Science.gov

Sample records for mst-12 chemical process

  1. Materials Science and Technology (MST) Division, Nuclear Materials Process Technology Group (MST-12), chemical process research and development report

    SciTech Connect

    Clifton, D.G.

    1984-04-01

    A process for the recovery of plutonium and americium from molten salt extraction (MSE) salt residues has been demonstrated. It is based upon a new chloride anion-exchange process at low acidity that eliminates corrosive HCl fumes. The Los Alamos americium oxide production line has been improved to give more product with a concurrent lowering of personnel radiation exposure. A cost study has been made for the disposal of americium-contaminated calcium metal buttons that were obtained by pyrochemical recovery of plutonium from MSE salts. The waste form used in the study conforms to WIPP-Facility standards and current state-of-the-art radioactive waste disposal. The cost estimate is approx. $300/g /sup 241/Am. Plutonium decontamination factors of approx. 300 have been obtained from lead-platinum alloy dissolution experiments carried out in alumina crucibles using lead oxide slag to getter the plutonium.

  2. Chemical Processing Manual

    NASA Technical Reports Server (NTRS)

    Beyerle, F. J.

    1972-01-01

    Chemical processes presented in this document include cleaning, pickling, surface finishes, chemical milling, plating, dry film lubricants, and polishing. All types of chemical processes applicable to aluminum, for example, are to be found in the aluminum alloy section. There is a separate section for each category of metallic alloy plus a section for non-metals, such as plastics. The refractories, super-alloys and titanium, are prime candidates for the space shuttle, therefore, the chemical processes applicable to these alloys are contained in individual sections of this manual.

  3. Chemical process hazards analysis

    SciTech Connect

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  4. Chemical Sensing in Process Analysis.

    ERIC Educational Resources Information Center

    Hirschfeld, T.; And Others

    1984-01-01

    Discusses: (1) rationale for chemical sensors in process analysis; (2) existing types of process chemical sensors; (3) sensor limitations, considering lessons of chemometrics; (4) trends in process control sensors; and (5) future prospects. (JN)

  5. Chemical processing of lunar materials

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.

    1979-01-01

    The paper highlights recent work on the general problem of processing lunar materials. The discussion covers lunar source materials, refined products, motivations for using lunar materials, and general considerations for a lunar or space processing plant. Attention is given to chemical processing through various techniques, including electrolysis of molten silicates, carbothermic/silicothermic reduction, carbo-chlorination process, NaOH basic-leach process, and HF acid-leach process. Several options for chemical processing of lunar materials are well within the state of the art of applied chemistry and chemical engineering to begin development based on the extensive knowledge of lunar materials.

  6. DESIGNING ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES

    EPA Science Inventory

    The design of a chemical process involves many aspects: from profitability, flexibility and reliability to safety to the environment. While each of these is important, in this work, the focus will be on profitability and the environment. Key to the study of these aspects is the ...

  7. Microcomponent chemical process sheet architecture

    DOEpatents

    Wegeng, R.S.; Drost, M.K.; Call, C.J.; Birmingham, J.G.; McDonald, C.E.; Kurath, D.E.; Friedrich, M.

    1998-09-22

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 26 figs.

  8. Microcomponent chemical process sheet architecture

    DOEpatents

    Wegeng, Robert S.; Drost, M. Kevin; Call, Charles J.; Birmingham, Joseph G.; McDonald, Carolyn Evans; Kurath, Dean E.; Friedrich, Michele

    1998-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  9. CHEMICAL PROCESSES IN PROTOPLANETARY DISKS

    SciTech Connect

    Walsh, Catherine; Millar, T. J.; Nomura, Hideko

    2010-10-20

    We have developed a high-resolution combined physical and chemical model of a protoplanetary disk surrounding a typical T Tauri star. Our aims were to use our model to calculate the chemical structure of disks on small scales (submilliarcsecond in the inner disk for objects at the distance of Taurus, {approx}140 pc) to investigate the various chemical processes thought to be important in disks and to determine potential molecular tracers of each process. Our gas-phase network was extracted from the UMIST Database for Astrochemistry to which we added gas-grain interactions including freezeout and thermal and non-thermal desorption (cosmic-ray-induced desorption, photodesorption, and X-ray desorption), and a grain-surface network. We find that cosmic-ray-induced desorption has the least effect on our disk chemical structure while photodesorption has a significant effect, enhancing the abundances of most gas-phase molecules throughout the disk and affecting the abundances and distribution of HCN, CN, and CS, in particular. In the outer disk, we also see enhancements in the abundances of H{sub 2}O and CO{sub 2}. X-ray desorption is a potentially powerful mechanism in disks, acting to homogenize the fractional abundances of gas-phase species across the depth and increasing the column densities of most molecules, although there remain significant uncertainties in the rates adopted for this process. The addition of grain-surface chemistry enhances the fractional abundances of several small complex organic molecules including CH{sub 3}OH, HCOOCH{sub 3}, and CH{sub 3}OCH{sub 3} to potentially observable values (i.e., a fractional abundance of {approx}>10{sup -11}).

  10. Idaho Chemical Processing Plant safety document ICPP hazardous chemical evaluation

    SciTech Connect

    Harwood, B.J.

    1993-01-01

    This report presents the results of a hazardous chemical evaluation performed for the Idaho Chemical Processing Plant (ICPP). ICPP tracks chemicals on a computerized database, Haz Track, that contains roughly 2000 individual chemicals. The database contains information about each chemical, such as its form (solid, liquid, or gas); quantity, either in weight or volume; and its location. The Haz Track database was used as the primary starting point for the chemical evaluation presented in this report. The chemical data and results presented here are not intended to provide limits, but to provide a starting point for nonradiological hazards analysis.

  11. Assessing Chemical Process Sustainability with GREENSCOPE

    EPA Pesticide Factsheets

    GREENSCOPE is a sustainability assessment tool used to evaluate and assist in the design of chemical processes. The goal is to minimize resource use, prevent or reduce releases, and increase the economic feasibility of a chemical process.

  12. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  13. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  14. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  15. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  16. Chemical Processing. Resources in Technology.

    ERIC Educational Resources Information Center

    Technology Teacher, 1991

    1991-01-01

    Reviews major organic and inorganic chemicals, their products, and the sociocultural impact of the chemical industry. Provides the following learning activity components: objectives, list of materials and equipment, procedures, student quiz with answers, and three references. (SK)

  17. Experiments To Demonstrate Chemical Process Safety Principles.

    ERIC Educational Resources Information Center

    Dorathy, Brian D.; Mooers, Jamisue A.; Warren, Matthew M.; Mich, Jennifer L.; Murhammer, David W.

    2001-01-01

    Points out the need to educate undergraduate chemical engineering students on chemical process safety and introduces the content of a chemical process safety course offered at the University of Iowa. Presents laboratory experiments demonstrating flammability limits, flash points, electrostatic, runaway reactions, explosions, and relief design.…

  18. Chemical process safety at fuel cycle facilities

    SciTech Connect

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document.

  19. Chemical Processing of Electrons and Holes.

    ERIC Educational Resources Information Center

    Anderson, Timothy J.

    1990-01-01

    Presents a synopsis of four lectures given in an elective senior-level electronic material processing course to introduce solid state electronics. Provides comparisons of a large scale chemical processing plant and an integrated circuit. (YP)

  20. Markov Chains and Chemical Processes

    ERIC Educational Resources Information Center

    Miller, P. J.

    1972-01-01

    Views as important the relating of abstract ideas of modern mathematics now being taught in the schools to situations encountered in the sciences. Describes use of matrices and Markov chains to study first-order processes. (Author/DF)

  1. Chemical sensing in process analysis.

    PubMed

    Hirschfeld, T; Callis, J B; Kowalski, B R

    1984-10-19

    Improvements in process control, which determine production efficiency and product quality, are critically dependent upon on-line process analysis. The technology of the required instrumentation will be substantially expanded by advances in sensing devices. In the future, the hardware will consist of sensor arrays and miniaturized instruments fabricated by microlithography and silicon micromachining. Chemometrics will be extensively used in software to provide error detection, selfcalibration, and correction as well as multivariate data analysis for the determination of anticipated and unanticipated species. A number of examples of monolithically fabricated sensors now exist and more will be forthcoming as the new paradigms and new tools are widely adopted. A trend toward not only on-line but even in-product sensors is becoming discernible.

  2. Microwave-enhanced chemical processes

    DOEpatents

    Varma, Ravi

    1990-01-01

    A process for disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Effecting intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400.degree. C. in the presence of microwave radiation for a time sufficient to break the hydrocarbon chlorine bonds and provide detoxification values in excess of 80 and further detoxifying the bed followed by additional disposal of toxic wastes.

  3. Molecular thermodynamics for chemical process design.

    PubMed

    Prausnitz, J M

    1979-08-24

    Chemical process design requires quantitative information on the equilibrium properties of a variety of fluid mixtures. Since the experimental effort needed to provide this information is often prohibitive in cost and time, chemical engineers must utilize rational estimation techniques based on limited experimental data. The basis for such techniques is molecular thermodynamics, a synthesis of classical and statistical thermodynamics, molecular physics, and physical chemistry.

  4. Microwave-enhanced chemical processes

    DOEpatents

    Varma, R.

    1990-06-19

    A process is disclosed for the disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400 C in the presence of microwave radiation for a time sufficient breaks the hydrocarbon chlorine bonds. Detoxification values in excess of 80 are provided and further detoxification of the bed is followed by additional disposal of toxic wastes. 1 figure.

  5. Molecular Thermodynamics for Chemical Process Design

    ERIC Educational Resources Information Center

    Prausnitz, J. M.

    1976-01-01

    Discusses that aspect of thermodynamics which is particularly important in chemical process design: the calculation of the equilibrium properties of fluid mixtures, especially as required in phase-separation operations. (MLH)

  6. Chemical input multiplicity facilitates arithmetical processing.

    PubMed

    Margulies, David; Melman, Galina; Felder, Clifford E; Arad-Yellin, Rina; Shanzer, Abraham

    2004-12-01

    We describe the design and function of a molecular logic system, by which a combinatorial recognition of the input signals is utilized to efficiently process chemically encoded information. Each chemical input can target simultaneously multiple domains on the same molecular platform, resulting in a unique combination of chemical states, each with its characteristic fluorescence output. Simple alteration of the input reagents changes the emitted logic pattern and enables it to perform different algebraic operations between two bits, solely in the fluorescence mode. This system exhibits parallelism in both its chemical inputs and light outputs.

  7. Chemical production processes and systems

    DOEpatents

    Holladay, Johnathan E.; Muzatko, Danielle S.; White, James F.; Zacher, Alan H.

    2014-06-17

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  8. Chemical production processes and systems

    DOEpatents

    Holladay, Johnathan E; Muzatko, Danielle S; White, James F; Zacher, Alan H

    2015-04-21

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  9. Process Security in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Piluso, Cristina; Uygun, Korkut; Huang, Yinlun; Lou, Helen H.

    2005-01-01

    The threats of terrorism have greatly alerted the chemical process industries to assure plant security at all levels: infrastructure-improvement-focused physical security, information-protection-focused cyber security, and design-and-operation-improvement-focused process security. While developing effective plant security methods and technologies…

  10. Chemical kinetics and oil shale process design

    SciTech Connect

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  11. U-GAS process for chemical manufacture

    SciTech Connect

    Dihu, R.; Leppin, D.; Patel, J.G.

    1980-01-01

    The U-GAS coal gasification process and its potential application to the manufacture of two important industrial chemicals, methanol and ammonia, are described. Pilot plant results, the current status of the process, and economic projections for the cost of manufacture of methanol and ammonia are presented.

  12. Process safety management for highly hazardous chemicals

    SciTech Connect

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  13. Chemicals Industry New Process Chemistry Roadmap

    SciTech Connect

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  14. Enhanced membrane bioreactor process without chemical cleaning.

    PubMed

    Krause, S; Zimmermann, B; Meyer-Blumenroth, U; Lamparter, W; Siembida, B; Cornel, P

    2010-01-01

    In membrane bioreactors (MBR) for wastewater treatment, the separation of activated sludge and treated water takes place by membrane filtration. Due to the small footprint and superior effluent quality, the number of membrane bioreactors used in wastewater treatment is rapidly increasing. A major challenge in this process is the fouling of the membranes which results in permeability decrease and the demand of chemical cleaning procedures. With the objective of a chemical-free process, the removal of the fouling layer by continuous physical abrasion was investigated. Therefore, particles (granules) were added to the activated sludge in order to realise a continuous abrasion of the fouling layer. During operation for more than 8 months, the membranes showed no decrease in permeability. Fluxes up to 40 L/(m(2) h) were achieved. An online turbidity measurement was installed for the effluent control and showed no change during this test period. For comparison, a reference (standard MBR process without granules) was operated which demonstrated permeability loss at lower fluxes and required chemical cleaning. Altogether with this process an operation at higher fluxes and no use of cleaning chemicals will increase the cost efficiency of the MBR-process.

  15. Chemically amplified photoresist: Materials and processes

    NASA Astrophysics Data System (ADS)

    Pawloski, Adam Richard

    2002-01-01

    Advances in microfabrication technology to construct smaller and faster integrated circuits depend on improving resolution capabilities of patterning thin films of photoresist materials by photolithographic imaging. Positive-tone, chemically amplified photoresists represent one of the most important classes of photoresist materials. These materials function by the generation of a photoacid catalyst from the decomposition of a photoacid generator with exposure that catalyzes chemical reactions that alter the development rate of the exposed resist. Chemical amplification is derived from the fact that a single molecule of photogenerated catalyst may participate in numerous reactions. Photoacid catalyzes the cleavage of acid-labile protecting groups from the backbone of the resin polymer, increasing the dissolution rate of the resist in aqueous base. A pattern is formed in the photoresist film from the difference between dissolution rates of the exposed and unexposed material. The continual improvement of the resolution of chemically amplified resists depends on understanding, controlling, and optimizing the chemical processes that govern pattern formation, namely photoacid generation, resin deprotection, and resist dissolution. To elucidate how the formulation of the resist affects these processes, a systematic methodology was designed, validated and implemented to analyze the materials and processing of chemically amplified photoresist systems. The efficiency of photoacid generation and the concentration of photoacid produced upon exposure were determined for a wide range of resist formulations, processing conditions, and exposure technologies. The chemical structure of photoacid generators and base quenchers were found to affect the processes of acid-base neutralization, resin deprotection, and resist development. The reaction-diffusion process of photoacid to deprotect the resin was identified to depend on the concentration of the photoacid generator. A much

  16. A Novel Chemical Nitrate Destruction Process

    SciTech Connect

    Dziewinski, J.; Marczak, S.

    1999-03-01

    Nitrates represent one of the most significant pollutant discharged to the Baltic Sea by the Sliiamae hydrometallurgical plant. This article contains a brief overview of the existing nitrate destruction technologies followed by the description of a new process developed by the authors. The new chemical process for nitrate destruction is cost effective and simple to operate. It converts the nitrate to nitrogen gas which goes to the atmosphere.

  17. Synthesis and optimization of integrated chemical processes

    SciTech Connect

    Barton, Paul I.; Evans, Lawrence B.

    2002-04-26

    This is the final technical report for the project titled ''Synthesis and optimization of integrated chemical processes''. Progress is reported on novel algorithms for the computation of all heteroazeotropic compositions present in complex liquid mixtures; the design of novel flexible azeotropic separation processes using middle vessel batch distillation columns; and theory and algorithms for sensitivity analysis and numerical optimization of hybrid discrete/continuous dynamic systems.

  18. Chemical computing with reaction-diffusion processes.

    PubMed

    Gorecki, J; Gizynski, K; Guzowski, J; Gorecka, J N; Garstecki, P; Gruenert, G; Dittrich, P

    2015-07-28

    Chemical reactions are responsible for information processing in living organisms. It is believed that the basic features of biological computing activity are reflected by a reaction-diffusion medium. We illustrate the ideas of chemical information processing considering the Belousov-Zhabotinsky (BZ) reaction and its photosensitive variant. The computational universality of information processing is demonstrated. For different methods of information coding constructions of the simplest signal processing devices are described. The function performed by a particular device is determined by the geometrical structure of oscillatory (or of excitable) and non-excitable regions of the medium. In a living organism, the brain is created as a self-grown structure of interacting nonlinear elements and reaches its functionality as the result of learning. We discuss whether such a strategy can be adopted for generation of chemical information processing devices. Recent studies have shown that lipid-covered droplets containing solution of reagents of BZ reaction can be transported by a flowing oil. Therefore, structures of droplets can be spontaneously formed at specific non-equilibrium conditions, for example forced by flows in a microfluidic reactor. We describe how to introduce information to a droplet structure, track the information flow inside it and optimize medium evolution to achieve the maximum reliability. Applications of droplet structures for classification tasks are discussed.

  19. Rock fracture processes in chemically reactive environments

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed

  20. Denitrification as a Model Chemical Process

    NASA Astrophysics Data System (ADS)

    Grguric, Gordan

    2002-02-01

    Bacterial denitrification in seawater facilities such as aquaria and mariculture systems is a process particularly well suited for illustrating important concepts in chemistry to undergraduates. Students can gain firsthand experience related to these concepts, for example by (i) analyzing and quantifying chemical reactions based on empirical data, (ii) employing stoichiometry and mass balance to determine the amounts of reactants required and products produced in a chemical reaction, and (iii) using acid-base speciation diagrams and other information to quantify the changes in pH and carbonic acid speciation in an aqueous medium. At the Richard Stockton College of New Jersey, we have utilized actual data from several seawater systems to discuss topics such as stoichiometry, mass and charge balance, and limiting reagents. This paper describes denitrification in closed seawater systems and how the process can be used to enhance undergraduate chemistry education. A number of possible student exercises are described that can be used as practical tools to enhance the students' quantitative understanding of chemical reactions.

  1. Exergy analysis of a chemical metallurgical process

    NASA Astrophysics Data System (ADS)

    Morris, D. R.; Steward, F. R.

    1984-12-01

    The concept of available work or exergy is used to develop an expression from which the causes of exergy losses in a chemical reactor are identified. The concept is illustrated by application to a lead blast furnace. The performance of the sinter plant and the lead smelter are assessed by the same procedures. The possibilities of exergy recovery are discussed and a heat pump installation is described. The advantages of the exergy method of process assessment relative to the traditional heat balance are discussed.

  2. GREENSCOPE: A Method for Modeling Chemical Process ...

    EPA Pesticide Factsheets

    Current work within the U.S. Environmental Protection Agency’s National Risk Management Research Laboratory is focused on the development of a method for modeling chemical process sustainability. The GREENSCOPE methodology, defined for the four bases of Environment, Economics, Efficiency, and Energy, can evaluate processes with over a hundred different indicators. These indicators provide a means for realizing the principles of green chemistry and green engineering in the context of sustainability. Development of the methodology has centered around three focal points. One is a taxonomy of impacts that describe the indicators and provide absolute scales for their evaluation. The setting of best and worst limits for the indicators allows the user to know the status of the process under study in relation to understood values. Thus, existing or imagined processes can be evaluated according to their relative indicator scores, and process modifications can strive towards realizable targets. A second area of focus is in advancing definitions of data needs for the many indicators of the taxonomy. Each of the indicators has specific data that is necessary for their calculation. Values needed and data sources have been identified. These needs can be mapped according to the information source (e.g., input stream, output stream, external data, etc.) for each of the bases. The user can visualize data-indicator relationships on the way to choosing selected ones for evalua

  3. DESIGNING ENVIRONMENTAL, ECONOMIC AND ENERGY EFFICIENT CHEMICAL PROCESSES

    EPA Science Inventory

    The design and improvement of chemical processes can be very challenging. The earlier energy conservation, process economics and environmental aspects are incorporated into the process development, the easier and less expensive it is to alter the process design. Process emissio...

  4. Quantification of chemical transport processes from soil to surface runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although there is a conceptual understanding on processes governing chemical transport from soil to surface runoff, there are little literature and research results actually quantifying these individual processes. We developed a laboratory flow cell and experimental procedures to quantify chemical ...

  5. Idaho Chemical Processing Plant failure rate database

    SciTech Connect

    Alber, T.G.; Hunt, C.R.; Fogarty, S.P.; Wilson, J.R.

    1995-08-01

    This report represents the first major upgrade to the Idaho Chemical Processing Plant (ICPP) Failure Rate Database. This upgrade incorporates additional site-specific and generic data while improving on the previous data reduction techniques. In addition, due to a change in mission at the ICPP, the status of certain equipment items has changed from operating to standby or off-line. A discussion of how this mission change influenced the relevance of failure data also has been included. This report contains two data sources: the ICPP Failure Rate Database and a generic failure rate database. A discussion is presented on the approaches and assumptions used to develop the data in the ICPP Failure Rate Database. The generic database is included along with a short discussion of its application. A brief discussion of future projects recommended to strengthen and lend credibility to the ICPP Failure Rate Database also is included.

  6. Life cycle costs for chemical process pumps

    SciTech Connect

    Urwin, B.; Blong, R.; Jamieson, C.; Erickson, B.

    1998-01-01

    Though construction and startup costs are always a concern, proper investment in equipment and installation will save money down the line. This is particularly important for heavily used items, such as centrifugal pumps, one of the workhouses of the chemical process industries (CPI). By properly sizing and installing a centrifugal pump, the life and efficiency of the pump can be increased. At the same time, maintenance costs can be reduced. When considering a new pump, there are several areas that require attention. The first is the baseplate design. The impeller is another area of concern. The seal chamber, the third area of importance, must be designed for proper heat dissipation and lubrication of seal faces. Lastly, the power end must be considered. Optimum bearing life, effective oil cooling and minimum shaft deflection are all vital. The paper discusses installation costs, operating cost, maintenance cost, seal environment, and extended bearing life.

  7. Odor processing in multiple chemical sensitivity.

    PubMed

    Hillert, Lena; Musabasic, Vildana; Berglund, Hans; Ciumas, Carolina; Savic, Ivanka

    2007-03-01

    Multiple chemical sensitivity (MCS) is characterized by somatic distress upon exposure to odors. As in other idiopathic environmental intolerances, the mechanisms behind the reported hypersensitivity are unknown. Using the advantage of the well-defined trigger (odor), we investigated whether subjects with MCS could have an increased odor-signal response in the odor-processing neuronal circuits. Positron emission tomography (PET) activation studies with several different odorants were carried out in 12 MCS females and 12 female controls. Activation was defined as a significant increase in regional cerebral blood flow (rCBF) during smelling of the respective odorant compared to smelling of odorless air. The study also included online measurements of respiratory frequency and amplitude and heart rate variations by recording of R wave intervals (RR) on the surface electrocardiogram. The MCS subjects activated odor-processing brain regions less than controls, despite the reported, and physiologically indicated (decreased RR interval) distress. In parallel, they showed an odorant-related increase in activation of the anterior cingulate cortex and cuneus-precuneus. Notably, the baseline rCBF was normal. Thus, the abnormal patterns were observed only in response to odor signals. Subjects with MCS process odors differently from controls, however, without signs of neuronal sensitization. One possible explanation for the observed pattern of activation in MCS is a top-down regulation of odor-response via cingulate cortex.

  8. Quantum Chemical Strain Analysis For Mechanochemical Processes.

    PubMed

    Stauch, Tim; Dreuw, Andreas

    2017-03-24

    The use of mechanical force to initiate a chemical reaction is an efficient alternative to the conventional sources of activation energy, i.e., heat, light, and electricity. Applications of mechanochemistry in academic and industrial laboratories are diverse, ranging from chemical syntheses in ball mills and ultrasound baths to direct activation of covalent bonds using an atomic force microscope. The vectorial nature of force is advantageous because specific covalent bonds can be preconditioned for rupture by selective stretching. However, the influence of mechanical force on single molecules is still not understood at a fundamental level, which limits the applicability of mechanochemistry. As a result, many chemists still resort to rules of thumb when it comes to conducting mechanochemical syntheses. In this Account, we show that comprehension of mechanochemistry at the molecular level can be tremendously advanced by quantum chemistry, in particular by using quantum chemical force analysis tools. One such tool is the JEDI (Judgement of Energy DIstribution) analysis, which provides a convenient approach to analyze the distribution of strain energy in a mechanically deformed molecule. Based on the harmonic approximation, the strain energy contribution is calculated for each bond length, bond angle and dihedral angle, thus providing a comprehensive picture of how force affects molecules. This Account examines the theoretical foundations of quantum chemical force analysis and provides a critical overview of the performance of the JEDI analysis in various mechanochemical applications. We explain in detail how this analysis tool is to be used to identify the "force-bearing scaffold" of a distorted molecule, which allows both the rationalization and the optimization of diverse mechanochemical processes. More precisely, we show that the inclusion of every bond, bending and torsion of a molecule allows a particularly insightful discussion of the distribution of mechanical

  9. Film processing investigation. [improved chemical mixing system

    NASA Technical Reports Server (NTRS)

    Kelly, J. L.

    1972-01-01

    The present operational chemical mixing system for the Photographic Technology Division is evaluated, and the limitations are defined in terms of meeting the present and programmed chemical supply and delivery requirements. A major redesign of the entire chemical mixing, storage, analysis, and supply system is recommended. Other requirements for immediate and future implementations are presented.

  10. Foundations for Excellence in the Chemical Process Industries. Voluntary Industry Standards for Chemical Process Industries Technical Workers.

    ERIC Educational Resources Information Center

    Hofstader, Robert; Chapman, Kenneth

    This document discusses the Voluntary Industry Standards for Chemical Process Industries Technical Workers Project and issues of relevance to the education and employment of chemical laboratory technicians (CLTs) and process technicians (PTs). Section 1 consists of the following background information: overview of the chemical process industries,…

  11. Electron Beam Applications in Chemical Processing

    NASA Astrophysics Data System (ADS)

    Martin, D.; Dragusin, M.; Radoiu, M.; Moraru, R.; Oproiu, C.; Cojocaru, G.; Margarit, C.

    1997-05-01

    Our recent results in the field of polymeric materials obtained by electron beam irradiation are presented. Two types of polymeric flocculants and three hydrogels are described. The effects of radiation absorbed dose and chemical composition of the irradiated solutions upon the polymeric materials characteristics are discussed. The required absorbed dose levels to produce the polymeric flocculants are in the range of 0.4 kGy to 1 kGy, and 4 kGy to 12 kGy for hydrogels. Experimental results obtained by testing polymeric flocculants with waste water from food industry are given. Plymeric materials processing was developed on a pilot small scale level with a 0.7 kW and 5.5 MeV linac built in Romania. A new facility for application of combined electron beam and microwave irradiation in the field of polymeric materials preparation is presently under investigation. Preliminary results have demonstrated that some polymeric flocculants characteristics, such as linearity, were improved by using combined electron beam and microwave irradiation. Also, the absorbed dose levels decreases in comparison with those required when only electron beam irradiation was used.

  12. Physical-chemical processes in a protoplanetary cloud

    NASA Technical Reports Server (NTRS)

    Lavrukhina, Avgusta K.

    1991-01-01

    Physical-chemical processes in a protoplanetary cloud are discussed. The following subject areas are covered: (1) characteristics of the chemical composition of molecular interstellar clouds; (2) properties and physico-chemical process in the genesis of interstellar dust grains; and (3) the isotope composition of volatiles in bodies of the Solar System.

  13. Speleothems as Examples of Chemical Equilibrium Processes.

    ERIC Educational Resources Information Center

    Wilson, James R.

    1984-01-01

    The chemical formation of speleothems such as stalactites and stalagmites is poorly understood by introductory geology instructors and misrepresented in most textbooks. Although evaporation may be a controlling factor in some caves, it is necessary to consider chemical precipitation as more important in controlling the diagenesis of calcium…

  14. Total chemical management in photographic processing

    USGS Publications Warehouse

    Luden, Charles; Schultz, Ronald

    1985-01-01

    The mission of the U. S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center is to produce high-quality photographs of the earth taken from aircraft and Landsat satellite. In order to meet the criteria of producing research-quality photographs, while at the same time meeting strict environmental restrictions, a total photographic chemical management system was installed. This involved a three-part operation consisting of the design of a modern chemical analysis laboratory, the implementation of a chemical regeneration system, and the installation of a waste treatment system, including in-plant pretreatment and outside secondary waste treatment. Over the last ten years the result of this program has yielded high-quality photographs while saving approximately 30,000 per year and meeting all Environmental Protection Agency (EPA) restrictions.

  15. EVALUATING AND DESIGNING CHEMICAL PROCESSES FOR ENVIRONMENTAL SUSTAINABILITY

    EPA Science Inventory

    Chemicals and chemical processes are at the heart of most environmental problems. This isn't surprising since chemicals make up all of the products we use in our lives. The common use of cjhemicals makes them of high interest for systems analysis, particularly because of environ...

  16. Low temperature radio-chemical energy conversion processes

    SciTech Connect

    Gomberg, H.J.

    1986-11-04

    This patent describes a radio-chemical method of converting radiated energy into chemical energy form comprising the steps of: (a) establishing a starting chemical compound in the liquid phase that chemically reacts endothermically to radiation and heat energy to produce a gaseous and a solid constituent of the compound, (b) irradiating the compound in its liquid phase free of solvents to chemically release therefrom in response to the radiation the gaseous and solid constituents, (c) physically separating the solid and gaseous phase constituents from the liquid, and (d) chemically processing the constituents to recover therefrom energy stored therein by the irradiation step (b).

  17. Hierarchical Process Control of Chemical Vapor Infiltration.

    DTIC Science & Technology

    1995-05-31

    convergence artificial neural network and used it to discover improved regions of the CVI processing parameter space; also, the Technology Assessment...identify in situ process sensors of considerable promise and as artificial neural network training pairs.

  18. Boosting Manufacturing through Modular Chemical Process Intensification

    SciTech Connect

    2016-12-09

    Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.

  19. Boosting Manufacturing through Modular Chemical Process Intensification

    ScienceCinema

    None

    2017-01-06

    Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.

  20. DESIGNING ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES WITH FUGITIVE AND OPEN EMISSIONS

    EPA Science Inventory

    Designing a chemical process normally includes aspects of economic and environmental disciplines. In this work we describe methods to quickly and easily evaluate the economics and potential environmental impacts of a process, with the hydrodealkylation of toluene as an example. ...

  1. Stereodynamics: From elementary processes to macroscopic chemical reactions

    SciTech Connect

    Kasai, Toshio; Che, Dock-Chil; Tsai, Po-Yu; Lin, King-Chuen; Palazzetti, Federico; Aquilanti, Vincenzo

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  2. Program Prepares Students for Chemical-Processing Careers

    ERIC Educational Resources Information Center

    Jorgensen, Haley

    2005-01-01

    This article describes a chemical-processing program at Saginaw Career Complex in Saginaw, Michigan. The program is preparing 42 11th- and 12th-graders to work as chemical-processing operators or technicians by the time they graduate from high school. It was developed in partnership with the Saginaw Career Complex--one of 51 centers in the state…

  3. 21 CFR 170.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Pesticide chemicals in processed foods. 170.19 Section 170.19 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES General Provisions § 170.19 Pesticide chemicals in processed foods. When...

  4. Chemical process safety management within the Department of Energy

    SciTech Connect

    Piatt, J.A.

    1995-07-01

    Although the Department of Energy (DOE) is not well known for its chemical processing activities, the DOE does have a variety of chemical processes covered under OSHA`s Rule for Process Safety Management of Highly Hazardous Chemicals (the PSM Standard). DOE, like industry, is obligated to comply with the PSM Standard. The shift in the mission of DOE away from defense programs toward environmental restoration and waste management has affected these newly forming process safety management programs within DOE. This paper describes the progress made in implementing effective process safety management programs required by the PSM Standard and discusses some of the trends that have supported efforts to reduce chemical process risks within the DOE. In June of 1994, a survey of chemicals exceeding OSHA PSM or EPA Risk Management Program threshold quantities (TQs) at DOE sites found that there were 22 processes that utilized toxic or reactive chemicals over TQs; there were 13 processes involving flammable gases and liquids over TQs; and explosives manufacturing occurred at 4 sites. Examination of the survey results showed that 12 of the 22 processes involving toxic chemicals involved the use of chlorine for water treatment systems. The processes involving flammable gases and liquids were located at the Strategic Petroleum Reserve and Naval petroleum Reserve sites.

  5. News: Good chemical manufacturing process criteria

    EPA Science Inventory

    This news column covers topics relating to manufacturing criteria, machine to machine technology, novel process windows, green chemistry indices, business resilience, immobilized enzymes, and Bt crops.

  6. Chemical Sensing for Buried Landmines - Fundamental Processes Influencing Trace Chemical Detection

    SciTech Connect

    PHELAN, JAMES M.

    2002-05-01

    Mine detection dogs have a demonstrated capability to locate hidden objects by trace chemical detection. Because of this capability, demining activities frequently employ mine detection dogs to locate individual buried landmines or for area reduction. The conditions appropriate for use of mine detection dogs are only beginning to emerge through diligent research that combines dog selection/training, the environmental conditions that impact landmine signature chemical vapors, and vapor sensing performance capability and reliability. This report seeks to address the fundamental soil-chemical interactions, driven by local weather history, that influence the availability of chemical for trace chemical detection. The processes evaluated include: landmine chemical emissions to the soil, chemical distribution in soils, chemical degradation in soils, and weather and chemical transport in soils. Simulation modeling is presented as a method to evaluate the complex interdependencies among these various processes and to establish conditions appropriate for trace chemical detection. Results from chemical analyses on soil samples obtained adjacent to landmines are presented and demonstrate the ultra-trace nature of these residues. Lastly, initial measurements of the vapor sensing performance of mine detection dogs demonstrates the extreme sensitivity of dogs in sensing landmine signature chemicals; however, reliability at these ultra-trace vapor concentrations still needs to be determined. Through this compilation, additional work is suggested that will fill in data gaps to improve the utility of trace chemical detection.

  7. Chemical Process Design: An Integrated Teaching Approach.

    ERIC Educational Resources Information Center

    Debelak, Kenneth A.; Roth, John A.

    1982-01-01

    Reviews a one-semester senior plant design/laboratory course, focusing on course structure, student projects, laboratory assignments, and course evaluation. Includes discussion of laboratory exercises related to process waste water and sludge. (SK)

  8. Water in Biological and Chemical Processes

    NASA Astrophysics Data System (ADS)

    Bagchi, Biman

    2013-11-01

    Part I. Bulk Water: 1. Uniqueness of water; 2. Anomalies of water; 3. Dynamics of water: molecular motions and hydrogen bond breaking kinetics; 4. Inherent structures of liquid water; 5. pH of water; Part II. Water in Biology: Dynamical View and Function: 6. Biological water; 7. Explicit role of water in biological functions; 8. Hydration of proteins; 9. Can we understand protein hydration layer: lessons from computer simulations; 10. Water in and around DNA and RNA; 11. Role of water in protein-DNA interaction; 12. Water surrounding lipid bilayers; 13. Water in Darwin's world; Part III. Water in Complex Chemical Systems: 14. Hydrophilic effects; 15. Hydrophobic effects; 16. Aqueous binary mixtures: amphiphilic effect; 17. Water in and around micelles, reverse micelles and microemulsions; 18. Water in carbon nanotubes; Part IV. Bulk Water: Advanced Topics: 19. Entropy of water; 20. Freezing of water into ice; 21. Supercritical water; 22. Microscopic approaches to understand water anomalies.

  9. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    SciTech Connect

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower

  10. Chemical processing in geothermal nuclear chimney

    DOEpatents

    Krikorian, O.H.

    1973-10-01

    A closed rubble filled nuclear chimney is provided in a subterranean geothermal formation by detonation of a nuclear explosive device therein, with reagent input and product output conduits connecting the chimney cavity with appropriate surface facilities. Such facilities will usually comprise reagent preparation, product recovery and recycle facilities. Proccsses are then conducted in the nuclear chimney which processes are facilitated by temperature, pressure, catalytic and other conditions existent or which are otherwise provided in the nuclear chimney. (auth)

  11. Sustainability Indicators for Chemical Processes: III. Biodiesel Case Study

    EPA Science Inventory

    The chemical industry is one of the most important business sectors, not only economically, but also societally; as it allows humanity to attain higher standards and quality of life. Simultaneously, chemical products and processes can be the origin of potential human health and ...

  12. Chemical, thermal and impact processing of asteroids

    NASA Technical Reports Server (NTRS)

    Scott, E. R. D.; Taylor, G. J.; Newsom, H. E.; Herbert, F.; Zolensky, M.

    1989-01-01

    The geological effects of impacts, heating, melting, core formation, and aqueous alteration on asteroids are reviewed. A review of possible heat sources appears to favor an important role for electrical induction heating. The effects of each geologic process acting individually and in combination with others, are considered; it is concluded that there is much evidence for impacts during alteration, metamorphism and melting. These interactions vastly increased the geologic diversity of the asteroid belt. Subsequent impacts of cool asteroids did not reduce this diversity. Instead new rock types were created by mixing, brecciation and minor melting.

  13. Solar powered chemical processing method and apparatus

    SciTech Connect

    Moore, W.T.

    1982-07-13

    An apparatus and method is disclosed for direct absorption of solar energy by material being processed whereby it is not necessary to first convert the solar energy to sensible heat in an intermediate heat exchange medium or apparatus. The material to be processed is dispersed downwardly in a chamber, or reaction vessel, in the form of small droplets, or particles, of controlled size. Solar energy entering the vessel through an elongated vertically disposed window impinges directly upon the dispersed material and energy that is not absorbed but is scattered by the dispersed material is generally intercepted by surrounding droplets or particles. Energy not so absorbed by the dispersed droplets or particles is absorbed by the vessel walls and is re-radiated to the dispersed droplets or particles. The vessel is sized so as to absorb the energy whereby the energy is re-radiated from the walls at wave lengths essentially absent from the solar spectrum at sea level due to atmospheric attenuation.

  14. Evaluation of Chemical Coating Processes for AXAF

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell; Ramsey, Brian; Mendrek, Mitchell

    1998-01-01

    The need existed at MSFC for the development and fabrication of radioisotope calibration sources of cadmium 109 and iron 55 isotopes. This was in urgent response to the AXA-F program. Several issues persisted in creating manufacturing difficulties for the supplier. In order to meet the MSFC requirements very stringent control needed to be maintained for the coating quality, specific activity and thickness. Due to the difficulties in providing the precisely controlled devices for testing, the delivery of the sources was seriously delayed. It became imperative that these fabrication issues be resolved to avoid further delays in this AXA-F observatory key component. The objectives are: 1) Research and provide expert advice on coating materials and procedures. 2) Research and recommend solutions to problems that have been experienced with the coating process. 3) Provide recommendations on the selection and preparation of substrates. 4) Provide consultation on the actual coating process including the results of the qualification and acceptance test programs. 5) Perform independent tests at UAH or MSFC as necessary.

  15. 64. SOUTH PLANT PROCESS PIPING, CHEMICAL STORAGE TANKS AND BUILDINGS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. SOUTH PLANT PROCESS PIPING, CHEMICAL STORAGE TANKS AND BUILDINGS. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  16. 2. OVERHEAD CHEMICAL PROCESS PIPING BETWEEN BUILDINGS 422, ON RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OVERHEAD CHEMICAL PROCESS PIPING BETWEEN BUILDINGS 422, ON RIGHT, AND 431, ON LEFT. - Rocky Mountain Arsenal, Crude Mustard & Aldrin Manufacturing, 1200 feet South of December Seventh Avenue; 600 feet East of D Street, Commerce City, Adams County, CO

  17. Notification: Efficiency of the Chemical Safety Board (CSB) Investigation Process

    EPA Pesticide Factsheets

    October 17, 2012. The EPA OIG plans to begin fieldwork with a modified objective from our May 15, 2012, preliminary research objective on the U.S. Chemical Safety and Hazard Investigation Board’s (CSB’s) investigation process.

  18. Chemical etching for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1981-01-01

    Chemical etching for automatic processing of integrated circuits is discussed. The wafer carrier and loading from a receiving air track into automatic furnaces and unloading onto a sending air track are included.

  19. 61 FR 1604 - Process Safety Management of Highly Hazardous Chemicals

    Federal Register 2010, 2011, 2012, 2013, 2014

    1996-01-22

    ... Occupational Safety and Health Administration Process Safety Management of Highly Hazardous Chemicals AGENCY... approval for the paperwork requirements of 29 CFR 1910.119, Process Safety Management of Highly Hazardous... current OMB approval of the paperwork requirements in 29 CFR 1910.119, Process Safety Management of...

  20. Analysis of chemical coal cleaning processes. Final report

    SciTech Connect

    Not Available

    1980-06-01

    Six chemical coal cleaning processes were examined. Conceptual designs and costs were prepared for these processes and coal preparation facilities, including physical cleaning and size reduction. Transportation of fine coal in agglomerated and unagglomerated forms was also discussed. Chemical cleaning processes were: Pittsburgh Energy Technology Center, Ledgemont, Ames Laboratory, Jet Propulsion Laboratory (two versions), and Guth Process (KVB). Three of the chemical cleaning processes are similar in concept: PETC, Ledgemont, and Ames. Each of these is based on the reaction of sulfur with pressurized oxygen, with the controlling factor being the partial pressure of oxygen in the reactor. All of the processes appear technically feasible. Economic feasibility is less certain. The recovery of process chemicals is vital to the JPL and Guth processes. All of the processes consume significant amounts of energy in the form of electric power and coal. Energy recovery and increased efficiency are potential areas for study in future more detailed designs. The Guth process (formally designed KVB) appears to be the simplest of the systems evaluated. All of the processes require future engineering to better determine methods for scaling laboratory designs/results to commercial-scale operations. A major area for future engineering is to resolve problems related to handling, feeding, and flow control of the fine and often hot coal.

  1. Some aspects of mathematical and chemical modeling of complex chemical processes

    NASA Technical Reports Server (NTRS)

    Nemes, I.; Botar, L.; Danoczy, E.; Vidoczy, T.; Gal, D.

    1983-01-01

    Some theoretical questions involved in the mathematical modeling of the kinetics of complex chemical process are discussed. The analysis is carried out for the homogeneous oxidation of ethylbenzene in the liquid phase. Particular attention is given to the determination of the general characteristics of chemical systems from an analysis of mathematical models developed on the basis of linear algebra.

  2. Chemical mass transfer in magmatic processes

    NASA Astrophysics Data System (ADS)

    Ghiorso, Mark S.; Carmichael, Ian S. E.

    1985-07-01

    Numerical examples of the approach described in Part I of this series (Ghiorso, 1985) are presented in this paper. These examples include the calculation of the compositions and proportions of liquid and solid phases produced during (1) the equilibrium crystallization of a basaltic andesite at 1 bar, (2) the fractional crystallization of an olivine tholeiite at 1 bar and elevated pressures, (3) the fractional and equilibrium crystallization of an olivine boninite at 1 bar, and (4) the (a) isothermal and (b) isenthalpic assimilation of olivine (Fo90) into a liquid/solid assemblage of quartz dioritic composition at ˜1,125° C and 3 kbars. The numerical results on the crystallization of the basaltic andesite are verified by comparison with experimental data while those calculations performed using olivine tholeiitic and olivine boninitic compositions are favorably compared against whole rock and mineral analytical data and petrographic and field observations. In each of the examples presented, the heat effects associated with the modelled process are calculated (e.g. heat of crystallization, heat of assimilation), and free energies of crystallization are examined as a function of the degree of mineral supersaturation. The former quantities are on the order of 173 cal/grm for the cooling and fractional crystallization of an olivine tholeiite to a rhyolitic residuum (corresponding to a 400° C temperature interval). The latter represents an important petrological parameter, in that it quantifies the driving force for the rate of crystal growth and rate of nucleation in magmatic systems. Calculated free energies of crystallization are small (on the order of hundreds of calories per mole per 25° C of undercooling) which indicates that the kinetics of crystallization in magmatic systems are affinity controlled. Melt oxygen fugacity and the degree of oxygen metasomatism play a major role in controlling the fractionation trends produced from crystallizing basaltic liquids

  3. Central Processing of the Chemical Senses: An Overview

    PubMed Central

    2010-01-01

    Our knowledge regarding the neural processing of the three chemical senses has been considerably lagging behind that of our other senses. It is only during the last 25 years that significant advances have been made in our understanding of where in the human brain odors, tastants, and trigeminal stimuli are processed. Here, we provide an overview of the current knowledge of how the human brain processes chemical stimuli based on findings in neuroimaging studies using positron emission tomography and functional magnetic resonance imaging. Additionally, we provide new insights from recent meta-analyses, on the basis of all published neuroimaging studies of the chemical senses, of where the chemical senses converge in the brain. PMID:21503268

  4. ACToR Chemical Structure processing using Open Source ...

    EPA Pesticide Factsheets

    ACToR (Aggregated Computational Toxicology Resource) is a centralized database repository developed by the National Center for Computational Toxicology (NCCT) at the U.S. Environmental Protection Agency (EPA). Free and open source tools were used to compile toxicity data from over 1,950 public sources. ACToR contains chemical structure information and toxicological data for over 558,000 unique chemicals. The database primarily includes data from NCCT research programs, in vivo toxicity data from ToxRef, human exposure data from ExpoCast, high-throughput screening data from ToxCast and high quality chemical structure information from the EPA DSSTox program. The DSSTox database is a chemical structure inventory for the NCCT programs and currently has about 16,000 unique structures. Included are also data from PubChem, ChemSpider, USDA, FDA, NIH and several other public data sources. ACToR has been a resource to various international and national research groups. Most of our recent efforts on ACToR are focused on improving the structural identifiers and Physico-Chemical properties of the chemicals in the database. Organizing this huge collection of data and improving the chemical structure quality of the database has posed some major challenges. Workflows have been developed to process structures, calculate chemical properties and identify relationships between CAS numbers. The Structure processing workflow integrates web services (PubChem and NIH NCI Cactus) to d

  5. Sealed-bladdered chemical processing method and apparatus

    DOEpatents

    Harless, D. Phillip

    1999-01-01

    A method and apparatus which enables a complete multi-stepped chemical treatment process to occur within a single, sealed-bladdered vessel 31. The entire chemical process occurs without interruption of the sealed-bladdered vessel 31 such as opening the sealed-bladdered vessel 31 between various steps of the process. The sealed-bladdered vessel 31 is loaded with a batch to be dissolved, treated, decanted, rinsed and/or dried. A pressure filtration step may also occur. The self-contained chemical processing apparatus 32 contains a sealed-bladder 32, a fluid pump 34, a reservoir 20, a compressed gas inlet, a vacuum pump 24, and a cold trap 23 as well as the associated piping 33, numerous valves 21,22,25,26,29,30,35,36 and other controls associated with such an apparatus. The claimed invention allows for dissolution and/or chemical treatment without the operator of the self-contained chemical processing apparatus 38 coming into contact with any of the process materials.

  6. Dust as interstellar catalyst. I. Quantifying the chemical desorption process

    NASA Astrophysics Data System (ADS)

    Minissale, M.; Dulieu, F.; Cazaux, S.; Hocuk, S.

    2016-01-01

    Context. The presence of dust in the interstellar medium has profound consequences on the chemical composition of regions where stars are forming. Recent observations show that many species formed onto dust are populating the gas phase, especially in cold environments where UV- and cosmic-ray-induced photons do not account for such processes. Aims: The aim of this paper is to understand and quantify the process that releases solid species into the gas phase, the so-called chemical desorption process, so that an explicit formula can be derived that can be included in astrochemical models. Methods: We present a collection of experimental results of more than ten reactive systems. For each reaction, different substrates such as oxidized graphite and compact amorphous water ice were used. We derived a formula for reproducing the efficiencies of the chemical desorption process that considers the equipartition of the energy of newly formed products, followed by classical bounce on the surface. In part II of this study we extend these results to astrophysical conditions. Results: The equipartition of energy correctly describes the chemical desorption process on bare surfaces. On icy surfaces, the chemical desorption process is much less efficient, and a better description of the interaction with the surface is still needed. Conclusions: We show that the mechanism that directly transforms solid species into gas phase species is efficient for many reactions.

  7. DESIGNING CHEMICAL PROCESSES WITH OPEN AND FUGITIVE EMISSIONS

    EPA Science Inventory

    Designing a chemical process normally includes aspects of economic and environmental disciplines. In this work we describe methods to quickly and easily evaluate the conomics and potential environmental impacts of a process, with the hydrodealkylation of toluene as an example. Th...

  8. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  9. Field programmable chemistry: integrated chemical and electronic processing of informational molecules towards electronic chemical cells.

    PubMed

    Wagler, Patrick F; Tangen, Uwe; Maeke, Thomas; McCaskill, John S

    2012-07-01

    The topic addressed is that of combining self-constructing chemical systems with electronic computation to form unconventional embedded computation systems performing complex nano-scale chemical tasks autonomously. The hybrid route to complex programmable chemistry, and ultimately to artificial cells based on novel chemistry, requires a solution of the two-way massively parallel coupling problem between digital electronics and chemical systems. We present a chemical microprocessor technology and show how it can provide a generic programmable platform for complex molecular processing tasks in Field Programmable Chemistry, including steps towards the grand challenge of constructing the first electronic chemical cells. Field programmable chemistry employs a massively parallel field of electrodes, under the control of latched voltages, which are used to modulate chemical activity. We implement such a field programmable chemistry which links to chemistry in rather generic, two-phase microfluidic channel networks that are separated into weakly coupled domains. Electric fields, produced by the high-density array of electrodes embedded in the channel floors, are used to control the transport of chemicals across the hydrodynamic barriers separating domains. In the absence of electric fields, separate microfluidic domains are essentially independent with only slow diffusional interchange of chemicals. Electronic chemical cells, based on chemical microprocessors, exploit a spatially resolved sandwich structure in which the electronic and chemical systems are locally coupled through homogeneous fine-grained actuation and sensor networks and play symmetric and complementary roles. We describe how these systems are fabricated, experimentally test their basic functionality, simulate their potential (e.g. for feed forward digital electrophoretic (FFDE) separation) and outline the application to building electronic chemical cells.

  10. Treatment Process Requirements for Waters Containing Hydraulic Fracturing Chemicals

    NASA Astrophysics Data System (ADS)

    Stringfellow, W. T.; Camarillo, M. K.; Domen, J. K.; Sandelin, W.; Varadharajan, C.; Cooley, H.; Jordan, P. D.; Heberger, M. G.; Reagan, M. T.; Houseworth, J. E.; Birkholzer, J. T.

    2015-12-01

    A wide variety of chemical additives are used as part of the hydraulic fracturing (HyF) process. There is concern that HyF chemicals will be released into the environment and contaminate drinking water, agricultural water, or other water used for beneficial purposes. There is also interest in using produced water (water extracted from the subsurface during oil and gas production) for irrigation and other beneficial purposes, especially in the arid Southwest US. Reuse of produced water is not speculative: produced water can be low in salts and is being used in California for irrigation after minimal treatment. In this study, we identified chemicals that are used for hydraulic fracturing in California and conducted an analysis to determine if those chemicals would be removed by a variety of technically available treatment processes, including oil/water separation, air stripping, a variety of sorption media, advanced oxidation, biological treatment, and a variety of membrane treatment systems. The approach taken was to establish major physiochemical properties for individual chemicals (log Koc, Henry's constant, biodegradability, etc.), group chemicals by function (e.g corrosion inhibition, biocides), and use those properties to predict the fate of chemical additives in a treatment process. Results from this analysis is interpreted in the context of what is known about existing systems for the treatment of produced water before beneficial reuse, which includes a range of treatment systems from oil/water separators (the most common treatment) to sophisticated treatment trains used for purifying produced water for groundwater recharge. The results show that most HyF chemical additives will not be removed in existing treatment systems, but that more sophisticated treatment trains can be designed to remove additives before beneficial reuse.

  11. Signal Processing For Chemical Sensing: Statistics or Biological Inspiration

    NASA Astrophysics Data System (ADS)

    Marco, Santiago

    2011-09-01

    Current analytical instrumentation and continuous sensing can provide huge amounts of data. Automatic signal processing and information evaluation is needed to overcome drowning in data. Today, statistical techniques are typically used to analyse and extract information from continuous signals. However, it is very interesting to note that biology (insects and vertebrates) has found alternative solutions for chemical sensing and information processing. This is a brief introduction to the developments in the European Project: Bio-ICT NEUROCHEM: Biologically Inspired Computation for Chemical Sensing (grant no. 216916) Fp7 project devoted to biomimetic olfactory systems.

  12. INCORPORATING INDUSTRIAL ECOLOGY INTO HIERARCHICAL CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    Incorporating Industrial Ecology into Hierarchical Chemical Process Design: Determining Targets for the Exchange of Waste

    The exchange of waste to be used as a recycled feed has long been encouraged by practitioners of industrial ecology. Industrial ecology is a field t...

  13. Illinois Occupational Skill Standards: Chemical Process Technical Operators.

    ERIC Educational Resources Information Center

    Illinois Occupational Skill Standards and Credentialing Council, Carbondale.

    This document, which is intended for workforce preparation program providers, details the Illinois Occupational Skill Standards for programs preparing students for employment as chemical process technical operators. The document begins with a brief overview of the Illinois perspective on occupational skill standards and credentialing, the process…

  14. 26. PROCESS PIPING AND CHEMICAL STORAGE TANKS AT SOUTH PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. PROCESS PIPING AND CHEMICAL STORAGE TANKS AT SOUTH PLANT NORTH EDGE FROM DECEMBER 7TH AVENUE. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  15. GREENSCOPE: A Method for Modeling Chemical Process Sustainability

    EPA Science Inventory

    Current work within the U.S. Environmental Protection Agency’s National Risk Management Research Laboratory is focused on the development of a method for modeling chemical process sustainability. The GREENSCOPE methodology, defined for the four bases of Environment, Economics, Ef...

  16. Secondary cleanup of Idaho Chemical Processing Plant solvent

    SciTech Connect

    Mailen, J.C.

    1985-01-01

    Solvent from the Idaho Chemical Processing Plant (ICPP) (operated by Westinghouse Idaho Nuclear Company, Inc.) has been tested to determine the ability of activated alumina to remove secondary degradation products - those degradation products which are not removed by scrubbing with sodium carbonate.

  17. Portfolio Assessment on Chemical Reactor Analysis and Process Design Courses

    ERIC Educational Resources Information Center

    Alha, Katariina

    2004-01-01

    Assessment determines what students regard as important: if a teacher wants to change students' learning, he/she should change the methods of assessment. This article describes the use of portfolio assessment on five courses dealing with chemical reactor and process design during the years 1999-2001. Although the use of portfolio was a new…

  18. Hazardous Waste Processing in the Chemical Engineering Curriculum.

    ERIC Educational Resources Information Center

    Dorland, Dianne; Baria, Dorab N.

    1995-01-01

    Describes a sequence of two courses included in the chemical engineering program at the University of Minnesota, Duluth that deal with the processing of hazardous wastes. Covers course content and structure, and discusses developments in pollution prevention and waste management that led to the addition of these courses to the curriculum.…

  19. 21 CFR 570.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Pesticide chemicals in processed foods. 570.19 Section 570.19 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.19...

  20. 21 CFR 170.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Pesticide chemicals in processed foods. 170.19 Section 170.19 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES General Provisions § 170.19...

  1. A POLLUTION REDUCTION METHODOLOGY FOR CHEMICAL PROCESS SIMULATORS

    EPA Science Inventory

    A pollution minimization methodology was developed for chemical process design using computer simulation. It is based on a pollution balance that at steady state is used to define a pollution index with units of mass of pollution per mass of products. The pollution balance has be...

  2. 21 CFR 170.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Pesticide chemicals in processed foods. 170.19 Section 170.19 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES General Provisions § 170.19...

  3. 21 CFR 170.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Pesticide chemicals in processed foods. 170.19 Section 170.19 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES General Provisions § 170.19...

  4. 21 CFR 570.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Pesticide chemicals in processed foods. 570.19 Section 570.19 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.19...

  5. MTR AND ETR COMPLEXES. CAMERA FACING EASTERLY TOWARD CHEMICAL PROCESSING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR AND ETR COMPLEXES. CAMERA FACING EASTERLY TOWARD CHEMICAL PROCESSING PLANT. MTR AND ITS ATTACHMENTS IN FOREGROUND. ETR BEYOND TO RIGHT. INL NEGATIVE NO. 56-4100. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. Chemical vapor deposition for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1980-01-01

    Chemical vapor deposition for automatic processing of integrated circuits including the wafer carrier and loading from a receiving air track into automatic furnaces and unloading on to a sending air track is discussed. Passivation using electron beam deposited quartz is also considered.

  7. An Integrated Course and Design Project in Chemical Process Design.

    ERIC Educational Resources Information Center

    Rockstraw, David A.; And Others

    1997-01-01

    Describes a chemical engineering course curriculum on process design, analysis, and simulation. Includes information regarding the sequencing of engineering design classes and the location of the classes within the degree program at New Mexico State University. Details of course content are provided. (DDR)

  8. Observations of chemical processing in the circumstellar environment

    NASA Technical Reports Server (NTRS)

    Mundy, L. G.; McMullin, J. P.; Blake, G. A.

    1995-01-01

    High resolution interferometer and single-dish observations of young, deeply embedded stellar systems reveal a complex chemistry in the circumstellar environments of low to intermediate mass stars. Depletions of gas-phase molecules, grain mantle evaporation, and shock interactions actively drive chemical processes in different regions around young stars. We present results for two systems, IRAS 05338-0624 and NCG 1333 IRAS 4, to illustrate the behavior found and to examine the physical processes at work.

  9. Forest Canopy Processes in a Regional Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Makar, Paul; Staebler, Ralf; Akingunola, Ayodeji; Zhang, Junhua; McLinden, Chris; Kharol, Shailesh; Moran, Michael; Robichaud, Alain; Zhang, Leiming; Stroud, Craig; Pabla, Balbir; Cheung, Philip

    2016-04-01

    Forest canopies have typically been absent or highly parameterized in regional chemical transport models. Some forest-related processes are often considered - for example, biogenic emissions from the forests are included as a flux lower boundary condition on vertical diffusion, as is deposition to vegetation. However, real forest canopies comprise a much more complicated set of processes, at scales below the "transport model-resolved scale" of vertical levels usually employed in regional transport models. Advective and diffusive transport within the forest canopy typically scale with the height of the canopy, and the former process tends to dominate over the latter. Emissions of biogenic hydrocarbons arise from the foliage, which may be located tens of metres above the surface, while emissions of biogenic nitric oxide from decaying plant matter are located at the surface - in contrast to the surface flux boundary condition usually employed in chemical transport models. Deposition, similarly, is usually parameterized as a flux boundary condition, but may be differentiated between fluxes to vegetation and fluxes to the surface when the canopy scale is considered. The chemical environment also changes within forest canopies: shading, temperature, and relativity humidity changes with height within the canopy may influence chemical reaction rates. These processes have been observed in a host of measurement studies, and have been simulated using site-specific one-dimensional forest canopy models. Their influence on regional scale chemistry has been unknown, until now. In this work, we describe the results of the first attempt to include complex canopy processes within a regional chemical transport model (GEM-MACH). The original model core was subdivided into "canopy" and "non-canopy" subdomains. In the former, three additional near-surface layers based on spatially and seasonally varying satellite-derived canopy height and leaf area index were added to the original model

  10. Influence of surface coverage on the chemical desorption process

    SciTech Connect

    Minissale, M.; Dulieu, F.

    2014-07-07

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.

  11. Process for preparing a chemical compound enriched in isotope content

    DOEpatents

    Michaels, Edward D.

    1982-01-01

    A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

  12. Laboratory Studies of Heterogeneous Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2004-01-01

    The objective of this study is to conduct measurements of chemical kinetics parameters for heterogeneous reactions of importance in the stratosphere and the troposphere. It involves the elucidation of the mechanism of the interaction of HCl vapor with ice surfaces, which is the first step in the heterogeneous chlorine activation processes, as well as the investigation of the atmospheric oxidation mechanism of soot particles emitted by biomass and fossil fuels. The techniques being employed include turbulent flow-chemical ionization mass spectrometry and optical ellipsometry, among others.

  13. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    SciTech Connect

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  14. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    SciTech Connect

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2005-07-01

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  15. A Framework to Design and Optimize Chemical Flooding Processes

    SciTech Connect

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2006-08-31

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  16. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    SciTech Connect

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2004-11-01

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  17. Chemical measurements with optical fibers for process control.

    PubMed

    Boisde, G; Blanc, F; Perez, J J

    1988-02-01

    Several aspects of remote in situ spectrophotometric measurement by means of optical fibers are considered in the context of chemical process control. The technique makes it possible to measure a species in a particular oxidation state, such as plutonium(VI), sequentially, under the stringent conditions of automated analysis. For the control of several species in solution, measurements at discrete wavelengths on the sides of the absorption peaks serve to increase the dynamic range. Examples are given concerning the isotopic separation of uranium in the Chemex process. The chemical control of complex solutions containing numerous mutually interfering species requires a more elaborate spectral scan and real-time processing to determine the chemical kinetics. Photodiode array spectrophotometers are therefore ideal for analysing the uranium and plutonium solutions of the Purex process. Remote on-line control by ultraviolet monitoring exhibits limitations chiefly due to Rayleigh scattering in the optical fibers. The measurement of pH in acidic (0.8-3.2) and basic media (10-13) has also been attempted. Prior calibration, signal processing and optical spectra modeling are also discussed.

  18. ENHANCED CHEMICAL CLEANING: A NEW PROCESS FOR CHEMICALLY CLEANING SAVANNAH RIVER WASTE TANKS

    SciTech Connect

    Ketusky, E; Neil Davis, N; Renee Spires, R

    2008-01-17

    The Savannah River Site (SRS) has 49 high level waste (HLW) tanks that must be emptied, cleaned, and closed as required by the Federal Facilities Agreement. The current method of chemical cleaning uses several hundred thousand gallons per tank of 8 weight percent (wt%) oxalic acid to partially dissolve and suspend residual waste and corrosion products such that the waste can be pumped out of the tank. This adds a significant quantity of sodium oxalate to the tanks and, if multiple tanks are cleaned, renders the waste incompatible with the downstream processing. Tank space is also insufficient to store this stream given the large number of tanks to be cleaned. Therefore, a search for a new cleaning process was initiated utilizing the TRIZ literature search approach, and Chemical Oxidation Reduction Decontamination--Ultraviolet (CORD-UV), a mature technology currently used for decontamination and cleaning of commercial nuclear reactor primary cooling water loops, was identified. CORD-UV utilizes oxalic acid for sludge dissolution, but then decomposes the oxalic acid to carbon dioxide and water by UV treatment outside the system being treated. This allows reprecipitation and subsequent deposition of the sludge into a selected container without adding significant volume to that container, and without adding any new chemicals that would impact downstream treatment processes. Bench top and demonstration loop measurements on SRS tank sludge stimulant demonstrated the feasibility of applying CORD-UV for enhanced chemical cleaning of SRS HLW tanks.

  19. Microfabricated Instrumentation for Chemical Sensing in Industrial Process Control

    SciTech Connect

    Ramsey, J. M.

    2000-06-01

    The monitoring of chemical constituents in manufacturing processes is of economic importance to most industries. The monitoring and control of chemical constituents may be of importance for product quality control or, in the case of process effluents, of environmental concern. The most common approach now employed for chemical process control is to collect samples which are returned to a conventional chemical analysis laboratory. This project attempts to demonstrate the use of microfabricated structures, referred to as 'lab-on-a-chip' devices, that accomplish chemical measurement tasks that emulate those performed in the conventional laboratory. The devices envisioned could be used as hand portable chemical analysis instruments where samples are analyzed in the field or as emplaced sensors for continuous 'real-time' monitoring. This project focuses on the development of filtration elements and solid phase extraction elements that can be monolithically integrated onto electrophoresis and chromatographic structures pioneered in the laboratory. Successful demonstration of these additional functional elements on integrated microfabricated devices allows lab-on-a-chip technologies to address real world samples that would be encountered in process control environments. The resultant technology has a broad application to industrial environmental monitoring problems. such as monitoring municipal water supplies, waste water effluent from industrial facilities, or monitoring of run-off from agricultural activities. The technology will also be adaptable to manufacturing process control scenarios. Microfabricated devices integrating sample filtration, solid phase extraction, and chromatographic separation with solvent programming were demonstrated. Filtering of the sample was accomplished at the same inlet with an array of seven channels each 1 {micro}m deep and 18 {micro}m wide. Sample concentration and separation were performed on channels 5 {micro}m deep and 25 {micro

  20. Process Control Systems in the Chemical Industry: Safety vs. Security

    SciTech Connect

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  1. Chemical processes induced by OH attack on nucleic acids

    NASA Astrophysics Data System (ADS)

    Kuwabara, Mikinori

    Recent studies concerning the chemical processes in nucleic acids starting with OH attack to produce free radicals and ending with the formation of stable products were reviewed. Using nucleosides, nucleotides and homopolynucleotides as model compounds, and DNA itself, free radicals produced by OH attack on nucleic acids have been mainly studied by a method combining ESR, spin trapping and high-performance liquid chromatography. For identification of final products in both base and sugar moieties of nucleic acids, mass and NMR spectroscopies combined with gas chromatography or high-performance liquid chromatography are usually employed. Kinetic measurements of structural alterations in the polynucleotides and DNA after OH attack have been made by a method combining electron-pulse irradiation and laser-light scattering. From these studies, the chemical reaction processes from the generation of free radicals in nucleic acids by OH attack, through the formation of unstable intermediates, to the formation of final products can be described.

  2. A pollution reduction methodology for chemical process simulators

    SciTech Connect

    Mallick, S.K.; Cabezas, H.; Bare, J.C.; Sikdar, S.K.

    1996-11-01

    A pollution minimization methodology was developed for chemical process design using computer simulation. It is based on a pollution balance that at steady state is used to define a pollution index with units of mass of pollution per mass of products. The pollution balance has been modified by weighing the mass flowrate of each pollutant by its potential environmental impact score. This converts the mass balance into an environmental impact balance. This balance defines an impact index with units of environmental impact per mass of products. The impact index measures the potential environmental effects of process wastes. Three different schemes for chemical ranking were considered: (1) no ranking, (2) simple ranking from 0 to 3, and (3) ranking by a scientifically derived measure of human health and environmental effects. Use of the methodology is illustrated with two examples from the production of (1) methyl ethyl ketone and (2) synthetic ammonia.

  3. Effects of Semiconductor Processing Chemicals on Conductivity of Graphene

    SciTech Connect

    Chen, Chung Wei; Ren, F.; Chi, G.C.; Hung, S. C.; Huang, Y. P.; Kim, J.; Kravchenko, Ivan I; Pearton, S. J.

    2012-01-01

    Graphene layers on SiO2/Si substrates were exposed to chemicals or gases commonly used in semiconductor fabrication processes, including solvents (isopropanol, acetone), acids (HCl), bases (ammonium hydroxide), UV ozone, H2O and O2 plasmas. The recovery of the initial graphene properties after these exposures was monitored by measuring both the layer resistance and Raman 2D peak position as a function of time in air or vacuum. Solvents and UV ozone were found to have the least affect while oxygen plasma exposure caused an increase of resistance of more than 3 orders of magnitude. Recovery is accelerated under vacuum but changes can persist for more than 5 hours. Careful design of fabrication schemes involving graphene is necessary to minimize these interactions with common processing chemicals.

  4. New Vistas in Chemical Product and Process Design.

    PubMed

    Zhang, Lei; Babi, Deenesh K; Gani, Rafiqul

    2016-06-07

    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design. Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack of data needed for model development, solution strategies that incorporate multiscale options, and reliability versus predictive power. The need for an integrated model-experiment-based design approach is discussed together with benefits of employing a systematic computer-aided framework with built-in design templates.

  5. Processing and Properties of Chemically Derived Calcium Silicate Cements

    DTIC Science & Technology

    1992-02-27

    1991 Air Force Grant No. AFOSR-88-0184 Prepared for AIR FORCE OFFICE OF SCIENTIFIC RESEARCH ELECTRONIC AND MATERIAL SCIENCES DIRECTORATE Principal...Heiland, Processing and Properties of Chemically Derived Calcium Silicate Cement. Master of Science , Solid State Science , The Pennsylvania State...University, May 1990. Appendix IV Kelly Markowski, A Fundamental Study of the Surface Chemistry of Calcium Silicate Hydrate, Bachelor of Science Thesis

  6. Processing Research on Chemically Vapor Deposited Silicon Nitride.

    DTIC Science & Technology

    1979-12-01

    the feasi- bility of synthesizing free-standing plate and figured geometries of phase-pure silicon nitride by the chemical vapor deposition (CVD) method...ates toward moisture and the probability that they all contain absorbed ammonium chloride and ammonia. A strong ammoniacal odor indicates that...solid (V- L -S) processes favored by high ammonia/silicon ratios, high concentrations and long times. Whisker formation would be favored by the opposite

  7. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    NASA Astrophysics Data System (ADS)

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  8. Process for converting cellulosic materials into fuels and chemicals

    DOEpatents

    Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1994-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.

  9. Solar Processes for the Destruction of Hazardous Chemicals

    SciTech Connect

    Blake, D. M.

    1993-06-01

    Solar technologies are being developed to address a wide range of environmental problems. Sunlight plays a role in the passive destruction of hazardous substances in soil, water, and air. Development of processes that use solar energy to remediate environmental problems or to treat process wastes is underway in laboratories around the world. This paper reviews progress in understanding the role of solar photochemistry in removing man-made chemicals from the environment, and developing technology that uses solar photochemistry for this purpose in an efficient manner.

  10. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    SciTech Connect

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  11. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    PubMed

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  12. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process

    PubMed Central

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233

  13. GRP vessels and pipework for the chemical and process industries

    SciTech Connect

    Not Available

    1984-01-01

    Plastic can be reinforced by an appreciable number of materials, the most commonly used is glass-fibre. Glass reinforced plastic (GRP) has been used in the chemical and process industries for 25 years. In the course of its use and development, much data has been gathered on the material, its chemistry, mechanical properties, methods of fabrication and moulding, its behaviour in service and the methods and mathematics of the analysis of plant constructed from it. The importance of the material in industry was reflected by the large response to a symposium organised by UMIST, the Institution of Chemical Engineers and the Institution of Mechanical Engineers. Topics considered include GRP piping - a multi-sponsored research project; inspection authority views; failure of attachments to GRP cylinders due to local loads; aspects of GRP service failure in the chemical and process industries; stress corrosion of GRP in relation to design stress and service performance; design of GRP pipe bends in relation to internal pressure tests to destruction; and acoustic emission monitoring: a complementary inspection method for fibre-reinforced plastic components.

  14. Development of the chemical and electrochemical coal cleaning (CECC) process

    SciTech Connect

    Yoon, Roe-Hoan; Basilio, C.I.

    1992-05-01

    The Chemical and Electrochemical Coal Cleaning (CECC) process developed at Virginia Polytechnic Institute and State University was studied further in this project. This process offers a new method of physically cleaning both low- and high-rank coals without requiring fine grinding. The CECC process is based on liberating mineral matter from coal by osmotic pressure. The majority of the work was conducted on Middle Wyodak, Pittsburgh No. 8 and Elkhorn No. 3 coals. The coal samples were characterized for a variety of physical and chemical properties. Parametric studies were then conducted to identify the important operating parameters and to establish the optimum conditions. In addition, fundamental mechanisms of the process were studied, including mineral matter liberation, kinetics of mineral matter and pyrite dissolution, ferric ion regeneration schemes and alternative methods of separating the cleaned coal from the liberated mineral matter. The information gathered from the parametric and fundamental studies was used in the design, construction and testing of a bench-scale continuous CECC unit. Using this unit, the ash content of a Middle Wyodak coal was reduced from 6.96 to 1.61% at a 2 lbs/hr throughput. With an Elkhorn No. 3 sample, the ash content was reduced from 9.43 to 1.8%, while the sulfur content was reduced from 1.57 to 0.9%. The mass balance and liberation studies showed that liberation played a more dominant role than the chemical dissolution in removing mineral matter and inorganic sulfur from the different bituminous coals tested. However, the opposite was found to be the case for the Wyodak coal since this coal contained a significant amount of acid-soluble minerals.

  15. Progress and challenges in control of chemical processes.

    PubMed

    Lee, Jay H; Lee, Jong Min

    2014-01-01

    This review covers key developments and trends in chemical process control during the past two decades. Control methodologies and related supporting technologies are covered, and recent trends in applications are also examined. After the widespread adoption of model-based techniques by industry, control interest has begun to move beyond the traditional realm of readily measured variables to include chemical compositions and particle features. However, the shift is being slowed by the shortage of accurate, reliable, and inexpensive sensing devices. Although the past two decades saw no new major theoretical or methodological advances, several important incremental improvements and extensions have been made to help the ripening of the technologies developed in the preceding two decades. Control is regaining its importance owing to society's renewed focus on energy and the maturation of various emerging technologies, but a community-wide consensus on what general problems should be solved is lacking.

  16. Chemical evolution of the Earth: Equilibrium or disequilibrium process?

    NASA Technical Reports Server (NTRS)

    Sato, M.

    1985-01-01

    To explain the apparent chemical incompatibility of the Earth's core and mantle or the disequilibrium process, various core forming mechanisms have been proposed, i.e., rapid disequilibrium sinking of molten iron, an oxidized core or protocore materials, and meteorite contamination of the upper mantle after separation from the core. Adopting concepts used in steady state thermodynamics, a method is devised for evaluating how elements should distribute stable in the Earth's interior for the present gradients of temperature, pressure, and gravitational acceleration. Thermochemical modeling gives useful insights into the nature of chemical evolution of the Earth without overly speculative assumptions. Further work must be done to reconcile siderophile elements, rare gases, and possible light elements in the outer core.

  17. Laboratory Studies of Heterogeneous Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2003-01-01

    The objective of this study is to conduct measurements of chemical kinetics parameters for heterogeneous reactions of importance in the stratosphere and the troposphere. It involves the elucidation of the mechanism of the interaction of HC1 vapor with ice surfaces, which is the first step in the heterogeneous chlorine activation processes, as well as the investigation of the atmospheric oxidation mechanism of soot particles emitted by biomass and fossil fuels. The techniques being employed include turbulent flow- chemical ionization mass spectrometry and optical ellipsometry, among others. The next section summarizes our research activities during the first year of the project, and the section that follows consists of the statement of work for the second year.

  18. Bioactives from fruit processing wastes: Green approaches to valuable chemicals.

    PubMed

    Banerjee, Jhumur; Singh, Ramkrishna; Vijayaraghavan, R; MacFarlane, Douglas; Patti, Antonio F; Arora, Amit

    2017-06-15

    Fruit processing industries contribute more than 0.5billion tonnes of waste worldwide. The global availability of this feedstock and its untapped potential has encouraged researchers to perform detailed studies on value-addition potential of fruit processing waste (FPW). Compared to general food or other biomass derived waste, FPW are found to be selective and concentrated in nature. The peels, pomace and seed fractions of FPW could potentially be a good feedstock for recovery of bioactive compounds such as pectin, lipids, flavonoids, dietary fibres etc. A novel bio-refinery approach would aim to produce a wider range of valuable chemicals from FPW. The wastes from majority of the extraction processes may further be used as renewable sources for production of biofuels. The literature on value addition to fruit derived waste is diverse. This paper presents a review of fruit waste derived bioactives. The financial challenges encountered in existing methods are also discussed.

  19. Integration between chemical oxidation and membrane thermophilic biological process.

    PubMed

    Bertanza, G; Collivignarelli, M C; Crotti, B M; Pedrazzani, R

    2010-01-01

    Full scale applications of activated sludge thermophilic aerobic process for treatment of liquid wastes are rare. This experimental work was carried out at a facility, where a thermophilic reactor (1,000 m(3) volume) is operated. In order to improve the global performance of the plant, it was decided to upgrade it, by means of two membrane filtration units (ultrafiltration -UF-, in place of the final sedimentation, and nanofiltration -NF-). Subsequently, the integration with chemical oxidation (O(3) and H(2)O(2)/UV processes) was taken into consideration. Studied solutions dealt with oxidation of both the NF effluents (permeate and concentrate). Based on experimental results and economic evaluation, an algorithm was proposed for defining limits of convenience of this process.

  20. Fluid Assisted Fault Weakening: Mechanical vs. Chemical Processes

    NASA Astrophysics Data System (ADS)

    Collettini, C.

    2011-12-01

    The influx of fluids into fault zones can trigger two main types of weakening process that operate over different timescales, facilitate fault movement and influence fault slip behaviour. During the seismic cycle fluids can be trapped by low permeability fault zones or stratigraphic barriers favoring fluid overpressure (mechanical weakening) and earthquake nucleation. In the entire fault history fluids can react with fault rocks to produce weak mineral phases (chemical weakening) that alter the mechanical properties of the fault zones. Here I will present two examples of mechanical and chemical fault-weakening from the Apennines of Italy. Seismic profiles and deep borehole data show that the strongest earthquakes of the Apennines nucleate within overpressured Evaporites consisting of dolostones and anhydrites. Field and experimental studies on exhumed faults within the same lithology depict a cataclastic inner fault that can generate frictional instabilities with localization and increasing sliding velocity. The outer fault core presents barrier-like portions associated with foliated anhydrites, 10-21 ≤ permeability ≤10-19 m2. The combination of field observations and rock deformation measurements suggests a fault zone structure capable of developing fluid overpressures during the seismic cycle: fluid overpressures can potentially promote earthquake nucleation and aftershock triggering. Field studies from an exhumed regional low-angle normal fault show that in the long term fluids reacted (diffusion-mass transfer processes) with fine-grained cataclasites in the fault core to produce a phyllosilicates-rich and foliated fault rock. Within the foliated microstructure, that is rich in talc, smectite and chlorite, deformation occurs by frictional sliding along 50-200-nm-thick lamellae. Rock deformation experiments show that the foliated fault rock is weak, 0.2 < friction< 0.35, it is characterized by a stable sliding slip-behaviour with no strength recovery with

  1. Subfemtosecond directional control of chemical processes in molecules

    NASA Astrophysics Data System (ADS)

    Alnaser, Ali S.; Litvinyuk, Igor V.

    2017-02-01

    Laser pulses with a waveform-controlled electric field and broken inversion symmetry establish the opportunity to achieve directional control of molecular processes on a subfemtosecond timescale. Several techniques could be used to break the inversion symmetry of an electric field. The most common ones include combining a fundamental laser frequency with its second harmonic or with higher -frequency pulses (or pulse trains) as well as using few-cycle pulses with known carrier-envelope phase (CEP). In the case of CEP, control over chemical transformations, typically occurring on a timescale of many femtoseconds, is driven by much faster sub-cycle processes of subfemtosecond to few-femtosecond duration. This is possible because electrons are much lighter than nuclei and fast electron motion is coupled to the much slower nuclear motion. The control originates from populating coherent superpositions of different electronic or vibrational states with relative phases that are dependent on the CEP or phase offset between components of a two-color pulse. In this paper, we review the recent progress made in the directional control over chemical processes, driven by intense few-cycle laser pulses a of waveform-tailored electric field, in different molecules.

  2. Inhomogeneous chemical evolution of r-process elements

    NASA Astrophysics Data System (ADS)

    Wehmeyer, B.; Pignatari, M.; Thielemann, F.-K.

    2016-06-01

    We report the results of a galactic chemical evolution (GCE) study for r-process- and alpha elements. For this work, we used the inhomogeneous GCE model "ICE", which allows to keep track of the galactic abundances of elements produced by different astrophysical sites. The main input parameters for this study were: a) The Neutron Star Merger (NSM) coalescence time scale, the probability of NSMs, and for the sub-class of "magneto-rotationally driven Supernovae" ("Jet-SNe"), their occurence rate in comparison to "standard" Supernovae (SNe).

  3. Rainwater as a chemical agent of geologic processes; a review

    USGS Publications Warehouse

    Carroll, Dorothy

    1962-01-01

    Chemical analyses of the rainwater collected at several localities are given to show the variations of the principal constitutents. In rock weathering and soil-forming processes, the chemical composition of rainwater has an important effect which has been evaluated for only a few arid areas. In humid regions the important amounts of calcium, magnesium, sodium, and potassium added yearly by rain may be expected to influence the composition of the soil water and thereby the cations in the exchange positions of soil clay minerals. The acquisition of cations by clay minerals may slow down chemical weathering. The stability of soil clay minerals is influenced by the constant accession of cations from rainwater. Conversely, the clay minerals modify the amounts and kinds of cations that are leached out by drainage waters. The stability of micaceous minerals in soils may be partly due to accessions of K +1 ions from rainwater. The pH of rainwater in any area varies considerably and seems to form a seasonal and regional pattern. The recorded pH values range from 3.0 to 9.8.

  4. Process for converting cellulosic materials into fuels and chemicals

    DOEpatents

    Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1994-09-20

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attrition mill and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system. 1 fig.

  5. Prodrugs design based on inter- and intramolecular chemical processes.

    PubMed

    Karaman, Rafik

    2013-12-01

    This review provides the reader a concise overview of the majority of prodrug approaches with the emphasis on the modern approaches to prodrug design. The chemical approach catalyzed by metabolic enzymes which is considered as widely used among all other approaches to minimize the undesirable drug physicochemical properties is discussed. Part of this review will shed light on the use of molecular orbital methods such as DFT, semiempirical and ab initio for the design of novel prodrugs. This novel prodrug approach implies prodrug design based on enzyme models that were utilized for mimicking enzyme catalysis. The computational approach exploited for the prodrug design involves molecular orbital and molecular mechanics (DFT, ab initio, and MM2) calculations and correlations between experimental and calculated values of intramolecular processes that were experimentally studied to assign the factors determining the reaction rates in certain processes for better understanding on how enzymes might exert their extraordinary catalysis.

  6. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    PubMed Central

    Lee, H. V.; Hamid, S. B. A.; Zain, S. K.

    2014-01-01

    Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein. PMID:25247208

  7. Role of pyro-chemical processes in advanced fuel cycles

    NASA Astrophysics Data System (ADS)

    Nawada, Hosadu Parameswara; Fukuda, Kosaku

    2005-02-01

    Partitioning and Transmutation (P&T) of Minor Actinides (MAs) and Long-Lived Fission Products (LLFP) arising out of the back-end of the fuel cycle would be one of the key-steps in any future sustainable nuclear fuel cycle. Pyro-chemical separation methods would form a critical stage of P&T by recovering long-lived elements and thus reducing the environmental impact by the back-end of the fuel-cycle. This paper attempts to overview global developments of pyro-chemical process that are envisaged in advanced nuclear fuel cycles. Research and development needs for molten-salt electro-refining as well as molten salt extraction process that are foreseen as partitioning methods for spent nuclear fuels such as oxide, metal and nitride fuels from thermal or fast reactors; high level liquid waste from back-end fuel cycle as well as targets from sub-critical Accelerator Driven Sub-critical reactors would be addressed. The role of high temperature thermodynamic data of minor actinides in defining efficiency of recovery or separation of minor actinides from other fission products such as lanthanides will also be illustrated. In addition, the necessity for determination of accurate high temperature thermodynamic data of minor actinides would be discussed.

  8. Nuclear criticality safety evaluation -- DWPF Late Wash Facility, Salt Process Cell and Chemical Process Cell

    SciTech Connect

    Williamson, T.G.

    1994-10-17

    The Savannah River Site (SRS) High Level Nuclear Waste will be vitrified in the Defense Waste Processing Facility (DWPF) for long term storage and disposal. This is a nuclear criticality safety evaluation for the Late Wash Facility (LWF), the Salt Processing Cell (SPC) and the Chemical Processing Cell (CPC). of the DWPF. Waste salt solution is processed in the Tank Farm In-Tank Precipitation (ITP) process and is then further washed in the DWPF Late Wash Facility (LWF) before it is fed to the DWPF Salt Processing Cell. In the Salt Processing Cell the precipitate slurry is processed in the Precipitate Reactor (PR) and the resultant Precipitate Hydrolysis Aqueous (PHA) produce is combined with the sludge feed and frit in the DWPF Chemical Process Cell to produce a melter feed. The waste is finally immobilized in the Melt Cell. Material in the Tank Farm and the ITP and Extended Sludge processes have been shown to be safe against a nuclear criticality by others. The precipitate slurry feed from ITP and the first six batches of sludge feed are safe against a nuclear criticality and this evaluation demonstrates that the processes in the LWF, the SPC and the CPC do not alter the characteristics of the materials to compromise safety.

  9. Enhanced Chemical Cleaning: A New Process for Chemically Cleaning Savannah River Waste Tanks

    SciTech Connect

    Ketusky, Edward; Spires, Renee; Davis, Neil

    2009-02-11

    At the Savannah River Site (SRS) there are 49 High Level Waste (HLW) tanks that eventually must be emptied, cleaned, and closed. The current method of chemically cleaning SRS HLW tanks, commonly referred to as Bulk Oxalic Acid Cleaning (BOAC), requires about a half million liters (130,000 gallons) of 8 weight percent (wt%) oxalic acid to clean a single tank. During the cleaning, the oxalic acid acts as the solvent to digest sludge solids and insoluble salt solids, such that they can be suspended and pumped out of the tank. Because of the volume and concentration of acid used, a significant quantity of oxalate is added to the HLW process. This added oxalate significantly impacts downstream processing. In addition to the oxalate, the volume of liquid added competes for the limited available tank space. A search, therefore, was initiated for a new cleaning process. Using TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch or roughly translated as the Theory of Inventive Problem Solving), Chemical Oxidation Reduction Decontamination with Ultraviolet Light (CORD-UV{reg_sign}), a mature technology used in the commercial nuclear power industry was identified as an alternate technology. Similar to BOAC, CORD-UV{reg_sign} also uses oxalic acid as the solvent to dissolve the metal (hydr)oxide solids. CORD-UV{reg_sign} is different, however, since it uses photo-oxidation (via peroxide/UV or ozone/UV to form hydroxyl radicals) to decompose the spent oxalate into carbon dioxide and water. Since the oxalate is decomposed and off-gassed, CORD-UV{reg_sign} would not have the negative downstream oxalate process impacts of BOAC. With the oxalate destruction occurring physically outside the HLW tank, re-precipitation and transfer of the solids, as well as regeneration of the cleaning solution can be performed without adding additional solids, or a significant volume of liquid to the process. With a draft of the pre-conceptual Enhanced Chemical Cleaning (ECC) flowsheet, taking full

  10. Chemical distribution of hazardous natural radionuclides during monazite mineral processing.

    PubMed

    Hamed, Mostafa M; Hilal, M A; Borai, E H

    2016-10-01

    It is very important to calculate the radioactivity concentration for low-grade monazite ore (50%) and different other materials produced as results of chemical processing stages to avoid the risk to workers. Chemical processing of low-grade monazite pass through different stages, washing by hydrochloric acid and digested with sulfuric acid and influence of pH on the precipitation of rare earth elements has been studied. The radioactivity concentrations of (238)U((226)Ra) and (232)Th as well as (40)K were calculated in crude low-grade ore and found to be 54,435 ± 3138, 442,105 ± 29,200 and 5841 ± 345 Bq/kg, respectively. These values are greatly higher than the exempt levels 25 Bq/kg. After chemical digestion of the ore, the results demonstrated that un-reacted material contains significant radioactivity reached to approximately 8, 13 and 23% for (238)U, (232)Th and (40)K, respectively. The results show that 60% of (232)Th are located in the digested white slurry with small portions of (238)U and (40)K. Most of (238)U radioactivity is extracted in the green phosphoric acid which produced from conversion of P2O5 by H2SO4 into phosphoric acid. The average values of the Raeq for monazite ore, un-reacted black precipitate, white precipitate, brown precipitate and crystalline material samples were calculated and found to be 687,095 ± 44,921, 85,068 ± 5339, 388,381 ± 22,088, 313,046 ± 17,923 and 4531 ± 338 Bq/kg, respectively. The calculated values of Raeq are higher than the average world value (it must be less than 370 Bq/kg). Finally the external hazardous, internal hazardous and Iγr must be less than unity. This means that specific radiation protection program must be applied and implemented during monazite processing.

  11. Modular microcomponents for a flexible chemical process technology

    NASA Astrophysics Data System (ADS)

    Schwesinger, Norbert

    2000-08-01

    Different types of modular micro components such as pumps, values, reactors, separators, residence structures, extractors have been developed. Silicon was used as basic material. Most external dimensions of all different modules are equal. The components contain deep micro structures like channels or groves produced in dry or in wet chemical etching procedures. Different types of bonding technologies were applied to cover the flow structures. Openings positioned at the surface allow the connection with external standard tubes. These openings are arranged on each module at the same position. Due to this basic design a highly flexible combination of the micro modules is possible. Specific process conditions of chemical reactions can be adapted very easily and cost effective by means of module combinations. Holders for the modules contain the fluidic/electric connectors and allow their flexible combination. They are made of PEEK or PTFE. Fixing and sealing of external tubes to the modules can be realised by simple screwing procedures of standard tubes into the holders. Due to this simple screwing procedure all modules can be exchanged on demand. Operating pressures up to the limitation values of the external tubes can be applied to the modules. Electrical contacts arranged inside the holders allow the electrical connection of the modules to an external power supply, as well as a read out of electrical signals delivered from possibly integrated specific sensors. Stand alone examinations of single modules as well as specific chemical reactions in modular combinations were carried out to verify the performance of the micro devices. Successful and hopeful results were found in all cases.

  12. Chemical and crystallographic events in the caries process.

    PubMed

    LeGeros, R Z

    1990-02-01

    The chemical and crystallographic events associated with the caries process can be described based on the results from the following studies: (a) effects of carbonate, magnesium, fluoride, and strontium on the physico-chemical properties--lattice parameters, crystallinity (crystal size and strain); dissolution properties of synthetic apatites; (b) factors influencing the in vitro formation and transformation of DCPD, OCP, AP (Ca-deficient apatites), FAP, beta-TCMP (Mg-substituted), and CaF2; and (c) studies on properties (crystallinity, composition, chemical, and thermal stabilities) of enamel, dentin, and bone. The dissolution of CO3-rich/Mg-rich/F-poor dental apatite crystals and re-precipitation of CO3-poor/Mg-poor/F-rich apatite in the presence of F- ions in solution contribute to a more acid-resistant surface layer of the caries lesion. Fluoride promotes the formation of less Ca-deficient and more stable apatite crystals. The presence of Ca, P, and F in solution inhibits dissolution of apatite more than does the presence of F alone. Low levels of F in solution promote the formation of (F, OH)-apatite, even under very acid conditions; an increase in F levels causes the formation of CaF2 at the expense of DCPD or apatite, especially in acid conditions. F in apatite and/or in solution suppresses extensive dissolution of dental apatite and enhances the formation of (F, OH)-apatite crystals which are more resistant against acid-dissolution than are F-free apatite crystals.

  13. Hydrogeochemical processes and chemical characteristics around Sahand Mountain, NW Iran

    NASA Astrophysics Data System (ADS)

    Pazand, Kaveh; Hezarkhani, Ardeshir

    2013-06-01

    The chemical analysis of 21 water wells in Sahand area, NW of Iran has been evaluated to determine the hydrogeochemical processes and ion, heavy and trace metal concentration background in the region. The dominated hydrochemical types are Ca-Mg-HCO3, Ca-SO4 and Na-Cl that vary in different group sample. The pH and Eh of the groundwater in the study area indicating an acidic to alkaline nature of the samples in group II, acidic nature in group I and neutral in group III. Also in Group III than Group I and II, the oxidizing condition is dominant, while in the other groups relative reducing conditions prevail. Due to Cu and other metal mineralization in I and II site, Cu, As, Au and other metal concentration in this water groups is higher than group III.

  14. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.

    1993-01-01

    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  15. Corrosion study in the chemical air separation (MOLTOX trademark ) process

    SciTech Connect

    Kang, Doohee; Wong, Kai P.; Archer, R.A.; Cassano, A.A.

    1988-12-01

    This report presents the results of studies aimed at solving the corrosion problems encountered during operation of the MOLTOX{trademark} pilot plant. These studies concentrated on the screening of commercial and developmental alloys under conditions simulating operation conditions in this high temperature molten salt process. Process economic studies were preformed in parallel with the laboratory testing to ensure that an economically feasible solution would be achieved. In addition to the above DOE co-funded studies, Air Products and Chemicals pursued proprietary studies aimed at developing a less corrosive salt mixture which would potentially allow the use of chemurgically available alloys such as stainless steels throughout the system. These studies will not be reported here; however, the results of corrosion tests in the new less corrosive salt mixtures are reported. Because our own studies on salt chemistry impacts heavily on the overall process and thereby has an influence on the experimental work conducted under this contract, some of the studies discussed here were impacted by our own proprietary data. Therefore, the reasons behind some of the experiments presented herein will not be explained because that information is proprietary to Air Products. 14 refs., 42 figs., 21 tabs.

  16. Radioactive decay as a forced nuclear chemical process: Phenomenology

    NASA Astrophysics Data System (ADS)

    Timashev, S. F.

    2015-11-01

    Concepts regarding the mechanism of radioactive decay of nuclei are developed on the basis of a hypothesis that there is a dynamic relationship between the electronic and nuclear subsystems of an atom, and that fluctuating initiating effects of the electronic subsystem on a nucleus are possible. Such relationship is reflected in experimental findings that show the radioactive decay of nuclei might be determined by a positive difference between the mass of an initial nucleus and the mass of an atom's electronic subsystem, i.e., the mass of the entire atom (rather than that of its nucleus) and the total mass of the decay products. It is established that an intermediate nucleus whose charge is lower by unity than the charge of the initial radioactive nucleus is formed as a result of the above fluctuating stimuli that initiate radioactive decay, and its nuclear matter is thus in an unbalanced metastable state of inner shakeup, affecting the quark subsystem of nucleons. The intermediate nucleus thus experiences radioactive decay with the emission of α or β particles. At the same time, the high energy (with respect to the chemical scale) of electrons in plasma served as a factor initiating the processes in different nuclear chemical transformations and radioactive decays in low-temperature plasma studied earlier, particularly during the laser ablation of metals in aqueous solutions of different compositions and in near-surface cathode layers upon glow discharge. It is shown that a wide variety of nucleosynthesis processes in the Universe can be understood on the same basis, and a great many questions regarding the formation of light elements in the solar atmosphere and some heavy elements (particularly p-nuclei) in the interiors of massive stars at late stages of their evolution can also be resolved.

  17. Accelerating chemical database searching using graphics processing units.

    PubMed

    Liu, Pu; Agrafiotis, Dimitris K; Rassokhin, Dmitrii N; Yang, Eric

    2011-08-22

    The utility of chemoinformatics systems depends on the accurate computer representation and efficient manipulation of chemical compounds. In such systems, a small molecule is often digitized as a large fingerprint vector, where each element indicates the presence/absence or the number of occurrences of a particular structural feature. Since in theory the number of unique features can be exceedingly large, these fingerprint vectors are usually folded into much shorter ones using hashing and modulo operations, allowing fast "in-memory" manipulation and comparison of molecules. There is increasing evidence that lossless fingerprints can substantially improve retrieval performance in chemical database searching (substructure or similarity), which have led to the development of several lossless fingerprint compression algorithms. However, any gains in storage and retrieval afforded by compression need to be weighed against the extra computational burden required for decompression before these fingerprints can be compared. Here we demonstrate that graphics processing units (GPU) can greatly alleviate this problem, enabling the practical application of lossless fingerprints on large databases. More specifically, we show that, with the help of a ~$500 ordinary video card, the entire PubChem database of ~32 million compounds can be searched in ~0.2-2 s on average, which is 2 orders of magnitude faster than a conventional CPU. If multiple query patterns are processed in batch, the speedup is even more dramatic (less than 0.02-0.2 s/query for 1000 queries). In the present study, we use the Elias gamma compression algorithm, which results in a compression ratio as high as 0.097.

  18. Economic-Oriented Stochastic Optimization in Advanced Process Control of Chemical Processes

    PubMed Central

    Dobos, László; Király, András; Abonyi, János

    2012-01-01

    Finding the optimal operating region of chemical processes is an inevitable step toward improving economic performance. Usually the optimal operating region is situated close to process constraints related to product quality or process safety requirements. Higher profit can be realized only by assuring a relatively low frequency of violation of these constraints. A multilevel stochastic optimization framework is proposed to determine the optimal setpoint values of control loops with respect to predetermined risk levels, uncertainties, and costs of violation of process constraints. The proposed framework is realized as direct search-type optimization of Monte-Carlo simulation of the controlled process. The concept is illustrated throughout by a well-known benchmark problem related to the control of a linear dynamical system and the model predictive control of a more complex nonlinear polymerization process. PMID:23213298

  19. Chemical Processing and Characterization of Fiber Reinforced Nanocomposite Silica Materials

    NASA Astrophysics Data System (ADS)

    Burnett, Steven Shannon

    Ultrasound techniques, acoustic and electroacoustic spectroscopy, are used to investigate and characterize concentrated fluid phase nanocomposites. In particular, the data obtained from ultrasound methods are used as tools to improve the understanding of the fundamental process chemistry of concentrated, multicomponent, nanomaterial dispersions. Silicon nitride nanofibers embedded in silica are particularly interesting for lightweight nanocomposites, because silicon nitride is isostructural to carbon nitride, a super hard material. However, the major challenge with processing these composites is retarding particle-particle aggregation, to maintain highly dispersed systems. Therefore, a systematic approach was developed to evaluate the affect of process parameters on particle-particle aggregation, and improving the chemical kinetics for gelation. From the acoustic analysis of the nanofibers, this thesis was able to deduce that changes in aspect ratio affects the ultrasound propagation. In particular, higher aspect ratio fibers attenuate the ultrasound wave greater than lower aspect fibers of the same material. Furthermore, our results confirm that changes in attenuation depend on the hydrodynamical interactions between particles, the aspect ratio, and the morphology of the dispersant. The results indicate that the attenuation is greater for fumed silica due to its elastic nature and its size, when compared to silica Ludox. Namely, the larger the size, the greater the attenuation. This attenuation is mostly the result of scattering loss in the higher frequency range. In addition, the silica nanofibers exhibit greater attenuation than their nanoparticle counterparts because of their aspect ratio influences their interaction with the ultrasound wave. In addition, this study observed how 3M NH 4 Cl's acoustic properties changes during the gelation process, and during that change, the frequency dependency deviates from the expected squared of the frequency, until the

  20. 62 FR 46525 - Chemical Process Safety at Fuel Cycle Facilities; Availability of NUREG

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-09-03

    ... COMMISSION Chemical Process Safety at Fuel Cycle Facilities; Availability of NUREG AGENCY: Nuclear Regulatory... completion and availability of NUREG-1601, ``Chemical Process Safety at Fuel Cycle Facilities,'' dated July.... SUPPLEMENTARY INFORMATION: NRC is announcing the availability of NUREG-1601, ``Chemical Process Safety at...

  1. 72 FR 31453 - Interpretation of OSHA's Standard for Process Safety Management of Highly Hazardous Chemicals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2007-06-07

    ... Occupational Safety and Health Administration 29 CFR Part 1910 Interpretation of OSHA's Standard for Process...'' in the ``Application'' section of OSHA's Process Safety Management of Highly Hazardous Chemicals... chemical process safety standard to prevent accidental releases of hazardous chemicals that could pose...

  2. Proceedings of the first international conference on pervaporation processes in the chemical industry

    SciTech Connect

    Bakish, R.

    1986-01-01

    These proceedings collect papers given at conference on chemical pervaporation processes. Topics include: evaporation and evaporators; fermentation and distillation; biomass conversion and waste processing.

  3. Parameter Optimization of Nitriding Process Using Chemical Kinetics

    NASA Astrophysics Data System (ADS)

    Özdemir, İ. Bedii; Akar, Firat; Lippmann, Nils

    2016-12-01

    Using the dynamics of chemical kinetics, an investigation to search for an optimum condition for a gas nitriding process is performed over the solution space spanned by the initial temperature and gas composition of the furnace. For a two-component furnace atmosphere, the results are presented in temporal variations of gas concentrations and the nitrogen coverage on the surface. It seems that the exploitation of the nitriding kinetics can provide important feedback for setting the model-based control algorithms. The present work shows that when the nitrogen gas concentration is not allowed to exceed 6 pct, the Nad coverage can attain maximum values as high as 0.97. The time evolution of the Nad coverage also reveals that, as long as the temperature is above the value where nitrogen poisoning of the surface due to the low-temperature adsorption of excess nitrogen occurs, the initial ammonia content in the furnace atmosphere is much more important in the nitriding process than is the initial temperature.

  4. Physical conditions and chemical processes during single-bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    Flannigan, David J.

    In order to gain insight into the physical conditions and chemical processes associated with single-bubble sonoluminescence (SBSL), nonvolatile liquids such as concentrated sulfuric acid (H2SO 4) were explored. The SBSL radiant powers from H2SO 4 aqueous solutions were found to be over 103 times larger than those typically observed for SBSL from water. In addition, the emission spectra contain extensive bands and lines from molecules, atoms, and ions. The population of high-energy states of atoms (20 eV) and ions (37 eV) provides definitive experimental evidence of the formation of a plasma. By using various techniques (e.g., small molecules and atoms as intra-cavity probes, standard methods of plasma diagnostics, and spectrometric methods of pyrometry), it was possible to quantify the heavy particle temperatures (15,000 K), heavy particle densities (1021 cm-3) and pressures (4,000 bar), and plasma electron densities (1018 cm -3) generated during SBSL from H2SO4. It was also found that SBSL from H2SO4 containing mixtures of noble gas and air was quenched up to a critical acoustic pressure, above which the radiant powers increased by 104. From the spectral profiles it was determined that the air limited heating and plasma formation by endothermic chemical reactions and energy-transfer reactions. Simultaneous stroboscopic and spectroscopic studies of SBSL in H2SO4 containing alkali-metal sulfates showed that dramatic changes in the bubble dynamics correlated with the onset of emission from nonvolatile species such as Na and K atoms. These effects were attributed to the development of interfacial instabilities with increasing translational velocity of the bubble.

  5. Process ichnology and the elucidation of physico-chemical stress

    NASA Astrophysics Data System (ADS)

    Gingras, Murray K.; MacEachern, James A.; Dashtgard, Shahin E.

    2011-06-01

    This paper sets out a philosophical approach to ichnological (trace fossil) analysis, which focuses on the interpretation of trace fossils as sedimentary structures rather than as paleontological entities per se. Using wide-ranging datasets and a large number of observations and interpretations, a "Process Ichnology" framework is proposed. This interpretive framework provides an improved means of estimating the presence and magnitude of various physical and chemical (i.e., physico-chemical) depositional stresses (e.g., water turbidity, sedimentation rates, substrate consistency, salinity, and oxygenation) in ancient sedimentary environments. Ichnological datasets that are considered include: 1) trace-fossil distributions; 2) ethological diversity and the range of diversity; 3) the significance of burrow linings; 4) trace-fossil size; and, 5) post-depositional compaction of trace fossils. From these data, higher-resolution estimates can be made for the determination of sedimentation rates, temporal variation in sedimentation rate, sediment consistency, and aspects of the bottom- and interstitial-water chemistries. Additionally, the character of depositional bypassing of sediment grains can be determined. The methodologies and interpretations herein are intended for use by non-ichnologists in a manner akin to the interpretation of physical sedimentary structures. However, the outlined framework is complementary to other methods of ichnological analysis, such as ichnofacies- or ichnofabric-analysis, and can be applied as such. Indeed, this method is a derivative of these and other earlier techniques, and should be employed where a systematic approach to obtaining high-resolution sedimentological interpretations is a required aspect of the study.

  6. Characterization of biomass burning particles: chemical composition and processing

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Murphy, D. M.; Cziczo, D. J.; Thomson, D. S.; Degouw, J.; Warneke, C.

    2003-12-01

    During the Intercontinental Transport and Chemical Transformation (ITCT) mission in April and May of 2002, a forest fire plume was intercepted over Utah on May 19. Gas phase species acetonitrile (CH3CN) (a biomass burning tracer) and carbon monoxide (CO) measured greater than five fold enhancements over background concentrations during this plume crossing. In the 100 sec plume crossing, the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument acquired 202 positive mass spectra of biomass burning particles. Many of these particles contained potassium in addition to organics, carbon, and NO+ (which is a signature for any nitrogen containing compound such as ammonium or nitrate). From characterization of the particle mass spectra obtained during the plume crossing, a qualitative signature has been determined for identifying biomass burning particles. By applying this analysis to the entire ITCT mission, several transport events of smoke plumes have been identified and were confirmed by gas phase measurements. Additional species, such as sulfate, found in the mass spectra of the transported particles indicated processing or aging of the biomass burning particles that had taken place. The analysis has been extended to other field missions (Crystal-Face, ACCENT, and WAM) to identify biomass burning particles without the added benefit of gas phase measurements.

  7. Modeling operators' emergency response time for chemical processing operations.

    PubMed

    Murray, Susan L; Harputlu, Emrah; Mentzer, Ray A; Mannan, M Sam

    2014-01-01

    Operators have a crucial role during emergencies at a variety of facilities such as chemical processing plants. When an abnormality occurs in the production process, the operator often has limited time to either take corrective actions or evacuate before the situation becomes deadly. It is crucial that system designers and safety professionals can estimate the time required for a response before procedures and facilities are designed and operations are initiated. There are existing industrial engineering techniques to establish time standards for tasks performed at a normal working pace. However, it is reasonable to expect the time required to take action in emergency situations will be different than working at a normal production pace. It is possible that in an emergency, operators will act faster compared to a normal pace. It would be useful for system designers to be able to establish a time range for operators' response times for emergency situations. This article develops a modeling approach to estimate the time standard range for operators taking corrective actions or following evacuation procedures in emergency situations. This will aid engineers and managers in establishing time requirements for operators in emergency situations. The methodology used for this study combines a well-established industrial engineering technique for determining time requirements (predetermined time standard system) and adjustment coefficients for emergency situations developed by the authors. Numerous videos of workers performing well-established tasks at a maximum pace were studied. As an example, one of the tasks analyzed was pit crew workers changing tires as quickly as they could during a race. The operations in these videos were decomposed into basic, fundamental motions (such as walking, reaching for a tool, and bending over) by studying the videos frame by frame. A comparison analysis was then performed between the emergency pace and the normal working pace operations

  8. Sustainability Indicators for Chemical Processes : II. Data Needs

    EPA Science Inventory

    In order to begin repair of the environmental quality of the planet, there is a need to embrace sustainable development at many levels of the chemical industry and society. One way that the chemical industry is responding to this need is through sustainability evaluations, retrof...

  9. Control and optimization system and method for chemical looping processes

    DOEpatents

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2015-02-17

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  10. Control and optimization system and method for chemical looping processes

    DOEpatents

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2014-06-24

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  11. In vitro Perturbations of Targets in Cancer Hallmark Processes Predict Rodent Chemical Carcinogenesis

    EPA Science Inventory

    Thousands of untested chemicals in the environment require efficient characterization of carcinogenic potential in humans. A proposed solution is rapid testing of chemicals using in vitro high-throughput screening (HTS) assays for targets in pathways linked to disease processes ...

  12. Experimental investigation of Mars meandering rivers: Chemical precipitation process

    NASA Astrophysics Data System (ADS)

    Kim, W.; Lim, Y.; Cleveland, J.; Reid, E.; Jew, C.

    2014-12-01

    On Earth, meandering streams occur where the banks are resistant to erosion, which enhances narrow and deep channels. Often this is because the stream banks are held firm by vegetation. The ancient, highly sinuous channels with cutoffs found on Mars are enigmatic because vegetation played no role in providing bank cohesion and enhancing fine sediment deposition. Possible causes of the meandering therefore include ice under permafrost conditions and chemical processes. We conducted carbonate flume experiments to investigate possible mechanisms creating meandering channels other than vegetation. The experiment includes a tank that dissolves limestone by adding CO2 gas and produces artificial spring water, peristaltic pumps to drive water through the system, a heater to control the temperature of the spring water, and a flume where carbonate sediment deposits. Spring water containing dissolved calcium and carbonate ions moves through a heater to increase temperature, and then into the flume. The flume surface is open to the air to allow CO2 degassing, decrease temperature, and increase pH, which promotes carbonate precipitation. A preliminary experiment was done and successfully created a meander pattern that evolved over a 3-day experiment. The experiment showed lateral migration of the bend and avulsion of the stream, similar to a natural meander. The lateral variation in flow speed increased the local residence time of water, thus increasing the degassing of CO2 on the two sides of the flow and promoting more precipitation. This enhanced precipitation on the sides provided a mechanism to build levees along the channel and created a stream confined in a narrow path. This mechanism also potentially applies to Earthly single thread and/or meandering rivers developed and recorded before vegetation appeared on Earth's surface.

  13. National toxicology program chemical nomination and selection process

    SciTech Connect

    Selkirk, J.K.

    1990-12-31

    The National Toxicology Program (NTP) was organized to support national public health programs by initiating research designed to understand the physiological, metabolic, and genetic basis for chemical toxicity. The primary mandated responsibilities of NTP were in vivo and vitro toxicity testing of potentially hazardous chemicals; broadening the spectrum of toxicological information on known hazardous chemicals; validating current toxicological assay systems as well as developing new and innovative toxicity testing technology; and rapidly communicating test results to government agencies with regulatory responsibilities and to the medical and scientific communities. 2 figs.

  14. 64 FR 33527 - Process Safety Management of Highly Hazardous Chemicals; Extension of the Office of Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-06-23

    ... Occupational Safety and Health Administration Process Safety Management of Highly Hazardous Chemicals... extension of the information collection requirements contained in the standard on Process Safety Management.... 657.) In this regard, the information collection requirements in the Process Safety Management...

  15. Process optimization and consumable development for Chemical Mechanical Planarization (CMP) processes

    NASA Astrophysics Data System (ADS)

    Mudhivarthi, Subrahmanya R.

    Chemical Mechanical Planarization (CMP) is one of the most critical processing steps that enables fabrication of multilevel interconnects. The success of CMP process is limited by the implementation of an optimized process and reduction of process generated defects along with post CMP surface characteristics such as dishing and erosion. This thesis investigates to identify various sources of defects and studies the effect of factors that can be used to optimize the process. The major contributions of this work are: Understanding the effect of temperature rise on surface tribology, electrochemistry and post CMP pattern effects during the CMP process; investigating the effect of pad conditioning temperature and slurry flow rate on tribology and post CMP characteristics; development of novel slurries using polymer hybrid particles and improvement in slurry metrology to reduce surface damage during CMP. From the current research, it was shown that the effect of temperature on CMP tribology is predominantly affected by the polishing parameters and the polishing pad characteristics more than the chemical nature of the slurry. The effect of temperature is minimal on the resulting surface roughness but the with-in die non-uniformity is significantly affected by the temperature at the interface. Secondly, in this research it was shown that the effectiveness and aggressiveness of the pad conditioning process is highly influenced by the conditioning temperature. This aspect can be utilized to optimize the parameters for the pad conditioning process. Further, post CMP characteristics such as dishing, erosion and metal loss on patterned samples were shown to decrease with increase in slurry flow rate. This research then concentrates on the development of novel low defect slurry using polymer hybrid abrasive particles. Several varieties of surface functionalized polymer particles were employed to make oxide CMP slurries. These novel slurries proved to be potential candidates to

  16. 71 FR 4941 - Process Safety Management of Highly Hazardous Chemicals Standard; Extension of the Office of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-01-30

    ... Occupational Safety and Health Administration Process Safety Management of Highly Hazardous Chemicals Standard... collection requirements specified by its Process Safety Management of Highly Hazardous Chemicals Standard (29... of the other elements of process safety management in the Standard. Under paragraph (c)(3)...

  17. 74 FR 46621 - Process Safety Management of Highly Hazardous Chemicals (PSM) Standard; Extension of the Office...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2009-09-10

    ... Occupational Safety and Health Administration Process Safety Management of Highly Hazardous Chemicals (PSM... specified in the Standard on Process Safety Management of Highly Hazardous Chemicals (PSM) (29 CFR 1910.119... of the information collection requirements contained in the Standard on Process Safety Management...

  18. Classification of chemical reactions and chemoinformatic processing of enzymatic transformations.

    PubMed

    Latino, Diogo A R S; Aires-de-Sousa, João

    2011-01-01

    The automatic perception of chemical similarities between chemical reactions is required for a variety of applications in chemistry and connected fields, namely with databases of metabolic reactions. Classification of enzymatic reactions is required, e.g., for genome-scale reconstruction (or comparison) of metabolic pathways, computer-aided validation of classification systems, or comparison of enzymatic mechanisms. This chapter presents different current approaches for the representation of chemical reactions enabling automatic reaction classification. Representations based on the encoding of the reaction center are illustrated, which use physicochemical features, Reaction Classification (RC) numbers, or Condensed Reaction Graphs (CRG). Representation of differences between the structures of products and reactants include reaction signatures, fingerprint differences, and the MOLMAP approach. The approaches are illustrated with applications to real datasets.

  19. Laser studies of chemical reaction and collision processes

    SciTech Connect

    Flynn, G.

    1993-12-01

    This work has concentrated on several interrelated projects in the area of laser photochemistry and photophysics which impinge on a variety of questions in combustion chemistry and general chemical kinetics. Infrared diode laser probes of the quenching of molecules with {open_quotes}chemically significant{close_quotes} amounts of energy in which the energy transferred to the quencher has, for the first time, been separated into its vibrational, rotational, and translational components. Probes of quantum state distributions and velocity profiles for atomic fragments produced in photodissociation reactions have been explored for iodine chloride.

  20. Dynamic Processes of Conceptual Change: Analysis of Constructing Mental Models of Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju

    2002-01-01

    Investigates students' mental models of chemical equilibrium using dynamic science assessments. Reports that students at various levels have misconceptions about chemical equilibrium. Involves 10th grade students (n=30) in the study doing a series of hands-on chemical experiments. Focuses on the process of constructing mental models, dynamic…

  1. Chemical Changes in Lipids Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Nawar, Wassef W.

    1984-01-01

    Describes heat effects on lipids, indicating that the chemical and physical changes that occur depend on the lipid's composition and conditions of treatment. Thermolytic and oxidation reactions, thermal/oxidative interaction of lipids with other food components and the chemistry of frying are considered. (JN)

  2. WATER AS A REACTION MEDIUM FOR CLEAN CHEMICAL PROCESSES.

    EPA Science Inventory

    Green chemistry is a rapid developing new field that provides us a pro-active avenue for the sustainable development of future science and technologies. When designed properly, clean chemical technology can be developed in water as a reaction media. The technologies generated f...

  3. Helping Students Develop a Critical Attitude towards Chemical Process Calculations.

    ERIC Educational Resources Information Center

    de Nevers, Noel; Seader, J. D.

    1992-01-01

    Discusses the use of computer-assisted programs that allow chemical engineering students to study textbook thermodynamics problems from different perspectives, including the classical graphical method, while utilizing more than one property correlation and/or operation model so that comparisons can be made and sensitivities determined more…

  4. The Chemistry of Lightsticks: Demonstrations to Illustrate Chemical Processes

    ERIC Educational Resources Information Center

    Kuntzleman, Thomas Scott; Rohrer, Kristen; Schultz, Emeric

    2012-01-01

    Lightsticks, or glowsticks as they are sometimes called, are perhaps the chemist's quintessential toy. Because they are easy to activate and appealing to observe, experimenting with lightsticks provides a great way to get young people interested in science. Thus, we have used lightsticks to teach chemical concepts in a variety of outreach settings…

  5. Chemical Thinning Process for Fabricating UV-Imaging CCDs

    NASA Technical Reports Server (NTRS)

    Jones, TOdd; Grunthaner, Paula; Nikzad, Shouleh; Wilson, Rick

    2004-01-01

    The thinning stage of the postfabrication process reported in the immediately preceding article is notable in its own right. Although the thinning process was described in the preceding article as part of an overall process of fabrication of a supported charge-coupled device (CCD), it is more generally applicable to both free-standing and supported devices that have been fabricated in die and wafer formats. Like the thermocompression bonding process described in the preceding article, the thinning process is compatible with CCD-fabrication processes, as well as postfabrication processes that enhance the response of CCDs to ultraviolet (UV) light, including the delta-doping process. CCDs that are thinned by this process and then delta-doped exhibit high quantum efficiencies that are stable with time and with exposure to the environment.

  6. PARTITIONING OF GADOLINIUM IN THE CHEMICAL PROCESSING CELL

    SciTech Connect

    Reboul, S.; Best, D.; Stone, M.; Click, D.

    2011-04-27

    A combination of short-term beaker tests and longer-duration Sludge Receipt and Adjustment Tank (SRAT) simulations were performed to investigate the relative partitioning behaviors of gadolinium and iron under conditions applicable to the Chemical Processing Cell (CPC). The testing was performed utilizing non-radioactive simple Fe-Gd slurries, non-radioactive Sludge Batch 6 simulant slurries, and a radioactive real-waste slurry representative of Sludge Batch 7 material. The testing focused on the following range of conditions: (a) Fe:Gd ratios of 25-100; (b) pH values of 2-6; (c) acidification via addition of nitric, formic, and glycolic acids; (d) temperatures of {approx}93 C and {approx}22 C; and (e) oxalate concentrations of <100 mg/kg and {approx}10,000 mg/kg. The purpose of the testing was to provide data for assessing the potential use of gadolinium as a supplemental neutron poison when dispositioning excess plutonium. Understanding of the partitioning behavior of gadolinium in the CPC was the first step in assessing gadolinium's potential applicability. Significant fractions of gadolinium partitioned to the liquid-phase at pH values of 4.0 and below, regardless of the Fe:Gd ratio. In SRAT simulations targeting nitric and formic acid additions of 150% acid stoichiometry, the pH dropped to a minimum of 3.5-4.0, and the maximum fractions of gadolinium and iron partitioning to solution were both {approx}20%. In contrast, in a SRAT simulation utilizing a nitric and formic acid addition under atypical conditions (due to an anomalously low insoluble solids content), the pH dropped to a minimum of 3.7, and the maximum fractions of gadolinium and iron partitioning to solution were {approx}60% and {approx}70%, respectively. When glycolic acid was used in combination with nitric and formic acids at 100% acid stoichiometry, the pH dropped to a minimum of 3.6-4.0, and the maximum fractions of gadolinium and iron partitioning to solution were 60-80% and 3-5%, respectively

  7. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    SciTech Connect

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  8. Development of Chemical Process Design and Control for Sustainability

    EPA Science Inventory

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy....

  9. Indicators and Metrics for Evaluating the Sustainability of Chemical Processes

    EPA Science Inventory

    A metric-based method, called GREENSCOPE, has been developed for evaluating process sustainability. Using lab-scale information and engineering assumptions the method evaluates full-scale epresentations of processes in environmental, efficiency, energy and economic areas. The m...

  10. IMPROVING THE ENVIRONMENTAL PERFORMANCE OF CHEMICAL PROCESSES THROUGH THE USE OF INFORMATION TECHNOLOGY

    EPA Science Inventory

    Efforts are currently underway at the USEPA to develop information technology applications to improve the environmental performance of the chemical process industry. These efforts include the use of genetic algorithms to optimize different process options for minimal environmenta...

  11. EFFECTIVE RISK MANAGEMENT OF ENDOCRINE DISRUPTING CHEMICALS USING DRINKING WATER TREATMENT PROCESSES

    EPA Science Inventory

    The conventional drinking water treamtent processes of coagulation, flocculation, and filtration as well as specialized treatment processes have been examined for their capacity to remove endocrine disrupting chemicals (EDCs). A groupf od EDCs including 4-nonylphenol, diethylphth...

  12. DECISION SUPPORT SYSTEM TO ENHANCE AND ENCOURAGE SUSTAINABLE CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    There is an opportunity to minimize the potential environmental impacts (PEIs) of industrial chemical processes by providing process designers with timely data nad models elucidating environmentally favorable design options. The second generation of the Waste Reduction (WAR) algo...

  13. Research on chemical vapor deposition processes for advanced ceramic coatings

    NASA Technical Reports Server (NTRS)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  14. Comprehensive Mass Analysis for Chemical Processes, a Case Study on L-Dopa Manufacture

    EPA Science Inventory

    To evaluate the “greenness” of chemical processes in route selection and process development, we propose a comprehensive mass analysis to inform the stakeholders from different fields. This is carried out by characterizing the mass intensity for each contributing chemical or wast...

  15. Using a Readily Available Commercial Spreadsheet to Teach a Graduate Course on Chemical Process Simulation

    ERIC Educational Resources Information Center

    Clarke, Matthew A.; Giraldo, Carlos

    2009-01-01

    Chemical process simulation is one of the most fundamental skills that is expected from chemical engineers, yet relatively few graduates have the opportunity to learn, in depth, how a process simulator works, from programming the unit operations to the sequencing. The University of Calgary offers a "hands-on" postgraduate course in…

  16. Novel Photocatalysts and Processes for the Destruction of Chemical Warfare Agents (CWA)

    DTIC Science & Technology

    2002-01-01

    1 NOVEL PHOTOCATALYSTS AND PROCESSES FOR THE DESTRUCTION OF CHEMICAL WARFARE AGENTS (CWA) Panagiotis G. Smirniotis Department of Chemical...Engineering, University of Cincinnati, Cincinnati, OH 45221-0171 ABSTRACT The present research project aims at developing novel photocatalysts ...reactors including "closed cycle" systems, photocatalysts , which operate with visible/solar radiation and finally use of novel processes such as

  17. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    SciTech Connect

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  18. Cogeneration handbook for the chemical process industries. [Contains glossary

    SciTech Connect

    Fassbender, A.G.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The desision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the chemical industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  19. Chemical Changes in Proteins Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Dutson, T. R.; Orcutt, M. W.

    1984-01-01

    Discusses effects of thermal processing on proteins, focusing on (1) the Maillard reaction; (2) heat denaturation of proteins; (3) aggregation, precipitation, gelation, and degradation; and (4) other thermally induced protein reactions. Also discusses effects of thermal processing on muscle foods, egg proteins, fruits and vegetables, and cereal…

  20. 21 CFR 570.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.19 Pesticide... processed food when ready to eat is higher than the tolerance prescribed for the raw agricultural commodity, the processed food is adulterated unless the higher concentration is permitted by a tolerance...

  1. 21 CFR 570.19 - Pesticide chemicals in processed foods.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.19 Pesticide... processed food when ready to eat is higher than the tolerance prescribed for the raw agricultural commodity, the processed food is adulterated unless the higher concentration is permitted by a tolerance...

  2. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    NASA Technical Reports Server (NTRS)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  3. Development of Chemical Process Design and Control for ...

    EPA Pesticide Factsheets

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy. The implemented control strategy combines a biologically inspired method with optimal control concepts for finding more sustainable operating trajectories. The sustainability assessment of process operating points is carried out by using the U.S. E.P.A.’s Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator (GREENSCOPE) tool that provides scores for the selected indicators in the economic, material efficiency, environmental and energy areas. The indicator scores describe process performance on a sustainability measurement scale, effectively determining which operating point is more sustainable if there are more than several steady states for one specific product manufacturing. Through comparisons between a representative benchmark and the optimal steady-states obtained through implementation of the proposed controller, a systematic decision can be made in terms of whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous fermentation process for fuel production, whose materi

  4. The Idaho Chemical Processing Plant Product Denitrator Upgrade

    SciTech Connect

    N /A

    1982-05-01

    The upgrade and redesign of a fluidized-bed denitrator for production of uranium trioxide from uranyl nitrate solution is discussed. The success of the project in improving process efficiency and personnel safety is also addressed based on subsequent operation.

  5. Biological monitoring of occupational exposure to toxic chemicals. Collection, processing, and storage of specimens

    SciTech Connect

    Aitio, A.; Jaervisalo, J.

    1985-03-01

    Exposure to at least 100 different chemicals may be estimated on an individual basis from their concentrations in blood or urine. The present document reviews sources of error in the collection, processing and storage of specimens for this biological monitoring. Physiological factors cause variation in the concentration of chemicals in the body fluids. Distribution of water depends on posture. Exercise and meals cause changes in blood constituents. The urine output varies and, thus, the concentrations of dissolved chemicals change. Many toxic chemicals show short half times in the blood; thus, their concentrations depend on the timing of the specimen collection. Skin absorption may result in dramatically different chemical concentrations in different parts of the circulation. The stability of chemicals in the collected specimens is generally limited: chemical deterioration, adsorption, precipitation, and evaporation are the main causes of losses. For many chemicals, especially for trace elements, contamination of the specimen is the overwhelmingly most important source of error. As the range of the chemicals measured is wide, the relative importance of the sources of error is different for different chemicals. Information on most chemicals is at present very limited. Thus, before commencing a program on biological exposure monitoring, it is advisable to search the optimal conditions for specimen collection, processing, and storage.

  6. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    DOEpatents

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2016-07-05

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  7. Diamond-coated fiber Bragg grating through the hot filament chemical vapor process for chemical durability improvement.

    PubMed

    Alberto, Nélia; José Kalinowski, Hypolito; Neto, Victor; Nogueira, Rogério

    2017-02-20

    In recent years, the coating of fiber Bragg gratings (FBGs) with a specific material has opened up the possibility to broaden the limits of applicability of this technology. Diamond has a set of properties that makes it an attractive candidate to protect the optical fiber against chemically harsh environments, whose sensing is also a great challenge. One of the most used techniques to obtain these coatings is through the hot filament chemical vapor deposition (HFCVD); in this process, the temperature reaches, typically, around 850°C-900°C. In this work, the regeneration of a seed FBG during its coating with a nanocrystalline diamond thin film through the HFCVD process is presented. Simultaneously, the thermal monitoring of the process was also performed using the same grating. The resistance test in a corrosive medium reveals an improvement on the durability of the sensing properties of the diamond-coated FBG compared with an uncoated FBG, foreseeing a vast range of applications.

  8. Processing tungsten single crystal by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Xiao, Zhigang; Zee, Ralph H.; Begg, Lester L.

    2000-01-01

    A tungsten single crystal layer has been fabricated on molybdenum single crystal substrate through the hydrogen (H2) reduction of the tungsten hexafluoride (WF6) in low pressure. Substrate temperature, reaction chamber pressure, and flow rate of WF6 and H2, are critical process parameters during deposition. A comprehensive analysis for the effects of these parameters on single crystal layer growth has been processed and optimized growth conditions have been achieved. The different orientation of the substrate shows the different deposition rate for tungsten. Low index plane has higher deposition rate than high index plane. The kinetics of the deposition process has also been investigated. SEM surface analysis indicates that the single crystal layer is smooth in macro-scale and rough and step-growth format in micro-scale. .

  9. METHODS FOR INTEGRATING ENVIRONMENTAL CONSIDERATIONS INTO CHEMICAL PROCESS DESIGN DECISIONS

    EPA Science Inventory

    The objective of this cooperative agreement was to postulate a means by which an engineer could routinely include environmental considerations in day-to-day conceptual design problems; a means that could easily integrate with existing design processes, and thus avoid massive retr...

  10. Functionalized sorbent for chemical separations and sequential forming process

    DOEpatents

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA

    2012-03-20

    A highly functionalized sorbent and sequential process for making are disclosed. The sorbent includes organic short-length amino silanes and organic oligomeric polyfunctional amino silanes that are dispersed within pores of a porous support that form a 3-dimensional structure containing highly functionalized active binding sites for sorption of analytes.

  11. DESIGNING EFFICIENT, ECONOMIC AND ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES

    EPA Science Inventory

    A catalytic reforming process has been studied using hierarchical design and simulation calculations. Aproximations for the fugitive emissions indicate which streams allow the most value to be lost and which have the highest potential environmental impact. One can use tis inform...

  12. DESIGNING EFFICIENT, ECONOMIC AND ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES

    EPA Science Inventory

    A catalytic reforming process has been studied using hierarchical design and simulation calculations. Approximations for the fugitive emissions indicate which streams allow the most value to be lost and which have the highest potential environmental impact. One can use this infor...

  13. Nuclear Technology Series. Course 23: Nuclear Chemical Processes.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  14. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.

    PubMed

    Angın, Dilek; Altintig, Esra; Köse, Tijen Ennil

    2013-11-01

    Activated carbons were produced from biochar obtained through pyrolysis of safflower seed press cake by chemical activation with zinc chloride. The influences of process variables such as the activation temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons were investigated. Also, the adsorptive properties of activated carbons were tested using methylene blue dye as the targeted adsorbate. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 128.21 mg g(-1) and carbon content 76.29%, while the BET surface area and total pore volume corresponded to 801.5m(2)g(-1) and 0.393 cm(3)g(-1), respectively. This study demonstrated that high surface area activated carbons can be prepared from the chemical activation of biochar with zinc chloride as activating agents.

  15. Microlithographic wet chemical processing in a capillary space

    NASA Astrophysics Data System (ADS)

    Morgan, Russell

    1994-05-01

    The patented device and procedure described provide a method of processing the flat, thin-film coated surfaces encountered in the ultraclean manufacture of integrated circuit wafers, photomasks, panel displays or other similar substrates. The device provides a means of delivering liquids and vapors to those surfaces while temperature, evaporation and particulate contamination are controlled as a natural consequent of its physical configuration. The essential mechanism exploits the surface tension of liquids and the differences in the wettability of surfaces. By juxtaposing the target surface with a prepared surface on the processing device and maintaining a separation of a few millimeters, the gap formed provides a reaction space into which liquids are easily distributed exploiting so-called capillary behavior. While placing the liquid reagent on the hydrophobic, horizontal surface of the processor, the hydrophilic substrate surface suspended above it is transported laterally. The substrate surface then engages the liquid edge which, driven by its own surface tension, quickly fills the gap. The ending of the reaction and removal of the liquid is effected by further transporting the substrate with its captive liquid reactants to a trench provided in the processor surface where the liquid flows down and away. Thus, the processor surface is seen as a series of 'mesas' allowing a sequence of wet process, rinse and vapor treatments, all with the simple lateral movement of the substrate. The effects of improved reaction kinetics on process precision as well as the benefits mentioned above are discussed and compared to previous immersion and spin methods. Critical dimension measurement data are presented from large photomask substrates processed by the instrument.

  16. Radical formation, chemical processing, and explosion of interstellar grains

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M.

    1976-01-01

    The ultraviolet radiation in interstellar space is shown to create a sufficient steady-state density of free radicals in the grain mantle material consisting of oxygen, carbon, nitrogen, and hydrogen to satisfy the critical condition for initiation of chain reactions. The criterion for minimum critical particle size for maintaining the chain reaction is of the order of the larger grain sizes in a distribution satisfying the average extinction and polarization measures. The triggering of the explosion of interstellar grains leading to the ejection of complex interstellar molecules is shown to be most probable where the grains are largest and where radiation is suddenly introduced; i.e., in regions of new star formation. Similar conditions prevail at the boundaries between very dark clouds and H II regions. When the energy released by the chemical activity of the free radicals is inadequate to explode the grain, the resulting mantle material must consist of extremely large organic molecules which are much more resistant to the hostile environment of H II regions than the classical dirty-ice mantles made up of water, methane, and ammonia.

  17. Development of the chemical and electrochemical coal cleaning process

    NASA Astrophysics Data System (ADS)

    Basilio, C. I.; Yoon, Roe-Hoan

    The continuous testing of the Chemical and Electrochemical Coal Cleaning (CECC) was completed successfully using Middle Wyodak and Elkhorn No. 3 coal samples. The CECC unit was run under the optimum conditions established for these coal samples. For the Middle Wyodak coal, the ash content was reduced from 6.96 percent to as low 1.61 percent, corresponding to an ash rejection (by weight) of about 83 percent. The ash and sulfur contents of the Elkhorn No. 3 coal were reduced to as low as 1.8 percent and 0.9 percent. The average ash and sulfur rejections were calculated to be around 84 percent and 47 percent. The CECC continuous unit was used to treat -325 mesh Elkhorn No. 3 coal samples and gave ash and sulfur rejection values of as high as 77 percent and 66 percent. In these test, the clean -325 mesh coal particles were separated from the liberated mineral matter through microbubble column flotation, instead of wet-screening.

  18. A software for managing chemical processes in a multi-user laboratory

    DOE PAGES

    Camino, Fernando E.

    2016-10-26

    Here, we report a software for logging chemical processes in a multi-user laboratory, which implements a work flow designed to reduce hazardous situations associated with the disposal of chemicals in incompatible waste containers. The software allows users to perform only those processes displayed in their list of authorized chemical processes and provides the location and label code of waste containers, among other useful information. The software has been used for six years in the cleanroom of the Center for Functional Nanomaterials at Brookhaven National Laboratory and has been an important factor for the excellent safety record of the Center.

  19. Urban street canyons: Coupling dynamics, chemistry and within-canyon chemical processing of emissions

    NASA Astrophysics Data System (ADS)

    Bright, Vivien Bianca; Bloss, William James; Cai, Xiaoming

    2013-04-01

    Street canyons, formed by rows of buildings in urban environments, are associated with high levels of atmospheric pollutants emitted primarily from vehicles, and substantial human exposure. The street canyon forms a semi-enclosed environment, within which emissions may be entrained in a re-circulatory system; chemical processing of emitted compounds alters the composition of the air vented to the overlying boundary layer, compared with the primary emissions. As the prevailing atmospheric chemistry is highly non-linear, and the canyon mixing and predominant chemical reaction timescales are comparable, the combined impacts of dynamics and chemistry must be considered to quantify these effects. Here we report a model study of the coupled impacts of dynamical and chemical processing upon the atmospheric composition in a street canyon environment, to assess the impacts upon air pollutant levels within the canyon, and to quantify the extent to which within-canyon chemical processing alters the composition of canyon outflow, in comparison to the primary emissions within the canyon. A new model for the simulation of street canyon atmospheric chemical processing has been developed, by integrating an existing Large-Eddy Simulation (LES) dynamical model of canyon atmospheric motion with a detailed chemical reaction mechanism, a Reduced Chemical Scheme (RCS) comprising 51 chemical species and 136 reactions, based upon a subset of the Master Chemical Mechanism (MCM). The combined LES-RCS model is used to investigate the combined effects of mixing and chemical processing upon air quality within an idealised street canyon. The effect of the combination of dynamical (segregation) and chemical effects is determined by comparing the outputs of the full LES-RCS canyon model with those obtained when representing the canyon as a zero-dimensional box model (i.e. assuming mixing is complete and instantaneous). The LES-RCS approach predicts lower (canyon-averaged) levels of NOx, OH and HO

  20. Physical-Chemical Studies of Solutions Processing of Nematic Polymers

    DTIC Science & Technology

    1989-02-08

    be used in the preparation of molecular composites . The system has h-en studied prevIousiv, principally with respect to its use in the formation of...filmq [6]. A single phase of the three component solutions is an essential requirement in the preparation of A molecular composite . Accordingly, ternary...discussed in the preceding section [51. Such aggregation could have a deleterious effect on the mechanical properties a molecular composite processed fr

  1. Terrestrial physical and chemical processes for liquid waste treatment.

    PubMed

    McCarty, P L

    1991-10-01

    Experiences gained from full-scale evaluation of advanced treatment processes used for reclaiming wastewaters should help in the evaluation of potential treatment systems for treatment and reuse of water in space. Water Factory 21 is a 0.66 m3 s-1 (15 million gallons per day) water reclamation plant in California that has been in operation since 1976. The plant receives biologically treated wastewater. Lime treatment is effective for removal of heavy metals. Volatile organic constitutes are efficiently removed by air stripping. Non-volatile organic constituents are removed by activated carbon adsorption and reverse osmosis (RO). RO is a highly effective polishing step, and removes most of the remaining materials including inorganic salts, heavy metals, and organics. RO removed 85% of the total organic carbon, down to about 1 mg l-1, which is lower than in many treated drinking waters. The series of treatment processes used insured virus and pathogen removal, with lime treatment and chlorination together proving highly effective. Sufficient data has been collected to provide statistically reliable confidence limits to be set on the performance of each unit process.

  2. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    USGS Publications Warehouse

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  3. Swimming Pool Water Treatment Chemicals and/or Processes. Standard No. 22.

    ERIC Educational Resources Information Center

    National Sanitation Foundation, Ann Arbor, MI.

    Chemicals or processes used or intended for use, in the treatment of swimming pool water are covered. Minimum public health limits or acceptability in regard to toxicity, biocidal effectiveness, and chemical behavior and analysis are presented. The appendices give guidelines to the scientific and statistically sound evaluations to determine the…

  4. Using a Laboratory Simulator in the Teaching and Study of Chemical Processes in Estuarine Systems

    ERIC Educational Resources Information Center

    Garcia-Luque, E.; Ortega, T.; Forja, J. M.; Gomez-Parra, A.

    2004-01-01

    The teaching of Chemical Oceanography in the Faculty of Marine and Environmental Sciences of the University of Cadiz (Spain) has been improved since 1994 by the employment of a device for the laboratory simulation of estuarine mixing processes and the characterisation of the chemical behaviour of many substances that pass through an estuary. The…

  5. Towards novel processes for the fine-chemical and pharmaceutical industries.

    PubMed

    Huisman, Gjalt W; Gray, David

    2002-08-01

    In response to the need in the pharmaceutical industry for more complex, chiral molecules, fine-chemical companies are embracing new manufacturing technologies to produce compounds of these specifications. In particular, recent developments in biocatalysis combined with novel process engineering are providing improved methods for the production of valuable chemical intermediates.

  6. Vesicle-based method for collecting, manipulating, and chemically processing trace macromolecular species

    DOEpatents

    Davalos, Rafael V.; Ellis, Christopher R. B.

    2010-08-17

    Disclosed is an apparatus and method for inserting one or several chemical or biological species into phospholipid containers that are controlled within a microfluidic network, wherein individual containers are tracked and manipulated by electric fields and wherein the contained species may be chemically processed.

  7. Vesicle-based method and apparatus for collecting, manipulating, and chemically processing trace macromolecular species

    DOEpatents

    Davalos, Rafael V.; Ellis, Christopher R. B.

    2008-03-04

    Disclosed is an apparatus and method for inserting one or several chemical or biological species into phospholipid containers that are controlled within a microfluidic network, wherein individual containers are tracked and manipulated by electric fields and wherein the contained species may be chemically processed.

  8. 40 CFR 372.20 - Process for modifying covered chemicals and facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemicals and facilities. 372.20 Section 372.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Reporting Requirements § 372.20 Process for modifying covered...

  9. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    SciTech Connect

    Koopman, D. C.

    2004-12-31

    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a discussion of proposed

  10. Solar photochemical process engineering for production of fuels and chemicals

    SciTech Connect

    Biddle, J.R.; Peterson, D.B.; Fujita, T.

    1984-05-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water have been studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6% are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6%. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. Results predict energy costs in the range of $34 to $55/10/sup 6/ kJ ($36 to $59/10/sup 6/ Btu) for the flat-plate system and $94 to $141/10/sup 6/ kJ ($99 to $149/10/sup 6/ Btu) for the trough system. The overall plant efficiency is the single most important factor in determining the cost of the fuel. Therefore, solar quantum conversion processes were reviewed for the purpose of identifying processes which promise better performance and lower costs. Operating and systems options, including operation at elevated temperatures and hybrid and coupled quantum-thermal conversion processes, were also briefly examined.

  11. Benzene as a Chemical Hazard in Processed Foods

    PubMed Central

    Salviano dos Santos, Vânia Paula; Medeiros Salgado, Andréa; Guedes Torres, Alexandre; Signori Pereira, Karen

    2015-01-01

    This paper presents a literature review on benzene in foods, including toxicological aspects, occurrence, formation mechanisms, and mitigation measures and analyzes data reporting benzene levels in foods. Benzene is recognized by the IARC (International Agency for Research on Cancer) as carcinogenic to humans, and its presence in foods has been attributed to various potential sources: packaging, storage environment, contaminated drinking water, cooking processes, irradiation processes, and degradation of food preservatives such as benzoates. Since there are no specific limits for benzene levels in beverages and food in general studies have adopted references for drinking water in a range from 1–10 ppb. The presence of benzene has been reported in various food/beverage substances with soft drinks often reported in the literature. Although the analyses reported low levels of benzene in most of the samples studied, some exceeded permissible limits. The available data on dietary exposure to benzene is minimal from the viewpoint of public health. Often benzene levels were low as to be considered negligible and not a consumer health risk, but there is still a need of more studies for a better understanding of their effects on human health through the ingestion of contaminated food. PMID:26904662

  12. Benzene as a Chemical Hazard in Processed Foods.

    PubMed

    Salviano Dos Santos, Vânia Paula; Medeiros Salgado, Andréa; Guedes Torres, Alexandre; Signori Pereira, Karen

    2015-01-01

    This paper presents a literature review on benzene in foods, including toxicological aspects, occurrence, formation mechanisms, and mitigation measures and analyzes data reporting benzene levels in foods. Benzene is recognized by the IARC (International Agency for Research on Cancer) as carcinogenic to humans, and its presence in foods has been attributed to various potential sources: packaging, storage environment, contaminated drinking water, cooking processes, irradiation processes, and degradation of food preservatives such as benzoates. Since there are no specific limits for benzene levels in beverages and food in general studies have adopted references for drinking water in a range from 1-10 ppb. The presence of benzene has been reported in various food/beverage substances with soft drinks often reported in the literature. Although the analyses reported low levels of benzene in most of the samples studied, some exceeded permissible limits. The available data on dietary exposure to benzene is minimal from the viewpoint of public health. Often benzene levels were low as to be considered negligible and not a consumer health risk, but there is still a need of more studies for a better understanding of their effects on human health through the ingestion of contaminated food.

  13. Process Improvements to Biomass Pretreatment of Fuels and Chemicals

    SciTech Connect

    Teymouri, Farzaneh

    2015-05-30

    MBI, a 501c(3) company focusing on de-risking and scaling up bio-based technologies, has teamed with Michigan State University and the Idaho National Laboratory to develop and demonstrate process improvements to the ammonia fiber expansion (AFEX) pretreatment process. The logistical hurdles of biomass handling are well known, and the regional depot concept - in which small, distributed bioprocessing operations collect, preprocess, and densify biomass before shipping to a centralized refinery - is a promising alternative to centralized collection. AFEXTM (AFEX is a trademark of MBI) has unique features among pretreatments that would make it desirable as a pretreatment prior to densification at the depot scale. MBI has developed a novel design, using a packed bed reactor for the AFEX process that can be scaled down economically to the depot scale at a lower capital cost as compared to the traditional design (Pandia type reactor). Thus, the purpose of this project was to develop, scale-up, demonstrate, and improve this novel design The key challenges are the recovery of ammonia, consistent and complete pretreatment performance, and the overall throughput of the reactor. In this project an engineering scale packed bed AFEX system with 1-ton per day capacity was installed at MBI’s building. The system has been operational since mid-2013. During that time, MBI has demonstrated the robustness, reliability, and consistency of the process. To date, nearly 500 runs have been performed in the reactors. There have been no incidences of plugging (i.e., inability to remove ammonia from biomass after the treatment), nor has there been any instance of a major ammonia release into the atmosphere. Likewise, the sugar released via enzyme hydrolysis has remained consistent throughout these runs. Our economic model shows a 46% reduction in AFEX capital cost at the 100 ton/day scale compared to the traditional design of AFEX (Pandia type reactor). The key performance factors were

  14. SLUDGE BATCH 6/TANK 40 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    SciTech Connect

    Koopman, David

    2010-04-28

    Phase III simulant flowsheet testing was completed using the latest composition estimates for SB6/Tank 40 feed to DWPF. The goals of the testing were to determine reasonable operating conditions and assumptions for the startup of SB6 processing in the DWPF. Testing covered the region from 102-159% of the current DWPF stoichiometric acid equation. Nitrite ion concentration was reduced to 90 mg/kg in the SRAT product of the lowest acid run. The 159% acid run reached 60% of the DWPF Sludge Receipt and Adjustment Tank (SRAT) limit of 0.65 lb H2/hr, and then sporadically exceeded the DWPF Slurry Mix Evaporator (SME) limit of 0.223 lb H2/hr. Hydrogen generation rates peaked at 112% of the SME limit, but higher than targeted wt% total solids levels may have been partially responsible for rates seen. A stoichiometric factor of 120% met both objectives. A processing window for SB6 exists from 102% to something close to 159% based on the simulant results. An initial recommendation for SB6 processing is at 115-120% of the current DWPF stoichiometric acid equation. The addition of simulated Actinide Removal Process (ARP) and Modular Caustic Side Solvent Extraction Unit (MCU) streams to the SRAT cycle had no apparent impact on the preferred stoichiometric factor. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 120%, 118.4% with ARP/MCU, and 159% stoichiometry were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 36 hours of boiling in the SRAT. The 120% acid run reached 23% of the SRAT limit and 37% of the SME limit. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 29 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two processing issues, identified during SB6 Phase II flowsheet testing and qualification simulant testing, were monitored during Phase III. Mercury material balance closure was impacted by acid stoichiometry

  15. GREENER CHEMICAL PROCESS DESIGN ALTERNATIVES ARE REVEALED USING THE WASTE REDUCTION DECISION SUPPORT SYSTEM (WAR DSS)

    EPA Science Inventory

    The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...

  16. 67 FR 71210 - Standard on Process Safety Management of Highly Hazardous Chemicals (PSM); Extension of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2002-11-29

    ... Occupational Safety and Health Administration Standard on Process Safety Management of Highly Hazardous...-collection requirements specified by its Standard on Process Safety Management of Highly Hazardous Chemicals... and Health Administration (OSHA) to develop a standard on Process Safety Management of...

  17. 79 FR 13006 - Process Safety Management and Prevention of Major Chemical Accidents; Extension of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2014-03-07

    ... Occupational Safety and Health Administration 29 CFR Part 1910 RIN No. 1218-AC82 Process Safety Management and... Request for Information on Process Safety Management and Prevention of Major Chemical Accidents. DATES... Federal e- Rulemaking Portal. Click on the ``COMMENT NOW!'' box next to the title ``Process...

  18. POLLUTION PREVENTION IN THE DESIGN OF CHEMICAL PROCESSES USING HIERARCHICAL DESIGN AND SIMULATION

    EPA Science Inventory

    The design of chemical processes is normally an interactive process of synthesis and analysis. When one also desires or needs to limit the amount of pollution generated by the process the difficulty of the task can increase substantially. In this work, we show how combining hier...

  19. SLUDGE BATCH 6/TANK 51 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    SciTech Connect

    Koopman, David; Best, David

    2010-04-28

    Qualification simulant testing was completed to determine appropriate processing conditions and assumptions for the Sludge Batch 6 (SB6) Shielded Cells demonstration of the DWPF flowsheet using the qualification sample from Tank 51 for SB6 after SRNL washing. It was found that an acid addition window of 105-139% of the DWPF acid equation (100-133% of the Koopman minimum acid equation) gave acceptable Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) results for nitrite destruction and hydrogen generation. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 117%, 133%, and 150% stoichiometry (Koopman) were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 42 hours of boiling in the SRAT. The 150% acid run reached 110% of the DWPF SRAT limit of 0.65 lb H{sub 2}/hr, and the 133% acid run reached 75% of the DWPF SME limit of 0.223 lb H{sub 2}/hr. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 25 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two other processing issues were noted. First, incomplete mercury suspension impacted mercury stripping from the SRAT slurry. This led to higher SRAT product mercury concentrations than targeted (>0.45 wt% in the total solids). Associated with this issue was a general difficulty in quantifying the mass of mercury in the SRAT vessel as a function of time, especially as acid stoichiometry increased. About ten times more mercury was found after drying the 150% acid SME product to powder than was indicated by the SME product sample results. Significantly more mercury was also found in the 133% acid SME product samples than was found during the SRAT cycle sampling. It appears that mercury is segregating from the bulk slurry in the SRAT vessel, as mercury amalgam deposits for example, and is not being resuspended by the agitators. The second processing issue

  20. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    SciTech Connect

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O'Hern; Paul Tortora

    2008-02-29

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  1. Process for preparing organic fuels and chemicals from biomass

    SciTech Connect

    Chen, N.Y.; Miale, J.N.

    1987-09-01

    An integrated process is described for converting fermentable sugar in aqueous solution to gasoline boiling range products which comprises: (a) converting fermentable sugar present in an aqueous solution thereof under the action of an ethanol producing microorganism to provide a dilute aqueous solution of ethanol with the ethanol being present in the solution at a concentration which does not exceed a predetermined maximum level, the predetermined maximum level of ethanol being selected to be that which is below the level of ethanol causing fermentation to substantially cease; (b) selectively sorbing in a sorption zone, ethanol present in the solution, within a crystalline aluminosilicate zeolite characterized by a silica to alumina ratio greater than 12 and a constraint index within the range of 1 to 12, to yield an ethanol-containing zeolite, (c) exposing the resulting ethanol-containing zeolite to ethanol conversion conditions including temperatures ranging from about 316 to 538/sup 0/C, pressures ranging from about 10.13 to 1013 kPa and a liquid hourly space velocity ranging from about 0.1 to 10.

  2. Process and continuous apparatus for chemical conversion of materials

    DOEpatents

    Rugg, Barry; Stanton, Robert

    1983-01-01

    A process and apparatus for the acid hydrolysis of waste cellulose to glucose of the type wherein waste cellulose is continuously fed into an inlet port of a twin screw extruder, water is continuously fed into reaction zone in the extruder, downstream of the inlet port, the cellulose is continuously reacted with water in the presence of an acid catalyst at elevated temperature and pressure in the reaction zone while being continuously conveyed to an outlet port of the extruder having a given diameter and the reacted cellulose is discharged from the extruder while the elevated temperature and pressure in the reaction zone is maintained. The elevated pressure is maintained by forming a dynamic seal zone at the upstream end of the reaction and continuously discharging the reacted material downstream of the outlet port at a predetermined volume rate of flow to maintain the pressure by passing the discharge through an orifice pipe having a smaller diameter than the given diameter of the outlet port.

  3. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons.

    PubMed

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2011-05-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care.

  4. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    SciTech Connect

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  5. Chemical characterisation of rainwater at Stromboli Island (Italy): The effect of post-depositional processes

    NASA Astrophysics Data System (ADS)

    Cangemi, Marianna; Madonia, Paolo; Favara, Rocco

    2017-04-01

    Volcanoes emit fluids and solid particles into the atmosphere that modify the chemical composition of natural precipitation. We have investigated the geochemistry of Stromboli's rainfall during the period from November 2014 to March 2016 using a network of a new type of sampler specifically designed for operations on volcanic islands. We found that most of the chemical modifications are due to processes occurring after the storage of rainwater in the sampling bottles. These processes include dissolution of volcanogenic soluble salts encrusting volcanic ash and a variable contribution of sea spray aerosol. Our data showed noticeably less scatter than has previously been achieved with a different sampling system that was more open to the atmosphere. This demonstrates the improved efficacy of the new sampler design. The data showed that post-depositional chemical alteration of rain samples dominates over processes occurring during droplet formation ad precipitation. This has important implications for the calculation of fluxes of chemicals from rainfall in volcanic regions.

  6. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    SciTech Connect

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculated relative emissions are summarized and insights on building simulations are discussed.

  7. Idaho Chemical Processing Plant low-activity waste grout stabilization development program FY-97 status report

    SciTech Connect

    Herbst, A.K.; Marshall, D.W.; McCray, J.A.

    1998-02-01

    The general purpose of the Grout Development Program is to solidify and stabilize the liquid low-activity wastes (LAW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LAW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste, (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines, (3) facility decontamination processes, and (4) process equipment waste. Grout formulation studies for sodium-bearing LAW, including decontamination and process equipment waste, continued this fiscal year. A second task was to develop a grout formulation to solidify potential process residual heels in the tank farm vessels when the vessels are closed.

  8. Data processing strategy of Raman chemical maps: data characteristics and behavior

    NASA Astrophysics Data System (ADS)

    Lee, Eunah

    2007-09-01

    Raman maps, when acquired and processed successfully, produce Raman chemical images, which provide detailed information on the spatial distribution and morphology of individual chemical species in samples. The advantages of Raman chemical images are most significant when the sample is chemically and structurally complicated. In pharmaceutical applications, these Raman chemical images can be used to understand and develop drug formulations, drug delivery mechanisms, and drug-cellular interactions. Studies using Raman hyperspectral imaging - the term that encompasses the entire procedure from data measurement to processing and interpretation - is increasing and gaining a wider acceptance due to recent improvements in Raman instrumentation and software. Since Raman maps are a collection of numerous Raman spectra of different chemical species, within a single data set, spectral characteristics such as the scattering strength, fluorescence level, and baselines vary a great deal. To acquire and process a Raman map successfully, this heterogeneity must be taken into the consideration. This paper will show the impact of signal-to-noise ratio (S/N) on data processing strategies and their results. It will be demonstrated that the S/N of original data is critical for good classification and scientifically meaningful results regardless of the processing strategies.

  9. Thermo-chemical process with sewage sludge by using CO2.

    PubMed

    Kwon, Eilhann E; Yi, Haakrho; Kwon, Hyun-Han

    2013-10-15

    This work proposed a novel methodology for energy recovery from sewage sludge via the thermo-chemical process. The impact of CO2 co-feed on the thermo-chemical process (pyrolysis and gasification) of sewage sludge was mainly investigated to enhance thermal efficiency and to modify the end products from the pyrolysis and gasification process. The CO2 injected into the pyrolysis and gasification process enhance the generation of CO. As compared to the thermo-chemical process in an inert atmosphere (i.e., N2), the generation of CO in the presence of CO2 was enhanced approximately 200% at the temperature regime from 600 to 900 °C. The introduction of CO2 into the pyrolysis and gasification process enabled the condensable hydrocarbons (tar) to be reduced considerably by expediting thermal cracking (i.e., approximately 30-40%); thus, exploiting CO2 as chemical feedstock and/or reaction medium for the pyrolysis and gasification process leads to higher thermal efficiency, which leads to environmental benefits. This work also showed that sewage sludge could be a very strong candidate for energy recovery and a raw material for chemical feedstock.

  10. Method of manipulating the chemical properties of water to improve the effectiveness of a desired chemical process

    DOEpatents

    Hawthorne, Steven B.; Miller, David J.; Yang, Yu; Lagadec, Arnaud Jean-Marie

    1999-01-01

    The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired chemical process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from nonaqueous liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, and removing organics from water using activated carbon or other suitable sorbents.

  11. Chemical purification of Gunungpati elephant foot yam flour to improve physical and chemical quality on processed food

    NASA Astrophysics Data System (ADS)

    Paramita, Octavianti; Wahyuningsih, Ansori, Muhammad

    2017-03-01

    This study was aimed at improving the physicochemical quality of elephant foot yam flour in Gunungpati, Semarang by chemical purification. The utilization of elephant foot yam flour in several processed food was also discussed in this study. The flour purification discussed in this study was expected to become a reference for the manufacturers of elephant foot yam flour and its processed food in Gunungpati. This study modified the elephant foot yam flour using pre - gelatinization method. The physical and chemical quality of each elephant foot yam flour purification sample were assessed using proximate analysis. The likability test was conducted for its processed food. 20 grams of elephant foot yam flour was put into a beaker glass, then 60 ml of water was added. The suspension was then heated at a temperature of 60 ° C and 70 ° C while stirred until it was homogeneous and thickened for 10, 30 and 60 minutes. The flour which had been heated was then cooled at room temperature for 1 hour and then at a temperature of 0 ° C until it was frozen. Furthermore, flour was dried in an oven at a temperature of 60 ° C for 9 hours. The dried flour was sifted with a 80 mesh sieve. Chemical test was conducted after elephant foot yam was pre-gelatinized to determine changes in the quality flour: test levels of protein, fat, crude fiber content, moisture content, ash content and starch content. In addition, color tests and granular test on elephant foot yam flour were also conducted. The pre-gelatinization as chemical treatment on elephant foot yam flour in this study was able to change the functional properties of elephant foot yam flour towards a better processing characterized by a brighter color (L = 70, a = 6 and b = 12), the hydrolysis of polysaccharides flour into shorter chain (flour content decreased to 44%), the expansion of granules in elephant foot yam resulting in a process - ready flour, and better monolayer water content of 9%. The content of protein and fiber

  12. Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal

    NASA Astrophysics Data System (ADS)

    Zaghib, K.; Song, X.; Guerfi, A.; Rioux, R.; Kinoshita, K.

    The intercalation of Li ions in natural graphite that was purified by chemical and thermal processes was investigated. A new chemical process was developed that involved a mixed aqueous solution containing 30% H 2SO 4 and 30% NH xF y heated to 90 °C. The results of this process are compared to those obtained by heating the natural graphite from 1500 to 2400 °C in an inert environment (thermal process). The first-cycle coulombic efficiency of the purified natural graphite obtained by the chemical process is 91 and 84% after the thermal process at 2400 °C. Grinding the natural graphite before or after purification had no significant effect on electrochemical performance at low currents. However, grinding to a very small particle size before purification permitted optimization of the size distribution of the particles, which gives rise to a more homogenous electrode. The impurities in the graphite play a role as microabrasion agents during grinding which enhances its hardness and improves its mechanical properties. Grinding also modifies the particle morphology from a 2- to a 3-D structure (similar in shape to a potato). This potato-shaped natural graphite shows high reversible capacity at high current densities (about 90% at 1 C rate). Our analysis suggests that thermal processing is considerably more expensive than the chemical process to obtain purified natural graphite.

  13. The role of impacting processes in the chemical evolution of the atmosphere of primordial Earth

    NASA Technical Reports Server (NTRS)

    Mukhin, Lev M.; Gerasimov, M. V.

    1991-01-01

    The role of impacting processes in the chemical evolution of the atmosphere of primordial Earth is discussed. The following subject areas are covered: (1) Earth's initial atmosphere; (2) continuous degassing; (3) impact processes and the Earth's protoatmosphere; and (4) the evolution of an impact-generated atmosphere.

  14. Chemical input and I-V output: stepwise chemical information processing in dye-sensitized solar cells.

    PubMed

    Satoh, Norifusa; Han, Liyuan

    2012-12-14

    As a complex system, a dye-sensitized solar cell (DSC) exhibits emergent photovoltaics not obvious from the properties of the individual components. The chemical input of 4-tert-butylpyridine (TBP) into DSC improves the open circuit voltage (V(oc)) and reduces the short circuit current (I(sc)) in I-V output through multiple interactions with the components, yet it has been difficult to distinguish the multiple interactions and correlate the interactions with the influences on I-V output due to the complexity of the system. To deal with the multiple interactions, we have adapted a conceptual framework and methodology from coordination chemistry. First, we titrated the photovoltaic interface and electrolyte with TBP to identify the stepwise chemical interaction processes. An isopotential point observed in I-V output indicates that most of the inputted chemicals interact with the electrolyte. Cyclic voltammetric titration of the electrolyte demonstrates asymmetric redox peaks and two different isopotential points, indicating that the two-step coordination-decoordination process inhibits the reduction current of the electrolyte. Second, we set an interaction model bridging the hierarchical gaps between the multiple interactions and the I-V output to address the influences on outputs from the amount of the inputs. From the viewpoint of the interaction model and interactions observed, we are able to comprehend the processes of the complex system and suggest a direction to improve V(oc) without sacrificing I(sc) in DSCs. We conclude that the conceptual framework and methodology adapted from coordination chemistry is beneficial to enhance the emergent outputs of complex systems.

  15. Deposition of silicon carbide using the chemical vapor composites process: Process characterization and comparison with RASSPVDN model predictions

    SciTech Connect

    Allendorf, M.D.; Hurt, R.H.; Yang, N. ); Reagan, P.; Robbins, M. )

    1993-07-01

    In this work, we explore the use of the chemical vapor composites (CVC) process to increase the rates of silicon carbide (SiC) growth on graphite substrates. Large SiC seed particles are used that deposit by gravity-driven sedimentation. The results show that addition of large ([ital d][sub [ital p

  16. Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

    DOEpatents

    Anderson, Brian L.

    2017-01-24

    A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.

  17. Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

    DOEpatents

    Anderson, Brian L.

    2015-05-26

    A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.

  18. Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions.

    PubMed

    Zhang, Yang; Piccard, Sarah; Zhou, Wen

    2015-11-01

    The "Anaerobic Digestion Model No. 1" (ADM1) was modified in the study by improving the bio-chemical framework and integrating a more detailed physico-chemical framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the discrepancies in the original bio-chemical framework between the carbon and nitrogen contents in the degraders and substrates. More inorganic components and solids precipitation processes were included in the physico-chemical framework of ADM1. The modified ADM1 was validated with the experimental data and used to investigate the effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion process might exist an optimal initial concentration of inorganic nitrogen for methane gas production in the presence of calcium ions, magnesium ions and inorganic phosphorus.

  19. Extended Characterization of Chemical Processes in Hot Cells Using Environmental Swipe Samples

    SciTech Connect

    Olsen, Khris B.; Mitroshkov, Alexandre V.; Thomas, M-L; Lepel, Elwood A.; Brunson, Ronald R.; Ladd-Lively, Jennifer

    2012-09-15

    Environmental sampling is used extensively by the International Atomic Energy Agency (IAEA) for verification of information from State declarations or a facility’s design regarding nuclear activities occurring within the country or a specific facility. Environmental sampling of hot cells within a facility under safeguards is conducted using 10.2 cm x 10.2 cm cotton swipe material or cellulose swipes. Traditional target analytes used by the IAEA to verify operations within a facility include a select list of gamma-emitting radionuclides and total and isotopic U and Pu. Analysis of environmental swipe samples collected within a hot-cell facility where chemical processing occurs may also provide information regarding specific chemicals used in fuel processing. However, using swipe material to elucidate what specific chemical processes were/are being used within a hot cell has not been previously evaluated. Staff from Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory (ORNL) teamed to evaluate the potential use of environmental swipe samples as collection media for volatile and semivolatile organic compounds. This evaluation was initiated with sample collection during a series of Coupled End-to-End (CETE) reprocessing runs at ORNL. The study included measurement of gamma emitting radionuclides, total and isotopic U and Pu, and volatile and semivolatile organic compounds. These results allowed us to elucidate what chemical processes used in the hot cells during reprocessing of power reactor and identify other legacy chemicals used in hot cell operations which predate the CETE process.

  20. Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes.

    PubMed

    Lozano, Pedro; Bernal, Juana M; Nieto, Susana; Gomez, Celia; Garcia-Verdugo, Eduardo; Luis, Santiago V

    2015-12-21

    The greenness of chemical processes turns around two main axes: the selectivity of catalytic transformations, and the separation of pure products. The transfer of the exquisite catalytic efficiency shown by enzymes in nature to chemical processes is an important challenge. By using appropriate reaction systems, the combination of biopolymers with supercritical carbon dioxide (scCO2) and ionic liquids (ILs) resulted in synergetic and outstanding platforms for developing (multi)catalytic green chemical processes, even under flow conditions. The stabilization of biocatalysts, together with the design of straightforward approaches for separation of pure products including the full recovery and reuse of enzymes/ILs systems, are essential elements for developing clean chemical processes. By understanding structure-function relationships of biopolymers in ILs, as well as for ILs themselves (e.g. sponge-like ionic liquids, SLILs; supported ionic liquids-like phases, SILLPs, etc.), several integral green chemical processes of (bio)catalytic transformation and pure product separation are pointed out (e.g. the biocatalytic production of biodiesel in SLILs, etc.). Other developments based on DNA/ILs systems, as pathfinder studies for further technological applications in the near future, are also considered.

  1. Integrated Electrochemical Processes for CO2 Capture and Conversion to Commodity Chemicals

    SciTech Connect

    Hatton, T. Alan; Jamison, Timothy

    2013-09-30

    The Massachusetts Institute of Technology (MIT) and Siemens Corporations (SCR) are developing new chemical synthesis processes for commodity chemicals from CO2. The process is assessed as a novel chemical sequestration technology that utilizes CO2 from dilute gas streams generated at industrial carbon emitters as a raw material to produce useful commodity chemicals. Work at Massachusetts Institute of Technology (MIT) commenced on October 1st, 2010, and finished on September 30th, 2013. During this period, we have investigated and accomplished five objectives that mainly focused on converting CO2 into high-value chemicals: 1) Electrochemical assessment of catalytic transformation of CO2 and epoxides to cyclic carbonates; 2) Investigation of organocatalytic routes to convert CO2 and epoxide to cyclic carbonates; 3) Investigation of CO2 Capture and conversion using simple olefins under continuous flow; 4) Microwave assisted synthesis of cyclic carbonates from olefins using sodium bicarbonates in a green pathway; 5) Life cycle analyses of integrated chemical sequestration process. In this final report, we will describe the detailed study performed during the three year period and findings and conclusions drawn from our research.

  2. Devising efficient biotechnological processes for the production of fuels and chemicals from biomass

    NASA Astrophysics Data System (ADS)

    Villet, R. H.

    1982-05-01

    Research directed toward improving ethanol processes based on readily fermentable feedstocks is discussed. Efforts were also made to develop novel fermentation systems. Reducing the cost of producing ethanol and other chemicals requires using cellulosics as feedstocks, which when hydrolyzed form hexose sugars readily metabolized by yeast. A program was undertaken to discover thermophilic organisms that convert various biopolymers to ethanol and other chemical products. Lipids suitable as diesel oil extenders are produced by microorganisms. A screening program was undertaken to identify microbial strains with a biotechnological potential. This involved a precise, quantitative chemical analysis of lipid products. Some work on developing a 2,3-butanediol fermentation process is described. During the fermentation process ethanol is also produced. To improve the ratio of butanediol to ethanol, a program of genetic and physiological research was designed and initiated.

  3. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    SciTech Connect

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.

    1984-05-01

    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

  4. Real-time in-situ chemical sensing in aluminum gallium nitride/gallium nitride metal-organic chemical vapor deposition processes for advanced process control

    NASA Astrophysics Data System (ADS)

    Cho, Soon

    Gallium nitride and its alloys promise to be key materials for future semiconductor devices aimed at high frequency, high power electronic applications. However, manufacturing for such high performance products is challenged by reproducibility and material quality constraints that are notably more stringent than those required for optoelectronic applications. To meet this challenge, in-situ mass spectrometry was implemented as a real-time process- and wafer-state metrology tool in AlGaN/GaN/AlN metal-organic chemical vapor deposition processes on semi-insulating SiC substrate wafers. Dynamic chemical sensing through the process cycle, carried out downstream from the wafer, revealed generation of methane and ethane reaction byproducts, as well as other residual gas species. Real-time metrics were derived based on the chemical signals to predict/control material quality and thickness of critical layers within the heterostructure in real time during growth, and corresponding metrologies were used for real-time advanced process control. Using the methane/ethane ratio, GaN epilayer crystal quality was predicted in real time to 2--5% precision, which was verified by post-process x-ray diffraction. Moreover, the same real-time metric predicted material quality as indicated by post-process photoluminescence band-edge intensities to ˜5% precision. The methane/ethane ratio has a fundamental significance in terms of the intrinsic chemistry in that the two byproducts are believed to reflect two parallel reaction pathways leading to GaN-based material growth, namely the gas phase adduct formation route and the surface route for direct precursor decomposition, respectively. The fact that lower methane/ethane ratios consistently yield better material quality suggests that the surface pathway is preferred for high quality GaN growth. In addition, a metric based on methane and ethane signals integrated through the AlGaN growth period (˜1 min or less) enabled prediction of the cap

  5. The comparison of removing plug by ultrasonic wave, chemical deplugging agent and ultrasound-chemical combination deplugging for near-well ultrasonic processing technology.

    PubMed

    Wang, Zhenjun; Xu, Yuanming; Bajracharya, Suman

    2015-11-01

    Near-well ultrasonic processing technology is characterized by high adaptability, simple operation, low cost and zero pollution. The main plugs of oil production include paraffin deposition plug, polymer plug, and drilling fluid plug etc. Although some good results have been obtained through laboratory experiments and field tests, systematic and intensive studies are absent for certain major aspects, such as: effects of ultrasonic treatment for different kinds of plugs and whether effect of ultrasound-chemicals combination deplugging is better than that of ultrasonic deplugging. In this paper, the experiments of removing drilling fluid plug, paraffin deposition plug and polymer plug by ultrasonic wave, chemical deplugging agent and ultrasound-chemical combination deplugging respectively are carried out. Results show that the effect of ultrasound-chemical combination deplugging is clearly better than that of using ultrasonic wave and chemical deplugging agent separately, which indicates that ultrasonic deplugging and chemical deplugging can produce synergetic effects. On the one hand, ultrasonic treatment can boost the activity of chemical deplugging agent and turn chemical deplugging into dynamic chemical process, promoting chemical agent reaction speed and enhancing deplugging effect; on the other hand, chemical agent can reduce the adhesion strength of plugs so that ultrasonic deplugging effect can be improved significantly. Experimental results provide important reference for near-well ultrasonic processing technology.

  6. Dynamic processes of conceptual change: Analysis of constructing mental models of chemical equilibrium

    NASA Astrophysics Data System (ADS)

    Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju

    2002-10-01

    The purpose of this study was to investigate students' mental models of chemical equilibrium using dynamic science assessments. Research in chemical education has shown that students at various levels have misconceptions about chemical equilibrium. According to Chi's theory of conceptual change, the concept of chemical equilibrium has constraint-based features (e.g., random, simultaneous, uniform activities) that might prevent students from deeply understanding the nature of the concept of chemical equilibrium. In this study, we examined how students learned and constructed their mental models of chemical equilibrium in a cognitive apprenticeship context. Thirty 10th-grade students participated in the study: 10 in a control group and 20 in a treatment group. Both groups were presented with a series of hands-on chemical experiments. The students in the treatment group were instructed based on the main features of cognitive apprenticeship (CA), such as coaching, modeling, scaffolding, articulation, reflection, and exploration. However, the students in the control group (non-CA group) learned from the tutor without explicit CA support. The results revealed that the CA group significantly outperformed the non-CA group. The students in the CA group were capable of constructing the mental models of chemical equilibrium - including dynamic, random activities of molecules and interactions between molecules in the microworld - whereas the students in the non-CA group failed to construct similar correct mental models of chemical equilibrium. The study focuses on the process of constructing mental models, on dynamic changes, and on the actions of students (such as self-monitoring/self-correction) who are learning the concept of chemical equilibrium. Also, we discuss the implications for science education.

  7. Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment

    PubMed Central

    Abrell, Leif; Hildebrand, John G.

    2009-01-01

    Odor-mediated insect navigation in airborne chemical plumes is vital to many ecological interactions, including mate finding, flower nectaring, and host locating (where disease transmission or herbivory may begin). After emission, volatile chemicals become rapidly mixed and diluted through physical processes that create a dynamic olfactory environment. This review examines those physical processes and some of the analytical technologies available to characterize those behavior-inducing chemical signals at temporal scales equivalent to the olfactory processing in insects. In particular, we focus on two areas of research that together may further our understanding of olfactory signal dynamics and its processing and perception by insects. First, measurement of physical atmospheric processes in the field can provide insight into the spatiotemporal dynamics of the odor signal available to insects. Field measurements in turn permit aspects of the physical environment to be simulated in the laboratory, thereby allowing careful investigation into the links between odor signal dynamics and insect behavior. Second, emerging analytical technologies with high recording frequencies and field-friendly inlet systems may offer new opportunities to characterize natural odors at spatiotemporal scales relevant to insect perception and behavior. Characterization of the chemical signal environment allows the determination of when and where olfactory-mediated behaviors may control ecological interactions. Finally, we argue that coupling of these two research areas will foster increased understanding of the physicochemical environment and enable researchers to determine how olfactory environments shape insect behaviors and sensory systems. PMID:18548311

  8. Process for preparing a chemical compound enriched in isotope content. [nitrogen 15-enriched nitric acid

    DOEpatents

    Michaels, E.D.

    1981-02-25

    A process to prepare a chemical enriched in isotope content includes: a chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products. A particular embodiment of the process in the production of nitrogen-15-enriched nitric acid.

  9. Magnetically assisted chemical separation (MACS) process: Preparation and optimization of particles for removal of transuranic elements

    SciTech Connect

    Nunez, L.; Kaminski, M.; Bradley, C.; Buchholz, B.A.; Aase, S.B.; Tuazon, H.E.; Vandegrift, G.F.; Landsberger, S.

    1995-05-01

    The Magnetically Assisted Chemical Separation (MACS) process combines the selectivity afforded by solvent extractants with magnetic separation by using specially coated magnetic particles to provide a more efficient chemical separation of transuranic (TRU) elements, other radionuclides, and heavy metals from waste streams. Development of the MACS process uses chemical and physical techniques to elucidate the properties of particle coatings and the extent of radiolytic and chemical damage to the particles, and to optimize the stages of loading, extraction, and particle regeneration. This report describes the development of a separation process for TRU elements from various high-level waste streams. Polymer-coated ferromagnetic particles with an adsorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted with tributyl phosphate (TBP) were evaluated for use in the separation and recovery of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can then be recovered from the solution by using a magnet. The partition coefficients were larger than those expected based on liquid[liquid extractions, and the extraction proceeded with rapid kinetics. Extractants were stripped from the particles with alcohols and 400-fold volume reductions were achieved. Particles were more sensitive to acid hydrolysis than to radiolysis. Overall, the optimization of a suitable NMCS particle for TRU separation was achieved under simulant conditions, and a MACS unit is currently being designed for an in-lab demonstration.

  10. Activities of the Institute of Chemical Processing of Coal at Zabrze

    SciTech Connect

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products; production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.

  11. Value-added processing of crude glycerol into chemicals and polymers.

    PubMed

    Luo, Xiaolan; Ge, Xumeng; Cui, Shaoqing; Li, Yebo

    2016-09-01

    Crude glycerol is a low-value byproduct which is primarily obtained from the biodiesel production process. Its composition is significantly different from that of pure glycerol. Crude glycerol usually contains various impurities, such as water, methanol, soap, fatty acids, and fatty acid methyl esters. Considerable efforts have been devoted to finding applications for converting crude glycerol into high-value products, such as biofuels, chemicals, polymers, and animal feed, to improve the economic viability of the biodiesel industry and overcome environmental challenges associated with crude glycerol disposal. This article reviews recent advances of biological and chemical technologies for value-added processing of crude glycerol into chemicals and polymers, and provides strategies for addressing production challenges.

  12. Process and film characterization of chemical-bath-deposited ZnS thin films

    SciTech Connect

    Dona, J.M.; Herrero, J.

    1994-01-01

    Chemical-bath deposition of ZnS thin films from NH{sub 3}/NH{sub 2}-NH{sub 2}/SC(NH{sub 2}){sub 2}/ZnSO{sub 4} solutions has been studied. The effect of various process parameters on the growth and the film quality is presented. A first approach to a mechanistic interpretation of the chemical process is reported. The structural, optical, chemical, and electrical properties of the ZNS thin films deposited by this method have been studied. The electron diffraction (EDS) analysis shows that the films are microcrystalline with a cubic structure. EDS analysis has demonstrated that the films are highly stoichiometric. Scanning electron microscopy studies of the ZnS thin films deposited by this method show that the films are continuous and homogeneous. Electrical conductivity measurements have shown the highly resistivity nature of these films ({sigma} = 10{sup {minus}9} S/cm).

  13. Depinning process of magnetic domain walls in cylindrical nanowires with a chemical constraint

    NASA Astrophysics Data System (ADS)

    Castilla, D.; Maicas, M.; Prieto, J. L.; Proenca, M. P.

    2017-03-01

    In this work we have studied with micromagnetic simulations the pinning process of a magnetic domain wall (DW) travelling in a cylindrical magnetic nanowire with a section where the composition has been altered with respect to the rest of the nanowire (chemical constraint). We have studied the depinning process for a non-magnetic, a paramagnetic and a ferromagnetic constraint and we show that the pinning strength in this type of defect can be tailored by a change of composition. The ferromagnetic chemical constraint is the strongest pinning site but it can stop the DW only when there is a significant reduction of the exchange energy and the saturation magnetization with respect to the rest of the wire. Chemical constraints may constitute a promising alternative to geometrical constraints in some devices such as the race-track memory.

  14. Removal of surface contaminants using a chemical-free laser-assisted process

    NASA Astrophysics Data System (ADS)

    Engelsberg, Audrey C.

    1994-10-01

    Contamination control is a critical issue to the manufacture and maintenance of optical components. Particulates and thin films (organic and inorganic) can degrade optical performance. Current cleaning methods are focusing on aqueous-based cleaning and super- critical fluids. Concurrently, environmentally-conscious manufacturing processes are becoming essential for industrial applications. These manufacturing processes emphasize the reduction of water and chemical consumption and hazardous waste production. In this paper, we will introduce a chemical-free laser assisted process that has demonstrated its capability of removing particulates and films from various surfaces including optical. Since this process works with energy flux and a flowing inert gas, it's readily adaptable and cost effective for many industrial applications.

  15. Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    DOEpatents

    Lackey, Jr., Walter J.; Caputo, Anthony J.

    1986-01-01

    A chemical vapor deposition (CVD) process for preparing fiber-reinforced ceramic composites. A specially designed apparatus provides a steep thermal gradient across the thickness of a fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  16. DWPF nitric-glycolic flowsheet chemical process cell chemistry. Part 1

    SciTech Connect

    Zamecnik, J. R.; Edwards, T. B.

    2016-02-01

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by SRNL from 2011 to 2015. The goal of this work was to develop empirical correlations for these variables versus measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the initial work on these correlations based on the aforementioned data. Further refinement of the models as additional data is collected is recommended.

  17. Fault detection and classification in chemical processes based on neural networks with feature extraction.

    PubMed

    Zhou, Yifeng; Hahn, Juergen; Mannan, M Sam

    2003-10-01

    Feed forward neural networks are investigated here for fault diagnosis in chemical processes, especially batch processes. The use of the neural model prediction error as the residual for fault diagnosis of sensor and component is analyzed. To reduce the training time required for the neural process model, an input feature extraction process for the neural model is implemented. An additional radial basis function neural classifier is developed to isolate faults from the residual generated, and results are presented to demonstrate the satisfactory detection and isolation of faults using this approach.

  18. Chemical trimming overcoat: an enhancing composition and process for 193nm lithography

    NASA Astrophysics Data System (ADS)

    Liu, Cong; Rowell, Kevin; Joesten, Lori; Baranowski, Paul; Kaur, Irvinder; Huang, Wanyi; Leonard, JoAnne; Jeong, Hae-Mi; Im, Kwang-Hwyi; Estelle, Tom; Cutler, Charlotte; Pohlers, Gerd; Yin, Wenyan; Fallon, Patricia; Li, Mingqi; Jeon, Hyun; Xu, Cheng Bai; Trefonas, Pete

    2016-03-01

    As the critical dimension of devices is approaching the resolution limit of 193nm photo lithography, multiple patterning processes have been developed to print smaller CD and pitch. Multiple patterning and other advanced lithographic processes often require the formation of isolated features such as lines or posts by direct lithographic printing. The formation of isolated features with an acceptable process window, however, can pose a challenge as a result of poor aerial image contrast at defocus. Herein we report a novel Chemical Trimming Overcoat (CTO) as an extra step after lithography that allows us to achieve smaller feature size and better process window.

  19. Chemical and physical processes in Tank 241-SY-101: A preliminary report

    SciTech Connect

    Not Available

    1991-02-01

    Since 1942, chemical and radioactive waste have been stored in underground tanks at the Hanford Site. In March 1981 one of the double shell tanks, 241-SY-101 (called 101-SY), began venting large quantities of gas, primarily hydrogen and nitrous oxide. Because of the potential for explosion Westinghouse Hanford Company and the US Department of Energy realized the need for knowledge about the processes occurring in this tank that lead to generation of the gases. In June 1990, the Pacific Northwest Laboratory began assembling a Tank Waste Science Panel to develop a better understanding of the processes occurring the Tank 101-SY. This knowledge is necessary to provide a technically defensible basis for the safety analyses, which will allow the tank contents to be sampled, as well as for the future remediation of the tank and its contents. The Panel concluded that the data available on Tank 101-SY are insufficient to allow the critical chemical and physical processes giving rise to gas formation and release to be unambiguously identified. To provide the needed information the Panel recommends that Tank 101-SY by physically and chemically characterized as fully as possible and as expeditiously as safety considerations allow, and laboratory studies and modeling efforts be undertaken the chemical and physical processes involved in gas generation and release. Finally, the Panel recommends that no remediation steps be taken until there is a better understanding of the chemical and physical phenomena occurring in Tank 101-SY. Premature remediation steps may only serve to compound the problem. Furthermore, such steps may change the chemical and physical characteristics of the tank and prevent a true understanding of the phenomena involved. As a consequence, similar problems in other tanks on the site may not be adequately addressed. 17 refs., 3 figs., 1 tab.

  20. Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Klein, James A.; Davis, Richard A.

    2011-01-01

    This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…

  1. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants.

    PubMed

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-08-14

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes-catalyst/oxidant concentrations, incident radiation flux, and pH-need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities.

  2. Susceptibility based upon Chemical Interaction with Disease Processes: Potential Implications for Risk Assessment

    EPA Science Inventory

    One of the challenges facing toxicology and risk assessment is that numerous host and environmental factors may modulate vulnerability and risk. An area of increasing interest is the potential for chemicals to interact with background aging and disease processes, an interaction...

  3. Using Drawing Technology to Assess Students' Visualizations of Chemical Reaction Processes

    ERIC Educational Resources Information Center

    Chang, Hsin-Yi; Quintana, Chris; Krajcik, Joseph

    2014-01-01

    In this study, we investigated how students used a drawing tool to visualize their ideas of chemical reaction processes. We interviewed 30 students using thinking-aloud and retrospective methods and provided them with a drawing tool. We identified four types of connections the students made as they used the tool: drawing on existing knowledge,…

  4. 29 CFR § 1926.64 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2010 CFR

    2016-07-01

    ... 29 Labor 8 2016-07-01 2016-07-01 false Process safety management of highly hazardous chemicals. § 1926.64 Section § 1926.64 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Occupational Health and Environmental Controls...

  5. Flow Tube Studies of Gas Phase Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1997-01-01

    The objective of this project is to conduct measurements of elementary reaction rate constants and photochemistry parameters for processes of importance in the atmosphere. These measurements are being carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere, using the chemical ionization mass spectrometry turbulent flow technique developed in our laboratory.

  6. XPERT DESIGN AND DIAGNOSTICS' (XDD) IN-SITU CHEMICAL OXIDATION PROCESS USING POTASSIUM PERMANGANATE (KMNO4)

    EPA Science Inventory

    Xpert Design and Diagnostic's (XDD)potassium permanganate in situ chemical oxidation (ISCO) process was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) Program at the former MEC Building site located in Hudson, New Hampshire. At this site, both soil and ...

  7. Advanced Biocatalytic Processing of Heterogeneous Lignocellulosic Feedstocks to a Platform Chemical Intermediate (Lactic acid Ester)

    SciTech Connect

    Dr. Sharon Shoemaker

    2004-09-03

    The development of commercial boi-based processes and products derived from agricultural waste biomass has the potential for significant impact on the economy and security of our nation. Adding value, rather than disposing of the waste of agriculture, can solve an environmental problem and reduce our dependence on foreign sources of fossil fuel for production of chemicals, materials and fuels.

  8. Disappearance of Barrier Metal during Cu Chemical Mechanical Planarization Processing and Its Mechanism

    NASA Astrophysics Data System (ADS)

    Asano, Hiroshi; Yasui, Akihito; Hirano, Tatsuhiko; Tamai, Kazusei; Morinaga, Hitoshi

    2011-05-01

    The bald disappearance of barrier metal had been observed on the wafer after Cu chemical mechanical planarization (CMP) processing. It was speculated that this phenomenon occurs because the excessively oxidized Ta by electrochemical reaction with Cu ion was removed more easily than the normal Ta oxide around it. The inhibition of the electrochemical reaction is necessary to solve this phenomenon.

  9. Teaching Population Balances for Chemical Engineering Students: Application to Granulation Processes

    ERIC Educational Resources Information Center

    Bucala, Veronica; Pina, Juliana

    2007-01-01

    The population balance equation (PBE) is a useful tool to predict particle size distributions in granulation processes. When PBE is taught to advanced chemical engineering students, the internal coordinates (particle properties) are particularly hard to understand. In this paper, the flow of particles along different coordinates is carefully…

  10. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE REACTOR SYSTEM - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    The ELI Eco Logic International Inc. (Eco Logic) process thermally separates organics, then chemically reduces them in a hydrogen atmosphere, converting them to a reformed gas that consists of light hydrocarbons and water. A scrubber treats the reformed gas to remove hydrogen chl...

  11. The material balance of process of plasma-chemical conversion of polymer wastes into synthesis gas

    NASA Astrophysics Data System (ADS)

    Tazmeev, A. Kh; Tazmeeva, R. N.

    2017-01-01

    The process of conversion of polymer wastes in the flow of water-steam plasma which are created by the liquid electrodes plasma generators was experimentally studied. The material balance was calculated. The regularities of the participating of hydrogen and oxygen which contained in the water-steam plasma, in formation of chemical compounds in the final products were revealed.

  12. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  13. A MIXED CHEMICAL REDUCTANT FOR TREATING HEXAVALENT CHROMIUM IN A CHROMITE ORE PROCESSING SOLID WASTE

    EPA Science Inventory

    We evaluated a method for delivering ferrous iron into the subsurface to enhance chemical reduction of Cr(VI) in a chromite ore processing solid waste (COPSW). The COPSW is characterized by high pH (8.5 -11.5), high Cr(VI) concentrations in the solid phase (up to 550 mg kg-1) and...

  14. Basic physical and chemical processes in space radiation effects on polymers

    NASA Technical Reports Server (NTRS)

    Kamaratos, E.; Wilson, J. W.; Chang, C. K.; Xu, Y. J.

    1982-01-01

    The effects of space ionizing radiation on polymers is investigated in terms of operative physical and chemical processes. A useful model of charged particle impact with a polymer was designed. Principle paths of molecular relaxation were identified and energy handling processes were considered. The focus of the study was on energy absorption and the immediately following events. Further study of the radiation degradation of polymers is suggested.

  15. Analysis of physical-chemical processes governing SSME internal fluid flows

    NASA Technical Reports Server (NTRS)

    Singhal, A. K.; Owens, S. F.; Mukerjee, T.; Prakash, C.; Przekwas, A. J.; Kannapel, M.

    1985-01-01

    The basic issues concerning the physical chemical processes of the Space Shuttle Main Engine are discussed. The objectives being to supply the general purpose CFD code PHOENICS and the associated interactive graphics package - GRAFFIC; to demonstrate code usage on SSME related problems; to perform computations and analyses of problems relevant to current and future SSME's; and to participate in the development of new physical models of various processes present in SSME components. These objectives are discussed in detail.

  16. Chemical fractionation resulting from the hypervelocity impact process on metallic targets

    NASA Astrophysics Data System (ADS)

    Libourel, Guy; Ganino, Clément; Michel, Patrick; Nakamura, Akiko

    2016-10-01

    In a regime of hypervelocity impact cratering, the internal energy deposited in target + projectile region is large enough to melt and/or vaporize part of the material involved, which expands rapidly away from the impact site. Fast and energetic impact processes have therefore important chemical consequences on the projectile and target rock transformations during major impact events. Several physical and chemical processes occurred indeed in the short duration of the impact, e.g., melting, coating, mixing, condensation, crystallization, redox reactions, quenching, etc., all concurring to alter both projectile and target composition on the irreversible way.In order to document such hypervelocity impact chemical fractionation, we have started a program of impact experiments by shooting doped (27 trace elements) millimeter-sized basalt projectiles on metallic target using a two stages light gas gun. With impact velocity in the range from 0.25 to 7 km.s-1, these experiments are aimed i) to characterize chemically and texturally all the post-mortem materials (e.g., target, crater, impact melt, condensates, and ejectas), in order ii) to make a chemical mass balance budget of the process, and iii) to relate it to the kinetic energy involved in the hypervelocity impacts for scaling law purpose. Irrespective of the incident velocities, our preliminary results show the importance of redox processes, the significant changes in the ejecta composition (e.g., iron enrichment) and the systematic coating of the crater by the impact melt [1]. On the target side, characterizations of the microstructure of the shocked iron alloys to better constrain the shielding processes. We also show how these results have great implications in our understanding on the current surface properties of small bodies, and chiefly in the case of M-type asteroids. [1] Ganino C, Libourel G, Nakamura AM & Michel P (2015) Goldschmidt Abstracts, 2015 990.

  17. Biologically inspired large scale chemical sensor arrays and embedded data processing

    NASA Astrophysics Data System (ADS)

    Marco, S.; Gutiérrez-Gálvez, A.; Lansner, A.; Martinez, D.; Rospars, J. P.; Beccherelli, R.; Perera, A.; Pearce, T.; Vershure, P.; Persaud, K.

    2013-05-01

    Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. EU Funded Project NEUROCHEM (Bio-ICT-FET- 216916) has developed novel computing paradigms and biologically motivated artefacts for chemical sensing taking inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built featuring a large scale sensor array (65K elements) in conducting polymer technology mimicking the olfactory receptor neuron layer, and abstracted biomimetic algorithms have been implemented in an embedded system that interfaces the chemical sensors. The embedded system integrates computational models of the main anatomic building blocks in the olfactory pathway: the olfactory bulb, and olfactory cortex in vertebrates (alternatively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions. Finally, the algorithmic models are tested with an odour robot with navigation capabilities in mixed chemical plumes

  18. Modeling Chemical Processes in Seawater Aquaria to Illustrate Concepts in Undergraduate Chemistry

    NASA Astrophysics Data System (ADS)

    Grguric, Gordan

    2000-04-01

    A recently introduced course at Richard Stockton College focuses on modeling chemical processes in seawater aquaria and illustrates to the students chemical principles such as mass and charge balance in solution, acid-base equilibria, and chemical kinetics. This paper describes three exercises from the course, which can be used in a variety of undergraduate chemistry curricula. They are (i) determining the salts and their amounts needed to prepare a given volume of artificial seawater, (ii) modeling aqueous carbonate equilibria, to calculate pH and alkalinity shifts through additions of chemicals, and (iii) modeling chemical kinetics involved in aqueous ozone-bromine reactions, to predict the type and extent of disinfection by-products. The approaches and items for discussion are described for each exercise. The exercises can be used independently of each other, as applications of chemical principles that are being discussed. Several practical examples using empirical data from large aquarium facilities are given to demonstrate how the models can be used.

  19. Coupled sulfur isotopic and chemical mass transfer modeling: Approach and application to dynamic hydrothermal processes

    SciTech Connect

    Janecky, D.R.

    1988-09-21

    A computational modeling code (EQPSreverse arrowS) has been developed to examine sulfur isotopic distribution pathways coupled with calculations of chemical mass transfer pathways. A post processor approach to EQ6 calculations was chosen so that a variety of isotopic pathways could be examined for each reaction pathway. Two types of major bounding conditions were implemented: (1) equilibrium isotopic exchange between sulfate and sulfide species or exchange only accompanying chemical reduction and oxidation events, and (2) existence or lack of isotopic exchange between solution species and precipitated minerals, parallel to the open and closed chemical system formulations of chemical mass transfer modeling codes. All of the chemical data necessary to explicitly calculate isotopic distribution pathways is generated by most mass transfer modeling codes and can be input to the EQPS code. Routines are built in to directly handle EQ6 tabular files. Chemical reaction models of seafloor hydrothermal vent processes and accompanying sulfur isotopic distribution pathways illustrate the capabilities of coupling EQPSreverse arrowS with EQ6 calculations, including the extent of differences that can exist due to the isotopic bounding condition assumptions described above. 11 refs., 2 figs.

  20. In vitro perturbations of targets in cancer hallmark processes predict rodent chemical carcinogenesis.

    PubMed

    Kleinstreuer, Nicole C; Dix, David J; Houck, Keith A; Kavlock, Robert J; Knudsen, Thomas B; Martin, Matthew T; Paul, Katie B; Reif, David M; Crofton, Kevin M; Hamilton, Kerry; Hunter, Ronald; Shah, Imran; Judson, Richard S

    2013-01-01

    Thousands of untested chemicals in the environment require efficient characterization of carcinogenic potential in humans. A proposed solution is rapid testing of chemicals using in vitro high-throughput screening (HTS) assays for targets in pathways linked to disease processes to build models for priority setting and further testing. We describe a model for predicting rodent carcinogenicity based on HTS data from 292 chemicals tested in 672 assays mapping to 455 genes. All data come from the EPA ToxCast project. The model was trained on a subset of 232 chemicals with in vivo rodent carcinogenicity data in the Toxicity Reference Database (ToxRefDB). Individual HTS assays strongly associated with rodent cancers in ToxRefDB were linked to genes, pathways, and hallmark processes documented to be involved in tumor biology and cancer progression. Rodent liver cancer endpoints were linked to well-documented pathways such as peroxisome proliferator-activated receptor signaling and TP53 and novel targets such as PDE5A and PLAUR. Cancer hallmark genes associated with rodent thyroid tumors were found to be linked to human thyroid tumors and autoimmune thyroid disease. A model was developed in which these genes/pathways function as hypothetical enhancers or promoters of rat thyroid tumors, acting secondary to the key initiating event of thyroid hormone disruption. A simple scoring function was generated to identify chemicals with significant in vitro evidence that was predictive of in vivo carcinogenicity in different rat tissues and organs. This scoring function was applied to an external test set of 33 compounds with carcinogenicity classifications from the EPA's Office of Pesticide Programs and successfully (p = 0.024) differentiated between chemicals classified as "possible"/"probable"/"likely" carcinogens and those designated as "not likely" or with "evidence of noncarcinogenicity." This model represents a chemical carcinogenicity prioritization tool supporting targeted

  1. Multiplexed chemical sensing and thin film metrology in programmable CVD process

    NASA Astrophysics Data System (ADS)

    Cai, Yuhong

    Mass spectrometry (mass spec) has proven valuable in understanding and controlling chemical processes used in semiconductor fabrication. Given the complexity of spatial distributions of fluid flow, thermal, and chemical parameters in such processes, multi-point chemical sampling would be beneficial. This dissertation discusses the design and development a multiplexed mass spec gas sampling system for real-time, in situ measurement of gas species concentrations in a spatially programmable chemical vapor deposition (SP-CVD) reactor prototype, where such chemical sensing is essential to achieve the benefits of a new paradigm for reactor design. The spatially programmable reactor, in which across-wafer distributions of reactant are programmable, enables (1) uniformity at any desired process design point, or (2) intentional nonuniformity to accelerate process optimization through combinatorial methods. The application of multiplexed mass spec sensing is well suited to our SP-CVD design, which is unique in effectively segmenting the showerhead gas flows by using exhaust gas pumping through the showerhead for each segment. In turn, mass spec sampling signals for each segment are multiplexed to obtain real-time signatures of reactor spatial behavior. In this dissertation, we have reported the results using inert gases to study the spatial distributions of species, validate SP-CVD reactor models, and lead to an understanding of fundamental phenomena associated with the reactor design. This novel multiplexed mass spec sensing system has been employed to monitor the process among three segments in real time. Deliberate non uniform W SP-CVD was performed using H2 reduction of WF6. A process based metrology, which reflects the relationship between the process recipe and film thickness was established. From the process based metrology, a recipe for uniform film deposition was determined and the re-programmability of the SP-CVD system was proven. Meanwhile, a mass spec sensor

  2. The chemical evolution of a travertine-depositing stream: geochemical processes and mass transfer reactions

    USGS Publications Warehouse

    Lorah, M.M.; Herman, J.S.

    1988-01-01

    Focuses on quantiatively defining the chemical changes occurring in Falling Spring Creek, a travertine-depositing stream located in Alleghany County, Virgina. The processes of CO2 outgassing and calcite precipitation or dissolution control the chemical evolution of the stream. Physical evidence for calcite precipitation exists in the travertine deposits which are first observed immediately above the waterfall and extend for at least 1.0 km below the falls. Net calcite precipitation occurs at all times of the year but is greatest during low-flow conditions in the summer and early fall. -from Authors

  3. Laboratory Studies of Homogeneous and Heterogeneous Chemical Processes of Importance in the Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2003-01-01

    The objective of this study was to conduct measurements of chemical kinetics parameters for reactions of importance in the stratosphere and upper troposphere, and to study the interaction of trace gases with ice surfaces in order to elucidate the mechanism of heterogeneous chlorine activation processes, using both a theoretical and an experimental approach. The measurements were carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere. The main experimental technique employed was turbulent flow-chemical ionization mass spectrometry, which is particularly well suited for investigations of radical-radical reactions.

  4. Development of waste minimization and decontamination technologies at the Idaho Chemical Processing Plant

    SciTech Connect

    Ferguson, R.L.; Archibald, K.E.; Demmer, R.L.

    1995-11-01

    Emphasis on the minimization of decontamination secondary waste has increased because of restrictions on the use of hazardous chemicals and Idaho Chemical Processing Plant (ICPP) waste handling issues. The Lockheed Idaho Technologies Co. (LITCO) Decontamination Development Subunit has worked to evaluate and introduce new performed testing, evaluations, development and on-site demonstrations for a number of novel decontamination techniques that have not yet previously been used at the ICPP. This report will include information on decontamination techniques that have recently been evaluated by the Decontamination Development Subunit.

  5. Application of pulsed corona induced plasma chemical process to an industrial incinerator.

    PubMed

    Lee, Yong-Hwan; Jung, Won-Suk; Choi, Yu-Ri; Oh, Jong-Seok; Jang, Sung-Duck; Son, Yoon-Gyu; Cho, Moo-Hyun; Namkung, Won; Koh, Dong-Jun; Mok, Young-Sun; Chung, Jae-Woo

    2003-06-01

    Pulsed corona induced plasma chemical process (PPCP) has been investigated for the simultaneous removal of NO(x) (nitrogen oxides) and SO2 (sulfur dioxide) from the flue gas emission. It is one of the world's largest scales of PPCP for treating NO(x) and SO2 simultaneously. A PPCP unit equipped with an average 120 kW modulator has been installed and tested at an industrial incinerator with the gas flow rate of 42 000 m3/h. To improve the removal efficiency of SO2 and NO(x), ammonia (NH3) and propylene (C3H6) were used as chemical additives. It was observed that the pulsed corona induced plasma chemical process made significant NO(x) and SO2 conversion with reasonable electric power consumption. The ammonia injection was very effective in the enhancement of SO2 removal. NO removal efficiency was significantly improved by injecting a C3H6 additive. In the experiments, the removal efficiencies of SO2 and NO(x) were approximately 99 and 70%, respectively. The specific energy consumption during the normal operation was approximately 1.4 Wh/m3, and the nanopulse conversion efficiency of 64.3% was achieved with the pulsed corona induced plasma chemical process.

  6. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants

    PubMed Central

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-01-01

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes—catalyst/oxidant concentrations, incident radiation flux, and pH—need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities. PMID:26287222

  7. An Investigation of the Potential Uses of Plasma Processing in the United States Chemical Industry

    NASA Astrophysics Data System (ADS)

    Estey, Paul Norman

    This thesis describes a systematic approach to determine the potential for high pressure (thermal) plasma processing in the United States chemical industry. A model was developed that describes the physical inputs and outputs of a plasma-based processing system. This model consists of an empirical model of an electric arc heater and an analytical model of the reaction chamber into which the arc heater gas flows. The reaction chamber model comprises the conservation equations of one-dimensional fluid flow including the effects of chemical kinetics, particle and gas injection, and convective and radiative heat transfer. These complex equations were solved numerically. An engineering economic analysis of the plasma process was performed when favorable results existed for the mass and energy flows to and from the plasma arc heater/reaction chamber model. This analysis was used to determine if the plasma process is or can be competitive with conventional technology. Five cases were studied as examples of plasma -based chemical processing: nitric acid production, hydrogen cyanide synthesis, silicon refining, titanium dioxide production, and reductant gas synthesis from residual fuel oil.

  8. Inelastic processes in atomic, molecular and chemical physics (in honour of Andrey K. Belyaev)

    NASA Astrophysics Data System (ADS)

    Barklem, Paul S.; Tscherbul, Timur V.

    2015-11-01

    This Special Issue is dedicated to Professor Andrey K. Belyaev, on the occasion of his 60th birthday and in celebration of his productive career in theoretical atomic, molecular, and chemical physics. It brings together 12 research studies of Inelastic Processes in Atomic, Molecular and Chemical Physics, a research area where Andrey himself made significant contributions. Inelastic processes are central to many different areas of physics, including atmospheric physics, astrophysics, and plasma physics to name a few, as well as in related technological applications such as lasers and fusion reactors. Quantitative understanding of the mechanisms of inelastic processes in atoms and molecules is therefore a problem of fundamental importance in physics, astrophysics, and chemistry. It is precisely this challenging problem that Andrey's research addresses using a broad arsenal of theoretical tools and techniques.

  9. Some aspects of the interaction between chemical and dynamic processes relating to the Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Eckman, R. S.; Turner, R. E.; Blackshear, W. T.; Fairlie, T. D. A.; Grose, W. L.

    1993-01-01

    Observational and modeling studies have been conducted to examine the interaction between the chemical and dynamical processes that occur during springtime in the lower stratosphere of the Southern Hemisphere. The temporal evolution of the ozone distribution and the circulation during 1987 is contrasted with that for 1988 as an illustrative example of how dynamical processes and the resulting meteorological conditions modulate the ozone depletion. Concurrently with the observational analysis, an effort was initiated to simulate the ozone depletion during austral spring using a 3D chemical/transport model. The model includes a parameterized representation of the heterogeneous processes thought to be important in this region. The simulation indicates that the inclusion of this additional chemistry, which results in the release of free chlorine and the redistribution of odd nitrogen into reservoir species, reproduces many aspects of the observations.

  10. Chemical Processing and Production of {sup 99}Mo at Sandia National Laboratories

    SciTech Connect

    Talley, Darren G.; Bourcier, Susan C.

    1997-06-01

    Sandia National Laboratories (SNL) has recently completed the irradiation of five isotope production targets at its Annular Core Research Reactor (ACRR) using targets fabricated by Los Alamos National Laboratory. Four of the irradiated targets were chemically processed in the SNL Hot Cell Facility (HCF) using the Cintichem process. The Cintichem method for processing {sup 99}Mo isotope production targets involves dissolution of a UO{sub 2} coating, separation of the Mo from the other fission products, and purifying the final product. Several processing issues were addressed during the initial process verification work. This paper discusses the results of work involving dissolving the UO{sub 2} coating, recovering Mo losses in purification columns, and radiation exposure testing of process glassware and components.

  11. Modeling the high-temperature gas-cooled reactor process heat plant: a nuclear to chemical conversion process

    SciTech Connect

    Pfremmer, R.D.; Openshaw, F.L.

    1982-05-01

    The high-temperature heat available from the High-Temperature Gas-Cooled Reactor (HTGR) makes it suitable for many process applications. One of these applications is a large-scale energy production plant where nuclear energy is converted into chemical energy and stored for industrial or utility applications. This concept combines presently available nuclear HTGR technology and energy conversion chemical technology. The design of this complex plant involves questions of interacting plant dynamics and overall plant control. This paper discusses how these questions were answered with the aid of a hybrid computer model that was developed within the time-frame of the conceptual design studies. A brief discussion is given of the generally good operability shown for the plant and of the specific potential problems and their anticipated solution. The paper stresses the advantages of providing this information in the earliest conceptual phases of the design.

  12. Modeling the high-temperature gas-cooled reactor process heat plant a nuclear to chemical conversion process

    SciTech Connect

    Pfremmer, R.D.; Openshaw, F.L.

    1982-08-01

    The high-temperature heat available from the high-temperature gas-cooled reactor (HTGR) makes it suitable for many process applications. One of these applications is a large-scale energy production plant where nuclear energy is converted into chemical energy and stored for industrial or utility applications. This concept combines presently available nuclear HTGR technology and energy conversion chemical technology. The design of this complex plant involves questions of interacting plant dynamics and overall plant control. This paper discusses how these questions were answered with the aid of a hybrid computer model that was developed within the time-frame of the conceptual design studies. A brief discussion is given of the generally good operability shown for the plant and of the specific potential problems and their anticipated solution. The paper stresses the advantages of providing this information in the earliest conceptual phases of the design.

  13. The chemical behavior of silica in water in saline area; comparison for region and evaporation process.

    PubMed

    Tanaka, Miho; Takahashi, Kazuya

    2007-09-01

    The chemical behavior of silica in the water samples from Death Valley were examined by the speciation of silica and the measurements of the silica and alkaline and alkaline earth cation contents to compare with those from the arid area in Xinjiang, Northwest China. Basically, the chemical behavior of silica in spring water samples from Death Valley coherent with those in Xinjiang, Northwest China. And the observed chemical species of silica with alkaline and alkaline earth cations in spring water samples in Death Valley were in good agreement with those in Xinjiang, Northwest China. However, some of the silica behavior observed in water samples in Death Valley was distinct from those observed in Xinjiang, Northwest China. It is considered that some of the water samples in Death Valley were subject to evaporation process.

  14. Chemical tension and global equilibrium in VLS nanostructure growth process: from nanohillocks to nanowires

    NASA Astrophysics Data System (ADS)

    Li, N.; Tan, T. Y.; Gösele, U.

    2007-03-01

    We formulate a global equilibrium model to describe the growth of one-dimensional nanostructures in the VLS process by including also the chemical tension in addition to the physical tensions, i.e. surface energies. The chemical tension derives from the Gibbs free energy change due to the growth of a crystal layer of an elementary thickness. The system global equilibrium is arrived at via the balance of the static physical tensions and the dynamic chemical tension. The model predicts and provides conditions for the growth of nanowires of all sizes exceeding a lower thermodynamic limit. The model also predicts the conditions distinguishing the growth of nanohillocks from nanowires. These predictions will allow the verification of the model by future experiments specifically designed for this purpose.

  15. Towards an improved understanding of processes controlling absorption efficiency and biomagnification of organic chemicals by fish.

    PubMed

    Xiao, Ruiyang; Arnot, Jon A; MacLeod, Matthew

    2015-11-01

    Dietary exposure is considered the dominant pathway for fish exposed to persistent, hydrophobic chemicals in the environment. Here we present a dynamic, fugacity-based three-compartment bioaccumulation model that describes the fish body as one compartment and the gastrointestinal tract (GIT) as two compartments. The model simulates uptake from the GIT by passive diffusion and micelle-mediated diffusion, and chemical degradation in the fish and the GIT compartments. We applied the model to a consistent measured dietary uptake and depuration dataset for rainbow trout (n=215) that is comprised of chlorinated benzenes, biphenyls, dioxins, diphenyl ethers, and polycyclic aromatic hydrocarbons (PAHs). Model performance relative to the measured data is statistically similar regardless of whether micelle-mediated diffusion is included; however, there are considerable uncertainties in modeling this process. When degradation in the GIT is assumed to be negligible, modeled chemical elimination rates are similar to measured rates; however, predicted concentrations of the PAHs are consistently higher than measurements by up to a factor of 20. Introducing a kinetic limit on chemical transport from the fish compartment to the GIT and increasing the rate constant for degradation of PAHs in tissues of the liver and/or GIT are required to achieve good agreement between the modelled and measured concentrations for PAHs. Our results indicate that the apparent low absorption efficiency of PAHs relative to the chemicals with similar hydrophobicity is attributable to biotransformation in the liver and/or the GIT. Our results provide process-level insights about controls on the extent of bioaccumulation of chemicals.

  16. Polychlorinated Biphenyls in a Temperate Alpine Glacier: 2. Model Results of Chemical Fate Processes.

    PubMed

    Steinlin, Christine; Bogdal, Christian; Pavlova, Pavlina A; Schwikowski, Margit; Lüthi, Martin P; Scheringer, Martin; Schmid, Peter; Hungerbühler, Konrad

    2015-12-15

    We present results from a chemical fate model quantifying incorporation of polychlorinated biphenyls (PCBs) into the Silvretta glacier, a temperate Alpine glacier located in Switzerland. Temperate glaciers, in contrast to cold glaciers, are glaciers where melt processes are prevalent. Incorporation of PCBs into cold glaciers has been quantified in previous studies. However, the fate of PCBs in temperate glaciers has never been investigated. In the model, we include melt processes, inducing elution of water-soluble substances and, conversely, enrichment of particles and particle-bound chemicals. The model is validated by comparing modeled and measured PCB concentrations in an ice core collected in the Silvretta accumulation area. We quantify PCB incorporation between 1900 and 2010, and discuss the fate of six PCB congeners. PCB concentrations in the ice core peak in the period of high PCB emissions, as well as in years with strong melt. While for lower-chlorinated PCB congeners revolatilization is important, for higher-chlorinated congeners, the main processes are storage in glacier ice and removal by particle runoff. This study gives insight into PCB fate and dynamics and reveals the effect of snow accumulation and melt processes on the fate of semivolatile organic chemicals in a temperate Alpine glacier.

  17. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOEpatents

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  18. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOEpatents

    Chang, Shih-Ger

    1994-01-01

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O.sub.3, PO, PO.sub.2, etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like.

  19. Control of Chemical Effects in the Separation Process of a Differential Mobility / Mass Spectrometer System

    PubMed Central

    Schneider, Bradley B.; Coy, Stephen L.; Krylov, Evgeny V.; Nazarov, Erkinjon G.

    2013-01-01

    Differential mobility spectrometry (DMS) separates ions on the basis of the difference in their migration rates under high versus low electric fields. Several models describing the physical nature of this field mobility dependence have been proposed but emerging as a dominant effect is the clusterization model sometimes referred to as the dynamic cluster-decluster model. DMS resolution and peak capacity is strongly influenced by the addition of modifiers which results in the formation and dissociation of clusters. This process increases selectivity due to the unique chemical interactions that occur between an ion and neutral gas phase molecules. It is thus imperative to bring the parameters influencing the chemical interactions under control and find ways to exploit them in order to improve the analytical utility of the device. In this paper we describe three important areas that need consideration in order to stabilize and capitalize on the chemical processes that dominate a DMS separation. The first involves means of controlling the dynamic equilibrium of the clustering reactions with high concentrations of specific reagents. The second area involves a means to deal with the unwanted heterogeneous cluster ion populations emitted from the electrospray ionization process that degrade resolution and sensitivity. The third involves fine control of parameters that affect the fundamental collision processes, temperature and pressure. PMID:20065515

  20. Heparins: process-related physico-chemical and compositional characteristics, fingerprints and impurities.

    PubMed

    Liverani, Lino; Mascellani, Giuseppe; Spelta, Franco

    2009-11-01

    During the past 25 years, heparin extraction and purification processes have changed. The results of these changes are reflected by the continuous increase in potency of the International Standard for heparin. This increase is due not only to a higher purity, but also to a number of changes in the physico-chemical characteristics of heparin. For long time, all these changes have been disregarded as non-critical by regulatory authorities. Heparin marketing authorisation was reviewed only two years ago and Pharmacopoeia monographs were reviewed just for the addition of new tests, mainly aimed at tackling the oversulfated chondroitin sulfate (OSCS) crisis. Currently, heparin monographs are again under revision. Such changes, different for each manufacturer, have caused a further increase in the heterogeneity of individual batches of heparin. This review aims at showing that chemical, physical and biological characteristics of heparin (such as disaccharide composition, amount of low sulfated and high sulfated sequences, molecular weight profiles [MW], activities, structural artifacts, fingerprints and glycosaminoglycans impurities) are all process-dependent and may significantly vary when different processes are used to minimise the content of dermatan sulfate. The wide heterogeneity of the physico-chemical characteristics of currently marketed heparin and the lack of suitable and shareable reference standards for the identification/quantification of process-related impurities caused, and are still causing, heated debates among scientific institutions, companies and authorities.

  1. The production of fuels and chemicals from food processing wastes & cellulosics. Final research report

    SciTech Connect

    Dale, M.C.; Okos, M.; Burgos, N.

    1997-06-15

    High strength food wastes of about 15-20 billion pounds solids are produced annually by US food producers. Low strength food wastes of 5-10 billion pounds/yr. are produced. Estimates of the various components of these waste streams are shown in Table 1. Waste paper/lignocellulosic crops could produce 2 to 5 billion gallons of ethanol per year or other valuable chemicals. Current oil imports cost the US about $60 billion dollars/yr. in out-going balance of trade costs. Many organic chemicals that are currently derived from petroleum can be produced through fermentation processes. Petroleum based processes have been preferred over biotechnology processes because they were typically cheaper, easier, and more efficient. The technologies developed during the course of this project are designed to allow fermentation based chemicals and fuels to compete favorably with petroleum based chemicals. Our goals in this project have been to: (1) develop continuous fermentation processes as compared to batch operations; (2) combine separation of the product with the fermentation, thus accomplishing the twin goals of achieving a purified product from a fermentation broth and speeding the conversion of substrate to product in the fermentation broth; (3) utilize food or cellulosic waste streams which pose a current cost or disposal problem as compared to high cost grains or sugar substrates; (4) develop low energy recovery methods for fermentation products; and finally (5) demonstrate successful lab scale technologies on a pilot/production scale and try to commercialize the processes. The scale of the wastes force consideration of {open_quotes}bulk commodity{close_quotes} type products if a high fraction of the wastes are to be utilized.

  2. Chemical and entropic control on the molecular self-assembly process

    NASA Astrophysics Data System (ADS)

    Packwood, Daniel M.; Han, Patrick; Hitosugi, Taro

    2017-02-01

    Molecular self-assembly refers to the spontaneous assembly of molecules into larger structures. In order to exploit molecular self-assembly for the bottom-up synthesis of nanomaterials, the effects of chemical control (strength of the directionality in the intermolecular interaction) and entropic control (temperature) on the self-assembly process should be clarified. Here we present a theoretical methodology that unambiguously distinguishes the effects of chemical and entropic control on the self-assembly of molecules adsorbed to metal surfaces. While chemical control simply increases the formation probability of ordered structures, entropic control induces a variety of effects. These effects range from fine structure modulation of ordered structures, through to degrading large, amorphous structures into short, chain-shaped structures. Counterintuitively, the latter effect shows that entropic control can improve molecular ordering. By identifying appropriate levels of chemical and entropic control, our methodology can, therefore, identify strategies for optimizing the yield of desired nanostructures from the molecular self-assembly process.

  3. Membrane process designs in the recovery of bio-fuels and bio-chemicals

    SciTech Connect

    Leeper, S.A.

    1990-01-01

    In this presentation, the emerging membrane unit operations and process designs that can be used in recovery of fuels and organic chemicals produced via bioconversion are briefly summarized. Product recovery costs are a major barrier to increased use of bioconversion for the production of fuels and chemicals. The integration of developing membrane unit operations into product recovery schemes may reduce process energy requirements and cost. Membrane unit operations that are used or studied in recovery of bio-fuels and organic chemicals include pervaporation (PV), vapor permeation (VPe), reverse osmosis (RO), membrane extraction, and electrodialysis (ED). Although it can be argued that ultrafiltration (UF) is used to purify bio-fuels and bio-chemicals, UF is not included in this survey for two reasons: (1) the primary uses of UF in bioprocessing are to clarify fermentation broth and to retain cells/enzymes in bioreactors and (2) the literature on UF in biotechnology is expansive. Products of bioconversion for which data are compiled include ethanol, acetone, butanol, glycerol, isopropanol, ethyl acetate, fusel oils, acetaldehyde, acetic acid, butyric acid, citric acid, propionic acid, succinic acid, and tartaric acid. 13 refs.

  4. Chemical and entropic control on the molecular self-assembly process

    PubMed Central

    Packwood, Daniel M.; Han, Patrick; Hitosugi, Taro

    2017-01-01

    Molecular self-assembly refers to the spontaneous assembly of molecules into larger structures. In order to exploit molecular self-assembly for the bottom-up synthesis of nanomaterials, the effects of chemical control (strength of the directionality in the intermolecular interaction) and entropic control (temperature) on the self-assembly process should be clarified. Here we present a theoretical methodology that unambiguously distinguishes the effects of chemical and entropic control on the self-assembly of molecules adsorbed to metal surfaces. While chemical control simply increases the formation probability of ordered structures, entropic control induces a variety of effects. These effects range from fine structure modulation of ordered structures, through to degrading large, amorphous structures into short, chain-shaped structures. Counterintuitively, the latter effect shows that entropic control can improve molecular ordering. By identifying appropriate levels of chemical and entropic control, our methodology can, therefore, identify strategies for optimizing the yield of desired nanostructures from the molecular self-assembly process. PMID:28195175

  5. Bio-refinery as the bio-inspired process to bulk chemicals.

    PubMed

    Sanders, Johan; Scott, Elinor; Weusthuis, Ruud; Mooibroek, Hans

    2007-02-12

    This paper describes several examples of knowledge-intensive technologies for the production of chemicals from biomass, which take advantage of the biomass structure in a more efficient way than the production of fuels or electricity alone. The depletion in fossil feedstocks, increasing oil prices, and the ecological problems associated with CO(2) emissions are forcing the development of alternative resources for energy, transport fuels, and chemicals, such as the replacement of fossil resources with CO(2) neutral biomass. Allied with this is the conversion of crude oil products utilizes primary products (ethylene, etc.) and their conversion into either materials or (functional) chemicals with the aid of co-reagents such as ammonia, by various process steps to introduce functionalities such as -NH(2) into the simple structures of the primary products. Conversely, many products found in biomass often contain functionalities. Therefore, it is attractive to exploit this in order to by-pass the use, and preparation of, co-reagents as well as to eliminate various process steps by utilizing suitable biomass-based precursors for the production of chemicals.

  6. A novel double loop control model design for chemical unstable processes.

    PubMed

    Cong, Er-Ding; Hu, Ming-Hui; Tu, Shan-Tung; Xuan, Fu-Zhen; Shao, Hui-He

    2014-03-01

    In this manuscript, based on Smith predictor control scheme for unstable process in industry, an improved double loop control model is proposed for chemical unstable processes. Inner loop is to stabilize integrating the unstable process and transform the original process to first-order plus pure dead-time dynamic stable process. Outer loop is to enhance the performance of set point response. Disturbance controller is designed to enhance the performance of disturbance response. The improved control system is simple with exact physical meaning. The characteristic equation is easy to realize stabilization. Three controllers are separately design in the improved scheme. It is easy to design each controller and good control performance for the respective closed-loop transfer function separately. The robust stability of the proposed control scheme is analyzed. Finally, case studies illustrate that the improved method can give better system performance than existing design methods.

  7. Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results

    NASA Technical Reports Server (NTRS)

    Plumlee, Geoffrey S.; Ridley, W. Ian

    1992-01-01

    Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.

  8. Exact Analytic Solution of the Non-Markovian Chemical Reaction Process Via Time-Subordination

    NASA Astrophysics Data System (ADS)

    Benson, D. A.

    2015-12-01

    Perfectly-mixed reactions are Markovian, because the advance of the state depends only on the current state. Poor mixing (or the partner process of upscaling over heterogeneous concentrations) renders the process non-Markovian because of memory of the chemical structure. In other words, a particle takes some time to reach a suitable reaction site. The time depends on structure, and the structure changes over time. For purely diffusive transport, a calculation of the random time to reach the edges of ``islands'' allows a solution of the non-Markovian reaction rates that evolve (decrease) over time. This randomization of the active (operational) reaction time leads to non-Markovian reactions and an integro-differential governing equation of chemical evolution. Implications for more complex (advection/diffusion) environments are discussed.

  9. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview

    SciTech Connect

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

    1988-12-01

    Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

  10. Replacement of chemical intensive water treatment processes with energy saving membrane. Final report

    SciTech Connect

    Mickley, M.C.; Goering, S.W.

    1983-11-01

    The project investigated the use of charged ultrafiltration membranes to treat hard water. More specifically, the work was undertaken to (1) make charged ultrafiltration membranes to demonstrate the technical feasibility of the chemical grafting approach; (2) evaluate the market potential for charged ultrafiltration membranes; and (3) evaluate the cost and energy savings for using charged ultrafiltration as compared to lime-based clarification and other treatment methods. The results suggest that chemical grafting is a relatively simple, reproducible and low-cost way to modify existing substrate materials to give them enhanced transport performance. Process studies lead to the identification of good market potential for membrane processes using charged ultrafiltration membranes. Capital and operating costs relative to lime-based clarification are favorable for low- and medium-sized treatment plants. Finally, substantial energy savings are apparent as compared to lime-based precipitation systems which incur substantial energy consumption in the lime production and transportation steps.

  11. Analysis of Surface Chemistry and Detector Performance of Chemically Process CdZnTe crystals

    SciTech Connect

    HOSSAIN, A.; Yang, G.; Sutton, J.; Zergaw, T.; Babalola, O. S.; Bolotnikov, A. E.; Camarda. ZG. S.; Gul, R.; Roy, U. N., and James, R. B.

    2015-10-05

    The goal is to produce non-conductive smooth surfaces for fabricating low-noise and high-efficiency CdZnTe devices for gamma spectroscopy. Sample preparation and results are discussed. The researachers demonstrated various bulk defects (e.g., dislocations and sub-grain boundaries) and surface defects, and examined their effects on the performance of detectors. A comparison study was made between two chemical etchants to produce non-conductive smooth surfaces. A mixture of bromine and hydrogen peroxide proved more effective than conventional bromine etchant. Both energy resolution and detection efficiency of CZT planar detectors were noticeably increased after processing the detector crystals using improved chemical etchant and processing methods.

  12. Microwave processing and diagnosis of chemically reacting materials in a single-mode cavity applicator

    NASA Astrophysics Data System (ADS)

    Jow, Jinder; Hawley, Martin C.; Finzel, Mark; Asmussen, Jes, Jr.; Lin, Haw-Hwa

    1987-12-01

    Online microwave processing and dielectric diagnosis of chemically reacting materials (epoxy/amine) have been successfully performed using a TM012-mode cylindrical cavity at a frequency of 2.45 GHz in conjunction with fluoroptic temperature measurement. Complex permittivity measurements by this single-frequency technique are repeatable and consistent with those obtained by conventional swept-frequency methods. The accuracy of complex permittivity measurements for both methods is within + or - 5 percent for permittivity and + or - 15 percent for loss. Both techniques are based on material-cavity perturbation theory. Perturbation equations for cylindrical shapes of the cavity and loaded material were derived to account for volume variation of the sample due to thermal expansion. Complex permittivity of epoxy/amine as a function of the extent of cure and temperature was determined in order to monitor the chemical reaction progress during microwave processing.

  13. The production of chemicals from food processing wastes using a novel fermenter separator

    SciTech Connect

    Dale, M.C.; Havlik, S.; Lee, W.C.; Lineback, D.S.; Park, C.H.; Okos, M.R.

    1990-01-01

    A range of chemicals can be made from fermentation processes, and most fermentations are characterized by product inhibition. As product concentration increases, inhibitory products can substantially limit the rate of fermentation processes. Product recovery costs are a strong function of concentration. It is expensive to recover low levels of product from a fermentation broth. Thus, fermentation costs (which increase with higher product concentration) traditionally must be balanced against product recovery costs (which decrease with product concentration). A novel reactor-separator process has been developed at Purdue University to minimize product inhibition of fermentation rates. This reactor has been shown to exhibit very high productivities --- simultaneously producing and removing a inhibitory product while maintaining a high viable cell concentration in the reactor. The basic objective of this study is to develop an energy efficient and economical process to convert food wastes to usable fuels and chemicals. The work is divided into two major efforts: an applied phase which involves design and building of a whey to ethanol process as well as process design and optimization; and a basic phase which involves investigating alternative fermentation systems and fundamental research on immobilized cell reactor systems. This document discusses the study and its results.

  14. Real-time in-situ chemical sensing, sensor-based film thickness metrology, and process control in W-CVD process

    NASA Astrophysics Data System (ADS)

    Xu, Yiheng

    2000-10-01

    A real-time in-situ sampling system has been implemented for chemical sensing in tungsten chemical vapor deposition process (W-CVD) using mass spectrometry. Sensor integration was realized to allow synchronous capture of equipment state signals and process signals (chemical information from mass spectrometry). Wafer state metrology from integrated mass spectrometry signals of different gaseous chemical species in the reaction was established with an uncertainty of 2--7% depending on the conversion rate of the process, which is determined by the process chemistry and processing conditions. The mass spectrometry-based wafer state metrology obtained was applied to implement fault detection and W film thickness process control: run-to-run control in H2 reduction W-CVD and real time end point control in SiH4 reduction process. The results demonstrate the benefit of combining real-time mass spectrometry sensor data with equipment state information for process control. The important generic issues regarding real-time in-situ chemical sensing using mass spectrometry in the context of a multi-component chemical reaction system like W-CVD have also been discussed. The accomplishments of this research demonstrate the value of in-situ chemical sensing in complex manufacturing process systems and provide clear pathways toward advanced process control methodology.

  15. Characterization of plutonium in ground water near the idaho chemical processing plant

    USGS Publications Warehouse

    Cleveland, J.M.

    1982-01-01

    Plutonium is present in very low concentrations in ground water near the disposal well at the Idaho Chemical Processing Plant but was not detected in waters at greater distances. Because of the absence of strong complexing agents, the plutonium is present as an uncomplexed (perhaps hydrolyzed) tetravalent species, which is readily precipitated or sorbed by basalt or sediments along the ground-water flow path.

  16. Bandgap tuning of mixed organic cation utilizing chemical vapor deposition process

    PubMed Central

    Kim, Jeongmo; Kim, Hyeong Pil; Teridi, Mohd Asri Mat; Yusoff, Abd. Rashid bin Mohd; Jang, Jin

    2016-01-01

    Bandgap tuning of a mixed organic cation perovskite is demonstrated via chemical vapor deposition process. The optical and electrical properties of the mixed organic cation perovskite can be manipulated by varying the growth time. A slight shift of the absorption band to shorter wavelengths is demonstrated with increasing growth time, which results in the increment of the current density. Hence, based on the optimized growth time, our device exhibits an efficiency of 15.86% with negligible current hysteresis. PMID:27874026

  17. Fabrication of lightweight ceramic mirrors by means of a chemical vapor deposition process

    NASA Technical Reports Server (NTRS)

    Goela, Jitendra S. (Inventor); Taylor, Raymond L. (Inventor)

    1991-01-01

    A process to fabricate lightweigth ceramic mirrors, and in particular, silicon/silicon carbide mirrors, involves three chemical vapor deposition steps: one to produce the mirror faceplate, the second to form the lightweight backstructure which is deposited integral to the faceplate, and the third and final step which results in the deposition of a layer of optical grade material, for example, silicon, onto the front surface of the faceplate. The mirror figure and finish are fabricated into this latter material.

  18. The approach to risk analysis in three industries - Nuclear power, space systems, and chemical process

    NASA Astrophysics Data System (ADS)

    Garrick, B. J.

    A review is presented of how safety and risk analysis is conducted in the three major industries of space flight, nuclear power, and chemical and petroleum processes. This review is presented in the belief that safety enhancements and efficiencies may result from a greater exchange of risk assessment technology between these industries. The focus of this review relates to the engineered systems involved in the three industries.

  19. Idaho Chemical Processing Plant and Plutonium-Uranium Extraction Plant phaseout/deactivation study

    SciTech Connect

    Patterson, M.W.; Thompson, R.J.

    1994-01-01

    The decision to cease all US Department of Energy (DOE) reprocessing of nuclear fuels was made on April 28, 1992. This study provides insight into and a comparison of the management, technical, compliance, and safety strategies for deactivating the Idaho Chemical Processing Plant (ICPP) at Westinghouse Idaho Nuclear Company (WINCO) and the Westinghouse Hanford Company (WHC) Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this study is to ensure that lessons-learned and future plans are coordinated between the two facilities.

  20. A process for treatment of mixed waste containing chemical plating wastes

    SciTech Connect

    Anast, K.R.; Dziewinski, J.; Lussiez, G.

    1995-02-01

    The Waste Treatment and Minimization Group at Los Alamos National Laboratory has designed and will be constructing a transportable treatment system to treat low-level radioactive mixed waste generated during plating operations. The chemical and plating waste treatment system is composed of two modules with six submodules, which can be trucked to user sites to treat a wide variety of aqueous waste solutions. The process is designed to remove the hazardous components from the waste stream, generating chemically benign, disposable liquids and solids with low level radioactivity. The chemical and plating waste treatment system is designed as a multifunctional process capable of treating several different types of wastes. At this time, the unit has been the designated treatment process for these wastes: Destruction of free cyanide and metal-cyanide complexes from spent plating solutions; destruction of ammonia in solution from spent plating solutions; reduction of Cr{sup VI} to Cr{sup III} from spent plating solutions, precipitation, solids separation, and immobilization; heavy metal precipitation from spent plating solutions, solids separation, and immobilization, and acid or base neutralization from unspecified solutions.

  1. EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING

    SciTech Connect

    Brown, A.

    2014-04-27

    One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was a significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.

  2. Chemical-bath deposition of ZnSe thin films: Process and material characterization

    SciTech Connect

    Dona, J.M.; Herrero, J.

    1995-03-01

    Chemical-bath deposition of ZnSe thin films from NH{sub 3}/NH{sub 2}-NH{sub 2}/SeC(NH{sub 2}){sub 2}/Na{sub 2}SO{sub 3}/ZnSO{sub 4} solutions has been studied. The effect of various process parameters on the growth and the film quality is presented. A first approach to a mechanistic interpretation of the chemical process, based on the influence of the process parameters on the film growth rate, is reported. The structural, optical, chemical, and electrical properties of the ZnSe thin-films deposited by this method have been studied. The electron diffraction (EDS) analysis shows that the films are microcrystalline with mixed cubic and hexagonal structure. EDS analysis has demonstrated that the films are highly stoichiometric. Scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy studies of the ZnSe thin films deposited by this method show that the films are continuous and homogeneous. Optical measurements have allowed the authors to detect the presence of the spin-orbit splitting effect in this material. Electrical conductivity measurements have shown the highly resistive nature of these films ({rho} {approximately} 10{sup 9} {Omega} cm).

  3. THE SECOND GENERATION OF THE WASTE REDUCTION (WAR) ALGORITHM: A DECISION SUPPORT SYSTEM FOR GREENER CHEMICAL PROCESSES

    EPA Science Inventory

    chemical process designers using simulation software generate alternative designs for one process. One criterion for evaluating these designs is their potential for adverse environmental impacts due to waste generated, energy consumed, and possibilities for fugitive emissions. Co...

  4. Development of a two-step, forced chemical vapor infiltration process

    SciTech Connect

    Matlin, W.M.; Stinton, D.P.; Besmann, T.M.

    1995-12-01

    A two-step forced chemical vapor infiltration process was developed that reduced infiltration times for 4.45 cm dia. by 1.27 cm thick Nicalon{trademark} fiber pre-forms by two thirds while maintaining final densities near 90%. In the first stage of the process, micro-voids within fiber bundles in the cloth were uniformly infiltrated throughout the preform. In the second stage, the deposition rate was increased to more rapidly fill the macro-voids between bundles within the cloth and between layers of cloth. By varying the thermal gradient across the preform uniform infiltration rates were maintained and high final densities achieved.

  5. Infrared Fiber Evanescent Wave Spectroscopy For In-Situ Monitoring Of Chemical Processes

    NASA Astrophysics Data System (ADS)

    Margalit, Eli; Dodiuk, H.; Kosower, Edward M.; Katzir, Abraham

    1989-06-01

    A silver halide infrared fiber-optic evanescent wave spectroscopic technique for in-situ monitoring of chemical processes and surface analysis is described. Samples are spread onto a fiber contained in a teflon-lined cell. Attenuated total internal reflectance (AIR) measurement with a Fourier transform infrared (FTIR) spectrometer yields spectra at various stages of a process (for example, the monitoring of adhesive curing and coupling agent polymerization). Changes in known spectroscopic features may be recognized in films as thin as a monolayer. The advantages and limitations of this surface analysis technique are discussed.

  6. Development of a polysilicon process based on chemical vapor deposition, phase 1

    NASA Technical Reports Server (NTRS)

    Plahutnik, F.; Arvidson, A.; Sawyer, D.

    1982-01-01

    The goal of this program is to demonstrate that a dichlorosilane-based reductive chemical vapor deposition (CVD) process is capable of producing, at low cost, high quality polycrystalline silicon. Physical form and purity of this material will be consistent with LSA material requirements for use in the manufacture of high efficiency solar cells. Four polysilicon deposition runs were completed in an intermediate size reactor using dichlorosilane fed from 250 pound cylinders. Results from the intermediate size reactor are consistent with those obtained earlier with a small experimental reactor. Modifications of two intermediate size reactors were completed to interface with the dichlorosilane process demonstration unit (PDU).

  7. Chemical mechanical polishing: An enabling fabrication process for surface micromachining technologies

    SciTech Connect

    Sniegowski, J.J.

    1998-08-01

    Chemical-mechanical polishing (CMP), once it is set-up and developed in a fabrication line can be readily adapted as a planarization technique for use in polysilicon surface micromachining technology. Although the planarization is a conceptually simple step, the benefit of its inclusion in the overall fabrication process is immense. Manufacturing impediments are removed while novel, expanded processes and designs become possible. The authors anticipate that CMP planarization, in the near future, will become a standard within the MEMS community for polysilicon surface micromachining. In addition, other MEMS fabrication technologies such as bulk micromachining and LIGA can potentially benefit from CMP.

  8. Modeling aqueous ozone/UV process using oxalic acid as probe chemical.

    PubMed

    Garoma, Temesgen; Gurol, Mirat D

    2005-10-15

    A kinetic model that describes the removal of organic pollutants by an ozone/UV process is described. Oxalic acid, which reacts with a very low rate constant with ozone and relatively high rate constant with hydroxyl radical (OH*), was used as the probe chemical to model the process. The model was verified by experimental data on concentrations of oxalic acid and hydrogen peroxide (H202) under various experimental conditions, i.e., ozone gas dosage, UV light intensity, and varying oxalic acid concentrations.

  9. P80 SRM low torque flex-seal development - thermal and chemical modeling of molding process

    NASA Astrophysics Data System (ADS)

    Descamps, C.; Gautronneau, E.; Rousseau, G.; Daurat, M.

    2009-09-01

    The development of the flex-seal component of the P80 nozzle gave the opportunity to set up new design and manufacturing process methods. Due to the short development lead time required by VEGA program, the usual manufacturing iterative tests work flow, which is usually time consuming, had to be enhanced in order to use a more predictive approach. A newly refined rubber vulcanization description was built up and identified on laboratory samples. This chemical model was implemented in a thermal analysis code. The complete model successfully supports the manufacturing processes. These activities were conducted with the support of ESA/CNES Research & Technologies and DGA (General Delegation for Armament).

  10. Neural processing, perception, and behavioral responses to natural chemical stimuli by fish and crustaceans.

    PubMed

    Derby, Charles D; Sorensen, Peter W

    2008-07-01

    This manuscript reviews the chemical ecology of two of the major aquatic animal models, fish and crustaceans, in the study of chemoreception. By necessity, it is restricted in scope, with most emphasis placed on teleost fish and decapod crustaceans. First, we describe the nature of the chemical world perceived by fish and crustaceans, giving examples of the abilities of these animals to analyze complex natural odors. Fish and crustaceans share the same environments and have evolved some similar chemosensory features: the ability to detect and discern mixtures of small metabolites in highly variable backgrounds and to use this information to identify food, mates, predators, and habitat. Next, we give examples of the molecular nature of some of these natural products, including a description of methodologies used to identify them. Both fish and crustaceans use their olfactory and gustatory systems to detect amino acids, amines, and nucleotides, among many other compounds, while fish olfactory systems also detect mixtures of sex steroids and prostaglandins with high specificity and sensitivity. Third, we discuss the importance of plasticity in chemical sensing by fish and crustaceans. Finally, we conclude with a description of how natural chemical stimuli are processed by chemosensory systems. In both fishes and crustaceans, the olfactory system is especially adept at mixture discrimination, while gustation is well suited to facilitate precise localization and ingestion of food. The behaviors of both fish and crustaceans can be defined by the chemical worlds in which they live and the abilities of their nervous systems to detect and identify specific features in their domains. An understanding of these worlds and the sensory systems that provide the animals with information about them provides insight into the chemical ecology of these species.

  11. Litter chemistry and chemical diversity drive ecosystem processes in forest ponds.

    PubMed

    Stoler, Aaron B; Burke, David J; Relyea, Rick A

    2016-07-01

    Research suggests that a positive relationship exists between diversity and ecological function, yet the multi-trophic effects of biodiversity remain poorly understood. The resource complementarity hypothesis suggests that increasing the trait diversity of resources provides a more complete diet for consumers, elevating consumer feeding rates. Whereas previous tests of this mechanism have measured trait diversity as the variation of single traits or the richness of functional groups, we employed a multivariate trait index to manipulate the chemical diversity of temperate tree litter species in outdoor pond mesocosms. We inoculated outdoor mesocosms with diverse and multi-trophic communities of microbial and macro-consumer species that rely on leaf litter for energy and nutrients. Litter was provided at three levels of chemical trait diversity, a constant level of species richness, and an equal representation of all litter species. Over three months, we measured more than 65 responses, and assessed the effects of litter chemical diversity and chemical trait means (i.e., community-weighted means). We found that litter chemical diversity positively correlated with decomposition rate of leaf litter, but had no effect on biomass or density of producers and consumers. However, the pond communities often responded to chemical trait means, particularly those related to nutrients, structure, and defense. Our results suggest that resource complementarity does have some effect on the release of energy and nutrients from decomposing substrates in forest ponds, but does not have multi-trophic effects. Our results further suggest that loss of tree biodiversity could affect forest ecosystem functionality, and particularly the processes occurring in and around ponds and wetlands.

  12. Optical monitoring of chemical processes in turbid biogenic liquid dispersions by Photon Density Wave spectroscopy.

    PubMed

    Hass, Roland; Munzke, Dorit; Ruiz, Salomé Vargas; Tippmann, Johannes; Reich, Oliver

    2015-04-01

    In turbid biogenic liquid material, like blood or milk, quantitative optical analysis is often strongly hindered by multiple light scattering resulting from cells, particles, or droplets. Here, optical attenuation is caused by losses due to absorption as well as scattering of light. Fiber-based Photon Density Wave (PDW) spectroscopy is a very promising method for the precise measurement of the optical properties of such materials. They are expressed as absorption and reduced scattering coefficients (μ a and μ s', respectively) and are linked to the chemical composition and physical properties of the sample. As a process analytical technology, PDW spectroscopy can sense chemical and/or physical processes within such turbid biogenic liquids, providing new scientific insight and process understanding. Here, for the first time, several bioprocesses are analyzed by PDW spectroscopy and the resulting optical coefficients are discussed with respect to established mechanistic models of the chosen processes. As model systems, enzymatic casein coagulation in milk, temperature-induced starch hydrolysis in beer mash, and oxy- as well as deoxygenation of human donor blood were investigated by PDW spectroscopy. The findings indicate that also for very complex biomaterials (i.e., not well-defined model materials like monodisperse polymer dispersions), obtained optical coefficients allow for the assessment of a structure/process relationship and thus for a new analytical access to biogenic liquid material. This is of special relevance as PDW spectroscopy data are obtained without any dilution or calibration, as often found in conventional spectroscopic approaches.

  13. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... in paragraphs (c) and (d) of this section. (1) At existing affected sources, the total HAP...

  14. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... in paragraphs (c) and (d) of this section. (1) At existing affected sources, the total HAP...

  15. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... in paragraphs (c) and (d) of this section. (1) At existing affected sources, the total HAP...

  16. Panel report on coupled thermo-mechanical-hydro-chemical processes associated with a nuclear waste repository

    SciTech Connect

    Tsang, C.F.; Mangold, D.C.

    1984-07-01

    Four basic physical processes, thermal, hydrological, mechanical and chemical, are likely to occur in 11 different types of coupling during the service life of an underground nuclear waste repository. A great number of coupled processes with various degrees of importance for geological repositories were identified and arranged into these 11 types. A qualitative description of these processes and a tentative evaluation of their significance and the degree of uncertainty in prediction is given. Suggestions for methods of investigation generally include, besides theoretical work, laboratory and large scale field testing. Great efforts of a multidisciplinary nature are needed to elucidate details of several coupled processes under different temperature conditions in different geological formations. It was suggested that by limiting the maximum temperature to 100{sup 0}C in the backfill and in the host rock during the whole service life of the repository the uncertainties in prediction of long-term repository behavior might be considerably reduced.

  17. Investigation of cu-BTA complex formation during Cu chemical mechanical planarization process

    NASA Astrophysics Data System (ADS)

    Cho, Byoung-Jun; Shima, Shohei; Hamada, Satomi; Park, Jin-Goo

    2016-10-01

    The effect of Cu surface conditions on Cu-BTA complex formation was investigated using contact angle, electrochemical impedance spectroscopy, spectroscopic ellipsometry and XPS measurements which is of interest to Cu Chemical Mechanical Planarization (CMP) process. During Cu CMP process BTA is widely used as a corrosion inhibitor, reacts with Cu and forms a strong Cu-BTA complex. Thus, it is very essential to remove Cu-BTA complex during post-Cu CMP cleaning process as Cu-BTA complex causes severe problems such as particle contamination and watermark due to its hydrophobic nature. In this report, the Cu-BTA complex formation at various Cu surfaces (as received, pure Cu and Cu oxide) was investigated in order to understand its adsorption reaction and develop effective post-Cu CMP cleaning process.

  18. Impacts of Environmental Nanoparticles on Chemical, Biological and Hydrological Processes in Terrestrial Ecosystems

    SciTech Connect

    Qafoku, Nikolla

    2012-01-01

    This chapter provides insights on nanoparticle (NP) influence or control on the extent and timescales of single or coupled physical, chemical, biological and hydrological reactions and processes that occur in terrestrial ecosystems. Examples taken from the literature that show how terrestrial NPs may determine the fate of the aqueous and sorbed (adsorbed or precipitated) chemical species of nutrients and contaminants, are also included in this chapter. Specifically, in the first section, chapter objectives, term definitions and discussions on size-dependent properties, the origin and occurrence of NP in terrestrial ecosystems and NP toxicity, are included. In the second section, the topic of the binary interactions of NPs of different sizes, shapes, concentrations and ages with the soil solution chemical species is covered, focusing on NP formation, stability, aggregation, ability to serve as sorbents, or surface-mediated precipitation catalysts, or electron donors and acceptors. In the third section, aspects of the interactions in the ternary systems composed of environmental NP, nutrient/contaminant chemical species, and the soil/sediment matrix are discussed, focusing on the inhibitory and catalytic effects of environmental NP on nutrient/contaminant advective mobility and mass transfer, adsorption and desorption, dissolution and precipitation and redox reactions that occur in terrestrial ecosystems. These three review sections are followed by a short summary of future research needs and directions, the acknowledgements, the list of the references, and the figures.

  19. ‘Laser chemistry’ synthesis, physicochemical properties, and chemical processing of nanostructured carbon foams

    PubMed Central

    2013-01-01

    Laser ablation of selected coordination complexes can lead to the production of metal-carbon hybrid materials, whose composition and structure can be tailored by suitably choosing the chemical composition of the irradiated targets. This ‘laser chemistry’ approach, initially applied by our group to the synthesis of P-containing nanostructured carbon foams (NCFs) from triphenylphosphine-based Au and Cu compounds, is broadened in this study to the production of other metal-NCFs and P-free NCFs. Thus, our results show that P-free coordination compounds and commercial organic precursors can act as efficient carbon source for the growth of NCFs. Physicochemical characterization reveals that NCFs are low-density mesoporous materials with relatively low specific surface areas and thermally stable in air up to around 600°C. Moreover, NCFs disperse well in a variety of solvents and can be successfully chemically processed to enable their handling and provide NCF-containing biocomposite fibers by a wet-chemical spinning process. These promising results may open new and interesting avenues toward the use of NCFs for technological applications. PMID:23679938

  20. Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater

    SciTech Connect

    Jackson, Dennis G.; Looney, Brian B.; Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.

    2013-07-10

    This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

  1. Modeling of the HiPco process for carbon nanotube production. I. Chemical kinetics

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Gokcen, Tahir; Meyyappan, M.

    2002-01-01

    A chemical kinetic model is developed to help understand and optimize the production of single-walled carbon nanotubes via the high-pressure carbon monoxide (HiPco) process, which employs iron pentacarbonyl as the catalyst precursor and carbon monoxide as the carbon feedstock. The model separates the HiPco process into three steps, precursor decomposition, catalyst growth and evaporation, and carbon nanotube production resulting from the catalyst-enhanced disproportionation of carbon monoxide, known as the Boudouard reaction: 2 CO(g)-->C(s) + CO2(g). The resulting detailed model contains 971 species and 1948 chemical reactions. A second model with a reduced reaction set containing 14 species and 22 chemical reactions is developed on the basis of the detailed model and reproduces the chemistry of the major species. Results showing the parametric dependence of temperature, total pressure, and initial precursor partial pressures are presented, with comparison between the two models. The reduced model is more amenable to coupled reacting flow-field simulations, presented in the following article.

  2. Effect of chemicals, heat, and histopathologic processing on high-infectivity hamster-adapted scrapie virus.

    PubMed

    Brown, P; Rohwer, R G; Green, E M; Gajdusek, D C

    1982-05-01

    High-titered (greater than 10(10) LD50 [50% lethal dose[/g) preparations of scrapie virus-infected hamster brain were subjected to inactivation by various chemicals, autoclaving, and histopathologic processing. Sodium hypochlorite, which reduced infectivity by approximately 4 log LD50/g of brain (99.99%), was somewhat superior to sodium metaperiodate and clearly superior to chlorine dioxide, Lysol (National Laboratories, Montvale, N.J.), iodine, potassium permanganate, and hydrogen peroxide. Most inactivation occurred within 15-30 min of exposure to a chemical, and little if any additional inactivation occurred after 1 hr. Brains processed for histopathologic examination (formalin fixation followed by dehydration in methanol, clearing in chloroform, and embedding in paraffin) retained greater than or equal to 6.8 log LD50/g of the infectivity present in unprocessed control tissues (9.6 log LD50/g). One hour in an autoclave at 121 C reduced the titer of scrapie virus by approximately 7.5 log LD50/g of brain but left 2.5 log LD50/g of residual infectivity. A combination of exposure to chemicals and autoclaving may be necessary to sterilize high-titered scrapie virus-infected tissue.

  3. Chemical evolution of r-process elements in Draco dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Nitta Ishigaki, Miho; Tsujimoto, Takuji; Shigeyama, Toshikazu; Aoki, Wako

    2015-08-01

    Dwarf galaxies around the Milky Way halo are ideal laboratory of nucleosynthesis and chemical enrichments in the early universe. We studied chemical compositions including r-process elements for giant stars in Draco dwarf spheroidal galaxy based on high-resolution spectra obtained with the Subaru/HDS. Draco is known to mainly consist of old (age > 10 Gyr) and metal-poor ([Fe/H]<-1.5) stellar populations, which provides us an important insights about nucleosynthesis responsible for producing heavy elements in this galaxy. As reported in previous studies, we found that the Draco stars show enhanced [α/Fe] ratios at [Fe/H]<-2, decreasing at higher metallicity. This is consistent with an expectation that the chemical evolution is proceeded in a homogeneous manner initially by Type II and later by Type Ia supernovae. On the other hand, the [Eu/H] are constant over the metallicity range -2<[Fe/H]<-1 and low upper limits have been obtained at the lower [Fe/H]. The lack of increase in Eu abundance, despite the significant increase in Fe abundance by supernovae, implies that r-process elements were produced through much rarer events such as neutron-star mergers.

  4. Ecotoxicological and chemical characterization of selected treatment process effluents of municipal sewage treatment plant.

    PubMed

    Wang, Chunxia; Wang, Yi; Kiefer, F; Yediler, A; Wang, Zijian; Kettrup, A

    2003-10-01

    The triolein-containing semipermeable membrane devices (SPMDs) were deployed for 4 weeks in a sewage treatment plant in Beijing, China, to sample and concentrate priority hydrophobic organic pollutants in a sewage treatment process. The chemical analyses and ecotoxicities of the residuals of SPMDs dialysate were examined. The data from the chemical analyses by gas chromatography-mass spectrometry selected ion monitoring mode indicated the lower removal for polychlorinated biphenyls (PCB) congeners and polycyclic aromatic hydrocarbons (PAHs) coincided with the persistence of them in the environment. The acute toxicity examined by bioluminescence test with Vibrio fischeri revealed approximately only 20% decrease in the overall toxicity of the influent after the activate sludge treatment process. The ethoxy resorufin-O-deethylase (EROD) induction with a micro-EROD assay in vitro using H4-IIE rat hepatoma cell cultures demonstrated the presence of persistent organics in influent and sequency effluents. Results obtained suggested that integration of the SPMD technique and chemical analyses and bioassay might be a valuable approach for the risk assessment of hydrophobic organic pollutants in water ecosystem. It revealed the necessity for organic pollutants monitoring and ecotoxicities examining of sewage treatment plants.

  5. An investigation into chemical-mechanical polishing process of zinc selenide

    NASA Astrophysics Data System (ADS)

    Yao, Hongyu

    2001-12-01

    An analysis of chemical-mechanical polishing (CMP) under fixed polishing conditions and different polishing times has been performed on ZnSe single crystals. The morphology of finishing surface was monitored by atomic force microscopy (AFM) and differential interference contrast (DIC) optical microscopy. Novel X-ray diffraction techniques such as grazing incidence X-ray diffraction (GIXD), asymmetric inclined plane X-ray diffraction (AIPXD), and symmetric inclined plane X-ray diffraction (SIPXD) were employed to study the surface and subsurface structural damages in ZnSe after polishing. Surface chemical analysis was carried out utilizing X-ray photoelectron spectroscopy (XPS) for polished ZnSe samples. Consistent improvement of surface and subsurface structure as well as surface morphology with increased polishing time was noticed. A large number of Se nanoprecipitates were observed appearing on ZnSe surface after CMP. A statistical CMP model based on Yates' algorithm was developed in this study. This model was used to systematically investigate the effects of specific polishing variables on the sodium hypochlorite (NaOCl) based CMP process of ZnSe. The force applied on the samples and the NaOCl concentration in the polishing slurry were found to be the most critical individual polishing parameters. In addition, maintaining an appropriate balance between the mechanical polishing component and the chemical etching component in the CMP process was found to be a crucial factor in determining the surface quality of polished ZnSe samples.

  6. The global chemical systematics of arc front stratovolcanoes: Evaluating the role of crustal processes

    NASA Astrophysics Data System (ADS)

    Turner, Stephen J.; Langmuir, Charles H.

    2015-07-01

    Petrogenetic models for convergent margins should be consistent with the global systematics of convergent margin volcanic compositions. A newly developed tool for compiling and screening data from the GEOROC database was used to generate a global dataset of whole rock chemical analyses from arc front stratovolcano samples. Data from 227 volcanoes within 31 volcanic arc segments were first averaged by volcano and then by arc to explore global systematics. Three different methods of data normalization produce consistent results that persist across a wide range of Mg# [Mg# =Mg / (Mg +Fe) ]. Remarkably coherent systematics are present among major and trace element concentrations and ratios, with the exception of three arcs influenced by mantle plumes and Peru/N. Chile, which is built on exceptionally thick crust. Chemical parameters also correlate with the thickness of the overlying arc crust. In addition to previously established correlations of Na6.0 with Ca6.0 and crustal thickness, correlations are observed among major elements, trace elements, and trace element ratios (e.g. La/Yb, Dy/Yb, Zr/Sm, Zr/Ti). Positive correlations include "fluid mobile," "high field strength," and "large ion lithophile" element groups, with concentrations that vary by a factor of five in all groups. Incompatible element enrichments also correlate well with crustal thickness, with the greatest enrichment found at arcs with the thickest crust. Intra-crustal processes, however, do not reproduce the global variations. High pressure fractionation produces intermediate magmas enriched in aluminum, but such magmas are rare. Furthermore, differences among magma compositions at various volcanic arcs persist from primitive to evolved compositions, which is inconsistent with the possibility that global variations are produced by crystal fractionation at any pressure. Linear relationships among elements appear to be consistent with mixing between depleted primary magma and an enriched contaminant

  7. Effects of chemical protective equipment on team process performance in small unit rescue operations.

    PubMed

    Grugle, Nancy L; Kleiner, Brian M

    2007-09-01

    In the event of a nuclear, biological, or chemical terrorist attack against civilians, both military and civilian emergency response teams must be able to respond and operate efficiently while wearing protective equipment. Chemical protective equipment protects the user by providing a barrier between the individual and hazardous environment. Unfortunately, the same equipment that is designed to support the user can potentially cause heat stress, reduced task efficiency, and reduced range-of-motion. Targeted Acceptable Responses to Generated Events of Tasks (TARGETS), an event-based team performance measurement methodology was used to investigate the effects of Mission Oriented Protective Posture (MOPP) on the behavioral processes underlying team performance during simulated rescue tasks. In addition, this study determined which team processes were related to team performance outcomes. Results of six primary analyses indicated that team process performance was not degraded by MOPP 4 on any rescue task and that the team processes critical for successful task performance are task-dependent. This article discusses the implications of these results with respect to the study design and the limitations of using an event-based team performance measurement methodology.

  8. A simplified reaction-diffusion system of chemically amplified resist process modeling for OPC

    NASA Astrophysics Data System (ADS)

    Fan, Yongfa; Jeongb, Moon-Gyu; Ser, Junghoon; Lee, Sung-Woo; Suh, Chunsuk; Koo, Kyo-Il; Lee, Sooryong; Su, Irene; Zavyalova, Lena; Falch, Brad; Huang, Jason; Schmoeller, Thomas

    2010-04-01

    As semiconductor manufacturing moves to 32nm and 22nm technology nodes with 193nm water immersion lithography, the demand for more accurate OPC modeling is unprecedented to accommodate the diminishing process margin. Among all the challenges, modeling the process of Chemically Amplified Resist (CAR) is a difficult and critical one to overcome. The difficulty lies in the fact that it is an extremely complex physical and chemical process. Although there are well-studied CAR process models, those are usually developed for TCAD rigorous lithography simulators, making them unsuitable for OPC simulation tasks in view of their full-chip capability at an acceptable turn-around time. In our recent endeavors, a simplified reaction-diffusion model capable of full-chip simulation was investigated for simulating the Post-Exposure-Bake (PEB) step in a CAR process. This model uses aerial image intensity and background base concentration as inputs along with a small number of parameters to account for the diffusion and quenching of acid and base in the resist film. It is appropriate for OPC models with regards to speed, accuracy and experimental tuning. Based on wafer measurement data, the parameters can be regressed to optimize model prediction accuracy. This method has been tested to model numerous CAR processes with wafer measurement data sets. Model residual of 1nm RMS and superior resist edge contour predictions have been observed. Analysis has shown that the so-obtained resist models are separable from the effects of optical system, i.e., the calibrated resist model with one illumination condition can be carried to a process with different illumination conditions. It is shown that the simplified CAR system has great potential of being applicable to full-chip OPC simulation.

  9. Idaho Chemical Processing Plant low-level waste grout stabilization development program FY-96 status report

    SciTech Connect

    Herbst, A.K.

    1996-09-01

    The general purpose of the Grout Stabilization Development Program is to solidify and stabilize the liquid low-level wastes (LLW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LLW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste; (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines; (3) facility decontamination processes; and (4) process equipment waste. The main tasks completed this fiscal year as part of the program were chromium stabilization study for sodium-bearing waste and stabilization and solidification of LLW from aluminum and zirconium calcines. The projected LLW will be highly acidic and contain high amounts of nitrates. Both of these are detrimental to Portland cement chemistry; thus, methods to precondition the LLW and to cure the grout were explored. A thermal calcination process, called denitration, was developed to solidify the waste and destroy the nitrates. A three-way blend of Portland cement, blast furnace slag, and fly ash was successfully tested. Grout cubes were prepared at various waste loadings to maximize loading while meeting compressive strength and leach resistance requirements. For the sodium LLW, a 25% waste loading achieves a volume reduction of 3.5 and a compressive strength of 2,500 pounds per square inch while meeting leach, mix, and flow requirements. It was found that the sulfur in the slag reduces the chromium leach rate below regulatory limits. For the aluminum LLW, a 15% waste loading achieves a volume reduction of 8.5 and a compressive strength of 4,350 pounds per square inch while meeting leach requirements. Likewise for zirconium LLW, a 30% waste loading achieves a volume reduction of 8.3 and a compressive strength of 3,570 pounds per square inch.

  10. Evaluation of alternative chemical additives for high-level waste vitrification feed preparation processing

    SciTech Connect

    Seymour, R.G.

    1995-06-07

    During the development of the feed processing flowsheet for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), research had shown that use of formic acid (HCOOH) could accomplish several processing objectives with one chemical addition. These objectives included the decomposition of tetraphenylborate, chemical reduction of mercury, production of acceptable rheological properties in the feed slurry, and controlling the oxidation state of the glass melt pool. However, the DEPF research had not shown that some vitrification slurry feeds had a tendency to evolve hydrogen (H{sub 2}) and ammonia (NH{sub 3}) as the result of catalytic decomposition of CHOOH with noble metals (rhodium, ruthenium, palladium) in the feed. Testing conducted at Pacific Northwest Laboratory and later at the Savannah River Technical Center showed that the H{sub 2} and NH{sub 3} could evolve at appreciable rates and quantities. The explosive nature of H{sub 2} and NH{sub 3} (as ammonium nitrate) warranted significant mitigation control and redesign of both facilities. At the time the explosive gas evolution was discovered, the DWPF was already under construction and an immediate hardware fix in tandem with flowsheet changes was necessary. However, the Hanford Waste Vitrification Plant (HWVP) was in the design phase and could afford to take time to investigate flowsheet manipulations that could solve the problem, rather than a hardware fix. Thus, the HWVP began to investigate alternatives to using HCOOH in the vitrification process. This document describes the selection, evaluation criteria, and strategy used to evaluate the performance of the alternative chemical additives to CHOOH. The status of the evaluation is also discussed.

  11. Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling

    SciTech Connect

    Jung, Jonghwun; Gamwo, I.K.

    2008-04-21

    Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency. Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gas–solid flow is essential for the optimization and operation of a chemical looping combustor. Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.

  12. Development of the chemical and electrochemical coal cleaning (CECC) process. Final report

    SciTech Connect

    Yoon, Roe-Hoan; Basilio, C.I.

    1992-05-01

    The Chemical and Electrochemical Coal Cleaning (CECC) process developed at Virginia Polytechnic Institute and State University was studied further in this project. This process offers a new method of physically cleaning both low- and high-rank coals without requiring fine grinding. The CECC process is based on liberating mineral matter from coal by osmotic pressure. The majority of the work was conducted on Middle Wyodak, Pittsburgh No. 8 and Elkhorn No. 3 coals. The coal samples were characterized for a variety of physical and chemical properties. Parametric studies were then conducted to identify the important operating parameters and to establish the optimum conditions. In addition, fundamental mechanisms of the process were studied, including mineral matter liberation, kinetics of mineral matter and pyrite dissolution, ferric ion regeneration schemes and alternative methods of separating the cleaned coal from the liberated mineral matter. The information gathered from the parametric and fundamental studies was used in the design, construction and testing of a bench-scale continuous CECC unit. Using this unit, the ash content of a Middle Wyodak coal was reduced from 6.96 to 1.61% at a 2 lbs/hr throughput. With an Elkhorn No. 3 sample, the ash content was reduced from 9.43 to 1.8%, while the sulfur content was reduced from 1.57 to 0.9%. The mass balance and liberation studies showed that liberation played a more dominant role than the chemical dissolution in removing mineral matter and inorganic sulfur from the different bituminous coals tested. However, the opposite was found to be the case for the Wyodak coal since this coal contained a significant amount of acid-soluble minerals.

  13. Thermal stresses in chemically hardening elastic media with application to the molding process

    NASA Technical Reports Server (NTRS)

    Levitsky, M.; Shaffer, B. W.

    1974-01-01

    A method has been formulated for the determination of thermal stresses in materials which harden in the presence of an exothermic chemical reaction. Hardening is described by the transformation of the material from an inviscid liquid-like state into an elastic solid, where intermediate states consist of a mixture of the two, in a ratio which is determined by the degree of chemical reaction. The method is illustrated in terms of an infinite slab cast between two rigid mold surfaces. It is found that the stress component normal to the slab surfaces vanishes in the residual state, so that removal of the slab from the mold leaves the remaining residual stress unchanged. On the other hand, the residual stress component parallel to the slab surfaces does not vanish. Its distribution is described as a function of the parameters of the hardening process.

  14. Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process.

    PubMed

    Rani, R Uma; Kumar, S Adish; Kaliappan, S; Yeom, Ick-Tae; Banu, J Rajesh

    2012-01-01

    An investigation into the influence of low temperature thermo-chemical pretreatment on sludge reduction in a semi-continuous anaerobic reactor was performed. Firstly, effect of sludge pretreatment was evaluated by COD solubilization, suspended solids reduction and biogas production. At optimized condition (60 °C with pH 12), COD solubilization, suspended solids, reduction and biogas production was 23%, 22% and 51% higher than the control, respectively. Secondly, semi-continuous process performance was studied in a lab-scale semi-continuous anaerobic reactor (5 L), with 4 L working volume. With three operated SRTs, the SRT of 15 days was found to be most appropriate for economic operation of the reactor. Combining pretreatment with anaerobic digestion led to 80.5%, 117% and 90.4% of TS, SS and VS reduction respectively, with an improvement of 103% in biogas production. Thus, low temperature thermo-chemical can play an important role in reducing sludge production.

  15. A model for heterogeneous chemical processes on the surfaces of ice and nitric acid trihydrate particles

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Turco, Richard P.

    1993-01-01

    The study presents a model that incorporates the physics and physical chemistry of ice surfaces relevant to polar stratospheric clouds. Surface concentrations of H2O, HCl, HOCl, ClONO2, and N2O5 on ice and nitric acid trihydrate (NAT) crystals are computed, and surface reaction rates and reaction probabilities (sticking coefficients) are determined. For gas pressures of about 10 exp -7 torr and temperatures in the range of 180-200 K, HCl completely coats ice and water-rich NAT surfaces, while HOCl, ClOHO2, and N2O5 may cover 0.01-1 percent of these surfaces. The energy parameters are used to calculate surface temperatures such as adsorption and desorption constants, surface coverages, reaction rate coefficients, surface diffusion coefficients, and reaction probabilities for various species and chemical interactions on ice and NAT surfaces. Implications for chemical processing on polar stratospheric clouds are discussed.

  16. Chemical conversions in supercritical media: Environmentally sound approaches to processes and materials

    SciTech Connect

    Burns, C.; Borkowsky, S.; Buelow, S.; Langlois, D.; LeLacheur, R.; Mitchell, M.; Tumas, B.; Williams, P.; Waymouth, R.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The aim of this effort was to evaluate the potential of supercritical fluids (SCF) as reaction media in an effort to develop new, environmentally-friendly methods for chemical synthesis or processing. The use of novel media creates the possibility of opening up substantially different chemical pathways, increasing selectivity (eliminating waste by-products), and enhancing reaction rates (decreasing hold-up times and saving energy). In addition, the use of SCF as reaction media facilitates downstream separations and mitigate or eliminate the need for hazardous solvents on scales from bench top to production. This project employed a highly interdisciplinary approach to investigate the utility of SCFs as reaction media for polymer synthesis and synthetic organic chemistry.

  17. Boundary conditions for the paleoenvironment: Chemical and Physical Processes in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.; Ziurys, L. M.

    1986-01-01

    The present research includes searches for important new interstellar constituents; observations relevant to differentiating between different models for the chemical processes that are important in the interstellar environment; and coordinated studies of the chemistry, physics, and dynamics of molecular clouds which are the sites or possible future sites of star formation. Recent research has included the detection and study of four new interstellar molecules; searches which have placed upper limits on the abundance of several other potential constituents of interstellar clouds; quantitative studies of comparative molecular abundances in different types of interstellar clouds; investigation of reaction pathways for astrochemistry from a comparison of theory and the observed abundance of related species such as isomers and isotopic variants; studies of possible tracers of energenic events related to star formation, including silicon and sulfur containing molecules; and mapping of physical, chemical, and dynamical properties over extended regions of nearby cold molecular clouds.

  18. A model for heterogeneous chemical processes on the surfaces of ice and nitric acid trihydrate particles

    NASA Astrophysics Data System (ADS)

    Tabazadeh, Azadeh; Turco, Richard P.

    1993-07-01

    The study presents a model that incorporates the physics and physical chemistry of ice surfaces relevant to polar stratospheric clouds. Surface concentrations of H2O, HCl, HOCl, ClONO2, and N2O5 on ice and nitric acid trihydrate (NAT) crystals are computed, and surface reaction rates and reaction probabilities (sticking coefficients) are determined. For gas pressures of about 10 exp -7 torr and temperatures in the range of 180-200 K, HCl completely coats ice and water-rich NAT surfaces, while HOCl, ClOHO2, and N2O5 may cover 0.01-1 percent of these surfaces. The energy parameters are used to calculate surface temperatures such as adsorption and desorption constants, surface coverages, reaction rate coefficients, surface diffusion coefficients, and reaction probabilities for various species and chemical interactions on ice and NAT surfaces. Implications for chemical processing on polar stratospheric clouds are discussed.

  19. Directions of chemical change: experimental characterization of the stereodynamics of photodissociation and reactive processes.

    PubMed

    Kasai, Toshio; Che, Dock-Chil; Okada, Michio; Tsai, Po-Yu; Lin, King-Chuen; Palazzetti, Federico; Aquilanti, Vincenzo

    2014-06-07

    This perspective article aims at accounting for the versatility of some current experimental investigations for exploring novel paths in chemical reactions. It updates a previous one [Phys. Chem. Chem. Phys., 2005, 5, 291] and is limited to work by the authors. The use of advanced molecular beam techniques together with a combination of modern tools for specific preparation, selection and detection permits us to discover new trends in reactivity in the gas phase as well as at interfaces. We specifically discuss new facets of stereodynamics, namely the effects of molecular orientation and alignment on reactive and photodissociation processes. Further topics involve roaming paths and triple fragmentation in photodissociation probed by imaging techniques, chirality effects in collisions and deviations from Arrhenius behavior in the temperature dependence of chemical reactions.

  20. Demonstration of real-time monitoring of a photolithographic exposure process using chemical ionization mass spectrometry

    SciTech Connect

    Mowry, C.D.

    1998-02-01

    Silicon wafers are coated with photoresist and exposed to ultraviolet (UV) light in a laboratory to simulate typical conditions expected in an actual semiconductor manufacturing process tool. Air is drawn through the exposure chamber and analyzed using chemical ionization mass spectrometry (CI/MS). Species that evaporate or outgas from the wafer are thus detected. The purpose of such analyses is to determine the potential of CI/MS as a real-time process monitoring tool. Results demonstrate that CI/MS can remotely detect the products evolved before, during, and after wafer UV exposure; and that the quantity and type of products vary with the photoresist coated on the wafer. Such monitoring could provide semiconductor manufacturers benefits in quality control and process analysis. Tool and photoresist manufacturers could also realize benefits from this measurement technique with respect to new tool, method, or photoresist development. The benefits realized can lead to improved device yields and reduced product and development costs.

  1. Method for identifying biochemical and chemical reactions and micromechanical processes using nanomechanical and electronic signal identification

    DOEpatents

    Holzrichter, J.F.; Siekhaus, W.J.

    1997-04-15

    A scanning probe microscope, such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM), is operated in a stationary mode on a site where an activity of interest occurs to measure and identify characteristic time-varying micromotions caused by biological, chemical, mechanical, electrical, optical, or physical processes. The tip and cantilever assembly of an AFM is used as a micromechanical detector of characteristic micromotions transmitted either directly by a site of interest or indirectly through the surrounding medium. Alternatively, the exponential dependence of the tunneling current on the size of the gap in the STM is used to detect micromechanical movement. The stationary mode of operation can be used to observe dynamic biological processes in real time and in a natural environment, such as polymerase processing of DNA for determining the sequence of a DNA molecule. 6 figs.

  2. Development of a polysilicon process based on chemical vapor deposition (phase 1)

    NASA Technical Reports Server (NTRS)

    Mccormick, J.; Arvidson, A.; Sawyer, D.; Plahutnik, F.

    1981-01-01

    A dichlorosilane-based reductive chemical vapor deposition (CVD) process demonstrated is capable of producing, at low cost, high quality polycrystalline silicon. Testing of decomposition reactor heat shields to insure that the shield provides adequate personnel protection assuming a worst case explosion was completed. Minor modifications to a production reactor heat shield provided adequate heat shield integrity. Construction of the redesigned PDU (Process Development Unit) to accommodate all safety related information proceeded on schedule. Structural steel work was completed as is the piping and instrumentation design work. Major pieces of process equipment were received and positioned in the support structure and all transfer piping and conduits to the PDU were installed. Construction was completed on a feed system for supplying DCS to an intermediate sized reactor. The feed system was successfully interfaced with a reactor equipped with a modified heat shield. Reactor checkout was completed.

  3. Progress in chemical processing of LEU targets for {sup 99}Mo production -- 1997

    SciTech Connect

    Vandegrift, G.F.; Conner, C.; Sedlet, J.; Wygmans, D.G.; Wu, D.; Iskander, F.; Landsberger, S.

    1997-10-01

    Presented here are recent experimental results of the continuing development activities associated with converting current processes for producing fission-product {sup 99}Mo from targets using high-enriched uranium (HEU) to low-enriched uranium (LEU). Studies were focused in four areas: (1) measuring the chemical behavior of iodine, rhodium, and silver in the LEU-modified Cintichem process, (2) performing experiments and calculations to assess the suitability of zinc fission barriers for LEU metal foil targets, (3) developing an actinide separations method for measuring alpha contamination of the purified {sup 99}Mo product, and (4) developing a cooperation with Sandia National Laboratories and Los Alamos National Laboratory that will lead to approval by the US Federal Drug Administration for production of {sup 99}Mo from LEU targets. Experimental results continue to show the technical feasibility of converting current HEU processes to LEU.

  4. Modified lignosulfonates as additives in oil recovery processes involving chemical recovery agents

    SciTech Connect

    Kalfoglou, G.

    1982-08-17

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of modified lignosulfonate salt as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the modified lignosulfonates into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well. The lignosulfonates may be modified by any combination of any two or more of: reaction with chloroacetic acid, reaction with carbon dioxide, addition of the methylene sulfonate radical to the lignosulfonate molecule and oxidation with oxygen.

  5. Lignosulfonates carboxylated with chloroacetic acid as additives in oil recovery processes involving chemical recovery agents

    SciTech Connect

    Kalfoglou, G.

    1981-05-19

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of lignosulfonates carboxylated with chloroacetic acid as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the lignosulfonates carboxylated with chloroacetic acid into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well.

  6. Optimizing chemical conditioning for odour removal of undigested sewage sludge in drying processes.

    PubMed

    Vega, Esther; Monclús, Hèctor; Gonzalez-Olmos, Rafael; Martin, Maria J

    2015-03-01

    Emission of odours during the thermal drying in sludge handling processes is one of the main sources of odour problems in wastewater treatment plants. The objective of this work was to assess the use of the response surface methodology as a technique to optimize the chemical conditioning process of undigested sewage sludges, in order to improve the dewaterability, and to reduce the odour emissions during the thermal drying of the sludge. Synergistic effects between inorganic conditioners (iron chloride and calcium oxide) were observed in terms of sulphur emissions and odour reduction. The developed quadratic models indicated that optimizing the conditioners dosage is possible to increase a 70% the dewaterability, reducing a 50% and 54% the emission of odour and volatile sulphur compounds respectively. The optimization of the conditioning process was validated experimentally.

  7. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.

    PubMed

    De, Sudipta; Saha, Basudeb; Luque, Rafael

    2015-02-01

    Lignocellulosic biomass provides an attractive source of renewable carbon that can be sustainably converted into chemicals and fuels. Hydrodeoxygenation (HDO) processes have recently received considerable attention to upgrade biomass-derived feedstocks into liquid transportation fuels. The selection and design of HDO catalysts plays an important role to determine the success of the process. This review has been aimed to emphasize recent developments on HDO catalysts in effective transformations of biomass-derived platform molecules into hydrocarbon fuels with reduced oxygen content and improved H/C ratios. Liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenation, hydrogenolysis, decarbonylation etc.) as well as by increasing the molecular weight via C-C coupling reactions (e.g. aldol condensation, ketonization, oligomerization, hydroxyalkylation etc.). Fundamentals and mechanistic aspects of the use of HDO catalysts in deoxygenation reactions will also be discussed.

  8. Chemical treatment of plutonium with hydrogen peroxide before nitrate anion exchange processing. [Reduction to (IV)

    SciTech Connect

    Marsh, S.F.; Gallegos, T.D.

    1987-05-01

    The major aqueous process used to recover and purify plutonium at the Los Alamos Plutonium Facility is anion exchange in nitric acid. This process is highly selective for plutonium; however, all plutonium must be as Pu(IV) to form the strongly sorbed anionic nitrato complex. The previous ''full-reduction treatment'' used at Los Alamos to obtain Pu(IV) results in a three- to fourfold increase in the feed solution volume and the introduction of kilogram quantities of extraneous salts immediately before a process whose function is to remove such impurities. That treatment has been successfully replaced by a single reagent, hydrogen peroxide, which converts all plutonium to Pu(IV), minimally increases the feed volume, and introduces no residual impurities. Safety aspects of this revised chemical treatment are addressed.

  9. An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass

    PubMed Central

    Trivedi, Nitin; Baghel, Ravi S.; Bothwell, John; Gupta, Vishal; Reddy, C. R. K.; Lali, Arvind M.; Jha, Bhavanath

    2016-01-01

    We describe an integrated process that can be applied to biomass of the green seaweed, Ulva fasciata, to allow the sequential recovery of four economically important fractions; mineral rich liquid extract (MRLE), lipid, ulvan, and cellulose. The main benefits of our process are: a) its simplicity and b) the consistent yields obtained from the residual biomass after each successive extraction step. For example, dry Ulva biomass yields ~26% of its starting mass as MRLE, ~3% as lipid, ~25% as ulvan, and ~11% as cellulose, with the enzymatic hydrolysis and fermentation of the final cellulose fraction under optimized conditions producing ethanol at a competitive 0.45 g/g reducing sugar. These yields are comparable to those obtained by direct processing of the individual components from primary biomass. We propose that this integration of ethanol production and chemical feedstock recovery from macroalgal biomass could substantially enhance the sustainability of marine biomass use. PMID:27470705

  10. Chemical feedstock from hardwood by organosolv hydrolysis: Computer-aided process design and economic evaluation

    NASA Astrophysics Data System (ADS)

    Nguyen, X. N.

    1982-12-01

    A two stage catalyzed organosolv plant producing ethanol, furfural, acetic acid, and soluble lignin from wood waste was investigated. The GEMS computer system was used to aid the preliminary design and cost estimation of the proposed wood chemical plant. For a plant processing 1000 ovendry tons of wood per day, a capital investment of $66 million and an operating expense of about $20 million per year were estimated. The capital cost calculated compares favorably with other published estimates. Sensitivity analyses of some key factors in the proposed process disclose that the recovery efficiency of ethanol used in the lignin extraction stage is most important in determining the process economics. Ethanol solvent recovery of about 98% is required. At 95% recovery efficiency, conversion to glucose in the acid hydrolysis step above 90% is necessary for the ethanol selling price to be comparable to the current market price.

  11. Method for identifying biochemical and chemical reactions and micromechanical processes using nanomechanical and electronic signal identification

    DOEpatents

    Holzrichter, John F.; Siekhaus, Wigbert J.

    1997-01-01

    A scanning probe microscope, such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM), is operated in a stationary mode on a site where an activity of interest occurs to measure and identify characteristic time-varying micromotions caused by biological, chemical, mechanical, electrical, optical, or physical processes. The tip and cantilever assembly of an AFM is used as a micromechanical detector of characteristic micromotions transmitted either directly by a site of interest or indirectly through the surrounding medium. Alternatively, the exponential dependence of the tunneling current on the size of the gap in the STM is used to detect micromechanical movement. The stationary mode of operation can be used to observe dynamic biological processes in real time and in a natural environment, such as polymerase processing of DNA for determining the sequence of a DNA molecule.

  12. An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass

    NASA Astrophysics Data System (ADS)

    Trivedi, Nitin; Baghel, Ravi S.; Bothwell, John; Gupta, Vishal; Reddy, C. R. K.; Lali, Arvind M.; Jha, Bhavanath

    2016-07-01

    We describe an integrated process that can be applied to biomass of the green seaweed, Ulva fasciata, to allow the sequential recovery of four economically important fractions; mineral rich liquid extract (MRLE), lipid, ulvan, and cellulose. The main benefits of our process are: a) its simplicity and b) the consistent yields obtained from the residual biomass after each successive extraction step. For example, dry Ulva biomass yields ~26% of its starting mass as MRLE, ~3% as lipid, ~25% as ulvan, and ~11% as cellulose, with the enzymatic hydrolysis and fermentation of the final cellulose fraction under optimized conditions producing ethanol at a competitive 0.45 g/g reducing sugar. These yields are comparable to those obtained by direct processing of the individual components from primary biomass. We propose that this integration of ethanol production and chemical feedstock recovery from macroalgal biomass could substantially enhance the sustainability of marine biomass use.

  13. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    PubMed

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  14. Reducing the emission of ozone depleting chemicals through use of a self-cleaning soldering process

    SciTech Connect

    Lichtenberg, L.; Martin, G.; Van Buren, P.; Iman, R.; Paffett, M.T.

    1991-12-31

    Motorola has jointed with Sandia and Los Alamos National Laboratories to perform work under a Cooperative Research and Development Agreement (CRADA) to reduce the use of CFC`s and other ozone depleting printing wiring board (PWB) cleaning solvents. This study evaluated the use of a new soldering process that uses dilute adipic acid in lieu of rosin flux. The process consumes the adipic acid in lieu of rosin flux. The process consumes the adipic acid during the soldering process and precludes the need for subsequent cleaning with ozone depleting solvents. This paper presents results from a series of designed experiments that evaluated PWB cleanliness as a function of various levels of machine control parameters. The study included a comprehensive hardware reliability evaluation, which included environmental conditioning, cleanliness testing, surface chemical analysis, surface insulation resistance testing, along with electrical, mechanical and long term storage testing. The results of this study that the new process produces quality, reliable hardware over a wide range of processing parameters. Adoption of this process, which eliminates the need for supplemental cleaning, will have a positive impact on many environmental problems, including depletion of the ozone layer.

  15. Reducing the emission of ozone depleting chemicals through use of a self-cleaning soldering process

    SciTech Connect

    Lichtenberg, L.; Martin, G.; Van Buren, P. . Government Electronics Group); Iman, R. ); Paffett, M.T. )

    1991-01-01

    Motorola has jointed with Sandia and Los Alamos National Laboratories to perform work under a Cooperative Research and Development Agreement (CRADA) to reduce the use of CFC's and other ozone depleting printing wiring board (PWB) cleaning solvents. This study evaluated the use of a new soldering process that uses dilute adipic acid in lieu of rosin flux. The process consumes the adipic acid in lieu of rosin flux. The process consumes the adipic acid during the soldering process and precludes the need for subsequent cleaning with ozone depleting solvents. This paper presents results from a series of designed experiments that evaluated PWB cleanliness as a function of various levels of machine control parameters. The study included a comprehensive hardware reliability evaluation, which included environmental conditioning, cleanliness testing, surface chemical analysis, surface insulation resistance testing, along with electrical, mechanical and long term storage testing. The results of this study that the new process produces quality, reliable hardware over a wide range of processing parameters. Adoption of this process, which eliminates the need for supplemental cleaning, will have a positive impact on many environmental problems, including depletion of the ozone layer.

  16. Indirect conversion of coal to fuel and chemicals by the Sasol slurry phase distillate process

    SciTech Connect

    Jager, B.

    1997-12-31

    Sasol was established in 1950 to convert low grade coal reserves into petroleum products and petrochemical feed stock. The first plant was commissioned in 1955 and two further plants followed in 1980 and 1982. Today Sasol produces the equivalent of 150,000 bbl/day of fuels and chemical feedstock from more than 40 million tons of low grade coal. In converting coal to petroleum products, coal is first gasified with oxygen and steam to syngas, a mixture of H{sub 2} and CO, which after purification is converted to hydrocarbons and some oxygenates by means of the Fischer-Tropsch process (FT). In the Sasol plants Lurgi Fixed Bed Dry Bottom gasifiers are used and the FT is performed in either the Low Temperature or High Temperature FT process. Over the years an ongoing program of optimization has led to numerous modifications and improvements. These improvements resulted in increased operational stability of the process, reduced mechanical wear and extended life of components. This paper describes the technology and the modifications which have improved the process, including the integration of the process with reforming of natural gas. Fischer-Tropsch in combination with gasification of coal has been used successfully and profitably for over 40 years for the production of synfuels and petrochemical products. In new plants syncrude obtained from FT in combination with reforming of natural gas can compete with crude oil for the production of fuels and chemicals where cheap natural gas is available (such as stranded gas in remote areas). This has become possible due to the development of much more efficient FT reactors and the proper integration of reforming and the FT process.

  17. Treatment of Actual Chemical Wastewater by a Heterogeneous Fenton Process Using Natural Pyrite.

    PubMed

    Sun, Liang; Li, Yan; Li, Aimin

    2015-10-28

    Wastewater from chemical plants has remarkable antibiotic effects on the microorganisms in traditional biological treatment processes. An enhanced Fenton system catalyzed by natural pyrite was developed to degrade this kind of wastewater. Approximately 30% chemical oxygen demand (COD) was removed within 120 min when 50 mmol/L H₂O₂ and 10 g/L natural pyrite were used at initial pH from 1.8 to 7. A BOD₅/COD enhancement efficiency of 210% and an acute biotoxicity removal efficiency of 84% were achieved. The COD removal efficiency was less sensitive to initial pH than was the classic Fenton process. Excessive amounts of pyrite and H₂O₂ did not negatively affect the pyrite Fenton system. The amount of aniline generated indicated that nitrobenzene reduction by pyrite was promoted using a low initial concentration of H₂O₂ (<5 mmol/L). Fluorescence excitation emission matrix analyses illustrated that H₂O₂ facilitated the reduction by natural pyrite of organic molecules containing an electron-withdrawing group to electron-donating group. Thus, the Fenton-like process catalyzed by pyrite can remediate wastewater containing organic pollutants under mild reaction conditions and provide an alternative environmentally friendly method by which to reuse natural pyrite.

  18. Stochastic Chemical Evolution of Sub-Halos and the Origin of r-Process Elements

    NASA Astrophysics Data System (ADS)

    Ojima, Takuya; Ishimaru, Yuhri; Wanajo, Shinya; Prantzos, Nikos

    The main origin of r-process elements is still uncertain, but recent nucleosynthesis studies show that neutron star mergers (NSMs) are capable of naturally explaining the solar r-process abundance. Though, previous chemical evolution models hold conflict with the NSM scenario because the long NSM coalescence timescale causes an [r/Fe] enhancement at higher metallicity compared to the observed Galactic halo stars in the [r/Fe] vs [Fe/H] plane. However, it is not the case if assuming the formation of the Galactic halo by clusterings of sub-halos with varying star formation histories. We construct a chemical evolution model of sub-halos, where NSM occurring in each sub-halos are computed stochastically. Our results are in good agreement with the Galactic halo stars, explaining the observed dispersion and trend. Also, the abundance ratio pattern of the low mass sub-halos is in consistency with Reticulum II, a dwarf galaxy that might have been contaminated by a single r-process event.

  19. Treatment of Actual Chemical Wastewater by a Heterogeneous Fenton Process Using Natural Pyrite

    PubMed Central

    Sun, Liang; Li, Yan; Li, Aimin

    2015-01-01

    Wastewater from chemical plants has remarkable antibiotic effects on the microorganisms in traditional biological treatment processes. An enhanced Fenton system catalyzed by natural pyrite was developed to degrade this kind of wastewater. Approximately 30% chemical oxygen demand (COD) was removed within 120 min when 50 mmol/L H2O2 and 10 g/L natural pyrite were used at initial pH from 1.8 to 7. A BOD5/COD enhancement efficiency of 210% and an acute biotoxicity removal efficiency of 84% were achieved. The COD removal efficiency was less sensitive to initial pH than was the classic Fenton process. Excessive amounts of pyrite and H2O2 did not negatively affect the pyrite Fenton system. The amount of aniline generated indicated that nitrobenzene reduction by pyrite was promoted using a low initial concentration of H2O2 (<5 mmol/L). Fluorescence excitation emission matrix analyses illustrated that H2O2 facilitated the reduction by natural pyrite of organic molecules containing an electron-withdrawing group to electron-donating group. Thus, the Fenton-like process catalyzed by pyrite can remediate wastewater containing organic pollutants under mild reaction conditions and provide an alternative environmentally friendly method by which to reuse natural pyrite. PMID:26516893

  20. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    SciTech Connect

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  1. Chemical Processing and Transport in the Stratospheric Vortex and Subvortex from Satellite Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Santee, Michelle; Manney, Gloria; MacKenzie, Ian; Chipperfield, Martyn; Feng, Wuhu; Sander, Stanley; Froidevaux, Lucien; Livesey, Nathaniel; Bernath, Peter; Walker, Kaley; Boone, Chris

    A suite of atmospheric composition measurements from the Microwave Limb Sounder (MLS) on NASA's Aura satellite and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on Canada's SCISAT-1 mission is used to study chemical processing in and dispersal of chemically-processed air from the lower stratospheric polar vortices. In particular, interannual and interhemispheric variability in chlorine activation and deactivation are investigated using measurements of ClO, HCl, and ClONO2. Theoretical understanding is assessed by comparing measurements to customized runs of the SLIMCAT 3D chemical transport model. Results are shown from a newly-updated version of the model that incorporates a sophisticated microphysical scheme as a fully-coupled module, allowing polar stratospheric cloud formation and sedimentation to be calculated interactively in full-chemistry simulations. The impact of recently-published ClOOCl absorption cross sections, which yield a stratospheric ClOOCl photolysis rate substantially lower than previous estimates, on the agreement between modelled and measured chlorine species is evaluated. In addition, measurements of HNO3 and O3 and SLIMCAT results are related to mixing diagnostics to track the springtime export of denitrified, ozone-depleted air from the "subvortex", the transition zone (potential temperatures of 350-450 K) between the region above of strong confinement inside the polar vortex and the region below of less restricted exchange with lower-latitude air. Particularly over Antarctica, such mixing of processed air out of the subvortex may significantly affect the composition of the midlatitude lowermost stratosphere and upper troposphere.

  2. Near net shape forming processes for chemically prepared zinc oxide varistors.

    SciTech Connect

    Lockwood, Steven John; Voigt, James A.; Tuttle, Bruce Andrew; Bell, Nelson Simmons

    2005-01-01

    Chemically prepared zinc oxide powders are fabricated for the production of high aspect ratio varistor components. Colloidal processing in water was performed to reduce agglomerates to primary particles, form a high solids loading slurry, and prevent dopant migration. The milled and dispersed powder exhibited a viscoelastic to elastic behavioral transition at a volume loading of 43-46%. The origin of this transition was studied using acoustic spectroscopy, zeta potential measurements and oscillatory rheology. The phenomenon occurs due to a volume fraction solids dependent reduction in the zeta potential of the solid phase. It is postulated to result from divalent ion binding within the polyelectrolyte dispersant chain, and was mitigated using a polyethylene glycol plasticizing additive. Chemically prepared zinc oxide powders were processed for the production of high aspect ratio varistor components. Near net shape casting methods including slip casting and agarose gelcasting were evaluated for effectiveness in achieving a uniform green microstructure achieving density values near the theoretical maximum during sintering. The structure of the green parts was examined by mercury porisimetry. Agarose gelcasting produced green parts with low solids loading values and did not achieve high fired density. Isopressing the agarose cast parts after drying raised the fired density to greater than 95%, but the parts exhibited catastrophic shorting during electrical testing. Slip casting produced high green density parts, which exhibited high fired density values. The electrical characteristics of slip cast parts are comparable with dry pressed powder compacts. Alternative methods for near net shape forming of ceramic dispersions were investigated for use with the chemically prepared ZnO material. Recommendations for further investigation to achieve a viable production process are presented.

  3. Synergetic sustainability enhancement via utilization of carbon dioxide as carbon neutral chemical feedstock in the thermo-chemical processing of biomass.

    PubMed

    Kwon, Eilhann E; Cho, Seong-Heon; Kim, Sungpyo

    2015-04-21

    This study investigated the utilization of CO2 as carbon neutral chemical feedstock in the thermo-chemical processing (i.e., pyrolysis and gasification) of biomass to enhance sustainability via modification of the composition of end products. To justify the universal function of CO2 in the thermo-chemical process, the biomass experimented on in this work was not limited to ligno-cellulosic biomass; seaweed (i.e., red macroalgae) was used to expand biofuel feedstock beyond terrestrial biomass. Our experimental results validated the achieved enhanced generation of ∼200% for H2 and ∼1000% for CO by means of adopting CO2 in the thermo-chemical process, as compared to the case in N2. This can be explained by the enhanced thermal cracking of volatile organic carbons (VOCs) evolved from the thermal degradation of biomass and the reaction between CO2 and VOCs. Considering mass balance under our experimental conditions, we confirmed reaction between CO2 and VOCs, which was universally observed in pyrolysis of all biomass samples used in this work. Thus, the identified influence of CO2 in the thermo-chemical process can be directly applied in a variety of research and industrial fields, which would be environmentally desirable.

  4. Chemical recovery process using break up steam control to prevent smelt explosions

    DOEpatents

    Kohl, Arthur L.; Stewart, Albert E.

    1988-08-02

    An improvement in a chemical recovery process in which a hot liquid smelt is introduced into a dissolving tank containing a pool of green liquor. The improvement comprises preventing smelt explosions in the dissolving tank by maintaining a first selected superatmospheric pressure in the tank during normal operation of the furnace; sensing the pressure in the tank; and further impinging a high velocity stream of steam upon the stream of smelt whenever the pressure in the tank decreases below a second selected superatmospheric pressure which is lower than said first pressure.

  5. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect

    2010-06-01

    Funded by the American Recovery and Reinvestment Act of 2009 ENVIRON International Corporation, in collaboration with Callidus Technologies by Honeywell and Shell Global Solutions, Inc., will develop and demonstrate a full-scale fuel blending and combustion system. This system will allow a broad range of opportunity fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas, to be safely, cost-effectively, and efficiently utilized while generating minimal emissions of criteria pollutants. The project will develop a commercial technology for application in refinery and chemical plant process heaters where opportunity fuels are used.

  6. HEPA filter leaching concept validation trials at the Idaho Chemical Processing Plant

    SciTech Connect

    Chakravartty, A.C.

    1995-04-01

    The enclosed report documents six New Waste Calcining Facility (NWCF) HEPA filter leaching trials conducted at the Idaho Chemical Processing Plant using a filter leaching system to validate the filter leaching treatment concept. The test results show that a modified filter leaching system will be able to successfully remove both hazardous and radiological constituents to RCRA disposal levels. Based on the success of the filter leach trials, the existing leaching system will be modified to provide a safe, simple, effective, and operationally flexible filter leaching system.

  7. Performance Evaluation Method of Chemical Mechanical Polishing Pad Conditioner Using Digital Image Correlation Processing

    NASA Astrophysics Data System (ADS)

    Uneda, Michio; Omote, Tatsunori; Ishikawa, Ken-ichi; Ichikawa, Koichiro; Doi, Toshiro; Kurokawa, Syuhei; Ohnishi, Osamu

    2012-05-01

    In chemical mechanical polishing (CMP), conditioning is generally used for the regeneration of the pad surface texture. Currently, the performance evaluation of conditioners depends on the user's experience so that it is important to develop a novel quantitative evaluation method for conditioner performance. In this paper, we propose a novel evaluation method for conditioner performance using digital image correlation (DIC) processing. The proposed method can measure the in-plane micro-deformation distribution of the pad surface texture by conditioning. It is found that a pad surface deforms over 40 µm with conditioning and that the in-plane deformation value increases with a decrease in the mesh size of conditioner grains.

  8. Analysis of physical-chemical processes governing SSME internal fluid flows

    NASA Technical Reports Server (NTRS)

    Singhal, A. K.; Owens, S. F.; Mukerjee, T.; Keeton, L. W.; Tam, L. T.

    1984-01-01

    In order to aid the development of current and future SSME type engines, it is necessary to improve the understanding of basic issues related with physical-chemical processes of SSME internal flows. Accomplishments under each of the following specific objectives are described herein: (1) supplying a state-of-the-art CFD code and graphics package; (2) demonstrating code usage on SSME-related problems to NASA MSFC personnel; and (3) performance computations and analysis of problems relevant to current and future SSME's.

  9. Virtual Metrology applied in Run-to-Run Control for a Chemical Mechanical Planarization process

    NASA Astrophysics Data System (ADS)

    Jebri, M. A.; El Adel, E. M.; Graton, G.; Ouladsine, M.; Pinaton, J.

    2017-01-01

    This paper deals with missing data in semiconductor manufacturing derived from a measurement sampling strategies. The idea is to construct a virtual metrology module to estimate non measured variables using a new modified Just-In-Time Learning approach (JITL). The aim of this paper is to integrate estimated data into product control loop. In collaboration with our industrial partner STMicroelectronics Rousset, the accuracy of the proposed method is illustrated by using industrial data-sets derived from Chemical Mechanical Planarization (CMP) process that enables us to compare results obtained with the classical and the modified version of JITL approach. Then, the contribution of the estimated data is shown in product quality improvement.

  10. Flow Tube Studies of Gas Phase Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1998-01-01

    The objective of this project is to conduct measurements of elementary reaction rate constants and photochemical parameters for processes of importance in the atmosphere. These measurements are being carried out under temperature and pressure conditions covering those applicable to the stratosphere and upper troposphere, using the chemical ionization mass spectrometry turbulent flow technique developed in our laboratory. The next section summarizes our research activities during the first year of the project, and the section that follows consists of the statement of work for the third year. Additional details concerning the projects listed in the statement of work were described in our original proposal.

  11. Characterization of Anaerobic Chemical Processes in Reservoirs: Problem Description and Conceptual Model Formulation.

    DTIC Science & Technology

    1981-04-01

    CHARACTERIZATION OF ANAEROBIC CHEMICAL PROCESSES IN RESERVOIRS...ETC(U) APR al D GUNNISON, J M BRANNON UNCLASSIFIED WES/TR/E-8i-6 L 1111 1.01115 32...INISTRUCTIONS REPORT DOCUMENTATION PAGE RECINT. COMSPLETIG FORM 4. TIL adSb~)S. TYPE Of REPORT G PERIOD COySRED OIARACTERIZATION OFAAEROBIC QEMICAL...Engineers, U. S. Army Ap(J%8 Washington, D . C. 2031480r J 14. MONITORING AGENCY NAME & ADORESS(f different bass Conti.IIing Office) 1S. SECURITY CLASS

  12. Effect of electric pulse processing on physical and chemical properties of inorganic materials

    NASA Astrophysics Data System (ADS)

    Sakipova, S. E.; Nussupbekov, B. R.; Ospanova, D.; Khassenov, A.; Sakipova, Sh E.

    2015-04-01

    This article analyzes various aspects of the practical application of electric pulse technology of industrial raw materials processing as a result of a spark electric discharge in a liquid solution of the raw material under processing. The object of the study are samples of technogenic materials from a deposit in Central Kazakhstan, which are crushed and ground to particles with a preset degree of fragmentation. The electric pulse processing is performed by using different numbers of discharges. The effect of electric pulse processing with different electrical parameters is carried out on the basis of comparison of the properties and structure of metal-containing and industrial raw materials after machining and electric pulse processing. The X-ray spectral microanalysis was performed using a scanning microscope. The researchers obtained data on changes in the microstructure and elemental composition of inorganic material samples as a result of electric pulse processing. It was established that the technology of electric pulse crushing and grinding of inorganic materials makes it possible to obtain not only a final product with desired size of dispersed particles, but also to change their physical and chemical properties.

  13. Comparisons of chemical and physical properties of catfish oils prepared from different extracting processes.

    PubMed

    Sathivel, S; Yin, H; Prinyawiwatkul, W; King, J M

    2009-03-01

    Four different catfish oil extraction processes were used to extract oil from catfish viscera: process CF1 involved a mixture of ground catfish viscera and water, no heat treatment, and centrifugation; process CF2 involved ground catfish viscera (no added water), heat treatment, and centrifugation; process CF3 involved a mixture of ground catfish viscera and water, heat treatment, and centrifugation; process CF4 involved ground catfish viscera, enzymatic hydrolysis, and centrifugation. Chemical and physical properties of the resulting of catfish oils were evaluated. The CF4 process recovered significantly higher amounts of crude oil from catfish viscera than the other 3 extraction methods. The CF4 oil contained a higher percent of free fatty acid and peroxide values than CF1, CF2, and CF3 oils. Oleic acid in catfish oil was the predominant fatty acid accounting for about 50% of total fatty acids. Weight loss of oils increased with increasing temperatures between 250 and 500 degrees C. All the catfish oil samples melted around -32 degrees C regardless of the extraction methods. The flow behavior index of all the oil samples was less than 1, which indicated that the catfish oils exhibited non-Newtonian fluid behavior. The apparent viscosity at -5 and 0 degrees C was significantly higher (P < 0.05) than those at 5, 10, 15, 20, 25, and 30 degrees C. The average magnitude of activation energy for apparent viscosity of the oil was higher for CF2 than CF1, CF3, and CF4.

  14. Interactions between ingredients in IMX-101: Reactive Chemical Processes Control Insensitive Munitions Properties

    SciTech Connect

    Maharrey, Sean P.; Wiese-Smith, Deneille; Highley, Aaron M.; Behrens, Richard; Kay, Jeffrey J

    2014-03-01

    Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS) measurements have been conducted on a new Insensitive Munitions (IM) formulation. IMX-101 is the first explosive to be fully IM qualified under new NATO STANAG guidelines for fielded munitions. The formulation uses dinitroanisole (DNAN) as a new melt cast material to replace TNT, and shows excellent IM performance when formulated with other energetic ingredients. The scope of this work is to explain this superior IM performance by investigating the reactive processes occurring in the material when subjected to a well-controlled thermal environment. The dominant reactive processes observed were a series of complex chemical interactions between the three main ingredients (DNAN, NQ, and NTO) that occurs well below the onset of the normal decomposition process of any of the individual ingredients. This process shifts the thermal response of the formulations to a much lower temperature, where the kinetically controlled reaction processes are much slower. This low temperature shift has the effect of allowing the reactions to consume the reactive solids (NQ, NTO) well before the reaction rates increase and reach thermal runaway, resulting in a relatively benign response to the external stimuli. The main findings on the interaction processes are presented.

  15. Chemical Characterization of Secondary Organic Aerosol Formed Through Cloud Processing of Methylglyoxal

    NASA Astrophysics Data System (ADS)

    Altieri, K. E.; Seitzinger, S. P.; Carlton, A. G.; Turpin, B. J.; Klein, G. C.; Marshall, A. G.

    2007-12-01

    There is increasing evidence suggesting that secondary organic aerosol (SOA) forms as a result of low volatility product formation in atmospheric aqueous phase reactions. In this work aqueous phase photooxidation experiments between methylglyoxal (an isoprene oxidation product) and hydroxyl radical were conducted to simulate the cloud processing of methylglyoxal. The results verify that, as predicted, oxalic acid forms through cloud processing of methylglyoxal. This work adds to the growing body of literature (Altieri et al., 2006; Carlton et al., 2006; Carlton et al., 2007; Crahan et al., 2004; Warneck, 2003; 2005; Yu et al., 2005) supporting the hypothesis that cloud processing is a substantial source of oxalic acid to the atmosphere. Oxalic acid is the most abundant dicarboxylic acid in the atmosphere and a contributor to SOA. The formation of additional monomer products (e.g., malic acid, succinic acid, glycolic acid) and the development of an oligomer system were also identified through use of a combination of electrospray ionization mass spectrometry (ESI-MS) techniques: a quadrupole ESI-MS, an ion trap ESI-MS-MS, and an ultra-high resolution ESI FT-ICR MS. We propose a mechanism of oligomer formation through esterification of monomers with a hydroxy acid formed from hydroxyl radical initiated reactions. Oligomers were only recently identified as cloud processing products (Altieri et al., 2006), and this work is the first chemical characterization of oligomers formed through cloud processing reactions. The chemical characterization includes the distribution of molecular weights, elemental compositions, structure, and organic mass to organic carbon (OM:OC) ratio. Methylglyoxal is a water- soluble product of both biogenic and anthropogenic hydrocarbon oxidation. The varied and multiple sources of methylglyoxal suggest there is strong potential for these low volatility products (e.g., oxalic acid and oligomers) to significantly contribute to SOA.

  16. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.

    PubMed

    Brethauer, Simone; Studer, Michael H

    2015-01-01

    Lignocellulosic biomass - such as wood, agricultural residues or dedicated energy crops - is a promising renewable feedstock for production of fuels and chemicals that is available at large scale at low cost without direct competition for food usage. Its biochemical conversion in a sugar platform biorefinery includes three main unit operations that are illustrated in this review: the physico-chemical pretreatment of the biomass, the enzymatic hydrolysis of the carbohydrates to a fermentable sugar stream by cellulases and finally the fermentation of the sugars by suitable microorganisms to the target molecules. Special emphasis in this review is put on the technology, commercial status and future prospects of the production of second-generation fuel ethanol, as this process has received most research and development efforts so far. Despite significant advances, high enzyme costs are still a hurdle for large scale competitive lignocellulosic ethanol production. This could be overcome by a strategy termed 'consolidated bioprocessing' (CBP), where enzyme production, enzymatic hydrolysis and fermentation is integrated in one step - either by utilizing one genetically engineered superior microorganism or by creating an artificial co-culture. Insight is provided on both CBP strategies for the production of ethanol as well as of advanced fuels and commodity chemicals.

  17. Advancing alternatives analysis: The role of predictive toxicology in selecting safer chemical products and processes.

    PubMed

    Malloy, Timothy; Zaunbrecher, Virginia; Beryt, Elizabeth; Judson, Richard; Tice, Raymond; Allard, Patrick; Blake, Ann; Cote, Ila; Godwin, Hilary; Heine, Lauren; Kerzic, Patrick; Kostal, Jakub; Marchant, Gary; McPartland, Jennifer; Moran, Kelly; Nel, Andre; Oguseitan, Oladele; Rossi, Mark; Thayer, Kristina; Tickner, Joel; Whittaker, Margaret; Zarker, Ken

    2017-03-01

    Alternatives analysis (AA) is a method used in regulation and product design to identify, assess, and evaluate the safety and viability of potential substitutes for hazardous chemicals. It requires toxicological data for the existing chemical and potential alternatives. Predictive toxicology uses in silico and in vitro approaches, computational models, and other tools to expedite toxicological data generation in more cost-effective manner than traditional approaches. This article briefly reviews the challenges associated with using predictive toxicology in regulatory AA, then presents four recommendations for its advancement. It recommends using case studies to advance the integration of predictive toxicology into AA; adopting a stepwise process to employing predicative toxicology in AA beginning with prioritization of chemicals of concern; leveraging existing resources to advance the integration of predictive toxicology into the practice of AA, and supporting trans-disciplinary efforts. The further incorporation of predictive toxicology into AA would advance the ability of companies and regulators to select alternatives to harmful ingredients, and potentially increase the use of predictive toxicology in regulation more broadly. This article is protected by copyright. All rights reserved.

  18. Reduction, partial evaporation, and spattering - Possible chemical and physical processes in fluid drop chondrule formation

    NASA Technical Reports Server (NTRS)

    King, E. A.

    1983-01-01

    The major chemical differences between fluid drop chondrules and their probable parent materials may have resulted from the loss of volatiles such as S, H2O, Fe, and volatile siderophile elements by partial evaporation during the chondrule-forming process. Vertical access solar furnace experiments in vacuum and hydrogen have demonstrated such chemical fractionation trends using standard rock samples. The formation of immiscible iron droplets and spherules by in situ reduction of iron from silicate melt and the subsequent evaporation of the iron have been observed directly. During the time that the main sample bead is molten, many small spatter spherules are thrown off the main bead, thereby producing many additional chondrule-like melt spherules that cool rapidly and generate a population of spherules with size frequency distribution characteristics that closely approximate some populations of fluid drop chondrules in chondrites. It is possible that spatter-produced fluid drop chondrules dominate the meteoritic fluid drop chondrule populations. Such meteoritic chondrule populations should be chemically related by various relative amounts of iron and other volatile loss by vapor fractionation.

  19. Potential for the increased efficiency in motors in the chemical and processing industries. Final report

    SciTech Connect

    Pillay, P.

    1996-08-01

    Refineries and chemical plants make up a large portion of the process industry in Louisiana. Detailed surveys of motors and motor loads were done for 2 refineries and 5 chemical plants. In addition, surveys of motor failures were done for 1 refinery and 4 chemical plants. Categories of < 20hp, 20hp--250hp, 250hp--500hp and > 500hp were used to reflect the horsepower ranges sued by utilities nationwide in DSM rebate programs. The 20hp--250hp range being a target for replacement or retrofit scenarios; this is also the horsepower range where users have a choice of energy efficient or standard efficient motors. The data are presented in different graphs to emphasize different characteristics. A raw motor count is given that is an actual count in every hp; this is then organized in the hp ranges listed above. The total horsepower in each category is also given to show the concentration of the plant`s installed hp. the loads are divided into pumps, fans, compressors and others in the case of refineries. in the case of chemical plants, additional categories had to be used, depending on the plant, like agitators, centrifuges etc. A realistic tariff structure is then used to determine the potential for efficiency improvements with the resultant energy, demand and cost savings. The results of metering of motors are then presented. Results of a 50hp motor driving a pump, a 200 hp motor driving a pump, a 100 hp motor driving a fan, and a 30hp motor driving an agitator are included. An examination of variable speed drive efficiency is included, using detailed models of the power electronic devices. 20 refs., 180 figs., 82 tabs.

  20. Lithium and carbon isotopes in river catchment: combined tracers to constrain chemical weathering processes

    NASA Astrophysics Data System (ADS)

    Rad, S.; Rive, K.; Assayag, N.; Dictor, M.; Garcin, M.

    2012-12-01

    Water-rock interactions produced in river catchment are accompanied by fractionation or changes in stable isotopes such as H, Li, C and O during chemical weathering processes. Li is a fluid-mobile element that tends to preferentially partition into the fluid phase during water-rock interaction. The relative mass difference between the two isotopes is considerable, generating large mass dependent fractionation during chemical weathering processes. The CO2 dissolves into the water providing the main acid that attack the rock during chemical weathering. Carbon stable isotopes and concentration of Dissolved Inorganic Carbon (DIC) in the river catchment can be used to determine the origin and consumption rates of CO2. In the present work, stable isotopes were analyzed in Allier River, one of the major river basins of France. The lithology is dominated by granite rocks within current upstream, while it is mainly basaltic and Oligocene sediments in the downstream with hydrothermal manifestations. We propose a new isotopic approach by combining δ7Li and δ13CDIC analyses in river catchment waters. A first method has been applied to volcanic tropical environments with Li concentrations correlated to δ13CDIC (Rad et al., 2011). Here, we have completed this approach by lithium isotopes. Water samples were collected during several field trips. Our results show a large variation in Li isotopes and C isotopes within the catchment from 3.3 ‰ to 30.3 ‰ and from -17.9‰ to -3.5‰, respectively. Chemical weathering rates linearly increase from upstream to downstream over 400km distance, whereas Li isotope signatures decrease and global C signature increases. This is due to low water-rock interaction dominated in upstream, whereas the downstream is punctually impacted by hydrothermalism. From Li and C isotopes, our results show 4 groups reflecting different chemical weathering processes: the first group with high fractionation of Li and C, for Li, the heavy lithium

  1. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility

    PubMed Central

    2011-01-01

    Background In recent years, biorefining of lignocellulosic biomass to produce multi-products such as ethanol and other biomaterials has become a dynamic research area. Pretreatment technologies that fractionate sugarcane bagasse are essential for the successful use of this feedstock in ethanol production. In this paper, we investigate modifications in the morphology and chemical composition of sugarcane bagasse submitted to a two-step treatment, using diluted acid followed by a delignification process with increasing sodium hydroxide concentrations. Detailed chemical and morphological characterization of the samples after each pretreatment condition, studied by high performance liquid chromatography, solid-state nuclear magnetic resonance, diffuse reflectance Fourier transformed infrared spectroscopy and scanning electron microscopy, is reported, together with sample crystallinity and enzymatic digestibility. Results Chemical composition analysis performed on samples obtained after different pretreatment conditions showed that up to 96% and 85% of hemicellulose and lignin fractions, respectively, were removed by this two-step method when sodium hydroxide concentrations of 1% (m/v) or higher were used. The efficient lignin removal resulted in an enhanced hydrolysis yield reaching values around 100%. Considering the cellulose loss due to the pretreatment (maximum of 30%, depending on the process), the total cellulose conversion increases significantly from 22.0% (value for the untreated bagasse) to 72.4%. The delignification process, with consequent increase in the cellulose to lignin ratio, is also clearly observed by nuclear magnetic resonance and diffuse reflectance Fourier transformed infrared spectroscopy experiments. We also demonstrated that the morphological changes contributing to this remarkable improvement occur as a consequence of lignin removal from the sample. Bagasse unstructuring is favored by the loss of cohesion between neighboring cell walls, as

  2. Fluid Diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes

    SciTech Connect

    Seright, R.S.; Martin, F.D.

    1991-11-01

    This report describes progress made during the second year of the three-year project, Fluid diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes.'' The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gasfloods. The work examines how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. 93 refs., 39 figs., 43 tabs.

  3. Unraveling Markov Processes in Movement Patterns of Indicator Species in Response to Chemical Stressors

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuyen Van; Liu, Yuedan; Jung, Il-Hyo; Chon, Tae-Soo; Lee, Sang-Hee

    Revealing biological responses of organisms in responding to environmental stressors is the critical issue in contemporary ecological sciences. Markov processes in behavioral data were unraveled by utilizing the hidden Markov model (HMM). Individual organisms of daphnia (Daphnia magna) and zebrafish (Danio rerio) were exposed to diazinon at low concentrations. The transition probability matrix (TPM) and the emission probability matrix (EPM) were accordingly estimated by training with the HMM and were verified before and after the treatments with 10-6 tolerance in 103 iterations. Structured property in behavioral changes was accordingly revealed to characterize dynamic processes in movement patterns. Parameters and sequences produced through the HMM training could be a suitable means of monitoring toxic chemicals in environment.

  4. Development of a polysilicon process based on chemical vapor deposition, phase 1

    NASA Technical Reports Server (NTRS)

    Mccormick, J.; Sharp, K.; Arvidson, A.; Sawyer, D.

    1981-01-01

    The development of a dichlorosilane-based reductive chemical vapor deposition process for the production of polycrystalline silicon is discussed. Experimental data indicate that the ease of ignition and explosion severity of dichlorosilane (DCS)/air mixtures is substantially attenuated if the DCS is diluted with hydrogen. Redesign of the process development unit to accommodate safety related information is described. Several different sources of trichlorosilane were used to generate a mixture of redistributed chlorosilanes via Dowex ion exchange resin. The unseparated mixtures were then fed to an experimental reactor in which silicon was deposited and the deposited silicon analyzed for electrically active impurities. At least one trichlorosilane source provided material of requisite purity. Silicon grown in the experimental reactor was converted to single crystal material and solar cells fabricated and tested.

  5. Algae Polysaccharides' Chemical Characterization and their Role in the Inflammatory Process.

    PubMed

    Florez, Noelia; Gonzalez-Munoz, Maria Jesus; Ribeiro, Daniela; Fernandes, Eduarda; Dominguez, Herminia; Freitas, Marisa

    2017-01-01

    Polysaccharides are abundant components in marine macroalgae with potential applications in different areas such as pharmaceutical, biomedical, cosmetics and nutrition. The current interest in these compounds is due to their known bioactivities, conferred by their antiallergic, neuroprotective, gastroprotective, cardioprotective, cytotoxic, anticoagulant/antithrombotic, antiviral, antilipidemic, antinociceptive, and immunomodulatory properties, making them promising bioactive products and biomaterials. The inflammatory process is a complex event mediated by the immune system that culminates in the neutralization and elimination of the offending insult protecting the host and restoring tissue homeostasis. This review focuses on the extraction procedures and chemical characterization of polysaccharides from different classes of algae (Phaeophyceae, Rhodophyceae and Chlorophyceae) and on the studies on their inflammatory process modulatory effect.

  6. Kinematic analysis of in situ measurement during chemical mechanical planarization process

    SciTech Connect

    Li, Hongkai; Wang, Tongqing; Zhao, Qian; Meng, Yonggang; Lu, Xinchun

    2015-10-15

    Chemical mechanical planarization (CMP) is the most widely used planarization technique in semiconductor manufacturing presently. With the aid of in situ measurement technology, CMP tools can achieve good performance and stable productivity. However, the in situ measurement has remained unexplored from a kinematic standpoint. The available related resources for the kinematic analysis are very limited due to the complexity and technical secret. In this paper, a comprehensive kinematic analysis of in situ measurement is provided, including the analysis model, the measurement trajectory, and the measurement time of each zone of wafer surface during the practical CMP process. In addition, a lot of numerical calculations are performed to study the influences of main parameters on the measurement trajectory and the measurement velocity variation of the probe during the measurement process. All the efforts are expected to improve the in situ measurement system and promote the advancement in CMP control system.

  7. Kinematic analysis of in situ measurement during chemical mechanical planarization process

    NASA Astrophysics Data System (ADS)

    Li, Hongkai; Wang, Tongqing; Zhao, Qian; Meng, Yonggang; Lu, Xinchun

    2015-10-01

    Chemical mechanical planarization (CMP) is the most widely used planarization technique in semiconductor manufacturing presently. With the aid of in situ measurement technology, CMP tools can achieve good performance and stable productivity. However, the in situ measurement has remained unexplored from a kinematic standpoint. The available related resources for the kinematic analysis are very limited due to the complexity and technical secret. In this paper, a comprehensive kinematic analysis of in situ measurement is provided, including the analysis model, the measurement trajectory, and the measurement time of each zone of wafer surface during the practical CMP process. In addition, a lot of numerical calculations are performed to study the influences of main parameters on the measurement trajectory and the measurement velocity variation of the probe during the measurement process. All the efforts are expected to improve the in situ measurement system and promote the advancement in CMP control system.

  8. Syngas chemical looping gasification process: oxygen carrier particle selection and performance

    SciTech Connect

    Fanxing Li; Hyung Ray Kim; Deepak Sridhar; Fei Wang; Liang Zeng; Joseph Chen; L.-S. Fan

    2009-08-15

    The syngas chemical looping (SCL) process coproduces hydrogen and electricity. The process involves reducing metal oxides with syngas followed by regeneration of reduced metal oxides with steam and air in a cyclic manner. Iron oxide is determined to be a desired oxygen carrier for hydrogen production considering overall properties including oxygen carrying capacity, thermodynamic properties, reaction kinetics, physical strength, melting points, and environmental effects. An iron oxide based particle can maintain good reactivity for more than 100 reduction-oxidation (redox) cycles in a thermogravimetric analyzer (TGA). The particle exhibits a good crushing strength (>20 MPa) and low attrition rate. Fixed bed experiments are carried out which reaffirm its reactivity. More than 99.75% of syngas is converted during the reduction stage. During the regeneration stage, hydrogen with an average purity of 99.8% is produced. 23 refs., 6 figs., 10 tabs.

  9. Thermo-hydro-mechanical-chemical processes in fractured-porous media: Benchmarks and examples

    NASA Astrophysics Data System (ADS)

    Kolditz, O.; Shao, H.; Görke, U.; Kalbacher, T.; Bauer, S.; McDermott, C. I.; Wang, W.

    2012-12-01

    The book comprises an assembly of benchmarks and examples for porous media mechanics collected over the last twenty years. Analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, even climate change. In order to assess the feasibility as well as the safety of geotechnical applications, process-based modelling is the only tool to put numbers, i.e. to quantify future scenarios. This charges a huge responsibility concerning the reliability of computational tools. Benchmarking is an appropriate methodology to verify the quality of modelling tools based on best practices. Moreover, benchmarking and code comparison foster community efforts. The benchmark book is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation.

  10. Process Design for the Biocatalysis of Value-Added Chemicals from Carbon Dioxide

    SciTech Connect

    Mark A. Eiteman

    2005-11-01

    This report describes results toward developing a process to sequester CO{sub 2} centered on the enzyme pyruvate carboxylase. The process involves the use of bacteria to convert CO{sub 2} and glucose as a co-substrate and generates succinic acid as a commodity chemical product. The first phase of this research has focused on strain development and on process development. Progress in strain development has been made in three areas. The gene encoding for alcohol dehydrogenase has been ''knocked out'' of the bacteria, and thereby eliminating the synthesis of the by-product ethanol. The gene for glucokinase has been overexpressed in the production strain with the goal of faster utilization of glucose (and hence CO{sub 2}). Efforts have continued toward integrating pyruvate carboxylase gene (pyc) onto the E. coli chromosome. Progress in process development has come in conducting several dozen fermentation experiments to find a defined medium that would be successful for the growth of the bacteria, while permitting a high rate of CO{sub 2} utilization in a subsequent prolonged production phase. Using this defined medium, the strains that continue to be constructed are being compared for CO{sub 2} utilization, so that we may understand the factors that govern the biological sequestration process.

  11. In-situ FT-IR monitoring of a solar flux induced chemical process

    SciTech Connect

    Markham, J.R.; Cosgrove, J.E.; Nelson, C.M.; Bonanno, A.S.; Schlief, R.E.; Stoy, M.A.; Glatzmaier, G.C.; Bingham, C.E.; Lewandowski, A.A.

    1997-08-01

    The capability to perform in-situ, on-line monitoring of processes induced by concentrated solar flux will enhance the development and utilization of solar technologies. Temperature measurements and chemical concentration measurements provide an understanding of the ongoing chemistry, process limits, and process reproducibility. A Fourier transform infrared (FT-IR) spectrometer was optically coupled to a quartz flow reactor at the High Flux Solar Furnace of the National Renewable Energy Laboratory in Golden, CO. In-situ emission/transmission spectroscopy was utilized to simultaneously monitor steam temperature and the concentration of formed hydrogen bromide during the solar flux induced reaction of steam and bromine. The photochemical process is being investigated for the production of industrial quantities of hydrogen and oxygen, where downstream electrolysis of the formed hydrogen bromide provides the hydrogen and regenerates bromine. Steam temperature was measured to increase upon the addition of bromine to the reactor. Gas temperature increases of 200 C to 400 C were observed. Hydrogen bromide concentrations up to ten percent of the reactor gas volume was measured. The FT-IR system provided quantitative information of two critical parameters of the measured process and serves to accelerate this technology area.

  12. Process Design for the Biocatalysis of Value-Added Chemicals from Carbon Dioxide

    SciTech Connect

    Mark Eiteman

    2007-07-31

    This report describes results toward developing a process to sequester CO{sub 2} centered on the enzymes PEP carboxylase and pyruvate carboxylase. The process involves the use of bacteria to convert CO{sub 2} and glucose as a co-substrate and generates succinic acid as a commodity chemical product. The study reports on strain development and process development. In the area of strain development, knockouts in genes which divert carbon from the enzymatic steps involved in CO{sub 2} consumption were completed, and were shown not to affect significantly the rate of CO{sub 2} sequestration and succinic acid generation. Furthermore, the pyc gene encoding for pyruvate carboxylase proved to be unstable when integrated onto the chromosome. In the area of process development, an optimal medium, pH and base counterion were obtained, leading to a sequestration rate as great as 800 mg/Lh. Detailed studies of gas phase composition demonstrated that CO{sub 2} composition has a significant affect on CO{sub 2} sequestration, while the presence of 'toxic' compounds in the gas, including NO{sub 2}, CO and SO{sub 2} did not have a detrimental effect on sequestration. Some results on prolonging the rate of sequestration indicate that enzyme activities decrease with time, suggesting methods to prolong enzyme activity may benefit the overall process.

  13. Chemical processing of volcanic ash within eruption plume and cloud: a numerical modeling approach

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, Gholam Ali; Hort, Matthias; Langmann, Baerbel; Brasseur, Guy

    2015-04-01

    Volcanic ash is recently identified as an active chemical agent in the Earth system. Generated mainly through lithospheric processes and magma fragmentation, it can pose significant impacts upon different components of the Earth system for e.g. atmosphere and hydrosphere on various temporal and spatial scales. While airborne in the atmosphere, transition metals contained in the ash can catalyze the sulfur oxidation cycle thereby indirectly affecting the volcanic radiative forcing. Moreover, upon deposition on the surface ocean, ash can release soluble iron that fertilizes Fe-limited areas of the ocean and stimulate the marine productivity and CO2 drawdown. Such impacts are provoked through interfacial processes and thus, are mainly induced by the ash surface composition. Recent studies suggest that in-plume and in-cloud processing of volcanic ash primarily control its surface composition. Direct evidences concerning such processes are, however, lacking. Here we present the results of our recent investigations on in-plume and in-cloud processing of volcanic ash. A 1D numerical model is developed that simulates the gas-ash-aerosol interactions in volcanic eruption plume and cloud at temperatures between 600 C and 0 C focusing on iron, sulfur and halogen chemistry. Results show that sulfuric acid and water vapor condense at 150 C and 50 C, respectively, generating a liquid coating at the ash surface that scavenges the surrounding gases (>95extremely acidic (pH

  14. Review of Catalytic Hydrogen Generation in the DWPF Chemical Processing Cell, Part II

    SciTech Connect

    Koopman, David C.; Lambert, Daniel P.; Baich, Mark A.

    2005-08-01

    The Savannah River National Laboratory is in the process of investigating factors suspected of impacting catalytic hydrogen generation in the Defense Waste Processing Facility, DWPF, Chemical Process Cell, CPC. Noble metal catalyzed hydrogen generation in simulation work constrains the allowable acid addition operating window in DWPF. This constraint potentially impacts washing strategies during sludge batch preparation. It can also influence decisions related to the addition of secondary waste streams to a sludge batch. Catalytic hydrogen generation data from 2002-2005 were reviewed. The data came from process simulations of the DWPF Sludge Receipt and Adjustment Tank, SRAT, and Slurry Mix Evaporator, SME. Most of the data was from the development work for the Sludge Batch 3 process flowsheet. This included simulant and radioactive waste testing. Preliminary Sludge Batch 4 data were also reviewed. A statistical analysis of SB3 simulant hydrogen generation data was performed. One factor considered in the statistical analysis was excess acid. Excess acid was determined experimentally as the acid added beyond that required to achieve satisfactory nitrite destruction.

  15. An elevational gradient in snowpack chemical loading at Glacier National Park, Montana: implications for ecosystem processes

    USGS Publications Warehouse

    Fagre, Daniel; Tonnessen, Kathy; Morris, Kristi; Ingersoll, George; McKeon, Lisa; Holzer, Karen

    2000-01-01

    The accumulation and melting of mountain snowpacks are major drivers of ecosystem processes in the Rocky Mountains. These include the influence of snow water equivalent (SWE) timing and amount of release on soil moisture for annual tree growth, and alpine stream discharge and temperature that control aquatic biota life histories. Snowfall also brings with it atmospheric deposition. Snowpacks will hold as much as 8 months of atmospheric deposition for release into mountain ecosystems during the spring melt. These pulses of chemicals influence soil microbiota and biogeochemical processes affecting mountain vegetation growth. Increased atmospheric nitrogen inputs recently have been documented in remote parts of Colorado's mountain systems but no baseline data exist for the Northern Rockies. We examined patterns of SWE and snow chemistry in an elevational gradient stretching from west to east over the continental divide in Glacier National Park in March 1999 and 2000. Sites ranged from 1080m to 2192m at Swiftcurrent Pass. At each site, two vertically-integrated columns of snow were sampled from snowpits up to 600cm deep and analyzed for major cations and anions. Minor differences in snow chemistry, on a volumetric basis, existed over the elvational gradient. Snowpack chemical loading estimates were calculated for NH4, SO4 and NO3 and closely followed elevational increases in SWE. NO3 (in microequivalents/square meter) ranged from 1,000 ueq/m2 at low elevation sites to 8,000+ ueq/m2 for high elevation sites. Western slopes received greater amounts of SWE and chemical loads for all tested compounds.

  16. Heavy metals and its chemical speciation in sewage sludge at different stages of processing.

    PubMed

    Tytła, Malwina; Widziewicz, Kamila; Zielewicz, Ewa

    2016-01-01

    The analysis of heavy metal concentrations and forms in sewage sludge constitutes an important issue in terms of both health and environmental hazards the metals pose. The total heavy metals concentration enables only the assessment of its contamination. Hence the knowledge of chemical forms is required to determine their environmental mobility and sludge final disposal. Heavy metals speciation was studied by using four-stage sequential extraction BCR (Community Bureau of Reference). This study was aimed at determining the total concentration of selected heavy metals (Zn, Cu, Ni, Pb, Cd, Cr and Hg) and their chemical forms (except for Hg) in sludge collected at different stages of its processing at two municipal Wastewater Treatment Plants in southern Poland. Metals contents in sludge samples were determined by using flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption spectrometry (ETAAS). This study shows that Zn and Cu appeared to be the most abundant in sludge, while Cd and Hg were in the lowest concentrations. The sewage sludge revealed the domination of immobile fractions over the mobile ones. The oxidizable and residual forms were dominant for all the heavy metals. There was also a significant difference in metals speciation between sludges of different origin which was probably due to differences in wastewater composition and processes occurring in biological stage of wastewater treatment. The results indicate a negligible capability of metals to migrate from sludge into the environment. Our research revealed a significant impact of thickening, stabilization and hygienization on the distribution of heavy metals in sludge and their mobility.

  17. Development of bismuth tellurium selenide nanoparticles for thermoelectric applications via a chemical synthetic process

    SciTech Connect

    Kim, Cham; Kim, Dong Hwan; Han, Yoon Soo; Chung, Jong Shik; Park, SangHa; Park, Soonheum; Kim, Hoyoung

    2011-03-15

    Research highlights: {yields} We synthesized a Bi{sub 2}Te{sub y}Se{sub 3-y} nano-compound via a chemical synthetic process. {yields} The compound was sintered to achieve an average grain size of about 300 nm. {yields} The resulting sintered body showed very low thermal conductivity. It is likely caused by the vigorous phonon scattering of the nano-sized grains. -- Abstract: Bismuth tellurium selenide (Bi{sub 2}Te{sub y}Se{sub 3-y}) nanoparticles for thermoelectric applications are successfully prepared via a water-based chemical reaction under atmospheric conditions. The nanostructured compound is prepared using a complexing agent (ethylenediaminetetraacetic acid) and a reducing agent (ascorbic acid) to stabilize the bismuth precursor (Bi(NO{sub 3}){sub 3}) in water and to favor the reaction with reduced sources of tellurium and selenium. The resulting powder is smaller than ca. 100 nm and has a crystalline structure corresponding to the rhombohedral Bi{sub 2}Te{sub 2.7}Se{sub 0.3}. The nanocrystalline powder is sintered via a spark plasma sintering process to obtain a sintered body composed of nano-sized grains. Important transport properties of the sintered body are measured to calculate its most important characteristic, the thermoelectric performance. The results demonstrate a relationship between the nanostructure of the sintered body and its thermal conductivity.

  18. The Ansel Adams zone system: HDR capture and range compression by chemical processing

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    2010-02-01

    We tend to think of digital imaging and the tools of PhotoshopTM as a new phenomenon in imaging. We are also familiar with multiple-exposure HDR techniques intended to capture a wider range of scene information, than conventional film photography. We know about tone-scale adjustments to make better pictures. We tend to think of everyday, consumer, silver-halide photography as a fixed window of scene capture with a limited, standard range of response. This description of photography is certainly true, between 1950 and 2000, for instant films and negatives processed at the drugstore. These systems had fixed dynamic range and fixed tone-scale response to light. All pixels in the film have the same response to light, so the same light exposure from different pixels was rendered as the same film density. Ansel Adams, along with Fred Archer, formulated the Zone System, staring in 1940. It was earlier than the trillions of consumer photos in the second half of the 20th century, yet it was much more sophisticated than today's digital techniques. This talk will describe the chemical mechanisms of the zone system in the parlance of digital image processing. It will describe the Zone System's chemical techniques for image synthesis. It also discusses dodging and burning techniques to fit the HDR scene into the LDR print. Although current HDR imaging shares some of the Zone System's achievements, it usually does not achieve all of them.

  19. Synthesis of silicon nanowires using tin catalyst by hot wire chemical vapor processing

    SciTech Connect

    Meshram, Nagsen; Kumbhar, Alka; Dusane, R.O.

    2013-06-01

    Highlights: ► Silicon nanowires are grown by hot wire chemical vapor processing at 400 °C using Sn as catalyst material via VLS. ► For nanowire synthesis Sn nanotemplates are formed with hot wire generated atomic hydrogen. ► The TEM image reveals the crystalline nature of nanowire. - Abstract: Silicon nanowires (SiNWs) have been synthesized at temperatures in the range 300–400 °C by the hot wire chemical vapor processing (HWCVP) using tin nanotemplate. The tin nano-template is formed by hot wire atomic hydrogen treatment of thermally evaporated Sn films (∼300 nm thick) on glass substrates. Silicon nanowires are then grown using hot wire induced dissociation of SiH{sub 4} gas over the nanotemplate. Growth conditions like growth time and temperature were varied to study their effect on the tin nanoparticle size and on the silicon nanowire dimensions thereafter. From the observations, it is clear that the nanowire diameters and lengths depend on the size of nanoparticles and the growth time respectively. Though SiNWs were observed to grow at temperatures as low as 300 °C, nanowires with a narrow diameter distribution were achieved at 400 °C. Raman spectra and transmission electron microscope (TEM) reveal the crystalline nature of the silicon nanowires.

  20. Chemically deposited CdS by an ammonia-free process for solar cells window layers

    SciTech Connect

    Ochoa-Landin, R.; Sastre-Hernandez, J.; Vigil-Galan, O.; Ramirez-Bon, R.

    2010-02-15

    Chemically deposited CdS window layers were studied on two different transparent conductive substrates, namely indium tin oxide (ITO) and fluorine doped tin oxide (FTO), to determine the influence of their properties on CdS/CdTe solar cells performance. Three types of CdS films obtained from different chemical bath deposition (CBD) processes were studied. The three CBD processes employed sodium citrate as the complexing agent in partial or full substitution of ammonia. The CdS films were studied by X-ray diffraction, optical transmission spectroscopy and atomic force microscopy. CdS/CdTe devices were completed by depositing 3 {mu}m thick CdTe absorbent layers by means of the close-spaced vapor transport technique (CSVT). Evaporated Cu-Au was used as the back contact in all the solar cells. Dark and under illumination J-V characteristic and quantum efficiency measurements were done on the CdS/CdTe devices to determine their conversion efficiency and spectral response. The efficiency of the cells depended on the window layer and on the transparent contact with values between 5.7% and 8.7%. (author)

  1. Heterogeneous chemistry on Antarctic polar stratospheric clouds - A microphysical estimate of the extent of chemical processing

    NASA Technical Reports Server (NTRS)

    Drdla, K.; Turco, R. P.; Elliott, S.

    1993-01-01

    A detailed model of polar stratospheric clouds (PSCs), which includes nucleation, condensational growth. and sedimentation processes, has been applied to the study of heterogeneous chemical reactions. For the first time, the extent of chemical processing during a polar winter has been estimated for an idealized air parcel in the Antarctic vortex by calculating in detail the rates of heterogeneous reactions on PSC particles. The resulting active chlorine and NO(x) concentrations at first sunrise are analyzed with respect to their influence upon the Antarctic ozone hole using a photochemical model. It is found that the species present at sunrise are primarily influenced by the relative values of the heterogeneous reaction rate constants and the initial gas concentrations. However, the extent of chlorine activation is also influenced by whether N2O5 is removed by reaction with HCl or H2O. The reaction of N2O5 with HCl, which occurs rapidly on type 1 PSCs, activates the chlorine contained in the reservoir species HCl. Hence the presence and surface area of type 1 PSCs early in the winter are crucial in determining ozone depletion.

  2. Development of Dishing-less Slurry for Polysilicon Chemical-Mechanical Polishing Process

    NASA Astrophysics Data System (ADS)

    Miyashita, Naoto; Uekusa, Shin-ichiro; Kodera, Masako; Matsui, Yoshitaka; Katsumata, Hiroshi

    2003-09-01

    Dishing of polysilicon and thinning of the stopper silicon nitride films are crucial problems when the polysilicon embedded by low pressure chemical vapor deposition in the trench and the concavity with respective widths of 0.7 μm and 20-100 μm is simultaneously flattened by chemical-mechanical polishing (CMP). In order to suppress these two occurrences, a high polymer compound mixed slurry was developed and characterized. The pH value of the slurry measured on the polishing abrasive pad was decreased by dilution with de-ionized water, which resulted in cohesion and solidification of the slurry. By using this cohered and solidified slurry when the poly silicon surface is flattened by CMP, the dishing thickness of the polysilicon was suppressed to less than 100 nm at a concavity width of 100 μm. The CMP process using the developed slurry is useful for the advanced trench isolation process and is currently applied to NAND flash memory and high-speed bipolar LSI devices.

  3. Chromium Extraction via Chemical Processing of Fe-Cr Alloys Fine Powder with High Carbon Content

    NASA Astrophysics Data System (ADS)

    Torres, D. M.; Navarro, R. C. S.; Souza, R. F. M.; Brocchi, E. A.

    2017-03-01

    Ferrous alloys are important raw materials for special steel production. In this context, alloys from the Fe-Cr system, with typical Cr weight fraction ranging from 0.45 to 0.95, are prominent, particularly for the stainless steel industry. During the process in which these alloys are obtained, there is considerable production of fine powder, which could be reused after suitable chemical treatment, for example, through coupling pyrometallurgical and hydrometallurgical processes. In the present study, the extraction of chromium from fine powder generated during the production of a Fe-Cr alloy with high C content was investigated. Roasting reactions were performed at 1073 K, 1173 K, and 1273 K (800 °C, 900 °C, and 1000 °C) with 300 pct (w/w) excess NaOH in an oxidizing atmosphere (air), followed by solubilization in deionized water, selective precipitation, and subsequent calcination at 1173 K (900 °C) in order to convert the obtained chromium hydroxide to Cr2O3. The maximum achieved Cr recovery was around 86 pct, suggesting that the proposed chemical route was satisfactory regarding the extraction of the chromium initially present. Moreover, after X-ray diffraction analysis, the final produced oxide has proven to be pure Cr2O3 with a mean crystallite size of 200 nm.

  4. Integrated process control for recirculating cooling water treatment in the coal chemical industry.

    PubMed

    Pei, Y S; Guo, W; Yang, Z F

    2011-01-01

    This work focused on the integrated process of the recirculating cooling water (RCW) treatment to achieve approximate zero emission in the coal chemical industry. The benefits of fractional and comprehensive RCW treatment were quantified and qualified by using a water and mass balance approach. Limits of cycle of concentrations and some encountered bottlenecks were used to ascertain set target limits for different water sources. Makeup water was mixed with water produced from reverse osmosis (RO) in the proportion of 6:4, which notably reduced salts discharge. Side infiltration, which settled down suspended solids, can reduce energy consumption by over 40%. An automated on-line monitoring organic phosphorus inhibitor feed maintains the RCW system stability in comparison to the manual feed. Two-step electrosorb technology (EST) instead of an acid feed can lead cycle of concentration of water to reach 7.0. The wastewater from RO, EST and filter was transferred into a concentration treatment system where metallic ions were adsorbed by permanent magnetic materials. Separation of water and salts was completed by using a magnetic disc separator. Applying the integrated process in a coal chemical industry, a benefit of 1.60 million Yuan annually in 2 years was gained and approximate zero emission was achieved. Moreover, both technical and economic feasibility were demonstrated in detail.

  5. A biological/chemical process for reduced waste and energy consumption: caprolactam production. Final report

    SciTech Connect

    1996-05-01

    A biological/chemical process for converting cyclohexane into caprolactam was investigated: microorganisms in a bioreactor would be used to convert cyclohexane into caprolactone followed by chemical synthesis of caprolactam using ammonia. Four microorganisms were isolated from natural soil and water, that can utilize cyclohexane as a sole source of C and energy for growth. They were shown to have the correct metabolic intermediates and enzymes to convert cyclohexane into cyclohexanol, cyclohexanone, and caprolactone. Genetic techniques to create and select for caprolactone hydrolase negative-mutants were developed; those are used to convert cyclohexane into caprolactone but, because of the block, are unable to metabolize the caprolactone further. Because of a new nylon carpet reycle process and the long time frame for a totally new bioprocess, a limited study was done to evaluate whether a simplified bioprocess to convert cyclohexanol into cyclohexanone or caprolactone was feasible; growth rates and key enzyme levels were measured in a collection of microorganisms that metabolize cyclohexanol to determine if the bioactivity is high enough to support an economical cyclohexanol bioprocess. Although these microorganisms had sufficient bioactivity, they could tolerate only low levels (<1%) of cyclohexanol and thus are not suitable for developing a cost effective bioprocess because of the high cost of dilute product recovery.

  6. Effect of different preservation processes on chemical composition and fatty acid profile of anchovy (Engraulis anchoita).

    PubMed

    Czerner, Marina; Agustinelli, Silvina P; Guccione, Silvana; Yeannes, María I

    2015-01-01

    The effects of salting-ripening, canning and marinating processes on chemical composition and fatty acid profile of anchovy (Engraulis anchoita) were evaluated (p = 0.01), with emphasis on long-chain polyunsaturated fatty acids. Fresh anchovy showed a high proportion of PUFAs (∼45 g/100 g total lipid) with an eicosapentaenoic (EPA) + docosahexaenoic (DHA) content of 27.08 g/100 g total lipid. The salting-ripening process led to the largest changes in the chemical composition and the fatty acid profile, which resulted in a reduction of ∼70% on the total EPA and DHA contents (g/100 g edible portion). Contrary, canned and marinated anchovy presented a fatty acid profile similar to that of fresh anchovy. The use of vegetable oil as covering liquid led to final products with increased ω-6 PUFAs content. Despite the modifications observed, the total amount of essential EPA and DHA fatty acids provided by these products remained high compared with values reported in literature for other foods.

  7. Microwave-assisted chemical process for treatment of hazardous waste: Annual report

    SciTech Connect

    Varma, R.; Nandi, S.P.; Cleaveland, D.C.

    1987-10-01

    Microwave energy provides rapid in situ uniform heating and can be used to initiate chemical processes at moderate temperatures. We investigate the technical feasibility of microwave-assisted chemical processes for detoxification of liquid hazardous waste. Trichloroethylene, a major constituent of waste streams, was selected for this detoxification study. Experiments were performed to investigate the oxidative degradation of trichloroethylene over active carbons (with and without catalysts) in air streams with microwave in situ heating, and to examine the feasibility of regenerating the used carbons. This study established that trichloroethylene in a vapor stream can be adsorbed at room temperature on active carbon beds that are loaded with Cu and Cr catalysts. When the bed is heated by a microwave radiation to moderate temperatures (<400/sup 0/C) while a moist air stream is passed through it, the trichloroethylene is readily converted into less-noxious products such as HCl, CO, CO/sub 2/ and C/sub 2/H/sub 2/Cl/sub 2/. Conversion higher than 80% was observed. Furthermore, the used carbon bed can be conveniently regenerated by microwave heating while a moist-N/sub 2/ or moist-air stream is passed through the bed. 4 refs., 5 figs., 10 tabs.

  8. Electromagnetic absorbing property of the flaky carbonyl iron particles by chemical corrosion process

    NASA Astrophysics Data System (ADS)

    Zheng, Dianliang; Liu, Ting; Zhou, Li; Xu, Yonggang

    2016-12-01

    The flaky carbonyl iron particles (CIPs) were prepared using a milling process at the first step, then the chemical corrosion process was done to optimize the particle shape. The particle morphology was characterized by the scanning electron microscopy, the static magnetic property was evaluated on a vibrating sample magnetometer and X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 2-18 GHz and the reflection loss (RL) was calculated. The results showed that the saturation magnetization value of the CIPs decreased as the CIPs was corroded to the small flakes in chemical corrosion process. The diffraction peaks of the single α-Fe existed in the XRD pattern of CIPs, and the characteristic peaks was more obvious and the intensity of the diffraction pattern was lower by corrosion. The permittivity and the permeability of the corroded milling CIPs was a little larger than the milling CIPs, it was due to the larger aspect ratio based on the fitting calculation process. At thickness 0.6 mm and 0.8 mm, the corroded milling CIPs composite had the better absorbing property than the other two samples. The frequency band (RL<-5 dB) could be widened to 8.96-18 GHz at 0.6 mm and 5.92-18 GHz at 0.8 mm, and RL less than -8 dB began to exist in 8.96-14.72 GHz at 0.8 mm.

  9. DEVELOPMENT OF A CHEMICAL PROCESS MODELING ENVIRONMENT BASED ON CAPE-OPEN INTERFACE STANDARDS AND THE MICROSOFT .NET FRAMEWORK

    EPA Science Inventory

    Chemical process simulation has long been used as a design tool in the development of chemical plants, and has long been considered a means to evaluate different design options. With the advent of large scale computer networks and interface models for program components, it is po...

  10. Musical Chemistry: Integrating Chemistry and Music--A Nine-Part Tutorial for Generating Music from Chemical Processes

    ERIC Educational Resources Information Center

    Kumbar, Mahadev

    2007-01-01

    This paper synopsizes a series of nine tutorials investigating how various chemical processes can be shown to have musical aspects. Both chemistry and music share a common language: mathematics. Interesting music can be created as chemical reactions--mediated by instrumentation and mathematics (e.g., spectrometry and discrete Fourier…

  11. Microfluidic electrochemical device and process for chemical imaging and electrochemical analysis at the electrode-liquid interface in-situ

    DOEpatents

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li; Zhu, Zihua; Marshall, Matthew J.

    2016-03-01

    A microfluidic electrochemical device and process are detailed that provide chemical imaging and electrochemical analysis under vacuum at the surface of the electrode-sample or electrode-liquid interface in-situ. The electrochemical device allows investigation of various surface layers including diffuse layers at selected depths populated with, e.g., adsorbed molecules in which chemical transformation in electrolyte solutions occurs.

  12. Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes

    NASA Astrophysics Data System (ADS)

    Abdelkader, Mohamed; Metzger, Swen; Steil, Benedikt; Klingmüller, Klaus; Tost, Holger; Pozzer, Andrea; Stenchikov, Georgiy; Barrie, Leonard; Lelieveld, Jos

    2017-03-01

    We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux, convection schemes and the chemical aging of mineral dust, by using the EMAC model following Abdelkader et al. (2015). To characterize the dust outflow over the Atlantic Ocean, we distinguish two geographic zones: (i) dust interactions within the Intertropical Convergence Zone (ITCZ), or the dust-ITCZ interaction zone (DIZ), and (ii) the adjacent dust transport over the Atlantic Ocean (DTA) zone. In the latter zone, the dust loading shows a steep and linear gradient westward over the Atlantic Ocean since particle sedimentation is the dominant removal process, whereas in the DIZ zone aerosol-cloud interactions, wet deposition and scavenging processes determine the extent of the dust outflow. Generally, the EMAC simulated dust compares well with CALIPSO observations; however, our reference model configuration tends to overestimate the dust extinction at a lower elevation and underestimates it at a higher elevation. The aerosol optical depth (AOD) over the Caribbean responds to the dust emission flux only when the emitted dust mass is significantly increased over the source region in Africa by a factor of 10. These findings point to the dominant role of dust removal (especially wet deposition) in transatlantic dust transport. Experiments with different convection schemes have indeed revealed that the transatlantic dust transport is more sensitive to the convection scheme than to the dust emission flux parameterization. To study the impact of dust chemical aging, we focus on a major dust outflow in July 2009. We use the calcium cation as a proxy for the overall chemical reactive dust fraction and consider the uptake of major inorganic acids (i.e., H2SO4, HNO3 and HCl) and their anions, i.e., sulfate (SO42-), bisulfate (HSO4

  13. Modelling the multiphase chemical processing of Monoethanolamine from industrial CCS processes in tropospheric aqueous particles and clouds

    NASA Astrophysics Data System (ADS)

    Tilgner, Andreas; Bräuer, Peter; Wolke, Ralf; Herrmann, Hartmut

    2013-04-01

    Using amine based solvent technology is an option to realise CO2 capture from the exhaust of power plants. Amines such as Monoethanolamine (MEA) may potentially be released in trace amounts during the carbon capture and storage (CCS) process. In order to investigate the tropospheric chemical fate of MEA from CO2 capturing processes and their oxidation products, multiphase modelling was performed and a reduced mechanism for future 3D model applications was developed in the present study. Based on former laboratory investigations and mechanism developments, an up-to-date multiphase mechanism describing the gas and aqueous phase chemistry of MEA has been developed in the present study. The developed multiphase phase oxidation scheme of MEA and its oxidation products, incl. nitrosamines, nitramines and amides, was coupled to the existing multiphase chemistry mechanism (RACM-MIM2ext-CAPRAM3.0i-red, Deguillaume et al. 2010) and the CAPRAM Halogen Module 2.0. Overall, the multiphase mechanism comprises 1276 chemical processes including 668 gas and 518 aqueous phase reactions as well as 90 phase transfers. The multiphase amine module contains in total 138 processes. The final mechanism was used in the Lagrangian parcel model SPACCIM (Wolke et al., 2005) to investigate e.g. the main oxidation pathways, the formation of hazardous oxidation products and seasonal differences. Simulations were performed using a meteorological scenario with non-permanent clouds, different environmental trajectories and seasonal conditions. The simulations revealed the importance of both cloud droplets and deliquescent particles to be an important compartment for the multiphase processing of MEA and its products. Due to the shifted partitioning of MEA towards the aqueous phase, the model investigations implicated that aqueous phase oxidation by OH radicals represents the main sink for MEA under daytime cloud summer conditions. Reaction flux analyses have shown that under deliquescent particle

  14. Corn silage management I: effects of hybrid, maturity, and mechanical processing on chemical and physical characteristics.

    PubMed

    Johnson, L M; Harrison, J H; Davidson, D; Robutti, J L; Swift, M; Mahanna, W C; Shinners, K

    2002-04-01

    Two experiments were conducted to evaluate the effects of hybrid, maturity, and mechanical processing of whole plant corn on chemical and physical characteristics, particle size, pack density, and dry matter recovery. In the first experiment, hybrid 3845 whole plant corn was harvested at hard dough, one-third milkline, and two-thirds milkline with a theoretical length-of-cut of 6.4 mm. In the second experiment, hybrids 3845 and Quanta were harvested at one-third milkline, two-thirds milkline, and blackline stages of maturity with a theoretical length-of-cut of 12.7 mm. At each stage of maturity, corn was harvested with and without mechanical processing by using a John Deere 5830 harvester with an onboard kernel processor. The percentage of intact corn kernels present in unprocessed corn silage explained 62% of variation in total tract starch digestibility. As the amount of intact kernels increased, total tract starch digestibility decreased. Post-ensiled vitreousness of corn kernels within the corn silage explained 31 and 48% of the variation of total tract starch digestibility for processed and unprocessed treatments, respectively. For a given amount of vitreous starch in corn kernels, total tract starch digestibility was lower for cows fed unprocessed corn silage compared with processed corn silage. This suggests that processing corn silage disrupts the dense protein matrix within the corn kernel where starch is embedded, therefore making the starch more available for digestion. Particle size of corn silage and orts that contained corn silage was reduced when it was processed. Wet pack density was greater for processed compared with unprocessed corn silage.

  15. EPA Proposes Revisions to its Risk Management Program to Improve Chemical Process Safety and Further Protect Communities and First Responders

    EPA Pesticide Factsheets

    WASHINGTON - The U.S. Environmental Protection Agency (EPA) is proposing to revise its Risk Management Program (RMP) regulations to improve chemical process safety, assist local emergency authorities in planning for and responding to accidents, and

  16. HYPER-­TVT: Development and Implementation of an Interactive Learning Environment for Students of Chemical and Process Engineering

    ERIC Educational Resources Information Center

    Santoro, Marina; Mazzotti, Marco

    2006-01-01

    Hyper-TVT is a computer-aided education system that has been developed at the Institute of Process Engineering at the ETH Zurich. The aim was to create an interactive learning environment for chemical and process engineering students. The topics covered are the most important multistage separation processes, i.e. fundamentals of separation…

  17. 81 FR 15130 - The Standard on Process Safety Management of Highly Hazardous Chemicals; Extension of the Office...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2016-03-21

    ... Occupational Safety and Health Administration The Standard on Process Safety Management of Highly Hazardous... contained in the Standard on Process Safety Management (PSM) of Highly Hazardous Chemicals. DATES: Comments... of the standard; completing a compilation of written process safety information; performing a...

  18. Processes controlling the physico-chemical micro-environments associated with Pompeii worms

    NASA Astrophysics Data System (ADS)

    Le Bris, N.; Zbinden, M.; Gaill, F.

    2005-06-01

    Alvinella pompejana is a tube-dwelling polychaete colonizing hydrothermal smokers of the East Pacific Rise. Extreme temperature, low pH and millimolar sulfide levels have been reported in its immediate surroundings. The conditions experienced by this organism and its associated microbes are, however, poorly known and the processes controlling the physico-chemical gradients in this environment remain to be elucidated. Using miniature in situ sensors coupled with close-up video imagery, we have characterized fine-scale pH and temperature profiles in the biogeoassemblage constituting A. pompejana colonies. Steep discontinuities at both the individual and the colony scale were highlighted, indicating a partitioning of the vent fluid-seawater interface into chemically and thermally distinct micro-environments. The comparison of geochemical models with these data furthermore reveals that temperature is not a relevant tracer of the fluid dilution at these scales. The inner-tube micro-environment is expected to be supplied from the seawater-dominated medium overlying tube openings and to undergo subsequent conductive heating through the tube walls. Its neutral pH is likely to be associated with moderately oxidative conditions. Such a model provides an explanation of the atypical thermal and chemical patterns that were previously reported for this medium from discrete samples and in situ measurements. Conversely, the medium surrounding the tubes is shown to be dominated by the fluid venting from the chimney wall. This hot fluid appears to be gradually cooled (120-30 °C) as it passes through the thickness of the worm colony, as a result of a thermal exchange mechanism induced by the tube assemblage. Its pH, however, remains very low (pH˜4), and reducing conditions can be expected in this medium. Such a thermal and chemical buffering mechanism is consistent with the mineralogical anomalies previously highlighted and provides a first explanation of the exceptional ability of

  19. Electrocatalytic processing of renewable biomass-derived compounds for production of chemicals, fuels and electricity

    NASA Astrophysics Data System (ADS)

    Xin, Le

    The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while

  20. Soot-overcladding process for enlarging modified chemical vapor deposition preforms

    NASA Astrophysics Data System (ADS)

    Ihalainen, Heikki; Kurki, Jouko

    1995-09-01

    The equipment and the process for soot sleeving of optical fiber preforms made by the modified chemical vapor deposition (MCVD) method has been developed. The equipment consists of a soot-sleeving lathe that is used for deposition of soot glass particles onto the surface of an MCVD core preform and a separate furnace that is used for drying and sintering the deposited porous glass layer. An outline of the equipment is presented. This equipment has then been used to study the basic parameters of flame hydrolysis deposition as well as sintering of the porous layer. The raw material and the fuel gas flow as well as the substrate diameter proved to be the most important parameters affecting the process. The basic knowledge achieved is used to optimize the process for three different preform sizes. In the soot-sleeving process for 80-km optical fiber preforms, an average deposition rate of 5.2 g/min is achieved with a double burner. The overall quality of the drawn fiber proved to be good. The typical attenuations were 0.330 and 0.215 dB/km at 1310- and 1550-nm wavelengths, respectively. The geometry of the drawn fibers was found to be very good.

  1. Power-plant fly-ash utilization: a chemical processing perspective

    SciTech Connect

    Burnet, G.; Murtha, M.J.

    1981-01-01

    The 1976 Resource Conservation and Recovery Act (RCRA) deals with the management of solid and hazardous wastes, and encourages energy and resource recovery. Recent research has indicated that solid wastes from coal combustion, including fly ash, could be classified as hazardous under present EPA definitions. The seriousness of this possibility has been recognized and new rules for coal ash waste disposal are being considered. Ames Laboratory research on fly ash utilization as an alternative to disposal includes extraction of metals from the ash and discovery of uses for the process residues. Recovery of alumina and iron oxides by physical and chemical processing would permit large scale utilization of fly ash and help reduce dependency on imports. One of the processes investigated uses a lime-soda sinter method to form soluble aluminate compounds from mixtures of fly ash, limestone, and soda ash. The aluminates are extracted, treated to remove silicates, and precipitated: the precipitate is calcined to metallurgical grade alumina. The extract residue shows promise as a raw material for the production of Portland cement. Process economics are presented, and the effects of alumina and silica contents of the fly ash, sintering temperatures and time, and sales credits for by-products are discussed.

  2. Integrated Modeling and Experiments to Characterize Coupled Thermo-hydro-geomechanical-chemical processes in Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.

    2015-12-01

    Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.

  3. Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis

    PubMed Central

    Block, David E.; Shoemaker, Sharon P.; Mills, David A.

    2010-01-01

    Commercialization of lignocellulosic biomass as a feedstock for bio-based chemical production is problematic due to the high processing costs of pretreatment and saccharifying enzymes combined with low product yields. Such low product yield can be attributed, in large part, to the incomplete utilization of the various carbohydrate sugars found in the lignocellulosic biomass. In this study, we demonstrate that Lactobacillus brevis is able to simultaneously metabolize all fermentable carbohydrates in acid pre-processed rice straw hydrolysate, thereby allowing complete utilization of all released sugars. Inhibitors present in rice straw hydrolysate did not affect lactic acid production. Moreover, the activity of exogenously added cellulases was not reduced in the presence of growing cultures of L. brevis. These factors enabled the use of L. brevis in a process termed simultaneous saccharification and mixed sugar fermentation (SSMSF). In SSMSF with L. brevis, sugars present in rice straw hydrolysate were completely utilized while the cellulase maintained its maximum activity due to the lack of feedback inhibition from glucose and/or cellobiose. By comparison to a sequential hydrolysis and fermentation process, SSMSF reduced operation time and the amount of cellulase enzyme necessary to produce the same amount of lactic acid. PMID:20084509

  4. Progress in chemical treatment of LEU targets by the modified Cintichem process

    SciTech Connect

    Wu, D.; Landsberger, S.; Vandegrift, G.F.

    1996-12-31

    Presented here are recent experimental results on tests of a modified Cintichem process for producing {sup 99}Mo from low enriched uranium (LEU). Studies were focused in three areas: (1) testing the effects on {sup 99}Mo recovery and purity of dissolving LEU foil in nitric acid alone, rather than in the sulfuric/nitric acid mixture currently used, (2) measuring decontamination factors for radionuclide impurities in each purification step, and (3) testing the effects on processing of adding barrier materials to the LEU metal-foil target. The experimental results show that switching from dissolving the target in the sulfuric/nitric mixture to using nitric acid alone should cause no significant difference in {sup 99}Mo product yield or purity. Further, the results show that overall decontamination factors for gamma emitters in the LEU-target processing are high enough to meet the purity requirements for the {sup 99}Mo product. The results also show that the selected barrier materials, Cu, Fe, and Ni, do not interfere with {sup 99}Mo recovery and can be removed during chemical processing of the LEU target.

  5. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    SciTech Connect

    Edwards, T.; Pareizs, J.; Coleman, C.; Young, J.; Brown, L.

    2016-05-10

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt or SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.

  6. Comparison of Laser Chemical Processing and LaserMicroJet for structuring and cutting silicon substrates

    NASA Astrophysics Data System (ADS)

    Hopman, Sybille; Fell, Andreas; Mayer, Kuno; Mesec, Matthias; Rodofili, Andreas; Kray, Daniel

    2009-06-01

    This paper deals with the development of a new cutting method for thin silicon solar wafers with liquid-jet-guided lasers (LaserMicroJet®, LMJ, and Laser Chemical Processing, LCP). Several laser systems with different wavelengths were tested to find the optimum laser system and processing parameters in terms of efficient material removal and deep laser cutting. Water and potassium hydroxide were used as carrier liquids to enhance laser ablation. The ablation efficiency was defined as a target parameter and experimentally determined by performing single laser grooves. It is demonstrated that the ablation process of LMJ is mainly affected by silicon melting and then removing by the liquid-jet momentum for single laser grooves. Best result for deep laser grooves is achieved if evaporation dominates the ablation process. Better surface quality referred to laser-induced crystalline damage is presented for a cut wafer with LMJ in comparison to a standard multiwire slurry saw. This shows a great potential of wafering with liquid-jet-guided lasers although no optimal liquid media was used.

  7. A Biophysicochemical Model for NO Removal by the Chemical Absorption-Biological Reduction Integrated Process.

    PubMed

    Zhao, Jingkai; Xia, Yinfeng; Li, Meifang; Li, Sujing; Li, Wei; Zhang, Shihan

    2016-08-16

    The chemical absorption-biological reduction (CABR) integrated process is regarded as a promising technology for NOx removal from flue gas. To advance the scale-up of the CABR process, a mathematic model based on mass transfer with reaction in the gas, liquid, and biofilm was developed to simulate and predict the NOx removal by the CABR system in a biotrickling filter. The developed model was validated by the experimental results and subsequently was used to predict the system performance under different operating conditions, such as NO and O2 concentration and gas and liquid flow rate. NO distribution in the gas phase along the biotrickling filter was also modeled and predicted. On the basis of the modeling results, the liquid flow rate and total iron concentration were optimized to achieve >90% NO removal efficiency. Furthermore, sensitivity analysis of the model revealed that the performance of the CABR process was controlled by the bioreduction activity of Fe(III)EDTA. This work will provide the guideline for the design and operation of the CABR process in the industrial application.

  8. Evolution of light hydrocarbon gases in subsurface processes: Constraints from chemical equilibrium

    NASA Astrophysics Data System (ADS)

    Sugisaki, Ryuichi; Nagamine, Koichiro

    1995-06-01

    The behaviour of CH 4, C 2H 6 and C 3H 8 in subsurface processes such as magma intrusion, volcanic gas discharge and natural gas generation have been examined from the viewpoint of chemical equilibrium. It seems that equilibrium among these three hydrocarbons is attainable at about 200°C. When a system at high temperatures is cooled, re-equilibration is continued until a low temperature is reached. The rate at which re-equilibration is achieved, however, steadily diminishes and, below 200°C, the reaction between the hydrocarbons stops and the gas composition at this time is frozen in, and it remains unchanged in a metastable state for a long period of geological time. Natural gas compositions from various fields have shown that, when a hydrocarbon system out of chemical equilibrium is heated, it gradually approaches equilibrium above 150°C. On the way towards equilibration, compositions of thermogenic gases apparently temporarily show a thermodynamic equilibrium constant at a temperature that is higher than the real equilibrium temperature expected from the ambient temperature of the samples; in contrast, biogenic gases indicate a lower temperature. In lower temperature regions, kinetic effects probably control the gas composition; the compositions are essentially subjected to genetic processes operating on the gases (such as pyrolysis of organic material and bacterial activity) and they fluctuate substantially. Examination of volcanic gases and pyrolysis experimental data, however, have suggested that the equilibration rate of these hydrocarbons is sluggish in comparison with that of reactive inorganic species such as H 2S and SO 2. The view presented in this study will be helpful in understanding the genetic processes that create oil and gas and the migration of these hydrocarbons and in interpreting the origins of magmatic gases.

  9. Technical Note: Coupling of chemical processes with the Modular Earth Submodel System (MESSy) submodel TRACER

    NASA Astrophysics Data System (ADS)

    Jöckel, P.; Kerkweg, A.; Buchholz, J.; Tost, H.; Sander, R.; Pozzer, A.

    2007-11-01

    The implementation of processes related to chemistry into Earth System Models and their coupling within such systems requires the consistent description of the chemical species involved. We provide a tool (written in Fortran95) to structure and manage information about constituents, herein after referred to as tracers, namely the Modular Earth Submodel System (MESSy) generic (i.e., infrastructure) submodel TRACER. With TRACER it is possible to define a multitude of tracer sets, depending on the spatio-temporal representation (i.e., the grid structure) of the model. The required information about a specific chemical species is split into the static meta-information about the characteristics of the species, and its (generally in time and space variable) abundance in the corresponding representation. TRACER moreover includes two submodels. One is TRACER_FAMILY, an implementation of the tracer family concept. It distinguishes between two types: type-1 families are usually applied to handle strongly related tracers (e.g., fast equilibrating species) for a specific process (e.g., advection). In contrast to this, type-2 families are applied for tagging techniques, in which specific species are artificially decomposed and associated with additional information, in order to conserve the linear relationship between the family and its members. The second submodel is TRACER_PDEF, which corrects and budgets numerical negative overshoots that arise in many process implementations due to the numerical limitations (limited precision, rounding errors). The submodel therefore guarantees the positive definiteness of the tracers and stabilises the integration scheme. As a by-product, it further provides a global tracer mass diagnostic. Last but not least, we present the submodel PTRAC for the definition of prognostic tracers via a Fortran95 namelist. TRACER with its submodels and PTRAC can readily be applied to a variety of models without further requirements. The code and a

  10. Treatment of concentrated fruit juice wastewater by the combination of biological and chemical processes.

    PubMed

    Amor, Carlos; Lucas, Marco S; Pirra, António J; Peres, José A

    2012-01-01

    Concentrated fruit juice industries use a wide volume of water for washing and fruit processing, generating a large volume of wastewater. This work studied the combination of an aerobic biological process with a chemical coagulation/flocculation step to treat a high concentrated fruit juice wastewater. This wastewater presents a good biodegradability (BOD(5)/COD = 0.66) allowing a chemical oxygen demand (COD) removal above 90% in most reactors. The best results in aerobic biological treatment were obtained in reactors initially loaded with 2 g VSS L(-1) of biomass concentration and 20 g COD L(-1) of organic matter concentration. Three different kinetic models were evaluated (Monod, Haldane and Contois). The Haldane-inhibition model was the one that best fitted the COD biodegradation. AQUASIM software allowed calculate the following kinetic constants ranges for aerobic biodegradation: K (s): 6-20 g COD L(-1); v (max): 2.0-5.1 g COD g(-1) VSS day(-1) and K (i) values: 0.10-0.50 g COD L(-1). These constants corresponds to maximum removal rates (v*) between 0.11 and 0.26 g COD g(-1) VSS day(-1) for substrate concentrations (S*) from 0.77 to 3.16 g COD L(-1). A tertiary coagulation/flocculation process improved the efficiency of the biological pre-treatment. Ferric chloride was selected as best compromise to treat this wastewater. Optimal conditions were 0.44 g L(-1) of coagulant at pH = 5.5, achieving 94.4% and 99.6% on turbidity and COD removal, respectively.

  11. A new general methodology for incorporating physico-chemical transformations into multi-phase wastewater treatment process models.

    PubMed

    Lizarralde, I; Fernández-Arévalo, T; Brouckaert, C; Vanrolleghem, P; Ikumi, D S; Ekama, G A; Ayesa, E; Grau, P

    2015-05-01

    This paper introduces a new general methodology for incorporating physico-chemical and chemical transformations into multi-phase wastewater treatment process models in a systematic and rigorous way under a Plant-Wide modelling (PWM) framework. The methodology presented in this paper requires the selection of the relevant biochemical, chemical and physico-chemical transformations taking place and the definition of the mass transport for the co-existing phases. As an example a mathematical model has been constructed to describe a system for biological COD, nitrogen and phosphorus removal, liquid-gas transfer, precipitation processes, and chemical reactions. The capability of the model has been tested by comparing simulated and experimental results for a nutrient removal system with sludge digestion. Finally, a scenario analysis has been undertaken to show the potential of the obtained mathematical model to study phosphorus recovery.

  12. First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study.

    PubMed

    Van Speybroeck, Veronique; De Wispelaere, Kristof; Van der Mynsbrugge, Jeroen; Vandichel, Matthias; Hemelsoet, Karen; Waroquier, Michel

    2014-11-07

    To optimally design next generation catalysts a thorough understanding of the chemical phenomena at the molecular scale is a prerequisite. Apart from qualitative knowledge on the reaction mechanism, it is also essential to be able to predict accurate rate constants. Molecular modeling has become a ubiquitous tool within the field of heterogeneous catalysis. Herein, we review current computational procedures to determine chemical kinetics from first principles, thus by using no experimental input and by modeling the catalyst and reacting species at the molecular level. Therefore, we use the methanol-to-olefin (MTO) process as a case study to illustrate the various theoretical concepts. This process is a showcase example where rational design of the catalyst was for a long time performed on the basis of trial and error, due to insufficient knowledge of the mechanism. For theoreticians the MTO process is particularly challenging as the catalyst has an inherent supramolecular nature, for which not only the Brønsted acidic site is important but also organic species, trapped in the zeolite pores, must be essentially present during active catalyst operation. All these aspects give rise to specific challenges for theoretical modeling. It is shown that present computational techniques have matured to a level where accurate enthalpy barriers and rate constants can be predicted for reactions occurring at a single active site. The comparison with experimental data such as apparent kinetic data for well-defined elementary reactions has become feasible as current computational techniques also allow predicting adsorption enthalpies with reasonable accuracy. Real catalysts are truly heterogeneous in a space- and time-like manner. Future theory developments should focus on extending our view towards phenomena occurring at longer length and time scales and integrating information from various scales towards a unified understanding of the catalyst. Within this respect molecular

  13. Chemical evolution of a travertine-depositing stream: geochemical processes and mass transfer reactions

    SciTech Connect

    Lorah, M.M.; Herman, J.S.

    1988-09-01

    This field study focuses on quantitatively defining the chemical changes occurring in Falling Spring Creek, a travertine-depositing stream located in Alleghany County, Virginia. The processes of CO/sub 2/ outgassing and calcite precipitation or dissolution control the chemical evolution of the stream. The observed chemical composition of the water was used with the computerized geochemical model WATEQF to calculate aqueous speciation, saturation indices, and CO/sub 2/ partial pressure values. Mass balance calculations were performed to obtain mass transfers of CO/sub 2/ and calcite. Reaction times, estimated from stream discharge, were used with the mass transfer results to calculate rates of CO/sub 2/ outgassing and calcite precipitation between consecutive sampling points. The stream, which is fed by a carbonate spring, is supersaturated with respect to CO/sub 2/ along the entire 5.2-km flow path. Outgassing of CO/sub 2/ drives the solution to high degrees of supersaturation with respect to calcite. Metabolic uptake of CO/sub 2/ by photosynthetic plants is insignificant, because the high supply rate of dissolved carbon dioxide and the extreme agitation of the stream at waterfalls and rapids causes a much greater amount of inorganic CO/sub 2/ outgassing to occur. Calcite precipitation is kinetically inhibited until near the crest of a 20-m vertical waterfall. Calcite precipitation rates then reach a maximum at the waterfall where greater water turbulence allows the most rapid escape of CO/sub 2/. Physical evidence for calcite precipitation exists in the travertine deposits which are first observed immediately above the waterfall and extend for at least 1.0 km below the falls. Net calcite precipitation occurs at all times of the year but is greatest during low-flow conditions in the summer and early fall.

  14. The removal of mercury from solid mixed waste using chemical leaching processes

    SciTech Connect

    Gates, D.D.; Chao, K.K.; Cameron, P.A.

    1995-07-01

    The focus of this research was to evaluate chemical leaching as a technique to treat soils, sediments, and glass contaminated with either elemental mercury or a combination of several mercury species. Potassium iodide/iodine solutions were investigated as chemical leaching agents for contaminated soils and sediments. Clean, synthetic soil material and surrogate storm sewer sediments contaminated with mercury were treated with KI/I{sub 2} solutions. It was observed that these leaching solutions could reduce the mercury concentration in soil and sediments by 99.8%. Evaluation of selected posttreatment sediment samples revealed that leachable mercury levels in the treated solids exceeded RCRA requirements. The results of these studies suggest that KI/I{sub 2} leaching is a treatment process that can be used to remove large quantities of mercury from contaminated soils and sediments and may be the only treatment required if treatment goals are established on Hg residual concentrations in solid matrices. Fluorescent bulbs were used to simulate mercury contaminated glass mixed waste. To achieve mercury contamination levels similar to those found in larger bulbs such as those used in DOE facilities a small amount of Hg was added to the crushed bulbs. The most effective agents for leaching mercury from the crushed fluorescent bulbs were KI/I{sub 2}, NaOCl, and NaBr + acid. Radionuclide surrogates were added to both the EPA synthetic soil material and the crushed fluorescent bulbs to determine the fate of radionuclides following chemical leaching with the leaching agents determined to be the most promising. These experiments revealed that although over 98% of the dosed mercury solubilized and was found in the leaching solution, no Cerium was measured in the posttreatment leaching solution. This finding suggest that Uranium, for which Ce was used as a surrogate, would not solubilize during leaching of mercury contaminated soil or glass.

  15. Morphological stability of the atomically clean surface of silicon (100) crystals after microwave plasma-chemical processing

    SciTech Connect

    Yafarov, R. K. Shanygin, V. Ya.

    2016-01-15

    The morphological stability of atomically clean silicon (100) surface after low-energy microwave plasma-chemical etching in various plasma-forming media is studied. It is found that relaxation changes in the surface density and atomic bump heights after plasma processing in inert and chemically active media are multidirectional in character. After processing in a freon-14 medium, the free energy is minimized due to a decrease in the surface density of microbumps and an increase in their height. After argon-plasma processing, an insignificant increase in the bump density with a simultaneous decrease in bump heights is observed. The physicochemical processes causing these changes are considered.

  16. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen.

    PubMed

    Zakzeski, Joseph; Jongerius, Anna L; Bruijnincx, Pieter C A; Weckhuysen, Bert M

    2012-08-01

    With dwindling reserves of fossil feedstock as a resource for chemicals production, the fraction of chemicals and energy supplied by alternative, renewable resources, such as lignin, can be expected to increase in the foreseeable future. Here, we demonstrate a catalytic process to valorize lignin (exemplified with kraft, organosolv, and sugarcane bagasse lignin) using a mixture of cheap, bio-renewable ethanol and water as solvent. Ethanol/water mixtures readily solubilize lignin under moderate temperatures and pressures with little residual solids. The molecular weight of the dissolved lignins was shown to be reduced by gel permeation chromatography and quantitative HSQC NMR methods. The use of liquid-phase reforming of the solubilized lignin over a Pt/Al(2)O(3) catalyst at 498 K and 58 bar is introduced to yield up to 17 % combined yield of monomeric aromatic oxygenates such as guaiacol and substituted guaiacols generating hydrogen as a useful by-product. Reduction of the lignin dissolved in ethanol/water using a supported transition metal catalyst at 473 K and 30 bar hydrogen yields up to 6 % of cyclic hydrocarbons and aromatics.

  17. Control of the anodic aluminum oxide barrier layer opening process by wet chemical etching.

    PubMed

    Han, Catherine Y; Willing, Gerold A; Xiao, Zhili; Wang, H Hau

    2007-01-30

    In this work, it has been shown that, through a highly controlled process, the chemical etching of the anodic aluminum oxide membrane barrier layer can be performed in such a way as to achieve nanometer-scale control of the pore opening. As the barrier layer is etched away, subtle differences revealed through AFM phase imaging in the alumina composition in the barrier layer give rise to a unique pattern of hexagonal walls surrounding each of the barrier layer domes. These nanostructures observed in both topography and phase images can be understood as differences in the oxalate anion contaminated alumina versus pure alumina. This information bears significant implication for catalysis, template synthesis, and chemical sensing applications. From the pore opening etching studies, the etching rate of the barrier layer (1.3 nm/min) is higher than that of the inner cell wall (0.93 nm/min), both of which are higher than the etching rate of pure alumina layer (0.5-0.17 nm/min). The established etching rates together with the etching temperature allow one to control the pore diameter systematically from 10 to 95 nm.

  18. Regeneration of a thiolated and antibody functionalized GaAs (001) surface using wet chemical processes.

    PubMed

    Lacour, Vivien; Elie-Caille, Céline; Leblois, Thérèse; Dubowski, Jan J

    2016-03-02

    Wet chemical processes were investigated to remove alkanethiol self-assembled monolayers (SAMs) and regenerate GaAs (001) samples studied in the context of the development of reusable devices for biosensing applications. The authors focused on 16-mercaptohexadecanoic acid (MHDA) SAMs that are commonly used to produce an interface between antibodies or others proteins and metallic or semiconductor substrates. As determined by Fourier transform infrared absorption spectroscopy, among the investigated solutions of HCl, H2O2, and NH4OH, the highest efficiency in removing alkanethiol SAM from GaAs was shown by NH4OH:H2O2 (3:1 volume ratio) diluted in H2O. The authors observed that this result was related to chemical etching of GaAs that even in a weak solution of NH4OH:H2O2:H2O (3:1:100) proceeded at a rate of 130 nm/min. The surface revealed by a 2-min etching under these conditions allowed depositing successfully a new MHDA SAM with comparable quality and density to the initial coating. This work provides an important view on the perspective of the development of a family of cost-effective GaAs-based biosensors designed for repetitive detection of a variety of biomolecules immobilized with dedicated antibody architectures.

  19. Chemical models for simulating single-walled nanotube production in arc vaporization and laser ablation processes

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.

    2004-01-01

    Chemical kinetic models for the nucleation and growth of clusters and single-walled carbon nanotube (SWNT) growth are developed for numerical simulations of the production of SWNTs. Two models that involve evaporation and condensation of carbon and metal catalysts, a full model involving all carbon clusters up to C80, and a reduced model are discussed. The full model is based on a fullerene model, but nickel and carbon/nickel cluster reactions are added to form SWNTs from soot and fullerenes. The full model has a large number of species--so large that to incorporate them into a flow field computation for simulating laser ablation and arc processes requires that they be simplified. The model is reduced by defining large clusters that represent many various sized clusters. Comparisons are given between these models for cases that may be applicable to arc and laser ablation production. Solutions to the system of chemical rate equations of these models for a ramped temperature profile show that production of various species, including SWNTs, agree to within about 50% for a fast ramp, and within 10% for a slower temperature decay time.

  20. Uptake of Organic Vapors by Sulfate Aerosols: Physical and Chemical Processes

    NASA Technical Reports Server (NTRS)

    Michelsen, R. R.; Ashbourn, S. F. M.; Iraci, L.T.; Staton, S. J. R.

    2003-01-01

    While it is known that upper tropospheric sulfate particles contain a significant amount of organic matter, both the source of the organic fraction and its form in solution are unknown. These studies explore how the chemical characteristics of the molecules and surfaces in question affect heterogeneous interactions. The solubilities of acetaldehyde [CH3CHO] and ethanol [CH3CH20H] in cold, aqueous sulfuric acid solutions have been measured by Knudsen cell studies. Henry's law solubility coefficients range from 10(exp 2) to 10(exp 5) M/atm for acetaldehyde, and from 10(exp 4) to 10(exp 9) M/atm for ethanol under upper tropospheric conditions (210-240 K, 40-80 wt. % H2S04). The multiple solvation pathways (protonation, enolization, etc.) available to these compounds in acidic aqueous environments will be discussed. Preliminary results from the interaction of acetaldehyde with solutions of formaldehyde in sulfuric acid will be presented as well. The physical and chemical processes that affect organic uptake by aqueous aerosols will be explored, with the aim of evaluating organic species not yet studied in low temperature aqueous sulfuric acid.

  1. Process Design for the Biocatalysis of Value-Added Chemicals from Carbon Dioxide

    SciTech Connect

    Mark A. Eiteman

    2006-07-31

    This report describes results toward developing a process to sequester CO{sub 2} centered on the enzyme pyruvate carboxylase. The process involves the use of bacteria to convert CO{sub 2} and glucose as a co-substrate and generates succinic acid as a commodity chemical product. The phases of research have included strain development and process development. Though we continue to work on one important component of strain development, the research has principally focused on process development. In the previous year we constructed several strains which would serve as templates for the CO{sub 2} sequestration, including the knock-out of genes involved in the formation of undesirable byproducts. This project period the focus has been on the integration of the pyruvate carboxylase gene (pyc) onto the E. coli chromosome. This has proven to be a difficult task because of relatively low expression of the gene and resulting low enzyme activity when only one copy of the gene is present on the chromosome. Several molecular biology techniques have been applied, with some success, to improve the level of protein activity as described herein. Progress in process development has come as a result of conducting numerous fermentation experiments to select optimal conditions for CO{sub 2} sequestration. This process-related research has progressed in four areas. First, we have clarified the range of pH which results in the optimal rate of sequestration. Second, we have determined how the counterion used to control the pH affects the sequestration rate. Third, we have determined how CO{sub 2} gas phase composition impacts sequestration rate. Finally, we have made progress in determining the affect of several potential gaseous impurities on CO{sub 2} sequestration; in particular we have completed a study using NO{sub 2}. Although the results provide significant guidance as to process conditions for CO{sub 2} sequestration and succinate production, in some cases we do not yet understand

  2. Wireless sensor fusion approach for monitoring chemical mechanical planarization (CMP) process

    NASA Astrophysics Data System (ADS)

    Ohri, Amit

    Chemical mechanical planarization (CMP) is used in the microelectronics and optical industries for local as well as global planarity and for producing mirror finished surfaces. Roughness (Ra), within-non-uniformity (WIWNU), and material removal rate (MRR) are the major performance variables in polishing. CMP is a complex process involving some 36 input variables. Analysis of the review of the literatures showed that static models that use process parameters are inadequate for estimating and monitoring the performance variables in the CMP process. Pad-level interactions play a major role in polishing. Sensor based monitoring techniques enables monitoring of the CMP process. Additionally, sensor fusion techniques may facilitate in improving the robustness and monitoring the process beyond using one sensor. In this work, wireless vibration (Z-axis) and temperature sensors mounted on a bench top polisher (ECOMET polisher from Buehler) are used to monitor the material removal rate (MRR) and surface finish (Ra). The wireless sensor platform has a sampling rate of 500 Hz for the vibration sensor and 4 Hz for the temperature sensor. Alumina-based alkaline slurry is used in polishing process. The process conditions include two loading conditions (10 lb and 5 lb) and two rotational speeds (500 rpm and 300 rpm). The polishing studies were conducted on a 1.6" copper samples and Microcloth pad (from Buehler). The overall approach used involves relating the various sensors signal features to MRR and Ra from the CMP process. The vibration features were extracted using statistical, frequency, and RQA (non-linear) analysis techniques. The vibration features were combined with temperature features to build multiple linear regression models. The regression fitting accuracy for the roughness model is ˜ 93% using the statistical features, such as maximum and kurtosis, time-frequency features, such as energy, nonlinear features such as LAM and Lmax and thermal features such as net

  3. Processes influencing chemical biomagnification and trophic magnification factors in aquatic ecosystems: Implications for chemical hazard and risk assessment.

    PubMed

    Mackay, Donald; Celsie, Alena K D; Arnot, Jon A; Powell, David E

    2016-07-01

    Bioconcentration factors (BCFs) and bioaccumulation factors (BAFs) are widely used in scientific and regulatory programs to assess chemical hazards. There is increasing interest in also using biomagnification factors (BMFs) and trophic magnification factors (TMFs) for this purpose, especially for highly hydrophobic substances that may reach high concentrations in predatory species that occupy high trophic level positions in ecosystems. Measurements of TMFs in specific ecosystems can provide invaluable confirmation that biomagnification or biodilution has occurred across food webs, but their use in a regulatory context can be controversial because of uncertainties related to the reliability of measurements and their regulatory interpretation. The objective of this study is to explore some of the recognized uncertainties and dependencies in field BMFs and TMFs. This is accomplished by compiling a set of three simple food web models (pelagic, demersal and combined pelagic-demersal) consisting of up to seven species to simulate field BMFs and TMFs and to explore their dependences on hydrophobicity (expressed as log KOW), rates of biotransformation and growth, sediment-water fugacity ratios, and extent of food web omnivory and issues that arise when chemical concentration gradients exist in aquatic ecosystems. It is shown that empirical TMFs can be highly sensitive to these factors, thus the use of TMFs in a regulatory context must recognize these sensitivities. It is suggested that simple but realistic evaluative food web models could be used to extend BCF and BAF assessments to include BMFs and TMFs, thus providing a tool to address bioaccumulation hazard and the potential risk of exposures to elevated chemical concentrations in organisms at high trophic levels.

  4. Environmental Cracking of Corrosion Resistant Alloys in the Chemical Process Industry - A Review

    SciTech Connect

    Rebak, R B

    2006-12-04

    A large variety of corrosion resistant alloys are used regularly in the chemical process industry (CPI). The most common family of alloys include the iron (Fe)-based stainless steels, nickel (Ni) alloys and titanium (Ti) alloys. There also other corrosion resistant alloys but their family of alloys is not as large as for the three groups mentioned above. All ranges of corrosive environments can be found in the CPI, from caustic solutions to hot acidic environments, from highly reducing to highly oxidizing. Stainless steels are ubiquitous since numerous types of stainless steels exist, each type tailored for specific applications. In general, stainless steels suffer stress corrosion cracking (SCC) in hot chloride environments while high Ni alloys are practically immune to this type of attack. High nickel alloys are also resistant to caustic cracking. Ti alloys find application in highly oxidizing solutions. Solutions containing fluoride ions, especially acid, seem to be aggressive to almost all corrosion resistant alloys.

  5. Ratiometric Chemical Blend Processing with a Neuromorphic Model of the Insect Macroglomerular Complex

    NASA Astrophysics Data System (ADS)

    Karout, Salah; Rácz, Zoltán; Capurro, Alberto; Cole, Marina; Gardner, Julian W.; Pearce, Tim C.

    2011-09-01

    We present a dynamical spiking neuromorphic model constrained by the known biology of the insect antennal lobe (AL) macroglomerular complex (MGC) implemented in a field programmable gate array (FPGA). When driven by polymer coated quartz-crystal microbalance (QCM) chemosensors at its input, the dynamical trajectories of the model's projection neuron (PN) output population activity encode the concentration ratios of binary odour mixtures. We demonstrate that it is possible to recover blend ratio information from the early transient phase of QCM responses that would otherwise be difficult to separate directly from chemosensor data using classical approaches. Our results demonstrate the potential of insect-based neuromorphic signal processing methods for the rapid and efficient classification of ratiometrically encoded chemical blends.

  6. X-ray Tomographic Study of Chemical Vapor Infiltration Processing of Ceramic Composites.

    PubMed

    Kinney, J H; Breunig, T M; Starr, T L; Haupt, D; Nichols, M C; Stock, S R; Butts, M D; Saroyan, R A

    1993-05-07

    The fabrication of improved ceramic-matrix composites will require a better understanding of processing variables and how they control the development of the composite microstructure. Noninvasive, high-resolution methods of x-ray tomography have been used to measure the growth of silicon carbide in a woven Nicalon-fiber composite during chemical vapor infiltration. The high spatial resolution allows one to measure the densification within individual fiber tows and to follow the closure of macroscopic pores in situ. The experiments provide a direct test of a recently proposed model that describes how the surface area available for matrix deposition changes during infiltration. The measurements indicate that this surface area is independent of the fiber architecture and location within the preform and is dominated by large-scale macroporosity during the final stages of composite consolidation. The measured surface areas are in good agreement with the theoretical model.

  7. Process for hydrocracking carbonaceous material to provide fuels or chemical feed stock

    DOEpatents

    Duncan, Dennis A.

    1980-01-01

    A process is disclosed for hydrocracking coal or other carbonaceous material to produce various aromatic hydrocarbons including benzene, toluene, xylene, ethylbenzene, phenol and cresols in variable relative concentrations while maintaining a near constant maximum temperature. Variations in relative aromatic concentrations are achieved by changing the kinetic severity of the hydrocracking reaction by altering the temperature profile up to and quenching from the final hydrocracking temperature. The relative concentration of benzene to the alkyl and hydroxyl aromatics is increased by imposing increased kinetic severity above that corresponding to constant heating rate followed by immediate quenching at about the same rate to below the temperature at which dehydroxylation and dealkylation reactions appreciably occur. Similarly phenols, cresols and xylenes are produced in enhanced concentrations by adjusting the temperature profile to provide a reduced kinetic severity relative to that employed when high benzene concentrations are desired. These variations in concentrations can be used to produce desired materials for chemical feed stocks or for fuels.

  8. Mathematical modeling of quartz particle melting process in plasma-chemical reactor

    SciTech Connect

    Volokitin, Oleg Volokitin, Gennady Skripnikova, Nelli Shekhovtsov, Valentin; Vlasov, Viktor

    2016-01-15

    Among silica-based materials vitreous silica has a special place. The paper presents the melting process of a quartz particle under conditions of low-temperature plasma. A mathematical model is designed for stages of melting in the experimental plasma-chemical reactor. As calculation data show, quartz particles having the radius of 0.21≤ r{sub p} ≤0.64 mm completely melt at W = 0.65 l/s particle feed rate depending on the Nusselt number, while 0.14≤ r{sub p} ≤0.44 mm particles melt at W = 1.4 l/s. Calculation data showed that 2 mm and 0.4 mm quartz particles completely melted during and 0.1 s respectively. Thus, phase transformations occurred in silicon dioxide play the important part in its heating up to the melting temperature.

  9. X-ray tomographic study of chemical vapor infiltration processing of ceramic composites

    SciTech Connect

    Kinney, J.H.; Haupt, D.; Saroyan, R.A. ); Breunig, T.M.; Nichols, M.C. ); Starr, T.L.; Stock, S.R.; Butts, M.D. )

    1993-05-07

    The fabrication of improved ceramic-matrix composites will require a better understanding of processing variables and how they control the development of the composite microstructure. Noninvasive, high-resolution methods of x-ray tomography have been used to measure the growth of silicon carbide in a woven Nicalon-fiber composite during chemical vapor infiltration. The high spatial resolution allows one to measure the densification within individual fiber tows and to follow the closure of macroscopic pores in situ. The experiments provide a direct test of a recently proposed model that describes how the surface area available for matrix deposition changes during infiltration. The measurements indicate that this surface area is independent of the fiber architecture and location within the preform and is dominated by large-scale macroporosity during the final stages of composite consolidation. The measured surface areas are in good agreement with the theoretical model. 12 refs., 4 figs.

  10. Decomposition of gaseous organic contaminants by surface discharge induced plasma chemical processing -- SPCP

    SciTech Connect

    Oda, Tetsuji; Yamashita, Ryuichi; Haga, Ichiro; Takahashi, Tadashi; Masuda, Senichi

    1996-01-01

    The decomposition performance of the surface induced plasma chemical processing (SPCP) for chlorofluorocarbon (83 ppm CFC-113 in air), acetone, trichloroethylene, and isopropylalcohol was experimentally examined. In every case, very high decomposition performance, more than 90 or 99% removal rate, is realized when the residence time is about 1 second and the input electric power for a 16 cm{sup 3} reactor is about 10 W. Acetone is the most stable compound and alcohol is most easily decomposed. The decomposed product-analysis by a GasChromato-MassSpectrometer has just started but very poor results are obtained. In fact, some portion of the isopropylalcohol may change to acetone which is worse than alcohol. The necessary energy to decompose one mol gas diluted in the air is calculated form the experiments. The necessary energy level for acetone and trichloroethylene is about one-tenth or one-fiftieth of that for chlorofluorocarbon.

  11. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes.

    PubMed

    Siegert, M J; Ellis-Evans, J C; Tranter, M; Mayer, C; Petit, J R; Salamatin, A; Priscu, J C

    2001-12-06

    Over 70 lakes have now been identified beneath the Antarctic ice sheet. Although water from none of the lakes has been sampled directly, analysis of lake ice frozen (accreted) to the underside of the ice sheet above Lake Vostok, the largest of these lakes, has allowed inferences to be made on lake water chemistry and has revealed small quantities of microbes. These findings suggest that Lake Vostok is an extreme, yet viable, environment for life. All subglacial lakes are subject to high pressure (approximately 350 atmospheres), low temperatures (about -3 degrees C) and permanent darkness. Any microbes present must therefore use chemical sources to power biological processes. Importantly, dissolved oxygen is available at least at the lake surface, from equilibration with air hydrates released from melting basal glacier ice. Microbes found in Lake Vostok's accreted ice are relatively modern, but the probability of ancient lake-floor sediments leads to a possibility of a very old biota at the base of subglacial lakes.

  12. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes.

    PubMed

    Treier, Matthias; Pignedoli, Carlo Antonio; Laino, Teodoro; Rieger, Ralph; Müllen, Klaus; Passerone, Daniele; Fasel, Roman

    2011-01-01

    Atomically thin sheets of sp(2)-hybridized carbon--graphene--have enormous potential for applications in future electronic devices. Particularly promising are nanostructured (sub)units of graphene, the electronic properties of which can be tuned by changing the spatial extent or the specific edge termination of the carbon network. Processability and precise tailoring of graphene-derived structures are, however, still major obstacles in developing applications; both bottom-up and top-down routes are presently under investigation in attempts to overcome this limitation. Here, we propose a surface chemical route that allows for the atomically precise fabrication of tailored nanographenes from polyphenylene precursors. The cyclodehydrogenation of a prototypical polyphenylene on Cu(111) is studied using scanning tunnelling microscopy and density functional theory. We find that the thermally induced cyclodehydrogenation proceeds via several intermediate steps, two of which can be stabilized on the surface, yielding unprecedented insight into a dehydrogenative intramolecular aryl-aryl coupling reaction.

  13. Preparation and properties of the magnetic absorbent polymer via the chemical transformation process

    NASA Astrophysics Data System (ADS)

    Liu, Shengyu; Zhang, Suhong; Guo, Jianying; Wen, Jing; Qiao, Yan

    2017-01-01

    Magnetic polyacrylic acid sodium polymer (MPAAS) was prepared by chemical transformation method. Key parameters were investigated in the synthesis process of the magnetic polymer and an optimum preparation condition was gained. The structure of the magnetic polymer was characterized by X-ray diffraction (XRD), Fourier transform infrared spectrosocopy (FTIR) and scanning electron microscope (SEM). Magnetic property of the magnetic polymer was measured by the magnet and superconducting quantum interference device (SQUID). Both the swelling ratio and kinetics and the water retention ratio and kinetics were investigated. Based on the results, it can be gained that both swelling rate and equilibrium swelling rate were lowered after magnetization while the water retention ability of the magnetic polymer is stronger than that of the polymer.

  14. Chemical properties of hydroxyapatite deposited through electrophoretic process on different sandblasted samples

    NASA Astrophysics Data System (ADS)

    Gradinariu, Irina; Stirbu, Ioan; Gheorghe, Cristina Angela; Cimpoesu, Nicanor; Agop, Maricel; Cimpoesu, Ramona; Popa, Cristina

    2014-12-01

    An implantable material based on titanium (Ti6Al4V) was sandblasted in order to be deposited with a thin film of hydroxyapatite. Two samples of the alloy, in a shape of a bar with 10 mm diameter and 20 mm length, were subjected to mechanical treatment. After deposition of the hydroxyapatite through electrophoresis process, the samples were analyzed by scanning electron microscopy. The nature and chemical properties of thin films formed on Ti-based substrate were investigated with electrochemical impedance spectroscopy based on the extremely high polarization resistance of the material. The results revealed the formation of a homogeneous layer on the surface of the metallic substrate. The layer composed of TiO2 and hydroxyapatite provided a high corrosion protection.

  15. Isothiocyanates may chemically detoxify mutagenic amines formed in heat processed meat.

    PubMed

    Lewandowska, Anna; Przychodzeń, Witold; Kusznierewicz, Barbara; Kołodziejski, Dominik; Namieśnik, Jacek; Bartoszek, Agnieszka

    2014-08-15

    Meat consumption represents a dietary risk factor increasing the incidence of common cancers, probably due to carcinogenic amines (HAAs) formed upon meat heating. Interestingly, cancers whose incidence is increased by meat consumption, are decreased in populations consuming brassica vegetables regularly. This inverse correlation is attributed to brassica anticarcinogenic components, especially isothiocyanates (ITCs) that stimulate detoxification of food carcinogens. However, ITC reactivity towards amines generating stable thioureas, may also decrease mutagenicity of processed meat. We confirmed here that combining meat with cabbage (fresh or lyophilized), in proportions found in culinary recipes, limited by 17-20% formation of HAAs and significantly lowered mutagenic activity of fried burgers. Moreover, MeIQx mutagenicity was lowered in the presence of ITCs, as well as for synthetic ITC-MeIQx conjugates. This suggests that formation of thioureas could lead to chemical detoxification of food carcinogens, reducing the cancer risk associated with meat consumption.

  16. Physico-chemical Modification of the Fibrous Filter Nozzles for Purification Processes of Water and Air

    NASA Astrophysics Data System (ADS)

    Bordunov, S. V.; Galtseva, O. V.; Natalinova, N. M.; Rogachev, A. A.; Zhang, Ruizhi

    2017-01-01

    A set of experiments to study physical and chemical modification of the surface of fibers is conducted to expand the area of their application for purification of water, gas and air (including that in conditions of space). The possibility of modification of filter nozzles in the process of fiber formation by particles of coal of BAU type, copper sulfide and silver chloride is experimentally shown. The fraction of the copper sulfide powder less than 50 microns in size was crushed in a spherical mill; it was deposited on fiber at air temperature of 50° C and powder consumption of 0.5 g/l of air. The resulting material contained 6–18 CuS particles per 1 cm of the fiber length. An effective bactericidal fibrous material can be produced using rather cheap material – CuS and relatively cheap natural compounds of sulphides and oxides of heavy metals.

  17. Method of manipulating the chemical properties of water to improve the effectiveness of a desired process

    DOEpatents

    Hawthorne, Steven B.; Miller, David J.; Lagadec, Arnaud Jean-Marie; Hammond, Peter James; Clifford, Anthony Alan

    2002-01-01

    The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, removing organics from water using activated carbon or other suitable sorbents, and degrading various compounds.

  18. Preparation of wafer-level glass cavities by a low-cost chemical foaming process (CFP).

    PubMed

    Shang, Jintang; Chen, Boyin; Lin, Wei; Wong, Ching-Ping; Zhang, Di; Xu, Chao; Liu, Junwen; Huang, Qing-An

    2011-04-21

    A novel foaming process-chemical foaming process (CFP)-using foaming agents to fabricate wafer-level micro glass cavities including channels and bubbles was investigated. The process consists of the following steps sequentially: (1) shallow cavities were fabricated by a wet etching on a silicon wafer; (2) powders of a proper foaming agent were placed in a silicon cavity, named 'mother cavity', on the etched silicon surface; (3) the silicon cavities were sealed with a glass wafer by anodic bonding; (4) the bonded wafers were heated to above the softening point of the glass, and baked for several minutes, when the gas released by the decomposition of the foaming agent in the 'mother cavity' went into the other sealed interconnected silicon cavities to foam the softened glass into cylindrical channels named 'daughter channels', or spherical bubbles named 'son bubbles'. Results showed that wafer-level micro glass cavities with smooth wall surfaces were achieved successfully without contamination by the CFP. A model for the CFP was proposed to predict the final shape of the glass cavity. Experimental results corresponded with model predictions. The CFP provides a low-cost avenue to preparation of micro glass cavities of high quality for applications such as micro-reactors, micro total analysis systems (μTAS), analytical and bio-analytical applications, and MEMS packaging.

  19. Further development of chemical vapor deposition process for production of large diameter carbon-base monofilaments

    NASA Technical Reports Server (NTRS)

    Hough, R. L.; Richmond, R. D.

    1974-01-01

    The development of large diameter carbon-base monofilament in the 50 micron to 250 micron diameter range using the chemical vapor deposition process is described. The object of this program was to determine the critical process variables which control monofilament strength, monofilament modulus, and monofilament diameter. It was confirmed that wide scatter in the carbon substrate strength is primarily responsible for the scatter in the monofilament strength. It was also shown through etching experiments that defective substrate surface conditions which can induce low strength modular growth in the monofilament layers are best controlled by processing improvements during the synthesis of the substrate. Modulus was found to be linearily proportional to monofilament boron content. Filament modulus was increased to above 27.8MN/sq cm but only by a considerable increase in monofilament boron content to 60 wt. % or more. Monofilament diameter depended upon dwell time in the synthesis apparatus. A monofilament was prepared using these findings which had the combined properties of a mean U.T.S. of 398,000 N/sq cm, a modulus of 18.9 MN/sq cm (24,000,000 psi), and a diameter of 145 microns. Highest measured strength for this fiber was 451,000 N/sq cm (645,000 psi).

  20. Chemical vapor deposition graphene transfer process to a polymeric substrate assisted by a spin coater

    NASA Astrophysics Data System (ADS)

    Kessler, Felipe; da Rocha, Caique O. C.; Medeiros, Gabriela S.; Fechine, Guilhermino J. M.

    2016-03-01

    A new method to transfer chemical vapor deposition graphene to polymeric substrates is demonstrated here, it is called direct dry transfer assisted by a spin coater (DDT-SC). Compared to the conventional method DDT, the improvement of the contact between graphene-polymer due to a very thin polymeric film deposited by spin coater before the transfer process prevented air bubbles and/or moisture and avoided molecular expansion on the graphene-polymer interface. An acrylonitrile-butadiene-styrene copolymer, a high impact polystyrene, polybutadiene adipate-co-terephthalate, polylactide acid, and a styrene-butadiene-styrene copolymer are the polymers used for the transfers since they did not work very well by using the DDT process. Raman spectroscopy and optical microscopy were used to identify, to quantify, and to qualify graphene transferred to the polymer substrates. The quantity of graphene transferred was substantially increased for all polymers by using the DDT-SC method when compared with the DDT standard method. After the transfer, the intensity of the D band remained low, indicating low defect density and good quality of the transfer. The DDT-SC transfer process expands the number of graphene applications since the polymer substrate candidates are increased.