Science.gov

Sample records for msp63 complexes induce

  1. Immunogenicity of the meningococcal stress protein MSP63 during natural infection.

    PubMed Central

    Pannekoek, Y; Schuurman, I G; Dankert, J; van Putten, J P

    1993-01-01

    Acute- and convalescent-phase sera from 40 patients with meningococcal disease were evaluated for immunoreactivity with the meningococcal member of the hsp60 stress protein family. The IgG response was measured by ELISA, using bacterial cell lysate of the corresponding patients' strain, and purified hsp60 proteins from Neisseria meningitidis (MSP63), Escherichia coli (GroEL) and Mycobacterium bovis BCG (65K) as antigens. Analysis of the antibody responses revealed that 24/35 patients (69%) with elevated anti-meningococcal titres, generated anti-MSP63 antibodies during the time course of infection. Twelve of these patients generated antibodies specific for MSP63, in six patients anti-MSP63 levels exceeded anti-GroEL/65K antibodies. In the remaining six patients, equal levels of anti-MSP63 and anti-GroEL/65K were measured. We conclude that MSP63 is expressed and immunogenic during natural meningococcal infection, and that individual subjects have a restricted response to the antigen, resulting in the recognition of Neisseria-specific hsp60 epitopes and/or cross-reactive hsp60 determinants. Images Fig. 1 PMID:8370163

  2. Complex movement disorders induced by fluoxetine.

    PubMed

    Bharucha, K J; Sethi, K D

    1996-05-01

    We report two cases of complex movement disorders induced by fluoxetine. A 72-year-old woman developed rhythmic palatal movements, myoclonus, chorea, and possibly dystonia after 2 years of therapy with fluoxetine. On withdrawal of fluoxetine, the movements abated after 5 days and did not recur. The second patient, a 58-year-old man, developed myoclonic jerking and rapid, stereotypic movements of his toes after a year of fluoxetine therapy. These complex movements have not been reported previously as an adverse effect of fluoxetine.

  3. Drug Induced Hypersensitivity and the HLA Complex

    PubMed Central

    Alfirevic, Ana; Pirmohamed, Munir

    2011-01-01

    Drug-induced hypersensitivity reactions are of major concern and present a burden for national healthcare systems due to their often severe nature, high rate of hospital admissions and high mortality. They manifest with a wide range of symptoms and signs, and can be initiated by a wide range of structurally diverse chemical compounds. The pathophysiological mechanisms underlying hypersensitivity reactions are not well understood, but it is thought that they are immune mediated. MHC region on Chromosome 6 contains many genes with immune function. Classical MHC molecules are highly polymorphic cell surface glycoproteins whose function is to present peptide antigens to T cells. In addition to conferring protection from some diseases, HLA alleles are also associated with an increased risk of other diseases, including drug-induced hypersensitivity. Pharmacogenetic approach to predict the risk of drug-induced hypersensitivity has been established for several drugs. We will discuss the progress of hypersensitivity pharmacogenetics over the last few years and focus on current efforts of the international community to develop consortia which aim to standardize disease phenotypes and to identify affected individuals through international collaborations. In addition, we will discuss the clinical utility of HLA typing as predictive or diagnostic testing for drug-induced hypersensitivity.

  4. Suppressed neural complexity during ketamine- and propofol-induced unconsciousness.

    PubMed

    Wang, Jisung; Noh, Gyu-Jeong; Choi, Byung-Moon; Ku, Seung-Woo; Joo, Pangyu; Jung, Woo-Sung; Kim, Seunghwan; Lee, Heonsoo

    2017-07-13

    Ketamine and propofol have distinctively different molecular mechanisms of action and neurophysiological features, although both induce loss of consciousness. Therefore, identifying a common feature of ketamine- and propofol-induced unconsciousness would provide insight into the underlying mechanism of losing consciousness. In this study we search for a common feature by applying the concept of type-II complexity, and argue that neural complexity is essential for a brain to maintain consciousness. To test this hypothesis, we show that complexity is suppressed during loss of consciousness induced by ketamine or propofol. We analyzed the randomness (type-I complexity) and complexity (type-II complexity) of electroencephalogram (EEG) signals before and after bolus injection of ketamine or propofol. For the analysis, we use Mean Information Gain (MIG) and Fluctuation Complexity (FC), which are information-theory-based measures that quantify disorder and complexity of dynamics respectively. Both ketamine and propofol reduced the complexity of the EEG signal, but ketamine increased the randomness of the signal and propofol decreased it. The finding supports our claim and suggests EEG complexity as a candidate for a consciousness indicator. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Analysis of DNA-protein complexes induced by chemical carcinogens

    SciTech Connect

    Costa, M. )

    1990-11-01

    DNA-protein complexes induced in intact cells by chromate have been isolated and compared with those formed by other agents such as cis-platinum. Actin has been identified as one of the major proteins that is complexed to the DNA by chromate based upon a number of criteria including, a molecular weight and isoelectric point identical to actin, positive reaction with actin polyclonal antibody, and proteolytic mapping. Chromate and cis-platinum both complex proteins of very similar molecular weight and isoelectric points and these complexes can be disrupted by exposure to chelating or reducing agents. These results suggest that the metal itself is participating in rather than catalyzing the formation of a DNA-protein complex. An antiserum which was raised to chromate-induced DNA-protein complexes reacted primarily with a 97,000 protein that could not be detected by silver staining. Western blots and slot blots were utilized to detect p97 DNA-protein complexes formed by cis-platinum, UV, formaldehyde, and chromate. Other work in this area, involving studying whether DNA-protein complexes are formed in actively transcribed DNA compared with genetically inactive DNA, is discussed. Methods to detect DNA-protein complexes, the stability and repair of these lesions, and characterization of DNA-protein complexes are reviewed. Nuclear matrix proteins have been identified as a major substrate for the formation of DNA-protein complexes and these findings are also reviewed.

  6. Cross-linking analysis of antigenic outer membrane protein complexes of Neisseria meningitidis.

    PubMed

    Sánchez, Sandra; Abel, Ana; Arenas, Jesús; Criado, María Teresa; Ferreirós, Carlos M

    2006-03-01

    Polysaccharide-based approaches have not enabled the development of effective vaccines against meningococci of serogroup B, and the most promising current research is focused on the use of outer membrane vesicles. Due to the toxicity of the outer membrane oligosaccharides, new vaccines based on purified proteins are being sought, but despite the application of advanced techniques, they remain elusive, perhaps due to the fact that standard techniques for analysis of antigens overlook conformational epitopes located in membrane complexes. Membrane complex antigens have been analyzed in Neisseria gonorrhoeae, and a study published on Neisseria meningitidis has reported the in vitro formation of 800-kD complexes by deposition of a purified protein (MSP63) onto synthetic lipid layers; however, no studies to date have attempted to identify membrane complexes present in vivo in N. meningitidis. In the present study, cross-linking with formaldehyde was used to identify outer membrane protein associations in various N. meningitidis and Neisseria lactamica strains. In N. meningitides, complexes of about 450 kD (also present in N. lactamica), 165 and 95 kD were detected and shown to be made up of the proteins MSP63, PorA/PorB/RmpM/FetA, and PorA/PorB/RmpM, respectively. In western blots, the 450-kD complex was identified by mouse antibodies raised against outer membrane vesicles, but not by antibodies raised against the purified complex, demonstrating the importance of conformational epitopes, and thus suggesting that the analysis of antigens in their native conformation may be useful or even essential for the design of effective vaccines against meningococci.

  7. Ruthenium(II) Complexes as Potential Apoptosis Inducers in Chemotherapy.

    PubMed

    Zheng, Kangdi; Wu, Qiong; Wang, Chengxi; Tan, Weijun; Mei, Wenjie

    2017-01-01

    Herein, the development of ruthenium complexes as potential apoptosis inducers, as well as their underlying mechanism has been reviewed. In recent years, various ruthenium complexes have been designed and their in vitro and in vivo inhibitory activities against various types of tumor cells have been evaluated extensively. It's demonstrated that ruthenium complexes can induce apoptosis of tumor cells through the signal pathway of mitochondria-mediated, death receptor-mediated, and/or endoplasmic reticulum (ER) stress pathways. Alternately, the binding behavior of these ruthenium(II) complexes with DNA, especially with Gquadruplex DNA may play a key role in the DNA damage of tumor cells, and thus provides a versatile tool to rational design novel ruthenium complexes with high activity and selectivity.

  8. Complexity induced solar wind turbulence and evolution

    NASA Astrophysics Data System (ADS)

    Chang, T.

    2003-04-01

    "Complexity" has become a hot topic in nearly every field of modern physics. Solar wind plasmas are of no exception. Recently, Chang [2002], in analogy with theories developed for phenomena observed in the magnetotail and the auroral zone [Chang, 1999; 2001], demonstrated that the sporadic and localized interactions of magnetic coherent structures arising from plasma resonances could be the origin of "complexity" of nonresonant pseudo-2D spatiotemporal fluctuations in solar wind turbulence and in the coronal hole base. Such nonresonant fluctuations were shown to exist in the solar wind by Matthaeus et al. [1990] in terms of the two-dimensional correlation as a function of distance parallel and perpendicular to the mean magnetic field based on the ISEE-3 magnetometer data. Other evidences indicating the existence of such type of fluctuations in the solar wind have been reported by Tu et al. [1989], Tu and Marsch [1990, 1991], Bruno and Bavassano [1991], Bavassano and Bruno [1992], Bruno et al. [2001], and others. These results explain [Tu and Marsch, 1991] why the Alfvén ratio (a quantitative measure of Alfvénicity) is often found to be less than one in the solar wind [Belcher and Davis 1971, Solodyna et al., 1977, Bruno et al, 1985, Roberts et al., 1990], particularly for the space range farther than 0.3 AU. The above observational results are also consistent with the conclusions obtained from 2D MHD numerical simulations [Matthaeus and Larkin, 1986, Roberts and Goldstein, 1988, Goldstein et al., 1989, Roberts et al., 1991, and Roberts, 1992]. Such findings have led Chang [2002] to suggest the following evolutional scenario for the plasma turbulence in the generic fast solar wind. In and near the coronal hole base, the turbulent fluctuations are predominantly nonresonantly generated by pseudo-2D nonlinear interactions. As the fluctuations emerge from the coronal hole base, they propagate resonantly in the field-aligned direction primarily as Alfvén waves

  9. Photochemically induced transformations of transition complexes

    NASA Astrophysics Data System (ADS)

    Brown, James E.

    1993-05-01

    Photolysis of the dinuclear complex ((n(sup 5)-C5H5)Fe(CO)2)2 in CHCl3 results in the formation of (n(sup 5)-C5H5)Fe(CO)2Cl through intermediate 17-electron radicals of the form (n(sup 5)-C5H5)Fe(CO)2. The photolyses of the related diphosphine-bridged compounds (n(sup 5)-C5H5)Fe(CO)2-u-DPPX, where DPPX = DPPM, DPPE, and DPPP and therefore are (Ph2P)2CH2, (Ph2P)2C2H, and (Ph2P)2C3H6 respectively, are described. The synthesis and photolysis of the analogous ruthenium DPPM dimer is also described. In contrast to the behavior of the simple iron dinuclear species, the DPPM and DPPE phosphine bridged compounds undergo photolysis in CHCl3 to yield products containing formyl substituted cyclopentadienyl rings. Details of the reactions studied and product characterizations using multinuclear NMR, IR, and single crystal X-ray diffraction techniques are described. A possible mechanism for the formation of the formyl derivatives is outlined. In the synthesis and purification of ((n(sup 5)-C5H5)Ru(CO))2-u-DPPM and the attempted synthesis of the ((n(sup 5)-C5H5)Ru(CO))2-u-DPPE, two ruthenium monomers of the form (n(sup 5)-C5H5)Ru(Cl)DPPX resulted. A possible reaction pathway for the synthesis of these two monomers as byproducts in the ruthenium phosphine dimer preparation is suggested. Full structural and spectral characterizations of the monomeric compounds are included.

  10. Inducible cadmium binding complexes of cabbage and tobacco

    SciTech Connect

    Wagner, G.J.; Trotter, M.M.

    1982-01-01

    Cadmium complexes with apparent molecular weights of 10,000 were observed in aqueous extracts of Cd-treated cabbage (Brassica capitata L., cv. red danish) and tobacco (hybrid of Nicotiana glauca and N. langsdorffii) plants. The amount of complex (as Cd) recovered was found to be dependent on the concentration of the metal in the growth medium and the total time of exposure of plants to the metal. Induction of the complex at moderate levels of /sup 112/Cd exposure was monitored after labeling the complex with /sup 109/Cd in vitro. The constitutive nature of the ligand of the complex in cabbage and tobacco leaves was suggested when control plant extracts were exposed to /sup 109/Cd. Such extracts contained /sup 109/Cd, which eluted froom Sephadex G-50 in the region of Cd complex. Simultaneous labeling with /sup 112/Cd and /sup 35/S or /sup 32/P indicated that the complex contained sulfur but probably not phosphorus. The amount of /sup 35/S which eluted coincident with /sup 112/Cd complex increased during complex induction. No evidence was found for the presence of 10,000 molecular weight Cd complex in stem exudates (vascular sap) of Cd-treated plants. The results obtained are consistent with the presence in these tissues of a ligand which is both inducible and consitutive and binds Cd in mercaptide bonds. All of these properties and oters reported earlier, are characteristic of Cd-metallothionein formed in animals.

  11. Inhibition of Proteasome Activity Induces Formation of Alternative Proteasome Complexes*

    PubMed Central

    Welk, Vanessa; Coux, Olivier; Kleene, Vera; Abeza, Claire; Trümbach, Dietrich; Eickelberg, Oliver; Meiners, Silke

    2016-01-01

    The proteasome is an intracellular protease complex consisting of the 20S catalytic core and its associated regulators, including the 19S complex, PA28αβ, PA28γ, PA200, and PI31. Inhibition of the proteasome induces autoregulatory de novo formation of 20S and 26S proteasome complexes. Formation of alternative proteasome complexes, however, has not been investigated so far. We here show that catalytic proteasome inhibition results in fast recruitment of PA28γ and PA200 to 20S and 26S proteasomes within 2–6 h. Rapid formation of alternative proteasome complexes did not involve transcriptional activation of PA28γ and PA200 but rather recruitment of preexisting activators to 20S and 26S proteasome complexes. Recruitment of proteasomal activators depended on the extent of active site inhibition of the proteasome with inhibition of β5 active sites being sufficient for inducing recruitment. Moreover, specific inhibition of 26S proteasome activity via siRNA-mediated knockdown of the 19S subunit RPN6 induced recruitment of only PA200 to 20S proteasomes, whereas PA28γ was not mobilized. Here, formation of alternative PA200 complexes involved transcriptional activation of the activator. Alternative proteasome complexes persisted when cells had regained proteasome activity after pulse exposure to proteasome inhibitors. Knockdown of PA28γ sensitized cells to proteasome inhibitor-mediated growth arrest. Thus, formation of alternative proteasome complexes appears to be a formerly unrecognized but integral part of the cellular response to impaired proteasome function and altered proteostasis. PMID:27129254

  12. Complex Chromosomal Rearrangements Induced in Vivo by Heavy Ions

    NASA Technical Reports Server (NTRS)

    Durante, M.; Ando, K.; Furusawa, G.; Obe, G.; George, K.; Cucinotta, F. A.

    2004-01-01

    It has been suggested that the ratio complex/simple exchanges can be used as a biomarker of exposure to high-LET radiation. We tested this hypothesis in vivo, by considering data from several studies that measured complex exchanges in peripheral blood from humans exposed to mixed fields of low- and high-LET radiation. In particular, we studied data from astronauts involved in long-term missions in low-Earth-orbit, and uterus cancer patients treated with accelerated carbon ions. Data from two studies of chromosomal aberrations in astronauts used blood samples obtained before and after space flight, and a third study used blood samples from patients before and after radiotherapy course. Similar methods were used in each study, where lymphocytes were stimulated to grow in vitro, and collected after incubation in either colcemid or calyculin A. Slides were painted with whole-chromosome DNA fluorescent probes (FISH), and complex and simple chromosome exchanges in the painted genome were classified separately. Complex-type exchanges were observed at low frequencies in control subjects, and in our test subjects before the treatment. No statistically significant increase in the yield of complex-type exchanges was induced by the space flight. Radiation therapy induced a high fraction of complex exchanges, but no significant differences could be detected between patients treated with accelerated carbon ions or X-rays. Complex chromosomal rearrangements do not represent a practical biomarker of radiation quality in our test subjects. Copyright 2003 S. Karger AG, Basel.

  13. Complex Chromosomal Rearrangements Induced in Vivo by Heavy Ions

    NASA Technical Reports Server (NTRS)

    Durante, M.; Ando, K.; Furusawa, G.; Obe, G.; George, K.; Cucinotta, F. A.

    2004-01-01

    It has been suggested that the ratio complex/simple exchanges can be used as a biomarker of exposure to high-LET radiation. We tested this hypothesis in vivo, by considering data from several studies that measured complex exchanges in peripheral blood from humans exposed to mixed fields of low- and high-LET radiation. In particular, we studied data from astronauts involved in long-term missions in low-Earth-orbit, and uterus cancer patients treated with accelerated carbon ions. Data from two studies of chromosomal aberrations in astronauts used blood samples obtained before and after space flight, and a third study used blood samples from patients before and after radiotherapy course. Similar methods were used in each study, where lymphocytes were stimulated to grow in vitro, and collected after incubation in either colcemid or calyculin A. Slides were painted with whole-chromosome DNA fluorescent probes (FISH), and complex and simple chromosome exchanges in the painted genome were classified separately. Complex-type exchanges were observed at low frequencies in control subjects, and in our test subjects before the treatment. No statistically significant increase in the yield of complex-type exchanges was induced by the space flight. Radiation therapy induced a high fraction of complex exchanges, but no significant differences could be detected between patients treated with accelerated carbon ions or X-rays. Complex chromosomal rearrangements do not represent a practical biomarker of radiation quality in our test subjects. Copyright 2003 S. Karger AG, Basel.

  14. Complex chromosomal rearrangements induced in vivo by heavy ions.

    PubMed

    Durante, M; Ando, K; Furusawa, Y; Obe, G; George, K; Cucinotta, F A

    2004-01-01

    It has been suggested that the ratio complex/simple exchanges can be used as a biomarker of exposure to high-LET radiation. We tested this hypothesis in vivo, by considering data from several studies that measured complex exchanges in peripheral blood from humans exposed to mixed fields of low- and high-LET radiation. In particular, we studied data from astronauts involved in long-term missions in low-Earth-orbit, and uterus cancer patients treated with accelerated carbon ions. Data from two studies of chromosomal aberrations in astronauts used blood samples obtained before and after space flight, and a third study used blood samples from patients before and after radiotherapy course. Similar methods were used in each study, where lymphocytes were stimulated to grow in vitro, and collected after incubation in either colcemid or calyculin A. Slides were painted with whole-chromosome DNA fluorescent probes (FISH), and complex and simple chromosome exchanges in the painted genome were classified separately. Complex-type exchanges were observed at low frequencies in control subjects, and in our test subjects before the treatment. No statistically significant increase in the yield of complex-type exchanges was induced by the space flight. Radiation therapy induced a high fraction of complex exchanges, but no significant differences could be detected between patients treated with accelerated carbon ions or X-rays. Complex chromosomal rearrangements do not represent a practical biomarker of radiation quality in our test subjects. Copyright 2003 S. Karger AG, Basel

  15. Calculation of interaction-induced spectra using complex absorbing potentials

    SciTech Connect

    Gustafsson, Magnus; Antipov, Sergey V.

    2010-10-29

    A complex absorbing potential method is implemented for calculation of collision-induced spectra. The scheme provides a way to avoid the integration of the Schroedinger equation to very large separations of the collisional pair. The method is tested by reproducing a previously computed absorption spectrum for H-He at two different temperatures.

  16. Necroptosis-Inducing Rhenium(V) Oxo Complexes

    PubMed Central

    Suntharalingam, Kogularamanan; Awuah, Samuel G.; Bruno, Peter M.; Johnstone, Timothy C.; Wang, Fang; Lin, Wei; Zheng, Yao-Rong; Page, Julia E.; Hemann, Michael T.; Lippard, Stephen J.

    2015-01-01

    Rhenium(V) oxo complexes of general formula [ReO(OMe)(N^N)Cl2], where N^N = 4,7-diphenyl-1,10-phenanthroline, 1, or 3,4,7,8-tetramethyl-1,10-phenanthroline, 2, effectively kill cancer cells by triggering necroptsosis, a non-apoptotic form of cell death. Both complexes evoke necrosome (RIP1-RIP3)-dependent intracellular ROS production and propidium iodide uptake. The complexes also induce mitochondrial membrane potential depletion, a possible downstream effect of ROS production. Apparently, 1 and 2 are the first rhenium complexes to evoke cellular events consistent with programmed necrosis in cancer cells. Furthermore, 1 and 2 display low acute toxicity in C57BL/6 mice and reasonable stability in fresh human blood. PMID:25698398

  17. Necroptosis-inducing rhenium(V) oxo complexes.

    PubMed

    Suntharalingam, Kogularamanan; Awuah, Samuel G; Bruno, Peter M; Johnstone, Timothy C; Wang, Fang; Lin, Wei; Zheng, Yao-Rong; Page, Julia E; Hemann, Michael T; Lippard, Stephen J

    2015-03-04

    Rhenium(V) oxo complexes of general formula [ReO(OMe)(N^N)Cl2], where N^N = 4,7-diphenyl-1,10-phenanthroline, 1, or 3,4,7,8-tetramethyl-1,10-phenanthroline, 2, effectively kill cancer cells by triggering necroptosis, a non-apoptotic form of cell death. Both complexes evoke necrosome (RIP1-RIP3)-dependent intracellular reactive oxygen species (ROS) production and propidium iodide uptake. The complexes also induce mitochondrial membrane potential depletion, a possible downstream effect of ROS production. Apparently, 1 and 2 are the first rhenium complexes to evoke cellular events consistent with programmed necrosis in cancer cells. Furthermore, 1 and 2 display low acute toxicity in C57BL/6 mice and reasonable stability in fresh human blood.

  18. Polysaccharide-polynucleotide complexes VIII. Cation-induced complex formation between polyuridylic acid and schizophyllan.

    PubMed

    Sakurai, Kazuo; Iguchi, Ritsuko; Koumoto, Kazuya; Kimura, Taro; Mizu, Masami; Hisaeda, Yoshio; Shinkai, Seiji

    2002-10-05

    Schizophyllan belongs to the beta-1,3-D-glucan family, and dissolves as a single chain in dimethyl sulfoxide (DMSO) and as a triple helix in water, respectively. It is already known that when we prepare a mixture of poly(C) and schizophyllan in DMSO and subsequently exchange the solvent to water, poly(C) and schizophyllan can form a complex. When we applied this procedure to the poly(U) system, we could not induce the complex formation between poly(U) and schizophyllan at all. However, we found that addition of some alkaline cations is necessary to induce the complexation between poly(U) and schizophyllan. The complex stability strongly depends on both the cation species and the salt concentration. The complexation is sensitively reflected in the CD spectrum. The magnitude of the spectral change is followed by the order; Rb(+) > K(+) > Na(+) ? Cs(+). This cation order in the stability is confirmed by the fluorescence polarization measurements. (23)Na-NMR spectroscopy reveals that the product system is stabilized by addition of the cations, suggesting that the OH group in schizophyllan and the phosphate anion in poly(U) synergistically form a specific ligand system for the cations. To the best of our knowledge, such a cation-induced specific interaction between saccharides and polynucleotides has not been reported, and may provide a new clue to understand the biological role of beta-1,3-D-glucans. Copyright 2002 Wiley Periodicals, Inc. Biopolymers 65: 1-9, 2002

  19. Grinding-induced equimolar complex formation between thiourea and ethenzamide.

    PubMed

    Moribe, Kunikazu; Tsuchiya, Masami; Tozuka, Yuichi; Yamaguchi, Kentaro; Oguchi, Toshio; Yamamoto, Keiji

    2004-05-01

    We prepared and characterized a grinding-induced equimolar complex of thiourea with ethenzamide. When thiourea and ethenzamide were co-ground at a molar ratio of 3 : 1, new powder X-ray diffraction (PXRD) peaks were observed in addition to PXRD peaks of thiourea crystals. The optimum stoichiometry of the new structure was confirmed as 1 : 1 mol/mol. Effect of grinding time on the thiourea-ethenzamide equimolar complex formation was investigated by using PXRD, differential scanning calorimetry and Fourier transform infrared spectroscopy. The equimolar crystal structure was confirmed by X-ray diffraction measurements of the single crystal which was recrystallized from ethanol. It was found that the intermolecular hydrogen bond formations between thiourea and ethenzamide molecules contributed to the equimolar complex formation. The complex formation was not observed in the cases where benzamide, salicylamide or 3-ethoxybenzamide was co-ground with thiourea. 2-Alcoxyl benzamide structures should be required for the grinding-induced equimolar complex formation with thiourea.

  20. Penicillin-induced immunohemolytic anemia associated with circulating immune complexes.

    PubMed

    Funicella, T; Weinger, R S; Moake, J L; Spruell, M; Rossen, R D

    1977-01-01

    Eleven days after administration of multiple penicillin analogs, a 55-year-old female developed a Coombs-positive hemolytic anemia. The patient's erythrocytes were coated with IgG, complement components (C4/C3) and her serum contained elevated 125I-Clq binding activity (a measure of the presence of immune complexes). Her serum, in the presence of fresh complement and penicillin, induced complement sensitization of normal erythrocytes. Immune complex-mediated complement activation and the haptene type of erythrocyte sensitization accounted for accelerated red blood cell destruction in this patient.

  1. Complex pathologies of angiotensin II-induced abdominal aortic aneurysms*

    PubMed Central

    Daugherty, Alan; Cassis, Lisa A.; Lu, Hong

    2011-01-01

    Angiotensin II (AngII) is the primary bioactive peptide of the renin angiotensin system that plays a critical role in many cardiovascular diseases. Subcutaneous infusion of AngII into mice induces the development of abdominal aortic aneurysms (AAAs). Like human AAAs, AngII-induced AAA tissues exhibit progressive changes and considerable heterogeneity. This complex pathology provides an impediment to the quantification of aneurysmal tissue composition by biochemical and immunostaining techniques. Therefore, while the mouse model of AngII-induced AAAs provides a salutary approach to studying the mechanisms of the evolution of AAAs in humans, meaningful interpretation of mechanisms requires consideration of the heterogeneous nature of the diseased tissue. PMID:21796801

  2. Potassium Channel Complex Autoimmunity Induced by Inhaled Brain Tissue Aerosol

    PubMed Central

    Meeusen, Jeffrey W.; Klein, Christopher J.; Pirko, Istvan; Haselkorn, Keegan E.; Kryzer, Thomas J.; Pittock, Sean J.; Lachance, Daniel H.; Dyck, P. James; Lennon, Vanda A.

    2011-01-01

    Objective Test the hypothesis that autoimmunity induced by inhalation of aerosolized brain tissue caused outbreaks of sensory-predominant polyradiculoneuropathy among swine abattoir employees in Midwestern USA Methods Mice were exposed intranasally, 5 days weekly, to liquefied brain tissue. Serum from exposed mice, patients and unaffected abattoir employees were analyzed for clinically pertinent neural autoantibodies. Results Patients, coworkers and mice exposed to liquefied brain tissue had an autoantibody profile dominated by neural cation channel IgGs. The most compelling link between patients and exposed mice was MRI evidence of grossly swollen spinal nerve roots. Autoantibody responses in patients and mice were dose-dependent and declined after antigen exposure ceased. Autoantibodies detected most frequently, and at high levels, bound to detergent-solubilized macromolecular complexes containing neuronal voltage-gated potassium channels ligated with a high affinity Kv1 channel antagonist, 125I-α-dendrotoxin. Exposed mice exhibited a behavioral phenotype consistent with potassium channel dysfunction recognized in drosophila with mutant (“shaker”) channels: reduced sensitivity to isoflurane-induced anesthesia. Pathological and electrophysiological findings in patients supported peripheral nerve hyperexcitability over destructive axonal loss. The pain-predominant symptoms were consistent with sensory nerve hyperexcitability Interpretation Our observations establish that inhaled neural antigens readily induce neurological autoimmunity and identify voltage-gated potassium channel complexes as a major immunogen. PMID:22451206

  3. Oxygen radicals photo-induced by ferric nitrilotriacetate complex.

    PubMed

    Tsuchiya, Koichiro; Akai, Kaori; Tokumura, Akira; Abe, Shinji; Tamaki, Toshiaki; Takiguchi, Yoshiharu; Fukuzawa, Kenji

    2005-08-30

    This study examined the photo-induced generation of reactive oxygen species (ROS) by the carcinogenic iron(III)-NTA complex. Iron(III)-NTA complex (1:1) has three conformations (type (a) in acidic conditions of pH 1-6, type (n) in neutral conditions of pH 3-9, and type (b) in basic conditions of pH 7-10) with two pK(a) values (pK(a1) approximately 4, pK(a2) approximately 8). The iron(III)-NTA complex was reduced to iron(II) under cool-white fluorescent light without the presence of any reducing agent, and the reduction rates of the three conformations of iron(III)-NTA were in the order type (a)>type (n)>type (b) as reported previously (Akai K. et al., Free Radic. Res. 38, 951-962, 2004). ROS generation was investigated by electron paramagnetic resonance (EPR) spectroscopy with a spin-trapping technique. Apparent EPR signals attributed to PBN/*(13)CH(3) and PBN/*OCH(3) spin adducts were observed after incubation of the iron(III)-NTA complex was mixed with alpha-phenyl-tert-butylnitrone (PBN) and (13)C-DMSO in an aerobic condition. The addition of catalase effectively attenuated the PBN adducts, but superoxide dismutase enhanced them. Taken together, these results indicate that the iron(III)-NTA complex is spontaneously reduced to the iron(II)-NTA complex by light under acidic to neutral pH, and in turn transfers an electron to molecular oxygen to form ROS.

  4. DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION

    SciTech Connect

    Barry L. Burks

    2002-12-01

    The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

  5. B Vitamin Complex and Chemotherapy-Induced Peripheral Neuropathy.

    PubMed

    Schloss, Janet; Colosimo, Maree

    2017-10-05

    The purpose of this mini review is to evaluate the literature on B vitamins and chemotherapy-induced peripheral neuropathy. One hundred and five journal articles were evaluated and nine manuscripts were included. There was one in vitro, one was an animal and seven were human studies. The in vitro study was a safety study on vitamin B6 and oxaliplatin which was not directly related to CIPN. The animal study evaluated vitamin B3 on paclitaxel administration with positive results. The human studies varied using a vitamin B complex, vitamin B12 only and vitamin B6. Chemotherapy-induced peripheral neuropathy (CIPN) continues to plague patients and the medical fraternity. Currently, there are still no conclusive protective or treatment options. B vitamins have been found to play a role in CIPN prevention, but further studies are required to ascertain possible protection and treatment options.

  6. Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors

    PubMed Central

    Kim, Do Young; Vallejo, Johana; Rho, Jong M

    2010-01-01

    Abstract Ketones have previously shown beneficial effects in models of neurodegenerative disorders, particularly against associated mitochondrial dysfunction and cognitive impairment. However, evidence of a synaptic protective effect of ketones remains lacking. We tested the effects of ketones on synaptic impairment induced by mitochondrial respiratory complex (MRC) inhibitors using electrophysiological, reactive oxygen species (ROS) imaging and biochemical techniques. MRC inhibitors dose-dependently suppressed both population spike (PS) and field potential amplitudes in the CA1 hippocampus. Pre-treatment with ketones strongly prevented changes in the PS, whereas partial protection was seen in the field potential. Rotenone (Rot; 100 nmol/L), a MRC I inhibitor, suppressed synaptic function without altering ROS levels and PS depression by Rot was unaffected by antioxidants. In contrast, antioxidant-induced PS recovery against the MRC II inhibitor 3-nitropropionic acid (3-NP; 1 mmol/L) was similar to the synaptic protective effects of ketones. Ketones also suppressed ROS generation induced by 3-NP. Finally, ketones reversed the decreases in ATP levels caused by Rot and 3-NP. In summary, our data demonstrate that ketones can preserve synaptic function in CA1 hippocampus induced by MRC dysfunction, likely through an antioxidant action and enhanced ATP generation. PMID:20374433

  7. Surface-induced rearrangement of polyelectrolyte complexes: influence of complex composition on adsorbed layer properties.

    PubMed

    Ondaral, Sedat; Ankerfors, Caroline; Odberg, Lars; Wågberg, Lars

    2010-09-21

    The adsorption characteristics of two different types of polyelectrolyte complexes (PECs), prepared by mixing poly(allylamine hydrochloride) and poly(acrylic acid) in a confined impinging jet (CIJ) mixer, have been investigated with the aid of stagnation point adsorption reflectometry (SPAR), a quartz crystal microbalance with dissipation (QCM-D), and atomic force microscopy (AFM) using SiO(2) surfaces. The two sets of PEC were prepared by combining high molecular mass PAH/PAA (PEC-A) and low molecular mass PAH/PAA (PEC-B). The PEC-A showed a higher adsorption to the SiO(2) surfaces than the PEC-B. The adsorption of the PEC-A also showed a larger change in the dissipation (ΔD), according to the QCM-D measurements, suggesting that the adsorbed layer of these complexes had a relatively lower viscosity and a lower shear modulus. Complementary investigations of the adsorbed layer using AFM imaging showed that the adsorbed layer of PEC-A was significantly different from that of PEC-B and that the changes in properties with adsorption time were very different for the two types of PECs. The PEC-A complexes showed a coalescence into larger block of complexes on the SiO(2) surface, but this was not detected with the PEC-B. The size determinations of the complexes in solution showed that they were very stable over time, and it was therefore concluded that the coalescence of the complexes was induced by the interaction between the complexes and the surface. The results also indicated that polyelectrolytes can migrate between the different complexes adsorbed to the surface. The results also give indications that the preparation of PEC-B leads to the formation of two different types of polyelectrolyte complexes differing in the amount of polymer in the complexes; i.e., two populations of complexes were formed with similar sizes but with totally different adsorption structures at the solid-liquid interface.

  8. Inducible and Acquired Clarithromycin Resistance in the Mycobacterium abscessus Complex

    PubMed Central

    Rubio, Marc; March, Francesca; Garrigó, Montserrat; Moreno, Carmen; Español, Montserrat; Coll, Pere

    2015-01-01

    Purpose Clarithromycin was considered the cornerstone for the treatment of Mycobacterium abscessus complex infections. Genetic resistance mechanisms have been described and many experts propose amikacin as an alternative. Nevertheless, clarithromycin has several advantages; therefore, it is necessary to identify the non-functional erm(41) allele to determine the most suitable treatment. The aims of this study were to characterize the molecular mechanisms of clarithromycin resistance in a collection of Mycobacterium abscessus complex isolates and to verify the relationship between these mechanisms and the antibiogram. Materials and Methods Clinical isolates of M. abscessus complex (n = 22) from 16 patients were identified using four housekeeping genes (rpoB, secA1, sodA and hsp65), and their genetic resistance was characterized by studying erm(41) and rrl genes. Nine strains were recovered from the clinical isolates and subjected to E-test and microdilution clarithromycin susceptibility tests, with readings at 3, 7 and 14 days. Results We classified 11/16 (68.8%) M. abscessus subsp. abscessus, 4/16 (25.0%) M. abscessus subsp. bolletii, and 1/16 (6.3%) M. abscessus subsp. massiliense. T28 erm(41) allele was observed in 8 Mycobacterium abscessus subps. abscessus and 3 Mycobacterium abscessus subsp. bolletii. One strain of M. abscessus subsp. bolletii had an erm(41) gene truncated and was susceptible to clarithromycin. No mutations were observed in rrl gene first isolates. In three patients, follow-up of initial rrl wild-type strains showed acquired resistance. Conclusions Most clinical isolates of M. abscessus complex had inducible resistance to clarithromycin and total absence of constitutive resistance. Our findings showed that the acquisition of resistance mutations in rrl gene was associated with functional and non-functional erm(41) gene. Caution is needed when using erm(41) sequencing alone to identify M. abscessus subspecies. This study reports an acquired

  9. AUTOLOGOUS IMMUNE COMPLEX NEPHRITIS INDUCED WITH RENAL TUBULAR ANTIGEN

    PubMed Central

    Glassock, Richard J.; Edgington, Thomas S.; Watson, J. Ian; Dixon, Frank J.

    1968-01-01

    The pathogenetic mechanism involved in a form of experimental allergic glomerulonephritis induced by immunization of rats with renal tubular antigen has been investigated. A single immunization with less than a milligram of a crude renal tubular preparation, probably containing less than 25 µg of the specific nephritogenic antigen, is effective in the induction of this form of chronic membranous glomerulonephritis. In the nephritic kidney autologous nephritogenic tubular antigen is found in the glomerular deposits along with γ-globulin and complement. When large amounts of antigen are injected during induction of the disease the exogenous immunizing antigen can also be detected in the glomerular deposits. It appears that this disease results from the formation of circulating antibodies capable of reacting with autologous renal tubular antigen(s) and the deposition of these antibodies and antigen(s) plus complement apparently as immune complexes in the glomeruli. This pathogenetic system has been termed an autologous immune complex disease and the resultant glomerulonephritis has been similarly designated. PMID:4169966

  10. Acid induced acetylacetonato replacement in biscyclometalated iridium(III) complexes.

    PubMed

    Li, Yanfang; Liu, Yang; Zhou, Ming

    2012-04-07

    Biscyclometalated iridium(III) complexes with an ancillary acetylacetone ligand, Ir(L)(2)(acac), (L = 2-(benzo[b]thiophen-2-yl)pyridine (btp), 1-phenylisoquinoline (piq), 2-phenylbenzothiazole (bt), 2-phenylpyridine (ppy), acac = deprotonated acetylacetone), demonstrate spectroscopic changes in their UV-Vis absorption and luminescent emission under acidic conditions. Such changes were found to be the same as those observed when certain mercury salts exist in the systems. Because some iridium(III) complexes have sulfur-containing ligands (i.e., btp and bt), a question was then raised as for whether or not the spectroscopic changes are associated with the specific affinity of Hg(2+) to the sulfur atom. Extensive studies performed in this work unambiguously proved that the observed spectroscopic changes were solely the results of the acid induced departure of acac and the follow-up coordination of solvent acetonitrile to the iridium(III) center and that the generally anticipated Hg(2+)-S affinity and its effect on the photophysical properties of iridium(III) luminophores did not play a role.

  11. Noise-induced polarization switching in complex networks

    NASA Astrophysics Data System (ADS)

    Haerter, Jan O.; Díaz-Guilera, Albert; Serrano, M. Ángeles

    2017-04-01

    The combination of bistability and noise is ubiquitous in complex systems, from biology to social interactions, and has important implications for their functioning and resilience. Here we use a simple three-state dynamical process, in which nodes go from one pole to another through an intermediate state, to show that noise can induce polarization switching in bistable systems if dynamical correlations are significant. In large, fully connected networks, where dynamical correlations can be neglected, increasing noise yields a collapse of bistability to an unpolarized configuration where the three possible states of the nodes are equally likely. In contrast, increased noise induces abrupt and irreversible polarization switching in sparsely connected networks. In multiplexes, where each layer can have a different polarization tendency, one layer is dominant and progressively imposes its polarization state on the other, offsetting or promoting the ability of noise to switch its polarization. Overall, we show that the interplay of noise and dynamical correlations can yield discontinuous transitions between extremes, which cannot be explained by a simple mean-field description.

  12. Strain-induced phenomenon in complex oxide thin films

    NASA Astrophysics Data System (ADS)

    Haislmaier, Ryan

    Complex oxide materials wield an immense spectrum of functional properties such as ferroelectricity, ferromagnetism, magnetoelectricity, optoelectricity, optomechanical, magnetoresistance, superconductivity, etc. The rich coupling between charge, spin, strain, and orbital degrees of freedom makes this material class extremely desirable and relevant for next generation electronic devices and technologies which are trending towards nanoscale dimensions. Development of complex oxide thin film materials is essential for realizing their integration into nanoscale electronic devices, where theoretically predicted multifunctional capabilities of oxides could add tremendous value. Employing thin film growth strategies such as epitaxial strain and heterostructure interface engineering can greatly enhance and even unlock novel material properties in complex oxides, which will be the main focus of this work. However, physically incorporating oxide materials into devices remains a challenge. While advancements in molecular beam epitaxy (MBE) of thin film oxide materials has led to the ability to grow oxide materials with atomic layer precision, there are still major limitations such as controlling stoichiometric compositions during growth as well as creating abrupt interfaces in multi-component layered oxide structures. The work done in this thesis addresses ways to overcome these limitations in order to harness intrinsic material phenomena. The development of adsorption-controlled stoichiometric growth windows of CaTiO3 and SrTiO3 thin film materials grown by hybrid MBE where Ti is supplied using metal-organic titanium tetraisopropoxide material is thoroughly outlined. These growth windows enable superior epitaxial strain-induced ferroelectric and dielectric properties to be accessed as demonstrated by chemical, structural, electrical, and optical characterization techniques. For tensile strained CaTiO3 and compressive strained SrTiO 3 films, the critical effects of

  13. Complex cytokine profiles induced by BCG vaccination in UK infants.

    PubMed

    Lalor, Maeve K; Smith, Steven G; Floyd, Sian; Gorak-Stolinska, Patricia; Weir, Rosemary E; Blitz, Rose; Branson, Keith; Fine, Paul E; Dockrell, Hazel M

    2010-02-10

    IFNgamma plays an important part in immunity to tuberculosis (TB), but although it is necessary, it is not on its own sufficient for protection against TB. To identify other cytokines that play a role in the protection against TB induced by BCG vaccination, immune responses were compared between vaccinated and unvaccinated infants from the UK where BCG is known to provide protection. Twenty-one cytokines and chemokines were tested in supernatants from diluted whole blood cultures that had been stimulated for 6 days with Mycobacterium tuberculosis PPD. For 15 out of 21 of the cytokines tested responses were much higher in BCG vaccinated infants than in unvaccinated infants. These included: pro-inflammatory cytokines; IFNgamma (median 1705 pg/ml vs. 1.6 pg/ml in vaccinated and unvaccinated infants, respectively), TNFalpha (median 226 pg/ml vs. 18 pg/ml), as well as IL-2, IL-1alpha and IL-6; TH2 cytokines: IL-4, IL-5 and IL-13 (median 104 pg/ml vs. 1.6 pg/ml); the regulatory cytokine IL-10 (median response 96 pg/ml vs. 8 pg/ml); the TH17 cytokine IL-17, chemokines (IP-10, MIP-1alpha and IL-8) and growth factors (GM-CSF and G-CSF). The greatest increase in cytokine production in BCG vaccinees compared to unvaccinated infants was seen with IFNgamma. While responses for many cytokines were correlated with the IFNgamma response, others including IL-17 and IL-10 were not. The pattern of cytokine induction following BCG vaccination is complex and measurement of one of two cytokines does not reveal the whole picture of vaccine-induced protection. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. Complex cytokine profiles induced by BCG vaccination in UK infants

    PubMed Central

    Lalor, Maeve K.; Smith, Steven G.; Floyd, Sian; Gorak-Stolinska, Patricia; Weir, Rosemary E.; Blitz, Rose; Branson, Keith; Fine, Paul E.; Dockrell, Hazel M.

    2010-01-01

    IFNγ plays an important part in immunity to tuberculosis (TB), but although it is necessary, it is not on its own sufficient for protection against TB. To identify other cytokines that play a role in the protection against TB induced by BCG vaccination, immune responses were compared between vaccinated and unvaccinated infants from the UK where BCG is known to provide protection. Twenty-one cytokines and chemokines were tested in supernatants from diluted whole blood cultures that had been stimulated for 6 days with Mycobacterium tuberculosis PPD. For 15 out of 21 of the cytokines tested responses were much higher in BCG vaccinated infants than in unvaccinated infants. These included: pro-inflammatory cytokines; IFNγ (median 1705 pg/ml vs. 1.6 pg/ml in vaccinated and unvaccinated infants, respectively), TNFα (median 226 pg/ml vs. 18 pg/ml), as well as IL-2, IL-1α and IL-6; TH2 cytokines: IL-4, IL-5 and IL-13 (median 104 pg/ml vs. 1.6 pg/ml); the regulatory cytokine IL-10 (median response 96 pg/ml vs. 8 pg/ml); the TH17 cytokine IL-17, chemokines (IP-10, MIP-1α and IL-8) and growth factors (GM-CSF and G-CSF). The greatest increase in cytokine production in BCG vaccinees compared to unvaccinated infants was seen with IFNγ. While responses for many cytokines were correlated with the IFNγ response, others including IL-17 and IL-10 were not. The pattern of cytokine induction following BCG vaccination is complex and measurement of one of two cytokines does not reveal the whole picture of vaccine-induced protection. PMID:19941997

  15. Modeling complex neuropsychiatric disorders with human induced pluripotent stem cells.

    PubMed

    Tobe, Brian T D; Snyder, Evan Y; Nye, Jeffrey S

    2011-10-01

    Identifying the molecular and cellular basis of complex neuropsychiatric disorders (cNPDs) has been limited by the inaccessibility of central neurons, variability within broad diagnostic classifications, and the interplay of genetic and environmental factors. Recent work utilizing neuronally differentiated human induced pluripotent stem cells (hiPSCs) from Mendelian and polygenic cNPDs is beginning to illuminate neuritic, synaptic or cell body variations accompanied by specific gene or protein expression alterations largely mimicking known pathology. In some cases, phenotypes have only emerged after application of cellular stress or long duration of differentiation. Pathological and cellular expression features are fully or partially responsive to pharmacological treatment highlighting the potential utility of differentiated hiPSCs for discovery of personalized therapeutics and for identifying pathogenetically relevant targets in subgroups of patients within a broad syndromic classification. Because of the inherent variability in developing and differentiating hiPSC lines and the multiple comparisons implicit in 'omics' technologies, rigorous algorithms for assuring statistical significance and independent confirmation of results, will be required for robust modeling of cNPDs.

  16. MSC/ECM Cellular Complexes Induce Periodontal Tissue Regeneration.

    PubMed

    Takewaki, M; Kajiya, M; Takeda, K; Sasaki, S; Motoike, S; Komatsu, N; Matsuda, S; Ouhara, K; Mizuno, N; Fujita, T; Kurihara, H

    2017-08-01

    Transplantation of mesenchymal stem cells (MSCs), which possess self-renewing properties and multipotency, into a periodontal defect is thought to be a useful option for periodontal tissue regeneration. However, developing more reliable and predictable implantation techniques is still needed. Recently, we generated clumps of an MSC/extracellular matrix (ECM) complex (C-MSC), which consisted of cells and self-produced ECM. C-MSCs can regulate their cellular functions in vitro and can be grafted into a defect site, without any artificial scaffold, to induce bone regeneration. Accordingly, this study aimed to evaluate the effect of C-MSC transplantation on periodontal tissue regeneration in beagle dogs. Seven beagle dogs were employed to generate a premolar class III furcation defect model. MSCs isolated from dog ilium were seeded at a density of 7.0 × 10(4) cells/well into 24-well plates and cultured in growth medium supplemented with 50 µg/mL ascorbic acid for 4 d. To obtain C-MSCs, confluent cells were scratched using a micropipette tip and were then torn off as a cellular sheet. The sheet was rolled up to make round clumps of cells. C-MSCs were maintained in growth medium or osteoinductive medium (OIM) for 5 or 10 d. The biological properties of C-MSCs were evaluated in vitro, and their periodontal tissue regenerative activity was tested by using a dog class III furcation defect model. Immunofluorescence analysis revealed that type I collagen fabricated the form of C-MSCs. OIM markedly elevated calcium deposition in C-MSCs at day 10, suggesting its osteogenic differentiation capacity. Both C-MSCs and C-MSCs cultured with OIM transplantation without an artificial scaffold into the dog furcation defect induced periodontal tissue regeneration successfully compared with no graft, whereas osteogenic-differentiated C-MSCs led to rapid alveolar bone regeneration. These findings suggested that the use of C-MSCs refined by self-produced ECM may represent a novel

  17. Three-dimensional induced polarization data inversion for complex resistivity

    SciTech Connect

    Commer, M.; Newman, G.A.; Williams, K.H.; Hubbard, S.S.

    2011-03-15

    The conductive and capacitive material properties of the subsurface can be quantified through the frequency-dependent complex resistivity. However, the routine three-dimensional (3D) interpretation of voluminous induced polarization (IP) data sets still poses a challenge due to large computational demands and solution nonuniqueness. We have developed a flexible methodology for 3D (spectral) IP data inversion. Our inversion algorithm is adapted from a frequency-domain electromagnetic (EM) inversion method primarily developed for large-scale hydrocarbon and geothermal energy exploration purposes. The method has proven to be efficient by implementing the nonlinear conjugate gradient method with hierarchical parallelism and by using an optimal finite-difference forward modeling mesh design scheme. The method allows for a large range of survey scales, providing a tool for both exploration and environmental applications. We experimented with an image focusing technique to improve the poor depth resolution of surface data sets with small survey spreads. The algorithm's underlying forward modeling operator properly accounts for EM coupling effects; thus, traditionally used EM coupling correction procedures are not needed. The methodology was applied to both synthetic and field data. We tested the benefit of directly inverting EM coupling contaminated data using a synthetic large-scale exploration data set. Afterward, we further tested the monitoring capability of our method by inverting time-lapse data from an environmental remediation experiment near Rifle, Colorado. Similar trends observed in both our solution and another 2D inversion were in accordance with previous findings about the IP effects due to subsurface microbial activity.

  18. Luminescence modulations of rhenium tricarbonyl complexes induced by structural variations.

    PubMed

    Bertrand, Hélène C; Clède, Sylvain; Guillot, Régis; Lambert, François; Policar, Clotilde

    2014-06-16

    Octahedral d(6) low-spin Re(I) tricarbonyl complexes are of considerable interest as noninvasive imaging probes and have been deeply studied owing to their biological stability, low toxicity, large Stokes shifts, and long luminescence lifetimes. We reported recently the bimodal IR and luminescence imaging of a Re(I) tricarbonyl complex with a Pyta ligand (4-(2-pyridyl)-1,2,3-triazole) in cells and labeled such metal-carbonyl complexes SCoMPIs for single-core multimodal probes for imaging. Re(I) tricarbonyl complexes have unique photophysical properties allowing for their unequivocal detection in cells but also present some weaknesses such as a very low luminescence quantum yield in aqueous medium. Further optimizations would thus be desirable. We therefore developed new Re(I) tricarbonyl complexes prepared from different ancillary ligands. Complexes with benzothiadiazole-triazole ligands show interesting luminescent quantum yields in acetonitrile and may constitute valuable luminescent metal complexes in organic media. A series of complexes with bidentate 1-(2-quinolinyl)-1,2,3-triazole (Taquin) and 1-(2-pyridyl)-1,2,3-triazole (Tapy) ligands bearing various 4-substituted alkyl side chains has been designed and synthesized with efficient procedures. Their photophysical properties have been characterized in acetonitrile and in a H2O/DMSO (98/2) mixture and compared with those of the parent Quinta- and Pyta-based complexes. Tapy complexes bearing long alkyl chains show impressive enhancement of their luminescent properties relative to the parent Pyta complex. Theoretical calculations have been performed to further characterize this new class of rhenium tricarbonyl complexes. Preliminary cellular imaging studies in MDA-MB231 breast cancer cells reveal a strong increase in the luminescence signal in cells incubated with the Tapy complex substituted with a C12 alkyl chain. This study points out the interesting potential of the Tapy ligand in coordination chemistry

  19. Calculation of complex DNA damage induced by ions

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Gallagher, David C.; Solov'yov, Andrey V.

    2011-11-01

    This paper is devoted to the analysis of the complex damage of DNA irradiated by ions. The assessment of complex damage is important because cells in which it occurs are less likely to survive because the DNA repair mechanisms may not be sufficiently effective. We study the flux of secondary electrons through the surface of nucleosomes and calculate the radial dose and the distribution of clustered damage around the ion's path. The calculated radial dose distribution is compared to simulations. The radial distribution of the complex damage is found to be different from that of the dose. A comparison with experiments may solve the question of what is more lethal for the cell, damage complexity or absorbed energy. We suggest a way to calculate the probability of cell death based on the complexity of the damage. This work is done within the framework of the phenomenon-based multiscale approach to radiation damage by ions.

  20. Base-induced dehydrogenation of ruthenium hydrazine complexes.

    PubMed

    Field, Leslie D; Li, Hsiu L; Dalgarno, Scott J; McIntosh, Ruaraidh D

    2013-02-04

    Treatment of [RuCl(PP(3)(iPr))](+)Cl(-) (PP(3)(iPr) = P(CH(2)CH(2)P(i)Pr(2))(3)) with hydrazine, phenylhydrazine, and methylhydrazine afforded side-on bound hydrazine complexes [RuCl(η(2)-H(2)N-NH(2))(η(3)-PP(3)(iPr))](+), [RuCl(η(2)-H(2)N-NHPh)(η(3)-PP(3)(iPr))](+), and [RuCl(η(2)-H(2)N-NHMe)(η(3)-PP(3)(iPr))](+). The analogous reactions of [RuCl(2)(PP(3)(Ph))] (PP(3)(Ph) = P(CH(2)CH(2)PPh(2))(3)) with hydrazine, phenylhydrazine, and methylhydrazine afforded end-on bound hydrazine complexes [RuCl(η(1)-H(2)N-NH(2))(PP(3)(Ph))](+), [RuCl(η(1)-H(2)N-NHPh)(PP(3)(Ph))](+), and [RuCl(η(1)-H(2)N-NHMe)(PP(3)(Ph))](+). Treatment of parent hydrazine complex [RuCl(N(2)H(4))(PP(3)(iPr))](+) with strong base afforded the dinitrogen and dihydride complexes [Ru(N(2))(PP(3)(iPr))] and [RuH(2)(PP(3)(iPr))]. Treatment of phenylhydrazine complex [RuCl(NH(2)NHPh)(PP(3)(iPr))](+) with strong base afforded the hydrido ruthenaindazole complex [RuH(η(2)-NH═NC(6)H(4))(η(3)-PP(3)(iPr))] while similar treatment of methylhydrazine complex [RuCl(NH(2)NHMe)(PP(3)(iPr))](+) afforded the hydrido methylenehydrazide complex [RuH(NHN═CH(2))(PP(3)(iPr))]. Treatment of the hydrazine complexes [RuCl(NH(2)NHR)(PP(3)(Ph))](+) (R = H, Ph, Me) with strong base afforded the dinitrogen complex [Ru(N(2))(PP(3)(Ph))].

  1. Exciton coupling induces vibronic hyperchromism in light-harvesting complexes

    NASA Astrophysics Data System (ADS)

    Schulze, Jan; Torbjörnsson, Magne; Kühn, Oliver; Pullerits, Tõnu

    2014-04-01

    The recently suggested possibility that weak vibronic transitions can be excitonically enhanced in light-harvesting complexes is studied in detail. A vibronic exciton dimer model that includes ground-state vibrations is investigated using the multi-configuration time-dependent Hartree method with a parameter set typical to photosynthetic light-harvesting complexes. The absorption spectra are discussed based on the Coulomb coupling, the detuning of the site energies, and the number of vibrational modes. Fluorescence spectra calculations show that the spectral densities obtained from the low-temperature fluorescence line-narrowing measurements of light-harvesting systems need to be corrected for the effects of excitons. For the J-aggregate configuration, as in most light-harvesting complexes, the true spectral density has a larger amplitude than that obtained from the measurement.

  2. Light induced electron transfer reactions of metal complexes

    SciTech Connect

    Sutin, N; Creutz, C

    1980-01-01

    Properties of the excited states of tris(2,2'-bipyridine) and tris(1,10-phenanthroline) complexes of chromium(III), iron(II), ruthenium(II), osmium(II), rhodium(III), and iridium(III) are described. The electron transfer reactions of the ground and excited states are discussed and interpreted in terms of the driving force for the reaction and the distortions of the excited states relative to the corresponding ground states. General considerations relevant to the conversion of light into chemical energy are presented and progress in the use of polypyridine complexes to effect the light decomposition of water into hydrogen and oxygen is reviewed.

  3. Selenite induces topoisomerase I and II-DNA complexes in K562 leukemia cells.

    PubMed

    López-Lázaro, Miguel; Willmore, Elaine; Elliott, Sarah L; Austin, Caroline A

    2008-11-01

    The essential trace element selenium is one of the most promising cancer chemopreventive agents. Data from preclinical studies have revealed that selenite, an inorganic form of selenium, may also be useful in cancer chemotherapy. DNA topoisomerases (topos) are the target of several useful anticancer drugs. These drugs induce DNA complexes with either topo I or topo II; then cellular processing coverts these topo-DNA complexes into permanent DNA strand breaks that ultimately lead to cell death. Previous reports have revealed that selenite can induce apoptosis in cancer cells selectively and that selenite-induced apoptosis is preceded by the formation of DNA strand breaks. In vitro experiments have shown that selenite induces topo II-DNA complexes, which seem to be involved in selenite-induced apoptosis. Using the cell-based assay TARDIS, here we show that selenite induces topo II-DNA complexes (topo IIalpha and topo IIbeta) in K562 leukemia cells; these complexes appeared in a time-dependent manner and correlated with the induction of apoptosis. Cells lacking topo IIbeta were resistant to selenite-induced cell growth inhibition, suggesting that this isoenzyme is a target for selenite. We report for the first time that selenite induces topo I-DNA complexes in K562 cells; the levels of these complexes were high at short exposure times and seem to appear before the induction of apoptosis. Overall, our results show that selenite induces topo-DNA complexes in cells with both topo I and II, and support previous data that suggest that this agent has potential for the treatment of cancer. (c) 2008 Wiley-Liss, Inc.

  4. Apoptosis Induced by Metal Complexes and Interaction with Dexamethasone

    PubMed Central

    Kim, Jung Sun; Barros, José Carlos Almeida

    2002-01-01

    Apoptosis induced by rhodium II amidate, rhodium II propionate, cisplatin and interactions with dexamethaxone were studied on some human leukemia cell lines Raji, Jurkat and U937. Apoptosis was studied by flow cytometry, agarose gel electrophoresis and morphological analysis. Rhodium II propionate induced apoptosis in all the three cell lines, Rhodium II amidate, in the lymphoid cell lines Jurkat and Raji, and cisplatin, only in the Jurkat, a T lymphoid cell line. It has also been observed that the addition of dexamethasone enhances the apoptosis index only in U937, a monocytic line with a glucocorticoid receptor bearing. PMID:18476001

  5. Complexity estimates based on integral transforms induced by computational units.

    PubMed

    Kůrková, Věra

    2012-09-01

    Integral transforms with kernels corresponding to computational units are exploited to derive estimates of network complexity. The estimates are obtained by combining tools from nonlinear approximation theory and functional analysis together with representations of functions in the form of infinite neural networks. The results are applied to perceptron networks.

  6. Ruthenium complexes containing bis-benzimidazole derivatives as a new class of apoptosis inducers.

    PubMed

    Li, Linlin; Wong, Yum-Shing; Chen, Tianfeng; Fan, Cundong; Zheng, Wenjie

    2012-01-28

    A series of ruthenium complexes containing bis-benzimidazole derivatives have been synthesized and identified as able to target mitochondria and induce caspase-dependent apoptosis in cancer cells through superoxide overproduction.

  7. A complex social-ecological disaster: Environmentally induced forced migration

    PubMed Central

    Rechkemmer, Andreas; O'Connor, Ashley; Rai, Abha; Decker Sparks, Jessica L.; Mudliar, Pranietha; Shultz, James M.

    2016-01-01

    ABSTRACT In the 21st century, global issues are increasingly characterized by inter-connectedness and complexity. Global environmental change, and climate change in particular, has become a powerful driver and catalyst of forced migration and internal displacement of people. Environmental migrants may far outnumber any other group of displaced people and refugees in the years to come. Deeper scientific integration, especially across the social sciences, is a prerequisite to tackle this issue.

  8. A complex social-ecological disaster: Environmentally induced forced migration.

    PubMed

    Rechkemmer, Andreas; O'Connor, Ashley; Rai, Abha; Decker Sparks, Jessica L; Mudliar, Pranietha; Shultz, James M

    2016-01-01

    In the 21(st) century, global issues are increasingly characterized by inter-connectedness and complexity. Global environmental change, and climate change in particular, has become a powerful driver and catalyst of forced migration and internal displacement of people. Environmental migrants may far outnumber any other group of displaced people and refugees in the years to come. Deeper scientific integration, especially across the social sciences, is a prerequisite to tackle this issue.

  9. Calorimetric and laser induced fluorescence investigation of the complexation geometry of selected europium-gem-diphosphonate complexes in acidic solutions

    SciTech Connect

    Nash, K.L.; Rao, L.F.; Choppin, G.R.

    1995-05-10

    Details of the coordination chemistry of europium complexes with methanediphosphonic acid (MDPA), vinylidene-1,1-diphosphonic acid (VDPA), and 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) in acidic aqueous solutions have been investigated by titration calorimetry and laser-induced fluorescence. For the 1:1 complexes, thermodynamic parameters and complex hydration are consistent with those previously reported for europium complexes with the carboxylate structural analog malonate. In the 1:2 complexes, markedly different thermodynamic parameters and cation dehydration are observed. The second diphosphonate ligand adds to the 1:1 complex displacing four additional water molecules from the primary coordination sphere (as compared with two for the addition of a second malonate). This reaction is also characterized by a nearly zero entropy change. The results are rationalized using molecular mechanics to suggest an unusual geometry in which the diphosphonate ligands and bound water molecules are appreciably segregated in the europium coordination sphere. Intramolecular hydrogen bonding and second hydration sphere ordering are suggested to explain the low complexation entropies.

  10. Trigeminal star-like platinum complexes induce cancer cell senescence through quadruplex-mediated telomere dysfunction.

    PubMed

    Zheng, Xiao-Hui; Mu, Ge; Zhong, Yi-Fang; Zhang, Tian-Peng; Cao, Qian; Ji, Liang-Nian; Zhao, Yong; Mao, Zong-Wan

    2016-12-01

    Two trigeminal star-like platinum complexes were synthesized to induce the formation of human telomere G-quadruplex (hTel G4) with extremely high selectivity and affinity. The induced hTel G4 activates strong telomeric DNA damage response (TDDR), resulting in telomere dysfunction and cell senescence.

  11. Particle-induced amorphization of complex ceramics. Final report

    SciTech Connect

    Ewing, R.C.; Wang, L.M.

    1998-08-01

    The crystalline-to-amorphous (c-a) phase transition is of fundamental importance. Particle irradiations provide an important, highly controlled means of investigating this phase transformation and the structure of the amorphous state. The interaction of heavy-particles with ceramics is complex because these materials have a wide range of structure types, complex compositions, and because chemical bonding is variable. Radiation damage and annealing can produce diverse results, but most commonly, single crystals become aperiodic or break down into a polycrystalline aggregate. The authors continued the studies of the transition from the periodic-to-aperiodic state in natural materials that have been damaged by {alpha}-recoil nuclei in the uranium and thorium decay series and in synthetic, analogous structures. The transition from the periodic to aperiodic state was followed by detailed x-ray diffraction analysis, in-situ irradiation/transmission electron microscopy, high resolution transmission electron microscopy, extended x-ray absorption fine structure spectroscopy/x-ray absorption near edge spectroscopy and other spectroscopic techniques. These studies were completed in conjunction with bulk irradiations that can be completed at Los Alamos National Laboratory or Sandia National Laboratories. Principal questions addressed in this research program included: (1) What is the process at the atomic level by which a ceramic material is transformed into a disordered or aperiodic state? (2) What are the controlling effects of structural topology, bond-type, dose rate, and irradiation temperature on the final state of the irradiated material? (3) What is the structure of the damaged material? (4) What are the mechanisms and kinetics for the annealing of interstitial and aggregate defects in these irradiated ceramic materials? (5) What general criteria may be applied to the prediction of amorphization in complex ceramics?

  12. Venipuncture Induced Complex Regional Pain Syndrome Presenting as Inflammatory Arthritis

    PubMed Central

    Arora, Pramod; Mittal, Manoj; Nair, Anugrah; Sultana, Waqia

    2016-01-01

    Venipuncture is one of the most commonly done medical procedures. We report a unique case of a 23-year-old young male who presented with features suggestive of inflammatory arthritis. The symptoms, which initially started on the right side, also involved the other side after a few weeks. Although the patient's symptoms and signs were simulating inflammatory arthritis, he had atypical features like poor response to anti-inflammatory medicines and normal laboratory parameters. His musculoskeletal ultrasonography was also not suggestive of arthritis. His history was reviewed and on direct questioning he revealed a history of venipuncture for blood sample withdrawal, done from right antecubital region for routine health check on the day prior to the onset of symptoms. Complex regional pain syndrome was suspected and triple-phase radioisotope bone scan was done which was highly suggestive of this diagnosis. The patient was managed with multidimensional approach and responded very well to the treatment. Complex regional pain syndrome is usually not thought of in the initial differential diagnosis of inflammatory arthritis. In this report we highlight the need to elicit the often overlooked history of trivial trauma like venipuncture, especially in atypical cases of arthritis. Also the role of newer diagnostic modalities in such cases is emphasized. PMID:27891152

  13. Cationic Amphiphilic Tris-Cyclometalated Iridium(III) Complexes Induce Cancer Cell Death via Interaction with Ca(2+)-Calmodulin Complex.

    PubMed

    Hisamatsu, Yosuke; Suzuki, Nozomi; Masum, Abdullah-Al; Shibuya, Ai; Abe, Ryo; Sato, Akira; Tanuma, Sei-Ichi; Aoki, Shin

    2017-02-15

    In our previous paper, we reported on the preparation of some cationic amphiphilic Ir complexes (2c, 2d) containing KKGG peptides that induce and detect cell death of Jurkat cells. Mechanistic studies suggest that 2c interacts with anionic molecules and/or membrane receptors on the cell surface to trigger an intracellular Ca(2+) response, resulting in the induction of cell death, accompanied by membrane disruption. We have continued the studies of cell death of Jurkat cells induced by 2c and found that xestospongin C, a selective inhibitor of an inositol 1,4,5-trisphosphate receptor located on the endoplasmic reticulum (ER), reduces the cytotoxicity of 2c, suggesting that 2c triggers the release of Ca(2+) from the ER, leading to an increase in the concentration of cytosolic Ca(2+), thus inducing cell death. Moreover, we synthesized a series of new amphiphilic cationic Ir complexes 5a-c containing photoreactive 3-trifluoromethyl-3-phenyldiazirine (TFPD) groups, in an attempt to identify the target molecules of 2c. Interestingly, it was discovered that a TFPD group functions as a triplet quencher of Ir complexes. It was also found that 5b is useful as a turn-on phosphorescent probe of acidic proteins such as bovine serum albumin (BSA) (pI = 4.7) and their complexation was confirmed by luminescence titrations and SDS-PAGE of photochemical products between them. These successful results allowed us to carry out photoaffinity labeling of the target biomolecules of 5b (2c and analogues thereof) in Jurkat cells. A proteomic analysis of the products obtained by the photoirradiation of 5b with Jurkat cells suggests that the Ca(2+)-binding protein "calmodulin (CaM)" is one of target proteins of the Ir complexes. Indeed, 5b was found to interact with the Ca(2+)-CaM complex, as evidenced by luminescence titrations and the results of photochemical reactions of 5b with CaM in the presence of Ca(2+) (SDS-PAGE). A plausible mechanism for cell death induced by a cationic amphiphilic

  14. Complex nanoprecipitate structures induced by irradiation in immiscible alloy systems

    NASA Astrophysics Data System (ADS)

    Shu, Shipeng; Bellon, P.; Averback, R. S.

    2013-04-01

    We investigate the fundamentals of compositional patterning induced by energetic particle irradiation in model A-B substitutional binary alloys using kinetic Monte Carlo simulations. The study focuses on a type of nanostructure that was recently observed in dilute Cu-Fe and Cu-V alloys, where precipitates form within precipitates, a morphology that we term “cherry-pit” structures. The simulations show that the domain of stability of these cherry-pit structures depends on the thermodynamic and kinetic asymmetry between the A and B elements. In particular, both lower solubilities and diffusivities of A in B compared to those of B in A favor the stabilization of these cherry-pit structures for A-rich average compositions. The simulation results are rationalized by extending the analytic model introduced by Frost and Russell for irradiation-induced compositional patterning so as to include the possible formation of pits within precipitates. The simulations indicate also that the pits are dynamical structures that undergo nearly periodic cycles of nucleation, growth, and absorption by the matrix.

  15. Interface-induced multiferroism by design in complex oxide superlattices

    DOE PAGES

    Guo, Hangwen; Wang, Zhen; Dong, Shuai; ...

    2017-06-12

    Interfaces between materials present unique opportunities for the discovery of intriguing quantum phenomena. Here we explore the possibility that, in the case of superlattices, if one of the layers is made ultrathin, unexpected properties can be induced between the two bracketing interfaces. We pursue this objective by combining advanced growth and characterization techniques with theoretical calculations. Using prototype La2/3Sr1/3MnO3/BaTiO3 (LSMO/BTO) superlattices, we observe a structural evolution in the LSMO layers as a function of thickness. Atomic-resolution electron microscopy and spectroscopy reveal an unusual polar structure phase in ultrathin LSMO at a critical thickness due to interfacing with the adjacent BTOmore » layers, which is confirmed by first-principles calculations. Most important is the fact that this polar phase is accompanied by re-emergent ferromagnetism, making this system a potential candidate for ultrathin ferroelectrics with ferromagnetic ordering. Monte-Carlo simulations illustrate the important role of spin-lattice coupling in LSMO. The present results open up a conceptually intriguing recipe for developing novel functional ultrathin materials via interface-induced spin-lattice coupling.« less

  16. Interface-induced multiferroism by design in complex oxide superlattices

    NASA Astrophysics Data System (ADS)

    Guo, Hangwen; Wang, Zhen; Dong, Shuai; Ghosh, Saurabh; Saghayezhian, Mohammad; Chen, Lina; Weng, Yakui; Herklotz, Andreas; Ward, Thomas Z.; Jin, Rongying; Pantelides, Sokrates T.; Zhu, Yimei; Zhang, Jiandi; Plummer, E. W.

    2017-06-01

    Interfaces between materials present unique opportunities for the discovery of intriguing quantum phenomena. Here, we explore the possibility that, in the case of superlattices, if one of the layers is made ultrathin, unexpected properties can be induced between the two bracketing interfaces. We pursue this objective by combining advanced growth and characterization techniques with theoretical calculations. Using prototype La2/3Sr1/3MnO3 (LSMO)/BaTiO3 (BTO) superlattices, we observe a structural evolution in the LSMO layers as a function of thickness. Atomic-resolution EM and spectroscopy reveal an unusual polar structure phase in ultrathin LSMO at a critical thickness caused by interfacing with the adjacent BTO layers, which is confirmed by first principles calculations. Most important is the fact that this polar phase is accompanied by reemergent ferromagnetism, making this system a potential candidate for ultrathin ferroelectrics with ferromagnetic ordering. Monte Carlo simulations illustrate the important role of spin-lattice coupling in LSMO. These results open up a conceptually intriguing recipe for developing functional ultrathin materials via interface-induced spin-lattice coupling.

  17. Flow induced dust acoustic shock waves in a complex plasma

    NASA Astrophysics Data System (ADS)

    Jaiswal, Surabhi; Bandyopadhyay, Pintu; Sen, Abhijit

    2015-11-01

    We report on experimental observations of particle flow induced large amplitude shock waves in a dusty plasma. These dust acoustic shocks (DAS) are observed for strongly supersonic flows and have been studied in a U-shaped Dusty Plasma Experimental (DPEx) device for charged kaolin dust in a background of Argon plasma. The strong flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change of the dust density near the potential hill is used to trigger the onset of high velocity dust acoustic shocks. The dynamics of the shocks are captured by fast video pictures of the structures that are illuminated by a laser sheet beam. The physical characteristics of the shock are delineated from a parametric scan of their dynamical properties over a range of plasma parameters and flow speeds. Details of these observations and a physical explanation based on model calculations will be presented.

  18. Anion and solvent induced chirality inversion in macrocyclic lanthanide complexes.

    PubMed

    Gerus, Aleksandra; Slepokura, Katarzyna; Lisowski, Jerzy

    2013-11-04

    A series of the lanthanide(III) or yttrium(III) complexes of the type [LnL(NO3)(H2O)2](NO3)2, [LnL(NO3)(H2O)](NO3)2, [LnL(H2O)2](NO3)3, and [LnLCl(H2O)2]Cl2 where L is an all-R or all-S enantiomer (L(R) or L(S)) of the chiral hexaaza macrocycle, 2(R),7(R),18(R),23(R)- or 2(S),7(S),18(S),23(S)-1,8,15,17,24,31-hexaazatricyclo[25.3.1.1.0.0]-dotriaconta-10,12,14,26,28,30-hexaene, and Ln(III) = Sm(III), Tb(III), Ho(III), Er(III), Tm(III), Yb(III), Lu(III), or Y(III), have been synthesized and structurally characterized. The crystal structure of the free macrocycle shows a highly twisted molecule, preorganized for the formation of helical complexes. The crystal structures of the lanthanide(III) complexes show two different diastereomeric forms of the macrocycle with different configurations at the stereogenic amine nitrogen atoms: (RRRR) or (RSRS) (denoted as L(RI) and L(RII), respectively). The L(RI) diastereomeric form of the nitrate derivatives [LnL(NO3)(H2O)](NO3)2 (Ln = Ho, Er) and [LnL(H2O)2](NO3)3 (Ln = Tm, Yb, Lu) convert slowly to the L(RII) form in methanol or acetonitrile solutions, while this process is not observed for the L(RI) diastereomers of analogous chloride derivatives [LnL(H2O)2]Cl3 (Ln = Tm, Yb, Lu). On the other hand, the L(RI) → L(RII) conversion for these Tm(III), Yb(III), and Lu(III) chloride derivatives can be triggered by the addition of external nitrate anions. The circular dichroism (CD) and (1)H NMR data indicate initial fast exchange of axial chloride for axial nitrate ligand, followed by slow chirality inversion of the equatorial macrocyclic ligand.

  19. Force-induced remodelling of proteins and their complexes

    PubMed Central

    Chen, Yun; Radford, Sheena E; Brockwell, David J

    2015-01-01

    Force can drive conformational changes in proteins, as well as modulate their stability and the affinity of their complexes, allowing a mechanical input to be converted into a biochemical output. These properties have been utilised by nature and force is now recognised to be widely used at the cellular level. The effects of force on the biophysical properties of biological systems can be large and varied. As these effects are only apparent in the presence of force, studies on the same proteins using traditional ensemble biophysical methods can yield apparently conflicting results. Where appropriate, therefore, force measurements should be integrated with other experimental approaches to understand the physiological context of the system under study. PMID:25710390

  20. Complexity Induced Anisotropic Bimodal Intermittent Turbulence in Space Plasmas

    NASA Technical Reports Server (NTRS)

    Chang, Tom; Tam, Sunny W. Y.; Wu, Cheng-Chin

    2004-01-01

    The "physics of complexity" in space plasmas is the central theme of this exposition. It is demonstrated that the sporadic and localized interactions of magnetic coherent structures arising from the plasma resonances can be the source for the coexistence of nonpropagating spatiotemporal fluctuations and propagating modes. Non-Gaussian probability distribution functions of the intermittent fluctuations from direct numerical simulations are obtained and discussed. Power spectra and local intermittency measures using the wavelet analyses are presented to display the spottiness of the small-scale turbulent fluctuations and the non-uniformity of coarse-grained dissipation that can lead to magnetic topological reconfigurations. The technique of the dynamic renormalization group is applied to the study of the scaling properties of such type of multiscale fluctuations. Charged particle interactions with both the propagating and nonpropagating portions of the intermittent turbulence are also described.

  1. The complex Langevin analysis of spontaneous symmetry breaking induced by complex fermion determinant

    NASA Astrophysics Data System (ADS)

    Ito, Yuta; Nishimura, Jun

    2016-12-01

    In many interesting physical systems, the determinant which appears from integrating out fermions becomes complex, and its phase plays a crucial role in the deter-mination of the vacuum. An example of this is QCD at low temperature and high density, where various exotic fermion condensates are conjectured to form. Another example is the Euclidean version of the type IIB matrix model for 10d superstring theory, where spontaneous breaking of the SO(10) rotational symmetry down to SO(4) is expected to occur. When one applies the complex Langevin method to these systems, one encounters the singular-drift problem associated with the appearance of nearly zero eigenvalues of the Dirac operator. Here we propose to avoid this problem by deforming the action with a fermion bilinear term. The results for the original system are obtained by extrapolations with respect to the deformation parameter. We demonstrate the power of this approach by applying it to a simple matrix model, in which spontaneous symmetry breaking from SO(4) to SO(2) is expected to occur due to the phase of the complex fermion determinant. Unlike previous work based on a reweighting-type method, we are able to determine the true vacuum by calculating the order parameters, which agree with the prediction by the Gaussian expansion method.

  2. Synthesis, Characterization, In Vitro Cytotoxicity, and Apoptosis-Inducing Properties of Ruthenium(II) Complexes

    PubMed Central

    Xu, Li; Zhong, Nan-Jing; Xie, Yang-Yin; Huang, Hong-Liang; Jiang, Guang-Bin; Liu, Yun-Jun

    2014-01-01

    Two new Ru(II) complexes, [Ru(bpy)2(FAMP)](ClO4)2 1 and 2, are synthesized and characterized by elemental analysis, electrospray mass spectrometry, and 1H nuclear magnetic resonance. The in vitro cytotoxicities and apoptosis-inducing properties of these complexes are extensively studied. Complexes 1 and 2 exhibit potent antiproliferative activities against a panel of human cancer cell lines. The cell cycle analysis shows that complexes 1 and 2 exhibit effective cell growth inhibition by triggering G0/G1 phase arrest and inducing apoptosis by mitochondrial dysfunction. The in vitro DNA binding properties of the two complexes are investigated by different spectrophotometric methods and viscosity measurements. PMID:24804832

  3. Application of Δ- and Λ-Isomerism of Octahedral Metal Complexes for Inducing Chiral Nematic Phases

    PubMed Central

    Sato, Hisako; Yamagishi, Akihiko

    2009-01-01

    The Δ- and Λ-isomerism of octahedral metal complexes is employed as a source of chirality for inducing chiral nematic phases. By applying a wide range of chiral metal complexes as a dopant, it has been found that tris(β-diketonato)metal(III) complexes exhibit an extremely high value of helical twisting power. The mechanism of induction of the chiral nematic phase is postulated on the basis of a surface chirality model. The strategy for designing an efficient dopant is described, together with the results using a number of examples of Co(III), Cr(III) and Ru(III) complexes with C2 symmetry. The development of photo-responsive dopants to achieve the photo-induced structural change of liquid crystal by use of photo-isomerization of chiral metal complexes is also described. PMID:20057959

  4. Growth-induced non-stoichiometry in complex oxide systems

    NASA Astrophysics Data System (ADS)

    Breckenfeld, Eric

    Complex perovskite oxides have been studied extensively over the past few decades due to their wide range of functional properties and relative ease of epitaxial synthesis. These two factors have allowed such oxide systems to see a multitude of applications including sensors, memory, thermal management, and energy harvesting. The ability to access so many different functionalities is owed largely to the chemical diversity available to the perovskite unit cell, opening the door for metal-insulator-transitions, ferroelectricity, and superconductivity, to name a few. However, the same chemical diversity that enables so many potential applications also opens the door for a myriad of chemistry-related defects. Separating out the relative contributions of such extrinsic (or defect-driven) effects from the intrinsic material properties is crucial to enabling the use of these materials in high-performance, next-generation devices. In this work, we examine several model systems in order to explore the relationship between the pulsed laser deposition growth process, the film chemistry, and the subsequent effects on the defect landscape and film properties. We show that small changes to the laser fluence can have a marked impact on the chemical composition of the film, leading to cation stoichiometry deviations as large as 10% in SrTiO3, LaAlO3, and NdNiO3 systems. We demonstrate that such chemical deviations can lead to significant changes in the bulk thermal and dielectric properties of SrTiO3 and LaAlO3 films. We have also investigated the interface between SrTiO3 and LaAlO3, which has been studied extensively over the past 8 years due to the supposed presence of a 2-dimensional electron gas (2DEG). Our results indicate that the presence of cation defects in the LaAlO3 has a profound impact on the electronic properties of the 2DEG interface. Finally, we have similarly shown that cation non-stoichiometry can cause the metal-insulator-transition material NdNiO3 to behave

  5. Protective effects of HV-P411 complex against D-galactosamine-induced hepatotoxicity in rats.

    PubMed

    Kang, Jung-Woo; Kim, Seok-Joo; Kim, Hyo-Yeon; Cho, Soon Hyun; Kim, Kyung Nam; Lee, Sin Gu; Lee, Sun-Mee

    2012-01-01

    This study examined the hepatoprotective effect of the HV-P411 complex, an herbal extract mixture from the seeds of Vitis vinifera, Schisandra chinensis and Taraxacum officinale, against D-galactosamine (D-GalN)-induced hepatitis. Hepatotoxicity was induced by D-GalN (700 mg/kg, i.p.), and the HV-P411 complex was administered orally 48, 24, and 2 h before and 6 h after D-GalN injection. Increases in serum aminotransferase activity and lipid peroxidation and a decrease in hepatic glutathione content were attenuated by the HV-P411 complex 24 h after D-GalN treatment. The HV-P411 complex attenuated the increases in serum tumor necrosis factor-α, interleukin (IL)-6 level and cyclooxygenase-2 protein production and their mRNA expressions, while increases in serum IL-10 level and heme oxygenase-1 protein production and their mRNA expressions were augmented by the HV-P411 complex. The increased translocation of nuclear factor-κB and c-Jun phosphorylation were attenuated by treatment with the HV-P411 complex. Our results suggest that the HV-P411 complex prevents D-GalN-induced hepatotoxicity via antioxidative and anti-inflammatory activities.

  6. Vacancy complexes induce long-range ferromagnetism in GaN

    SciTech Connect

    Zhang, Zhenkui; Schwingenschlögl, Udo E-mail: Iman.Roqan@kaust.edu.sa; Roqan, Iman S. E-mail: Iman.Roqan@kaust.edu.sa

    2014-11-14

    By means of density functional theory, we argue that ferromagnetism in GaN can be induced by vacancy complexes. Spin polarization originates from the charge compensation between neutral N and Ga vacancies. Defect formation energy calculations predict that a vacancy complex of two positively charged N vacancies and one doubly negative Ga vacancy is likely to form. This defect complex induces a net moment of 1 μ{sub B}, which is localized around the negative Ga center and exhibits pronounced in-plane ferromagnetic coupling. In contrast to simple Ga vacancy induced ferromagnetism, the proposed picture is in line with the fact that N vacancies have a low formation energy. Formation energies indicate mutual stabilization of the intrinsic defects in GaN.

  7. Lac repressor: Crystallization of intact tetramer and its complexes with inducer and operator DNA

    SciTech Connect

    Pace, H.C.; Lu, P. ); Lewis, M. Smith Kline and French Labs., King of Prussia, PA )

    1990-03-01

    The intact lac repressor tetramer, which regulates expression of the lac operon in Escherichia coli, has been crystallized in the native form, with an inducer, and in a ternary complex with operator DNA and an anti-inducer. The crystals without DNA diffract to better than 3.5 {angstrom}. They belong to the monoclinic space group C2 and have cell dimensions a = 164.7 {angstrom}, b = 75.6 {angstrom}, and c = 161.2 {angstrom}, with {alpha} = {gamma} = 90{degree} and {beta} = 125.5{degree}. Cocrystals have been obtained with a number of different lac operator-related DNA fragments. The complex with a blunt-ended 16-base-pair strand yielded tetragonal bipyramids that diffract to 6.5 {angstrom}. These protein-DNA cocrystals crack upon exposure to the gratuitous inducer isopropyl {beta}-D-thiogalactoside, suggesting a conformational change in the repressor-operator complex.

  8. Infrared spectroscopic studies on reaction induced conformational changes in the NADH ubiquinone oxidoreductase (complex I).

    PubMed

    Hellwig, Petra; Kriegel, Sébastien; Friedrich, Thorsten

    2016-07-01

    Redox-dependent conformational changes are currently discussed to be a crucial part of the reaction mechanism of the respiratory complex I. Specialized difference Fourier transform infrared techniques allow the detection of side-chain movements and minute secondary structure changes. For complex I, (1)H/(2)H exchange kinetics of the amide modes revealed a better accessibility of the backbone in the presence of NADH and quinone. Interestingly, the presence of phospholipids, that is crucial for the catalytic activity of the isolated enzyme complex, changes the overall conformation. When comparing complex I samples from different species, very similar electrochemically induced FTIR difference spectra and very similar rearrangements are reported. Finally, the information obtained with variants and from Zn(2+) inhibited samples for the conformational reorganization of complex I upon electron transfer are discussed in this review. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  9. Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III

    SciTech Connect

    Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun; Shin, Ki Soon; Kang, Shin Jung

    2013-08-09

    Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complex III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD.

  10. The Shu complex promotes error-free tolerance of alkylation-induced base excision repair products

    PubMed Central

    Godin, Stephen K.; Zhang, Zhuying; Herken, Benjamin W.; Westmoreland, James W.; Lee, Alison G.; Mihalevic, Michael J.; Yu, Zhongxun; Sobol, Robert W.; Resnick, Michael A.; Bernstein, Kara A.

    2016-01-01

    Here, we investigate the role of the budding yeast Shu complex in promoting homologous recombination (HR) upon replication fork damage. We recently found that the Shu complex stimulates Rad51 filament formation during HR through its physical interactions with Rad55-Rad57. Unlike other HR factors, Shu complex mutants are primarily sensitive to replicative stress caused by MMS and not to more direct DNA breaks. Here, we uncover a novel role for the Shu complex in the repair of specific MMS-induced DNA lesions and elucidate the interplay between HR and translesion DNA synthesis. We find that the Shu complex promotes high-fidelity bypass of MMS-induced alkylation damage, such as N3-methyladenine, as well as bypassing the abasic sites generated after Mag1 removes N3-methyladenine lesions. Furthermore, we find that the Shu complex responds to ssDNA breaks generated in cells lacking the abasic site endonucleases. At each lesion, the Shu complex promotes Rad51-dependent HR as the primary repair/tolerance mechanism over error-prone translesion DNA polymerases. Together, our work demonstrates that the Shu complex's promotion of Rad51 pre-synaptic filaments is critical for high-fidelity bypass of multiple replication-blocking lesion. PMID:27298254

  11. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation

    PubMed Central

    Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92–1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621

  12. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation.

    PubMed

    Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92-1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research.

  13. A trap potential model investigation of the optical activity induced in dye-DNA intercalation complexes

    NASA Astrophysics Data System (ADS)

    Kamiya, Mamoru

    1988-02-01

    The fundamental features of the optical activity induced in dye-DNA intercalation complexes are studied by application of the trap potential model which is useful to evaluate the induced rotational strength without reference to detailed geometrical information about the intercalation complexes. The specific effect of the potential depth upon the induced optical activity is explained in terms of the relative magnitudes of the wave-phase and helix-phase variations in the path of an electron moving on a restricted helical segment just like an exciton trapped around the dye intercalation site. The parallel and perpendicular components of the induced rotational strength well reflect basic properties of the helicity effects about the longitudinal and tangential axes of the DNA helical cylinder. The trap potential model is applied to optimize the potential parameters so as to reproduce the ionic strength effect upon the optical activity induced to proflavine-DNA intercalation complexes. From relationships between the optimized potential parameters and ionic strengths, it is inferred that increase in the ionic strength contributes to the optical activity induced by the nearest-neighbour interaction between intercalated proflavine and DNA base pairs.

  14. Geomorphology and failure history of the earthquake-induced Farmington Siding landslide complex, Davis County, Utah

    SciTech Connect

    Lowe, M.; Harty, K.M. )

    1993-04-01

    The Farmington Siding landslide complex covers an area of 19.5 km[sup 2] in central Davis County. First identified and mapped in the 1970s, the feature was classified by previous researchers as a liquefaction-induced lateral spread based on surface geomorphology and exposures on the landslide complex. This was the first landslide in Utah to be attributed to earthquake-induced liquefaction. Geomorphic and geologic evidence indicate that the Farmington Sliding landslide complex likely consists of liquefaction-induced landslides that failed by means of both flow failure and lateral spreading. The landslide complex is located in an area underlain primarily by fine-grained deposits of Pleistocene Lake Bonneville and Holocene Great Salt Lake. Geomorphic features of the landslide complex include main and minor scarps, hummocks, closed depressions, and transverse lineaments. The main scarp consists mostly of a series of arcuate scallops near the left flank of the landslide, but it is a relatively linear, single scarp near the right flank of the landslide. Hummocks and closed depressions are most common near the head region of the landslide complex. Failure of the Farmington Sliding landslide complex has occurred at least twice. The older, distal portion of the landslide complex is cut by the Gilbert shoreline of the Bonneville lake cycle, indicating that landsliding occurred more than 10,000 years ago. In the younger portion of the landslide complex, landsliding has disrupted the Gilbert shoreline. Radiocarbon age estimates from trenches on a hummock near the main scarp of the younger landslide indicate that slope failure occurred sometime between about 2,730 [+-] 370 cal. yr B.P. and 4,530 [+-] 300 cal. yr B.P., possibly during the penultimate or antepenultimate surface-faulting earthquake on the Weber segment of the Wasatch fault zone.

  15. Nature of chiral-induced equilibrium shifts in racemic labile lanthanide complexes

    SciTech Connect

    Wu, Shuguang; Hilmes, G.L.; Riehl, J.P. )

    1989-03-23

    An analysis of the chiral-induced equilibrium shift of racemic D{sub 3} tris-terdendate complexes of lanthanides with 2,6-pyridinedicarboxylate is presented in terms of the associated/dissociated models of Schipper. Results are presented which indicate that the so-called Pfeiffer effect in these lanthanide complexes is best described by the dissociated model, as was determined for similar labile transition-metal complexes. The nature of the chiral discriminatory interaction is shown to be largely electrostatic by measurements in mixed solvents of varying dielectric constant.

  16. Isoniazid-induced cell death is precipitated by underlying mitochondrial complex I dysfunction in mouse hepatocytes.

    PubMed

    Lee, Kang Kwang; Fujimoto, Kazunori; Zhang, Carmen; Schwall, Christine T; Alder, Nathan N; Pinkert, Carl A; Krueger, Winfried; Rasmussen, Theodore; Boelsterli, Urs A

    2013-12-01

    Isoniazid (INH) is an antituberculosis drug that has been associated with idiosyncratic liver injury in susceptible patients. The underlying mechanisms are still unclear, but there is growing evidence that INH and/or its major metabolite, hydrazine, may interfere with mitochondrial function. However, hepatic mitochondria have a large reserve capacity, and minor disruption of energy homeostasis does not necessarily induce cell death. We explored whether pharmacologic or genetic impairment of mitochondrial complex I may amplify mitochondrial dysfunction and precipitate INH-induced hepatocellular injury. We found that INH (≤ 3000 μM) did not induce cell injury in cultured mouse hepatocytes, although it decreased hepatocellular respiration and ATP levels in a concentration-dependent fashion. However, coexposure of hepatocytes to INH and nontoxic concentrations of the complex I inhibitors rotenone (3 μM) or piericidin A (30 nM) resulted in massive ATP depletion and cell death. Although both rotenone and piericidin A increased MitoSox-reactive fluorescence, Mito-TEMPO or N-acetylcysteine did not attenuate the extent of cytotoxicity. However, preincubation of cells with the acylamidase inhibitor bis-p-nitrophenol phosphate provided protection from hepatocyte injury induced by rotenone/INH (but not rotenone/hydrazine), suggesting that hydrazine was the cell-damaging species. Indeed, we found that hydrazine directly inhibited the activity of solubilized complex II. Hepatocytes isolated from mutant Ndufs4(+/-) mice, although featuring moderately lower protein expression levels of this complex I subunit in liver mitochondria, exhibited unchanged hepatic complex I activity and were therefore not sensitized to INH. These data indicate that underlying inhibition of complex I, which alone is not acutely toxic, can trigger INH-induced hepatocellular injury.

  17. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes.

    PubMed

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R

    2012-06-22

    Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF+ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF+ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.

  18. Three-Dimensional Topological Field Theory Induced from Generalized Complex Structure

    NASA Astrophysics Data System (ADS)

    Ikeda, Noriaki

    We construct a three-dimensional topological sigma model which is induced from a generalized complex structure on a target generalized complex manifold. This model is constructed from maps from a three-dimensional manifold X to an arbitrary generalized complex manifold M. The theory is invariant under the diffeomorphism on the worldvolume and the b-transformation on the generalized complex structure. Moreover the model is manifestly invariant under the mirror symmetry. We derive from this model the Zucchini's two-dimensional topological sigma model with a generalized complex structure as a boundary action on ∂X. As a special case, we obtain three-dimensional realization of a WZ-Poisson manifold.

  19. Cleavage enhancement of specific chemical bonds in DNA-Cisplatin complexes induced by X-rays

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Yao, Xiaobin; Luo, Xinglan; Fu, Xianzhi

    2014-04-01

    The chemical bond transformation of cisplatin-DNA complexes can be probed efficiently by XPS which provides a concomitant X-ray irradiation source as well. The presence to Pt could considerably increase formation of the SE induced by X-ray and that the further interaction of these LEE with DNA leads to the enhancement of bond cleavages.

  20. Negative regulation of NaF-induced apoptosis by Bad-CAII complex.

    PubMed

    Otsuki, S; Sugiyama, K; Amano, O; Yasui, T; Sakagami, H

    2011-09-05

    Fluoride is used to prevent caries in dentistry. However, its mechanism of cytotoxicity induction is unclear. This study was undertaken to determine whether sodium fluoride (NaF) induces apoptosis in human oral cells and if so, whether Bad protein is involved in the process. NaF showed higher cytotoxicity and apoptosis-inducing activity against human oral squamous cell carcinoma cells (HSC-2) than against human gingival fibroblasts (HGF). Western blot analysis showed that NaF enhanced the expression and dephosphorylation of Bad protein. This study demonstrates for the first time that Bad protein forms a complex with carbonic anhydrase II (CAII), and NaF stimulates the detachment of CAII from the Bad-CAII complex and the replacement by the formation of Bad-Bcl-2 complex. Knockdown of Bad and CAII mRNA by siRNA inhibited and enhanced the NaF-induced caspase activation, respectively. The present study suggests that CAII negatively regulates the NaF-induced apoptosis by forming a complex with Bad.

  1. ox-LDL induces endothelial dysfunction by promoting Arp2/3 complex expression.

    PubMed

    Tang, Yao; Zhao, Jianting; Shen, Liming; Jin, Yiqi; Zhang, Zhixuan; Xu, Guoxiong; Huang, Xianchen

    2016-06-24

    Oxidized low-density lipoproteins (ox-LDL) play a critical role in endothelial injury including cytoskeleton reorganization, which is closely related to actin-related protein 2/3 (Arp2/3) complex. The aim of this study was to investigate the role of Arp2/3 complex in ox-LDL-induced endothelial dysfunction. In this study, we found that Arp2 and Arp3 expression was increased under atherosclerotic conditions both in ApoE-/- mice and in ox-LDL-stimulated human coronary artery endothelial cells (HCAECs). Arp2/3 complex inhibitor CK666 significantly reduced ox-LDL-induced ROS generation and cytoskeleton reorganization, and increased NO release in HCAECs. Pretreatment with LOX-1- but not CD36-blocking antibody markedly decreased ox-LDL-induced Arp2 and Arp3 expression. Moreover, Rac-1 siRNA remarkably suppressed ox-LDL-stimulated Arp2 and Arp3 expression. Additionally, CK666 reduced endothelial nitric oxide synthase (eNOS) expression and atherosclerotic lesions in ApoE-/- mice. Collectively, ox-LDL induces endothelial dysfunction by activating LOX-1/Rac-1 signaling and upregulating Arp2/3 complex expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Alteration of complex negative emotions induced by music in euthymic patients with bipolar disorder.

    PubMed

    Choppin, Sabine; Trost, Wiebke; Dondaine, Thibaut; Millet, Bruno; Drapier, Dominique; Vérin, Marc; Robert, Gabriel; Grandjean, Didier

    2016-02-01

    Research has shown bipolar disorder to be characterized by dysregulation of emotion processing, including biases in facial expression recognition that is most prevalent during depressive and manic states. Very few studies have examined induced emotions when patients are in a euthymic phase, and there has been no research on complex emotions. We therefore set out to test emotional hyperreactivity in response to musical excerpts inducing complex emotions in bipolar disorder during euthymia. We recruited 21 patients with bipolar disorder (BD) in a euthymic phase and 21 matched healthy controls. Participants first rated their emotional reactivity on two validated self-report scales (ERS and MAThyS). They then rated their music-induced emotions on nine continuous scales. The targeted emotions were wonder, power, melancholy and tension. We used a specific generalized linear mixed model to analyze the behavioral data. We found that participants in the euthymic bipolar group experienced more intense complex negative emotions than controls when the musical excerpts induced wonder. Moreover, patients exhibited greater emotional reactivity in daily life (ERS). Finally, a greater experience of tension while listening to positive music seemed to be mediated by greater emotional reactivity and a deficit in executive functions. The heterogeneity of the BD group in terms of clinical characteristics may have influenced the results. Euthymic patients with bipolar disorder exhibit more complex negative emotions than controls in response to positive music. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II.

    PubMed

    Korge, Paavo; John, Scott A; Calmettes, Guillaume; Weiss, James N

    2017-06-16

    Succinate-driven reverse electron transport (RET) through complex I is hypothesized to be a major source of reactive oxygen species (ROS) that induces permeability transition pore (PTP) opening and damages the heart during ischemia/reperfusion. Because RET can only generate ROS when mitochondria are fully polarized, this mechanism is self-limiting once PTP opens during reperfusion. In the accompanying article (Korge, P., Calmettes, G., John, S. A., and Weiss, J. N. (2017) J. Biol. Chem. 292, 9882-9895), we showed that ROS production after PTP opening can be sustained when complex III is damaged (simulated by antimycin). Here we show that complex II can also contribute to sustained ROS production in isolated rabbit cardiac mitochondria following inner membrane pore formation induced by either alamethicin or calcium-induced PTP opening. Two conditions are required to maximize malonate-sensitive ROS production by complex II in isolated mitochondria: (a) complex II inhibition by atpenin A5 or complex III inhibition by stigmatellin that results in succinate-dependent reduction of the dicarboxylate-binding site of complex II (site IIf); (b) pore opening in the inner membrane resulting in rapid efflux of succinate/fumarate and other dicarboxylates capable of competitively binding to site IIf The decrease in matrix [dicarboxylate] allows O2 access to reduced site IIf, thereby making electron donation to O2 possible, explaining the rapid increase in ROS production provided that site IIf is reduced. Because ischemia is known to inhibit complexes II and III and increase matrix succinate/fumarate levels, we hypothesize that by allowing dicarboxylate efflux from the matrix, PTP opening during reperfusion may activate sustained ROS production by this mechanism after RET-driven ROS production has ceased. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Identifying the magnetoconductance responses by the induced charge transfer complex states in pentacene-based diodes

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Shun; Lee, Tsung-Hsun; Guo, Tzung-Fang; Huang, J. C. A.; Wen, Ten-Chin

    2012-07-01

    We investigate the magnetoconductance (MC) responses in photocurrent, unipolar injection, and bipolar injection regimes in pentacene-based diodes. Both photocurrent and bipolar injection contributed MC responses show large difference in MC line shape, which are attributed to triplet-polaron interaction modulated by the magnetic field dependent singlet fission and the intersystem crossing of the polaron pair, respectively. By blending 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane into pentacene, all the MC responses are suppressed but the MC response at unipolar injection regime is enhanced, which is attributed to the induced charge transfer complex states (CT complex states). This work identify the MC responses between single carrier contributed MC and exciton related MC by the induced CT complex states.

  5. Identification of cytochrome P4501A inducers in complex mixtures of polycyclic aromatic hydrocarbons

    SciTech Connect

    Villeneuve, D.L.; DeVita, W.M.; Crunkilton, R.L.

    1998-12-31

    An in vitro ethoxyresorufin O-deethylase (EROD) assay was used to study the ability of individual polycyclic aromatic hydrocarbons (PAHs) and mixtures of PAHs to induce Ah receptor (AhR) mediated cytochrome P4501A activity in PLHC-1 fish hepatoma cells. The purpose was to identify the most potent inducers from a set of thirteen separate PAHs and describe interactions occurring in complex mixtures of these PAHs. Where possible, potency was expressed in terms of 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) equivalents (TCDD-EQ) by normalizing the PAH results to a TCDD standard curve. The most potent inducers were benzo(k)fluoranthene > benzo(a)pyrene {approx} benzo(b)fluoranthene > chrysene {approx} benzo(a)anthracene. At equal concentrations, these PAHs yielded potencies of 1670, 940, 655, 255, and 185 pg TCDD-EQ/g, respectively. Analysis of various mixtures of the thirteen PAHs suggested that complex interactions may be occurring.

  6. Neuroprotective effects of three different sizes nanochelating based nano complexes in MPP(+) induced neurotoxicity.

    PubMed

    Maghsoudi, Amirhossein; Fakharzadeh, Saideh; Hafizi, Maryam; Abbasi, Maryam; Kohram, Fatemeh; Sardab, Shima; Tahzibi, Abbas; Kalanaky, Somayeh; Nazaran, Mohammad Hassan

    2015-03-01

    Parkinson's disease (PD) is the world's second most common dementia, which the drugs available for its treatment have not had effects beyond slowing the disease process. Recently nanotechnology has induced the chance for designing and manufacturing new medicines for neurodegenerative disease. It is demonstrated that by tuning the size of a nanoparticle, the physiological effect of the nanoparticle can be controlled. Using novel nanochelating technology, three nano complexes: Pas (150 nm), Paf (100 nm) and Pac (40 nm) were designed and in the present study their neuroprotective effects were evaluated in PC12 cells treated with 1-methyl-4-phenyl-pyridine ion (MPP (+)). PC12 cells were pre-treated with the Pas, Paf or Pac nano complexes, then they were subjected to 10 μM MPP (+). Subsequently, cell viability, intracellular free Calcium and reactive oxygen species (ROS) levels, mitochondrial membrane potential, catalase (CAT) and superoxide dismutase (SOD) activity, Glutathione (GSH) and malondialdehyde (MDA) levels and Caspase 3 expression were evaluated. All three nano complexes, especially Pac, were able to increase cell viability, SOD and CAT activity, decreased Caspase 3 expression and prevented the generation of ROS and the loss of mitochondrial membrane potential caused by MPP(+). Pre-treatment with Pac and Paf nano complexes lead to a decrease of intracellular free Calcium, but Pas nano complex could not decrease it. Only Pac nano complex decreased MDA levels and other nano complexes could not change this parameter compared to MPP(+) treated cells. Hence according to the results, all nanochelating based nano complexes induced neuroprotective effects in an experimental model of PD, but the smallest nano complex, Pac, showed the best results.

  7. Reduction of paraquat-induced renal cytotoxicity by manganese and copper complexes of EGTA and EHPG.

    PubMed

    Samai, Mohamed; Hague, Theresa; Naughton, Declan P; Gard, Paul R; Chatterjee, Prabal K

    2008-02-15

    Superoxide anion generation plays an important role in the development of paraquat toxicity. Although superoxide dismutase mimetics (SODm) have provided protection against organ injury involving generation of superoxide anions, they often suffer problems, e.g., regarding their bioavailability or potential pro-oxidant activity. The aim here was to investigate and compare the therapeutic potential of two novel SODm, manganese(II) and copper(II) complexes of the calcium chelator ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) and of the contrast agent ethylenebis(hydroxyphenylglycine) (EHPG), against paraquat-induced renal toxicity in vitro. Incubation of renal NRK-52E cells with paraquat (1 mM) for 24 h produced submaximal, yet significant, reduction in cellular viability and cell death and produced significant increases in superoxide anion and hydroxyl radical generation. Manganese and copper complexes of EGTA (10-100 microM) and EHPG (30-100 microM) reduced paraquat-induced renal cell toxicity and reduced superoxide anion and hydroxyl radical generation significantly. Manganese complexes displayed greater efficacy than copper complexes and, at equivalent concentrations, manganese complexed with EHPG provided the greatest protection. Furthermore, these metal complexes did not interfere with the uptake of [methyl-(14)C]paraquat into NRK-52E cells, suggesting that they provided protection against paraquat cytotoxicity via intracellular mechanisms. These complexes did not display cytotoxicity at the concentrations examined. Together, these results suggest that manganese and copper complexes of EGTA and EHPG, and especially the manganese-EHPG complex, could provide benefit against paraquat nephrotoxicity.

  8. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria.

    PubMed

    Singh, Namrata; Hroudová, Jana; Fišar, Zdeněk

    2015-08-01

    The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.

  9. Complex graph matrix representations and characterizations of proteomic maps and chemically induced changes to proteomes.

    PubMed

    Balasubramanian, Krishnan; Khokhani, Kanan; Basak, Subhash C

    2006-05-01

    We have presented a complex graph matrix representation to characterize proteomics maps obtained from 2D-gel electrophoresis. In this method, each bubble in a 2D-gel proteomics map is represented by a complex number with components which are charge and mass. Then, a graph with complex weights is constructed by connecting the vertices in the relative order of abundance. This yields adjacency matrices and distance matrices of the proteomics graph with complex weights. We have computed the spectra, eigenvectors, and other properties of complex graphs and the Euclidian/graph distance obtained from the complex graphs. The leading eigenvalues and eigenvectors and, likewise, the smallest eigenvalues and eigenvectors, and the entire graph spectral patterns of the complex matrices derived from them yield novel weighted biodescriptors that characterize proteomics maps with information of charge and masses of proteins. We have also applied these eigenvector and eigenvalue maps to contrast the normal cells and cells exposed to four peroxisome proliferators, namely, clofibrate, diethylhexyl phthalate (DEHP), perfluorodecanoic acid (PFDA), and perfluoroctanoic acid (PFOA). Our complex eigenspectra show that the proteomic response induced by DEHP differs from the corresponding responses of other three chemicals consistent with their chemical structures and properties.

  10. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    SciTech Connect

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found

  11. The L-Z complexity of exercise-induced muscle fatigue based on acoustic myographye

    NASA Astrophysics Data System (ADS)

    Yijian, Min; Xinyuan, Liu; Tingting, Wang

    2014-01-01

    The mechanism of exercise fatigue was investigated during exercise using L-Z complexity of non-linear analysis. Muscle fatigue was induced in the sitting position by lifting the heel under a load. An acoustic myogram of the gastrocnemius was obtained until exhaustion. The different modes of the speed responses were calculated using the L-Z complexity method, which analyzes muscle fibers participation, while the exercise is in progress. The L-Z complexity decreased incrementally with decreases in muscle strength, reaching a minimum value when the muscle was exhausted. Our data indicate that the L-Z complexity method is easy to use and effective at revealing the dynamic characteristics and variations of exercise fatigue. This method could be used to monitor sports training.

  12. Artificial Force Induced Reaction Method for Systematic Determination of Complex Reaction Mechanisms.

    PubMed

    Sameera, W M C; Kumar Sharma, Akhilesh; Maeda, Satoshi; Morokuma, Keiji

    2016-10-01

    Nowadays, computational studies are very important for the elucidation of reaction mechanisms and selectivity of complex reactions. However, traditional computational methods usually require an estimated reaction path, mainly driven by limited experimental implications, intuition, and assumptions of stationary points. However, the artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy can be used for unbiased and automatic reaction path searches for complex reactions. In this account, we highlight applications of the AFIR method to a variety of reactions (organic, organometallic, enzymatic, and photochemical) of complex molecular systems. In addition, the AFIR method has been successfully used to rationalise the origin of stereo- and regioselectivity. The AFIR method can be applied from small to large molecular systems, and will be a very useful tool for the study of complex molecular problems in many areas of chemistry, biology, and material sciences.

  13. Mitochondrial complex I dysfunction induced by cocaine and cocaine plus morphine in brain and liver mitochondria.

    PubMed

    Cunha-Oliveira, Teresa; Silva, Lisbeth; Silva, Ana Maria; Moreno, António J; Oliveira, Catarina R; Santos, Maria S

    2013-06-07

    Mitochondrial function and energy metabolism are affected in brains of human cocaine abusers. Cocaine is known to induce mitochondrial dysfunction in cardiac and hepatic tissues, but its effects on brain bioenergetics are less documented. Furthermore, the combination of cocaine and opioids (speedball) was also shown to induce mitochondrial dysfunction. In this work, we compared the effects of cocaine and/or morphine on the bioenergetics of isolated brain and liver mitochondria, to understand their specific effects in each tissue. Upon energization with complex I substrates, cocaine decreased state-3 respiration in brain (but not in liver) mitochondria and decreased uncoupled respiration and mitochondrial potential in both tissues, through a direct effect on complex I. Morphine presented only slight effects on brain and liver mitochondria, and the combination cocaine+morphine had similar effects to cocaine alone, except for a greater decrease in state-3 respiration. Brain and liver mitochondrial respirations were differentially affected, and liver mitochondria were more prone to proton leak caused by the drugs or their combination. This was possibly related with a different dependence on complex I in mitochondrial populations from these tissues. In summary, cocaine and cocaine+morphine induce mitochondrial complex I dysfunction in isolated brain and liver mitochondria, with specific effects in each tissue.

  14. Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development.

    PubMed

    Mosconi, E; Rekima, A; Seitz-Polski, B; Kanda, A; Fleury, S; Tissandie, E; Monteiro, R; Dombrowicz, D D; Julia, V; Glaichenhaus, N; Verhasselt, V

    2010-09-01

    Allergic asthma is a chronic lung disease resulting from an inappropriate T helper (Th)-2 response to environmental antigens. Early tolerance induction is an attractive approach for primary prevention of asthma. Here, we found that breastfeeding by antigen-sensitized mothers exposed to antigen aerosols during lactation induced a robust and long-lasting antigen-specific protection from asthma. Protection was more profound and persistent than the one induced by antigen-exposed non-sensitized mothers. Milk from antigen-exposed sensitized mothers contained antigen-immunoglobulin (Ig) G immune complexes that were transferred to the newborn through the neonatal Fc receptor resulting in the induction of antigen-specific FoxP3(+) CD25(+) regulatory T cells. The induction of oral tolerance by milk immune complexes did not require the presence of transforming growth factor-beta in milk in contrast to tolerance induced by milk-borne free antigen. Furthermore, neither the presence of IgA in milk nor the expression of the inhibitory FcgammaRIIb in the newborn was required for tolerance induction. This study provides new insights on the mechanisms of tolerance induction in neonates and highlights that IgG immune complexes found in breast milk are potent inducers of oral tolerance. These observations may pave the way for the identification of key factors for primary prevention of immune-mediated diseases such as asthma.

  15. Complex muscle vibration patterns to induce gait-like lower-limb movements: proof of concept.

    PubMed

    Duclos, Cyril; Kemlin, Claire; Lazert, David; Gagnon, Dany; Dyer, Joseph-Omer; Forget, Robert

    2014-01-01

    Muscle vibrations can induce motor responses and illusions of complex movements. However, inducing gait-like cyclical movements and illusions requires the application of multiple fast alternating vibrations to lower-limb muscles. The objectives were (1) to test the feasibility of delivering complex vibrations in a time-organized manner and (2) to illustrate the possibility of inducing alternate gait-in-place-like movements using these vibrations. Patterns of vibration, produced by 12 vibrators applied bilaterally on the flexor and extensor muscle groups of the lower limbs, were based on normal gait kinematics. We tested 1 s and 2 s cycle patterns of vibration. Vibrator responses were assessed using auto- and crosscorrelations and frequency analyses based on accelerometry measurements, and compared between patterns. High auto- (>0.8) and crosscorrelation (>0.6) coefficients demonstrated a good response by the vibrators to the control signal. Vibrations induced cyclical, low-amplitude stepping-in-place movements that mimicked alternate walking movements with both legs, with 1 s and 2 s cycle durations, in one nondisabled participant and one participant with American Spinal Injury Association Impairment Scale B spinal cord injury standing, relaxed, with body-weight support. Electromechanical vibrators can deliver complex cyclical vibrations and trigger gait-like lower-limb movements. These results warrant the application of these vibration patterns on individuals with sensorimotor impairments to test their potential in gait rehabilitation.

  16. Identification of cytochrome P4501A inducers in complex mixtures of PAHs

    SciTech Connect

    Villeneuve, D.; Crunkilton, R.; DeVita, W.

    1995-12-31

    An in vitro ethoxyresorufin-O-deethylase (EROD) assay was used to determine the ability of various PAHs and PAH mixtures to induce Ah receptor mediated cytochrome P4501A activity in PLHC-1 fish hepatoma cells. The purpose of this study was to identify the most potent inducers of a complement of thirteen separate PAHs and describe the interactions occurring in complex mixtures of the same. Analysis of individual PAHs at both equal concentrations and concentrations at which they were present in a model environmental sample showed chrysene, benzo(k)fluoranthene (BKF), benzo(b)fluoranthene, and benzo(a)anthracene to be the most potent cytochrome P4501A inducers of the thirteen PAHs tested. At equal concentrations, they yielded maximum EROD activities of 740, 380, 130, and 55 pmol/min/mg respectively. Although maximum activity was lower, 135, 75, 25, and 10 pmol/min/mg respectively, they remained the most potent inducers at model environmental concentrations, even at concentrations as little as 5% those of more abundant PAHs. Analysis of various mixtures of the thirteen PAHs provided evidence of complex interactions. The mixtures tested did not conform to an additive model generated from individual PAH analyses. Many PAHs, even those which caused little or no cytochrome P4501A induction individually, acted in an antagonistic manner in mixtures with more potent inducers. All mixtures lacking chrysene and/or BKF showed markedly lower induction than mixtures containing those compounds. Overall, this approach was a rapid and useful method for identifying Ah active PAHs and describing their interactions in complex mixtures. Such information could proved useful in efforts to understand biological effects of complex mixtures of PAHs in environmental samples.

  17. Chronic Repression of mTOR Complex 2 Induces Changes in the Gut Microbiota of Diet-induced Obese Mice

    PubMed Central

    Jung, Mi-Ja; Lee, Jina; Shin, Na-Ri; Kim, Min-Soo; Hyun, Dong-Wook; Yun, Ji-Hyun; Kim, Pil Soo; Whon, Tae Woong; Bae, Jin-Woo

    2016-01-01

    Alterations in the gut microbiota play a crucial role in host physiology and metabolism; however, the molecular pathways underlying these changes in diet-induced obesity are unclear. Mechanistic target of rapamycin (mTOR) signaling pathway is associated with metabolic disorders such as obesity and type 2 diabetes (T2D). Therefore, we examined whether changes in the regulation of mTOR signaling induced by diet (a high-fat diet [HFD] or normal-chow diet) and/or therapeutics (resveratrol [a specific inhibitor of mTOR complex 1] or rapamycin [an inhibitor of both mTOR complex 1 and 2]) altered the composition of the gut microbiota in mice. Oral administration of resveratrol prevented glucose intolerance and fat accumulation in HFD-fed mice, whereas rapamycin significantly impaired glucose tolerance and exacerbated intestinal inflammation. The abundance of Lactococcus, Clostridium XI, Oscillibacter, and Hydrogenoanaerobacterium increased under the HFD condition; however, the abundance of these species declined after resveratrol treatment. Conversely, the abundance of unclassified Marinilabiliaceae and Turicibacter decreased in response to a HFD or rapamycin. Taken together, these results demonstrated that changes in the composition of intestinal microbiota induced by changes in mTOR activity correlate with obese and diabetic phenotypes. PMID:27471110

  18. Dual Effect of Curcumin-Zinc Complex in Controlling Diabetes Mellitus in Experimentally Induced Diabetic Rats.

    PubMed

    Al-Ali, Khalil; Abdel Fatah, Hala Salah; El-Badry, Yaser Abdel-Moemen

    2016-01-01

    Ultrasound-assisted extraction of curcumin from Curcuma longa was performed in an ultrasonic bath at 30°C using ethanol for 40 min. A successful attempt has been made to prepare curcumin-zinc (Zn) complex using a simple chemical procedure. The complex formation and its stoichiometry were characterized using elemental analysis, Fourier transform (FT)-IR and UV spectroscopy which revealed the interaction of Zn(II) ion (M) with curcumin (ligand, L) to proceed via (ML) complex type formation. Oral administration of curcumin-Zn complex at a concentration of 150 mg/kg body weight/rat/d for 45 d in streptozotocin-induced diabetic rats in comparison to curcumin and/or Zn administration exerted a hypoglycemic effect. A significant reduction in blood glucose, glycosylated hemoglobin (Hb)A1c, and lipid profile parameters with an excellent improvement in plasma insulin levels have been attained. Also, the reduced activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine in the diabetic rats treated with the complex exhibited the non-toxic nature of the curcumin-Zn complex. Finally, the larger extent of the complex in hyperglycemic improvement in comparison to curcumin and/or Zn supplementation was interpreted by its dual action on glucose and insulin maintenance.

  19. Longitudinal study of circulating immune complexes in a patient with Staphylococcus albus-induced shunt nephritis.

    PubMed Central

    Harkiss, G D; Brown, D L; Evans, D B

    1979-01-01

    The direct measurement and partial characterization of circulating immune complexes has been performed in a longitudinal study of a patient with Staphylococcus albus-induced shunt nephritis. The high levels of immune complexes were associated with cryoglobulinaemia and hypocomplementaemia. The activation of complement was found to be via the classical pathway, but the functioning of the alternative pathway may have been impaired in vivo due to very low levels of C3. The host response to the infection was also characterized by the production of a marked macroglobulinaemia, high titres of rheumatoid factor and a typical acute phase increase in the C-reactive protein level. Immune complex levels were persistently elevated many months after the removal of the focus of the infection. A possible explanation for this surprising finding may lie in the nature of the antigens in the immune complexes. It was found that the immune complexes contained both antibodies to and antigens from Staphlococcus albus. In particular, glycerol teichoic acid and staphylococcal nuclease were identified as components of the immune complexes present during the acute phase. Glycerol teichoic acid was also identified in the immune complexes found later although other Staphylococcus albus antigens as yet unidentified were also present and persisted in the circulation for several months. Images FIG. 3 FIG. 4 PMID:115626

  20. Surface Induced Dissociation Yields Quaternary Substructure of Refractory Noncovalent Phosphorylase B and Glutamate Dehydrogenase Complexes

    NASA Astrophysics Data System (ADS)

    Ma, Xin; Zhou, Mowei; Wysocki, Vicki H.

    2014-03-01

    Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at the maximum collision energy available in the instrument. Surface induced dissociation (SID) was applied to dissociate the two refractory protein complexes. Different charge state precursor ions of the two complexes were examined by CID and SID. The PHB dimer was successfully dissociated to monomers and the GDH hexamer formed trimeric subcomplexes that are informative of its quaternary structure. The unfolding of the precursor and the percentages of the distinct products suggest that the dissociation pathways vary for different charge states. The precursors at lower charge states (+21 for PHB dimer and +27 for GDH hexamer) produce a higher percentage of folded fragments and dissociate more symmetrically than the precusors at higher charge states (+29 for PHB dimer and +39 for GDH hexamer). The precursors at lower charge state may be more native-like than the higher charge state because a higher percentage of folded fragments and a lower percentage of highly charged unfolded fragments are detected. The combination of SID and charge reduction is shown to be a powerful tool for quaternary structure analysis of refractory noncovalent protein complexes, as illustrated by the data for PHB dimer and GDH hexamer.

  1. Anti-tumor activity and mechanism of apoptosis of A549 induced by ruthenium complex.

    PubMed

    Sun, Dongdong; Mou, Zhipeng; Li, Nuan; Zhang, Weiwei; Wang, Yazhe; Yang, Endong; Wang, Weiyun

    2016-12-01

    Two new ruthenium (II) polypyridyl complexes [Ru(MeIm)4(pip)](2+) (1) and [Ru(MeIm)4(4-npip)](2+) (2) were synthesized under the guidance of computational studies (DFT). Their binding property to human telomeric G-quadruplex studied by UV-Vis absorption spectroscopy, the fluorescent resonance energy transfer (FRET) melting assay and circular dichroism (CD) spectroscopy for validating the theoretical prediction. Both of them were evaluated for their potential anti-proliferative activity against four human tumor cell lines. Complex 2 shows growth inhibition against all the cell lines tested, especially the human lung tumor cell (A549). The RTCA analysis not only validated the inhibition activity but also showed the ability of reducing A549 cells' migration. DNA-flow cytometric analysis, mitochondrial membrane potential (ΔΨm) and the scavenger measurements of reactive oxygen species (ROS) analysis carried out to investigate the mechanism of cell growth inhibition and apoptosis-inducing effect of complex 2. The results demonstrated that complex 2 induces tumor cells apoptosis by acting on both mitochondrial homeostasis destruction and death receptor signaling pathways. And those suggested that complex 2 could be a candidate for further evaluation as a chemotherapeutic agent against human tumor.

  2. Atomic description of the immune complex involved in heparin-induced thrombocytopenia

    DOE PAGES

    Cai, Zheng; Yarovoi, Serge V.; Zhu, Zhiqiang; ...

    2015-09-22

    Heparin-induced thrombocytopenia (HIT) is an autoimmune thrombotic disorder caused by immune complexes containing platelet factor 4 (PF4), antibodies to PF4 and heparin or cellular glycosaminoglycans (GAGs). Here we solve the crystal structures of the: (1) PF4 tetramer/fondaparinux complex, (2) PF4 tetramer/KKO-Fab complex (a murine monoclonal HIT-like antibody) and (3) PF4 monomer/RTO-Fab complex (a non-HIT anti-PF4 monoclonal antibody). Fondaparinux binds to the ‘closed’ end of the PF4 tetramer and stabilizes its conformation. This interaction in turn stabilizes the epitope for KKO on the ‘open’ end of the tetramer. Fondaparinux and KKO thereby collaborate to ‘stabilize’ the ternary pathogenic immune complex. Bindingmore » of RTO to PF4 monomers prevents PF4 tetramerization and inhibits KKO and human HIT IgG-induced platelet activation and platelet aggregation in vitro, and thrombus progression in vivo. Lastly, the atomic structures provide a basis to develop new diagnostics and non-anticoagulant therapeutics for HIT.« less

  3. Atomic description of the immune complex involved in heparin-induced thrombocytopenia

    SciTech Connect

    Cai, Zheng; Yarovoi, Serge V.; Zhu, Zhiqiang; Rauova, Lubica; Hayes, Vincent; Lebedeva, Tatiana; Liu, Qun; Poncz, Mortimer; Arepally, Gowthami; Cines, Douglas B.; Greene, Mark I.

    2015-09-22

    Heparin-induced thrombocytopenia (HIT) is an autoimmune thrombotic disorder caused by immune complexes containing platelet factor 4 (PF4), antibodies to PF4 and heparin or cellular glycosaminoglycans (GAGs). Here we solve the crystal structures of the: (1) PF4 tetramer/fondaparinux complex, (2) PF4 tetramer/KKO-Fab complex (a murine monoclonal HIT-like antibody) and (3) PF4 monomer/RTO-Fab complex (a non-HIT anti-PF4 monoclonal antibody). Fondaparinux binds to the ‘closed’ end of the PF4 tetramer and stabilizes its conformation. This interaction in turn stabilizes the epitope for KKO on the ‘open’ end of the tetramer. Fondaparinux and KKO thereby collaborate to ‘stabilize’ the ternary pathogenic immune complex. Binding of RTO to PF4 monomers prevents PF4 tetramerization and inhibits KKO and human HIT IgG-induced platelet activation and platelet aggregation in vitro, and thrombus progression in vivo. Lastly, the atomic structures provide a basis to develop new diagnostics and non-anticoagulant therapeutics for HIT.

  4. Atomic description of the immune complex involved in heparin-induced thrombocytopenia

    PubMed Central

    Cai, Zheng; Yarovoi, Serge V.; Zhu, Zhiqiang; Rauova, Lubica; Hayes, Vincent; Lebedeva, Tatiana; Liu, Qun; Poncz, Mortimer; Arepally, Gowthami; Cines, Douglas B.; Greene, Mark I.

    2015-01-01

    Heparin-induced thrombocytopenia (HIT) is an autoimmune thrombotic disorder caused by immune complexes containing platelet factor 4 (PF4), antibodies to PF4 and heparin or cellular glycosaminoglycans (GAGs). Here we solve the crystal structures of the: (1) PF4 tetramer/fondaparinux complex, (2) PF4 tetramer/KKO-Fab complex (a murine monoclonal HIT-like antibody) and (3) PF4 monomer/RTO-Fab complex (a non-HIT anti-PF4 monoclonal antibody). Fondaparinux binds to the ‘closed' end of the PF4 tetramer and stabilizes its conformation. This interaction in turn stabilizes the epitope for KKO on the ‘open' end of the tetramer. Fondaparinux and KKO thereby collaborate to ‘stabilize' the ternary pathogenic immune complex. Binding of RTO to PF4 monomers prevents PF4 tetramerization and inhibits KKO and human HIT IgG-induced platelet activation and platelet aggregation in vitro, and thrombus progression in vivo. The atomic structures provide a basis to develop new diagnostics and non-anticoagulant therapeutics for HIT. PMID:26391892

  5. Thermal-induced dynamic self-assembly of adenine-grafted polyoxometalate complexes.

    PubMed

    He, Zhenfeng; Yan, Yi; Li, Bao; Ai, Hui; Wang, Huanbing; Li, Haolong; Wu, Lixin

    2012-09-07

    A new kind of organic-inorganic hybrid complexes based on polyoxometalate were synthesized through symmetrically grafting two adeninyl groups onto Anderson-type MnMo(6) clusters and encapsulating the clusters by organic surfactants. The resultant complexes exhibited thermal-induced dynamic self-assembly behaviors which greatly depended on the ambient temperature and the chain length of cationic surfactants. With the encapsulation of a short surfactant tetrabutyl ammonium, the complex assembled into fibrous, rod-like, and tubular architectures respectively upon heating; while for the case of using a long surfactant dimethyldioctadecyl ammonium as counter ions, the assemblies of the complex transformed from fibers to spheres with the increased temperature. Moreover, the two types of transformations were both reversible during a cooling process. The related mechanism was investigated by combining multiple characterization methods including X-ray crystallography, XPS, FT-IR and temperature-dependent (1)H NMR, which indicated that such a thermal-induced morphological transformation resulted from a synergy effect of the variation of the multiple hydrogen bonds among the complexes and the rearrangement of the surfactants surrounding the MnMo(6) clusters. These results demonstrated a new concept that hydrogen bonds can be rationally employed as the driving force for the fabrication of polyoxometalate-based materials with smart responsive properties.

  6. Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite.

    PubMed

    Brown, Jeffrey M; Quinton, Maria S; Yamamoto, Bryan K

    2005-10-01

    High-dose methamphetamine (METH) is associated with long-term deficits in dopaminergic systems. Although the mechanism(s) which contributes to these deficits is not known, glutamate and peroxynitrite are likely to play a role. These factors are hypothesized to inhibit mitochondrial function, increasing the free radical burden and decreasing neuronal energy supplies. Previous studies suggest a role for the mitochondrial electron transport chain (ETC) in mediating toxicity of METH. The purpose of the present studies was to determine whether METH administration selectively inhibits complex II of the ETC in rats. High-dose METH administration (10 mg/kg every 2 h x 4) rapidly (within 1 h) decreased complex II (succinate dehydrogenase) activity by approximately 20-30%. In addition, decreased activity of complex II-III, but not complex I-III, of the mitochondrial ETC was also observed 24 h after METH. This inhibition was not due to direct inhibition by METH or METH-induced hyperthermia and was specific to striatal brain regions. METH-induced decreases in complex II-III were prevented by MK-801 and the peroxynitrite scavenger 5,10,15,20-tetrakis (2,4,6-trimethyl-3,5-sulphonatophenyl) porphinato iron III. These findings provide the first evidence that METH administration, via glutamate receptor activation and peroxynitrite formation, selectively alters a specific site of the ETC.

  7. Complexity.

    PubMed

    Gómez-Hernández, J Jaime

    2006-01-01

    It is difficult to define complexity in modeling. Complexity is often associated with uncertainty since modeling uncertainty is an intrinsically difficult task. However, modeling uncertainty does not require, necessarily, complex models, in the sense of a model requiring an unmanageable number of degrees of freedom to characterize the aquifer. The relationship between complexity, uncertainty, heterogeneity, and stochastic modeling is not simple. Aquifer models should be able to quantify the uncertainty of their predictions, which can be done using stochastic models that produce heterogeneous realizations of aquifer parameters. This is the type of complexity addressed in this article.

  8. Ethanol induces epigenetic modulation of prodynorphin and pronociceptin gene expression in the rat amygdala complex.

    PubMed

    D'Addario, Claudio; Caputi, Francesca F; Ekström, Tomas J; Di Benedetto, Manuela; Maccarrone, Mauro; Romualdi, Patrizia; Candeletti, Sanzio

    2013-02-01

    Several studies demonstrated the role of the endogenous opioid system in the development of susceptibility to alcohol dependence. Recently, we reported that binge intragastric administration of ethanol induces selective alterations of pronociceptin and prodynorphin gene expression in the rat amygdala complex depending on the days of exposures and on the development of tolerance and dependence. The aim of the present study was to investigate the potential epigenetic mechanisms leading to these alcohol-induced changes in gene expression. Specific histone modifications and DNA methylation at opioid peptide precursor promoters were analyzed by chromatin immunoprecipitation and real-time methylation-specific PCR, respectively. We found a linkage between gene expression alterations and epigenetic modulation at pronociceptin and prodynorphin promoters following alcohol treatment. In animals treated for 1 day, we observed a reversed correlation, with a decrease of histone 3 lysine 27 trimethylation (repressive mark) and an increase of histone 3 lysine 9 acetylation (activating mark), associated with both gene expression up-regulation. In rats treated with alcohol for up to 5 days, we found an increase in histone 3 lysine 9 acetylation in the pronociceptin promoter providing further evidence of the already proposed possible role for histone deacetylases for addiction treatment. No significant alterations in DNA methylation and histone 3 lysine 4 trimethylation following different alcohol exposures were present, suggesting the selectivity of epigenetic effects induced by alcohol. These data demonstrate that ethanol induces selective epigenetic changes, thus better defining the role of opioid peptides in the ethanol-induced effects in the amygdala complex.

  9. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.

    PubMed

    Yamaguchi, Ikuhiro; Ogawa, Yutaro; Jimbo, Yasuhiko; Nakao, Hiroya; Kotani, Kiyoshi

    2011-01-01

    Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG) activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive) coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.

  10. Induced circularly polarized luminescence arising from anion or protein binding to racemic emissive lanthanide complexes

    NASA Astrophysics Data System (ADS)

    Carr, Rachel; Puckrin, Robert; McMahon, Brian K.; Pal, Robert; Parker, David; Pålsson, Lars-Olof

    2014-06-01

    A circularly polarized luminescence (CPL) spectrometer has been built and used to study the binding interaction of lactate and four different proteins with racemic EuIII and TbIII complexes in aqueous solution. Lactate binding gives rise to strong induced CPL spectra, and the observed emission dissymmetry factors vary linearly with enantiomeric composition. Particularly strong induced TbIII CPL also characterizes the binding interaction of alpha-1-acid glycoprotein with a dissociation constant, Kd, of 2.5 μM.

  11. ACF chromatin remodeling complex mediates stress–induced depressive–like behavior

    PubMed Central

    Sun, HaoSheng; Damez–Werno, Diane M.; Scobie, Kimberly N.; Shao, Ning–Yi; Dias, Caroline; Rabkin, Jacqui; Koo, Ja Wook; Korb, Erica; Bagot, Rosemary C.; Ahn, Francisca H.; Cahill, Michael E.; Labonté, Benoit; Mouzon, Ezekiell; Heller, Elizabeth A.; Cates, Hannah; Golden, Sam A; Gleason, Kelly; Russo, Scott J; Andrews, Simon; Neve, Rachael; Kennedy, Pamela J.; Maze, Ian; Dietz, David M.; Allis, C. David; Turecki, Gustavo; Varga–Weisz, Patrick; Tamminga, Carol; Shen, Li; Nestler, Eric J.

    2015-01-01

    Improved treatment for major depressive disorder (MDD) remains elusive due to limited understanding of its underlying biological mechanisms. Stress–induced maladaptive transcriptional regulation within limbic neural circuits likely contributes to the development of MDD, possibly through epigenetic factors that regulate chromatin structure. We establish that persistent upregulation of the ACF ATP–dependent chromatin remodeling complex, occurring in the nucleus accumbens of stress–susceptible mice and depressed humans, is necessary for stress–induced depressive–like behaviors. Altered ACF binding after chronic stress is correlated with altered nucleosome positioning, particularly around the transcription start sites of affected genes. These alterations in ACF binding and nucleosome positioning are associated with repressed expression of genes implicated in susceptibility to stress. Together, we identify the ACF chromatin remodeling complex as a critical component in the development of susceptibility to depression and in regulating stress–related behaviors. PMID:26390241

  12. Crystal Structure of the Lactose Operon Repressor and Its Complexes with DNA and Inducer

    NASA Astrophysics Data System (ADS)

    Lewis, Mitchell; Chang, Geoffrey; Horton, Nancy C.; Kercher, Michele A.; Pace, Helen C.; Schumacher, Maria A.; Brennan, Richard G.; Lu, Ponzy

    1996-03-01

    The lac operon of Escherichia coli is the paradigm for gene regulation. Its key component is the lac repressor, a product of the lacI gene. The three-dimensional structures of the intact lac repressor, the lac repressor bound to the gratuitous inducer isopropyl-β-D-1-thiogalactoside (IPTG) and the lac repressor complexed with a 21-base pair symmetric operator DNA have been determined. These three structures show the conformation of the molecule in both the induced and repressed states and provide a framework for understanding a wealth of biochemical and genetic information. The DNA sequence of the lac operon has three lac repressor recognition sites in a stretch of 500 base pairs. The crystallographic structure of the complex with DNA suggests that the tetrameric repressor functions synergistically with catabolite gene activator protein (CAP) and participates in the quaternary formation of repression loops in which one tetrameric repressor interacts simultaneously with two sites on the genomic DNA.

  13. Sequential multiphoton absorption enhancement induced by zinc complexation in functionalized distyrylbenzene analogs.

    PubMed

    Fabbrini, Graziano; Riccò, Raffaele; Menna, Enzo; Maggini, Michele; Amendola, Vincenzo; Garbin, Mattia; Villano, Massimo; Meneghetti, Moreno

    2007-02-07

    Functionalized distyrylbenzene analogs and , bearing a tris-(2-pyridylmethyl)amine-based receptor for Zn(2+), were synthesized by a Horner-Emmons-Wittig coupling reaction. It has been found that Zn(2+) complexation induces changes in the linear absorption spectrum that enhance a nonlinear sequential two-photon absorption of nanosecond pulses at 532 nm. This absorption was also found to depend on the nature of the substituent at the side benzene ring of the styrylbenzene structure.

  14. Increased Resistance of Complex I Mutants to Phytosphingosine-induced Programmed Cell Death*S⃞

    PubMed Central

    Castro, Ana; Lemos, Catarina; Falcão, Artur; Glass, N. Louise; Videira, Arnaldo

    2008-01-01

    We have studied the effects of phytosphingosine (PHS) on cells of the filamentous fungus Neurospora crassa. Highly reduced viability, impairment of asexual spore germination, DNA condensation and fragmentation, and production of reactive oxygen species were observed in conidia treated with the drug, suggesting that PHS induces an apoptosis-like death in this fungus. Interestingly, we found that complex I mutants are more resistant to PHS treatment than the wild type strain. This effect appears to be specific because it was not observed in mutants defective in other components of the mitochondrial respiratory chain, pointing to a particular involvement of complex I in cell death. The response of the mutant strains to PHS correlated with their response to hydrogen peroxide. The fact that complex I mutants generate fewer reactive oxygen species than the wild type strain when exposed to PHS likely explains the PHS-resistant phenotype. As compared with the wild type strain, we also found that a strain containing a deletion in the gene encoding an AIF (apoptosis-inducing factor)-like protein is more resistant to PHS and H2O2. In contrast, a strain containing a deletion in a gene encoding an AMID (AIF-homologous mitochondrion-associated inducer of death)-like polypeptide is more sensitive to both drugs. These results indicate that N. crassa has the potential to be a model organism to investigate the molecular basis of programmed cell death in eukaryotic species. PMID:18474589

  15. Increased resistance of complex I mutants to phytosphingosine-induced programmed cell death.

    PubMed

    Castro, Ana; Lemos, Catarina; Falcão, Artur; Glass, N Louise; Videira, Arnaldo

    2008-07-11

    We have studied the effects of phytosphingosine (PHS) on cells of the filamentous fungus Neurospora crassa. Highly reduced viability, impairment of asexual spore germination, DNA condensation and fragmentation, and production of reactive oxygen species were observed in conidia treated with the drug, suggesting that PHS induces an apoptosis-like death in this fungus. Interestingly, we found that complex I mutants are more resistant to PHS treatment than the wild type strain. This effect appears to be specific because it was not observed in mutants defective in other components of the mitochondrial respiratory chain, pointing to a particular involvement of complex I in cell death. The response of the mutant strains to PHS correlated with their response to hydrogen peroxide. The fact that complex I mutants generate fewer reactive oxygen species than the wild type strain when exposed to PHS likely explains the PHS-resistant phenotype. As compared with the wild type strain, we also found that a strain containing a deletion in the gene encoding an AIF (apoptosis-inducing factor)-like protein is more resistant to PHS and H2O2. In contrast, a strain containing a deletion in a gene encoding an AMID (AIF-homologous mitochondrion-associated inducer of death)-like polypeptide is more sensitive to both drugs. These results indicate that N. crassa has the potential to be a model organism to investigate the molecular basis of programmed cell death in eukaryotic species.

  16. A mouse model of mitochondrial complex III dysfunction induced by myxothiazol

    SciTech Connect

    Davoudi, Mina; Kallijärvi, Jukka; Marjavaara, Sanna; Kotarsky, Heike; Hansson, Eva; Levéen, Per; Fellman, Vineta

    2014-04-18

    Highlights: • Reversible chemical inhibition of complex III in wild type mouse. • Myxothiazol causes decreased complex III activity in mouse liver. • The model is useful for therapeutic trials to improve mitochondrial function. - Abstract: Myxothiazol is a respiratory chain complex III (CIII) inhibitor that binds to the ubiquinol oxidation site Qo of CIII. It blocks electron transfer from ubiquinol to cytochrome b and thus inhibits CIII activity. It has been utilized as a tool in studies of respiratory chain function in in vitro and cell culture models. We developed a mouse model of biochemically induced and reversible CIII inhibition using myxothiazol. We administered myxothiazol intraperitoneally at a dose of 0.56 mg/kg to C57Bl/J6 mice every 24 h and assessed CIII activity, histology, lipid content, supercomplex formation, and gene expression in the livers of the mice. A reversible CIII activity decrease to 50% of control value occurred at 2 h post-injection. At 74 h only minor histological changes in the liver were found, supercomplex formation was preserved and no significant changes in the expression of genes indicating hepatotoxicity or inflammation were found. Thus, myxothiazol-induced CIII inhibition can be induced in mice for four days in a row without overt hepatotoxicity or lethality. This model could be utilized in further studies of respiratory chain function and pharmacological approaches to mitochondrial hepatopathies.

  17. RNA Induces Conformational Changes in the SF1/U2AF65 Splicing Factor Complex

    PubMed Central

    Gupta, Ankit; Jenkins, Jermaine L.; Kielkopf, Clara L.

    2010-01-01

    Spliceosomes assemble on pre-mRNA splice sites through a series of dynamic ribonucleoprotein complexes, yet the nature of the conformational changes remains unclear. Splicing Factor 1 (SF1) and U2 Auxiliary Factor (U2AF65) cooperatively recognize the 3’ splice site during the initial stages of pre-mRNA splicing. Here, we used small-angle X-ray scattering to compare the molecular dimensions and ab initio shape restorations of SF1 and U2AF65 splicing factors, as well as the SF1/U2AF65 complex in the absence and presence of AdML splice site RNAs. The molecular dimensions of the SF1/U2AF65/RNA complex substantially contracted by 15 Å in the maximum dimension, relative to the SF1/U2AF65 complex in the absence of RNA ligand. In contrast, no detectable changes were observed for the isolated SF1 and U2AF65 splicing factors or their individual complexes with RNA, although slight differences in the shapes of their molecular envelopes were apparent. We propose that the conformational changes that are induced by assembly of the SF1/U2AF65/RNA complex serve to position the pre-mRNA splice site optimally for subsequent stages of splicing. PMID:21146534

  18. RNA induces conformational changes in the SF1/U2AF65 splicing factor complex.

    PubMed

    Gupta, Ankit; Jenkins, Jermaine L; Kielkopf, Clara L

    2011-02-04

    Spliceosomes assemble on pre-mRNA splice sites through a series of dynamic ribonucleoprotein complexes, yet the nature of the conformational changes remains unclear. Splicing factor 1 (SF1) and U2 auxiliary factor (U2AF(65)) cooperatively recognize the 3' splice site during the initial stages of pre-mRNA splicing. Here, we used small-angle X-ray scattering to compare the molecular dimensions and ab initio shape restorations of SF1 and U2AF(65) splicing factors, as well as the SF1/U2AF(65) complex in the absence and presence of AdML (adenovirus major late) splice site RNAs. The molecular dimensions of the SF1/U2AF(65)/RNA complex substantially contracted by 15 Å in the maximum dimension, relative to the SF1/U2AF(65) complex in the absence of RNA ligand. In contrast, no detectable changes were observed for the isolated SF1 and U2AF(65) splicing factors or their individual complexes with RNA, although slight differences in the shapes of their molecular envelopes were apparent. We propose that the conformational changes that are induced by assembly of the SF1/U2AF(65)/RNA complex serve to position the pre-mRNA splice site optimally for subsequent stages of splicing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Novel platinum(IV) complexes induce rapid tumor cell death in vitro.

    PubMed

    Kaludjerović, Goran N; Miljković, Djordje; Momcilović, Miljana; Djinović, Vesna M; Mostarica Stojković, Marija; Sabo, Tibor J; Trajković, Vladimir

    2005-09-01

    The anticancer activity of platinum complexes has been known since the discovery of classical Pt(II)-based drug cisplatin. However, Pt(IV) complexes have greater inertness than corresponding Pt(II) complexes, thus allowing the oral administration and reducing the toxicity associated with platinum-based chemotherapy. Here, we describe the in vitro antitumor activity of some novel Pt(IV)-based agents against mouse fibrosarcoma L929 cells and human astrocytoma U251 cells. The cytotoxicity of 2 Pt(IV) complexes with bidentate ethylenediamine-N,N'-di-3-propanoato esters was found to be markedly higher than that of their Pt(II) counterparts and comparable to the antitumor action of cisplatin. In contrast to cisplatin, which caused oxidative stress-independent apoptotic cell death of tumor cells, these Pt(IV) complexes induced oxygen radical-mediated tumor cell necrosis. Importantly, the cytotoxic action of novel Pt(IV) complexes was markedly more rapid than that of cisplatin, indicating their potential usefulness in anticancer therapy.

  20. Metal induced folding: synthesis and conformational analysis of the lanthanide complexes of two 44-membered hydrazone macrocycles.

    PubMed

    Klein, Jörg M; Clegg, Jack K; Saggiomo, Vittorio; Reck, Lisa; Lüning, Ulrich; Sanders, Jeremy K M

    2012-04-07

    Six new lanthanide complexes of two 44-membered macrocycles have been prepared and characterised in solution. An analysis of the conformations of the free macrocycles and their lanthanide complexes both in solution (2D NMR) and in solid state (X-ray crystallography) demonstrate that the complexation induces changes in folding of the macrocycles.

  1. Parameter Fluctuation-Induced Pattern Transition in the Complex Ginzburg-Landau Equation

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Ja, Ya; Tang, Jun; Chen, Yong

    Parameter fluctuation, which is often induced by the noise, temperature, deformation of the media etc., plays an important role in changing the dynamics of the system. In this paper, the problem of parameter fluctuation-induced pattern transition in the Complex Ginzburg-Landau equation (CGLE) is investigated. At first, the perpendicular-gradient initial values are used to generate spiral wave and spiral turbulence under appropriate parameters. At second, the parameter is perturbed with the periodical and/or random signal to simulate the parameter fluctuation, respectively. Then a class of linear error feedback is used to induce transition of the spiral wave and spiral turbulence. It is found that target waves can be induced by the complete feedback forcing, while the local feedback forcing seldom induce a target wave. In the case of spiral turbulence, spiral wave is generated and the spiral turbulence is removed by the new appeared spiral wave as the linear error feedback began to work on the whole media. Finally, the common negative feedback is also used to control the parameter-fluctuated CGLE, and the results are compared with the linear error feedback control, it is found that the whole system become homogeneous when the negative feedback is imposed on the whole media, and the local negative feedback can induce new target wave to remove the spiral wave while it is in vain to generate new target or spiral wave to overcome and eliminate the spiral turbulence.

  2. Signal-induced disassembly of the SCF ubiquitin ligase complex by Cdc48/p97

    PubMed Central

    Yen, James L.; Flick, Karin; Papagiannis, Christie V.; Mathur, Radhika; Tyrrell, An; Ouni, Ikram; Kaake, Robyn M.; Huang, Lan; Kaiser, Peter

    2012-01-01

    Summary A large group of E3 ubiquitin ligases is formed by the multisubunit SCF complex, whose core complex (Rbx1/Cul1-Cdc53/Skp1) binds one of many substrate recruiting F-box proteins to form an array of SCF ligases with diverse substrate specificities. It has long been thought that ubiquitylation by SCF ligases is regulated at the level of substrate binding. Here we describe an alternative mechanism of SCF regulation by active dissociation of the F-box subunit. We show that cadmium stress induces selective recruitment of the AAA+ ATPase Cdc48/p97 to catalyze dissociation of the F-box subunit from the yeast SCFMet30 ligase to block substrate ubiquitylation and trigger downstream events. Our results not only provide an additional layer of ubiquitin ligase regulation but also suggest that targeted, signal-dependent dissociation of multisubunit enzyme complexes is an important mechanism in control of enzyme function. PMID:23000173

  3. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex.

    PubMed

    Sun, Yadong; Li, Lei; Macho, Alberto P; Han, Zhifu; Hu, Zehan; Zipfel, Cyril; Zhou, Jian-Min; Chai, Jijie

    2013-11-01

    Flagellin perception in Arabidopsis is through recognition of its highly conserved N-terminal epitope (flg22) by flagellin-sensitive 2 (FLS2). Flg22 binding induces FLS2 heteromerization with BRASSINOSTEROID INSENSITIVE 1-associated kinase 1 (BAK1) and their reciprocal activation followed by plant immunity. Here, we report the crystal structure of FLS2 and BAK1 ectodomains complexed with flg22 at 3.06 angstroms. A conserved and a nonconserved site from the inner surface of the FLS2 solenoid recognize the C- and N-terminal segment of flg22, respectively, without oligomerization or conformational changes in the FLS2 ectodomain. Besides directly interacting with FLS2, BAK1 acts as a co-receptor by recognizing the C terminus of the FLS2-bound flg22. Our data reveal the molecular mechanisms underlying FLS2-BAK1 complex recognition of flg22 and provide insight into the immune receptor complex activation.

  4. Intelligent colloidal hybrids via reversible pH-induced complexation of polyelectrolyte and silica nanoparticles.

    PubMed

    Mori, Hideharu; Müller, Axel H E; Klee, Joachim E

    2003-04-02

    We present novel intelligent colloidal polymer/silica nanocomposites, in which the complexation of cationic silica nanoparticles and a weak anionic polyelectrolyte can be manipulated simply by pH change through a hydrogen-bonding interaction and ionic complexation caused by hydrogen-transfer interactions between the constituents. Special silica particles which have nanometer size (diameter approximately 3.0 nm) and two independent proton-accepting sites were developed in this study. Both the silica and poly(acrylic acid) form transparent colloidal solutions in water, while a white turbid dispersion was obtained just after mixing the two solutions due to the complexation. The pH-induced association-dissociation behavior was confirmed by the turbidity and potentiometric titration measurements. The assembled structures of the hybrids were visualized by scanning force microscopy.

  5. Kaleidoscopic imaging patterns of complex structures fabricated by laser-induced deformation

    NASA Astrophysics Data System (ADS)

    Zhang, Haoran; Yang, Fengyou; Dong, Jianjie; Du, Lena; Wang, Chuang; Zhang, Jianming; Guo, Chuan Fei; Liu, Qian

    2016-12-01

    Complex surface structures have stimulated a great deal of interests due to many potential applications in surface devices. However, in the fabrication of complex surface micro-/nanostructures, there are always great challenges in precise design, or good controllability, or low cost, or high throughput. Here, we present a route for the accurate design and highly controllable fabrication of surface quasi-three-dimensional (quasi-3D) structures based on a thermal deformation of simple two-dimensional laser-induced patterns. A complex quasi-3D structure, coaxially nested convex-concave microlens array, as an example, demonstrates our capability of design and fabrication of surface elements with this method. Moreover, by using only one relief mask with the convex-concave microlens structure, we have gotten hundreds of target patterns at different imaging planes, offering a cost-effective solution for mass production in lithography and imprinting, and portending a paradigm in quasi-3D manufacturing.

  6. Photo-induced reactions in the ion-molecule complex Mg+-OCNC2H5

    NASA Astrophysics Data System (ADS)

    Sun, Ju-Long; Liu, Haichuan; Han, Ke-Li; Yang, Shihe

    2003-06-01

    Ion-molecule complexes of magnesium cation with ethyl isocyanate were produced in a laser-ablation supersonic expansion nozzle source. Photo-induced reactions in the 1:1 complexes have been studied in the spectral range of 230-410 nm. Photodissociation mass spectrometry revealed the persistent product Mg+ from nonreactive quenching throughout the entire wavelength range. As for the reactive channels, the photoproducts, Mg+OCN and C2H5+, were produced only in the blue absorption band of the complex with low yields. The action spectrum of Mg+(OCNC2H5) consists of two pronounced peaks on the red and blue sides of the Mg+ 32P←32S atomic transition. The ground state geometry of Mg+-OCNC2H5 was fully optimized at B3LYP/6-31+G** level by using GAUSSIAN 98 package. The calculated absorption spectrum of the complex using the optimized structure of its ground state agrees well with the observed action spectrum. Photofragment branching fractions of the products are almost independent of the photolysis photon energy for the 3Px,y,z excitations. The very low branching ratio of reactive products to nonreactive fragment suggests that evaporation is the main relaxation pathway in the photo-induced reactions of Mg+(OCNC2H5).

  7. DJ-1 deficiency in astrocytes selectively enhances mitochondrial Complex I inhibitor-induced neurotoxicity

    PubMed Central

    Mullett, Steven J.; Hinkle, David A.

    2011-01-01

    Parkinson’s disease (PD) brains show evidence of mitochondrial respiratory Complex I deficiency, oxidative stress, and neuronal death. Complex I-inhibiting neurotoxins, such as the pesticide rotenone, cause neuronal death and parkinsonism in animal models. We have previously shown that DJ-1 over-expression in astrocytes augments their capacity to protect neurons against rotenone, that DJ-1 knock-down impairs astrocyte-mediated neuroprotection against rotenone, and that each process involves astrocyte-released factors. To further investigate the mechanism behind these findings, we developed a high-throughput, plate-based bioassay that can be used to assess how genetic manipulations in astrocytes affect their ability to protect co-cultured neurons. We used this bioassay to show that DJ-1 deficiency-induced impairments in astrocyte-mediated neuroprotection occur solely in the presence of pesticides that inhibit Complex I (rotenone, pyridaben, fenazaquin, and fenpyroximate); not with agents that inhibit Complexes II-V, that primarily induce oxidative stress, or that inhibit the proteasome. This is a potentially PD-relevant finding because pesticide exposure is epidemiologically-linked with an increased risk for PD. Further investigations into our model suggested that astrocytic glutathione and heme oxygenase-1 anti-oxidant systems are not central to the neuroprotective mechanism. PMID:21219333

  8. DJ-1 deficiency in astrocytes selectively enhances mitochondrial Complex I inhibitor-induced neurotoxicity.

    PubMed

    Mullett, Steven J; Hinkle, David A

    2011-05-01

    Parkinson's disease (PD) brains show evidence of mitochondrial respiratory Complex I deficiency, oxidative stress, and neuronal death. Complex I-inhibiting neurotoxins, such as the pesticide rotenone, cause neuronal death and parkinsonism in animal models. We have previously shown that DJ-1 over-expression in astrocytes augments their capacity to protect neurons against rotenone, that DJ-1 knock-down impairs astrocyte-mediated neuroprotection against rotenone, and that each process involves astrocyte-released factors. To further investigate the mechanism behind these findings, we developed a high-throughput, plate-based bioassay that can be used to assess how genetic manipulations in astrocytes affect their ability to protect co-cultured neurons. We used this bioassay to show that DJ-1 deficiency-induced impairments in astrocyte-mediated neuroprotection occur solely in the presence of pesticides that inhibit Complex I (rotenone, pyridaben, fenazaquin, and fenpyroximate); not with agents that inhibit Complexes II-V, that primarily induce oxidative stress, or that inhibit the proteasome. This is a potentially PD-relevant finding because pesticide exposure is epidemiologically-linked with an increased risk for PD. Further investigations into our model suggested that astrocytic GSH and heme oxygenase-1 antioxidant systems are not central to the neuroprotective mechanism. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  9. Dynamic Figure Eight Chirality: Multifarious Inversions of a Helical Preference Induced by Complexation.

    PubMed

    Katoono, Ryo; Tanaka, Yuki; Kusaka, Keiichi; Fujiwara, Kenshu; Suzuki, Takanori

    2015-08-07

    We demonstrate two types of inversion of a helical preference upon the 1:1 complexation of a dynamic figure eight molecule with a guest molecule through the controlled transmission of point chirality. We designed a series of macrocycles that prefer a nonplanar conformation with figure eight chirality. These macrocycles are composed of a chirality-transferring unit (terephthalamide) and a structure-modifying unit (two o-phenylene rings spaced with a varying number of triple bonds). The former unit provides a binding site for capturing a guest molecule through the formation of hydrogen bonds. The attachment of chiral auxiliaries to the former unit induces a helical preference for a particular sense through the intramolecular transmission of point chirality. For relatively small-sized macrocycles, the preferred sense was reversed upon complexation with an achiral guest. Contrary preferences before and after complexation were both seen for chiral auxiliaries associated with a figure eight host through two-way intramolecular transmission of the single chiral source. Alternatively, the helical preference induced in relatively large-sized macrocycles was reversed only when a figure eight host formed a 1:1 complex with a particular enantiomeric guest through the supramolecular transmission of point chirality in the guest. This stereospecific inversion of a helical preference is rare.

  10. Damping and induced damping of a lightweight sandwich panel with simple and complex attachments

    NASA Astrophysics Data System (ADS)

    Conlon, S. C.; Hambric, S. A.

    2009-05-01

    Accurately estimating a structure's broadband response is highly dependent on a proper characterization of the system's internal damping as well as induced (or effective) damping when coupled systems are considered. In many aerospace and related applications a primary or master structure is loaded with equipment or substructures. The effects of these attachments on the master structure are often poorly understood and frequently overlooked, but in many cases can dominate the master structure's response. In this work various measures of damping of a lightweight aerospace panel (aluminum sandwich honeycomb core panel) with simple (lumped mass) and complex (electronic equipment) attachments are investigated using experimental techniques and simple statistical energy analysis models. The panel's various measures of damping in steady-state conditions are defined and explored. The panels with simple and complex attachments are experimentally evaluated using power injection methods. The results show that at different frequencies the simple panel's response is controlled by internal and then acoustic radiation damping. The complex attachment's induced damping effects, however, can far exceed both the structure internal and acoustic radiation components. A range of complex attachment configurations are evaluated and general design assessment procedures developed for use by designers. Future work is planned to explore the systems transient response and derived parameters, as well as investigate the effects when the attachment mass varies over a greater range of values, a realistic condition applicable to many aerospace systems.

  11. Abi-1 forms an epidermal growth factor-inducible complex with Cbl: role in receptor endocytosis.

    PubMed

    Tanos, Barbara E; Pendergast, Ann Marie

    2007-07-01

    The Abl-interactor (Abi) proteins are involved in the regulation of actin polymerization and have recently been shown to modulate epidermal growth factor receptor (EGFR) endocytosis. Here we describe the identification of a novel complex between Abi-1 and the Cbl ubiquitin ligase that is induced by stimulation with EGF. Notably, an Abi-1 mutant lacking the SH3 domain (DeltaSH3) fails to interact with Cbl and inhibits EGFR internalization. We show that expression of the Abi-1DeltaSH3 mutant inhibits Cbl accumulation at the plasma membrane after EGF treatment. We have previously shown that the oncogenic Abl tyrosine kinase inhibits EGFR internalization. Here we report that the oncogenic Abl kinase disrupts the EGF-inducible Abi-1/Cbl complex, highlighting the importance of Abl kinases and downstream effectors in the regulation of EGFR internalization. Thus, our work reveals a new role for oncogenic Abl tyrosine kinases in the regulation of the Abi-1/Cbl protein complex and uncovers a role for the Abi-1/Cbl complex in the regulation of EGFR endocytosis.

  12. Statin-Induced Myopathy Is Associated with Mitochondrial Complex III Inhibition.

    PubMed

    Schirris, Tom J J; Renkema, G Herma; Ritschel, Tina; Voermans, Nicol C; Bilos, Albert; van Engelen, Baziel G M; Brandt, Ulrich; Koopman, Werner J H; Beyrath, Julien D; Rodenburg, Richard J; Willems, Peter H G M; Smeitink, Jan A M; Russel, Frans G M

    2015-09-01

    Cholesterol-lowering statins effectively reduce the risk of major cardiovascular events. Myopathy is the most important adverse effect, but its underlying mechanism remains enigmatic. In C2C12 myoblasts, several statin lactones reduced respiratory capacity and appeared to be strong inhibitors of mitochondrial complex III (CIII) activity, up to 84% inhibition. The lactones were in general three times more potent inducers of cytotoxicity than their corresponding acid forms. The Qo binding site of CIII was identified as off-target of the statin lactones. These findings could be confirmed in muscle tissue of patients suffering from statin-induced myopathies, in which CIII enzyme activity was reduced by 18%. Respiratory inhibition in C2C12 myoblasts could be attenuated by convergent electron flow into CIII, restoring respiration up to 89% of control. In conclusion, CIII inhibition was identified as a potential off-target mechanism associated with statin-induced myopathies.

  13. A novel complex I inhibitor protects against hypertension-induced left ventricular hypertrophy.

    PubMed

    Matsumura, Nobutoshi; Robertson, Ian M; Hamza, Shereen M; Soltys, Carrie-Lynn M; Sung, Miranda M; Masson, Grant; Beker, Donna L; Dyck, Jason R B

    2017-03-01

    Since left ventricular hypertrophy (LVH) increases the susceptibility for the development of other cardiac conditions, pharmacotherapy that mitigates pathological cardiac remodeling may prove to be beneficial in patients with LVH. Previous work has shown that the activation of the energy-sensing kinase AMP-activated protein kinase (AMPK) can inhibit some of the molecular mechanisms that are involved in LVH. Of interest, metformin activates AMPK through its inhibition of mitochondrial complex I in the electron transport chain and can prevent LVH induced by pressure overload. However, metformin has additional cellular effects unrelated to AMPK activation, raising questions about whether mitochondrial complex I inhibition is sufficient to reduce LVH. Herein, we characterize the cardiac effects of a novel compound (R118), which is a more potent complex I inhibitor than metformin and is thus used at a much lower concentration. We show that R118 activates AMPK in the cardiomyocyte, inhibits multiple signaling pathways involved in LVH, and prevents Gq protein-coupled receptor agonist-induced prohypertrophic signaling. We also show that in vivo administration of R118 prevents LVH in a mouse model of hypertension, suggesting that R118 can directly modulate the response of the cardiomyocyte to stress. Of importance, we also show that while R118 treatment prevents adaptive remodelling in response to elevated afterload, it does so without compromising systolic function, improves myocardial energetics, and prevents a decline in diastolic function in hypertensive mice. Taken together, our data suggest that inhibition of mitochondrial complex I may be worthy of future investigation for the treatment of LVH.NEW & NOTEWORTHY Inhibition of mitochondrial complex I by R118 reduces left ventricular hypertrophy (LVH) and improves myocardial energetics as well as diastolic function without compromising systolic function. Together, these effects demonstrate the therapeutic potential of

  14. Computation of Collision-Induced Absorption by Simple Molecular Complexes, for Astrophysical Applications

    NASA Astrophysics Data System (ADS)

    Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.

    2012-06-01

    The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of various types of planets and cool stars, such as late stars, low-mass stars, brown dwarfs, cool white dwarf stars, the ambers of the smaller, burnt out main sequence stars, exoplanets, etc., and therefore of special astronomical interest The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. First results for H_2-He complexes have already been applied to astrophysical models have shown great improvements in these models. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 X. Li, K. L. C. Hunt, F. Wang, M. Abel, and L. Frommhold, Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin, Int. J. of Spect., vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin, J. Phys. Chem. A, 115, 6805-6812, 2011} L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, Infrared absorption by collisional H_2-He complexes

  15. Heat- and light-induced detachment of the light harvesting complex from isolated photosystem I supercomplexes.

    PubMed

    Nellaepalli, Sreedhar; Zsiros, Ottó; Tóth, Tünde; Yadavalli, Venkateswarlu; Garab, Győző; Subramanyam, Rajagopal; Kovács, László

    2014-08-01

    In a previous study, using photosystem I enriched stroma thylakoid membrane vesicles, we have shown that the light harvesting complexes of this photosystem are prone to heat- and light-induced, thermo-optically driven detachment from the supercomplex [43]. We have also shown that the splitting of the supercomplex occurs in a gradual and specific manner, selectively affecting the different constituents of the antenna complexes. Here we further analyse these heat- and light-induced processes in isolated Photosystem I supercomplex using circular dichroism and 77K fluorescence emission spectroscopy and immuno blotting, and obtain further details on the sequence of events of the dissociation process as well as on the thermal stability of the different components. Our absorption and circular dichroism spectroscopy and immuno blotting data show that the dissociation of LHCI from PSI-LHCI supercomplex starts above 50°C. Also, the low temperature fluorescence emission spectra depicts decrease of maximum fluorescence emission at 730nm and an increase of the intensity at 685nm, and about 10nm blue-shifts, from 730 to 720nm and from 685 to 676nm, respectively, indicating the heat (50°C) induced detachment of LHCI from PSI core complexes. The reaction centre proteins are highly stable even at high temperatures. Lhca2 is more heat stable than the other light harvesting protein complexes of PSI, whereas Lhca4 and Lhca3 are rather labile. Combined heat and light treatments significantly enhances the disorganization of PSI-LHCI supercomplexes, indicating a thermo-optic mechanism, which might have significant role under combined heat and light stress conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Heavy Metal-induced Metallothionein Expression Is Regulated by Specific Protein Phosphatase 2A Complexes*

    PubMed Central

    Chen, Liping; Ma, Lu; Bai, Qing; Zhu, Xiaonian; Zhang, Jinmiao; Wei, Qing; Li, Daochuan; Gao, Chen; Li, Jie; Zhang, Zhengbao; Liu, Caixia; He, Zhini; Zeng, Xiaowen; Zhang, Aihua; Qu, Weidong; Zhuang, Zhixiong; Chen, Wen; Xiao, Yongmei

    2014-01-01

    Induction of metallothionein (MT) expression is involved in metal homeostasis and detoxification. To identify the key pathways that regulate metal-induced cytotoxicity, we investigate how phosphorylated metal-responsive transcription factor-1 (MTF-1) contributed to induction of MT expression. Immortal human embryonic kidney cells (HEK cells) were treated with seven kinds of metals including cadmium chloride (CdCl2), zinc sulfate (ZnSO4), copper sulfate(CuSO4), lead acetate (PbAc), nickel sulfate (NiSO4), sodium arsenite (NaAsO2), and potassium bichromate (K2Cr2O7). The MT expression was induced in a dose-response and time-dependent manner upon various metal treatments. A cycle of phosphorylation and dephosphorylation was required for translocation of MTF-1 from cytoplasm to nucleus, leading to the up-regulation of MTs expression. Protein phosphatase 2A (PP2A) participated in regulating MT expression through dephosphorylation of MTF-1. A loss-of-function screen revealed that the specific PP2A complexes containing PR110 were involved in metal-induced MT expression. Suppression of PP2A PR110 in HEK cells resulted in the persistent MTF-1 phosphorylation and the disturbance of MTF-1 nuclear translocation, which was concomitant with a significant decrease of MT expression and enhanced cytotoxicity in HEK cells. Notably, MTF-1 was found in complex with specific PP2A complexes containing the PR110 subunit upon metal exposure. Furthermore, we identify that the dephosphorylation of MTF-1 at residue Thr-254 is directly regulated by PP2A PR110 complexes and responsible for MTF-1 activation. Taken together, these findings delineate a novel pathway that determines cytotoxicity in response to metal treatments and provide new insight into the role of PP2A in cellular stress response. PMID:24962574

  17. Complex I inhibition in the visual pathway induces disorganization of the node of Ranvier

    PubMed Central

    Marella, Mathieu; Patki, Gaurav; Matsuno-Yagi, Akemi; Yagi, Takao

    2013-01-01

    Mitochondrial defects can have significant consequences on many aspects of neuronal physiology. In particular, deficiencies in the first enzyme complex of the mitochondrial respiratory chain (complex I) are considered to be involved in a number of human neurodegenerative diseases. The current work highlights a tight correlation between the inhibition of complex I and the state of axonal myelination of the optic nerve. Exposing the visual pathway of rats to rotenone, a complex I inhibitor, resulted in disorganization of the node of Ranvier. The structure and function of the node depends on specific cell adhesion molecules, among others, CASPR (contactin associated protein) and contactin. CASPR and contactin are both on the axonal surface and need to be associated to be able to anchor their myelin counter part. Here we show that inhibition of mitochondrial complex I by rotenone in rats induces reactive oxygen species, disrupts the interaction of CASPR and contactin couple, and thus damages the organization and function of the node of Ranvier. Demyelination of the optic nerve occurs as a consequence which is accompanied by a loss of vision. The physiological impairment could be reversed by introducing an alternative NADH dehydrogenase to the mitochondria of the visual system. The restoration of the nodal structure was specifically correlated with visual recovery in the treated animal. PMID:23816754

  18. Dietary arginine silicate inositol complex inhibits periodontal tissue loss in rats with ligature-induced periodontitis

    PubMed Central

    Dundar, Serkan; Eltas, Abubekir; Hakki, Sema S; Malkoc, Sıddık; Uslu, M Ozay; Tuzcu, Mehmet; Komorowski, James; Ozercan, I Hanifi; Akdemir, Fatih; Sahin, Kazim

    2016-01-01

    The purpose of this study was to induce experimental periodontitis in rats previously fed diets containing arginine silicate inositol (ASI) complex and examine the biochemical, immunological, and radiological effects. Fifty two 8-week-old female Sprague Dawley rats were equally divided into four groups. The control group included those fed a standard rat diet with no operation performed during the experiment. The periodontitis, ASI I, and ASI II groups were subjected to experimental periodontitis induction for 11 days after being fed a standard rat diet alone, a diet containing 1.81 g/kg ASI complex, or a diet containing 3.62 g/kg ASI complex, respectively, for 8 weeks. Throughout the 11-day duration of periodontitis induction, all rats were fed standard feed. The rats were euthanized on the eleventh day, and their tissue and blood samples were collected. In the periodontitis group, elevated tissue destruction parameters and reduced tissue formation parameters were found, as compared to the ASI groups. Levels of enzymes, cytokines, and mediators associated with periodontal tissue destruction were lower in rats fed a diet containing ASI complex after experimental periodontitis. These results indicate that ASI complex could be an alternative agent for host modulation. PMID:27895467

  19. Dietary arginine silicate inositol complex inhibits periodontal tissue loss in rats with ligature-induced periodontitis.

    PubMed

    Dundar, Serkan; Eltas, Abubekir; Hakki, Sema S; Malkoc, Sıddık; Uslu, M Ozay; Tuzcu, Mehmet; Komorowski, James; Ozercan, I Hanifi; Akdemir, Fatih; Sahin, Kazim

    2016-01-01

    The purpose of this study was to induce experimental periodontitis in rats previously fed diets containing arginine silicate inositol (ASI) complex and examine the biochemical, immunological, and radiological effects. Fifty two 8-week-old female Sprague Dawley rats were equally divided into four groups. The control group included those fed a standard rat diet with no operation performed during the experiment. The periodontitis, ASI I, and ASI II groups were subjected to experimental periodontitis induction for 11 days after being fed a standard rat diet alone, a diet containing 1.81 g/kg ASI complex, or a diet containing 3.62 g/kg ASI complex, respectively, for 8 weeks. Throughout the 11-day duration of periodontitis induction, all rats were fed standard feed. The rats were euthanized on the eleventh day, and their tissue and blood samples were collected. In the periodontitis group, elevated tissue destruction parameters and reduced tissue formation parameters were found, as compared to the ASI groups. Levels of enzymes, cytokines, and mediators associated with periodontal tissue destruction were lower in rats fed a diet containing ASI complex after experimental periodontitis. These results indicate that ASI complex could be an alternative agent for host modulation.

  20. Consciousness and Complexity during Unresponsiveness Induced by Propofol, Xenon, and Ketamine.

    PubMed

    Sarasso, Simone; Boly, Melanie; Napolitani, Martino; Gosseries, Olivia; Charland-Verville, Vanessa; Casarotto, Silvia; Rosanova, Mario; Casali, Adenauer Girardi; Brichant, Jean-Francois; Boveroux, Pierre; Rex, Steffen; Tononi, Giulio; Laureys, Steven; Massimini, Marcello

    2015-12-07

    A common endpoint of general anesthetics is behavioral unresponsiveness, which is commonly associated with loss of consciousness. However, subjects can become disconnected from the environment while still having conscious experiences, as demonstrated by sleep states associated with dreaming. Among anesthetics, ketamine is remarkable in that it induces profound unresponsiveness, but subjects often report "ketamine dreams" upon emergence from anesthesia. Here, we aimed at assessing consciousness during anesthesia with propofol, xenon, and ketamine, independent of behavioral responsiveness. To do so, in 18 healthy volunteers, we measured the complexity of the cortical response to transcranial magnetic stimulation (TMS)--an approach that has proven helpful in assessing objectively the level of consciousness irrespective of sensory processing and motor responses. In addition, upon emergence from anesthesia, we collected reports about conscious experiences during unresponsiveness. Both frontal and parietal TMS elicited a low-amplitude electroencephalographic (EEG) slow wave corresponding to a local pattern of cortical activation with low complexity during propofol anesthesia, a high-amplitude EEG slow wave corresponding to a global, stereotypical pattern of cortical activation with low complexity during xenon anesthesia, and a wakefulness-like, complex spatiotemporal activation pattern during ketamine anesthesia. Crucially, participants reported no conscious experience after emergence from propofol and xenon anesthesia, whereas after ketamine they reported long, vivid dreams unrelated to the external environment. These results are relevant because they suggest that brain complexity may be sensitive to the presence of disconnected consciousness in subjects who are considered unconscious based on behavioral responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Independent complexity patterns in single neuron activity induced by static magnetic field.

    PubMed

    Spasić, S; Nikolić, Lj; Mutavdžić, D; Saponjić, J

    2011-11-01

    We applied a combination of fractal analysis and Independent Component Analysis (ICA) method to detect the sources of fractal complexity in snail Br neuron activity induced by static magnetic field of 2.7 mT. The fractal complexity of Br neuron activity was analyzed before (Control), during (MF), and after (AMF) exposure to the static magnetic field in six experimental animals. We estimated the fractal dimension (FD) of electrophysiological signals using Higuchi's algorithm, and empirical FD distributions. By using the Principal Component Analysis (PCA) and FastICA algorithm we determined the number of components, and defined the statistically independent components (ICs) in the fractal complexity of signal waveforms. We have isolated two independent components of the empirical FD distributions for each of three groups of data by using FastICA algorithm. ICs represent the sources of fractal waveforms complexity of Br neuron activity in particular experimental conditions. Our main results have shown that there could be two opposite intrinsic mechanisms in single snail Br neuron response to static magnetic field stimulation. We named identified ICs that correspond to those mechanisms - the component of plasticity and the component of elasticity. We have shown that combination of fractal analysis with ICA method could be very useful for the decomposition and identification of the sources of fractal complexity of bursting neuronal activity waveforms.

  2. Multi-therapeutic potential of autoantibodies induced by immune complexes trapped on follicular dendritic cells

    PubMed Central

    El Shikh, Mohey Eldin; Kmieciak, Maciej; Manjili, Masoud H; Szakal, Andras K; Pitzalis, Costantino; Tew, John G

    2013-01-01

    Induction of autoantibodies (autoAbs) targeting disease drivers / mediators is emerging as a potential immunotherapeutic strategy. Auto-immune complex (IC)-retaining follicular dendritic cells (FDCs) critically regulate pathogenic autoAb production in autoreactive germinal centers (GCs); however, their ability to induce potentially therapeutic autoAbs has not been explored. We hypothesized that deliberate display of clinically targeted antigens (Ags) in the form of ICs on FDC membranes induces target-specific autoreactive GCs and autoAbs that may be exploited therapeutically. To test our hypothesis, three therapeutically relevant Ags: TNF-α, HER2/neu and IgE, were investigated. Our results indicated that TNF-α-, HER2/neu- and IgE-specific autoAbs associated with strong GC reactions were induced by TNF-α-, HER2/neu- and IgE-IC retention on FDCs. Moreover, the induced anti-TNF-α autoAbs neutralized mouse and human TNF-α with half maximal Inhibitory Concentration (IC50) of 7.1 and 1.6 nM respectively. In addition, we demonstrated that FDC-induced Ab production could be non-specifically inhibited by the IgG-specific Endo-S that accessed the light zones of GCs and interfered with FDC-IC retention. In conclusion, the ability of FDCs to productively present autoAgs raises the potential for a novel immunotherapeutic platform targeting mediators of autoimmune disorders, allergic diseases, and Ab responsive cancers. PMID:23836278

  3. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.

    PubMed

    Korge, Paavo; Calmettes, Guillaume; John, Scott A; Weiss, James N

    2017-06-16

    Recent evidence has implicated succinate-driven reverse electron transport (RET) through complex I as a major source of damaging reactive oxygen species (ROS) underlying reperfusion injury after prolonged cardiac ischemia. However, this explanation may be incomplete, because RET on reperfusion is self-limiting and therefore transient. RET can only generate ROS when mitochondria are well polarized, and it ceases when permeability transition pores (PTP) open during reperfusion. Because prolonged ischemia/reperfusion also damages electron transport complexes, we investigated whether such damage could lead to ROS production after PTP opening has occurred. Using isolated cardiac mitochondria, we demonstrate a novel mechanism by which antimycin-inhibited complex III generates significant amounts of ROS in the presence of Mg(2+) and NAD(+) and the absence of exogenous substrates upon inner membrane pore formation by alamethicin or Ca(2+)-induced PTP opening. We show that H2O2 production under these conditions is related to Mg(2+)-dependent NADH generation by malic enzyme. H2O2 production is blocked by stigmatellin, indicating its origin from complex III, and by piericidin, demonstrating the importance of NADH-related ubiquinone reduction for ROS production under these conditions. For maximal ROS production, the rate of NADH generation has to be equal or below that of NADH oxidation, as further increases in [NADH] elevate ubiquinol-related complex III reduction beyond the optimal range for ROS generation. These results suggest that if complex III is damaged during ischemia, PTP opening may result in succinate/malate-fueled ROS production from complex III due to activation of malic enzyme by increases in matrix [Mg(2+)], [NAD(+)], and [ADP]. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. The TrxG Complex Mediates Cytokine Induced De Novo Enhancer Formation in Islets

    PubMed Central

    Hurley, Peter; Dhillon, Jasmine; Gill, Amol; Whiting, Cheryl

    2015-01-01

    To better understand how β-cells respond to proinflammatory cytokines we mapped the locations of histone 3 lysine 4 monomethylation (H3K4me1), a post-translational histone modification enriched at active and poised cis-regulatory regions, in IFNγ, Il-1β, and TNFα treated pancreatic islets. We identified 96,721 putative cis-regulatory loci, of which 3,590 were generated de novo, 3,204 had increased H3K4me1, and 5,354 had decreased H3K4me1 in IFNγ, Il-1β, and TNFα exposed islets. Roughly 10% of the de novo and increased regions were enriched for the repressive histone modification histone 3 lysine 27 trimethylation (H3K27me3) in untreated cells, and these were frequently associated with chemokine genes. We show that IFNγ, Il-1β, and TNFα exposure overcomes this repression and induces chemokine gene activation in as little as three hours, and that this expression persists for days in absence of continued IFNγ, Il-1β, and TNFα exposure. We implicate trithorax group (TrxG) complexes as likely players in the conversion of these repressed loci to an active state. To block the activity of these complexes, we suppressed Wdr5, a core component of the TrxG complexes, and used the H3K27me3 demethylase inhibitor GSK-J4. We show that GSK-J4 is particularly effective in blunting IFNγ, Il-1β, and TNFα-induced chemokine gene expression in β-cells; however, it induced significant islet-cell apoptosis and β-cell dysfunction. Wdr5 suppression also reduced IFNγ, Il-1β, and TNFα induced chemokine gene expression in β-cells without affecting islet-cell survival or β-cell function after 48hrs, but did begin to increase islet-cell apoptosis and β-cell dysfunction after four days of treatment. Taken together these data suggest that the TrxG complex is potentially a viable target for preventing cytokine induced chemokine gene expression in β-cells. PMID:26505193

  5. Subcritical Water Induced Complexation of Soy Protein and Rutin: Improved Interfacial Properties and Emulsion Stability.

    PubMed

    Chen, Xiao-Wei; Wang, Jin-Mei; Yang, Xiao-Quan; Qi, Jun-Ru; Hou, Jun-Jie

    2016-09-01

    Rutin is a common dietary flavonoid with important antioxidant and pharmacological activities. However, its application in the food industry is limited mainly because of its poor water solubility. The subcritical water (SW) treatment provides an efficient technique to solubilize and achieve the enrichment of rutin in soy protein isolate (SPI) by inducing their complexation. The physicochemical, interfacial, and emulsifying properties of the complex were investigated and compared to the mixtures. SW treatment had much enhanced rutin-combined capacity of SPI than that of conventional method, ascribing to the well-contacted for higher water solubility of rutin with stronger collision-induced hydrophobic interactions. Compared to the mixtures of rutin with proteins, the complex exhibited an excellent surface activity and improved the physical and oxidative stability of its stabilized emulsions. This improving effect could be attributed to the targeted accumulation of rutin at the oil-water interface accompanied by the adsorption of SPI resulting in the thicker interfacial layer, as evidenced by higher interfacial protein and rutin concentrations. This study provides a novel strategy for the design and enrichment of nanovehicle providing water-insoluble hydrophobic polyphenols for interfacial delivery in food emulsified systems. © 2016 Institute of Food Technologists®

  6. Adaptation to Complex Pictures: Exposure to Emotional Valence Induces Assimilative Aftereffects

    PubMed Central

    Palumbo, Rocco; D’Ascenzo, Stefania; Quercia, Angelica; Tommasi, Luca

    2017-01-01

    Aftereffects have been documented for a variety of perceptual categories spanning from body gender to facial emotion, thus becoming an important tool in the study of high-level vision and its neural bases. We examined whether the perceived valence of a complex scene is subject to aftereffects, by observing the participants’ evaluation of the valence of a test picture preceded by a different picture. For this study, we employed an adaptation paradigm with positive and negative images used as adapters, and positive, negative, and neutral images used as tests. Our results show that adaptation to complex emotional pictures induces assimilative aftereffects: participants judged neutral tests more positively following positive adapters and more negatively following negative adapters. This depended on the prolonged adaptation phase (10 s), as the results of a second experiment, in which adapters lasted for 500 ms, did not show aftereffects. In addition, the results show that assimilative aftereffects of negative and positive adapters also manifested themselves on non-neutral (negative and positive) targets, providing evidence that the global emotional content of complex pictures is suitable to induce assimilative aftereffects. PMID:28194123

  7. Perfluoro-alcohol-induced complex coacervates of polyelectrolyte-surfactant mixtures: phase behavior and analysis.

    PubMed

    Nejati, Mahboubeh M; Khaledi, Morteza G

    2015-05-26

    Perfluorinated alcohols and acids such as hexafluoroisopropanol (HFIP), trifluoroethanol, trifluoroacetic acid, pentafluoropropionic acid, and heptafluorobutyric acid induce coacervation and phase separation in aqueous solutions of a wide variety of individual and mixed amphiphiles [ Khaledi Langmuir 2013 , 29 , 2458 ]. This paper focuses on HFIP-induced complex coacervate formation in the mixtures of anionic polyelectrolytes, such as sodium salt of poly(methacrylic acid) (PMA) or poly(acrylic acid) (PAA) and cationic surfactants of alkyltrimethylammonium bromides. In purely aqueous media and over a wide concentration range, mixtures of PMA and CTAB form the catanionic complex (CTA(+)PM(-)) that is insoluble in water (white precipitate). Upon addition of a small percentage of HFIP, the mixture goes through phase transition and formation of two distinctly clear liquid phases. The phase diagram for the HFIP-PMA-CTAB coacervate system was studied. The coacervate volume was determined as a function of system variables such as charge ratio as well as total and individual concentrations of the system components. These results, combined with the chemical composition analysis of the separated aqueous top-phase and coacervate bottom-phase, shed light on the coacervation mechanism. The results suggest that exchange of counterions and ion-pair formation play critical roles in the coacervation process. This process facilitated by HFIP through solvation of the head groups and dehydration of the hydrophobic moieties of the catanionic complex. Because of the presence of HFIP, coacervation occurs over a wide range of concentrations and charge ratios of the oppositely charged polyelectrolyte and surfactant.

  8. Calcium release induced by 2-pyridinecarboxaldehyde thiosemicarbazone and its copper complex contributes to tumor cell death.

    PubMed

    Fu, Yun; Liu, Youxun; Wang, Jiangang; Li, Cuiping; Zhou, Sufeng; Yang, Yun; Zhou, Pingxin; Lu, Chengbiao; Li, Changzheng

    2017-03-01

    Thiosemicarbazones display significant antitumor activity and their copper complexes also exhibit enhanced biological activities in most situations, but the underlying mechanism is poorly understood. Therefore, investigation of the mechanism involved in the change upon chelation is required to extend our understanding of the effects of thiosemicarbazones. In the present study, the inhibitory effect of 2-pyridinecarboxaldehyde thiosemicarbazone (PCT) and its copper complex (PCT-Cu) on cell proliferation was investigated. The copper chelate exhibited a 3- to 10-fold increase in antitumor activity (with an IC50 <5 µM). The results showed that both PCT and PCT-Cu induced reactive oxygen species (ROS) generation in vitro and in vivo, caused cellular DNA fragmentation, depolarization of the mitochondrial membrane and cell cycle arrest. Western blotting showed that both PCT and PCT-Cu induced apoptosis. Upregulation of GRP78 in HepG2 cells following treatment with the agents indicated that endoplasmic reticulum (ER) stress occurred. Furthermore calcium release was revealed in this study, suggesting that PCT and PCT-Cu disturbed calcium homeostasis. It was noted that PCT-Cu sensitized thapsigargin‑stimulated calcium release from the ER, which was correlated with the ROS level they induced, implying that the antitumor activity of PCT and PCT-Cu partly stemmed from calcium mobilization, a situation that was reported in few studies. Our findings may significantly contribute to the understanding of the anti‑proliferative effect of the derivatives of thiosemicarbazones along with their antitumor mechanism.

  9. Neisseria gonorrhoeae induced disruption of cell junction complexes in epithelial cells of the human genital tract.

    PubMed

    Rodríguez-Tirado, Carolina; Maisey, Kevin; Rodríguez, Felipe E; Reyes-Cerpa, Sebastián; Reyes-López, Felipe E; Imarai, Mónica

    2012-03-01

    Pathogenic microorganisms, such as Neisseria gonorrhoeae, have developed mechanisms to alter epithelial barriers in order to reach subepithelial tissues for host colonization. The aim of this study was to examine the effects of gonococci on cell junction complexes of genital epithelial cells of women. Polarized Ishikawa cells, a cell line derived from endometrial epithelium, were used for experimental infection. Infected cells displayed a spindle-like shape with an irregular distribution, indicating potential alteration of cell-cell contacts. Accordingly, analysis by confocal microscopy and cellular fractionation revealed that gonococci induced redistribution of the adherens junction proteins E-cadherin and its adapter protein β-catenin from the membrane to a cytoplasmic pool, with no significant differences in protein levels. In contrast, gonococcal infection did not induce modification of either expression or distribution of the tight junction proteins Occludin and ZO-1. Similar results were observed for Fallopian tube epithelia. Interestingly, infected Ishikawa cells also showed an altered pattern of actin cytoskeleton, observed in the form of stress fibers across the cytoplasm, which in turn matched a strong alteration on the expression of fibronectin, an adhesive glycoprotein component of extracellular matrix. Interestingly, using western blotting, activation of the ERK pathway was detected after gonococcal infection while p38 pathway was not activated. All effects were pili and Opa independent. Altogether, results indicated that gonococcus, as a mechanism of pathogenesis, induced disruption of junction complexes with early detaching of E-cadherin and β-catenin from the adherens junction complex, followed by a redistribution and reorganization of actin cytoskeleton and fibronectin within the extracellular matrix. Copyright © 2011. Published by Elsevier Masson SAS.

  10. Rabies virus phosphoprotein interacts with mitochondrial Complex I and induces mitochondrial dysfunction and oxidative stress.

    PubMed

    Kammouni, Wafa; Wood, Heidi; Saleh, Ali; Appolinario, Camila M; Fernyhough, Paul; Jackson, Alan C

    2015-08-01

    Our previous studies in an experimental model of rabies showed neuronal process degeneration in association with severe clinical disease. Cultured adult rodent dorsal root ganglion neurons infected with challenge virus standard (CVS)-11 strain of rabies virus (RABV) showed axonal swellings and reduced axonal growth with evidence of oxidative stress. We have shown that CVS infection alters a variety of mitochondrial parameters and increases reactive oxygen species (ROS) production and mitochondrial Complex I activity vs. mock infection. We have hypothesized that a RABV protein targets mitochondria and triggers dysfunction. Mitochondrial extracts of mouse neuroblastoma cells were analyzed with a proteomics approach. We have identified peptides belonging to the RABV nucleocapsid protein (N), phosphoprotein (P), and glycoprotein (G), and our data indicate that the extract was most highly enriched with P. P was also detected by immunoblotting in RABV-infected purified mitochondrial extracts and also in Complex I immunoprecipitates from the extracts but not in mock-infected extracts. A plasmid expressing P in cells increased Complex I activity and increased ROS generation, whereas expression of other RABV proteins did not. We have analyzed recombinant plasmids encoding various P gene segments. Expression of a peptide from amino acid 139-172 increased Complex I activity and ROS generation similar to expression of the entire P protein, whereas peptides that did not contain this region did not increase Complex I activity or induce ROS generation. These results indicate that a region of the RABV P interacts with Complex I in mitochondria causing mitochondrial dysfunction, increased generation of ROS, and oxidative stress.

  11. Characterization of lead induced metal-phytochelatin complexes in Chlamydomonas reinhardtii.

    PubMed

    Scheidegger, Christian; Sigg, Laura; Behra, Renata

    2011-11-01

    Accumulation of Pb and induction of phytochelatin synthesis were observed in Chlamydomonas reinhardtii upon Pb(II) exposure. Our aim was to examine whether Pb(II) is bound by phytochelatins (PCs) in C. reinhardtii and to examine formed complexes for their stoichiometry and composition. Metal-phytochelatin (Me-PC) complexes induced by Pb were isolated by size-exclusion chromatography in 13 collected fractions, which were analyzed for their PC and metal content by high-performance liquid chromatography and inductively coupled plasma mass spectrometry. A recovery of more than 90% of Pb from standard Pb-PC₂ complexes within the total volume of the size-exclusion column indicated the adequacy of the method for Pb-PC(n) complex separation and characterization. Phytochelatins were detected mainly in a molecular weight ranging from 1,000 to 5,300 daltons (Da), indicating the formation of complexes with various stoichiometries. Approximately 72% of total PC₂ eluted in the range from 1,000 to 1,600 Da, and 80% of total PC₃ eluted in the molecular weight range from 1,600 to 2,300 Da. The distribution of Cu, Zn, and Pb showed that more than 70% of these metals were associated with the high-molecular-weight fractions. Copper, zinc, and lead were also observed in PC-containing fractions, suggesting the formation of various Me-PC complexes. The results of the present study indicate that the role of PCs in Pb detoxification is minor, because only 13% of total Pb was associated with PCs. Copyright © 2011 SETAC.

  12. Hydrogen peroxide-induced chlorophyll a bleaching in the cytochrome b6f complex: a simple and effective assay for stability of the complex in detergent solutions.

    PubMed

    Chen, Xiao-Bo; Zhao, Xiao-Hui; Zhu, Yi; Gong, Yan-Dao; Li, Liang-Bi; Zhang, Jian-Ping; Kuang, Ting-Yun

    2006-12-01

    The instability of cytochrome b ( 6 ) f complex in detergent solutions is a well-known problem that has been studied extensively, but without finding a satisfactory solution. One of the important reasons can be short of the useful method to verify whether the complex suspended in different detergent is in an intact state or not. In this article, a simple and effective assay for stability of the complex was proposed based on the investigation on the different effects of the two detergents, n-octyl-beta-D: -glucopyranoside (OG) and dodecyl-beta-D: -maltoside (DDM), on the properties of the complex. DDM stabilizes the complex preparation more effectively whereas OG denatures the interactions of the heme groups and pigment molecules with the protein environment, leading to the bleaching of chlorophyll a induced by addition of hydrogen peroxide. The assay of the use of hydrogen peroxide to characterize the complex by studying the bleaching of chlorophyll induced by hydrogen peroxide and the peroxidase activity of the complex was discussed. This simple method will probably be useful to study the stability of the complex.

  13. Molecular Components of the Sporothrix schenckii Complex that Induce Immune Response.

    PubMed

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; Toriello, Conchita; Romo-Lozano, Yolanda; López-Romero, Everardo; Ruiz-Baca, Estela

    2016-08-01

    Sporotrichosis is a fungal disease caused by the Sporothrix schenckii complex that includes species such as S. brasiliensis, S. schenckii sensu stricto, S. globosa, S. luriei, S. mexicana, and S. pallida, which exhibit different potentially antigenic molecular components. The immune response of susceptible hosts to control infection and disease caused by these fungi has been little studied. Besides, the fungus-host interaction induces the activation of different types of immune response. This mini-review analyzes and discusses existing reports on the identification and functional characterization of molecules from species of the S. schenckii complex with clinical relevance, and the mechanisms that mediate the type and magnitude of the immune response in experimental models in vivo and in vitro. This knowledge is expected to contribute to the development of protective and therapeutic strategies against sporotrichosis and other mycoses.

  14. A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis.

    PubMed

    Adorno, Maddalena; Cordenonsi, Michelangelo; Montagner, Marco; Dupont, Sirio; Wong, Christine; Hann, Byron; Solari, Aldo; Bobisse, Sara; Rondina, Maria Beatrice; Guzzardo, Vincenza; Parenti, Anna R; Rosato, Antonio; Bicciato, Silvio; Balmain, Allan; Piccolo, Stefano

    2009-04-03

    TGFbeta ligands act as tumor suppressors in early stage tumors but are paradoxically diverted into potent prometastatic factors in advanced cancers. The molecular nature of this switch remains enigmatic. Here, we show that TGFbeta-dependent cell migration, invasion and metastasis are empowered by mutant-p53 and opposed by p63. Mechanistically, TGFbeta acts in concert with oncogenic Ras and mutant-p53 to induce the assembly of a mutant-p53/p63 protein complex in which Smads serve as essential platforms. Within this ternary complex, p63 functions are antagonized. Downstream of p63, we identified two candidate metastasis suppressor genes associated with metastasis risk in a large cohort of breast cancer patients. Thus, two common oncogenic lesions, mutant-p53 and Ras, selected in early neoplasms to promote growth and survival, also prefigure a cellular set-up with particular metastasis proclivity by TGFbeta-dependent inhibition of p63 function.

  15. Monitoring Complex Formation by Relaxation-Induced Pulse Electron Paramagnetic Resonance Distance Measurements.

    PubMed

    Giannoulis, Angeliki; Oranges, Maria; Bode, Bela E

    2017-09-06

    Biomolecular complexes are often multimers fueling the demand for methods that allow unraveling their composition and geometric arrangement. Pulse electron paramagnetic resonance (EPR) spectroscopy is increasingly applied for retrieving geometric information on the nanometer scale. The emerging RIDME (relaxation-induced dipolar modulation enhancement) technique offers improved sensitivity in distance experiments involving metal centers (e.g. on metalloproteins or proteins labelled with metal ions). Here, a mixture of a spin labelled ligand with increasing amounts of paramagnetic Cu(II) ions allowed accurate quantification of ligand-metal binding in the model complex formed. The distance measurement was highly accurate and critical aspects for identifying multimerization could be identified. The potential to quantify binding in addition to the high-precision distance measurement will further increase the scope of EPR applications. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Propagating self-sustained annealing of radiation-induced interstitial complexes

    NASA Astrophysics Data System (ADS)

    Bokov, P. M.; Selyshchev, P. A.

    2016-02-01

    A propagating self-sustained annealing of radiation induced defects as a result of thermal-concentration instability is studied. The defects that are considered in the model are complexes. Each of them consists of one atom of impunity and of one interstitial atom. Crystal with defects has extra energy which is transformed into heat during defect annealing. Simulation of the auto-wave of annealing has been performed. The front and the speed of the auto-wave have been obtained. It is shown that annealing occurs in a narrow region of time and space. There are two kinds of such annealing behaviour. In the first case the speed of the auto-wave oscillates near its constant mean value and the front of temperature oscillates in a complex way. In the second case the speed of propagation is constant and fronts of temperature and concentration look like sigmoid functions.

  17. Surface-Induced Dissociation of Small Molecules, Peptides, and Non-covalent Protein Complexes

    PubMed Central

    Wysocki, Vicki H.; Joyce, Karen E.; Jones, Christopher M.; Beardsley, Richard L.

    2009-01-01

    This article provides a perspective on collisions of ions with surfaces, including surface-induced dissociation (SID) and reactive ion scattering spectrometry (RISS). The content is organized into sections on surface-induced dissociation of small ions, surface characterization of organic thin films by collision of well-characterized ions into surfaces, the use of SID to probe peptide fragmentation, and the dissociation of large non-covalent complexes by SID. Examples are given from the literature with a focus on experiments from the authors’ laboratory. The article is not a comprehensive review but is designed to provide the reader with an overview of the types of results possible by collisions of ions into surfaces. PMID:18191578

  18. Surface-induced dissociation of small molecules, peptides, and non-covalent protein complexes.

    PubMed

    Wysocki, Vicki H; Joyce, Karen E; Jones, Christopher M; Beardsley, Richard L

    2008-02-01

    This article provides a perspective on collisions of ions with surfaces, including surface-induced dissociation (SID) and reactive ion scattering spectrometry (RISS). The content is organized into sections on surface-induced dissociation of small ions, surface characterization of organic thin films by collision of well-characterized ions into surfaces, the use of SID to probe peptide fragmentation, and the dissociation of large non-covalent complexes by SID. Examples are given from the literature with a focus on experiments from the authors' laboratory. The article is not a comprehensive review but is designed to provide the reader with an overview of the types of results possible by collisions of ions into surfaces.

  19. Partial equilibrium approximations in apoptosis. II. The death-inducing signaling complex subsystem.

    PubMed

    Huang, Ya-Jing; Hong, Liu; Yong, Wen-An

    2015-12-01

    This paper is a continuation of our previous work (Huang and Yong, 2013) for simplifying the Fas signaling-induced apoptotic pathway identified by Hua et al. (2005) for human tumor T cells. The previous paper studied the downstream intracelluar-signaling subsystem, while the present one is concerned with the upstream death-inducing signaling complex (DISC) subsystem. Under the assumption that the bind of Fas-associated death domains and FLICE-inhibitory proteins to the DISC is much faster than that of the initiator procaspases, we greatly simplify the upstream subsystem from 35 reactions with 26 species to 6 reactions with 9 species by adopting the classical and recently justified partial equilibrium approximation method. Numerical simulations show that the simplified model is in an excellent agreement with the original model. Most importantly, the simplified model clearly reveals the key reactants and dominated pathways in the Fas signaling process, and thus provides new insights into the apoptosis.

  20. A suspected case of rocuronium-sugammadex complex-induced anaphylactic shock after cesarean section.

    PubMed

    Yamaoka, Masakazu; Deguchi, Miki; Ninomiya, Kiichiro; Kurasako, Toshiaki; Matsumoto, Mutsuko

    2017-02-01

    An anaphylactic reaction during a cesarean section occurs rarely, and rocuronium is thought to be one of the common agents causing perioperative anaphylaxis. Here we report an anaphylactic shock after cesarean section that is suggested to be induced by the rocuronium-sugammadex complex. A 36-year-old primigravida underwent an elective cesarean section under general anesthesia due to placenta previa. While the operation was completed uneventfully, she developed anaphylactic shock following sugammadex administration. She was successfully managed with rapid treatments. Serum tryptase level was significantly elevated. Although sugammadex was first suspected to be the causative agent, the result of intradermal skin tests with sugammadex were negative. Surprisingly, a subsequent intradermal test with undiluted rocuronium caused the patient to fall into a state of shock. Furthermore, a later skin-prick test with pre-mixed rocuronium-sugammadex complex also revealed a strong positive reaction, and a test with only rocuronium showed negative. We finally concluded that the rocuronium-sugammadex complex is the causative agent in this case. To the best of our knowledge, this is the first report suggesting anaphylaxis caused by the rocuronium-sugammadex complex. This case highlights the importance of appropriate examinations to determinate the pathogenesis of anaphylaxis in order to establish risk reduction strategies.

  1. The myelin proteolipid plasmolipin forms oligomers and induces liquid-ordered membranes in the Golgi complex.

    PubMed

    Yaffe, Yakey; Hugger, Ilan; Yassaf, Inbar Nevo; Shepshelovitch, Jeanne; Sklan, Ella H; Elkabetz, Yechiel; Yeheskel, Adva; Pasmanik-Chor, Metsada; Benzing, Carola; Macmillan, Alexander; Gaus, Katharina; Eshed-Eisenbach, Yael; Peles, Elior; Hirschberg, Koret

    2015-07-01

    Myelin comprises a compactly stacked massive surface area of protein-poor thick membrane that insulates axons to allow fast signal propagation. Increasing levels of the myelin protein plasmolipin (PLLP) were correlated with post-natal myelination; however, its function is unknown. Here, the intracellular localization and dynamics of PLLP were characterized in primary glial and cultured cells using fluorescently labeled PLLP and antibodies against PLLP. PLLP localized to and recycled between the plasma membrane and the Golgi complex. In the Golgi complex, PLLP forms oligomers based on fluorescence resonance energy transfer (FRET) analyses. PLLP oligomers blocked Golgi to plasma membrane transport of the secretory protein vesicular stomatitis virus G protein (VSVG), but not of a VSVG mutant with an elongated transmembrane domain. Laurdan staining analysis showed that this block is associated with PLLP-induced proliferation of liquid-ordered membranes. These findings show the capacity of PLLP to assemble potential myelin membrane precursor domains at the Golgi complex through its oligomerization and ability to attract liquid-ordered lipids. These data support a model in which PLLP functions in myelin biogenesis through organization of myelin liquid-ordered membranes in the Golgi complex.

  2. Hedgehog induces formation of PKA-Smoothened complexes to promote Smoothened phosphorylation and pathway activation

    PubMed Central

    Li, Shuang; Ma, Guoqiang; Wang, Bing; Jiang, Jin

    2015-01-01

    Hedgehog (Hh) is a secreted glycoprotein that binds its receptor Patched to activate the G protein-coupled receptor-like protein Smoothened (Smo). In Drosophila, protein kinase A (PKA) phosphorylates and activates Smo in cells stimulated with Hh. In unstimulated cells, PKA phosphorylates and inhibits the transcription factor Cubitus interruptus (Ci). Here, we found that in cells exposed to Hh, the catalytic subunit of PKA (PKAc) bound to the juxtamembrane region of the C terminus of Smo. PKA-mediated phosphorylation of Smo further enhanced its association with PKAc to form stable kinase-substrate complexes that promoted the PKA-mediated trans-phosphorylation of Smo dimers. We identified multiple basic residues in the C-terminus of Smo that were required for interaction with PKAc, Smo phosphorylation, and Hh pathway activation. Hh induced a switch from the association of PKAc with a cytosolic complex of Ci and the kinesin-like protein Costal2 (Cos2) to a membrane-bound Smo-Cos2 complex. Thus, our study uncovers a previously uncharacterized mechanism for regulation of PKA activity and demonstrates that the signal-regulated formation of kinase-substrate complexes plays a central role in Hh signal transduction. PMID:24985345

  3. Thermal, anisotropic microhardness and laser induced surface damage studies on certain metal complexes of thiourea

    NASA Astrophysics Data System (ADS)

    Dhanuskodi, S.; Sabari Girisun, T. C.

    2011-09-01

    Single crystals of thiourea metal complexes with selected group II metal ions, zinc and cadmium, have been grown by solvent evaporation technique and characterized by XRD studies. The thermal, mechanical and laser induced surface damage properties of thiourea and its metal complexes in (1 0 0) plane were studied. From the improved photopyroelectric technique the thermal properties of the metal complexes were evaluated. Due to larger heat capacity ZTS (382.4 J kg -1 K -1) has better thermal stability than BTCC (304.09 J kg -1 K -1), TTCS (293.5 J kg -1 K -1) and BTZC (255.24 J kg -1 K -1). Vickers hardness studies reveal that the materials have reverse indentation size effect and belong to soft material type. Elastic stiffness was found to be very large for ZTS (8.05) than TTCS (5.38), BTCC (1.57 GPa) and BTZC (0.76 GPa). Multi-shot laser damage studies reveal that ZTS (40 GW/cm 2) has higher laser damage threshold and the roles of the group II metal ions in improving the mechanical and thermal stability of the metal complexes are discussed.

  4. Vibration-induced Kondo tunneling through metal-organic complexes with even electron occupation number.

    PubMed

    Kikoin, K; Kiselev, M N; Wegewijs, M R

    2006-05-05

    We investigate transport through a mononuclear transition-metal complex with strong tunnel coupling to two electrodes. The ground state of this molecule is a singlet, while the first excited state is a triplet. We show that a modulation of the tunnel-barrier due to a molecular distortion which couples to the tunneling induces a Kondo-effect, provided the discrete vibrational energy compensates the singlet-triplet gap. We discuss the single-phonon and two-phonon-assisted cotunneling and possible experimental realization of the theory.

  5. Effects Induced in Complex Biological Systems by High Density Green Photons

    NASA Astrophysics Data System (ADS)

    Comorosan, Sorin; Polosan, Silviu; Apostol, Marian; Popescu, Irinel; Farcasanu, Ileana; Paslaru, Liliana; Ionescu, Elena

    It is known that light interaction with matter may generate an optical force, which may produce modifications at the physical and chemical level. The basic technique of the field uses strongly focused laser beams that trap small objects and manipulate local structures. In our work we use irradiation of complex biological molecules with high density green photons, which may induce electric dipoles by polarization effects. The resulting dipolar interaction may lead to organized structures like molecular aggregates and microparticles. We present experimental evidence of such an optical manipulation on long alkanes chains and two specific enzymes. A preliminary physical model is suggested for acounting of these specific interaction forces.

  6. Efficient Charge Storage in Dual-Redox Electrochemical Capacitors through Reversible Counterion-Induced Solid Complexation.

    PubMed

    Evanko, Brian; Yoo, Seung Joon; Chun, Sang-Eun; Wang, Xingfeng; Ji, Xiulei; Boettcher, Shannon W; Stucky, Galen D

    2016-08-03

    The performance of redox-enhanced electrochemical capacitors (redox ECs) is substantially improved when oxidized catholyte (bromide) and reduced anolyte (viologen) are retained within the porous electrodes through reversible counterion-induced solid complexation. Investigation of the mechanism illustrates design principles and identifies pentyl viologen/bromide (PV/Br) as a new high-performance electrolyte. The symmetric PV/Br redox EC produces a specific energy of 48.5 W·h/kgdry at 0.5 A/gdry (0.44 kW/kgdry) with 99.7% Coulombic efficiency, maintains stability over 10 000 cycles, and functions identically when operated with reversed polarity.

  7. A MYB/ZML Complex Regulates Wound-Induced Lignin Genes in Maize.

    PubMed

    Vélez-Bermúdez, Isabel-Cristina; Salazar-Henao, Jorge E; Fornalé, Silvia; López-Vidriero, Irene; Franco-Zorrilla, José-Manuel; Grotewold, Erich; Gray, John; Solano, Roberto; Schmidt, Wolfgang; Pagés, Montserrat; Riera, Marta; Caparros-Ruiz, David

    2015-11-01

    Lignin is an essential polymer in vascular plants that plays key structural roles in vessels and fibers. Lignification is induced by external inputs such as wounding, but the molecular mechanisms that link this stress to lignification remain largely unknown. In this work, we provide evidence that three maize (Zea mays) lignin repressors, MYB11, MYB31, and MYB42, participate in wound-induced lignification by interacting with ZML2, a protein belonging to the TIFY family. We determined that the three R2R3-MYB factors and ZML2 bind in vivo to AC-rich and GAT(A/C) cis-elements, respectively, present in a set of lignin genes. In particular, we show that MYB11 and ZML2 bind simultaneously to the AC-rich and GAT(A/C) cis-elements present in the promoter of the caffeic acid O-methyl transferase (comt) gene. We show that, like the R2R3-MYB factors, ZML2 also acts as a transcriptional repressor. We found that upon wounding and methyl jasmonate treatments, MYB11 and ZML2 proteins are degraded and comt transcription is induced. Based on these results, we propose a molecular regulatory mechanism involving a MYB/ZML complex in which wound-induced lignification can be achieved by the derepression of a set of lignin genes. © 2015 American Society of Plant Biologists. All rights reserved.

  8. A radiation-induced meningioma "cures" a complex dural arteriovenous fistula.

    PubMed

    Copeland, William R; Link, Michael J

    2013-12-01

    We report a case of spontaneous thrombosis of an extremely complex dural arteriovenous fistula (DAVF), believed to be previously incurable, after the development of a radiation-induced meningioma resulting from prior attempts to treat the fistula with radiosurgery. A very large DAVF was treated over the course of 3 decades with a combination of partial embolization and stereotactic radiosurgery with no angiographic or clinical treatment response at long-term follow-up. However, with the development of new neurologic symptoms 13 years after radiosurgery, a meningioma was found to have arisen in the previously irradiated field, and surprisingly, the fistula had spontaneously thrombosed. The meningioma was successfully removed. We discuss the unique pathophysiology of the radiation-induced meningioma causing this previously incurable DAVF progressing to obliteration. We also review the natural history of DAVFs, including reported rates of spontaneous occlusion, as well as the success of radiosurgery in their treatment. Finally, the incidence of radiosurgery-induced tumors, particularly meningiomas, is reviewed. The relationship between the spontaneous thrombosis of a DAVF and the radiation-induced meningioma is unique and has not previously been reported. Georg Thieme Verlag KG Stuttgart · New York.

  9. A MYB/ZML Complex Regulates Wound-Induced Lignin Genes in Maize

    PubMed Central

    Vélez-Bermúdez, Isabel-Cristina; Salazar-Henao, Jorge E.; Franco-Zorrilla, José-Manuel; Grotewold, Erich; Solano, Roberto

    2015-01-01

    Lignin is an essential polymer in vascular plants that plays key structural roles in vessels and fibers. Lignification is induced by external inputs such as wounding, but the molecular mechanisms that link this stress to lignification remain largely unknown. In this work, we provide evidence that three maize (Zea mays) lignin repressors, MYB11, MYB31, and MYB42, participate in wound-induced lignification by interacting with ZML2, a protein belonging to the TIFY family. We determined that the three R2R3-MYB factors and ZML2 bind in vivo to AC-rich and GAT(A/C) cis-elements, respectively, present in a set of lignin genes. In particular, we show that MYB11 and ZML2 bind simultaneously to the AC-rich and GAT(A/C) cis-elements present in the promoter of the caffeic acid O-methyl transferase (comt) gene. We show that, like the R2R3-MYB factors, ZML2 also acts as a transcriptional repressor. We found that upon wounding and methyl jasmonate treatments, MYB11 and ZML2 proteins are degraded and comt transcription is induced. Based on these results, we propose a molecular regulatory mechanism involving a MYB/ZML complex in which wound-induced lignification can be achieved by the derepression of a set of lignin genes. PMID:26566917

  10. Levetiracetam Prevents Kindling-Induced Asymmetric Accumulation of Hippocampal 7S SNARE Complexes

    PubMed Central

    Matveeva, Elena A.; Vanaman, Thomas C.; Whiteheart, Sidney W.; Slevin, John T.

    2008-01-01

    Summary Purpose Understanding the molecular mechanisms underlying epilepsy is crucial to designing novel therapeutic regimens. This report focuses on alterations in the secretory machinery responsible for neurotransmitter (NT) release. Soluble N-ethylmaleimide Sensitive Factor (NSF) Attachment Protein Receptor (SNARE) complexes mediate the fusion of synaptic vesicle and active zone membranes thus mediating NT secretion. SNARE regulators control where and when SNARE complexes are formed. Previous studies showed an asymmetric accumulation of SNARE complexes (7SC) in the ipsilateral hippocampus of kindled animals. The present studies probe the persistence of 7SC accumulation and the effect of the anticonvulsant, levetiracetam (LEV), on 7SC and SNARE regulators. Method Quantitative western blotting was used to monitor levels of 7SC and SNARE regulators in hippocampal synaptosomes from kindled animals both before and after LEV treatment. Results The asymmetric accumulation of 7SC is present one year post-amygdalar kindling. The synaptic vesicle protein, SV2, a primary LEV-binding protein, and the SNARE regulator Tomosyn increase whereas NSF decreases in association with this accumulation. Treatment with LEV prevented kindling-induced accumulation of SV2, but did not affect the transient increase of Tomosyn or the long-term decrease of NSF. LEV treatment retarded the electrical and behavioral concomitants of amygdalar kindling coincident with a decrease in accumulation of 7SC. Conclusions The ipsilateral hippocampal accumulation of SNARE complexes is an altered molecular process associated with kindling that appears permanent. Kindling epileptogenesis alters synaptosomal levels of the SNARE regulators, NSF, SV2, and Tomosyn. Concomitant treatment with LEV reverses the kindling-induced 7SC accumulation and increase of SV2. PMID:18513349

  11. Mechanisms of cell death pathway activation following drug-induced inhibition of mitochondrial complex I

    PubMed Central

    Imaizumi, Naoki; Kwang Lee, Kang; Zhang, Carmen; Boelsterli, Urs A.

    2015-01-01

    Respiratory complex I inhibition by drugs and other chemicals has been implicated as a frequent mode of mitochondria-mediated cell injury. However, the exact mechanisms leading to the activation of cell death pathways are incompletely understood. This study was designed to explore the relative contributions to cell injury of three distinct consequences of complex I inhibition, i.e., impairment of ATP biosynthesis, increased formation of superoxide and, hence, peroxynitrite, and inhibition of the mitochondrial protein deacetylase, Sirt3, due to imbalance of the NADH/NAD+ ratio. We used the antiviral drug efavirenz (EFV) to model drug-induced complex I inhibition. Exposure of cultured mouse hepatocytes to EFV resulted in a rapid onset of cell injury, featuring a no-effect level at 30 µM EFV and submaximal effects at 50 µM EFV. EFV caused a concentration-dependent decrease in cellular ATP levels. Furthermore, EFV resulted in increased formation of peroxynitrite and oxidation of mitochondrial protein thiols, including cyclophilin D (CypD). This was prevented by the superoxide scavenger, Fe-TCP, or the peroxynitrite decomposition catalyst, Fe-TMPyP. Both ferroporphyrins completely protected from EFV-induced cell injury, suggesting that peroxynitrite contributed to the cell injury. Finally, EFV increased the NADH/NAD+ ratio, inhibited Sirt3 activity, and led to hyperacetylated lysine residues, including those in CypD. However, hepatocytes isolated from Sirt3-null mice were protected against 40 µM EFV as compared to their wild-type controls. In conclusion, these data are compatible with the concept that chemical inhibition of complex I activates multiple pathways leading to cell injury; among these, peroxynitrite formation may be the most critical. PMID:25625582

  12. Interaction between hydrogen sulfide-induced sulfhydration and tyrosine nitration in the KATP channel complex

    PubMed Central

    Kang, Minho; Hashimoto, Atsushi; Gade, Aravind

    2014-01-01

    Hydrogen sulfide (H2S) is an endogenous gaseous mediator affecting many physiological and pathophysiological conditions. Enhanced expression of H2S and reactive nitrogen/oxygen species (RNS/ROS) during inflammation alters cellular excitability via modulation of ion channel function. Sulfhydration of cysteine residues and tyrosine nitration are the posttranslational modifications induced by H2S and RNS, respectively. The objective of this study was to define the interaction between tyrosine nitration and cysteine sulfhydration within the ATP-sensitive K+ (KATP) channel complex, a significant target in experimental colitis. A modified biotin switch assay was performed to determine sulfhydration of the KATP channel subunits, Kir6.1, sulphonylurea 2B (SUR2B), and nitrotyrosine measured by immunoblot. NaHS (a donor of H2S) significantly enhanced sulfhydration of SUR2B but not Kir6.1 subunit. 3-Morpholinosydnonimine (SIN-1) (a donor of peroxynitrite) induced nitration of Kir6.1 subunit but not SUR2B. Pretreatment with NaHS reduced the nitration of Kir6.1 by SIN-1 in Chinese hamster ovary cells cotransfected with the two subunits, as well as in enteric glia. Two specific mutations within SUR2B, C24S, and C1455S prevented sulfhydration by NaHS, and these mutations prevented NaHS-induced reduction in tyrosine nitration of Kir6.1. NaHS also reversed peroxynitrite-induced inhibition of smooth muscle contraction. These studies suggest that posttranslational modifications of the two subunits of the KATP channel interact to alter channel function. The studies described herein demonstrate a unique mechanism by which sulfhydration of one subunit modifies tyrosine nitration of another subunit within the same channel complex. This interaction provides a mechanistic insight on the protective effects of H2S in inflammation. PMID:25552582

  13. Curcumin induces high levels of topoisomerase I- and II-DNA complexes in K562 leukemia cells.

    PubMed

    López-Lázaro, Miguel; Willmore, Elaine; Jobson, Andrew; Gilroy, Kathryn L; Curtis, Hannah; Padget, Kay; Austin, Caroline A

    2007-12-01

    Recent data suggest that curcumin, a phytochemical with cancer chemopreventive potential, might be useful in the treatment of several solid and hematological malignancies. DNA topoisomerases (topos) are the target of several drugs commonly used in cancer chemotherapy. These drugs induce topo-DNA complexes with either topo I or topo II; then cellular processing converts these complexes into permanent DNA strand breaks that trigger cell death. Using the TARDIS in vivo assay, this study shows for the first time that curcumin induces topo I and topo II (alpha and beta)-DNA complexes in K562 leukemia cells. A comparative analysis revealed that the levels of these complexes were higher than those induced by several standard topo I and topo II inhibitors at equitoxic doses. Curcumin-induced topo I and topo II-DNA complexes were prevented by the antioxidant N-acetylcysteine; this suggests that, unlike the standard topo inhibitors, reactive oxygen species may mediate the formation of these complexes. Overall, this work shows that curcumin is capable of inducing topo-DNA complexes in cells with both topo I and topo II and increases the evidence suggesting that this dietary agent has potential to be tested in cancer chemotherapy.

  14. Complex Chromosomal Rearrangements Mediated by Break-Induced Replication Involve Structure-Selective Endonucleases

    PubMed Central

    Pardo, Benjamin; Aguilera, Andrés

    2012-01-01

    DNA double-strand break (DSB) repair occurring in repeated DNA sequences often leads to the generation of chromosomal rearrangements. Homologous recombination normally ensures a faithful repair of DSBs through a mechanism that transfers the genetic information of an intact donor template to the broken molecule. When only one DSB end shares homology to the donor template, conventional gene conversion fails to occur and repair can be channeled to a recombination-dependent replication pathway termed break-induced replication (BIR), which is prone to produce chromosome non-reciprocal translocations (NRTs), a classical feature of numerous human cancers. Using a newly designed substrate for the analysis of DSB–induced chromosomal translocations, we show that Mus81 and Yen1 structure-selective endonucleases (SSEs) promote BIR, thus causing NRTs. We propose that Mus81 and Yen1 are recruited at the strand invasion intermediate to allow the establishment of a replication fork, which is required to complete BIR. Replication template switching during BIR, a feature of this pathway, engenders complex chromosomal rearrangements when using repeated DNA sequences dispersed over the genome. We demonstrate here that Mus81 and Yen1, together with Slx4, also promote template switching during BIR. Altogether, our study provides evidence for a role of SSEs at multiple steps during BIR, thus participating in the destabilization of the genome by generating complex chromosomal rearrangements. PMID:23071463

  15. Calix‐Like Metal–Organic Complex for High‐Sensitivity X‐Ray‐Induced Photochromism

    PubMed Central

    Zhang, Hao

    2015-01-01

    Metal‐organic complexes (MOCs) as promising candidates for directly visual X‐ray detection at room temperature are rare and discovered unexpectedly, even though every crystalline material needs X‐ray diffraction studies. Here, we report a rational strategy of mimicking host‐guest system for developing high‐sensitive X‐ray‐induced photochromic materials. Two resulting calix‐like metal‐organic complexes (cMOC‐1 and cMOC‐2) were prepared by encapsulating the electron‐capturing “guest” into the cavity of calix‐like electron‐donating “host.” One of them (cMOC‐1) achieves instantaneous X‐ray‐induced photochromism and easy recovery by synergizing the aprotic matrix of MOC and similar host‐guest interaction. Their strikingly different response to X‐ray irradiation resulting from the structural difference demonstrates the feasibility and acceptability of our design strategy. This strategy may open new perspectives for developing high‐performance photo‐responsive functional materials. PMID:27774396

  16. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis.

    PubMed

    Mavragani, Ifigeneia V; Nikitaki, Zacharenia; Souli, Maria P; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy; Georgakilas, Alexandros G

    2017-07-18

    Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15-20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent "danger" signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.

  17. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis

    PubMed Central

    Mavragani, Ifigeneia V.; Nikitaki, Zacharenia; Souli, Maria P.; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy

    2017-01-01

    Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair. PMID:28718816

  18. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer

    SciTech Connect

    Lewis, M.; Chang, G.; Horton, N.C.

    1996-03-01

    The lac operon of Escherichia coli is the paradigm for gene regulation. Its key component is the lac repressor a product of the lacl gene. The three-dimensional structures of the intact lac repressor, the lac repressor bound to the gratuitous inducer isopropyl-B-D-1thiogalactoside (IPTG) and the lac repressor complexed with a 21 base pair symmetric operator DNA have been determined. These three structures show the conformation of the molecule in both the induced and the repressed states and provide a framework for understanding a wealth of biochemical and genetic information. The DNA sequence of the lac operon has three lac repressor recognition sites in stretch of 500 base pairs. The crystallographic structure of the complex with DNA suggests that the tetrameric repressor functions synergistically with catabolite gene activator protein (CAP) and participates in the quarternary formation of repression loops in which one tetrameric repressor interacts simultaneously with two sites in the genomic DNA. 76 refs., 11 figs., 1 tab.

  19. Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat

    PubMed Central

    Choi, Won-Seok; Kruse, Shane E.; Palmiter, Richard D.; Xia, Zhengui

    2008-01-01

    Inhibition of mitochondrial complex I is one of the leading hypotheses for dopaminergic neuron death associated with Parkinson's disease (PD). To test this hypothesis genetically, we used a mouse strain lacking functional Ndufs4, a gene encoding a subunit required for complete assembly and function of complex I. Deletion of the Ndufs4 gene abolished complex I activity in midbrain mesencephalic neurons cultured from embryonic day (E) 14 mice, but did not affect the survival of dopaminergic neurons in culture. Although dopaminergic neurons were more sensitive than other neurons in these cultures to cell death induced by rotenone, MPP+, or paraquat treatments, the absence of complex I activity did not protect the dopaminergic neurons, as would be expected if these compounds act by inhibiting complex 1. In fact, the dopaminergic neurons were more sensitive to rotenone. These data suggest that dopaminergic neuron death induced by treatment with rotenone, MPP+, or paraquat is independent of complex I inhibition. PMID:18812510

  20. Method and apparatus for enhanced sequencing of complex molecules using surface-induced dissociation in conjunction with mass spectrometric analysis

    DOEpatents

    Laskin, Julia [Richland, WA; Futrell, Jean H [Richland, WA

    2008-04-29

    The invention relates to a method and apparatus for enhanced sequencing of complex molecules using surface-induced dissociation (SID) in conjunction with mass spectrometric analysis. Results demonstrate formation of a wide distribution of structure-specific fragments having wide sequence coverage useful for sequencing and identifying the complex molecules.

  1. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death.

    PubMed

    Lafont, Elodie; Kantari-Mimoun, Chahrazade; Draber, Peter; De Miguel, Diego; Hartwig, Torsten; Reichert, Matthias; Kupka, Sebastian; Shimizu, Yutaka; Taraborrelli, Lucia; Spit, Maureen; Sprick, Martin R; Walczak, Henning

    2017-03-03

    The linear ubiquitin chain assembly complex (LUBAC) is the only known E3 ubiquitin ligase which catalyses the generation of linear ubiquitin linkages de novo LUBAC is a crucial component of various immune receptor signalling pathways. Here, we show that LUBAC forms part of the TRAIL-R-associated complex I as well as of the cytoplasmic TRAIL-induced complex II In both of these complexes, HOIP limits caspase-8 activity and, consequently, apoptosis whilst being itself cleaved in a caspase-8-dependent manner. Yet, by limiting the formation of a RIPK1/RIPK3/MLKL-containing complex, LUBAC also restricts TRAIL-induced necroptosis. We identify RIPK1 and caspase-8 as linearly ubiquitinated targets of LUBAC following TRAIL stimulation. Contrary to its role in preventing TRAIL-induced RIPK1-independent apoptosis, HOIP presence, but not its activity, is required for preventing necroptosis. By promoting recruitment of the IKK complex to complex I, LUBAC also promotes TRAIL-induced activation of NF-κB and, consequently, the production of cytokines, downstream of FADD, caspase-8 and cIAP1/2. Hence, LUBAC controls the TRAIL signalling outcome from complex I and II, two platforms which both trigger cell death and gene activation.

  2. Ubiquitination-deubiquitination by the TRIM27-USP7 complex regulates tumor necrosis factor alpha-induced apoptosis.

    PubMed

    Zaman, Mohammad Mahabub-Uz; Nomura, Teruaki; Takagi, Tsuyoshi; Okamura, Tomoo; Jin, Wanzhu; Shinagawa, Toshie; Tanaka, Yasunori; Ishii, Shunsuke

    2013-12-01

    Tumor necrosis factor alpha (TNF-α) plays a role in apoptosis and proliferation in multiple types of cells, and defects in TNF-α-induced apoptosis are associated with various autoimmune diseases. Here, we show that TRIM27, a tripartite motif (TRIM) protein containing RING finger, B-box, and coiled-coil domains, positively regulates TNF-α-induced apoptosis. Trim27-deficient mice are resistant to TNF-α-d-galactosamine-induced hepatocyte apoptosis. Trim27-deficient mouse embryonic fibroblasts (MEFs) are also resistant to TNF-α-cycloheximide-induced apoptosis. TRIM27 forms a complex with and ubiquitinates the ubiquitin-specific protease USP7, which deubiquitinates receptor-interacting protein 1 (RIP1), resulting in the positive regulation of TNF-α-induced apoptosis. Our findings indicate that the ubiquitination-deubiquitination cascade mediated by the TRIM27-USP7 complex plays an important role in TNF-α-induced apoptosis.

  3. Ubiquitination-Deubiquitination by the TRIM27-USP7 Complex Regulates Tumor Necrosis Factor Alpha-Induced Apoptosis

    PubMed Central

    Zaman, Mohammad Mahabub-Uz; Nomura, Teruaki; Takagi, Tsuyoshi; Okamura, Tomoo; Jin, Wanzhu; Shinagawa, Toshie; Tanaka, Yasunori

    2013-01-01

    Tumor necrosis factor alpha (TNF-α) plays a role in apoptosis and proliferation in multiple types of cells, and defects in TNF-α-induced apoptosis are associated with various autoimmune diseases. Here, we show that TRIM27, a tripartite motif (TRIM) protein containing RING finger, B-box, and coiled-coil domains, positively regulates TNF-α-induced apoptosis. Trim27-deficient mice are resistant to TNF-α–d-galactosamine-induced hepatocyte apoptosis. Trim27-deficient mouse embryonic fibroblasts (MEFs) are also resistant to TNF-α–cycloheximide-induced apoptosis. TRIM27 forms a complex with and ubiquitinates the ubiquitin-specific protease USP7, which deubiquitinates receptor-interacting protein 1 (RIP1), resulting in the positive regulation of TNF-α-induced apoptosis. Our findings indicate that the ubiquitination-deubiquitination cascade mediated by the TRIM27-USP7 complex plays an important role in TNF-α-induced apoptosis. PMID:24144979

  4. Isolates of the Enterobacter cloacae complex induce apoptosis of human intestinal epithelial cells.

    PubMed

    Krzymińska, Sylwia; Koczura, Ryszard; Mokracka, Joanna; Puton, Tomasz; Kaznowski, Adam

    2010-09-01

    Strains of the Enterobacter cloacae complex are becoming increasingly important human pathogen. The aim of the study was to identify, by sequencing the hsp60 gene, the species of clinical isolates phenotypically identified as E. cloacae and to examine them for virulence-associated properties: the ability of adhesion, invasion to HEp-2 cells and the induced apoptosis of infected epithelial cells. The majority of the strains were identified as Enterobacter hormaechei with E. hormaechei subsp. steigerwaltii being the most frequent subspecies. Other strains belonged to E. hormaechei subsp. oharae, E. cloacae cluster III, and E. cloacae cluster IV. The strains were examined for virulence-associated properties: the ability to adhesion and invasion to HEp-2 cells and the apoptosis induction of infected epithelial cells. All strains revealed adherence ability and most of them (71%) were invasive to epithelial cells. Analyses of cellular morphology and DNA fragmentation in the HEp-2 cells exhibited typical features of cells undergoing apoptosis. We observed morphological changes, including condensation of nuclear chromatin, formation of apoptotic bodies and blebbing of cell membrane. The lowest apoptotic index did not exceed 6%, whereas the highest reached 49% at 24h and 98% at 48 h after infection. Forty strains (73%) induced fragmentation of nuclear DNA and characteristic intranucleosomal pattern with the size of about 180-200 bp in DNA extracted from infected cells at 48 h after infection. The results indicated that the bacteria of the E. cloacae complex may adhere to and penetrate into epithelial cells and induce apoptosis, which could be an important mechanism contributing to the development diseases.

  5. Changes in membrane biophysical properties induced by the Budesonide/Hydroxypropyl-β-cyclodextrin complex.

    PubMed

    Dos Santos, Andreia G; Bayiha, Jules César; Dufour, Gilles; Cataldo, Didier; Evrard, Brigitte; Silva, Liana C; Deleu, Magali; Mingeot-Leclercq, Marie-Paule

    2017-10-01

    Budesonide (BUD), a poorly soluble anti-inflammatory drug, is used to treat patients suffering from asthma and COPD (Chronic Obstructive Pulmonary Disease). Hydroxypropyl-β-cyclodextrin (HPβCD), a biocompatible cyclodextrin known to interact with cholesterol, is used as a drug-solubilizing agent in pharmaceutical formulations. Budesonide administered as an inclusion complex within HPβCD (BUD:HPβCD) required a quarter of the nominal dose of the suspension formulation and significantly reduced neutrophil-induced inflammation in a COPD mouse model exceeding the effect of each molecule administered individually. This suggests the role of lipid domains enriched in cholesterol for inflammatory signaling activation. In this context, we investigated the effect of BUD:HPβCD on the biophysical properties of membrane lipids. On cellular models (A549, lung epithelial cells), BUD:HPβCD extracted cholesterol similarly to HPβCD. On large unilamellar vesicles (LUVs), by using the fluorescent probes diphenylhexatriene (DPH) and calcein, we demonstrated an increase in membrane fluidity and permeability induced by BUD:HPβCD in vesicles containing cholesterol. On giant unilamellar vesicles (GUVs) and lipid monolayers, BUD:HPβCD induced the disruption of cholesterol-enriched raft-like liquid ordered domains as well as changes in lipid packing and lipid desorption from the cholesterol monolayers, respectively. Except for membrane fluidity, all these effects were enhanced when HPβCD was complexed with budesonide as compared with HPβCD. Since cholesterol-enriched domains have been linked to membrane signaling including pathways involved in inflammation processes, we hypothesized the effects of BUD:HPβCD could be partly mediated by changes in the biophysical properties of cholesterol-enriched domains. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Heat-induced reorganization of the structure of photosystem II membranes: role of oxygen evolving complex.

    PubMed

    Busheva, Mira; Tzonova, Iren; Stoitchkova, Katerina; Andreeva, Atanaska

    2012-12-05

    The sensitivity of the green plants' photosystem II (PSII) to high temperatures is investigated in PSII enriched membranes and in membranes, from which the oxygen evolving complex is removed. Using steady-state 77 K fluorescence and resonance Raman spectroscopy we analyze the interdependency between the temperature-driven changes in structure and energy distribution in the PSII supercomplex. The results show that the heat treatment induces different reduction of the 77 K fluorescence emission in both types of investigated membranes: (i) an additional considerable decrease of the overall fluorescence emission in Tris-washed membranes as compared to the native membranes; (ii) a transition point at 42°C(,) observed only in native membranes; (iii) a sharp reduction of the PSII core fluorescence in Tris-washed membranes at temperatures higher than 50°C; (iv) a 3 nm red-shift of F700 band's maximum in Tris-washed membranes already at 20°C and its further shift by 1 nm at temperature increase. Both treatments intensified their action by increasing the aggregation and dissociation of the peripheral light harvesting complexes. The oxygen-evolving complex, in addition to its main function to produce O(2), increases the thermal stability of PSII core by strengthening the connection between the core and the peripheral antenna proteins and by keeping their structural integrity.

  7. Aggregation induced emission of gold(i) complexes in water or water mixtures.

    PubMed

    Pinto, Andrea; Svahn, Noora; Lima, João Carlos; Rodríguez, Laura

    2017-08-29

    Gold(i) complexes are an expanding area of investigation due to the possibility of giving rise to supramolecular aggregates with particular morphologies that can be modulated together with their luminescent properties. A detailed study has been carried out for gold(i) complexes that self-assemble in aqueous media (in pure water or in mixtures of water and organic solvents in different proportions). The majority of the examples reported until now were found in mixtures of water and DMSO, acetone, DMF or acetonitrile. The addition of cations to a solution of gold(i) complexes has been observed to show a direct impact on the resulting process of aggregation. The use of perhalogenated ligands together with isocyanide moieties should be highlighted to promote the resulting self-organization. Nevertheless, other ligands like alkynyls or carbenes also promote self-assembly. A careful analysis of the data shows that aurophilic interactions have a key role in the formation of the resulting aggregates and in the enhancement of luminescence (aggregation induced emission, AIE).

  8. Environmentally induced changes in correlated responses to selection reveal variable pleiotropy across a complex genetic network.

    PubMed

    Sikkink, Kristin L; Reynolds, Rose M; Cresko, William A; Phillips, Patrick C

    2015-05-01

    Selection in novel environments can lead to a coordinated evolutionary response across a suite of characters. Environmental conditions can also potentially induce changes in the genetic architecture of complex traits, which in turn could alter the pattern of the multivariate response to selection. We describe a factorial selection experiment using the nematode Caenorhabditis remanei in which two different stress-related phenotypes (heat and oxidative stress resistance) were selected under three different environmental conditions. The pattern of covariation in the evolutionary response between phenotypes or across environments differed depending on the environment in which selection occurred, including asymmetrical responses to selection in some cases. These results indicate that variation in pleiotropy across the stress response network is highly sensitive to the external environment. Our findings highlight the complexity of the interaction between genes and environment that influences the ability of organisms to acclimate to novel environments. They also make clear the need to identify the underlying genetic basis of genetic correlations in order understand how patterns of pleiotropy are distributed across complex genetic networks.

  9. Hard X-ray-Induced Valence Tautomeric Interconversion in Cobalt-o-Dioxolene Complexes.

    PubMed

    Francisco, Thiago M; Gee, William J; Shepherd, Helena J; Warren, Mark R; Shultz, David A; Raithby, Paul R; Pinheiro, Carlos B

    2017-10-05

    Valence tautomeric interconversion (VTI) is a reversible process occurring in metal complexes in which an intramolecular metal-ligand electron transfer is accompanied by a change of metal ion spin state, creating two switchable electronic states (redox isomers). Herein, we describe the low-temperature, 30-100 K, single-crystal study of the [Co(diox)2(4-CN-py)2]·benzene complex (1) (diox = 3,5-di-t-butylsemiquinonate (SQ(•-)) and/or 3,5-di-t-butylcatecholate (Cat(2-)) radical; 4-CN-py = 4-cyano-pyridine) using hard synchrotron X-ray radiation with different intensities. We demonstrate for the first time that hard X-rays can induce VTI, and that the interconversion molar fraction is dependent on both intensity and exposure time. This in turn shows that X-rays, as a probe, might be altering the very nature of many structures under investigation at low temperatures, and consequently their properties. Our findings add new perspectives to VTI studies and might be of significant interest to the entire community investigating photoresponsive complexes.

  10. Measuring Force-Induced Dissociation Kinetics of Protein Complexes Using Single-Molecule Atomic Force Microscopy.

    PubMed

    Manibog, K; Yen, C F; Sivasankar, S

    2017-01-01

    Proteins respond to mechanical force by undergoing conformational changes and altering the kinetics of their interactions. However, the biophysical relationship between mechanical force and the lifetime of protein complexes is not completely understood. In this chapter, we provide a step-by-step tutorial on characterizing the force-dependent regulation of protein interactions using in vitro and in vivo single-molecule force clamp measurements with an atomic force microscope (AFM). While we focus on the force-induced dissociation of E-cadherins, a critical cell-cell adhesion protein, the approaches described here can be readily adapted to study other protein complexes. We begin this chapter by providing a brief overview of theoretical models that describe force-dependent kinetics of biomolecular interactions. Next, we present step-by-step methods for measuring the response of single receptor-ligand bonds to tensile force in vitro. Finally, we describe methods for quantifying the mechanical response of single protein complexes on the surface of living cells. We describe general protocols for conducting such measurements, including sample preparation, AFM force clamp measurements, and data analysis. We also highlight critical limitations in current technologies and discuss solutions to these challenges. © 2017 Elsevier Inc. All rights reserved.

  11. Ligation of erythrocyte CR1 induces its clustering in complex with scaffolding protein FAP-1

    PubMed Central

    Glodek, Aleksandra M.; Weaver, Gregory; Klickstein, Lloyd B.; Nicholson-Weller, Anne

    2008-01-01

    The primary identified function of complement receptor 1 (CR1/CD35) on primate erythrocytes is to bind complement-tagged inflammatory particles including microbes and immune complexes. When erythrocytes circulate through liver and spleen, sinusoidal phagocytes remove CR1-adherent particles and erythrocytes return to the circulation. This process of immune adherence clearance is important for host defense and prevention of autoimmunity. CR1 was previously described as clustered in the human erythrocyte membrane, which was thought to be necessary for binding complement-opsonized particles. In contrast, we demonstrate that on erythrocytes CR1 is not clustered, but dispersed, and able to bind complement-tagged particles. When fresh erythrocytes are solubilized by nonionic detergent, CR1 partitions to the cytoskeleton fraction. Using a PDZ-peptide array, CR1's cytoplasmic tail, which contains 2 PDZ-motifs, binds PDZ domains 2, 3, and 5 of Fas-associated phosphatase 1 (FAP-1), a scaffolding protein. We show that FAP-1, not previously recognized as an erythroid protein, is expressed on circulating erythrocytes. CR1 and FAP-1 coimmunoprecipitate, which confirms their molecular association. Disperse CR1 on erythrocytes may be advantageous for capturing immune-complexes, while ligation-induced CR1 clustering may prevent ingestion of the erythrocyte during the immune-complex transfer to the macrophages by keeping the opsonic stimulus localized thus preventing phagocyosis. PMID:18684861

  12. ENVIRONMENTALLY INDUCED CHANGES IN CORRELATED RESPONSES TO SELECTION REVEAL VARIABLE PLEIOTROPY ACROSS A COMPLEX GENETIC NETWORK

    PubMed Central

    Sikkink, Kristin L.; Reynolds, Rose M.; Cresko, William A.; Phillips, Patrick C.

    2017-01-01

    Selection in novel environments can lead to a coordinated evolutionary response across a suite of characters. Environmental conditions can also potentially induce changes in the genetic architecture of complex traits, which in turn could alter the pattern of the multivariate response to selection. We describe a factorial selection experiment using the nematode Caenorhabditis remanei in which two different stress-related phenotypes (heat and oxidative stress resistance) were selected under three different environmental conditions. The pattern of covariation in the evolutionary response between phenotypes or across environments differed depending on the environment in which selection occurred, including asymmetrical responses to selection in some cases. These results indicate that variation in pleiotropy across the stress response network is highly sensitive to the external environment. Our findings highlight the complexity of the interaction between genes and environment that influences the ability of organisms to acclimate to novel environments. They also make clear the need to identify the underlying genetic basis of genetic correlations in order understand how patterns of pleiotropy are distributed across complex genetic networks. PMID:25809411

  13. Vanillic Acid Ameliorates Cationic Bovine Serum Albumin Induced Immune Complex Glomerulonephritis in BALB/c Mice.

    PubMed

    Motiram Kakalij, Rahul; Tejaswini, G; Patil, Madhoosudan A; Dinesh Kumar, B; Diwan, Prakash V

    2016-06-01

    Preclinical Research Vanillic acid (VA) is a dihydroxybenzoic acid derivative widely used as a flavoring agent. It has chemopreventive effects on experimentally-induced carcinogenesis and in ulcerative colitis. The object of the present study was to investigate the effects of VA, alone and in combination with methylprednisolone (MP), on cationic bovine serum albumin (cBSA induced immune-complex glomerulonephritis in female BALB/c mice. Pre-immunization was carried out with cBSA in BALB/c mice and repeated (cBSA, 13 mg/kg, 3 times/week, i.v.) for 6 weeks to induce glomerulonephritis which was confirmed by the presence of severe proteinuria. The effect of VA (50, 100, and 200 mg/kg, p.o.) and its combination with MP (12.5 mg/kg, p.o.) was assessed in the nephrotic disease model. Treatment with VA decreased inflammatory nephrotic injury as evidenced by decreased proteinuria, serum creatinine, blood urea nitrogen, serum IgG1 and TNF-α levels. Co-administration of VA with MP showed an improvement in the immunohistochemistry of glomerular nephrin and podocin. The present results indicate that VA has a nephroprotective effect in the management of autoimmune nephritis. Drug Dev Res 77 : 171-179, 2016.   © 2016 Wiley Periodicals, Inc.

  14. Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex I in Candida albicans.

    PubMed

    Sun, Lingmei; Liao, Kai; Wang, Dayong

    2017-01-01

    Honokiol, a compound extracted from Magnolia officinalis, has antifungal activities by inducing mitochondrial dysfunction and triggering apoptosis in Candida albicans. However, the mechanism of honokiol-induced oxidative stress is poorly understood. The present investigation was designed to determine the specific mitochondrial reactive oxygen species (ROS)-generation component. We found that honokiol induced mitochondrial ROS accumulation, mainly superoxide anions (O2•-) measured by fluorescent staining method. The mitochondrial respiratory chain complex I (C I) inhibitor rotenone completely blocked O2•- production and provided the protection from the killing action of honokiol. Moreover, respiratory activity and the C I enzyme activity was significantly reduced after honokiol treatment. The differential gene-expression profile also showed that genes involved in oxidoreductase activity, electron transport, and oxidative phosphorylation were upregulated. The present work shows that honokiol may bind to mitochondrial respiratory chain C I, leading to mitochondrial dysfunction, accompanied by increased cellular superoxide anion and oxidative stress. This work not only provides insights on the mechanism by which honokiol interferes with fungal cell, demonstrating previously unknown effects on mitochondrial physiology, but also raises a note of caution on the use of M. officinalis as a Chinese medicine due to the toxic for mitochondria and suggests the possibility of using honokiol as chemosensitizer.

  15. Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II

    PubMed Central

    Koenitzer, Jeffrey R.; Bonacci, Gustavo; Woodcock, Steven R.; Chen, Chen-Shan; Cantu-Medellin, Nadiezhda; Kelley, Eric E.; Schopfer, Francisco J.

    2015-01-01

    Nitro-fatty acids (NO2-FA) are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2) reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the site of modification by OA-NO2 defined by mass spectrometric analysis. These effects translated into reduced basal and maximal respiration and favored glycolytic metabolism in H9C2 cardiomyoblasts as assessed by extracellular H+ and O2 flux analysis. The perfusion of NO2-FA induced acute cardioprotection in an isolated perfused heart ischemia/reperfusion (IR) model as evidenced by significantly higher rate-pressure products. Together these findings indicate that NO2-FA can promote cardioprotection by inducing a shift from respiration to glycolysis and suppressing reactive species formation in the post-ischemic interval. PMID:26722838

  16. p53 dependent apoptosis and cell cycle delay induced by heteroleptic complexes in human cervical cancer cells.

    PubMed

    Sharma, Gunjan; Rana, Nishant Kumar; Singh, Priya; Dubey, Pradeep; Pandey, Daya Shankar; Koch, Biplob

    2017-04-01

    We previously reported synthesis of novel arene ruthenium (Ru) complexes and evaluated their antitumor activity in murine lymphoma (DL) cells. In this present study we further investigated the mechanism of action of two ruthenium complexes [complex 1 (η6-arene)RuCl(2-pcdpm)] and complex 2 (η6-arene)RuCl(4-mtdpm)] in cervical cancer cell line (HeLa). Our studies demonstrate that anticancer property of these two complexes was due to induction of apoptosis through p53 mediated pathway as well as arrest of cells in G2/M phase of cell cycle. It is worth to note that the complexes did not cause any substantial cytotoxic effect on normal cells. Further in comprehensive studies, apoptosis inducing property of both complexes were established in accordance with array of morphological changes ranging from membrane blebbing to formation of apoptotic bodies and followed by DNA fragmentation assay. Furthermore, Flow cytometry by Annexin V/PI staining delineate that complex 1 and 2 have strident impact to induce apoptosis in HeLa cells. The complex 1 and 2 treated cells show increased level of intracellular ROS generation which was preceded by p53 activation. Apoptosis induced by 1 and 2 was preceded by mitochondrial aggregations which were monitored by mitotracker. In addition flow cytometry analysis showed that both complexes also effectively arrest cells at G2/M phase of cell cycle. Western blot, RT-PCR as well as Real Time analysis were used to further confirm that the complexes induced apoptosis in p53 dependent pathway. Thus, our promising results can contribute to the rational design of novel potential anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity

    SciTech Connect

    Milacic, Vesna; Chen Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping

    2008-08-15

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC{sub 50} value of 13.8 {mu}M, which was less potent than copper(II) chloride (IC{sub 50} 5.3 {mu}M). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells.

  18. Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstone

    NASA Astrophysics Data System (ADS)

    Lesmes, David P.; Frye, Kevin M.

    2001-01-01

    The spectral induced-polarization (IP) response of rocks and soils is a complex function of pore solution chemistry, sample microgeometry, and surface chemical properties. We measure the complex conductivity and the time domain IP responses of Berea sandstone as a function of pore fluid ionic strength and pH. Complex conductivity is measured over the frequency range 10-3 to 106 Hz, and chargeability is computed using a time window of 0.16 to 1.74 s. The field IP parameters: phase, percent frequency effect, and chargeability are functions of both the surface and bulk electrical properties of the sample and are observed to decrease with increasing solution conductivity. Dividing these parameters by the sample resistivity yields normalized IP parameters (quadrature conductivity, metal factor, normalized chargeability) that are proportional to the imaginary component of the complex surface conductivity. Normalized IP parameters increase with ionic strength up to concentrations of 10-1 M NaCl and show a reduced response at pH 3, the point of zero charge for quartz-dominated systems. For concentrations >10-1 M NaCl, the normalized parameters decrease with increasing concentration. This decrease in surface polarization may indicate a decrease in the effective mobility of polarizing charges at high solution concentration. Our data indicate that normalized IP parameters are directly related to the physiochemical parameters that control the surface conductivity responses of rocks and soils. Normalization of IP measurements in environmental investigations should increase the effectiveness of IP surveys, especially in high-conductivity environments.

  19. Complement complex C5b-8 induces PGI/sub 2/ formation in culture endothelial cells

    SciTech Connect

    Suttorp, N.; Seeger, W.; Zinsky, S.; Bhakdi, S.

    1987-07-01

    The effects of the terminal complement sequence on prostacyclin (PGI/sub 2/) generation in antibody-sensitized pulmonary arterial endothelial cells were examined. Whereas C5b-7 complement complexes induced no PGI/sub 2/ formation, addition of purified complement component C8 resulted in a time- and dose-dependent burst of PGI/sub 2/ release in the absence of overt cell damage. Formation of the complete terminal complement complex C5b-9 enhanced PGI/sub 2/ release but was accompanied by cytolysis. Extracellular Ca/sup 2 +/ was required for C5b-8-dependent PGI/sub 2/ formation. Three different blockers of physiological calcium channels failed to suppress the observed stimulatory effect. In contrast, W7 (N-(6-amino-hexyl)-5-chloro-1-napththalene sulfonamide) and trifluoperazine, inhibitors of calmodulin activity, all reduced the C5b-8-dependent PGI/sub 2/ generation. None of the inhibitors used impaired Ca/sup 2 +/ flux into the cells. One minute after addition of C8 to endothelial cells carrying C5b-7 complexes, a six- to seven-fold enhanced passive influx of /sup 45/Ca/sup 2 +/ into the cells was noted. An enhanced passive influx was also observed for /sup 51/CrO/sub 4//sup 2 -/, (/sup H/) aminobutyric acid, and (/sup 3/H) sucrose, but not for (/sup 3/H)inulin and (/sup 3/H)dextran. These data together suggest that complement C5b-8 complexes may serve as Ca/sup 2 +/bypass gates in endothelial cells, the ensuring influx of Ca/sup 2 +/ leading to subsequent activation of the arachiodonic acid pathway.

  20. Detecting drug-induced prolongation of the QRS complex: New insights for cardiac safety assessment

    SciTech Connect

    Cros, C.; Skinner, M.; Moors, J.; Lainee, P.; Valentin, J.P.

    2012-12-01

    Background: Drugs slowing the conduction of the cardiac action potential and prolonging QRS complex duration by blocking the sodium current (I{sub Na}) may carry pro-arrhythmic risks. Due to the frequency-dependent block of I{sub Na}, this study assesses whether activity-related spontaneous increases in heart rate (HR) occurring during standard dog telemetry studies can be used to optimise the detection of class I antiarrhythmic-induced QRS prolongation. Methods: Telemetered dogs were orally dosed with quinidine (class Ia), mexiletine (class Ib) or flecainide (class Ic). QRS duration was determined standardly (5 beats averaged at rest) but also prior to and at the plateau of each acute increase in HR (3 beats averaged at steady state), and averaged over 1 h period from 1 h pre-dose to 5 h post-dose. Results: Compared to time-matched vehicle, at rest, only quinidine and flecainide induced increases in QRS duration (E{sub max} 13% and 20% respectively, P < 0.01–0.001) whereas mexiletine had no effect. Importantly, the increase in QRS duration was enhanced at peak HR with an additional effect of + 0.7 ± 0.5 ms (quinidine, NS), + 1.8 ± 0.8 ms (mexiletine, P < 0.05) and + 2.8 ± 0.8 ms (flecainide, P < 0.01) (calculated as QRS at basal HR-QRS at high HR). Conclusion: Electrocardiogram recordings during elevated HR, not considered during routine analysis optimised for detecting QT prolongation, can be used to sensitise the detection of QRS prolongation. This could prove useful when borderline QRS effects are detected. Analysing during acute increases in HR could also be useful for detecting drug-induced effects on other aspects of cardiac function. -- Highlights: ► We aimed to improve detection of drug-induced QRS prolongation in safety screening. ► We used telemetered dogs to test class I antiarrhythmics at low and high heart rate. ► At low heart rate only quinidine and flecainide induced an increase in QRS duration. ► At high heart rate the effects of two

  1. Fluctuation analysis of nonselective cation currents induced by AIF complex in guinea-pig chromaffin cells.

    PubMed

    Inoue, M; Imanaga, I

    1996-11-11

    Properties of aluminium fluoride (AIF) complex-activated nonselective cation (NS) channels in guinea-pig chromaffin cells were investigated using the patch clamp technique. As the membrane potential was hyperpolarized from the holding potential of -55 mV, the AIF-induced nonselective cation current (INS) diminished progressively. With hyperpolarizations to -100 mV or more negative potentials, the AIF.INS almost instantaneously disappeared. The apparent unit conductance of AIF INS was estimated to be 3 pS by fluctuation analysis. The open state probability of AIF-activated NS channels became large with a decrease in concentration of free Mg2+ ions inside the cell and was less than 0.5 at 12 microM Mg2+. It is concluded that NS channels in the chromaffin cell apparently differ from those in smooth muscle cells.

  2. COMPLEX RESISTIVITY OF FAULT GOUGE AND ITS SIGNIFICANCE FOR EARTHQUAKE LIGHTS AND INDUCED POLARIZATION.

    USGS Publications Warehouse

    Lockner, David A.; Byerlee, James D.

    1985-01-01

    The authors measured complex resistivity of 2 water-saturated San Andreas fault gouges from 10** minus **3 to 10**6 Hz and confining pressures of 0. 2 to 200 MPa. Consistent with earlier observations of clays and common rocks, large low-frequency permittivities were observed in all cases. Comparisons were made to induced polarization (IP) measurements by inversion of the data into the time domain, where it was found that principal features of the IP response curves were due to these large low-frequency permittivities. The results also suggest that following large earthquakes, significant electrical charge could remain for many seconds and could result in a variety of reported electromagnetic effects. Refs.

  3. Thermally induced oxidative decarboxylation of copper complexes of amino acids and formation of strecker aldehyde.

    PubMed

    Nashalian, Ossanna; Yaylayan, Varoujan A

    2014-08-20

    In the Maillard reaction, independent degradations of amino acids play an important role in the generation of amino-acid-specific products, such as Strecker aldehydes or their Schiff bases. Such oxidative decarboxylation reactions are expected to be enhanced in the presence of metals. Preliminary studies performed through heating of alanine and various metal salts (Cu, Fe, Zn, and Ca) under pyrolytic conditions indicated that copper(II) and iron(III) because of their high oxidation potentials were the only metals able to induce oxidative decarboxylation of amino acids and formation of Strecker aldehyde or its derivatives as detected by gas chromatography/mass spectrometry. Furthermore, studies performed with synthetic alanine and glycine copper complexes indicated that they constituted the critical intermediates undergoing free-radical oxidative degradation, followed by the loss of carbon dioxide and the generation of Strecker aldehydes, which were detected either as stable Schiff base adducts or incorporated in moieties, such as pyrazine or pyridine derivatives.

  4. Tafenoquine, an antiplasmodial 8-aminoquinoline, targets leishmania respiratory complex III and induces apoptosis.

    PubMed

    Carvalho, Luis; Luque-Ortega, Juan Román; Manzano, José Ignacio; Castanys, Santiago; Rivas, Luis; Gamarro, Francisco

    2010-12-01

    Tafenoquine (TFQ), an 8-aminoquinoline analogue of primaquine, which is currently under clinical trial (phase IIb/III) for the treatment and prevention of malaria, may represent an alternative treatment for leishmaniasis. In this work, we have studied the mechanism of action of TFQ against Leishmania parasites. TFQ impaired the overall bioenergetic metabolism of Leishmania promastigotes, causing a rapid drop in intracellular ATP levels without affecting plasma membrane permeability. TFQ induced mitochondrial dysfunction through the inhibition of cytochrome c reductase (respiratory complex III) with a decrease in the oxygen consumption rate and depolarization of mitochondrial membrane potential. This was accompanied by ROS production, elevation of intracellular Ca(2+) levels and concomitant nuclear DNA fragmentation. We conclude that TFQ targets Leishmania mitochondria, leading to an apoptosis-like death process.

  5. Tafenoquine, an Antiplasmodial 8-Aminoquinoline, Targets Leishmania Respiratory Complex III and Induces Apoptosis ▿

    PubMed Central

    Carvalho, Luis; Luque-Ortega, Juan Román; Manzano, José Ignacio; Castanys, Santiago; Rivas, Luis; Gamarro, Francisco

    2010-01-01

    Tafenoquine (TFQ), an 8-aminoquinoline analogue of primaquine, which is currently under clinical trial (phase IIb/III) for the treatment and prevention of malaria, may represent an alternative treatment for leishmaniasis. In this work, we have studied the mechanism of action of TFQ against Leishmania parasites. TFQ impaired the overall bioenergetic metabolism of Leishmania promastigotes, causing a rapid drop in intracellular ATP levels without affecting plasma membrane permeability. TFQ induced mitochondrial dysfunction through the inhibition of cytochrome c reductase (respiratory complex III) with a decrease in the oxygen consumption rate and depolarization of mitochondrial membrane potential. This was accompanied by ROS production, elevation of intracellular Ca2+ levels and concomitant nuclear DNA fragmentation. We conclude that TFQ targets Leishmania mitochondria, leading to an apoptosis-like death process. PMID:20837758

  6. Application of lanthanide induced shifts for the determination of solution structures of metal ion-extractant complexes

    SciTech Connect

    Kalina, D.G.

    1984-01-01

    An analysis of the induced shifts in the nuclear magnetic resonance (NMR) spectra of extractants complexed to paramagnetic lanthanide ions has been performed. The complexes of a number of monofunctional and bifunctional extractants have been examined and assigned solution structures by minimizing the differences between the observed shifts and those calculated using a computer analysis in which the potential configurations of the complexes were generated. Complexes of monofunctional extractants were calculated to have coordination geometries quite similar to those observed in related compounds by crystallographic techniques. For the bifunctional extractants, differentiation between monodentate and bidentate coordination seems possible. 23 references, 2 figures, 7 tables.

  7. Transition Metal Chelator Induces Progesterone Production in Mouse Cumulus-Oocyte Complexes and Corpora Lutea.

    PubMed

    Tian, X; Anthony, K; Diaz, Francisco J

    2017-04-01

    Progesterone production is upregulated in granulosa cells (cumulus and mural) after the LH surge, but the intra-follicular mechanisms regulating this transition are not completely known. Recent findings show that the transition metal chelator, N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN), impairs ovarian function. In this study, we provide evidence that chelating transition metals, including zinc, enhances progesterone production. The findings show that TPEN (transition metal chelator) increases abundance of Cyp11a1 and Star messenger RNA (mRNA) between 8- and 20-fold and progesterone production more than 3-fold in cultured cumulus-oocyte complexes (COC). Feeding a zinc-deficient diet for 10 days, but not 3 days, increased Star, Hsd3b, and prostaglandin F2 alpha receptor (Ptgfr) mRNA ~2.5-fold, suggesting that the effect of TPEN is through modulation of zinc availability. Progesterone from cumulus cells promotes oocyte developmental potential. Blocking progesterone production with epostane during maturation reduced subsequent blastocyst formation from 89 % in control to 18 % in epostane-treated complexes, but supplementation with progesterone restored blastocyst developmental potential to 94 %. Feeding a zinc-deficient diet for 5 days before ovulation did not affect the number of CL, STAR protein, or serum progesterone. However, incubating luteal tissue with TPEN increased abundance of Star, Hsd3b, and Ptgfr mRNA 2-3-fold and increased progesterone production 3-fold. TPEN is known to abolish SMAD2/3 signaling in cumulus cells. However, treatment of COC with the SMAD2/3 phosphorylation inhibitor, SB421542, did not by itself induce steroidogenic transcripts but did potentiate EGF-induced Star mRNA expression. Collectively, the results show that depletion of transition metals with TPEN acutely enhances progesterone biosynthesis in COC and luteal tissue.

  8. Soluble, Prefibrillar α-Synuclein Oligomers Promote Complex I-dependent, Ca2+-induced Mitochondrial Dysfunction*

    PubMed Central

    Luth, Eric S.; Stavrovskaya, Irina G.; Bartels, Tim; Kristal, Bruce S.; Selkoe, Dennis J.

    2014-01-01

    α-Synuclein (αSyn) aggregation and mitochondrial dysfunction both contribute to the pathogenesis of Parkinson disease (PD). Although recent studies have suggested that mitochondrial association of αSyn may disrupt mitochondrial function, it is unclear what aggregation state of αSyn is most damaging to mitochondria and what conditions promote or inhibit the effect of toxic αSyn species. Because the neuronal populations most vulnerable in PD are characterized by large cytosolic Ca2+ oscillations that burden mitochondria, we examined mitochondrial Ca2+ stress in an in vitro system comprising isolated mitochondria and purified recombinant human αSyn in various aggregation states. Using fluorimetry to simultaneously measure four mitochondrial parameters, we observed that soluble, prefibrillar αSyn oligomers, but not monomeric or fibrillar αSyn, decreased the retention time of exogenously added Ca2+, promoted Ca2+-induced mitochondrial swelling and depolarization, and accelerated cytochrome c release. Inhibition of the permeability transition pore rescued these αSyn-induced changes in mitochondrial parameters. Interestingly, the mitotoxic effects of αSyn were specifically dependent upon both electron flow through complex I and mitochondrial uptake of exogenous Ca2+. Our results suggest that soluble prefibrillar αSyn oligomers recapitulate several mitochondrial phenotypes previously observed in animal and cell models of PD: complex I dysfunction, altered membrane potential, disrupted Ca2+ homeostasis, and enhanced cytochrome c release. These data reveal how the association of oligomeric αSyn with mitochondria can be detrimental to the function of cells with high Ca2+-handling requirements. PMID:24942732

  9. Staphylococcal protein A-formulated immune complexes suppress enterotoxin-induced cellular responses in nasal polyps.

    PubMed

    Okano, Mitsuhiro; Fujiwara, Tazuko; Kariya, Shin; Haruna, Takenori; Higaki, Takaya; Noyama, Yasuyuki; Makihara, Sei-ichiro; Kanai, Kengo; Nishizaki, Kazunori

    2015-08-01

    Recent studies have revealed that Staphylococcus aureus and its components participate in the pathogenesis of eosinophilic airway diseases, such as chronic rhinosinusitis with nasal polyps. We sought to determine whether staphylococcal protein A (SpA) from S aureus regulated cellular responses in nasal polyps, especially when coupled to immunoglobulins in immune complexes (ICs). Dispersed nasal polyp cells (DNPCs) or peripheral blood monocytes were cultured in vitro with SpA in the presence or absence of IgG, and IL-5, IL-13, IFN-γ, IL-17A, and IL-10 levels were measured in the supernatants. The effect of SpA exposure on staphylococcal enterotoxin B-induced cytokine production by DNPCs in the presence and absence of IgG, IgA, and autologous serum was also examined. Exposure to SpA induced DNPCs to produce significantly higher IL-10, IL-13, and IL-17A levels than DNPCs without SpA, although the magnitude of the IL-17A increase was less than that of IL-10 and IL-13. SpA induced IL-10 production mainly from adherent DNPCs, and this was significantly enhanced in the presence of IgG; similar results were observed in peripheral blood monocytes. IC formation between SpA and IgG (SpA-IgG ICs) was confirmed by using native polyacrylamide gel electrophoresis. SpA-IgG ICs, but not SpA alone, almost completely suppressed staphylococcal enterotoxin B-induced IL-5, IL-13, IFN-γ, and IL-17A production by DNPCs; similar inhibition was observed in DNPCs treated with SpA in the presence of either IgA or autologous serum. Our results suggest that SpA can regulate the pathogenesis of enterotoxin-induced inflammation in patients with chronic rhinosinusitis with nasal polyps through coupling to immunoglobulins. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. Inducing isolated-desynchronization states in complex network of coupled chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Lin, Weijie; Li, Huiyan; Ying, Heping; Wang, Xingang

    2016-12-01

    In a recent study about chaos synchronization in complex networks [Nat. Commun. 5, 4079 (2014), 10.1038/ncomms5079], it is shown that a stable synchronous cluster may coexist with vast asynchronous nodes, resembling the phenomenon of a chimera state observed in a regular network of coupled periodic oscillators. Although of practical significance, this new type of state, namely, the isolated-desynchronization state, is hardly observed in practice due to its strict requirements on the network topology. Here, by the strategy of pinning coupling, we propose an effective method for inducing isolated-desynchronization states in symmetric networks of coupled chaotic oscillators. Theoretical analysis based on eigenvalue analysis shows that, by pinning a group of symmetric nodes in the network, there exists a critical pinning strength beyond which the group of pinned nodes can completely be synchronized while the unpinned nodes remain asynchronous. The feasibility and efficiency of the control method are verified by numerical simulations of both artificial and real-world complex networks with the numerical results in good agreement with the theoretical predictions.

  11. Supramolecular substitution reactions between hydrazide-based molecular duplex strands: complexation induced nonsymmetry and dynamic behavior.

    PubMed

    Yang, Yong; Xiang, Jun-Feng; Xue, Min; Hu, Hai-Yu; Chen, Chuan-Feng

    2008-08-15

    Supramolecular substitution reactions between hydrazide-based oligomers 1a- c and 2a- c were systematically investigated. Each oligomer existed as hydrogen-bonding mediated molecular duplex strands or a polymeric zipper structure in apolar solvents. But when another oligomer with complementary hydrogen bonding sites was added, a heterodimer structure formed due to supramolecular substitution reaction driven by the formation of more hydrogen bonds, which was evidenced by NMR experiments, sometimes gel-sol transition. When a nonsymmetric oligomer and a symmetric oligomer were involved, complexation-induced nonsymmetry was observed. When two nonsymmetric oligomers were involved, two hydrogen-bonded isomers were observed in solution. Variable-temperature (1)H NMR experiments further revealed unique dynamic behavior for the individual oligomer and the complexes. When diacetyl-terminated oligomer 1c was involved, slides perpendicular to hydrogen bonds between two constituent molecules were observed, which led to complicated (1)H NMR spectra at lower temperature; otherwise, high selectivity was obtained. Combined with the results we reported previously, a detailed picture of the structure-property relationship for our hydrazide-based oligomers was depicted, which would provide guidelines for the design of hydrazide-based fine-tuning functional materials.

  12. Imbalance of Mitochondrial Respiratory Chain Complexes in the Epidermis Induces Severe Skin Inflammation.

    PubMed

    Weiland, Daniela; Brachvogel, Bent; Hornig-Do, Hue-Tran; Neuhaus, Johannes F G; Holzer, Tatjana; Tobin, Desmond J; Niessen, Carien M; Wiesner, Rudolf J; Baris, Olivier R

    2017-08-31

    Accumulation of large-scale mitochondrial DNA (mtDNA) deletions and chronic, subclinical inflammation are concomitant during skin aging, thus raising the question of a causal link. To approach this, we generated mice expressing a mutant mitochondrial helicase (K320E-TWINKLE) in the epidermis in order to accelerate the accumulation of mtDNA deletions in this skin compartment. Mice displayed low amounts of large-scale deletions as well as a dramatic depletion of mtDNA in the epidermis and showed macroscopic signs of severe skin inflammation. The mtDNA alterations led to an imbalanced stoichiometry of mitochondrial respiratory chain complexes, inducing a unique combination of cytokine expression, causing a severe inflammatory phenotype, with massive immune cell infiltrates already before birth. Altogether, these data unraveled a previously unknown link between an imbalanced stoichiometry of the mitochondrial respiratory chain complexes and skin inflammation, and suggest that severe respiratory chain dysfunction, as observed in few cells leading to a mosaic in aged tissues, might be involved in the development of chronic sub-clinical inflammation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Syncytial apoptosis signaling network induced by the HIV-1 envelope glycoprotein complex: an overview

    PubMed Central

    Nardacci, R; Perfettini, J-L; Grieco, L; Thieffry, D; Kroemer, G; Piacentini, M

    2015-01-01

    Infection by human immunodeficiency virus-1 (HIV-1) is associated with a progressive decrease in CD4 T-cell numbers and the consequent collapse of host immune defenses. The major pathogenic mechanism of AIDS is the massive apoptotic destruction of the immunocompetent cells, including uninfected cells. The latter process, also known as by-stander killing, operates by various mechanisms one of which involves the formation of syncytia which undergo cell death by following a complex pathway. We present here a detailed and curated map of the syncytial apoptosis signaling network, aimed at simplifying the whole mechanism that we have characterized at the molecular level in the last 15 years. The map was created using Systems Biology Graphical Notation language with the help of CellDesigner software and encompasses 36 components (proteins/genes) and 54 interactions. The simplification of this complex network paves the way for the development of novel therapeutic strategies to eradicate HIV-1 infection. Agents that induce the selective death of HIV-1-elicited syncytia might lead to the elimination of viral reservoirs and hence constitute an important complement to current antiretroviral therapies. PMID:26247731

  14. Divacancy complexes induced by Cu diffusion in Zn-doped GaAs

    NASA Astrophysics Data System (ADS)

    Elsayed, M.; Krause-Rehberg, R.; Korff, B.; Ratschinski, I.; Leipner, H. S.

    2013-08-01

    Positron annihilation spectroscopy was applied to investigate the nature and thermal behavior of defects induced by Cu diffusion in Zn-doped p-type GaAs crystals. Cu atoms were intentionally introduced in the GaAs lattice through thermally activated diffusion from a thin Cu capping layer at 1100 °C under defined arsenic vapor pressure. During isochronal annealing of the obtained Cu-diffused GaAs in the temperature range of 450-850 K, vacancy clusters were found to form, grow and finally disappear. We found that annealing at 650 K triggers the formation of divacancies, whereas further increasing in the annealing temperature up to 750 K leads to the formation of divacancy-copper complexes. The observations suggest that the formation of these vacancy-like defects in GaAs is related to the out-diffusion of Cu. Two kinds of acceptors are detected with a concentration of about 1016 - 1017 cm-3, negative ions and arsenic vacancy copper complexes. Transmission electron microscopy showed the presence of voids and Cu precipitates which are not observed by positron measurements. The positron binding energy to shallow traps is estimated using the positron trapping model. Coincidence Doppler broadening spectroscopy showed the presence of Cu in the immediate vicinity of the detected vacancies. Theoretical calculations suggested that the detected defect is VGaVAs-2CuGa.

  15. Structural and thermodynamic basis of proline-induced transmembrane complex stabilization

    PubMed Central

    Schmidt, Thomas; Situ, Alan J.; Ulmer, Tobias S.

    2016-01-01

    In membrane proteins, proline-mediated helix kinks are indispensable for the tight packing of transmembrane (TM) helices. However, kinks invariably affect numerous interhelical interactions, questioning the acceptance of proline substitutions and evolutionary origin of kinks. Here, we present the structural and thermodynamic basis of proline-induced integrin αIIbβ3 TM complex stabilization to understand the introduction of proline kinks in membrane proteins. In phospholipid bicelles, the A711P substitution in the center of the β3 TM helix changes the direction of adjacent helix segments to form a 35 ± 2° angle and predominantly repacks the segment in the inner membrane leaflet due to a swivel movement. This swivel repacks hydrophobic and electrostatic interhelical contacts within intracellular lipids, resulting in an overall TM complex stabilization of −0.82 ± 0.01 kcal/mol. Thus, proline substitutions can directly stabilize membrane proteins and such substitutions are proposed to follow the structural template of integrin αIIbβ3(A711P). PMID:27436065

  16. Molybdenum Trihydride Complexes: Computational Model of Oxidatively Induced Reductive Elimination of Dihydrogen.

    PubMed

    Szatkowski, Lukasz; Hall, Michael B

    2017-08-21

    Recent experimental work shows that the 18-electron molybdenum complexes (1,2,4-C5H2tBu3)Mo(PMe3)2H3 (Cp(tBu)MoH3) and (C5HiPr4)Mo(PMe3)2H3 (Cp(iPr)MoH3) undergo oxidatively induced reductive elimination of dihydrogen (H2), slowly forming the 15-electron monohydride species in tetrahydrofuran and acetonitrile. The 17-electron [Cp(tBu)MoH3](+) derivative was stable enough to be characterized by X-ray diffraction, while [Cp(iPr)MoH3](+) was not. Density functional theory calculations of the H2 elimination pathways for both complexes in the gas phase and in a continuum solvent model indicate that H2 elimination from [Cp(iPr)MoH3](+) has a lower barrier than that from [Cp(tBu)MoH3](+). Further, a specific solvent association, which is stronger for [Cp(tBu)MoH3](+) than for [Cp(iPr)MoH3](+), contributes to the stability of the former. In agreement with the experimental observations, the calculations predict that [Cp(tBu)MoH3](+) would be in a quartet state at room temperature and a doublet state at 4.2 K, while [Cp(iPr)MoH3](+) is in a doublet state even at room temperature.

  17. Experimental investigation of flow induced dust acoustic shock waves in a complex plasma

    NASA Astrophysics Data System (ADS)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2016-08-01

    We report on experimental observations of flow induced large amplitude dust-acoustic shock waves in a complex plasma. The experiments have been carried out in a Π shaped direct current glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change in the gas flow rate is used to trigger the onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a modified Korteweg-de-Vries-Burgers type equation.

  18. Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution.

    PubMed

    Shimada, Masato; Takai, Eisuke; Ejima, Daisuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2015-02-01

    Heat-induced aggregation of myosin into an elastic gel plays an important role in the water-holding capacity and texture of meat products. Here, we investigated thermal aggregation of porcine myosin in high-salt solution over a wide temperature range by dynamic light scattering experiments. The myosin samples were readily dissolved in 1.0 M NaCl at 25 °C followed by dilution into various salt concentrations. The diluted solutions consistently contained both myosin monomers and soluble filaments. The filament size decreased with increasing salt concentration and temperature. High temperatures above Tm led to at least partial dissociation of soluble filaments and thermal unfolding, resulting in the formation of soluble oligomers and binding to the persistently present soluble filaments. Such a complex formation between the oligomers and filaments has never been observed. Our results provide new insight into the heat-induced myosin gelation in high-salt solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Membrane-elasticity model of Coatless vesicle budding induced by ESCRT complexes.

    PubMed

    Różycki, Bartosz; Boura, Evzen; Hurley, James H; Hummer, Gerhard

    2012-01-01

    The formation of vesicles is essential for many biological processes, in particular for the trafficking of membrane proteins within cells. The Endosomal Sorting Complex Required for Transport (ESCRT) directs membrane budding away from the cytosol. Unlike other vesicle formation pathways, the ESCRT-mediated budding occurs without a protein coat. Here, we propose a minimal model of ESCRT-induced vesicle budding. Our model is based on recent experimental observations from direct fluorescence microscopy imaging that show ESCRT proteins colocalized only in the neck region of membrane buds. The model, cast in the framework of membrane elasticity theory, reproduces the experimentally observed vesicle morphologies with physically meaningful parameters. In this parameter range, the minimum energy configurations of the membrane are coatless buds with ESCRTs localized in the bud neck, consistent with experiment. The minimum energy configurations agree with those seen in the fluorescence images, with respect to both bud shapes and ESCRT protein localization. On the basis of our model, we identify distinct mechanistic pathways for the ESCRT-mediated budding process. The bud size is determined by membrane material parameters, explaining the narrow yet different bud size distributions in vitro and in vivo. Our membrane elasticity model thus sheds light on the energetics and possible mechanisms of ESCRT-induced membrane budding.

  20. A family of optimal excitations for inducing complex dynamics in planar dynamical systems

    NASA Astrophysics Data System (ADS)

    Booker, S. M.

    2000-01-01

    A class of planar dynamical systems is considered which models a wide variety of physical problems; this class is of a form to which Melnikov's method may be applied. It is shown that a family of excitations exists which is optimal for inducing a homoclinic tangle, and hence horseshoe dynamics, in such dynamical systems (in the sense that the optimal excitations are functions of smallest Lp (0,T ) norm, 1icons/Journals/Common/le" ALT="le" ALIGN="TOP"/> picons/Journals/Common/le" ALT="le" ALIGN="TOP"/> icons/Journals/Common/infty" ALT="infty" ALIGN="TOP"/> , which will produce a simple zero in the Melnikov function). These optimal functions are particularly effective at inducing complex dynamics in the nonlinear system of interest; they are of both theoretical and practical interest. An illustration is given of this approach for two well known problems in nonlinear dynamics: the pendulum, and Duffing's equation. Numerical results are presented which confirm the accuracy and practical significance of this approach.

  1. Directional gene silencing induced by a complex subtelomeric satellite from Drosophila.

    PubMed

    Kurenova, E; Champion, L; Biessmann, H; Mason, J M

    1998-11-01

    The telomeric regions in Drosophila cause transcriptional silencing of integrated transgenes. A complex satellite has recently been identified in the subterminal region of the left arm of chromosome 2 that is a good candidate for the source of the observed telomeric silencing, because genetically marked transposable elements that have inserted into this subtelomeric array show repression and variegation of the reporter gene. We asked whether this satellite can also cause transcriptional repression in ectopic chromosomal positions by placing it upstream of a mini-white reporter gene in P element constructs used for germ line transformation. The transgenes are shielded from external influences at the integration site using SU(HW) binding sites at either end. It was found that the satellite represses transcription of the reporter gene in an orientation dependent and an array length dependent manner. The satellite does not, however, induce variegation under the conditions used. The repressed transgenes do not respond to typical modifiers of centromeric position effect variegation, such as Su(var)2055, Su(var)2-11, Su(var)3-11, and Su(var)3-61, or to the addition of a Y chromosome. However, as with the original variegating telomeric insertion, suppression in the transgenes is relieved by Su(z)25, suggesting that suppression induced by the subtelomeric satellite retains aspects of telomeric silencing in ectopic positions.

  2. Signatures of complex magnetic topologies from multiple reconnection sites induced by Kelvin-Helmholtz instability

    NASA Astrophysics Data System (ADS)

    Vernisse, Y.; Lavraud, B.; Eriksson, S.; Gershman, D. J.; Dorelli, J.; Pollock, C.; Giles, B.; Aunai, N.; Avanov, L.; Burch, J.; Chandler, M.; Coffey, V.; Dargent, J.; Ergun, R. E.; Farrugia, C. J.; Génot, V.; Graham, D. B.; Hasegawa, H.; Jacquey, C.; Kacem, I.; Khotyaintsev, Y.; Li, W.; Magnes, W.; Marchaudon, A.; Moore, T.; Paterson, W.; Penou, E.; Phan, T. D.; Retino, A.; Russell, C. T.; Saito, Y.; Sauvaud, J.-A.; Torbert, R.; Wilder, F. D.; Yokota, S.

    2016-10-01

    The Magnetospheric Multiscale mission has demonstrated the frequent presence of reconnection exhausts at thin current sheets within Kelvin-Helmholtz (KH) waves at the flank magnetopause. Motivated by these recent observations, we performed a statistical analysis of the boundary layers on the magnetosheath side of all KH current sheets on 8 September 2015. We show 86% consistency between the exhaust flows and particle leakage in the magnetosheath boundary layers but further highlight the very frequent presence of additional boundary layer signatures that do not come from the locally observed reconnection exhausts. These additional electron and ion boundary layers, of various durations and at various positions with respect to the leading and trailing boundaries of the KH waves, signal connections to reconnection sites at other locations. Based on the directionality and extent of these layers, we provide an interpretation whereby complex magnetic topologies can arise within KH waves from the combination of reconnection in the equatorial plane and at midlatitudes in the Southern and Northern Hemispheres, where additional reconnection sites are expected to be triggered by the three-dimensional field lines interweaving induced by the KH waves at the flanks (owing to differential flow and magnetic field shear with latitude). The present event demonstrates that the three-dimensional development of KH waves can induce plasma entry (through reconnection at both midlatitude and equatorial regions) already sunward of the terminator where the instability remains in its linear stage.

  3. Experimental investigation of flow induced dust acoustic shock waves in a complex plasma

    SciTech Connect

    Jaiswal, S. Bandyopadhyay, P.; Sen, A.

    2016-08-15

    We report on experimental observations of flow induced large amplitude dust-acoustic shock waves in a complex plasma. The experiments have been carried out in a Π shaped direct current glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change in the gas flow rate is used to trigger the onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a modified Korteweg-de-Vries-Burgers type equation.

  4. Trophic Complexity and the Adaptive Value of Damage-Induced Plant Volatiles

    PubMed Central

    Kaplan, Ian

    2012-01-01

    Indirect plant defenses are those facilitating the action of carnivores in ridding plants of their herbivorous consumers, as opposed to directly poisoning or repelling them. Of the numerous and diverse indirect defensive strategies employed by plants, inducible volatile production has garnered the most fascination among plant-insect ecologists. These volatile chemicals are emitted in response to feeding by herbivorous arthropods and serve to guide predators and parasitic wasps to their prey. Implicit in virtually all discussions of plant volatile-carnivore interactions is the premise that plants “call for help” to bodyguards that serve to boost plant fitness by limiting herbivore damage. This, by necessity, assumes a three-trophic level food chain where carnivores benefit plants, a theoretical framework that is conceptually tractable and convenient, but poorly depicts the complexity of food-web dynamics occurring in real communities. Recent work suggests that hyperparasitoids, top consumers acting from the fourth trophic level, exploit the same plant volatile cues used by third trophic level carnivores. Further, hyperparasitoids shift their foraging preferences, specifically cueing in to the odor profile of a plant being damaged by a parasitized herbivore that contains their host compared with damage from an unparasitized herbivore. If this outcome is broadly representative of plant-insect food webs at large, it suggests that damage-induced volatiles may not always be beneficial to plants with major implications for the evolution of anti-herbivore defense and manipulating plant traits to improve biological control in agricultural crops. PMID:23209381

  5. Dynein light chain 1 induces assembly of large Bim complexes on mitochondria that stabilize Mcl-1 and regulate apoptosis.

    PubMed

    Singh, Prafull Kumar; Roukounakis, Aristomenis; Frank, Daniel O; Kirschnek, Susanne; Das, Kushal Kumar; Neumann, Simon; Madl, Josef; Römer, Winfried; Zorzin, Carina; Borner, Christoph; Haimovici, Aladin; Garcia-Saez, Ana; Weber, Arnim; Häcker, Georg

    2017-09-01

    The Bcl-2 family protein Bim triggers mitochondrial apoptosis. Bim is expressed in nonapoptotic cells at the mitochondrial outer membrane, where it is activated by largely unknown mechanisms. We found that Bim is regulated by formation of large protein complexes containing dynein light chain 1 (DLC1). Bim rapidly inserted into cardiolipin-containing membranes in vitro and recruited DLC1 to the membrane. Bim binding to DLC1 induced the formation of large Bim complexes on lipid vesicles, on isolated mitochondria, and in intact cells. Native gel electrophoresis and gel filtration showed Bim-containing mitochondrial complexes of several hundred kilodaltons in all cells tested. Bim unable to form complexes was consistently more active than complexed Bim, which correlated with its substantially reduced binding to anti-apoptotic Bcl-2 proteins. At endogenous levels, Bim surprisingly bound only anti-apoptotic Mcl-1 but not Bcl-2 or Bcl-XL, recruiting only Mcl-1 into large complexes. Targeting of DLC1 by RNAi in human cell lines induced disassembly of Bim-Mcl-1 complexes and the proteasomal degradation of Mcl-1 and sensitized the cells to the Bcl-2/Bcl-XL inhibitor ABT-737. Regulation of apoptosis at mitochondria thus extends beyond the interaction of monomers of proapoptotic and anti-apoptotic Bcl-2 family members but involves more complex structures of proteins at the mitochondrial outer membrane, and targeting complexes may be a novel therapeutic strategy. © 2017 Singh et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Surface induced dissociation: dissecting noncovalent protein complexes in the gas phase.

    PubMed

    Zhou, Mowei; Wysocki, Vicki H

    2014-04-15

    when the gas-phase proteins are activated by collision with a surface. Subcomplexes released after surface collision are consistent with the native quaternary structure of several protein systems studied, even for a large chaperone protein, GroEL, that approaches megadalton mass. The unique and meaningful data generated from surface induced dissociation (SID) have been attributed to the fast and energetic activation process upon collision with a massive target, the surface. In this Account, we summarize our SID studies of protein complexes, with emphasis on the more recent work on the combination of ion mobility (IM) with SID. IM has gained popularity over the years not only as a gas-phase separation technique but also as a technique with the ability to measure the size and shape of the proteins in the gas phase. Incorporation of IM before SID allows different conformations of a protein to be separated and examined individually by SID for structural details. When IM is after SID, the cross sections of the SID products can be measured, providing insight on the dissociation pathways, which may mimic disassembly pathways. Furthermore, the separation by IM greatly reduces the peak overlapping (same m/z) and coalescence (merging) of SID products, improving the resolving power of the method. While there are still many unanswered questions on the fundamental properties of gas-phase proteins and a need for further research, our work has shown that SID can be a complementary gas-phase tool providing useful information for studying quaternary structures of noncovalent protein complexes.

  7. Disruption of the ribosomal P complex leads to stress-induced autophagy.

    PubMed

    Artero-Castro, Ana; Perez-Alea, Mileidys; Feliciano, Andrea; Leal, Jose A; Genestar, Mónica; Castellvi, Josep; Peg, Vicente; Ramón Y Cajal, Santiago; Lleonart, Matilde E L

    2015-01-01

    The human ribosomal P complex, which consists of the acidic ribosomal P proteins RPLP0, RPLP1, and RPLP2 (RPLP proteins), recruits translational factors, facilitating protein synthesis. Recently, we showed that overexpression of RPLP1 immortalizes primary cells and contributes to transformation. Moreover, RPLP proteins are overexpressed in human cancer, with the highest incidence in breast carcinomas. It is thought that disruption of the P complex would directly affect protein synthesis, causing cell growth arrest and eventually apoptosis. Here, we report a distinct mechanism by which cancer cells undergo cell cycle arrest and induced autophagy when RPLP proteins are downregulated. We found that absence of RPLP0, RPLP1, or RPLP2 resulted in reactive oxygen species (ROS) accumulation and MAPK1/ERK2 signaling pathway activation. Moreover, ROS generation led to endoplasmic reticulum (ER) stress that involved the EIF2AK3/PERK-EIF2S1/eIF2α-EIF2S2-EIF2S3-ATF4/ATF-4- and ATF6/ATF-6-dependent arms of the unfolded protein response (UPR). RPLP protein-deficient cells treated with autophagy inhibitors experienced apoptotic cell death as an alternative to autophagy. Strikingly, antioxidant treatment prevented UPR activation and autophagy while restoring the proliferative capacity of these cells. Our results indicate that ROS are a critical signal generated by disruption of the P complex that causes a cellular response that follows a sequential order: first ROS, then ER stress/UPR activation, and finally autophagy. Importantly, inhibition of the first step alone is able to restore the proliferative capacity of the cells, preventing UPR activation and autophagy. Overall, our results support a role for autophagy as a survival mechanism in response to stress due to RPLP protein deficiency.

  8. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes.

    PubMed

    Talla, Sai Krishna; Panigrahy, Madhusmita; Kappara, Saivishnupriya; Nirosha, P; Neelamraju, Sarla; Ramanan, Rajeshwari

    2016-03-01

    The phytohormone cytokinin (CK) is known to delay senescence in plants. We studied the effect of a CK analog, 6-benzyl adenine (BA), on rice leaves to understand the possible mechanism by which CK delays senescence in a drought- and heat-tolerant rice cultivar Nagina22 (N22) using dark-induced senescence (DIS) as a surrogate for natural senescence of leaves. Leaves of N22-H-dgl162, a stay-green mutant of N22, and BA-treated N22 showed retention of chlorophyll (Chl) pigments, maintenance of the Chl a/b ratio, and delay in reduction of both photochemical efficiency and rate of oxygen evolution during DIS. HPLC analysis showed accumulation of 7-hydroxymethyl chlorophyll (HmChl) during DIS, and the kinetics of its accumulation correlated with progression of senescence. Transcriptome analysis revealed that several plastid-localized genes, specifically those associated with photosystem II (PSII), showed higher transcript levels in BA-treated N22 and the stay-green mutant leaves compared with naturally senescing N22 leaves. Real-time PCR analyses showed that genes coding for enzymes associated with Chl a/b interconversion and proteins associated with light-harvesting complexes maintained higher transcript levels up to 72h of DIS following BA treatment. The pigment-protein complexes analyzed by green gel remained intact in both N22-H-dgl162 and BA-treated N22 leaves even after 96h of DIS. Thus, CK delays senescence by accumulation of HmChl and up-regulating genes in the Chl cycle, thereby maintaining the Chl a/b ratio. Also, CK treatment retains higher transcript levels of PSII-related genes, resulting in the stability of photosynthetic pigment complexes and functional stay-greenness in rice.

  9. Disruption of the ribosomal P complex leads to stress-induced autophagy

    PubMed Central

    Artero-Castro, Ana; Perez-Alea, Mileidys; Feliciano, Andrea; Leal, Jose A; Genestar, Mónica; Castellvi, Josep; Peg, Vicente; Ramón y Cajal, Santiago; LLeonart, Matilde E

    2015-01-01

    The human ribosomal P complex, which consists of the acidic ribosomal P proteins RPLP0, RPLP1, and RPLP2 (RPLP proteins), recruits translational factors, facilitating protein synthesis. Recently, we showed that overexpression of RPLP1 immortalizes primary cells and contributes to transformation. Moreover, RPLP proteins are overexpressed in human cancer, with the highest incidence in breast carcinomas. It is thought that disruption of the P complex would directly affect protein synthesis, causing cell growth arrest and eventually apoptosis. Here, we report a distinct mechanism by which cancer cells undergo cell cycle arrest and induced autophagy when RPLP proteins are downregulated. We found that absence of RPLP0, RPLP1, or RPLP2 resulted in reactive oxygen species (ROS) accumulation and MAPK1/ERK2 signaling pathway activation. Moreover, ROS generation led to endoplasmic reticulum (ER) stress that involved the EIF2AK3/PERK-EIF2S1/eIF2α-EIF2S2-EIF2S3-ATF4/ATF-4- and ATF6/ATF-6-dependent arms of the unfolded protein response (UPR). RPLP protein-deficient cells treated with autophagy inhibitors experienced apoptotic cell death as an alternative to autophagy. Strikingly, antioxidant treatment prevented UPR activation and autophagy while restoring the proliferative capacity of these cells. Our results indicate that ROS are a critical signal generated by disruption of the P complex that causes a cellular response that follows a sequential order: first ROS, then ER stress/UPR activation, and finally autophagy. Importantly, inhibition of the first step alone is able to restore the proliferative capacity of the cells, preventing UPR activation and autophagy. Overall, our results support a role for autophagy as a survival mechanism in response to stress due to RPLP protein deficiency. PMID:26176264

  10. Titanium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells

    PubMed Central

    Hassan, Nathaniel; Mengatto, Cristiane M.; Langfelder, Peter; Hokugo, Akishige; Tahara, Yu; Colwell, Christopher S.

    2017-01-01

    Circadian rhythms maintain a high level of homeostasis through internal feed-forward and -backward regulation by core molecules. In this study, we report the highly unusual peripheral circadian rhythm of bone marrow mesenchymal stromal cells (BMSCs) induced by titanium-based biomaterials with complex surface modifications (Ti biomaterial) commonly used for dental and orthopedic implants. When cultured on Ti biomaterials, human BMSCs suppressed circadian PER1 expression patterns, while NPAS2 was uniquely upregulated. The Ti biomaterials, which reduced Per1 expression and upregulated Npas2, were further examined with BMSCs harvested from Per1::luc transgenic rats. Next, we addressed the regulatory relationship between Per1 and Npas2 using BMSCs from Npas2 knockout mice. The Npas2 knockout mutation did not rescue the Ti biomaterial-induced Per1 suppression and did not affect Per2, Per3, Bmal1 and Clock expression, suggesting that the Ti biomaterial-induced Npas2 overexpression was likely an independent phenomenon. Previously, vitamin D deficiency was reported to interfere with Ti biomaterial osseointegration. The present study demonstrated that vitamin D supplementation significantly increased Per1::luc expression in BMSCs, though the presence of Ti biomaterials only moderately affected the suppressed Per1::luc expression. Available in vivo microarray data from femurs exposed to Ti biomaterials in vitamin D-deficient rats were evaluated by weighted gene co-expression network analysis. A large co-expression network containing Npas2, Bmal1, and Vdr was observed to form with the Ti biomaterials, which was disintegrated by vitamin D deficiency. Thus, the aberrant BMSC peripheral circadian rhythm may be essential for the integration of Ti biomaterials into bone. PMID:28817668

  11. Clinical recognition of pure premature ventricular complex-induced cardiomyopathy at presentation.

    PubMed

    Penela, Diego; Fernández-Armenta, Juan; Aguinaga, Luis; Tercedor, Luis; Ordoñez, Augusto; Bisbal, Felipe; Acosta, Juan; Rossi, Luca; Borras, Roger; Doltra, Adelina; Ortiz-Pérez, José T; Bosch, Xavier; Perea, Rosario J; Prat-González, Susana; Soto-Iglesias, David; Tolosana, Jose M; Vassanelli, Francesca; Cabrera, Mario; Linhart, Markus; Martinez, Mikel; Mont, Lluis; Berruezo, Antonio

    2017-07-27

    Frequent premature ventricular complexes (PVCs) can induce or worsen left ventricular (LV) systolic dysfunction. The purpose of this study was to identify the clinical pattern of patients having a "pure PVC-induced" cardiomyopathy at presentation. This prospective multicenter study included 155 consecutive patients (age 55 ± 12 years, 96 men [62%], 23% ±12% mean PVC burden) with LV dysfunction and frequent PVCs submitted for ablation and followed up for at least 12 months. Patients with a previously diagnosed structural heart disease (50 [32%]) and those without complete PVC abolition during follow-up who did not normalize LV ejection fraction (LVEF) (24 [15%]) were excluded from the analysis. Of the remaining 81 patients, 41 (51%) had a successful sustained ablation, did not have normalized LVEF, and were classified as having PVC-worsened nonischemic cardiomyopathy, and 40 (49%) who had normalized LVEF were considered as having pure PVC-induced cardiomyopathy. The latter group had higher baseline PVC burden (27% ± 12% vs 12% ± 8%; P <.001), smaller LV end-diastolic diameter (58 ± 5 mm vs 60 ± 6 mm; P = .05), and shorter intrinsic QRS (105 ± 12 vs 129 ± 24 ms; P <.001). Any of the following baseline characteristics accurately identified patients who will not normalize LVEF after PVC ablation (85% sensitivity, 98% specificity): intrinsic QRS >130 ms, baseline PVC burden <17%, and LV end-diastolic diameter >63 mm. Almost half of patients with frequent PVCs and low LVEF of unknown origin normalize LVEF after sustained PVC abolition, and these patients can be identified before ablation. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  12. Inhibitory effects of ascorbic acid, vitamin E, and vitamin B-complex on the biological activities induced by Bothrops venom.

    PubMed

    Oliveira, Carlos Henrique de Moura; Assaid Simão, Anderson; Marcussi, Silvana

    2016-01-01

    Natural compounds have been widely studied with the aim of complementing antiophidic serum therapy. The present study evaluated the inhibitory potential of ascorbic acid and a vitamin complex, composed of ascorbic acid, vitamin E, and all the B-complex vitamins, on the biological activities induced by snake venoms. The effect of vitamins was evaluated on the phospholipase, proteolytic, coagulant, and fibrinogenolytic activities induced by Bothrops moojeni (Viperidae), B. jararacussu, and B. alternatus snake venoms, and the hemagglutinating activity induced by B. jararacussu venom. The vitamin complex (1:5 and 1:10 ratios) totally inhibited the fibrinogenolytic activity and partially the phospholipase activity and proteolytic activity on azocasein induced by the evaluated venoms. Significant inhibition was observed in the coagulation of human plasma induced by venoms from B. alternatus (1:2.5 and 1:5, to vitamin complex and ascorbic acid) and B. moojeni (1:2.5 and 1:5, to vitamin complex and ascorbic acid). Ascorbic acid inhibited 100% of the proteolytic activities of B. moojeni and B. alternatus on azocasein, at 1:10 ratio, the effects of all the venoms on fibrinogen, the hemagglutinating activity of B. jararacussu venom, and also extended the plasma coagulation time induced by all venoms analyzed. The vitamins analyzed showed relevant in vitro inhibitory potential over the activities induced by Bothrops venoms, suggesting their interaction with toxins belonging to the phospholipase A2, protease, and lectin classes. The results can aid further research in clarifying the possible mechanisms of interaction between vitamins and snake enzymes.

  13. Shigella effector IpaB-induced cholesterol relocation disrupts the Golgi complex and recycling network to inhibit host cell secretion.

    PubMed

    Mounier, Joëlle; Boncompain, Gaëlle; Senerovic, Lidija; Lagache, Thibault; Chrétien, Fabrice; Perez, Franck; Kolbe, Michael; Olivo-Marin, Jean-Christophe; Sansonetti, Philippe J; Sauvonnet, Nathalie

    2012-09-13

    Shigella infection causes destruction of the human colonic epithelial barrier. The Golgi network and recycling endosomes are essential for maintaining epithelial barrier function. Here we show that Shigella epithelial invasion induces fragmentation of the Golgi complex with consequent inhibition of both secretion and retrograde transport in the infected host cell. Shigella induces tubulation of the Rab11-positive compartment, thereby affecting cell surface receptor recycling. The molecular process underlying the observed damage to the Golgi complex and receptor recycling is a massive redistribution of plasma membrane cholesterol to the sites of Shigella entry. IpaB, a virulence factor of Shigella that is known to bind cholesterol, is necessary and sufficient to induce Golgi fragmentation and reorganization of the recycling compartment. Shigella infection-induced Golgi disorganization was also observed in vivo, suggesting that this mechanism affecting the sorting of cell surface molecules likely contributes to host epithelial barrier disruption associated with Shigella pathogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Inducible Repression of Nuclear-Encoded Subunits of the Cytochrome b6f Complex in Tobacco Reveals an Extraordinarily Long Lifetime of the Complex1[W][OPEN

    PubMed Central

    Hojka, Marta; Thiele, Wolfram; Tóth, Szilvia Z.; Lein, Wolfgang; Bock, Ralph; Schöttler, Mark Aurel

    2014-01-01

    The biogenesis of the cytochrome b6f complex in tobacco (Nicotiana tabacum) seems to be restricted to young leaves, suggesting a high lifetime of the complex. To directly determine its lifetime, we employed an ethanol-inducible RNA interference (RNAi) approach targeted against the essential nuclear-encoded Rieske protein (PetC) and the small M subunit (PetM), whose function in higher plants is unknown. Young expanding leaves of both PetM and PetC RNAi transformants bleached rapidly and developed necroses, while mature leaves, whose photosynthetic apparatus was fully assembled before RNAi induction, stayed green. In line with these phenotypes, cytochrome b6f complex accumulation and linear electron transport capacity were strongly repressed in young leaves of both RNAi transformants, showing that the M subunit is as essential for cytochrome b6f complex accumulation as the Rieske protein. In mature leaves, all photosynthetic parameters were indistinguishable from the wild type even after 14 d of induction. As RNAi repression of PetM and PetC was highly efficient in both young and mature leaves, these data indicate a lifetime of the cytochrome b6f complex of at least 1 week. The switch-off of cytochrome b6f complex biogenesis in mature leaves may represent part of the first dedicated step of the leaf senescence program. PMID:24963068

  15. Infrared laser induced conformational and structural changes of glycine and glycine·water complex in low-temperature matrices

    NASA Astrophysics Data System (ADS)

    Coussan, Stéphane; Tarczay, György

    2016-01-01

    Conformational and structural changes of matrix-isolated glycine and glycine·water complexes induced by the selective MIR excitation of the fundamental OH and NH stretching vibrational modes were studied. The observed spectral changes are consistent with the former assignments based on matrix-isolation IR spectroscopy combined with NIR laser irradiation. Since fewer conformational barriers can be reached by MIR than by NIR excitations, fewer processes are promoted effectively by MIR radiation. The comparison of spectral changes induced by selective MIR and NIR excitations can facilitate the conformational analysis of complex molecular systems and it can also yield information on the barrier heights.

  16. Effect of CMC Molecular Weight on Acid-Induced Gelation of Heated WPI-CMC Soluble Complex.

    PubMed

    Huan, Yan; Zhang, Sha; Vardhanabhuti, Bongkosh

    2016-02-01

    Acid-induced gelation properties of heated whey protein isolate (WPI) and carboxymethylcellulose (CMC) soluble complex were investigated as a function of CMC molecular weight (270, 680, and 750 kDa) and concentrations (0% to 0.125%). Heated WPI-CMC soluble complex with 6% protein was made by heating biopolymers together at pH 7.0 and 85 °C for 30 min and diluted to 5% protein before acid-induced gelation. Acid-induced gel formed from heated WPI-CMC complexes exhibited increased hardness and decreased water holding capacity with increasing CMC concentrations but gel strength decreased at higher CMC content. The highest gel strength was observed with CMC 750 k at 0.05%. Gels with low CMC concentration showed homogenous microstructure which was independent of CMC molecular weight, while increasing CMC concentration led to microphase separation with higher CMC molecular weight showing more extensive phase separation. When heated WPI-CMC complexes were prepared at 9% protein the acid gels showed improved gel hardness and water holding capacity, which was supported by the more interconnected protein network with less porosity when compared to complexes heated at 6% protein. It is concluded that protein concentration and biopolymer ratio during complex formation are the major factors affecting gel properties while the effect of CMC molecular weight was less significant. © 2016 Institute of Food Technologists®

  17. Ligand-induced dynamics of heterotrimeric G protein-coupled receptor-like kinase complexes

    PubMed Central

    Tunc-Ozdemir, Meral; Jones, Alan M.

    2017-01-01

    Background Arabidopsis, 7-transmembrane Regulator of G signaling protein 1 (AtRGS1) modulates canonical G protein signaling by promoting the inactive state of heterotrimeric G protein complex on the plasma membrane. It is known that plant leucine-rich repeat receptor–like kinases (LRR RLKs) phosphorylate AtRGS1 in vitro but little is known about the in vivo interaction, molecular dynamics, or the cellular consequences of this interaction. Methods Therefore, a subset of the known RLKs that phosphorylate AtRGS1 were selected for elucidation, namely, BAK1, BIR1, FLS2. Several microscopies for both static and dynamic protein-protein interactions were used to follow in vivo interactions between the RLKs and AtRGS1 after the presentation of the Pathogen-associated Molecular Pattern, Flagellin 22 (Flg22). These microscopies included Förster Resonance Energy Transfer, Bimolecular Fluoresence Complementation, and Cross Number and Brightness Fluorescence Correlation Spectroscopy. In addition, reactive oxygen species and calcium changes in living cells were quantitated using luminometry and R-GECO1 microscopy. Results The LRR RLKs BAK1 and BIR1, interact with AtRGS1 at the plasma membrane. The RLK ligand flg22 sets BAK1 in motion toward AtRGS1 and BIR1 away, both returning to the baseline orientations by 10 minutes. The C-terminal tail of AtRGS1 is important for the interaction with BAK1 and for the tempo of the AtRGS1/BIR1 dynamics. This window of time corresponds to the flg22-induced transient production of reactive oxygen species and calcium release which are both attenuated in the rgs1 and the bak1 null mutants. Conclusions A temporal model of these interactions is proposed. flg22 binding induces nearly instantaneous dimerization between FLS2 and BAK1. Phosphorylated BAK1 interacts with and enables AtRGS1 to move away from BIR1 and AtRGS1 becomes phosphorylated leading to its endocytosis thus leading to de-repression by permitting AtGPA1 to exchange GDP for GTP

  18. Ligand-induced dynamics of heterotrimeric G protein-coupled receptor-like kinase complexes

    DOE PAGES

    Tunc-Ozdemir, Meral; Jones, Alan M.

    2017-02-10

    Background Arabidopsis, 7-transmembrane Regulator of G signaling protein 1 (AtRGS1) modulates canonical G protein signaling by promoting the inactive state of heterotrimeric G protein complex on the plasma membrane. It is known that plant leucine-rich repeat receptor-like kinases (LRR RLKs) phosphorylate AtRGS1 in vitro but little is known about the in vivo interaction, molecular dynamics, or the cellular consequences of this interaction. Methods Therefore, a subset of the known RLKs that phosphorylate AtRGS1 were selected for elucidation, namely, BAK1, BIR1, FLS2. Several microscopies for both static and dynamic protein-protein interactions were used to follow in vivo interactions between the RLKsmore » and AtRGS1 after the presentation of the Pathogen-associated Molecular Pattern, Flagellin 22 (Flg22). These microscopies included FoÈrster Resonance Energy Transfer, Bimolecular Fluoresence Complementation, and Cross Number and Brightness fluorescence Correlation Spectroscopy. In addition, reactive oxygen species and calcium changes in living cells were quantitated using luminometry and R-GECO1 microscopy. Results The LRR RLKs BAK1 and BIR1, interact with AtRGS1 at the plasma membrane. The RLK ligand flg22 sets BAK1 in motion toward AtRGS1 and BIR1 away, both returning to the baseline orientations by 10 minutes. The C-terminal tail of AtRGS1 is important for the interaction with BAK1 and for the tempo of the AtRGS1/BIR1 dynamics. This window of time corresponds to the flg22-induced transient production of reactive oxygen species and calcium release which are both attenuated in the rgs1 and the bak1 null mutants. Conclusions A temporal model of these interactions is proposed. flg22 binding induces nearly instantaneous dimerization between FLS2 and BAK1. Phosphorylated BAK1 interacts with and enables AtRGS1 to move away from BIR1 and AtRGS1 becomes phosphorylated leading to its endocytosis thus leading to de-repression by permitting AtGPA1 to exchange GDP for GTP

  19. Immune-Complexed Adenovirus Induce AIM2-Mediated Pyroptosis in Human Dendritic Cells

    PubMed Central

    Eichholz, Karsten; Bru, Thierry; Tran, Thi Thu Phuong; Fernandes, Paulo; Mennechet, Franck J. D.; Manel, Nicolas; Alves, Paula; Perreau, Matthieu

    2016-01-01

    Human adenoviruses (HAdVs) are nonenveloped proteinaceous particles containing a linear double-stranded DNA genome. HAdVs cause a spectrum of pathologies in all populations regardless of health standards. Following repeat exposure to multiple HAdV types, we develop robust and long-lived humoral and cellular immune responses that provide life-long protection from de novo infections and persistent HAdV. How HAdVs, anti-HAdV antibodies and antigen presenting cells (APCs) interact to influence infection is still incompletely understood. In our study, we used physical, pharmacological, biochemical, fluorescence and electron microscopy, molecular and cell biology approaches to dissect the impact of immune-complexed HAdV (IC-HAdV) on human monocyte-derived dendritic cells (MoDCs). We show that IC-HAdV generate stabilized complexes of ~200 nm that are efficiently internalized by, and aggregate in, MoDCs. By comparing IC-HAdV, IC-empty capsid, IC-Ad2ts1 (a HAdV-C2 impaired in endosomal escape due to a mutation that impacts protease encapsidation) and IC-AdL40Q (a HAdV-C5 impaired in endosomal escape due to a mutation in protein VI), we demonstrate that protein VI-dependent endosomal escape is required for the HAdV genome to engage the DNA pattern recognition receptor AIM2 (absent in melanoma 2). AIM2 engagement induces pyroptotic MoDC death via ASC (apoptosis-associated speck protein containing a caspase activation/recruitment domain) aggregation, inflammasome formation, caspase 1 activation, and IL-1β and gasdermin D (GSDMD) cleavage. Our study provides mechanistic insight into how humoral immunity initiates an innate immune response to HAdV-C5 in human professional APCs. PMID:27636895

  20. Ligand-induced haptotropic rearrangements in bis(indenyl)zirconium sandwich complexes.

    PubMed

    Bradley, Christopher A; Lobkovsky, Emil; Keresztes, Ivan; Chirik, Paul J

    2005-07-27

    Addition of principally sigma-donating ligands such as THF, chelating diethers, or 1,2-bis(dimethyl)phosphinoethane to eta(9),eta(5)-bis(indenyl)zirconium sandwich complexes, (eta(9)-C(9)H(5)-1,3-R(2))(eta(5)-C(9)H(5)-1,3-R(2))Zr (R = alkyl or silyl), induces haptotropic rearrangement to afford (eta(6)-C(9)H(5)-1,3-R(2))(eta(5)-C(9)H(5)-1,3-R(2))ZrL adducts. Examples where L = THF and DME have been characterized by X-ray diffraction and revealed significant buckling of the eta(6) benzo ring, consistent with reduction of the arene, and highlight the importance of the zirconium(IV) canonical form. For the THF-induced haptotropic rearrangements, the thermodynamic driving force for ring migration has been measured as a function of indenyl substituent and demonstrates silylated sandwiches favor THF coordination and the eta(6),eta(5) bonding motif over their alkylated counterparts. In the case of chelating diethers, measurement of the corresponding equilibrium constants establish more stable eta(6),eta(5) adducts with five- over four-membered chelates and with smaller oxygen and carbon backbone substituents. Kinetic studies on both THF and DME addition to (eta(9)-C(9)H(5)-1,3-(SiMe(3))(2))(eta(5)-C(9)H(5)-1,3-(SiMe(3))(2))Zr established a first-order dependence on the incoming ligand, consistent with a mechanism involving direct attack of the incoming nucleophile on the eta(9),eta(5) sandwich. These results further highlight the ability of the indenyl ligand to smoothly adjust hapticity to meet the electronic requirements of the metal center.

  1. Apoptosis-Like Death in Bacteria Induced by HAMLET, a Human Milk Lipid-Protein Complex

    PubMed Central

    Hakansson, Anders P.; Roche-Hakansson, Hazeline; Mossberg, Ann-Kristin; Svanborg, Catharina

    2011-01-01

    Background Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. Methodology/Principal Findings We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death. Conclusions/Significance Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells. PMID:21423701

  2. Apoptosis-like death in bacteria induced by HAMLET, a human milk lipid-protein complex.

    PubMed

    Hakansson, Anders P; Roche-Hakansson, Hazeline; Mossberg, Ann-Kristin; Svanborg, Catharina

    2011-03-10

    Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death. Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells.

  3. Changes in pyruvate dehydrogenase complex activity during and following severe insulin-induced hypoglycemia.

    PubMed

    Cardell, M; Siesjö, B K; Wieloch, T

    1991-01-01

    The effect of severe insulin-induced hypoglycemia on the activity of the pyruvate dehydrogenase enzyme complex (PDHC) was investigated in homogenates of frozen rat cerebral cortex during burst suppression EEG, after 10, 30, and 60 min of isoelectric EEG, and after 30 and 180 min and 24 h of recovery following 30 min of hypoglycemic coma. Changes in PDHC activity were correlated to levels of labile organic phosphates and glycolytic metabolites. In cortex from control animals, the rate of [1-14C]pyruvate decarboxylation was 7.1 +/- 1.3 U/mg of protein, or 35% of the total PDHC activity. The activity was unchanged during burst suppression EEG whereas the active fraction increased to 81-87% during hypoglycemic coma. Thirty minutes after glucose-induced recovery, the PDHC activity had decreased by 33% compared to control levels, and remained significantly depressed after 3 h of recovery. This decrease in activity was not due to a decrease in the total PDHC activity. At 24 h of recovery, PDHC activity had returned to control levels. We conclude that the activation of PDHC during hypoglycemic coma is probably the result of an increased PDH phosphatase activity following depolarization and calcium influx, and allosteric inhibition of PDH kinase due to increased ADP/ATP ratio. The depression of PDHC activity following hypoglycemic coma is probably due to an increased phosphorylation of the enzyme, as a consequence of an imbalance between PDH phosphatase and kinase activities. Since some reduction of the ATP/ADP ratio persisted and since the lactate/pyruvate ratio had normalized by 3 h of recovery, the depression of PDHC most likely reflects a decrease in PDH phosphatase activity, probably due to a decrease in intramitochondrial Ca2+.

  4. Theoretical studies on the binding of rhenium(I) complexes to inducible nitric oxide synthase.

    PubMed

    Oliveira, Bruno L; Moreira, Irina S; Fernandes, Pedro A; Ramos, Maria J; Santos, Isabel; Correia, João D G

    2013-09-01

    Considering our interest in the design of innovative radiometal-based complexes for in vivo imaging of nitric oxide synthase (NOS), we have recently introduced a set of M(CO)3-complexes (M=(99m)Tc, Re) containing a pendant N(ω)-NO2-L-arginine moiety, a known inhibitor of the enzyme. Enzymatic assays with purified inducible NOS have shown that the non-radioactive surrogates with 3-(Re1; Ki=84 μM) or 6-carbon linkers (Re2; Ki=6 μM) are stronger inhibitors than the respective metal-free conjugates L1 (Ki=178 μM) and L2 (Ki=36 μM), with Re2 displaying the highest inhibitory potency. Aiming to rationalize the experimental results we have performed a molecular docking study combined with molecular dynamics (MD) simulations and free energy perturbation (FEP) calculations. The higher inhibitory potency of Re2 arises from the stronger electrostatic interactions observed between the "Re(CO)3" core and the residues Arg260 and Arg382. This interaction is only possible due to the higher flexibility of its C6-carbon spacer, which links the N(ω)-NO2-L-arginine moiety and the "Re(CO)3" organometallic core. Furthermore, FEP calculations were carried out and the resultant relative binding energies (ΔΔGbind(calc)=0.690±0.028 kcal/mol,Re1/L1 and 1.825±0.318 kcal/mol, Re2/L2) are in accordance with the experimental results (ΔΔGbind(exp)=0.461±0.009 kcal/mol,Re1/L1 and 1.129±0.210 kcal/mol, Re2/L2); there is an energetic penalty for the transformation of the Re complexes into the ligands and this penalization is higher for the pair Re2/L2. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. NMR of α-synuclein–polyamine complexes elucidates the mechanism and kinetics of induced aggregation

    PubMed Central

    Fernández, Claudio O; Hoyer, Wolfgang; Zweckstetter, Markus; Jares-Erijman, Elizabeth A; Subramaniam, Vinod; Griesinger, Christian; Jovin, Thomas M

    2004-01-01

    The aggregation of α-synuclein is characteristic of Parkinson's disease (PD) and other neurodegenerative synucleinopathies. The 140-aa protein is natively unstructured; thus, ligands binding to the monomeric form are of therapeutic interest. Biogenic polyamines promote the aggregation of α-synuclein and may constitute endogenous agents modulating the pathogenesis of PD. We characterized the complexes of natural and synthetic polyamines with α-synuclein by NMR and assigned the binding site to C-terminal residues 109–140. Dissociation constants were derived from chemical shift perturbations. Greater polyamine charge (+2 → +5) correlated with increased affinity and enhancement of fibrillation, for which we propose a simple kinetic mechanism involving a dimeric nucleation center. According to the analysis, polyamines increase the extent of nucleation by ∼104 and the rate of monomer addition ∼40-fold. Significant secondary structure is not induced in monomeric α-synuclein by polyamines at 15°C. Instead, NMR reveals changes in a region (aa 22–93) far removed from the polyamine binding site and presumed to adopt the β-sheet conformation characteristic of fibrillar α-synuclein. We conclude that the C-terminal domain acts as a regulator of α-synuclein aggregation. PMID:15103328

  6. Essential role of surface-bound complement factor H in controlling immune complex-induced arthritis.

    PubMed

    Banda, Nirmal K; Mehta, Gaurav; Ferreira, Viviana P; Cortes, Claudio; Pickering, Matthew C; Pangburn, Michael K; Arend, William P; Holers, V Michael

    2013-04-01

    Factor H (fH) is an endogenous negative regulator of the alternative pathway (AP) that binds polyanions as well as complement activation fragments C3b and C3d. The AP is both necessary and sufficient to develop collagen Ab-induced arthritis (CAIA) in mice; the mechanisms whereby normal control of the AP is overcome and injury develops are unknown. Although primarily a soluble circulating protein, fH can also bind to tissues in a manner dependent on the carboxyl-terminal domain containing short consensus repeats 19 and 20. We examined the role of fH in CAIA by blocking its binding to tissues through administration of a recombinant negative inhibitor containing short consensus repeats 19 and 20 (rfH19-20), which impairs fH function and amplifies surface AP activation in vitro. Administration of rfH19-20, but not control rfH3-5, significantly worsened clinical disease activity, histopathologic injury, and C3 deposition in the synovium and cartilage in wild-type and fH(+/-) mice. In vitro studies demonstrated that rfH19-20 increased complement activation on cartilage extracts and injured fibroblast-like synoviocytes, two major targets of complement deposition in the joint. We conclude that endogenous fH makes a significant contribution to inhibition of the AP in CAIA through binding to sites of immune complex formation and complement activation.

  7. Effect of a complex lutein formula in an animal model for light-induced retinal degeneration.

    PubMed

    Cheng, Yin-Pin; Ke, Chia-Ying; Kuo, Chih-Chieh; Lee, Yih-Jing

    2016-08-31

    Several retinal degenerative diseases cause vision loss and retinal cell death. Currently, people face prolonged exposure to digital screens, rendering vision protection from light exposure a critical topic. In this study, we designed a complex lutein formula (CLF) by combining several natural compounds: Calendula officinalis, Lycium barbarum, Vaccinium myrtillus, Cassia obtusifolia, and Rhodiola rosea. In addition, we evaluated the protective effects of the formula on retinal functions in an animal model for light-induced retinal degeneration. We employed electroretinography to analyse retinal function, and conducted a histological examination of the morphological changes in the retina treated under various conditions. We revealed that the retinal function in animals exposed to light for 7 days decreased significantly; however, the retinal function of animals that had received the CLF exhibited superior performance, despite light exposure. In addition, a greater portion of the outer nuclear layer (ONL) (i.e. the nuclei of photoreceptors) in these animals was preserved compared with the animals that had not received the formula after 7 days of light exposure. These results revealed that our dietary CLF supplement attenuated retinal function loss resulting from long-term light exposure.

  8. Beyond oxygen: complex regulation and activity of hypoxia inducible factors in pregnancy

    PubMed Central

    Pringle, K.G.; Kind, K.L.; Sferruzzi-Perri, A.N.; Thompson, J.G.; Roberts, C.T.

    2010-01-01

    In the first trimester the extravillous cytotrophoblast cells occlude the uterine spiral arterioles creating a low oxygen environment early in pregnancy, which is essential for pregnancy success. Paradoxically, shallow trophoblast invasion and defective vascular remodelling of the uterine spiral arteries in the first trimester may result in impaired placental perfusion and chronic placental ischemia and hypoxia later in gestation leading to adverse pregnancy outcomes. The hypoxia inducible factors (HIFs) are key mediators of the response to low oxygen. We aimed to elucidate mechanisms of regulation of HIFs and the role these may play in the control of placental differentiation, growth and function in both normal and pathological pregnancies. The Pubmed database was consulted for identification of the most relevant published articles. Search terms used were oxygen, placenta, trophoblast, pregnancy, HIF and hypoxia. The HIFs are able to function throughout all aspects of normal and abnormal placental differentiation, growth and function; during the first trimester (physiologically low oxygen), during mid-late gestation (where there is adequate supply of blood and oxygen to the placenta) and in pathological pregnancies complicated by placental hypoxia/ischemia. During normal pregnancy HIFs may respond to complex alterations in oxygen, hormones, cytokines and growth factors to regulate placental invasion, differentiation, transport and vascularization. In the ever-changing environment created during pregnancy, the HIFs appear to act as key mediators of placental development and function and thereby are likely to be important contributors to both normal and adverse pregnancy outcomes. PMID:19926662

  9. IgG-Immune Complexes Promote B Cell Memory by Inducing BAFF.

    PubMed

    Kang, SunAh; Keener, Amanda B; Jones, Shannon Z; Benschop, Robert J; Caro-Maldonado, Alfredo; Rathmell, Jeffrey C; Clarke, Stephen H; Matsushima, Glenn K; Whitmire, Jason K; Vilen, Barbara J

    2016-01-01

    Memory B cell responses are vital for protection against infections but must also be regulated to prevent autoimmunity. Cognate T cell help, somatic hypermutation, and affinity maturation within germinal centers (GCs) are required for high-affinity memory B cell formation; however, the signals that commit GC B cells to the memory pool remain unclear. In this study, we identify a role for IgG-immune complexes (ICs), FcγRs, and BAFF during the formation of memory B cells in mice. We found that early secretion of IgG in response to immunization with a T-dependent Ag leads to IC-FcγR interactions that induce dendritic cells to secrete BAFF, which acts at or upstream of Bcl-6 in activated B cells. Loss of CD16, hematopoietic cell-derived BAFF, or blocking IC:FcγR regions in vivo diminished the expression of Bcl-6, the frequency of GC and memory B cells, and secondary Ab responses. BAFF also contributed to the maintenance and/or expansion of the follicular helper T cell population, although it was dispensable for their formation. Thus, early Ab responses contribute to the optimal formation of B cell memory through IgG-ICs and BAFF. Our work defines a new role for FcγRs in GC and memory B cell responses. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. An Interfacial Europium Complex on SiO2 Nanoparticles: Reduction-Induced Blue Emission System

    PubMed Central

    Ishii, Ayumi; Hasegawa, Miki

    2015-01-01

    In this study, Eu-coated SiO2 nanoparticles have been prepared, consisting of an interfacial complex of Eu and 1,10-phenanthroline (phen) at the solid surfaces of the SiO2/Eu nanostructures. The as-prepared SiO2/Eu/phen nanoparticles exhibits sharp red emission via energy transfer from the phen to the EuIII. After sintering at 200 °C in air, the emission is tuned from red to blue. The blue emission is originated from EuII. This reduction-induced emissive phenomenon resulted from the electron-donating environment created by the surrounding phen and SiO2, which is the first reported fabrication of a stable EuII-based emissive material using mild conditions (reaction in air and at low temperature) and an organic-inorganic hybrid nanostructure. The existence of two different stable oxidation states with characteristic emissions, blue emissive EuII and red emissive EuIII, suggests significant potential applications as novel luminescent materials with inorganic-organic hybrid structures. PMID:26122318

  11. Ionic Charge Transfer Complex Induced Visible Light Harvesting and Photocharge Generation in Perovskite.

    PubMed

    Ng, Tsz-Wai; Thachoth Chandran, Hrisheekesh; Chan, Chiu-Yee; Lo, Ming-Fai; Lee, Chun-Sing

    2015-09-16

    Organometal trihalide perovskite has recently emerged as a new class of promising material for high efficiency solar cells applications. While excess ions in perovskites are recently getting a great deal of attention, there is so far no clear understanding on both their formation and relating ions interaction to the photocharge generation in perovskite. Herein, we showed that tremendous ions indeed form during the initial stage of perovskite formation when the organic methylammonium halide (MAXa, Xa=Br and I) meets the inorganic PbXb2 (Xb=Cl, Br, I). The strong charge exchanges between the Pb2+ cations and Xa- anions result in formation of ionic charge transfer complexes (iCTC). MAXa parties induce empty valence electronic states within the forbidden bandgap of PbXb2. The strong surface dipole provide sufficient driving force for sub-bandgap electron transition with energy identical to the optical bandgap of forming perovskites. Evidences from XPS/UPS and photoluminescence studies showed that the light absorption, exciton dissociation, and photocharge generation of the perovskites are closely related to the strong ionic charge transfer interactions between Pb2+ and Xa- ions in the perovskite lattices. Our results shed light on mechanisms of light harvesting and subsequent free carrier generation in perovskites.

  12. Optimizing Hydrophobic Groups in Amphiphiles to Induce Gold Nanoparticle Complex Vesicles for Stability Regulation.

    PubMed

    Fu, Jun; Qiu, Liyan

    2017-10-03

    Polymeric graft polyphosphazene containing 4-aminobenzoic acid diethylaminoethyl ester (DEAAB) as hydrophobic side groups was rationally designed and named PDEP. PDEP can self-assemble into nano-vesicle in water. More importantly, when compared with the amphiphile PEP copolymer containing benzene rings and the amphiphile PDP copolymer containing tertiary amino groups, the co-existence of benzene and tertiary amino groups in PDEP enabled it to effectively load water-soluble small molecule doxorubicin hydrochloride (DOX•HCl) into the vesicle and efficiently induce in situ transformation of gold tetrachloroaurate (HAuCl4) to gold nanoparticles (AuNPs) as both a reductant and a stabilizer. By optimizing the reduction conditions, such as the temperature, reaction time and hydrophobic group in polymer/HAuCl4 molar ratio, the AuNP complex PDEP vesicles significantly inhibited the DOX•HCl burst release at pH 7.4 while displaying a fast release responsive to pH 5.5.

  13. Laser-induced periodic surface structures of thin, complex multi-component films

    NASA Astrophysics Data System (ADS)

    Reif, Juergen; Varlamova, Olga; Ratzke, Markus; Uhlig, Sebastian

    2016-04-01

    Femtosecond laser-induced regular nanostructures are generated on a complex multilayer target, namely a piece of a commercial, used hard disk memory. It is shown that after single-shot 800-nm irradiation at 0.26 J/cm2 only the polymer cover layer and—in the center—a portion of the magnetic multilayer are ablated. A regular array of linearly aligned spherical 450-nm features at the uncovered interface between cover and magnetic layers appears not to be produced by the irradiation. Only after about 10 pulses on one spot, classical ripples perpendicular to the laser polarization with a period of ≈700 nm are observed, with a modulation between 40 nm above and 40 nm below the pristine surface and an ablation depth only slightly larger than the thickness of the multilayer magnetic film. Further increase of the pulse number does not result in deeper ablation. However, 770-nm ripples become parallel to the polarization and are swelling to more than 120 nm above zero, much more than the full multilayer film thickness. In the spot periphery, much shallower 300-nm ripples are perpendicular to the strong modulation and the laser polarization. Irradiation with 0.49-J/cm2 pulses from an ultrafast white-light continuum results—in the spot periphery—in the formation of 200-nm ripples, only swelling above zero after removal of the polymer cover, without digging into the magnetic film.

  14. mTOR complex 1: a key player in neuroadaptations induced by drugs of abuse.

    PubMed

    Neasta, Jeremie; Barak, Segev; Hamida, Sami Ben; Ron, Dorit

    2014-07-01

    The mammalian (or mechanistic) target of rapamycin (mTOR) complex 1 (mTORC1) is a serine and threonine kinase that regulates cell growth, survival, and proliferation. mTORC1 is a master controller of the translation of a subset of mRNAs. In the central nervous system mTORC1 plays a crucial role in mechanisms underlying learning and memory by controlling synaptic protein synthesis. Here, we review recent evidence suggesting that the mTORC1 signaling pathway promotes neuroadaptations following exposure to a diverse group of drugs of abuse including stimulants, cannabinoids, opiates, and alcohol. We further describe potential molecular mechanisms by which drug-induced mTORC1 activation may alter brain functions. Finally, we propose that mTORC1 is a focal point shared by drugs of abuse to mediate drug-related behaviors such as reward seeking and excessive drug intake, and offer future directions to decipher the contribution of the kinase to mechanisms underlying addiction. Recent studies suggesting that exposure to diverse classes of drugs of abuse as well as exposure to drug-associated memories lead to mTORC1 kinase activation in the limbic system. In turn, mTORC1 controls the onset and the maintenance of pathological neuroadaptions that underlie several features of drug addiction such as drug seeking and relapse. Therefore, we propose that targeting mTORC1 and its effectors is a promising strategy to treat drug disorders.

  15. Fluctuation-induced constraints on the observation of unbinding in a confined complex fluid.

    PubMed

    Clarysse, F; Boulter, C J

    2001-07-01

    An extensive study of the effect of fluctuations on the unbinding of an interface from a wall in a ternary system is presented. The framework upon which the analysis is based is a linear functional renormalization group scheme of the appropriate effective interface Hamiltonian. The interface model includes position-dependent gradient coefficients, and their presence is shown to be equivalent to modifications of the bare interface potential that are highly relevant in determining the renormalized critical behavior. We analyze the modified interface potential in a mean-field-like way for both bare critical and first-order unbinding transitions in order to highlight the key effects. We further perform a detailed study of the linearized renormalization group equations identifying three fluctuation regimes and recovering earlier predictions for nonuniversal critical exponents. The surface phase diagram changes dramatically under renormalization with, most notably, fluctuation-induced reentrant behavior. We show that in the revised phase diagram the unbound region is limited in extent indicating that the opportunity for observing an unbinding transition in a confined complex fluid is highly restricted.

  16. Benzaldehyde thiosemicarbazone derived from limonene complexed with copper induced mitochondrial dysfunction in Leishmania amazonensis.

    PubMed

    Britta, Elizandra Aparecida; Silva, Ana Paula Barbosa; Ueda-Nakamura, Tânia; Dias-Filho, Benedito Prado; Silva, Cleuza Conceição; Sernaglia, Rosana Lázara; Nakamura, Celso Vataru

    2012-01-01

    Leishmaniasis is a major health problem that affects more than 12 million people. Treatment presents several problems, including high toxicity and many adverse effects, leading to the discontinuation of treatment and emergence of resistant strains. We evaluated the in vitro antileishmanial activity of benzaldehyde thiosemicarbazone derived from limonene complexed with copper, termed BenzCo, against Leishmania amazonensis. BenzCo inhibited the growth of the promastigote and axenic amastigote forms, with IC(50) concentrations of 3.8 and 9.5 µM, respectively, with 72 h of incubation. Intracellular amastigotes were inhibited by the compound, with an IC(50) of 10.7 µM. BenzCo altered the shape, size, and ultrastructure of the parasites. Mitochondrial membrane depolarization was observed in protozoa treated with BenzCo but caused no alterations in the plasma membrane. Additionally, BenzCo induced lipoperoxidation and the production of mitochondrial superoxide anion radicals in promastigotes and axenic amastigotes of Leishmania amazonensis. Our studies indicated that the antileishmania activity of BenzCo might be associated with mitochondrial dysfunction and oxidative damage, leading to parasite death.

  17. Benzaldehyde Thiosemicarbazone Derived from Limonene Complexed with Copper Induced Mitochondrial Dysfunction in Leishmania amazonensis

    PubMed Central

    Britta, Elizandra Aparecida; Barbosa Silva, Ana Paula; Ueda-Nakamura, Tânia; Dias-Filho, Benedito Prado; Silva, Cleuza Conceição; Sernaglia, Rosana Lázara; Nakamura, Celso Vataru

    2012-01-01

    Background Leishmaniasis is a major health problem that affects more than 12 million people. Treatment presents several problems, including high toxicity and many adverse effects, leading to the discontinuation of treatment and emergence of resistant strains. Methodology/Principal Findings We evaluated the in vitro antileishmanial activity of benzaldehyde thiosemicarbazone derived from limonene complexed with copper, termed BenzCo, against Leishmania amazonensis. BenzCo inhibited the growth of the promastigote and axenic amastigote forms, with IC50 concentrations of 3.8 and 9.5 µM, respectively, with 72 h of incubation. Intracellular amastigotes were inhibited by the compound, with an IC50 of 10.7 µM. BenzCo altered the shape, size, and ultrastructure of the parasites. Mitochondrial membrane depolarization was observed in protozoa treated with BenzCo but caused no alterations in the plasma membrane. Additionally, BenzCo induced lipoperoxidation and the production of mitochondrial superoxide anion radicals in promastigotes and axenic amastigotes of Leishmania amazonensis. Conclusion/Significance Our studies indicated that the antileishmania activity of BenzCo might be associated with mitochondrial dysfunction and oxidative damage, leading to parasite death. PMID:22870222

  18. Laser-induced breakdown spectroscopy analysis of complex silicate minerals--beryl.

    PubMed

    McMillan, Nancy J; McManus, Catherine E; Harmon, Russell S; De Lucia, Frank C; Miziolek, Andrzej W

    2006-05-01

    Beryl (Be3Al2Si6O18) is a chemically complex and highly compositionally variable gem-forming mineral found in a variety of geologic settings worldwide. A methodology and analytical protocol were developed for the analysis of beryl by laser-induced breakdown spectroscopy (LIBS) that minimizes the coefficient of variance for multiple analyses of the same specimen. The parameters considered were laser energy/pulse, time delay and crystallographic orientation. Optimal analytical conditions are a laser energy/pulse of 102 mJ and a time delay of 2 micros. Beryl compositions measured parallel and perpendicular to the c axis were identical within analytical error. LIBS analysis of 96 beryls from 16 countries (Afghanistan, Brazil, Canada, China, Colombia, India, Ireland, Italy, Madagascar, Mexico, Mozambique, Namibia, Norway, Russia, Tanzania and United States), Antarctica, and ten US states (AZ, CA, CO, CT, ID, ME, NC, NH, NM and UT) were undertaken to determine whether or not LIBS analysis can be used to determine the provenance of gem beryl.

  19. LINE-1 Retroelements Complexed and Inhibited by Activation Induced Cytidine Deaminase

    PubMed Central

    Metzner, Mirjam; Jäck, Hans-Martin; Wabl, Matthias

    2012-01-01

    LINE-1 (abbreviated L1) is a major class of retroelements in humans and mice. If unrestricted, retroelements accumulate in the cytoplasm and insert their DNA into the host genome, with the potential to cause autoimmune disease and cancer. Retroviruses and other retroelements are inhibited by proteins of the APOBEC family, of which activation-induced cytidine deaminase (AID) is a member. Although AID is mainly known for being a DNA mutator shaping the antibody repertoire in B lymphocytes, we found that AID also restricts de novo L1 integrations in B- and non-B-cell lines. It does so by decreasing the protein level of open reading frame 1 (ORF1) of both exogenous and endogenous L1. In activated B lymphocytes, AID deficiency increased L1 mRNA 1.6-fold and murine leukemia virus (MLV) mRNA 2.7-fold. In cell lines and activated B lymphocytes, AID forms cytoplasmic high-molecular-mass complexes with L1 mRNA, which may contribute to L1 restriction. Because AID-deficient activated B lymphocytes do not express ORF1 protein, we suggest that ORF1 protein expression is inhibited by additional restriction factors in these cells. The greater increase in MLV compared to L1 mRNA in AID-deficient activated B lymphocytes may indicate less strict surveillance of retrovirus. PMID:23133680

  20. Bayesian inference of spectral induced polarization parameters for laboratory complex resistivity measurements of rocks and soils

    NASA Astrophysics Data System (ADS)

    Bérubé, Charles L.; Chouteau, Michel; Shamsipour, Pejman; Enkin, Randolph J.; Olivo, Gema R.

    2017-08-01

    Spectral induced polarization (SIP) measurements are now widely used to infer mineralogical or hydrogeological properties from the low-frequency electrical properties of the subsurface in both mineral exploration and environmental sciences. We present an open-source program that performs fast multi-model inversion of laboratory complex resistivity measurements using Markov-chain Monte Carlo simulation. Using this stochastic method, SIP parameters and their uncertainties may be obtained from the Cole-Cole and Dias models, or from the Debye and Warburg decomposition approaches. The program is tested on synthetic and laboratory data to show that the posterior distribution of a multiple Cole-Cole model is multimodal in particular cases. The Warburg and Debye decomposition approaches yield unique solutions in all cases. It is shown that an adaptive Metropolis algorithm performs faster and is less dependent on the initial parameter values than the Metropolis-Hastings step method when inverting SIP data through the decomposition schemes. There are no advantages in using an adaptive step method for well-defined Cole-Cole inversion. Finally, the influence of measurement noise on the recovered relaxation time distribution is explored. We provide the geophysics community with a open-source platform that can serve as a base for further developments in stochastic SIP data inversion and that may be used to perform parameter analysis with various SIP models.

  1. The role of reactive oxygen intermediates in nonspecific monocyte cytotoxicity induced by immune complexes.

    PubMed Central

    Geffner, J R; Giordano, M; Serebrinsky, G; Isturiz, M

    1987-01-01

    Normal human monocytes were induced to lyse nonsensitized target cells when triggered by precipitating immune complexes (IC) or soluble heat-aggregated IgG (HAIgG). Catalase, azide, cyanide and three aminoacids employed as quenchers of ClO, significantly inhibited this nonspecific cytotoxicity (NSC), suggesting an important role for the myeloperoxidase (MPO) system. However, HO and/or 1O2 may also be involved in the lysis, since certain scavengers of these species such as mannitol, benzoate, ethanol and histidine, as well as superoxide dismutase (SOD), partially inhibited NSC. Moreover, cyanide and azide were unable to completely abrogate this lytic activity. When NSC was compared to antibody dependent cellular cytotoxicity (ADCC), it was found that neither catalase nor oxygen-species scavengers affected ADCC while azide and cyanide significantly enhanced it. Antibody-coated target cells were also destroyed by IC-triggered monocytes. However, kinetic analysis and studies on the capacity of catalase to inhibit the lysis demonstrated that it was mediated through a NSC-like mechanism. The cytotoxic system described in this report offers a suitable model to study in vitro alternative lytic mechanisms triggered through monocyte receptors for the Fc portion of IgG (Fc gamma R). PMID:3038442

  2. Videogame training strategy-induced change in brain function during a complex visuomotor task.

    PubMed

    Lee, Hyunkyu; Voss, Michelle W; Prakash, Ruchika Shaurya; Boot, Walter R; Vo, Loan T K; Basak, Chandramallika; Vanpatter, Matt; Gratton, Gabriele; Fabiani, Monica; Kramer, Arthur F

    2012-07-01

    Although changes in brain function induced by cognitive training have been examined, functional plasticity associated with specific training strategies is still relatively unexplored. In this study, we examined changes in brain function during a complex visuomotor task following training using the Space Fortress video game. To assess brain function, participants completed functional magnetic resonance imaging (fMRI) before and after 30 h of training with one of two training regimens: Hybrid Variable-Priority Training (HVT), with a focus on improving specific skills and managing task priority, or Full Emphasis Training (FET), in which participants simply practiced the game to obtain the highest overall score. Control participants received only 6 h of FET. Compared to FET, HVT learners reached higher performance on the game and showed less brain activation in areas related to visuo-spatial attention and goal-directed movement after training. Compared to the control group, HVT exhibited less brain activation in right dorsolateral prefrontal cortex (DLPFC), coupled with greater performance improvement. Region-of-interest analysis revealed that the reduction in brain activation was correlated with improved performance on the task. This study sheds light on the neurobiological mechanisms of improved learning from directed training (HVT) over non-directed training (FET), which is related to visuo-spatial attention and goal-directed motor planning, while separating the practice-based benefit, which is related to executive control and rule management.

  3. Amyloid-β-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Aβ peptide. Implications for the pathogenesis of Alzheimer's disease

    PubMed Central

    2010-01-01

    The presence of amyloid-β (Aβ) deposits in selected brain regions is a hallmark of Alzheimer's disease (AD). The amyloid deposits have "chaperone molecules" which play critical roles in amyloid formation and toxicity. We report here that treatment of rat hippocampal neurons with Aβ-acetylcholinesterase (Aβ-AChE) complexes induced neurite network dystrophia and apoptosis. Moreover, the Aβ-AChE complexes induced a sustained increase in intracellular Ca2+ as well as a loss of mitochondrial membrane potential. The Aβ-AChE oligomers complex also induced higher alteration of Ca2+ homeostasis compared with Aβ-AChE fibrillar complexes. These alterations in calcium homeostasis were reversed when the neurons were treated previously with lithium, a GSK-3β inhibitor; Wnt-7a ligand, an activator for Wnt Pathway; and an N-methyl-D-aspartate (NMDA) receptor antagonist (MK-801), demonstrating protective roles for activation of the Wnt signaling pathway as well as for NMDA-receptor inhibition. Our results indicate that the Aβ-AChE complexes enhance Aβ-dependent deregulation of intracellular Ca2+ as well as mitochondrial dysfunction in hippocampal neurons, triggering an enhanced damage than Aβ alone. From a therapeutic point of view, activation of the Wnt signaling pathway, as well as NMDAR inhibition may be important factors to protect neurons under Aβ-AChE attack. PMID:20205793

  4. Molecular Characterization of Hap Complex Components Responsible for Methanol-Inducible Gene Expression in the Methylotrophic Yeast Candida boidinii

    PubMed Central

    Oda, Saori; Yurimoto, Hiroya; Nitta, Nobuhisa; Sasano, Yu

    2015-01-01

    We identified genes encoding components of the Hap complex, CbHAP2, CbHAP3, and CbHAP5, as transcription factors regulating methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. We found that the Cbhap2Δ, Cbhap3Δ, and Cbhap5Δ gene-disrupted strains showed severe growth defects on methanol but not on glucose and nonfermentable carbon sources such as ethanol and glycerol. In these disruptants, the transcriptional activities of methanol-inducible promoters were significantly decreased compared to those of the wild-type strain, indicating that CbHap2p, CbHap3p, and CbHap5p play indispensable roles in methanol-inducible gene expression. Further molecular and biochemical analyses demonstrated that CbHap2p, CbHap3p, and CbHap5p localized to the nucleus and bound to the promoter regions of methanol-inducible genes regardless of the carbon source, and heterotrimer formation was suggested to be necessary for binding to DNA. Unexpectedly, distinct from Saccharomyces cerevisiae, the Hap complex functioned in methanol-specific induction rather than glucose derepression in C. boidinii. Our results shed light on a novel function of the Hap complex in methanol-inducible gene expression in methylotrophic yeasts. PMID:25595445

  5. Molecular characterization of hap complex components responsible for methanol-inducible gene expression in the methylotrophic yeast Candida boidinii.

    PubMed

    Oda, Saori; Yurimoto, Hiroya; Nitta, Nobuhisa; Sasano, Yu; Sakai, Yasuyoshi

    2015-03-01

    We identified genes encoding components of the Hap complex, CbHAP2, CbHAP3, and CbHAP5, as transcription factors regulating methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. We found that the Cbhap2Δ, Cbhap3Δ, and Cbhap5Δ gene-disrupted strains showed severe growth defects on methanol but not on glucose and nonfermentable carbon sources such as ethanol and glycerol. In these disruptants, the transcriptional activities of methanol-inducible promoters were significantly decreased compared to those of the wild-type strain, indicating that CbHap2p, CbHap3p, and CbHap5p play indispensable roles in methanol-inducible gene expression. Further molecular and biochemical analyses demonstrated that CbHap2p, CbHap3p, and CbHap5p localized to the nucleus and bound to the promoter regions of methanol-inducible genes regardless of the carbon source, and heterotrimer formation was suggested to be necessary for binding to DNA. Unexpectedly, distinct from Saccharomyces cerevisiae, the Hap complex functioned in methanol-specific induction rather than glucose derepression in C. boidinii. Our results shed light on a novel function of the Hap complex in methanol-inducible gene expression in methylotrophic yeasts.

  6. A label-free kissing complexes-induced fluorescence aptasensor using DNA-templated silver nanoclusters as a signal transducer.

    PubMed

    Zhang, Kai; Wang, Ke; Zhu, Xue; Xie, Minhao

    2016-04-15

    Riboswitches are complex folded RNA domains that serve as receptors for specific metabolites which identified in prokaryotes. They are comprised of a biosensor that includes the binding site for a small ligand and they respond to association with this ligand by undergoing a conformational change. In the present study, we report on the integration of silver nanoclusters (AgNCs) and riboswitches for the development of a kissing complexes-induced aptasensor (KCIA). We specifically apply the tunable riboswitches properties of this strategy to demonstrate the multiplexes analysis of adenosine and adenosine deaminase (ADA). This strategy allows for simple tethering of the specific oligonucleotides stabilizing the AgNCs to the nucleic acid probes. This is a new concept for aptasensors, and opens an opportunity for design of more novel biosensors based on the kissing complexes-induced strategy. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Forced engagement of a RNA/protein complex by a chemical inducer of dimerization to modulate gene expression

    NASA Astrophysics Data System (ADS)

    Harvey, Isabelle; Garneau, Philippe; Pelletier, Jerry

    2002-02-01

    A general strategy is described for forcing the engagement of an RNA/protein complex by using small-molecule ligands. A bivalent molecule was created by linking a protein-binding ligand to an RNA-binding ligand. On presentation of the chemical inducer of dimerization to the RNA by the protein, cooperative binding ensued, resulting in higher-affinity complexes. When the chemical inducer of dimerization was used to target the protein to an mRNA template, the resulting RNA/protein complex was sufficiently stable to inhibit mRNA translation. This approach provides a logic to modulate gene expression by using small-molecule ligands to recruit protein surfaces to mRNAs.

  8. Complex Interplay between HIV-1 Capsid and MX2-Independent Alpha Interferon-Induced Antiviral Factors.

    PubMed

    Bulli, Lorenzo; Apolonia, Luis; Kutzner, Juliane; Pollpeter, Darja; Goujon, Caroline; Herold, Nikolas; Schwarz, Sarah-Marie; Giernat, Yannick; Keppler, Oliver T; Malim, Michael H; Schaller, Torsten

    2016-08-15

    replication by inducing the expression of a set of antiviral genes that inhibit HIV-1 at multiple steps in its life cycle, including the postentry steps of reverse transcription and nuclear import. This is observed in cultured cell systems, as well as in clinical trials in HIV-1-infected patients. The identities of the cellular antiviral factors, their viral targets, and the underpinning mechanisms are largely unknown. We show here that the HIV-1 Capsid protein plays a central role in protecting the virus from IFN-induced inhibitors that block early postentry steps of infection. We further show that host cell cyclophilins play an important role in regulating these processes, thus highlighting the complex interplay between antiviral effector mechanisms and viral survival. Copyright © 2016 Bulli et al.

  9. A platinum complex that binds non-covalently to DNA and induces cell death via a different mechanism than cisplatin.

    PubMed

    Suntharalingam, Kogularamanan; Mendoza, Oscar; Duarte, Alexandra A; Mann, David J; Vilar, Ramon

    2013-05-01

    Cisplatin and some of its derivatives have been shown to be very successful anticancer agents. Their main mode of action has been proposed to be via covalent binding to DNA. However, one of the limitations of these drugs is their poor activity against some tumours due to intrinsic or acquired resistance. Therefore, there is interest in developing complexes with different binding modes and mode of action. Herein we present a novel platinum(ii)-terpyridine complex (1) which interacts non-covalently with DNA and induces cell death via a different mechanism than cisplatin. The interaction of this complex with DNA was studied by UV/Vis spectroscopic titrations, fluorescent indicator displacement (FID) assays and circular dichroism (CD) titrations. In addition, computational docking studies were carried out with the aim of establishing the complex's binding mode. These experimental and computational studies showed the complex to have an affinity constant for DNA of ∼10(4) M(-1), a theoretical free energy of binding of -10.83 kcal mol(-1) and selectivity for the minor groove of DNA. Long-term studies indicated that 1 did not covalently bind (or nick) DNA. The cancer cell antiproliferative properties of this platinum(ii) complex were probed in vitro against human and murine cell lines. Encouragingly the platinum(ii) complex displayed selective toxicity for the cancerous (U2OS and SH-SY5Y) and proliferating NIH 3T3 cell lines. Further cell based studies were carried out to establish the mode of action. Cellular uptake studies demonstrated that the complex is able to penetrate the cell membrane and localize to the nucleus, implying that genomic DNA could be a cellular target. Detailed immunoblotting studies in combination with DNA-flow cytometry showed that the platinum(ii) complex induced cell death in a manner consistent with necrosis.

  10. A novel ruthenium(II)-polypyridyl complex inhibits cell proliferation and induces cell apoptosis by impairing DNA damage repair.

    PubMed

    Yang, Qingyuan; Zhang, Zhao; Mei, Wenjie; Sun, Fenyong

    2014-08-01

    Ruthenium complexes are widely recognized as one of the most promising DNA damaging chemotherapeutic drugs. The main goal of this study was to explore the anticancer activity and underlying mechanisms of [Ru(phen)(2)(p-BrPIP)](ClO(4))(2), a novel chemically synthesized ruthenium (Ru) complex. To this end, we employed MTT assays to determine the anticancer activity of the complex, and performed single-cell gel electrophoresis (SCGE) and Western blotting to evaluate DNA damage. Our results showed that the Ru(II)-poly complex caused severe DNA damage, possibly by downregulating key factors involved in DNA repair pathways, such as proliferating cell nuclear antigen (PCNA) and ring finger protein 8 (RNF8). In addition, this complex induced cell apoptosis by upregulating both p21 and p53. Taken together, our findings demonstrate that the Ru(II)-poly complex exhibits antitumour activity by inducing cell apoptosis, which results from the accumulation of large amounts of unrepaired DNA damage.

  11. Zinc Induces Dimerization of the Class II Major Histocompatibility Complex Molecule That Leads to Cooperative Binding to a Superantigen

    SciTech Connect

    Li,H.; Zhao, Y.; Guo, Y.; Li, Z.; Eislele, L.; Mourad, W.

    2007-01-01

    Dimerization of class II major histocompatibility complex (MHC) plays an important role in the MHC biological function. Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen that can activate large fractions of T cells bearing specific T cell receptor V{beta} elements. Here we have used structural, sedimentation, and surface plasmon resonance detection approaches to investigate the molecular interactions between MAM and the class II MHC molecule HLA-DR1 in the context of a hemagglutinin peptide-(306-318) (HA). Our results revealed that zinc ion can efficiently induce the dimerization of the HLA-DR1/HA complex. Because the crystal structure of the MAM/HLA-DR1/hemagglutinin complex in the presence of EDTA is nearly identical to the structure of the complex crystallized in the presence of zinc ion, Zn{sup 2+} is evidently not directly involved in the binding between MAM and HLA-DR1. Sedimentation and surface plasmon resonance studies further revealed that MAM binds the HLA-DR1/HA complex with high affinity in a 1:1 stoichiometry, in the absence of Zn{sup 2+}. However, in the presence of Zn{sup 2+}, a dimerized MAM/HLA-DR1/HA complex can arise through the Zn{sup 2+}-induced DR1 dimer. In the presence of Zn{sup 2+}, cooperative binding of MAM to the DR1 dimer was also observed.

  12. Zinc Induces Dimerization of the Class II Major Histocompatibility Complex Molecule That Leads to Cooperative Binding to a Superantigen*

    PubMed Central

    Li, Hongmin; Zhao, Yiwei; Guo, Yi; Li, Zhong; Eisele, Leslie; Mourad, Walid

    2014-01-01

    Dimerization of class II major histocompatibility complex (MHC) plays an important role in the MHC biological function. Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen that can activate large fractions of T cells bearing specific T cell receptor Vβ elements. Here we have used structural, sedimentation, and surface plasmon resonance detection approaches to investigate the molecular interactions between MAM and the class II MHC molecule HLA-DR1 in the context of a hemagglutinin peptide-(306–318) (HA). Our results revealed that zinc ion can efficiently induce the dimerization of the HLA-DR1/HA complex. Because the crystal structure of the MAM/HLA-DR1/hemagglutinin complex in the presence of EDTA is nearly identical to the structure of the complex crystallized in the presence of zinc ion, Zn2+ is evidently not directly involved in the binding between MAM and HLA-DR1. Sedimentation and surface plasmon resonance studies further revealed that MAM binds the HLA-DR1/HA complex with high affinity in a 1:1 stoichiometry, in the absence of Zn2+. However, in the presence of Zn2+, a dimerized MAM/HLA-DR1/HA complex can arise through the Zn2+-induced DR1 dimer. In the presence of Zn2+, cooperative binding of MAM to the DR1 dimer was also observed. PMID:17166841

  13. Glutaredoxin 2 Prevents H2O2-Induced Cell Apoptosis by Protecting Complex I Activity in the Mitochondria*

    PubMed Central

    Wu, Hongli; Xing, Kuiyi; Lou, Marjorie F.

    2010-01-01

    Glutaredoxin 2 (Grx2) belongs to the oxidoreductase family and is an isozyme of glutaredoxin 1 (Grx1) present in the mitochondria, however its function is not well understood. The purpose of this study is to evaluate the potential anti-apoptotic function of Grx2 by examining its ability to protect complex I in the mitochondrial electron transport system using human lens epithelial cells as a model. We found that cells treated with 200 μM hydrogen peroxide (H2O2) for 24 h exhibited decreased viability and became apoptotic with corresponding Bax up-regulation, Bcl-2 down-regulation, caspase 3 activation and mitochondrial cytochrome c leakage. Grx2 over-expression (OE) could protect cells against H2O2-induced damage while Grx2 knockdown (KD) showed the opposite effect. Under the same conditions, H2O2 treatment caused 50% inactivation of complex I activity in control cells (vector only), 75% in Grx2 KD cells but only 20% in Grx2 OE cells. This antiapoptotic function of Grx2 is specific as rotenone, a complex I specific inhibitor, could block this Grx2-mediated protection of complex I activity. Immunoprecipitation study also revealed that Grx2 co-precipitated with complex I in the mitochondrial lysate. Thus, the mechanism of Grx2 protection against H2O2-induced apoptosis is likely associated with its ability to preserve complex I. PMID:20547138

  14. Norfloxacin-induced DNA gyrase cleavage complexes block Escherichia coli replication forks, causing double-stranded breaks in vivo

    PubMed Central

    Pohlhaus, Jennifer Reineke; Kreuzer, Kenneth N.

    2005-01-01

    Summary Antibacterial quinolones inhibit type II DNA topoisomerases by stabilizing covalent topoisomerase-DNA cleavage complexes, which are apparently transformed into double-stranded breaks by cellular processes such as replication. We used plasmid pBR322 and two-dimensional agarose gel electrophoresis to examine the collision of replication forks with quinolone-induced gyrase-DNA cleavage complexes in Escherichia coli. Restriction endonuclease-digested DNA exhibited a bubble arc with discrete spots, indicating that replication forks had been stalled. The most prominent spot depended upon the strong gyrase binding site of pBR322, providing direct evidence that quinolone-induced cleavage complexes block bacterial replication forks in vivo. We differentiated between stalled forks that do or do not contain bound cleavage complex by extracting DNA under different conditions. Resealing conditions allow gyrase to efficiently reseal the transient breaks within cleavage complexes, while cleavage conditions cause the latent breaks to be revealed. These experiments showed that some stalled forks did not contain a cleavage complex, implying that gyrase had dissociated in vivo and yet the fork had not restarted at the time of DNA isolation. Additionally, some branched plasmid DNA isolated under resealing conditions nonetheless contained broken DNA ends. We discuss a model for the creation of double-stranded breaks by an indirect mechanism after quinolone treatment. PMID:15916595

  15. Design and characterization of a novel lipid-DNA complex that resists serum-induced destabilization.

    PubMed

    Lian, Tianshun; Ho, Rodney J Y

    2003-12-01

    Ineffectiveness of cationic lipids to enhance DNA transfection has been attributed to serum-mediated dissociation and perhaps complement activation of lipid-DNA complexes. To overcome these problems, we have developed a novel lipid-DNA complex that greatly reduces serum-mediated dissociation. The complexes were prepared by mixing cationic liposomes containing 1,2-dioleoyl-3-trimethylammonium-propane and dioleoylphosphatidyl-ethanolamine and DNA in ethanolic (20% v/v ethanol) solution containing 5% sucrose followed by dehydration via rotating evaporation. Upon hydration in H(2)O, the lipid-DNA complexes [ethanol-dried lipid-DNA (EDL) complexes] were formed. The complexes exhibit a low positive zeta potential and enhanced transfection efficiency in contrast to the suppressed efficiency detected with admixed lipid-DNA complexes in the presence of serum across several cell lines. This result may be attributed to the inability of serum to dissociate DNA from lipids in EDL complexes. Using displacement of ethidium bromide intercalation analysis, we found that in serum, only 50% of DNA was exposed in the EDL complexes, compared with 100% in the admixed lipid-DNA complexes. The EDL complexes also showed increased resistance to DNase digestion in the presence of negatively charged lipid, while reducing complement activation in serum. The EDL complexes may improve the transfection activity of lipid-DNA complexes in serum and, perhaps, in vivo.

  16. PET imaging of ischemia-induced impairment of mitochondrial complex I function in monkey brain

    PubMed Central

    Tsukada, Hideo; Ohba, Hiroyuki; Nishiyama, Shingo; Kanazawa, Masakatsu; Kakiuchi, Takeharu; Harada, Norihiro

    2014-01-01

    To assess the capability of 18F-2-tert-butyl-4-chloro-5-{6-[2-(2-fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one (18F-BCPP-EF), a novel positron emission tomography (PET) probe for mitochondrial complex I (MC-I) activity, as a specific marker of ischemia-induced neuronal death without being disturbed by inflammation, translational research was conducted using an animal PET in ischemic brains of Cynomolgus monkeys (Macaca fascicularis). Focal ischemia was induced by the right middle cerebral artery occlusion for 3 hours, then PET scans were conducted at Day-7 with 15O-gases for regional cerebral blood flow (rCBF) and regional cerebral metabolism of oxygen (rCMRO2), and 18F-BCPP-EF for MC-I with arterial blood sampling. On Day-8, the additional PET scans conducted with 11C-flumazenil (11C-FMZ) for central-type benzodiazepine receptors, 11C-PBR28 for translocator protein, and 18F-fluoro-2-deoxy-D-glucose (18F-FDG) for regional cerebral metabolic rate of glucose (rCMRglc). The total distribution volume (VT) values of 18F-BCPP-EF showed the significant reduction in MC-I activity in the damaged area at Day-7. When correlated with rCBF and rCMRO2, the VT values of 18F-BCPP-EF provided better correlation with rCMRO2 than with rCBF. In the inflammatory regions (region of interest, ROIPBR) of the ischemic hemisphere detected with 11C-PBR28, higher 18F-FDG uptake and lower VT of 18F-BCPP-EF, 11C-FMZ, and rCMRO2 than those in normal contralateral hemisphere were observed. These results strongly suggested that 18F-BCPP-EF could discriminate the neuronal damaged areas with neuroinflammation, where 18F-FDG could not owing to its high uptake into the activated microglia. PMID:24447952

  17. TD-DFT study of the light-induced spin crossover of Fe(III) complexes.

    PubMed

    Saureu, Sergi; de Graaf, Coen

    2016-01-14

    Two light-induced spin-crossover Fe(III) compounds have been studied with time-dependent density functional theory (TD-DFT) to investigate the deactivation mechanism and the role of the ligand-field states as intermediates in this process. The B3LYP* functional has previously shown its ability to accurately describe (light-induced) spin-crossover in Fe(II) complexes. Here, we establish its performance for Fe(III) systems using [Fe(qsal)2](+) (Hqsal = 2-[(8-quinolinylimino)methyl]phenol) and [Fe(pap)2](+) (Hpap = 2-(2-pyridylmethyleneamino)phenol) as test cases comparing the B3LYP* results to experimental information and to multiconfigurational wave function results. In addition to rather accurate high spin (HS) and low spin (LS) state geometries, B3LYP* also predicts ligand-to-metal charge transfer (LMCT) states with large oscillator strength in the energy range where the UV-VIS spectrum shows an intense absorption band, whereas optically allowed π-π* excitations on the ligands were calculated at higher energy. Subsequently, we have generated a two-dimensional potential energy surface of the HS and LS states varying the Fe-N and Fe-O distances. LMCT and metal centered (MC) excited states were followed along the approximate minimal energy path that connects the minima of the HS and LS on this surface. The (2)LMCT state has a minimum in the same region as the initial LS state, where we also observe a crossing with the intermediate spin (IS) state. Upon the expansion of the coordination sphere of the Fe(III) ion, the IS state crosses with the HS state and further expansion of the coordination sphere leads to the excited spin state trapping as observed in experiment. The calculation of the intersystem crossing rates reveals that the deactivation from (2)LMCT → IS → HS competes with the (2)LMCT → IS → LS pathway, in line with the low efficiency encountered in experiments.

  18. Activation of the Human MT Complex by Motion in Depth Induced by a Moving Cast Shadow

    PubMed Central

    Katsuyama, Narumi; Usui, Nobuo; Taira, Masato

    2016-01-01

    A moving cast shadow is a powerful monocular depth cue for motion perception in depth. For example, when a cast shadow moves away from or toward an object in a two-dimensional plane, the object appears to move toward or away from the observer in depth, respectively, whereas the size and position of the object are constant. Although the cortical mechanisms underlying motion perception in depth by cast shadow are unknown, the human MT complex (hMT+) is likely involved in the process, as it is sensitive to motion in depth represented by binocular depth cues. In the present study, we examined this possibility by using a functional magnetic resonance imaging (fMRI) technique. First, we identified the cortical regions sensitive to the motion of a square in depth represented via binocular disparity. Consistent with previous studies, we observed significant activation in the bilateral hMT+, and defined functional regions of interest (ROIs) there. We then investigated the activity of the ROIs during observation of the following stimuli: 1) a central square that appeared to move back and forth via a moving cast shadow (mCS); 2) a segmented and scrambled cast shadow presented beside the square (sCS); and 3) no cast shadow (nCS). Participants perceived motion of the square in depth in the mCS condition only. The activity of the hMT+ was significantly higher in the mCS compared with the sCS and nCS conditions. Moreover, the hMT+ was activated equally in both hemispheres in the mCS condition, despite presentation of the cast shadow in the bottom-right quadrant of the stimulus. Perception of the square moving in depth across visual hemifields may be reflected in the bilateral activation of the hMT+. We concluded that the hMT+ is involved in motion perception in depth induced by moving cast shadow and by binocular disparity. PMID:27597999

  19. Everolimus induces Met inactivation by disrupting the FKBP12/Met complex

    PubMed Central

    Raimondo, Lucia; D'Amato, Valentina; Servetto, Alberto; Rosa, Roberta; Marciano, Roberta; Formisano, Luigi; Mauro, Concetta Di; Orsini, Roberta Clara; Cascetta, Priscilla; Ciciola, Paola; De Maio, Ana Paula; Di Renzo, Maria Flavia; Cosconati, Sandro; Bruno, Agostino; Randazzo, Antonio; Napolitano, Filomena; Montuori, Nunzia; Veneziani, Bianca Maria; Placido, Sabino De; Bianco, Roberto

    2016-01-01

    Inhibition of the mechanistic target of rapamycin (mTOR) is a promising treatment strategy for several cancer types. Rapamycin derivatives such as everolimus are allosteric mTOR inhibitors acting through interaction with the intracellular immunophilin FKBP12, a prolyl isomerase with different cellular functions. Although mTOR inhibitors have significantly improved survival of different cancer patients, resistance and lack of predictive factors of response remain unsolved issues. To elucidate the mechanisms of resistance to everolimus, we evaluated Met activation in everolimus-sensitive/resistant human cancer cells, in vitro and in vivo. Biochemical and computational analyses were performed. Everolimus-resistant cells were xenografted into mice (10/group) and studied for their response to everolimus and Met inhibitors. The statistical significance of the in vitro results was evaluated by Student's t test. Everolimus reduced Met phosphorylation in everolimus-sensitive cells. This event was mediated by the formation of a Met-FKBP12 complex, which in turn is disrupted by everolimus. Aberrant Met activation in everolimus-resistant cells and overexpression of wild-type/mutant Met caused everolimus resistance. Pharmacological inhibition and RNA silencing of Met are effective in condition of everolimus resistance (P<0.01). In mice xenografted with everolimus-resistant cells, the combination of everolimus with the Met inhibitor PHA665752 reduced tumor growth and induced a statistically significant survival advantage (combination vs control P=0.0005). FKBP12 binding is required for full Met activation and everolimus can inhibit Met. Persistent Met activation might sustain everolimus resistance. These results identify a novel everolimus mechanism of action and suggest the development of clinical strategies based on Met inhibitors in everolimus-resistant cancers. PMID:27223077

  20. Plant host and sugar alcohol induced exopolysaccharide biosynthesis in the Burkholderia cepacia complex.

    PubMed

    Bartholdson, S Josefin; Brown, Alan R; Mewburn, Ben R; Clarke, David J; Fry, Stephen C; Campopiano, Dominic J; Govan, John R W

    2008-08-01

    The species that presently constitute the Burkholderia cepacia complex (Bcc) have multiple roles; they include soil and water saprophytes, bioremediators, and plant, animal and human pathogens. Since the first description of pathogenicity in the Bcc was based on sour skin rot of onion bulbs, this study returned to this plant host to investigate the onion-associated phenotype of the Bcc. Many Bcc isolates, which were previously considered to be non-mucoid, produced copious amounts of exopolysaccharide (EPS) when onion tissue was provided as the sole nutrient. EPS production was not species-specific, was observed in isolates from both clinical and environmental sources, and did not correlate with the ability to cause maceration of onion tissue. Chemical analysis suggested that the onion components responsible for EPS induction were primarily the carbohydrates sucrose, fructose and fructans. Additional sugars were investigated, and all alcohol sugars tested were able to induce EPS production, in particular mannitol and glucitol. To investigate the molecular basis for EPS biosynthesis, we focused on the highly conserved bce gene cluster thought to be involved in cepacian biosynthesis. We demonstrated induction of the bce gene cluster by mannitol, and found a clear correlation between the inability of representatives of the Burkholderia cenocepacia ET12 lineage to produce EPS and the presence of an 11 bp deletion within the bceB gene, which encodes a glycosyltransferase. Insertional inactivation of bceB in Burkholderia ambifaria AMMD results in loss of EPS production on sugar alcohol media. These novel and surprising insights into EPS biosynthesis highlight the metabolic potential of the Bcc and show that a potential virulence factor may not be detected by routine laboratory culture. Our results also highlight a potential hazard in the use of inhaled mannitol as an osmolyte to improve mucociliary clearance in individuals with cystic fibrosis.

  1. Activation of the Human MT Complex by Motion in Depth Induced by a Moving Cast Shadow.

    PubMed

    Katsuyama, Narumi; Usui, Nobuo; Taira, Masato

    2016-01-01

    A moving cast shadow is a powerful monocular depth cue for motion perception in depth. For example, when a cast shadow moves away from or toward an object in a two-dimensional plane, the object appears to move toward or away from the observer in depth, respectively, whereas the size and position of the object are constant. Although the cortical mechanisms underlying motion perception in depth by cast shadow are unknown, the human MT complex (hMT+) is likely involved in the process, as it is sensitive to motion in depth represented by binocular depth cues. In the present study, we examined this possibility by using a functional magnetic resonance imaging (fMRI) technique. First, we identified the cortical regions sensitive to the motion of a square in depth represented via binocular disparity. Consistent with previous studies, we observed significant activation in the bilateral hMT+, and defined functional regions of interest (ROIs) there. We then investigated the activity of the ROIs during observation of the following stimuli: 1) a central square that appeared to move back and forth via a moving cast shadow (mCS); 2) a segmented and scrambled cast shadow presented beside the square (sCS); and 3) no cast shadow (nCS). Participants perceived motion of the square in depth in the mCS condition only. The activity of the hMT+ was significantly higher in the mCS compared with the sCS and nCS conditions. Moreover, the hMT+ was activated equally in both hemispheres in the mCS condition, despite presentation of the cast shadow in the bottom-right quadrant of the stimulus. Perception of the square moving in depth across visual hemifields may be reflected in the bilateral activation of the hMT+. We concluded that the hMT+ is involved in motion perception in depth induced by moving cast shadow and by binocular disparity.

  2. Mitochondrial fragmentation is an important cellular event induced by ruthenium(II) polypyridyl complexes in osteosarcoma cells.

    PubMed

    Du, Yanxin; Fu, Xiaoyan; Li, Hong; Chen, Bolai; Guo, Yuhai; Su, Guoyi; Zhang, Hu; Ning, Feipeng; Lin, Yongpeng; Mei, Wenjie; Chen, Tianfeng

    2014-04-01

    A series of ruthenium(II) polypyridyl complexes were synthesized and evaluated for their in vitro anticancer activities. The results showed that ruthenium polypyridyl complexes, especially [Ru(bpy)2 (p-tFPIP)](2+) (2 a; bpy=bipyridine, tFPIP=2-(2-trifluoromethane phenyl)imidazole[4,5-f][1,10]phenanthroline), exhibited novel anticancer activity against human cancer cell lines, but with less toxicity to a human normal cell line. The results of flow cytometry and caspase activities analysis indicated that the 2 a-induced growth inhibition against MG-63 osteosarcoma cells was mainly caused by mitochondria-mediated apoptosis. DNA fragmentation and nuclear condensation as detected by TUNEL-DAPI co-staining further confirmed 2 a-induced apoptotic cell death. Further, fluorescence imaging revealed that ruthenium(II) polypyridyl complexes could target mitochondria to induce mitochondrial fragmentation, accompanied by depletion of mitochondrial membrane potential. Taken together, these findings suggest a potential application of theses ruthenium(II) complexes in the treatment of cancers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Deep sequencing and proteomic analysis of the microRNA-induced silencing complex in human red blood cells.

    PubMed

    Azzouzi, Imane; Moest, Hansjoerg; Wollscheid, Bernd; Schmugge, Markus; Eekels, Julia J M; Speer, Oliver

    2015-05-01

    During maturation, erythropoietic cells extrude their nuclei but retain their ability to respond to oxidant stress by tightly regulating protein translation. Several studies have reported microRNA-mediated regulation of translation during terminal stages of erythropoiesis, even after enucleation. In the present study, we performed a detailed examination of the endogenous microRNA machinery in human red blood cells using a combination of deep sequencing analysis of microRNAs and proteomic analysis of the microRNA-induced silencing complex. Among the 197 different microRNAs detected, miR-451a was the most abundant, representing more than 60% of all read sequences. In addition, miR-451a and its known target, 14-3-3ζ mRNA, were bound to the microRNA-induced silencing complex, implying their direct interaction in red blood cells. The proteomic characterization of endogenous Argonaute 2-associated microRNA-induced silencing complex revealed 26 cofactor candidates. Among these cofactors, we identified several RNA-binding proteins, as well as motor proteins and vesicular trafficking proteins. Our results demonstrate that red blood cells contain complex microRNA machinery, which might enable immature red blood cells to control protein translation independent of de novo nuclei information. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  4. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) {beta}1-induced senescence

    SciTech Connect

    Byun, Hae-Ok; Jung, Hyun-Jung; Seo, Yong-Hak; Lee, Young-Kyoung; Hwang, Sung-Chul; Seong Hwang, Eun; Yoon, Gyesoon

    2012-09-10

    Transforming growth factor {beta}1 (TGF {beta}1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF {beta}1 on mitochondrial complex IV activity. TGF {beta}1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) {alpha} and {beta}, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O{sub 2} consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF {beta}1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF {beta}1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.

  5. Inducing porosity and growing carbon nanofibers in ferroin perchlorate: An example of morphological transitions in coordination complexes

    NASA Astrophysics Data System (ADS)

    Avraham, Efrat Shawat; Fleker, Ohad; Benisvy, Laurent; Oakes, Landon; Pint, Cary L.; Nessim, Gilbert D.

    2017-09-01

    Inducing porosity in solid coordination complex crystals, which are an important class of catalysts, is critical for many applications where a high surface area is required. However, unlike metal organic frameworks (MOFs), fabrication of porous coordination crystals remains a significant challenge. Here we demonstrate a simple method to produce and modulate porosity in coordination complex crystals using ferroin perchlorate, a model system that combines a common ionic complex with a very reactive counter-ion. Using thermal chemical vapor deposition (CVD), we show that by annealing ferroin perchlorate crystals at 350 °C under a flow of ethylene, hydrogen, argon, and oxygen, we induced pores in the crystal. We demonstrate that small amounts of oxygen, which may combine with hydrogen to form water, are essential for pore formation. We also demonstrate that pore size and density can be easily controlled by varying the ethylene flow. Upon raising the annealing temperature to 500 °C, we observed a second transition in which carbon nanofibers (CNFs) grew from the porous crystal. This approach represents a simple and effective method for the synthesis of porous materials with good control over pore size and density. It also enables the synthesis of complex networks of nanostructures (in our case CNFs) by simply varying process parameters such as temperature and gas flows. This represents an important advance for the fabrication of porous coordination complex crystals.

  6. Experimental elucidation of vacancy complexes associated with hydrogen ion-induced splitting of bulk GaN

    NASA Astrophysics Data System (ADS)

    Moutanabbir, O.; Scholz, R.; Gösele, U.; Guittoum, A.; Jungmann, M.; Butterling, M.; Krause-Rehberg, R.; Anwand, W.; Egger, W.; Sperr, P.

    2010-03-01

    We present a detailed study of the thermal evolution of H ion-induced vacancy related complexes and voids in bulk GaN implanted under ion-cut conditions. By using transmission electron microscopy, we found that the damage band in as-implanted GaN is decorated with a high density of nanobubbles of ˜1-2nm in diameter. Variable energy Doppler broadening spectroscopy showed that this band contains vacancy clusters and voids. In addition to vacancy clusters, the presence of VGa , VGa-H2 , and VGaVN complexes was evidenced by pulsed low-energy positron lifetime spectroscopy. Subtle changes upon annealing in these vacancy complexes were also investigated. As a general trend, a growth in open-volume defects is detected in parallel to an increase in both size and density of nanobubbles. The observed vacancy complexes appear to be stable during annealing. However, for temperatures above 450°C , unusually large lifetimes were measured. These lifetimes are attributed to the formation of positronium in GaN. Since the formation of positronium is not possible in a dense semiconductor, our finding demonstrates the presence of sufficiently large open-volume defects in this temperature range. Based on the Tao-Eldrup model, the average lattice opening during thermal annealing was quantified. We found that a void diameter of 0.4 nm is induced by annealing at 600°C . The role of these complexes in the subsurface microcracking is discussed.

  7. Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex

    PubMed Central

    Choi, Ucheor B; Zhao, Minglei; Zhang, Yunxiang; Lai, Ying; Brunger, Axel T

    2016-01-01

    Complexin regulates spontaneous and activates Ca2+-triggered neurotransmitter release, yet the molecular mechanisms are still unclear. Here we performed single molecule fluorescence resonance energy transfer experiments and uncovered two conformations of complexin-1 bound to the ternary SNARE complex. In the cis conformation, complexin-1 induces a conformational change at the membrane-proximal C-terminal end of the ternary SNARE complex that specifically depends on the N-terminal, accessory, and central domains of complexin-1. The complexin-1 induced conformation of the ternary SNARE complex may be related to a conformation that is juxtaposing the synaptic vesicle and plasma membranes. In the trans conformation, complexin-1 can simultaneously interact with a ternary SNARE complex via the central domain and a binary SNARE complex consisting of syntaxin-1A and SNAP-25A via the accessory domain. The cis conformation may be involved in activation of synchronous neurotransmitter release, whereas both conformations may be involved in regulating spontaneous release. DOI: http://dx.doi.org/10.7554/eLife.16886.001 PMID:27253060

  8. Barrier-Free Intermolecular Proton Transfer Induced by Excess Electron Attachment to the Complex of Alanine with Uracil

    SciTech Connect

    Dabkowska, Iwona; Rak, Janusz; Gutowski, Maciej S.; Nilles, J.M.; Stokes, Sarah; Bowen, Kit H.

    2004-04-01

    The photoelectron spectrum of the uracil-alanine anionic complex (UA)- has been recorded with 2.540 eV photons. This spectrum reveals a broad feature with a maximum between 1.6-2.1 eV. The vertical electron detachment energy is too large to be attributed to an (UA)- anionic complex in which an intact uracil anion is solvated by alanine, or vice versa. The neutral and anionic complexes of uracil and alanine were studied at the B3LYP and second order Moeller-Plesset level of theory with 6-31++G** basis sets. The neutral complexes form cyclic hydrogen bonds and the three most stable neutral complexes are bound by 0.72, 0.61 and 0.57 eV. The electron hole in complexes of uracil with alaninie is localized on uracil, but the formation of a complex with alanine strongly modulates the vertical ionization energy of uracil. The theoretical results indicate that the excess electron in (UA)- occupies a p* orbital localized on uracil. The excess electron attachment to the complex can induce a barrier-free proton transfer (BFPT) from the carboxylic group of alanine to the O8 atom of uracil. As a result, the four most stable structures of the uracil-alanine anionic complex can be characterized as the neutral radical of hydrogenated uracil solvated by the anion of deprotonated alanine. Our current results for the anionic complex of uracil with alanine are similar to our previous results for the anion of uracil with glycine [Eur. Phys. J. D 20, 431 (2002)], and together they indicate that the BFPT process is not very sensitive to the nature of the amino acid's hydrophobic residual group. The BFPT to the O8 atom of uracil may be relevant to the damage suffered by nucleic acid bases due to exposure to low energy electrons.

  9. Anion-induced exchange interactions in binuclear complexes of Cu(II) with flexible hexadentate bispicolylamidrazone ligands

    NASA Astrophysics Data System (ADS)

    Baryshnikov, Gleb V.; Minaev, Boris F.; Baryshnikova, Alina A.; Ågren, Hans

    2016-09-01

    Two recently synthesized copper(II) complexes with spacer-armed bispicolylamidrazone ligands have been theoretically studied at the density functional theory (DFT) level accounting for empirical dispersion correction and intrinsic anionic environment by perchlorate ions. The exchange parameter between the open-shell singlet and triplet states of the studied complexes has been estimated by broken symmetry DFT calculations. The mechanism of spin-spin exchange interaction between the unpaired electrons via the σ-bond aliphatic chain (Gusev et al., 2015) is confirmed. Instead, a anion-induced mechanism is proposed which means that the anionic grid participates in the exchange interaction between the unpaired electrons.

  10. The complex action of major solutes on radiation induced swelling of Fe-Cr-Ni austenitic alloys

    SciTech Connect

    Garner, F.A. ); Lauritzen, T. ); Mitchell, M.A. )

    1992-06-01

    The radiation-induced swelling of simple Fe-Cr-Ni austenitic alloys is sensitive to solute additions. It is shown in this paper that three of the most common solute elements (P,Si,Mo) exert a very complex and often non-monotonic influence on swelling with increasing solute level. The complexity of this influence and its dependence on other variables appears to be the result of a closely balanced competition between two or more roles played by each solute in its interaction with both vacancies and interstitials. This competition yields a variety of different swelling behaviors in response to changes in solute or solvent composition, displacement rate, and irradiation temperature.

  11. [The dose dependent effect of glycosaminoglycan peptide complex on corticosteroid-induced disordered metabolism in cartilage tissue of rats].

    PubMed

    Annefeld, M

    1989-01-01

    Systemic corticosteroid treatment induces morphological and functional changes in the articular cartilage similar to those in human osteoarthritis. In animal experiments the dexamethasone-induced inhibition of chondrocyte metabolism can be reduced in a dose-related manner by concomitant treatment with glycosaminoglycan-peptide complexes (GP-C)***). The metabolic changes in cartilage tissues of the joint and Processus Xiphoideus measured quantitatively by 35S-sulphate incorporation are comparable. The results indicate that GP-C could also have a dose-related effect on human osteoarthritic cartilage.

  12. Proton exchange in acid-base complexes induced by reaction coordinates with heavy atom motions

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Taghikhani, Mahdi

    2012-06-01

    We extend previous work on nitric acid-ammonia and nitric acid-alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid-strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are <400 cm-1. This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm-1. Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  13. A novel insulin mimetic vanadium-flavonol complex: synthesis, characterization and in vivo evaluation in STZ-induced rats.

    PubMed

    Pillai, Subramanian Iyyam; Subramanian, Sorimuthu Pillai; Kandaswamy, Muthusamy

    2013-05-01

    Since 1985, when Heyliger et al., first demonstrated a serendipitous discovery that oral administration of 0.8 mg/ml of sodium orthovanadate in drinking water to streptozotocin-induced diabetic rats resulted in normoglycemia, numerous extensive studies have been pursued on the anti-diabetic and insulinomimetic actions of vanadium. The acceptance of vanadium compounds as promising therapeutic antidiabetic agents has been slowed due to the concern for chronic toxicity associated with vanadium accumulation. In order to circumvent the toxic effects of vanadium, we have taken up a combinational approach wherein a novel vanadium-flavonol complex was synthesized, characterized and its toxic as well as insulin mimetic potential was evaluated in STZ-induced experimental diabetes in rats. The results indicate that the complex is non-toxic and possess anti-diabetic activity.

  14. Investigating Storm-Induced Total Water Levels on Complex Barred Beaches

    NASA Astrophysics Data System (ADS)

    Cohn, N.; Ruggiero, P.; Walstra, D.

    2013-12-01

    Water levels in coastal environments are not static, but rather vary from a range of factors including mean sea level, tides, storm surge, and wave runup. Cumulatively these superimposed factors determine the total water level (TWL), the extent of which has major implications for coastal erosion and inundation during periods of high energy. Storm-induced, super-elevated water levels pose a threat to low lying coastal regions, as clearly demonstrated by recent events such as Hurricanes Sandy and Katrina. For this reason, the ability to accurately predict the TWL is crucial for both emergency managers and coastal planners. While some components of TWL are well understood (e.g., tides) there is still significant uncertainty in predicting runup, a process that can be a major contributor to instantaneous TWLs. Traditionally, empirical relationships derived from observational field data have been used to estimate runup, including wave setup and both incident and infragravity swash (Stockdon et al., 2006). While these formulations have shown skill in predicting the runup extent on natural beaches, these equations consider only the most basic contributing factors - namely the mean foreshore beach slope, the offshore wave height, and offshore wave period. Not included in these empirical estimates is the role of nearshore morphology on TWLs. However, it has long been recognized that nearshore sandbars act as natural barriers to coastal erosion during storm events by dissipating wave energy far from the beach face. Nonetheless, the influence of nearshore morphology on inner surf zone processes, including wave runup, is poorly understood. Recent pioneering studies (eg., Soldini et al., 2013 and Stephens et al., 2011) have explored the role of simple nearshore features (single Gaussian bars) on swash processes. Many locations in the world, however, are characterized by more complex morphologies such as multiple barred systems. Further, in many such places, including Columbia

  15. Complex trajectories of aquatic and terrestrial ecosystem shifts caused by multiple human-induced environmental stresses

    NASA Astrophysics Data System (ADS)

    Li, Long; Yu, Zicheng; Moeller, Robert E.; Bebout, Gray E.

    2008-09-01

    Large shifts in the isotopic compositions of organic matter (OM) in lake sediments, over the last few hundred years, are commonly interpreted as representing changes in photosynthetic productivity corresponding to eutrophication or in the input of terrestrial OM due to human disturbances. Based on multiple-proxy data (C:N ratio, δ 13C and δ 15N of OM, δ 13C of calcite, lithology and fossil pollen) from a 700-year sediment core at White Lake, New Jersey (USA), we propose a new explanation that relates these large shifts in OM δ 13C and δ 15N to human-induced changes in aquatic OM producers. Combined records of geochronology, fossil pollen and lithology from White Lake reveal that the upland forest was cleared by European settlers for farmland beginning around 1745 A.D. and has gradually reforested since 1930 after the abandonment of the farmlands. For the pre-agricultural period, OM had relatively constant but extremely low δ 13C VPDB (-35.8 to -34.5‰) and δ 15N Air (-3.5 to -2.5‰) and high atomic C:N ratios (13.7 to 16.7), indicating a stable anoxic lake environment with prominent microbial producers. Following the human disturbance (since 1745), high OM mass accumulation rates and abundances of the green alga Pediastrum indicate an increase in aquatic photosynthetic productivity due to enhanced nutrient input from disturbed uplands. However, carbonate δ 13C remains constant or even decreases during this period, implying that increasing productivity did not elevate the δ 13C of dissolved inorganic carbon and thus cannot explain the observed large increase in OM δ 13C (7.4‰) and δ 15N (5.8‰) over this period. Instead, δ 13C, δ 15N and C:N ratios of OM and differences in δ 13C between calcite and OM suggest that the large increase in OM δ 13C and δ 15N can be attributed to a human-induced ecological shift in the predominant organic source from anaerobic bacteria to autotrophic phytoplankton. During the post-agricultural period, mass

  16. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, P<0.01; 156.32±10.42 μg/mL vs 66.52±7.35 μg/mL, 5.73±2.89 μg/mL, P<0.01). The tumor volume in mAFP/HSP70 group was significantly smaller than that in mAFP and HSP70 groups (42.44±7.14 mm3 vs 392.23±12.46 mm3, 838.63±13.84 mm3, P<0.01). Conclusions: The study further confirmed the function of heat shock protein 70's immune adjuvant. Sequential immunization with recombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  17. Stress-induced colibacillosis and turkey osteomyelitis complex in turkeys selected for increased body weight.

    PubMed

    Huff, G; Huff, W; Rath, N; Balog, J; Anthony, N B; Nestor, K

    2006-02-01

    Two stress models were used to induce colibacillosis and turkey osteomyelitis complex (TOC): Escherichia coli challenge following dexamethasone injection (Dex) and E. coli challenge preceding transport stress (Transport). A total of 160 birds from 3 lines of turkeys: a slow-growing line selected for egg production (Egg), a line selected for 16-wk BW (F line), and a Commercial line (Comm), were studied in a 3 x 3 x 2 (line x treatment x sex) factorial design. At 14 wk, the Dex group was treated with 3 injections of 2 mg of Dex/kg of BW followed by airsac challenge with 100 cfu of E. coli. The Transport group was given 5,000 cfu of the same E. coli and 8 d later was transported for 3 h and held for an additional 9 h in the transport vehicle. Controls of each line were neither stressed nor challenged with E. coli. Birds were necropsied 2 wk postchallenge. All birds were sexed, scored for airsacculitis (AS) and TOC, and knee synovia were cultured for E. coli. Percent mortality was unaffected by sex, was increased by the Dex treatment, and was higher in Dex-treated male Comm-line birds and Dex-treated female F-line birds compared with their respective nonchallenged controls. Both treatments increased AS scores, and scores of Dex-treated male Comm-line birds and female F-line birds were also higher compared with their respective controls. Male Comm birds under Transport had higher AS scores as compared with nonchallenged males and challenged females. The TOC incidence was increased by Dex only. There was no TOC in Egg-line birds, whereas TOC incidence approached significance in both Comm and F lines compared with the Egg line (P = 0.06). Males had twice as much TOC as females, and this approached significance in the F line (P = 0.06). There was a low level of TOC in male Transport birds of both large-bodied lines, whereas no female Transport birds had TOC lesions. Dex-treated male birds of both the F line and Comm line had significantly higher incidence of TOC compared

  18. Wave-induced upper-ocean mixing in a climate model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    Babanin, Alexander V.; Ganopolski, Andrey; Phillips, William R. C.

    Climate modelling, to a great extent, is based on simulating air-sea interactions at larger scales. Small-scale interactions and related phenomena, such as wind-generated waves and wave-induced turbulence are sub-grid processes for such models and therefore cannot be simulated explicitly. In the meantime, the waves play the principal role in the upper-ocean mixing. This role is usually parameterized, mostly to account for the wave-breaking turbulence and to describe downward diffusion of such turbulence. The main purpose of the paper is to demonstrate that an important physical mechanism, that is the ocean mixing due to waves, is presently missing in the climate models, whereas the effect of this mixing is significant. It is argued that the mixing role of the surface waves is not limited to the mere transfer of the wind stress and energy across the ocean interface by means of breaking and surface currents. The waves facilitate two processes in the upper-ocean which can deliver turbulence to the depths of the order of 100 m directly, rather than diffusing it from the surface. The first process is due to capacity of the waves to generate turbulence, unrelated to the wave breaking, at all depths where the wave orbital motion is significant. The second process is Langmuir circulation, triggered by the waves. Such wave-controlled mixing should cause seasonal variations of the mixed-layer depth, which regulates the thermodynamic balance between the ocean and atmosphere. In the present paper, these variations are parameterized in terms of the global winds. The variable mixed-layer depth is then introduced in the climate model of intermediated complexity CLIMBER-2 with a purpose of reproducing the pre-industrial climate. Comparisons are conducted with the NRL global atlas of the mixed layer, and performance of the wave-mixing parameterisations was found satisfactory in circumstances where the mixing is expected to be dominated by the wind-generated waves. It is shown that

  19. Formation and longevity of idarubicin-induced DNA topoisomerase II cleavable complexes in K562 human leukaemia cells.

    PubMed

    Willmore, Elaine; Errington, Fiona; Tilby, Michael J; Austin, Caroline A

    2002-05-15

    Idarubicin (IDA) is an anthracycline used during treatment of acute myelogenous leukaemia (AML) and is clinically important because of its potency and lipophilicity (compared to the related compounds daunorubicin and doxorubicin). These drugs target DNA topoisomerase II (topo II), a nuclear enzyme that regulates DNA topology. Topo II poisoning leads to the trapping of an intermediate in the enzyme's cycle termed the "cleavable complex." This study aims to increase understanding of drug interactions by use of the "TARDIS" (trapped in agarose DNA immunostaining) assay to measure drug-induced topo II cleavable complexes in individual cells treated with anthracyclines. Mammalian cells contain two isoforms of topo II (alpha and beta) and the TARDIS assay enables visualisation of isoform-specific complexes. Drug-treated cells were embedded in agarose, lysed and incubated with anti-topo II antibodies to microscopically detect topo IIalpha or beta complexes. Results for K562 cells (at clinically relevant concentrations) showed that IDA and idarubicinol, its metabolite, formed mainly topo IIalpha cleavable complexes, the level of which decreases at doses > 1 microM for IDA. Our data suggest that this decrease is due to catalytic inhibition by IDA at these doses. Doxorubicin formed low levels of topo IIalpha complexes and negligible topo IIbeta complexes. In cytotoxicity studies, IDA and idarubicinol were equipotent, but both were more potent than daunorubicin and doxorubicin. We showed for the first time that there was a persistent increase in levels of topo IIalpha cleavable complexes after removal of IDA, suggesting that its greater effectiveness may be associated with both the longevity and high levels of these complexes.

  20. Atypical behavior in the electron capture induced dissociation of biologically relevant transition metal ion complexes of the peptide hormone oxytocin

    NASA Astrophysics Data System (ADS)

    Kleinnijenhuis, Anne J.; Mihalca, Romulus; Heeren, Ron M. A.; Heck, Albert J. R.

    2006-07-01

    Doubly protonated ions of the disulfide bond containing nonapeptide hormone oxytocin and oxytocin complexes with different transition metal ions, that have biological relevance under physiological conditions, were subjected to electron capture dissociation (ECD) to probe their structural features in the gas phase. Although, all the ECD spectra were strikingly different, typical ECD behavior was observed for complexes of the nonapeptide hormone oxytocin with Ni2+, Co2+ and Zn2+, i.e., abundant c/z' and a'/y backbone cleavages and ECD characteristic S-S and S-C bond cleavages were observed. We propose that, although in the oxytocin-transition metal ion complexes the metal ions serve as the main initial capture site, the captured electron is transferred to other sites in the complex to form a hydrogen radical, which drives the subsequent typical ECD fragmentations. The complex of oxytocin with Cu2+ displayed noticeably different ECD behavior. The fragment ions were similar to fragment ions typically observed with low-energy collision induced dissociation (CID). We propose that the electrons captured by the oxytocin-Cu2+ complex might be favorably involved in reducing the Cu2+ metal ion to Cu+. Subsequent energy redistribution would explain the observed low-energy CID-type fragmentations. Electron capture resulted also in quite different specific cleavage sites for the complexes of oxytocin with Ni2+, Co2+ and Zn2+. This is an indication for structural differences in these complexes possibly linked to their significantly different biological effects on oxytocin-receptor binding, and suggests that ECD may be used to study subtle structural differences in transition metal ion-peptide complexes.

  1. Self-induced "electroclick" immobilization of a copper complex onto self-assembled monolayers on a gold electrode.

    PubMed

    Gomila, Antoine; Le Poul, Nicolas; Cosquer, Nathalie; Kerbaol, Jean-Michel; Noël, Jean-Marc; Reddy, Madhusudana T; Jabin, Ivan; Reinaud, Olivia; Conan, Francoise; Le Mest, Yves

    2010-12-28

    We report the self-induced "electroclick" immobilization of the [Cu(II)(6-ethynyl-TMPA)(H(2)O)](2+) complex, by its simple electro-reduction, onto a mixed azidoundodecane-/decane-thiol modified gold electrode. The redox response of the grafted [Cu(II/I)(TMPA)] at the modified electrode is fully reversible indicating no Cu coordination change and a fast electron transfer.

  2. Protective effect of polysaccharide-protein complex from a polypore mushroom, Phellinus rimosus against radiation-induced oxidative stress.

    PubMed

    Joseph, Jini; Panicker, Sudheesh Narayana; Janardhanan, Kainoor Krishnankutty

    2012-01-01

    Ionizing radiation induces severe oxidative stress in the body resulting an imbalance in prooxidant and antioxidant status in the cell. The aim of the present study is to investigate the protective effect of polysaccharide protein complex (PPC-Pr) isolated from the mushroom Phellinus rimosus against the oxidative stress induced by gamma radiation. PPC-Pr complex was isolated from the aqueous extracts of P. rimosus. The complex was administered to Swiss albino mice at a concentration of 5 and 10 mg/kg body weight intraperitoneally for 5 days consecutively and exposed to 4 Gy of gamma irradiation. Animals were sacrificed 1 day after irradiation and the antioxidant parameters such as glutathione, glutathione peroxidase, superoxide dismutase, catalase, glutathione reductase as well as lipid peroxidation were evaluated in both liver and brain tissues to evaluate oxidative stress. Amifostine, a standard radioprotective agent, was used as a positive control. In vitro DNA damage was assessed using the comet assay. Survival studies were also carried out to determine the protective role of PPC-Pr against radiation-induced delayed oxidative stress. PPC-Pr treatment enhanced the declined levels of antioxidants and comet parameters to a significant level, indicating its antioxidant as well as DNA protecting potential. Significant increase in the survival rate of animals was also observed in irradiated animals treated with PPC-Pr complex. The results were comparable to the standard drug amifostine. The results indicate profound effects of PPC-Pr against radiation-induced oxidative stress. The findings suggest potential therapeutic use of PPC-Pr in radiotherapy.

  3. Genetic control of radiation leukemia virus-induced tumorigenesis. I. Role of the major murine histocompatibility complex, H-2

    PubMed Central

    1977-01-01

    Resistance to radiation leukemia virus-induced leukemogenesis is associated with the H-2D region of the H-2 complex, or with closely linked loci. The H-2Dd allele confers resistance ot the disease, while the H-2D-Q and H-2Ds alleles are associated with susceptibility. It is not clear whether Ir genes, or an alternative mechanism are responsible for the observed H-2-linked resistance to the disease. PMID:197195

  4. The SWI/SNF chromatin remodeling complex regulates myocardin-induced smooth muscle-specific gene expression

    PubMed Central

    Zhou, Jiliang; Zhang, Min; Fang, Hong; El-Mounayri, Omar; Rodenberg, Jennifer M.; Imbalzano, Anthony N.; Herring, B. Paul

    2009-01-01

    Objective Transcription regulatory complexes comprising myocardin and serum response factor (SRF) are critical for the transcriptional regulation of many smooth muscle-specific genes. However, little is known about the epigenetic mechanisms that regulate the activity of these complexes. In the current study, we investigated the role of SWI/SNF ATP-dependent chromatin remodeling enzymes in regulating the myogenic activity of myocardin. Methods and Results We found that both Brg1 and Brm are required for maintaining expression of several smooth muscle-specific genes in primary cultures of aortic smooth muscle cells. Furthermore, the ability of myocardin to induce expression of smooth muscle-specific genes is abrogated in cells expressing dominant negative Brg1. In SW13 cells, that lack endogenous Brg1 and Brm1, myocardin is unable to induce expression of smooth muscle-specific genes. Whereas, reconstitution of wild type, or bromodomain mutant forms Brg1 or Brm1, into SW13 cells restored their responsiveness to myocardin. SWI/SNF complexes were found to be required for myocardin to increase SRF binding to the promoters of smooth muscle-specific genes. Brg1 and Brm directly bind to the N-terminus of myocardin, in vitro, through their ATPase domains and Brg1 forms a complex with SRF and myocardin in vivo in smooth muscle cells. Conclusion These data demonstrate that the ability of myocardin to induce smooth muscle-specific gene expression is dependent on its interaction with SWI/SNF ATP-dependent chromatin remodeling complexes. PMID:19342595

  5. DNA damage and replication stress induced transcription of RNR genes is dependent on the Ccr4–Not complex

    PubMed Central

    Mulder, Klaas W.; Winkler, G. Sebastiaan; Timmers, H. Th. Marc

    2005-01-01

    Genetic experiments have indicated a role for the Ccr4–Not complex in the response to hydroxyurea (HU) induced replication stress and ionizing radiation in yeast. This response includes transcriptional induction of the four genes constituting the ribonucleotide reductase (RNR) enzymatic complex, RNR1-4 and degradation of its inhibitor, Sml1p. The Ccr4–Not complex has originally been described as a negative regulator of RNA polymerase II (pol II) transcription, but it has also been implicated in mRNA turnover and protein ubiquitination. We investigated the mechanism of the HU sensitivity conferred by mutation of CCR4-NOT genes. We found that the ubiquitin protein ligase activity of Not4p does not play a role in HU induced Sml1p degradation. We show, however, that the HU sensitivity of ccr4-not mutant strains correlated very well with a defect in accumulation of RNR2, RNR3 and RNR4 mRNA after HU or methyl-methane sulfonate (MMS) treatment. Chromatin immunoprecipitation (ChIP) experiments show that TBP, pol II and Set1p recruitment to the activated RNR3 locus is defective in cells lacking NOT4. Moreover, RNR3-promoter activity is not induced by HU in these cells. Our experiments show that induction of RNR gene transcription is defective in ccr4-not mutant strains, providing an explanation for their sensitivity to HU. PMID:16275785

  6. Discovery of a dual-targeting organometallic ruthenium complex with high activity inducing early stage apoptosis of cancer cells.

    PubMed

    Du, Jun; Zhang, Erlong; Zhao, Yao; Zheng, Wei; Zhang, Yang; Lin, Yu; Wang, Zhaoying; Luo, Qun; Wu, Kui; Wang, Fuyi

    2015-12-01

    Ruthenium based complexes are promising antitumour candidates due to their lower toxicity and better water-solubility compared to the platinum antitumour complexes. An epidermal growth factor receptor (EGFR) has been found to be overexpressed in a large set of tumour cells. In this work, a series of organoruthenium complexes containing EGFR-inhibiting 4-anilinoquinazoline pharmacophores were synthesised and characterised. These complexes exhibited excellent inhibitory activity against EGFR and high affinity to interact with DNA via minor groove binding, featuring dual-targeting properties. In vitro screening demonstrated that the as-prepared ruthenium complexes are anti-proliferating towards a series of cancer cell lines, in particular the non-small-cell lung cancer cell line A549. Fluorescence-activated cell sorting analysis and fluorescence microscopy revealed that the most active complex 3 induced much more early-stage cell apoptosis than its cytotoxic arene ruthenium analogue and the EGFR-inhibiting 4-anilinoquinazolines, verifying the synergetic effect of the two mono-functional pharmacophores.

  7. Evidence for high-pressure-induced rupture of hydrogen bonds in LH2 photosynthetic antenna pigment-protein complexes

    NASA Astrophysics Data System (ADS)

    Kangur, L.; Leiger, K.; Freiberg, A.

    2008-07-01

    The bacteriochlorophyll a-containing LH2 light harvesting complex is an integral membrane protein that catalyzes the photosynthetic process in purple photosynthetic bacteria. The LH2 complexes from Rhodobacter sphaeroides show characteristic strong absorbance at 800 and 850 nm due to the bacteriochlorophyll a molecules confined in two separate areas of the protein. Using these cofactors as intrinsic probes to monitor changes in membrane protein structure, we investigate the response to high hydrostatic pressure up to 2.1 GPa of LH2 complexes embedded into natural membrane environment or extracted with detergent. We demonstrate that high pressure does induce significant alterations to the tertiary structure of the protein in proximity of the protein-bound bacteriochlorophyll a molecules, including breakage of the hydrogen bond they are involved in. The membrane-embedded complexes appear more resilient to damaging effects of the compression than the complexes extracted into detergent environment. This difference has tentatively been explained by more compact structure of the membrane-embedded complexes.

  8. Death receptor-induced apoptosis reveals a novel interplay between the chromosomal passenger complex and CENP-C during interphase.

    PubMed

    Faragher, Alison J; Sun, Xiao-Ming; Butterworth, Michael; Harper, Nick; Mulheran, Mike; Ruchaud, Sandrine; Earnshaw, William C; Cohen, Gerald M

    2007-04-01

    Despite the fact that the chromosomal passenger complex is well known to regulate kinetochore behavior in mitosis, no functional link has yet been established between the complex and kinetochore structure. In addition, remarkably little is known about how the complex targets to centromeres. Here, in a study of caspase-8 activation during death receptor-induced apoptosis in MCF-7 cells, we have found that cleaved caspase-8 rapidly translocates to the nucleus and that this translocation is correlated with loss of the centromere protein (CENP)-C, resulting in extensive disruption of centromeres. Caspase-8 activates cytoplasmic caspase-7, which is likely to be the primary caspase responsible for cleavage of CENP-C and INCENP, a key chromosomal passenger protein. Caspase-mediated cleavage of CENP-C and INCENP results in their mislocalization and the subsequent mislocalization of Aurora B kinase. Our results demonstrate that the chromosomal passenger complex is displaced from centromeres as a result of caspase activation. Furthermore, mutation of the primary caspase cleavage sites of INCENP and CENP-C and expression of noncleavable CENP-C or INCENP prevent the mislocalization of the passenger complex after caspase activation. Our studies provide the first evidence for a functional interplay between the passenger complex and CENP-C.

  9. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer.

    PubMed

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D; Wolff, Jeremy J; Somogyi, Árpád; Pedder, Randall E; Quintyn, Royston S; Morrison, Lindsay J; Easterling, Michael L; Paša-Tolić, Ljiljana; Wysocki, Vicki H

    2017-01-03

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.

  10. Tricomponent complex loaded with a mosquito-stage antigen of the malaria parasite induces potent transmission-blocking immunity.

    PubMed

    Arakawa, Takeshi; Tsuboi, Takafumi; Sattabongkot, Jetsumon; Sakao, Kozue; Torii, Motomi; Miyata, Takeshi

    2014-04-01

    The development of malaria vaccines is challenging, partly because the immunogenicity of recombinant malaria parasite antigens is low. We previously demonstrated that parasite antigens integrated into a tricomponent immunopotentiating complex increase antiparasitic immunity. In this study, the B domains of a group G Streptococcus (SpG) strain and Peptostreptococcus magnus (PpL) were used to evaluate whether vaccine efficacy is influenced by the type of immunoglobulin-binding domain (IBD) in the tricomponent complex. IBDs were fused to a pentameric cartilage oligomeric matrix protein (COMP) to increase the binding avidity of the complexes for their targets. The COMP-IBD fusion proteins generated (COMP-SpG and COMP-PpL and the previously constructed COMP-Z) bound a large fraction of splenic B lymphocytes but not T lymphocytes. These carrier molecules were then loaded with an ookinete surface protein of Plasmodium vivax, Pvs25, by chemical conjugation. The administration of the tricomponent complexes to mice induced more Pvs25-specific serum IgG than did the unloaded antigen. The PpL complex, which exhibited a broad Ig-binding spectrum, conferred higher vaccine efficacy than did the Z or SpG complexes when evaluated with a membrane feed assay. This study demonstrates that this tricomponent immunopotentiating system, incorporating IBDs as the B-lymphocyte-targeting ligands, is a promising technology for the delivery of malaria vaccines, particularly when combined with an aluminum salt adjuvant.

  11. Xenon difluoride induced aryl iodide reductive elimination: a simple access to difluoropalladium(II) complexes.

    PubMed

    Kaspi, Ariela W; Yahav-Levi, Anette; Goldberg, Israel; Vigalok, Arkadi

    2008-01-07

    Palladium(II) aryliodo complexes bearing chelating diphosphine ligands react with XeF2, giving iodoarene and rare palladium(II) difluoro complexes. The reaction is general with regard to the aryl group, with even C6F5-I undergoing facile reductive elimination from a Pd center.

  12. Characterisation of senescence-induced changes in light harvesting complex II and photosystem I complex of thylakoids of Cucumis sativus cotyledons: age induced association of LHCII with photosystem I.

    PubMed

    Prakash, Jogadhenu Syama Sundara; Baig, Masroor A; Bhagwat, Anil S; Mohanty, Prasanna

    2003-02-01

    Structure and function of chloroplasts are known to after during senescence. The senescence-induced specific changes in light harvesting antenna of photosystem II (PSII) and photosystem I (PSI) were investigated in Cucumis cotyledons. Purified light harvesting complex II (LHCII) and photosystem I complex were isolated from 6-day non-senescing and 27-day senescing Cucumis cotyledons. The chlorophyll a/b ratio of LHCII obtained from 6-day-old control cotyledons and their absorption, chlorophyll a fluorescence emission and the circular dichroism (CD) spectral properties were comparable to the LHCII preparations from other plants such as pea and spinach. The purified LHCII obtained from 27-day senescing cotyledons had a Chl a/b ratio of 1.25 instead of 1.2 as with 6-day LHCII and also exhibited significant changes in the visible CD spectrum compared to that of 6-day LHCII, indicating some specific alterations in the organisation of chlorophylls of LHCII. The light harvesting antenna of photosystems are likely to be altered due to aging. The room temperature absorption spectrum of LHCII obtained from 27-day senescing cotyledons showed changes in the peak positions. Similarly, comparison of 77K chlorophyll a fluorescence emission characteristics of LHCII preparation from senescing cotyledons with that of control showed a small shift in the peak position and the alteration in the emission profile, which is suggestive of possible changes in energy transfer within LHCII chlorophylls. Further, the salt induced aggregation of LHCII samples was lower, resulting in lower yields of LHCII from 27-day cotyledons than from normal cotyledons. Moreover, the PSI preparations of 6-day cotyledons showed Chl a/b ratios of 5 to 5.5, where as the PSI sample of 27-day cotyledons had a Chl a/b ratio of 2.9 suggesting LHCII association with PSI. The absorption, fluorescence emission and visible CD spectral measurements as well as the polypeptide profiles of 27-day cotyledon-PSI complexes

  13. The Dictyostelium prestalk inducer differentiation-inducing factor-1 (DIF-1) triggers unexpectedly complex global phosphorylation changes

    PubMed Central

    Sugden, Chris; Urbaniak, Michael D.; Araki, Tsuyoshi; Williams, Jeffrey G.

    2015-01-01

    Differentiation-inducing factor-1 (DIF-1) is a polyketide that induces Dictyostelium amoebae to differentiate as prestalk cells. We performed a global quantitative screen for phosphorylation changes that occur within the first minutes after addition of DIF-1, using a triple-label SILAC approach. This revealed a new world of DIF-1–controlled signaling, with changes in components of the MAPK and protein kinase B signaling pathways, components of the actinomyosin cytoskeletal signaling networks, and a broad range of small GTPases and their regulators. The results also provide evidence that the Ca2+/calmodulin–dependent phosphatase calcineurin plays a role in DIF-1 signaling to the DimB prestalk transcription factor. At the global level, DIF-1 causes a major shift in the phosphorylation/dephosphorylation equilibrium toward net dephosphorylation. Of interest, many of the sites that are dephosphorylated in response to DIF-1 are phosphorylated in response to extracellular cAMP signaling. This accords with studies that suggest an antagonism between the two inducers and also with the rapid dephosphorylation of the cAMP receptor that we observe in response to DIF-1 and with the known inhibitory effect of DIF-1 on chemotaxis to cAMP. All MS data are available via ProteomeXchange with identifier PXD001555. PMID:25518940

  14. Near-infrared laser-induced structural changes of glycine·water complexes in an Ar matrix.

    PubMed

    Kócs, Lenke; Najbauer, Eszter E; Bazsó, Gábor; Magyarfalvi, Gábor; Tarczay, György

    2015-03-19

    The structures of glycine·H2O complexes have been reinvestigated in low-temperature inert matrices. To go beyond the former matrix-isolation IR studies, NIR laser irradiation was used to change the relative abundances of the different complexes in the matrix. It is shown that the irradiation of the first overtone of the OH stretching mode of glycine as well as of the first overtone of the OH stretching mode of the water molecule in the complex can induce structural changes. Comparison of the experimental IR spectra with the IR spectra computed for different structures resulted in more reliable assignments of spectral patterns and identification of more structures than in former studies.

  15. Structures of DNA Polymerase Mispaired DNA Termini Transitioning to Pre-catalytic Complexes Support an Induced-Fit Fidelity Mechanism.

    PubMed

    Batra, Vinod K; Beard, William A; Pedersen, Lars C; Wilson, Samuel H

    2016-11-01

    High-fidelity DNA synthesis requires that polymerases display a strong preference for right nucleotide insertion. When the wrong nucleotide is inserted, the polymerase deters extension from the mismatched DNA terminus. Twenty-three crystallographic structures of DNA polymerase β with terminal template-primer mismatches were determined as binary DNA and ternary pre-catalytic substrate complexes. These structures indicate that the mismatched termini adopt various distorted conformations that attempt to satisfy stacking and hydrogen-bonding interactions. The binary complex structures indicate an induced strain in the mismatched template nucleotide. Addition of a non-hydrolyzable incoming nucleotide stabilizes the templating nucleotide with concomitant strain in the primer terminus. Several dead-end ternary complex structures suggest that DNA synthesis might occur as the enzyme transitions from an open to a closed complex. The structures are consistent with an induced-fit mechanism where a mismatched terminus is misaligned relative to the correct incoming nucleotide to deter or delay further DNA synthesis.

  16. A platinum blue complex exerts its cytotoxic activity via DNA damage and induces apoptosis in cancer cells.

    PubMed

    Adiguzel, Zelal; Ozalp-Yaman, Seniz; Celik, Gokalp; Salem, Safia; Bagci-Onder, Tugba; Senbabaoglu, Filiz; Cetin, Yüksel; Acilan, Ceyda

    2017-08-01

    Here, we describe the characteristics of a Pt-blue complex [Pt4 (2-atp)8 (H2 O)(OH)] (2-atp: 2-aminothiophenol) as a prodrug for its DNA-binding properties and its use in cancer therapy. The nature of the interaction between the Pt-blue complex and DNA was evaluated based on spectroscopic measurements, the electronic absorption spectra, thermal behavior, viscosity, fluorometric titration, and agarose gel electrophoresis. Our results suggested that the compound was able to partially intercalate DNA and appeared to induce both single- and double-stranded breaks (DBS) on DNA in vitro, but no DSBs in cells. The ability of the compound to induce DNA damage was dependent on reactive oxygen species (ROS) in vitro. There was also elevated formation of ROS and SOD expression in response to drug treatment in cell culture. The complex was found to be more cytotoxic to cancer cells in comparison with noncancer controls using WST-1 assay. The mean of cell death was determined to be apoptosis as assessed via biochemical, morphological, and molecular observations, including DNA condensation/fragmentation analysis, live cell imaging microscopy, TUNEL analyses, and increase in the levels of pro-apoptotic genes such as Bag3, Bak, Bik, Bmf, and Hrk. Hence, the Pt-blue complex under study grants premise for further studies. © 2017 John Wiley & Sons A/S.

  17. Having excess levels of PCSK9 is not sufficient to induce complex formation between PCSK9 and the LDL receptor.

    PubMed

    Wooten, Catherine J; Adcock, Audrey F; Agina-Obu, DaTonye I; Lopez, Dayami

    2014-03-01

    Proprotein convertase subtilisin/kexin-9 (PCSK9) acts mainly by forming complexes with the LDL receptor at the cell surface, which are then degraded in the lysosome. Studies were performed to determine whether excess levels of PCSK9 was sufficient to induce PCSK9/LDL receptor complex formation in human hepatocyte-like C3A cells. It was demonstrated using ELISA that instead of considering the overall levels of PCSK9 protein that is produced in response to certain treatment, what is critical is how much PCSK9 is actually capable of forming complexes. Despite the high levels, most of the PCSK9 produced as a result of incubating cells with a medium supplemented with BD™ MITO+ serum extender (MITO+ medium) appeared to be inhibited by a secreted factor. Having lower levels of PCSK9/LDL receptor complexes did not prevent an increase in the degradation rate of LDL receptors in MITO+ medium as compared to fetal bovine serum (FBS) containing medium (Regular medium), an effect that did not correlate with an increase in protein levels of the inducible degrader of LDL receptors (IDOL), as demonstrated using Western blotting analysis. Additional studies are required to determine the exact mechanism(s) for the degradation of the LDL receptor and/or to identify the secreted inhibitor of PCSK9.

  18. Ror2/Frizzled Complex Mediates Wnt5a-Induced AP-1 Activation by Regulating Dishevelled Polymerization▿ †

    PubMed Central

    Nishita, Michiru; Itsukushima, Sumiyo; Nomachi, Akira; Endo, Mitsuharu; Wang, ZhiChao; Inaba, Daisuke; Qiao, Sen; Takada, Shinji; Kikuchi, Akira; Minami, Yasuhiro

    2010-01-01

    The receptor tyrosine kinase Ror2 acts as a receptor or coreceptor for Wnt5a to mediate Wnt5a-induced activation of the Wnt/JNK pathway and inhibition of the β-catenin-dependent canonical Wnt pathway. However, little is known about how Ror2 cooperates with another receptor component(s) to mediate Wnt5a signaling. We show here that Ror2 regulates Wnt5a-induced polymerization of Dishevelled (Dvl) and that this Ror2-mediated regulation of Dvl is independent of the cytoplasmic region of Ror2. Ror2 can associate with Frizzled7 (Fz7) via its extracellular cysteine-rich domain to form a receptor complex that is required for the regulation of Dvl and activation of the AP-1 promoter after Wnt5a stimulation. Suppressed expression of Fz7 indeed results in the inhibition of Wnt5a-induced polymerization of Dvl and AP-1 activation. Interestingly, both the DIX and the DEP domains of Dvl are indispensable for Dvl polymerization and subsequent AP-1 activation after Wnt5a stimulation. We further show that polymerized Dvl is colocalized with Rac1 and that suppressed expression of Rac1 inhibits Wnt5a-induced AP-1 activation. Collectively, our results indicate that Ror2/Fz receptor complex plays an important role in the Wnt5a/Rac1/AP-1 pathway by regulating the polymerization of Dvl. PMID:20457807

  19. Soft-x-ray-induced spin-state switching of an adsorbed Fe(II) spin-crossover complex

    NASA Astrophysics Data System (ADS)

    Kipgen, Lalminthang; Bernien, Matthias; Nickel, Fabian; Naggert, Holger; Britton, Andrew J.; Arruda, Lucas M.; Schierle, Enrico; Weschke, Eugen; Tuczek, Felix; Kuch, Wolfgang

    2017-10-01

    For probing the nature of spin-state switching in spin-crossover molecules adsorbed on surfaces, x-ray absorption spectroscopy has emerged as a powerful tool due to its high sensitivity and element selectivity in tracing even subtle electronic, magnetic, or chemical changes. However, the x-rays itself can induce a spin transition and might have unwanted influence while investigating the effect of other stimuli such as temperature or light, or of the surface, on the spin switching behaviour. Herein, we present the spin switching of an Fe(II) complex adsorbed on a highly oriented pyrolytic graphite surface with particular emphasis on the x-ray-induced switching. For a submonolayer coverage, the complex undergoes a complete and reversible temperature- and light-induced spin transition. The spin states are switched both ways by x-rays at 5 K, i.e. from the high-spin state to the low-spin state or vice versa, depending on the relative amount of each species. Furthermore, we quantify the fraction of molecules undergoing soft x-ray-induced photochemistry, a process which results in an irreversible low-spin state component, for a particular exposure time. This can be greatly suppressed by reducing the beam intensity.

  20. Zolpidem Induced Sleep-related Eating and Complex Behaviors in a Patient with Obstructive Sleep Apnea and Restless Legs Syndrome

    PubMed Central

    Park, Young-Min; Shin, Hyun-Woo

    2016-01-01

    Zolpidem-induced sleep-related complex behaviors (SRCB) with anterograde amnesia have been reported. We describe herein a case in which the development of zolpidem-induced sleep-related eating disorder (SRED) and SRCB was strongly suspected. A 71-year-old Korean male was admitted to the Department of Psychiatry due to his repetitive SRED and SRCB with anterograde amnesia, which he reported as having occurred since taking zolpidem. The patient also had restless legs syndrome (RLS) and obstructive sleep apnea (OSA). His baseline serum iron level was low at admission. Zolpidem discontinuation resulted in the immediate disappearance of his SRED, but did not affect his RLS symptoms. These symptoms rapidly improved after adding a single i.v. iron injection once daily, and so he was discharged to day-clinic treatment. These findings indicate that zolpidem can induce SRCB. Although the pathophysiology of zolpidem-induced SRED and other SRCB remains unclear, clinicians should carefully monitor for the potential induction of complex behaviors associated with zolpidem in patients with comorbid RLS or OSA. PMID:27489385

  1. Soft-x-ray-induced spin-state switching of an adsorbed Fe(II) spin-crossover complex.

    PubMed

    Kipgen, Lalminthang; Bernien, Matthias; Nickel, Fabian; Naggert, Holger; Britton, Andrew J; Arruda, Lucas M; Schierle, Enrico; Weschke, Eugen; Tuczek, Felix; Kuch, Wolfgang

    2017-10-04

    For probing the nature of spin-state switching in spin-crossover molecules adsorbed on surfaces, x-ray absorption spectroscopy has emerged as a powerful tool due to its high sensitivity and element selectivity in tracing even subtle electronic, magnetic, or chemical changes. However, the x-rays itself can induce a spin transition and might have unwanted influence while investigating the effect of other stimuli such as temperature or light, or of the surface, on the spin switching behaviour. Herein, we present the spin switching of an Fe(II) complex adsorbed on a highly oriented pyrolytic graphite surface with particular emphasis on the x-ray-induced switching. For a submonolayer coverage, the complex undergoes a complete and reversible temperature- and light-induced spin transition. The spin states are switched both ways by x-rays at 5 K, i.e. from the high-spin state to the low-spin state or vice versa, depending on the relative amount of each species. Furthermore, we quantify the fraction of molecules undergoing soft x-ray-induced photochemistry, a process which results in an irreversible low-spin state component, for a particular exposure time. This can be greatly suppressed by reducing the beam intensity.

  2. IL-15 complexes induce NK cell and T cell responses independent of type I IFN signalling during rhinovirus infection

    PubMed Central

    Jayaraman, Annabelle; Jackson, David J.; Message, Simon D.; Pearson, Rebecca M.; Aniscenko, Julia; Caramori, Gaetano; Mallia, Patrick; Papi, Alberto; Shamji, Betty; Edwards, Matt; Westwick, John; Hansel, Trevor; Stanciu, Luminita A.; Johnston, Sebastian L.; Bartlett, Nathan W.

    2014-01-01

    Rhinoviruses are the most common virus to infect man causing a range of serious respiratory diseases including exacerbations of asthma and COPD. Type I IFN and IL-15 are thought to be required for antiviral immunity however their function during rhinovirus infection in vivo is undefined. In RV infected human volunteers, IL-15 protein expression in fluid from the nasal mucosa and in bronchial biopsies was increased. In mice, RV induced type I IFN-dependent expression of IL-15 and IL-15Rα which in turn were required for NK- and CD8+ T-cell responses. Treatment with IL-15-IL-15Rα complexes (IL-15c) boosted RV-induced expression of IL-15, IL-15Rα, IFN-γ, CXCL9 and CXCL10 followed by recruitment of activated, IFN-γ expressing NK, CD8+ and CD4+ T cells. Treating infected IFNAR1−/− mice with IL-15c similarly increased IL-15, IL-15Rα, IFN-γ and CXCL9 (but not CXCL10) expression also followed by NK-, CD8+- and CD4+-T cell recruitment and activation. We have demonstrated that type I IFN induced IFN-γ and cellular immunity to RV was mediated by IL-15 and IL-15Rα. Importantly we also show that IL-15 could be induced via a type I IFN-independent mechanism by IL-15 complex treatment which in turn was sufficient to drive IFN-γ expression and lymphocyte responses. PMID:24472849

  3. Cysteine dietary supplementation reverses the decrease in mitochondrial ROS production at complex I induced by methionine restriction.

    PubMed

    Gomez, A; Gomez, J; Lopez Torres, M; Naudi, A; Mota-Martorell, N; Pamplona, R; Barja, G

    2015-06-01

    It has been described that dietary cysteine reverses many of the beneficial changes induced by methionine restriction in aging rodents. In this investigation male Wistar rats were subjected to diets low in methionine, supplemented with cysteine, or simultaneously low in methionine and supplemented with cysteine. The results obtained in liver showed that cysteine supplementation reverses the decrease in mitochondrial ROS generation induced by methionine restriction at complex I. Methionine restriction also decreased various markers of oxidative and non-oxidative stress on mitochondrial proteins which were not reversed by cysteine. Instead, cysteine supplementation also lowered protein damage in association with decreases in mTOR activation. The results of the present study add the decrease in mitochondrial ROS production to the various beneficial changes induced by methionine restriction that are reversed by cysteine dietary supplementation.

  4. Chemical Swarming: Depending on Concentration, an Amphiphilic Ruthenium Polypyridyl Complex Induces Cell Death via Two Different Mechanisms

    PubMed Central

    Siewert, Bianka; van Rixel, Vincent H. S.; van Rooden, Eva J.; Hopkins, Samantha L.; Moester, Miriam J. B.; Ariese, Freek; Siegler, Maxime A.

    2016-01-01

    Abstract The crystal structure and in vitro cytotoxicity of the amphiphilic ruthenium complex [3](PF6)2 are reported. Complex [3](PF6)2 contains a Ru−S bond that is stable in the dark in cell‐growing medium, but is photosensitive. Upon blue‐light irradiation, complex [3](PF6)2 releases the cholesterol–thioether ligand 2 and an aqua ruthenium complex [1](PF6)2. Although ligand 2 and complex [1](PF6)2 are by themselves not cytotoxic, complex [3](PF6)2 was unexpectedly found to be as cytotoxic as cisplatin in the dark, that is, with micromolar effective concentrations (EC50), against six human cancer cell lines (A375, A431, A549, MCF‐7, MDA‐MB‐231, and U87MG). Blue‐light irradiation (λ=450 nm, 6.3 J cm−2) had little influence on the cytotoxicity of [3](PF6)2 after 6 h of incubation time, but it increased the cytotoxicity of the complex by a factor 2 after longer (24 h) incubation. Exploring the unexpected biological activity of [3](PF6)2 in the dark elucidated an as‐yet unknown bifaceted mode of action that depended on concentration, and thus, on the aggregation state of the compound. At low concentration, it acts as a monomer, inserts into the membrane, and can deliver [1]2+ inside the cell upon blue‐light activation. At higher concentrations (>3–5 μm), complex [3](PF6)2 forms supramolecular aggregates that induce non‐apoptotic cell death by permeabilizing cell membranes and extracting lipids and membrane proteins. PMID:27373895

  5. Immune complex induced pancreatitis: effect of BN 52021, a selective antagonist of platelet-activating factor.

    PubMed

    Jancar, S; De Giaccobi, G; Mariano, M; Mencia-Huerta, J M; Sirois, P; Braquet, P

    1988-05-01

    A model of acute pancreatitis was developed by induction of an immune complex mediated hypersensitivity reaction in rats. This acute inflammatory reaction was characterized by intense interstitial edema, neutrophil infiltration and margination, and congestion of small vessels whereas serum amylase levels remained unchanged. Microscopic examination of the pancreatic tissue revealed the presence of immune complex deposition around blood vessels and ducts. Vascular permeability, as measured by Evan's blue extravasation increased by 6 fold. In addition, circulating platelets dropped to 50% of normal levels. Injection of platelet-activating factor (PAF) in the peritoneal cavity of rats also produced an increase in vascular permeability in the pancreas. A selective PAF-antagonist, BN 52021 reduced by approximately 50% the increase in vascular permeability produced by immune complex in the pancreas as well as that elicited by intraperitoneal injection of PAF. These results suggest that PAF plays a role in the pathological manifestations of immune complex-mediated pancreatitis.

  6. Leishmania pifanoi Proteoglycolipid Complex P8 Induces Macrophage Cytokine Production through Toll-Like Receptor 4▿

    PubMed Central

    Whitaker, Shanta M.; Colmenares, Maria; Pestana, Karen Goldsmith; McMahon-Pratt, Diane

    2008-01-01

    The P8 proteoglycolipid complex (P8 PGLC) is a glyconjugate expressed by Leishmania mexicana complex parasites. We previously have shown that vaccination with P8 PGLC provides protection against cutaneous leishmaniasis in susceptible BALB/c mice. However, the biological importance of this complex remains unknown. Here we show that P8 PGLC localizes to the surface of Leishmania pifanoi amastigotes and that upon exposure to macrophages, P8 PGLC binds and induces inflammatory cytokine and chemokine mRNAs such as tumor necrosis factor alpha and RANTES early after stimulation. Our studies indicate that cytokine and chemokine induction is dependent upon Toll-like receptor 4 (TLR4). Interestingly, key inflammatory cytokines and chemokines (such as interleukin-6 [IL-6], macrophage inflammatory protein 1β, and beta interferon [IFN-β]) that can be induced through TLR4 activation were not induced or only slightly upregulated by P8 PGLC. Activation by P8 PGLC does not occur in the presence of TLR4 alone and requires both CD14 and myeloid differentiation protein 2 for signaling; this requirement may be responsible for the limited TLR4 response. This is the first characterization of a TLR4 ligand for Leishmania. In vitro experiments indicate that L. pifanoi amastigotes induce lower levels of cytokines in macrophages in the absence of TLR4; however, notably higher IL-10/IFN-γ ratios were found for TLR4-deficient mice than for BALB/c mice. Further, increased levels of parasites persist in BALB/c mice deficient in TLR4. Taken together, these results suggest that TLR4 recognition of Leishmania pifanoi amastigotes is important for the control of infection and that this is mediated, in part, through the P8 PGLC. PMID:18299340

  7. Demonstration of Heterogeneous Parahydrogen Induced Polarization Using Hyperpolarized Agent Migration from Dissolved Rh(I) Complex to Gas Phase

    PubMed Central

    2015-01-01

    Parahydrogen-induced polarization (PHIP) was used to demonstrate the concept that highly polarized, catalyst-free fluids can be obtained in a catalysis-free regime using a chemical reaction with molecular addition of parahydrogen to a water-soluble Rh(I) complex carrying a payload of compound with unsaturated (C=C) bonds. Hydrogenation of norbornadiene leads to formation of norbornene, which is eliminated from the Rh(I) complex and, therefore, leaves the aqueous phase and becomes a gaseous hyperpolarized molecule. The Rh(I) metal complex resides in the original liquid phase, while the product of hydrogen addition is found exclusively in the gaseous phase based on the affinity. Hyperpolarized norbornene 1H NMR signals observed in situ were enhanced by a factor of approximately 10 000 at a static field of 47.5 mT. High-resolution 1H NMR at a field of 9.4 T was used for ex situ detection of hyperpolarized norbornene in the gaseous phase, where a signal enhancement factor of approximately 160 was observed. This concept of stoichiometric as opposed to purely catalytic use of PHIP-available complexes with an unsaturated payload precursor molecule can be extended to other contrast agents for both homogeneous and heterogeneous PHIP. The Rh(I) complex was employed in aqueous medium suitable for production of hyperpolarized contrast agents for biomedical use. Detection of PHIP hyperpolarized gas by low-field NMR is demonstrated here for the first time. PMID:24918975

  8. Demonstration of heterogeneous parahydrogen induced polarization using hyperpolarized agent migration from dissolved Rh(I) complex to gas phase.

    PubMed

    Kovtunov, Kirill V; Barskiy, Danila A; Shchepin, Roman V; Coffey, Aaron M; Waddell, Kevin W; Koptyug, Igor V; Chekmenev, Eduard Y

    2014-07-01

    Parahydrogen-induced polarization (PHIP) was used to demonstrate the concept that highly polarized, catalyst-free fluids can be obtained in a catalysis-free regime using a chemical reaction with molecular addition of parahydrogen to a water-soluble Rh(I) complex carrying a payload of compound with unsaturated (C═C) bonds. Hydrogenation of norbornadiene leads to formation of norbornene, which is eliminated from the Rh(I) complex and, therefore, leaves the aqueous phase and becomes a gaseous hyperpolarized molecule. The Rh(I) metal complex resides in the original liquid phase, while the product of hydrogen addition is found exclusively in the gaseous phase based on the affinity. Hyperpolarized norbornene (1)H NMR signals observed in situ were enhanced by a factor of approximately 10,000 at a static field of 47.5 mT. High-resolution (1)H NMR at a field of 9.4 T was used for ex situ detection of hyperpolarized norbornene in the gaseous phase, where a signal enhancement factor of approximately 160 was observed. This concept of stoichiometric as opposed to purely catalytic use of PHIP-available complexes with an unsaturated payload precursor molecule can be extended to other contrast agents for both homogeneous and heterogeneous PHIP. The Rh(I) complex was employed in aqueous medium suitable for production of hyperpolarized contrast agents for biomedical use. Detection of PHIP hyperpolarized gas by low-field NMR is demonstrated here for the first time.

  9. Ru-TAP complexes and DNA: from photo-induced electron transfer to gene photo-silencing in living cells.

    PubMed

    Marcélis, Lionel; Moucheron, Cécile; Kirsch-De Mesmaeker, Andrée

    2013-07-28

    In this review, examples of applications of the photo-induced electron transfer (PET) process between photo-oxidizing Ru-TAP (TAP = 1,4,5,8-tetraazaphenanthrene) complexes and DNA or oligodeoxynucleotides (ODNs) are discussed. Applications using a free Ru-TAP complex (not chemically anchored to an ODN) are first considered. In this case, the PET gives rise to the production of an irreversible adduct of the Ru complex on a guanine (G) base, with formation of a covalent bond. After absorption of a second photon, this adduct can generate a bi-adduct, whereby the same complex binds to a second G moiety. These bi-adduct formations are responsible for photo-cross-linking between two strands of a duplex, each containing a G base, or between two G moieties of a single strand such as a telomeric sequence, as demonstrated by polyacrylamide gel electrophoresis analyses or mass spectrometry. Scanning force microscopy also allows the detection of such photobridgings with plasmid DNA. Other applications, for example with Ru-ODN, i.e. ODN with chemically anchored Ru-TAP complexes, are also discussed. It is shown that such Ru-ODN probes containing a G base in their own sequences are capable of photo-cross-linking selectively with their targeted complementary sequences, and, in the absence of such targets, they self-photo-inhibit. Such processes are applied successfully in gene photo-silencing of human papillomavirus cancer cells.

  10. Investigating anthropically induced effects in streamflow dynamics by using permutation entropy and statistical complexity analysis: A case study

    NASA Astrophysics Data System (ADS)

    Stosic, Tatijana; Telesca, Luciano; de Souza Ferreira, Diego Vicente; Stosic, Borko

    2016-09-01

    In this paper we investigated the influence of the construction of Sobradinho dam on daily streamflow of São Francisco river, Brazil, using permutation entropy method. We analyzed a long daily streamflow time series recorded during the period 1929-2010 encompassing the construction of Sobradinho dam between 1973 and 1979. We found that the original and deseasonalized streamflow time series are characterized by clear different complexity and entropy patterns before the construction of the dam; while, after it, their degree of randomness and complexity are nearly identical. Furthermore, investigating the oscillatory behavior of the entropy and complexity time variation, the periodicity of 3.67 years was identified, identical to one of the main periodicities revealed in the Multivariate ENSO Index (MEI). Such finding confirms the close relationship between streamflow dynamics and ENSO phenomenon. After the construction of the dam, the time variation of entropy and complexity changes almost abruptly toward stochastic regime characterized by higher entropy and lower complexity. Although the dam operations could be considered responsible for such abrupt dynamical change in the streamflow, we cannot exclude the presence of a co-induced ENSO effect; in fact, the analysis of MEI shows a strikingly similar and concomitant change in the long-term trend, identified by using the singular spectrum analysis.

  11. Resistance to topoisomerase cleavage complex induced lethality in Escherichia coli via titration of transcription regulators PurR and FNR

    PubMed Central

    2011-01-01

    Background Accumulation of gyrase cleavage complex in Escherichia coli from the action of quinolone antibiotics induces an oxidative damage cell death pathway. The oxidative cell death pathway has also been shown to be involved in the lethality following accumulation of cleavage complex formed by bacterial topoisomerase I with mutations that result in defective DNA religation. Methods A high copy number plasmid clone spanning the upp-purMN region was isolated from screening of an E. coli genomic library and analyzed for conferring increased survival rates following accumulation of mutant topoisomerase I proteins as well as treatment with the gyrase inhibitor norfloxacin. Results Analysis of the intergenic region upstream of purM demonstrated a novel mechanism of resistance to the covalent protein-DNA cleavage complex through titration of the cellular transcription regulators FNR and PurR responsible for oxygen sensing and repression of purine nucleotide synthesis respectively. Addition of adenine to defined growth medium had similar protective effect for survival following accumulation of topoisomerase cleavage complex, suggesting that increase in purine level can protect against cell death. Conclusions Perturbation of the global regulator FNR and PurR functions as well as increase in purine nucleotide availability could affect the oxidative damage cell death pathway initiated by topoisomerase cleavage complex. PMID:22152010

  12. Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I.

    PubMed

    Zhang, Bo; Chu, Wei; Wei, Peng; Liu, Ying; Wei, Taotao

    2015-12-01

    Xanthohumol is a prenylflavonoid extracted from hops (Humulus lupulus). It possesses anti-cancer and anti-inflammatory activities in vitro and in vivo, and offers therapeutic benefits for treatment of metabolic syndromes. However, the precise mechanisms underlying its pharmacological effects remain to be elucidated, together with its cellular target. Here, we provide evidence that xanthohumol directly interacts with the mitochondrial electron transfer chain complex I (NADH dehydrogenase), inhibits the oxidative phosphorylation, triggers the production of reactive oxygen species, and induces apoptosis. In addition, we show that as a result of the inhibition of the mitochondrial oxidative phosphorylation, xanthohumol exposure causes a rapid decrease of mitochondrial transmembrane potential. Furthermore, we showed that xanthohumol up-regulates the glycolytic capacity in cells, and thus compensates cellular ATP generation. Dissection of the multiple steps of aerobic respiration by extracellular flux assays revealed that xanthohumol specifically inhibits the activity of mitochondrial complex I, but had little effect on that of complex II, III and IV. Inhibition of complex I by xanthohumol caused the overproduction of reactive oxygen species, which are responsible for the induction of apoptosis in cancer cells. We also found that isoxanthohumol, the structural isomer of xanthohumol, is inactive to cells, suggesting that the reactive 2-hydroxyl group of xanthohumol is crucial for its targeting to the mitochondrial complex I. Together, the remodeling of cell metabolism revealed here has therapeutic potential for the use of xanthohumol.

  13. Protein adsorption induced bridging flocculation: the dominant entropic pathway for nano-bio complexation

    NASA Astrophysics Data System (ADS)

    Eren, Necla Mine; Narsimhan, Ganesan; Campanella, Osvaldo H.

    2016-02-01

    Lysozyme-silica interactions and the resulting complexation were investigated through adsorption isotherms, dynamic and electrophoretic light scattering, circular dichroism (CD), and isothermal titration calorimetry (ITC). A thermodynamic analysis of ITC data revealed the existence of two binding modes during protein-nanoparticle complexation. Both binding modes are driven by the cooperation of a favorable enthalpy in the presence of a dominating entropy gain. The first binding mode has a higher binding affinity, a lower equilibrium stoichiometry and is driven by a higher entropic contribution compared to the second type. The observed favorable enthalpy gain in both modes is attributed to non-covalent complexation whereas the entropy gain is associated with the re-organization of the silica surface including not only the solvent and counter ion release, but also the protein's conformational changes. Possible mechanisms are proposed to explain non-covalent complexations for each binding mode by relating the changes in the zeta potential and hydrodynamic radius to the obtained adsorption isotherms and calorimetry profile. Based on all these findings, it is proposed that lysozyme adsorption on nano-silica is the result of protein-nanoparticle and protein-protein interactions that further leads to spontaneous, non-directional and random complexation of silica through bridging flocculation.Lysozyme-silica interactions and the resulting complexation were investigated through adsorption isotherms, dynamic and electrophoretic light scattering, circular dichroism (CD), and isothermal titration calorimetry (ITC). A thermodynamic analysis of ITC data revealed the existence of two binding modes during protein-nanoparticle complexation. Both binding modes are driven by the cooperation of a favorable enthalpy in the presence of a dominating entropy gain. The first binding mode has a higher binding affinity, a lower equilibrium stoichiometry and is driven by a higher entropic

  14. Experimental elucidation of vacancy complexes associated with hydrogen ion-induced splitting of bulk GaN

    SciTech Connect

    Moutanabbir, O.; Scholz, R.; Goesele, U.; Guittoum, A.; Jungmann, M.; Butterling, M.; Krause-Rehberg, R.; Anwand, W.; Egger, W.; Sperr, P.

    2010-03-15

    We present a detailed study of the thermal evolution of H ion-induced vacancy related complexes and voids in bulk GaN implanted under ion-cut conditions. By using transmission electron microscopy, we found that the damage band in as-implanted GaN is decorated with a high density of nanobubbles of approx1-2 nm in diameter. Variable energy Doppler broadening spectroscopy showed that this band contains vacancy clusters and voids. In addition to vacancy clusters, the presence of V{sub Ga}, V{sub Ga}-H{sub 2}, and V{sub Ga}V{sub N} complexes was evidenced by pulsed low-energy positron lifetime spectroscopy. Subtle changes upon annealing in these vacancy complexes were also investigated. As a general trend, a growth in open-volume defects is detected in parallel to an increase in both size and density of nanobubbles. The observed vacancy complexes appear to be stable during annealing. However, for temperatures above 450 deg. C, unusually large lifetimes were measured. These lifetimes are attributed to the formation of positronium in GaN. Since the formation of positronium is not possible in a dense semiconductor, our finding demonstrates the presence of sufficiently large open-volume defects in this temperature range. Based on the Tao-Eldrup model, the average lattice opening during thermal annealing was quantified. We found that a void diameter of 0.4 nm is induced by annealing at 600 deg. C. The role of these complexes in the subsurface microcracking is discussed.

  15. Collision-Induced Infrared Absorption by Collisional Complexes in Dense Hydrogen-Helium Gas Mixtures at Thousands of Kelvin

    NASA Astrophysics Data System (ADS)

    Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.

    2011-06-01

    The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of the outer planets and cool stars. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 Xiaoping Li, Katharine L. C. Hunt, Fei Wang, Martin Abel, and Lothar Frommhold, "Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin", International Journal of Spectroscopy, vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, "Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin," J. Phys. Chem. A, published online, DOI: 10.1021/jp109441f L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010

  16. In vivo and in vitro measurements of complex-type chromosomal exchanges induced by heavy ions

    NASA Astrophysics Data System (ADS)

    George, K.; Durante, M.; Wu, H.; Willingham, V.; Cucinotta, F. A.

    Heavy ions are more efficient in producing complex-type chromosome exchanges than sparsely ionizing radiation, and this can potentially be used as a biomarker of radiation quality. We measured the induction of complex-type chromosomal aberrations in human peripheral blood lymphocytes exposed in vitro to accelerated H-, He-, C-, Ar-, Fe- and Au-ions in the LET range of approximately 4-1400 keV/μm Chromosomes were analyzed either at the first post-irradiation mitosis, or in interphase, following premature condensation by phosphatase inhibitors. Selected chromosomes were then visualized after FISH-painting. The dose-response curve for the induction of complex-type exchanges by heavy ions was linear in the dose-range 0.2-1.5 Gym while γ-rays did not produce a significant increase in the yield of complex rearrangements in this dose range. The yield of complex aberrations after 1 Gy of heavy ions increased up to an LET around 100 keV/μm and then declined at higher LET values. When mitotic cells were analyzed, the frequency of complex rearrangements after 1 Gy was about 10 times higher for Ar- or Fe-ions (the most effective ions, with LET around 100 keV/μm than for 250 MeV protons, and values were about 35 times higher in prematurely condensed chromosomes. These results suggest that complex rearrangements may be detected in astronauts' blood lymphocytes after long-term space flight, because crews are exposed to HZE particles from galactic cosmic radiation. However, in a cytogenetic study of ten astronauts after long-term missions on the Mir or International Space Station, we found a very low frequency of complex rearrangements, and a significant post-flight increase was detected in only one out of the ten crewmembers. It appears that the use of complex-type exchanges as biomarker of radiation quality in vivo after low-dose chronic exposure in mixed radiation fields is hampered by statistical uncertainties.

  17. Aggregation of soy protein-isoflavone complexes and gel formation induced by glucono-δ-lactone in soymilk

    PubMed Central

    Hsia, Sheng-Yang; Hsiao, Yu-Hsuan; Li, Wen-Tai; Hsieh, Jung-Feng

    2016-01-01

    This study investigated the glucono-δ-lactone (GDL)-induced aggregation of isoflavones and soy proteins in soymilk. High-performance liquid chromatography (HPLC) analysis indicated that isoflavones mixed with β-conglycinin (7S) and glycinin (11S) proteins formed 7S-isoflavone and 11S-isoflavone complexes in soymilk supernatant fraction (SSF). Most of the soy protein-isoflavone complexes then precipitated into the soymilk pellet fraction (SPF) following the addition of 4 mM GDL, whereupon the pH value of the soymilk dropped from 6.6 to 5.9. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and HPLC analysis suggest that the addition of 4 mM GDL induced the aggregation of most 7S (α’, α and β subunits), 11S acidic and 11S basic proteins as well as isoflavones, including most aglycones, including daidzein, glycitein, genistein and a portion of glucosides, including daidzin, glycitin, genistin, malonyldaidzin and malonylgenistin. These results provide an important reference pertaining to the effects of GDL on the aggregation of soy protein-isoflavone complexes and could benefit future research regarding the production of tofu from soymilk. PMID:27760990

  18. Mitochondrial reactive oxygen species production and respiratory complex activity in rats with pressure overload-induced heart failure

    PubMed Central

    Schwarzer, Michael; Osterholt, Moritz; Lunkenbein, Anne; Schrepper, Andrea; Amorim, Paulo; Doenst, Torsten

    2014-01-01

    We investigated the impact of cardiac reactive oxygen species (ROS) during the development of pressure overload-induced heart failure. We used our previously described rat model where transverse aortic constriction (TAC) induces compensated hypertrophy after 2 weeks, heart failure with preserved ejection fraction at 6 and 10 weeks, and heart failure with systolic dysfunction after 20 weeks. We measured mitochondrial ROS production rates, ROS damage and assessed the therapeutic potential of in vivo antioxidant therapies. In compensated hypertrophy (2 weeks of TAC) ROS production rates were normal at both mitochondrial ROS production sites (complexes I and III). Complex I ROS production rates increased with the appearance of diastolic dysfunction (6 weeks of TAC) and remained high thereafter. Surprisingly, maximal ROS production at complex III peaked at 6 weeks of pressure overload. Mitochondrial respiratory capacity (state 3 respiration) was elevated 2 and 6 weeks after TAC, decreased after this point and was significantly impaired at 20 weeks, when contractile function was also impaired and ROS damage was found with increased hydroxynonenal. Treatment with the ROS scavenger α-phenyl-N-tert-butyl nitrone or the uncoupling agent dinitrophenol significantly reduced ROS production rates at 6 weeks. Despite the decline in ROS production capacity, no differences in contractile function between treated and untreated animals were observed. Increased ROS production occurs early in the development of heart failure with a peak at the onset of diastolic dysfunction. However, ROS production may not be related to the onset of contractile dysfunction. PMID:24951621

  19. Fast cleavage of a diselenide induced by a platinum(II)-methionine complex and its biological implications.

    PubMed

    Liu, Qin; Wang, Xiaoyong; Yang, Xiaoliang; Liang, Xiao; Guo, Zijian

    2010-11-01

    Platinum-based anticancer drugs such as cisplatin induce increased oxidative stress and oxidative damage of DNA and other cellular components, while selenium plays an important role in the antioxidant defense system. In this study, the interaction between a platinum(II) methionine (Met) complex [Pt(Met)Cl(2)] and a diselenide compound selenocystine [(Sec)(2)] was studied by electrospray ionization mass spectrometry, high performance liquid chromatography mass spectrometry, and (1)H NMR spectroscopy. The results demonstrate that the diselenide bond in (Sec)(2) can readily and quickly be cleaved by the platinum complex. Formation of the selenocysteine (Sec) bridged dinuclear complex [Pt(2)(Met-S,N)(2)(μ-Sec-Se,Cl)](3+) and Sec chelated species [Pt(Met-S,N)(Sec-Se,N)](2+) was identified at neutral and acidic media, which seems to result from the intermediate [Pt(Met-S,N)(Sec-Se)Cl](+). An accelerated formation of S-Se and S-S bonds was also observed when (Sec)(2) reacted with excessive glutathione in the presence of [Pt(Met)Cl(2)]. These results imply that the mechanism of activity and toxicity of platinum drugs may be related to their fast reaction with seleno-containing biomolecules, and the chemoprotective property of selenium agents against cisplatin-induced toxicity could also be connected with such reactions.

  20. The biphosphinic paladacycle complex induces melanoma cell death through lysosomal-mitochondrial axis modulation and impaired autophagy.

    PubMed

    Gigli, Rafael; Pereira, Gustavo J S; Antunes, Fernanda; Bechara, Alexandre; Garcia, Daniel M; Spindola, Daniel G; Jasiulionis, Mirian G; Caires, Antonio C F; Smaili, Soraya S; Bincoletto, Claudia

    2016-01-01

    Recently, palladium complexes have been extensively studied as cyclization of these complexes by cyclometallation reactions increased their stability making them promising antitumor compounds. In this study, we have investigated apoptosis induced by the Biphosphinic Paladacycle Complex (BPC11) and possible cross talk between apoptosis and autophagy in cell line models of metastatic (Tm5) and non-metastatic (4C11-) melanoma. The BPC11-induced cell death in melanoma involved the lysosomal-mitochondrial axis, which is characterized by LMP, CatB activation and increased Bax protein levels following its translocation to mitochondria. Mitochondrial hyperpolarization, followed by membrane potential dissipation and cleavage of caspase-3, also resulted in cell death after 24 h of incubation. We also found that BPC11-mediated LC3II formation and increased p62 protein levels, suggesting blocked autophagy, probably due to LMP. Interestingly, the treatment of Tm5 and 4C11(-) cells with 3-methyladenine (3-MA), an inhibitor of the initial stage of autophagy, potentiated the effects of BPC11. We conclude that BPC11 is an anti-melanoma agent and that autophagy may be acting as a mechanism of melanoma cells resistance. Also, these data highlight the importance of studies involving autophagy and apoptosis during pre-clinical studies of new drugs with anticancer properties.

  1. Surface-induced dissociation of peptides and protein complexes in a quadrupole/time-of-flight mass spectrometer.

    PubMed

    Galhena, Asiri S; Dagan, Shai; Jones, Christopher M; Beardsley, Richard L; Wysocki, Vicki H

    2008-03-01

    A novel in-line surface-induced dissociation (SID) device was designed and implemented in a commercial QTOF instrument (Waters/Micromass QTOF II). This new setup allows efficient SID for a broad range of molecules. It also allows direct comparison with conventional collision-induced dissociation (CID) on the same instrument, taking advantage of the characteristics of QTOF instrumentation, including extended mass range, improved sensitivity, and better resolution compared with quadrupole analyzers and ion traps. Various peptides and a noncovalent protein complex have been electrosprayed and analyzed with the new SID setup. Here we present SID of leucine enkephalin, fibrinopeptide A, melittin, insulin chain-B, and a noncovalent protein complex from wheat, heat shock protein 16.9. The SID spectra were also compared to CID spectra. With the SID setup installed, ion transmission proved to be efficient. SID fragmentation patterns of peptides are, in general, similar to CID, with differences in the relative intensities of some peaks such as immonium ions, backbone cleavage b- versus y-type ions, and y- versus y-NH3 ions, suggesting enhanced accessibility to high-energy/secondary fragmentation channels with SID. Furthermore, these results demonstrate that the in-line SID setup is a valid substitute for CID, with potential advantages for activation of singly/multiply charged peptides and larger species such as noncovalent protein complexes.

  2. Intranasal Administration of Novel Chitosan Nanoparticle/DNA Complexes Induces Antibody Response to Hepatitis B Surface Antigen in Mice.

    PubMed

    Lebre, F; Borchard, G; Faneca, H; Pedroso de Lima, M C; Borges, O

    2016-02-01

    The generation of strong pathogen-specific immune responses at mucosal surfaces where hepatitis B virus (HBV) transmission can occur is still a major challenge. Therefore, new vaccines are urgently needed in order to overcome the limitations of existing parenteral ones. Recent studies show that this may be achieved by intranasal immunization. Chitosan has gained attention as a nonviral gene delivery system; however, its use in vivo is limited due to low transfection efficiency mostly related to strong interaction between the negatively charged DNA and the positively charged chitosan. We hypothesize that the adsorption of negatively charged human serum albumin (HSA) onto the surface of the chitosan particles would facilitate the intracellular release of DNA, enhancing transfection activity. Here, we demonstrate that a robust systemic immune response was induced after vaccination using HSA-loaded chitosan nanoparticle/DNA (HSA-CH NP/DNA) complexes. Furthermore, intranasal immunization with HSA-CH NP/DNA complexes induced HBV specific IgA in nasal and vaginal secretions; no systemic or mucosal responses were detected after immunization with DNA alone. Overall, our results show that chitosan-based DNA complexes elicited both humoral and mucosal immune response, making them an interesting and valuable gene delivery system for nasal vaccination against HBV.

  3. Aggregation of soy protein-isoflavone complexes and gel formation induced by glucono-δ-lactone in soymilk

    NASA Astrophysics Data System (ADS)

    Hsia, Sheng-Yang; Hsiao, Yu-Hsuan; Li, Wen-Tai; Hsieh, Jung-Feng

    2016-10-01

    This study investigated the glucono-δ-lactone (GDL)-induced aggregation of isoflavones and soy proteins in soymilk. High-performance liquid chromatography (HPLC) analysis indicated that isoflavones mixed with β-conglycinin (7S) and glycinin (11S) proteins formed 7S-isoflavone and 11S-isoflavone complexes in soymilk supernatant fraction (SSF). Most of the soy protein-isoflavone complexes then precipitated into the soymilk pellet fraction (SPF) following the addition of 4 mM GDL, whereupon the pH value of the soymilk dropped from 6.6 to 5.9. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and HPLC analysis suggest that the addition of 4 mM GDL induced the aggregation of most 7S (α’, α and β subunits), 11S acidic and 11S basic proteins as well as isoflavones, including most aglycones, including daidzein, glycitein, genistein and a portion of glucosides, including daidzin, glycitin, genistin, malonyldaidzin and malonylgenistin. These results provide an important reference pertaining to the effects of GDL on the aggregation of soy protein-isoflavone complexes and could benefit future research regarding the production of tofu from soymilk.

  4. Ruthenium (II) complexes interact with human serum albumin and induce apoptosis of tumor cells.

    PubMed

    Sun, Jing; Huang, Yongchao; Zheng, Chuping; Zhou, Yanhui; Liu, Ying; Liu, Jie

    2015-02-01

    The interaction of ruthenium (II) complex [Ru(bpy)2(mal)](2+) (RBM) and [Ru(phen)2(mal)](2+) (RPM) (bpy = 2, 2-bipyridine, phen = 1,10-phenanthroline, mal = malonyl carboxylate) with human serum albumin (HSA) has been investigated by using fluorescence, UV absorption and circular dichroism (CD) spectroscopy approaches. A strong fluorescence quenching reaction of complexes to HSA was observed and the quenching mechanism was suggested as static quenching according to the Stern-Volmer (S-V) equation. The number of binding sites n and observed binding constant Kb was measured by fluorescence quenching method. The thermodynamic parameters ΔH, ΔS, and ΔG at different temperatures were calculated and the results indicate the binding reaction is mainly entropy-driven and Vander Waals force played a major role in the reaction. The result of CD showed that the secondary structure of HSA molecules was changed in the presence of the ruthenium (II) complexes. Furthermore, the cell viability of ruthenium (II) complexes was evaluated by MTT and complex RPM has shown significant higher anticancer potency than RBM against all the cell lines screened. RPM showed a significant antitumor activity through induction of apoptosis in A549 cells.

  5. A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation

    PubMed Central

    Molleston, Jerome M.; Sabin, Leah R.; Moy, Ryan H.; Menghani, Sanjay V.; Rausch, Keiko; Gordesky-Gold, Beth; Hopkins, Kaycie C.; Zhou, Rui; Jensen, Torben Heick; Wilusz, Jeremy E.; Cherry, Sara

    2016-01-01

    RNA degradation is tightly regulated to selectively target aberrant RNAs, including viral RNA, but this regulation is incompletely understood. Through RNAi screening in Drosophila cells, we identified the 3′-to-5′ RNA exosome and two components of the exosome cofactor TRAMP (Trf4/5–Air1/2–Mtr4 polyadenylation) complex, dMtr4 and dZcchc7, as antiviral against a panel of RNA viruses. We extended our studies to human orthologs and found that the exosome as well as TRAMP components hMTR4 and hZCCHC7 are antiviral. While hMTR4 and hZCCHC7 are normally nuclear, infection by cytoplasmic RNA viruses induces their export, forming a cytoplasmic complex that specifically recognizes and induces degradation of viral mRNAs. Furthermore, the 3′ untranslated region (UTR) of bunyaviral mRNA is sufficient to confer virus-induced exosomal degradation. Altogether, our results reveal that signals from viral infection repurpose TRAMP components to a cytoplasmic surveillance role where they selectively engage viral RNAs for degradation to restrict a broad range of viruses. PMID:27474443

  6. Deoxynivanelol and Fumonisin, Alone or in Combination, Induce Changes on Intestinal Junction Complexes and in E-Cadherin Expression

    PubMed Central

    Basso, Karina; Gomes, Fernando; Loureiro Bracarense, Ana Paula

    2013-01-01

    Fusariotoxins such as fumonisin B1 (FB1) and deoxynivalenol (DON) cause deleterious effects on the intestine of pigs. The aim of this study was to evaluate the effect of these mycotoxins, alone and in combination, on jejunal explants from piglets, using histological, immunohistochemical and ultrastructural assays. Five 24-day old pigs were used for sampling the explants. Forty-eight explants were sampled from each animal. Explants were incubated for 4 hours in culture medium and medium containing FB1 (100 µM), DON (10 µM) and both mycotoxins (100 µM FB1 plus 10 µM DON). Exposure to all treatments induced a significant decrease in the normal intestinal morphology and in the number of goblet cells, which were more severe in explants exposed to DON and both mycotoxins. A significant reduction in villus height occurred in groups treated with DON and with co-contamination. Expression of E-cadherin was significantly reduced in explants exposed to FB1 (40%), DON (93%) and FB1 plus DON (100%). The ultrastructural assay showed increased intercellular spaces and no junction complexes on enterocytes exposed to mycotoxins. The present data indicate that FB1 and DON induce changes in cell junction complexes that could contribute to increase paracellular permeability. The ex vivo model was adequate for assessing intestinal toxicity induced by exposure of isolated or associated concentrations of 100 µM of FB1 and 10 µM of DON. PMID:24287571

  7. Catecholamine-induced lipolysis causes mTOR complex dissociation and inhibits glucose uptake in adipocytes

    PubMed Central

    Mullins, Garrett R.; Wang, Lifu; Raje, Vidisha; Sherwood, Samantha G.; Grande, Rebecca C.; Boroda, Salome; Eaton, James M.; Blancquaert, Sara; Roger, Pierre P.; Leitinger, Norbert; Harris, Thurl E.

    2014-01-01

    Anabolic and catabolic signaling oppose one another in adipose tissue to maintain cellular and organismal homeostasis, but these pathways are often dysregulated in metabolic disorders. Although it has long been established that stimulation of the β-adrenergic receptor inhibits insulin-stimulated glucose uptake in adipocytes, the mechanism has remained unclear. Here we report that β-adrenergic–mediated inhibition of glucose uptake requires lipolysis. We also show that lipolysis suppresses glucose uptake by inhibiting the mammalian target of rapamycin (mTOR) complexes 1 and 2 through complex dissociation. In addition, we show that products of lipolysis inhibit mTOR through complex dissociation in vitro. These findings reveal a previously unrecognized intracellular signaling mechanism whereby lipolysis blocks the phosphoinositide 3-kinase–Akt–mTOR pathway, resulting in decreased glucose uptake. This previously unidentified mechanism of mTOR regulation likely contributes to the development of insulin resistance. PMID:25422441

  8. Catecholamine-induced lipolysis causes mTOR complex dissociation and inhibits glucose uptake in adipocytes.

    PubMed

    Mullins, Garrett R; Wang, Lifu; Raje, Vidisha; Sherwood, Samantha G; Grande, Rebecca C; Boroda, Salome; Eaton, James M; Blancquaert, Sara; Roger, Pierre P; Leitinger, Norbert; Harris, Thurl E

    2014-12-09

    Anabolic and catabolic signaling oppose one another in adipose tissue to maintain cellular and organismal homeostasis, but these pathways are often dysregulated in metabolic disorders. Although it has long been established that stimulation of the β-adrenergic receptor inhibits insulin-stimulated glucose uptake in adipocytes, the mechanism has remained unclear. Here we report that β-adrenergic-mediated inhibition of glucose uptake requires lipolysis. We also show that lipolysis suppresses glucose uptake by inhibiting the mammalian target of rapamycin (mTOR) complexes 1 and 2 through complex dissociation. In addition, we show that products of lipolysis inhibit mTOR through complex dissociation in vitro. These findings reveal a previously unrecognized intracellular signaling mechanism whereby lipolysis blocks the phosphoinositide 3-kinase-Akt-mTOR pathway, resulting in decreased glucose uptake. This previously unidentified mechanism of mTOR regulation likely contributes to the development of insulin resistance.

  9. Cooperation-induced temporal complexity in networks of pulse-coupled units

    NASA Astrophysics Data System (ADS)

    Geneston, Elvis; Grigolini, Paolo

    2012-02-01

    We study a network of stochastic pulse-coupled units generating bursts with the same size distribution as the neuronal avalanches in mature cultured neurons, recently revealed by the experimental observation. We prove that in addition to this form of complexity this model yields a form of phase transition generating also temporal complexity. This means that the distance from two consecutive bursts fits the prescription of a Mittag-Leffler (ML) function renewal theory. There exists a critical value of the cooperation parameter at which this description applies to the whole time regime. By increasing the cooperation parameter the ML theory breaks down and the sequence of bursts tend to become periodic with the same intensity. We make the conjecture that the analysis of this model may shed light into the theoretical foundation of neuronal burst leaders and that the recently discovered principle of complexity management may be conveniently applied to the neuro-physiological processes that are properly described by this model.

  10. [Light-induced oxygen uptake by chromatophores and subchromatophore pigment-protein complexes of Rhodospirillum rubrum].

    PubMed

    Remennikov, V G; Samuilov, V D

    1977-11-01

    Chromatophores of R. rubrum incubated with electron donors, e. g. reduced diaminodurene, TMPD, phenazine methosulphate, cytochrome c or ferrocyanide, are able to catalyze O2 uptake upon illumination. This process is inhibited by o-phenanthroline as well as upon extraction of quinones from chromatophores, but not by antimycin A, rotenone or CN-. The O2 uptake sensitive to the action of o-phenanthroline is also observed in the illuminated subchromatophore P870 reaction center complexes and reaction center plus light-harvesting antenna complexes incubated with electron donors, quinones and detergents. The data obtained are in agreement with a suggestion that the photooxidase activity of chromatophores and subchromatophore pigment-protein complexes is due to the interaction of photoreduced ubiquinone with O2.

  11. DNA induces conformational changes in a recombinant human minichromosome maintenance complex.

    PubMed

    Hesketh, Emma L; Parker-Manuel, Richard P; Chaban, Yuriy; Satti, Rabab; Coverley, Dawn; Orlova, Elena V; Chong, James P J

    2015-03-20

    ATP-dependent DNA unwinding activity has been demonstrated for recombinant archaeal homohexameric minichromosome maintenance (MCM) complexes and their yeast heterohexameric counterparts, but in higher eukaryotes such as Drosophila, MCM-associated DNA helicase activity has been observed only in the context of a co-purified Cdc45-MCM-GINS complex. Here, we describe the production of the recombinant human MCM (hMCM) complex in Escherichia coli. This protein displays ATP hydrolysis activity and is capable of unwinding duplex DNA. Using single-particle asymmetric EM reconstruction, we demonstrate that recombinant hMCM forms a hexamer that undergoes a conformational change when bound to DNA. Recombinant hMCM produced without post-translational modifications is functional in vitro and provides an important tool for biochemical reconstitution of the human replicative helicase.

  12. Lithium bromide-induced structural changes in a nickel bis-alkoxide complex.

    PubMed

    Ichiokai, Hiromi; Vicic, David A

    2013-01-01

    The bis-alkoxide [(DEAMP)2Ni] (1, DEAMP = 1-(diethylamino)-2-methylpropan-2-olate) was found to react with trace amounts of lithium bromide to afford the bis-LiBr adduct 2, in which the oxygens of the DEAMP ligand coordinate to lithium to form a chiral-at-metal complex. This new complex is five-coordinate at nickel, and contains nickel and oxygen atoms which are all chiral. One diastereomer precipitates from pentane solution. The two lithium ions rigidify the new structure in the solid state by coordinating to the oxygen and bromide atoms.

  13. Direct Inhibition of Hypoxia-Inducible Transcription Factor Complex with Designed Dimeric Epidithiodiketopiperazine

    PubMed Central

    Block, Katherine M.; Wang, Hui; Szabo, Lajos Z.; Polaske, Nathan W.; Henchey, Laura K.; Dubey, Ramin; Kushal, Swati; Laszlo, Csaba F.; Makhoul, Joshua; Song, Zuohe; Meuillet, Emmanuelle J.; Olenyuk, Bogdan Z.

    2009-01-01

    Selective blockade of hypoxia-inducible gene expression by designed small molecules would prove valuable in suppressing tumor angiogenesis, metastasis and altered energy metabolism. We report the design, synthesis, and biological evaluation of dimeric epidithiodiketopiperazine (ETP) small molecule transcriptional antagonist targeting the interaction of the p300/CBP coactivator with the transcription factor HIF-1α. Our results indicate that disrupting this interaction results in rapid downregulation of hypoxia-inducible genes critical for cancer progression. The observed effects are compound-specific and dose-dependent. Controlling gene expression with designed small molecules targeting the transcription factor-coactivator interface may represent a new approach for arresting tumor growth. PMID:20000859

  14. Photo-induced DNA cleavage and cytotoxicity of a ruthenium(II) arene anticancer complex.

    PubMed

    Brabec, Viktor; Pracharova, Jitka; Stepankova, Jana; Sadler, Peter J; Kasparkova, Jana

    2016-07-01

    We report DNA cleavage by ruthenium(II) arene anticancer complex [(η(6)-p-terp)Ru(II)(en)Cl](+) (p-terp=para-terphenyl, en=1,2-diaminoethane, complex 1) after its photoactivation by UVA and visible light, and the toxic effects of photoactivated 1 in cancer cells. It was shown in our previous work (T. Bugarcic et al., J. Med. Chem. 51 (2008) 5310-5319) that this complex exhibits promising toxic effects in several human tumor cell lines and concomitantly its DNA binding mode involves combined intercalative and monofunctional (coordination) binding modes. We demonstrate in the present work that when photoactivated by UVA or visible light, 1 efficiently photocleaves DNA, also in hypoxic media. Studies of the mechanism underlying DNA cleavage by photoactivated 1 reveal that the photocleavage reaction does not involve generation of reactive oxygen species (ROS), although contribution of singlet oxygen ((1)O2) to the DNA photocleavage process cannot be entirely excluded. Notably, the mechanism of DNA photocleavage by 1 appears to involve a direct modification of mainly those guanine residues to which 1 is coordinatively bound. As some tumors are oxygen-deficient and cytotoxic effects of photoactivated ruthenium compounds containing {Ru(η(6)-arene)}(2+) do not require the presence of oxygen, this class of ruthenium complexes may be considered potential candidate agents for improved photodynamic anticancer chemotherapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats.

    PubMed

    Höglinger, Günter U; Féger, Jean; Prigent, Annick; Michel, Patrick P; Parain, Karine; Champy, Pierre; Ruberg, Merle; Oertel, Wolfgang H; Hirsch, Etienne C

    2003-02-01

    In Parkinson's disease, nigral dopaminergic neurones degenerate, whereas post-synaptic striatal target neurones are spared. In some atypical parkinsonian syndromes, both nigral and striatal neurones degenerate. Reduced activity of complex I of the mitochondrial respiratory chain has been implicated in both conditions, but it remains unclear if this affects the whole organism or only the degenerating brain structures. We therefore investigated the differential vulnerability of various brain structures to generalized complex I inhibition. Male Lewis rats infused with rotenone, a lipophilic complex I inhibitor [2.5 mg/kg/day intraveneously (i.v.) for 28 days], were compared with vehicle-infused controls. They showed reduced locomotor activity and loss of striatal dopaminergic fibres (54%), nigral dopaminergic neurones (28.5%), striatal serotoninergic fibres (34%), striatal DARPP-32-positive projection neurones (26.5%), striatal cholinergic interneurones (22.1%), cholinergic neurones in the pedunculopontine tegmental nucleus (23.7%) and noradrenergic neurones in the locus ceruleus (26.4%). Silver impregnation revealed pronounced degeneration in basal ganglia and brain stem nuclei, whereas the hippocampus, cerebellum and cerebral cortex were less affected. These data suggest that a generalized mitochondrial failure may be implicated in atypical parkinsonian syndromes but do not support the hypothesis that a generalized complex I inhibition results in the rather selective nigral lesion observed in Parkinson's disease.

  16. A Zinc Morpholine Complex Prevents HCl/Ethanol-Induced Gastric Ulcers in a Rat Model

    PubMed Central

    Salama, Suzy M.; Gwaram, Nura Suleiman; AlRashdi, Ahmed S.; Khalifa, Shaden A. M.; Abdulla, Mahmood A.; Ali, Hapipah M.; El-Seedi, Hesham R.

    2016-01-01

    Zinc is a naturally occurring element with roles in wound healing and rescuing tissue integrity, particularly in the gastrointestinal system, where it can be detected in the mucosal and submucosal layers. Zinc chelates are known to have beneficial effects on the gastrointestinal mucosa and in cases of gastric ulcer. We synthesized complexes of zinc featuring a heterocyclic amine binding amino acids then investigated their ability to enhance the gastric self-repair. Zinc-morpholine complex, Zn(L)SCN, namely showed strong free-radical scavenging, promotion of the DNA and RNA polymerases reconstruction and suppression of cell damage. The complex’s mode of action is proposed to involve hydrogen bond formation via its bis(thiocyanato-k)zinc moiety. Zn(L)SCN complex had potent effects on gastric enzymatic activity both in vitro and in vivo. The complex disrupted the ulcerative process as demonstrated by changes in the intermediate metabolites of the oxidative pathway – specifically, reduction in the MDA levels and elevation of reduced glutathione together with an attenuation of oxidative DNA damage. Additionally, Zn(L)SCN restored the gastric mucosa, inhibited the production of pro-inflammatory cytokines (IL-6, TNF and the caspases), and preserved the gastric mucous balance. Zn(L)SCN thus exhibited anti-oxidative, anti-inflammatory and anti-apoptotic activities, all of which have cytoprotective effects on the gastric lining. PMID:27460157

  17. Subtle conformational changes induced in major histocompatibility complex class II molecules by binding peptides.

    PubMed

    Chervonsky, A V; Medzhitov, R M; Denzin, L K; Barlow, A K; Rudensky, A Y; Janeway, C A

    1998-08-18

    Intracellular trafficking of major histocompatibility complex (MHC) class II molecules is characterized by passage through specialized endocytic compartment(s) where antigenic peptides replace invariant chain fragments in the presence of the DM protein. These changes are accompanied by structural transitions of the MHC molecules that can be visualized by formation of compact SDS-resistant dimers, by changes in binding of mAbs, and by changes in T cell responses. We have observed that a mAb (25-9-17) that is capable of staining I-Ab on the surface of normal B cells failed to interact with I-Ab complexes with a peptide derived from the Ealpha chain of the I-E molecule but bound a similar covalent complex of I-Ab with the class II binding fragment (class II-associated invariant chain peptides) of the invariant chain. Moreover, 25-9-17 blocked activation of several I-Ab-reactive T cell hybridomas but failed to block others, suggesting that numerous I-Ab-peptide complexes acquire the 25-9-17(+) or 25-9-17(-) conformation. Alloreactive T cells were also able to discriminate peptide-dependent variants of MHC class II molecules. Thus, peptides impose subtle structural transitions upon MHC class II molecules that affect T cell recognition and may thus be critical for T cell selection and autiommunity.

  18. Inhibition Mechanism of Uranyl Reduction Induced by Calcium-Carbonato Complexes

    NASA Astrophysics Data System (ADS)

    Jones, M. E.; Bargar, J.; Fendorf, S. E.

    2015-12-01

    Uranium mobility in the subsurface is controlled by the redox state and chemical speciation, generally as minimally soluble U(IV) or soluble U(VI) species. In the presence of even low carbonate concentrations the uranyl-carbonato complex quickly becomes the dominant aqueous species; they are, in fact, the primary aqueous species in most groundwaters. Calcium in groundwater leads to ternary calcium-uranyl-carbonato complexes that limit the rate and extent of U(VI) reduction. This decrease in reduction rate has been attributed to surface processes, thermodynamic limitations, and kinetic factors. Here we present a new mechanism for the inhibition of ferrous iron reduction of uranyl-carbonato species in the presence of calcium. A series of experiments under variable Ca conditions were preformed to determine the role of Ca in the inhibition of U reduction by ferrous iron. Calcium ions in the Ca2UO2(CO3)3 complex sterically prevent the interaction of Fe(II) with U(VI), in turn preventing the Fe(II)-U(VI) distance required for electron transfer. The mechanism described here helps to predict U redox transformations in suboxic environments and clarifies the role of Ca in the fate and mobility of U. Electrochemical measurements further show the decrease of the U(VI) to U(V) redox potential of the uranyl-carbonato complex with decreasing pH suggesting the first electron transfer is critical determining the rate and extent of uranium reduction.

  19. Surface-Induced Changes in the Thermochromic Transformation of an Ionic Liquid Cobalt Thiocyanate Complex.

    PubMed

    May, Benjamin; Hönle, Michael; Heller, Bettina; Greco, Francesco; Bhuin, Radha; Steinrück, Hans-Peter; Maier, Florian

    2017-02-23

    We demonstrate that a thermodynamic complex equilibrium within an ionic liquid film can be significantly influenced by the presence of the liquid-vacuum interface. Using surface-sensitive X-ray photoelectron spectroscopy, we find that the temperature-driven transition from the blue-colored tetrahedral [Co(II) (NCS)4](2-) to the red-colored octahedral [Co(II) (NCS)6](4-) complex already occurs within the outermost nanometers at around +4 °C as compared with -25 °C in the bulk. This thermochromic transformation in the near-surface region goes along with a loss in preferential surface orientation of free [SCN](-) anions and with a pronounced decrease in the complex density; both effects are attributed to the formation of a weakly bound solvation shell around the [Co(II) (NCS)6](4-) anion, leading to an effective complex dilution. Our results are not only relevant for high-surface area thin film systems, such as in sensor and catalysis applications, but also shed light on the role of ionic liquid surfaces in particular and liquid surfaces in general.

  20. Surface-Induced Changes in the Thermochromic Transformation of an Ionic Liquid Cobalt Thiocyanate Complex

    PubMed Central

    2017-01-01

    We demonstrate that a thermodynamic complex equilibrium within an ionic liquid film can be significantly influenced by the presence of the liquid–vacuum interface. Using surface-sensitive X-ray photoelectron spectroscopy, we find that the temperature-driven transition from the blue-colored tetrahedral [Co(II) (NCS)4]2– to the red-colored octahedral [Co(II) (NCS)6]4– complex already occurs within the outermost nanometers at around +4 °C as compared with −25 °C in the bulk. This thermochromic transformation in the near-surface region goes along with a loss in preferential surface orientation of free [SCN]− anions and with a pronounced decrease in the complex density; both effects are attributed to the formation of a weakly bound solvation shell around the [Co(II) (NCS)6]4– anion, leading to an effective complex dilution. Our results are not only relevant for high-surface area thin film systems, such as in sensor and catalysis applications, but also shed light on the role of ionic liquid surfaces in particular and liquid surfaces in general. PMID:28212033

  1. Light-induced dissociation of antenna complexes in the symbionts of scleractinian corals correlates with sensitivity to coral bleaching

    NASA Astrophysics Data System (ADS)

    Hill, R.; Larkum, A. W. D.; Prášil, O.; Kramer, D. M.; Szabó, M.; Kumar, V.; Ralph, P. J.

    2012-12-01

    Elevated temperatures in combination with moderate to high irradiance are known to cause bleaching events in scleractinian corals, characterised by damage to photosystem II (PSII). Photoprotective mechanisms of the symbiont can reduce the excitation pressure impinging upon PSII. In the bleaching sensitive species, Acropora millepora and Pocillopora damicornis, high light alone induced photoprotection through the xanthophyll cycle, increased content of the antioxidant carotenoid, β-carotene, as well as the dissociation of the light-harvesting chlorophyll complexes. The evidence is compatible with either the membrane-bound chlorophyll a-chlorophyll c 2-peridinin-protein (acpPC) complex or the peripheral peridinin-chlorophyll-protein complex, or both, disconnecting from PSII under high light. The acpPC complex potentially showed a state transition response with redistribution towards photosystem I to reduce PSII over-excitation. This apparent acpPC dissociation/reassociation was promoted by the addition of the xanthophyll cycle inhibitor, dithiothreitol, under high irradiance. Exposure to thermal stress as well as high light promoted xanthophyll de-epoxidation and increased β-carotene content, although it did not influence light-harvesting chlorophyll complex (LHC) dissociation, indicating light, rather than temperature, controls LHC dissociation. Photoinhibition was avoided in the bleaching tolerant species, Pavona decussata, suggesting xanthophyll cycling along with LHC dissociation may have been sufficient to prevent photodamage to PSII. Symbionts of P. decussata also displayed the greatest detachment of antenna complexes, while the more thermally sensitive species, Pocillopora damicornis and A. millepora, showed less LHC dissociation, suggesting antenna movement influences bleaching susceptibility.

  2. In vitro treatment of Toxoplasma gondii with copper(II) complexes induces apoptosis-like and cellular division alterations.

    PubMed

    Portes, J A; Motta, C S; Azeredo, N F; Fernandes, C; Horn, A; De Souza, W; DaMatta, R A; Seabra, S H

    2017-10-15

    Toxoplasma gondii is the causative agent of toxoplasmosis, which is one of the most common parasitic diseases in the world. This pathogen causes severe damage to immunocompromised hosts, and the most frequently used therapy is the combination of pyrimethamine and sulfadiazine, which has side effects. Thus, there is a need for new therapies that target T. gondii. Herein, we present the anti-Toxoplasma effect of two new copper(II) complexes: [(H2L1) Cu (μ-Cl)2 Cu(H2L1)] Cl2·5H2O (1) and [(H2L2) Cu (μ-Cl)2 Cu(H2L2)] Cl2·6H2O (2). Complexes (1) and (2) irreversibly controlled parasite growth in vitro, with IC50 values of 0.78μM and 3.57μM, respectively, after 48h. These complexes induced part of the tachyzoite population to convert to bradyzoites, which eventually die. The cell death mechanism was unknown, but signs of apoptosis, such as membrane blebs and nuclear fragmentation, and necrosis, such as plasma membrane disruption, intense cytoplasm vesiculation and the release of cellular contents, were seen. In addition, complex (2) interfered with the correct disposition of the inner membrane complex of the parasite, affecting cell division. These results indicate that these copper complexes have potential effects against T. gondii and may be used as drugs in the future or serve as prototypes for the development of new drugs to treat toxoplasmosis. Copyright © 2017. Published by Elsevier B.V.

  3. Collision-Induced Dissociation of Electrosprayed Protein Complexes: An All-Atom Molecular Dynamics Model with Mobile Protons.

    PubMed

    Popa, Vlad; Trecroce, Danielle A; McAllister, Robert G; Konermann, Lars

    2016-06-16

    Electrospray ionization mass spectrometry (ESI-MS) has become an indispensable technique for examining noncovalent protein complexes. Collision-induced dissociation (CID) of these multiply protonated gaseous ions usually culminates in ejection of a single subunit with a disproportionately large amount of charge. Experiments suggest that this process involves subunit unfolding prior to separation from the residual complex, as well as H(+) migration onto the unravelling chain. Molecular dynamics (MD) simulations are a promising avenue for gaining detailed insights into these CID events. Unfortunately, typical MD algorithms do not allow for mobile protons. Here we address this limitation by implementing a strategy that combines atomistic force fields (such as OPLS/AA and CHARMM36) with a proton hopping algorithm, focusing on the tetrameric complexes transthyretin and streptavidin. Protons are redistributed over all acidic and basic sites in 20 ps intervals, subject to an energy function that reflects electrostatic interactions and proton affinities. Our simulations predict that nativelike conformers at the onset of collisional heating contain multiple salt bridges. Collisional heating initially causes subtle structural changes that lead to a gradual decline of these zwitterionic patterns. Many of the MD runs show gradual unfolding of a single subunit in conjunction with H(+) migration, culminating in subunit separation from the complex. However, there are also instances where two or more chains start to unfold simultaneously, giving rise to charge competition. The scission point where the "winning" subunit separates from the complex can be attained for different degrees of unfolding, giving rise to product ions in various charge states. The simulated product ion distributions are in close agreement with experimental CID data. Proton enrichment in the departing subunit is driven by charge-charge repulsion, but the combination of salt bridge depletion, charge migration

  4. Concise review: new paradigms for Down syndrome research using induced pluripotent stem cells: tackling complex human genetic disease.

    PubMed

    Briggs, James A; Mason, Elizabeth A; Ovchinnikov, Dmitry A; Wells, Christine A; Wolvetang, Ernst J

    2013-03-01

    Down syndrome (DS) is a complex developmental disorder with diverse pathologies that affect multiple tissues and organ systems. Clear mechanistic description of how trisomy of chromosome 21 gives rise to most DS pathologies is currently lacking and is limited to a few examples of dosage-sensitive trisomic genes with large phenotypic effects. The recent advent of cellular reprogramming technology offers a promising way forward, by allowing derivation of patient-derived human cell types in vitro. We present general strategies that integrate genomics technologies and induced pluripotent stem cells to identify molecular networks driving different aspects of DS pathogenesis and describe experimental approaches to validate the causal requirement of candidate network defects for particular cellular phenotypes. This overall approach should be applicable to many poorly understood complex human genetic diseases, whose pathogenic mechanisms might involve the combined effects of many genes.

  5. Chiral mononuclear lanthanide complexes and the field-induced single-ion magnet behaviour of a Dy analogue.

    PubMed

    Lin, Shuang-Yan; Wang, Chao; Zhao, Lang; Wu, Jianfeng; Tang, Jinkui

    2015-01-07

    Three pairs of homochiral mononuclear lanthanide complexes, with the general formula [LnH4LRRRRRR/SSSSSS(SCN)2](SCN)2·xCH3OH·yH2O(Ln = Dy (R/S-Dy1), Ho (R/S-Ho1) and Er (R/S-Er1)), have been obtained via self-assembly between chiral macrocyclic ligands and the respective thiocyanates, all of which show a saddle-type conformation with seven-coordinated metal ions. Magnetic measurements revealed that the Dy complex shows field-induced single-ion magnet behaviour, which is rarely reported in a seven-coordinated lanthanide-based SIM encapsulated in a macrocyclic ligand. The absolute configuration of all enantiomers was determined by single crystal X-ray crystallography and confirmed by electronic CD and VCD spectra.

  6. Collision-Induced Absorption by Supermolecular Complexes from a New Potential Energy and Induced Dipole Surface, Suited for Calculations up to Thousands of Kelvin

    NASA Astrophysics Data System (ADS)

    Abel, Martin; Frommhold, Lothar; Wang, Fei; Gustafsson, Magnus; Li, Xiaoping; Hunt, Katharine L. C.

    2010-10-01

    Absorption by pairs of H2 molecules is an important opacity source in the atmospheres of the outer planets, and thus of special astronomical interest. The emission spectra of cool white dwarf stars differ significantly from the expected blackbody spectra, amongst other reasons due to absorption by H2-H2, H2-He, and H2-H collisional complexes in the stellar atmospheres. To model the radiative processes in these atmospheres, which have temperatures of several thousand kelvin, one needs accurate knowledge of the induced dipole (ID) and potential energy surfaces (PES) of such collisional complexes. These come from quantum-chemical calculations with the H2 bonds stretched or compressed far from equilibrium. Laboratory measurements of collision-induced (CI) absorption exist only at much lower temperature. For H2 pairs at room temperature, the calculated spectra of the rototranslational band, the fundamental band, and the first overtone match the experimental data very well. In addition, with the newly obtained IDS it became possible to reproduce the measurements in the far blue wing of the rototranslational spectrum of H2 at 77.5 K, as well as at 300 K. Similarly good agreement between theory and measurement is seen in the fundamental band of molecular deuterium at room temperature. Furthermore, we also show the calculated absorption spectra of H2-He at 600 K and of H2-H2 at 2,000 K, for which there are no experimental data for comparison.

  7. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy.

    PubMed

    Pedro, Jose Manuel Bravo-San; Wei, Yongjie; Sica, Valentina; Maiuri, Maria Chiara; Zou, Zhongju; Kroemer, Guido; Levine, Beth

    2015-01-01

    Disruption of the complex of BECN1 with BCL2 or BCL2L1/BCL-XL is an essential switch that turns on cellular autophagy in response to environmental stress or treatment with BH3 peptidomimetics. Recently, it has been proposed that BCL2 and BCL2L1/BCL-XL may inhibit autophagy indirectly through a mechanism dependent on the proapoptotic BCL2 family members, BAX and BAK1. Here we report that the BH3 mimetic, ABT-737, induces autophagy in parallel with disruption of BCL2-BECN1 binding in 2 different apoptosis-deficient cell types lacking BAX and BAK1, namely in mouse embryonic fibroblasts cells and in human colon cancer HCT116 cells. We conclude that the BH3 mimetic ABT-737 induces autophagy through a BAX and BAK1-independent mechanism that likely involves disruption of BECN1 binding to antiapoptotic BCL2 family members.

  8. Polysaccharide protein complex isolated from mushroom Phellinus rimosus (berk.) Pilat alleviates γ radiation-induced toxicity in mice.

    PubMed

    Joseph, Jini; Smina, Thozhuthum Parambil Pathmanabhan; Janardhanan, Kainoor Krishnankutty

    2011-06-01

    Ionizing radiations generate reactive oxygen species in irradiated tissue that induces several pathophysiological changes in the body. Radiotherapy induced toxicity is a major dose-limiting factor in anticancer treatments. Radioprotective agents are of significant importance in medical, industrial, environmental, military, and space applications. Radioprotective effect of polysaccharide protein complex (PPC-Pr) isolated from mushroom, Phellinus rimosus, was evaluated in Swiss albino mice. PPC-Pr (5 and 10 mg/kg bwt, i.p.) significantly increased leukocyte count, bone marrow cellularity, glutathione content, and activities of antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase in blood as well as intestinal mucosa when compared with the irradiated control group. Histopathological observation of intestinal jejunal mucosa revealed the tissue protective effects of PPC-Pr. Further radioprotective activity of PPC-Pr was in a dose-dependent manner. The findings suggest potential radioprotective efficacy of PPC-Pr.

  9. Carotenoid-induced cooperative formation of bacterial photosynthetic LH1 complex.

    PubMed

    Fiedor, Leszek; Akahane, Junji; Koyama, Yasushi

    2004-12-28

    A simple reconstitution technique has been developed and then applied to prepare a series of light-harvesting antenna 1 (LH1) complexes with a programmed carotenoid composition, not available from native photosynthetic membranes. The complexes were reconstituted with different C(40) carotenoids, having two structural parameters variable: the functional side groups and the number of conjugated C-C double bonds, systematically increasing from 9 to 13. The complexes, differing only in the type of carotenoid, bound to an otherwise identical bacteriochlorophyll-polypeptide matrix, can serve as a unique model system in which the relationship between the carotenoid character and the functioning of pigment-protein complexes can be investigated. The reconstituted LH1 complexes resemble the native antenna, isolated from wild-type Rhodospirillum rubrum, but their coloration is entirely determined by carotenoid. Along with the increase in its conjugation size, the carotenoid absorption transitions gradually shift to the red. Thus, the extension of the conjugation size of the antenna carotenoids provides a mechanism for the spectral tuning of light harvesting in the visible part of the spectrum. The carotenoids in the reconstitution system promote the LH1 formation and seem to bind and transfer the excitation energy specifically only to a species with characteristically red-shifted absorption and emission maxima, apparently, due to a cooperative effect. Monitoring the LH1 formation by steady-state absorption and fluorescence spectroscopies reveals that in the presence of carotenoids it proceeds without spectrally resolved intermediates, leading directly to B880. The effect of the carotenoid is enhanced when the pigment contains the hydroxy or methoxy side groups, implying that, in parallel to hydrophobic interactions and pi-pi stacking, other interactions are also involved in the formation and stabilization of LH1.

  10. Crystallographic Complexes of Surfactant Protein A and Carbohydrates Reveal Ligand-induced Conformational Change*

    PubMed Central

    Shang, Feifei; Rynkiewicz, Michael J.; McCormack, Francis X.; Wu, Huixing; Cafarella, Tanya M.; Head, James F.; Seaton, Barbara A.

    2011-01-01

    Surfactant protein A (SP-A), a C-type lectin, plays an important role in innate lung host defense against inhaled pathogens. Crystallographic SP-A·ligand complexes have not been reported to date, limiting available molecular information about SP-A interactions with microbial surface components. This study describes crystal structures of calcium-dependent complexes of the C-terminal neck and carbohydrate recognition domain of SP-A with d-mannose, d-α-methylmannose, and glycerol, which represent subdomains of glycans on pathogen surfaces. Comparison of these complexes with the unliganded SP-A neck and carbohydrate recognition domain revealed an unexpected ligand-associated conformational change in the loop region surrounding the lectin site, one not previously reported for the lectin homologs SP-D and mannan-binding lectin. The net result of the conformational change is that the SP-A lectin site and the surrounding loop region become more compact. The Glu-202 side chain of unliganded SP-A extends out into the solvent and away from the calcium ion; however, in the complexes, the Glu-202 side chain translocates 12.8 Å to bind the calcium. The availability of Glu-202, together with positional changes involving water molecules, creates a more favorable hydrogen bonding environment for carbohydrate ligands. The Lys-203 side chain reorients as well, extending outward into the solvent in the complexes, thereby opening up a small cation-friendly cavity occupied by a sodium ion. Binding of this cation brings the large loop, which forms one wall of the lectin site, and the adjacent small loop closer together. The ability to undergo conformational changes may help SP-A adapt to different ligand classes, including microbial glycolipids and surfactant lipids. PMID:21047777

  11. Distribution of Chlorophyll-Protein Complexes during Chilling in the Light Compared with Heat-Induced Modifications 1

    PubMed Central

    Ovaska, Jari; Mäenpää, Pirkko; Nurmi, Arja; Aro, Eva-Mari

    1990-01-01

    The effects of chilling in the light (4 days at 5°C and 100-200 micromoles of photons per square meter per second) on the distribution of chlorophyll (Chl) protein complexes between appressed and nonappressed thylakoid regions of pumpkin (Cucurbita pepo L.) chloroplasts were studied and compared with the changes occurring during in vitro heat treatment (5 minutes at 40°C) of isolated thylakoids. Both treatments induced an increase (18 and 65%, respectively) in the relative amount of the antenna Chl a protein complexes (CP47 + CP43) of photosystem II (PSII) in stroma lamellae vesicles. Freeze-fracture replicas of light-chilled material revealed an increase in the particle density on the exoplasmic fracture face of unstacked membrane regions. These two treatments differed markedly, however, in respect to comigration of the light-harvesting Chl a/b protein complex (LHCII) of PSII. The LHCII/PSII ratio in stroma lamellae vesicles remained fairly constant during chilling in the light, whereas it dropped during the heat treatment. Moreover, it was a minor light-harvesting Chl a/b protein complex of PSII, CP29, that increased most in stroma lamellae vesicles during light-chilling. Changes in the organization of LHCII during chilling were suggested by a shift to particles of smaller sizes on the protoplasmic fracture face of stacked membrane regions and a decrease in the amount of trans-Δ3-hexadecenoic acid in the phosphatidyldiacylglycerol fraction. Images Figure 2 PMID:16667464

  12. In situ investigations of Fe3+ induced complexation of adsorbed Mefp-1 protein film on iron substrate.

    PubMed

    Zhang, Fan; Sababi, Majid; Brinck, Tore; Persson, Dan; Pan, Jinshan; Claesson, Per M

    2013-08-15

    A range of in situ analytical techniques and theoretical calculations were applied to gain insights into the formation and properties of the Mefp-1 film on iron substrate, as well as the protein complexation with Fe(3+) ions. Adsorption kinetics of Mefp-1 and the complexation were investigated using QCM-D. The results suggest an initially fast adsorption, with the molecules oriented preferentially parallel to the surface, followed by a structural change within the film leading to molecules extending toward solution. Exposure to a diluted FeCl3 solution results in enhanced complexation within the adsorbed protein film, leading to water removal and film compaction. In situ Peak Force Tapping AFM was employed for determining morphology and nano-mechanical properties of the surface layer. The results, in agreement with the QCM-D observations, demonstrate that addition of Fe(3+) induces a transition from an extended and soft protein layer to a denser and stiffer one. Further, in situ ATR-FTIR and Confocal Raman Micro-spectroscopy (CRM) techniques were utilized to monitor compositional/structural changes in the surface layer due to addition of Fe(3+) ions. The spectroscopic analyses assisted by DFT calculations provide evidence for formation of tri-Fe(3+)/catechol complexes in the surface film, which is enhanced by Fe(3+) addition.

  13. The Adaptive Nature of the Bone-Periodontal Ligament-Cementum Complex in a Ligature-Induced Periodontitis Rat Model

    PubMed Central

    Lee, Ji-Hyun; Lin, Jeremy D.; Fong, Justine I.; Ryder, Mark I.; Ho, Sunita P.

    2013-01-01

    The novel aspect of this study involves illustrating significant adaptation of a functionally loaded bone-PDL-cementum complex in a ligature-induced periodontitis rat model. Following 4, 8, and 15 days of ligation, proinflammatory cytokines (TNF-α and RANKL), a mineral resorption indicator (TRAP), and a cell migration and adhesion molecule for tissue regeneration (fibronectin) within the complex were localized and correlated with changes in PDL-space (functional space). At 4 days of ligation, the functional space of the distal complex was widened compared to controls and was positively correlated with an increased expression of TNF-α. At 8 and 15 days, the number of RANKL(+) cells decreased near the mesial alveolar bone crest (ABC) but increased at the distal ABC. TRAP(+) cells on both sides of the complex significantly increased at 8 days. A gradual change in fibronectin expression from the distal PDL-secondary cementum interfaces through precementum layers was observed when compared to increased and abrupt changes at the mesial PDL-cementum and PDL-bone interfaces in ligated and control groups. Based on our results, we hypothesize that compromised strain fields can be created in a diseased periodontium, which in response to prolonged function can significantly alter the original bone and apical cementum formations. PMID:23936854

  14. Triazolylidene-Iridium Complexes with a Pendant Pyridyl Group for Cooperative Metal-Ligand Induced Catalytic Dehydrogenation of Amines.

    PubMed

    Valencia, Marta; Pereira, Ana; Müller-Bunz, Helge; Belderraín, Tomás R; Pérez, Pedro J; Albrecht, Martin

    2017-07-03

    Two iridium(III) complexes containing a C,N-bidentate pyridyl-triazolylidene ligand were prepared that are structurally very similar but differ in their pendant substituent. Whereas complex 1 contains a non-coordinating pyridyl unit, complex 2 has a phenyl group on the triazolylidene substituent. The presence of the basic pyridyl unit has distinct effects on the catalytic activity of the complex in the oxidative dehydrogenation of benzylic amines, inducing generally higher rates, higher selectivity towards formation of imines versus secondary amines, and notable quantities of tertiary amines when compared to the phenyl-functionalized analogue. The role of the pyridyl functionality has been elucidated from a set of stoichiometric experiments, which demonstrate hydrogen bonding between the pendant pyridyl unit and the amine protons of the substrate. Such Npyr ⋅⋅⋅H-N interactions are demonstrated by X-ray diffraction analysis, (1) H NMR, and IR spectroscopy, and suggest a pathway of substrate bond-activation that involves concerted substrate binding through the Lewis acidic iridium center and the Lewis basic pyridyl site appended to the triazolylidene ligand, in agreement with ligand-metal cooperative substrate activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin.

    PubMed

    Batandier, Cécile; Guigas, Bruno; Detaille, Dominique; El-Mir, M-Yehia; Fontaine, Eric; Rigoulet, M; Leverve, Xavier M

    2006-02-01

    Mitochondrial reactive oxygen species (ROS) production was investigated in mitochondria extracted from liver of rats treated with or without metformin, a mild inhibitor of respiratory chain complex 1 used in type 2 diabetes. A high rate of ROS production, fully suppressed by rotenone, was evidenced in non-phosphorylating mitochondria in the presence of succinate as a single complex 2 substrate. This ROS production was substantially lowered by metformin pretreatment and by any decrease in membrane potential (Delta Phi(m)), redox potential (NADH/NAD), or phosphate potential, as induced by malonate, 2,4-dinitrophenol, or ATP synthesis, respectively. ROS production in the presence of glutamate-malate plus succinate was lower than in the presence of succinate alone, but higher than in the presence of glutamate-malate. Moreover, while rotenone both increased and decreased ROS production at complex 1 depending on forward (glutamate-malate) or reverse (succinate) electron flux, no ROS overproduction was evidenced in the forward direction with metformin. Therefore, we propose that reverse electron flux through complex 1 is an alternative pathway, which leads to a specific metformin-sensitive ROS production.

  16. Barrier-free intermolecular proton transfer in the uracil-glycine complex induced by excess electron attachment

    NASA Astrophysics Data System (ADS)

    Gutowski, M.; Dąbkowska, I.; Rak, J.; Xu, S.; Nilles, J. M.; Radisic, D.; Bowen, K. H., Jr.

    2002-09-01

    The photoelectron spectra (PES) of anions of uracil-glycine and uracil-phenylalanine complexes reveal broad features with maxima at 1.8 and 2.0 eV. The results of ab initio density functional B3LYP and second order Møller-Plesset theory calculations indicate that the excess electron occupies a π^* orbital localized on uracil. The excess electron attachment to the complex can induce a barrier-free proton transfer (BFPT) from the carboxylic group of glycine to the O8 atom of uracil. As a result, the four most stable structures of the anion of uracil-glycine complex can be characterized as the neutral radical of hydrogenated uracil solvated by the anion of deprotonated glycine. The similarity between the PES spectra for the uracil complexes with glycine and phenylalanine suggests that the BFPT is also operative in the case of the latter anionic species. The BFPT to the O8 atom of uracil may be related to the damage of nucleic acid bases by low energy electrons because the O8 atom is involved in a hydrogen bond with adenine in the standard Watson-Crick pairing scheme.

  17. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys

    SciTech Connect

    Jin, K.; Lu, C.; Wang, L. M.; Qu, J.; Weber, W. J.; Zhang, Y.; Bei, H.

    2016-04-14

    The impact of compositional complexity on the ion-irradiation induced swelling and hardening is studied in Ni and six Ni-containing equiatomic alloys with face-centered cubic structure. The irradiation resistance at the temperature of 500 °C is improved by controlling the number and, especially, the type of alloying elements. Alloying with Fe and Mn has a stronger influence on swelling reduction than does alloying with Co and Cr. Lastly, the quinary alloy NiCoFeCrMn, with known excellent mechanical properties, has shown 40 times higher swelling tolerance than nickel.

  18. Induced Circular Dichroism in Phosphine Gold(I) Aryl Acetylide Urea Complexes through Hydrogen-Bonded Chiral Co-Assemblies.

    PubMed

    Dubarle-Offner, Julien; Moussa, Jamal; Amouri, Hani; Jouvelet, Benjamin; Bouteiller, Laurent; Raynal, Matthieu

    2016-03-14

    Phosphine gold(I) aryl acetylide complexes equipped with a central bis(urea) moiety form 1D hydrogen-bonded polymeric assemblies in solution that do not display any optical activity. Chiral co-assemblies are formed by simple addition of an enantiopure (metal-free) complementary monomer. Although exhibiting an intrinsically achiral linear geometry, the gold(I) aryl acetylide fragment is located in the chiral environment displayed by the hydrogen-bonded co-assemblies, as demonstrated by induced circular dichroism (ICD). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys

    DOE PAGES

    Jin, K.; Lu, C.; Wang, L. M.; ...

    2016-04-14

    The impact of compositional complexity on the ion-irradiation induced swelling and hardening is studied in Ni and six Ni-containing equiatomic alloys with face-centered cubic structure. The irradiation resistance at the temperature of 500 °C is improved by controlling the number and, especially, the type of alloying elements. Alloying with Fe and Mn has a stronger influence on swelling reduction than does alloying with Co and Cr. Lastly, the quinary alloy NiCoFeCrMn, with known excellent mechanical properties, has shown 40 times higher swelling tolerance than nickel.

  20. Surface-enhanced Raman scattering spectroscopy of topotecan-DNA complexes: Binding to DNA induces topotecan dimerization

    NASA Astrophysics Data System (ADS)

    Mochalov, K. E.; Strel'Tsov, S. A.; Ermishov, M. A.; Grokhovskii, S. L.; Zhuze, A. L.; Ustinova, O. A.; Sukhanova, A. V.; Nabiev, I. R.; Oleinikov, V. A.

    2002-09-01

    The interaction of topotecan (TPT), antitumor inhibitor of human DNA topoisomerase I, with calf thymus DNA was studied by surface-enhanced Raman scattering (SERS) spectroscopy. The SERS spectra of TPT are found to depend on its concentration in solution, which is associated with the dimerization of TPT. The spectral signatures of dimerization are identified. It is shown that binding to DNA induces the formation of TPT dimers. The formation of DNA-TPT-TPT-DNA complexes is considered as one of the possible mechanisms of human DNA topoisomerase I inhibition.

  1. Locally induced surface air confluence by complex terrain and its effects on air pollution in the valley of Mexico

    NASA Astrophysics Data System (ADS)

    Jazcilevich, Aron D.; García, Agustín R.; Caetano, Ernesto

    Using a meteorological computational model it is shown how, in the Valley of Mexico, a high pressure system together with the complex orography of the region induce the formation of a local confluence line. With the aid of a prognostic air quality model it is shown that the maximum pollutant mixing ratios are placed on and follow the confluence line which crosses over the most populated areas of Mexico City. This phenomenon provides an explanation of why and when pollutants assume its geographical distribution in the valley during high mixing ratio episodes.

  2. Suilysin-induced Platelet-Neutrophil Complexes Formation is Triggered by Pore Formation-dependent Calcium Influx

    PubMed Central

    Zhang, Shengwei; Zheng, Yuling; Chen, Shaolong; Huang, Shujing; Liu, Keke; Lv, Qingyu; Jiang, Yongqiang; Yuan, Yuan

    2016-01-01

    Platelet activation and platelet–neutrophil interactions have been found to be involved in inflammation, organ failure and soft-tissue necrosis in bacterial infections. Streptococcus suis, an emerging human pathogen, can cause streptococcal toxic-shock syndrome (STSS) similarly to Streptococcus pyogenes. Currently, S. suis–platelet interactions are poorly understood. Here, we found that suilysin (SLY), the S. suis cholesterol-dependent cytolysin (CDC), was the sole stimulus of S. suis that induced platelet-neutrophil complexes (PNC) formation. Furthermore, P-selectin released in α-granules mediated PNC formation. This process was triggered by the SLY-induced pore forming-dependent Ca2+ influx. Moreover, we demonstrated that the Ca2+ influx triggered an MLCK-dependent pathway playing critical roles in P-selectin activation and PNC formation, however, PLC-β-IP3/DAG-MLCK and Rho-ROCK-MLCK signalling were not involved. Additionally, the “outside-in” signalling had a smaller effect on the SLY-induced P-selectin release and PNC formation. Interestingly, other CDCs including pneumolysin and streptolysin O have also been found to induce PNC formation in a pore forming-dependent Ca2+ influx manner. It is possible that the bacterial CDC-mediated PNC formation is a similar response mechanism used by a wide range of bacteria. These findings may provide useful insight for discovering potential therapeutic targets for S. suis-associated STSS. PMID:27830834

  3. Influenza Virus-Induced Caspase-Dependent Enlargement of Nuclear Pores Promotes Nuclear Export of Viral Ribonucleoprotein Complexes

    PubMed Central

    Mühlbauer, Dirk; Dzieciolowski, Julia; Hardt, Martin; Hocke, Andreas; Schierhorn, Kristina L.; Mostafa, Ahmed; Müller, Christin; Wisskirchen, Christian; Herold, Susanne; Wolff, Thorsten; Ziebuhr, John

    2015-01-01

    ABSTRACT Influenza A viruses (IAV) replicate their segmented RNA genome in the nucleus of infected cells and utilize caspase-dependent nucleocytoplasmic export mechanisms to transport newly formed ribonucleoprotein complexes (RNPs) to the site of infectious virion release at the plasma membrane. In this study, we obtained evidence that apoptotic caspase activation in IAV-infected cells is associated with the degradation of the nucleoporin Nup153, an integral subunit of the nuclear pore complex. Transmission electron microscopy studies revealed a distinct enlargement of nuclear pores in IAV-infected cells. Transient expression and subcellular accumulation studies of multimeric marker proteins in virus-infected cells provided additional evidence for increased nuclear pore diameters facilitating the translocation of large protein complexes across the nuclear membrane. Furthermore, caspase 3/7 inhibition data obtained in this study suggest that active, Crm1-dependent IAV RNP export mechanisms are increasingly complemented by passive, caspase-induced export mechanisms at later stages of infection. IMPORTANCE In contrast to the process seen with most other RNA viruses, influenza virus genome replication occurs in the nucleus (rather than the cytoplasm) of infected cells. Therefore, completion of the viral replication cycle critically depends on intracellular transport mechanisms that ensure the translocation of viral ribonucleoprotein (RNP) complexes across the nuclear membrane. Here, we demonstrate that virus-induced cellular caspase activities cause a widening of nuclear pores, thereby facilitating nucleocytoplasmic translocation processes and, possibly, promoting nuclear export of newly synthesized RNPs. These passive transport mechanisms are suggested to complement Crm1-dependent RNP export mechanisms known to occur at early stages of the replication cycle and may contribute to highly efficient production of infectious virus progeny at late stages of the viral

  4. Cationic Lipid/DNA Complex-Adjuvanted Influenza A Virus Vaccination Induces Robust Cross-Protective Immunity▿

    PubMed Central

    Hong, David K.; Chang, Stella; Botham, Crystal M.; Giffon, Thierry D.; Fairman, Jeffery; Lewis, David B.

    2010-01-01

    Influenza A virus is a negative-strand segmented RNA virus in which antigenically distinct viral subtypes are defined by the hemagglutinin (HA) and neuraminidase (NA) major viral surface proteins. An ideal inactivated vaccine for influenza A virus would induce not only highly robust strain-specific humoral and T-cell immune responses but also cross-protective immunity in which an immune response to antigens from a particular viral subtype (e.g., H3N2) would protect against other viral subtypes (e.g., H1N1). Cross-protective immunity would help limit outbreaks from newly emerging antigenically novel strains. Here, we show in mice that the addition of cationic lipid/noncoding DNA complexes (CLDC) as adjuvant to whole inactivated influenza A virus vaccine induces significantly more robust adaptive immune responses both in quantity and quality than aluminum hydroxide (alum), which is currently the most widely used adjuvant in clinical human vaccination. CLDC-adjuvanted vaccine induced higher total influenza virus-specific IgG, particularly for the IgG2a/c subclass. Higher levels of multicytokine-producing influenza virus-specific CD4 and CD8 T cells were induced by CLDC-adjuvanted vaccine than with alum-adjuvanted vaccine. Importantly, CLDC-adjuvanted vaccine provided significant cross-protection from either a sublethal or lethal influenza A viral challenge with a different subtype than that used for vaccination. This superior cross-protection afforded by the CLDC adjuvant required CD8 T-cell recognition of viral peptides presented by classical major histocompatibility complex class I proteins. Together, these results suggest that CLDC has particular promise for vaccine strategies in which T cells play an important role and may offer new opportunities for more effective control of human influenza epidemics and pandemics by inactivated influenza virus vaccine. PMID:20943978

  5. X-ray-induced cell death in the developing hippocampal complex involved neurons and requires protein synthesis

    SciTech Connect

    Ferrer, I.; Serrano, T.; Alcantara, S.; Tortosa, A.; Graus, F.

    1993-07-01

    Sprague-Dawley rats aged 1 or 15 days were irradiated with a single dose of 200 cGy X-rays and killed at different intervals from 3 to 48 hours (h). Dying cells were recognized by their shrunken and often fragmented nuclei and less damaged cytoplasm in the early stages. On the basis of immunocytochemical markers, dying cells probably represented a heterogeneous population which included neurons and immature cells. In rats aged 1 day the number of dying cells rapidly increased in the hippocampal complex with peak values 6 h after irradiation. This was following by a gentle decrease to reach normal values 48 h after irradiation. The most severely affected regions were the subplate and the cellular layer of the subiculum, gyrus dentatus and hilus, and the stratum oriens and pyramidale of the hippocampus (CA1 more affected than CA2, and this more affected than CA3). X-ray-induced cell death was abolished with an injection of cycloheximide (2 [mu]g/g i.p.) given at the time of irradiation. X-ray-induced cell death was not changed after the intraventicular administration of nerve growth factor (NGF; 10 [mu]g in saline) at the time of irradiation. Cell death was not induced by X-irradiation in rats aged 15 days. These results indicate that X-ray-induced cell death in the hippocampal complex of the developing rat is subjected to determinate temporal and regional patterns of vulnerability; it is an active process mediated by protein synthesis but probably not dependent on NGF. 60 refs., 5 figs.

  6. Complex formation between cationic beta-1,3-glucan and hetero-sequence oligodeoxynucleotide and its delivery into macrophage-like cells to induce cytokine secretion.

    PubMed

    Ikeda, Masato; Minari, Jusaku; Shimada, Naohiko; Numata, Munenori; Sakurai, Kazuo; Shinkai, Seiji

    2007-07-21

    A cationic polysaccharide bearing a beta-1,3-glucan main-chain structure (CUR-N(+)) forms a complex with a hetero-sequence oligonucleotide, that is, a CpG ODN, and facilitates the transportation of the resultant complex into a murine macrophage-like cell J774.A1, which induces an efficient secretion of a cytokine (IL-12) as compared with that induced by conventional carriers such as poly(ethyleneimine) (PEI) and poly(L-lysine) (PLL).

  7. The Mre11/Rad50/Nbs1 complex interacts with the mismatch repair system and contributes to temozolomide-induced G2 arrest and cytotoxicity.

    PubMed

    Mirzoeva, Olga K; Kawaguchi, Tomohiro; Pieper, Russell O

    2006-11-01

    The chemotherapeutic agent temozolomide produces O(6)-methylguanine (O6MG) in DNA, which triggers futile DNA mismatch repair, DNA double-strand breaks (DSB), G(2) arrest, and ultimately cell death. Because the protein complex consisting of Mre11/Rad50/Nbs1 (MRN complex) plays a key role in DNA damage detection and signaling, we asked if this complex also played a role in the cellular response to temozolomide. Temozolomide exposure triggered the assembly of MRN complex into chromatin-associated nuclear foci. MRN foci formed significantly earlier than gamma-H2AX and 53BP1 foci that assembled in response to temozolomide-induced DNA DSBs. MRN foci formation was suppressed in cells that incurred lower levels of temozolomide-induced O6MG lesions and/or had decreased mismatch repair capabilities, suggesting that the MRN foci formed not in response to temozolomide-induced DSB but rather in response to mismatch repair processing of mispaired temozolomide-induced O6MG lesions. Consistent with this idea, the MRN foci colocalized with those of proliferating cell nuclear antigen (a component of the mismatch repair complex), and the MRN complex component Nbs1 coimmunoprecipitated with the mismatch repair protein Mlh1 specifically in response to temozolomide treatment. Furthermore, small inhibitory RNA-mediated suppression of Mre11 levels decreased temozolomide-induced G(2) arrest and cytotoxicity in a manner comparable to that achieved by suppression of mismatch repair. These data show that temozolomide-induced O6MG lesions, acted upon by the mismatch repair system, drive formation of the MRN complex foci and the interaction of this complex with the mismatch repair machinery. The MRN complex in turn contributes to the control of temozolomide-induced G(2) arrest and cytotoxicity, and as such is an additional determining factor in glioma sensitivity to DNA methylating chemotherapeutic drugs such as temozolomide.

  8. Structural transitions and guest/host complexing of liquid crystal helical nanofilaments induced by nanoconfinement

    PubMed Central

    Kim, Hanim; Ryu, Seong Ho; Tuchband, Michael; Shin, Tae Joo; Korblova, Eva; Walba, David M.; Clark, Noel A.; Yoon, Dong Ki

    2017-01-01

    A lamellar liquid crystal (LC) phase of certain bent-core mesogenic molecules can be grown in a manner that generates a single chiral helical nanofilament in each of the cylindrical nanopores of an anodic aluminum oxide (AAO) membrane. By introducing guest molecules into the resulting composite chiral nanochannels, we explore the structures and functionality of the ordered guest/host LC complex, verifying the smectic-like positional order of the fluidic nematic LC phase, which is obtained by the combination of the LC organization and the nanoporous AAO superstructure. The guest nematic LC 4′-n-pentyl-4-cyanobiphenyl is found to form a distinctive fluid layered ordered LC complex at the nanofilament/guest interface with the host 1,3-phenylene bis[4-(4-nonyloxyphenyliminomethyl)benzoate], where this interface contacts the AAO cylinder wall. Filament growth form is strongly influenced by mixture parameters and pore dimensions. PMID:28246642

  9. Large protein-induced dipoles for a symmetric carotenoid in a photosynthetic antenna complex.

    PubMed

    Gottfried, D S; Steffen, M A; Boxer, S G

    1991-02-08

    Unusually large electric field effects have been measured for the absorption spectra of carotenoids (spheroidene) in the B800-850 light-harvesting complex from the photosynthetic bacterium Rhodobacter sphaeroides. Quantitative analysis shows that the difference in the permanent dipole moment between the ground state and excited states in this protein complex is substantially larger than for pure spheroidene extracted from the protein. The results demonstrate the presence of a large perturbation on the electronic structure of this nearly symmetric carotenoid due to the organized environment in the protein. This work also provides an explanation for the seemingly anomalous dependence of carotenoid band shifts on transmembrane potential and a generally useful approach for calibrating electric field-sensitive dyes that are widely used to probe potentials in biological systems.

  10. EEG complexity drug-induced changes in disorders of consciousness: a preliminary report.

    PubMed

    Valenza, G; Carboncini, M C; Virgillito, A; Creatini, I; Bonfiglio, L; Rossi, B; Lanatà, A; Scilingo, E P

    2011-01-01

    The goal of this work is to investigate EEG (ElectroEncephaloGram) dynamics after drug intake in patients being in states of Disorders Of Consciousness (DOC) after brain injury. Four patients were involved in the study. All the patients exhibit cerebral lesions located in the same anatomical region. Two nonlinear indexes, such as Lempel-Ziv Complexity (LZC) and Approximate Entropy (ApEn), along with power spectra, were calculated for EEG signals gathered from electrodes placed on both injured and non-injured regions. Experimental results show that after drug administration the two nonlinear indexes calculated from EEG taken from injured regions increase (p < 0.001) while power spectra decrease or remain unchanged. These results do not pretend to draw conclusions about consciousness level either suggest promising therapeutical treatments, but represent only an experimental evidence about the change in the EEG complexity after drug administration.

  11. Structural transitions and guest/host complexing of liquid crystal helical nanofilaments induced by nanoconfinement.

    PubMed

    Kim, Hanim; Ryu, Seong Ho; Tuchband, Michael; Shin, Tae Joo; Korblova, Eva; Walba, David M; Clark, Noel A; Yoon, Dong Ki

    2017-02-01

    A lamellar liquid crystal (LC) phase of certain bent-core mesogenic molecules can be grown in a manner that generates a single chiral helical nanofilament in each of the cylindrical nanopores of an anodic aluminum oxide (AAO) membrane. By introducing guest molecules into the resulting composite chiral nanochannels, we explore the structures and functionality of the ordered guest/host LC complex, verifying the smectic-like positional order of the fluidic nematic LC phase, which is obtained by the combination of the LC organization and the nanoporous AAO superstructure. The guest nematic LC 4'-n-pentyl-4-cyanobiphenyl is found to form a distinctive fluid layered ordered LC complex at the nanofilament/guest interface with the host 1,3-phenylene bis[4-(4-nonyloxyphenyliminomethyl)benzoate], where this interface contacts the AAO cylinder wall. Filament growth form is strongly influenced by mixture parameters and pore dimensions.

  12. Complexes of Human Papillomavirus Type 16 E6 Proteins Form Pseudo-Death-Inducing Signaling Complex Structures during Tumor Necrosis Factor-Mediated Apoptosis▿

    PubMed Central

    Filippova, Maria; Filippov, Valery A.; Kagoda, Mercy; Garnett, Theodore; Fodor, Nadya; Duerksen-Hughes, Penelope J.

    2009-01-01

    High-risk strains of human papillomavirus (HPV) such as HPV type 16 (HPV16) and HPV18 are causative agents of most human cervical carcinomas. E6, one of the oncogenes encoded by HPV16, possesses a number of biological and transforming functions. We have previously shown that the binding of E6 to host apoptotic proteins such as tumor necrosis factor (TNF) R1, the adaptor protein FADD, and procaspase 8 results in a significant modification of the normal flow of apoptotic events. For example, E6 can bind to and accelerate the degradation of FADD. In addition, full-length E6 binds to the TNF R1 death domain and can also bind to and accelerate the degradation of procaspase 8. In contrast, the binding of small splice isoforms known as E6* results in the stabilization of procaspase 8. In this report, we propose a model for the ability of HPV16 E6 to both sensitize and protect cells from TNF as well as to protect cells from Fas. We demonstrate that both the level of E6 expression and the ratio between full-length E6 and E6* are important factors in the modification of the host extrinsic apoptotic pathways and show that at high levels of E6 expression, the further sensitization of U2OS, NOK, and Ca Ski cells to TNF-mediated apoptosis is most likely due to the formation of a pseudo-death-inducing signaling complex structure that includes complexes of E6 proteins. PMID:18842714

  13. Tool use induces complex and flexible plasticity of human body representations.

    PubMed

    Longo, Matthew R; Serino, Andrea

    2012-08-01

    Plasticity of body representation fundamentally underpins human tool use. Recent studies have demonstrated remarkably complex plasticity of body representation in humans, showing that such plasticity (1) occurs flexibly across multiple time scales and (2) involves multiple body representations responding differently to tool use. Such findings reveal remarkable sophistication of body plasticity in humans, suggesting that Vaesen may overestimate the similarity of such mechanisms in humans and non-human primates.

  14. Photoluminescence analysis of self induced planer alignment in azo dye dispersed nematic liquid crystal complex

    SciTech Connect

    Kumar, Rishi Sood, Srishti Raina, K. K.

    2014-04-24

    We have developed azo dye doped nematic liquid crystal complex for advanced photonic liquid crystal display technology aspects. Disperse orange azo dye self introduced planer alignment in the nematic liquid crystal without any surface anchoring treatment. Planer alignment was characterized by optical polarizing microscopy. The electro-optical switching response of dye disperse planer aligned nematic cell was investigated as a function of applied voltage with the help of photoluminescence spectrophotometer for the tuning of photoluminescence contrast.

  15. The Interpretation of Motionally Induced Electric Fields in Oceans of Complex Geometry

    DTIC Science & Technology

    2008-10-01

    Luther , 1990) shows that mutual induction is minimal for periods longer than 10 hours. To avoid complications caused by quickly varying large-scale...considered later. Periodic ocean circulation such as tides or Kelvin waves can generate further complex- ities due to the introduction of time-variable...outside of the jet that is physically unrealistic and depends on the repeat period 1/M (see appendix A.2 for details) The background Ex is removed as

  16. Ruthenium dihydroxybipyridine complexes are tumor activated prodrugs due to low pH and blue light induced ligand release.

    PubMed

    Hufziger, Kyle T; Thowfeik, Fathima Shazna; Charboneau, David J; Nieto, Ismael; Dougherty, William G; Kassel, W Scott; Dudley, Timothy J; Merino, Edward J; Papish, Elizabeth T; Paul, Jared J

    2014-01-01

    Ruthenium drugs are potent anti-cancer agents, but inducing drug selectivity and enhancing their modest activity remain challenging. Slow Ru ligand loss limits the formation of free sites and subsequent binding to DNA base pairs. Herein, we designed a ligand that rapidly dissociates upon irradiation at low pH. Activation at low pH can lead to cancer selectivity, since many cancer cells have higher metabolism (and thus lower pH) than non-cancerous cells. We have used the pH sensitive ligand, 6,6'-dihydroxy-2,2'-bipyridine (66'bpy(OH)2), to generate [Ru(bpy)2(66'(bpy(OH)2)](2+), which contains two acidic hydroxyl groups with pKa1=5.26 and pKa2=7.27. Irradiation when protonated leads to photo-dissociation of the 66'bpy(OH)2 ligand. An in-depth study of the structural and electronic properties of the complex was carried out using X-ray crystallography, electrochemistry, UV/visible spectroscopy, and computational techniques. Notably, RuN bond lengths in the 66'bpy(OH)2 complex are longer (by ~0.3Å) than in polypyridyl complexes that lack 6 and 6' substitution. Thus, the longer bond length predisposes the complex for photo-dissociation and leads to the anti-cancer activity. When the complex is deprotonated, the 66'bpy(O(-))2 ligand molecular orbitals mix heavily with the ruthenium orbitals, making new mixed metal-ligand orbitals that lead to a higher bond order. We investigated the anti-cancer activities of [Ru(bpy)2(66'(bpy(OH)2)](2+), [Ru(bpy)2(44'(bpy(OH)2)](2+), and [Ru(bpy)3](2+) (44'(bpy(OH)2=4,4'-dihydroxy-2,2'-bipyridine) in HeLa cells, which have a relatively low pH. It is found that [Ru(bpy)2(66'(bpy(OH)2)](2+) is more cytotoxic than the other ruthenium complexes studied. Thus, we have identified a pH sensitive ruthenium scaffold that can be exploited for photo-induced anti-cancer activity. © 2013.

  17. Ruthenium Dihydroxybipyridine Complexes are Tumor Activated Prodrugs Due to Low pH and Blue Light Induced Ligand Release

    PubMed Central

    Hufziger, Kyle T.; Thowfeik, Fathima Shazna; Charboneau, David J.; Nieto, Ismael; Dougherty, William G.; Kassel, W. Scott; Dudley, Timothy J.; Merino, Edward J.; Papish, Elizabeth T.; Paul, Jared J.

    2013-01-01

    Ruthenium drugs are potent anti-cancer agents, but inducing drug selectivity and enhancing their modest activity remain challenging. Slow Ru ligand loss limits the formation of free sites and subsequent binding to DNA base pairs. Herein, we designed a ligand that rapidly dissociates upon irradiation at low pH. Activation at low pH can lead to cancer selectivity, since many cancer cells have higher metabolism (and thus lower pH) than non-cancerous cells. We have used the pH sensitive ligand, 6,6′-dihydroxy-2,2′-bipyridine (66′bpy(OH)2), to generate [Ru(bpy)2(66′(bpy(OH)2)]2+, which contains two acidic hydroxyl groups with pKa1 = 5.26 and pKa2 = 7.27. Irradiation when protonated leads to photo-dissociation of the 66′bpy(OH)2 ligand. An in-depth study of the structural and electronic properties of the complex was carried out using X-Ray crystallography, electrochemistry, UV/visible spectroscopy, and computational techniques. Notably, Ru-N bond lengths in the 66′bpy(OH)2 complex are longer (by ~0.3 Å) than in polypyridyl complexes that lack 6 and 6′ substitution. Thus, the longer bond length predisposes the complex for photo-dissociation and leads to the anti-cancer activity. When the complex is deprotonated, the 66′bpy(O−)2 ligand molecular orbitals mix heavily with the ruthenium orbitals, making new mixed metal-ligand orbitals that lead to a higher bond order. We investigated the anti-cancer activities of [Ru(bpy)2(66′(bpy(OH)2)]2+, [Ru(bpy)2(44′(bpy(OH)2)]2+, and [Ru(bpy)3]2+ (44′(bpy(OH)2 = 4,4′-dihydroxy-2,2′-bipyridine) in HeLa cells, which have a relatively low pH. It is found that [Ru(bpy)2(66′(bpy(OH)2)]2+ is more cytotoxic than the other ruthenium complexes studied. Thus, we have identified a pH sensitive ruthenium scaffold that can be exploited for photo-induced anti-cancer activity. PMID:24184694

  18. Proteomic response of β-lactamases-producing Enterobacter cloacae complex strain to cefotaxime-induced stress.

    PubMed

    Maravić, Ana; Cvjetan, Svjetlana; Konta, Marina; Ladouce, Romain; Martín, Fernando A

    2016-07-01

    Bacteria of the Enterobacter cloacae complex are among the ten most common pathogens causing nosocomial infections in the USA. Consequently, increased resistance to β-lactam antibiotics, particularly expanded-spectrum cephalosporins like cefotaxime (CTX), poses a serious threat. Differential In-Gel Electrophoresis (DIGE), followed by LC-MS/MS analysis and bioinformatics tools, was employed to investigate the survival mechanisms of a multidrug-resistant E. hormaechei subsp. steigerwaltii 51 carrying several β-lactamase-encoding genes, including the 'pandemic' blaCTX-M-15 After exposing the strain with sub-minimal inhibitory concentration (MIC) of CTX, a total of 1072 spots from the whole-cell proteome were detected, out of which 35 were differentially expressed (P ≤ 0.05, fold change ≥1.5). Almost 50% of these proteins were involved in cell metabolism and energy production, and then cell wall organization/virulence, stress response and transport. This is the first study investigating the whole-cell proteomic response related to the survival of β-lactamases-producing strain, belonging to the E. cloacae complex when exposed to β-lactam antibiotic. Our data support the theory of a multifactorial synergistic effect of diverse proteomic changes occurring in bacterial cells during antibiotic exposure, depicting the complexity of β-lactam resistance and giving us an insight in the key pathways mediating the antibiotic resistance in this emerging opportunistic pathogen. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Exogenous enzyme complex prevents intestinal soybean meal-induced enteritis in Mugil liza (Valenciennes, 1836) juvenile.

    PubMed

    Ramos, Leonardo R V; Pedrosa, Virgínia F; Mori, Agnes; Andrade, Carlos F F DE; Romano, Luis A; Abreu, Paulo C; Tesser, Marcelo B

    2017-02-09

    Four soybean meal-based diets containing increasing levels of an enzyme complex (E50, E100, E150 and E200 at 50, 100, 150 and 200 g ton-1, respectively) and one soybean meal-based diet without the enzyme complex (E0) were fed in triplicate to M. liza juveniles in a semi-static flow system with 20 fish per tank for 75 days. There were no differences between the treatments for animal performance parameters, but fish fed the enzyme complex treatment exhibited significantly (P<0.05) higher values of calcium bone retention compared with control fish. Although there was no relationship between bacterial counts in different sections of the gastrointestinal tract or enzyme levels, filamentous bacteria were increased in E50 compared with E150. All of the treatments resulted in higher bacterial counts in the stomach than in intestinal segments. Histological screening showed serious to moderate infiltration of inflammatory cells, modification in villus morphology and necrosis in some cases in fish fed the E0 diet. In addition, fish from the E0 treatment exhibited significantly (P<0.05) lower lipid deposition in the peritoneal cavity. Therefore, the use of low levels of exogenous enzyme is recommended in diets for M. liza when soybean meal is used as the main source of protein.

  20. A Mg2+-induced conformational switch rendering a competent DNA polymerase catalytic complex.

    PubMed

    Mendieta, Jesús; Cases-González, Clara E; Matamoros, Tania; Ramírez, Galo; Menéndez-Arias, Luis

    2008-05-01

    The structural and dynamical changes occurring before nucleotide addition were studied using molecular dynamics (MD) simulations of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) complexes containing one or two Mg2+ ions in the presence of dNTP. Our models revealed that the formation of a catalytically competent DNA polymerase complex required subtle rearrangements at the catalytic site A, which occurred only when an Mg2+ ion was bound. This model has been validated using pre-steady-state kinetics to show that free Mg2+ is necessary to obtain a catalytically competent polymerase. Kinetic studies carried out with Be2+ as a cofactor permitted the functional discrimination between metal sites A and B. At low concentrations, Be2+ increased the catalytic efficiency of the polymerase, while at higher concentrations, it competed with Mg2+ for binding to site A, and inhibited DNA polymerization. In agreement with experimental data, MD simulations revealed that the catalytic attack distance between the 3-OH of the primer and the phosphorus in complexes containing Be2+ instead of Mg2+ at site A was above 4.5 A. Our findings provide a detailed description of the mechanism of DNA polymerization and should be helpful to understand the molecular basis of DNA replication fidelity.

  1. Single-chain self-folding of synthetic polymers induced by metal-ligand complexation.

    PubMed

    Willenbacher, Johannes; Altintas, Ozcan; Roesky, Peter W; Barner-Kowollik, Christopher

    2014-01-01

    The controlled folding of a single polymer chain is for the first time realized by metal- complexation. α,ω-Bromine functional linear polymers are prepared via activators regenerated by electron transfer (ARGET) ATRP (M¯n,SEC = 5900 g mol(-1) , Đ = 1.07 and 12 000 g mol(-1) , Đ = 1.06) and the end groups of the polymers are subsequently converted to azide functionalities. A copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is carried out in the presence of a novel triphenylphosphine ligand and the polymers to afford homotelechelic bis-triphenylphosphine polymeric-macroligands (MLs) (M¯n,SEC = 6600 g mol(-1) , Đ = 1.07, and 12 800 g mol(-1) , Đ = 1.06). Single-chain metal complexes (SCMCs) are formed in the presence of Pd(II) ions in highly diluted solution at ambient temperature. The results derived via (1) H and (31) P{(1) H} NMR experiments, SEC, and DLS unambiguously evidence the efficient formation of SCMCs via metal ligand complexation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Analysis and Testing of Radiation-Induced Transient Effects in Complex Microcircuits

    DTIC Science & Technology

    1982-06-01

    Important similarities between bulk and localized ionizing radiation effects are experimental and analytical techniques which must e used to detect the...rocircuit response. 2.2.4 Radiation-Induced Diode Saturation, Recovery Time As mentioned previously, systems can be designed to detect the presence of a...of errors are detected following expo- sure the results may be reported as an error cross-section - defined as the number of errors divided by the

  3. Iminophosphorane-organogold(III) complexes induce cell death through mitochondrial ROS production

    PubMed Central

    Vela, Laura; Contel, María; Palomera, Luis; Azaceta, Gemma; Marzo, Isabel

    2011-01-01

    Gold compounds are being investigated as potential antitumor drugs. Some gold(III) derivatives have shown to induce cell death in solid tumors but their mechanism of action differs from that of cisplatin, since most of these compounds do not bind to DNA. We have explored cellular events triggered by three different iminophosphorane-organo gold(III) compounds in leukemia cells (a neutral compound with two chloride ligands [Au{κ2-C,N-C6H4(PPh2=N(C6H5)-2}Cl2] 1, and two cationic compounds with either a dithiocarbamate ligand [Au{κ2-C,N-C6H4(PPh2=N(C6H5)-2}(S2CN-Me2)]PF6 2, or a water-soluble phosphine and a chloride ligand [Au{κ2-C,N-C6H4(PPh2=N(C6H5)-2}(P{Cp(m-C6H4-SO3Na)2}3) Cl]PF6 3). All three compounds showed higher toxicity against leukemia cells when compared to normal T-lymphocytes. Compounds 1 and 2 induced both necrosis and apoptosis, while 3 was mainly apoptotic. Necrotic cell death induced by 1 and 2 was Bax/Bak- and caspase-independent, while apoptosis induced by 3 was Bax/Bak-dependent. Reactive oxygen species (ROS) production at the mitochondrial level was a critical step in the antitumor effect of these compounds. PMID:21864808

  4. Self-Induced Switchings between Multiple Space-Time Patterns on Complex Networks of Excitable Units

    NASA Astrophysics Data System (ADS)

    Ansmann, Gerrit; Lehnertz, Klaus; Feudel, Ulrike

    2016-01-01

    We report on self-induced switchings between multiple distinct space-time patterns in the dynamics of a spatially extended excitable system. These switchings between low-amplitude oscillations, nonlinear waves, and extreme events strongly resemble a random process, although the system is deterministic. We show that a chaotic saddle—which contains all the patterns as well as channel-like structures that mediate the transitions between them—is the backbone of such a pattern-switching dynamics. Our analyses indicate that essential ingredients for the observed phenomena are that the system behaves like an inhomogeneous oscillatory medium that is capable of self-generating spatially localized excitations and that is dominated by short-range connections but also features long-range connections. With our findings, we present an alternative to the well-known ways to obtain self-induced pattern switching, namely, noise-induced attractor hopping, heteroclinic orbits, and adaptation to an external signal. This alternative way can be expected to improve our understanding of pattern switchings in spatially extended natural dynamical systems like the brain and the heart.

  5. Anti-diabetic effects of a series of vanadium dipicolinate complexes in rats with streptozotocin-induced diabetes

    PubMed Central

    Willsky, Gail R.; Chi, Lai-Har; Godzala, Michael; Kostyniak, Paul J.; Smee, Jason J.; Trujillo, Alejandro M.; Alfano, Josephine A.; Ding, Wenjin; Hu, Zihua; Crans, Debbie C.

    2011-01-01

    The effects of oral treatment of rats with streptozotocin-induced diabetes with a range of vanadium dipicolinate complexes (Vdipic) and derivatives are reviewed. Structure-reactivity relationships are explored aiming to correlate properties such as stability, to their insulin-enhancing effects. Three types of modifications are investigated; first, substitutions on the aromatic ring, second, coordination of a hydroxylamido group to the vanadium, and third, changes in the oxidation state of the vanadium ion. These studies allowed us to address the importance of coordination chemistry, and redox chemistry, as modes of action. Dipicolinate was originally chosen as a ligand because the dipicolinatooxovanadium(V) complex (V5dipic), is a potent inhibitor of phosphatases. The effect of vanadium oxidation state (3, 4 or 5), on the insulin-enhancing properties was studied in both the Vdipic and VdipicCl series. Effects on blood glucose, body weight, serum lipids, alkaline phosphatase and aspartate transaminase were selectively monitored. Statistically distinct differences in activity were found, however, the trends observed were not the same in the Vdipic and VdipicCl series. Interperitoneal administration of the Vdipic series was used to compare the effect of administration mode. Correlations were observed for blood vanadium and plasma glucose levels after V5dipic treatment, but not after treatment with corresponding V4dipic and V3dipic complexes. Modifications of the aromatic ring structure with chloride, amine or hydroxyl groups had limited effects. Global gene expression was measured using Affymetrix oligonucleotide chips. All diabetic animals treated with hydroxyl substituted V5dipic (V5dipicOH) and some diabetic rats treated with vanadyl sulfate had normalized hyperlipidemia yet uncontrolled hyperglycemia and showed abnormal gene expression patterns. In contrast to the normal gene expression profiles previously reported for some diabetic rats treated with vanadyl

  6. pH-Regulated Reversible Transition Between Polyion Complexes (PIC) and Hydrogen-Bonding Complexes (HBC) with Tunable Aggregation-Induced Emission.

    PubMed

    Tian, Sidan; Liu, Guhuan; Wang, Xiaorui; Wu, Tao; Yang, Jinxian; Ye, Xiaodong; Zhang, Guoying; Hu, Jinming; Liu, Shiyong

    2016-02-17

    The mimicking of biological supramolecular interactions and their mutual transitions to fabricate intelligent artificial systems has been of increasing interest. Herein, we report the fabrication of supramolecular micellar nanoparticles consisting of quaternized poly(ethylene oxide)-b-poly(2-dimethylaminoethyl methacrylate) (PEO-b-PQDMA) and tetrakis(4-carboxylmethoxyphenyl)ethene (TPE-4COOH), which was capable of reversible transition between polyion complexes (PIC) and hydrogen bonding complexes (HBC) with tunable aggregation-induced emission (AIE) mediated by solution pH. At pH 8, TPE-4COOH chromophores can be directly dissolved in aqueous milieu without evident fluorescence emission. However, upon mixing with PEO-b-PQDMA, polyion complexes were formed by taking advantage of electrostatic interaction between carboxylate anions and quaternary ammonium cations and the most compact PIC micelles were achieved at the isoelectric point (i.e., [QDMA(+)]/[COO(-)] = 1), as confirmed by dynamic light scattering (DLS) measurement. Simultaneously, fluorescence spectroscopy revealed an evident emission turn-on and the maximum fluorescence intensity was observed near the isoelectric point due to the restriction of intramolecular rotation of TPE moieties within the PIC cores. The kinetic study supported a micelle fusion/fission mechanism on the formation of PIC micelles at varying charge ratios, exhibiting a quick time constant (τ1) relating to the formation of quasi-equilibrium micelles and a slow time constant (τ2) corresponding to the formation of final equilibrium micelles. Upon deceasing the pH of PIC micelles from 8 to 2 at the [QDMA(+)]/[COO(-)] molar ratio of 1, TPE-4COOH chromophores became gradually protonated and hydrophobic. The size of micellar nanoparticles underwent a remarkable decrease, whereas the fluorescence intensity exhibited a further increase by approximately 7.35-fold, presumably because of the formation of HBC micelles comprising cationic PQDMA

  7. Glycolic Acid Silences Inflammasome Complex Genes, NLRC4 and ASC, by Inducing DNA Methylation in HaCaT Cells.

    PubMed

    Tang, Sheau-Chung; Yeh, Jih-I; Hung, Sung-Jen; Hsiao, Yu-Ping; Liu, Fu-Tong; Yang, Jen-Hung

    2016-03-01

    AHAs (α-hydroxy acids), including glycolic acid (GA), have been widely used in cosmetic products and superficial chemical peels. Inflammasome complex has been shown to play critical roles in inflammatory pathways in human keratinocytes. However, the anti-inflammatory mechanism of GA is still unknown. The aim of this study is to investigate the relationship between the expression of the inflammasome complex and epigenetic modification to elucidate the molecular mechanism of the anti-inflammatory effect of GA in HaCaT cells. We evaluated NLRP3, NLRC4, AIM2, and ASC inflammasome complex gene expression on real-time polymerase chain reaction (PCR). Methylation changes were detected in these genes following treatment with DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-Aza) with or without the addition of GA using methylation-specific PCR (MSP). GA inhibited the expressions of these inflammasome complex genes, and the decreases in the expressions of mRNA were reversed by 5-Aza treatment. Methylation was detected in NLRC4 and ASC on MSP, but not in NLRP3 or AIM2. GA decreased NLRC4 and ASC gene expression by increasing not only DNA methyltransferase 3B (DNMT-3B) protein level, but also total DNMT activity. Furthermore, silencing of DNMT-3B (shDNMT-3B) increased the expressions of NLRC4 and ASC. Our data demonstrated that GA treatment induces hypermethylation of promoters of NLRC4 and ASC genes, which may subsequently lead to the hindering of the assembly of the inflammasome complex in HaCaT cells. These results highlight the anti-inflammatory potential of GA-containing cosmetic agents in human skin cells and demonstrate for the first time the role of aberrant hypermethylation in this process.

  8. Interleukin-2/Anti-Interleukin-2 Immune Complex Expands Regulatory T Cells and Reduces Angiotensin II-Induced Aortic Stiffening

    PubMed Central

    Eberson, Lance S.; Secomb, Timothy W.; Larmonier, Nicolas; Larson, Douglas F.

    2014-01-01

    Adaptive immune function is implicated in the pathogenesis of vascular disease. Inhibition of T-lymphocyte function has been shown to reduce hypertension, target-organ damage, and vascular stiffness. To study the role of immune inhibitory cells, CD4+CD25+Foxp3+ regulatory T cells (Tregs), on vascular stiffness, we stimulated the proliferation of Treg lymphocytes in vivo using a novel cytokine immune complex of Interleukin-2 (IL-2) and anti-IL-2 monoclonal antibody clone JES6-1 (mAbCD25). Three-month-old male C57BL/6J mice were treated with IL-2/mAbCD25 concomitantly with continuous infusion of angiotensin type 1 receptor agonist, [Val5]angiotensin II. Our results indicate that the IL-2/mAbCD25 complex effectively induced Treg phenotype expansion by 5-fold in the spleens with minimal effects on total CD4+ and CD8+ T-lymphocyte numbers. The IL-2/mAbCD25 complex inhibited angiotensin II-mediated aortic collagen remodeling and the resulting stiffening, analyzed with in vivo pulse wave velocity and effective Young's modulus. Furthermore, the IL-2/mAbCD25 complex suppressed angiotensin II-mediated Th17 responses in the lymphoid organs and reduced gene expression of IL-17 as well as T cell and macrophage infiltrates in the aortic tissue. This study provides data that support the protective roles of Tregs in vascular stiffening and highlights the use of the IL-2/mAbCD25 complex as a new potential therapy in angiotensin II-related vascular diseases. PMID:25258681

  9. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    PubMed

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood.

  10. ERK phosphorylation of MED14 in promoter complexes during mitogen-induced gene activation by Elk-1

    PubMed Central

    Galbraith, Matthew D.; Saxton, Janice; Li, Li; Shelton, Samuel J.; Zhang, Hongmei; Espinosa, Joaquin M.; Shaw, Peter E.

    2013-01-01

    The ETS domain transcription factor Elk-1 stimulates expression of immediate early genes (IEGs) in response to mitogens. These events require phosphorylation of Elk-1 by extracellular signal-regulated kinase (ERK) and phosphorylation-dependent interaction of Elk-1 with co-activators, including histone acetyltransferases and the Mediator complex. Elk-1 also recruits ERK to the promoters of its target genes, suggesting that ERK phosphorylates additional substrates in transcription complexes at mitogen-responsive promoters. Here we report that MED14, a core subunit of the Mediator, is a bona fide ERK substrate and identify serine 986 (S986) within a serine-proline rich region of MED14 as the major ERK phosphorylation site. Mitogens induced phosphorylation of MED14 on S986 at IEG promoters; RNAi knockdown of MED14 reduced CDK8 and RNA polymerase II (RNAPII) recruitment, RNAPII C-terminal domain phosphorylation and impaired activation of IEG transcription. A single alanine substitution at S986 reduced activation of an E26 (ETS)-responsive reporter by oncogenic Ras and mitogen-induced, Elk-1-dependent transcription, whereas activities of other transcriptional activators were unaffected. We also demonstrate that Elk-1 can associate with MED14 independently of MED23, which may facilitate phosphorylation of MED14 by ERK to impart a positive and selective impact on mitogen-responsive gene expression. PMID:24049075

  11. Rotenone, a mitochondrial respiratory complex I inhibitor, ameliorates lipopolysaccharide/D-galactosamine-induced fulminant hepatitis in mice.

    PubMed

    Ai, Qing; Jing, Yuping; Jiang, Rong; Lin, Ling; Dai, Jie; Che, Qian; Zhou, Dan; Jia, Mengying; Wan, Jingyuan; Zhang, Li

    2014-07-01

    The syntheses of inflammatory mediators are energy-intensive processes and the mitochondria play pivotal roles in supporting these energy-requiring molecular responses. In the present studies, a mitochondrial respiratory complex I inhibitor rotenone was administrated in mice with lipopolysaccharide/D-galactosamine (LPS/D-Gal)-induced fulminant liver injury and the prophylactic and therapeutic effects on tissue injury were evaluated. We found that pretreatment with rotenone suppressed the elevation of plasma aminotransferases, alleviated the histopathological abnormalities and improved the survival rate of LPS/D-Gal-challenged mice. Pretreatment with rotenone has no obvious effects on hepatic malondialdehyde (MDA) contents but it significantly inhibited the up-regulation of both hepatic mRNA level and plasma protein level of TNF-α and IL-6. In the rotenone-pretreated group, the elevation of hepatic caspase-3, caspase-8 and caspase-9 activities induced by LPS/D-Gal decreased and rotenone reduced the count of TUNEL-positive apoptotic hepatocytes. In addition, posttreatment with rotenone at 1h after LPS/D-Gal challenge also suppressed the elevation of plasma aminotransferases. These data suggest that mitochondrial complex I inhibition might be a potential approach for the control of inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. ERK phosphorylation of MED14 in promoter complexes during mitogen-induced gene activation by Elk-1.

    PubMed

    Galbraith, Matthew D; Saxton, Janice; Li, Li; Shelton, Samuel J; Zhang, Hongmei; Espinosa, Joaquin M; Shaw, Peter E

    2013-12-01

    The ETS domain transcription factor Elk-1 stimulates expression of immediate early genes (IEGs) in response to mitogens. These events require phosphorylation of Elk-1 by extracellular signal-regulated kinase (ERK) and phosphorylation-dependent interaction of Elk-1 with co-activators, including histone acetyltransferases and the Mediator complex. Elk-1 also recruits ERK to the promoters of its target genes, suggesting that ERK phosphorylates additional substrates in transcription complexes at mitogen-responsive promoters. Here we report that MED14, a core subunit of the Mediator, is a bona fide ERK substrate and identify serine 986 (S986) within a serine-proline rich region of MED14 as the major ERK phosphorylation site. Mitogens induced phosphorylation of MED14 on S986 at IEG promoters; RNAi knockdown of MED14 reduced CDK8 and RNA polymerase II (RNAPII) recruitment, RNAPII C-terminal domain phosphorylation and impaired activation of IEG transcription. A single alanine substitution at S986 reduced activation of an E26 (ETS)-responsive reporter by oncogenic Ras and mitogen-induced, Elk-1-dependent transcription, whereas activities of other transcriptional activators were unaffected. We also demonstrate that Elk-1 can associate with MED14 independently of MED23, which may facilitate phosphorylation of MED14 by ERK to impart a positive and selective impact on mitogen-responsive gene expression.

  13. Charge Transfer Dissociation of Complex Oligosaccharides: Comparison with Collision-Induced Dissociation and Extreme Ultraviolet Dissociative Photoionization

    NASA Astrophysics Data System (ADS)

    Ropartz, David; Li, Pengfei; Fanuel, Mathieu; Giuliani, Alexandre; Rogniaux, Hélène; Jackson, Glen P.

    2016-10-01

    The structural characterization of oligosaccharides still challenges the field of analytical chemistry. Tandem mass spectrometry offers many advantages toward this aim, although the generic fragmentation method (low-energy collision-induced dissociation) shows clear limitations and is often insufficient to retrieve some essential structural information on these molecules. In this work, we present the first application of helium charge transfer dissociation (He-CTD) to characterize the structure of complex oligosaccharides. We compare this method with low-energy collision-induced dissociation and extreme-ultraviolet dissociative photoionization (XUV-DPI), which was shown previously to ensure the successful characterization of complex glycans. Similarly to what could be obtained by XUV-DPI, He-CTD provides a complete description of the investigated structures by producing many informative cross-ring fragments and no ambiguous fragmentation. Unlike XUV-DPI, which is performed at a synchrotron source, He-CTD has the undeniable advantage of being implementable in a conventional benchtop ion trap in a conventional laboratory setting.

  14. Surface-induced dissociation of ion mobility-separated noncovalent complexes in a quadrupole/time-of-flight mass spectrometer.

    PubMed

    Zhou, Mowei; Huang, Chengsi; Wysocki, Vicki H

    2012-07-17

    A custom in-line surface-induced dissociation (SID) device has been incorporated into a commercial ion mobility quadrupole/time-of-flight mass spectrometer in order to provide an alternative and potentially more informative activation method than the commonly used collision-induced dissociation (CID). Complicated sample mixtures can be fractionated by ion mobility (IM) and then dissociated by CID or SID for further structural analysis. Interpretation of SID spectra for cesium iodide clusters was greatly simplified with IM prior to dissociation because products originating from different precursors and overlapping in m/z but separated in drift time can be examined individually. Multiple conformations of two protein complexes, source-activated transthyretin tetramer and nativelike serum amyloid P decamer, were separated in ion mobility and subjected to CID and SID. CID spectra of the mobility separated conformations are similar. However, drastic differences can be observed for SID spectra of different conformations, implying different structures in the gas phase. This work highlights the potential of utilizing IM-SID to study quaternary structures of protein complexes and provides information that is complementary to our recently reported SID-IM approach.

  15. IL-7 Induces an Epitope Masking of γc Protein in IL-7 Receptor Signaling Complex

    PubMed Central

    Goh, Tae Sik; Jo, Yuna; Lee, Byunghyuk; Kim, Geona; Hwang, Hyunju; Ko, Eunhee; Kang, Seung Wan; Oh, Sae-Ock; Baek, Sun-Yong; Yoon, Sik; Lee, Jung Sub

    2017-01-01

    IL-7 signaling via IL-7Rα and common γ-chain (γc) is necessary for the development and homeostasis of T cells. Although the delicate mechanism in which IL-7Rα downregulation allows the homeostasis of T cell with limited IL-7 has been well known, the exact mechanism behind the interaction between IL-7Rα and γc in the absence or presence of IL-7 remains unclear. Additionally, we are still uncertain as to how only IL-7Rα is separately downregulated by the binding of IL-7 from the IL-7Rα/γc complex. We demonstrate here that 4G3, TUGm2, and 3E12 epitope masking of γc protein are induced in the presence of IL-7, indicating that the epitope alteration is induced by IL-7 binding to the preassembled receptor core. Moreover, the epitope masking of γc protein is inversely correlated with the expression of IL-7Rα upon IL-7 binding, implying that the structural alteration of γc might be involved in the regulation of IL-7Rα expression. The conformational change in γc upon IL-7 binding may contribute not only to forming the functional IL-7 signaling complex but also to optimally regulating the expression of IL-7Rα. PMID:28127156

  16. A Role of Low-angle Thrust Fault for the Occurrence of rain-induced Rockslides in an Accretionary Complex

    NASA Astrophysics Data System (ADS)

    Arai, N.; Chigira, M.

    2015-12-01

    Recently, extreme weather related to global warming occurs frequently all over the world; there have been many record-setting rainfall events. Accordingly, potential of rain-induced rockslides increases. Examples of recent rain-induced rock avalanches with tens or more than a hundred of fatalities are a rockslide in Shiaolin village, Taiwan by 2009 Typhoon Morakot, and rockslides induced by 2011 typhoon Talas in Japan. However, the method to predict potential sites of rockslides is not established. Geological causes of rockslides are site specific and they must be clarified for each case. 2011 Typhoon Talas induced more than 50 rockslides in the outer belt of the Southwest Japan, where is underlain by Cretaceous - lower Miocene accretionary complexes. We performed thorough geological mapping in the Akatani area, where two huge rockslides occurred with volumes of 2 million and 8 million m3 respectively. As a result, we found that these two rockslides had their sliding surfaces along a low-angle-thrust with a dip of 29°~40° extending more than 5 km, which fault we name Kawarabi-thrust. This thrust has a fracture zone of 6.0 m in the maximum width, composed of clayey fault breccia with a few layers of black gouges. These fault materials are very weak and impermeable, so the fracture zone is expected to prevent the groundwater filtration and build up the pore pressure. This thrust had been exposed along the riversides at the foot of the two rockslides, which suggests that the slopes on the thrust had been destabilized by the undercutting of long-term river incision. The destabilization induced gravitational slope deformation with small scarps before the catastrophic failure. Our finding suggests that locating a large-scale low-angle-thrust is essentially important to predict potential sites of catastrophic rockslides as well as interpreting the internal structure of gravitationally deformed slopes.

  17. Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis.

    PubMed

    Kim, Tae-Houn; Kunz, Hans-Henning; Bhattacharjee, Saikat; Hauser, Felix; Park, Jiyoung; Engineer, Cawas; Liu, Amy; Ha, Tracy; Parker, Jane E; Gassmann, Walter; Schroeder, Julian I

    2012-12-01

    In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor-nucleotide binding-Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid-induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest.

  18. Complex-periodic spiral waves in confluent cardiac cell cultures induced by localized inhomogeneities

    NASA Astrophysics Data System (ADS)

    Hwang, Seong-min; Kim, Tae Yun; Lee, Kyoung J.

    2005-07-01

    Spatiotemporal wave activities in excitable heart tissues have long been the subject of numerous studies because they underlie different forms of cardiac arrhythmias. In particular, understanding the dynamics and the instabilities of spiral waves have become very important because they can cause reentrant tachycardia and their subsequent transitions to fibrillation. Although many aspects of cardiac spiral waves have been investigated through experiments and model simulations, their complex properties are far from well understood. Here, we show that intriguing complex-periodic (such as period-2, period-3, period-4, or aperiodic) spiral wave states can arise in monolayer tissues of cardiac cell culture in vitro, and demonstrate that these different dynamic states can coexist with abrupt and spontaneous transitions among them without any change in system parameters; in other words, the medium supports multistability. Based on extensive image data analysis, we have confirmed that these spiral waves are driven by their tips tracing complex orbits whose unusual, meandering shapes are formed by delicate interplay between localized conduction blocks and nonlinear properties of the culture medium. Author contributions: S.-m.H. and K.J.L. designed research; S.-m.H. and T.Y.K. performed research; S.-m.H. contributed new reagents/analytic tools; S.-m.H., T.Y.K., and K.J.L. analyzed data; and S.-m.H. and K.J.L. wrote the paper.This paper was submitted directly (Track II) to the PNAS office.Abbreviations: IBI, interbeat interval; P-n, period-n.

  19. Anti-diabetic properties of chromium citrate complex in alloxan-induced diabetic rats.

    PubMed

    Li, Fang; Wu, Xiangyang; Zhao, Ting; Zhang, Min; Zhao, Jiangli; Mao, Guanghua; Yang, Liuqing

    2011-12-01

    The chromium citrate complex [CrCIT] was synthesized and its structure was determined by infrared, UV-visible and atomic absorption spectroscopy, elemental and thermodynamic analysis. Anti-diabetic activity, oxidative DNA damage capacity and acute oral toxicity of [CrCIT] were investigated and compared with that of chromium trichloride hexahydrate. [CrCIT] was synthesized in a single step reaction by chelating chromium(III) with citric acid in aqueous solution. The molecular formula of [CrCIT] was inferred as CrC(6)H(5)O(7)·4H(2)O. The anti-diabetic activity of the complex [CrCIT] was assessed in alloxan-diabetic rats by daily oral gavage for 3 weeks. The biological activity results showed that the complex at the dose of 0.25-0.75 mg Cr/kg body weight could decrease the blood glucose level and increase liver glycogen level in alloxan-diabetic rats. [CrCIT] had more beneficial influences on the improvement of controlling blood glucose, serum lipid and liver glycogen levels compared with CrCl(3)·6H(2)O. Furthermore, [CrCIT] did not cause oxidative DNA damage under physiologically relevant conditions, and [CrCIT] did not produce any hazardous symptoms or deaths in acute oral toxicity test, showing the LD(50) value for female and male rats were higher than 15.1 g/kg body weight. The results suggested that [CrCIT] might represent a novel and proper chromium supplement with potential therapeutic value to control blood glucose in diabetes.

  20. Collision-induced Raman spectra of Hg-rare gas Van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Borysow, A.; Grycuk, T.

    1982-10-01

    An absolute differential scattering cross section is calculated for the Hg-rare gas and pure Hg Van der Waals quasimolecules, taking into account both the free state and bound state contributions to the depolarized Raman spectra of these systems. The calculations are performed using the Maitland-Smith (MS) potential function fitted to available experimental data and assuming the simple dipole-induced dipole (DID) model of anisotropy of the polarizability tensor of a collisional atomic pair. The obtained cross sections are about 100 times greater than those for the pure rare gas calculated and measured by Frommhold et al.

  1. Cluster agglomeration induced by dust-density waves in complex plasmas.

    PubMed

    Dap, Simon; Lacroix, David; Hugon, Robert; de Poucques, Ludovic; Briancon, Jean-Luc; Bougdira, Jamal

    2012-12-14

    Experimental results showing the agglomeration of large carbonaceous particles in a dusty plasma are reported. Experiments were performed in a capacitively coupled rf argon plasma. Acetylene was injected to produce dust particles. When a sufficient amount of nanoparticles is present in the cathodic sheath, self-excited dust-density waves occur. The latter ones induce the motion of larger clusters, which vertically oscillate with the displacement of wave fronts. In some cases, the relative velocity of large particles was high enough to overcome the Coulomb repulsion forces, and agglomeration can be observed. The mechanisms underlying this process are discussed.

  2. Metformin induces lactate production in peripheral blood mononuclear cells and platelets through specific mitochondrial complex I inhibition.

    PubMed

    Piel, S; Ehinger, J K; Elmér, E; Hansson, M J

    2015-01-01

    Metformin is a widely used antidiabetic drug associated with the rare side effect of lactic acidosis which has been proposed to be linked to drug-induced mitochondrial dysfunction. Using respirometry, the aim of this study was to evaluate mitochondrial toxicity of metformin to human blood cells in relation to that of phenformin, a biguanide analogue withdrawn in most countries due to a high incidence of lactic acidosis. Peripheral blood mononuclear cells and platelets were isolated from healthy volunteers, and integrated mitochondrial function was studied in permeabilized and intact cells using high-resolution respirometry. A wide concentration range of metformin (0.1-100 mm) and phenformin (25-500 μm) was investigated for dose- and time-dependent effects on respiratory capacities, lactate production and pH. Metformin induced respiratory inhibition at complex I in peripheral blood mononuclear cells and platelets (IC50 0.45 mm and 1.2 mm respectively). Phenformin was about 20-fold more potent in complex I inhibition of platelets than metformin. Metformin further demonstrated a dose- and time-dependent respiratory inhibition and augmented lactate release at a concentration of 1 mm and higher. Respirometry of human peripheral blood cells readily detected respiratory inhibition by metformin and phenformin specific to complex I, providing a suitable model for probing drug toxicity. Lactate production was increased at concentrations relevant for clinical metformin intoxication, indicating mitochondrial inhibition as a direct causative pathophysiological mechanism. Relative to clinical dosing, phenformin displayed a more potent respiratory inhibition than metformin, possibly explaining the higher incidence of lactic acidosis in phenformin-treated patients. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  3. Role of mitochondrial complex I and protective effect of CoQ10 supplementation in propofol induced cytotoxicity.

    PubMed

    Bergamini, Christian; Moruzzi, Noah; Volta, Francesco; Faccioli, Laura; Gerdes, Jantje; Mondardini, Maria Cristina; Fato, Romana

    2016-08-01

    Propofol (2,6-diisopropylphenol) is an anaesthetic widely used for human sedation. Due to its intrinsic antioxidant properties, rapid induction of anaesthesia and fast recovery, it is employed in paediatric anaesthesia and in the intensive care of premature infants. Recent studies have pointed out that exposure to anaesthesia in the early stage of life might be responsible of long-lasting cognitive impairment. The apoptotic neurodegeneration induced by general anaesthetics (GA) involves mitochondrial impairment due to the inhibition of the OXPHOS machinery. In the present work, we aim to identify the main mitochondrial respiratory chain target of propofol toxicity and to evaluate the possible protective effect of CoQ10 supplementation. The propofol effect on the mitochondrial functionality was assayed in isolated mitochondria and in two cell lines (HeLa and T67) by measuring oxygen consumption rate. The protective effect of CoQ10 was assessed by measuring cells viability, NADH-oxidase activity and ATP/ADP ratio in cells treated with propofol. Our results show that propofol reduces cellular oxygen consumption rate acting mainly on mitochondrial Complex I. The kinetic analysis of Complex I inhibition indicates that propofol interferes with the Q module acting as a non-competitive inhibitor with higher affinity for the free form of the enzyme. Cells supplemented with CoQ10 are more resistant to propofol toxicity. Propofol exposure induces cellular damages due to mitochondrial impairment. The site of propofol inhibition on Complex I is the Q module. CoQ10 supplementation protects cells against the loss of energy suggesting its possible therapeutic role to minimizing the detrimental effects of general anaesthesia.

  4. The Med1 Subunit of the Mediator Complex Induces Liver Cell Proliferation and Is Phosphorylated by AMP Kinase*

    PubMed Central

    Viswakarma, Navin; Jia, Yuzhi; Bai, Liang; Gao, Qian; Lin, Bingliang; Zhang, Xiaohong; Misra, Parimal; Rana, Ajay; Jain, Sanjay; Gonzalez, Frank J.; Zhu, Yi-Jun; Thimmapaya, Bayar; Reddy, Janardan K.

    2013-01-01

    Mediator, a large multisubunit protein complex, plays a pivotal role in gene transcription by linking gene-specific transcription factors with the preinitiation complex and RNA polymerase II. In the liver, the key subunit of the Mediator complex, Med1, interacts with several nuclear receptors and transcription factors to direct gene-specific transcription. Conditional knock-out of Med1 in the liver showed that hepatocytes lacking Med1 did not regenerate following either partial hepatectomy or treatment with certain nuclear receptor activators and failed to give rise to tumors when challenged with carcinogens. We now report that the adenovirally driven overexpression of Med1 in mouse liver stimulates hepatocyte DNA synthesis with enhanced expression of DNA replication, cell cycle control, and liver-specific genes, indicating that Med1 alone is necessary and sufficient for liver cell proliferation. Importantly, we demonstrate that AMP-activated protein kinase (AMPK), an important cellular energy sensor, interacts with, and directly phosphorylates, Med1 in vitro at serine 656, serine 756, and serine 796. AMPK also phosphorylates Med1 in vivo in mouse liver and in cultured primary hepatocytes and HEK293 and HeLa cells. In addition, we demonstrate that PPARα activators increase AMPK-mediated Med1 phosphorylation in vivo. Inhibition of AMPK by compound C decreased hepatocyte proliferation induced by Med1 and also by the PPARα activators fenofibrate and Wy-14,643. Co-treatment with compound C attenuated PPARα activator-inducible fatty acid β-oxidation in liver. Our results suggest that Med1 phosphorylation by its association with AMPK regulates liver cell proliferation and fatty acid oxidation, most likely as a downstream effector of PPARα and AMPK. PMID:23943624

  5. Nitric Oxide Induces Cardiac Protection by Preventing Extracellular Matrix Degradation through the Complex Caveolin-3/EMMPRIN in Cardiac Myocytes

    PubMed Central

    Cuadrado, Irene; Castejon, Borja; Martin, Ana M.; Saura, Marta; Reventun-Torralba, Paula; Zamorano, Jose Luis

    2016-01-01

    Inhibition of Extracellular Matrix degradation by nitric oxide (NO) induces cardiac protection against coronary ischemia/reperfusion (IR). Glycosylation of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) stimulates enzymatic activation of matrix metalloproteinases (MMPs) in the heart, although the mechanisms leading to EMMPRIN glycosylation are poorly understood. We sought to determine if NO may induce cardiac protection by preventing glycosylation of EMMPRIN in a mouse model of IR. Here we found that Caveolin-3 binds to low glycosylated EMMPRIN (LG-EMMPRIN) in cardiac cells and in the hearts of healthy mice, whereas IR disrupted the complex in nitric oxide synthase 2 (NOS2) knockout (KO) mice. By contrast, the binding was partially restored when mice were fed with an NO donor (DEA-NO) in the drinking water, showing a significant reduction on infarct size (NOS2KO: 34.6±5 vs NOS2KO+DEA-NO: 20.7±9), in expression of matrix metalloproteinases, and cardiac performance was improved (left ventricular ejection fraction (LVEF). NOS2KO: 31±4 vs NOS2KO+DEA-NO: 46±6). The role of Caveolin-3/EMMPRIN in NO-mediated cardiac protection was further assayed in Caveolin-3 KO mice, showing no significant improvement on infarct size (Caveolin-3 KO: 34.8±3 vs Caveolin-3 KO+DEA-NO:33.7±5), or in the expression of MMPs, suggesting that stabilization of the complex Caveolin-3/LG-EMMPRIN may play a significant role in the cardioprotective effect of NO against IR. PMID:27649573

  6. What musicians do to induce the sensation of groove in simple and complex melodies, and how listeners perceive it.

    PubMed

    Madison, Guy; Sioros, George

    2014-01-01

    Groove is the experience of wanting to move when hearing music, such as snapping fingers or tapping feet. This is a central aspect of much music, in particular of music intended for dancing. While previous research has found considerable consistency in ratings of groove across individuals, it remains unclear how groove is induced, that is, what are the physical properties of the acoustic signal that differ between more and less groove-inducing versions. Here, we examined this issue with a performance experiment, in which four musicians performed six simple and six complex melodies in two conditions with the intention of minimizing and maximizing groove. Analyses of rhythmical and temporal properties from the performances demonstrated some general effects. For example, more groove was associated with more notes on faster metrical levels and syncopation, and less groove was associated with deadpan timing and destruction of the regular pulse. We did not observe that deviations from the metrical grid [i.e., micro-timing (MT)] were a predictor of groove. A listener experiment confirmed that the musicians' manipulations had the intended effects on the experience of groove. A Brunswikian lens model was applied, which estimates the performer-perceiver communication across the two experiments. It showed that the communication achievement for simple melodies was 0.62, and that the matching of performers' and listeners' use of nine rhythmical cues was 0.83. For complex melodies with an already high level of groove, the corresponding values were 0.39 and 0.34, showing that it was much more difficult to "take out" groove from musical structures designed to induce groove.

  7. What musicians do to induce the sensation of groove in simple and complex melodies, and how listeners perceive it

    PubMed Central

    Madison, Guy; Sioros, George

    2014-01-01

    Groove is the experience of wanting to move when hearing music, such as snapping fingers or tapping feet. This is a central aspect of much music, in particular of music intended for dancing. While previous research has found considerable consistency in ratings of groove across individuals, it remains unclear how groove is induced, that is, what are the physical properties of the acoustic signal that differ between more and less groove-inducing versions. Here, we examined this issue with a performance experiment, in which four musicians performed six simple and six complex melodies in two conditions with the intention of minimizing and maximizing groove. Analyses of rhythmical and temporal properties from the performances demonstrated some general effects. For example, more groove was associated with more notes on faster metrical levels and syncopation, and less groove was associated with deadpan timing and destruction of the regular pulse. We did not observe that deviations from the metrical grid [i.e., micro-timing (MT)] were a predictor of groove. A listener experiment confirmed that the musicians' manipulations had the intended effects on the experience of groove. A Brunswikian lens model was applied, which estimates the performer-perceiver communication across the two experiments. It showed that the communication achievement for simple melodies was 0.62, and that the matching of performers' and listeners' use of nine rhythmical cues was 0.83. For complex melodies with an already high level of groove, the corresponding values were 0.39 and 0.34, showing that it was much more difficult to “take out” groove from musical structures designed to induce groove. PMID:25191286

  8. Nitric Oxide Induces Cardiac Protection by Preventing Extracellular Matrix Degradation through the Complex Caveolin-3/EMMPRIN in Cardiac Myocytes.

    PubMed

    Cuadrado, Irene; Castejon, Borja; Martin, Ana M; Saura, Marta; Reventun-Torralba, Paula; Zamorano, Jose Luis; Zaragoza, Carlos

    2016-01-01

    Inhibition of Extracellular Matrix degradation by nitric oxide (NO) induces cardiac protection against coronary ischemia/reperfusion (IR). Glycosylation of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) stimulates enzymatic activation of matrix metalloproteinases (MMPs) in the heart, although the mechanisms leading to EMMPRIN glycosylation are poorly understood. We sought to determine if NO may induce cardiac protection by preventing glycosylation of EMMPRIN in a mouse model of IR. Here we found that Caveolin-3 binds to low glycosylated EMMPRIN (LG-EMMPRIN) in cardiac cells and in the hearts of healthy mice, whereas IR disrupted the complex in nitric oxide synthase 2 (NOS2) knockout (KO) mice. By contrast, the binding was partially restored when mice were fed with an NO donor (DEA-NO) in the drinking water, showing a significant reduction on infarct size (NOS2KO: 34.6±5 vs NOS2KO+DEA-NO: 20.7±9), in expression of matrix metalloproteinases, and cardiac performance was improved (left ventricular ejection fraction (LVEF). NOS2KO: 31±4 vs NOS2KO+DEA-NO: 46±6). The role of Caveolin-3/EMMPRIN in NO-mediated cardiac protection was further assayed in Caveolin-3 KO mice, showing no significant improvement on infarct size (Caveolin-3 KO: 34.8±3 vs Caveolin-3 KO+DEA-NO:33.7±5), or in the expression of MMPs, suggesting that stabilization of the complex Caveolin-3/LG-EMMPRIN may play a significant role in the cardioprotective effect of NO against IR.

  9. Forskolin-inducible cAMP pathway negatively regulates T-cell proliferation by uncoupling the interleukin-2 receptor complex.

    PubMed

    Rodriguez, Georgialina; Ross, Jeremy A; Nagy, Zsuzsanna S; Kirken, Robert A

    2013-03-08

    Cytokine-mediated regulation of T-cell activity involves a complex interplay between key signal transduction pathways. Determining how these signaling pathways cross-talk is essential to understanding T-cell function and dysfunction. In this work, we provide evidence that cross-talk exists between at least two signaling pathways: the Jak3/Stat5 and cAMP-mediated cascades. The adenylate cyclase activator forskolin (Fsk) significantly increased intracellular cAMP levels and reduced proliferation of the human T-cells via inhibition of cell cycle regulatory genes but did not induce apoptosis. To determine this inhibitory mechanism, effects of Fsk on IL-2 signaling was investigated. Fsk treatment of MT-2 and Kit 225 T-cells inhibited IL-2-induced Stat5a/b tyrosine and serine phosphorylation, nuclear translocation, and DNA binding activity. Fsk treatment also uncoupled IL-2 induced association of the IL-2Rβ and γc chain, consequently blocking Jak3 activation. Interestingly, phosphoamino acid analysis revealed that Fsk-treated cells resulted in elevated serine phosphorylation of Jak3 but not Stat5, suggesting that Fsk can negatively regulate Jak3 activity possibly mediated through PKA. Indeed, in vitro kinase assays and small molecule inhibition studies indicated that PKA can directly serine phosphorylate and functionally inactivate Jak3. Taken together, these findings suggest that Fsk activation of adenylate cyclase and PKA can negatively regulate IL-2 signaling at multiple levels that include IL-2R complex formation and Jak3/Stat5 activation.

  10. Essential role of D1R in the regulation of mTOR complex1 signaling induced by cocaine.

    PubMed

    Sutton, Laurie P; Caron, Marc G

    2015-12-01

    The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that is involved in neuronal adaptions that underlie cocaine-induced sensitization and reward. mTOR exists in two functionally distinct multi-component complexes known as mTORC1 and mTORC2. In this study, we show that increased mTORC1 activity induced by cocaine is mediated by the dopamine D1 receptor (D1R). Specifically, cocaine treatment increased the phosphorylation on residues Thr2446 and Ser2481 but not on Ser2448 in the nucleus accumbens (NAc) and that this increase in phosphorylated mTOR levels was also apparent when complexed with its binding partner Raptor. Furthermore, the increase in phosphorylated mTOR levels, as well as phosphorylated 4E-BP1 and S6K, downstream targets of mTORC1 were blocked with SCH23390 treatment. Similar results were also observed in the dopamine-transporter knockout mice as the increase in phosphorylated mTOR Thr2446 and Ser2481 was blocked by SCH23390 but not with raclopride. To further validate D1R role in mTORC1 signaling, decrease in phosphorylated mTOR levels were observed in D1R knockout mice, whereas administration of SKF81297 elevated phosphorylated mTOR in the NAc. Lastly deletion of mTOR or Raptor in D1R expressing neurons reduced cocaine-induced locomotor activity. Together, our data supports a mechanism whereby mTORC1 signaling is activated by cocaine administration through the stimulation of D1R.

  11. Retrolinkin recruits the WAVE1 protein complex to facilitate BDNF-induced TrkB endocytosis and dendrite outgrowth

    PubMed Central

    Xu, Chenchang; Fu, Xiuping; Zhu, Shaoxia; Liu, Jia-Jia

    2016-01-01

    Retrolinkin, a neuronal membrane protein, coordinates with endophilin A1 and mediates early endocytic trafficking and signal transduction of the ligand–receptor complex formed between brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), in dendrites of CNS neurons. Here we report that retrolinkin interacts with the CYFIP1/2 subunit of the WAVE1 complex, a member of the WASP/WAVE family of nucleation-promoting factors that binds and activates the Arp2/3 complex to promote branched actin polymerization. WAVE1, not N-WASP, is required for BDNF-induced TrkB endocytosis and dendrite outgrowth. Disruption of the interaction between retrolinkin and CYFIP1/2 impairs recruitment of WAVE1 to neuronal plasma membrane upon BDNF addition and blocks internalization of activated TrkB. We also show that WAVE1-mediated endocytosis of BDNF-activated TrkB is actin dependent and clathrin independent. These results not only reveal the mechanistic role of retrolinkin in BDNF–TrkB endocytosis, but also indicate that WASP/WAVE-dependent actin polymerization during endocytosis is regulated by cell type–specific and cargo-specific modulators. PMID:27605705

  12. Resveratrol protects against experimental induced Reye's syndrome by prohibition of oxidative stress and restoration of complex I activity.

    PubMed

    Abdin, Amany; Sarhan, Naglaa

    2014-09-01

    This study was designed to investigate whether resveratrol could provide protection against Reye's syndrome induced by 4-pentenoic acid in Wistar albino rats. Compared with rats with untreated Reye's syndrome, 1 h pretreatment by low dose resveratrol (10 mg/kg by oral gavage) resulted in marked amelioration in liver functions in the form of significant decrease in serum transaminases (AST, ALT) and plasma ammonia levels, shortening of prothrombin time, and increase in serum albumin levels. In addition, resveratrol prohibited oxidative stress markers, as indicated by a significant increase in GSH and decrease in MDA, with restoration of complex I activity in liver tissues. The classical histopathological presentation in Reye's syndrome of microvesicular steatosis by light microscope and mitochondria distortion by electron microscope has been improved by resveratrol pretreatment. The efficient protection by resveratrol was determined by normalization in serum levels of AST and albumin, as well as complex I activity, GSH, and MDA. In conclusion, pretreatment by resveratrol in low doses could protect against Reye's syndrome partially via prohibition of oxidative stress and restoration of complex I activity. This may provide the opportunity to reconsider aspirin therapy for infants and young children. However, the verification of such results in clinical practice remains a challenge.

  13. ATF1 modulates the heat shock response by regulating the stress-inducible heat shock factor 1 transcription complex.

    PubMed

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko; Nakai, Akira

    2015-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    PubMed Central

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  15. Optical alteration of complex organics induced by ion irradiation:. 1. Laboratory experiments suggest unusual space weathering trend

    NASA Astrophysics Data System (ADS)

    Moroz, Lyuba; Baratta, Giuseppe; Strazzulla, Giovanni; Starukhina, Larissa; Dotto, Elisabetta; Barucci, Maria Antonietta; Arnold, Gabriele; Distefano, Elisa

    2004-07-01

    Most ion irradiation experiments relevant to primitive outer Solar System objects have been performed on ice and silicate targets. Here we present the first ion irradiation experiments performed on natural complex hydrocarbons (asphaltite and kerite). These materials are very dark in the visible and have red-sloped spectra in the visible and near-infrared. They may be comparable in composition and structure to refractory organic solids on the surfaces of primitive outer Solar System objects. We irradiated the samples with 15-400 keV H +, N +, Ar ++, and He + ions and measured their reflectance spectra in the range of 0.3-2.5 μm before ion implantation and after each irradiation step. The results show that irradiation-induced carbonization gradually neutralizes the spectral slopes of these red organic solids. This implies a similar space weathering trend for the surfaces of airless bodies optically dominated by spectrally red organic components. The reduction of spectral slope was observed in all experiments. Irradiation with 30 keV protons, which transfers energy to the target mostly via electronic (inelastic) collisions, showed lower efficiency than the heavier ions. We found that spectral alteration in our experiments increased with increasing contribution of nuclear versus electronic energy loss. This implies that nuclear (elastic) energy deposition plays an important role in changing the optical properties of irradiated refractory complex hydrocarbon materials. Finally, our results indicated that temperature variations from 40 K to room temperature did not influence the spectral properties of these complex hydrocarbon solids.

  16. Significance of the first transcribed nucleoside of capped RNA for ligand-induced folding of the cap-binding complex

    NASA Astrophysics Data System (ADS)

    Worch, Remigiusz; Niedzwiecka, Anna; Stepinski, Janusz; Jankowska-Anyszka, Marzena; Mazza, Catherine; Darzynkiewicz, Edward; Cusack, Stephen; Stolarski, Ryszard

    2005-05-01

    Many proteins, including those that bind RNA, change conformation upon binding a ligand, a phenomenon known as induced fit. CBP20, the small subunit of the nuclear cap-binding complex (CBC), recognizes specifically the 5' cap of eukaryotic mRNA and snRNA. The N- and C-terminal regions of the CBP20 subunit of the human nuclear cap-binding complex only acquire a proper fold in complex with capped RNA. The cap is composed of 7-methylguanosine linked by a 5'-to-5' triphosphate bridge to the first transcribed nucleoside of the RNA. The significance of the latter for the capped RNA-CBC association and local folding of CBC has been characterized by emission spectroscopy. Fluorescence titration of CBC has been performed for three selected, mono- and dinucleotide mRNA 5' cap analogues. The measured values of the equilibrium association constant and the corresponding Gibbs free energy depend on the type of the first transcribed nucleoside (purine or pyrimidine), and decrease ~10-fold in the case of a mononucleotide analogue, 7-methylguanosine triphosphate. However, the total quenching of the intrinsic protein fluorescence is similar for each analogue. Changes of the solvent-accessible CBC hydrophobic surface of CBC on binding of the structurally different cap analogues have been followed using bis-ANS fluorescent probe.

  17. AG311, a small molecule inhibitor of complex I and hypoxia-induced HIF-1α stabilization.

    PubMed

    Bastian, Anja; Matsuzaki, Satoshi; Humphries, Kenneth M; Pharaoh, Gavin A; Doshi, Arpit; Zaware, Nilesh; Gangjee, Aleem; Ihnat, Michael A

    2017-03-01

    Cancer cells have a unique metabolic profile and mitochondria have been shown to play an important role in chemoresistance, tumor progression and metastases. This unique profile can be exploited by mitochondrial-targeted anticancer therapies. A small anticancer molecule, AG311, was previously shown to possess anticancer and antimetastatic activity in two cancer mouse models and to induce mitochondrial depolarization. This study defines the molecular effects of AG311 on the mitochondria to elucidate its observed efficacy. AG311 was found to competitively inhibit complex I activity at the ubiquinone-binding site. Complex I as a target for AG311 was further established by measuring oxygen consumption rate in tumor tissue isolated from AG311-treated mice. Cotreatment of cells and animals with AG311 and dichloroacetate, a pyruvate dehydrogenase kinase inhibitor that increases oxidative metabolism, resulted in synergistic cell kill and reduced tumor growth. The inhibition of mitochondrial oxygen consumption by AG311 was found to reduce HIF-1α stabilization by increasing oxygen tension in hypoxic conditions. Taken together, these results suggest that AG311 at least partially mediates its antitumor effect through inhibition of complex I, which could be exploited in its use as an anticancer agent. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Complex-Difference Constrained Compressed Sensing Reconstruction for Accelerated PRF Thermometry with Application to MRI Induced RF Heating

    PubMed Central

    Cao, Zhipeng; Oh, Sukhoon; Otazo, Ricardo; Sica, Christopher T.; Griswold, Mark A.; Collins, Christopher M.

    2014-01-01

    Purpose Introduce a novel compressed sensing reconstruction method to accelerate proton resonance frequency (PRF) shift temperature imaging for MRI induced radiofrequency (RF) heating evaluation. Methods A compressed sensing approach that exploits sparsity of the complex difference between post-heating and baseline images is proposed to accelerate PRF temperature mapping. The method exploits the intra- and inter-image correlations to promote sparsity and remove shared aliasing artifacts. Validations were performed on simulations and retrospectively undersampled data acquired in ex-vivo and in-vivo studies by comparing performance with previously proposed techniques. Results The proposed complex difference constrained compressed sensing reconstruction method improved the reconstruction of smooth and local PRF temperature change images compared to various available reconstruction methods in a simulation study, a retrospective study with heating of a human forearm in vivo, and a retrospective study with heating of a sample of beef ex vivo . Conclusion Complex difference based compressed sensing with utilization of a fully-sampled baseline image improves the reconstruction accuracy for accelerated PRF thermometry. It can be used to improve the volumetric coverage and temporal resolution in evaluation of RF heating due to MRI, and may help facilitate and validate temperature-based methods for safety assurance. PMID:24753099

  19. Phthalocyanine supported dinuclear Ln(III) complexes: the solvent-induced change of magnetic properties in dysprosium(iii) analogues.

    PubMed

    Ge, Jing-Yuan; Wang, Hai-Ying; Li, Jing; Xie, Jia-Ze; Song, You; Zuo, Jing-Lin

    2017-02-24

    Three dinuclear lanthanide complexes, [Ln2(thd)4Pc]·2C6H6 (Hthd = 2,2,6,6-tetramethylheptanedione, Ln = Sm (1), Tb (2), Dy (3)), have been synthesized based on phthalocyanine (Pc). They can be reversibly transformed into [Ln2(thd)4Pc] (Ln = Sm (1'), Tb (2'), Dy (3')) via desolvation and resolvation of the lattice benzene molecules. This change generates dramatic influences on the structural and magnetic properties of the dysprosium analogue. In complex 3, one crystallographically independent metal center is observed, and it exhibits a single relaxation process of magnetization with an energy barrier of 55.7 K. Upon desolvation, the resulting complex 3' contains two types of metal centers, and shows the field-induced single-molecule magnetic behavior with two thermally activated magnetic relaxation processes. The anisotropy barriers for 3' are as high as 63.3 K and 109.6 K, respectively. This work confirms that the solvated molecules can finely tune the magnetic relaxation mechanisms.

  20. A Photoluminescence Study of the Changes Induced in the Zinc White Pigment by Formation of Zinc Complexes

    PubMed Central

    Artesani, Alessia; Gherardi, Francesca; Nevin, Austin; Valentini, Gianluca; Comelli, Daniela

    2017-01-01

    It is known that oil paintings containing zinc white are subject to rapid degradation. This is caused by the interaction between the active groups of binder and the metal ions of the pigment, which gives rise to the formation of new zinc complexes (metal soaps). Ongoing studies on zinc white paints have been limited to the chemical mechanisms that lead to the formation of zinc complexes. On the contrary, little is known of the photo-physical changes induced in the zinc oxide crystal structure following this interaction. Time-resolved photoluminescence spectroscopy has been applied to follow modifications in the luminescent zinc white pigment when mixed with binder. Significant changes in trap state photoluminescence emissions have been detected: the enhancement of a blue emission combined with a change of the decay kinetic of the well-known green emission. Complementary data from molecular analysis of paints using Fourier transform infrared spectroscopy confirms the formation of zinc carboxylates and corroborates the mechanism for zinc complexes formation. We support the hypothesis that zinc ions migrate into binder creating novel vacancies, affecting the photoluminescence intensity and lifetime properties of zinc oxide. Here, we further demonstrate the advantages of a time-resolved photoluminescence approach for studying defects in semiconductor pigments. PMID:28772700

  1. Complex difference constrained compressed sensing reconstruction for accelerated PRF thermometry with application to MRI-induced RF heating.

    PubMed

    Cao, Zhipeng; Oh, Sukhoon; Otazo, Ricardo; Sica, Christopher T; Griswold, Mark A; Collins, Christopher M

    2015-04-01

    Introduce a novel compressed sensing reconstruction method to accelerate proton resonance frequency shift temperature imaging for MRI-induced radiofrequency heating evaluation. A compressed sensing approach that exploits sparsity of the complex difference between postheating and baseline images is proposed to accelerate proton resonance frequency temperature mapping. The method exploits the intra-image and inter-image correlations to promote sparsity and remove shared aliasing artifacts. Validations were performed on simulations and retrospectively undersampled data acquired in ex vivo and in vivo studies by comparing performance with previously published techniques. The proposed complex difference constrained compressed sensing reconstruction method improved the reconstruction of smooth and local proton resonance frequency temperature change images compared to various available reconstruction methods in a simulation study, a retrospective study with heating of a human forearm in vivo, and a retrospective study with heating of a sample of beef ex vivo. Complex difference based compressed sensing with utilization of a fully sampled baseline image improves the reconstruction accuracy for accelerated proton resonance frequency thermometry. It can be used to improve the volumetric coverage and temporal resolution in evaluation of radiofrequency heating due to MRI, and may help facilitate and validate temperature-based methods for safety assurance. © 2014 Wiley Periodicals, Inc.

  2. Thermosensitive and pH induced in situ ophthalmic gelling system for ciprofloxacin hydrochloride: hydroxypropyl-beta-cyclodextrin complex.

    PubMed

    Başaran, Berrin; Bozkir, Asuman

    2012-01-01

    The prolonged residence of drug formulation in the ocular cavity is important for ocular drug delivery. The purpose of the present study was to develop ophthalmic in situ gelling systems of ciprofloxacin hydrochloride with reduced pre-corneal elimination in order to improve the bioavailability and therapeutic response. Hydroxypropyl-beta-cyclodextrin was used in order to increase the stability of ciprofloxacin hydrochloride. In situ gels were prepared based on the concept of thermosensitive and pH induced in situ gelation. The inclusion complex of ciprofloxacin hydrochloride with hydroxypropyl-beta-cyclodextrin was prepared at a 1:1 molar ratio. The complex formation was thoroughly confirmed using various techniques, including (1)H NMR spectroscopy, FTIR spectrophotometry and differential scanning calorimetry. Both pure ciprofloxacin HCI and the inclusion complex were individually used in the formulations. Formulations were successfully prepared which were liquid at room temperature and exhibited viscosity increase and gelation at ophthalmic temperature. As a result of antimicrobial efficacy and in vitro release experiments, the developed formulations were found therapeutically efficient and provided sustained release of the drug over an 8 h period. These systems can be more advantageous than conventional eye drops.

  3. A Photoluminescence Study of the Changes Induced in the Zinc White Pigment by Formation of Zinc Complexes.

    PubMed

    Artesani, Alessia; Gherardi, Francesca; Nevin, Austin; Valentini, Gianluca; Comelli, Daniela

    2017-03-25

    It is known that oil paintings containing zinc white are subject to rapid degradation. This is caused by the interaction between the active groups of binder and the metal ions of the pigment, which gives rise to the formation of new zinc complexes (metal soaps). Ongoing studies on zinc white paints have been limited to the chemical mechanisms that lead to the formation of zinc complexes. On the contrary, little is known of the photo-physical changes induced in the zinc oxide crystal structure following this interaction. Time-resolved photoluminescence spectroscopy has been applied to follow modifications in the luminescent zinc white pigment when mixed with binder. Significant changes in trap state photoluminescence emissions have been detected: the enhancement of a blue emission combined with a change of the decay kinetic of the well-known green emission. Complementary data from molecular analysis of paints using Fourier transform infrared spectroscopy confirms the formation of zinc carboxylates and corroborates the mechanism for zinc complexes formation. We support the hypothesis that zinc ions migrate into binder creating novel vacancies, affecting the photoluminescence intensity and lifetime properties of zinc oxide. Here, we further demonstrate the advantages of a time-resolved photoluminescence approach for studying defects in semiconductor pigments.

  4. Antileishmanial Activity and Inducible Nitric Oxide Synthase Activation by RuNO Complex

    PubMed Central

    Kawakami, Natalia Yoshie; Fortes dos Santos Thomazelli, Ana Paula; Tomiotto-Pellissier, Fernanda; Kian, Danielle; Megumi Yamauchi, Lucy; Gouveia Júnior, Florêncio S.; de França Lopes, Luiz Gonzaga; Cecchini, Rubens; Nazareth Costa, Idessânia; Jerley Nogueira da Silva, Jean

    2016-01-01

    Parasites of the genus Leishmania are capable of inhibiting effector functions of macrophages. These parasites have developed the adaptive ability to escape host defenses; for example, they inactivate the NF-κB complex and suppress iNOS expression in infected macrophages, which are responsible for the production of the major antileishmanial substance nitric oxide (NO), favoring then its replication and successful infection. Metal complexes with NO have been studied as potential compounds for the treatment of certain tropical diseases, such as ruthenium compounds, known to be exogenous NO donors. In the present work, the compound cis-[Ru(bpy)2SO3(NO)]PF6, or RuNO, showed leishmanicidal activity directly and indirectly on promastigote forms of Leishmania (Leishmania) amazonensis. In addition, treatment with RuNO increased NO production by reversing the depletion of NO caused by Leishmania. We also found increased expression of Akt, iNOS, and NF-κB in infected and treated macrophages. These results demonstrated that RuNO was able to kill the parasite by NO release and modulate the transcriptional capacity of the cell. PMID:27795620

  5. Redox-induced activation of the proton pump in the respiratory complex I.

    PubMed

    Sharma, Vivek; Belevich, Galina; Gamiz-Hernandez, Ana P; Róg, Tomasz; Vattulainen, Ilpo; Verkhovskaya, Marina L; Wikström, Mårten; Hummer, Gerhard; Kaila, Ville R I

    2015-09-15

    Complex I functions as a redox-linked proton pump in the respiratory chains of mitochondria and bacteria, driven by the reduction of quinone (Q) by NADH. Remarkably, the distance between the Q reduction site and the most distant proton channels extends nearly 200 Å. To elucidate the molecular origin of this long-range coupling, we apply a combination of large-scale molecular simulations and a site-directed mutagenesis experiment of a key residue. In hybrid quantum mechanics/molecular mechanics simulations, we observe that reduction of Q is coupled to its local protonation by the His-38/Asp-139 ion pair and Tyr-87 of subunit Nqo4. Atomistic classical molecular dynamics simulations further suggest that formation of quinol (QH2) triggers rapid dissociation of the anionic Asp-139 toward the membrane domain that couples to conformational changes in a network of conserved charged residues. Site-directed mutagenesis data confirm the importance of Asp-139; upon mutation to asparagine the Q reductase activity is inhibited by 75%. The current results, together with earlier biochemical data, suggest that the proton pumping in complex I is activated by a unique combination of electrostatic and conformational transitions.

  6. Cerebral blood flow during paroxysmal EEG activation induced by sleep in patients with complex partial seizures

    SciTech Connect

    Gozukirmizi, E.; Meyer, J.S.; Okabe, T.; Amano, T.; Mortel, K.; Karacan, I.

    1982-01-01

    Cerebral blood flow (CBF) measurements were combined with sleep polysomnography in nine patients with complex partial seizures. Two methods were used: the 133Xe method for measuring regional (rCBF) and the stable xenon CT method for local (LCBF). Compared to nonepileptic subjects, who show diffuse CBF decreases during stages I-II, non-REM sleep onset, patients with complex partial seizures show statistically significant increases in CBF which are maximal in regions where the EEG focus is localized and are predominantly seen in one temporal region but are also propagated to other cerebral areas. Both CBF methods gave comparable results, but greater statistical significance was achieved by stable xenon CT methodology. CBF increases are more diffuse than predicted by EEG paroxysmal activity recorded from scalp electrodes. An advantage of the 133Xe inhalation method was achievement of reliable data despite movement of the head. This was attributed to the use of a helmet which maintained the probes approximated to the scalp. Disadvantages were poor resolution (7 cm3) and two-dimensional information. The advantage of stable xenon CT method is excellent resolution (80 mm3) in three dimensions, but a disadvantage is that movement of the head in patients with seizure disorders may limit satisfactory measurements.

  7. Evolution of phase and morphology of titanium dioxide induced from peroxo titanate complex aqueous solution.

    PubMed

    Chang, Jeong Ah; Vithal, Muga; Baek, In Chan; Seok, Sang Il

    2010-01-01

    We demonstrate the growth of anatase TiO2 in nanospheres and rutile TiO2 in nanorods, by the hydrolysis of titanium tetraisopropoxide (TTIP) in the presence of hydrogen peroxide at 100 degrees C using sol-gel method. X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and surface area measurement techniques are used to characterize the phase and shape developments of TiO2 obtained from peroxo titanate complex in an aqueous solution at 100 degrees C. Peroxo titanate complexes were prepared by a reaction of titanium hydroxide, formed by hydrolysis of titanium tetraisopropoxide (TTIP), and different amounts of hydrogen peroxide (H2O2). TEM and XRD investigations reveal that the size of spheres (anatase) and rods (rutile) are about 8 nm (diameter) and about 13 x 29 nm approximately 20 x 75 nm (width x length) respectively. The influence of molar ratio of H2O2/TTIP on the phase and morphology of TiO2 is presented. A mixture of anatase spheres and short rutile rods are formed at low H2O2/TTIP ratio while predominantly rutile a quit long rods are formed at higher H2O2/TTIP ratio.

  8. Field induced modification of defect complexes in magnesium-doped lithium niobate

    SciTech Connect

    Meyer, Nadège; Granzow, Torsten; Nataf, Guillaume F.

    2014-12-28

    Dielectric constant, thermally stimulated depolarization currents (TSDC), and conductivity of undoped and 5% Mg-doped LiNbO{sub 3} single crystals between −100 °C and 200 °C have been investigated. A Debye-like dielectric relaxation with an activation energy of 135 meV is observed in the Mg-doped material, but not in undoped crystals. On heating this relaxation disappears near 140 °C and does not reappear after cooling. Anomalies observed in TSDC around this temperature are attributed to the motion of lithium vacancies, in agreement with conductivity measurements. It is proposed that in thermal equilibrium the electrons from the Mg{sub Li}{sup •} donors are trapped in (4Mg{sub Li}{sup •}+4V{sub Li}{sup ′}) defect complexes. High-temperature poling breaks these defect complexes. The transition of the liberated electrons between the Mg{sub Li}{sup •} donor centers and the Nb{sub Nb} forming the conduction band gives rise to the observed dielectric relaxation.

  9. Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances.

    PubMed

    Djebbar, Reda; Rzigui, Touhami; Pétriacq, Pierre; Mauve, Caroline; Priault, Pierrick; Fresneau, Chantal; De Paepe, Marianne; Florez-Sarasa, Igor; Benhassaine-Kesri, Ghouziel; Streb, Peter; Gakière, Bertrand; Cornic, Gabriel; De Paepe, Rosine

    2012-03-01

    To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.

  10. Redox-induced activation of the proton pump in the respiratory complex I

    PubMed Central

    Sharma, Vivek; Belevich, Galina; Gamiz-Hernandez, Ana P.; Róg, Tomasz; Vattulainen, Ilpo; Verkhovskaya, Marina L.; Wikström, Mårten; Hummer, Gerhard; Kaila, Ville R. I.

    2015-01-01

    Complex I functions as a redox-linked proton pump in the respiratory chains of mitochondria and bacteria, driven by the reduction of quinone (Q) by NADH. Remarkably, the distance between the Q reduction site and the most distant proton channels extends nearly 200 Å. To elucidate the molecular origin of this long-range coupling, we apply a combination of large-scale molecular simulations and a site-directed mutagenesis experiment of a key residue. In hybrid quantum mechanics/molecular mechanics simulations, we observe that reduction of Q is coupled to its local protonation by the His-38/Asp-139 ion pair and Tyr-87 of subunit Nqo4. Atomistic classical molecular dynamics simulations further suggest that formation of quinol (QH2) triggers rapid dissociation of the anionic Asp-139 toward the membrane domain that couples to conformational changes in a network of conserved charged residues. Site-directed mutagenesis data confirm the importance of Asp-139; upon mutation to asparagine the Q reductase activity is inhibited by 75%. The current results, together with earlier biochemical data, suggest that the proton pumping in complex I is activated by a unique combination of electrostatic and conformational transitions. PMID:26330610

  11. Enzymatic changes of the bovine pituitary multicatalytic proteinase complex, induced by magnesium ions.

    PubMed

    Pereira, M E; Yu, B; Wilk, S

    1992-04-01

    The effect of magnesium ions on the catalytic activities of the bovine pituitary multicatalytic proteinase complex (MPC) was studied. Mg2+ markedly stimulated the breakdown of dephosphorylated beta-casein (caseinolytic activity) and the hydrolysis of Cbz-Leu-Leu-Glu-2-naphthylamide (peptidylglutamyl peptide bond hydrolyzing activity) by a 1700-fold purified preparation of MPC. Cleavage of Cbz-D-Ala-Leu-Arg-2-naphthylamide (trypsin-like activity) was strongly inhibited and cleavage of Cbz-Gly-Gly-Leu-p-nitroanilide (chymotrypsin-like activity) was weakly inhibited. Similar results were produced when enzymatic activities in the absence of Mg2+ were measured at 52 degrees C rather than at 37 degrees C. Trace protein impurities were removed by phenyl-Sepharose chromatography. This additional chromatographic step, while not changing the specific activities of hydrolysis of the three synthetic chromogenic substrates, led to a marked activation of the breakdown of dephosphorylated beta-casein. Mg2+ was not able to further stimulate the caseinolytic activities of either the phenyl-Sepharose-treated preparation or the preparation measured at 52 degrees C. Mg2+ therefore converts a "repressed" form of MPC to an "activated" form, possibly by promoting dissociation of a protein inhibitor, and may serve as a physiological regulator of this enzyme complex.

  12. Assembly defects induce oxidative stress in inherited mitochondrial complex I deficiency.

    PubMed

    Leman, Géraldine; Gueguen, Naïg; Desquiret-Dumas, Valérie; Kane, Mariame Selma; Wettervald, Céline; Chupin, Stéphanie; Chevrollier, Arnaud; Lebre, Anne-Sophie; Bonnefont, Jean-Paul; Barth, Magalie; Amati-Bonneau, Patrizia; Verny, Christophe; Henrion, Daniel; Bonneau, Dominique; Reynier, Pascal; Procaccio, Vincent

    2015-08-01

    Complex I (CI) deficiency is the most common respiratory chain defect representing more than 30% of mitochondrial diseases. CI is an L-shaped multi-subunit complex with a peripheral arm protruding into the mitochondrial matrix and a membrane arm. CI sequentially assembled into main assembly intermediates: the P (pumping), Q (Quinone) and N (NADH dehydrogenase) modules. In this study, we analyzed 11 fibroblast cell lines derived from patients with inherited CI deficiency resulting from mutations in the nuclear or mitochondrial DNA and impacting these different modules. In patient cells carrying a mutation located in the matrix arm of CI, blue native-polyacrylamide gel electrophoresis (BN-PAGE) revealed a significant reduction of fully assembled CI enzyme and an accumulation of intermediates of the N module. In these cell lines with an assembly defect, NADH dehydrogenase activity was partly functional, even though CI was not fully assembled. We further demonstrated that this functional N module was responsible for ROS production through the reduced flavin mononucleotide. Due to the assembly defect, the FMN site was not re-oxidized leading to a significant oxidative stress in cell lines with an assembly defect. These findings not only highlight the relationship between CI assembly and oxidative stress, but also show the suitability of BN-PAGE analysis in evaluating the consequences of CI dysfunction. Moreover, these data suggest that the use of antioxidants may be particularly relevant for patients displaying a CI assembly defect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Reversible Stiffening Transition in β-Hairpin Hydrogels Induced by Ion Complexation

    PubMed Central

    Ozbas, Bulent; Rajagopal, Karthikan; Haines-Butterick, Lisa; Schneider, Joel P.; Pochan, Darrin J.

    2009-01-01

    We have previously shown that properly designed lysine and valine-rich peptides undergo a random coil to β-hairpin transition followed by intermolecular self-assembly into a fibrillar hydrogel network only after the peptide solutions are heated above the intramolecular folding transition temperature. Here we report that these hydrogels also undergo a stiffening transition as they are cooled below a critical temperature only when boric acid is used to buffer the peptide solution. This stiffening transition is characterized by rheology, dynamic light scattering, and small angle neutron scattering. Rheological measurements show that the stiffening transition causes an increase in the hydrogel storage modulus (G′) by as much as 1 order of magnitude and is completely reversible on subsequently raising the temperature. Although this reversible transition exhibits rheological properties that are similar to polyol/borax solutions, the underlying mechanism does not involve hydroxyl–borate complexation. The stiffening transition is mainly caused by the interactions between lysine and boric acid/borate anion and is not driven by the changes in the secondary structure of the β-hairpin peptide. Addition of glucose to boric acid and peptide solution disrupts the stiffening transition due to competitive glucose–borate complexation. PMID:18044866

  14. TGF-β induces p53/Smads complex formation in the PAI-1 promoter to activate transcription

    PubMed Central

    Kawarada, Yuki; Inoue, Yasumichi; Kawasaki, Fumihiro; Fukuura, Keishi; Sato, Koichi; Tanaka, Takahito; Itoh, Yuka; Hayashi, Hidetoshi

    2016-01-01

    Transforming growth factor β (TGF-β) signaling facilitates tumor development during the advanced stages of tumorigenesis, but induces cell-cycle arrest for tumor suppression during the early stages. However, the mechanism of functional switching of TGF-β is still unknown, and it is unclear whether inhibition of TGF-β signaling results amelioration or exacerbation of cancers. Here we show that the tumor suppressor p53 cooperates with Smad proteins, which are TGF-β signal transducers, to selectively activate plasminogen activator inhibitor type-1 (PAI-1) transcription. p53 forms a complex with Smad2/3 in the PAI-1 promoter to recruit histone acetyltransferase CREB-binding protein (CBP) and enhance histone H3 acetylation, resulting in transcriptional activation of the PAI-1 gene. Importantly, p53 is required for TGF-β-induced cytostasis and PAI-1 is involved in the cytostatic activity of TGF-β in several cell lines. Our results suggest that p53 enhances TGF-β-induced cytostatic effects by activating PAI-1 transcription, and the functional switching of TGF-β is partially caused by p53 mutation or p53 inactivation during cancer progression. It is expected that these findings will contribute to optimization of TGF-β-targeting therapies for cancer. PMID:27759037

  15. Solution or solid - it doesn't matter: visible light-induced CO release reactivity of zinc flavonolato complexes.

    PubMed

    Anderson, Stacey N; Larson, Michael T; Berreau, Lisa M

    2016-09-20

    Two types of zinc flavonolato complexes ([(6-Ph2TPA)Zn(flavonolato)]ClO4 and Zn(flavonolato)2) of four extended flavonols have been prepared, characterized, and evaluated for visible light-induced CO release reactivity. Zinc coordination of each flavonolato anion results in a red-shift of the lowest energy absorption feature and in some cases enhanced molar absorptivity relative to the free flavonol. The zinc-coordinated flavonolato ligands undergo visible light-induced CO release with enhanced reaction quantum yields relative to the neutral flavonols. Most notable is the discovery that both types of zinc flavonolato derivatives undergo similar visible light-induced CO release reactivity in solution and in the solid state. A solid film of a Zn(flavonolato)2 derivative was evaluated as an in situ CO release agent for aerobic oxidative palladium-catalyzed alkoxycarbonylation to produce esters in ethanol. The CO release product was found to undergo ester alcolysis under the conditions of the carbonylation reaction.

  16. Chicken major histocompatibility complex class I definition using antisera induced by cloned class I sequences.

    PubMed

    Fulton, J E; Hunt, H D; Bacon, L D

    2001-11-01

    Alloantisera directed against chicken class I MHC (BFIV) antigens were produced by using transfected cell lines expressing cloned BFIV sequences. The cloned BFIV sequences were from haplotypes *12, *13, and *21. Two laboratory-derived class I mutant sequences (BFIV13m126 and BFIV21m78) were developed to analyze cross-reactive epitopes and to induce specific alloantisera. Antisera were tested in hemagglutination and flow cytometry assays. The antisera produced were highly specific and had minimal cross-reactivity. The antisera induced by the BF1V21m78 mutant confirmed the significance of amino acids 78 and 81 in cross-reactivity between haplotypes B*21 and B*5. The highly specific antisera were tested by hemagglutination on red blood cells of 31 different MHC haplotypes. The consistency of hemagglutination patterns and minimal cross-reactivity demonstrated that these BFIV antisera are extremely valuable in defining MHC haplotype in various chicken lines. Because of the extreme low level of recombination between the chicken class I and class II loci, identification of BFIV allele can be used to define MHC haplotype within a line. Complete identity between the transfected cell line and the chicken used to produce the antiserum is required to ensure the monospecificity.

  17. A new murine model of stress-induced complex atherosclerotic lesions

    PubMed Central

    Najafi, Amir H.; Aghili, Nima; Tilan, Justin U.; Andrews, James A.; Peng, XinZhi; Lassance-Soares, Roberta M.; Sood, Subeena; Alderman, Lee O.; Abe, Ken; Li, Lijun; Kolodgie, Frank D.; Virmani, Renu; Zukowska, Zofia; Epstein, Stephen E.; Burnett, Mary Susan

    2013-01-01

    SUMMARY The primary purpose of this investigation was to determine whether ApoE−/− mice, when subjected to chronic stress, exhibit lesions characteristic of human vulnerable plaque and, if so, to determine the time course of such changes. We found that the lesions were remarkably similar to human vulnerable plaque, and that the time course of lesion progression raised interesting insights into the process of plaque development. Lard-fed mixed-background ApoE−/− mice exposed to chronic stress develop lesions with large necrotic core, thin fibrous cap and a high degree of inflammation. Neovascularization and intraplaque hemorrhage are observed in over 80% of stressed animals at 20 weeks of age. Previously described models report a prevalence of only 13% for neovascularization observed at a much later time point, between 36 and 60 weeks of age. Thus, our new stress-induced model of advanced atherosclerotic plaque provides an improvement over what is currently available. This model offers a tool to further investigate progression of plaque phenotype to a more vulnerable phenotype in humans. Our findings also suggest a possible use of this stress-induced model to determine whether therapeutic interventions have effects not only on plaque burden, but also, and importantly, on plaque vulnerability. PMID:23324329

  18. Optimized Design and Use of Induced Complex Fractures in Horizontal Wellbores of Tight Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Zeng, F. H.; Guo, J. C.

    2016-04-01

    Multistage hydraulic fracturing is being increasing use in the establishment of horizontal wells in tight gas reservoirs. Connecting hydraulic fractures to natural and stress-induced fractures can further improve well productivity. This paper investigates the fracture treatment design issues involved in the establishment of horizontal wellbores, including the effects of geologic heterogeneity, perforation parameters, fracturing patterns, and construction parameters on stress anisotropy during hydraulic fracturing and on natural fractures during hydraulic fracture propagation. The extent of stress reversal and reorientation was calculated for fractures induced by the creation of one or more propped fractures. The effects of stress on alternate and sequential fracturing horizontal well and on the reservoir's mechanical properties, including the spatial extent of stress reorientation caused by the opening of fractures, were assessed and quantified. Alternate sequencing of transverse fractures was found to be an effective means of enhancing natural fracture stimulation by allowing fractures to undergo less stress contrast during propagation. The goal of this paper was to present a new approach to design that optimizes fracturing in a horizontal wellbore from the perspectives of both rock mechanics and fluid production. The new design is a modified version of alternate fracturing, where the fracture-initiation sequence was controlled by perforation parameters with a staggered pattern within a horizontal wellbore. Results demonstrated that the modified alternate fracturing performed better than original sequence fracturing and that this was because it increased the contact area and promoted more gas production in completed wells.

  19. Plenary perspective: the complexity of constitutive and inducible gene expression in mononuclear phagocytes.

    PubMed

    Hume, David A

    2012-09-01

    Monocytes and macrophages differentiate from progenitor cells under the influence of colony-stimulating factors. Genome-scale data have enabled the identification of the set of genes that distinguishes macrophages from other cell types and the ways in which thousands of genes are regulated in response to pathogen challenge. Although there has been a focus on a small subset of lineage-enriched transcription factors, such as PU.1, more than one-half of the transcription factors in the genome can be expressed in macrophage lineage cells under some state of activation, and they interact in a complex network. The network architecture is conserved across species, but many of the target genes evolve rapidly and differ between mouse and human. The data and publication deluge related to macrophag