleavage product anions [(M-H)(-)-SO3] and HOSO3(-). Theoretical calculations at the CAM-B3LYP/6-311++g(d,p) level of theory suggest that rearrangement of a Ser sulfate to give C-terminal CO2SO3H is energetically unfavourable in comparison with fragmentation of the intact Ser sulfate to yield [(M-H)(-)-SO3] and HOSO3(-). [(M-H)(-)-H2SO4] anions are not observed in the spectra of peptides containing Ser sulfate, presumably because HOSO3(-) is a relatively weak gas-phase base (ΔGacid = 1265 kJ mol(-1)). Experimental and theoretical data suggest that [(M-H)(-)-SO3] and HOSO3(-) product anions (from a peptide with a C-terminal Ser sulfate) are formed from the serine sulfate anion accompanied by specific proton transfer. CID MS/MS/MS data for an [(M-H)(-)-SO3] ion of an underivatised sulfate-containing peptide will normally allow the determination of the amino acid sequence of that peptide. The one case we have studied where that is not the case is GLS(SO3H)GDA(OH), where the peptide contains Ser sulfate and Asp, where the diagnostic Asp cleavages are competitive with the Ser sulfate cleavages. Copyright © 2013 John Wiley & Sons, Ltd.

  11. An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products.

    PubMed

    Johnston, Chad W; Skinnider, Michael A; Wyatt, Morgan A; Li, Xiang; Ranieri, Michael R M; Yang, Lian; Zechel, David L; Ma, Bin; Magarvey, Nathan A

    2015-09-28

    Bacterial natural products are a diverse and valuable group of small molecules, and genome sequencing indicates that the vast majority remain undiscovered. The prediction of natural product structures from biosynthetic assembly lines can facilitate their discovery, but highly automated, accurate, and integrated systems are required to mine the broad spectrum of sequenced bacterial genomes. Here we present a genome-guided natural products discovery tool to automatically predict, combinatorialize and identify polyketides and nonribosomal peptides from biosynthetic assembly lines using LC-MS/MS data of crude extracts in a high-throughput manner. We detail the directed identification and isolation of six genetically predicted polyketides and nonribosomal peptides using our Genome-to-Natural Products platform. This highly automated, user-friendly programme provides a means of realizing the potential of genetically encoded natural products.

  12. Peptides reproducibly released by in vivo digestion of beef meat and trout flesh in pigs.

    PubMed

    Bauchart, Caroline; Morzel, Martine; Chambon, Christophe; Mirand, Philippe Patureau; Reynès, Christelle; Buffière, Caroline; Rémond, Didier

    2007-12-01

    Characterisation and identification of peptides (800 to 5000 Da) generated by intestinal digestion of fish or meat were performed using MS analyses (matrix-assisted laser desorption ionisation time of flight and nano-liquid chromatography electrospray-ionisation ion trap MS/MS). Four pigs fitted with cannulas at the duodenum and jejunum received a meal exclusively made of cooked Pectoralis profundus beef meat or cooked trout fillets. A protein-free meal, made of free amino acids, starch and fat, was used to identify peptides of endogenous origin. Peptides reproducibly detected in digesta (i.e. from at least three pigs) were evidenced predominantly in the first 3 h after the meal. In the duodenum, most of the fish- and meat-derived peptides were characteristic of a peptic digestion. In the jejunum, the majority of peptides appeared to result from digestion by chymotrypsin and trypsin. Despite slight differences in gastric emptying kinetics and overall peptide production, possibly in relation to food structure and texture, six and four similar peptides were released after ingestion of fish or meat in the duodenum and jejunum. A total of twenty-six different peptides were identified in digesta. All were fragments of major structural (actin, myosin) or sarcoplasmic (creatine kinase, glyceraldehyde-3-phosphate dehydrogenase and myoglobin) muscle proteins. Peptides were short ( < 2000 Da) and particularly rich in proline residues. Nineteen of them contained bioactive sequences corresponding mainly to an antihypertensive activity. The present work showed that after fish or meat ingestion, among the wide variety of peptides produced by enzymic digestion, some of them can be reproducibly observed in intestinal digesta.

  13. Solution Structure of Acidocin B, a Circular Bacteriocin Produced by Lactobacillus acidophilus M46

    PubMed Central

    Acedo, Jeella Z.; van Belkum, Marco J.; Lohans, Christopher T.; McKay, Ryan T.; Miskolzie, Mark

    2015-01-01

    Acidocin B, a bacteriocin produced by Lactobacillus acidophilus M46, was originally reported to be a linear peptide composed of 59 amino acid residues. However, its high sequence similarity to gassericin A, a circular bacteriocin from Lactobacillus gasseri LA39, suggested that acidocin B might be circular as well. Acidocin B was purified from culture supernatant by a series of hydrophobic interaction chromatographic steps. Its circular nature was ascertained by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry and tandem mass spectrometry (MS/MS) sequencing. The peptide sequence was found to consist of 58 amino acids with a molecular mass of 5,621.5 Da. The sequence of the acidocin B biosynthetic gene cluster was also determined and showed high nucleotide sequence similarity to that of gassericin A. The nuclear magnetic resonance (NMR) solution structure of acidocin B in sodium dodecyl sulfate micelles was elucidated, revealing that it is composed of four α-helices of similar length that are folded to form a compact, globular bundle with a central pore. This is a three-dimensional structure for a member of subgroup II circular bacteriocins, which are classified based on their isoelectric points of ∼7 or lower. Comparison of acidocin B with carnocyclin A, a subgroup I circular bacteriocin with four α-helices and a pI of 10, revealed differences in the overall folding. The observed variations could be attributed to inherent diversity in their physical properties, which also required the use of different solvent systems for three-dimensional structural elucidation. PMID:25681186

  14. Separation of multiphosphorylated peptide isomers by hydrophilic interaction chromatography on an aminopropyl phase.

    PubMed

    Singer, David; Kuhlmann, Julia; Muschket, Matthias; Hoffmann, Ralf

    2010-08-01

    The separation of isomeric phosphorylated peptides is challenging and often impossible for multiphosphorylated isomers using chromatographic and capillary electrophoretic methods. In this study we investigated the separation of a set of single-, double-, and triple-phosphorylated peptides (corresponding to the human tau protein) by ion-pair reversed-phase chromatography (IP-RPC) and hydrophilic interaction chromatography (HILIC). In HILIC both hydroxyl and aminopropyl stationary phases were tested with aqueous acetonitrile in order to assess their separation efficiency. The hydroxyl phase separated the phosphopeptides very well from the unphosphorylated analogue, while on the aminopropyl phase even isomeric phosphopeptides attained baseline separation. Thus, up to seven phosphorylated versions of a given tau domain were separated. Furthermore, the low concentration of an acidic ammonium formate buffer allowed an online analysis with electrospray ionization tandem mass spectrometry (ESI-MS/MS) to be conducted, enabling peptide sequencing and identification of phosphorylation sites.

  15. Isolation and Structural Characterization of Antioxidant Peptides from Degreased Apricot Seed Kernels.

    PubMed

    Zhang, Haisheng; Xue, Jing; Zhao, Huanxia; Zhao, Xinshuai; Xue, Huanhuan; Sun, Yuhan; Xue, Wanrui

    2018-05-03

    Background : The composition and sequence of amino acids have a prominent influence on theantioxidant activities of peptides. Objective : A series of isolation and purification experiments was conducted to explore the amino acid sequence of antioxidant peptides, which led to its antioxidation causes. Methods : The degreased apricot seed kernels were hydrolyzed by compound proteases of alkaline protease and flavor protease (3:2, u/u) to prepare apricot seed kernel hydrolysates (ASKH). ASKH were separated into ASKH-A and ASKH-B by dialysis bag. ASKH-B (MW < 3.5 kDa) was further separated into fractions by Sephadex G-25 and G-15 gel-filtration chromatography. Reversed-phase HPLC (RP-HPLC) was performed to separate fraction B4b into two antioxidant peptides (peptide B4b-4 and B4b-6). Results : The amino acid sequences were Val-Leu-Tyr-Ile-Trp and Ser-Val-Pro-Tyr-Glu, respectively. Conclusions : The results suggested that ASKH antioxidant peptides may have potential utility as healthy ingredients and as food preservatives due to their antioxidant activity. Highlights : Materials with regional characteristics were selected to explore, and hydrolysates were identified by RP-HPLC and matrix-assisted laser desorption ionization-time-of-flight-MS to obtain amino acid sequences.

  16. Analysis of Monoclonal Antibodies in Human Serum as a Model for Clinical Monoclonal Gammopathy by Use of 21 Tesla FT-ICR Top-Down and Middle-Down MS/MS

    NASA Astrophysics Data System (ADS)

    He, Lidong; Anderson, Lissa C.; Barnidge, David R.; Murray, David L.; Hendrickson, Christopher L.; Marshall, Alan G.

    2017-05-01

    With the rapid growth of therapeutic monoclonal antibodies (mAbs), stringent quality control is needed to ensure clinical safety and efficacy. Monoclonal antibody primary sequence and post-translational modifications (PTM) are conventionally analyzed with labor-intensive, bottom-up tandem mass spectrometry (MS/MS), which is limited by incomplete peptide sequence coverage and introduction of artifacts during the lengthy analysis procedure. Here, we describe top-down and middle-down approaches with the advantages of fast sample preparation with minimal artifacts, ultrahigh mass accuracy, and extensive residue cleavages by use of 21 tesla FT-ICR MS/MS. The ultrahigh mass accuracy yields an RMS error of 0.2-0.4 ppm for antibody light chain, heavy chain, heavy chain Fc/2, and Fd subunits. The corresponding sequence coverages are 81%, 38%, 72%, and 65% with MS/MS RMS error 4 ppm. Extension to a monoclonal antibody in human serum as a monoclonal gammopathy model yielded 53% sequence coverage from two nano-LC MS/MS runs. A blind analysis of five therapeutic monoclonal antibodies at clinically relevant concentrations in human serum resulted in correct identification of all five antibodies. Nano-LC 21 T FT-ICR MS/MS provides nonpareil mass resolution, mass accuracy, and sequence coverage for mAbs, and sets a benchmark for MS/MS analysis of multiple mAbs in serum. This is the first time that extensive cleavages for both variable and constant regions have been achieved for mAbs in a human serum background.

  17. Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212

    PubMed Central

    León-Calvijo, María A.; Leal-Castro, Aura L.; Almanzar-Reina, Giovanni A.; Rosas-Pérez, Jaiver E.; García-Castañeda, Javier E.; Rivera-Monroy, Zuly J.

    2015-01-01

    Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2 Ahx 2C2) exhibit bigger or similar activity against E. coli (MIC 4–33 μM) and E. faecalis (MIC 10–33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield. PMID:25815317

  18. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212.

    PubMed

    León-Calvijo, María A; Leal-Castro, Aura L; Almanzar-Reina, Giovanni A; Rosas-Pérez, Jaiver E; García-Castañeda, Javier E; Rivera-Monroy, Zuly J

    2015-01-01

    Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2Ahx2C2) exhibit bigger or similar activity against E. coli (MIC 4-33 μM) and E. faecalis (MIC 10-33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield.

  19. Identification of ace inhibitory cryptides in Tilapia protein hydrolysate by UPLC-MS/MS coupled to database analysis.

    PubMed

    Yesmine, Ben Henda; Antoine, Bonnet; da Silva Ortência Leocádia, Nunes Gonzalez; Rogério, Boscolo Wilson; Ingrid, Arnaudin; Nicolas, Bridiau; Thierry, Maugard; Jean-Marie, Piot; Frédéric, Sannier; Stéphanie, Bordenave-Juchereau

    2017-05-01

    An ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry method was developed and applied to identify short angiotensin-I-converting enzyme (ACE) inhibitory cryptides in Tilapia (Oreochromis Niloticus) protein hydrolyzate. A database was created with previously identified ACE-inhibitory di- and tripeptides and the lowest molecular weight fraction of Tilapia hydrolysate was analysed for coincidences. Only VW and VY were identified. Further analysis of collected fractions conducted to the identification of 51 different peptides in major fractions. 19 peptides selected were synthesised and tested for their ACE inhibitory potential. TL, TI, IK, LR, LD, IQ, DI, AILE, ALLE, ALIE and AIIE were identified as new ACE inhibitors. The findings from this study point UPLC-MS/MS combined with the creation of a database as an efficient technique to identify specific short peptides within a complex hydrolysate, in addition with de novo sequencing. This efficient characterisation of bioactive factors like cryptides in protein hydrolysates will extend their use as functional foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    PubMed Central

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  1. Identifying different transcribed proteins in the newly described Theraphosidae Pamphobeteus verdolaga.

    PubMed

    Estrada-Gómez, Sebastian; Vargas-Muñoz, Leidy Johana; Saldarriaga-Córdoba, Mónica; Cifuentes, Yeimy; Perafan, Carlos

    2017-04-01

    Theraphosidae spider venoms are well known for possess a complex mixture of protein and non-protein compounds in their venom. The objective of this study was to report and identify different proteins translated from the venom gland DNA information of the recently described Theraphosidae spider Pamphobeteus verdolaga. Using a venom gland transcriptomic analysis, we reported a set of the first complete sequences of seven different proteins of the recenlty described Theraphosidae spider P. verdolaga. Protein analysis indicates the presence of different proteins on the venom composition of this new spider, some of them uncommon in the Theraphosidae family. MS/MS analysis of P. verdolaga showed different fragments matching sphingomyelinases (sicaritoxin), barytoxins, hexatoxins, latroinsectotoxins, and linear (zadotoxins) peptides. Only four of the MS/MS fragments showed 100% sequence similarity with one of the transcribed proteins. Transcriptomic analysis showed the presence of different groups of proteins like phospholipases, hyaluronidases, inhibitory cysteine knots (ICK) peptides among others. The three database of protein domains used in this study (Pfam, SMART and CDD) showed congruency in the search of unique conserved protein domain for only four of the translated proteins. Those proteins matched with EF-hand proteins, cysteine rich secretory proteins, jingzhaotoxins, theraphotoxins and hexatoxins, from different Mygalomorphae spiders belonging to the families Theraphosidae, Barychelidae and Hexathelidae. None of the analyzed sequences showed a complete 100% similarity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. LC-MS/MS Peptide Mapping with Automated Data Processing for Routine Profiling of N-Glycans in Immunoglobulins

    NASA Astrophysics Data System (ADS)

    Shah, Bhavana; Jiang, Xinzhao Grace; Chen, Louise; Zhang, Zhongqi

    2014-06-01

    Protein N-Glycan analysis is traditionally performed by high pH anion exchange chromatography (HPAEC), reversed phase liquid chromatography (RPLC), or hydrophilic interaction liquid chromatography (HILIC) on fluorescence-labeled glycans enzymatically released from the glycoprotein. These methods require time-consuming sample preparations and do not provide site-specific glycosylation information. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) peptide mapping is frequently used for protein structural characterization and, as a bonus, can potentially provide glycan profile on each individual glycosylation site. In this work, a recently developed glycopeptide fragmentation model was used for automated identification, based on their MS/MS, of N-glycopeptides from proteolytic digestion of monoclonal antibodies (mAbs). Experimental conditions were optimized to achieve accurate profiling of glycoforms. Glycan profiles obtained from LC-MS/MS peptide mapping were compared with those obtained from HPAEC, RPLC, and HILIC analyses of released glycans for several mAb molecules. Accuracy, reproducibility, and linearity of the LC-MS/MS peptide mapping method for glycan profiling were evaluated. The LC-MS/MS peptide mapping method with fully automated data analysis requires less sample preparation, provides site-specific information, and may serve as an alternative method for routine profiling of N-glycans on immunoglobulins as well as other glycoproteins with simple N-glycans.

  3. Urea free and more efficient sample preparation method for mass spectrometry based protein identification via combining the formic acid-assisted chemical cleavage and trypsin digestion.

    PubMed

    Wu, Shuaibin; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2011-10-30

    A formic acid (FA)-assisted sample preparation method was presented for protein identification via mass spectrometry (MS). Detailedly, an aqueous solution containing 2% FA and dithiothreitol was selected to perform protein denaturation, aspartic acid (D) sites cleavage and disulfide linkages reduction simultaneously at 108°C for 2h. Subsequently, FA wiped off via vacuum concentration. Finally, iodoacetamide (IAA) alkylation and trypsin digestion could be performed ordinally. A series of model proteins (BSA, β-lactoglobulin and apo-Transferrin) were treated respectively using such method, followed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The identified peptide number was increased by ∼ 80% in comparison with the conventional urea-assisted sample preparation method. Moreover, BSA identification was achieved efficiently down to femtomole (25 ± 0 sequence coverage and 16 ± 1 peptides) via such method. In contrast, there were not peptides identified confidently via the urea-assisted method before desalination via the C18 zip tip. The absence of urea in this sample preparation method was an advantage for the more favorable digestion and MALDI-TOF MS analysis. The performances of two methods for the real sample (rat liver proteome) were also compared, followed by a nanoflow reversed-phase liquid chromatography with electrospray ionization tandem mass spectrometry system analysis. As a result, 1335 ± 43 peptides were identified confidently (false discovery rate <1%) via FA-assisted method, corresponding to 295 ± 12 proteins (of top match=1 and requiring 2 unique peptides at least). In contrast, there were only 1107 ± 16 peptides (corresponding to 231 ± 10 proteins) obtained from the conventional urea-assisted method. It was serving as a more efficient protein sample preparation method for researching specific proteomes better, and providing assistance to develop other proteomics analysis methods, such as, peptide quantitative analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Alanine rich peptide from Populus trichocarpa inhibit growth of Staphylococcus aureus via targetting its extracellular domain of Sensor Histidine Kinase YycGex protein.

    PubMed

    Al Akeel, Raid; Mateen, Ayesha; Syed, Rabbani; Alqahtani, Mohammed S; Alqahtani, Ali S

    2018-05-22

    Due to growing concern towards microbial resistance, ongoing search for developing novel bioactive compounds such as peptides is on rise. The aim of this study was to evaluate antimicrobial effect of Populus trichocarpa extract, chemically identify the active peptide fraction and finds its target in Staphylococcus aureus. In this study the active fraction of P. trichocarpa crude extract was purified and characterized using MS/MS. This peptide PT13 antimicrobial activity was confirmed by in-vitro agar based disk diffusion and in-vivo infection model of G. mellonella. The proteomic expression analysis of S. aureus under influence of PT13 was studied using LTQ-Orbitrap-MS in-solution digestion and identity of target protein was acquired with their quantified expression using label-free approach of Progenesis QI software. Docking study was performed with peptide PT13 and its target YycG protein using CABS-dock. The active fraction PT13 sequence was identified as KVPVAAAAAAAAAVVASSMVVAAAK, with 25 amino acid including 13 alanine having M/Z 2194.2469. PT13 was uniformly inhibited growth S. aureus SA91 and MIC was determined 16 μg/mL for SA91 S. aureus strain. Sensor histidine kinase (YycG) was most significant target found differentially expressed under influence of PT13. G. mellonella larvae were killed rapidly due to S aureus infection, whereas death in protected group was insignificant in compare to control. The docking models showed ten docking models with RMSD value 1.89 for cluster 1 and RMSD value 3.95 for cluster 2 which is predicted to be high quality model. Alanine rich peptide could be useful in constructing as antimicrobial peptide for targeting extracellular Domain of Sensor Histidine Kinase YycG from S. aureus used in the study. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Structural characterization of the thermally tolerant pectin methylesterase purified from citrus sinensis fruit and its gene sequence.

    PubMed

    Savary, Brett J; Vasu, Prasanna; Cameron, Randall G; McCollum, T Gregory; Nuñez, Alberto

    2013-12-26

    Despite the longstanding importance of the thermally tolerant pectin methylesterase (TT-PME) activity in citrus juice processing and product quality, the unequivocal identification of the protein and its corresponding gene has remained elusive. TT-PME was purified from sweet orange [ Citrus sinensis (L.) Osbeck] finisher pulp (8.0 mg/1.3 kg tissue) with an improved purification scheme that provided 20-fold increased enzyme yield over previous results. Structural characterization of electrophoretically pure TT-PME by MALDI-TOF MS determined molecular masses of approximately 47900 and 53000 Da for two principal glycoisoforms. De novo sequences generated from tryptic peptides by MALDI-TOF/TOF MS matched multiple anonymous Citrus EST cDNA accessions. The complete tt-pme cDNA (1710 base pair) was cloned from a fruit mRNA library using RT- and RLM-RACE PCR. Citrus TT-PME is a novel isoform that showed higher sequence identity with the multiply glycosylated kiwifruit PME than to previously described Citrus thermally labile PME isoforms.

  6. PROCAL: A Set of 40 Peptide Standards for Retention Time Indexing, Column Performance Monitoring, and Collision Energy Calibration.

    PubMed

    Zolg, Daniel Paul; Wilhelm, Mathias; Yu, Peng; Knaute, Tobias; Zerweck, Johannes; Wenschuh, Holger; Reimer, Ulf; Schnatbaum, Karsten; Kuster, Bernhard

    2017-11-01

    Beyond specific applications, such as the relative or absolute quantification of peptides in targeted proteomic experiments, synthetic spike-in peptides are not yet systematically used as internal standards in bottom-up proteomics. A number of retention time standards have been reported that enable chromatographic aligning of multiple LC-MS/MS experiments. However, only few peptides are typically included in such sets limiting the analytical parameters that can be monitored. Here, we describe PROCAL (ProteomeTools Calibration Standard), a set of 40 synthetic peptides that span the entire hydrophobicity range of tryptic digests, enabling not only accurate determination of retention time indices but also monitoring of chromatographic separation performance over time. The fragmentation characteristics of the peptides can also be used to calibrate and compare collision energies between mass spectrometers. The sequences of all selected peptides do not occur in any natural protein, thus eliminating the need for stable isotope labeling. We anticipate that this set of peptides will be useful for multiple purposes in individual laboratories but also aiding the transfer of data acquisition and analysis methods between laboratories, notably the use of spectral libraries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. On-Line Electrochemical Reduction of Disulfide Bonds: Improved FTICR-CID and -ETD Coverage of Oxytocin and Hepcidin

    NASA Astrophysics Data System (ADS)

    Nicolardi, Simone; Giera, Martin; Kooijman, Pieter; Kraj, Agnieszka; Chervet, Jean-Pierre; Deelder, André M.; van der Burgt, Yuri E. M.

    2013-12-01

    Particularly in the field of middle- and top-down peptide and protein analysis, disulfide bridges can severely hinder fragmentation and thus impede sequence analysis (coverage). Here we present an on-line/electrochemistry/ESI-FTICR-MS approach, which was applied to the analysis of the primary structure of oxytocin, containing one disulfide bridge, and of hepcidin, containing four disulfide bridges. The presented workflow provided up to 80 % (on-line) conversion of disulfide bonds in both peptides. With minimal sample preparation, such reduction resulted in a higher number of peptide backbone cleavages upon CID or ETD fragmentation, and thus yielded improved sequence coverage. The cycle times, including electrode recovery, were rapid and, therefore, might very well be coupled with liquid chromatography for protein or peptide separation, which has great potential for high-throughput analysis.

  8. Protein-Level Integration Strategy of Multiengine MS Spectra Search Results for Higher Confidence and Sequence Coverage.

    PubMed

    Zhao, Panpan; Zhong, Jiayong; Liu, Wanting; Zhao, Jing; Zhang, Gong

    2017-12-01

    Multiple search engines based on various models have been developed to search MS/MS spectra against a reference database, providing different results for the same data set. How to integrate these results efficiently with minimal compromise on false discoveries is an open question due to the lack of an independent, reliable, and highly sensitive standard. We took the advantage of the translating mRNA sequencing (RNC-seq) result as a standard to evaluate the integration strategies of the protein identifications from various search engines. We used seven mainstream search engines (Andromeda, Mascot, OMSSA, X!Tandem, pFind, InsPecT, and ProVerB) to search the same label-free MS data sets of human cell lines Hep3B, MHCCLM3, and MHCC97H from the Chinese C-HPP Consortium for Chromosomes 1, 8, and 20. As expected, the union of seven engines resulted in a boosted false identification, whereas the intersection of seven engines remarkably decreased the identification power. We found that identifications of at least two out of seven engines resulted in maximizing the protein identification power while minimizing the ratio of suspicious/translation-supported identifications (STR), as monitored by our STR index, based on RNC-Seq. Furthermore, this strategy also significantly improves the peptides coverage of the protein amino acid sequence. In summary, we demonstrated a simple strategy to significantly improve the performance for shotgun mass spectrometry by protein-level integrating multiple search engines, maximizing the utilization of the current MS spectra without additional experimental work.

  9. Tissue-specific Proteogenomic Analysis of Plutella xylostella Larval Midgut Using a Multialgorithm Pipeline.

    PubMed

    Zhu, Xun; Xie, Shangbo; Armengaud, Jean; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Wu, Qingjun; Wang, Shaoli; Xia, Jixing; He, Rongjun; Zhang, Youjun

    2016-06-01

    The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Exploring Site-Specific N-Glycosylation Microheterogeneity of Haptoglobin using Glycopeptide CID Tandem Mass Spectra and Glycan Database Search

    PubMed Central

    Chandler, Kevin Brown; Pompach, Petr; Goldman, Radoslav

    2013-01-01

    Glycosylation is a common protein modification with a significant role in many vital cellular processes and human diseases, making the characterization of protein-attached glycan structures important for understanding cell biology and disease processes. Direct analysis of protein N-glycosylation by tandem mass spectrometry of glycopeptides promises site-specific elucidation of N-glycan microheterogeneity, something which detached N-glycan and de-glycosylated peptide analyses cannot provide. However, successful implementation of direct N-glycopeptide analysis by tandem mass spectrometry remains a challenge. In this work, we consider algorithmic techniques for the analysis of LC-MS/MS data acquired from glycopeptide-enriched fractions of enzymatic digests of purified proteins. We implement a computational strategy which takes advantage of the properties of CID fragmentation spectra of N-glycopeptides, matching the MS/MS spectra to peptide-glycan pairs from protein sequences and glycan structure databases. Significantly, we also propose a novel false-discovery-rate estimation technique to estimate and manage the number of false identifications. We use a human glycoprotein standard, haptoglobin, digested with trypsin and GluC, enriched for glycopeptides using HILIC chromatography, and analyzed by LC-MS/MS to demonstrate our algorithmic strategy and evaluate its performance. Our software, GlycoPeptideSearch (GPS), assigned glycopeptide identifications to 246 of the spectra at false-discovery-rate 5.58%, identifying 42 distinct haptoglobin peptide-glycan pairs at each of the four haptoglobin N-linked glycosylation sites. We further demonstrate the effectiveness of this approach by analyzing plasma-derived haptoglobin, identifying 136 N-linked glycopeptide spectra at false-discovery-rate 0.4%, representing 15 distinct glycopeptides on at least three of the four N-linked glycosylation sites. The software, GlycoPeptideSearch, is available for download from http://edwardslab.bmcb.georgetown.edu/GPS. PMID:23829323

  11. Identification of novel Amurin-2 variants from the skin secretion of Rana amurensis, and the design of cationicity-enhanced analogues.

    PubMed

    Zhang, Luyao; Chen, Xiaoling; Zhang, Ying; Ma, Chengbang; Xi, Xinping; Wang, Lei; Zhou, Mei; Burrows, James F; Chen, Tianbao

    2018-03-18

    Rana amurensis is important in Chinese medicine as its skin secretions contain abundant bioactive peptides. Here, we have identified the antimicrobial peptide Amurin-2 and three highly-conserved variants, Amurin-2a, Amurin-2b and Amurin-2c through a combination of molecular cloning and MS/MS fragmentation sequencing. Synthetic replicates of these peptides demonstrate potent antimicrobial activity against S. aureus, whilst some have activity against C.albicans and even resistant bacterial MRSA. Furthermore, two Lys-analogues (K 4 -Amurin-2 and K 11 -Amurin-2) were designed to improve the bioactive function and the antimicrobial activity of K 4 -Amurin-2 against E.coli was enhanced distinctly. In addition, the two modified peptides also showed more potent activity against S. aureus, C. albicans and MRSA strains. Meanwhile, these peptides showed inhibitory effect on the cell viability of several cancer cells. As a result, these structural and functional studies of Amurin-2 variants and analogues could provide insights for future antimicrobial peptide design. Copyright © 2018. Published by Elsevier Inc.

  12. Anti-tumor activities of peptides corresponding to conserved complementary determining regions from different immunoglobulins.

    PubMed

    Figueiredo, Carlos R; Matsuo, Alisson L; Massaoka, Mariana H; Polonelli, Luciano; Travassos, Luiz R

    2014-09-01

    Short synthetic peptides corresponding to sequences of complementarity-determining regions (CDRs) from different immunoglobulin families have been shown to induce antimicrobial, antiviral and antitumor activities regardless of the specificity of the original monoclonal antibody (mAb). Presently, we studied the in vitro and in vivo antitumor activity of synthetic peptides derived from conserved CDR sequences of different immunoglobulins against human tumor cell lines and murine B16F10-Nex2 melanoma aiming at the discovery of candidate molecules for cancer therapy. Four light- and heavy-chain CDR peptide sequences from different antibodies (C36-L1, HA9-H2, 1-H2 and Mg16-H2) showed cytotoxic activity against murine melanoma and a panel of human tumor cell lineages in vitro. Importantly, they also exerted anti-metastatic activity using a syngeneic melanoma model in mice. Other peptides (D07-H3, MN20v1, MS2-H3) were also protective against metastatic melanoma, without showing significant cytotoxicity against tumor cells in vitro. In this case, we suggest that these peptides may act as immune adjuvants in vivo. As observed, peptides induced nitric oxide production in bone-marrow macrophages showing that innate immune cells can also be modulated by these CDR peptides. The present screening supports the search in immunoglobulins of rather frequent CDR sequences that are endowed with specific antitumor properties and may be candidates to be developed as anti-cancer drugs. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Laser desorption ionization and peptide sequencing on laser induced silicon microcolumn arrays

    DOEpatents

    Vertes, Akos [Reston, VA; Chen, Yong [San Diego, CA

    2011-12-27

    The present invention provides a method of producing a laser-patterned silicon surface, especially silicon wafers for use in laser desorption ionization (LDI-MS) (including MALDI-MS and SELDI-MS), devices containing the same, and methods of testing samples employing the same. The surface is prepared by subjecting a silicon substrate to multiple laser shots from a high-power picosecond or femtosecond laser while in a processing environment, e.g., underwater, and generates a remarkable homogenous microcolumn array capable of providing an improved substrate for LDI-MS.

  14. Femtomolar Ln(III) affinity in peptide-based ligands containing unnatural chelating amino acids.

    PubMed

    Niedźwiecka, Agnieszka; Cisnetti, Federico; Lebrun, Colette; Delangle, Pascale

    2012-05-07

    The incorporation of unnatural chelating amino acids in short peptide sequences leads to lanthanide-binding peptides with a higher stability than sequences built exclusively from natural residues. In particular, the hexadentate peptide P(22), which incorporates two unnatural amino acids Ada(2) with aminodiacetate chelating arms, showed picomolar affinity for Tb(3+). To design peptides with higher denticity, expected to show higher affinity for Ln(3+), we synthesized the novel unnatural amino acid Ed3a(2) which carries an ethylenediamine triacetate side-chain and affords a pentadentate coordination site. The synthesis of the derivative Fmoc-Ed3a(2)(tBu)(3)-OH, with appropriate protecting groups for direct use in the solid phase peptide synthesis (Fmoc strategy), is described. The two high denticity peptides P(HD2) (Ac-Trp-Ed3a(2)-Pro-Gly-Ada(2)-Gly-NH(2)) and P(HD5) (Ac-Trp-Ada(2)-Pro-Gly-Ed3a(2)-Gly-NH(2)) led to octadentate Tb(3+) complexes with femtomolar stability in water. The position of the high denticity amino acid Ed3a(2) in the hexapeptide sequence appears to be critical for the control of the metal complex speciation. Whereas P(HD5) promotes the formation of polymetallic species in excess of Ln(3+), P(HD2) forms exclusively the mononuclear complex. The octadentate coordination of Tb(3+) by both P(HD) leads to total dehydration of the metal ion in the mononuclear complexes with long luminescence lifetimes (>2 ms). Hence, we demonstrated that unnatural amino acids carrying polyaminocarboxylate side-chains are interesting building blocks to design high affinity Ln-binding peptides. In particular the novel peptide P(HD2) forms a unique octadentate Tb(3+) complex with femtomolar stability in water and an improvement of the luminescence properties with respect to the trisaquo TbP(22) complex by a factor of 4.

  15. A major allergen in rainbow trout (Oncorhynchus mykiss): complete sequences of parvalbumin by MALDI tandem mass spectrometry.

    PubMed

    Aiello, Donatella; Materazzi, Stefano; Risoluti, Roberta; Thangavel, Hariprasad; Di Donna, Leonardo; Mazzotti, Fabio; Casadonte, Francesca; Siciliano, Carlo; Sindona, Giovanni; Napoli, Anna

    2015-08-01

    Fish parvalbumin (PRVB) is an abundant and stable protein in fish meat. The variation in cross-reactivity among individuals is well known and explained by a broad repertoire of molecular forms and differences between IgE-binding epitopes in fish species. PVRB has "sequential" epitopes, which retain their IgE-binding capacity and allergenicity also after heating and digestion using proteolytic enzymes. From the allergonomics perspective, PRVB is still a challenging target due to its multiple isoforms present at different degrees of distribution. Little information is available in the databases about PVRBs from Oncorhynchus mykiss. At present, only two validated, incomplete isoforms of this species are included in the protein databases: parvalbumin beta 1 (P86431) and parvalbumin beta 2 (P86432). A simple and rapid protocol has been developed for selective solubilization of PRVB from the muscle of farmed rainbow trout (Oncorhynchus mykiss), followed by calcium depletion, proteolytic digestion, MALDI MS, and MS/MS analysis. With this strategy thermal allergen release was assessed and PRVB1 (P86431), PRVB1.1, PRVB2 (P86432) and PRVB2.1 variants from the rainbow trout were sequenced. The correct ordering of peptide sequences was aided by mapping the overlapping enzymatic digests. The deduced peptide sequences were arranged and the theoretical molecular masses (Mr) of the resulting sequences were calculated. Experimental masses (Mr) of each PRVB variant were measured by linear MALDI-TOF.

  16. Protected Amine Labels: A Versatile Molecular Scaffold for Multiplexed Nominal Mass and Sub-Da Isotopologue Quantitative Proteomic Reagents

    PubMed Central

    Ficarro, Scott B.; Biagi, Jessica M.; Wang, Jinhua; Scotcher, Jenna; Koleva, Rositsa I.; Card, Joseph D.; Adelmant, Guillaume; He, Huan; Askenazi, Manor; Marshall, Alan G.; Young, Nicolas L.; Gray, Nathanael S.; Marto, Jarrod A.

    2014-01-01

    We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (i) robust targeting of peptide N-termini and lysyl side chains, (ii) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (iii) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (iv) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally we provide exemplar data that extends the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers. PMID:24496597

  17. Actiflagelin, a new sperm activator isolated from Walterinnesia aegyptia venom using phenotypic screening.

    PubMed

    Abd El-Aziz, Tarek Mohamed; Al Khoury, Sawsan; Jaquillard, Lucie; Triquigneaux, Mathilde; Martinez, Guillaume; Bourgoin-Voillard, Sandrine; Sève, Michel; Arnoult, Christophe; Beroud, Rémy; De Waard, Michel

    2018-01-01

    Sperm contains a wealth of cell surface receptors and ion channels that are required for most of its basic functions such as motility and acrosome reaction. Conversely, animal venoms are enriched in bioactive compounds that primarily target those ion channels and cell surface receptors. We hypothesized, therefore, that animal venoms should be rich enough in sperm-modulating compounds for a drug discovery program. Our objective was to demonstrate this fact by using a sperm-based phenotypic screening to identify positive modulators from the venom of Walterinnesia aegyptia . Herein, as proof of concept that venoms contain interesting compounds for sperm physiology, we fractionated Walterinnesia aegyptia snake venom by RP-HPLC and screened for bioactive fractions capable of accelerating mouse sperm motility (primary screening). Next, we purified each compound from the positive fraction by cation exchange and identified the bioactive peptide by secondary screening. The peptide sequence was established by Edman sequencing of the reduced/alkylated compound combined to LC-ESI-QTOF MS/MS analyses of reduced/alkylated fragment peptides following trypsin or V8 protease digestion. Using this two-step purification protocol combined to cell phenotypic screening, we identified a new toxin of 7329.38 Da (actiflagelin) that activates sperm motility in vitro from OF1 male mice. Actiflagelin is 63 amino acids in length and contains five disulfide bridges along the proposed pattern of disulfide connectivity C 1 -C 5 , C 2 -C 3 , C 4 -C 6 , C 7 -C 8 and C 9 -C 10 . Modeling of its structure suggests that it belongs to the family of three finger toxins with a noticeable homology with bucandin, a peptide from Bungarus candidus venom. This report demonstrates the feasibility of identifying profertility compounds that may be of therapeutic potential for infertility cases where motility is an issue.

  18. Characterization of leucine zipper complexes by electrospray ionization mass spectrometry.

    PubMed Central

    Wendt, H.; Dürr, E.; Thomas, R. M.; Przybylski, M.; Bosshard, H. R.

    1995-01-01

    The development of "soft" ionization methods has enabled the mass spectrometric analysis of higher-order structural features of proteins. We have applied electrospray ionization mass spectrometry (ESI-MS) to the analysis of the number and composition of polypeptide chains in homomeric and heteromeric leucine zippers. In comparison with other methods that have been used to analyze leucine zippers, such as analytical ultracentrifugation, gel chromatography, or electrophoretic band shift assays, ESI-MS is very fast and highly sensitive and provides a straightforward way to distinguish between homomeric and heteromeric coiled-coil structures. ESI-MS analyses were carried out on the parallel dimeric leucine zipper domain GCN4-p1 of the yeast transcription factor GCN4 and on three synthetic peptides with the sequences Ac-EYEALEKKLAAX1EAKX2QALEKKLEALEHG-amide: peptide LZ (X1, X2 = Leu), peptide LZ(12A) (X1 = Ala, X2 = Leu), and peptide LZ(16N) (X1 = Leu, X2 = Asn). Equilibrium ultracentrifugation analysis showed that LZ forms a trimeric coiled coil and this could be confirmed unequivocally by ESI-MS as could the dimeric nature of GCN4-p1. The formation of heteromeric two- and three-stranded leucine zippers composed of chains from LZ and LZ(12A), or from GCN4-p1 and LZ, was demonstrated by ESI-MS and confirmed by fluorescence quenching experiments on fluorescein-labeled peptides. The results illustrate the adaptability and flexibility of the leucine zipper motif, properties that could be useful to the design of specific protein assemblies by way of coiled-coil domains. PMID:8520482

  19. Potential aquaculture probiont Lactococcus lactis TW34 produces nisin Z and inhibits the fish pathogen Lactococcus garvieae.

    PubMed

    Sequeiros, Cynthia; Garcés, Marisa E; Vallejo, Marisol; Marguet, Emilio R; Olivera, Nelda L

    2015-04-01

    Bacteriocin-producing Lactococcus lactis TW34 was isolated from marine fish. TW34 bacteriocin inhibited the growth of the fish pathogen Lactococcus garvieae at 5 AU/ml (minimum inhibitory concentration), whereas the minimum bactericidal concentration was 10 AU/ml. Addition of TW34 bacteriocin to L. garvieae cultures resulted in a decrease of six orders of magnitude of viable cells counts demonstrating a bactericidal mode of action. The direct detection of the bacteriocin activity by Tricine-SDS-PAGE showed an active peptide with a molecular mass ca. 4.5 kDa. The analysis by MALDI-TOF-MS detected a strong signal at m/z 2,351.2 that corresponded to the nisin leader peptide mass without the initiating methionine, whose sequence STKDFNLDLVSVSKKDSGASPR was confirmed by MS/MS. Sequence analysis of nisin structural gene confirmed that L. lactis TW34 was a nisin Z producer. This nisin Z-producing strain with probiotic properties might be considered as an alternative in the prevention of lactococcosis, a global disease in aquaculture systems.

  20. On the Split Personality of Penultimate Proline

    PubMed Central

    Glover, Matthew S.; Shi, Liuqing; Fuller, Daniel R.; Arnold, Randy J.; Radivojac, Predrag; Clemmer, David E.

    2014-01-01

    The influence of the position of the amino acid proline in polypeptide sequences is examined by a combination of ion mobility spectrometry-mass spectrometry (IMS-MS), amino acid substitutions, and molecular modeling. The results suggest that when proline exists as the second residue from the N-terminus (i.e., penultimate proline), two families of conformers are formed. We demonstrate the existence of these families by a study of a series of truncated and mutated peptides derived from the 11-residue peptide Ser1-Pro2-Glu3-Leu4-Pro5-Ser6-Pro7-Gln8-Ala9-Glu10-Lys11. We find that every peptide from this sequence with a penultimate proline residue has multiple conformations. Substitution of Ala for Pro residues indicates that multiple conformers arise from the cis- trans isomerization of Xaa1–Pro2 peptide bonds as Xaa–Ala peptide bonds are unlikely to adopt the cis isomer, and examination of spectra from a library of 58 peptides indicates that ~80% of sequences show this effect. A simple mechanism suggesting that the barrier between the cis-and trans-proline forms is lowered because of low steric impedance is proposed. This observation may have interesting biological implications as well, and we note that a number of biologically active peptides have penultimate proline residues. PMID:25503299

  1. Correlation between y-type ions observed in ion trap and triple quadrupole mass spectrometers.

    PubMed

    Sherwood, Carly A; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Vitek, Olga; Martin, Daniel B

    2009-09-01

    Multiple reaction monitoring mass spectrometry (MRM-MS) is a technique for high-sensitivity targeted analysis. In proteomics, MRM-MS can be used to monitor and quantify a peptide based on the production of expected fragment peaks from the selected peptide precursor ion. The choice of which fragment ions to monitor in order to achieve maximum sensitivity in MRM-MS can potentially be guided by existing MS/MS spectra. However, because the majority of discovery experiments are performed on ion trap platforms, there is concern in the field regarding the generalizability of these spectra to MRM-MS on a triple quadrupole instrument. In light of this concern, many operators perform an optimization step to determine the most intense fragments for a target peptide on a triple quadrupole mass spectrometer. We have addressed this issue by targeting, on a triple quadrupole, the top six y-ion peaks from ion trap-derived consensus library spectra for 258 doubly charged peptides from three different sample sets and quantifying the observed elution curves. This analysis revealed a strong correlation between the y-ion peak rank order and relative intensity across platforms. This suggests that y-type ions obtained from ion trap-based library spectra are well-suited for generating MRM-MS assays for triple quadrupoles and that optimization is not required for each target peptide.

  2. Multiplexed Post-Experimental Monoisotopic Mass Refinement ( m PE-MMR) to Increase Sensitivity and Accuracy in Peptide Identifications from Tandem Mass Spectra of Cofragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madar, Inamul Hasan; Ko, Seung-Ik; Kim, Hokeun

    Mass spectrometry (MS)-based proteomics, which uses high-resolution hybrid mass spectrometers such as the quadrupole-orbitrap mass spectrometer, can yield tens of thousands of tandem mass (MS/MS) spectra of high resolution during a routine bottom-up experiment. Despite being a fundamental and key step in MS-based proteomics, the accurate determination and assignment of precursor monoisotopic masses to the MS/MS spectra remains difficult. The difficulties stem from imperfect isotopic envelopes of precursor ions, inaccurate charge states for precursor ions, and cofragmentation. We describe a composite method of utilizing MS data to assign accurate monoisotopic masses to MS/MS spectra, including those subject to cofragmentation. Themore » method, “multiplexed post-experiment monoisotopic mass refinement” (mPE-MMR), consists of the following: multiplexing of precursor masses to assign multiple monoisotopic masses of cofragmented peptides to the corresponding multiplexed MS/MS spectra, multiplexing of charge states to assign correct charges to the precursor ions of MS/ MS spectra with no charge information, and mass correction for inaccurate monoisotopic peak picking. When combined with MS-GF+, a database search algorithm based on fragment mass difference, mPE-MMR effectively increases both sensitivity and accuracy in peptide identification from complex high-throughput proteomics data compared to conventional methods.« less

  3. In situ fabrication of cleavable peptide arrays on polydimethylsiloxane and applications for kinase activity assays.

    PubMed

    Chen, Huang-Han; Hsiao, Yu-Chieh; Li, Jie-Ren; Chen, Shu-Hui

    2015-03-20

    Polydimethylsiloxane (PDMS) is widely used for microfabrication and bioanalysis; however, its surface functionalization is limited due to the lack of active functional groups and incompatibility with many solvents. We presented a novel approach for in situ fabrication of cleavable peptide arrays on polydimethylsiloxane (PDMS) viatert-butyloxycarbonyl (t-Boc)/trifluoroacetic acid (TFA) chemistry using gold nanoparticles (AuNPs) as the anchor and a disulfide/amine terminated hetero-polyethylene glycol as the cleavable linker. The method was fine tuned to use reagents compatible with the PDMS. Using 5-mer pentapeptide, Trp5, as a model, step-by-step covalent coupling during the reaction cycles was monitored by Attenuated total reflectance-Fourier transform infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), or atomic force microscopy (AFM), and further confirmed by mass spectrometry (MS) detection of the cleaved peptides. Using such a method, heptapeptides of the PKA substrate, LRRASLG (Kemptide), and its point mutated analogs were fabricated in an array format for comparative studies of cAMP-dependent protein kinase (PKA) activity. Based on on-chip detection, Kemptide sequence exhibited the highest phosphorylation activity, which was detected to a 1.5-time lesser extent for the point mutated sequence (LRRGSLG) containing the recognition motif (RRXS), and was nearly undetectable for another point mutated sequence (LRLASLG) that lacked the recognition motif. These results indicate that the reported fabrication method is able to yield highly specific peptide sequences on PDMS, leading to a highly motif-sensitive enzyme activity assay. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Matrix-assisted laser desorption-ionization mass spectrometry peptide mass fingerprinting for proteome analysis: identification efficiency after on-blot or in-gel digestion with and without desalting procedures.

    PubMed

    Lamer, S; Jungblut, P R

    2001-03-10

    In theory, peptide mass fingerprinting by matrix assisted laser desorption-ionization mass spectrometry (MALDI-MS) has the potential to identify all of the proteins detected by silver staining on gels. In practice, if the genome of the organism investigated is completely sequenced, using current techniques, all proteins stained by Coomassie Brilliant Blue can be identified. This loss of identification sensitivity of ten to hundred-fold is caused by loss of peptides by surface contacts. Therefore, we performed digestion and transfer of peptides in the lower microl range and reduced the number of steps. The peptide mix obtained from in-gel or on-blot digestion was analyzed directly after digestion or after concentration on POROS R2 beads. Eight protein spots of a 2-DE gel from Mycobacterium bovis BCG were identified using these four preparation procedures for MALDI-MS. Overall, on-blot digestion was as effective as in-gel digestion. Whereas higher signal intensities resulted after concentration, hydrophilic peptides are better detected by direct measurement of the peptide mix without POROS R2 concentration.

  5. Peptides in low molecular weight fraction of serum associated with hepatocellular carcinoma.

    PubMed

    An, Yanming; Bekesova, Slavka; Edwards, Nathan; Goldman, Radoslav

    2010-01-01

    The incidence of hepatocellular carcinoma (HCC) in the United States is increasing and the increase is projected to continue for several decades. The overall survival of HCC patients is poor and treatments are not effective in part because most of the diagnoses come at a late stage. The development of new markers for detection of HCC would significantly improve patient prognosis. This paper describes identification of candidate markers previously reported in our serologic study of an Egyptian population by quantitative comparison of matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectra. To identify these marker candidates, we performed LC-MS/MS sequencing that identified nine native peptides associated with HCC, including two reported previously. Four truncations of N terminus of complement C3f and a fibrinopeptide increased in control sera; two complement C4alpha peptides, a zyxin peptide, and a coagulation factor XIII peptide increased in cancer patient sera. We have also identified increased biliverdin diglucuronide in the sera of cancer patients. These peptides could potentially serve as markers of HCC following additional validation studies; however, association of similar peptides with other diseases and cancers dictates a very cautious approach.

  6. Improving mass measurement accuracy in mass spectrometry based proteomics by combining open source tools for chromatographic alignment and internal calibration.

    PubMed

    Palmblad, Magnus; van der Burgt, Yuri E M; Dalebout, Hans; Derks, Rico J E; Schoenmaker, Bart; Deelder, André M

    2009-05-02

    Accurate mass determination enhances peptide identification in mass spectrometry based proteomics. We here describe the combination of two previously published open source software tools to improve mass measurement accuracy in Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). The first program, msalign, aligns one MS/MS dataset with one FTICRMS dataset. The second software, recal2, uses peptides identified from the MS/MS data for automated internal calibration of the FTICR spectra, resulting in sub-ppm mass measurement errors.

  7. Endoprotease profiling with double-tagged peptide substrates: a new diagnostic approach in oncology.

    PubMed

    Peccerella, Teresa; Lukan, Nadine; Hofheinz, Ralf; Schadendorf, Dirk; Kostrezewa, Markus; Neumaier, Michael; Findeisen, Peter

    2010-02-01

    The measurement of disease-related proteolytic activity in complex biological matrices like serum is of emerging interest to improve the diagnosis of malignant diseases. We developed a mass spectrometry (MS)-based functional proteomic profiling approach that tracks degradation of artificial endoprotease substrates in serum specimens. The synthetic reporter peptides that are cleaved by tumor-associated endopeptidases were systematically optimized with regard to flanking affinity tags, linkers, and stabilizing elements. Serum specimens were incubated with reporter peptides under standardized conditions and the peptides subsequently extracted with affinity chromatography before MS. In a pilot study an optimized reporter peptide with the cleavage motif WKPYDAADL was added to serum specimens from colorectal tumor patients (n = 50) and healthy controls (n = 50). This reporter peptide comprised a known cleavage site for the cysteine-endopeptidase "cancer procoagulant." Serial affinity chromatography using biotin- and 6xHis tags was superior to the single affinity enrichment using only 6xHis tags. Furthermore, protease-resistant stop elements ensured signal accumulation after prolonged incubation. In contrast, signals from reporter peptides without stop elements vanished completely after prolonged incubation owing to their total degradation. Reporter-peptide spiking showed good reproducibility, and the difference in proteolytic activity between serum specimens from cancer patients and controls was highly significant (P < 0.001). The introduction of a few structural key elements (affinity tags, linkers, d-amino acids) into synthetic reporter peptides increases the diagnostic sensitivity for MS-based protease profiling of serum specimens. This new approach might lead to functional MS-based protease profiling for improved disease classification.

  8. Infrared Multiphoton Dissociation of Peptide Cations in a Dual Pressure Linear Ion Trap Mass Spectrometer

    PubMed Central

    Gardner, Myles W.; Smith, Suncerae I.; Ledvina, Aaron R.; Madsen, James A.; Coon, Joshua J.; Schwartz, Jae C.; Stafford, George C.; Brodbelt, Jennifer S.

    2009-01-01

    A dual pressure linear ion trap mass spectrometer was modified to permit infrared multiphoton dissociation (IRMPD) in each of the two cells - the first a high pressure cell operated at nominally 5 × 10-3 Torr and the second a low pressure cell operated at nominally 3 × 10-4 Torr. When IRMPD was performed in the high pressure cell, most peptide ions did not undergo significant photodissociation; however, in the low pressure cell peptide cations were efficiently dissociated with less than 25 ms of IR irradiation regardless of charge state. IRMPD of peptide cations allowed the detection of low m/z product ions including the y1 fragments and immonium ions which are not typically observed by ion trap collision induced dissociation (CID). Photodissociation efficiencies of ~100% and MS/MS (tandem mass spectrometry) efficiencies of greater than 60% were observed for both multiply and singly protonated peptides. In general, higher sequence coverage of peptides was obtained using IRMPD over CID. Further, greater than 90% of the product ion current in the IRMPD mass spectra of doubly charged peptide ions was composed of singly charged product ions compared to the CID mass spectra in which the abundances of the multiply and singly charged product ions were equally divided. Highly charged primary product ions also underwent efficient photodissociation to yield singly charged secondary product ions, thus simplifying the IRMPD product ion mass spectra. PMID:19739654

  9. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes.

    PubMed

    Zhang, Yanling; Zhang, Yong; Adachi, Jun; Olsen, Jesper V; Shi, Rong; de Souza, Gustavo; Pasini, Erica; Foster, Leonard J; Macek, Boris; Zougman, Alexandre; Kumar, Chanchal; Wisniewski, Jacek R; Jun, Wang; Mann, Matthias

    2007-01-01

    Mass spectrometry (MS)-based proteomics has become a powerful technology to map the protein composition of organelles, cell types and tissues. In our department, a large-scale effort to map these proteomes is complemented by the Max-Planck Unified (MAPU) proteome database. MAPU contains several body fluid proteomes; including plasma, urine, and cerebrospinal fluid. Cell lines have been mapped to a depth of several thousand proteins and the red blood cell proteome has also been analyzed in depth. The liver proteome is represented with 3200 proteins. By employing high resolution MS and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at http://www.mapuproteome.com using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools.

  10. Multiplexed data independent acquisition (MSX-DIA) applied by high resolution mass spectrometry improves quantification quality for the analysis of histone peptides

    PubMed Central

    Sidoli, Simone; Fujiwara, Rina; Garcia, Benjamin A.

    2016-01-01

    We present the mass spectrometry (MS) based application of the innovative, although scarcely exploited, multiplexed data-independent acquisition (MSX-DIA) for the analysis of histone post-translational modifications (PTMs). Histones are golden standard for complexity in MS based proteomics, due to their large number of combinatorial modifications, leading to isobaric peptides after proteolytic digestion. DIA has thus gained popularity for the purpose as it allows for MS/MS-based quantification without upfront assay development. In this work, we evaluated the performance of traditional DIA versus MSX-DIA in terms of MS/MS spectra quality, instrument scan rate and quantification precision using histones from HeLa cells. We used an MS/MS isolation window of 10 and 6 m/z for DIA and MSX-DIA, respectively. Four MS/MS scans were multiplexed for MSX-DIA. Despite MSX-DIA was programmed to perform 2-fold more MS/MS events than traditional DIA, it acquired on average ~5% more full MS scans, indicating even faster scan rate. Results highlighted an overall decrease of background ion signals using MSX-DIA, and we illustrated specific examples where peptides of different precursor masses were co-fragmented by DIA but not MSX-DIA. Taken together, MSX-DIA proved thus to be a more favorable method for histone analysis in data independent mode. PMID:27193262

  11. Multiplexed data independent acquisition (MSX-DIA) applied by high resolution mass spectrometry improves quantification quality for the analysis of histone peptides.

    PubMed

    Sidoli, Simone; Fujiwara, Rina; Garcia, Benjamin A

    2016-08-01

    We present the MS-based application of the innovative, although scarcely exploited, multiplexed data-independent acquisition (MSX-DIA) for the analysis of histone PTMs. Histones are golden standard for complexity in MS based proteomics, due to their large number of combinatorial modifications, leading to isobaric peptides after proteolytic digestion. DIA has, thus, gained popularity for the purpose as it allows for MS/MS-based quantification without upfront assay development. In this work, we evaluated the performance of traditional DIA versus MSX-DIA in terms of MS/MS spectra quality, instrument scan rate and quantification precision using histones from HeLa cells. We used an MS/MS isolation window of 10 and 6 m/z for DIA and MSX-DIA, respectively. Four MS/MS scans were multiplexed for MSX-DIA. Despite MSX-DIA was programmed to perform two-fold more MS/MS events than traditional DIA, it acquired on average ∼5% more full MS scans, indicating even faster scan rate. Results highlighted an overall decrease of background ion signals using MSX-DIA, and we illustrated specific examples where peptides of different precursor masses were co-fragmented by DIA but not MSX-DIA. Taken together, MSX-DIA proved thus to be a more favorable method for histone analysis in data independent mode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Identification of Crosslinked Peptides after Click-based Enrichment Using Sequential CID and ETD Tandem Mass Spectrometry

    PubMed Central

    Chowdhury, Saiful M.; Du, Xiuxia; Tolić, Nikola; Wu, Si; Moore, Ronald J.; Mayer, M. Uljana; Smith, Richard D.; Adkins, Joshua N.

    2010-01-01

    Chemical crosslinking combined with mass spectrometry can be a powerful approach for the identification of protein-protein interactions and for providing constraints on protein structures. However, enrichment of crosslinked peptides is crucial to reduce sample complexity before mass spectrometric analysis. In addition compact crosslinkers are often preferred to provide short spacer lengths, surface accessibility to the protein complexes, and must have reasonable solubility under condition where the native complex structure is stable. In this study, we present a novel compact crosslinker that contains two distinct features: 1) an alkyne tag and 2) a small molecule detection tag (NO2-) to maintain reasonable solubility in water. The alkyne tag enables enrichment of the crosslinked peptide after proteolytic cleavage after coupling of an affinity tag using alkyne-azido click chemistry. Neutral loss of the small NO2- moiety provides a secondary means of detecting crosslinked peptides in MS/MS analyses, providing additional confidence in peptide identifications. We show the labeling efficiency of this crosslinker, which we termed CLIP (Click-enabled Linker for Interacting Proteins) using ubiquitin. The enrichment capability of CLIP is demonstrated for crosslinked ubiquitin in highly complex E. coli cell lysates. Sequential CID-MS/MS and ETD-MS/MS of inter-crosslinked peptides (two peptides connected with a crosslinker) are also demonstrated for improved automated identification of crosslinked peptides. PMID:19496583

  13. Accumulation of deaminated peptides in anoxic sediments of Santa Barbara Basin

    NASA Astrophysics Data System (ADS)

    Abdulla, Hussain A.; Burdige, David J.; Komada, Tomoko

    2018-02-01

    Proteins represent the most abundant class of biomolecules in marine sinking particles and microbial biomass, yet their cycling in marine sediments is not fully understood. To investigate whether some portion of hydrolyzed proteins escapes complete remineralization and accumulate in the pore waters, we analyzed dissolved organic matter from the anoxic sediments of Santa Barbara Basin, California, by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS). The results showed an increase in the molecular diversity and abundance of dissolved organic nitrogen (DON) formulas with depth. A comparison of the detected DON formulas to a database of small peptides (2-4 amino acid sequences) returned 119 matches, and these formulas were most abundant near the sediment surface. When we compared our detected formulas to all possible structures that would result from deamination of peptides in the database, we found 680 formula matches. However, these molecular formulas can represent hundreds of different structural isomers (in the present case as many as 3257 different deaminated peptide structures), which cannot be distinguished by the FTICR-MS settings that were used. Analysis of amino acid sequences suggests that these deaminated peptides may be the products of selective degradation of source proteins in marine sediments. We hypothesize that these deaminated peptides accumulate in the pore waters due to extracellular proteinases being inhibited from completely hydrolyzing specific peptides to free amino acids. We suggest that anaerobic microbes deaminate peptides largely to produce H2, which is ultimately used as a reducing agent by other sediment microbes (e.g. CO2 reduction by methanogens). Simple calculations suggest that deaminated peptides may represent ∼25-45% of DOC accumulating in these sediment pore waters. Unlike rapid remineralization of free amino acids, peptide deamination leaves behind the peptide carbon skeleton. Molecular structures of these remnant carbon skeletons may hold important clues about specific microbial processes influencing organic matter remineralization and accumulation.

  14. Cleaning up the masses: exclusion lists to reduce contamination with HPLC-MS/MS.

    PubMed

    Hodge, Kelly; Have, Sara Ten; Hutton, Luke; Lamond, Angus I

    2013-08-02

    Mass spectrometry, in the past five years, has increased in speed, accuracy and use. With the ability of the mass spectrometers to identify increasing numbers of proteins the identification of undesirable peptides (those not from the protein sample) has also increased. Most undesirable contaminants originate in the laboratory and come from either the user (e.g. keratin from hair and skin), or from reagents (e.g. trypsin), that are required to prepare samples for analysis. We found that a significant amount of MS instrument time was spent sequencing peptides from abundant contaminant proteins. While completely eliminating non-specific protein contamination is not feasible, it is possible to reduce the sequencing of these contaminants. For example, exclusion lists can provide a list of masses that can be used to instruct the mass spectrometer to 'ignore' the undesired contaminant peptides in the list. We empirically generated be-spoke exclusion lists for several model organisms (Homo sapiens, Caenorhabditis elegans, Saccharomyces cerevisiae and Xenopus laevis), utilising information from over 500 mass spectrometry runs and cumulative analysis of these data. Here we show that by employing these empirically generated lists, it was possible to reduce the time spent analysing contaminating peptides in a given sample thereby facilitating more efficient data acquisition and analysis. Given the current efficacy of the Mass Spectrometry instrumentation, the utilisation of data from ~500 mass spec runs to generate be-spoke exclusion lists and optimise data acquisition is the significance of this manuscript. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Novel proline-hydroxyproline glycopeptides from the dandelion (Taraxacum officinale Wigg.) flowers: de novo sequencing and biological activity.

    PubMed

    Astafieva, Alexandra A; Enyenihi, Atim A; Rogozhin, Eugene A; Kozlov, Sergey A; Grishin, Eugene V; Odintsova, Tatyana I; Zubarev, Roman A; Egorov, Tsezi A

    2015-09-01

    Two novel homologous peptides named ToHyp1 and ToHyp2 that show no similarity to any known proteins were isolated from Taraxacum officinale Wigg. flowers by multidimensional liquid chromatography. Amino acid and mass spectrometry analyses demonstrated that the peptides have unusual structure: they are cysteine-free, proline-hydroxyproline-rich and post-translationally glycosylated by pentoses, with 5 carbohydrates in ToHyp2 and 10 in ToHyp1. The ToHyp2 peptide with a monoisotopic molecular mass of 4350.3Da was completely sequenced by a combination of Edman degradation and de novo sequencing via top down multistage collision induced dissociation (CID) and higher energy dissociation (HCD) tandem mass spectrometry (MS(n)). ToHyp2 consists of 35 amino acids, contains eighteen proline residues, of which 8 prolines are hydroxylated. The peptide displays antifungal activity and inhibits growth of Gram-positive and Gram-negative bacteria. We further showed that carbohydrate moieties have no significant impact on the peptide structure, but are important for antifungal activity although not absolutely necessary. The deglycosylated ToHyp2 peptide was less active against the susceptible fungus Bipolaris sorokiniana than the native peptide. Unique structural features of the ToHyp2 peptide place it into a new family of plant defense peptides. The discovery of ToHyp peptides in T. officinale flowers expands the repertoire of molecules of plant origin with practical applications. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Selective detection of carbohydrates and their peptide conjugates by ESI-MS using synthetic quaternary ammonium salt derivatives of phenylboronic acids.

    PubMed

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  17. Selective Detection of Carbohydrates and Their Peptide Conjugates by ESI-MS Using Synthetic Quaternary Ammonium Salt Derivatives of Phenylboronic Acids

    NASA Astrophysics Data System (ADS)

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  18. Over 2,300 phosphorylated peptide identifications with single-shot capillary zone electrophoresis-tandem mass spectrometry in a 100 min separation

    PubMed Central

    Ludwig, Katelyn R.; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J.; Hummon, Amanda B.

    2015-01-01

    Ultra-performance liquid chromatography (UPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) is typically employed for phosphoproteome analysis. Alternatively, capillary zone electrophoresis (CZE) - ESI-MS/MS has great potential for phosphoproteome analysis due to the significantly different migration times of phosphorylated and unphosphorylated forms of peptides. In this work, we systematically compared UPLC-MS/MS and CZE-MS/MS for phosphorylated peptide identifications (IDs) using an enriched phosphoproteome from the MCF-10A cell line. When the sample loading amount of UPLC was 10 times higher than that of CZE (2 μg vs. 200 ng), UPLC generated more phosphorylated peptide IDs than CZE (3,313 vs. 1,783). However, when the same sample loading amounts were used for CZE and UPLC (2–200 ng), CZE-MS/MS consistently and significantly outperformed UPLC-MS/MS in terms of phosphorylated peptide and total peptide IDs. This superior performance is most likely due to the higher peptide intensity generated by CZE-MS/MS. More importantly, compared with UPLC data from 2 μg sample, CZE-MS/MS can identify over 500 unique phosphorylated peptides from 200 ng sample, suggesting that CZE and UPLC are complementary for phosphorylated peptide IDs. With further improved loading capacity via a dynamic pH junction method, 2,313 phosphorylated peptides were identified with single-shot CZE-MS/MS in a 100 min analysis. This number of phosphorylated peptide IDs is over one order of magnitude higher than the number of phosphorylated peptide IDs previously reported by single-shot CZE-MS/MS. PMID:26399161

  19. LC-MS-based characterization of the peptide reactivity of chemicals to improve the in vitro prediction of the skin sensitization potential.

    PubMed

    Natsch, Andreas; Gfeller, Hans

    2008-12-01

    A key step in the skin sensitization process is the formation of a covalent adduct between skin sensitizers and endogenous proteins and/or peptides in the skin. Based on this mechanistic understanding, there is a renewed interest in in vitro assays to determine the reactivity of chemicals toward peptides in order to predict their sensitization potential. A standardized peptide reactivity assay yielded a promising predictivity. This published assay is based on high-performance liquid chromatography with ultraviolet detection to quantify peptide depletion after incubation with test chemicals. We had observed that peptide depletion may be due to either adduct formation or peptide oxidation. Here we report a modified assay based on both liquid chromatography-mass spectrometry (LC-MS) analysis and detection of free thiol groups. This approach allows simultaneous determination of (1) peptide depletion, (2) peptide oxidation (dimerization), (3) adduct formation, and (4) thiol reactivity and thus generates a more detailed characterization of the reactivity of a molecule. Highly reactive molecules are further discriminated with a kinetic measure. The assay was validated on 80 chemicals. Peptide depletion could accurately be quantified both with LC-MS detection and depletion of thiol groups. The majority of the moderate/strong/extreme sensitizers formed detectable peptide adducts, but many sensitizers were also able to catalyze peptide oxidation. Whereas adduct formation was only observed for sensitizers, this oxidation reaction was also observed for two nonsensitizing fragrance aldehydes, indicating that peptide depletion might not always be regarded as sufficient evidence for rating a chemical as a sensitizer. Thus, this modified assay gives a more informed view of the peptide reactivity of chemicals to better predict their sensitization potential.

  20. Simultaneous Glycan-Peptide Characterization Using Hydrophilic Interaction Chromatography and Parallel Fragmentation by CID, Higher Energy Collisional Dissociation, and Electron Transfer Dissociation MS Applied to the N-Linked Glycoproteome of Campylobacter jejuni*

    PubMed Central

    Scott, Nichollas E.; Parker, Benjamin L.; Connolly, Angela M.; Paulech, Jana; Edwards, Alistair V. G.; Crossett, Ben; Falconer, Linda; Kolarich, Daniel; Djordjevic, Steven P.; Højrup, Peter; Packer, Nicolle H.; Larsen, Martin R.; Cordwell, Stuart J.

    2011-01-01

    Campylobacter jejuni is a gastrointestinal pathogen that is able to modify membrane and periplasmic proteins by the N-linked addition of a 7-residue glycan at the strict attachment motif (D/E)XNX(S/T). Strategies for a comprehensive analysis of the targets of glycosylation, however, are hampered by the resistance of the glycan-peptide bond to enzymatic digestion or β-elimination and have previously concentrated on soluble glycoproteins compatible with lectin affinity and gel-based approaches. We developed strategies for enriching C. jejuni HB93-13 glycopeptides using zwitterionic hydrophilic interaction chromatography and examined novel fragmentation, including collision-induced dissociation (CID) and higher energy collisional (C-trap) dissociation (HCD) as well as CID/electron transfer dissociation (ETD) mass spectrometry. CID/HCD enabled the identification of glycan structure and peptide backbone, allowing glycopeptide identification, whereas CID/ETD enabled the elucidation of glycosylation sites by maintaining the glycan-peptide linkage. A total of 130 glycopeptides, representing 75 glycosylation sites, were identified from LC-MS/MS using zwitterionic hydrophilic interaction chromatography coupled to CID/HCD and CID/ETD. CID/HCD provided the majority of the identifications (73 sites) compared with ETD (26 sites). We also examined soluble glycoproteins by soybean agglutinin affinity and two-dimensional electrophoresis and identified a further six glycosylation sites. This study more than doubles the number of confirmed N-linked glycosylation sites in C. jejuni and is the first to utilize HCD fragmentation for glycopeptide identification with intact glycan. We also show that hydrophobic integral membrane proteins are significant targets of glycosylation in this organism. Our data demonstrate that peptide-centric approaches coupled to novel mass spectrometric fragmentation techniques may be suitable for application to eukaryotic glycoproteins for simultaneous elucidation of glycan structures and peptide sequence. PMID:20360033

  1. Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni.

    PubMed

    Scott, Nichollas E; Parker, Benjamin L; Connolly, Angela M; Paulech, Jana; Edwards, Alistair V G; Crossett, Ben; Falconer, Linda; Kolarich, Daniel; Djordjevic, Steven P; Højrup, Peter; Packer, Nicolle H; Larsen, Martin R; Cordwell, Stuart J

    2011-02-01

    Campylobacter jejuni is a gastrointestinal pathogen that is able to modify membrane and periplasmic proteins by the N-linked addition of a 7-residue glycan at the strict attachment motif (D/E)XNX(S/T). Strategies for a comprehensive analysis of the targets of glycosylation, however, are hampered by the resistance of the glycan-peptide bond to enzymatic digestion or β-elimination and have previously concentrated on soluble glycoproteins compatible with lectin affinity and gel-based approaches. We developed strategies for enriching C. jejuni HB93-13 glycopeptides using zwitterionic hydrophilic interaction chromatography and examined novel fragmentation, including collision-induced dissociation (CID) and higher energy collisional (C-trap) dissociation (HCD) as well as CID/electron transfer dissociation (ETD) mass spectrometry. CID/HCD enabled the identification of glycan structure and peptide backbone, allowing glycopeptide identification, whereas CID/ETD enabled the elucidation of glycosylation sites by maintaining the glycan-peptide linkage. A total of 130 glycopeptides, representing 75 glycosylation sites, were identified from LC-MS/MS using zwitterionic hydrophilic interaction chromatography coupled to CID/HCD and CID/ETD. CID/HCD provided the majority of the identifications (73 sites) compared with ETD (26 sites). We also examined soluble glycoproteins by soybean agglutinin affinity and two-dimensional electrophoresis and identified a further six glycosylation sites. This study more than doubles the number of confirmed N-linked glycosylation sites in C. jejuni and is the first to utilize HCD fragmentation for glycopeptide identification with intact glycan. We also show that hydrophobic integral membrane proteins are significant targets of glycosylation in this organism. Our data demonstrate that peptide-centric approaches coupled to novel mass spectrometric fragmentation techniques may be suitable for application to eukaryotic glycoproteins for simultaneous elucidation of glycan structures and peptide sequence.

  2. Phage display selection of peptides that target calcium-binding proteins.

    PubMed

    Vetter, Stefan W

    2013-01-01

    Phage display allows to rapidly identify peptide sequences with binding affinity towards target proteins, for example, calcium-binding proteins (CBPs). Phage technology allows screening of 10(9) or more independent peptide sequences and can identify CBP binding peptides within 2 weeks. Adjusting of screening conditions allows selecting CBPs binding peptides that are either calcium-dependent or independent. Obtained peptide sequences can be used to identify CBP target proteins based on sequence homology or to quickly obtain peptide-based CBP inhibitors to modulate CBP-target interactions. The protocol described here uses a commercially available phage display library, in which random 12-mer peptides are displayed on filamentous M13 phages. The library was screened against the calcium-binding protein S100B.

  3. Combined LC-MS/MS and Molecular Networking Approach Reveals New Cyanotoxins from the 2014 Cyanobacterial Bloom in Green Lake, Seattle.

    PubMed

    Teta, Roberta; Della Sala, Gerardo; Glukhov, Evgenia; Gerwick, Lena; Gerwick, William H; Mangoni, Alfonso; Costantino, Valeria

    2015-12-15

    Cyanotoxins obtained from a freshwater cyanobacterial collection at Green Lake, Seattle during a cyanobacterial harmful algal bloom in the summer of 2014 were studied using a new approach based on molecular networking analysis of liquid chromatography tandem mass spectrometry (LC-MS/MS) data. This MS networking approach is particularly well-suited for the detection of new cyanotoxin variants and resulted in the discovery of three new cyclic peptides, namely microcystin-MhtyR (6), which comprised about half of the total microcystin content in the bloom, and ferintoic acids C (12) and D (13). Structure elucidation of 6 was aided by a new microscale methylation procedure. Metagenomic analysis of the bloom using the 16S-ITS rRNA region identified Microcystis aeruginosa as the predominant cyanobacterium in the sample. Fragments of the putative biosynthetic genes for the new cyanotoxins were also identified, and their sequences correlated to the structure of the isolated cyanotoxins.

  4. A Comprehensive, Open-source Platform for Mass Spectrometry-based Glycoproteomics Data Analysis.

    PubMed

    Liu, Gang; Cheng, Kai; Lo, Chi Y; Li, Jun; Qu, Jun; Neelamegham, Sriram

    2017-11-01

    Glycosylation is among the most abundant and diverse protein post-translational modifications (PTMs) identified to date. The structural analysis of this PTM is challenging because of the diverse monosaccharides which are not conserved among organisms, the branched nature of glycans, their isomeric structures, and heterogeneity in the glycan distribution at a given site. Glycoproteomics experiments have adopted the traditional high-throughput LC-MS n proteomics workflow to analyze site-specific glycosylation. However, comprehensive computational platforms for data analyses are scarce. To address this limitation, we present a comprehensive, open-source, modular software for glycoproteomics data analysis called GlycoPAT (GlycoProteomics Analysis Toolbox; freely available from www.VirtualGlycome.org/glycopat). The program includes three major advances: (1) "SmallGlyPep," a minimal linear representation of glycopeptides for MS n data analysis. This format allows facile serial fragmentation of both the peptide backbone and PTM at one or more locations. (2) A novel scoring scheme based on calculation of the "Ensemble Score (ES)," a measure that scores and rank-orders MS/MS spectrum for N- and O-linked glycopeptides using cross-correlation and probability based analyses. (3) A false discovery rate (FDR) calculation scheme where decoy glycopeptides are created by simultaneously scrambling the amino acid sequence and by introducing artificial monosaccharides by perturbing the original sugar mass. Parallel computing facilities and user-friendly GUIs (Graphical User Interfaces) are also provided. GlycoPAT is used to catalogue site-specific glycosylation on simple glycoproteins, standard protein mixtures and human plasma cryoprecipitate samples in three common MS/MS fragmentation modes: CID, HCD and ETD. It is also used to identify 960 unique glycopeptides in cell lysates from prostate cancer cells. The results show that the simultaneous consideration of peptide and glycan fragmentation is necessary for high quality MS n spectrum annotation in CID and HCD fragmentation modes. Additionally, they confirm the suitability of GlycoPAT to analyze shotgun glycoproteomics data. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Current algorithmic solutions for peptide-based proteomics data generation and identification.

    PubMed

    Hoopmann, Michael R; Moritz, Robert L

    2013-02-01

    Peptide-based proteomic data sets are ever increasing in size and complexity. These data sets provide computational challenges when attempting to quickly analyze spectra and obtain correct protein identifications. Database search and de novo algorithms must consider high-resolution MS/MS spectra and alternative fragmentation methods. Protein inference is a tricky problem when analyzing large data sets of degenerate peptide identifications. Combining multiple algorithms for improved peptide identification puts significant strain on computational systems when investigating large data sets. This review highlights some of the recent developments in peptide and protein identification algorithms for analyzing shotgun mass spectrometry data when encountering the aforementioned hurdles. Also explored are the roles that analytical pipelines, public spectral libraries, and cloud computing play in the evolution of peptide-based proteomics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Online Hydrogen-Deuterium Exchange Traveling Wave Ion Mobility Mass Spectrometry (HDX-IM-MS): a Systematic Evaluation

    NASA Astrophysics Data System (ADS)

    Cryar, Adam; Groves, Kate; Quaglia, Milena

    2017-06-01

    Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is an important tool for measuring and monitoring protein structure. A bottom-up approach to HDX-MS provides peptide level deuterium uptake values and a more refined localization of deuterium incorporation compared with global HDX-MS measurements. The degree of localization provided by HDX-MS is proportional to the number of peptides that can be identified and monitored across an exchange experiment. Ion mobility spectrometry (IMS) has been shown to improve MS-based peptide analysis of biological samples through increased separation capacity. The integration of IMS within HDX-MS workflows has been commercialized but presently its adoption has not been widespread. The potential benefits of IMS, therefore, have not yet been fully explored. We herein describe a comprehensive evaluation of traveling wave ion mobility integrated within an online-HDX-MS system and present the first reported example of UDMSE acquisition for HDX analysis. Instrument settings required for optimal peptide identifications are described and the effects of detector saturation due to peak compression are discussed. A model system is utilized to confirm the comparability of HDX-IM-MS and HDX-MS uptake values prior to an evaluation of the benefits of IMS at increasing sample complexity. Interestingly, MS and IM-MS acquisitions were found to identify distinct populations of peptides that were unique to the respective methods, a property that can be utilized to increase the spatial resolution of HDX-MS experiments by >60%. [Figure not available: see fulltext.

  7. LC-MS/MS Identification of Species-Specific Muscle Peptides in Processed Animal Proteins.

    PubMed

    Marchis, Daniela; Altomare, Alessandra; Gili, Marilena; Ostorero, Federica; Khadjavi, Amina; Corona, Cristiano; Ru, Giuseppe; Cappelletti, Benedetta; Gianelli, Silvia; Amadeo, Francesca; Rumio, Cristiano; Carini, Marina; Aldini, Giancarlo; Casalone, Cristina

    2017-12-06

    An innovative analytical strategy has been applied to identify signature peptides able to distinguish among processed animal proteins (PAPs) derived from bovine, pig, fish, and milk products. Proteomics was first used to elucidate the proteome of each source. Starting from the identified proteins and using a funnel based approach, a set of abundant and well characterized peptides with suitable physical-chemical properties (signature peptides) and specific for each source was selected. An on-target LC-ESI-MS/MS method (MRM mode) was set up using standard peptides and was then applied to selectively identify the PAP source and also to distinguish proteins from bovine carcass and milk proteins. We believe that the method described meets the request of the European Commission which has developed a strategy for gradually lifting the "total ban" toward "species to species ban", therefore requiring official methods for species-specific discrimination in feed.

  8. PARPs database: A LIMS systems for protein-protein interaction data mining or laboratory information management system

    PubMed Central

    Droit, Arnaud; Hunter, Joanna M; Rouleau, Michèle; Ethier, Chantal; Picard-Cloutier, Aude; Bourgais, David; Poirier, Guy G

    2007-01-01

    Background In the "post-genome" era, mass spectrometry (MS) has become an important method for the analysis of proteins and the rapid advancement of this technique, in combination with other proteomics methods, results in an increasing amount of proteome data. This data must be archived and analysed using specialized bioinformatics tools. Description We herein describe "PARPs database," a data analysis and management pipeline for liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics. PARPs database is a web-based tool whose features include experiment annotation, protein database searching, protein sequence management, as well as data-mining of the peptides and proteins identified. Conclusion Using this pipeline, we have successfully identified several interactions of biological significance between PARP-1 and other proteins, namely RFC-1, 2, 3, 4 and 5. PMID:18093328

  9. Characterization of N-palmitoylated human growth hormone by in situ liquid-liquid extraction and MALDI tandem mass spectrometry.

    PubMed

    Sachon, Emmanuelle; Nielsen, Per Franklin; Jensen, Ole Nørregaard

    2007-06-01

    Acylation is a common post-translational modification found in secreted proteins and membrane-associated proteins, including signal transducing and regulatory proteins. Acylation is also explored in the pharmaceutical and biotechnology industry to increase the stability and lifetime of protein-based products. The presence of acyl moieties in proteins and peptides affects the physico-chemical properties of these species, thereby modulating protein stability, function, localization and molecular interactions. Characterization of protein acylation is a challenging analytical task, which includes the precise definition of the acylation sites in proteins and determination of the identity and molecular heterogeneity of the acyl moiety at each individual site. In this study, we generated a chemically modified human growth hormone (hGH) by incorporation of a palmitoyl moiety on the N(epsilon) group of a lysine residue. Monoacylation of the hGH protein was confirmed by determination of the intact molecular weight by mass spectrometry. Detailed analysis of protein acylation was achieved by analysis of peptides derived from hGH by protease treatment. However, peptide mass mapping by MALDI MS using trypsin and AspN proteases and standard sample preparation methods did not reveal any palmitoylated peptides. In contrast, in situ liquid-liquid extraction (LLE) performed directly on the MALDI MS metal target enabled detection of acylated peptide candidates by MALDI MS and demonstrated that hGH was N-palmitoylated at multiple lysine residues. MALDI MS and MS/MS analysis of the modified peptides mapped the N-palmitoylation sites to Lys158, Lys172 and Lys140 or Lys145. This study demonstrates the utility of LLE/MALDI MS/MS for mapping and characterization of acylation sites in proteins and peptides and the importance of optimizing sample preparation methods for mass spectrometry-based determination of substoichiometric, multi-site protein modifications.

  10. The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins.

    PubMed

    Jakubczyk, Anna; Karaś, Monika; Baraniak, Barbara; Pietrzak, Marlena

    2013-12-15

    Pea seeds were fermented by Lactobacillus plantarum 299v in monoculture under different time and temperature conditions and the fermented products were digested in vitro under gastrointestinal conditions. After fermentation and digestion ACE inhibitory activity was determined. In all samples after fermentation no ACE inhibitory activity was noted. Potentially antihypertensive peptides were released during in vitro digestion. The highest DH (68.62%) were noted for control sample, although the lowest IC50 value (0.19 mg/ml) was determined for product after 7 days fermentation at 22 °C. The hydrolysate characterised by the highest ACE inhibitory activity was separated on Sephadex G10 and two peptides fractions were obtained. The highest ACE inhibitory activity (IC50=64.04 μg/ml) for the first fraction was noted. This fraction was separated by HPLC and identified by LC-MS/MS and the sequence of peptide derived from pea proteins was determined as KEDDEEEEQGEEE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto).

    PubMed

    Ngoh, Ying-Yuan; Gan, Chee-Yuen

    2016-01-01

    Antioxidant and α-amylase inhibitor peptides were successfully extracted from Pinto bean protein isolate (PBPI) using Protamex. A factorial design experiment was conducted and the effects of extraction time, pH and temperature were studied. pH 7.5, extraction time of 1h, S/E ratio of 10 (w/w) and temperature of 50 °C gave the highest antioxidant activities (i.e., ABTS scavenging activity (53.3%) and FRAP value (3.71 mM)), whereas pH 6.5 with the same extraction time, S/E ratio and temperature, gave the highest α-amylase inhibitory activity (57.5%). It was then fractioned using membrane ultrafiltration with molecular weight cutoffs of 100, 50, 30, 10 and 3 kDa. Peptide fraction <3 kDa, which exhibited the highest antioxidant activities (i.e., ABTS (42.2%) and FRAP (0.81 mM)) and α-amylase inhibitory activity (62.1%), was then subjected to LCMS and MS/MS analyses. Six sequences were identified for antioxidant peptides, whereas seven peptides for α-amylase inhibitor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. ICC-CLASS: isotopically-coded cleavable crosslinking analysis software suite

    PubMed Central

    2010-01-01

    Background Successful application of crosslinking combined with mass spectrometry for studying proteins and protein complexes requires specifically-designed crosslinking reagents, experimental techniques, and data analysis software. Using isotopically-coded ("heavy and light") versions of the crosslinker and cleavable crosslinking reagents is analytically advantageous for mass spectrometric applications and provides a "handle" that can be used to distinguish crosslinked peptides of different types, and to increase the confidence of the identification of the crosslinks. Results Here, we describe a program suite designed for the analysis of mass spectrometric data obtained with isotopically-coded cleavable crosslinkers. The suite contains three programs called: DX, DXDX, and DXMSMS. DX searches the mass spectra for the presence of ion signal doublets resulting from the light and heavy isotopic forms of the isotopically-coded crosslinking reagent used. DXDX searches for possible mass matches between cleaved and uncleaved isotopically-coded crosslinks based on the established chemistry of the cleavage reaction for a given crosslinking reagent. DXMSMS assigns the crosslinks to the known protein sequences, based on the isotopically-coded and un-coded MS/MS fragmentation data of uncleaved and cleaved peptide crosslinks. Conclusion The combination of these three programs, which are tailored to the analytical features of the specific isotopically-coded cleavable crosslinking reagents used, represents a powerful software tool for automated high-accuracy peptide crosslink identification. See: http://www.creativemolecules.com/CM_Software.htm PMID:20109223

  13. Comprehensive analysis of proteins of pH fractionated samples using monolithic LC/MS/MS, intact MW measurement and MALDI-QIT-TOF MS

    PubMed Central

    Yoo, Chul; Patwa, Tasneem H.; Kreunin, Paweena; Miller, Fred R.; Huber, Christian G.; Nesvizhskii, Alexey I.; Lubman, David M.

    2012-01-01

    A comprehensive platform that integrates information from the protein and peptide levels by combining various MS techniques has been employed for the analysis of proteins in fully malignant human breast cancer cells. The cell lysates were subjected to chromatofocusing fractionation, followed by tryptic digestion of pH fractions for on-line monolithic RP-HPLC interfaced with linear ion trap MS analysis for rapid protein identification. This unique approach of direct analysis of pH fractions resulted in the identification of large numbers of proteins from several selected pH fractions, in which approximately 1.5 μg of each of the pH fraction digests was consumed for an analysis time of ca 50 min. In order to combine valuable information retained at the protein level with the protein identifications obtained from the peptide level information, the same pH fraction was analyzed using nonporous (NPS)-RP-HPLC/ESI-TOF MS to obtain intact protein MW measurements. In order to further validate the protein identification procedures from the fraction digest analysis, NPS-RP-HPLC separation was performed for off-line protein collection to closely examine each protein using MALDI-TOF MS and MALDI-quadrupole ion trap (QIT)-TOF MS, and excellent agreement of protein identifications was consistently observed. It was also observed that the comparison to intact MW and other MS information was particularly useful for analyzing proteins whose identifications were suggested by one sequenced peptide from fraction digest analysis. PMID:17206599

  14. Optimization for Peptide Sample Preparation for Urine Peptidomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigdel, Tara K.; Nicora, Carrie D.; Hsieh, Szu-Chuan

    2014-02-25

    Analysis of native or endogenous peptides in biofluids can provide valuable insights into disease mechanisms. Furthermore, the detected peptides may also have utility as potential biomarkers for non-invasive monitoring of human diseases. The non-invasive nature of urine collection and the abundance of peptides in the urine makes analysis by high-throughput ‘peptidomics’ methods , an attractive approach for investigating the pathogenesis of renal disease. However, urine peptidomics methodologies can be problematic with regards to difficulties associated with sample preparation. The urine matrix can provide significant background interference in making the analytical measurements that it hampers both the identification of peptides andmore » the depth of the peptidomics read when utilizing LC-MS based peptidome analysis. We report on a novel adaptation of the standard solid phase extraction (SPE) method to a modified SPE (mSPE) approach for improved peptide yield and analysis sensitivity with LC-MS based peptidomics in terms of time, cost, clogging of the LC-MS column, peptide yield, peptide quality, and number of peptides identified by each method. Expense and time requirements were comparable for both SPE and mSPE, but more interfering contaminants from the urine matrix were evident in the SPE preparations (e.g., clogging of the LC-MS columns, yellowish background coloration of prepared samples due to retained urobilin, lower peptide yields) when compared to the mSPE method. When we compared data from technical replicates of 4 runs, the mSPE method provided significantly improved efficiencies for the preparation of samples from urine (e.g., mSPE peptide identification 82% versus 18% with SPE; p = 8.92E-05). Additionally, peptide identifications, when applying the mSPE method, highlighted the biology of differential activation of urine peptidases during acute renal transplant rejection with distinct laddering of specific peptides, which was obscured for most proteins when utilizing the conventional SPE method. In conclusion, the mSPE method was found to be superior to the conventional, standard SPE method for urine peptide sample preparation when applying LC-MS peptidomics analysis due to the optimized sample clean up that provided improved experimental inference from the confidently identified peptides.« less

  15. Purification, characterization, and sequencing of antimicrobial peptides, Cy-AMP1, Cy-AMP2, and Cy-AMP3, from the Cycad (Cycas revoluta) seeds.

    PubMed

    Yokoyama, Seiya; Kato, Kouji; Koba, Atsuko; Minami, Yuji; Watanabe, Keiichi; Yagi, Fumio

    2008-12-01

    Novel antimicrobial peptides (AMP), designated Cy-AMP1, Cy-AMP2, and Cy-AMP3, were purified from seeds of the cycad (Cycas revoluta) by a CM cellulofine column, ion-exchange HPLC on SP COSMOGEL, and reverse-phase HPLC. They had molecular masses of 4583.2 Da, 4568.9 Da and 9275.8 Da, respectively, by MALDI-TOF MS analysis. Half of the amino acid residues of Cy-AMP1 and Cy-AMP2 were cysteine, glycine and proline, and their sequences were similar. The sequence of Cy-AMP3 showed high homology to various lipid transfer proteins. For Cy-AMP1 and Cy-AMP2, the concentrations of peptides required for 50% inhibition (IC(50)) of the growth of plant pathogenic fungi, Gram-positive and Gram-negative bacteria were 7.0-8.9 microg/ml. The Cy-AMP3 had weak antimicrobial activity. The structural and antimicrobial characteristics of Cy-AMP1 and Cy-AMP2 indicated that they are a novel type of antimicrobial peptide belonging to a plant defensin family.

  16. A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography-mass spectrometry.

    PubMed

    Li, Xiao-jun; Yi, Eugene C; Kemp, Christopher J; Zhang, Hui; Aebersold, Ruedi

    2005-09-01

    There is an increasing interest in the quantitative proteomic measurement of the protein contents of substantially similar biological samples, e.g. for the analysis of cellular response to perturbations over time or for the discovery of protein biomarkers from clinical samples. Technical limitations of current proteomic platforms such as limited reproducibility and low throughput make this a challenging task. A new LC-MS-based platform is able to generate complex peptide patterns from the analysis of proteolyzed protein samples at high throughput and represents a promising approach for quantitative proteomics. A crucial component of the LC-MS approach is the accurate evaluation of the abundance of detected peptides over many samples and the identification of peptide features that can stratify samples with respect to their genetic, physiological, or environmental origins. We present here a new software suite, SpecArray, that generates a peptide versus sample array from a set of LC-MS data. A peptide array stores the relative abundance of thousands of peptide features in many samples and is in a format identical to that of a gene expression microarray. A peptide array can be subjected to an unsupervised clustering analysis to stratify samples or to a discriminant analysis to identify discriminatory peptide features. We applied the SpecArray to analyze two sets of LC-MS data: one was from four repeat LC-MS analyses of the same glycopeptide sample, and another was from LC-MS analysis of serum samples of five male and five female mice. We demonstrate through these two study cases that the SpecArray software suite can serve as an effective software platform in the LC-MS approach for quantitative proteomics.

  17. A peptide-retrieval strategy enables significant improvement of quantitative performance without compromising confidence of identification.

    PubMed

    Tu, Chengjian; Shen, Shichen; Sheng, Quanhu; Shyr, Yu; Qu, Jun

    2017-01-30

    Reliable quantification of low-abundance proteins in complex proteomes is challenging largely owing to the limited number of spectra/peptides identified. In this study we developed a straightforward method to improve the quantitative accuracy and precision of proteins by strategically retrieving the less confident peptides that were previously filtered out using the standard target-decoy search strategy. The filtered-out MS/MS spectra matched to confidently-identified proteins were recovered, and the peptide-spectrum-match FDR were re-calculated and controlled at a confident level of FDR≤1%, while protein FDR maintained at ~1%. We evaluated the performance of this strategy in both spectral count- and ion current-based methods. >60% increase of total quantified spectra/peptides was respectively achieved for analyzing a spike-in sample set and a public dataset from CPTAC. Incorporating the peptide retrieval strategy significantly improved the quantitative accuracy and precision, especially for low-abundance proteins (e.g. one-hit proteins). Moreover, the capacity of confidently discovering significantly-altered proteins was also enhanced substantially, as demonstrated with two spike-in datasets. In summary, improved quantitative performance was achieved by this peptide recovery strategy without compromising confidence of protein identification, which can be readily implemented in a broad range of quantitative proteomics techniques including label-free or labeling approaches. We hypothesize that more quantifiable spectra and peptides in a protein, even including less confident peptides, could help reduce variations and improve protein quantification. Hence the peptide retrieval strategy was developed and evaluated in two spike-in sample sets with different LC-MS/MS variations using both MS1- and MS2-based quantitative approach. The list of confidently identified proteins using the standard target-decoy search strategy was fixed and more spectra/peptides with less confidence matched to confident proteins were retrieved. However, the total peptide-spectrum-match false discovery rate (PSM FDR) after retrieval analysis was still controlled at a confident level of FDR≤1%. As expected, the penalty for occasionally incorporating incorrect peptide identifications is negligible by comparison with the improvements in quantitative performance. More quantifiable peptides, lower missing value rate, better quantitative accuracy and precision were significantly achieved for the same protein identifications by this simple strategy. This strategy is theoretically applicable for any quantitative approaches in proteomics and thereby provides more quantitative information, especially on low-abundance proteins. Published by Elsevier B.V.

  18. A Caenorhabditis elegans Mass Spectrometric Resource for Neuropeptidomics

    NASA Astrophysics Data System (ADS)

    Van Bael, Sven; Zels, Sven; Boonen, Kurt; Beets, Isabel; Schoofs, Liliane; Temmerman, Liesbet

    2018-05-01

    Neuropeptides are important signaling molecules used by nervous systems to mediate and fine-tune neuronal communication. They can function as neurotransmitters or neuromodulators in neural circuits, or they can be released as neurohormones to target distant cells and tissues. Neuropeptides are typically cleaved from larger precursor proteins by the action of proteases and can be the subject of post-translational modifications. The short, mature neuropeptide sequences often entail the only evolutionarily reasonably conserved regions in these precursor proteins. Therefore, it is particularly challenging to predict all putative bioactive peptides through in silico mining of neuropeptide precursor sequences. Peptidomics is an approach that allows de novo characterization of peptides extracted from body fluids, cells, tissues, organs, or whole-body preparations. Mass spectrometry, often combined with on-line liquid chromatography, is a hallmark technique used in peptidomics research. Here, we used an acidified methanol extraction procedure and a quadrupole-Orbitrap LC-MS/MS pipeline to analyze the neuropeptidome of Caenorhabditis elegans. We identified an unprecedented number of 203 mature neuropeptides from C. elegans whole-body extracts, including 35 peptides from known, hypothetical, as well as from completely novel neuropeptide precursor proteins that have not been predicted in silico. This set of biochemically verified peptide sequences provides the most elaborate C. elegans reference neurpeptidome so far. To exploit this resource to the fullest, we make our in-house database of known and predicted neuropeptides available to the community as a valuable resource. We are providing these collective data to help the community progress, amongst others, by supporting future differential and/or functional studies. [Figure not available: see fulltext.

  19. A Caenorhabditis elegans Mass Spectrometric Resource for Neuropeptidomics

    NASA Astrophysics Data System (ADS)

    Van Bael, Sven; Zels, Sven; Boonen, Kurt; Beets, Isabel; Schoofs, Liliane; Temmerman, Liesbet

    2018-01-01

    Neuropeptides are important signaling molecules used by nervous systems to mediate and fine-tune neuronal communication. They can function as neurotransmitters or neuromodulators in neural circuits, or they can be released as neurohormones to target distant cells and tissues. Neuropeptides are typically cleaved from larger precursor proteins by the action of proteases and can be the subject of post-translational modifications. The short, mature neuropeptide sequences often entail the only evolutionarily reasonably conserved regions in these precursor proteins. Therefore, it is particularly challenging to predict all putative bioactive peptides through in silico mining of neuropeptide precursor sequences. Peptidomics is an approach that allows de novo characterization of peptides extracted from body fluids, cells, tissues, organs, or whole-body preparations. Mass spectrometry, often combined with on-line liquid chromatography, is a hallmark technique used in peptidomics research. Here, we used an acidified methanol extraction procedure and a quadrupole-Orbitrap LC-MS/MS pipeline to analyze the neuropeptidome of Caenorhabditis elegans. We identified an unprecedented number of 203 mature neuropeptides from C. elegans whole-body extracts, including 35 peptides from known, hypothetical, as well as from completely novel neuropeptide precursor proteins that have not been predicted in silico. This set of biochemically verified peptide sequences provides the most elaborate C. elegans reference neurpeptidome so far. To exploit this resource to the fullest, we make our in-house database of known and predicted neuropeptides available to the community as a valuable resource. We are providing these collective data to help the community progress, amongst others, by supporting future differential and/or functional studies.

  20. A Caenorhabditis elegans Mass Spectrometric Resource for Neuropeptidomics.

    PubMed

    Van Bael, Sven; Zels, Sven; Boonen, Kurt; Beets, Isabel; Schoofs, Liliane; Temmerman, Liesbet

    2018-05-01

    Neuropeptides are important signaling molecules used by nervous systems to mediate and fine-tune neuronal communication. They can function as neurotransmitters or neuromodulators in neural circuits, or they can be released as neurohormones to target distant cells and tissues. Neuropeptides are typically cleaved from larger precursor proteins by the action of proteases and can be the subject of post-translational modifications. The short, mature neuropeptide sequences often entail the only evolutionarily reasonably conserved regions in these precursor proteins. Therefore, it is particularly challenging to predict all putative bioactive peptides through in silico mining of neuropeptide precursor sequences. Peptidomics is an approach that allows de novo characterization of peptides extracted from body fluids, cells, tissues, organs, or whole-body preparations. Mass spectrometry, often combined with on-line liquid chromatography, is a hallmark technique used in peptidomics research. Here, we used an acidified methanol extraction procedure and a quadrupole-Orbitrap LC-MS/MS pipeline to analyze the neuropeptidome of Caenorhabditis elegans. We identified an unprecedented number of 203 mature neuropeptides from C. elegans whole-body extracts, including 35 peptides from known, hypothetical, as well as from completely novel neuropeptide precursor proteins that have not been predicted in silico. This set of biochemically verified peptide sequences provides the most elaborate C. elegans reference neurpeptidome so far. To exploit this resource to the fullest, we make our in-house database of known and predicted neuropeptides available to the community as a valuable resource. We are providing these collective data to help the community progress, amongst others, by supporting future differential and/or functional studies. Graphical Abstract ᅟ.

  1. Cloning and Expression of Synthetic Genes Encoding the Broad Antimicrobial Spectrum Bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by Recombinant Pichia pastoris

    PubMed Central

    Jiménez, Juan J.; Gútiez, Loreto; Cintas, Luis M.; Herranz, Carmen; Hernández, Pablo E.

    2015-01-01

    We have evaluated the cloning and functional expression of previously described broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris. Synthetic genes, matching the codon usage of P. pastoris, were designed from the known mature amino acid sequence of these bacteriocins and cloned into the protein expression vector pPICZαA. The recombinant derived plasmids were linearized and transformed into competent P. pastoris X-33, and the presence of integrated plasmids into the transformed cells was confirmed by PCR and sequencing of the inserts. The antimicrobial activity, expected in supernatants of the recombinant P. pastoris producers, was purified using a multistep chromatographic procedure including ammonium sulfate precipitation, desalting by gel filtration, cation exchange-, hydrophobic interaction-, and reverse phase-chromatography (RP-FPLC). However, a measurable antimicrobial activity was only detected after the hydrophobic interaction and RP-FPLC steps of the purified supernatants. MALDI-TOF MS analysis of the antimicrobial fractions eluted from RP-FPLC revealed the existence of peptide fragments of lower and higher molecular mass than expected. MALDI-TOF/TOF MS analysis of selected peptides from eluted RP-FPLC samples with antimicrobial activity indicated the presence of peptide fragments not related to the amino acid sequence of the cloned bacteriocins. PMID:25821820

  2. Venom Proteomics of Indonesian King Cobra, Ophiophagus hannah: Integrating Top-Down and Bottom-Up Approaches.

    PubMed

    Petras, Daniel; Heiss, Paul; Süssmuth, Roderich D; Calvete, Juan J

    2015-06-05

    We report on the first application of top-down mass spectrometry in snake venomics. De novo sequence tags generated by, and ProSight Lite supported analysis of, combined collisional based dissotiations (CID and HCD) recorded in a hybrid LTQ Orbitrap instrument in data-dependent mode identified a number of proteins from different toxin families, namely, 11 three-finger toxins (7-7.9 kDa), a Kunitz-type inhibitor (6.3 kDa), ohanin (11.9 kDa), a novel phospholipase A2 molecule (13.8 kDa), and the cysteine-rich secretory protein (CRISP) ophanin (25 kDa) from Indonesian king cobra venom. Complementary bottom-up MS/MS analyses contributed to the completion of a locus-resolved venom phenotypic map for Ophiophagus hannah, the world's longest venomous snake and a species of medical concern across its wide distribution range in forests from India to Southeast Asia. Its venom composition, comprising 32-35 proteins/peptides from 10 protein families, is dominated by α-neurotoxins and convincingly explains the main neurotoxic effects of human envenoming caused by king cobra bite. The integration of efficient chromatographic separation of the venom's components and locus-resolved toxin identification through top-down and bottom-up MS/MS-based species-specific database searching and de novo sequencing holds promise that the future will be bright for the field of venom research.

  3. Analysis of the differentially expressed low molecular weight peptides in human serum via an N-terminal isotope labeling technique combining nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Leng, Jiapeng; Zhu, Dong; Wu, Duojiao; Zhu, Tongyu; Zhao, Ningwei; Guo, Yinlong

    2012-11-15

    Peptidomics analysis of human serum is challenging due to the low abundance of serum peptides and interference from the complex matrix. This study analyzed the differentially expressed (DE) low molecular weight peptides in human serum integrating a DMPITC-based N-terminal isotope labeling technique with nano-liquid chromatography and matrix-assisted laser desorption/ionization mass spectrometry (nano-LC/MALDI-MS). The workflow introduced a [d(6)]-4,6-dimethoxypyrimidine-2-isothiocyanate (DMPITC)-labeled mixture of aliquots from test samples as the internal standard. The spiked [d(0)]-DMPITC-labeled samples were separated by nano-LC then spotted on the MALDI target. Both quantitative and qualitative studies for serum peptides were achieved based on the isotope-labeled peaks. The DMPITC labeling technique combined with nano-LC/MALDI-MS not only minimized the errors in peptide quantitation, but also allowed convenient recognition of the labeled peptides due to the 6 Da mass difference. The data showed that the entire research procedure as well as the subsequent data analysis method were effective, reproducible, and sensitive for the analysis of DE serum peptides. This study successfully established a research model for DE serum peptides using DMPITC-based N-terminal isotope labeling and nano-LC/MALDI-MS. Application of the DMPITC-based N-terminal labeling technique is expected to provide a promising tool for the investigation of peptides in vivo, especially for the analysis of DE peptides under different biological conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  4. New glycoproteomics software, GlycoPep Evaluator, generates decoy glycopeptides de novo and enables accurate false discovery rate analysis for small data sets.

    PubMed

    Zhu, Zhikai; Su, Xiaomeng; Go, Eden P; Desaire, Heather

    2014-09-16

    Glycoproteins are biologically significant large molecules that participate in numerous cellular activities. In order to obtain site-specific protein glycosylation information, intact glycopeptides, with the glycan attached to the peptide sequence, are characterized by tandem mass spectrometry (MS/MS) methods such as collision-induced dissociation (CID) and electron transfer dissociation (ETD). While several emerging automated tools are developed, no consensus is present in the field about the best way to determine the reliability of the tools and/or provide the false discovery rate (FDR). A common approach to calculate FDRs for glycopeptide analysis, adopted from the target-decoy strategy in proteomics, employs a decoy database that is created based on the target protein sequence database. Nonetheless, this approach is not optimal in measuring the confidence of N-linked glycopeptide matches, because the glycopeptide data set is considerably smaller compared to that of peptides, and the requirement of a consensus sequence for N-glycosylation further limits the number of possible decoy glycopeptides tested in a database search. To address the need to accurately determine FDRs for automated glycopeptide assignments, we developed GlycoPep Evaluator (GPE), a tool that helps to measure FDRs in identifying glycopeptides without using a decoy database. GPE generates decoy glycopeptides de novo for every target glycopeptide, in a 1:20 target-to-decoy ratio. The decoys, along with target glycopeptides, are scored against the ETD data, from which FDRs can be calculated accurately based on the number of decoy matches and the ratio of the number of targets to decoys, for small data sets. GPE is freely accessible for download and can work with any search engine that interprets ETD data of N-linked glycopeptides. The software is provided at https://desairegroup.ku.edu/research.

  5. Degradation and Stabilization of Peptide Hormones in Human Blood Specimens

    PubMed Central

    Yi, Jizu; Warunek, David; Craft, David

    2015-01-01

    Plasma hormone peptides, including GLP-1, GIP, Glucagon, and OXM, possess multiple physiological roles and potential therapeutic and diagnostic utility as biomarkers in the research of metabolic disorders. These peptides are subject to proteolytic degradation causing preanalytical variations. Stabilization for accurate quantitation of these active peptides in ex vivo blood specimens is essential for drug and biomarker development. We investigated the protease-driven instability of these peptides in conventional serum, plasma, anticoagulated whole blood, as well as whole blood and plasma stabilized with protease inhibitors. The peptide was monitored by both time-course Matrix-Assisted Laser Desorption Ionization Time-to-Flight Mass Spectrometry (MALDI –TOF MS) and Ab-based assay (ELISA or RIA). MS enabled the identification of proteolytic fragments. In non-stabilized blood samples, the results clearly indicated that dipeptidyl peptidase-IV (DPP-IV) removed the N-terminal two amino acid residues from GLP-1, GIP and OXM(1-37) and not-yet identified peptidase(s) cleave(s) the full-length OXM(1-37) and its fragments. DPP-IV also continued to remove two additional N-terminal residues of processed OXM(3–37) to yield OXM(5–37). Importantly, both DPP-IV and other peptidase(s) activities were inhibited efficiently by the protease inhibitors included in the BD P800* tube. There was preservation of GLP-1, GIP, OXM and glucagon in the P800 plasma samples with half-lives > 96, 96, 72, and 45 hours at room temperature (RT), respectively. In the BD P700* plasma samples, the stabilization of GLP-1 was also achieved with half-life > 96 hours at RT. The stabilization of these variable peptides increased their utility in drug and/or biomarker development. While stability results of GLP-1 obtained with Ab-based assay were consistent with those obtained by MS analysis, the Ab-based results of GIP, Glucagon, and OXM did not reflect the time-dependent degradations revealed by MS analysis. Therefore, we recommended characterizing the degradation of the peptide using the MS-based method when investigating the stability of a specific peptide. PMID:26222180

  6. Rescuing discarded spectra: Full comprehensive analysis of a minimal proteome.

    PubMed

    Lluch-Senar, Maria; Mancuso, Francesco M; Climente-González, Héctor; Peña-Paz, Marcia I; Sabido, Eduard; Serrano, Luis

    2016-02-01

    A common problem encountered when performing large-scale MS proteome analysis is the loss of information due to the high percentage of unassigned spectra. To determine the causes behind this loss we have analyzed the proteome of one of the smallest living bacteria that can be grown axenically, Mycoplasma pneumoniae (729 ORFs). The proteome of M. pneumoniae cells, grown in defined media, was analyzed by MS. An initial search with both Mascot and a species-specific NCBInr database with common contaminants (NCBImpn), resulted in around 79% of the acquired spectra not having an assignment. The percentage of non-assigned spectra was reduced to 27% after re-analysis of the data with the PEAKS software, thereby increasing the proteome coverage of M. pneumoniae from the initial 60% to over 76%. Nonetheless, 33,413 spectra with assigned amino acid sequences could not be mapped to any NCBInr database protein sequence. Approximately, 1% of these unassigned peptides corresponded to PTMs and 4% to M. pneumoniae protein variants (deamidation and translation inaccuracies). The most abundant peptide sequence variants (Phe-Tyr and Ala-Ser) could be explained by alterations in the editing capacity of the corresponding tRNA synthases. About another 1% of the peptides not associated to any protein had repetitions of the same aromatic/hydrophobic amino acid at the N-terminus, or had Arg/Lys at the C-terminus. Thus, in a model system, we have maximized the number of assigned spectra to 73% (51,453 out of the 70,040 initial acquired spectra). All MS data have been deposited in the ProteomeXchange with identifier PXD002779 (http://proteomecentral.proteomexchange.org/dataset/PXD002779). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyatkina, Kira; Wu, Si; Dekker, Lennard J. M.

    De novo sequencing of proteins and peptides is one of the most important problems in mass spectrometry-driven proteomics. A variety of methods have been developed to accomplish this task from a set of bottom-up tandem (MS/MS) mass spectra. However, a more recently emerged top-down technology, now gaining more and more popularity, opens new perspectives for protein analysis and characterization, implying a need in efficient algorithms for processing this kind of MS/MS data. Here we describe a method that allows to retrieve from a set of top-down MS/MS spectra long and accurate sequence fragments of the proteins contained in a sample.more » To this end, we outline a strategy for generating high-quality sequence tags from top-down spectra, and introduce the concept of a T-Bruijn graph by adapting to the case of tags the notion of an A-Bruijn graph widely used in genomics. The output of the proposed approach represents the set of amino acid strings spelled out by optimal paths in the connected components of a T-Bruijn graph. We illustrate its performance on top-down datasets acquired from carbonic anhydrase 2 (CAH2) and the Fab region of alemtuzumab.« less

  8. Photodissociative Cross-Linking of Non-covalent Peptide-Peptide Ion Complexes in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Nguyen, Huong T. H.; Andrikopoulos, Prokopis C.; Rulíšek, Lubomír; Shaffer, Christopher J.; Tureček, František

    2018-05-01

    We report a gas-phase UV photodissociation study investigating non-covalent interactions between neutral hydrophobic pentapeptides and peptide ions incorporating a diazirine-tagged photoleucine residue. Phenylalanine (Phe) and proline (Pro) were chosen as the conformation-affecting residues that were incorporated into a small library of neutral pentapeptides. Gas-phase ion-molecule complexes of these peptides with photo-labeled pentapeptides were subjected to photodissociation. Selective photocleavage of the diazirine ring at 355 nm formed short-lived carbene intermediates that underwent cross-linking by insertion into H-X bonds of the target peptide. The cross-link positions were established from collision-induced dissociation tandem mass spectra (CID-MS3) providing sequence information on the covalent adducts. Effects of the amino acid residue (Pro or Phe) and its position in the target peptide sequence were evaluated. For proline-containing peptides, interactions resulting in covalent cross-links in these complexes became more prominent as proline was moved towards the C-terminus of the target peptide sequence. The photocross-linking yields of phenylalanine-containing peptides depended on the position of both phenylalanine and photoleucine. Density functional theory calculations were used to assign structures of low-energy conformers of the (GLPMG + GLL*LK + H)+ complex. Born-Oppenheimer molecular dynamics trajectory calculations were used to capture the thermal motion in the complexes within 100 ps and determine close contacts between the incipient carbene and the H-X bonds in the target peptide. This provided atomic-level resolution of potential cross-links that aided spectra interpretation and was in agreement with experimental data. [Figure not available: see fulltext.

  9. Multiple products monitoring as a robust approach for peptide quantification.

    PubMed

    Baek, Je-Hyun; Kim, Hokeun; Shin, Byunghee; Yu, Myeong-Hee

    2009-07-01

    Quantification of target peptides and proteins is crucial for biomarker discovery. Approaches such as selected reaction monitoring (SRM) and multiple reaction monitoring (MRM) rely on liquid chromatography and mass spectrometric analysis of defined peptide product ions. These methods are not very widespread because the determination of quantifiable product ion using either SRM or MRM is a very time-consuming process. We developed a novel approach for quantifying target peptides without such an arduous process of ion selection. This method is based on monitoring multiple product ions (multiple products monitoring: MpM) from full-range MS2 spectra of a target precursor. The MpM method uses a scoring system that considers both the absolute intensities of product ions and the similarities between the query MS2 spectrum and the reference MS2 spectrum of the target peptide. Compared with conventional approaches, MpM greatly improves sensitivity and selectivity of peptide quantification using an ion-trap mass spectrometer.

  10. MALDI versus ESI: The Impact of the Ion Source on Peptide Identification.

    PubMed

    Nadler, Wiebke Maria; Waidelich, Dietmar; Kerner, Alexander; Hanke, Sabrina; Berg, Regina; Trumpp, Andreas; Rösli, Christoph

    2017-03-03

    For mass spectrometry-based proteomic analyses, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) are the commonly used ionization techniques. To investigate the influence of the ion source on peptide detection in large-scale proteomics, an optimized GeLC/MS workflow was developed and applied either with ESI/MS or with MALDI/MS for the proteomic analysis of different human cell lines of pancreatic origin. Statistical analysis of the resulting data set with more than 72 000 peptides emphasized the complementary character of the two methods, as the percentage of peptides identified with both approaches was as low as 39%. Significant differences between the resulting peptide sets were observed with respect to amino acid composition, charge-related parameters, hydrophobicity, and modifications of the detected peptides and could be linked to factors governing the respective ion yields in ESI and MALDI.

  11. Isoforms of a cuticular protein from larvae of the meal beetle, Tenebrio molitor, studied by mass spectrometry in combination with Edman degradation and two-dimensional polyacrylamide gel electrophoresis.

    PubMed Central

    Haebel, S.; Jensen, C.; Andersen, S. O.; Roepstorff, P.

    1995-01-01

    Simultaneous sequencing, using a combination of mass spectrometry and Edman degradation, of three approximately 15-kDa variants of a cuticular protein extracted from the meal beetle Tenebrio molitor larva is demonstrated. The information obtained by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) time-course monitoring of enzymatic digests was found essential to identify the differences among the three variants and for alignment of the peptides in the sequence. To determine whether each individual insect larva contains all three protein variants, proteins extracted from single animals were separated by two-dimensional gel electrophoresis, electroeluted from the gel spots, and analyzed by MALDI MS. Molecular weights of the proteins present in each sample could be obtained, and mass spectrometric mapping of the peptides after digestion with trypsin gave additional information. The protein isoforms were found to be allelic variants. PMID:7795523

  12. Isoforms of a cuticular protein from larvae of the meal beetle, Tenebrio molitor, studied by mass spectrometry in combination with Edman degradation and two-dimensional polyacrylamide gel electrophoresis.

    PubMed

    Haebel, S; Jensen, C; Andersen, S O; Roepstorff, P

    1995-03-01

    Simultaneous sequencing, using a combination of mass spectrometry and Edman degradation, of three approximately 15-kDa variants of a cuticular protein extracted from the meal beetle Tenebrio molitor larva is demonstrated. The information obtained by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) time-course monitoring of enzymatic digests was found essential to identify the differences among the three variants and for alignment of the peptides in the sequence. To determine whether each individual insect larva contains all three protein variants, proteins extracted from single animals were separated by two-dimensional gel electrophoresis, electroeluted from the gel spots, and analyzed by MALDI MS. Molecular weights of the proteins present in each sample could be obtained, and mass spectrometric mapping of the peptides after digestion with trypsin gave additional information. The protein isoforms were found to be allelic variants.

  13. Identification of peptidase substrates in human plasma by FTMS based differential mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yates, Nathan A.; Deyanova, Ekaterina G.; Geissler, Wayne; Wiener, Matthew C.; Sachs, Jeffrey R.; Wong, Kenny K.; Thornberry, Nancy A.; Sinha Roy, Ranabir; Settlage, Robert E.; Hendrickson, Ronald C.

    2007-01-01

    Approximately 2% of the human genome encodes for proteases. Unfortunately, however, the biological roles of most of these enzymes remain poorly defined, since the physiological substrates are typically unknown and are difficult to identify using traditional methods. We have developed a proteomics experiment based on FTMS profiling and differential mass spectrometry (dMS) to identify candidate endogenous substrates of proteases using fractionated human plasma as the candidate substrate pool. Here we report proof-of-concept experiments for identifying in vitro substrates of aminopeptidase P2, (APP2) and dipeptidyl peptidase 4 (DPP-4), a peptidase of therapeutic interest for the treatment of type 2 diabetes. For both proteases, previously validated peptide substrates spiked into the human plasma pool were identified. Of note, the differential mass spectrometry experiments also identified novel substrates for each peptidase in the subfraction of human plasma. Targeted MS/MS analysis of these peptides in the complex human plasma pool and manual confirmation of the amino acid sequences led to the identification of these substrates. The novel DPP-4 substrate EPLGRQLTSGP was chemically synthesized and cleavage kinetics were determined in an in vitro DPP-4 enzyme assay. The apparent second order rate constant (kcat/KM) for DPP-4-mediated cleavage was determined to be 2.3 x 105 M-1 s-1 confirming that this peptide is efficiently processed by the peptidase in vitro. Collectively, these results demonstrate that differential mass spectrometry has the potential to identify candidate endogenous substrates of target proteases from a human plasma pool. Importantly, knowledge of the endogenous substrates can provide useful insight into the biology of these enzymes and provides useful biomarkers for monitoring their activity in vivo.

  14. Salivary agglutinin, which binds Streptococcus mutans and Helicobacter pylori, is the lung scavenger receptor cysteine-rich protein gp-340.

    PubMed

    Prakobphol, A; Xu, F; Hoang, V M; Larsson, T; Bergstrom, J; Johansson, I; Frängsmyr, L; Holmskov, U; Leffler, H; Nilsson, C; Borén, T; Wright, J R; Strömberg, N; Fisher, S J

    2000-12-22

    Salivary agglutinin is a high molecular mass component of human saliva that binds Streptococcus mutans, an oral bacterium implicated in dental caries. To study its protein sequence, we isolated the agglutinin from human parotid saliva. After trypsin digestion, a portion was analyzed by matrix-assisted laser/desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), which gave the molecular mass of 14 unique peptides. The remainder of the digest was subjected to high performance liquid chromatography, and the separated peptides were analyzed by MALDI-TOF/post-source decay; the spectra gave the sequences of five peptides. The molecular mass and peptide sequence information showed that salivary agglutinin peptides were identical to sequences in lung (lavage) gp-340, a member of the scavenger receptor cysteine-rich protein family. Immunoblotting with antibodies that specifically recognized either lung gp-340 or the agglutinin confirmed that the salivary agglutinin was gp-340. Immunoblotting with an antibody specific to the sialyl Le(x) carbohydrate epitope detected expression on the salivary but not the lung glycoprotein, possible evidence of different glycoforms. The salivary agglutinin also interacted with Helicobacter pylori, implicated in gastritis and peptic ulcer disease, Streptococcus agalactiae, implicated in neonatal meningitis, and several oral commensal streptococci. These results identify the salivary agglutinin as gp-340 and suggest it binds bacteria that are important determinants of either the oral ecology or systemic diseases.

  15. Detection of Peptide-based nanoparticles in blood plasma by ELISA.

    PubMed

    Bode, Gerard H; Pickl, Karin E; Sanchez-Purrà, Maria; Albaiges, Berta; Borrós, Salvador; Pötgens, Andy J G; Schmitz, Christoph; Sinner, Frank M; Losen, Mario; Steinbusch, Harry W M; Frank, Hans-Georg; Martinez-Martinez, Pilar

    2015-01-01

    The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl methacrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions.

  16. Detection of Peptide-Based Nanoparticles in Blood Plasma by ELISA

    PubMed Central

    Bode, Gerard H.; Pickl, Karin E.; Sanchez-Purrà, Maria; Albaiges, Berta; Borrós, Salvador; Pötgens, Andy J. G.; Schmitz, Christoph; Sinner, Frank M.; Losen, Mario; Steinbusch, Harry W. M.; Frank, Hans-Georg; Martinez-Martinez, Pilar

    2015-01-01

    Aims The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. Materials & Methods A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. Results The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl methacrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. Conclusions We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions. PMID:25996618

  17. Corona Discharge Suppression in Negative Ion Mode Nanoelectrospray Ionization via Trifluoroethanol Addition.

    PubMed

    McClory, Phillip J; Håkansson, Kristina

    2017-10-03

    Negative ion mode nanoelectrospray ionization (nESI) is often utilized to analyze acidic compounds, from small molecules to proteins, with mass spectrometry (MS). Under high aqueous solvent conditions, corona discharge is commonly observed at emitter tips, resulting in low ion abundances and reduced nESI needle lifetimes. We have successfully reduced corona discharge in negative ion mode by trace addition of trifluoroethanol (TFE) to aqueous samples. The addition of as little as 0.2% TFE increases aqueous spray stability not only in nESI direct infusion, but also in nanoflow liquid chromatography (nLC)/MS experiments. Negative ion mode spray stability with 0.2% TFE is approximately 6× higher than for strictly aqueous samples. Upon addition of 0.2% TFE to the mobile phase of nLC/MS experiments, tryptic peptide identifications increased from 93 to 111 peptides, resulting in an average protein sequence coverage increase of 18%.

  18. Angiotensin-I is Largely Converted to Angiotensin-(1-7) and Angiotensin-(2-10) by Isolated Rat Glomeruli

    PubMed Central

    JC, Velez; KJ, Ryan; CE, Harbeson; AM, Bland; MN, Budisavljevic; JM, Arthur; WR, Fitzgibbon; JR, Raymond; MG, Janech

    2009-01-01

    Intraglomerular renin-angiotensin system (RAS) enzyme activities have been examined previously using glomerular lysates and immune-based assays. However, preparation of glomerular extracts compromises the integrity of their anatomic architecture. In addition, antibody-based assays focus on angiotensin (ANG)-II detection, ignoring the generation of other ANG-I-derived metabolites, some of which may cross-react with ANG-II. Therefore, our aim was to examine the metabolism of ANG-I in freshly isolated intact glomeruli using MALDI-TOF mass spectrometry (MS) as an analytical method. Glomeruli from male Sprague-Dawley rats were isolated by sieving and incubated in Krebs buffer in the presence of 1 μM ANG-I for 15 - 90 minutes, with or without various peptidase inhibitors. Peptide sequences were confirmed by MALDI-TOF MS/MS or linear-trap-quadrupole MS. Peaks were quantified using customized valine-13C.15N-labeled peptides as standards. The most prominent peaks resulting from ANG-I cleavage were 899 and 1181 m/z, corresponding to ANG-1-7 and ANG-2-10, respectively. Smaller peaks for ANG-II, ANG-1-9 and ANG-3-10 also were detected. The disappearance of ANG-I was significantly reduced during inhibition of aminopeptidase-A or neprilysin. In contrast, captopril did not alter ANG-I degradation. Furthermore, during simultaneous inhibition of aminopeptidase-A and neprilysin, the disappearance of ANG-I was markedly attenuated compared to all other conditions. These results suggest that there is prominent intraglomerular conversion of ANG-I to ANG-2-10 and ANG-1-7, mediated by aminopeptidase-A and neprilysin, respectively. Formation of these alternative ANG peptides may be critical to counterbalance the local actions of ANG-II. Enhancement of these enzymatic activities may constitute potential therapeutic targets for ANG-II mediated glomerular diseases. PMID:19289651

  19. Quantitative Proteomics via High Resolution MS Quantification: Capabilities and Limitations

    PubMed Central

    Higgs, Richard E.; Butler, Jon P.; Han, Bomie; Knierman, Michael D.

    2013-01-01

    Recent improvements in the mass accuracy and resolution of mass spectrometers have led to renewed interest in label-free quantification using data from the primary mass spectrum (MS1) acquired from data-dependent proteomics experiments. The capacity for higher specificity quantification of peptides from samples enriched for proteins of biological interest offers distinct advantages for hypothesis generating experiments relative to immunoassay detection methods or prespecified peptide ions measured by multiple reaction monitoring (MRM) approaches. Here we describe an evaluation of different methods to post-process peptide level quantification information to support protein level inference. We characterize the methods by examining their ability to recover a known dilution of a standard protein in background matrices of varying complexity. Additionally, the MS1 quantification results are compared to a standard, targeted, MRM approach on the same samples under equivalent instrument conditions. We show the existence of multiple peptides with MS1 quantification sensitivity similar to the best MRM peptides for each of the background matrices studied. Based on these results we provide recommendations on preferred approaches to leveraging quantitative measurements of multiple peptides to improve protein level inference. PMID:23710359

  20. Bio-inorganic synthesis of ZnO powders using recombinant His-tagged ZnO binding peptide as a promoter.

    PubMed

    Song, Lei; Liu, Yingying; Zhang, Zhifang; Wang, Xi; Chen, Jinchun

    2010-10-01

    Inorganic-binding peptides termed as genetically engineered polypeptides for inorganics (GEPIs), are small peptide sequences selected via combinatorial biology-based protocols of phage or cell surface display technologies. Recent advances in nanotechnology and molecular biology allow the engineering of these peptides with specific affinity to inorganics, often used as molecular linkers or assemblers, to facilitate materials synthesis, which provides a new insight into the material science and engineering field. As a case study on this biomimetic application, here we report a novel biosynthetic ZnO binding protein and its application in promoting bio-inorganic materials synthesis. In brief, the gene encoding a ZnO binding peptide(ZBP) was genetically fused with His(6)-tag and GST-tag using E.coli expression vector pET-28a (+) and pGEX-4T-3. The recombinant protein GST-His-ZBP was expressed, purified with Ni-NTA system, identified by SDS-PAGE electrophoresis and Western blot analysis and confirmed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis. Affinity adsorption test demonstrated that the fusion protein had a specific avidity for ZnO nanoparticles (NPs). Results from the bio-inorganic synthesis experiment indicated that the new protein played a promoting part in grain refinement and accelerated precipitation during the formation of the ultra-fine precursor powders in the Zn(OH)(2) sol. X-ray diffraction (XRD) analysis on the final products after calcining the precursor powders showed that hexagonal wurtzite ZnO crystals were obtained. Our work suggested a novel approach to the application about the organic-inorganic interactions.

  1. Mass Spectrometric Identification and Differentiation of Botulinum Neurotoxins through Toxin Proteomics.

    PubMed

    Kalb, Suzanne R; Barr, John R

    2013-08-01

    Botulinum neurotoxins (BoNTs) cause the disease botulism, which can be lethal if untreated. There are seven known serotypes of BoNT, A-G, defined by their response to antisera. Many serotypes are distinguished into differing subtypes based on amino acid sequence and immunogenic properties, and some subtypes are further differentiated into toxin variants. Toxin characterization is important as different types of BoNT can respond differently to medical countermeasures for botulism, and characterization of the toxin can aid in epidemiologic and forensic investigations. Proteomic techniques have been established to determine the serotype, subtype, or toxin variant of BoNT. These techniques involve digestion of the toxin into peptides, tandem mass spectrometric (MS/MS) analysis of the peptides, and database searching to identify the BoNT protein. These techniques demonstrate the capability to detect BoNT and its neurotoxin-associated proteins, and differentiate the toxin from other toxins which are up to 99.9% identical in some cases. This differentiation can be accomplished from toxins present in a complex matrix such as stool, food, or bacterial cultures and no DNA is required.

  2. Protein 3-Nitrotyrosine in Complex Biological Samples: Quantification by High-Pressure Liquid Chromatography/Electrochemical Detection and Emergence of Proteomic Approaches for Unbiased Identification of Modification Sites

    PubMed Central

    Nuriel, Tal; Deeb, Ruba S.; Hajjar, David P.; Gross, Steven S.

    2008-01-01

    Nitration of tyrosine residues by nitric oxide (NO)-derived species results in the accumulation of 3-nitrotyrosine in proteins, a hallmark of nitrosative stress in cells and tissues. Tyrosine nitration is recognized as one of the multiple signaling modalities used by NO-derived species for the regulation of protein structure and function in health and disease. Various methods have been described for the quantification of protein 3-nitrotyrosine residues, and several strategies have been presented toward the goal of proteome-wide identification of protein tyrosine modification sites. This chapter details a useful protocol for the quantification of 3-nitrotyrosine in cells and tissues using high-pressure liquid chromatography with electrochemical detection. Additionally, this chapter describes a novel biotin-tagging strategy for specific enrichment of 3-nitrotyrosine-containing peptides. Application of this strategy, in conjunction with high-throughput MS/MS-based peptide sequencing, is anticipated to fuel efforts in developing comprehensive inventories of nitrosative stress-induced protein-tyrosine modification sites in cells and tissues. PMID:18554526

  3. Identification of a new phospholipase D in Carica papaya latex.

    PubMed

    Abdelkafi, Slim; Abousalham, Abdelkarim; Fendri, Imen; Ogata, Hiroyuki; Barouh, Nathalie; Fouquet, Benjamin; Scheirlinckx, Frantz; Villeneuve, Pierre; Carrière, Frédéric

    2012-05-15

    Phospholipase D (PLD) is a lipolytic enzyme involved in signal transduction, vesicle trafficking and membrane metabolism. It catalyzes the hydrolysis and transphosphatidylation of glycerophospholipids at the terminal phosphodiester bond. The presence of a PLD in the latex of Carica papaya (CpPLD1) was demonstrated by transphosphatidylation of phosphatidylcholine (PtdCho) in the presence of 2% ethanol. Although the protein could not be purified to homogeneity due to its presence in high molecular mass aggregates, a protein band was separated by SDS-PAGE after SDS/chloroform-methanol/TCA-acetone extraction of the latex insoluble fraction. This material was digested with trypsin and the amino acid sequences of the tryptic peptides were determined by micro-LC/ESI/MS/MS. These sequences were used to identify a partial cDNA (723 bp) from expressed sequence tags (ESTs) of C. papaya. Based upon EST sequences, a full-length gene was identified in the genome of C. papaya, with an open reading frame of 2424 bp encoding a protein of 808 amino acid residues, with a theoretical molecular mass of 92.05 kDa. From sequence analysis, CpPLD1 was identified as a PLD belonging to the plant phosphatidylcholine phosphatidohydrolase family. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Hexicon 2: Automated Processing of Hydrogen-Deuterium Exchange Mass Spectrometry Data with Improved Deuteration Distribution Estimation

    NASA Astrophysics Data System (ADS)

    Lindner, Robert; Lou, Xinghua; Reinstein, Jochen; Shoeman, Robert L.; Hamprecht, Fred A.; Winkler, Andreas

    2014-06-01

    Hydrogen-deuterium exchange (HDX) experiments analyzed by mass spectrometry (MS) provide information about the dynamics and the solvent accessibility of protein backbone amide hydrogen atoms. Continuous improvement of MS instrumentation has contributed to the increasing popularity of this method; however, comprehensive automated data analysis is only beginning to mature. We present Hexicon 2, an automated pipeline for data analysis and visualization based on the previously published program Hexicon (Lou et al. 2010). Hexicon 2 employs the sensitive NITPICK peak detection algorithm of its predecessor in a divide-and-conquer strategy and adds new features, such as chromatogram alignment and improved peptide sequence assignment. The unique feature of deuteration distribution estimation was retained in Hexicon 2 and improved using an iterative deconvolution algorithm that is robust even to noisy data. In addition, Hexicon 2 provides a data browser that facilitates quality control and provides convenient access to common data visualization tasks. Analysis of a benchmark dataset demonstrates superior performance of Hexicon 2 compared with its predecessor in terms of deuteration centroid recovery and deuteration distribution estimation. Hexicon 2 greatly reduces data analysis time compared with manual analysis, whereas the increased number of peptides provides redundant coverage of the entire protein sequence. Hexicon 2 is a standalone application available free of charge under http://hx2.mpimf-heidelberg.mpg.de.

  5. Hexicon 2: automated processing of hydrogen-deuterium exchange mass spectrometry data with improved deuteration distribution estimation.

    PubMed

    Lindner, Robert; Lou, Xinghua; Reinstein, Jochen; Shoeman, Robert L; Hamprecht, Fred A; Winkler, Andreas

    2014-06-01

    Hydrogen-deuterium exchange (HDX) experiments analyzed by mass spectrometry (MS) provide information about the dynamics and the solvent accessibility of protein backbone amide hydrogen atoms. Continuous improvement of MS instrumentation has contributed to the increasing popularity of this method; however, comprehensive automated data analysis is only beginning to mature. We present Hexicon 2, an automated pipeline for data analysis and visualization based on the previously published program Hexicon (Lou et al. 2010). Hexicon 2 employs the sensitive NITPICK peak detection algorithm of its predecessor in a divide-and-conquer strategy and adds new features, such as chromatogram alignment and improved peptide sequence assignment. The unique feature of deuteration distribution estimation was retained in Hexicon 2 and improved using an iterative deconvolution algorithm that is robust even to noisy data. In addition, Hexicon 2 provides a data browser that facilitates quality control and provides convenient access to common data visualization tasks. Analysis of a benchmark dataset demonstrates superior performance of Hexicon 2 compared with its predecessor in terms of deuteration centroid recovery and deuteration distribution estimation. Hexicon 2 greatly reduces data analysis time compared with manual analysis, whereas the increased number of peptides provides redundant coverage of the entire protein sequence. Hexicon 2 is a standalone application available free of charge under http://hx2.mpimf-heidelberg.mpg.de.

  6. Purification and Characterization of Plantaricin ZJ5, a New Bacteriocin Produced by Lactobacillus plantarum ZJ5

    PubMed Central

    Song, Da-Feng; Zhu, Mu-Yuan; Gu, Qing

    2014-01-01

    The aim of this study is to investigate the antimicrobial potential of Lactobacillus plantarum ZJ5, a strain isolated from fermented mustard with a broad range of inhibitory activity against both Gram-positive and Gram-negative bacteria. Here we present the peptide plantaricin ZJ5 (PZJ5), which is an extreme pH and heat-stable. However, it can be digested by pepsin and proteinase K. This peptide has strong activity against Staphylococcus aureus. PZJ5 has been purified using a multi-step process, including ammonium sulfate precipitation, cation-exchange chromatography, hydrophobic interactions and reverse-phase chromatography. The molecular mass of the peptide was found to be 2572.9 Da using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The primary structure of this peptide was determined using amino acid sequencing and DNA sequencing, and these analyses revealed that the DNA sequence translated as a 44-residue precursor containing a 22-amino-acid N-terminal extension that was of the double-glycine type. The bacteriocin sequence exhibited no homology with known bacteriocins when compared with those available in the database, indicating that it was a new class IId bacteriocin. PZJ5 from a food-borne strain may be useful as a promising probiotic candidate. PMID:25147943

  7. Purification and characterization of Plantaricin ZJ5, a new bacteriocin produced by Lactobacillus plantarum ZJ5.

    PubMed

    Song, Da-Feng; Zhu, Mu-Yuan; Gu, Qing

    2014-01-01

    The aim of this study is to investigate the antimicrobial potential of Lactobacillus plantarum ZJ5, a strain isolated from fermented mustard with a broad range of inhibitory activity against both Gram-positive and Gram-negative bacteria. Here we present the peptide plantaricin ZJ5 (PZJ5), which is an extreme pH and heat-stable. However, it can be digested by pepsin and proteinase K. This peptide has strong activity against Staphylococcus aureus. PZJ5 has been purified using a multi-step process, including ammonium sulfate precipitation, cation-exchange chromatography, hydrophobic interactions and reverse-phase chromatography. The molecular mass of the peptide was found to be 2572.9 Da using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The primary structure of this peptide was determined using amino acid sequencing and DNA sequencing, and these analyses revealed that the DNA sequence translated as a 44-residue precursor containing a 22-amino-acid N-terminal extension that was of the double-glycine type. The bacteriocin sequence exhibited no homology with known bacteriocins when compared with those available in the database, indicating that it was a new class IId bacteriocin. PZJ5 from a food-borne strain may be useful as a promising probiotic candidate.

  8. Introducing AAA-MS, a rapid and sensitive method for amino acid analysis using isotope dilution and high-resolution mass spectrometry.

    PubMed

    Louwagie, Mathilde; Kieffer-Jaquinod, Sylvie; Dupierris, Véronique; Couté, Yohann; Bruley, Christophe; Garin, Jérôme; Dupuis, Alain; Jaquinod, Michel; Brun, Virginie

    2012-07-06

    Accurate quantification of pure peptides and proteins is essential for biotechnology, clinical chemistry, proteomics, and systems biology. The reference method to quantify peptides and proteins is amino acid analysis (AAA). This consists of an acidic hydrolysis followed by chromatographic separation and spectrophotometric detection of amino acids. Although widely used, this method displays some limitations, in particular the need for large amounts of starting material. Driven by the need to quantify isotope-dilution standards used for absolute quantitative proteomics, particularly stable isotope-labeled (SIL) peptides and PSAQ proteins, we developed a new AAA assay (AAA-MS). This method requires neither derivatization nor chromatographic separation of amino acids. It is based on rapid microwave-assisted acidic hydrolysis followed by high-resolution mass spectrometry analysis of amino acids. Quantification is performed by comparing MS signals from labeled amino acids (SIL peptide- and PSAQ-derived) with those of unlabeled amino acids originating from co-hydrolyzed NIST standard reference materials. For both SIL peptides and PSAQ standards, AAA-MS quantification results were consistent with classical AAA measurements. Compared to AAA assay, AAA-MS was much faster and was 100-fold more sensitive for peptide and protein quantification. Finally, thanks to the development of a labeled protein standard, we also extended AAA-MS analysis to the quantification of unlabeled proteins.

  9. Proteomic analysis of the venom from the fish eating coral snake Micrurus surinamensis: novel toxins, their function and phylogeny.

    PubMed

    Olamendi-Portugal, Timoteo; Batista, Cesar V F; Restano-Cassulini, Rita; Pando, Victoria; Villa-Hernandez, Oscar; Zavaleta-Martínez-Vargas, Alfonso; Salas-Arruz, Maria C; Rodríguez de la Vega, Ricardo C; Becerril, Baltazar; Possani, Lourival D

    2008-05-01

    The protein composition of the soluble venom from the South American fish-eating coral snake Micrurus surinamensis surinamensis, here abbreviated M. surinamensis, was separated by RP-HPLC and 2-DE, and their components were analyzed by automatic Edman degradation, MALDI-TOF and ESI-MS/MS. Approximately 100 different molecules were identified. Sixty-two components possess molecular masses between 6 and 8 kDa, are basically charged molecules, among which are cytotoxins and neurotoxins lethal to fish (Brachidanios rerio). Six new toxins (abbreviated Ms1-Ms5 and Ms11) were fully sequenced. Amino acid sequences similar to the enzymes phospholipase A2 and amino acid oxidase were identified. Over 20 additional peptides were identified by sequencing minor components of the HPLC separation and from 2-DE gels. A functional assessment of the physiological activity of the six toxins was also performed by patch clamp using muscular nicotinic acetylcholine receptor assays. Variable degrees of blockade were observed, most of them reversible. The structural and functional data obtained were used for phylogenetic analysis, providing information on some evolutionary aspects of the venom components of this snake. This contribution increases by a factor of two the total number of alpha-neurotoxins sequenced from the Micrurus genus in currently available literature.

  10. Solvent-free MALDI-MS for the analysis of a membrane protein via the mini ball mill approach: case study of bacteriorhodopsin.

    PubMed

    Trimpin, Sarah; Deinzer, Max L

    2007-01-01

    A mini ball mill (MBM) solvent-free matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) method allows for the analysis of bacteriorhodopsin (BR), an integral membrane protein that previously presented special analytical problems. For well-defined signals in the molecular ion region of the analytes, a desalting procedure of the MBM sample directly on the MALDI target plate was used to reduce adduction by sodium and other cations that are normally attendant with hydrophobic peptides and proteins as a result of the sample preparation procedure. Mass analysis of the intact hydrophobic protein and the few hydrophobic and hydrophilic tryptic peptides available in the digest is demonstrated with this robust new approach. MS and MS/MS spectra of BR tryptic peptides and intact protein were generally superior to the traditional solvent-based method using the desalted "dry" MALDI preparation procedure. The solvent-free method expands the range of peptides that can be effectively analyzed by MALDI-MS to those that are hydrophobic and solubility-limited.

  11. YPED: An Integrated Bioinformatics Suite and Database for Mass Spectrometry-based Proteomics Research

    PubMed Central

    Colangelo, Christopher M.; Shifman, Mark; Cheung, Kei-Hoi; Stone, Kathryn L.; Carriero, Nicholas J.; Gulcicek, Erol E.; Lam, TuKiet T.; Wu, Terence; Bjornson, Robert D.; Bruce, Can; Nairn, Angus C.; Rinehart, Jesse; Miller, Perry L.; Williams, Kenneth R.

    2015-01-01

    We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database (YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a single laboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography–tandem mass spectrometry (LC–MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring (MRM)/selective reaction monitoring (SRM) assay development. We have linked YPED’s database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results. PMID:25712262

  12. YPED: an integrated bioinformatics suite and database for mass spectrometry-based proteomics research.

    PubMed

    Colangelo, Christopher M; Shifman, Mark; Cheung, Kei-Hoi; Stone, Kathryn L; Carriero, Nicholas J; Gulcicek, Erol E; Lam, TuKiet T; Wu, Terence; Bjornson, Robert D; Bruce, Can; Nairn, Angus C; Rinehart, Jesse; Miller, Perry L; Williams, Kenneth R

    2015-02-01

    We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database (YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a single laboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography-tandem mass spectrometry (LC-MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring (MRM)/selective reaction monitoring (SRM) assay development. We have linked YPED's database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  13. Bioactive Peptides Isolated from Casein Phosphopeptides Enhance Calcium and Magnesium Uptake in Caco-2 Cell Monolayers.

    PubMed

    Cao, Yong; Miao, Jianyin; Liu, Guo; Luo, Zhen; Xia, Zumeng; Liu, Fei; Yao, Mingfei; Cao, Xiaoqiong; Sun, Shengwei; Lin, Yanyin; Lan, Yaqi; Xiao, Hang

    2017-03-22

    The ability of casein phosphopeptides (CPPs) to bind and transport minerals has been previously studied. However, the single bioactive peptides responsible for the effects of CPPs have not been identified. This study was to purify calcium-binding peptides from CPPs and to determine their effects on calcium and magnesium uptake by Caco-2 cell monolayers. Five monomer peptides designated P1 to P5 were isolated and the amino acid sequences were determined using LC-MS/MS. Compared with the CPP-free control, all five monomeric peptides exhibited significant enhancing effects on the uptake of calcium and magnesium (P < 0.05). Interestingly, when calcium and magnesium were presented simultaneously with P5, magnesium was taken up with priority over calcium in the Caco-2 cell monolayers. For example, at 180 min, the amount of transferred magnesium and calcium was 78.4 ± 0.95 μg/well and 2.56 ± 0.64 μg/well, respectively, showing a more than 30-fold difference in the amount of transport caused by P5. These results provide novel insight into the mineral transport activity of phosphopeptides obtained from casein.

  14. Two-level QSAR network (2L-QSAR) for peptide inhibitor design based on amino acid properties and sequence positions.

    PubMed

    Du, Q S; Ma, Y; Xie, N Z; Huang, R B

    2014-01-01

    In the design of peptide inhibitors the huge possible variety of the peptide sequences is of high concern. In collaboration with the fast accumulation of the peptide experimental data and database, a statistical method is suggested for peptide inhibitor design. In the two-level peptide prediction network (2L-QSAR) one level is the physicochemical properties of amino acids and the other level is the peptide sequence position. The activity contributions of amino acids are the functions of physicochemical properties and the sequence positions. In the prediction equation two weight coefficient sets {ak} and {bl} are assigned to the physicochemical properties and to the sequence positions, respectively. After the two coefficient sets are optimized based on the experimental data of known peptide inhibitors using the iterative double least square (IDLS) procedure, the coefficients are used to evaluate the bioactivities of new designed peptide inhibitors. The two-level prediction network can be applied to the peptide inhibitor design that may aim for different target proteins, or different positions of a protein. A notable advantage of the two-level statistical algorithm is that there is no need for host protein structural information. It may also provide useful insight into the amino acid properties and the roles of sequence positions.

  15. Use of specific peptide biomarkers for quantitative confirmation of hidden allergenic peanut proteins Ara h 2 and Ara h 3/4 for food control by liquid chromatography-tandem mass spectrometry.

    PubMed

    Careri, M; Costa, A; Elviri, L; Lagos, J-B; Mangia, A; Terenghi, M; Cereti, A; Garoffo, L Perono

    2007-11-01

    A liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS-MS) method based on the detection of biomarker peptides from allergenic proteins was devised for confirming and quantifying peanut allergens in foods. Peptides obtained from tryptic digestion of Ara h 2 and Ara h 3/4 proteins were identified and characterized by LC-MS and LC-MS-MS with a quadrupole-time of flight mass analyzer. Four peptides were chosen and investigated as biomarkers taking into account their selectivity, the absence of missed cleavages, the uniform distribution in the Ara h 2 and Ara h 3/4 protein isoforms together with their spectral features under ESI-MS-MS conditions, and good repeatability of LC retention time. Because of the different expression levels, the selection of two different allergenic proteins was proved to be useful in the identification and univocal confirmation of the presence of peanuts in foodstuffs. Using rice crisp and chocolate-based snacks as model food matrix, an LC-MS-MS method with triple quadrupole mass analyzer allowed good detection limits to be obtained for Ara h 2 (5 microg protein g(-1) matrix) and Ara h 3/4 (1 microg protein g(-1) matrix). Linearity of the method was established in the 10-200 microg g(-1) range of peanut proteins in the food matrix investigated. Method selectivity was demonstrated by analyzing tree nuts (almonds, pecan nuts, hazelnuts, walnuts) and food ingredients such as milk, soy beans, chocolate, cornflakes, and rice crisp.

  16. ICPD-a new peak detection algorithm for LC/MS.

    PubMed

    Zhang, Jianqiu; Haskins, William

    2010-12-01

    The identification and quantification of proteins using label-free Liquid Chromatography/Mass Spectrometry (LC/MS) play crucial roles in biological and biomedical research. Increasing evidence has shown that biomarkers are often low abundance proteins. However, LC/MS systems are subject to considerable noise and sample variability, whose statistical characteristics are still elusive, making computational identification of low abundance proteins extremely challenging. As a result, the inability of identifying low abundance proteins in a proteomic study is the main bottleneck in protein biomarker discovery. In this paper, we propose a new peak detection method called Information Combining Peak Detection (ICPD ) for high resolution LC/MS. In LC/MS, peptides elute during a certain time period and as a result, peptide isotope patterns are registered in multiple MS scans. The key feature of the new algorithm is that the observed isotope patterns registered in multiple scans are combined together for estimating the likelihood of the peptide existence. An isotope pattern matching score based on the likelihood probability is provided and utilized for peak detection. The performance of the new algorithm is evaluated based on protein standards with 48 known proteins. The evaluation shows better peak detection accuracy for low abundance proteins than other LC/MS peak detection methods.

  17. Unique diversity of the venom peptides from the scorpion Androctonus bicolor revealed by transcriptomic and proteomic analysis.

    PubMed

    Zhang, Lei; Shi, Wanxia; Zeng, Xian-Chun; Ge, Feng; Yang, Mingkun; Nie, Yao; Bao, Aorigele; Wu, Shifen; E, Guoji

    2015-10-14

    Androctonus bicolor is one of the most poisonous scorpion species in the world. However, little has been known about the venom composition of the scorpion. To better understand the molecular diversity and medical significance of the venom from the scorpion, we systematically analyzed the venom components by combining transcriptomic and proteomic surveys. Random sequencing of 1000 clones from a cDNA library prepared from the venom glands of the scorpion revealed that 70% of the total transcripts code for venom peptide precursors. Our efforts led to a discovery of 103 novel putative venom peptides. These peptides include NaTx-like, KTx-like and CaTx-like peptides, putative antimicrobial peptides, defensin-like peptides, BPP-like peptides, BmKa2-like peptides, Kunitz-type toxins and some new-type venom peptides without disulfide bridges, as well as many new-type venom peptides that are cross-linked with one, two, three, five or six disulfide bridges, respectively. We also identified three peptides that are identical to known toxins from scorpions. The venom was also analyzed using a proteomic technique. The presence of a total of 16 different venom peptides was confirmed by LC-MS/MS analysis. The discovery of a wide range of new and new-type venom peptides highlights the unique diversity of the venom peptides from A. bicolor. These data also provide a series of novel templates for the development of therapeutic drugs for treating ion channel-associated diseases and infections caused by antibiotic-resistant pathogens, and offer molecular probes for the exploration of structures and functions of various ion channels. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Peptidomic approach identifies cruzioseptins, a new family of potent antimicrobial peptides in the splendid leaf frog, Cruziohyla calcarifer.

    PubMed

    Proaño-Bolaños, Carolina; Zhou, Mei; Wang, Lei; Coloma, Luis A; Chen, Tianbao; Shaw, Chris

    2016-09-02

    Phyllomedusine frogs are an extraordinary source of biologically active peptides. At least 8 families of antimicrobial peptides have been reported in this frog clade, the dermaseptins being the most diverse. By a peptidomic approach, integrating molecular cloning, Edman degradation sequencing and tandem mass spectrometry, a new family of antimicrobial peptides has been identified in Cruziohyla calcarifer. These 15 novel antimicrobial peptides of 20-32 residues in length are named cruzioseptins. They are characterized by having a unique shared N-terminal sequence GFLD- and the sequence motifs -VALGAVSK- or -GKAAL(N/G/S) (V/A)V- in the middle of the peptide. Cruzioseptins have a broad spectrum of antimicrobial activity and low haemolytic effect. The most potent cruzioseptin was CZS-1 that had a MIC of 3.77μM against the Gram positive bacterium, Staphylococcus aureus and the yeast Candida albicans. In contrast, CZS-1 was 3-fold less potent against the Gram negative bacterium, Escherichia coli (MIC 15.11μM). CZS-1 reached 100% haemolysis at 120.87μM. Skin secretions from unexplored species such as C. calcarifer continue to demonstrate the enormous molecular diversity hidden in the amphibian skin. Some of these novel peptides may provide lead structures for the development of a new class of antibiotics and antifungals of therapeutic use. Through the combination of molecular cloning, Edman degradation sequencing, tandem mass spectrometry and MALDI-TOF MS we have identified a new family of 15 antimicrobial peptides in the skin secretion of Cruziohyla calcarifer. The novel family is named "Cruzioseptins" and contains cationic amphipathic peptides of 20-32 residues. They have a broad range of antimicrobial activity that also includes effective antifungals with low haemolytic activity. Therefore, C. calcarifer has proven to be a rich source of novel peptides, which could become leading structures for the development of novel antibiotics and antifungals of clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. An insecticidal toxin from Nephila clavata spider venom.

    PubMed

    Jin, Lin; Fang, Mingqian; Chen, Mengrou; Zhou, Chunling; Ombati, Rose; Hakim, Md Abdul; Mo, Guoxiang; Lai, Ren; Yan, Xiuwen; Wang, Yumin; Yang, Shilong

    2017-07-01

    Spiders are the most successful insect predators given that they use their venom containing insecticidal peptides as biochemical weapons for preying. Due to the high specificity and potency of peptidic toxins, discoveries of insecticidal toxins from spider venom have provided an opportunity to obtain natural compounds for agricultural applications without affecting human health. In this study, a novel insecticidal toxin (μ-NPTX-Nc1a) was identified and characterized from the venom of Nephila clavata. Its primary sequence is GCNPDCTGIQCGWPRCPGGQNPVMDKCVSCCPFCPPKSAQG which was determined by automated Edman degradation, cDNA cloning, and MS/MS analysis. BLAST search indicated that Nc1a shows no similarity with known peptides or proteins, indicating that Nc1a belongs to a novel family of insecticidal peptide. Nc1a displayed inhibitory effects on Na V and K V channels in cockroach dorsal unpaired median neurons. The median lethal dose (LD50) of Nc1a on cockroach was 573 ng/g. Herein, a study that identifies a novel insecticidal toxin, which can be a potential candidate and/or template for the development of bioinsecticides, is presented.

  20. Maximizing the sensitivity and reliability of peptide identification in large-scale proteomic experiments by harnessing multiple search engines.

    PubMed

    Yu, Wen; Taylor, J Alex; Davis, Michael T; Bonilla, Leo E; Lee, Kimberly A; Auger, Paul L; Farnsworth, Chris C; Welcher, Andrew A; Patterson, Scott D

    2010-03-01

    Despite recent advances in qualitative proteomics, the automatic identification of peptides with optimal sensitivity and accuracy remains a difficult goal. To address this deficiency, a novel algorithm, Multiple Search Engines, Normalization and Consensus is described. The method employs six search engines and a re-scoring engine to search MS/MS spectra against protein and decoy sequences. After the peptide hits from each engine are normalized to error rates estimated from the decoy hits, peptide assignments are then deduced using a minimum consensus model. These assignments are produced in a series of progressively relaxed false-discovery rates, thus enabling a comprehensive interpretation of the data set. Additionally, the estimated false-discovery rate was found to have good concordance with the observed false-positive rate calculated from known identities. Benchmarking against standard proteins data sets (ISBv1, sPRG2006) and their published analysis, demonstrated that the Multiple Search Engines, Normalization and Consensus algorithm consistently achieved significantly higher sensitivity in peptide identifications, which led to increased or more robust protein identifications in all data sets compared with prior methods. The sensitivity and the false-positive rate of peptide identification exhibit an inverse-proportional and linear relationship with the number of participating search engines.

  1. Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates.

    PubMed

    Huang, Shih-Li; Jao, Chia-Ling; Ho, Kit-Pan; Hsu, Kuo-Chiang

    2012-05-01

    The in vitro DPP-IV inhibitory activity of isolated peptides from of tuna cooking juice hydrolyzed by Protease XXIII (PR) and orientase (OR) was determined. The results showed that the peptide fractions with the molecular weight over 1,422 Da possessed the greatest DPP-IV inhibitory activity. The amino acid sequences of the three peptides isolated from PR and OR hydrolysates were identified by MALDI-TOF/TOF MS/MS, and they were Pro-Gly-Val-Gly-Gly-Pro-Leu-Gly-Pro-Ile-Gly-Pro-Cys-Tyr-Glu (1412.7 Da), Cys-Ala-Tyr-Gln-Trp-Gln-Arg-Pro-Val-Asp-Arg-Ile-Arg (1690.8 Da) and Pro-Ala-Cys-Gly-Gly-Phe-Try-Ile-Ser-Gly-Arg-Pro-Gly (1304.6 Da), while they showed the dose-dependent inhibition effect of DPP-IV with IC(50) values of 116.1, 78.0 and 96.4 μM, respectively. In vitro simulated gastrointestinal digestion retained or even improved the DPP-IV inhibitory activities of the three peptides. The results suggest that tuna cooking juice would be a good precursor of DPP-IV inhibitor, and the DPP-IV inhibitory peptides can successfully passed through the digestive tract. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Isolation, Purification and Molecular Mechanism of a Peanut Protein-Derived ACE-Inhibitory Peptide

    PubMed Central

    Shi, Aimin; Liu, Hongzhi; Liu, Li; Hu, Hui; Wang, Qiang; Adhikari, Benu

    2014-01-01

    Although a number of bioactive peptides are capable of angiotensin I-converting enzyme (ACE) inhibitory effects, little is known regarding the mechanism of peanut peptides using molecular simulation. The aim of this study was to obtain ACE inhibiting peptide from peanut protein and provide insight on the molecular mechanism of its ACE inhibiting action. Peanut peptides having ACE inhibitory activity were isolated through enzymatic hydrolysis and ultrafiltration. Further chromatographic fractionation was conducted to isolate a more potent peanut peptide and its antihypertensive activity was analyzed through in vitro ACE inhibitory tests and in vivo animal experiments. MALDI-TOF/TOF-MS was used to identify its amino acid sequence. Mechanism of ACE inhibition of P8 was analyzed using molecular docking and molecular dynamics simulation. A peanut peptide (P8) having Lys-Leu-Tyr-Met-Arg-Pro amino acid sequence was obtained which had the highest ACE inhibiting activity of 85.77% (half maximal inhibitory concentration (IC50): 0.0052 mg/ml). This peanut peptide is a competitive inhibitor and show significant short term (12 h) and long term (28 days) antihypertensive activity. Dynamic tests illustrated that P8 can be successfully docked into the active pocket of ACE and can be combined with several amino acid residues. Hydrogen bond, electrostatic bond and Pi-bond were found to be the three main interaction contributing to the structural stability of ACE-peptide complex. In addition, zinc atom could form metal-carboxylic coordination bond with Tyr, Met residues of P8, resulting into its high ACE inhibiting activity. Our finding indicated that the peanut peptide (P8) having a Lys-Leu-Tyr-Met-Arg-Pro amino acid sequence can be a promising candidate for functional foods and prescription drug aimed at control of hypertension. PMID:25347076

  3. BIOPEP database and other programs for processing bioactive peptide sequences.

    PubMed

    Minkiewicz, Piotr; Dziuba, Jerzy; Iwaniak, Anna; Dziuba, Marta; Darewicz, Małgorzata

    2008-01-01

    This review presents the potential for application of computational tools in peptide science based on a sample BIOPEP database and program as well as other programs and databases available via the World Wide Web. The BIOPEP application contains a database of biologically active peptide sequences and a program enabling construction of profiles of the potential biological activity of protein fragments, calculation of quantitative descriptors as measures of the value of proteins as potential precursors of bioactive peptides, and prediction of bonds susceptible to hydrolysis by endopeptidases in a protein chain. Other bioactive and allergenic peptide sequence databases are also presented. Programs enabling the construction of binary and multiple alignments between peptide sequences, the construction of sequence motifs attributed to a given type of bioactivity, searching for potential precursors of bioactive peptides, and the prediction of sites susceptible to proteolytic cleavage in protein chains are available via the Internet as are other approaches concerning secondary structure prediction and calculation of physicochemical features based on amino acid sequence. Programs for prediction of allergenic and toxic properties have also been developed. This review explores the possibilities of cooperation between various programs.

  4. Extracellular Identification of a Processed Type II ComR/ComS Pheromone of Streptococcus mutans

    PubMed Central

    Khan, Rabia; Rukke, Håkon V.; Ricomini Filho, Antonio Pedro; Fimland, Gunnar; Arntzen, Magnus Ø.; Thiede, Bernd

    2012-01-01

    The competence-stimulating peptide (CSP) and the sigX-inducing peptide (XIP) are known to induce Streptococcus mutans competence for genetic transformation. For both pheromones, direct identification of the native peptides has not been accomplished. The fact that extracellular XIP activity was recently observed in a chemically defined medium devoid of peptides, as mentioned in an accompanying paper (K. Desai, L. Mashburn-Warren, M. J. Federle, and D. A. Morrison, J. Bacteriol. 194:3774–3780, 2012), provided ideal conditions for native XIP identification. To search for the XIP identity, culture supernatants were filtered to select for peptides of less than 3 kDa, followed by C18 extraction. One peptide, not detected in the supernatant of a comS deletion mutant, was identified by tandem mass spectrometry (MS/MS) fragmentation as identical to the ComS C-terminal sequence GLDWWSL. ComS processing did not require Eep, a peptidase involved in processing or import of bacterial small hydrophobic peptides, since eep deletion had no inhibitory effect on XIP production or on synthetic XIP response. We investigated whether extracellular CSP was also produced. A reporter assay for CSP activity detection, as well as MS analysis of supernatants, revealed that CSP was not present at detectable levels. In addition, a mutant with deletion of the CSP-encoding gene comC produced endogenous XIP levels similar to those of a nondeletion mutant. The results indicate that XIP pheromone production is a natural phenomenon that may occur in the absence of natural CSP pheromone activity and that the heptapeptide GLDWWSL is an extracellular processed form of ComS, possibly the active XIP pheromone. This is the first report of direct identification of a ComR/ComS pheromone. PMID:22609914

  5. High-throughput SISCAPA quantitation of peptides from human plasma digests by ultrafast, liquid chromatography-free mass spectrometry.

    PubMed

    Razavi, Morteza; Frick, Lauren E; LaMarr, William A; Pope, Matthew E; Miller, Christine A; Anderson, N Leigh; Pearson, Terry W

    2012-12-07

    We investigated the utility of an SPE-MS/MS platform in combination with a modified SISCAPA workflow for chromatography-free MRM analysis of proteotypic peptides in digested human plasma. This combination of SISCAPA and SPE-MS/MS technology allows sensitive, MRM-based quantification of peptides from plasma digests with a sample cycle time of ∼7 s, a 300-fold improvement over typical MRM analyses with analysis times of 30-40 min that use liquid chromatography upstream of MS. The optimized system includes capture and enrichment to near purity of target proteotypic peptides using rigorously selected, high affinity, antipeptide monoclonal antibodies and reduction of background peptides using a novel treatment of magnetic bead immunoadsorbents. Using this method, we have successfully quantitated LPS-binding protein and mesothelin (concentrations of ∼5000 ng/mL and ∼10 ng/mL, respectively) in human plasma. The method eliminates the need for upstream liquid-chromatography and can be multiplexed, thus facilitating quantitative analysis of proteins, including biomarkers, in large sample sets. The method is ideal for high-throughput biomarker validation after affinity enrichment and has the potential for applications in clinical laboratories.

  6. Modeling and prediction of peptide drift times in ion mobility spectrometry using sequence-based and structure-based approaches.

    PubMed

    Zhang, Yiming; Jin, Quan; Wang, Shuting; Ren, Ren

    2011-05-01

    The mobile behavior of 1481 peptides in ion mobility spectrometry (IMS), which are generated by protease digestion of the Drosophila melanogaster proteome, is modeled and predicted based on two different types of characterization methods, i.e. sequence-based approach and structure-based approach. In this procedure, the sequence-based approach considers both the amino acid composition of a peptide and the local environment profile of each amino acid in the peptide; the structure-based approach is performed with the CODESSA protocol, which regards a peptide as a common organic compound and generates more than 200 statistically significant variables to characterize the whole structure profile of a peptide molecule. Subsequently, the nonlinear support vector machine (SVM) and Gaussian process (GP) as well as linear partial least squares (PLS) regression is employed to correlate the structural parameters of the characterizations with the IMS drift times of these peptides. The obtained quantitative structure-spectrum relationship (QSSR) models are evaluated rigorously and investigated systematically via both one-deep and two-deep cross-validations as well as the rigorous Monte Carlo cross-validation (MCCV). We also give a comprehensive comparison on the resulting statistics arising from the different combinations of variable types with modeling methods and find that the sequence-based approach can give the QSSR models with better fitting ability and predictive power but worse interpretability than the structure-based approach. In addition, though the QSSR modeling using sequence-based approach is not needed for the preparation of the minimization structures of peptides before the modeling, it would be considerably efficient as compared to that using structure-based approach. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Isolation and structural elucidation of antioxidant peptides from oyster (Saccostrea cucullata) protein hydrolysate.

    PubMed

    Umayaparvathi, S; Meenakshi, S; Vimalraj, V; Arumugam, M; Balasubramanian, T

    2014-01-01

    Protein derived from the oyster (Saccostrea cucullata) was hydrolyzed using protease from Bacillus cereus SU12 for isolation of antioxidant peptides. The oyster hydrolysate exhibited a strong antioxidant potential in DPPH (85.7±0.37%) followed by Hydrogen peroxide radical scavenging activity (81.6±0.3%), Hydroxyl radical-scavenging activity (79.32±0.6%), Reducing power assay (2.63±0.2 OD at 700nm). Due to the high antioxidant potential, hydrolysate was fractionated in Sephadex G-25 gel filtration chromatography. The active peptide fraction was further purified by UPLC-MS. Totally 7 antioxidant peptides were collected. Among 7 peptides (SCAP 1-7), 3 peptides (SCAP 1, 3 and 7) had highest scavenging ability on DPPH radicals. The amino acid sequence and molecular mass of purified antioxidant peptides (SCAP1, SCAP3 and SCAP7) were determined by Q-TOF ESI mass spectroscopy and structures of the peptides were Leu-Ala-Asn-Ala-Lys (MW=515.29Da), Pro-Ser-Leu-Val-Gly-Arg-Pro-Pro-Val-Gly-Lys-Leu-Thr-Leu (MW=1432.89Da) and Val-Lys-Val-Leu-Leu-Glu-His-Pro-Val-Leu (MW=1145.75Da), respectively. The unique amino acid composition and sequence in the peptides might play an important role in expression of their antioxidant activity. The results of this study suggest that oyster protein hydrolysate is good source of natural antioxidants.

  8. Low-molecular-weight color pI markers to monitor on-line the peptide focusing process in OFFGEL fractionation.

    PubMed

    Michelland, Sylvie; Bourgoin-Voillard, Sandrine; Cunin, Valérie; Tollance, Axel; Bertolino, Pascal; Slais, Karel; Seve, Michel

    2017-08-01

    High-throughput mass spectrometry-based proteomic analysis requires peptide fractionation to simplify complex biological samples and increase proteome coverage. OFFGEL fractionation technology became a common method to separate peptides or proteins using isoelectric focusing in an immobilized pH gradient. However, the OFFGEL focusing process may be further optimized and controlled in terms of separation time and pI resolution. Here we evaluated OFFGEL technology to separate peptides from different samples in the presence of low-molecular-weight (LMW) color pI markers to visualize the focusing process. LMW color pI markers covering a large pH range were added to the peptide mixture before OFFGEL fractionation using a 24-wells device encompassing the pH range 3-10. We also explored the impact of LMW color pI markers on peptide fractionation labeled previously for iTRAQ. Then, fractionated peptides were separated by RP_HPLC prior to MS analysis using MALDI-TOF/TOF mass spectrometry in MS and MS/MS modes. Here we report the performance of the peptide focusing process in the presence of LMW color pI markers as on-line trackers during the OFFGEL process and the possibility to use them as pI controls for peptide focusing. This method improves the workflow for peptide fractionation in a bottom-up proteomic approach with or without iTRAQ labeling. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Identification of native angiotensin-I converting enzyme inhibitory peptides in commercial soybean based infant formulas using HPLC-Q-ToF-MS.

    PubMed

    Puchalska, Patrycja; Concepción García, M; Luisa Marina, M

    2014-08-15

    This work evaluates, the presence of native antihypertensive peptides in five soybean-based infant formulas (SBIFs). SBIFs peptide extracts (<10 kDa) and their sub-fractions (5-10 kDa, 3-5 kDa, and <3 kDa) from a variety of samples were obtained by ultrafiltration and ACE inhibitory activity was determined. The highest activities were observed in the smaller (<5 kDa) peptide fractions. A set of peptides present in various SBIFs were studied, and identified using HPLC-Q-ToF-MS. Despite ACE inhibitory activity decreasing after in vitro gastrointestinal digestion, it still remained at a high value (IC50 values of 18.2±0.1 and 4.9±0.1 μg/mL). Peptides resisting the action of gastrointestinal enzymes were identified and compared to previously identified peptides, highlighting the presence of peptide RPSYT. This peptide was synthesised, its antihypertensive and antioxidant activity were evaluated, and its resistance to in vitro gastrointestinal digestion and to high processing temperatures were studied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Investigation of some biologically relevant redox reactions using electrochemical mass spectrometry interfaced by desorption electrospray ionization.

    PubMed

    Lu, Mei; Wolff, Chloe; Cui, Weidong; Chen, Hao

    2012-04-01

    Recently we have shown that, as a versatile ionization technique, desorption electrospray ionization (DESI) can serve as a useful interface to combine electrochemistry (EC) with mass spectrometry (MS). In this study, the EC/DESI-MS method has been further applied to investigate some aqueous phase redox reactions of biological significance, including the reduction of peptide disulfide bonds and nitroaromatics as well as the oxidation of phenothiazines. It was found that knotted/enclosed disulfide bonds in the peptides apamin and endothelin could be electrochemically cleaved. Subsequent tandem MS analysis of the resulting reduced peptide ions using collision-induced dissociation (CID) and electron-capture dissociation (ECD) gave rise to extensive fragment ions, providing a fast protocol for sequencing peptides with complicated disulfide bond linkages. Flunitrazepam and clonazepam, a class of nitroaromatic drugs, are known to undergo reduction into amines which was proposed to involve nitroso and N-hydroxyl intermediates. Now in this study, these corresponding intermediate ions were successfully intercepted and their structures were confirmed by CID. This provides mass spectrometric evidence for the mechanism of the nitro to amine conversion process during nitroreduction, an important redox reaction involved in carcinogenesis. In addition, the well-known oxidation reaction of chlorpromazine was also examined. The putative transient one-electron transfer product, the chlorpromazine radical cation (m/z 318), was captured by MS, for the first time, and its structure was also verified by CID. In addition to these observations, some features of the DESI-interfaced electrochemical mass spectrometry were discussed, such as simple instrumentation and the lack of background signal. These results further demonstrate the feasibility of EC/DESI-MS for the study of the biology-relevant redox chemistry and would find applications in proteomics and drug development research.

  11. Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra.

    PubMed

    Rieder, Vera; Schork, Karin U; Kerschke, Laura; Blank-Landeshammer, Bernhard; Sickmann, Albert; Rahnenführer, Jörg

    2017-11-03

    In proteomics, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is established for identifying peptides and proteins. Duplicated spectra, that is, multiple spectra of the same peptide, occur both in single MS/MS runs and in large spectral libraries. Clustering tandem mass spectra is used to find consensus spectra, with manifold applications. First, it speeds up database searches, as performed for instance by Mascot. Second, it helps to identify novel peptides across species. Third, it is used for quality control to detect wrongly annotated spectra. We compare different clustering algorithms based on the cosine distance between spectra. CAST, MS-Cluster, and PRIDE Cluster are popular algorithms to cluster tandem mass spectra. We add well-known algorithms for large data sets, hierarchical clustering, DBSCAN, and connected components of a graph, as well as the new method N-Cluster. All algorithms are evaluated on real data with varied parameter settings. Cluster results are compared with each other and with peptide annotations based on validation measures such as purity. Quality control, regarding the detection of wrongly (un)annotated spectra, is discussed for exemplary resulting clusters. N-Cluster proves to be highly competitive. All clustering results benefit from the so-called DISMS2 filter that integrates additional information, for example, on precursor mass.

  12. Subnanogram proteomics: impact of LC column selection, MS instrumentation and data analysis strategy on proteome coverage for trace samples

    DOE PAGES

    Zhu, Ying; Zhao, Rui; Piehowski, Paul D.; ...

    2017-09-01

    One of the greatest challenges for mass spectrometry (MS)-based proteomics is the limited ability to analyze small samples. Here in this study, we investigate the relative contributions of liquid chromatography (LC), MS instrumentation and data analysis methods with the aim of improving proteome coverage for sample sizes ranging from 0.5 ng to 50 ng. We show that the LC separations utilizing 30-μm-i.d. columns increase signal intensity by >3-fold relative to those using 75-μm-i.d. columns, leading to 32% increase in peptide identifications. The Orbitrap Fusion Lumos MS significantly boosted both sensitivity and sequencing speed relative to earlier generation Orbitraps (e.g., LTQ-Orbitrap),more » leading to a ~3-fold increase in peptide identifications and 1.7-fold increase in identified protein groups for 2 ng tryptic digests of the bacterium S. oneidensis. The Match Between Runs algorithm of open-source MaxQuant software further increased proteome coverage by ~95% for 0.5 ng samples and by ~42% for 2 ng samples. Using the best combination of the above variables, we were able to identify >3,000 proteins from 10 ng tryptic digests from both HeLa and THP-1 mammalian cell lines. We also identified >950 proteins from subnanogram archaeal/bacterial cocultures. Finally, the present ultrasensitive LC-MS platform achieves a level of proteome coverage not previously realized for ultra-small sample loadings, and is expected to facilitate the analysis of subnanogram samples, including single mammalian cells.« less

  13. [Characterization and comparison of interferon reference standards using UPLC-MS].

    PubMed

    Tao, Lei; Pei, De-ning; Han, Chun-mei; Chen, Wei; Rao, Chun-ming; Wang, Jun-zhi

    2015-01-01

    The study aims to characterize and compare interferon reference standards from 5 manufacturers. By testing molecular mass and trypsin-digested peptide mass mapping, the amino acid sequence was verified and post-translational modifications such as disulfide bond were identified. Results show that the molecular mass and amino acid sequence were consistent with theory; the disulfide bonds of 4 lots of interferon were Cys1-Cys98/Cys29-Cys138, 1 lot was Cys29-Cys139/Cys86-Cys99; N-terminal "+Met", acetyl N-terminal and Met oxidation were identified in part of the sample. UPLC-MS can be used to characterize and compare interferon reference standards from different manufacturers.

  14. Discovering Mercury Protein Modifications in Whole Proteomes Using Natural Isotope Distributions Observed in Liquid Chromatography-Tandem Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polacco, Benjamin J.; Purvine, Samuel O.; Zink, Erika M.

    2011-08-01

    The identification of peptides that result from post-translational modifications is critical for understanding normal pathways of cellular regulation as well as identifying damage from, or exposures to xenobiotics, i.e. the exposome. However, because of their low abundance in proteomes, effective detection of modified peptides by mass spectrometry (MS) typically requires enrichment to eliminate false identifications. We present a new method for confidently identifying peptides with mercury (Hg)-containing adducts that is based on the influence of mercury’s seven stable isotopes on peptide isotope distributions detected by high-resolution MS. Using a pure protein and E. coli cultures exposed to phenyl mercuric acetate,more » we show the pattern of peak heights in isotope distributions from primary MS single scans efficiently identified Hg adducts in data from chromatographic separation coupled with tandem mass spectrometry with sensitivity and specificity greater than 90%. Isotope distributions are independent of peptide identifications based on peptide fragmentation (e.g. by SEQUEST), so both methods can be combined to eliminate false positives. Summing peptide isotope distributions across multiple scans improved specificity to 99.4% and sensitivity above 95%, affording identification of an unexpected Hg modification. We also illustrate the theoretical applicability of the method for detection of several less common elements including the essential element, selenium, as selenocysteine in peptides.« less

  15. Analysis of Intrinsic Peptide Detectability via Integrated Label-Free and SRM-Based Absolute Quantitative Proteomics.

    PubMed

    Jarnuczak, Andrew F; Lee, Dave C H; Lawless, Craig; Holman, Stephen W; Eyers, Claire E; Hubbard, Simon J

    2016-09-02

    Quantitative mass spectrometry-based proteomics of complex biological samples remains challenging in part due to the variability and charge competition arising during electrospray ionization (ESI) of peptides and the subsequent transfer and detection of ions. These issues preclude direct quantification from signal intensity alone in the absence of a standard. A deeper understanding of the governing principles of peptide ionization and exploitation of the inherent ionization and detection parameters of individual peptides is thus of great value. Here, using the yeast proteome as a model system, we establish the concept of peptide F-factor as a measure of detectability, closely related to ionization efficiency. F-factor is calculated by normalizing peptide precursor ion intensity by absolute abundance of the parent protein. We investigated F-factor characteristics in different shotgun proteomics experiments, including across multiple ESI-based LC-MS platforms. We show that F-factors mirror previously observed physicochemical predictors as peptide detectability but demonstrate a nonlinear relationship between hydrophobicity and peptide detectability. Similarly, we use F-factors to show how peptide ion coelution adversely affects detectability and ionization. We suggest that F-factors have great utility for understanding peptide detectability and gas-phase ion chemistry in complex peptide mixtures, selection of surrogate peptides in targeted MS studies, and for calibration of peptide ion signal in label-free workflows. Data are available via ProteomeXchange with identifier PXD003472.

  16. Absolute quantification of histone PTM marks by MRM-based LC-MS/MS.

    PubMed

    Gao, Jun; Liao, Rijing; Yu, Yanyan; Zhai, Huili; Wang, Yingqi; Sack, Ragna; Peters, Antoine H F M; Chen, Jiajia; Wu, Haiping; Huang, Zheng; Hu, Min; Qi, Wei; Lu, Chris; Atadja, Peter; Oyang, Counde; Li, En; Yi, Wei; Zhou, Shaolian

    2014-10-07

    The N-terminal tails of core histones harbor the sites of numerous post-translational modifications (PTMs) with important roles in the regulation of chromatin structure and function. Profiling histone PTM marks provides data that help understand the epigenetics events in cells and their connections with cancer and other diseases. Our previous study demonstrated that specific derivatization of histone peptides by NHS propionate significantly improved their chromatographic performance on reversed phase columns for LC/MS analysis. As a step forward, we recently developed a multiple reaction monitoring (MRM) based LC-MS/MS method to analyze 42 targeted histone peptides. By using stable isotopic labeled peptides as internal standards that are spiked into the reconstituted solutions, this method allows to measure absolute concentration of the tryptic peptides of H3 histone proteins extracted from cancer cell lines. The method was thoroughly validated for the accuracy and reproducibility through analyzing recombinant histone proteins and cellular samples. The linear dynamic range of the MRM assays was achieved in 3 orders of magnitude from 1 nM to 1 μM for all targeted peptides. Excellent intrabatch and interbatch reproducibility (<15% CV) was obtained. This method has been used to study translocated NSD2 (a histone lysine methyltransferase that catalyzes the histone lysine 36 methylation) function with its overexpression in KMS11 multiple myeloma cells. From the results we have successfully quantitated both individual and combinatorial histone marks in parental and NSD2 selective knockout KMS11 cells.

  17. Computationally assisted screening and design of cell-interactive peptides by a cell-based assay using peptide arrays and a fuzzy neural network algorithm.

    PubMed

    Kaga, Chiaki; Okochi, Mina; Tomita, Yasuyuki; Kato, Ryuji; Honda, Hiroyuki

    2008-03-01

    We developed a method of effective peptide screening that combines experiments and computational analysis. The method is based on the concept that screening efficiency can be enhanced from even limited data by use of a model derived from computational analysis that serves as a guide to screening and combining the model with subsequent repeated experiments. Here we focus on cell-adhesion peptides as a model application of this peptide-screening strategy. Cell-adhesion peptides were screened by use of a cell-based assay of a peptide array. Starting with the screening data obtained from a limited, random 5-mer library (643 sequences), a rule regarding structural characteristics of cell-adhesion peptides was extracted by fuzzy neural network (FNN) analysis. According to this rule, peptides with unfavored residues in certain positions that led to inefficient binding were eliminated from the random sequences. In the restricted, second random library (273 sequences), the yield of cell-adhesion peptides having an adhesion rate more than 1.5-fold to that of the basal array support was significantly high (31%) compared with the unrestricted random library (20%). In the restricted third library (50 sequences), the yield of cell-adhesion peptides increased to 84%. We conclude that a repeated cycle of experiments screening limited numbers of peptides can be assisted by the rule-extracting feature of FNN.

  18. A Deeper Examination of Thorellius atrox Scorpion Venom Components with Omic Techonologies.

    PubMed

    Romero-Gutierrez, Teresa; Peguero-Sanchez, Esteban; Cevallos, Miguel A; Batista, Cesar V F; Ortiz, Ernesto; Possani, Lourival D

    2017-12-12

    This communication reports a further examination of venom gland transcripts and venom composition of the Mexican scorpion Thorellius atrox using RNA-seq and tandem mass spectrometry. The RNA-seq, which was performed with the Illumina protocol, yielded more than 20,000 assembled transcripts. Following a database search and annotation strategy, 160 transcripts were identified, potentially coding for venom components. A novel sequence was identified that potentially codes for a peptide with similarity to spider ω-agatoxins, which act on voltage-gated calcium channels, not known before to exist in scorpion venoms. Analogous transcripts were found in other scorpion species. They could represent members of a new scorpion toxin family, here named omegascorpins. The mass fingerprint by LC-MS identified 135 individual venom components, five of which matched with the theoretical masses of putative peptides translated from the transcriptome. The LC-MS/MS de novo sequencing allowed to reconstruct and identify 42 proteins encoded by assembled transcripts, thus validating the transcriptome analysis. Earlier studies conducted with this scorpion venom permitted the identification of only twenty putative venom components. The present work performed with more powerful and modern omic technologies demonstrates the capacity of accomplishing a deeper characterization of scorpion venom components and the identification of novel molecules with potential applications in biomedicine and the study of ion channel physiology.

  19. Subnanogram proteomics: Impact of LC column selection, MS instrumentation and data analysis strategy on proteome coverage for trace samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Ying; Zhao, Rui; Piehowski, Paul D.

    One of the greatest challenges for mass spectrometry (MS)-based proteomics is the limited ability to analyze small samples. Here we investigate the relative contributions of liquid chromatography (LC), MS instrumentation and data analysis methods with the aim of improving proteome coverage for sample sizes ranging from 0.5 ng to 50 ng. We show that the LC separations utilizing 30-µm-i.d. columns increase signal intensity by >3-fold relative to those using 75-µm-i.d. columns, leading to 32% increase in peptide identifications. The Orbitrap Fusion Lumos mass spectrometer significantly boosted both sensitivity and sequencing speed relative to earlier generation Orbitraps (e.g., LTQ-Orbitrap), leading tomore » a ~3× increase in peptide identifications and 1.7× increase in identified protein groups for 2 ng tryptic digests of bacterial lysate. The Match Between Runs algorithm of open-source MaxQuant software further increased proteome coverage by ~ 95% for 0.5 ng samples and by ~42% for 2 ng samples. The present platform is capable of identifying >3000 protein groups from tryptic digestion of cell lysates equivalent to 50 HeLa cells and 100 THP-1 cells (~10 ng total proteins), respectively, and >950 proteins from subnanogram bacterial and archaeal cell lysates. The present ultrasensitive LC-MS platform is expected to enable deep proteome coverage for subnanogram samples, including single mammalian cells.« less

  20. Identification of sixteen peptides reflecting heat and/or storage induced processes by profiling of commercial milk samples.

    PubMed

    Ebner, Jennifer; Baum, Florian; Pischetsrieder, Monika

    2016-09-16

    Peptide profiles of different drinking milk samples were examined to study how the peptide fingerprint of milk reflects processing conditions. The combination of a simple and fast method for peptide extraction using stage tips and MALDI-TOF-MS enabled the fast and easy generation and relative quantification of peptide fingerprints for high-temperature short-time (HTST), extended shelf life (ESL) and ultra-high temperature (UHT) milk of the same dairies. The relative quantity of 16 peptides changed as a function of increasing heat load. Additional heating experiments showed that among those, the intensity of peptide β-casein 196-209 (m/z 1460.9Da) was most heavily influenced by heat treatment indicating a putative marker peptide for milk processing conditions. Storage experiments with HTST- and UHT milk revealed that the differences between different types of milk samples were not only caused by the heating process. Relevant was also the proteolytic activity of enzymes during storage, which were differently influenced by the heat treatment. These results indicate that the peptide profile may be suitable to monitor processing as well as storage conditions of milk. In the present study, peptide profiling of different types of milk was carried out by MALDI-TOF-MS after stage-tip extraction and relative quantification using an internal reference peptide. Although MALDI-TOF-MS covers only part of the peptidome, the method is easy and quick and is, therefore, suited for routine analysis to address several aspects of food authenticity. Using this method, 16 native peptides were detected in milk that could be modulated by different industrial processes. Subsequent heating and storage experiments with pasteurized and UHT milk confirmed that these peptides are indeed related to the production or storage conditions of the respective products. Furthermore, the heating experiments revealed one peptide, namely the β-casein-derived sequence β-casein 196-209, which underwent particularly sensitive modulation by heat treatment. The present results indicate that the modulated peptides, and especially β-casein 196-209, may be suitable markers to monitor processing parameters for industrial milk production. Furthermore, the model experiments suggest mechanisms leading to the formation or degradation of peptides, which help to evaluate putative marker peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cyanine-based probe\\tag-peptide pair fluorescence protein imaging and fluorescence protein imaging methods

    DOEpatents

    Mayer-Cumblidge, M. Uljana; Cao, Haishi

    2013-01-15

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  2. Cyanine-based probe\\tag-peptide pair for fluorescence protein imaging and fluorescence protein imaging methods

    DOEpatents

    Mayer-Cumblidge, M Uljana [Richland, WA; Cao, Haishi [Richland, WA

    2010-08-17

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  3. Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits.

    PubMed

    Wu, Hong-xia; Jia, Hui-min; Ma, Xiao-wei; Wang, Song-biao; Yao, Quan-sheng; Xu, Wen-tian; Zhou, Yi-gang; Gao, Zhong-shan; Zhan, Ru-lin

    2014-06-13

    Here we used Illumina RNA-seq technology for transcriptome sequencing of a mixed fruit sample from 'Zill' mango (Mangifera indica Linn) fruit pericarp and pulp during the development and ripening stages. RNA-seq generated 68,419,722 sequence reads that were assembled into 54,207 transcripts with a mean length of 858bp, including 26,413 clusters and 27,794 singletons. A total of 42,515(78.43%) transcripts were annotated using public protein databases, with a cut-off E-value above 10(-5), of which 35,198 and 14,619 transcripts were assigned to gene ontology terms and clusters of orthologous groups respectively. Functional annotation against the Kyoto Encyclopedia of Genes and Genomes database identified 23,741(43.79%) transcripts which were mapped to 128 pathways. These pathways revealed many previously unknown transcripts. We also applied mass spectrometry-based transcriptome data to characterize the proteome of ripe fruit. LC-MS/MS analysis of the mango fruit proteome was using tandem mass spectrometry (MS/MS) in an LTQ Orbitrap Velos (Thermo) coupled online to the HPLC. This approach enabled the identification of 7536 peptides that matched 2754 proteins. Our study provides a comprehensive sequence for a systemic view of transcriptome during mango fruit development and the most comprehensive fruit proteome to date, which are useful for further genomics research and proteomic studies. Our study provides a comprehensive sequence for a systemic view of both the transcriptome and proteome of mango fruit, and a valuable reference for further research on gene expression and protein identification. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. freeQuant: A Mass Spectrometry Label-Free Quantification Software Tool for Complex Proteome Analysis.

    PubMed

    Deng, Ning; Li, Zhenye; Pan, Chao; Duan, Huilong

    2015-01-01

    Study of complex proteome brings forward higher request for the quantification method using mass spectrometry technology. In this paper, we present a mass spectrometry label-free quantification tool for complex proteomes, called freeQuant, which integrated quantification with functional analysis effectively. freeQuant consists of two well-integrated modules: label-free quantification and functional analysis with biomedical knowledge. freeQuant supports label-free quantitative analysis which makes full use of tandem mass spectrometry (MS/MS) spectral count, protein sequence length, shared peptides, and ion intensity. It adopts spectral count for quantitative analysis and builds a new method for shared peptides to accurately evaluate abundance of isoforms. For proteins with low abundance, MS/MS total ion count coupled with spectral count is included to ensure accurate protein quantification. Furthermore, freeQuant supports the large-scale functional annotations for complex proteomes. Mitochondrial proteomes from the mouse heart, the mouse liver, and the human heart were used to evaluate the usability and performance of freeQuant. The evaluation showed that the quantitative algorithms implemented in freeQuant can improve accuracy of quantification with better dynamic range.

  5. MsViz: A Graphical Software Tool for In-Depth Manual Validation and Quantitation of Post-translational Modifications.

    PubMed

    Martín-Campos, Trinidad; Mylonas, Roman; Masselot, Alexandre; Waridel, Patrice; Petricevic, Tanja; Xenarios, Ioannis; Quadroni, Manfredo

    2017-08-04

    Mass spectrometry (MS) has become the tool of choice for the large scale identification and quantitation of proteins and their post-translational modifications (PTMs). This development has been enabled by powerful software packages for the automated analysis of MS data. While data on PTMs of thousands of proteins can nowadays be readily obtained, fully deciphering the complexity and combinatorics of modification patterns even on a single protein often remains challenging. Moreover, functional investigation of PTMs on a protein of interest requires validation of the localization and the accurate quantitation of its changes across several conditions, tasks that often still require human evaluation. Software tools for large scale analyses are highly efficient but are rarely conceived for interactive, in-depth exploration of data on individual proteins. We here describe MsViz, a web-based and interactive software tool that supports manual validation of PTMs and their relative quantitation in small- and medium-size experiments. The tool displays sequence coverage information, peptide-spectrum matches, tandem MS spectra and extracted ion chromatograms through a single, highly intuitive interface. We found that MsViz greatly facilitates manual data inspection to validate PTM location and quantitate modified species across multiple samples.

  6. Identification of RIP-II toxins by affinity enrichment, enzymatic digestion and LC-MS.

    PubMed

    Fredriksson, Sten-Åke; Artursson, Elisabet; Bergström, Tomas; Östin, Anders; Nilsson, Calle; Åstot, Crister

    2015-01-20

    Type 2 ribosome-inactivating protein toxins (RIP-II toxins) were enriched and purified prior to enzymatic digestion and LC-MS analysis. The enrichment of the RIP-II family of plant proteins, such as ricin, abrin, viscumin, and volkensin was based on their affinity for galactosyl moieties. A macroporous chromatographic material was modified with a galactose-terminated substituent and packed into miniaturized columns that were used in a chromatographic system to achieve up to 1000-fold toxin enrichment. The galactose affinity of the RIP-II proteins enabled their selective enrichment from water, beverages, and extracts of powder and wipe samples. The enriched fractions were digested with trypsin and RIP-II peptides were identified based on accurate mass LC-MS data. Their identities were unambiguously confirmed by LC-MS/MS product ion scans of peptides unique to each of the toxins. The LC-MS detection limit achieved for ricin target peptides was 10 amol and the corresponding detection limit for the full method was 10 fmol/mL (0.6 ng/mL). The affinity enrichment method was applied to samples from a forensic investigation into a case involving the illegal production of ricin and abrin toxins.

  7. Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry.

    PubMed

    Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen

    2010-11-01

    In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000-15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert's visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition.

  8. Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry

    PubMed Central

    Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen

    2011-01-01

    In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000–15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert’s visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition. PMID:21544266

  9. MixGF: spectral probabilities for mixture spectra from more than one peptide.

    PubMed

    Wang, Jian; Bourne, Philip E; Bandeira, Nuno

    2014-12-01

    In large-scale proteomic experiments, multiple peptide precursors are often cofragmented simultaneously in the same mixture tandem mass (MS/MS) spectrum. These spectra tend to elude current computational tools because of the ubiquitous assumption that each spectrum is generated from only one peptide. Therefore, tools that consider multiple peptide matches to each MS/MS spectrum can potentially improve the relatively low spectrum identification rate often observed in proteomics experiments. More importantly, data independent acquisition protocols promoting the cofragmentation of multiple precursors are emerging as alternative methods that can greatly improve the throughput of peptide identifications but their success also depends on the availability of algorithms to identify multiple peptides from each MS/MS spectrum. Here we address a fundamental question in the identification of mixture MS/MS spectra: determining the statistical significance of multiple peptides matched to a given MS/MS spectrum. We propose the MixGF generating function model to rigorously compute the statistical significance of peptide identifications for mixture spectra and show that this approach improves the sensitivity of current mixture spectra database search tools by a ≈30-390%. Analysis of multiple data sets with MixGF reveals that in complex biological samples the number of identified mixture spectra can be as high as 20% of all the identified spectra and the number of unique peptides identified only in mixture spectra can be up to 35.4% of those identified in single-peptide spectra. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. MixGF: Spectral Probabilities for Mixture Spectra from more than One Peptide*

    PubMed Central

    Wang, Jian; Bourne, Philip E.; Bandeira, Nuno

    2014-01-01

    In large-scale proteomic experiments, multiple peptide precursors are often cofragmented simultaneously in the same mixture tandem mass (MS/MS) spectrum. These spectra tend to elude current computational tools because of the ubiquitous assumption that each spectrum is generated from only one peptide. Therefore, tools that consider multiple peptide matches to each MS/MS spectrum can potentially improve the relatively low spectrum identification rate often observed in proteomics experiments. More importantly, data independent acquisition protocols promoting the cofragmentation of multiple precursors are emerging as alternative methods that can greatly improve the throughput of peptide identifications but their success also depends on the availability of algorithms to identify multiple peptides from each MS/MS spectrum. Here we address a fundamental question in the identification of mixture MS/MS spectra: determining the statistical significance of multiple peptides matched to a given MS/MS spectrum. We propose the MixGF generating function model to rigorously compute the statistical significance of peptide identifications for mixture spectra and show that this approach improves the sensitivity of current mixture spectra database search tools by a ≈30–390%. Analysis of multiple data sets with MixGF reveals that in complex biological samples the number of identified mixture spectra can be as high as 20% of all the identified spectra and the number of unique peptides identified only in mixture spectra can be up to 35.4% of those identified in single-peptide spectra. PMID:25225354

  11. Simple Sodium Dodecyl Sulfate-Assisted Sample Preparation Method for LC-MS-based Proteomic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jianying; Dann, Geoffrey P.; Shi, Tujin

    2012-03-10

    Sodium dodecyl sulfate (SDS) is one of the most popular laboratory reagents used for highly efficient biological sample extraction; however, SDS presents a significant challenge to LC-MS-based proteomic analyses due to its severe interference with reversed-phase LC separations and electrospray ionization interfaces. This study reports a simple SDS-assisted proteomic sample preparation method facilitated by a novel peptide-level SDS removal protocol. After SDS-assisted protein extraction and digestion, SDS was effectively (>99.9%) removed from peptides through ion substitution-mediated DS- precipitation with potassium chloride (KCl) followed by {approx}10 min centrifugation. Excellent peptide recovery (>95%) was observed for less than 20 {mu}g of peptides.more » Further experiments demonstrated the compatibility of this protocol with LC-MS/MS analyses. The resulting proteome coverage from this SDS-assisted protocol was comparable to or better than those obtained from other standard proteomic preparation methods in both mammalian tissues and bacterial samples. These results suggest that this SDS-assisted protocol is a practical, simple, and broadly applicable proteomic sample processing method, which can be particularly useful when dealing with samples difficult to solubilize by other methods.« less

  12. Novel Concepts of MS-Cleavable Cross-linkers for Improved Peptide Structure Analysis

    NASA Astrophysics Data System (ADS)

    Hage, Christoph; Falvo, Francesco; Schäfer, Mathias; Sinz, Andrea

    2017-10-01

    The chemical cross-linking/mass spectrometry (MS) approach is gaining increasing importance as an alternative method for studying protein conformation and for deciphering protein interaction networks. This study is part of our ongoing efforts to develop innovative cross-linking principles for a facile and efficient assignment of cross-linked products. We evaluate two homobifunctional, amine-reactive, and MS-cleavable cross-linkers regarding their potential for automated analysis of cross-linked products. We introduce the bromine phenylurea (BrPU) linker that possesses a unique structure yielding a distinctive fragmentation pattern on collisional activation. Moreover, BrPU delivers the characteristic bromine isotope pattern and mass defect for all cross-linker-decorated fragments. We compare the fragmentation behavior of the BrPU linker with that of our previously described MS-cleavable TEMPO-Bz linker (which consists of a 2,2,6,6-tetramethylpiperidine-1-oxy moiety connected to a benzyl group) that was developed to perform free-radical-initiated peptide sequencing. Comparative collisional activation experiments (collision-induced dissociation and higher-energy collision-induced dissociation) with both cross-linkers were conducted in negative electrospray ionization mode with an Orbitrap Fusion mass spectrometer using five model peptides. As hypothesized in a previous study, the presence of a cross-linked N-terminal aspartic acid residue seems to be the prerequisite for the loss of an intact peptide from the cross-linked products. As the BrPU linker combines a characteristic mass shift with an isotope signature, it presents a more favorable combination for automated assignment of cross-linked products compared with the TEMPO-Bz linker. [Figure not available: see fulltext.

  13. Comprehensive Analysis of Protein Modifications by Top-down Mass Spectrometry

    PubMed Central

    Zhang, Han; Ge, Ying

    2012-01-01

    Mass spectrometry (MS)-based proteomics is playing an increasingly important role in cardiovascular research. Proteomics includes not only identification and quantification of proteins, but also the characterization of protein modifications such as post-translational modifications and sequence variants. The conventional bottom-up approach, involving proteolytic digestion of proteins into small peptides prior to MS analysis, is routinely used for protein identification and quantification with high throughput and automation. Nevertheless, it has limitations in the analysis of protein modifications mainly due to the partial sequence coverage and loss of connections among modifications on disparate portions of a protein. An alternative approach, top-down MS, has emerged as a powerful tool for the analysis of protein modifications. The top-down approach analyzes whole proteins directly, providing a “bird’s eye” view of all existing modifications. Subsequently, each modified protein form can be isolated and fragmented in the mass spectrometer to locate the modification site. The incorporation of the non-ergodic dissociation methods such as electron capture dissociation (ECD) greatly enhances the top-down capabilities. ECD is especially useful for mapping labile post-translational modifications which are well-preserved during the ECD fragmentation process. Top-down MS with ECD has been successfully applied to cardiovascular research with the unique advantages in unraveling the molecular complexity, quantifying modified protein forms, complete mapping of modifications with full sequence coverage, discovering unexpected modifications, and identifying and quantifying positional isomers and determining the order of multiple modifications. Nevertheless, top-down MS still needs to overcome some technical challenges to realize its full potential. Herein, we reviewed the advantages and challenges of top-down methodology with a focus on its application in cardiovascular research. PMID:22187450

  14. ICPD-A New Peak Detection Algorithm for LC/MS

    PubMed Central

    2010-01-01

    Background The identification and quantification of proteins using label-free Liquid Chromatography/Mass Spectrometry (LC/MS) play crucial roles in biological and biomedical research. Increasing evidence has shown that biomarkers are often low abundance proteins. However, LC/MS systems are subject to considerable noise and sample variability, whose statistical characteristics are still elusive, making computational identification of low abundance proteins extremely challenging. As a result, the inability of identifying low abundance proteins in a proteomic study is the main bottleneck in protein biomarker discovery. Results In this paper, we propose a new peak detection method called Information Combining Peak Detection (ICPD ) for high resolution LC/MS. In LC/MS, peptides elute during a certain time period and as a result, peptide isotope patterns are registered in multiple MS scans. The key feature of the new algorithm is that the observed isotope patterns registered in multiple scans are combined together for estimating the likelihood of the peptide existence. An isotope pattern matching score based on the likelihood probability is provided and utilized for peak detection. Conclusions The performance of the new algorithm is evaluated based on protein standards with 48 known proteins. The evaluation shows better peak detection accuracy for low abundance proteins than other LC/MS peak detection methods. PMID:21143790

  15. Molecular basis of branched peptides resistance to enzyme proteolysis.

    PubMed

    Falciani, Chiara; Lozzi, Luisa; Pini, Alessandro; Corti, Federico; Fabbrini, Monica; Bernini, Andrea; Lelli, Barbara; Niccolai, Neri; Bracci, Luisa

    2007-03-01

    We found that synthetic peptides in the form of dendrimers become resistant to proteolysis. To determine the molecular basis of this resistance, different bioactive peptides were synthesized in monomeric, two-branched and tetra-branched form and incubated with human plasma and serum. Proteolytic resistance of branched multimeric sequences was compared to that of the same peptides synthesized as multimeric linear molecules. Unmodified peptides and cleaved sequences were detected by high pressure liquid chromatography and mass spectrometry. An increase in peptide copies did not increase peptide resistance in linear multimeric sequences, whereas multimericity progressively enhanced proteolytic stability of branched multimeric peptides. A structure-based hypothesis of branched peptide resistance to proteolysis by metallopeptidases is presented.

  16. Identification of the residue in human CYP3A4 that is covalently modified by bergamottin and the reactive intermediate that contributes to the grapefruit juice effect.

    PubMed

    Lin, Hsia-Lien; Kenaan, Cesar; Hollenberg, Paul F

    2012-05-01

    Previous studies have demonstrated that bergamottin (BG), a component of grapefruit juice, is a mechanism-based inactivator of CYP3A4 and contributes, in part, to the grapefruit juice-drug interaction. Although the covalent binding of [(14)C]BG to the CYP3A4 apoprotein has been demonstrated by SDS-polyacrylamide gel electrophoresis, the identity of the modified amino acid residue and the reactive intermediate species of BG responsible for the inactivation have not been reported. In the present study, we show that inactivation of CYP3A4 by BG results in formation of a modified apoprotein-3A4 and a GSH conjugate, both exhibiting mass increases of 388 Da, which corresponds to the mass of 6',7'-dihydroxybergamottin (DHBG), a metabolite of BG, plus one oxygen atom. To identify the adducted residue, BG-inactivated 3A4 was digested with trypsin, and the digests were then analyzed by liquid chromatography-tandem mass spectrometry (MS/MS). A mass shift of 388 Da was used for the SEQUEST database search, which revealed a mass increase of 388 Da for the peptide with the sequence (272)LQLMIDSQNSK(282), and MS/MS analysis of the adducted peptide demonstrated that Gln273 is the residue modified. Mutagenesis studies showed that the Gln273 to Val mutant was resistant to inactivation by BG and DHBG and did not generate two of the major metabolites of BG formed by 3A4 wild type. In conclusion, we have determined that the reactive intermediate, oxygenated DHBG, covalently binds to Gln273 and thereby contributes to the mechanism-based inactivation of CYP3A4 by BG.

  17. In vitro cross-linking of elastin peptides and molecular characterization of the resultant biomaterials.

    PubMed

    Heinz, Andrea; Ruttkies, Christoph K H; Jahreis, Günther; Schräder, Christoph U; Wichapong, Kanin; Sippl, Wolfgang; Keeley, Fred W; Neubert, Reinhard H H; Schmelzer, Christian E H

    2013-04-01

    Elastin is a vital protein and the major component of elastic fibers which provides resilience to many vertebrate tissues. Elastin's structure and function are influenced by extensive cross-linking, however, the cross-linking pattern is still unknown. Small peptides containing reactive allysine residues based on sequences of cross-linking domains of human elastin were incubated in vitro to form cross-links characteristic of mature elastin. The resultant insoluble polymeric biomaterials were studied by scanning electron microscopy. Both, the supernatants of the samples and the insoluble polymers, after digestion with pancreatic elastase or trypsin, were furthermore comprehensively characterized on the molecular level using MALDI-TOF/TOF mass spectrometry. MS(2) data was used to develop the software PolyLinX, which is able to sequence not only linear and bifunctionally cross-linked peptides, but for the first time also tri- and tetrafunctionally cross-linked species. Thus, it was possible to identify intra- and intermolecular cross-links including allysine aldols, dehydrolysinonorleucines and dehydromerodesmosines. The formation of the tetrafunctional cross-link desmosine or isodesmosine was unexpected, however, could be confirmed by tandem mass spectrometry and molecular dynamics simulations. The study demonstrated that it is possible to produce biopolymers containing polyfunctional cross-links characteristic of mature elastin from small elastin peptides. MALDI-TOF/TOF mass spectrometry and the newly developed software PolyLinX proved suitable for sequencing of native cross-links in proteolytic digests of elastin-like biomaterials. The study provides important insight into the formation of native elastin cross-links and represents a considerable step towards the characterization of the complex cross-linking pattern of mature elastin. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Analysis of human serum proteins by liquid phase isoelectric focusing and matrix-assisted laser desorption/ionization-mass spectrometry.

    PubMed

    Wang, Michael Z; Howard, Brandon; Campa, Michael J; Patz, Edward F; Fitzgerald, Michael C

    2003-09-01

    Direct matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of human serum yielded ion signals from only a fraction of the total number of peptides and proteins expected to be in the sample. We increased the number of peptide and protein ion signals observed in the MALDI-TOF mass spectra analysis of human serum by using a prefractionation protocol based on liquid phase isoelectric focusing electrophoresis. This pre-fractionation technique facilitated the MALDI-TOF MS detection of as many as 262 different peptide and protein ion signals from human serum. The results obtained from three replicate fractionation experiments on the same serum sample indicated that 148 different peptide and protein ion signals were reproducibly detected using our isoelectric focusing and MALDI-TOF MS protocol.

  19. Cooperativity and specificity of association of a designed transmembrane peptide.

    PubMed Central

    Gratkowski, Holly; Dai, Qing-Hong; Wand, A Joshua; DeGrado, William F; Lear, James D

    2002-01-01

    Thermodynamics studies aimed at quantitatively characterizing free energy effects of amino acid substitutions are not restricted to two state systems, but do require knowing the number of states involved in the equilibrium under consideration. Using analytical ultracentrifugation and NMR methods, we show here that a membrane-soluble peptide, MS1, designed by modifying the sequence of the water-soluble coiled-coil GCN4-P1, exhibits a reversible monomer-dimer-trimer association in detergent micelles with a greater degree of cooperativity in C14-betaine than in dodecyl phosphocholine detergents. PMID:12202385

  20. Development of Mycoplasma synoviae (MS) core genome multilocus sequence typing (cgMLST) scheme.

    PubMed

    Ghanem, Mostafa; El-Gazzar, Mohamed

    2018-05-01

    Mycoplasma synoviae (MS) is a poultry pathogen with reported increased prevalence and virulence in recent years. MS strain identification is essential for prevention, control efforts and epidemiological outbreak investigations. Multiple multilocus based sequence typing schemes have been developed for MS, yet the resolution of these schemes could be limited for outbreak investigation. The cost of whole genome sequencing became close to that of sequencing the seven MLST targets; however, there is no standardized method for typing MS strains based on whole genome sequences. In this paper, we propose a core genome multilocus sequence typing (cgMLST) scheme as a standardized and reproducible method for typing MS based whole genome sequences. A diverse set of 25 MS whole genome sequences were used to identify 302 core genome genes as cgMLST targets (35.5% of MS genome) and 44 whole genome sequences of MS isolates from six countries in four continents were used for typing applying this scheme. cgMLST based phylogenetic trees displayed a high degree of agreement with core genome SNP based analysis and available epidemiological information. cgMLST allowed evaluation of two conventional MLST schemes of MS. The high discriminatory power of cgMLST allowed differentiation between samples of the same conventional MLST type. cgMLST represents a standardized, accurate, highly discriminatory, and reproducible method for differentiation between MS isolates. Like conventional MLST, it provides stable and expandable nomenclature, allowing for comparing and sharing the typing results between different laboratories worldwide. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Molecular and Cellular Mechanisms for the Interaction between Gold Nanoparticles and Neuroimmune Cells Based on Size, Shape, and Charge

    DTIC Science & Technology

    2014-04-25

    IgG secretion. 2.3 Designing of Synthetic peptide The immunogenic peptides against the foot and mouth disease virus ( FMDV ) were designed and...synthesized based on viral protein 1 of type O FMDV . The amino acid sequence for pFMDV is NGSSKYGDTSTNNVRGDLQVLAQKAERTLC. An extra cysteine was added...peptides were synthesized based on the amino acid sequence of the VP1 coat protein of the FMDV (table 1). The peptide pFMDVD (19 amino acids in length

  2. Multiplex De Novo Sequencing of Peptide Antibiotics

    NASA Astrophysics Data System (ADS)

    Mohimani, Hosein; Liu, Wei-Ting; Yang, Yu-Liang; Gaudêncio, Susana P.; Fenical, William; Dorrestein, Pieter C.; Pevzner, Pavel A.

    Proliferation of drug-resistant diseases raises the challenge of searching for new, more efficient antibiotics. Currently, some of the most effective antibiotics (i.e., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. The isolation and sequencing of cyclic peptide antibiotics, unlike the same activity with linear peptides, is time-consuming and error-prone. The dominant technique for sequencing cyclic peptides is NMR-based and requires large amounts (milligrams) of purified materials that, for most compounds, are not possible to obtain. Given these facts, there is a need for new tools to sequence cyclic NRPs using picograms of material. Since nearly all cyclic NRPs are produced along with related analogs, we develop a mass spectrometry approach for sequencing all related peptides at once (in contrast to the existing approach that analyzes individual peptides). Our results suggest that instead of attempting to isolate and NMR-sequence the most abundant compound, one should acquire spectra of many related compounds and sequence all of them simultaneously using tandem mass spectrometry. We illustrate applications of this approach by sequencing new variants of cyclic peptide antibiotics from Bacillus brevis, as well as sequencing a previously unknown familiy of cyclic NRPs produced by marine bacteria.

  3. Isolation and identification of an extracellular subtilisin-like serine protease secreted by the bat pathogen Pseudogymnoascus destructans.

    PubMed

    Pannkuk, Evan L; Risch, Thomas S; Savary, Brett J

    2015-01-01

    White nose syndrome (WNS) is a cutaneous fungal disease of bats. WNS is responsible for unprecedented mortalities in North American cave bat populations. There have been few descriptions of enzyme activities that may function in WNS host/pathogen interactions, while no study has isolated and described secreted proteases. To address the hypothesis that Pseudogymnoascus destructans secretes extracellular proteases that function in wing necrosis during WNS infection, the object of this study was to culture P. destructans on various media, then isolate and structurally identify those proteases accumulated stably in the culture medium. We found a single dominant protease activity on minimal nutrient broth enriched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluoride. This P. destructans serine protease (PdSP1) was isolated by preparative isoelectric focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular weight 27,900 (estimated by SDS-PAGE), broad pH optimum 6-8, and temperature optimum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein accession from the sequenced P. destructans genome that is further identified as a MEROPS family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3, were identified in the P. destructans genome with 90% and 53% homology, respectively. P. destructans S8A serine proteases showed closer sequence conservation to P. pannorum and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific polyclonal antibodies developed from the PdSP1 sequence detected the protein in western blots. These subtilisin-like serine proteases are candidates for further functional studies in WNS host-pathogen interaction.

  4. Isolation and Identification of an Extracellular Subtilisin-Like Serine Protease Secreted by the Bat Pathogen Pseudogymnoascus destructans

    PubMed Central

    Pannkuk, Evan L.; Risch, Thomas S.; Savary, Brett J.

    2015-01-01

    White nose syndrome (WNS) is a cutaneous fungal disease of bats. WNS is responsible for unprecedented mortalities in North American cave bat populations. There have been few descriptions of enzyme activities that may function in WNS host/pathogen interactions, while no study has isolated and described secreted proteases. To address the hypothesis that Pseudogymnoascus destructans secretes extracellular proteases that function in wing necrosis during WNS infection, the object of this study was to culture P. destructans on various media, then isolate and structurally identify those proteases accumulated stably in the culture medium. We found a single dominant protease activity on minimal nutrient broth enriched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluoride. This P. destructans serine protease (PdSP1) was isolated by preparative isoelectric focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular weight 27,900 (estimated by SDS-PAGE), broad pH optimum 6-8, and temperature optimum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein accession from the sequenced P. destructans genome that is further identified as a MEROPS family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3, were identified in the P. destructans genome with 90% and 53% homology, respectively. P. destructans S8A serine proteases showed closer sequence conservation to P. pannorum and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific polyclonal antibodies developed from the PdSP1 sequence detected the protein in western blots. These subtilisin-like serine proteases are candidates for further functional studies in WNS host-pathogen interaction. PMID:25785714

  5. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.

    PubMed

    Swearingen, Kristian E; Moritz, Robert L

    2012-10-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve the detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, the authors review recent developments in LC-FAIMS-MS and its application to MS-based proteomics.

  6. BiPPred: Combined sequence- and structure-based prediction of peptide binding to the Hsp70 chaperone BiP.

    PubMed

    Schneider, Markus; Rosam, Mathias; Glaser, Manuel; Patronov, Atanas; Shah, Harpreet; Back, Katrin Christiane; Daake, Marina Angelika; Buchner, Johannes; Antes, Iris

    2016-10-01

    Substrate binding to Hsp70 chaperones is involved in many biological processes, and the identification of potential substrates is important for a comprehensive understanding of these events. We present a multi-scale pipeline for an accurate, yet efficient prediction of peptides binding to the Hsp70 chaperone BiP by combining sequence-based prediction with molecular docking and MMPBSA calculations. First, we measured the binding of 15mer peptides from known substrate proteins of BiP by peptide array (PA) experiments and performed an accuracy assessment of the PA data by fluorescence anisotropy studies. Several sequence-based prediction models were fitted using this and other peptide binding data. A structure-based position-specific scoring matrix (SB-PSSM) derived solely from structural modeling data forms the core of all models. The matrix elements are based on a combination of binding energy estimations, molecular dynamics simulations, and analysis of the BiP binding site, which led to new insights into the peptide binding specificities of the chaperone. Using this SB-PSSM, peptide binders could be predicted with high selectivity even without training of the model on experimental data. Additional training further increased the prediction accuracies. Subsequent molecular docking (DynaDock) and MMGBSA/MMPBSA-based binding affinity estimations for predicted binders allowed the identification of the correct binding mode of the peptides as well as the calculation of nearly quantitative binding affinities. The general concept behind the developed multi-scale pipeline can readily be applied to other protein-peptide complexes with linearly bound peptides, for which sufficient experimental binding data for the training of classical sequence-based prediction models is not available. Proteins 2016; 84:1390-1407. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Quantitation of a PEGylated protein in monkey serum by UHPLC-HRMS using a surrogate disulfide-containing peptide: A new approach to bioanalysis and in vivo stability evaluation of disulfide-rich protein therapeutics.

    PubMed

    Zheng, Naiyu; Zeng, Jianing; Manney, Amy; Williams, Lakenya; Aubry, Anne-Françoise; Voronin, Kimberly; Buzescu, Adela; Zhang, Yan J; Allentoff, Alban; Xu, Carrie; Shen, Hongwu; Warner, William; Arnold, Mark E

    2016-04-15

    To quantify a therapeutic PEGylated protein in monkey serum as well as to monitor its potential in vivo instability and methionine oxidation, a novel ultra high performance liquid chromatography-high resolution mass spectrometric (UHPLC-HRMS) assay was developed using a surrogate disulfide-containing peptide, DCP(SS), and a confirmatory peptide, CP, a disulfide-free peptide. DCP(SS) was obtained by eliminating the step of reduction/alkylation before trypsin digestion. It contains an intact disulfide linkage between two peptide sequences that are essential for drug function but susceptible to potential in vivo cleavages. HRMS-based single ion monitoring (SIM) on a Q Exactive™ mass spectrometer was employed to improve assay specificity and sensitivity for DCP(SS) due to its poor fragmentation and low sensitivity with SRM detection. The assay has been validated for the protein drug in monkey serum using both surrogate peptides with excellent accuracy (within ±4.4%Dev) and precision (within 7.5%CV) with a lower limit of quantitation (LLOQ) at 10 ng mL(-1). The protein concentrations in monkey serum obtained from the DCP(SS)-based assay not only provided important pharmacokinetic parameters, but also confirmed in vivo stability of the peptide regions of interest by comparing drug concentrations with those obtained from the CP-based assay or from a ligand-binding assay (LBA). Furthermore, UHPLC-HRMS allowed simultaneous monitoring of the oxidized forms of both surrogate peptides to evaluate potential ex vivo/in vivo oxidation of one methionine present in each of both surrogate peptides. To the best of our knowledge, this is the first report of using a surrogate disulfide-containing peptide for LC-MS bioanalysis of a therapeutic protein. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. To elute or not to elute in immunocapture bottom-up LC-MS.

    PubMed

    Levernæs, Maren Christin Stillesby; Broughton, Marianne Nordlund; Reubsaet, Léon; Halvorsen, Trine Grønhaug

    2017-06-15

    Immunocapture-based bottom-up LC-MS is a promising technique for the quantification of low abundant proteins. Magnetic immunocapture beads provide efficient enrichment from complex samples through the highly specific interaction between the target protein and its antibody. In this article, we have performed the first thorough comparison between digestion of proteins while bound to antibody coated beads versus after elution from the beads. Two previously validated immunocapture based MS methods for the quantification of pro-gastrin releasing peptide (ProGRP) and human chorionic gonadotropin (hCG) were used as model systems. The tryptic peptide generation was shown to be protein dependent and influenced by protein folding and accessibility towards trypsin both on-beads and in the eluate. The elution of proteins bound to the beads was also shown to be incomplete. In addition, the on-beads digestion suffered from non-specific binding of the trypsin generated peptides. A combination of on-beads digestion and elution may be applied to improve both the quantitative (peak area of the signature peptides) and qualitative yield (number of missed cleavages, total number of identified peptides, coverage, signal intensity and number of zero missed cleavage peptides) of the target proteins. The quantitative yield of signature peptides was shown to be reproducible in all procedures tested. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Optimization by infusion of multiple reaction monitoring transitions for sensitive quantification of peptides by liquid chromatography/mass spectrometry.

    PubMed

    Alghanem, Bandar; Nikitin, Frédéric; Stricker, Thomas; Duchoslav, Eva; Luban, Jeremy; Strambio-De-Castillia, Caterina; Muller, Markus; Lisacek, Frédérique; Varesio, Emmanuel; Hopfgartner, Gérard

    2017-05-15

    In peptide quantification by liquid chromatography/mass spectrometry (LC/MS), the optimization of multiple reaction monitoring (MRM) parameters is essential for sensitive detection. We have compared different approaches to build MRM assays, based either on flow injection analysis (FIA) of isotopically labelled peptides, or on the knowledge and the prediction of the best settings for MRM transitions and collision energies (CE). In this context, we introduce MRMOptimizer, an open-source software tool that processes spectra and assists the user in selecting transitions in the FIA workflow. MS/MS spectral libraries with CE voltages from 10 to 70 V are automatically acquired in FIA mode for isotopically labelled peptides. Then MRMOptimizer determines the optimal MRM settings for each peptide. To assess the quantitative performance of our approach, 155 peptides, representing 84 proteins, were analysed by LC/MRM-MS and the peak areas were compared between: (A) the MRMOptimizer-based workflow, (B1) the SRMAtlas transitions set used 'as-is'; (B2) the same SRMAtlas set with CE parameters optimized by Skyline. 51% of the three most intense transitions per peptide were shown to be common to both A and B1/B2 methods, and displayed similar sensitivity and peak area distributions. The peak areas obtained with MRMOptimizer for transitions sharing either the precursor ion charge state or the fragment ions with the SRMAtlas set at unique transitions were increased 1.8- to 2.3-fold. The gain in sensitivity using MRMOptimizer for transitions with different precursor ion charge state and fragment ions (8% of the total), reaches a ~ 11-fold increase. Isotopically labelled peptides can be used to optimize MRM transitions more efficiently in FIA than by searching databases. The MRMOptimizer software is MS independent and enables the post-acquisition selection of MRM parameters. Coefficients of variation for optimal CE values are lower than those obtained with the SRMAtlas approach (B2) and one additional peptide was detected. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Improved Methods for the Enrichment and Analysis of Glycated Peptides

    PubMed Central

    Zhang, Qibin; Schepmoes, Athena A.; Brock, Jonathan W. C.; Wu, Si; Moore, Ronald J.; Purvine, Samuel O.; Baynes, John W.; Smith, Richard D.; Metz, Thomas O.

    2009-01-01

    Nonenzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. Herein we report improved methods for the enrichment and analysis of glycated peptides using boronate affinity chromatography and electron-transfer dissociation mass spectrometry, respectively. The enrichment of glycated peptides was improved by replacing an off-line desalting step with an online wash of column-bound glycated peptides using 50 mM ammonium acetate, followed by elution with 100 mM acetic acid. The analysis of glycated peptides by MS/MS was improved by considering only higher charged (≥3) precursor ions during data-dependent acquisition, which increased the number of glycated peptide identifications. Similarly, the use of supplemental collisional activation after electron transfer (ETcaD) resulted in more glycated peptide identifications when the MS survey scan was acquired with enhanced resolution. Acquiring ETD-MS/MS data at a normal MS survey scan rate, in conjunction with the rejection of both 1+ and 2+ precursor ions, increased the number of identified glycated peptides relative to ETcaD or the enhanced MS survey scan rate. Finally, an evaluation of trypsin, Arg-C, and Lys-C showed that tryptic digestion of glycated proteins was comparable to digestion with Lys-C and that both were better than Arg-C in terms of the number of glycated peptides and corresponding glycated proteins identified by LC–MS/MS. PMID:18989935

  11. Proteogenomic Investigation of Strain Variation in Clinical Mycobacterium tuberculosis Isolates.

    PubMed

    Heunis, Tiaan; Dippenaar, Anzaan; Warren, Robin M; van Helden, Paul D; van der Merwe, Ruben G; Gey van Pittius, Nicolaas C; Pain, Arnab; Sampson, Samantha L; Tabb, David L

    2017-10-06

    Mycobacterium tuberculosis consists of a large number of different strains that display unique virulence characteristics. Whole-genome sequencing has revealed substantial genetic diversity among clinical M. tuberculosis isolates, and elucidating the phenotypic variation encoded by this genetic diversity will be of the utmost importance to fully understand M. tuberculosis biology and pathogenicity. In this study, we integrated whole-genome sequencing and mass spectrometry (GeLC-MS/MS) to reveal strain-specific characteristics in the proteomes of two clinical M. tuberculosis Latin American-Mediterranean isolates. Using this approach, we identified 59 peptides containing single amino acid variants, which covered ∼9% of all coding nonsynonymous single nucleotide variants detected by whole-genome sequencing. Furthermore, we identified 29 distinct peptides that mapped to a hypothetical protein not present in the M. tuberculosis H37Rv reference proteome. Here, we provide evidence for the expression of this protein in the clinical M. tuberculosis SAWC3651 isolate. The strain-specific databases enabled confirmation of genomic differences (i.e., large genomic regions of difference and nonsynonymous single nucleotide variants) in these two clinical M. tuberculosis isolates and allowed strain differentiation at the proteome level. Our results contribute to the growing field of clinical microbial proteogenomics and can improve our understanding of phenotypic variation in clinical M. tuberculosis isolates.

  12. Novel adipokinetic hormones in the kissing bugs Rhodnius prolixus, Triatoma infestans, Dipetalogaster maxima and Panstrongylus megistus.

    PubMed

    Marco, Heather G; Simek, Petr; Clark, Kevin D; Gäde, Gerd

    2013-03-01

    Peptides of the adipokinetic hormone (AKH)/red pigment-concentrating hormone (RPCH) family were isolated and sequenced from the retrocerebral corpora cardiaca of four kissing bugs which are all vectors of the protozoan Trypanosoma cruzi responsible for Chagas' disease. The sequence of three novel AKHs were deduced from the multiple MS(N) electrospray mass data: the octapeptide pGlu-Leu-Thr-Phe-Ser-Thr-Asp-Trp amide (denoted Rhopr-AKH) in Rhodnius prolixus and Panstrongylus megistus, the nonapeptide pGlu-Leu-Thr-Phe-Thr-Pro-Asn-Trp-Gly amide (denoted Triin-AKH) in Triatoma infestans and the decapeptide pGlu-Leu-Thr-Phe-Ser-Asp-Gly-Trp-Gly-Asn amide (denoted Dipma-AKH) in Dipetalogaster maxima. The sequences were confirmed by identical behavior of natural and synthetic forms in reversed-phase HPLC and by CID-MS mass spectra. Conspecific injections of a dose of 10 pmol of the respective synthetic peptides resulted in a small but significant increase of the lipid concentration in the hemolymph. These experiments suggest that AKHs in kissing bugs act to regulate lipid metabolism, possibly during dispersal flights which is one of the mechanisms whereby the insects reach new outbreak areas. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Reactions of hydroxyalkyl radicals with cysteinyl peptides in a nanoESI plume.

    PubMed

    Stinson, Craig A; Xia, Yu

    2014-07-01

    In biological systems, carbon-centered small molecule radicals are primarily formed via external radiation or internal radical reactions. These radical species can react with a variety of biomolecules, most notably nucleic acids, the consequence of which has possible links to gene mutation and cancer. Sulfur-containing peptides and proteins are reactive toward a variety of radical species and many of them behave as radical scavengers. In this study, the reactions between alkyl alcohol carbon-centered radicals (e.g., •CH2OH for methanol) and cysteinyl peptides within a nanoelectrospray ionization (nanoESI) plume were explored. The reaction system involved ultraviolet (UV) irradiation of a nanoESI plume using a low pressure mercury lamp consisting of 185 and 254 nm emission bands. The alkyl alcohol was added as solvent into the nanoESI solution and served as the precursor of hydroxyalkyl radicals upon UV irradiation. The hydroxyalkyl radicals subsequently reacted with cysteinyl peptides either containing a disulfide linkage or free thiol, which led to the formation of peptide-S-hydroxyalkyl product. This radical reaction coupled with subsequent MS/MS was shown to have analytical potential by cleaving intrachain disulfide linked peptides prior to CID to enhance sequence information. Tandem mass spectrometry via collision-induced dissociation (CID), stable isotope labeling, and accurate mass measurement were employed to verify the identities of the reaction products.

  14. Reactions of Hydroxyalkyl Radicals with Cysteinyl Peptides in a NanoESI Plume

    NASA Astrophysics Data System (ADS)

    Stinson, Craig A.; Xia, Yu

    2014-07-01

    In biological systems, carbon-centered small molecule radicals are primarily formed via external radiation or internal radical reactions. These radical species can react with a variety of biomolecules, most notably nucleic acids, the consequence of which has possible links to gene mutation and cancer. Sulfur-containing peptides and proteins are reactive toward a variety of radical species and many of them behave as radical scavengers. In this study, the reactions between alkyl alcohol carbon-centered radicals (e.g., •CH2OH for methanol) and cysteinyl peptides within a nanoelectrospray ionization (nanoESI) plume were explored. The reaction system involved ultraviolet (UV) irradiation of a nanoESI plume using a low pressure mercury lamp consisting of 185 and 254 nm emission bands. The alkyl alcohol was added as solvent into the nanoESI solution and served as the precursor of hydroxyalkyl radicals upon UV irradiation. The hydroxyalkyl radicals subsequently reacted with cysteinyl peptides either containing a disulfide linkage or free thiol, which led to the formation of peptide- S-hydroxyalkyl product. This radical reaction coupled with subsequent MS/MS was shown to have analytical potential by cleaving intrachain disulfide linked peptides prior to CID to enhance sequence information. Tandem mass spectrometry via collision-induced dissociation (CID), stable isotope labeling, and accurate mass measurement were employed to verify the identities of the reaction products.

  15. Pressurized Pepsin Digestion in Proteomics

    PubMed Central

    López-Ferrer, Daniel; Petritis, Konstantinos; Robinson, Errol W.; Hixson, Kim K.; Tian, Zhixin; Lee, Jung Hwa; Lee, Sang-Won; Tolić, Nikola; Weitz, Karl K.; Belov, Mikhail E.; Smith, Richard D.; Paša-Tolić, Ljiljana

    2011-01-01

    Integrated top-down bottom-up proteomics combined with on-line digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to high throughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Top-down proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications. Herein, we describe recent efforts toward efficient integration of bottom-up and top-down LC-MS-based proteomics strategies. Since most proteomics separations utilize acidic conditions, we exploited the compatibility of pepsin (where the optimal digestion conditions are at low pH) for integration into bottom-up and top-down proteomics work flows. Pressure-enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an off-line mode using a Barocycler or an on-line mode using a modified high pressure LC system referred to as a fast on-line digestion system (FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results were compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultrarapid integrated bottom-up top-down proteomics strategy using a standard mixture of proteins and a monkey pox virus proteome. PMID:20627868

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qibin; Schepmoes, Athena A; Brock, Jonathan W

    Non-enzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. Herein we report improved methods for the enrichment and analysis of glycated peptides using boronate affinity chromatography and electron transfer dissociation mass spectrometry, respectively. The enrichment of glycated peptides was improved by replacing an off-line desalting step with an on-line wash of column-bound glycated peptides using 50 mM ammonium acetate. The analysis of glycated peptides by MS/MS was improved by considering only higher charged (≥3) precursor-ions during data-dependent acquisition, which increased the number of glycated peptide identifications. Similarly, the use of supplemental collisional activationmore » after electron transfer (ETcaD) resulted in more glycated peptide identifications when the MS survey scan was acquired with enhanced resolution. In general, acquiring ETD-MS/MS data at a normal MS survey scan rate, in conjunction with the rejection of both 1+ and 2+ precursor-ions, increased the number of identified glycated peptides relative to ETcaD or the enhanced MS survey scan rate. Finally, an evaluation of trypsin, Arg-C, and Lys-C showed that tryptic digestion of glycated proteins was comparable to digestion with Lys-C and that both were better than Arg-C in terms of the number glycated peptides identified by LC-MS/MS.« less

  17. Sequence preservation of osteocalcin protein and mitochondrial DNA in bison bones older than 55 ka

    NASA Astrophysics Data System (ADS)

    Nielsen-Marsh, Christina M.; Ostrom, Peggy H.; Gandhi, Hasand; Shapiro, Beth; Cooper, Alan; Hauschka, Peter V.; Collins, Matthew J.

    2002-12-01

    We report the first complete sequences of the protein osteocalcin from small amounts (20 mg) of two bison bone (Bison priscus) dated to older than 55.6 ka and older than 58.9 ka. Osteocalcin was purified using new gravity columns (never exposed to protein) followed by microbore reversed-phase high-performance liquid chromatography. Sequencing of osteocalcin employed two methods of matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS): peptide mass mapping (PMM) and post-source decay (PSD). The PMM shows that ancient and modern bison osteocalcin have the same mass to charge (m/z) distribution, indicating an identical protein sequence and absence of diagenetic products. This was confirmed by PSD of the m/z 2066 tryptic peptide (residues 1 19); the mass spectra from ancient and modern peptides were identical. The 129 mass unit difference in the molecular ion between cow (Bos taurus) and bison is caused by a single amino-acid substitution between the taxa (Trp in cow is replaced by Gly in bison at residue 5). Bison mitochondrial control region DNA sequences were obtained from the older than 55.6 ka fossil. These results suggest that DNA and protein sequences can be used to directly investigate molecular phylogenies over a considerable time period, the absolute limit of which is yet to be determined.

  18. Multiplex profiling of tumor-associated proteolytic activity in serum of colorectal cancer patients.

    PubMed

    Yepes, Diego; Costina, Victor; Pilz, Lothar R; Hofheinz, Ralf; Neumaier, Michael; Findeisen, Peter

    2014-06-01

    The monitoring of tumor-associated protease activity in blood specimens has recently been proposed as new diagnostic tool in cancer research. In this paper, we describe the screening of a peptide library for identification of reporter peptides (RPs) that are selectively cleaved in serum specimens from colorectal cancer patients and investigate the benefits of RP multiplexing. A library of 144 RPs was constructed that contained amino acid sequences of abundant plasma proteins. Proteolytic cleavage of RPs was monitored with MS. Five RPs that were selectively cleaved in serum specimens from tumor patients were selected for further validation in serum specimens of colorectal tumor patients (n = 30) and nonmalignant controls (n = 60). RP spiking and subsequent quantification of proteolytic fragments with LC-MS showed good reproducibility with CVs always below 26%. The linear discriminant analysis and PCA revealed that a combination of RPs for diagnostic classification is superior to single markers. Classification accuracy reached 88% (79/90) when all five markers were combined. Functional protease profiling with RPs might improve the laboratory-based diagnosis, monitoring and prognosis of malignant disease, and has to be evaluated thoroughly in future studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denef, Vincent; Shah, Manesh B; Verberkmoes, Nathan C

    The recent surge in microbial genomic sequencing, combined with the development of high-throughput liquid chromatography-mass-spectrometry-based (LC/LC-MS/MS) proteomics, has raised the question of the extent to which genomic information of one strain or environmental sample can be used to profile proteomes of related strains or samples. Even with decreasing sequencing costs, it remains impractical to obtain genomic sequence for every strain or sample analyzed. Here, we evaluate how shotgun proteomics is affected by amino acid divergence between the sample and the genomic database using a probability-based model and a random mutation simulation model constrained by experimental data. To assess the effectsmore » of nonrandom distribution of mutations, we also evaluated identification levels using in silico peptide data from sequenced isolates with average amino acid identities (AAI) varying between 76 and 98%. We compared the predictions to experimental protein identification levels for a sample that was evaluated using a database that included genomic information for the dominant organism and for a closely related variant (95% AAI). The range of models set the boundaries at which half of the proteins in a proteomic experiment can be identified to be 77-92% AAI between orthologs in the sample and database. Consistent with this prediction, experimental data indicated loss of half the identifiable proteins at 90% AAI. Additional analysis indicated a 6.4% reduction of the initial protein coverage per 1% amino acid divergence and total identification loss at 86% AAI. Consequently, shotgun proteomics is capable of cross-strain identifications but avoids most crossspecies false positives.« less

  20. Structural Heterogeneity of Doubly-Charged Peptide b-Ions

    NASA Astrophysics Data System (ADS)

    Li, Xiaojuan; Huang, Yiqun; O'Connor, Peter B.; Lin, Cheng

    2011-02-01

    Performing collisionally activated dissociation (CAD) and electron capture dissociation (ECD) in tandem has shown great promise in providing comprehensive sequence information that was otherwise unobtainable by using either fragmentation method alone or in duet. However, the general applicability of this MS3 approach in peptide sequencing may be undermined by the formation of non-direct sequence ions, as sometimes observed under CAD, particularly when multiple stages of CAD are involved. In this study, varied-sized doubly-charged b-ions from three tachykinin peptides were investigated by ECD. Sequence scrambling was observed in ECD of all b-ions from neurokinin A (HKTDSFVGLM-NH2), suggesting the presence of N- and C-termini linked macro-cyclic conformers. On the contrary, none of the b-ions from eledoisin (pEPSKDAFIGLM-NH2) produced non-direct sequence ions under ECD, as it does not contain a free N-terminal amino group. ECD of several b-ions from Substance P (RPKPQQFFGLM-NH2) showed series of cm-Lys fragment ions which suggested that the macro-cyclic structure may also be formed by connecting the C-terminal carbonyl group and the ɛ-amino group of the lysine side chain. Theoretical investigation of selected Substance P b-ions revealed several low energy conformers, including both linear oxazolones and macro-ring structures, in corroboration with the experimental observation. This study showed that a b-ion may exist as a mixture of several forms, with their propensities influenced by its N-terminus, length, and certain side-chain groups. Further, the presence of several macro-cyclic structures may result in erroneous sequence assignment when the combined CAD and ECD methods are used in peptide sequencing.

  1. Structural Heterogeneity of Doubly-Charged Peptide b-Ions

    PubMed Central

    Li, Xiaojuan; Huang, Yiqun; O’Connor, Peter B.; Lin, Cheng

    2011-01-01

    Performing collisionally activated dissociation (CAD) and electron capture dissociation (ECD) in tandem has shown great promise in providing comprehensive sequence information that was otherwise unobtainable by using either fragmentation method alone or in duet. However, the general applicability of this MS3 approach in peptide sequencing may be undermined by the formation of non-direct sequence ions, as sometimes observed under CAD, particularly when multiple stages of CAD are involved. In this study, varied-sized doubly-charged b-ions from three tachykinin peptides were investigated by ECD. Sequence scrambling was observed in ECD of all b-ions from neurokinin A (HKTDSFVGLM-NH2), suggesting the presence of N- and C-termini linked macro-cyclic conformers. On the contrary, none of the b-ions from eledoisin (pEPSKDAFIGLM-NH2) produced non-direct sequence ions under ECD, as it does not contain a free N-terminal amino group. ECD of several b-ions from Substance P (RPKPQQFFGLM-NH2) showed series of cm-Lys fragment ions which suggested that the macro-cyclic structure may also be formed by connecting the C-terminal carbonyl group and the ε-amino group of the lysine side chain. Theoretical investigation of selected Substance P b-ions revealed several low energy conformers, including both linear oxazolones and macro-ring structures, in corroboration with the experimental observation. This study showed that a b-ion may exist as a mixture of several forms, with their propensities influenced by its N-terminus, length, and certain side-chain groups. Further, the presence of several macro-cyclic structures may result in erroneous sequence assignment when the combined CAD and ECD methods are used in peptide sequencing. PMID:21472584

  2. Comparative higher-order structure analysis of antibody biosimilars using combined bottom-up and top-down hydrogen-deuterium exchange mass spectrometry.

    PubMed

    Pan, Jingxi; Zhang, Suping; Borchers, Christoph H

    2016-12-01

    Hydrogen/deuterium exchange (HDX) coupled with mass spectrometry (MS) is a powerful technique for higher-order structural characterization of antibodies. Although the peptide-based bottom-up HDX approach and the protein-based top-down HDX approach have complementary advantages, the work done so far on biosimilars has involved only one or the other approach. Herein we have characterized the structures of two bevacizumab (BEV) biosimilars and compared them to the reference BEV using both methods. A sequence coverage of 87% was obtained for the heavy chain and 74% for the light chain in the bottom-up approach. The deuterium incorporation behavior of the peptic peptides from the three BEVs were compared side by side and showed no differences at various HDX time points. Top-down experiments were carried out using subzero temperature LC-MS, and the deuterium incorporation of the intact light chain and heavy chain were obtained. Top-down ETD was also performed to obtain amino acid-level HDX information that covered 100% of the light chain, but only 50% coverage is possible for the heavy chain. Consistent with the intact subunit level data, no differences were observed in the amino acid level HDX data. All these results indicate that there are no differences between the three BEV samples with respect to their high-order structures. The peptide level information from the bottom-up approach, and the residue level and intact subunit level information from the top-down approach were complementary and covered the entire antibody. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. MS/MS library facilitated MRM quantification of native peptides prepared by denaturing ultrafiltration

    PubMed Central

    2012-01-01

    Naturally occurring native peptides provide important information about physiological states of an organism and its changes in disease conditions but protocols and methods for assessing their abundance are not well-developed. In this paper, we describe a simple procedure for the quantification of non-tryptic peptides in body fluids. The workflow includes an enrichment step followed by two-dimensional fractionation of native peptides and MS/MS data management facilitating the design and validation of LC- MRM MS assays. The added value of the workflow is demonstrated in the development of a triplex LC-MRM MS assay used for quantification of peptides potentially associated with the progression of liver disease to hepatocellular carcinoma. PMID:22304756

  4. Discovery of Novel Bacterial Cell-Penetrating Phylloseptins in Defensive Skin Secretions of the South American Hylid Frogs, Phyllomedusa duellmani and Phyllomedusa coelestis

    PubMed Central

    Yang, Nan; Li, Lei; Wu, Di; Gao, Yitian; Xi, Xinping; Zhou, Mei; Wang, Lei; Chen, Tianbao; Shaw, Chris

    2016-01-01

    Phylloseptin (PS) peptides, derived from South American hylid frogs (subfamily Phyllomedusinae), have been found to have broad-spectrum antimicrobial activities and relatively low haemolytic activities. Although PS peptides have been identified from several well-known and widely-distributed species of the Phyllomedusinae, there remains merit in their study in additional, more obscure and specialised members of this taxon. Here, we report the discovery of two novel PS peptides, named PS-Du and PS-Co, which were respectively identified for the first time and isolated from the skin secretions of Phyllomedusa duellmani and Phyllomedusa coelestis. Their encoding cDNAs were cloned, from which it was possible to deduce the entire primary structures of their biosynthetic precursors. Reversed-phase high-performance liquid chromatography (RP-HPLC) and tandem mass spectrometry (MS/MS) analyses were employed to isolate and structurally-characterise respective encoded PS peptides from skin secretions. The peptides had molecular masses of 2049.7 Da (PS-Du) and 1972.8 Da (PS-Co). They shared typical N-terminal sequences and C-terminal amidation with other known phylloseptins. The two peptides exhibited growth inhibitory activity against E. coli (NCTC 10418), as a standard Gram-negative bacterium, S. aureus (NCTC 10788), as a standard Gram-positive bacterium and C. albicans (NCPF 1467), as a standard pathogenic yeast, all as planktonic cultures. Moreover, both peptides demonstrated the capability of eliminating S. aureus biofilm. PMID:27589802

  5. PChopper: high throughput peptide prediction for MRM/SRM transition design.

    PubMed

    Afzal, Vackar; Huang, Jeffrey T-J; Atrih, Abdel; Crowther, Daniel J

    2011-08-15

    The use of selective reaction monitoring (SRM) based LC-MS/MS analysis for the quantification of phosphorylation stoichiometry has been rapidly increasing. At the same time, the number of sites that can be monitored in a single LC-MS/MS experiment is also increasing. The manual processes associated with running these experiments have highlighted the need for computational assistance to quickly design MRM/SRM candidates. PChopper has been developed to predict peptides that can be produced via enzymatic protein digest; this includes single enzyme digests, and combinations of enzymes. It also allows digests to be simulated in 'batch' mode and can combine information from these simulated digests to suggest the most appropriate enzyme(s) to use. PChopper also allows users to define the characteristic of their target peptides, and can automatically identify phosphorylation sites that may be of interest. Two application end points are available for interacting with the system; the first is a web based graphical tool, and the second is an API endpoint based on HTTP REST. Service oriented architecture was used to rapidly develop a system that can consume and expose several services. A graphical tool was built to provide an easy to follow workflow that allows scientists to quickly and easily identify the enzymes required to produce multiple peptides in parallel via enzymatic digests in a high throughput manner.

  6. Deciphering Dorin M glycosylation by mass spectrometry.

    PubMed

    Man, Petr; Kovár, Vojtech; Sterba, Ján; Strohalm, Martin; Kavan, Daniel; Kopácek, Petr; Grubhoffer, Libor; Havlícek, Vladimír

    2008-01-01

    The soft tick, Ornithodoros moubata, is a vector of several bacterial and viral pathogens including Borrelia duttoni, a causative agent of relapsing fever and African swine fever virus. Previously, a sialic acid-specific lectin Dorin M was isolated from its hemolymph. Here, we report on the complete characterization of the primary sequence of Dorin M. Using liquid chromatography coupled to mass spectrometry, we identified three different glycopeptides in the tryptic digest of Dorin M. The peptide, as well as the glycan part of all glycopeptides, were further fully sequenced by means of tandem mass spectrometry (MS2) and multiple-stage mass spectrometry (MS3). Two classical N-glycosylation sites were modified by high-mannose-type glycans containing up to nine mannose residues. The third site bore a glycan with four to five mannose residues and a deoxyhexose (fucose) attached to the proximal N-acetylglycosamine. The microheterogeneity at each site was estimated based on chromatographic behavior of different glycoforms. The fourth, a non-classical N-glycosylation site (Asn-Asn-Cys), was not glycosylated, probably due to the involvement of the cysteine residue in a disulfide bridge.

  7. Expanding the cerebrospinal fluid endopeptidome.

    PubMed

    Hansson, Karl T; Skillbäck, Tobias; Pernevik, Elin; Kern, Silke; Portelius, Erik; Höglund, Kina; Brinkmalm, Gunnar; Holmén-Larsson, Jessica; Blennow, Kaj; Zetterberg, Henrik; Gobom, Johan

    2017-03-01

    Biomarkers of neurodegenerative disorders are needed to assist in diagnosis, to monitor disease progression and therapeutic interventions, and to provide insight into disease mechanisms. One route to identify such biomarkers is by proteomic and peptidomic analysis of cerebrospinal fluid (CSF). In the current study, we performed an in-depth analysis of the human CSF endopeptidome to establish an inventory that may serve as a basis for future targeted biomarker studies. High-pH RP HPLC was employed for off-line sample prefractionation followed by low-pH nano-LC-MS analysis. Different software programs and scoring algorithms for peptide identification were employed and compared. A total of 18 031 endogenous peptides were identified at a FDR of 1%, increasing the number of known endogenous CSF peptides 10-fold compared to previous studies. The peptides were derived from 2 053 proteins of which more than 60 have been linked to neurodegeneration. Notably, among the findings were six peptides derived from microtubule-associated protein tau, three of which span the diagnostically interesting threonine-181 (Tau-F isoform). Also, 213 peptides from amyloid precursor protein were identified, 58 of which were partially or completely within the sequence of amyloid β 1-40/42, as well as 109 peptides from apolipoprotein E, spanning sequences that discriminate between the E2/E3/E4 isoforms of the protein. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Sample preparation for sequencing hits from one-bead-one-peptide combinatorial libraries by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Martínez-Ceron, María C; Giudicessi, Silvana L; Marani, Mariela M; Albericio, Fernando; Cascone, Osvaldo; Erra-Balsells, Rosa; Camperi, Silvia A

    2010-05-15

    Optimization of bead analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) after the screening of one-bead-one-peptide combinatorial libraries was achieved, involving the fine-tuning of the whole process. Guanidine was replaced by acetonitrile (MeCN)/acetic acid (AcOH)/water (H(2)O), improving matrix crystallization. Peptide-bead cleavage with NH(4)OH was cheaper and safer than, yet as efficient as, NH(3)/tetrahydrofuran (THF). Peptide elution in microtubes instead of placing the beads in the sample plate yielded more sample aliquots. Successive dry layers deposit sample preparation was better than the dried droplet method. Among the matrices analyzed, alpha-cyano-4-hydroxycinnamic acid resulted in the best peptide ion yield. Cluster formation was minimized by the addition of additives to the matrix. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Modified filter-aided sample preparation (FASP) method increases peptide and protein identifications for shotgun proteomics.

    PubMed

    Ni, Mao-Wei; Wang, Lu; Chen, Wei; Mou, Han-Zhou; Zhou, Jie; Zheng, Zhi-Guo

    2017-01-30

    Mass spectrometry (MS)-based protein identification depends mainly on protein extraction and digestion. Although sodium dodecyl sulfate (SDS) can preclude enzymatic digestion and interfere with MS analysis, it is still the most widely used surfactant in these steps. To overcome these disadvantages, a SDS-compatible proteomic technique for SDS removal prior to MS-based analyses was developed, namely filter-aided sample preparation (FASP). Herein, based on the effectiveness of sodium deoxycholate and a detergent removal spin column, we developed a modified FASP (mFASP) method and compared its overall performance, total number of peptides and proteins identified for shotgun proteomic experiments with that of the FASP method. Identification of 4570 ± 392 and 9139 ± 317 peptides and description of 862 ± 46 and 1377 ± 33 protein groups with two or more peptides from the ovarian cancer cell line A2780 was accomplished by FASP and mFASP methods, respectively. The mFASP method (21.2 ± 0.2%) had higher average peptide to protein coverage than FASP method (13.2 ± 0.5%). More hydrophobic peptides were identified by mFASP than by FASP, as indicated by the GRAVY score distribution. The reported method enables reliable and efficient identification of proteins and peptides in whole-cell extracts containing SDS. The new approach allows for higher throughput (the simultaneous identification of more proteins), a more comprehensive investigation of proteins, and potentially the discovery of new biomarkers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Quantitative Profiling of DNA Damage and Apoptotic Pathways in UV Damaged Cells Using PTMScan Direct

    PubMed Central

    Stokes, Matthew P.; Silva, Jeffrey C.; Jia, Xiaoying; Lee, Kimberly A.; Polakiewicz, Roberto D.; Comb, Michael J.

    2013-01-01

    Traditional methods for analysis of peptides using liquid chromatography and tandem mass spectrometry (LC-MS/MS) lack the specificity to comprehensively monitor specific biological processes due to the inherent duty cycle limitations of the MS instrument and the stochastic nature of the analytical platform. PTMScan Direct is a novel, antibody-based method that allows quantitative LC-MS/MS profiling of specific peptides from proteins that reside in the same signaling pathway. New PTMScan Direct reagents have been produced that target peptides from proteins involved in DNA Damage/Cell Cycle and Apoptosis/Autophagy pathways. Together, the reagents provide access to 438 sites on 237 proteins in these signaling cascades. These reagents have been used to profile the response to UV damage of DNA in human cell lines. UV damage was shown to activate canonical DNA damage response pathways through ATM/ATR-dependent signaling, stress response pathways and induce the initiation of apoptosis, as assessed by an increase in the abundance of peptides corresponding to cleaved, activated caspases. These data demonstrate the utility of PTMScan Direct as a multiplexed assay for profiling specific cellular responses to various stimuli, such as UV damage of DNA. PMID:23344034

  11. Calibration of mass spectrometric peptide mass fingerprint data without specific external or internal calibrants

    PubMed Central

    Wolski, Witold E; Lalowski, Maciej; Jungblut, Peter; Reinert, Knut

    2005-01-01

    Background Peptide Mass Fingerprinting (PMF) is a widely used mass spectrometry (MS) method of analysis of proteins and peptides. It relies on the comparison between experimentally determined and theoretical mass spectra. The PMF process requires calibration, usually performed with external or internal calibrants of known molecular masses. Results We have introduced two novel MS calibration methods. The first method utilises the local similarity of peptide maps generated after separation of complex protein samples by two-dimensional gel electrophoresis. It computes a multiple peak-list alignment of the data set using a modified Minimum Spanning Tree (MST) algorithm. The second method exploits the idea that hundreds of MS samples are measured in parallel on one sample support. It improves the calibration coefficients by applying a two-dimensional Thin Plate Splines (TPS) smoothing algorithm. We studied the novel calibration methods utilising data generated by three different MALDI-TOF-MS instruments. We demonstrate that a PMF data set can be calibrated without resorting to external or relying on widely occurring internal calibrants. The methods developed here were implemented in R and are part of the BioConductor package mscalib available from . Conclusion The MST calibration algorithm is well suited to calibrate MS spectra of protein samples resulting from two-dimensional gel electrophoretic separation. The TPS based calibration algorithm might be used to correct systematic mass measurement errors observed for large MS sample supports. As compared to other methods, our combined MS spectra calibration strategy increases the peptide/protein identification rate by an additional 5 – 15%. PMID:16102175

  12. Peptidome analysis of human skim milk in term and preterm milk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Jun; Cui, Xian-wei; Zhang, Jun

    Highlights: •A method was developed for preparation of peptide extracts from human milk. •Analysis of the extracts by LC–MS/MS resulted in the detection of 1000–3000 peptide-like features. •419 Peptides were identified by LC–MS/MS from 34 proteins. •Isotope dimethyl labeling analysis revealed 41 peptides differentially expressed. -- Abstract: The abundant proteins in human milk have been well characterized and are known to provide nutritional, protective, and developmental advantages to both term and preterm infants. Due to the difficulties associated with detection technology of the peptides, the expression of the peptides present in human milk is not known widely. In recent years,more » peptidome analysis has received increasing attention. In this report, the analysis of endogenous peptides in human milk was done by mass spectrometry. A method was also developed by our researchers, which can be used in the extraction of peptide from human milk. Analysis of the extracts by LC–MS/MS resulted in the detection of 1000–3000 Da peptide-like features. Out of these, 419 peptides were identified by MS/MS. The identified peptides were found to originate from 34 proteins, of which several have been reported. Analysis of the peptides’ cleavage sites showed that the peptides are cleaved with regulations. This may reflect the protease activity and distribution in human body, and also represent the biological state of the tissue and provide a fresh source for biomarker discovery. Isotope dimethyl labeling analysis was also used to test the effects of premature delivery on milk protein composition in this study. Differences in peptides expression between breast milk in term milk (38–41 weeks gestation) and preterm milk (28–32 weeks gestation) were investigated in this study. 41 Peptides in these two groups were found expressed differently. 23 Peptides were present at higher levels in preterm milk, and 18 were present at higher levels in term milk.« less

  13. High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) for Mass Spectrometry-Based Proteomics

    PubMed Central

    Swearingen, Kristian E.; Moritz, Robert L.

    2013-01-01

    SUMMARY High field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, we review recent developments in LC-FAIMS-MS and its application to MS-based proteomics. PMID:23194268

  14. Transcriptome and Peptidome Characterisation of the Main Neuropeptides and Peptidic Hormones of a Euphausiid: The Ice Krill, Euphausia crystallorophias

    PubMed Central

    Toullec, Jean-Yves; Corre, Erwan; Bernay, Benoît; Thorne, Michael A. S.; Cascella, Kévin; Ollivaux, Céline; Henry, Joël; Clark, Melody S.

    2013-01-01

    Background The Ice krill, Euphausia crystallorophias is one of the species at the base of the Southern Ocean food chain. Given their significant contribution to the biomass of the Southern Ocean, it is vitally important to gain a better understanding of their physiology and, in particular, anticipate their responses to climate change effects in the warming seas around Antarctica. Methodology/Principal Findings Illumina sequencing was used to produce a transcriptome of the ice krill. Analysis of the assembled contigs via two different methods, produced 36 new pre-pro-peptides, coding for 61 neuropeptides or peptide hormones belonging to the following families: Allatostatins (A, B et C), Bursicon (α and β), Crustacean Hyperglycemic Hormones (CHH and MIH/VIHs), Crustacean Cardioactive Peptide (CCAP), Corazonin, Diuretic Hormones (DH), the Eclosion Hormone (EH), Neuroparsin, Neuropeptide F (NPF), small Neuropeptide F (sNPF), Pigment Dispersing Hormone (PDH), Red Pigment Concentrating Hormone (RPCH) and finally Tachykinin. LC/MS/MS proteomics was also carried out on eyestalk extracts, which are the major site of neuropeptide synthesis in decapod crustaceans. Results confirmed the presence of six neuropeptides and six precursor-related peptides previously identified in the transcriptome analyses. Conclusions This study represents the first comprehensive analysis of neuropeptide hormones in a Eucarida non-decapod Malacostraca, several of which are described for the first time in a non-decapod crustacean. Additionally, there is a potential expansion of PDH and Neuropeptide F family members, which may reflect certain life history traits such as circadian rhythms associated with diurnal migrations and also the confirmation via mass spectrometry of several novel pre-pro-peptides, of unknown function. Knowledge of these essential hormones provides a vital framework for understanding the physiological response of this key Southern Ocean species to climate change and provides a valuable resource for studies into the molecular phylogeny of these organisms and the evolution of neuropeptide hormones. PMID:23990964

  15. Identification and in silico characterization of a novel peptide inhibitor of angiotensin converting enzyme from pigeon pea (Cajanus cajan).

    PubMed

    Nawaz, K A Ayub; David, Swapna Merlin; Murugesh, Easwaran; Thandeeswaran, Murugesan; Kiran, Kalarikkal Gopikrishnan; Mahendran, Ramasamy; Palaniswamy, Muthusamy; Angayarkanni, Jayaraman

    2017-12-01

    Plants are important sources of bioactive peptides. Among these, angiotensin converting enzyme (ACE) inhibitory peptides have a major focus on their ability to prevent hypertension. Inhibition of ACE has been established as an effective approach for the treatment of ACE associated diseases. Some synthetic ACE inhibitory drugs cause side effects and hence there is a constant interest in natural compounds as alternatives. The study was designed to identify and characterize a peptide molecule from pigeon pea which has the biological property to inhibit ACE and can be developed as a therapeutic approach towards hypertension. Seeds of pigeon pea (Cajanus cajan (L.) Millsp.) was fermented with Aspergillus niger, a proteolytic fungus isolated from spoiled milk sweet. The extract was purified by size exclusion chromatography by FPLC system. The fractions that showed ACE inhibition was subjected to LC-MS/MS for sequence identification. The stability of the peptide was analyzed by molecular dynamic simulations and the interaction sites with ACE were identified by molecular docking. The study report a novel ACE inhibitory octapeptide Val-Val-Ser-Leu-Ser-Ile-Pro-Arg with a molecular mass of 869.53 Da. The Lineweaver-Burk plot indicated that the inhibition of ACE by this peptide is in competitive mode. Also, molecular docking and simulation studies showed a strong and stable interaction of the peptide with ACE. The results clearly show the inhibitory property of the peptide against ACE and hence it can be explored as a therapeutic strategy towards hypertension and other ACE associated diseases. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. MRUniNovo: an efficient tool for de novo peptide sequencing utilizing the hadoop distributed computing framework.

    PubMed

    Li, Chuang; Chen, Tao; He, Qiang; Zhu, Yunping; Li, Kenli

    2017-03-15

    Tandem mass spectrometry-based de novo peptide sequencing is a complex and time-consuming process. The current algorithms for de novo peptide sequencing cannot rapidly and thoroughly process large mass spectrometry datasets. In this paper, we propose MRUniNovo, a novel tool for parallel de novo peptide sequencing. MRUniNovo parallelizes UniNovo based on the Hadoop compute platform. Our experimental results demonstrate that MRUniNovo significantly reduces the computation time of de novo peptide sequencing without sacrificing the correctness and accuracy of the results, and thus can process very large datasets that UniNovo cannot. MRUniNovo is an open source software tool implemented in java. The source code and the parameter settings are available at http://bioinfo.hupo.org.cn/MRUniNovo/index.php. s131020002@hnu.edu.cn ; taochen1019@163.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  17. In-Depth Characterization of Protein Disulfide Bonds by Online Liquid Chromatography-Electrochemistry-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Switzar, Linda; Nicolardi, Simone; Rutten, Julie W.; Oberstein, Saskia A. J. Lesnik; Aartsma-Rus, Annemieke; van der Burgt, Yuri E. M.

    2016-01-01

    Disulfide bonds are an important class of protein post-translational modifications, yet this structurally crucial modification type is commonly overlooked in mass spectrometry (MS)-based proteomics approaches. Recently, the benefits of online electrochemistry-assisted reduction of protein S-S bonds prior to MS analysis were exemplified by successful characterization of disulfide bonds in peptides and small proteins. In the current study, we have combined liquid chromatography (LC) with electrochemistry (EC) and mass analysis by Fourier transform ion cyclotron resonance (FTICR) MS in an online LC-EC-MS platform to characterize protein disulfide bonds in a bottom-up proteomics workflow. A key advantage of a LC-based strategy is the use of the retention time in identifying both intra- and interpeptide disulfide bonds. This is demonstrated by performing two sequential analyses of a certain protein digest, once without and once with electrochemical reduction. In this way, the "parent" disulfide-linked peptide detected in the first run has a retention time-based correlation with the EC-reduced peptides detected in the second run, thus simplifying disulfide bond mapping. Using this platform, both inter- and intra-disulfide-linked peptides were characterized in two different proteins, ß-lactoglobulin and ribonuclease B. In order to prevent disulfide reshuffling during the digestion process, proteins were digested at a relatively low pH, using (a combination of) the high specificity proteases trypsin and Glu-C. With this approach, disulfide bonds in ß-lactoglobulin and ribonuclease B were comprehensively identified and localized, showing that online LC-EC-MS is a useful tool for the characterization of protein disulfide bonds.

  18. ScanRanker: Quality Assessment of Tandem Mass Spectra via Sequence Tagging

    PubMed Central

    Ma, Ze-Qiang; Chambers, Matthew C.; Ham, Amy-Joan L.; Cheek, Kristin L.; Whitwell, Corbin W.; Aerni, Hans-Rudolf; Schilling, Birgit; Miller, Aaron W.; Caprioli, Richard M.; Tabb, David L.

    2011-01-01

    In shotgun proteomics, protein identification by tandem mass spectrometry relies on bioinformatics tools. Despite recent improvements in identification algorithms, a significant number of high quality spectra remain unidentified for various reasons. Here we present ScanRanker, an open-source tool that evaluates the quality of tandem mass spectra via sequence tagging with reliable performance in data from different instruments. The superior performance of ScanRanker enables it not only to find unassigned high quality spectra that evade identification through database search, but also to select spectra for de novo sequencing and cross-linking analysis. In addition, we demonstrate that the distribution of ScanRanker scores predicts the richness of identifiable spectra among multiple LC-MS/MS runs in an experiment, and ScanRanker scores assist the process of peptide assignment validation to increase confident spectrum identifications. The source code and executable versions of ScanRanker are available from http://fenchurch.mc.vanderbilt.edu. PMID:21520941

  19. Isolation and identification of two novel SDS-resistant secreted chitinases from Aeromonas schubertii

    PubMed Central

    Liu, Chao-Lin; Shen, Chia-Rui; Hsu, Fong-Fu; Chen, Jeen-Kuan; Wu, Pei-Tzu; Guo, Shang-Hsin; Lee, Wen-Chien; Yu, Feng-Wei; Mackey, Zachary B.; Turk, John; Gross, Michael L.

    2008-01-01

    Two SDS-resistant endochitinases, designated as ASCHI53 and ASCHI61, were isolated from Aeromonas schubertii in a soil sample from southern Taiwan. MALDI-TOF mass measurement indicates the molecular weights of 53,527 for ASCHI53 and 61,202 for ASCHI61. N-terminal and internal amino acid sequences were obtained, and BLAST analysis of the sequences and MS/MS peptide sequencing showed that they were novel proteins. Degradation of chitin by these two endochitinases gave rise to hexameric chitin oligosaccharide, a compound known to have several potent biomedical functions. ASCHI53 and ASCHI61 retained, respectively, 65% and 75%, of their chitinase activity in the presence of 5% SDS and 100% of their activity in the presence of 10% β-mercaptoethanol. These results demonstrate that they are SDS-resistant endochitinases and probably have a rigid structure. PMID:19197977

  20. Identification and accurate quantification of structurally related peptide impurities in synthetic human C-peptide by liquid chromatography-high resolution mass spectrometry.

    PubMed

    Li, Ming; Josephs, Ralf D; Daireaux, Adeline; Choteau, Tiphaine; Westwood, Steven; Wielgosz, Robert I; Li, Hongmei

    2018-06-04

    Peptides are an increasingly important group of biomarkers and pharmaceuticals. The accurate purity characterization of peptide calibrators is critical for the development of reference measurement systems for laboratory medicine and quality control of pharmaceuticals. The peptides used for these purposes are increasingly produced through peptide synthesis. Various approaches (for example mass balance, amino acid analysis, qNMR, and nitrogen determination) can be applied to accurately value assign the purity of peptide calibrators. However, all purity assessment approaches require a correction for structurally related peptide impurities in order to avoid biases. Liquid chromatography coupled to high resolution mass spectrometry (LC-hrMS) has become the key technique for the identification and accurate quantification of structurally related peptide impurities in intact peptide calibrator materials. In this study, LC-hrMS-based methods were developed and validated in-house for the identification and quantification of structurally related peptide impurities in a synthetic human C-peptide (hCP) material, which served as a study material for an international comparison looking at the competencies of laboratories to perform peptide purity mass fraction assignments. More than 65 impurities were identified, confirmed, and accurately quantified by using LC-hrMS. The total mass fraction of all structurally related peptide impurities in the hCP study material was estimated to be 83.3 mg/g with an associated expanded uncertainty of 3.0 mg/g (k = 2). The calibration hierarchy concept used for the quantification of individual impurities is described in detail. Graphical abstract ᅟ.

  1. Predicting PDZ domain mediated protein interactions from structure

    PubMed Central

    2013-01-01

    Background PDZ domains are structural protein domains that recognize simple linear amino acid motifs, often at protein C-termini, and mediate protein-protein interactions (PPIs) in important biological processes, such as ion channel regulation, cell polarity and neural development. PDZ domain-peptide interaction predictors have been developed based on domain and peptide sequence information. Since domain structure is known to influence binding specificity, we hypothesized that structural information could be used to predict new interactions compared to sequence-based predictors. Results We developed a novel computational predictor of PDZ domain and C-terminal peptide interactions using a support vector machine trained with PDZ domain structure and peptide sequence information. Performance was estimated using extensive cross validation testing. We used the structure-based predictor to scan the human proteome for ligands of 218 PDZ domains and show that the predictions correspond to known PDZ domain-peptide interactions and PPIs in curated databases. The structure-based predictor is complementary to the sequence-based predictor, finding unique known and novel PPIs, and is less dependent on training–testing domain sequence similarity. We used a functional enrichment analysis of our hits to create a predicted map of PDZ domain biology. This map highlights PDZ domain involvement in diverse biological processes, some only found by the structure-based predictor. Based on this analysis, we predict novel PDZ domain involvement in xenobiotic metabolism and suggest new interactions for other processes including wound healing and Wnt signalling. Conclusions We built a structure-based predictor of PDZ domain-peptide interactions, which can be used to scan C-terminal proteomes for PDZ interactions. We also show that the structure-based predictor finds many known PDZ mediated PPIs in human that were not found by our previous sequence-based predictor and is less dependent on training–testing domain sequence similarity. Using both predictors, we defined a functional map of human PDZ domain biology and predict novel PDZ domain function. Users may access our structure-based and previous sequence-based predictors at http://webservice.baderlab.org/domains/POW. PMID:23336252

  2. Gastrointestinal Endogenous Proteins as a Source of Bioactive Peptides - An In Silico Study

    PubMed Central

    Dave, Lakshmi A.; Montoya, Carlos A.; Rutherfurd, Shane M.; Moughan, Paul J.

    2014-01-01

    Dietary proteins are known to contain bioactive peptides that are released during digestion. Endogenous proteins secreted into the gastrointestinal tract represent a quantitatively greater supply of protein to the gut lumen than those of dietary origin. Many of these endogenous proteins are digested in the gastrointestinal tract but the possibility that these are also a source of bioactive peptides has not been considered. An in silico prediction method was used to test if bioactive peptides could be derived from the gastrointestinal digestion of gut endogenous proteins. Twenty six gut endogenous proteins and seven dietary proteins were evaluated. The peptides present after gastric and intestinal digestion were predicted based on the amino acid sequence of the proteins and the known specificities of the major gastrointestinal proteases. The predicted resultant peptides possessing amino acid sequences identical to those of known bioactive peptides were identified. After gastrointestinal digestion (based on the in silico simulation), the total number of bioactive peptides predicted to be released ranged from 1 (gliadin) to 55 (myosin) for the selected dietary proteins and from 1 (secretin) to 39 (mucin-5AC) for the selected gut endogenous proteins. Within the intact proteins and after simulated gastrointestinal digestion, angiotensin converting enzyme (ACE)-inhibitory peptide sequences were the most frequently observed in both the dietary and endogenous proteins. Among the dietary proteins, after in silico simulated gastrointestinal digestion, myosin was found to have the highest number of ACE-inhibitory peptide sequences (49 peptides), while for the gut endogenous proteins, mucin-5AC had the greatest number of ACE-inhibitory peptide sequences (38 peptides). Gut endogenous proteins may be an important source of bioactive peptides in the gut particularly since gut endogenous proteins represent a quantitatively large and consistent source of protein. PMID:24901416

  3. Library Design-Facilitated High-Throughput Sequencing of Synthetic Peptide Libraries.

    PubMed

    Vinogradov, Alexander A; Gates, Zachary P; Zhang, Chi; Quartararo, Anthony J; Halloran, Kathryn H; Pentelute, Bradley L

    2017-11-13

    A methodology to achieve high-throughput de novo sequencing of synthetic peptide mixtures is reported. The approach leverages shotgun nanoliquid chromatography coupled with tandem mass spectrometry-based de novo sequencing of library mixtures (up to 2000 peptides) as well as automated data analysis protocols to filter away incorrect assignments, noise, and synthetic side-products. For increasing the confidence in the sequencing results, mass spectrometry-friendly library designs were developed that enabled unambiguous decoding of up to 600 peptide sequences per hour while maintaining greater than 85% sequence identification rates in most cases. The reliability of the reported decoding strategy was additionally confirmed by matching fragmentation spectra for select authentic peptides identified from library sequencing samples. The methods reported here are directly applicable to screening techniques that yield mixtures of active compounds, including particle sorting of one-bead one-compound libraries and affinity enrichment of synthetic library mixtures performed in solution.

  4. Effect of protein structure on deamidation rate in the Fc fragment of an IgG1 monoclonal antibody

    PubMed Central

    Sinha, Sandipan; Zhang, Lei; Duan, Shaofeng; Williams, Todd D; Vlasak, Josef; Ionescu, Roxana; Topp, Elizabeth M

    2009-01-01

    The effects of secondary structure on asparagine (N) deamidation in a 22 amino acid sequence (369-GFYPSDIAVEWESNGQPENNYK-390) of the crystallizable (Fc) fragment of a human monoclonal antibody (Fc IgG1) were investigated using high-resolution ultra performance liquid chromatography with tandem mass spectrometry (UPLC/MS). Samples containing either the intact Fc IgG (∼50 kD) (“intact protein”), or corresponding synthetic peptides (“peptide”) were stored in Tris buffer at 37°C and pH 7.5 for up to forty days, then subjected to UPLC/MS analysis with high energy MS1 fragmentation. The peptide deamidated only at N382 to form the isoaspartate (isoD382) and aspartate (D382) products in the ratio of ∼4:1, with a half-life of ∼3.4 days. The succinimide intermediate (Su382) was also detected; deamidation was not observed for the other two sites (N387 and N388) in peptide samples. The intact protein showed a 30-fold slower overall deamidation half-life of ∼108 days to produce the isoD382 and D387 products, together with minor amounts of D382. Surprisingly, the D382 and isoD387 products were not detected in intact protein samples and, as in the peptide samples, deamidation was not detected at N388. The results indicate that higher order structure influences both the rate of N-deamidation and the product distribution. PMID:19544580

  5. Studies of the structure-activity relationships of peptides and proteins involved in growth and development based on their three-dimensional structures.

    PubMed

    Nagata, Koji

    2010-01-01

    Peptides and proteins with similar amino acid sequences can have different biological functions. Knowledge of their three-dimensional molecular structures is critically important in identifying their functional determinants. In this review, I describe the results of our and other groups' structure-based functional characterization of insect insulin-like peptides, a crustacean hyperglycemic hormone-family peptide, a mammalian epidermal growth factor-family protein, and an intracellular signaling domain that recognizes proline-rich sequence.

  6. A Deeper Examination of Thorellius atrox Scorpion Venom Components with Omic Techonologies

    PubMed Central

    Romero-Gutierrez, Teresa; Batista, Cesar V. F.

    2017-01-01

    This communication reports a further examination of venom gland transcripts and venom composition of the Mexican scorpion Thorellius atrox using RNA-seq and tandem mass spectrometry. The RNA-seq, which was performed with the Illumina protocol, yielded more than 20,000 assembled transcripts. Following a database search and annotation strategy, 160 transcripts were identified, potentially coding for venom components. A novel sequence was identified that potentially codes for a peptide with similarity to spider ω-agatoxins, which act on voltage-gated calcium channels, not known before to exist in scorpion venoms. Analogous transcripts were found in other scorpion species. They could represent members of a new scorpion toxin family, here named omegascorpins. The mass fingerprint by LC-MS identified 135 individual venom components, five of which matched with the theoretical masses of putative peptides translated from the transcriptome. The LC-MS/MS de novo sequencing allowed to reconstruct and identify 42 proteins encoded by assembled transcripts, thus validating the transcriptome analysis. Earlier studies conducted with this scorpion venom permitted the identification of only twenty putative venom components. The present work performed with more powerful and modern omic technologies demonstrates the capacity of accomplishing a deeper characterization of scorpion venom components and the identification of novel molecules with potential applications in biomedicine and the study of ion channel physiology. PMID:29231872

  7. Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y.; Drake, Steven K.; Gucek, Marjan; Sacks, David B.; Yu, Yi-Kuo

    2018-06-01

    Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicating correct microbial identification even in a simple sample due to the large number of candidates present. To properly untwine candidate microbes in samples containing one or more microbes, one needs to go beyond apparent morphology or simple "fingerprinting"; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptide-centric representations of microbes to better separate them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500 to nearly 100,000 MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly identify multiple microbes at the genus and often the species level for samples containing more than one microbe. We have also shown that the proposed workflow computes accurate statistical significances, i.e., E values for identified peptides and unified E values for identified microbes. Our updated analysis workflow MiCId, a freely available software for Microorganism Classification and Identification, is available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.

  8. Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry.

    PubMed

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y; Drake, Steven K; Gucek, Marjan; Sacks, David B; Yu, Yi-Kuo

    2018-06-05

    Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicating correct microbial identification even in a simple sample due to the large number of candidates present. To properly untwine candidate microbes in samples containing one or more microbes, one needs to go beyond apparent morphology or simple "fingerprinting"; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptide-centric representations of microbes to better separate them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500 to nearly 100,000 MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly identify multiple microbes at the genus and often the species level for samples containing more than one microbe. We have also shown that the proposed workflow computes accurate statistical significances, i.e., E values for identified peptides and unified E values for identified microbes. Our updated analysis workflow MiCId, a freely available software for Microorganism Classification and Identification, is available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html . Graphical Abstract ᅟ.

  9. EThcD Discrimination of Isomeric Leucine/Isoleucine Residues in Sequencing of the Intact Skin Frog Peptides with Intramolecular Disulfide Bond

    NASA Astrophysics Data System (ADS)

    Samgina, Tatiana Yu; Kovalev, Sergey V.; Tolpina, Miriam D.; Trebse, Polonca; Torkar, Gregor; Lebedev, Albert T.

    2018-05-01

    Our scientific interests involve de novo sequencing of non-tryptic natural amphibian skin peptides including those with intramolecular S-S bond by means of exclusively mass spectrometry. Reliable discrimination of the isomeric leucine/isoleucine residues during peptide sequencing by means of mass spectrometry represents a bottleneck in the workflow for complete automation of the primary structure elucidation of these compounds. MS3 is capable of solving the problem. Earlier we demonstrated the advanced efficiency of ETD-HCD method to discriminate Leu/Ile in individual peptides by consecutive application of ETD to the polyprotonated peptides followed by HCD applied to the manually selected primary z-ions with the targeted isomeric residues at their N-termini and registration of the characteristic w-ions. Later this approach was extended to deal with several (4-7) broad band mass ranges, without special isolation of the primary z-ions. The present paper demonstrates an advanced version of this method when EThcD is applied in the whole mass range to a complex mixture of natural non-tryptic peptides without their separation and intermediate isolation of the targeted z-ions. The proposed EThcD method showed over 81% efficiency for the large natural peptides with intact disulfide ring, while the interfering process of radical site migration is suppressed. Due to higher speed and sensitivity, the proposed EThcD approach facilitates the analytical procedure and allows for the automation of the entire experiment and data processing. Moreover, in some cases it gives a chance to establish the nature of the residues in the intact intramolecular disulfide loops. [Figure not available: see fulltext.

  10. EThcD Discrimination of Isomeric Leucine/Isoleucine Residues in Sequencing of the Intact Skin Frog Peptides with Intramolecular Disulfide Bond.

    PubMed

    Samgina, Tatiana Yu; Kovalev, Sergey V; Tolpina, Miriam D; Trebse, Polonca; Torkar, Gregor; Lebedev, Albert T

    2018-05-01

    Our scientific interests involve de novo sequencing of non-tryptic natural amphibian skin peptides including those with intramolecular S-S bond by means of exclusively mass spectrometry. Reliable discrimination of the isomeric leucine/isoleucine residues during peptide sequencing by means of mass spectrometry represents a bottleneck in the workflow for complete automation of the primary structure elucidation of these compounds. MS 3 is capable of solving the problem. Earlier we demonstrated the advanced efficiency of ETD-HCD method to discriminate Leu/Ile in individual peptides by consecutive application of ETD to the polyprotonated peptides followed by HCD applied to the manually selected primary z-ions with the targeted isomeric residues at their N-termini and registration of the characteristic w-ions. Later this approach was extended to deal with several (4-7) broad band mass ranges, without special isolation of the primary z-ions. The present paper demonstrates an advanced version of this method when EThcD is applied in the whole mass range to a complex mixture of natural non-tryptic peptides without their separation and intermediate isolation of the targeted z-ions. The proposed EThcD method showed over 81% efficiency for the large natural peptides with intact disulfide ring, while the interfering process of radical site migration is suppressed. Due to higher speed and sensitivity, the proposed EThcD approach facilitates the analytical procedure and allows for the automation of the entire experiment and data processing. Moreover, in some cases it gives a chance to establish the nature of the residues in the intact intramolecular disulfide loops. Graphical Abstract ᅟ.

  11. EThcD Discrimination of Isomeric Leucine/Isoleucine Residues in Sequencing of the Intact Skin Frog Peptides with Intramolecular Disulfide Bond

    NASA Astrophysics Data System (ADS)

    Samgina, Tatiana Yu; Kovalev, Sergey V.; Tolpina, Miriam D.; Trebse, Polonca; Torkar, Gregor; Lebedev, Albert T.

    2018-01-01

    Our scientific interests involve de novo sequencing of non-tryptic natural amphibian skin peptides including those with intramolecular S-S bond by means of exclusively mass spectrometry. Reliable discrimination of the isomeric leucine/isoleucine residues during peptide sequencing by means of mass spectrometry represents a bottleneck in the workflow for complete automation of the primary structure elucidation of these compounds. MS3 is capable of solving the problem. Earlier we demonstrated the advanced efficiency of ETD-HCD method to discriminate Leu/Ile in individual peptides by consecutive application of ETD to the polyprotonated peptides followed by HCD applied to the manually selected primary z-ions with the targeted isomeric residues at their N-termini and registration of the characteristic w-ions. Later this approach was extended to deal with several (4-7) broad band mass ranges, without special isolation of the primary z-ions. The present paper demonstrates an advanced version of this method when EThcD is applied in the whole mass range to a complex mixture of natural non-tryptic peptides without their separation and intermediate isolation of the targeted z-ions. The proposed EThcD method showed over 81% efficiency for the large natural peptides with intact disulfide ring, while the interfering process of radical site migration is suppressed. Due to higher speed and sensitivity, the proposed EThcD approach facilitates the analytical procedure and allows for the automation of the entire experiment and data processing. Moreover, in some cases it gives a chance to establish the nature of the residues in the intact intramolecular disulfide loops.

  12. PGCA: An algorithm to link protein groups created from MS/MS data

    PubMed Central

    Sasaki, Mayu; Hollander, Zsuzsanna; Smith, Derek; McManus, Bruce; McMaster, W. Robert; Ng, Raymond T.; Cohen Freue, Gabriela V.

    2017-01-01

    The quantitation of proteins using shotgun proteomics has gained popularity in the last decades, simplifying sample handling procedures, removing extensive protein separation steps and achieving a relatively high throughput readout. The process starts with the digestion of the protein mixture into peptides, which are then separated by liquid chromatography and sequenced by tandem mass spectrometry (MS/MS). At the end of the workflow, recovering the identity of the proteins originally present in the sample is often a difficult and ambiguous process, because more than one protein identifier may match a set of peptides identified from the MS/MS spectra. To address this identification problem, many MS/MS data processing software tools combine all plausible protein identifiers matching a common set of peptides into a protein group. However, this solution introduces new challenges in studies with multiple experimental runs, which can be characterized by three main factors: i) protein groups’ identifiers are local, i.e., they vary run to run, ii) the composition of each group may change across runs, and iii) the supporting evidence of proteins within each group may also change across runs. Since in general there is no conclusive evidence about the absence of proteins in the groups, protein groups need to be linked across different runs in subsequent statistical analyses. We propose an algorithm, called Protein Group Code Algorithm (PGCA), to link groups from multiple experimental runs by forming global protein groups from connected local groups. The algorithm is computationally inexpensive and enables the connection and analysis of lists of protein groups across runs needed in biomarkers studies. We illustrate the identification problem and the stability of the PGCA mapping using 65 iTRAQ experimental runs. Further, we use two biomarker studies to show how PGCA enables the discovery of relevant candidate protein group markers with similar but non-identical compositions in different runs. PMID:28562641

  13. In-depth glycoproteomic characterisation of grape berry vacuolar invertase using a combination of mass spectrometry-based approaches.

    PubMed

    Hovasse, Agnès; Alayi, Tchilabalo Dilezitoko; Van Dorsselaer, Alain; Marchal, Richard; Jégou, Sandrine; Schaeffer-Reiss, Christine

    2016-06-01

    Vacuolar invertase is a key enzyme of sugar metabolism in grape berries. A full characterisation of this highly N-glycosylated protein is required to help understand its biological and biochemical significance in grapes. We have developed a mass spectrometry (MS)-based glycoproteomic approach wherein deglycosylated peptides are analysed by LC-MS/MS, while intact glycopeptides are characterised using a dedicated MS method to determine the attachment sites and micro-heterogeneity. For grape invertase, in parallel with deglycosylated peptides analysis, different enzymatic digestions were performed and glycopeptide detection was improved by enrichment method, nanoLC-MS and oxonium glycan ions. This MS-based glycoproteomic approach demonstrates that vacuolar invertase is glycosylated at all twelve potential N-glycosylation sites. Glycosylation is heterogeneous, with twelve glycoforms identified at six of the sites. The identification of several types of N-glycans is a major result to correlate with the surface and foaming properties of wine, the solubility, allergenicity, and protease resistance of wine proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Comparison of Urine and Plasma Peptidome Indicates Selectivity in Renal Peptide Handling.

    PubMed

    Magalhães, Pedro; Pontillo, Claudia; Pejchinovski, Martin; Siwy, Justyna; Krochmal, Magdalena; Makridakis, Manousos; Carrick, Emma; Klein, Julie; Mullen, William; Jankowski, Joachim; Vlahou, Antonia; Mischak, Harald; Schanstra, Joost P; Zürbig, Petra; Pape, Lars

    2018-04-03

    Urine is considered to be produced predominantly as a result of plasma filtration in the kidney. However, the origin of the native peptides present in urine has never been investigated in detail. Therefore, the authors aimed to obtain a first insight into the origin of urinary peptides based on a side-by-side comprehensive analysis of the plasma and urine peptidome. Twenty-two matched urine and plasma samples are analyzed for their peptidome using capillary electrophoresis coupled to mass spectrometry (CE-MS; for relative quantification) and CE or LC coupled to tandem mass spectrometry (CE- or LC-MS/MS; for peptide identification). The overlap and association of abundance of the different peptides present in these two body fluids are evaluated. The authors are able to identify 561 plasma and 1461 urinary endogenous peptides. Only 90 peptides are detectable in both urine and plasma. No significant correlation is found when comparing the abundance of these common peptides, with the exception of collagen fragments. This observation is also supported when comparing published peptidome data from both plasma and urine. Most of the plasma peptides are not detectable in urine, possibly due to tubular reabsorption. The majority of urinary peptides may in fact originate in the kidney. The notable exception is collagen fragments, which indicates potential selective exclusion of these peptides from tubular reabsorption. Experimental verification of this hypothesis is warranted. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Actin proteolysis during ripening of dry fermented sausages at different pH values.

    PubMed

    Berardo, A; Devreese, B; De Maere, H; Stavropoulou, D A; Van Royen, G; Leroy, F; De Smet, S

    2017-04-15

    In dry fermented sausages, myofibrillar proteins undergo intense proteolysis generating small peptides and free amino acids that play a role in flavour generation. This study aimed to identify small peptides arising from actin proteolysis, as influenced by the type of processing. Two acidification profiles were imposed, in order to mimic the pH normally obtained in southern-type and northern-type dry fermented sausages. The identification of peptides was done by liquid chromatography coupled to mass spectrometry in a data-independent positive mode of acquisition (LC-MS E ). During manufacturing of the dry fermented sausages, actin was highly proteolysed, especially in nine regions of the sequence. After fermentation, 52 and 42 actin-derived peptides were identified at high and low pH, respectively, which further increased to 66 and 144 peptides, respectively, at the end of ripening. Most peptides were released at the cleavage sites of cathepsins B and D, which thus play an important role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. PAS-cal: a Generic Recombinant Peptide Calibration Standard for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Breibeck, Joscha; Serafin, Adam; Reichert, Andreas; Maier, Stefan; Küster, Bernhard; Skerra, Arne

    2014-08-01

    We describe the design, preparation, and mass-spectrometric characterization of a new recombinant peptide calibration standard with uniform biophysical and ionization characteristics for mass spectrometry. "PAS-cal" is an artificial polypeptide concatamer of peptide cassettes with varying lengths, each composed of the three small, chemically stable amino acids Pro, Ala, and Ser, which are interspersed by Arg residues to allow site-specific cleavage with trypsin. PAS-cal is expressed at high yields in Escherichia coli as a Small Ubiquitin-like MOdifier (SUMO) fusion protein, which is easily purified and allows isolation of the PAS-cal moiety after SUMO protease cleavage. Upon subsequent in situ treatment with trypsin, the PAS-cal polypeptide yields a set of four defined homogeneous peptides in the range from 2 to 8 kDa with equal mass spacing. ESI-MS analysis revealed a conveniently interpretable raw spectrum, which after deconvolution resulted in a very simple pattern of four peaks with similar ionization signals. MALDI-MS analysis of a PAS-cal peptide mixture comprising both the intact polypeptide and its tryptic fragments revealed not only the four standard peptides but also the singly and doubly charged states of the intact concatamer as well as di- and trimeric adduct ion species between the peptides, thus augmenting the observable m/z range. The advantageous properties of PAS-cal are most likely a result of the strongly hydrophilic and conformationally disordered PEG-like properties of the PAS sequences. Therefore, PAS-cal offers an inexpensive and versatile recombinant peptide calibration standard for mass spectrometry in protein/peptide bioanalytics and proteomics research, the composition of which may be further adapted to fit individual needs.

  17. Detection and Identification of Heme c-Modified Peptides by Histidine Affinity Chromatography, High-Performance Liquid Chromatography-Mass Spectrometry, and Database Searching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkley, Eric D.; Anderson, Brian J.; Park, Jea H.

    2012-12-07

    Multiheme c-type cytochromes (proteins with covalently attached heme c moieties) play important roles in extracellular metal respiration in dissimilatory metal-reducing bacteria. Liquid chromatography-tandem mass spectrometry-(LC-MS/MS) characterization of c-type cytochromes is hindered by the presence of multiple heme groups, since the heme c modified peptides are typically not observed, or if observed, not identified. Using a recently reported histidine affinity chromatography (HAC) procedure, we enriched heme c tryptic peptides from purified bovine heart cytochrome c, a bacterial decaheme cytochrome, and subjected these samples to LC-MS/MS analysis. Enriched bovine cytochrome c samples yielded three- to six-fold more confident peptide-spectrum matches to heme-cmore » containing peptides than unenriched digests. In unenriched digests of the decaheme cytochrome MtoA from Sideroxydans lithotrophicus ES-1, heme c peptides for four of the ten expected sites were observed by LC-MS/MS; following HAC fractionation, peptides covering nine out of ten sites were obtained. Heme c peptide spiked into E. coli lysates at mass ratios as low as 10-4 was detected with good signal-to-noise after HAC and LC-MS/MS analysis. In addition to HAC, we have developed a proteomics database search strategy that takes into account the unique physicochemical properties of heme c peptides. The results suggest that accounting for the double thioether link between heme c and peptide, and the use of the labile heme fragment as a reporter ion, can improve database searching results. The combination of affinity chromatography and heme-specific informatics yielded increases in the number of peptide-spectrum matches of 20-100-fold for bovine cytochrome c.« less

  18. Improved Identification of Membrane Proteins by MALDI-TOF MS/MS Using Vacuum Sublimated Matrix Spots on an Ultraphobic Chip Surface

    PubMed Central

    Poetsch, Ansgar; Schlüsener, Daniela; Florizone, Christine; Eltis, Lindsay; Menzel, Christoph; Rögner, Matthias; Steinert, Kerstin; Roth, Udo

    2008-01-01

    Integral membrane proteins are notoriously difficult to identify and analyze by mass spectrometry because of their low abundance and limited number of trypsin cleavage sites. Our strategy to address this problem is based on a novel technology for MALDI-MS peptide sample preparation that increases the success rate of membrane protein identification by increasing the sensitivity of the MALDI-TOF system. For this, we used sample plates with predeposited matrix spots of CHCA crystals prepared by vacuum sublimation onto an extremely low wettable (ultraphobic) surface. In experiments using standard peptides, an up to 10-fold gain of sensitivity was found for on-chip preparations compared with classical dried-droplet preparations on a steel target. In order to assess the performance of the chips with membrane proteins, three model proteins (bacteriorhodopsin, subunit IV(a) of ATP synthase, and the cp47 subunit from photosystem II) were analyzed. To mimic realistic analysis conditions, purified proteins were separated by SDS-PAGE and digested with trypsin. The digest MALDI samples were prepared either by dried-droplet technique on steel plates using CHCA as matrix, or applied directly onto the matrix spots of the chip surface. Significantly higher signal-to-noise ratios were observed for all of the spectra resulting from on-chip preparations of different peptides. In a second series of experiments, the membrane proteome of Rhodococcus jostii RHA1 was investigated by AIEC/SDS-PAGE in combination with MALDI-TOF MS/MS. As in the first experiments, Coomassie-stained SDS-PAGE bands were digested and the two different preparation methods were compared. For preparations on the Mass·Spec·Turbo Chip, 43 of 60 proteins were identified, whereas only 30 proteins were reliably identified after classical sample preparation. Comparison of the obtained Mascot scores, which reflect the confidence level of the protein identifications, revealed that for 70% of the identified proteins, higher scores were obtained by on-chip sample preparation. Typically, this gain was a consequence of higher sequence coverage due to increased sensitivity. PMID:19137096

  19. Identification and quantification of ricin in biomedical samples by magnetic immunocapture enrichment and liquid chromatography electrospray ionization tandem mass spectrometry.

    PubMed

    Ma, Xiaoxi; Tang, Jijun; Li, Chunzheng; Liu, Qin; Chen, Jia; Li, Hua; Guo, Lei; Xie, Jianwei

    2014-08-01

    Ricin is a toxic protein derived from castor beans and composed of a cytotoxic A chain and a galactose-binding B chain linked by a disulfide bond, which can inhibit protein synthesis and cause cell death. Owing to its high toxicity, ease of preparation, and lack of medical countermeasures, ricin has been listed as both chemical and biological warfare agents. For homeland security or public safety, the unambiguous, sensitive, and rapid methods for identification and quantification of ricin in complicated matrices are of urgent need. Mass spectrometric analysis, which provides specific and sensitive characterization of protein, can be applied to confirm and quantify ricin. Here, we report a liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method in which ricin was extracted and enriched from serum by immunocapture using anti-ricin monoclonal antibody 3D74 linked to magnetic beads, then digested by trypsin, and analyzed by LC-ESI-MS/MS. Among 19 distinct peptides observed in LC-quadrupole/time of flight-MS (LC-QTOF-MS), two specific and sensitive peptides, T7A ((49)VGLPINQR(56)) and T14B ((188)DNCLTSDSNIR(198)), were chosen, and a highly sensitive determination of ricin was established in LC-triple quadrupole-MS (LC-QqQ-MS) operating in multiple reaction monitoring mode. These specific peptides can definitely distinguish ricin from the homologous protein Ricinus communis agglutinin (RCA120), even though the amino acid sequence homology of the A-chain of ricin and RCA120 is up to ca. 93% and that of B-chain is ca. 85%. Furthermore, peptide T7A was preferred in the quantification of ricin because its sensitivity was at least one order of magnitude higher than that of the peptide T14B. Combined with immunocapture enrichment, this method provided a limit of detection of ca. 2.5 ng/mL and the limit of quantification was ca. 5 ng/mL of ricin in serum, respectively. Both precision and accuracy of this method were determined and the RSD was less than 15%. This established method was then applied to measure ricin in serum samples collected from rats exposed to ricin at the dosage of 50 μg/kg in an intravenous injection manner. The results showed that ca. 10 ng/mL of the residual ricin in poisoned rats serum could be detected even at 12 h after exposure.

  20. SPR Biosensors in Direct Molecular Fishing: Implications for Protein Interactomics.

    PubMed

    Florinskaya, Anna; Ershov, Pavel; Mezentsev, Yuri; Kaluzhskiy, Leonid; Yablokov, Evgeniy; Medvedev, Alexei; Ivanov, Alexis

    2018-05-18

    We have developed an original experimental approach based on the use of surface plasmon resonance (SPR) biosensors, applicable for investigation of potential partners involved in protein⁻protein interactions (PPI) as well as protein⁻peptide or protein⁻small molecule interactions. It is based on combining a SPR biosensor, size exclusion chromatography (SEC), mass spectrometric identification of proteins (LC-MS/MS) and direct molecular fishing employing principles of affinity chromatography for isolation of potential partner proteins from the total lysate of biological samples using immobilized target proteins (or small non-peptide compounds) as ligands. Applicability of this approach has been demonstrated within the frame of the Human Proteome Project (HPP) and PPI regulation by a small non-peptide biologically active compound, isatin.

  1. Using the CPTAC Assay Portal to identify and implement highly characterized targeted proteomics assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteaker, Jeffrey R.; Halusa, Goran; Hoofnagle, Andrew N.

    2016-02-12

    The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI) has launched an Assay Portal (http://assays.cancer.gov) to serve as an open-source repository of well-characterized targeted proteomic assays. The portal is designed to curate and disseminate highly characterized, targeted mass spectrometry (MS)-based assays by providing detailed assay performance characterization data, standard operating procedures, and access to reagents. Assay content is accessed via the portal through queries to find assays targeting proteins associated with specific cellular pathways, protein complexes, or specific chromosomal regions. The position of the peptide analytes for which there are available assays are mapped relative tomore » other features of interest in the protein, such as sequence domains, isoforms, single nucleotide polymorphisms, and post-translational modifications. The overarching goals are to enable robust quantification of all human proteins and to standardize the quantification of targeted MS-based assays to ultimately enable harmonization of results over time and across laboratories.« less

  2. Using the CPTAC Assay Portal to Identify and Implement Highly Characterized Targeted Proteomics Assays.

    PubMed

    Whiteaker, Jeffrey R; Halusa, Goran N; Hoofnagle, Andrew N; Sharma, Vagisha; MacLean, Brendan; Yan, Ping; Wrobel, John A; Kennedy, Jacob; Mani, D R; Zimmerman, Lisa J; Meyer, Matthew R; Mesri, Mehdi; Boja, Emily; Carr, Steven A; Chan, Daniel W; Chen, Xian; Chen, Jing; Davies, Sherri R; Ellis, Matthew J C; Fenyö, David; Hiltke, Tara; Ketchum, Karen A; Kinsinger, Chris; Kuhn, Eric; Liebler, Daniel C; Liu, Tao; Loss, Michael; MacCoss, Michael J; Qian, Wei-Jun; Rivers, Robert; Rodland, Karin D; Ruggles, Kelly V; Scott, Mitchell G; Smith, Richard D; Thomas, Stefani; Townsend, R Reid; Whiteley, Gordon; Wu, Chaochao; Zhang, Hui; Zhang, Zhen; Rodriguez, Henry; Paulovich, Amanda G

    2016-01-01

    The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI) has launched an Assay Portal (http://assays.cancer.gov) to serve as an open-source repository of well-characterized targeted proteomic assays. The portal is designed to curate and disseminate highly characterized, targeted mass spectrometry (MS)-based assays by providing detailed assay performance characterization data, standard operating procedures, and access to reagents. Assay content is accessed via the portal through queries to find assays targeting proteins associated with specific cellular pathways, protein complexes, or specific chromosomal regions. The position of the peptide analytes for which there are available assays are mapped relative to other features of interest in the protein, such as sequence domains, isoforms, single nucleotide polymorphisms, and posttranslational modifications. The overarching goals are to enable robust quantification of all human proteins and to standardize the quantification of targeted MS-based assays to ultimately enable harmonization of results over time and across laboratories.

  3. A high-throughput mass spectrometry assay to simultaneously measure intact insulin and C-peptide.

    PubMed

    Taylor, Steven W; Clarke, Nigel J; Chen, Zhaohui; McPhaul, Michael J

    2016-04-01

    Measurements of fasting levels of insulin and C-peptide are useful in documenting insulin resistance and may help predict development of diabetes mellitus. However, the specific insulin and C-peptide levels associated with specific degrees of insulin resistance have not been defined, owing to marked variability among immunoassays and lack of standardization. Herein, we describe a multiplexed liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for intact insulin and C-peptide. Insulin and C-peptide were enriched from patient sera using monoclonal antibodies immobilized on magnetic beads and processed on a robotic liquid handler. Eluted peptides were analyzed by LC-MS/MS. Bovine insulin and a stable isotopically-labeled (13C/15N) C-peptide were utilized as internal standards. The assay had an analytical measurement range of 3 to 320 μIU/ml (18 to 1920 pmol/l) for insulin and 0.11 to 27.2 ng/ml (36 to 9006 pmol/l) for C-peptide. Intra- and inter-day assay variation was less than 11% for both peptides. Of the 5 insulin analogs commonly prescribed to treat diabetes, only the recombinant drug insulin lispro caused significant interference for the determination of endogenous insulin. There were no observed interferences for C-peptide. We developed and validated a high-throughput, quantitative, multiplexed LC-MS/MS assay for intact insulin and C-peptide. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Protein-phosphotyrosine proteome profiling by superbinder-SH2 domain affinity purification mass spectrometry, sSH2-AP-MS.

    PubMed

    Tong, Jiefei; Cao, Biyin; Martyn, Gregory D; Krieger, Jonathan R; Taylor, Paul; Yates, Bradley; Sidhu, Sachdev S; Li, Shawn S C; Mao, Xinliang; Moran, Michael F

    2017-03-01

    Recently, "superbinder" SH2 domain variants with three amino acid substitutions (sSH2) were reported to have 100-fold or greater affinity for protein-phosphotyrosine (pY) than natural SH2 domains. Here we report a protocol in which His-tagged Src sSH2 efficiently captures pY-peptides from protease-digested HeLa cell total protein extracts. Affinity purification of pY-peptides by this method shows little bias for pY-proximal amino acid sequences, comparable to that achieved by using antibodies to pY, but with equal or higher yield. Superbinder-SH2 affinity purification mass spectrometry (sSH2-AP-MS) therefore provides an efficient and economical approach for unbiased pY-directed phospho-proteome profiling without the use of antibodies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Coupling MALDI-TOF mass spectrometry protein and specialized metabolite analyses to rapidly discriminate bacterial function

    PubMed Central

    Clark, Chase M.; Costa, Maria S.

    2018-01-01

    For decades, researchers have lacked the ability to rapidly correlate microbial identity with bacterial metabolism. Since specialized metabolites are critical to bacterial function and survival in the environment, we designed a data acquisition and bioinformatics technique (IDBac) that utilizes in situ matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze protein and specialized metabolite spectra recorded from single bacterial colonies picked from agar plates. We demonstrated the power of our approach by discriminating between two Bacillus subtilis strains in <30 min solely on the basis of their differential ability to produce cyclic peptide antibiotics surfactin and plipastatin, caused by a single frameshift mutation. Next, we used IDBac to detect subtle intraspecies differences in the production of metal scavenging acyl-desferrioxamines in a group of eight freshwater Micromonospora isolates that share >99% sequence similarity in the 16S rRNA gene. Finally, we used IDBac to simultaneously extract protein and specialized metabolite MS profiles from unidentified Lake Michigan sponge-associated bacteria isolated from an agar plate. In just 3 h, we created hierarchical protein MS groupings of 11 environmental isolates (10 MS replicates each, for a total of 110 spectra) that accurately mirrored phylogenetic groupings. We further distinguished isolates within these groupings, which share nearly identical 16S rRNA gene sequence identity, based on interspecies and intraspecies differences in specialized metabolite production. IDBac is an attempt to couple in situ MS analyses of protein content and specialized metabolite production to allow for facile discrimination of closely related bacterial colonies. PMID:29686101

  6. A low molecular weight proteome comparison of fertile and male sterile 8 anthers of Zea mays

    PubMed Central

    Wang, Dongxue; Adams, Christopher M.; Fernandes, John F.; Egger, Rachel L.; Walbot, Virginia

    2014-01-01

    Summary During maize anther development, somatic locular cells differentiate to support meiosis in the pollen mother cells. Meiosis is an important event during anther growth and is essential for plant fertility as pollen contains the haploid sperm. A subset of maize male sterile mutants exhibit meiotic failure, including ms8 (male sterile 8) in which meiocytes arrest as dyads and the locular somatic cells exhibit multiple defects. Systematic proteomic profiles were analysed in biological triplicates plus technical triplicates comparing ms8 anthers with fertile sibling samples at both the premeiotic and meiotic stages; proteins from 3.5 to 20 kDa were fractionated by 1-D PAGE, cleaved with Lys-C and then sequenced using a LTQ Orbitrap Velos MS paradigm. Three hundred and 59proteins were identified with two or more assigned peptides in which each of those peptides were counted at least two or more times (0.4% peptide false discovery rate (FDR) and 0.2% protein FDR); 2761 proteins were identified with one or more assigned peptides (0.4% peptide FDR and 7.6% protein FDR). Stage-specific protein expression provides candidate stage markers for early anther development, and proteins specifically expressed in fertile compared to sterile anthers provide important clues about the regulation of meiosis. 49% of the proteins detected by this study are new to an independent whole anther proteome, and many small proteins missed by automated maize genome annotation were validated; these outcomes indicate the value of focusing on low molecular weight proteins. The roles of distinctive expressed proteins and methods for mass spectrometry of low molecular weight proteins are discussed. PMID:22748129

  7. Two Novel Bioactive Peptides from Antarctic Krill with Dual Angiotensin Converting Enzyme and Dipeptidyl Peptidase IV Inhibitory Activities.

    PubMed

    Ji, Wei; Zhang, Chaohua; Ji, Hongwu

    2017-07-01

    Inhibition of dipeptidyl peptidase IV (DPP-IV) and angiotensin converting enzyme (ACE) are considered useful in managing 2 often associated conditions: diabetes and hypertension. In this study, corolase PP was used to hydrolyze Antarctic krill protein. The hydrolysate (AKH) was isolated by ultrafiltration and purified by size-exclusion chromatography, ion exchange chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC) sequentially. The in vitro inhibitory activities of all AKHs and several fractions obtained against ACE and DPP-IV were assessed. Two peptides, purified with dual-strength inhibitory activity against ACE and DPP-IV, were identified by TOF-MS/MS. Results indicated that not all fractions exhibited dual inhibitory activities of ACE and DPP-IV. The purified peptide Lys-Val-Glu-Pro-Leu-Pro had half-maximal inhibitory concentrations (IC 50 ) of 0.93±0.05 and 0.73±0.04 mg/mL against ACE and DPP-IV, respectively. The other peptide Pro-Ala-Leu had IC 50 values of 0.64±0.05 and 0.88±0.03 mg/mL against ACE and DPP-IV, respectively. This study firstly reported the sequences of dual bioactive peptides from Antarctic krill proteins, further provided new insights into the bioactive peptides responsible for the ACE and DPP-IV inhibitory activities from the Antarctic krill protein hydrolysate to manage hypertension and diabetes. © 2017 Institute of Food Technologists®.

  8. Tailored-waveform Collisional Activation of Peptide Ion Electron Transfer Survivor Ions in Cation Transmission Mode Ion/Ion Reaction Experiments

    PubMed Central

    Han, Hongling; Londry, Frank A.; Erickson, David E.; McLuckey, Scott A.

    2010-01-01

    SUMMARY Broad-band resonance excitation via a tailored waveform in a high pressure collision cell (Q2) on a hybrid quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been implemented for cation transmission mode electron transfer ion/ion reactions of tryptic polypeptides. The frequency components in the broadband waveform were defined to excite the first generation intact electron transfer products for relatively large tryptic peptides. The optimum amplitude of the arbitrary waveform applied has been determined empirically to be 3.0 Vp-p, which is effective for relatively high mass-to-charge (m/z) ratio precursor ions with little elimination of sequence information for low m/z ions. The application of broadband activation during the transmission mode ion/ion reaction obviates frequency and amplitude tuning normally associated with ion trap collision induced dissociation (CID). This approach has been demonstrated with triply and doubly charged tryptic peptides with and without post-translational modifications. Enhanced structural information was achieved by production of a larger number of informative c- and z-type fragments using the tailored waveform on unmodified and modified (phosphorylated and glycosylated) peptides when the first generation intact electron transfer products fell into the defined frequency range. This approach can be applied to a wide range of tryptic peptide ions, making it attractive as a rapid and general approach for ETD LC-MS/MS of tryptic peptides in a QqTOF instrument. PMID:19305916

  9. A nonribosomal peptide synthetase (Pes1) confers protection against oxidative stress in Aspergillus fumigatus.

    PubMed

    Reeves, Emer P; Reiber, Kathrin; Neville, Claire; Scheibner, Olaf; Kavanagh, Kevin; Doyle, Sean

    2006-07-01

    Aspergillus fumigatus is an important human fungal pathogen. The Aspergillus fumigatus genome contains 14 nonribosomal peptide synthetase genes, potentially responsible for generating metabolites that contribute to organismal virulence. Differential expression of the nonribosomal peptide synthetase gene, pes1, in four strains of Aspergillus fumigatus was observed. The pattern of pes1 expression differed from that of a putative siderophore synthetase gene, sidD, and so is unlikely to be involved in iron acquisition. The Pes1 protein (expected molecular mass 698 kDa) was partially purified and identified by immunoreactivity, peptide mass fingerprinting (36% sequence coverage) and MALDI LIFT-TOF/TOF MS (four internal peptides sequenced). A pes1 disruption mutant (delta pes1) of Aspergillus fumigatus strain 293.1 was generated and confirmed by Southern and western analysis, in addition to RT-PCR. The delta pes1 mutant also showed significantly reduced virulence in the Galleria mellonella model system (P < 0.001) and increased sensitivity to oxidative stress (P = 0.002) in culture and during neutrophil-mediated phagocytosis. In addition, the mutant exhibited altered conidial surface morphology and hydrophilicity, compared to Aspergillus fumigatus 293.1. It is concluded that pes1 contributes to improved fungal tolerance against oxidative stress, mediated by the conidial phenotype, during the infection process.

  10. Development of a seaweed derived platelet activating factor acetylhydrolase (PAF-AH) inhibitory hydrolysate, synthesis of inhibitory peptides and assessment of their toxicity using the Zebrafish larvae assay.

    PubMed

    Fitzgerald, Ciarán; Gallagher, Eimear; O'Connor, Paula; Prieto, José; Mora-Soler, Leticia; Grealy, Maura; Hayes, Maria

    2013-12-01

    The vascular inflammatory role of platelet activating factor acetylhydrolase (PAF-AH) is thought to be due to the formation of lysophosphatidyl choline and oxidized non-esterified fatty acids. This enzyme is considered a promising therapeutic target for the prevention of atherosclerosis and there is a need to expand the available chemical templates of PAF-AH inhibitors. This study demonstrated how natural PAF-AH inhibitory peptides were isolated and characterized from the red macroalga Palmaria palmata. The dried powdered alga was hydrolyzed using the food grade enzyme papain, and the resultant peptide containing fraction generated using RP-HPLC. Several oligopeptides were identified as potential PAF-AH inhibitors following bio-guided fractionation, and the amino acid sequences of these oligopeptides were confirmed by Q-TOF-MS and microwave-assisted solid phase de novo synthesis. The most promising PAF-AH inhibitory peptide had the amino acid sequence NIGK and a PAF-AH IC50 value of 2.32 mM. This peptide may constitute a valid drug template for PAF-AH inhibitors. Furthermore the P. palmata hydrolysate was nontoxic when assayed using the Zebrafish toxicity model at a concentration of 1mg/ml. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Fundamental study of hydrogen-attachment-induced peptide fragmentation occurring in the gas phase and during the matrix-assisted laser desorption/ionization process.

    PubMed

    Asakawa, Daiki; Takahashi, Hidenori; Iwamoto, Shinichi; Tanaka, Koichi

    2018-05-09

    Mass spectrometry with hydrogen-radical-mediated fragmentation techniques has been used for the sequencing of proteins/peptides. The two methods, matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) and hydrogen attachment/abstraction dissociation (HAD) are known as hydrogen-radical-mediated fragmentation techniques. MALDI-ISD occurs during laser induced desorption processes, whereas HAD utilizes the association of hydrogen with peptide ions in the gas phase. In this study, the general mechanisms of MALDI-ISD and HAD of peptides were investigated. We demonstrated the fragmentation of four model peptides and investigated the fragment formation pathways using density functional theory (DFT) calculations. The current experimental and computational joint study indicated that MALDI-ISD and HAD produce aminoketyl radical intermediates, which immediately undergo radical-induced cleavage at the N-Cα bond located on the C-terminal side of the radical site, leading to the c'/z˙ fragment pair. In the case of MALDI-ISD, the z˙ fragments undergo a subsequent reaction with the matrix to give z' and matrix adducts of the z fragments. In contrast, the c' and z˙ fragments react with hydrogen atoms during the HAD processes, and various fragment species, such as c˙, c', z˙ and z', were observed in the HAD-MS/MS mass spectra.

  12. Antitumour and apoptotic effects of a novel Tris-peptide complex obtained after isolation of Raoultella ornithinolytica extracellular metabolites.

    PubMed

    Fiołka, M J; Grzywnowicz, K; Rzymowska, J; Lewtak, K; Szewczyk, R; Mendyk, E; Keller, R

    2015-06-01

    The characterization of the antitumour activity and chemical identification of the compounds obtained after the isolation of extracellular metabolites of bacteria Raoultella ornithinolytica. The fraction with anticancer activity against the HeLa cell line, T47D and TOV-112D was obtained from the supernatants of R. ornithinolytica culture using ion-exchange chromatography, and separated by Sephadex G-50 medium gel filtration into two subfractions. The obtained compounds were analysed using Fourier Transform-Infrared Spectroscopy, Raman spectroscopy and matrix-assisted laser desorption/ionization MS/MS spectrometry. The antitumour activity of the two subfractions was analysed using 5-bromo-2-deoxy-uridine kit. The subfraction with the highest activity against HeLa cells was identified as Tris-peptide complex. The amino acid sequence of the peptide from the complex was found to be TDAPSFSDIPN and molecular weight was estimated at 1430·6576 Da. Cytotoxic, cytopathic and apoptotic effects in HeLa cells treated with the active complex were observed; however, the cytotoxic effect against normal human skin fibroblasts was minimal. The Tris-peptide complex from R. ornithinolytica showed selective antitumour activity against the HeLa cell line. The Tris-peptide complex due to the high selectivity can be used in biomedicine, and its derivatives may contribute to the development of new anticancer compounds. © 2015 The Society for Applied Microbiology.

  13. Identification of potential serum peptide biomarkers of biliary tract cancer using MALDI MS profiling

    PubMed Central

    2014-01-01

    Background The aim of this discovery study was the identification of peptide serum biomarkers for detecting biliary tract cancer (BTC) using samples from healthy volunteers and benign cases of biliary disease as control groups. This work was based on the hypothesis that cancer-specific exopeptidases exist and that their activities in serum can generate cancer-predictive peptide fragments from circulating proteins during coagulation. Methods This case control study used a semi-automated platform incorporating polypeptide extraction linked to matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) to profile 92 patient serum samples. Predictive models were generated to test a validation serum set from BTC cases and healthy volunteers. Results Several peptide peaks were found that could significantly differentiate BTC patients from healthy controls and benign biliary disease. A predictive model resulted in a sensitivity of 100% and a specificity of 93.8% in detecting BTC in the validation set, whilst another model gave a sensitivity of 79.5% and a specificity of 83.9% in discriminating BTC from benign biliary disease samples in the training set. Discriminatory peaks were identified by tandem MS as fragments of abundant clotting proteins. Conclusions Serum MALDI MS peptide signatures can accurately discriminate patients with BTC from healthy volunteers. PMID:24495412

  14. Combining high-throughput MALDI-TOF mass spectrometry and isoelectric focusing gel electrophoresis for virtual 2D gel-based proteomics.

    PubMed

    Lohnes, Karen; Quebbemann, Neil R; Liu, Kate; Kobzeff, Fred; Loo, Joseph A; Ogorzalek Loo, Rachel R

    2016-07-15

    The virtual two-dimensional gel electrophoresis/mass spectrometry (virtual 2D gel/MS) technology combines the premier, high-resolution capabilities of 2D gel electrophoresis with the sensitivity and high mass accuracy of mass spectrometry (MS). Intact proteins separated by isoelectric focusing (IEF) gel electrophoresis are imaged from immobilized pH gradient (IPG) polyacrylamide gels (the first dimension of classic 2D-PAGE) by matrix-assisted laser desorption/ionization (MALDI) MS. Obtaining accurate intact masses from sub-picomole-level proteins embedded in 2D-PAGE gels or in IPG strips is desirable to elucidate how the protein of one spot identified as protein 'A' on a 2D gel differs from the protein of another spot identified as the same protein, whenever tryptic peptide maps fail to resolve the issue. This task, however, has been extremely challenging. Virtual 2D gel/MS provides access to these intact masses. Modifications to our matrix deposition procedure improve the reliability with which IPG gels can be prepared; the new procedure is described. Development of this MALDI MS imaging (MSI) method for high-throughput MS with integrated 'top-down' MS to elucidate protein isoforms from complex biological samples is described and it is demonstrated that a 4-cm IPG gel segment can now be imaged in approximately 5min. Gel-wide chemical and enzymatic methods with further interrogation by MALDI MS/MS provide identifications, sequence-related information, and post-translational/transcriptional modification information. The MSI-based virtual 2D gel/MS platform may potentially link the benefits of 'top-down' and 'bottom-up' proteomics. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Release of β-casomorphin-7/5 during simulated gastrointestinal digestion of milk β-casein variants from Indian crossbred cattle (Karan Fries).

    PubMed

    Ul Haq, Mohammad Raies; Kapila, Rajeev; Kapila, Suman

    2015-02-01

    Crossbred Karan Fries (KF) cows, among the best yielders of milk in India are carriers of A1 and A2 alleles. These genetic variants have been established as the source of β-casomorphins (BCMs) bioactive peptides that are implicated with various physiological and health issues. Therefore, the present study was aimed to investigate the release of BCM-7/5 from β-casein variants of KF by simulated gastrointestinal digestion (SGID) performed with proteolytic enzymes, in vitro. β-Casein variants (A1A1, A1A2 and A2A2) were isolated from milk samples of genotyped Karan Fries animals and subjected to hydrolysis by SGID using proteolytic enzymes (pepsin, trypsin, chymotrypsin and pancreatin), in vitro. Detection of BCMs were carried out in two peptide fractions (A and B) of RP-HPLC collected at retention time (RT) 24 and 28min respectively corresponding to standard BCM-5 and BCM-7 by MS-MS and competitive ELISA. One of the RP-HPLC fractions (B) showed the presence of 14 amino acid peptide (VYPFPGPIHNSLPQ) having encrypted internal BCMs sequence while no such peptide or precursor was observed in fraction A by MS-MS analysis. Further hydrolysis of fraction B of A1A1 and A1A2 variants of β-casein with elastase and leucine aminopeptidase revealed the release of BCM-7 by competitive ELISA. The yield of BCM-7 (0.20±0.02mg/g β-casein) from A1A1 variant was observed to be almost 3.2 times more than A1A2 variant of β-casein. However, release of BCM-7/5 could not be detected from A2A2 variant of β-casein. The biological activity of released peptides on rat ileum by isolated organ bath from A1A1 (IC50=0.534-0.595μM) and A1A2 (IC50=0.410-0.420μM) hydrolysates further confirmed the presence of opioid peptide BCM-7. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Absolute quantitation of disease protein biomarkers in a single LC-MS acquisition using apolipoprotein F as an example.

    PubMed

    Kumar, Abhinav; Gangadharan, Bevin; Cobbold, Jeremy; Thursz, Mark; Zitzmann, Nicole

    2017-09-21

    LC-MS and immunoassay can detect protein biomarkers. Immunoassays are more commonly used but can potentially be outperformed by LC-MS. These techniques have limitations including the necessity to generate separate calibration curves for each biomarker. We present a rapid mass spectrometry-based assay utilising a universal calibration curve. For the first time we analyse clinical samples using the HeavyPeptide IGNIS kit which establishes a 6-point calibration curve and determines the biomarker concentration in a single LC-MS acquisition. IGNIS was tested using apolipoprotein F (APO-F), a potential biomarker for non-alcoholic fatty liver disease (NAFLD). Human serum and IGNIS prime peptides were digested and the IGNIS assay was used to quantify APO-F in clinical samples. Digestion of IGNIS prime peptides was optimised using trypsin and SMART Digest™. IGNIS was 9 times faster than the conventional LC-MS method for determining the concentration of APO-F in serum. APO-F decreased across NAFLD stages. Inter/intra-day variation and stability post sample preparation for one of the peptides was ≤13% coefficient of variation (CV). SMART Digest™ enabled complete digestion in 30 minutes compared to 24 hours using in-solution trypsin digestion. We have optimised the IGNIS kit to quantify APO-F as a NAFLD biomarker in serum using a single LC-MS acquisition.

  17. SATPdb: a database of structurally annotated therapeutic peptides

    PubMed Central

    Singh, Sandeep; Chaudhary, Kumardeep; Dhanda, Sandeep Kumar; Bhalla, Sherry; Usmani, Salman Sadullah; Gautam, Ankur; Tuknait, Abhishek; Agrawal, Piyush; Mathur, Deepika; Raghava, Gajendra P.S.

    2016-01-01

    SATPdb (http://crdd.osdd.net/raghava/satpdb/) is a database of structurally annotated therapeutic peptides, curated from 22 public domain peptide databases/datasets including 9 of our own. The current version holds 19192 unique experimentally validated therapeutic peptide sequences having length between 2 and 50 amino acids. It covers peptides having natural, non-natural and modified residues. These peptides were systematically grouped into 10 categories based on their major function or therapeutic property like 1099 anticancer, 10585 antimicrobial, 1642 drug delivery and 1698 antihypertensive peptides. We assigned or annotated structure of these therapeutic peptides using structural databases (Protein Data Bank) and state-of-the-art structure prediction methods like I-TASSER, HHsearch and PEPstrMOD. In addition, SATPdb facilitates users in performing various tasks that include: (i) structure and sequence similarity search, (ii) peptide browsing based on their function and properties, (iii) identification of moonlighting peptides and (iv) searching of peptides having desired structure and therapeutic activities. We hope this database will be useful for researchers working in the field of peptide-based therapeutics. PMID:26527728

  18. Evaluation of comprehensive multidimensional separations using reversed-phase, reversed-phase liquid chromatography/mass spectrometry for shotgun proteomics.

    PubMed

    Nakamura, Tatsuji; Kuromitsu, Junro; Oda, Yoshiya

    2008-03-01

    Two-dimensional liquid-chromatographic (LC) separation followed by mass spectrometric (MS) analysis was examined for the identification of peptides in complex mixtures as an alternative to widely used two-dimensional gel electrophoresis followed by MS analysis for use in proteomics. The present method involves the off-line coupling of a narrow-bore, polymer-based, reversed-phase column using an acetonitrile gradient in an alkaline mobile phase in the first dimension with octadecylsilanized silica (ODS)-based nano-LC/MS in the second dimension. After the first separation, successive fractions were acidified and dried off-line, then loaded on the second dimension column. Both columns separate peptides according to hydrophobicity under different pH conditions, but more peptides were identified than with the conventional technique for shotgun proteomics, that is, the combination of a strong cation exchange column with an ODS column, and the system was robust because no salts were included in the mobile phases. The suitability of the method for proteomics measurements was evaluated.

  19. Quantitative Mass Spectrometry by Isotope Dilution and Multiple Reaction Monitoring (MRM).

    PubMed

    Russo, Paul; Hood, Brian L; Bateman, Nicholas W; Conrads, Thomas P

    2017-01-01

    Selected reaction monitoring (SRM) is used in molecular profiling to detect and quantify specific known proteins in complex mixtures. Using isotope dilution (Barnidge et al., Anal Chem 75(3):445-451, 2003) methodologies, peptides can be quantified without the need for an antibody-based method. Selected reaction monitoring assays employ electrospray ionization mass spectrometry (ESI-MS) followed by two stages of mass selection: a first stage where the mass of the peptide ion is selected and, after fragmentation by collision-induced dissociation (CID), a second stage (tandem MS) where either a single (e.g., SRM) or multiple (multiple reaction monitoring, MRM) specific peptide fragment ions are transmitted for detection. The MRM experiment is accomplished by specifying the parent masses of the selected endogenous and isotope-labeled peptides for MS/MS fragmentation and then monitoring fragment ions of interest, using their intensities/abundances and relative ratios to quantify the parent protein of interest. In this example protocol, we will utilize isotope dilution MRM-MS to quantify in absolute terms the total levels of the protein of interest, ataxia telangiectasia mutated (ATM) serine/threonine protein kinase. Ataxia telangiectasia mutated (ATM) phosphorylates several key proteins that initiate activation of the DNA damage checkpoint leading to cell cycle arrest.

  20. Antimycobacterial Activity: A New Pharmacological Target for Conotoxins Found in the First Reported Conotoxin from Conasprella ximenes.

    PubMed

    Figueroa-Montiel, Andrea; Bernáldez, Johanna; Jiménez, Samanta; Ueberhide, Beatrix; González, Luis Javier; Licea-Navarro, Alexei

    2018-01-23

    Mycobacterium tuberculosis is the etiological agent of tuberculosis, an airborne infectious disease that is a leading cause of human morbidity and mortality worldwide. We report here the first conotoxin that is able to inhibit the growth of M. tuberculosis at a concentration similar to that of two other drugs that are currently used in clinics. Furthermore, it is also the first conopeptide that has been isolated from the venom of Conasprella ximenes. The venom gland transcriptome of C. ximenes was sequenced to construct a database with 24,284 non-redundant transcripts. The conopeptide was purified from the venom using reverse phase high performance liquid chromatography (RP-HPLC) and was analyzed using electrospray ionization-mass spectrometry (ESI-MS/MS). No automatic identification above the identity threshold with 1% of the false discovery rate was obtained; however, a 10-amino-acid sequence tag, manually extracted from the MS/MS spectra, allowed for the identification of a conotoxin in the transcriptome database. Electron transfer higher energy collision dissociation (EThcD) fragmentation of the native conotoxin confirmed the N-terminal sequence (1-14), while LC-MS/MS analysis of the tryptic digest of the reduced and S-alkylated conotoxin confirmed the C-terminal region (15-36). The expected and experimental molecular masses corresponded, within sub-ppm mass error. The 37-mer peptide (MW 4109.69 Da), containing eight cysteine residues, was named I1_xm11a, according to the current nomenclature for this type of molecule.

Top