Sample records for mtdna sequence diversity

  1. mtDNA sequence diversity of Hazara ethnic group from Pakistan.

    PubMed

    Rakha, Allah; Fatima; Peng, Min-Sheng; Adan, Atif; Bi, Rui; Yasmin, Memona; Yao, Yong-Gang

    2017-09-01

    The present study was undertaken to investigate mitochondrial DNA (mtDNA) control region sequences of Hazaras from Pakistan, so as to generate mtDNA reference database for forensic casework in Pakistan and to analyze phylogenetic relationship of this particular ethnic group with geographically proximal populations. Complete mtDNA control region (nt 16024-576) sequences were generated through Sanger Sequencing for 319 Hazara individuals from Quetta, Baluchistan. The population sample set showed a total of 189 distinct haplotypes, belonging mainly to West Eurasian (51.72%), East & Southeast Asian (29.78%) and South Asian (18.50%) haplogroups. Compared with other populations from Pakistan, the Hazara population had a relatively high haplotype diversity (0.9945) and a lower random match probability (0.0085). The dataset has been incorporated into EMPOP database under accession number EMP00680. The data herein comprises the largest, and likely most thoroughly examined, control region mtDNA dataset from Hazaras of Pakistan. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Genetic diversity of mtDNA D-loop sequences in four native Chinese chicken breeds.

    PubMed

    Guo, H W; Li, C; Wang, X N; Li, Z J; Sun, G R; Li, G X; Liu, X J; Kang, X T; Han, R L

    2017-10-01

    1. To explore the genetic diversity of Chinese indigenous chicken breeds, a 585 bp fragment of the mitochondrial DNA (mtDNA) region was sequenced in 102 birds from the Xichuan black-bone chicken, Yunyang black-bone chicken and Lushi chicken. In addition, 30 mtDNA D-loop sequences of Silkie fowls were downloaded from NCBI. The mtDNA D-loop sequence polymorphism and maternal origin of 4 chicken breeds were analysed in this study. 2. The results showed that a total of 33 mutation sites and 28 haplotypes were detected in the 4 chicken breeds. The haplotype diversity and nucleotide diversity of these 4 native breeds were 0.916 ± 0.014 and 0.012 ± 0.002, respectively. Three clusters were formed in 4 Chinese native chickens and 12 reference breeds. Both the Xichuan black-bone chicken and Yunyang black-bone chicken were grouped into one cluster. Four haplogroups (A, B, C and E) emerged in the median-joining network in these breeds. 3. It was concluded that these 4 Chinese chicken breeds had high genetic diversity. The phylogenetic tree and median network profiles showed that Chinese native chickens and its neighbouring countries had at least two maternal origins, one from Yunnan, China and another from Southeast Asia or its surrounding area.

  3. Low mitochondrial DNA diversity of Japanese Polled and Kuchinoshima feral cattle.

    PubMed

    Mannen, Hideyuki; Yonesaka, Riku; Noda, Aoi; Shimogiri, Takeshi; Oshima, Ichiro; Katahira, Kiyomi; Kanemaki, Misao; Kunieda, Tetsuo; Inayoshi, Yousuke; Mukai, Fumio; Sasazaki, Shinji

    2017-05-01

    This study aims to estimate the mitochondrial genetic diversity and structure of Japanese Polled and Kuchinoshima feral cattle, which are maintained in small populations. We determined the mitochondrial DMA (mtDNA) displacement loop (D-loop) sequences for both cattle populations and analyzed these in conjunction with previously published data from Northeast Asian cattle populations. Our findings showed that Japanese native cattle have a predominant, Asian-specific mtDNA haplogroup T4 with high frequencies (0.43-0.81). This excluded Kuchinoshima cattle (32 animals), which had only one mtDNA haplotype belonging to the haplogroup T3. Japanese Polled showed relatively lower mtDNA diversity in the average sequence divergence (0.0020) than other Wagyu breeds (0.0036-0.0047). Japanese Polled have been maintained in a limited area of Yamaguchi, and the population size is now less than 200. Therefore, low mtDNA diversity in the Japanese Polled could be explained by the decreasing population size in the last three decades. We found low mtDNA diversity in both Japanese Polled and Kuchinoshima cattle. The genetic information obtained in this study will be useful for maintaining these populations and for understanding the origin of Japanese native cattle. © 2016 Japanese Society of Animal Science.

  4. De novo assembly of mitochondrial genomes provides insights into genetic diversity and molecular evolution in wild boars and domestic pigs.

    PubMed

    Ni, Pan; Bhuiyan, Ali Akbar; Chen, Jian-Hai; Li, Jingjin; Zhang, Cheng; Zhao, Shuhong; Du, Xiaoyong; Li, Hua; Yu, Hui; Liu, Xiangdong; Li, Kui

    2018-06-01

    Up to date, the scarcity of publicly available complete mitochondrial sequences for European wild pigs hampers deeper understanding about the genetic changes following domestication. Here, we have assembled 26 de novo mtDNA sequences of European wild boars from next generation sequencing (NGS) data and downloaded 174 complete mtDNA sequences to assess the genetic relationship, nucleotide diversity, and selection. The Bayesian consensus tree reveals the clear divergence between the European and Asian clade and a very small portion (10 out of 200 samples) of maternal introgression. The overall nucleotides diversities of the mtDNA sequences have been reduced following domestication. Interestingly, the selection efficiencies in both European and Asian domestic pigs are reduced, probably caused by changes in both selection constraints and maternal population size following domestication. This study suggests that de novo assembled mitogenomes can be a great boon to uncover the genetic turnover following domestication. Further investigation is warranted to include more samples from the ever-increasing amounts of NGS data to help us to better understand the process of domestication.

  5. Land, language, and loci: mtDNA in Native Americans and the genetic history of Peru.

    PubMed

    Lewis, Cecil M; Tito, Raúl Y; Lizárraga, Beatriz; Stone, Anne C

    2005-07-01

    Despite a long history of complex societies and despite extensive present-day linguistic and ethnic diversity, relatively few populations in Peru have been sampled for population genetic investigations. In order to address questions about the relationships between South American populations and about the extent of correlation between genetic distance, language, and geography in the region, mitochondrial DNA (mtDNA) hypervariable region I sequences and mtDNA haplogroup markers were examined in 33 individuals from the state of Ancash, Peru. These sequences were compared to those from 19 American Indian populations using diversity estimates, AMOVA tests, mismatch distributions, a multidimensional scaling plot, and regressions. The results show correlations between genetics, linguistics, and geographical affinities, with stronger correlations between genetics and language. Additionally, the results suggest a pattern of differential gene flow and drift in western vs. eastern South America, supporting previous mtDNA and Y chromosome investigations. (c) 2004 Wiley-Liss, Inc

  6. GENETIC STRUCTURE OF CREEK CHUB (SEMOTILUS ATROMACULATUS) POPULATIONS IN COAL MINING-IMPACTED AREAS OF THE EASTERN UNITED STATES, AS DETERMINED BY MTDNA SEQUENCING AND AFLP ANALYSIS

    EPA Science Inventory

    Analysis of intraspecific patterns in genetic diversity of stream fishes provides a potentially powerful method for assessing the status and trends in the condition of aquatic ecosystems. We analyzed mitochondrial DNA (mtDNA) sequences (590 bases of cytochrome B) and nuclear DNA...

  7. Reduced Mtdna Diversity in the Ngobe Amerinds of Panama

    PubMed Central

    Kolman, C. J.; Bermingham, E.; Cooke, R.; Ward, R. H.; Arias, T. D.; Guionneau-Sinclair, F.

    1995-01-01

    Mitochondrial DNA (mtDNA) haplotype diversity was determined for 46 Ngobe Amerinds sampled widely across their geographic range in western Panama. The Ngobe data were compared with mtDNA control region I sequences from two additional Amerind groups located at the northern and southern extremes of Amerind distribution, the Nuu-Chah-Nulth of the Pacific Northwest and the Chilean Mapuche and from one Na-Dene group, the Haida of the Pacific Northwest. The Ngobe exhibit the lowest mtDNA control region sequence diversity yet reported for an Amerind group. Moreover, they carry only two of the four Amerind founding lineages first described by Wallace and coworkers. We posit that the Ngobe passed through a population bottleneck caused by ethnogenesis from a small founding population and/or European conquest and colonization. Dating of the Ngobe population expansion using the HARPENDING et al. approach to the analysis of pairwise genetic differences indicates a Ngobe expansion at roughly 6800 years before present (range: 1850-14,000 years before present), a date more consistent with a bottleneck at Chibcha ethnogenesis than a conquest-based event. PMID:7635293

  8. Background sequence characteristics influence the occurrence and severity of disease-causing mtDNA mutations

    PubMed Central

    Wei, Wei; Hudson, Gavin

    2017-01-01

    Inherited mitochondrial DNA (mtDNA) mutations have emerged as a common cause of human disease, with mutations occurring multiple times in the world population. The clinical presentation of three pathogenic mtDNA mutations is strongly associated with a background mtDNA haplogroup, but it is not clear whether this is limited to a handful of examples or is a more general phenomenon. To address this, we determined the characteristics of 30,506 mtDNA sequences sampled globally. After performing several quality control steps, we ascribed an established pathogenicity score to the major alleles for each sequence. The mean pathogenicity score for known disease-causing mutations was significantly different between mtDNA macro-haplogroups. Several mutations were observed across all haplogroup backgrounds, whereas others were only observed on specific clades. In some instances this reflected a founder effect, but in others, the mutation recurred but only within the same phylogenetic cluster. Sequence diversity estimates showed that disease-causing mutations were more frequent on young sequences, and genomes with two or more disease-causing mutations were more common than expected by chance. These findings implicate the mtDNA background more generally in recurrent mutation events that have been purified through natural selection in older populations. This provides an explanation for the low frequency of mtDNA disease reported in specific ethnic groups. PMID:29253894

  9. Patterns of population subdivision, gene flow and genetic variability in the African wild dog (Lycaon pictus).

    PubMed

    Girman, D J; Vilà, C; Geffen, E; Creel, S; Mills, M G; McNutt, J W; Ginsberg, J; Kat, P W; Mamiya, K H; Wayne, R K

    2001-07-01

    African wild dogs are large, highly mobile carnivores that are known to disperse over considerable distances and are rare throughout much of their geographical range. Consequently, genetic variation within and differentiation between geographically separated populations is predicted to be minimal. We determined the genetic diversity of mitochondrial DNA (mtDNA) control region sequences and microsatellite loci in seven populations of African wild dogs. Analysis of mtDNA nucleotide diversity suggests that, historically, wild dog populations have been small relative to other large carnivores. However, population declines due to recent habitat loss have not caused a dramatic reduction in genetic diversity. We found one historical and eight recent mtDNA genotypes in 280 individuals that defined two highly divergent clades. In contrast to a previous, more limited, mtDNA analysis, sequences from these clades are not geographically restricted to eastern or southern African populations. Rather, we found a large admixture zone spanning populations from Botswana, Zimbabwe and south-eastern Tanzania. Mitochondrial and microsatellite differentiation between populations was significant and unique mtDNA genotypes and alleles characterized the populations. However, gene flow estimates (Nm) based on microsatellite data were generally greater than one migrant per generation. In contrast, gene flow estimates based on the mtDNA control region were lower than expected given differences in the mode of inheritance of mitochondrial and nuclear markers which suggests a male bias in long-distance dispersal.

  10. Historically low mitochondrial DNA diversity in koalas (Phascolarctos cinereus)

    PubMed Central

    2012-01-01

    Background The koala (Phascolarctos cinereus) is an arboreal marsupial that was historically widespread across eastern Australia until the end of the 19th century when it suffered a steep population decline. Hunting for the fur trade, habitat conversion, and disease contributed to a precipitous reduction in koala population size during the late 1800s and early 1900s. To examine the effects of these reductions in population size on koala genetic diversity, we sequenced part of the hypervariable region of mitochondrial DNA (mtDNA) in koala museum specimens collected in the 19th and 20th centuries, hypothesizing that the historical samples would exhibit greater genetic diversity. Results The mtDNA haplotypes present in historical museum samples were identical to haplotypes found in modern koala populations, and no novel haplotypes were detected. Rarefaction analyses suggested that the mtDNA genetic diversity present in the museum samples was similar to that of modern koalas. Conclusions Low mtDNA diversity may have been present in koala populations prior to recent population declines. When considering management strategies, low genetic diversity of the mtDNA hypervariable region may not indicate recent inbreeding or founder events but may reflect an older historical pattern for koalas. PMID:23095716

  11. Diversity of mitochondrial DNA lineages in South Siberia.

    PubMed

    Derenko, M V; Grzybowski, T; Malyarchuk, B A; Dambueva, I K; Denisova, G A; Czarny, J; Dorzhu, C M; Kakpakov, V T; Miścicka-Sliwka, D; Woźniak, M; Zakharov, I A

    2003-09-01

    To investigate the origin and evolution of aboriginal populations of South Siberia, a comprehensive mitochondrial DNA (mtDNA) analysis (HVR1 sequencing combined with RFLP typing) of 480 individuals, representing seven Altaic-speaking populations (Altaians, Khakassians, Buryats, Sojots, Tuvinians, Todjins and Tofalars), was performed. Additionally, HVR2 sequence information was obtained for 110 Altaians, providing, in particular, some novel details of the East Asian mtDNA phylogeny. The total sample revealed 81% East Asian (M*, M7, M8, M9, M10, C, D, G, Z, A, B, F, N9a, Y) and 17% West Eurasian (H, U, J, T, I, N1a, X) matrilineal genetic contribution, but with regional differences within South Siberia. The highest influx of West Eurasian mtDNAs was observed in populations from the East Sayan and Altai regions (from 12.5% to 34.5%), whereas in populations from the Baikal region this contribution was markedly lower (less than 10%). The considerable substructure within South Siberian haplogroups B, F, and G, together with the high degree of haplogroup C and D diversity revealed there, allows us to conclude that South Siberians carry the genetic imprint of early-colonization phase of Eurasia. Statistical analyses revealed that South Siberian populations contain high levels of mtDNA diversity and high heterogeneity of mtDNA sequences among populations (Fst = 5.05%) that might be due to geography but not due to language and anthropological features.

  12. mtDNA variation of the critically endangered hawksbill turtle (Eretmochelys imbricata) nesting on Iranian islands of the Persian Gulf.

    PubMed

    Tabib, M; Zolgharnein, H; Mohammadi, M; Salari-Aliabadi, M A; Qasemi, A; Roshani, S; Rajabi-Maham, H; Frootan, F

    2011-01-01

    Genetic diversity of sea turtles (hawksbill turtle) was studied using sequencing of mitochondrial DNA (mtDNA, D-loop region). Thirty dead embryos were collected from the Kish and Qeshm Islands in the Persian Gulf. Analysis of sequence variation over 890 bp of the mtDNA control region revealed five haplotypes among 30 individuals. This is the first time that Iranian haplotypes have been recorded. Nucleotide and haplotype diversity was 0.77 and 0.001 for Qeshm Island and 0.64 and 0.002 for Kish Island, respectively. Total haplotype diversity was calculated as 0.69, which demonstrates low genetic diversity in this area. The data also indicated very high rates of migration between the populations of these two islands. A comparison of our data with data from previous studies downloaded from a gene bank showed that turtles of the Persian Gulf migrated from the Pacific and the Sea of Oman into this area. On the other hand, evidence of migration from populations to the West was not found.

  13. How good are indirect tests at detecting recombination in human mtDNA?

    PubMed

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-07-08

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D' and r(2), Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ(2)) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7-70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed.

  14. How Good Are Indirect Tests at Detecting Recombination in Human mtDNA?

    PubMed Central

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-01-01

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D′ and r2, Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ2) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7−70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed. PMID:23665874

  15. The Mitochondrial Genome of Chara vulgaris: Insights into the Mitochondrial DNA Architecture of the Last Common Ancestor of Green Algae and Land PlantsW⃞

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2003-01-01

    Mitochondrial DNA (mtDNA) has undergone radical changes during the evolution of green plants, yet little is known about the dynamics of mtDNA evolution in this phylum. Land plant mtDNAs differ from the few green algal mtDNAs that have been analyzed to date by their expanded size, long spacers, and diversity of introns. We have determined the mtDNA sequence of Chara vulgaris (Charophyceae), a green alga belonging to the charophycean order (Charales) that is thought to be the most closely related alga to land plants. This 67,737-bp mtDNA sequence, displaying 68 conserved genes and 27 introns, was compared with those of three angiosperms, the bryophyte Marchantia polymorpha, the charophycean alga Chaetosphaeridium globosum (Coleochaetales), and the green alga Mesostigma viride. Despite important differences in size and intron composition, Chara mtDNA strikingly resembles Marchantia mtDNA; for instance, all except 9 of 68 conserved genes lie within blocks of colinear sequences. Overall, our genome comparisons and phylogenetic analyses provide unequivocal support for a sister-group relationship between the Charales and the land plants. Only four introns in land plant mtDNAs appear to have been inherited vertically from a charalean algar ancestor. We infer that the common ancestor of green algae and land plants harbored a tightly packed, gene-rich, and relatively intron-poor mitochondrial genome. The group II introns in this ancestral genome appear to have spread to new mtDNA sites during the evolution of bryophytes and charalean green algae, accounting for part of the intron diversity found in Chara and land plant mitochondria. PMID:12897260

  16. High-quality mtDNA control region sequences from 680 individuals sampled across the Netherlands to establish a national forensic mtDNA reference database.

    PubMed

    Chaitanya, Lakshmi; van Oven, Mannis; Brauer, Silke; Zimmermann, Bettina; Huber, Gabriela; Xavier, Catarina; Parson, Walther; de Knijff, Peter; Kayser, Manfred

    2016-03-01

    The use of mitochondrial DNA (mtDNA) for maternal lineage identification often marks the last resort when investigating forensic and missing-person cases involving highly degraded biological materials. As with all comparative DNA testing, a match between evidence and reference sample requires a statistical interpretation, for which high-quality mtDNA population frequency data are crucial. Here, we determined, under high quality standards, the complete mtDNA control-region sequences of 680 individuals from across the Netherlands sampled at 54 sites, covering the entire country with 10 geographic sub-regions. The complete mtDNA control region (nucleotide positions 16,024-16,569 and 1-576) was amplified with two PCR primers and sequenced with ten different sequencing primers using the EMPOP protocol. Haplotype diversity of the entire sample set was very high at 99.63% and, accordingly, the random-match probability was 0.37%. No population substructure within the Netherlands was detected with our dataset. Phylogenetic analyses were performed to determine mtDNA haplogroups. Inclusion of these high-quality data in the EMPOP database (accession number: EMP00666) will improve its overall data content and geographic coverage in the interest of all EMPOP users worldwide. Moreover, this dataset will serve as (the start of) a national reference database for mtDNA applications in forensic and missing person casework in the Netherlands. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Mitochondrial DNA control region sequences from Nairobi (Kenya): inferring phylogenetic parameters for the establishment of a forensic database.

    PubMed

    Brandstätter, Anita; Peterson, Christine T; Irwin, Jodi A; Mpoke, Solomon; Koech, Davy K; Parson, Walther; Parsons, Thomas J

    2004-10-01

    Large forensic mtDNA databases which adhere to strict guidelines for generation and maintenance, are not available for many populations outside of the United States and western Europe. We have established a high quality mtDNA control region sequence database for urban Nairobi as both a reference database for forensic investigations, and as a tool to examine the genetic variation of Kenyan sequences in the context of known African variation. The Nairobi sequences exhibited high variation and a low random match probability, indicating utility for forensic testing. Haplogroup identification and frequencies were compared with those reported from other published studies on African, or African-origin populations from Mozambique, Sierra Leone, and the United States, and suggest significant differences in the mtDNA compositions of the various populations. The quality of the sequence data in our study was investigated and supported using phylogenetic measures. Our data demonstrate the diversity and distinctiveness of African populations, and underline the importance of establishing additional forensic mtDNA databases of indigenous African populations.

  18. The mtDNA haplogroup P of modern Asian cattle: A genetic legacy of Asian aurochs?

    PubMed

    Noda, Aoi; Yonesaka, Riku; Sasazaki, Shinji; Mannen, Hideyuki

    2018-01-01

    Aurochs (Bos primigenius) were distributed throughout large parts of Eurasia and Northern Africa during the late Pleistocene and the early Holocene, and all modern cattle are derived from the aurochs. Although the mtDNA haplogroups of most modern cattle belong to haplogroups T and I, several additional haplogroups (P, Q, R, C and E) have been identified in modern cattle and aurochs. Haplogroup P was the most common haplogroup in European aurochs, but so far, it has been identified in only three of >3,000 submitted haplotypes of modern Asian cattle. We sequenced the complete mtDNA D-loop region of 181 Japanese Shorthorn cattle and analyzed these together with representative bovine mtDNA sequences. The haplotype P of Japanese Shorthorn cattle was analyzed along with that of 36 previously published European aurochs and three modern Asian cattle sequences using the hypervariable 410 bp of the D-loop region. We detected the mtDNA haplogroup P in Japanese Shorthorn cattle with an extremely high frequency (83/181). Phylogenetic networks revealed two main clusters, designated as Pa for haplogroup P in European aurochs and Pc in modern Asian cattle. We also report the genetic diversity of haplogroup P compared with the sequences of extinct aurochs. No shared haplotypes are observed between the European aurochs and the modern Asian cattle. This finding suggests the possibility of local and secondary introgression events of haplogroup P in northeast Asian cattle, and will contribute to a better understanding of its origin and genetic diversity.

  19. The mtDNA haplogroup P of modern Asian cattle: A genetic legacy of Asian aurochs?

    PubMed Central

    Noda, Aoi; Yonesaka, Riku; Sasazaki, Shinji

    2018-01-01

    Background Aurochs (Bos primigenius) were distributed throughout large parts of Eurasia and Northern Africa during the late Pleistocene and the early Holocene, and all modern cattle are derived from the aurochs. Although the mtDNA haplogroups of most modern cattle belong to haplogroups T and I, several additional haplogroups (P, Q, R, C and E) have been identified in modern cattle and aurochs. Haplogroup P was the most common haplogroup in European aurochs, but so far, it has been identified in only three of >3,000 submitted haplotypes of modern Asian cattle. Methodology We sequenced the complete mtDNA D-loop region of 181 Japanese Shorthorn cattle and analyzed these together with representative bovine mtDNA sequences. The haplotype P of Japanese Shorthorn cattle was analyzed along with that of 36 previously published European aurochs and three modern Asian cattle sequences using the hypervariable 410 bp of the D-loop region. Conclusions We detected the mtDNA haplogroup P in Japanese Shorthorn cattle with an extremely high frequency (83/181). Phylogenetic networks revealed two main clusters, designated as Pa for haplogroup P in European aurochs and Pc in modern Asian cattle. We also report the genetic diversity of haplogroup P compared with the sequences of extinct aurochs. No shared haplotypes are observed between the European aurochs and the modern Asian cattle. This finding suggests the possibility of local and secondary introgression events of haplogroup P in northeast Asian cattle, and will contribute to a better understanding of its origin and genetic diversity. PMID:29304129

  20. Wolbachia association with the tsetse fly, Glossina fuscipes fuscipes, reveals high levels of genetic diversity and complex evolutionary dynamics

    PubMed Central

    2013-01-01

    Background Wolbachia pipientis, a diverse group of α-proteobacteria, can alter arthropod host reproduction and confer a reproductive advantage to Wolbachia-infected females (cytoplasmic incompatibility (CI)). This advantage can alter host population genetics because Wolbachia-infected females produce more offspring with their own mitochondrial DNA (mtDNA) haplotypes than uninfected females. Thus, these host haplotypes become common or fixed (selective sweep). Although simulations suggest that for a CI-mediated sweep to occur, there must be a transient phase with repeated initial infections of multiple individual hosts by different Wolbachia strains, this has not been observed empirically. Wolbachia has been found in the tsetse fly, Glossina fuscipes fuscipes, but it is not limited to a single host haplotype, suggesting that CI did not impact its population structure. However, host population genetic differentiation could have been generated if multiple Wolbachia strains interacted in some populations. Here, we investigated Wolbachia genetic variation in G. f. fuscipes populations of known host genetic composition in Uganda. We tested for the presence of multiple Wolbachia strains using Multi-Locus Sequence Typing (MLST) and for an association between geographic region and host mtDNA haplotype using Wolbachia DNA sequence from a variable locus, groEL (heat shock protein 60). Results MLST demonstrated that some G. f. fuscipes carry Wolbachia strains from two lineages. GroEL revealed high levels of sequence diversity within and between individuals (Haplotype diversity = 0.945). We found Wolbachia associated with 26 host mtDNA haplotypes, an unprecedented result. We observed a geographical association of one Wolbachia lineage with southern host mtDNA haplotypes, but it was non-significant (p = 0.16). Though most Wolbachia-infected host haplotypes were those found in the contact region between host mtDNA groups, this association was non-significant (p = 0.17). Conclusions High Wolbachia sequence diversity and the association of Wolbachia with multiple host haplotypes suggest that different Wolbachia strains infected G. f. fuscipes multiple times independently. We suggest that these observations reflect a transient phase in Wolbachia evolution that is influenced by the long gestation and low reproductive output of tsetse. Although G. f. fuscipes is superinfected with Wolbachia, our data does not support that bidirectional CI has influenced host genetic diversity in Uganda. PMID:23384159

  1. mtDNA variation predicts population size in humans and reveals a major Southern Asian chapter in human prehistory.

    PubMed

    Atkinson, Quentin D; Gray, Russell D; Drummond, Alexei J

    2008-02-01

    The relative timing and size of regional human population growth following our expansion from Africa remain unknown. Human mitochondrial DNA (mtDNA) diversity carries a legacy of our population history. Given a set of sequences, we can use coalescent theory to estimate past population size through time and draw inferences about human population history. However, recent work has challenged the validity of using mtDNA diversity to infer species population sizes. Here we use Bayesian coalescent inference methods, together with a global data set of 357 human mtDNA coding-region sequences, to infer human population sizes through time across 8 major geographic regions. Our estimates of relative population sizes show remarkable concordance with the contemporary regional distribution of humans across Africa, Eurasia, and the Americas, indicating that mtDNA diversity is a good predictor of population size in humans. Plots of population size through time show slow growth in sub-Saharan Africa beginning 143-193 kya, followed by a rapid expansion into Eurasia after the emergence of the first non-African mtDNA lineages 50-70 kya. Outside Africa, the earliest and fastest growth is inferred in Southern Asia approximately 52 kya, followed by a succession of growth phases in Northern and Central Asia (approximately 49 kya), Australia (approximately 48 kya), Europe (approximately 42 kya), the Middle East and North Africa (approximately 40 kya), New Guinea (approximately 39 kya), the Americas (approximately 18 kya), and a second expansion in Europe (approximately 10-15 kya). Comparisons of relative regional population sizes through time suggest that between approximately 45 and 20 kya most of humanity lived in Southern Asia. These findings not only support the use of mtDNA data for estimating human population size but also provide a unique picture of human prehistory and demonstrate the importance of Southern Asia to our recent evolutionary past.

  2. Trading genes along the silk road: mtDNA sequences and the origin of central Asian populations.

    PubMed Central

    Comas, D; Calafell, F; Mateu, E; Pérez-Lezaun, A; Bosch, E; Martínez-Arias, R; Clarimon, J; Facchini, F; Fiori, G; Luiselli, D; Pettener, D; Bertranpetit, J

    1998-01-01

    Central Asia is a vast region at the crossroads of different habitats, cultures, and trade routes. Little is known about the genetics and the history of the population of this region. We present the analysis of mtDNA control-region sequences in samples of the Kazakh, the Uighurs, the lowland Kirghiz, and the highland Kirghiz, which we have used to address both the population history of the region and the possible selective pressures that high altitude has on mtDNA genes. Central Asian mtDNA sequences present features intermediate between European and eastern Asian sequences, in several parameters-such as the frequencies of certain nucleotides, the levels of nucleotide diversity, mean pairwise differences, and genetic distances. Several hypotheses could explain the intermediate position of central Asia between Europe and eastern Asia, but the most plausible would involve extensive levels of admixture between Europeans and eastern Asians in central Asia, possibly enhanced during the Silk Road trade and clearly after the eastern and western Eurasian human groups had diverged. Lowland and highland Kirghiz mtDNA sequences are very similar, and the analysis of molecular variance has revealed that the fraction of mitochondrial genetic variance due to altitude is not significantly different from zero. Thus, it seems unlikely that altitude has exerted a major selective pressure on mitochondrial genes in central Asian populations. PMID:9837835

  3. Enlightenment of Yeast Mitochondrial Homoplasmy: Diversified Roles of Gene Conversion

    PubMed Central

    Ling, Feng; Mikawa, Tsutomu; Shibata, Takehiko

    2011-01-01

    Mitochondria have their own genomic DNA. Unlike the nuclear genome, each cell contains hundreds to thousands of copies of mitochondrial DNA (mtDNA). The copies of mtDNA tend to have heterogeneous sequences, due to the high frequency of mutagenesis, but are quickly homogenized within a cell (“homoplasmy”) during vegetative cell growth or through a few sexual generations. Heteroplasmy is strongly associated with mitochondrial diseases, diabetes and aging. Recent studies revealed that the yeast cell has the machinery to homogenize mtDNA, using a common DNA processing pathway with gene conversion; i.e., both genetic events are initiated by a double-stranded break, which is processed into 3′ single-stranded tails. One of the tails is base-paired with the complementary sequence of the recipient double-stranded DNA to form a D-loop (homologous pairing), in which repair DNA synthesis is initiated to restore the sequence lost by the breakage. Gene conversion generates sequence diversity, depending on the divergence between the donor and recipient sequences, especially when it occurs among a number of copies of a DNA sequence family with some sequence variations, such as in immunoglobulin diversification in chicken. MtDNA can be regarded as a sequence family, in which the members tend to be diversified by a high frequency of spontaneous mutagenesis. Thus, it would be interesting to determine why and how double-stranded breakage and D-loop formation induce sequence homogenization in mitochondria and sequence diversification in nuclear DNA. We will review the mechanisms and roles of mtDNA homoplasmy, in contrast to nuclear gene conversion, which diversifies gene and genome sequences, to provide clues toward understanding how the common DNA processing pathway results in such divergent outcomes. PMID:24710143

  4. mtDNA recombination in a natural population.

    PubMed

    Saville, B J; Kohli, Y; Anderson, J B

    1998-02-03

    Variation in mtDNA has been used extensively to draw inferences in phylogenetics and population biology. In the majority of eukaryotes investigated, transmission of mtDNA is uniparental and clonal, with genotypic diversity arising from mutation alone. In other eukaryotes, the transmission of mtDNA is biparental or primarily uniparental with the possibility of "leakage" from the minority parent. In these cases, heteroplasmy carries the potential for recombination between mtDNAs of different descent. In fungi, such mtDNA recombination has long been documented but only in laboratory experiments and only under conditions in which heteroplasmy is ensured. Despite this experimental evidence, mtDNA recombination has not been to our knowledge documented in a natural population. Because evidence from natural populations is prerequisite to understanding the evolutionary impact of mtDNA recombination, we investigated the possibility of mtDNA recombination in an organism with the demonstrated potential for heteroplasmy in laboratory matings. Using nucleotide sequence data, we report here that the genotypic structure of mtDNA in a natural population of the basidiomycete fungus Armillaria gallica is inconsistent with purely clonal mtDNA evolution and is fully consistent with mtDNA recombination.

  5. EMPOP-quality mtDNA control region sequences from Kashmiri of Azad Jammu & Kashmir, Pakistan.

    PubMed

    Rakha, Allah; Peng, Min-Sheng; Bi, Rui; Song, Jiao-Jiao; Salahudin, Zeenat; Adan, Atif; Israr, Muhammad; Yao, Yong-Gang

    2016-11-01

    The mitochondrial DNA (mtDNA) control region (nucleotide position 16024-576) sequences were generated through Sanger sequencing method for 317 self-identified Kashmiris from all districts of Azad Jammu & Kashmir Pakistan. The population sample set showed a total of 251 haplotypes, with a relatively high haplotype diversity (0.9977) and a low random match probability (0.54%). The containing matrilineal lineages belonging to three different phylogeographic origins of Western Eurasian (48.9%), South Asian (47.0%) and East Asian (4.1%). The present study was compared to previous data from Pakistan and other worldwide populations (Central Asia, Western Asia, and East & Southeast Asia). The dataset is made available through EMPOP under accession number EMP00679 and will serve as an mtDNA reference database in forensic casework in Pakistan. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Mitochondrial Genome Diversity of Native Americans Supports a Single Early Entry of Founder Populations into America

    PubMed Central

    Silva Jr., Wilson A.; Bonatto, Sandro L.; Holanda, Adriano J.; Ribeiro-dos-Santos, Andrea K.; Paixão, Beatriz M.; Goldman, Gustavo H.; Abe-Sandes, Kiyoko; Rodriguez-Delfin, Luis; Barbosa, Marcela; Paçó-Larson, Maria Luiza; Petzl-Erler, Maria Luiza; Valente, Valeria; Santos, Sidney E. B.; Zago, Marco A.

    2002-01-01

    There is general agreement that the Native American founder populations migrated from Asia into America through Beringia sometime during the Pleistocene, but the hypotheses concerning the ages and the number of these migrations and the size of the ancestral populations are surrounded by controversy. DNA sequence variations of several regions of the genome of Native Americans, especially in the mitochondrial DNA (mtDNA) control region, have been studied as a tool to help answer these questions. However, the small number of nucleotides studied and the nonclocklike rate of mtDNA control-region evolution impose several limitations to these results. Here we provide the sequence analysis of a continuous region of 8.8 kb of the mtDNA outside the D-loop for 40 individuals, 30 of whom are Native Americans whose mtDNA belongs to the four founder haplogroups. Haplogroups A, B, and C form monophyletic clades, but the five haplogroup D sequences have unstable positions and usually do not group together. The high degree of similarity in the nucleotide diversity and time of differentiation (i.e., ∼21,000 years before present) of these four haplogroups support a common origin for these sequences and suggest that the populations who harbor them may also have a common history. Additional evidence supports the idea that this age of differentiation coincides with the process of colonization of the New World and supports the hypothesis of a single and early entry of the ancestral Asian population into the Americas. PMID:12022039

  7. High-throughput sequencing of complete human mtDNA genomes from the Caucasus and West Asia: high diversity and demographic inferences.

    PubMed

    Schönberg, Anna; Theunert, Christoph; Li, Mingkun; Stoneking, Mark; Nasidze, Ivan

    2011-09-01

    To investigate the demographic history of human populations from the Caucasus and surrounding regions, we used high-throughput sequencing to generate 147 complete mtDNA genome sequences from random samples of individuals from three groups from the Caucasus (Armenians, Azeri and Georgians), and one group each from Iran and Turkey. Overall diversity is very high, with 144 different sequences that fall into 97 different haplogroups found among the 147 individuals. Bayesian skyline plots (BSPs) of population size change through time show a population expansion around 40-50 kya, followed by a constant population size, and then another expansion around 15-18 kya for the groups from the Caucasus and Iran. The BSP for Turkey differs the most from the others, with an increase from 35 to 50 kya followed by a prolonged period of constant population size, and no indication of a second period of growth. An approximate Bayesian computation approach was used to estimate divergence times between each pair of populations; the oldest divergence times were between Turkey and the other four groups from the South Caucasus and Iran (~400-600 generations), while the divergence time of the three Caucasus groups from each other was comparable to their divergence time from Iran (average of ~360 generations). These results illustrate the value of random sampling of complete mtDNA genome sequences that can be obtained with high-throughput sequencing platforms.

  8. Predicting nuclear gene coalescence from mitochondrial data: the three-times rule.

    PubMed

    Palumbi, S R; Cipriano, F; Hare, M P

    2001-05-01

    Coalescence theory predicts when genetic drift at nuclear loci will result in fixation of sequence differences to produce monophyletic gene trees. However, the theory is difficult to apply to particular taxa because it hinges on genetically effective population size, which is generally unknown. Neutral theory also predicts that evolution of monophyly will be four times slower in nuclear than in mitochondrial genes primarily because genetic drift is slower at nuclear loci. Variation in mitochondrial DNA (mtDNA) within and between species has been studied extensively, but can these mtDNA data be used to predict coalescence in nuclear loci? Comparison of neutral theories of coalescence of mitochondrial and nuclear loci suggests a simple rule of thumb. The "three-times rule" states that, on average, most nuclear loci will be monophyletic when the branch length leading to the mtDNA sequences of a species is three times longer than the average mtDNA sequence diversity observed within that species. A test using mitochondrial and nuclear intron data from seven species of whales and dolphins suggests general agreement with predictions of the three-times rule. We define the coalescence ratio as the mitochondrial branch length for a species divided by intraspecific mtDNA diversity. We show that species with high coalescence ratios show nuclear monophyly, whereas species with low ratios have polyphyletic nuclear gene trees. As expected, species with intermediate coalescence ratios show a variety of patterns. Especially at very high or low coalescence ratios, the three-times rule predicts nuclear gene patterns that can help detect the action of selection. The three-times rule may be useful as an empirical benchmark for evaluating evolutionary processes occurring at multiple loci.

  9. Population and forensic genetic analyses of mitochondrial DNA control region variation from six major provinces in the Korean population.

    PubMed

    Hong, Seung Beom; Kim, Ki Cheol; Kim, Wook

    2015-07-01

    We generated complete mitochondrial DNA (mtDNA) control region sequences from 704 unrelated individuals residing in six major provinces in Korea. In addition to our earlier survey of the distribution of mtDNA haplogroup variation, a total of 560 different haplotypes characterized by 271 polymorphic sites were identified, of which 473 haplotypes were unique. The gene diversity and random match probability were 0.9989 and 0.0025, respectively. According to the pairwise comparison of the 704 control region sequences, the mean number of pairwise differences between individuals was 13.47±6.06. Based on the result of mtDNA control region sequences, pairwise FST genetic distances revealed genetic homogeneity of the Korean provinces on a peninsular level, except in samples from Jeju Island. This result indicates there may be a need to formulate a local mtDNA database for Jeju Island, to avoid bias in forensic parameter estimates caused by genetic heterogeneity of the population. Thus, the present data may help not only in personal identification but also in determining maternal lineages to provide an expanded and reliable Korean mtDNA database. These data will be available on the EMPOP database via accession number EMP00661. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Selfish Little Circles: Transmission Bias and Evolution of Large Deletion-Bearing Mitochondrial DNA in Caenorhabditis briggsae Nematodes

    PubMed Central

    Clark, Katie A.; Howe, Dana K.; Gafner, Kristin; Kusuma, Danika; Ping, Sita; Estes, Suzanne; Denver, Dee R.

    2012-01-01

    Selfish DNA poses a significant challenge to genome stability and organismal fitness in diverse eukaryotic lineages. Although selfish mitochondrial DNA (mtDNA) has known associations with cytoplasmic male sterility in numerous gynodioecious plant species and is manifested as petite mutants in experimental yeast lab populations, examples of selfish mtDNA in animals are less common. We analyzed the inheritance and evolution of mitochondrial DNA bearing large heteroplasmic deletions including nad5 gene sequences (nad5Δ mtDNA), in the nematode Caenorhabditis briggsae. The deletion is widespread in C. briggsae natural populations and is associated with deleterious organismal effects. We studied the inheritance patterns of nad5Δ mtDNA using eight sets of C. briggsae mutation-accumulation (MA) lines, each initiated from a different natural strain progenitor and bottlenecked as single hermaphrodites across generations. We observed a consistent and strong drive toward higher levels of deletion-bearing molecules in the heteroplasmic pool of mtDNA after ten generations of bottlenecking. Our results demonstrate a uniform transmission bias whereby nad5Δ mtDNA accumulates to higher levels relative to intact mtDNA in multiple genetically diverse natural strains of C. briggsae. We calculated an average 1% per-generation transmission bias for deletion-bearing mtDNA relative to intact genomes. Our study, coupled with known deleterious phenotypes associated with high deletion levels, shows that nad5Δ mtDNA are selfish genetic elements that have evolved in natural populations of C. briggsae, offering a powerful new system to study selfish mtDNA dynamics in metazoans. PMID:22859984

  11. A high-throughput Sanger strategy for human mitochondrial genome sequencing

    PubMed Central

    2013-01-01

    Background A population reference database of complete human mitochondrial genome (mtGenome) sequences is needed to enable the use of mitochondrial DNA (mtDNA) coding region data in forensic casework applications. However, the development of entire mtGenome haplotypes to forensic data quality standards is difficult and laborious. A Sanger-based amplification and sequencing strategy that is designed for automated processing, yet routinely produces high quality sequences, is needed to facilitate high-volume production of these mtGenome data sets. Results We developed a robust 8-amplicon Sanger sequencing strategy that regularly produces complete, forensic-quality mtGenome haplotypes in the first pass of data generation. The protocol works equally well on samples representing diverse mtDNA haplogroups and DNA input quantities ranging from 50 pg to 1 ng, and can be applied to specimens of varying DNA quality. The complete workflow was specifically designed for implementation on robotic instrumentation, which increases throughput and reduces both the opportunities for error inherent to manual processing and the cost of generating full mtGenome sequences. Conclusions The described strategy will assist efforts to generate complete mtGenome haplotypes which meet the highest data quality expectations for forensic genetic and other applications. Additionally, high-quality data produced using this protocol can be used to assess mtDNA data developed using newer technologies and chemistries. Further, the amplification strategy can be used to enrich for mtDNA as a first step in sample preparation for targeted next-generation sequencing. PMID:24341507

  12. Analysis of mitochondrial DNA in Bolivian llama, alpaca and vicuna populations: a contribution to the phylogeny of the South American camelids.

    PubMed

    Barreta, J; Gutiérrez-Gil, B; Iñiguez, V; Saavedra, V; Chiri, R; Latorre, E; Arranz, J J

    2013-04-01

    The objectives of this work were to assess the mtDNA diversity of Bolivian South American camelid (SAC) populations and to shed light on the evolutionary relationships between the Bolivian camelids and other populations of SACs. We have analysed two different mtDNA regions: the complete coding region of the MT-CYB gene and 513 bp of the D-loop region. The populations sampled included Bolivian llamas, alpacas and vicunas, and Chilean guanacos. High levels of genetic diversity were observed in the studied populations. In general, MT-CYB was more variable than D-loop. On a species level, the vicunas showed the lowest genetic variability, followed by the guanacos, alpacas and llamas. Phylogenetic analyses performed by including additional available mtDNA sequences from the studied species confirmed the existence of the two monophyletic clades previously described by other authors for guanacos (G) and vicunas (V). Significant levels of mtDNA hybridization were found in the domestic species. Our sequence analyses revealed significant sequence divergence within clade G, and some of the Bolivian llamas grouped with the majority of the southern guanacos. This finding supports the existence of more than the one llama domestication centre in South America previously suggested on the basis of archaeozoological evidence. Additionally, analysis of D-loop sequences revealed two new matrilineal lineages that are distinct from the previously reported G and V clades. The results presented here represent the first report on the population structure and genetic variability of Bolivian camelids and may help to elucidate the complex and dynamic domestication process of SAC populations. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  13. Evidence for mitochondrial DNA recombination in a human population of island Melanesia.

    PubMed Central

    Hagelberg, E; Goldman, N; Lió, P; Whelan, S; Schiefenhövel, W; Clegg, J B; Bowden, D K

    1999-01-01

    Mitochondrial DNA (mtDNA) analysis has proved useful in studies of recent human evolution and the genetic affinities of human groups of different geographical regions. As part of an extensive survey of mtDNA diversity in present-day Pacific populations, we obtained sequence information of the hypervariable mtDNA control region of 452 individuals from various localities in the western Pacific. The mtDNA types fell into three major groups which reflect the settlement history of the area. Interestingly, we detected an extremely rare point mutation at high frequency in the small island of Nguna in the Melanesian archipelago of Vanuatu. Phylogenetic analysis of the mtDNA data indicated that the mutation was present in individuals of separate mtDNA lineages. We propose that the multiple occurrence of a rare mutation event in one isolated locality is highly improbable, and that recombination between different mtDNA types is a more likely explanation for our observation. If correct, this conclusion has important implications for the use of mtDNA in phylogenetic and evolutionary studies. PMID:10189712

  14. Evidence for mitochondrial DNA recombination in a human population of island Melanesia.

    PubMed

    Hagelberg, E; Goldman, N; Lió, P; Whelan, S; Schiefenhövel, W; Clegg, J B; Bowden, D K

    1999-03-07

    Mitochondrial DNA (mtDNA) analysis has proved useful in studies of recent human evolution and the genetic affinities of human groups of different geographical regions. As part of an extensive survey of mtDNA diversity in present-day Pacific populations, we obtained sequence information of the hypervariable mtDNA control region of 452 individuals from various localities in the western Pacific. The mtDNA types fell into three major groups which reflect the settlement history of the area. Interestingly, we detected an extremely rare point mutation at high frequency in the small island of Nguna in the Melanesian archipelago of Vanuatu. Phylogenetic analysis of the mtDNA data indicated that the mutation was present in individuals of separate mtDNA lineages. We propose that the multiple occurrence of a rare mutation event in one isolated locality is highly improbable, and that recombination between different mtDNA types is a more likely explanation for our observation. If correct, this conclusion has important implications for the use of mtDNA in phylogenetic and evolutionary studies.

  15. Detection of sister-species in invasive populations of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Uganda

    PubMed Central

    Tay, Wee Tek; Walsh, Thomas K.; Kanyesigye, Dalton; Adumo, Stella; Abongosi, Joseph; Ochen, Stephen; Sserumaga, Julius; Alibu, Simon; Abalo, Grace; Asea, Godfrey; Agona, Ambrose

    2018-01-01

    The fall armyworm (FAW) Spodoptera frugiperda (J. E. Smith) is a species native to the Americas. This polyphagous lepidopteran pest was first reported in Nigeria and the Democratic Republic of São Tomé and Principe in 2016, but its presence in eastern Africa has not been confirmed via molecular characterisation. In this study, FAW specimens from western and central Uganda were identified based on the partial mtDNA COI gene sequences, with mtDNA COI haplotypes matching those identified in Nigeria and São Tomé. In this study, we sequence an additional partial mtDNA Cyt b gene and also the partial mtDNA COIII gene in Ugandan FAW samples. We detected identical mitochondrial DNA haplotypes for both the mtDNA Cyt b and COI partial genes, while combining the mtDNA COI/Cyt b haplotypes and mtDNA COIII haplotypes enabled a new maternal lineage in the Ugandan corn-preferred FAW samples to be identified. Our results suggested that the African incursions of S. frugiperda involved at least three maternal lineages. Recent full genome, phylogenetic and microsatellite analyses provided evidence to support S. frugiperda as likely consisted of two sympatric sister species known as the corn-preferred and rice-preferred strains. In our Ugandan FAW populations, we identified the presence of mtDNA haplotypes representative of both sister species. It is not known if both FAW sister species were originally introduced together or separately, and whether they have since spread as a single population. Further analyses of additional specimens originally collected from São Tomé, Nigeria and throughout Africa would be required to clarify this issue. Importantly, our finding showed that the genetic diversity of the African corn-preferred FAW species is higher than previously reported. This potentially contributed to the success of FAW establishment in Africa. Furthermore, with the additional maternal lineages detected, there is likely an increase in paternal lineages, thereby increasing the diversity of the African FAW population. Knowledge of the FAW genetic diversity will be needed to assess the risks of introducing Bt-resistance traits and to understand the FAW incursion pathways into the Old World and its potential onward spread. The agricultural implications of the presence of two evolutionary divergent FAW lineages (the corn and the rice lineage) in the African continent are further considered and discussed. PMID:29614067

  16. Detection of sister-species in invasive populations of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Uganda.

    PubMed

    Otim, Michael H; Tay, Wee Tek; Walsh, Thomas K; Kanyesigye, Dalton; Adumo, Stella; Abongosi, Joseph; Ochen, Stephen; Sserumaga, Julius; Alibu, Simon; Abalo, Grace; Asea, Godfrey; Agona, Ambrose

    2018-01-01

    The fall armyworm (FAW) Spodoptera frugiperda (J. E. Smith) is a species native to the Americas. This polyphagous lepidopteran pest was first reported in Nigeria and the Democratic Republic of São Tomé and Principe in 2016, but its presence in eastern Africa has not been confirmed via molecular characterisation. In this study, FAW specimens from western and central Uganda were identified based on the partial mtDNA COI gene sequences, with mtDNA COI haplotypes matching those identified in Nigeria and São Tomé. In this study, we sequence an additional partial mtDNA Cyt b gene and also the partial mtDNA COIII gene in Ugandan FAW samples. We detected identical mitochondrial DNA haplotypes for both the mtDNA Cyt b and COI partial genes, while combining the mtDNA COI/Cyt b haplotypes and mtDNA COIII haplotypes enabled a new maternal lineage in the Ugandan corn-preferred FAW samples to be identified. Our results suggested that the African incursions of S. frugiperda involved at least three maternal lineages. Recent full genome, phylogenetic and microsatellite analyses provided evidence to support S. frugiperda as likely consisted of two sympatric sister species known as the corn-preferred and rice-preferred strains. In our Ugandan FAW populations, we identified the presence of mtDNA haplotypes representative of both sister species. It is not known if both FAW sister species were originally introduced together or separately, and whether they have since spread as a single population. Further analyses of additional specimens originally collected from São Tomé, Nigeria and throughout Africa would be required to clarify this issue. Importantly, our finding showed that the genetic diversity of the African corn-preferred FAW species is higher than previously reported. This potentially contributed to the success of FAW establishment in Africa. Furthermore, with the additional maternal lineages detected, there is likely an increase in paternal lineages, thereby increasing the diversity of the African FAW population. Knowledge of the FAW genetic diversity will be needed to assess the risks of introducing Bt-resistance traits and to understand the FAW incursion pathways into the Old World and its potential onward spread. The agricultural implications of the presence of two evolutionary divergent FAW lineages (the corn and the rice lineage) in the African continent are further considered and discussed.

  17. Sequence polymorphism data of the hypervariable regions of mitochondrial DNA in the Yadav population of Haryana.

    PubMed

    Verma, Kapil; Sharma, Sapna; Sharma, Arun; Dalal, Jyoti; Bhardwaj, Tapeshwar

    2018-06-01

    Genetic variations among humans occur both within and among populations and range from single nucleotide changes to multiple-nucleotide variants. These multiple-nucleotide variants are useful for studying the relationships among individuals or various population groups. The study of human genetic variations can help scientists understand how different population groups are biologically related to one another. Sequence analysis of hypervariable regions of human mitochondrial DNA (mtDNA) has been successfully used for the genetic characterization of different population groups for forensic purposes. It is well established that different ethnic or population groups differ significantly in their mtDNA distributions. In the last decade, very little research has been conducted on mtDNA variations in the Indian population, although such data would be useful for elucidating the history of human population expansion across the world. Moreover, forensic studies on mtDNA variations in the Indian subcontinent are also scarce, particularly in the northern part of India. In this report, variations in the hypervariable regions of mtDNA were analyzed in the Yadav population of Haryana. Different molecular diversity indices were computed. Further, the obtained haplotypes were classified into different haplogroups and the phylogenetic relationship between different haplogroups was inferred.

  18. Characterization of mtDNA variation in a cohort of South African paediatric patients with mitochondrial disease.

    PubMed

    van der Walt, Elizna M; Smuts, Izelle; Taylor, Robert W; Elson, Joanna L; Turnbull, Douglass M; Louw, Roan; van der Westhuizen, Francois H

    2012-06-01

    Mitochondrial disease can be attributed to both mitochondrial and nuclear gene mutations. It has a heterogeneous clinical and biochemical profile, which is compounded by the diversity of the genetic background. Disease-based epidemiological information has expanded significantly in recent decades, but little information is known that clarifies the aetiology in African patients. The aim of this study was to investigate mitochondrial DNA variation and pathogenic mutations in the muscle of diagnosed paediatric patients from South Africa. A cohort of 71 South African paediatric patients was included and a high-throughput nucleotide sequencing approach was used to sequence full-length muscle mtDNA. The average coverage of the mtDNA genome was 81±26 per position. After assigning haplogroups, it was determined that although the nature of non-haplogroup-defining variants was similar in African and non-African haplogroup patients, the number of substitutions were significantly higher in African patients. We describe previously reported disease-associated and novel variants in this cohort. We observed a general lack of commonly reported syndrome-associated mutations, which supports clinical observations and confirms general observations in African patients when using single mutation screening strategies based on (predominantly non-African) mtDNA disease-based information. It is finally concluded that this first extensive report on muscle mtDNA sequences in African paediatric patients highlights the need for a full-length mtDNA sequencing strategy, which applies to all populations where specific mutations is not present. This, in addition to nuclear DNA gene mutation and pathogenicity evaluations, will be required to better unravel the aetiology of these disorders in African patients.

  19. Mitochondrial genetic diversity, selection and recombination in a canine transmissible cancer

    PubMed Central

    Strakova, Andrea; Ní Leathlobhair, Máire; Wang, Guo-Dong; Yin, Ting-Ting; Airikkala-Otter, Ilona; Allen, Janice L; Allum, Karen M; Bansse-Issa, Leontine; Bisson, Jocelyn L; Castillo Domracheva, Artemio; de Castro, Karina F; Corrigan, Anne M; Cran, Hugh R; Crawford, Jane T; Cutter, Stephen M; Delgadillo Keenan, Laura; Donelan, Edward M; Faramade, Ibikunle A; Flores Reynoso, Erika; Fotopoulou, Eleni; Fruean, Skye N; Gallardo-Arrieta, Fanny; Glebova, Olga; Häfelin Manrique, Rodrigo F; Henriques, Joaquim JGP; Ignatenko, Natalia; Koenig, Debbie; Lanza-Perea, Marta; Lobetti, Remo; Lopez Quintana, Adriana M; Losfelt, Thibault; Marino, Gabriele; Martincorena, Inigo; Martínez Castañeda, Simón; Martínez-López, Mayra F; Meyer, Michael; Nakanwagi, Berna; De Nardi, Andrigo B; Neunzig, Winifred; Nixon, Sally J; Onsare, Marsden M; Ortega-Pacheco, Antonio; Peleteiro, Maria C; Pye, Ruth J; Reece, John F; Rojas Gutierrez, Jose; Sadia, Haleema; Schmeling, Sheila K; Shamanova, Olga; Ssuna, Richard K; Steenland-Smit, Audrey E; Svitich, Alla; Thoya Ngoka, Ismail; Vițălaru, Bogdan A; de Vos, Anna P; de Vos, Johan P; Walkinton, Oliver; Wedge, David C; Wehrle-Martinez, Alvaro S; van der Wel, Mirjam G; Widdowson, Sophie AE; Murchison, Elizabeth P

    2016-01-01

    Canine transmissible venereal tumour (CTVT) is a clonally transmissible cancer that originated approximately 11,000 years ago and affects dogs worldwide. Despite the clonal origin of the CTVT nuclear genome, CTVT mitochondrial genomes (mtDNAs) have been acquired by periodic capture from transient hosts. We sequenced 449 complete mtDNAs from a global population of CTVTs, and show that mtDNA horizontal transfer has occurred at least five times, delineating five tumour clades whose distributions track two millennia of dog global migration. Negative selection has operated to prevent accumulation of deleterious mutations in captured mtDNA, and recombination has caused occasional mtDNA re-assortment. These findings implicate functional mtDNA as a driver of CTVT global metastatic spread, further highlighting the important role of mtDNA in cancer evolution. DOI: http://dx.doi.org/10.7554/eLife.14552.001 PMID:27185408

  20. Genetic diversity of Guangxi chicken breeds assessed with microsatellites and the mitochondrial DNA D-loop region.

    PubMed

    Liao, Yuying; Mo, Guodong; Sun, Junli; Wei, Fengying; Liao, Dezhong Joshua

    2016-05-01

    The domestic chicken (Gallus gallus domesticus) is an excellent model for genetic studies of phenotypic diversity. The Guangxi Region of China possesses several native chicken breeds displaying a broad range of phenotypes well adapted to the extreme hot-and-wet environments in the region. We thus evaluated the genetic diversity and relationships among six native chicken populations of the Guangxi region and also evaluated two commercial breeds (Arbor Acres and Roman chickens). We analyzed the sequences of the D-loop region of the mitochondrial DNA (mtDNA) and 18 microsatellite loci of 280 blood samples from six Guangxi native chicken breeds and from Arbor Acres and Roman chickens, and used the neighbor-joining method to construct the phylogenetic tree of these eight breeds. Our results showed that the genetic diversity of Guangxi native breeds was relatively rich. The phylogenetic tree using the unweighed pair-group method with arithmetic means (UPGAM) on microsatellite marks revealed two main clusters. Arbor Acres chicken and Roman chicken were in one cluster, while the Guangxi breeds were in the other cluster. Moreover, the UPGAM tree of Guangxi native breeds based on microsatellite loci was more consistent with the genesis, breeding history, differentiation and location than the mtDNA D-loop region. STRUCTURE analysis further confirmed the genetic structure of Guangxi native breeds in the Neighbor-Net dendrogram. The nomenclature of mtDNA sequence polymorphisms suggests that the Guangxi native chickens are distributed across four clades, but most of them are clustered in two main clades (B and E), with the other haplotypes within the clades A and C. The Guangxi native breeds revealed abundant genetic diversity not only on microsatellite loci but also on mtDNA D-loop region, and contained multiple maternal lineages, including one from China and another from Europe or the Middle East.

  1. mtDNA and the Origin of the Icelanders: Deciphering Signals of Recent Population History

    PubMed Central

    Helgason, Agnar; Sigurðardóttir, Sigrún; Gulcher, Jeffrey R.; Ward, Ryk; Stefánsson, Kári

    2000-01-01

    Previous attempts to investigate the origin of the Icelanders have provided estimates of ancestry ranging from a 98% British Isles contribution to an 86% Scandinavian contribution. We generated mitochondrial sequence data for 401 Icelandic individuals and compared these data with >2,500 other European sequences from published sources, to determine the probable origins of women who contributed to Iceland’s settlement. Although the mean number of base-pair differences is high in the Icelandic sequences and they are widely distributed in the overall European mtDNA phylogeny, we find a smaller number of distinct mitochondrial lineages, compared with most other European populations. The frequencies of a number of mtDNA lineages in the Icelanders deviate noticeably from those in neighboring populations, suggesting that founder effects and genetic drift may have had a considerable influence on the Icelandic gene pool. This is in accordance with available demographic evidence about Icelandic population history. A comparison with published mtDNA lineages from European populations indicates that, whereas most founding females probably originated from Scandinavia and the British Isles, lesser contributions from other populations may also have taken place. We present a highly resolved phylogenetic network for the Icelandic data, identifying a number of previously unreported mtDNA lineage clusters and providing a detailed depiction of the evolutionary relationships between European mtDNA clusters. Our findings indicate that European populations contain a large number of closely related mitochondrial lineages, many of which have not yet been sampled in the current comparative data set. Consequently, substantial increases in sample sizes that use mtDNA data will be needed to obtain valid estimates of the diverse ancestral mixtures that ultimately gave rise to contemporary populations. PMID:10712214

  2. Genetic variations in two seahorse species (Hippocampus mohnikei and Hippocampus trimaculatus): evidence for middle Pleistocene population expansion.

    PubMed

    Zhang, Yanhong; Pham, Nancy Kim; Zhang, Huixian; Lin, Junda; Lin, Qiang

    2014-01-01

    Population genetic of seahorses is confidently influenced by their species-specific ecological requirements and life-history traits. In the present study, partial sequences of mitochondrial cytochrome b (cytb) and control region (CR) were obtained from 50 Hippocampus mohnikei and 92 H. trimaculatus from four zoogeographical zones. A total of 780 base pairs of cytb gene were sequenced to characterize mitochondrial DNA (mtDNA) diversity. The mtDNA marker revealed high haplotype diversity, low nucleotide diversity, and a lack of population structure across both populations of H. mohnikei and H. trimaculatus. A neighbour-joining (NJ) tree of cytb gene sequences showed that H. mohnikei haplotypes formed one cluster. A maximum likelihood (ML) tree of cytb gene sequences showed that H. trimaculatus belonged to one lineage. The star-like pattern median-joining network of cytb and CR markers indicated a previous demographic expansion of H. mohnikei and H. trimaculatus. The cytb and CR data sets exhibited a unimodal mismatch distribution, which may have resulted from population expansion. Mismatch analysis suggested that the expansion was initiated about 276,000 years ago for H. mohnikei and about 230,000 years ago for H. trimaculatus during the middle Pleistocene period. This study indicates a possible signature of genetic variation and population expansion in two seahorses under complex marine environments.

  3. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication

    PubMed Central

    2011-01-01

    Background DNA target enrichment by micro-array capture combined with high throughput sequencing technologies provides the possibility to obtain large amounts of sequence data (e.g. whole mitochondrial DNA genomes) from multiple individuals at relatively low costs. Previously, whole mitochondrial genome data for domestic horses (Equus caballus) were limited to only a few specimens and only short parts of the mtDNA genome (especially the hypervariable region) were investigated for larger sample sets. Results In this study we investigated whole mitochondrial genomes of 59 domestic horses from 44 breeds and a single Przewalski horse (Equus przewalski) using a recently described multiplex micro-array capture approach. We found 473 variable positions within the domestic horses, 292 of which are parsimony-informative, providing a well resolved phylogenetic tree. Our divergence time estimate suggests that the mitochondrial genomes of modern horse breeds shared a common ancestor around 93,000 years ago and no later than 38,000 years ago. A Bayesian skyline plot (BSP) reveals a significant population expansion beginning 6,000-8,000 years ago with an ongoing exponential growth until the present, similar to other domestic animal species. Our data further suggest that a large sample of wild horse diversity was incorporated into the domestic population; specifically, at least 46 of the mtDNA lineages observed in domestic horses (73%) already existed before the beginning of domestication about 5,000 years ago. Conclusions Our study provides a window into the maternal origins of extant domestic horses and confirms that modern domestic breeds present a wide sample of the mtDNA diversity found in ancestral, now extinct, wild horse populations. The data obtained allow us to detect a population expansion event coinciding with the beginning of domestication and to estimate both the minimum number of female horses incorporated into the domestic gene pool and the time depth of the domestic horse mtDNA gene pool. PMID:22082251

  4. mtDNA sequence diversity in Africa.

    PubMed Central

    Watson, E.; Bauer, K.; Aman, R.; Weiss, G.; von Haeseler, A.; Pääbo, S.

    1996-01-01

    mtDNA sequences were determined from 241 individuals from nine ethnic groups in Africa. When they were compared with published data from other groups, it was found that the !Kung, Mbuti, and Biaka show on the order of 10 times more sequence differences between the three groups, as well as between those and the other groups (the Fulbe, Hausa, Tuareg, Songhai, Kanuri, Yoruba, Mandenka, Somali, Tukana, and Kikuyu), than these other groups do between one other. Furthermore, the pairwise sequence distributions, patterns of coalescence events, and numbers of variable positions relative to the mean sequence difference indicate that the former three groups have been of constant size over time, whereas the latter have expanded in size. We suggest that this reflects subsistence patterns in that the populations that have expanded in size are food producers whereas those that have not are hunters and gatherers. PMID:8755932

  5. Temporal fluctuation in North East Baltic Sea region cattle population revealed by mitochondrial and Y-chromosomal DNA analyses.

    PubMed

    Niemi, Marianna; Bläuer, Auli; Iso-Touru, Terhi; Harjula, Janne; Nyström Edmark, Veronica; Rannamäe, Eve; Lõugas, Lembi; Sajantila, Antti; Lidén, Kerstin; Taavitsainen, Jussi-Pekka

    2015-01-01

    Ancient DNA analysis offers a way to detect changes in populations over time. To date, most studies of ancient cattle have focused on their domestication in prehistory, while only a limited number of studies have analysed later periods. Conversely, the genetic structure of modern cattle populations is well known given the undertaking of several molecular and population genetic studies. Bones and teeth from ancient cattle populations from the North-East Baltic Sea region dated to the Prehistoric (Late Bronze and Iron Age, 5 samples), Medieval (14), and Post-Medieval (26) periods were investigated by sequencing 667 base pairs (bp) from the mitochondrial DNA (mtDNA) and 155 bp of intron 19 in the Y-chromosomal UTY gene. Comparison of maternal (mtDNA haplotypes) genetic diversity in ancient cattle (45 samples) with modern cattle populations in Europe and Asia (2094 samples) revealed 30 ancient mtDNA haplotypes, 24 of which were shared with modern breeds, while 6 were unique to the ancient samples. Of seven Y-chromosomal sequences determined from ancient samples, six were Y2 and one Y1 haplotype. Combined data including Swedish samples from the same periods (64 samples) was compared with the occurrence of Y-chromosomal haplotypes in modern cattle (1614 samples). The diversity of haplogroups was highest in the Prehistoric samples, where many haplotypes were unique. The Medieval and Post-Medieval samples also show a high diversity with new haplotypes. Some of these haplotypes have become frequent in modern breeds in the Nordic Countries and North-Western Russia while other haplotypes have remained in only a few local breeds or seem to have been lost. A temporal shift in Y-chromosomal haplotypes from Y2 to Y1 was detected that corresponds with the appearance of new mtDNA haplotypes in the Medieval and Post-Medieval period. This suggests a replacement of the Prehistoric mtDNA and Y chromosomal haplotypes by new types of cattle.

  6. Temporal Fluctuation in North East Baltic Sea Region Cattle Population Revealed by Mitochondrial and Y-Chromosomal DNA Analyses

    PubMed Central

    Niemi, Marianna; Bläuer, Auli; Iso-Touru, Terhi; Harjula, Janne; Nyström Edmark, Veronica; Rannamäe, Eve; Lõugas, Lembi; Sajantila, Antti; Lidén, Kerstin; Taavitsainen, Jussi-Pekka

    2015-01-01

    Background Ancient DNA analysis offers a way to detect changes in populations over time. To date, most studies of ancient cattle have focused on their domestication in prehistory, while only a limited number of studies have analysed later periods. Conversely, the genetic structure of modern cattle populations is well known given the undertaking of several molecular and population genetic studies. Results Bones and teeth from ancient cattle populations from the North-East Baltic Sea region dated to the Prehistoric (Late Bronze and Iron Age, 5 samples), Medieval (14), and Post-Medieval (26) periods were investigated by sequencing 667 base pairs (bp) from the mitochondrial DNA (mtDNA) and 155 bp of intron 19 in the Y-chromosomal UTY gene. Comparison of maternal (mtDNA haplotypes) genetic diversity in ancient cattle (45 samples) with modern cattle populations in Europe and Asia (2094 samples) revealed 30 ancient mtDNA haplotypes, 24 of which were shared with modern breeds, while 6 were unique to the ancient samples. Of seven Y-chromosomal sequences determined from ancient samples, six were Y2 and one Y1 haplotype. Combined data including Swedish samples from the same periods (64 samples) was compared with the occurrence of Y-chromosomal haplotypes in modern cattle (1614 samples). Conclusions The diversity of haplogroups was highest in the Prehistoric samples, where many haplotypes were unique. The Medieval and Post-Medieval samples also show a high diversity with new haplotypes. Some of these haplotypes have become frequent in modern breeds in the Nordic Countries and North-Western Russia while other haplotypes have remained in only a few local breeds or seem to have been lost. A temporal shift in Y-chromosomal haplotypes from Y2 to Y1 was detected that corresponds with the appearance of new mtDNA haplotypes in the Medieval and Post-Medieval period. This suggests a replacement of the Prehistoric mtDNA and Y chromosomal haplotypes by new types of cattle. PMID:25992976

  7. Multiple Origins of a Mitochondrial Mutation Conferring Deafness

    PubMed Central

    Hutchin, T. P.; Cortopassi, G. A.

    1997-01-01

    A point mutation (1555G) in the smaller ribosomal subunit of the mitochondrial DNA (mtDNA) has been associated with maternally inherited traits of hypersensitivity to streptomycin and sensorineural deafness in a number of families from China, Japan, Israel, and Africa. To determine whether this distribution was the result of a single or multiple mutational events, we carried out genetic distance analysis and phylogenetic analysis of 10 independent mtDNA D-loop sequences from Africa and Asia. The mtDNA sequence diversity was high (2.21%). Phylogenetic analysis assigned 1555G-bearing haplotypes at very divergent points in the human mtDNA evolutionary tree, and the 1555G mutations occur in many cases on race-specific mtDNA haplotypes, both facts are inconsistent with a recent introgression of the mutation into these races. The simplest interpretation of the available data is that there have been multiple origins of the 1555G mutation. The genetic distance among mtDNAs bearing the pathogenic 1555G mutation is much larger than among mtDNAs bearing either evolutionarily neutral or weakly deleterious nucleotide substitutions (such as the 4336G mutation). These results are consistent with the view that pathogenic mtDNA haplotypes such as 1555G arise on disparate mtDNA lineages which because of negative natural selection leave relatively few related descendants. The co-existence of the same mutation with deafness in individuals with very different nuclear and mitochondrial genetic backgrounds confirms the pathogenicity of the 1555G mutation. PMID:9055086

  8. Nucleotide variation in the mitochondrial genome provides evidence for dual routes of postglacial recolonization and genetic recombination in the northeastern brook trout (Salvelinus fontinalis).

    PubMed

    Pilgrim, B L; Perry, R C; Barron, J L; Marshall, H D

    2012-09-26

    Levels and patterns of mitochondrial DNA (mtDNA) variation were examined to investigate the population structure and possible routes of postglacial recolonization of the world's northernmost native populations of brook trout (Salvelinus fontinalis), which are found in Labrador, Canada. We analyzed the sequence diversity of a 1960-bp portion of the mitochondrial genome (NADH dehydrogenase 1 gene and part of cytochrome oxidase 1) of 126 fish from 32 lakes distributed throughout seven regions of northeastern Canada. These populations were found to have low levels of mtDNA diversity, a characteristic trait of populations at northern extremes, with significant structuring at the level of the watershed. Upon comparison of northeastern brook trout sequences to the publicly available brook trout whole mitochondrial genome (GenBank AF154850), we infer that the GenBank sequence is from a fish whose mtDNA has recombined with that of Arctic charr (S. alpinus). The haplotype distribution provides evidence of two different postglacial founding groups contributing to present-day brook trout populations in the northernmost part of their range; the evolution of the majority of the haplotypes coincides with the timing of glacier retreat from Labrador. Our results exemplify the strong influence that historical processes such as glaciations have had on shaping the current genetic structure of northern species such as the brook trout.

  9. mtDNA variation in the Yanomami: evidence for additional New World founding lineages.

    PubMed

    Easton, R D; Merriwether, D A; Crews, D E; Ferrell, R E

    1996-07-01

    Native Americans have been classified into four founding haplogroups with as many as seven founding lineages based on mtDNA RFLPs and DNA sequence data. mtDNA analysis was completed for 83 Yanomami from eight villages in the Surucucu and Catrimani Plateau regions of Roraima in northwestern Brazil. Samples were typed for 15 polymorphic mtDNA sites (14 RFLP sites and 1 deletion site), and a subset was sequenced for both hypervariable regions of the mitochondrial D-loop. Substantial mitochondrial diversity was detected among the Yanomami, five of seven accepted founding haplotypes and three others were observed. Of the 83 samples, 4 (4.8%) were lineage B1, 1 (1.2%) was lineage B2, 31 (37.4%) were lineage C1, 29 (34.9%) were lineage C2, 2 (2.4%) were lineage D1, 6 (7.2%) were lineage D2, 7 (8.4%) were a haplotype we designated "X6," and 3 (3.6%) were a haplotype we designated "X7." Sequence analysis found 43 haplotypes in 50 samples. B2, X6, and X7 are previously unrecognized mitochondrial founding lineage types of Native Americans. The widespread distribution of these haplotypes in the New World and Asia provides support for declaring these lineages to be New World founding types.

  10. mtDNA variation in the Yanomami: evidence for additional New World founding lineages.

    PubMed Central

    Easton, R. D.; Merriwether, D. A.; Crews, D. E.; Ferrell, R. E.

    1996-01-01

    Native Americans have been classified into four founding haplogroups with as many as seven founding lineages based on mtDNA RFLPs and DNA sequence data. mtDNA analysis was completed for 83 Yanomami from eight villages in the Surucucu and Catrimani Plateau regions of Roraima in northwestern Brazil. Samples were typed for 15 polymorphic mtDNA sites (14 RFLP sites and 1 deletion site), and a subset was sequenced for both hypervariable regions of the mitochondrial D-loop. Substantial mitochondrial diversity was detected among the Yanomami, five of seven accepted founding haplotypes and three others were observed. Of the 83 samples, 4 (4.8%) were lineage B1, 1 (1.2%) was lineage B2, 31 (37.4%) were lineage C1, 29 (34.9%) were lineage C2, 2 (2.4%) were lineage D1, 6 (7.2%) were lineage D2, 7 (8.4%) were a haplotype we designated "X6," and 3 (3.6%) were a haplotype we designated "X7." Sequence analysis found 43 haplotypes in 50 samples. B2, X6, and X7 are previously unrecognized mitochondrial founding lineage types of Native Americans. The widespread distribution of these haplotypes in the New World and Asia provides support for declaring these lineages to be New World founding types. PMID:8659527

  11. Fine Dissection of Human Mitochondrial DNA Haplogroup HV Lineages Reveals Paleolithic Signatures from European Glacial Refugia

    PubMed Central

    Sarno, Stefania; Sevini, Federica; Vianello, Dario; Tamm, Erika; Metspalu, Ene; van Oven, Mannis; Hübner, Alexander; Sazzini, Marco; Franceschi, Claudio; Pettener, Davide; Luiselli, Donata

    2015-01-01

    Genetic signatures from the Paleolithic inhabitants of Eurasia can be traced from the early divergent mitochondrial DNA lineages still present in contemporary human populations. Previous studies already suggested a pre-Neolithic diffusion of mitochondrial haplogroup HV*(xH,V) lineages, a relatively rare class of mtDNA types that includes parallel branches mainly distributed across Europe and West Asia with a certain degree of structure. Up till now, variation within haplogroup HV was addressed mainly by analyzing sequence data from the mtDNA control region, except for specific sub-branches, such as HV4 or the widely distributed haplogroups H and V. In this study, we present a revised HV topology based on full mtDNA genome data, and we include a comprehensive dataset consisting of 316 complete mtDNA sequences including 60 new samples from the Italian peninsula, a previously underrepresented geographic area. We highlight points of instability in the particular topology of this haplogroup, reconstructed with BEAST-generated trees and networks. We also confirm a major lineage expansion that probably followed the Late Glacial Maximum and preceded Neolithic population movements. We finally observe that Italy harbors a reservoir of mtDNA diversity, with deep-rooting HV lineages often related to sequences present in the Caucasus and the Middle East. The resulting hypothesis of a glacial refugium in Southern Italy has implications for the understanding of late Paleolithic population movements and is discussed within the archaeological cultural shifts occurred over the entire continent. PMID:26640946

  12. Genetic Diversity and Phylogenetic Analysis of South-East Asian Duck Populations Based on the mtDNA D-loop Sequences

    PubMed Central

    Sultana, H.; Seo, D. W.; Bhuiyan, M. S. A.; Choi, N. R.; Hoque, M. R.; Heo, K. N.; Lee, J. H.

    2016-01-01

    The maternally inherited mitochondrial DNA (mtDNA) D–loop region is widely used for exploring genetic relationships and for investigating the origin of various animal species. Currently, domestic ducks play an important role in animal protein supply. In this study, partial mtDNA D–loop sequences were obtained from 145 samples belonging to six South-East Asian duck populations and commercial duck population. All these populations were closely related to the mallard duck (Anas platyrhynchos), as indicated by their mean overall genetic distance. Sixteen nucleotide substitutions were identified in sequence analyses allowing the distinction of 28 haplotypes. Around 42.76% of the duck sequences were classified as Hap_02, which completely matched with Anas platyrhynchos duck species. The neighbor-joining phylogenetic tree also revealed that South-East Asian duck populations were closely related to Anas platyrhynchos. Network profiles were also traced using the 28 haplotypes. Overall, results showed that those duck populations D-loop haplotypes were shared between several duck breeds from Korea and Bangladesh sub continental regions. Therefore, these results confirmed that South-East Asian domestic duck populations have been domesticated from Anas platyrhynchos duck as the maternal origins. PMID:27004808

  13. Ancestral Polymorphisms and Sex-Biased Migration Shaped the Demographic History of Brown Bears and Polar Bears

    PubMed Central

    Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami

    2013-01-01

    Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA) and matrilineal mitochondrial DNA (mtDNA). Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA) or more than 14 times (mtDNA) larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA. PMID:24236053

  14. Mitochondrial-DNA variation among subspecies and populations of sea otters (Enhydra lutris)

    USGS Publications Warehouse

    Cronin, Matthew A.; Bodkin, James L.; Ballachey, Brenda E.; Estes, James A.; Patton, John C.

    1996-01-01

    We used restriction-enzyme analysis of polymerase-chain reaction-amplified, mitochondrial DNA (mtDNA) to assess genetic differentiation of subspecies and populations of sea otters, Enhydra lutris, throughout the range of the species. There were several haplotypes of mtDNA in each subspecies and geographically separate populations. MtDNA sequence divergence of haplotypes of sea otters was 0.0004–0.0041 base substitutions per nucleotide. E. L nereis appears to have monophyletic mitochondrial DNA, while E. I. lutris and E. I. kenyoni do not. Different frequencies of haplotypes of mtDNA among populations reflect current restriction of gene flow and the unique histories of different populations. There are two or three haplotypes of mtDNA and diversity of haplotypes is 0.1376–0.5854 in each population of otters. This is consistent with theoretical work, which suggests that population bottlenecks of sea otters probably did not result in major losses of genetic variation for individual populations, or the species as a whole.

  15. Ancestral polymorphisms and sex-biased migration shaped the demographic history of brown bears and polar bears.

    PubMed

    Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami

    2013-01-01

    Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA) and matrilineal mitochondrial DNA (mtDNA). Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA) or more than 14 times (mtDNA) larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA.

  16. Genetic Diversity of Sheep Breeds from Albania, Greece, and Italy Assessed by Mitochondrial DNA and Nuclear Polymorphisms (SNPs)

    PubMed Central

    Pariset, Lorraine; Mariotti, Marco; Gargani, Maria; Joost, Stephane; Negrini, Riccardo; Perez, Trinidad; Bruford, Michael; Ajmone Marsan, Paolo; Valentini, Alessio

    2011-01-01

    We employed mtDNA and nuclear SNPs to investigate the genetic diversity of sheep breeds of three countries of the Mediterranean basin: Albania, Greece, and Italy. In total, 154 unique mtDNA haplotypes were detected by means of D-loop sequence analysis. The major nucleotide diversity was observed in Albania. We identified haplogroups, A, B, and C in Albanian and Greek samples, while Italian individuals clustered in groups A and B. In general, the data show a pattern reflecting old migrations that occurred in postneolithic and historical times. PCA analysis on SNP data differentiated breeds with good correspondence to geographical locations. This could reflect geographical isolation, selection operated by local sheep farmers, and different flock management and breed admixture that occurred in the last centuries. PMID:22125424

  17. Siberian population of the New Stone Age: mtDNA haplotype diversity in the ancient population from the Ust'-Ida I burial ground, dated 4020-3210 BC by 14C.

    PubMed

    Naumova O, Y u; Rychkov S, Y u

    1998-03-01

    On the basis of analysis of mtDNA from skeletal remains, dated by 14C 4020-3210 BC, from the Ust'-Ida I Neolithic burial ground in Cis-Baikal area of Siberia, we obtained genetic characteristics of the ancient Mongoloid population. Using the 7 restriction enzymes for the analysis of site's polymorphism in 16,106-16,545 region of mtDNA, we studied the structure of the most frequent DNA haplotypes, and estimated the intrapopulational nucleotide diversity of the Neolithic population. Comparison of the Neolithic and modern indigeneous populations from Siberia, Mongolia and Ural showed, that the ancient Siberian population is one of the ancestors of the modern population of Siberia. From genetic distance, in the assumption of constant nucleotide substitution rate, we estimated the divergence time between the Neolithic and the modern Siberian population. This divergence time (5572 years ago) is conformed to the age of skeletal remains (5542-5652 years). With use of the 14C dates of the skeletal remains, nucleotide substitution rate in mtDNA was estimated as 1% sequence divergence for 8938-9115 years.

  18. High levels of Y-chromosome nucleotide diversity in the genus Pan

    PubMed Central

    Stone, Anne C.; Griffiths, Robert C.; Zegura, Stephen L.; Hammer, Michael F.

    2002-01-01

    Although some mitochondrial, X chromosome, and autosomal sequence diversity data are available for our closest relatives, Pan troglodytes and Pan paniscus, data from the nonrecombining portion of the Y chromosome (NRY) are more limited. We examined ≈3 kb of NRY DNA from 101 chimpanzees, seven bonobos, and 42 humans to investigate: (i) relative levels of intraspecific diversity; (ii) the degree of paternal lineage sorting among species and subspecies of the genus Pan; and (iii) the date of the chimpanzee/bonobo divergence. We identified 10 informative sequence-tagged sites associated with 23 polymorphisms on the NRY from the genus Pan. Nucleotide diversity was significantly higher on the NRY of chimpanzees and bonobos than on the human NRY. Similar to mtDNA, but unlike X-linked and autosomal loci, lineages defined by mutations on the NRY were not shared among subspecies of P. troglodytes. Comparisons with mtDNA ND2 sequences from some of the same individuals revealed a larger female versus male effective population size for chimpanzees. The NRY-based divergence time between chimpanzees and bonobos was estimated at ≈1.8 million years ago. In contrast to human populations who appear to have had a low effective size and a recent origin with subsequent population growth, some taxa within the genus Pan may be characterized by large populations of relatively constant size, more ancient origins, and high levels of subdivision. PMID:11756656

  19. Using mitochondrial DNA to test the hypothesis of a European post-glacial human recolonization from the Franco-Cantabrian refuge.

    PubMed

    García, O; Fregel, R; Larruga, J M; Álvarez, V; Yurrebaso, I; Cabrera, V M; González, A M

    2011-01-01

    It has been proposed that the distribution patterns and coalescence ages found in Europeans for mitochondrial DNA (mtDNA) haplogroups V, H1 and H3 are the result of a post-glacial expansion from a Franco-Cantabrian refuge that recolonized central and northern areas. In contrast, in this refined mtDNA study of the Cantabrian Cornice that contributes 413 partial and 9 complete new mtDNA sequences, including a large Basque sample and a sample of Asturians, no experimental evidence was found to support the human refuge-expansion theory. In fact, all measures of gene diversity point to the Cantabrian Cornice in general and the Basques in particular, as less polymorphic for V, H1 and H3 than other southern regions in Iberia or in Central Europe. Genetic distances show the Cantabrian Cornice is a very heterogeneous region with significant local differences. The analysis of several minor subhaplogroups, based on complete sequences, also suggests different focal expansions over a local and peninsular range that did not affect continental Europe. Furthermore, all detected clinal trends show stronger longitudinal than latitudinal profiles. In Northern Iberia, it seems that the highest diversity values for some haplogroups with Mesolithic coalescence ages are centred on the Mediterranean side, including Catalonia and South-eastern France.

  20. Phylogeographic Analysis of Mitochondrial DNA in Northern Asian Populations

    PubMed Central

    Derenko, Miroslava ; Malyarchuk, Boris ; Grzybowski, Tomasz ; Denisova, Galina ; Dambueva, Irina ; Perkova, Maria ; Dorzhu, Choduraa ; Luzina, Faina ; Lee, Hong Kyu ; Vanecek, Tomas ; Villems, Richard ; Zakharov, Ilia 

    2007-01-01

    To elucidate the human colonization process of northern Asia and human dispersals to the Americas, a diverse subset of 71 mitochondrial DNA (mtDNA) lineages was chosen for complete genome sequencing from the collection of 1,432 control-region sequences sampled from 18 autochthonous populations of northern, central, eastern, and southwestern Asia. On the basis of complete mtDNA sequencing, we have revised the classification of haplogroups A, D2, G1, M7, and I; identified six new subhaplogroups (I4, N1e, G1c, M7d, M7e, and J1b2a); and fully characterized haplogroups N1a and G1b, which were previously described only by the first hypervariable segment (HVS1) sequencing and coding-region restriction-fragment–length polymorphism analysis. Our findings indicate that the southern Siberian mtDNA pool harbors several lineages associated with the Late Upper Paleolithic and/or early Neolithic dispersals from both eastern Asia and southwestern Asia/southern Caucasus. Moreover, the phylogeography of the D2 lineages suggests that southern Siberia is likely to be a geographical source for the last postglacial maximum spread of this subhaplogroup to northern Siberia and that the expansion of the D2b branch occurred in Beringia ∼7,000 years ago. In general, a detailed analysis of mtDNA gene pools of northern Asians provides the additional evidence to rule out the existence of a northern Asian route for the initial human colonization of Asia. PMID:17924343

  1. Phylogeographic analysis of mitochondrial DNA in northern Asian populations.

    PubMed

    Derenko, Miroslava; Malyarchuk, Boris; Grzybowski, Tomasz; Denisova, Galina; Dambueva, Irina; Perkova, Maria; Dorzhu, Choduraa; Luzina, Faina; Lee, Hong Kyu; Vanecek, Tomas; Villems, Richard; Zakharov, Ilia

    2007-11-01

    To elucidate the human colonization process of northern Asia and human dispersals to the Americas, a diverse subset of 71 mitochondrial DNA (mtDNA) lineages was chosen for complete genome sequencing from the collection of 1,432 control-region sequences sampled from 18 autochthonous populations of northern, central, eastern, and southwestern Asia. On the basis of complete mtDNA sequencing, we have revised the classification of haplogroups A, D2, G1, M7, and I; identified six new subhaplogroups (I4, N1e, G1c, M7d, M7e, and J1b2a); and fully characterized haplogroups N1a and G1b, which were previously described only by the first hypervariable segment (HVS1) sequencing and coding-region restriction-fragment-length polymorphism analysis. Our findings indicate that the southern Siberian mtDNA pool harbors several lineages associated with the Late Upper Paleolithic and/or early Neolithic dispersals from both eastern Asia and southwestern Asia/southern Caucasus. Moreover, the phylogeography of the D2 lineages suggests that southern Siberia is likely to be a geographical source for the last postglacial maximum spread of this subhaplogroup to northern Siberia and that the expansion of the D2b branch occurred in Beringia ~7,000 years ago. In general, a detailed analysis of mtDNA gene pools of northern Asians provides the additional evidence to rule out the existence of a northern Asian route for the initial human colonization of Asia.

  2. Genetic Variations in Two Seahorse Species (Hippocampus mohnikei and Hippocampus trimaculatus): Evidence for Middle Pleistocene Population Expansion

    PubMed Central

    Zhang, Yanhong; Pham, Nancy Kim; Zhang, Huixian; Lin, Junda; Lin, Qiang

    2014-01-01

    Population genetic of seahorses is confidently influenced by their species-specific ecological requirements and life-history traits. In the present study, partial sequences of mitochondrial cytochrome b (cytb) and control region (CR) were obtained from 50 Hippocampus mohnikei and 92 H. trimaculatus from four zoogeographical zones. A total of 780 base pairs of cytb gene were sequenced to characterize mitochondrial DNA (mtDNA) diversity. The mtDNA marker revealed high haplotype diversity, low nucleotide diversity, and a lack of population structure across both populations of H. mohnikei and H. trimaculatus. A neighbour-joining (NJ) tree of cytb gene sequences showed that H. mohnikei haplotypes formed one cluster. A maximum likelihood (ML) tree of cytb gene sequences showed that H. trimaculatus belonged to one lineage. The star-like pattern median-joining network of cytb and CR markers indicated a previous demographic expansion of H. mohnikei and H. trimaculatus. The cytb and CR data sets exhibited a unimodal mismatch distribution, which may have resulted from population expansion. Mismatch analysis suggested that the expansion was initiated about 276,000 years ago for H. mohnikei and about 230,000 years ago for H. trimaculatus during the middle Pleistocene period. This study indicates a possible signature of genetic variation and population expansion in two seahorses under complex marine environments. PMID:25144384

  3. Data from complete mtDNA sequencing of Tunisian centenarians: testing haplogroup association and the "golden mean" to longevity.

    PubMed

    Costa, Marta D; Cherni, Lotfi; Fernandes, Verónica; Freitas, Fernando; Ammar El Gaaied, Amel Ben; Pereira, Luísa

    2009-04-01

    Since the mitochondrial theory of ageing was proposed, mitochondrial DNA (mtDNA) diversity has been largely studied in old people, however complete genomes are still rare, being limited to Japanese and UK/US samples. In this work, we evaluated possible longevity associated polymorphisms/haplogroups in an African population, from Tunisia, by performing complete mtDNA sequencing. This population has a mixed Eurasian/sub-Saharan mtDNA gene pool, which could potentially facilitate the evaluation of association for sub-Saharan lineages. Sub-Saharan haplogroups were shown to be significantly less represented in centenarians (9.5%) than in controls (54.5%), but it is not possible to rule out an influence of population structure, which is high in these populations. No recurrent polymorphism were more frequent in centenarians than in controls, and although the Tunisian centenarians presented less synonymous and replacement polymorphisms than controls, this difference was not statistically significant. So far, it does not seem that centenarians have significantly less mildly deleterious substitutions, not only in Tunisia but also in Japanese and UK/US samples, as tested here, not favouring a "golden mean" to longevity.

  4. Random Mutagenesis, Clonal Events, and Embryonic or Somatic Origin Determine the mtDNA Variant Type and Load in Human Pluripotent Stem Cells.

    PubMed

    Zambelli, Filippo; Mertens, Joke; Dziedzicka, Dominika; Sterckx, Johan; Markouli, Christina; Keller, Alexander; Tropel, Philippe; Jung, Laura; Viville, Stephane; Van de Velde, Hilde; Geens, Mieke; Seneca, Sara; Sermon, Karen; Spits, Claudia

    2018-06-07

    In this study, we deep-sequenced the mtDNA of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) and their source cells and found that the majority of variants pre-existed in the cells used to establish the lines. Early-passage hESCs carried few and low-load heteroplasmic variants, similar to those identified in oocytes and inner cell masses. The number and heteroplasmic loads of these variants increased with prolonged cell culture. The study of 120 individual cells of early- and late-passage hESCs revealed a significant diversity in mtDNA heteroplasmic variants at the single-cell level and that the variants that increase during time in culture are always passenger to the appearance of chromosomal abnormalities. We found that early-passage hiPSCs carry much higher loads of mtDNA variants than hESCs, which single-fibroblast sequencing proved pre-existed in the source cells. Finally, we show that these variants are stably transmitted during short-term differentiation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Mitochondrial DNA diversity of the Amerindian populations living in the Andean Piedmont of Bolivia: Chimane, Moseten, Aymara and Quechua.

    PubMed

    Corella, Alfons; Bert, Francesc; Pérez-Pérez, Alejandro; Gené, Manel; Turbón, Daniel

    2007-01-01

    Chimane, Moseten Aymara and Quechua are Amerindian populations living in the Bolivian Piedmont, a characteristic ecoregion between the eastern slope of the Andean mountains and the Amazonian Llanos de Moxos. In both neighbouring areas, dense and complex societies have developed over the centuries. The Piedmont area is especially interesting from a human peopling perspective since there is no clear evidence regarding the genetic influence and peculiarities of these populations. This land has been used extensively as a territory of economic and cultural exchange between the Andes and Amazonia, however Chimane and Moseten populations have been sufficiently isolated from their neighbour groups to be recognized as distinct populations. Genetic information suggests that evolutionary processes, such as genetic drift, natural selection and genetic admixture have formed the history of the Piedmont populations. The objective of this study is to characterize the genetic diversity of the Piedmont populations, analysing the sequence variability of the HVR-I control region in the mitochondrial DNA (mtDNA). Haplogroup mtDNA data available from the whole of Central and South America were utilized to determine the relationship of the Piedmont populations with other Amerindian populations. Hair pulls were obtained in situ, and DNA from non-related individuals was extracted using a standard Chelex 100 method. A 401 bp DNA fragment of HVR-I region was amplified using standard procedures. Two independent 401 and 328 bp DNA fragments were sequenced separately for each sample. The sequence analyses included mismatch distribution and mean pairwise differences, median network analyses, AMOVA and principal component analyses. The genetic diversity of DNA sequences was measured and compared with other South Amerindian populations. The genetic diversity of 401 nucleotide mtDNA sequences, in the hypervariable Control Region, from positions 16 000-16 400, was characterized in a sample of 46 Amerindians living in the Piedmont area in the Beni Department of Bolivia. The results obtained indicate that the genetic diversity in the area is higher than that observed in other American groups living in much larger areas and despite the reduced size of the studied area the human groups analysed show high levels of inter-group variability. In addition, results show that Amerindian populations living in the Piedmont are genetically more related to those in the Andean than in the Amazonian populations.

  6. Things fall apart: biological species form unconnected parsimony networks.

    PubMed

    Hart, Michael W; Sunday, Jennifer

    2007-10-22

    The generality of operational species definitions is limited by problematic definitions of between-species divergence. A recent phylogenetic species concept based on a simple objective measure of statistically significant genetic differentiation uses between-species application of statistical parsimony networks that are typically used for population genetic analysis within species. Here we review recent phylogeographic studies and reanalyse several mtDNA barcoding studies using this method. We found that (i) alignments of DNA sequences typically fall apart into a separate subnetwork for each Linnean species (but with a higher rate of true positives for mtDNA data) and (ii) DNA sequences from single species typically stick together in a single haplotype network. Departures from these patterns are usually consistent with hybridization or cryptic species diversity.

  7. Multiplexed SNP typing of ancient DNA clarifies the origin of Andaman mtDNA haplogroups amongst South Asian tribal populations.

    PubMed

    Endicott, Phillip; Metspalu, Mait; Stringer, Chris; Macaulay, Vincent; Cooper, Alan; Sanchez, Juan J

    2006-12-20

    The issue of errors in genetic data sets is of growing concern, particularly in population genetics where whole genome mtDNA sequence data is coming under increased scrutiny. Multiplexed PCR reactions, combined with SNP typing, are currently under-exploited in this context, but have the potential to genotype whole populations rapidly and accurately, significantly reducing the amount of errors appearing in published data sets. To show the sensitivity of this technique for screening mtDNA genomic sequence data, 20 historic samples of the enigmatic Andaman Islanders and 12 modern samples from three Indian tribal populations (Chenchu, Lambadi and Lodha) were genotyped for 20 coding region sites after provisional haplogroup assignment with control region sequences. The genotype data from the historic samples significantly revise the topologies for the Andaman M31 and M32 mtDNA lineages by rectifying conflicts in published data sets. The new Indian data extend the distribution of the M31a lineage to South Asia, challenging previous interpretations of mtDNA phylogeography. This genetic connection between the ancestors of the Andamanese and South Asian tribal groups approximately 30 kya has important implications for the debate concerning migration routes and settlement patterns of humans leaving Africa during the late Pleistocene, and indicates the need for more detailed genotyping strategies. The methodology serves as a low-cost, high-throughput model for the production and authentication of data from modern or ancient DNA, and demonstrates the value of museum collections as important records of human genetic diversity.

  8. Multiplexed SNP Typing of Ancient DNA Clarifies the Origin of Andaman mtDNA Haplogroups amongst South Asian Tribal Populations

    PubMed Central

    Endicott, Phillip; Metspalu, Mait; Stringer, Chris; Macaulay, Vincent; Cooper, Alan; Sanchez, Juan J.

    2006-01-01

    The issue of errors in genetic data sets is of growing concern, particularly in population genetics where whole genome mtDNA sequence data is coming under increased scrutiny. Multiplexed PCR reactions, combined with SNP typing, are currently under-exploited in this context, but have the potential to genotype whole populations rapidly and accurately, significantly reducing the amount of errors appearing in published data sets. To show the sensitivity of this technique for screening mtDNA genomic sequence data, 20 historic samples of the enigmatic Andaman Islanders and 12 modern samples from three Indian tribal populations (Chenchu, Lambadi and Lodha) were genotyped for 20 coding region sites after provisional haplogroup assignment with control region sequences. The genotype data from the historic samples significantly revise the topologies for the Andaman M31 and M32 mtDNA lineages by rectifying conflicts in published data sets. The new Indian data extend the distribution of the M31a lineage to South Asia, challenging previous interpretations of mtDNA phylogeography. This genetic connection between the ancestors of the Andamanese and South Asian tribal groups ∼30 kya has important implications for the debate concerning migration routes and settlement patterns of humans leaving Africa during the late Pleistocene, and indicates the need for more detailed genotyping strategies. The methodology serves as a low-cost, high-throughput model for the production and authentication of data from modern or ancient DNA, and demonstrates the value of museum collections as important records of human genetic diversity. PMID:17218991

  9. Mitochondrial Variation among the Aymara and the Signatures of Population Expansion in the Central Andes

    PubMed Central

    BATAI, KEN; WILLIAMS, SLOAN R.

    2015-01-01

    Objectives The exploitation of marine resources and intensive agriculture led to a marked population increase early in central Andean prehistory. Constant historic and prehistoric population movements also characterize this region. These features undoubtedly affected regional genetic variation, but the exact nature of these effects remains uncertain. Methods Mitochondrial DNA (mtDNA) hypervariable region I sequence variation in 61 Aymara individuals from La Paz, Bolivia, was analyzed and compared to sequences from 47 other South American populations to test hypotheses of whether increased female effective population size and gene flow influenced the mtDNA variation among central Andean populations. Results The Aymara and Quechua were genetically diverse showing evidence of population expansion and large effective population size, and a demographic expansion model fits the mtDNA variation found among central Andean populations well. Estimated migration rates and the results of AMOVA and multidimensional scaling analysis suggest that female gene flow was also an important factor, influencing genetic variation among the central Andeans as well as lowland populations from western South America. mtDNA variation in south central Andes correlated better with geographic proximity than with language, and fit a population continuity model. Conclusion The mtDNA data suggests that the central Andeans experienced population expansion, most likely because of rapid demographic expansion after introduction of intensive agriculture, but roles of female gene flow need to be further explored. PMID:24449040

  10. Phylogeography of Bufo marinus from its natural and introduced ranges.

    PubMed Central

    Slade, R W; Moritz, C

    1998-01-01

    The marine toad, Bufo marinus, has a broad natural distribution extending from the south-west of the USA to southern Peru and the central Amazon. It was introduced to several localities in the Caribbean and Pacific Oceans to control sugar cane pests. We sequenced 468 bp of mitochondrial DNA (mtDNA) containing the ND3 gene, and flanking tRNA genes from toads spanning the broad natural and introduced ranges. Consistent with the known history of introductions and expected effects of serial bottlenecks, mtDNA within introduced populations in Hawaii and Australia was uniform and most closely related to samples from eastern Venezuela and French Guiana. However, mtDNA nucleotide diversity in the geographic region spanning the source areas is also relative low (0.18-0.46%) and the absence of variation in the introduced populations precludes quantitative assessment of the reduction in genetic diversity. Unexpectedly, there was a large phylogeographic break (5.4% sequence divergence) within the natural range separating populations east and west of the Venezuelan Andes. We hypothesize that the two major lineages of B. marinus were isolated by the uplift of the eastern Andean cordillera which was completed approximately 2.7 Ma. Another species of the marinus group, B. paracnemis, had mtDNA paraphyletic, with marinus, being nested within the eastern lineage. Thus, at least one speciation event within the marinus group postdates the split within marinus. These findings suggest that the taxonomy of B. marinus should be re-evaluated and that the search for pathogens to control Australian populations should be conducted in populations from both lineages in the natural range. PMID:9628036

  11. High-resolution phylogeography of zoonotic tapeworm Echinococcus granulosus sensu stricto genotype G1 with an emphasis on its distribution in Turkey, Italy and Spain.

    PubMed

    Kinkar, Liina; Laurimäe, Teivi; Simsek, Sami; Balkaya, Ibrahim; Casulli, Adriano; Manfredi, Maria Teresa; Ponce-Gordo, Francisco; Varcasia, Antonio; Lavikainen, Antti; González, Luis Miguel; Rehbein, Steffen; VAN DER Giessen, Joke; Sprong, Hein; Saarma, Urmas

    2016-11-01

    Echinococcus granulosus is the causative agent of cystic echinococcosis. The disease is a significant global public health concern and human infections are most commonly associated with E. granulosus sensu stricto (s. s.) genotype G1. The objectives of this study were to: (i) analyse the genetic variation and phylogeography of E. granulosus s. s. G1 in part of its main distribution range in Europe using 8274 bp of mtDNA; (ii) compare the results with those derived from previously used shorter mtDNA sequences and highlight the major differences. We sequenced a total of 91 E. granulosus s. s. G1 isolates from six different intermediate host species, including humans. The isolates originated from seven countries representing primarily Turkey, Italy and Spain. Few samples were also from Albania, Greece, Romania and from a patient originating from Algeria, but diagnosed in Finland. The analysed 91 sequences were divided into 83 haplotypes, revealing complex phylogeography and high genetic variation of E. granulosus s. s. G1 in Europe, particularly in the high-diversity domestication centre of western Asia. Comparisons with shorter mtDNA datasets revealed that 8274 bp sequences provided significantly higher phylogenetic resolution and thus more power to reveal the genetic relations between different haplotypes.

  12. Genetic origin of goat populations in Oman revealed by mitochondrial DNA analysis.

    PubMed

    Al-Araimi, Nasser Ali; Gaafar, Osman Mahgoub; Costa, Vânia; Neira, Agusto Luzuriaga; Al-Atiyat, Raed Mahmoud; Beja-Pereira, Albano

    2017-01-01

    The Sultanate of Oman has a complex mosaic of livestock species and production systems, but the genetic diversity, demographic history or origins of these Omani animals has not been expensively studied. Goats might constitute one of the most abundant and important domestic livestock species since the Neolithic transition. Here, we examined the genetic diversity, origin, population structure and demographic history of Omani goats. Specifically, we analyzed a 525-bp fragment of the first hypervariable region of the mitochondrial DNA (mtDNA) control region from 69 Omani individuals and compared this fragment with 17 mtDNA sequences from Somalia and Yemen as well as 18 wild goat species and 1,198 previously published goat sequences from neighboring countries. The studied goat breeds show substantial diversity. The haplotype and nucleotide diversities of Omani goats were found equal to 0.983 ± 0.006 and 0.0284 ± 0.014, respectively. The phylogenetic analyses allowed us to classify Omani goats into three mtDNA haplogroups (A, B and G): haplogroup A was found to be predominant and widely distributed and accounted for 80% of all samples, and haplogroups B and G exhibited low frequencies. Phylogenetic comparisons with wild goats revealed that five of the native Omani goat populations originate from Capra aegagrus. Furthermore, most comparisons of pairwise population FST values within and between these five Omani goat breeds as well as between Omani goats and nine populations from nearby countries were not significant. These results suggest strong gene flow among goat populations caused by the extensive transport of goats and the frequent movements of human populations in ancient Arabia. The findings improve our understanding of the migration routes of modern goats from their region of domestication into southeastern Arabia and thereby shed light on human migratory and commercial networks during historical times.

  13. [Whole Genome Sequencing of Human mtDNA Based on Ion Torrent PGM™ Platform].

    PubMed

    Cao, Y; Zou, K N; Huang, J P; Ma, K; Ping, Y

    2017-08-01

    To analyze and detect the whole genome sequence of human mitochondrial DNA (mtDNA) by Ion Torrent PGM™ platform and to study the differences of mtDNA sequence in different tissues. Samples were collected from 6 unrelated individuals by forensic postmortem examination, including chest blood, hair, costicartilage, nail, skeletal muscle and oral epithelium. Amplification of whole genome sequence of mtDNA was performed by 4 pairs of primer. Libraries were constructed with Ion Shear™ Plus Reagents kit and Ion Plus Fragment Library kit. Whole genome sequencing of mtDNA was performed using Ion Torrent PGM™ platform. Sanger sequencing was used to determine the heteroplasmy positions and the mutation positions on HVⅠ region. The whole genome sequence of mtDNA from all samples were amplified successfully. Six unrelated individuals belonged to 6 different haplotypes. Different tissues in one individual had heteroplasmy difference. The heteroplasmy positions and the mutation positions on HVⅠ region were verified by Sanger sequencing. After a consistency check by the Kappa method, it was found that the results of mtDNA sequence had a high consistency in different tissues. The testing method used in present study for sequencing the whole genome sequence of human mtDNA can detect the heteroplasmy difference in different tissues, which have good consistency. The results provide guidance for the further applications of mtDNA in forensic science. Copyright© by the Editorial Department of Journal of Forensic Medicine

  14. The mitochondrial DNA makeup of Romanians: A forensic mtDNA control region database and phylogenetic characterization.

    PubMed

    Turchi, Chiara; Stanciu, Florin; Paselli, Giorgia; Buscemi, Loredana; Parson, Walther; Tagliabracci, Adriano

    2016-09-01

    To evaluate the pattern of Romanian population from a mitochondrial perspective and to establish an appropriate mtDNA forensic database, we generated a high-quality mtDNA control region dataset from 407 Romanian subjects belonging to four major historical regions: Moldavia, Transylvania, Wallachia and Dobruja. The entire control region (CR) was analyzed by Sanger-type sequencing assays and the resulting 306 different haplotypes were classified into haplogroups according to the most updated mtDNA phylogeny. The Romanian gene pool is mainly composed of West Eurasian lineages H (31.7%), U (12.8%), J (10.8%), R (10.1%), T (9.1%), N (8.1%), HV (5.4%),K (3.7%), HV0 (4.2%), with exceptions of East Asian haplogroup M (3.4%) and African haplogroup L (0.7%). The pattern of mtDNA variation observed in this study indicates that the mitochondrial DNA pool is geographically homogeneous across Romania and that the haplogroup composition reveals signals of admixture of populations of different origin. The PCA scatterplot supported this scenario, with Romania located in southeastern Europe area, close to Bulgaria and Hungary, and as a borderland with respect to east Mediterranean and other eastern European countries. High haplotype diversity (0.993) and nucleotide diversity indices (0.00838±0.00426), together with low random match probability (0.0087) suggest the usefulness of this control region dataset as a forensic database in routine forensic mtDNA analysis and in the investigation of maternal genetic lineages in the Romanian population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences for the major African, Asian, and European haplogroups.

    PubMed

    Herrnstadt, Corinna; Elson, Joanna L; Fahy, Eoin; Preston, Gwen; Turnbull, Douglass M; Anderson, Christen; Ghosh, Soumitra S; Olefsky, Jerrold M; Beal, M Flint; Davis, Robert E; Howell, Neil

    2002-05-01

    The evolution of the human mitochondrial genome is characterized by the emergence of ethnically distinct lineages or haplogroups. Nine European, seven Asian (including Native American), and three African mitochondrial DNA (mtDNA) haplogroups have been identified previously on the basis of the presence or absence of a relatively small number of restriction-enzyme recognition sites or on the basis of nucleotide sequences of the D-loop region. We have used reduced-median-network approaches to analyze 560 complete European, Asian, and African mtDNA coding-region sequences from unrelated individuals to develop a more complete understanding of sequence diversity both within and between haplogroups. A total of 497 haplogroup-associated polymorphisms were identified, 323 (65%) of which were associated with one haplogroup and 174 (35%) of which were associated with two or more haplogroups. Approximately one-half of these polymorphisms are reported for the first time here. Our results confirm and substantially extend the phylogenetic relationships among mitochondrial genomes described elsewhere from the major human ethnic groups. Another important result is that there were numerous instances both of parallel mutations at the same site and of reversion (i.e., homoplasy). It is likely that homoplasy in the coding region will confound evolutionary analysis of small sequence sets. By a linkage-disequilibrium approach, additional evidence for the absence of human mtDNA recombination is presented here.

  16. Phylogeography, genetic diversity and demographic history of the Iranian Kurdish groups based on mtDNA sequences.

    PubMed

    Zarei, Fatah; Rajabi-Maham, Hassan

    2016-12-01

    Throughout the history of modern humans, the current Kurdish-inhabited area has served as part of a tricontinental crossroad for major human migrations. Also, a significant body of archaeological evidence points to this area as the site of Neolithic transition. To investigate the phylogeography, origins and demographic history, mtDNA D-loop region of individuals representing four Kurdish groups from Iran were analysed. Our data indicated that most of the Kurds mtDNA lineages belong to branches of the haplogroups with the Western Eurasian origin; with small fractions of the Eastern Eurasian and sub-Saharan African lineages. The low level of mtDNA diversity observed in the Havrami group presented a bias towards isolation or increased drift due to small population size; while in the Kurmanji group it indicated a bias towards drift or mass migration events during the 5-18th century AD. The Mantel test showed strong isolation by distance, and AMOVA results for global and regional scales confirmed that the geography had acted as the main driving force in shaping the current pattern of mtDNA diversity, rather than linguistic similarity. The results of demographic analyses, in agreement with archaeological data, revealed a recent expansion of the Kurds (~9,500 years before present) related to the Neolithic transition from hunting and gathering, to farming and cattle breeding in the Near East. Further, the high frequencies of typical haplogroups for early farmers (H; 37.1%) and hunter-gatherers (U; 13.8%) in the Kurds may testify the earlier hunter-gatherers in the Kurdish-inhabited area that adopted and admixed the Kurds ancestors following the Neolithic transition.

  17. Mitochondrial Genome Rearrangements in Glomus Species Triggered by Homologous Recombination between Distinct mtDNA Haplotypes

    PubMed Central

    Beaudet, Denis; Terrat, Yves; Halary, Sébastien; de la Providencia, Ivan Enrique; Hijri, Mohamed

    2013-01-01

    Comparative mitochondrial genomics of arbuscular mycorrhizal fungi (AMF) provide new avenues to overcome long-lasting obstacles that have hampered studies aimed at understanding the community structure, diversity, and evolution of these multinucleated and genetically polymorphic organisms. AMF mitochondrial (mt) genomes are homogeneous within isolates, and their intergenic regions harbor numerous mobile elements that have rapidly diverged, including homing endonuclease genes, small inverted repeats, and plasmid-related DNA polymerase genes (dpo), making them suitable targets for the development of reliable strain-specific markers. However, these elements may also lead to genome rearrangements through homologous recombination, although this has never previously been reported in this group of obligate symbiotic fungi. To investigate whether such rearrangements are present and caused by mobile elements in AMF, the mitochondrial genomes from two Glomeraceae members (i.e., Glomus cerebriforme and Glomus sp.) with substantial mtDNA synteny divergence, were sequenced and compared with available glomeromycotan mitochondrial genomes. We used an extensive nucleotide/protein similarity network-based approach to investigate dpo diversity in AMF as well as in other organisms for which sequences are publicly available. We provide strong evidence of dpo-induced inter-haplotype recombination, leading to a reshuffled mitochondrial genome in Glomus sp. These findings raise questions as to whether AMF single spore cultivations artificially underestimate mtDNA genetic diversity. We assessed potential dpo dispersal mechanisms in AMF and inferred a robust phylogenetic relationship with plant mitochondrial plasmids. Along with other indirect evidence, our analyses indicate that members of the Glomeromycota phylum are potential donors of mitochondrial plasmids to plants. PMID:23925788

  18. mtDNA diversity in Azara's owl monkeys (Aotus azarai azarai) of the Argentinean Chaco.

    PubMed

    Babb, Paul L; Fernandez-Duque, Eduardo; Baiduc, Caitlin A; Gagneux, Pascal; Evans, Sian; Schurr, Theodore G

    2011-10-01

    Owl monkeys (Aotus spp.) inhabit much of South America yet represent an enigmatic evolutionary branch among primates. While morphological, cytogenetic, and immunological evidence suggest that owl monkey populations have undergone isolation and diversification since their emergence in the New World, problems with adjacent species ranges, and sample provenance have complicated efforts to characterize genetic variation within the genus. As a result, the phylogeographic history of owl monkey species and subspecies remains unclear, and the extent of genetic diversity at the population level is unknown. To explore these issues, we analyzed mitochondrial DNA (mt DNA) variation in a population of wild Azara's owl monkeys (Aotus azarai azarai) living in the Gran Chaco region of Argentina. We sequenced the complete mitochondrial genome from one individual (16,585 base pairs (bp)) and analyzed 1,099 bp of the hypervariable control region (CR) and 696 bp of the cytochrome oxidase II (COII) gene in 117 others. In addition, we sequenced the mitochondrial genome (16,472 bp) of one Nancy Ma's owl monkey (A. nancymaae). Based on the whole mtDNA and COII data, we observed an ancient phylogeographic discontinuity among Aotus species living north, south, and west of the Amazon River that began more than eight million years ago. Our population analyses identified three major CR lineages and detected a high level of haplotypic diversity within A. a. azarai. These data point to a recent expansion of Azara's owl monkeys into the Argentinean Chaco. Overall, we provide a detailed view of owl monkey mtDNA variation at genus, species, and population levels. Copyright © 2011 Wiley-Liss, Inc.

  19. Identifications of captive and wild tilapia species existing in Hawaii by mitochondrial DNA control region sequence.

    PubMed

    Wu, Liang; Yang, Jinzeng

    2012-01-01

    The tilapia family of the Cichlidae includes many fish species, which live in freshwater and saltwater environments. Several species, such as O. niloticus, O. aureus, and O. mossambicus, are excellent for aquaculture because these fish are easily reproduced and readily adapt to diverse environments. Historically, tilapia species, including O. mossambicus, S. melanotheron, and O. aureus, were introduced to Hawaii many decades ago, and the state of Hawaii uses the import permit policy to prevent O. niloticus from coming into the islands. However, hybrids produced from O. niloticus may already be present in the freshwater and marine environments of the islands. The purpose of this study was to identify tilapia species that exist in Hawaii using mitochondrial DNA analysis. In this study, we analyzed 382 samples collected from 13 farm (captive) and wild tilapia populations in Oahu and the Hawaii Islands. Comparison of intraspecies variation between the mitochondrial DNA control region (mtDNA CR) and cytochrome c oxidase I (COI) gene from five populations indicated that mtDNA CR had higher nucleotide diversity than COI. A phylogenetic tree of all sampled tilapia was generated using mtDNA CR sequences. The neighbor-joining tree analysis identified seven distinctive tilapia species: O. aureus, O. mossambicus, O. niloticus, S. melanotheron, O. urolepies, T. redalli, and a hybrid of O. massambicus and O. niloticus. Of all the populations examined, 10 populations consisting of O. aureus, O. mossambicus, O. urolepis, and O. niloticus from the farmed sites were relatively pure, whereas three wild populations showed some degree of introgression and hybridization. This DNA-based tilapia species identification is the first report that confirmed tilapia species identities in the wild and captive populations in Hawaii. The DNA sequence comparisons of mtDNA CR appear to be a valid method for tilapia species identification. The suspected tilapia hybrids that consist of O. niloticus are present in captive and wild populations in Hawaii.

  20. Identifications of Captive and Wild Tilapia Species Existing in Hawaii by Mitochondrial DNA Control Region Sequence

    PubMed Central

    Wu, Liang; Yang, Jinzeng

    2012-01-01

    Background The tilapia family of the Cichlidae includes many fish species, which live in freshwater and saltwater environments. Several species, such as O. niloticus, O. aureus, and O. mossambicus, are excellent for aquaculture because these fish are easily reproduced and readily adapt to diverse environments. Historically, tilapia species, including O. mossambicus, S. melanotheron, and O. aureus, were introduced to Hawaii many decades ago, and the state of Hawaii uses the import permit policy to prevent O. niloticus from coming into the islands. However, hybrids produced from O. niloticus may already be present in the freshwater and marine environments of the islands. The purpose of this study was to identify tilapia species that exist in Hawaii using mitochondrial DNA analysis. Methodology/Principal Findings In this study, we analyzed 382 samples collected from 13 farm (captive) and wild tilapia populations in Oahu and the Hawaii Islands. Comparison of intraspecies variation between the mitochondrial DNA control region (mtDNA CR) and cytochrome c oxidase I (COI) gene from five populations indicated that mtDNA CR had higher nucleotide diversity than COI. A phylogenetic tree of all sampled tilapia was generated using mtDNA CR sequences. The neighbor-joining tree analysis identified seven distinctive tilapia species: O. aureus, O. mossambicus, O. niloticus, S. melanotheron, O. urolepies, T. redalli, and a hybrid of O. massambicus and O. niloticus. Of all the populations examined, 10 populations consisting of O. aureus, O. mossambicus, O. urolepis, and O. niloticus from the farmed sites were relatively pure, whereas three wild populations showed some degree of introgression and hybridization. Conclusions/Significance This DNA-based tilapia species identification is the first report that confirmed tilapia species identities in the wild and captive populations in Hawaii. The DNA sequence comparisons of mtDNA CR appear to be a valid method for tilapia species identification. The suspected tilapia hybrids that consist of O. niloticus are present in captive and wild populations in Hawaii. PMID:23251613

  1. Genetics of Mitochondrial Disease.

    PubMed

    Saneto, Russell P

    2017-01-01

    Mitochondria are intracellular organelles responsible for adenosine triphosphate production. The strict control of intracellular energy needs require proper mitochondrial functioning. The mitochondria are under dual controls of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mitochondrial dysfunction can arise from changes in either mtDNA or nDNA genes regulating function. There are an estimated ∼1500 proteins in the mitoproteome, whereas the mtDNA genome has 37 proteins. There are, to date, ∼275 genes shown to give rise to disease. The unique physiology of mitochondrial functioning contributes to diverse gene expression. The onset and range of phenotypic expression of disease is diverse, with onset from neonatal to seventh decade of life. The range of dysfunction is heterogeneous, ranging from single organ to multisystem involvement. The complexity of disease expression has severely limited gene discovery. Combining phenotypes with improvements in gene sequencing strategies are improving the diagnosis process. This chapter focuses on the interplay of the unique physiology and gene discovery in the current knowledge of genetically derived mitochondrial disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Mitochondrial genome diversity in the Tubalar, Even, and Ulchi: contribution to prehistory of native Siberians and their affinities to Native Americans.

    PubMed

    Sukernik, Rem I; Volodko, Natalia V; Mazunin, Ilya O; Eltsov, Nikolai P; Dryomov, Stanislav V; Starikovskaya, Elena B

    2012-05-01

    To fill remaining gaps in mitochondrial DNA diversity in the least surveyed eastern and western flanks of Siberia, 391 mtDNA samples (144 Tubalar from Altai, 87 Even from northeastern Siberia, and 160 Ulchi from the Russian Far East) were characterized via high-resolution restriction fragment length polymorphism/single nucleotide polymorphisms analysis. The subhaplogroup structure was extended through complete sequencing of 67 mtDNA samples selected from these and other related native Siberians. Specifically, we have focused on the evolutionary histories of the derivatives of M and N haplogroups, putatively reflecting different phases of settling Siberia by early modern humans. Population history and phylogeography of the resulting mtDNA genomes, combined with those from previously published data sets, revealed a wide range of tribal- and region-specific mtDNA haplotypes that emerged or diversified in Siberia before or after the last glacial maximum, ∼18 kya. Spatial distribution and ages of the "east" and "west" Eurasian mtDNA haploclusters suggest that anatomically modern humans that originally colonized Altai derived from macrohaplogroup N and came from Southwest Asia around 38,000 years ago. The derivatives of macrohaplogroup M, which largely emerged or diversified within the Russian Far East, came along with subsequent migrations to West Siberia millennia later. The last glacial maximum played a critical role in the timing and character of the settlement of the Siberian subcontinent. Copyright © 2012 Wiley Periodicals, Inc.

  3. The origin of Chinese domestic horses revealed with novel mtDNA variants.

    PubMed

    Yang, Yunzhou; Zhu, Qiyun; Liu, Shuqin; Zhao, Chunjiang; Wu, Changxin

    2017-01-01

    The origin of domestic horses in China was a controversial issue and several hypotheses including autochthonous domestication, introduction from other areas, and multiple-origins from both introduction and local wild horse introgression have been proposed, but none of them have been fully supported by DNA data. In the present study, mitochondrial DNA (mtDNA) sequences of 714 Chinese indigenous horses were analyzed. The results showed that Chinese domestic horses harbor some novel mtDNA haplogroups and suggested that local domestication events may have occurred, but they are not the dominant haplogroups and the geographical distributions of the novel mtDNA haplogroups were rather restricted. Conclusively, our results support the hypothesis that the domestic horses in China originated from both the introduced horses from outside of China and the local wild horses' introgression into the domestic populations. Results of genetic diversity analysis suggested a possibility that the introduced horses entered China through northern regions from the Eurasian steppe. © 2016 Japanese Society of Animal Science.

  4. Phylogenetic Network for European mtDNA

    PubMed Central

    Finnilä, Saara; Lehtonen, Mervi S.; Majamaa, Kari

    2001-01-01

    The sequence in the first hypervariable segment (HVS-I) of the control region has been used as a source of evolutionary information in most phylogenetic analyses of mtDNA. Population genetic inference would benefit from a better understanding of the variation in the mtDNA coding region, but, thus far, complete mtDNA sequences have been rare. We determined the nucleotide sequence in the coding region of mtDNA from 121 Finns, by conformation-sensitive gel electrophoresis and subsequent sequencing and by direct sequencing of the D loop. Furthermore, 71 sequences from our previous reports were included, so that the samples represented all the mtDNA haplogroups present in the Finnish population. We found a total of 297 variable sites in the coding region, which allowed the compilation of unambiguous phylogenetic networks. The D loop harbored 104 variable sites, and, in most cases, these could be localized within the coding-region networks, without discrepancies. Interestingly, many homoplasies were detected in the coding region. Nucleotide variation in the rRNA and tRNA genes was 6%, and that in the third nucleotide positions of structural genes amounted to 22% of that in the HVS-I. The complete networks enabled the relationships between the mtDNA haplogroups to be analyzed. Phylogenetic networks based on the entire coding-region sequence in mtDNA provide a rich source for further population genetic studies, and complete sequences make it easier to differentiate between disease-causing mutations and rare polymorphisms. PMID:11349229

  5. Widespread recombination in published animal mtDNA sequences.

    PubMed

    Tsaousis, A D; Martin, D P; Ladoukakis, E D; Posada, D; Zouros, E

    2005-04-01

    Mitochondrial DNA (mtDNA) recombination has been observed in several animal species, but there are doubts as to whether it is common or only occurs under special circumstances. Animal mtDNA sequences retrieved from public databases were unambiguously aligned and rigorously tested for evidence of recombination. At least 30 recombination events were detected among 186 alignments examined. Recombinant sequences were found in invertebrates and vertebrates, including primates. It appears that mtDNA recombination may occur regularly in the animal cell but rarely produces new haplotypes because of homoplasmy. Common animal mtDNA recombination would necessitate a reexamination of phylogenetic and biohistorical inference based on the assumption of clonal mtDNA transmission. Recombination may also have an important role in producing and purging mtDNA mutations and thus in mtDNA-based diseases and senescence.

  6. DNA recombination protein-dependent mechanism of homoplasmy and its proposed functions.

    PubMed

    Shibata, Takehiko; Ling, Feng

    2007-01-01

    Homoplasmy is a basic genetic state of mitochondria, in which all of the hundreds to thousands of mitochondrial (mt)DNA copies within a cell or an individual have the same nucleotide-sequence. It was recently found that "vegetative segregation" to generate homoplasmic cells is an active process under genetic control. In the yeast Saccharomyces cerevisiae, the Mhr1 protein which catalyzes a key reaction in mtDNA homologous recombination, plays a pivotal role in vegetative segregation. Conversely, within the nuclear genome, homologous DNA recombination causes genetic diversity. Considering these contradictory roles of this key reaction in DNA recombination, possible functions of homoplasmy are discussed.

  7. mtDNAmanager: a Web-based tool for the management and quality analysis of mitochondrial DNA control-region sequences

    PubMed Central

    Lee, Hwan Young; Song, Injee; Ha, Eunho; Cho, Sung-Bae; Yang, Woo Ick; Shin, Kyoung-Jin

    2008-01-01

    Background For the past few years, scientific controversy has surrounded the large number of errors in forensic and literature mitochondrial DNA (mtDNA) data. However, recent research has shown that using mtDNA phylogeny and referring to known mtDNA haplotypes can be useful for checking the quality of sequence data. Results We developed a Web-based bioinformatics resource "mtDNAmanager" that offers a convenient interface supporting the management and quality analysis of mtDNA sequence data. The mtDNAmanager performs computations on mtDNA control-region sequences to estimate the most-probable mtDNA haplogroups and retrieves similar sequences from a selected database. By the phased designation of the most-probable haplogroups (both expected and estimated haplogroups), mtDNAmanager enables users to systematically detect errors whilst allowing for confirmation of the presence of clear key diagnostic mutations and accompanying mutations. The query tools of mtDNAmanager also facilitate database screening with two options of "match" and "include the queried nucleotide polymorphism". In addition, mtDNAmanager provides Web interfaces for users to manage and analyse their own data in batch mode. Conclusion The mtDNAmanager will provide systematic routines for mtDNA sequence data management and analysis via easily accessible Web interfaces, and thus should be very useful for population, medical and forensic studies that employ mtDNA analysis. mtDNAmanager can be accessed at . PMID:19014619

  8. Insertion of a self-splicing intron into the mtDNA of atriploblastic animal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valles, Y.; Halanych, K.; Boore, J.L.

    2006-04-14

    Nephtys longosetosa is a carnivorous polychaete worm that lives in the intertidal and subtidal zones with worldwide distribution (pleijel&rouse2001). Its mitochondrial genome has the characteristics typical of most metazoans: 37 genes; circular molecule; almost no intergenic sequence; and no significant gene rearrangements when compared to other annelid mtDNAs (booremoritz19981995). Ubiquitous features as small intergenic regions and lack of introns suggested that metazoan mtDNAs are under strong selective pressures to reduce their genome size allowing for faster replication requirements (booremoritz19981995Lynch2005). Yet, in 1996 two type I introns were found in the mtDNA of the basal metazoan Metridium senile (FigureX). Breaking amore » long-standing rule (absence of introns in metazoan mtDNA), this finding was later supported by the further presence of group I introns in other cnidarians. Interestingly, only the class Anthozoa within cnidarians seems to harbor such introns. Although several hundreds of triploblastic metazoan mtDNAs have been sequenced, this study is the first evidence of mitochondrial introns in triploblastic metazoans. The cox1 gene of N. longosetosa has an intron of almost 2 kbs in length. This finding represents as well the first instance of a group II intron (anthozoans harbor group I introns) in all metazoan lineages. Opposite trends are observed within plants, fungi and protist mtDNAs, where introns (both group I and II) and other non-coding sequences are widespread. Plant, fungal and protist mtDNA structure and organization differ enormously from that of metazoan mtDNA. Both, plant and fungal mtDNA are dynamic molecules that undergo high rates of recombination, contain long intergenic spacer regions and harbor both group I and group II introns. However, as metazoans they have a conserved gene content. Protists, on the other hand have a striking variation of gene content and introns that account for the genome size variation. In contrast to this mtDNA structure and organization diversity, current genome level studies point to a monophyletic origin of the mitochondria (REFS), raising questions such as: what are the pressures at work shaping the evolution of the mitochondrial genome at 'higher' levels? What drives the absence of introns and other non-coding spacers in metazoan mtDNA? What characteristics must have an intron to be maintained in an environment where 'extra chromosomes' are usually selected against?« less

  9. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study

    PubMed Central

    de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-01-01

    Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings. PMID:23569417

  10. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study.

    PubMed

    de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-03-01

    Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.

  11. Strong and stable geographic differentiation of swamp buffalo maternal and paternal lineages indicates domestication in the China/Indochina border region.

    PubMed

    Zhang, Yi; Lu, Yongfang; Yindee, Marnoch; Li, Kuan-Yi; Kuo, Hsiao-Yun; Ju, Yu-Ten; Ye, Shaohui; Faruque, Md Omar; Li, Qiang; Wang, Yachun; Cuong, Vu Chi; Pham, Lan Doan; Bouahom, Bounthong; Yang, Bingzhuang; Liang, Xianwei; Cai, Zhihua; Vankan, Dianne; Manatchaiworakul, Wallaya; Kowlim, Nonglid; Duangchantrasiri, Somphot; Wajjwalku, Worawidh; Colenbrander, Ben; Zhang, Yuan; Beerli, Peter; Lenstra, Johannes A; Barker, J Stuart F

    2016-04-01

    The swamp type of the Asian water buffalo is assumed to have been domesticated by about 4000 years BP, following the introduction of rice cultivation. Previous localizations of the domestication site were based on mitochondrial DNA (mtDNA) variation within China, accounting only for the maternal lineage. We carried out a comprehensive sampling of China, Taiwan, Vietnam, Laos, Thailand, Nepal and Bangladesh and sequenced the mtDNA Cytochrome b gene and control region and the Y-chromosomal ZFY, SRY and DBY sequences. Swamp buffalo has a higher diversity of both maternal and paternal lineages than river buffalo, with also a remarkable contrast between a weak phylogeographic structure of river buffalo and a strong geographic differentiation of swamp buffalo. The highest diversity of the swamp buffalo maternal lineages was found in south China and north Indochina on both banks of the Mekong River, while the highest diversity in paternal lineages was in the China/Indochina border region. We propose that domestication in this region was later followed by introgressive capture of wild cows west of the Mekong. Migration to the north followed the Yangtze valley as well as a more eastern route, but also involved translocations of both cows and bulls over large distances with a minor influence of river buffaloes in recent decades. Bayesian analyses of various migration models also supported domestication in the China/Indochina border region. Coalescence analysis yielded consistent estimates for the expansion of the major swamp buffalo haplogroups with a credibility interval of 900 to 3900 years BP. The spatial differentiation of mtDNA and Y-chromosomal haplotype distributions indicates a lack of gene flow between established populations that is unprecedented in livestock. © 2015 John Wiley & Sons Ltd.

  12. Genetic Structure and the North American Postglacial Expansion of the Barnacle, Semibalanus balanoides

    PubMed Central

    O’Brien, Megan A.; Schmidt, Paul S.; Rand, David M.

    2012-01-01

    Population genetic characteristics are shaped by the life-history traits of organisms and the geologic history of their habitat. This study provides a neutral framework for understanding the population dynamics and opportunities for selection in Semibalanus balanoides, a species that figures prominently in ecological and evolutionary studies in the Atlantic intertidal. We used mitochondrial DNA (mtDNA) control region (N = 131) and microsatellite markers (∼40 individuals/site/locus) to survey populations of the broadly dispersing acorn barnacle from 8 sites spanning 800 km of North American coast and 1 site in Europe. Patterns of mtDNA sequence evolution were consistent with larger population sizes in Europe and population expansion at the conclusion of the last ice age, approximately 20 000 years ago, in North America. A significant portion of mitochondrial diversity was partitioned between the continents (φST = 0.281), but there was only weak structure observed from mtDNA within North America. Microsatellites showed significant structuring between the continents (FST = 0.021) as well as within North America (FST = 0.013). Isolation by distance in North America was largely driven by a split between populations south of Cape Cod and all others (P < 10−4). The glacial events responsible for generating allelic diversity at mtDNA and microsatellites may also be responsible for generating selectable variation at metabolic enzymes in S. balanoides. PMID:21885571

  13. Cryptic diversity in European bats.

    PubMed Central

    Mayer, F.; von Helversen, O.

    2001-01-01

    Different species of bat can be morphologically very similar. In order to estimate the amount of cryptic diversity among European bats we screened the intra- and interspecific genetic variation in 26 European vespertilionid bat species. We sequenced the DNA of subunit 1 of the mitochondrial protein NADH dehydrogenase (ND1) from several individuals of a species, which were sampled in a variety of geographical regions. A phylogeny based on the mitochondrial (mt) DNA data is in good agreement with the current classification in the family. Highly divergent mitochondrial lineages were found in two taxa, which differed in at least 11% of their ND1 sequence. The two mtDNA lineages in Plecotus austriacus correlated with the two subspecies Plecotus austriacus austriacus and Plecotus austriacus kolombatovici. The two mtDNA lineages in Myotis mystacinus were partitioned among two morphotypes. The evidence for two new bat species within Europe is discussed. Convergent adaptive evolution might have contributed to the morphological similarity among distantly related species if they occupy similar ecological niches. Closely related species may differ in their ecology but not necessarily in their morphology. On the other hand, two morphologically clearly different species (Eptesicus serotinus and Eptesicus nilssonii) were found to be genetically very similar. Neither morphological nor mitochondrial DNA sequence analysis alone can be guaranteed to identify species. PMID:11522202

  14. Extreme-Depth Re-sequencing of Mitochondrial DNA Finds No Evidence of Paternal Transmission in Humans.

    PubMed

    Pyle, Angela; Hudson, Gavin; Wilson, Ian J; Coxhead, Jonathan; Smertenko, Tania; Herbert, Mary; Santibanez-Koref, Mauro; Chinnery, Patrick F

    2015-05-01

    Recent reports have questioned the accepted dogma that mammalian mitochondrial DNA (mtDNA) is strictly maternally inherited. In humans, the argument hinges on detecting a signature of inter-molecular recombination in mtDNA sequences sampled at the population level, inferring a paternal source for the mixed haplotypes. However, interpreting these data is fraught with difficulty, and direct experimental evidence is lacking. Using extreme-high depth mtDNA re-sequencing up to ~1.2 million-fold coverage, we find no evidence that paternal mtDNA haplotypes are transmitted to offspring in humans, thus excluding a simple dilution mechanism for uniparental transmission of mtDNA present in all healthy individuals. Our findings indicate that an active mechanism eliminates paternal mtDNA which likely acts at the molecular level.

  15. Extreme-Depth Re-sequencing of Mitochondrial DNA Finds No Evidence of Paternal Transmission in Humans

    PubMed Central

    Pyle, Angela; Hudson, Gavin; Wilson, Ian J.; Coxhead, Jonathan; Smertenko, Tania; Herbert, Mary; Santibanez-Koref, Mauro; Chinnery, Patrick F.

    2015-01-01

    Recent reports have questioned the accepted dogma that mammalian mitochondrial DNA (mtDNA) is strictly maternally inherited. In humans, the argument hinges on detecting a signature of inter-molecular recombination in mtDNA sequences sampled at the population level, inferring a paternal source for the mixed haplotypes. However, interpreting these data is fraught with difficulty, and direct experimental evidence is lacking. Using extreme-high depth mtDNA re-sequencing up to ~1.2 million-fold coverage, we find no evidence that paternal mtDNA haplotypes are transmitted to offspring in humans, thus excluding a simple dilution mechanism for uniparental transmission of mtDNA present in all healthy individuals. Our findings indicate that an active mechanism eliminates paternal mtDNA which likely acts at the molecular level. PMID:25973765

  16. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing

    PubMed Central

    Green, Richard E.; Malaspinas, Anna-Sapfo; Krause, Johannes; Briggs, Adrian W.; Johnson, Philip L. F.; Uhler, Caroline; Meyer, Matthias; Good, Jeffrey M.; Maricic, Tomislav; Stenzel, Udo; Prüfer, Kay; Siebauer, Michael; Burbano, Hernán A.; Ronan, Michael; Rothberg, Jonathan M.; Egholm, Michael; Rudan, Pavao; Brajković, Dejana; Kućan, Željko; Gušić, Ivan; Wikström, Mårten; Laakkonen, Liisa; Kelso, Janet; Slatkin, Montgomery; Pääbo, Svante

    2008-01-01

    Summary A complete mitochondrial (mt) genome sequence was reconstructed from a 38,000-year-old Neandertal individual using 8,341 mtDNA sequences identified among 4.8 Gb of DNA generated from ~0.3 grams of bone. Analysis of the assembled sequence unequivocally establishes that the Neandertal mtDNA falls outside the variation of extant human mtDNAs and allows an estimate of the divergence date between the two mtDNA lineages of 660,000±140,000 years. Of the 13 proteins encoded in the mtDNA, subunit 2 of cytochrome c oxidase of the mitochondrial electron transport chain has experienced the largest number of amino acid substitutions in human ancestors since the separation from Neandertals. There is evidence that purifying selection in the Neandertal mtDNA was reduced compared to other primate lineages suggesting that the effective population size of Neandertals was small. PMID:18692465

  17. Abundant mtDNA diversity and ancestral admixture in Colombian criollo cattle (Bos taurus).

    PubMed

    Carvajal-Carmona, Luis G; Bermudez, Nelson; Olivera-Angel, Martha; Estrada, Luzardo; Ossa, Jorge; Bedoya, Gabriel; Ruiz-Linares, Andrés

    2003-11-01

    Various cattle populations in the Americas (known as criollo breeds) have an origin in some of the first livestock introduced to the continent early in the colonial period (16th and 17th centuries). These cattle constitute a potentially important genetic reserve as they are well adapted to local environments and show considerable variation in phenotype. To examine the genetic ancestry and diversity of Colombian criollo we obtained mitochondrial DNA control region sequence information for 110 individuals from seven breeds. Old World haplogroup T3 is the most commonly observed CR lineage in criollo (0.65), in agreement with a mostly European ancestry for these cattle. However, criollo also shows considerable frequencies of haplogroups T2 (0.9) and T1 (0.26), with T1 lineages in criollo being more diverse than those reported for West Africa. The distribution and diversity of Old World lineages suggest some North African ancestry for criollo, probably as a result of the Arab occupation of Iberia prior to the European migration to the New World. The mtDNA diversity of criollo is higher than that reported for European and African cattle and is consistent with a differentiated ancestry for some criollo breeds.

  18. Positive relationships between genetic diversity and abundance in fishes.

    PubMed

    McCusker, Megan R; Bentzen, Paul

    2010-11-01

    Molecular markers, such as mitochondrial DNA and microsatellite loci, are widely studied to assess population genetics and phylogeography; however, the selective neutrality of these markers is increasingly being questioned. Given the importance of molecular markers in fisheries science and conservation, we evaluated the neutrality of both mtDNA and microsatellite loci through their associations with population size. We surveyed mtDNA and microsatellite data from the primary literature and determined whether genetic diversity increased with abundance across a total of 105 marine and freshwater fishes, with both global fisheries catch data and body size as proxies for abundance (with an additional 57 species for which only body size data were assessed). We found that microsatellite data generally yielded higher associations with abundance than mtDNA data, and within mtDNA analyses, number of haplotypes and haplotype diversity were more strongly associated with abundance than nucleotide diversity, particularly for freshwater fishes. We compared genetic diversity between freshwater and marine fishes and found that marine fishes had higher values of all measures of genetic diversity than freshwater fishes. Results for both mtDNA and microsatellites generally conformed to neutral expectations, although weaker relationships were often found between mtDNA nucleotide diversity and 'abundance' compared to any other genetic statistic. We speculate that this is because of historical events unrelated to natural selection, although a role for selection cannot be ruled out. © 2010 Blackwell Publishing Ltd.

  19. Genetic origin of goat populations in Oman revealed by mitochondrial DNA analysis

    PubMed Central

    Gaafar, Osman Mahgoub; Costa, Vânia; Neira, Agusto Luzuriaga; Al-Atiyat, Raed Mahmoud; Beja-Pereira, Albano

    2017-01-01

    The Sultanate of Oman has a complex mosaic of livestock species and production systems, but the genetic diversity, demographic history or origins of these Omani animals has not been expensively studied. Goats might constitute one of the most abundant and important domestic livestock species since the Neolithic transition. Here, we examined the genetic diversity, origin, population structure and demographic history of Omani goats. Specifically, we analyzed a 525-bp fragment of the first hypervariable region of the mitochondrial DNA (mtDNA) control region from 69 Omani individuals and compared this fragment with 17 mtDNA sequences from Somalia and Yemen as well as 18 wild goat species and 1,198 previously published goat sequences from neighboring countries. The studied goat breeds show substantial diversity. The haplotype and nucleotide diversities of Omani goats were found equal to 0.983 ± 0.006 and 0.0284 ± 0.014, respectively. The phylogenetic analyses allowed us to classify Omani goats into three mtDNA haplogroups (A, B and G): haplogroup A was found to be predominant and widely distributed and accounted for 80% of all samples, and haplogroups B and G exhibited low frequencies. Phylogenetic comparisons with wild goats revealed that five of the native Omani goat populations originate from Capra aegagrus. Furthermore, most comparisons of pairwise population FST values within and between these five Omani goat breeds as well as between Omani goats and nine populations from nearby countries were not significant. These results suggest strong gene flow among goat populations caused by the extensive transport of goats and the frequent movements of human populations in ancient Arabia. The findings improve our understanding of the migration routes of modern goats from their region of domestication into southeastern Arabia and thereby shed light on human migratory and commercial networks during historical times. PMID:29281717

  20. Microsatellite and Mitochondrial DNA Study of Native Eastern European Cattle Populations: The Case of the Romanian Grey

    PubMed Central

    Cean, Ada; Cziszter, Ludovic Toma; Gavojdian, Dinu; Ivan, Alexandra

    2015-01-01

    The Eastern European Grey cattle are regarded as the direct descendants of the aurochs (Bos taurus primigenius). Nowadays in Romania, less than 100 Grey animals are being reared and included in the national gene reserve. We examined the genetic diversity among Romanian Grey, Brown, Spotted and Black and White cattle breeds, with a particular focus on Romanian Grey through the use of (i) 11 bovine specific microsatellite markers on 83 animals and (ii) 638 bp length of mitochondrial DNA (mtDNA) D-loop region sequence data from a total of 81 animals. Both microsatellite and mtDNA analysis revealed a high level of genetic variation in the studied breeds. In Romanian Grey a total of 100 alleles were found, the mean number of observed alleles per locus was 9.091; the average observed heterozygosity was 0.940; the Wright’s fixation index (FIS) was negative (-0.189) and indicates that there is no inbreeding and no selection pressure. MtDNA analysis revealed 52 haplotypes with 67 variable sites among the Romanian cattle breeds without any insertion or deletion. Haplotype diversity was 0.980 ± 0.007 and ranged from 0.883 ± 0.056 (Brown) to 0.990 ± 0.028 (Spotted and Black and White). The highest genetic variability of the mtDNA was recorded in the Grey breed, where 18 haplotypes were identified. The most frequent mtDNA D-loop region belonged to T3 haplogroup (80.247%), which was found across all studied breeds, while T2 haplotypes (16.049%) was only found in Grey, Spotted and Black and White genotypes. The T1 haplotypes (3.704%) were found in the Grey and Spotted. The current results contribute to the general knowledge on genetic diversity found in Eastern European cattle breeds and could prove a valuable tool for the conservation efforts of animal genetic resources (FAnGR). PMID:26398563

  1. Microsatellite and Mitochondrial DNA Study of Native Eastern European Cattle Populations: The Case of the Romanian Grey.

    PubMed

    Ilie, Daniela Elena; Cean, Ada; Cziszter, Ludovic Toma; Gavojdian, Dinu; Ivan, Alexandra; Kusza, Szilvia

    2015-01-01

    The Eastern European Grey cattle are regarded as the direct descendants of the aurochs (Bos taurus primigenius). Nowadays in Romania, less than 100 Grey animals are being reared and included in the national gene reserve. We examined the genetic diversity among Romanian Grey, Brown, Spotted and Black and White cattle breeds, with a particular focus on Romanian Grey through the use of (i) 11 bovine specific microsatellite markers on 83 animals and (ii) 638 bp length of mitochondrial DNA (mtDNA) D-loop region sequence data from a total of 81 animals. Both microsatellite and mtDNA analysis revealed a high level of genetic variation in the studied breeds. In Romanian Grey a total of 100 alleles were found, the mean number of observed alleles per locus was 9.091; the average observed heterozygosity was 0.940; the Wright's fixation index (FIS) was negative (-0.189) and indicates that there is no inbreeding and no selection pressure. MtDNA analysis revealed 52 haplotypes with 67 variable sites among the Romanian cattle breeds without any insertion or deletion. Haplotype diversity was 0.980 ± 0.007 and ranged from 0.883 ± 0.056 (Brown) to 0.990 ± 0.028 (Spotted and Black and White). The highest genetic variability of the mtDNA was recorded in the Grey breed, where 18 haplotypes were identified. The most frequent mtDNA D-loop region belonged to T3 haplogroup (80.247%), which was found across all studied breeds, while T2 haplotypes (16.049%) was only found in Grey, Spotted and Black and White genotypes. The T1 haplotypes (3.704%) were found in the Grey and Spotted. The current results contribute to the general knowledge on genetic diversity found in Eastern European cattle breeds and could prove a valuable tool for the conservation efforts of animal genetic resources (FAnGR).

  2. Species mtDNA genetic diversity explained by infrapopulation size in a host-symbiont system.

    PubMed

    Doña, Jorge; Moreno-García, Marina; Criscione, Charles D; Serrano, David; Jovani, Roger

    2015-12-01

    Understanding what shapes variation in genetic diversity among species remains a major challenge in evolutionary ecology, and it has been seldom studied in parasites and other host-symbiont systems. Here, we studied mtDNA variation in a host-symbiont non-model system: 418 individual feather mites from 17 feather mite species living on 17 different passerine bird species. We explored how a surrogate of census size, the median infrapopulation size (i.e., the median number of individual parasites per infected host individual), explains mtDNA genetic diversity. Feather mite species genetic diversity was positively correlated with mean infrapopulation size, explaining 34% of the variation. As expected from the biology of feather mites, we found bottleneck signatures for most of the species studied but, in particular, three species presented extremely low mtDNA diversity values given their infrapopulation size. Their star-like haplotype networks (in contrast with more reticulated networks for the other species) suggested that their low genetic diversity was the consequence of severe bottlenecks or selective sweeps. Our study shows for the first time that mtDNA diversity can be explained by infrapopulation sizes, and suggests that departures from this relationship could be informative of underlying ecological and evolutionary processes.

  3. mtDNA variation in caste populations of Andhra Pradesh, India.

    PubMed

    Bamshad, M; Fraley, A E; Crawford, M H; Cann, R L; Busi, B R; Naidu, J M; Jorde, L B

    1996-02-01

    Various anthropological analyses have documented extensive regional variation among populations on the subcontinent of India using morphological, protein, blood group, and nuclear DNA polymorphisms. These patterns are the product of complex population structure (genetic drift, gene flow) and a population history noted for numerous branching events. As a result, the interpretation of relationships among caste populations of South India and between Indians and continental populations remains controversial. The Hindu caste system is a general model of genetic differentiation among endogamous populations stratified by social forces (e.g., religion and occupation). The mitochondrial DNA (mtDNA) molecule has unique properties that facilitate the exploration of population structure. We analyzed 36 Hindu men born in Andhra Pradesh who were unrelated matrilineally through at least 3 generations and who represent 4 caste populations: Brahmin (9), Yadava (10), Kapu (7), and Relli (10). Individuals from Africa (36), Asia (36), and Europe (36) were sampled for comparison. A 200-base-pair segment of hypervariable segment 2 (HVS2) of the mtDNA control region was sequenced in all individuals. In the Indian castes 25 distinct haplotypes are identified. Aside from the Cambridge reference sequence, only two haplotypes are shared between caste populations. Middle castes form a highly supported cluster in a neighbor-joining network. Mean nucleotide diversity within each caste is 0.015, 0.012, 0.011, and 0.012 for the Brahmin, Yadava, Kapu, and Relli, respectively. mtDNA variation is highly structured between castes (GST = 0.17; p < 0.002). The effects of social structure on mtDNA variation are much greater than those on variation measured by traditional markers. Explanations for this discordance include (1) the higher resolving power of mtDNA, (2) sex-dependent gene flow, (3) differences in male and female effective population sizes, and (4) elements of the kinship structure. Thirty distinct haplotypes are found in Africans, 17 in Asians, and 13 in Europeans. Mean nucleotide diversity is 0.019, 0.014, 0.009, and 0.007 for Africans, Indians, Asians, and Europeans, respectively. These populations are highly structured geographically (GST = 0.15; p < 0.001). The caste populations of Andhra Pradesh cluster more often with Africans than with Asians or Europeans. This is suggestive of admixture with African populations.

  4. Genetic divergence and fine scale population structure of the common bottlenose dolphin (Tursiops truncatus, Montagu) found in the Gulf of Guayaquil, Ecuador

    PubMed Central

    Bayas-Rea, Rosa de los Ángeles; Félix, Fernando

    2018-01-01

    The common bottlenose dolphin, Tursiops truncatus, is widely distributed along the western coast of South America. In Ecuador, a resident population of bottlenose dolphins inhabits the inner estuarine area of the Gulf of Guayaquil located in the southwestern part of the country and is under threat from different human activities in the area. Only one genetic study on South American common bottlenose dolphins has been carried out to date, and understanding genetic variation of wildlife populations, especially species that are identified as threatened, is crucial for defining conservation units and developing appropriate conservation strategies. In order to evaluate the evolutionary link of this population, we assessed the phylogenetic relationships, phylogeographic patterns, and population structure using mitochondrial DNA (mtDNA). The sampling comprised: (i) 31 skin samples collected from free-ranging dolphins at three locations in the Gulf of Guayaquil inner estuary, (ii) 38 samples from stranded dolphins available at the collection of the “Museo de Ballenas de Salinas,” (iii) 549 mtDNA control region (mtDNA CR) sequences from GenBank, and (iv) 66 concatenated sequences from 7-mtDNA regions (12S rRNA, 16S rRNA, NADH dehydrogenase subunit I–II, cytochrome oxidase I and II, cytochrome b, and CR) obtained from mitogenomes available in GenBank. Our analyses indicated population structure between both inner and outer estuary dolphin populations as well as with distinct populations of T. truncatus using mtDNA CR. Moreover, the inner estuary bottlenose dolphin (estuarine bottlenose dolphin) population exhibited lower levels of genetic diversity than the outer estuary dolphin population according to the mtDNA CR. Finally, the estuarine bottlenose dolphin population was genetically distinct from other T. truncatus populations based on mtDNA CR and 7-mtDNA regions. From these results, we suggest that the estuarine bottlenose dolphin population should be considered a distinct lineage. This dolphin population faces a variety of anthropogenic threats in this area; thus, we highlight its fragility and urge authorities to issue prompt management and conservation measures. PMID:29707430

  5. Mitochondrial DNA transfer to the nucleus generates extensive insertion site variation in maize.

    PubMed

    Lough, Ashley N; Roark, Leah M; Kato, Akio; Ream, Thomas S; Lamb, Jonathan C; Birchler, James A; Newton, Kathleen J

    2008-01-01

    Mitochondrial DNA (mtDNA) insertions into nuclear chromosomes have been documented in a number of eukaryotes. We used fluorescence in situ hybridization (FISH) to examine the variation of mtDNA insertions in maize. Twenty overlapping cosmids, representing the 570-kb maize mitochondrial genome, were individually labeled and hybridized to root tip metaphase chromosomes from the B73 inbred line. A minimum of 15 mtDNA insertion sites on nine chromosomes were detectable using this method. One site near the centromere on chromosome arm 9L was identified by a majority of the cosmids. To examine variation in nuclear mitochondrial DNA sequences (NUMTs), a mixture of labeled cosmids was applied to chromosome spreads of ten diverse inbred lines: A188, A632, B37, B73, BMS, KYS, Mo17, Oh43, W22, and W23. The number of detectable NUMTs varied dramatically among the lines. None of the tested inbred lines other than B73 showed the strong hybridization signal on 9L, suggesting that there is a recent mtDNA insertion at this site in B73. Different sources of B73 and W23 were examined for NUMT variation within inbred lines. Differences were detectable, suggesting either that mtDNA is being incorporated or lost from the maize nuclear genome continuously. The results indicate that mtDNA insertions represent a major source of nuclear chromosomal variation.

  6. Mitochondrial bioenergetics and drug-induced toxicity in a panel of mouse embryonic fibroblasts with mitochondrial DNA single nucleotide polymorphisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Claudia V.; Oliveira, Paulo J.; Will, Yvonne

    2012-10-15

    Mitochondrial DNA (mtDNA) variations including single nucleotide polymorphisms (SNPs) have been proposed to be involved in idiosyncratic drug reactions. However, current in vitro and in vivo models lack the genetic diversity seen in the human population. Our hypothesis is that different cell strains with distinct mtDNA SNPs may have different mitochondrial bioenergetic profiles and may therefore vary in their response to drug-induced toxicity. Therefore, we used an in vitro system composed of four strains of mouse embryonic fibroblasts (MEFs) with mtDNA polymorphisms. We sequenced mtDNA from embryonic fibroblasts isolated from four mouse strains, C57BL/6J, MOLF/EiJ, CZECHII/EiJ and PERA/EiJ, with themore » latter two being sequenced for the first time. The bioenergetic profile of the four strains of MEFs was investigated at both passages 3 and 10. Our results showed that there were clear differences among the four strains of MEFs at both passages, with CZECHII/EiJ having a lower mitochondrial robustness when compared to C57BL/6J, followed by MOLF/EiJ and PERA/EiJ. Seven drugs known to impair mitochondrial function were tested for their effect on the ATP content of the four strains of MEFs in both glucose- and galactose-containing media. Our results showed that there were strain-dependent differences in the response to some of the drugs. We propose that this model is a useful starting point to study compounds that may cause mitochondrial off-target toxicity in early stages of drug development, thus decreasing the number of experimental animals used. -- Highlights: ► mtDNA SNPs may be linked to individual predisposition to drug-induced toxicity. ► CZECHII/EiJ and PERA/EiJ mtDNA was sequenced for the first time in this study. ► Strain-dependent mitochondrial capacity differences were measured. ► Strain-dependent differences in response to mitochondrial toxicants were observed.« less

  7. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts

    PubMed Central

    Hurst, Gregory D.D; Jiggins, Francis M

    2005-01-01

    Mitochondrial DNA (mtDNA) has been a marker of choice for reconstructing historical patterns of population demography, admixture, biogeography and speciation. However, it has recently been suggested that the pervasive nature of direct and indirect selection on this molecule renders any conclusion derived from it ambiguous. We review here the evidence for indirect selection on mtDNA in arthropods arising from linkage disequilibrium with maternally inherited symbionts. We note first that these symbionts are very common in arthropods and then review studies that reveal the extent to which they shape mtDNA evolution. mtDNA diversity patterns are compatible with neutral expectations for an uninfected population in only 2 of 19 cases. The remaining 17 studies revealed cases of symbiont-driven reduction in mtDNA diversity, symbiont-driven increases in diversity, symbiont-driven changes in mtDNA variation over space and symbiont-associated paraphyly of mtDNA. We therefore conclude that these elements often confound the inference of an organism's evolutionary history from mtDNA data and that mtDNA on its own is an unsuitable marker for the study of recent historical events in arthropods. We also discuss the impact of these studies on the current programme of taxonomy based on DNA bar-coding. PMID:16048766

  8. African-American mitochondrial DNAs often match mtDNAs found in multiple African ethnic groups

    PubMed Central

    Ely, Bert; Wilson, Jamie Lee; Jackson, Fatimah; Jackson, Bruce A

    2006-01-01

    Background Mitochondrial DNA (mtDNA) haplotypes have become popular tools for tracing maternal ancestry, and several companies offer this service to the general public. Numerous studies have demonstrated that human mtDNA haplotypes can be used with confidence to identify the continent where the haplotype originated. Ideally, mtDNA haplotypes could also be used to identify a particular country or ethnic group from which the maternal ancestor emanated. However, the geographic distribution of mtDNA haplotypes is greatly influenced by the movement of both individuals and population groups. Consequently, common mtDNA haplotypes are shared among multiple ethnic groups. We have studied the distribution of mtDNA haplotypes among West African ethnic groups to determine how often mtDNA haplotypes can be used to reconnect Americans of African descent to a country or ethnic group of a maternal African ancestor. The nucleotide sequence of the mtDNA hypervariable segment I (HVS-I) usually provides sufficient information to assign a particular mtDNA to the proper haplogroup, and it contains most of the variation that is available to distinguish a particular mtDNA haplotype from closely related haplotypes. In this study, samples of general African-American and specific Gullah/Geechee HVS-I haplotypes were compared with two databases of HVS-I haplotypes from sub-Saharan Africa, and the incidence of perfect matches recorded for each sample. Results When two independent African-American samples were analyzed, more than half of the sampled HVS-I mtDNA haplotypes exactly matched common haplotypes that were shared among multiple African ethnic groups. Another 40% did not match any sequence in the database, and fewer than 10% were an exact match to a sequence from a single African ethnic group. Differences in the regional distribution of haplotypes were observed in the African database, and the African-American haplotypes were more likely to match haplotypes found in ethnic groups from West or West Central Africa than those found in eastern or southern Africa. Fewer than 14% of the African-American mtDNA sequences matched sequences from only West Africa or only West Central Africa. Conclusion Our database of sub-Saharan mtDNA sequences includes the most common haplotypes that are shared among ethnic groups from multiple regions of Africa. These common haplotypes have been found in half of all sub-Saharan Africans. More than 60% of the remaining haplotypes differ from the common haplotypes at a single nucleotide position in the HVS-I region, and they are likely to occur at varying frequencies within sub-Saharan Africa. However, the finding that 40% of the African-American mtDNAs analyzed had no match in the database indicates that only a small fraction of the total number of African haplotypes has been identified. In addition, the finding that fewer than 10% of African-American mtDNAs matched mtDNA sequences from a single African region suggests that few African Americans might be able to trace their mtDNA lineages to a particular region of Africa, and even fewer will be able to trace their mtDNA to a single ethnic group. However, no firm conclusions should be made until a much larger database is available. It is clear, however, that when identical mtDNA haplotypes are shared among many ethnic groups from different parts of Africa, it is impossible to determine which single ethnic group was the source of a particular maternal ancestor based on the mtDNA sequence. PMID:17038170

  9. Demystifying the Capitella capitata complex (Annelida, Capitellidae) diversity by morphological and molecular data along the Brazilian coast

    PubMed Central

    Di Domenico, Maikon; Amaral, Antonia C. Z.; Paiva, Paulo C.

    2017-01-01

    The sibling species of Capitella capitata are globally known for their tolerance to disturbed habitats and the C. capitata complex is often used as an ecological indicator. A recent re-description proposed that C. capitata, originally described in Greenland is restricted to the Artic and Subarctic regions. Given their ecological relevance, we conducted a morphological and molecular analyses based on mtDNA sequences to investigate the diversity and distribution of the C. capitata complex along the Brazilian coast. Our morphological and molecular data were congruent and revealed the existence of four new species distinct from C. capitata, collected from the type locality. This study is the first characterization of the biodiversity and distribution of Capitella species made along the Brazilian coast and yielded a set of morphological characters corroborated by the mtDNA sequences for species identification. Our results increase the biodiversity of the genus along the Brazilian coast by describing four new species (Capitella aracaensis sp. n., Capitella biota sp. n., Capitella neoaciculata sp. n. and Capitella nonatoi sp. n.). One species was collected from only one sampling site, while the others are distributed along the coast. PMID:28562616

  10. Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility.

    PubMed

    Sloan, Daniel B; Müller, Karel; McCauley, David E; Taylor, Douglas R; Storchová, Helena

    2012-12-01

    In angiosperms, mitochondrial-encoded genes can cause cytoplasmic male sterility (CMS), resulting in the coexistence of female and hermaphroditic individuals (gynodioecy). We compared four complete mitochondrial genomes from the gynodioecious species Silene vulgaris and found unprecedented amounts of intraspecific diversity for plant mitochondrial DNA (mtDNA). Remarkably, only about half of overall sequence content is shared between any pair of genomes. The four mtDNAs range in size from 361 to 429 kb and differ in gene complement, with rpl5 and rps13 being intact in some genomes but absent or pseudogenized in others. The genomes exhibit essentially no conservation of synteny and are highly repetitive, with evidence of reciprocal recombination occurring even across short repeats (< 250 bp). Some mitochondrial genes exhibit atypically high degrees of nucleotide polymorphism, while others are invariant. The genomes also contain a variable number of small autonomously mapping chromosomes, which have only recently been identified in angiosperm mtDNA. Southern blot analysis of one of these chromosomes indicated a complex in vivo structure consisting of both monomeric circles and multimeric forms. We conclude that S. vulgaris harbors an unusually large degree of variation in mtDNA sequence and structure and discuss the extent to which this variation might be related to CMS. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  11. Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.

    PubMed

    Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Rivera, Henry; Hernández-Laín, Aurelio; Coca-Robinot, David; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco

    2017-01-01

    Whole-exome sequencing was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase, deficiency of mitochondrial complex III and depletion of mtDNA. With whole-exome sequencing data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in thymidine kinase 2 gene ( TK2; NM_004614.4:c.323 C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes. This patient presents an atypical TK2-related myopathic form of mtDNA depletion syndromes, because despite having a very low content of mtDNA (<20%), she presents a slower and less severe evolution of the disease. In conclusion, our data confirm the role of TK2 gene in mtDNA depletion syndromes and expanded the phenotypic spectrum.

  12. Genetic diversity and genetic structure of farmed and wild Chinese mitten crab (Eriocheir sinensis) populations from three major basins by mitochondrial DNA COI and Cyt b gene sequences.

    PubMed

    Zhang, Cheng; Li, Qingqing; Wu, Xugan; Liu, Qing; Cheng, Yongxu

    2017-11-20

    The Chinese mitten crab, Eriocheir sinensis, is one of the important native crab species in East Asian region, which has been widely cultured throughout China, particularly in river basins of Yangtze, Huanghe and Liaohe. This study was designed to evaluate the genetic diversity and genetic structure of cultured and wild E. sinensis populations from the three river basins based on mitochondrial DNA (mtDNA) cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b). The results showed that there were 62 variable sites and 30 parsimony informative sites in the 647 bp of sequenced mtDNA COI from 335 samples. Similarly, a 637 bp segment of Cyt b provided 59 variable sites and 26 parsimony informative sites. AMOVA showed that the levels of genetic differentiation were low among six populations. Although the haplotype diversity and nucleotide diversity of Huanghe wild population had slightly higher than the other populations, there were no significant differences. There was no significant differentiation between the genetic and geographic distance of the six populations, and haplotype network diagram indicated that there may exist genetic hybrids of E. sinensis from different river basins. The results of clustering and neutrality tests revealed that the distance of geographical locations were not completely related to their genetic distance values for the six populations. In conclusion, these results have great significance for the evaluation and exploitation of germplasm resources of E. sinensis.

  13. MtDNA genetic diversity and structure of Eurasian Collared Dove (Streptopelia decaocto).

    PubMed

    Bagi, Zoltán; Dimopoulos, Evangelos Antonis; Loukovitis, Dimitrios; Eraud, Cyril; Kusza, Szilvia

    2018-01-01

    The Eurasian Collared Dove (Streptopelia decaocto) is one of the most successful biological invaders among terrestrial vertebrates. However, little information is available on the genetic diversity of the species. A total of 134 Eurasian Collared Doves from Europe, Asia and the Caribbean (n = 20) were studied by sequencing a 658-bp length of mitochondrial DNA (mtDNA) cytochrome oxidase I (COI). Fifty-two different haplotypes and relatively high haplotype and nucleotide diversities (Hd±SD = 0.843±0.037 and π±SD = 0.026±0.013) were detected. Haplotype Ht1 was particularly dominant: it included 44.03% of the studied individuals, and contained sequences from 75% of the studied countries. Various analyses (FST, AMOVA, STRUCTURE) distinguished 2 groups on the genetic level, designated 'A' and 'B'. Two groups were also separated in the median-joining network and the maximum likelihood tree. The results of the neutrality tests were negative (Fu FS = -25.914; Tajima D = -2.606) and significantly different from zero (P≤0.001) for group A, whereas both values for group B were positive (Fu FS = 1.811; Tajima D = 0.674) and not significant (P>0.05). Statistically significant positive autocorrelation was revealed among individuals located up to 2000 km apart (r = 0.124; P = 0.001). The present results provide the first information on the genetic diversity and structure of the Eurasian Collared Dove, and can thereby serve as a factual and comparative basis for similar studies in the future.

  14. DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification

    PubMed Central

    2013-01-01

    Background Mitochondrial DNA (mtDNA) typing can be a useful aid for identifying people from compromised samples when nuclear DNA is too damaged, degraded or below detection thresholds for routine short tandem repeat (STR)-based analysis. Standard mtDNA typing, focused on PCR amplicon sequencing of the control region (HVS I and HVS II), is limited by the resolving power of this short sequence, which misses up to 70% of the variation present in the mtDNA genome. Methods We used in-solution hybridisation-based DNA capture (using DNA capture probes prepared from modern human mtDNA) to recover mtDNA from post-mortem human remains in which the majority of DNA is both highly fragmented (<100 base pairs in length) and chemically damaged. The method ‘immortalises’ the finite quantities of DNA in valuable extracts as DNA libraries, which is followed by the targeted enrichment of endogenous mtDNA sequences and characterisation by next-generation sequencing (NGS). Results We sequenced whole mitochondrial genomes for human identification from samples where standard nuclear STR typing produced only partial profiles or demonstrably failed and/or where standard mtDNA hypervariable region sequences lacked resolving power. Multiple rounds of enrichment can substantially improve coverage and sequencing depth of mtDNA genomes from highly degraded samples. The application of this method has led to the reliable mitochondrial sequencing of human skeletal remains from unidentified World War Two (WWII) casualties approximately 70 years old and from archaeological remains (up to 2,500 years old). Conclusions This approach has potential applications in forensic science, historical human identification cases, archived medical samples, kinship analysis and population studies. In particular the methodology can be applied to any case, involving human or non-human species, where whole mitochondrial genome sequences are required to provide the highest level of maternal lineage discrimination. Multiple rounds of in-solution hybridisation-based DNA capture can retrieve whole mitochondrial genome sequences from even the most challenging samples. PMID:24289217

  15. Mitochondrial genome rearrangements in glomus species triggered by homologous recombination between distinct mtDNA haplotypes.

    PubMed

    Beaudet, Denis; Terrat, Yves; Halary, Sébastien; de la Providencia, Ivan Enrique; Hijri, Mohamed

    2013-01-01

    Comparative mitochondrial genomics of arbuscular mycorrhizal fungi (AMF) provide new avenues to overcome long-lasting obstacles that have hampered studies aimed at understanding the community structure, diversity, and evolution of these multinucleated and genetically polymorphic organisms.AMF mitochondrial (mt) genomes are homogeneous within isolates, and their intergenic regions harbor numerous mobile elements that have rapidly diverged, including homing endonuclease genes, small inverted repeats, and plasmid-related DNA polymerase genes (dpo), making them suitable targets for the development of reliable strain-specific markers. However, these elements may also lead to genome rearrangements through homologous recombination, although this has never previously been reported in this group of obligate symbiotic fungi. To investigate whether such rearrangements are present and caused by mobile elements in AMF, the mitochondrial genomes from two Glomeraceae members (i.e., Glomus cerebriforme and Glomus sp.) with substantial mtDNA synteny divergence,were sequenced and compared with available glomeromycotan mitochondrial genomes. We used an extensive nucleotide/protein similarity network-based approach to investigated podiversity in AMF as well as in other organisms for which sequences are publicly available. We provide strong evidence of dpo-induced inter-haplotype recombination, leading to a reshuffled mitochondrial genome in Glomus sp. These findings raise questions as to whether AMF single spore cultivations artificially underestimate mtDNA genetic diversity.We assessed potential dpo dispersal mechanisms in AMF and inferred a robust phylogenetic relationship with plant mitochondrial plasmids. Along with other indirect evidence, our analyses indicate that members of the Glomeromycota phylum are potential donors of mitochondrial plasmids to plants.

  16. Development and validation of a D-loop mtDNA SNP assay for the screening of specimens in forensic casework.

    PubMed

    Chemale, Gustavo; Paneto, Greiciane Gaburro; Menezes, Meiga Aurea Mendes; de Freitas, Jorge Marcelo; Jacques, Guilherme Silveira; Cicarelli, Regina Maria Barretto; Fagundes, Paulo Roberto

    2013-05-01

    Mitochondrial DNA (mtDNA) analysis is usually a last resort in routine forensic DNA casework. However, it has become a powerful tool for the analysis of highly degraded samples or samples containing too little or no nuclear DNA, such as old bones and hair shafts. The gold standard methodology still constitutes the direct sequencing of polymerase chain reaction (PCR) products or cloned amplicons from the HVS-1 and HVS-2 (hypervariable segment) control region segments. Identifications using mtDNA are time consuming, expensive and can be very complex, depending on the amount and nature of the material being tested. The main goal of this work is to develop a less labour-intensive and less expensive screening method for mtDNA analysis, in order to aid in the exclusion of non-matching samples and as a presumptive test prior to final confirmatory DNA sequencing. We have selected 14 highly discriminatory single nucleotide polymorphisms (SNPs) based on simulations performed by Salas and Amigo (2010) to be typed using SNaPShot(TM) (Applied Biosystems, Foster City, CA, USA). The assay was validated by typing more than 100 HVS-1/HVS-2 sequenced samples. No differences were observed between the SNP typing and DNA sequencing when results were compared, with the exception of allelic dropouts observed in a few haplotypes. Haplotype diversity simulations were performed using 172 mtDNA sequences representative of the Brazilian population and a score of 0.9794 was obtained when the 14 SNPs were used, showing that the theoretical prediction approach for the selection of highly discriminatory SNPs suggested by Salas and Amigo (2010) was confirmed in the population studied. As the main goal of the work is to develop a screening assay to skip the sequencing of all samples in a particular case, a pair-wise comparison of the sequences was done using the selected SNPs. When both HVS-1/HVS-2 SNPs were used for simulations, at least two differences were observed in 93.2% of the comparisons performed. The assay was validated with casework samples. Results show that the method is straightforward and can be used for exclusionary purposes, saving time and laboratory resources. The assay confirms the theoretic prediction suggested by Salas and Amigo (2010). All forensic advantages, such as high sensitivity and power of discrimination, as also the disadvantages, such as the occurrence of allele dropouts, are discussed throughout the article. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Genetic diversity and classification of Tibetan yak populations based on the mtDNA COIII gene.

    PubMed

    Song, Q Q; Chai, Z X; Xin, J W; Zhao, S J; Ji, Q M; Zhang, C F; Ma, Z J; Zhong, J C

    2015-03-13

    To determine the level of genetic diversity and phylogenetic relationships among Tibetan yak populations, the mitochondrial DNA cytochrome c oxidase subunit 3 (COIII) genes of 378 yak individuals from 16 populations were analyzed in this study. The results showed that the length of cytochrome c oxidase subunit 3 gene sequences was 781 bp, with nucleotide frequencies of 29.2, 29.4, 26.1, and 15.2% for T, C, A, and G, respectively. A total of 26 haplotypes were identified, with 69 polymorphic sites, including 11 parsimony-informative sites and 58 single-nucleotide polymorphism sites. No deletions/insertions were found in sequence comparison, indicating that nucleotide mutation types were transitions and transversions. Haplotype and nucleotide diversities were 0.562 and 0.00138, respectively, indicating a high level of genetic diversity in Tibetan yak populations. Phylogenetic relationship analysis indicated that Tibetan yak populations are divided into 2 groups.

  18. The case for the continuing use of the revised Cambridge Reference Sequence (rCRS) and the standardization of notation in human mitochondrial DNA studies.

    PubMed

    Bandelt, Hans-Jürgen; Kloss-Brandstätter, Anita; Richards, Martin B; Yao, Yong-Gang; Logan, Ian

    2014-02-01

    Since the determination in 1981 of the sequence of the human mitochondrial DNA (mtDNA) genome, the Cambridge Reference Sequence (CRS), has been used as the reference sequence to annotate mtDNA in molecular anthropology, forensic science and medical genetics. The CRS was eventually upgraded to the revised version (rCRS) in 1999. This reference sequence is a convenient device for recording mtDNA variation, although it has often been misunderstood as a wild-type (WT) or consensus sequence by medical geneticists. Recently, there has been a proposal to replace the rCRS with the so-called Reconstructed Sapiens Reference Sequence (RSRS). Even if it had been estimated accurately, the RSRS would be a cumbersome substitute for the rCRS, as the new proposal fuses--and thus confuses--the two distinct concepts of ancestral lineage and reference point for human mtDNA. Instead, we prefer to maintain the rCRS and to report mtDNA profiles by employing the hitherto predominant circumfix style. Tree diagrams could display mutations by using either the profile notation (in conventional short forms where appropriate) or in a root-upwards way with two suffixes indicating ancestral and derived nucleotides. This would guard against misunderstandings about reporting mtDNA variation. It is therefore neither necessary nor sensible to change the present reference sequence, the rCRS, in any way. The proposed switch to RSRS would inevitably lead to notational chaos, mistakes and misinterpretations.

  19. Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM)☆

    PubMed Central

    Parson, Walther; Strobl, Christina; Huber, Gabriela; Zimmermann, Bettina; Gomes, Sibylle M.; Souto, Luis; Fendt, Liane; Delport, Rhena; Langit, Reina; Wootton, Sharon; Lagacé, Robert; Irwin, Jodi

    2013-01-01

    Insights into the human mitochondrial phylogeny have been primarily achieved by sequencing full mitochondrial genomes (mtGenomes). In forensic genetics (partial) mtGenome information can be used to assign haplotypes to their phylogenetic backgrounds, which may, in turn, have characteristic geographic distributions that would offer useful information in a forensic case. In addition and perhaps even more relevant in the forensic context, haplogroup-specific patterns of mutations form the basis for quality control of mtDNA sequences. The current method for establishing (partial) mtDNA haplotypes is Sanger-type sequencing (STS), which is laborious, time-consuming, and expensive. With the emergence of Next Generation Sequencing (NGS) technologies, the body of available mtDNA data can potentially be extended much more quickly and cost-efficiently. Customized chemistries, laboratory workflows and data analysis packages could support the community and increase the utility of mtDNA analysis in forensics. We have evaluated the performance of mtGenome sequencing using the Personal Genome Machine (PGM) and compared the resulting haplotypes directly with conventional Sanger-type sequencing. A total of 64 mtGenomes (>1 million bases) were established that yielded high concordance with the corresponding STS haplotypes (<0.02% differences). About two-thirds of the differences were observed in or around homopolymeric sequence stretches. In addition, the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of alignment software would be desirable to facilitate the application of NGS in mtDNA forensic genetics. PMID:23948325

  20. Mitochondrial DNA mutations in single human blood cells.

    PubMed

    Yao, Yong-Gang; Kajigaya, Sachiko; Young, Neal S

    2015-09-01

    Determination mitochondrial DNA (mtDNA) sequences from extremely small amounts of DNA extracted from tissue of limited amounts and/or degraded samples is frequently employed in medical, forensic, and anthropologic studies. Polymerase chain reaction (PCR) amplification followed by DNA cloning is a routine method, especially to examine heteroplasmy of mtDNA mutations. In this review, we compare the mtDNA mutation patterns detected by three different sequencing strategies. Cloning and sequencing methods that are based on PCR amplification of DNA extracted from either single cells or pooled cells yield a high frequency of mutations, partly due to the artifacts introduced by PCR and/or the DNA cloning process. Direct sequencing of PCR product which has been amplified from DNA in individual cells is able to detect the low levels of mtDNA mutations present within a cell. We further summarize the findings in our recent studies that utilized this single cell method to assay mtDNA mutation patterns in different human blood cells. Our data show that many somatic mutations observed in the end-stage differentiated cells are found in hematopoietic stem cells (HSCs) and progenitors within the CD34(+) cell compartment. Accumulation of mtDNA variations in the individual CD34+ cells is affected by both aging and family genetic background. Granulocytes harbor higher numbers of mutations compared with the other cells, such as CD34(+) cells and lymphocytes. Serial assessment of mtDNA mutations in a population of single CD34(+) cells obtained from the same donor over time suggests stability of some somatic mutations. CD34(+) cell clones from a donor marked by specific mtDNA somatic mutations can be found in the recipient after transplantation. The significance of these findings is discussed in terms of the lineage tracing of HSCs, aging effect on accumulation of mtDNA mutations and the usage of mtDNA sequence in forensic identification. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Optimized mtDNA Control Region Primer Extension Capture Analysis for Forensically Relevant Samples and Highly Compromised mtDNA of Different Age and Origin

    PubMed Central

    Eduardoff, Mayra; Xavier, Catarina; Strobl, Christina; Casas-Vargas, Andrea; Parson, Walther

    2017-01-01

    The analysis of mitochondrial DNA (mtDNA) has proven useful in forensic genetics and ancient DNA (aDNA) studies, where specimens are often highly compromised and DNA quality and quantity are low. In forensic genetics, the mtDNA control region (CR) is commonly sequenced using established Sanger-type Sequencing (STS) protocols involving fragment sizes down to approximately 150 base pairs (bp). Recent developments include Massively Parallel Sequencing (MPS) of (multiplex) PCR-generated libraries using the same amplicon sizes. Molecular genetic studies on archaeological remains that harbor more degraded aDNA have pioneered alternative approaches to target mtDNA, such as capture hybridization and primer extension capture (PEC) methods followed by MPS. These assays target smaller mtDNA fragment sizes (down to 50 bp or less), and have proven to be substantially more successful in obtaining useful mtDNA sequences from these samples compared to electrophoretic methods. Here, we present the modification and optimization of a PEC method, earlier developed for sequencing the Neanderthal mitochondrial genome, with forensic applications in mind. Our approach was designed for a more sensitive enrichment of the mtDNA CR in a single tube assay and short laboratory turnaround times, thus complying with forensic practices. We characterized the method using sheared, high quantity mtDNA (six samples), and tested challenging forensic samples (n = 2) as well as compromised solid tissue samples (n = 15) up to 8 kyrs of age. The PEC MPS method produced reliable and plausible mtDNA haplotypes that were useful in the forensic context. It yielded plausible data in samples that did not provide results with STS and other MPS techniques. We addressed the issue of contamination by including four generations of negative controls, and discuss the results in the forensic context. We finally offer perspectives for future research to enable the validation and accreditation of the PEC MPS method for final implementation in forensic genetic laboratories. PMID:28934125

  2. Sequence-length variation of mtDNA HVS-I C-stretch in Chinese ethnic groups.

    PubMed

    Chen, Feng; Dang, Yong-hui; Yan, Chun-xia; Liu, Yan-ling; Deng, Ya-jun; Fulton, David J R; Chen, Teng

    2009-10-01

    The purpose of this study was to investigate mitochondrial DNA (mtDNA) hypervariable segment-I (HVS-I) C-stretch variations and explore the significance of these variations in forensic and population genetics studies. The C-stretch sequence variation was studied in 919 unrelated individuals from 8 Chinese ethnic groups using both direct and clone sequencing approaches. Thirty eight C-stretch haplotypes were identified, and some novel and population specific haplotypes were also detected. The C-stretch genetic diversity (GD) values were relatively high, and probability (P) values were low. Additionally, C-stretch length heteroplasmy was observed in approximately 9% of individuals studied. There was a significant correlation (r=-0.961, P<0.01) between the expansion of the cytosine sequence length in the C-stretch of HVS-I and a reduction in the number of upstream adenines. These results indicate that the C-stretch could be a useful genetic maker in forensic identification of Chinese populations. The results from the Fst and dA genetic distance matrix, neighbor-joining tree, and principal component map also suggest that C-stretch could be used as a reliable genetic marker in population genetics.

  3. Mitochondrial Mutations in Subjects with Psychiatric Disorders

    PubMed Central

    Magnan, Christophe; van Oven, Mannis; Baldi, Pierre; Myers, Richard M.; Barchas, Jack D.; Schatzberg, Alan F.; Watson, Stanley J.; Akil, Huda; Bunney, William E.; Vawter, Marquis P.

    2015-01-01

    A considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear genome variants associated with these disorders have produced genome wide significant results but those studies have not directly studied mtDNA variants. The purpose of this study is to investigate, using next generation sequencing, the involvement of mtDNA variation in bipolar disorder, schizophrenia, major depressive disorder, and methamphetamine use. MtDNA extracted from multiple brain regions and blood were sequenced (121 mtDNA samples with an average of 8,800x coverage) and compared to an electronic database containing 26,850 mtDNA genomes. We confirmed novel and rare variants, and confirmed next generation sequencing error hotspots by traditional sequencing and genotyping methods. We observed a significant increase of non-synonymous mutations found in individuals with schizophrenia. Novel and rare non-synonymous mutations were found in psychiatric cases in mtDNA genes: ND6, ATP6, CYTB, and ND2. We also observed mtDNA heteroplasmy in brain at a locus previously associated with schizophrenia (T16519C). Large differences in heteroplasmy levels across brain regions within subjects suggest that somatic mutations accumulate differentially in brain regions. Finally, multiplasmy, a heteroplasmic measure of repeat length, was observed in brain from selective cases at a higher frequency than controls. These results offer support for increased rates of mtDNA substitutions in schizophrenia shown in our prior results. The variable levels of heteroplasmic/multiplasmic somatic mutations that occur in brain may be indicators of genetic instability in mtDNA. PMID:26011537

  4. Mitochondrial sequence analysis for forensic identification using pyrosequencing technology.

    PubMed

    Andréasson, H; Asp, A; Alderborn, A; Gyllensten, U; Allen, M

    2002-01-01

    Over recent years, requests for mtDNA analysis in the field of forensic medicine have notably increased, and the results of such analyses have proved to be very useful in forensic cases where nuclear DNA analysis cannot be performed. Traditionally, mtDNA has been analyzed by DNA sequencing of the two hypervariable regions, HVI and HVII, in the D-loop. DNA sequence analysis using the conventional Sanger sequencing is very robust but time consuming and labor intensive. By contrast, mtDNA analysis based on the pyrosequencing technology provides fast and accurate results from the human mtDNA present in many types of evidence materials in forensic casework. The assay has been developed to determine polymorphic sites in the mitochondrial D-loop as well as the coding region to further increase the discrimination power of mtDNA analysis. The pyrosequencing technology for analysis of mtDNA polymorphisms has been tested with regard to sensitivity, reproducibility, and success rate when applied to control samples and actual casework materials. The results show that the method is very accurate and sensitive; the results are easily interpreted and provide a high success rate on casework samples. The panel of pyrosequencing reactions for the mtDNA polymorphisms were chosen to result in an optimal discrimination power in relation to the number of bases determined.

  5. Classification of European Mtdnas from an Analysis of Three European Populations

    PubMed Central

    Torroni, A.; Huoponen, K.; Francalacci, P.; Petrozzi, M.; Morelli, L.; Scozzari, R.; Obinu, D.; Savontaus, M. L.; Wallace, D. C.

    1996-01-01

    Mitochondrial DNA (mtDNA) sequence variation was examined in Finns, Swedes and Tuscans by PCR amplification and restriction analysis. About 99% of the mtDNAs were subsumed within 10 mtDNA haplogroups (H, I, J, K, M, T, U, V, W, and X) suggesting that the identified haplogroups could encompass virtually all European mtDNAs. Because both hypervariable segments of the mtDNA control region were previously sequenced in the Tuscan samples, the mtDNA haplogroups and control region sequences could be compared. Using a combination of haplogroup-specific restriction site changes and control region nucleotide substitutions, the distribution of the haplogroups was surveyed through the published restriction site polymorphism and control region sequence data of Caucasoids. This supported the conclusion that most haplogroups observed in Europe are Caucasoid-specific, and that at least some of them occur at varying frequencies in different Caucasoid populations. The classification of almost all European mtDNA variation in a number of well defined haplogroups could provide additional insights about the origin and relationships of Caucasoid populations and the process of human colonization of Europe, and is valuable for the definition of the role played by mtDNA backgrounds in the expression of pathological mtDNA mutations PMID:8978068

  6. Genetic characterization of Neotropical Jabiru Storks: Insights for conservation

    USGS Publications Warehouse

    Lopes, I.F.; Haig, S.M.; Lama, S.N.D.

    2010-01-01

    Jabiru Stork (Jabiru mycteria is listed under Appendix I of CITES and considered threatened in Central America. The first population genetic analysis of Jabiru Storks was carried out using mitochondrial DNA (mtDNA) control region sequences (520 bp) and five heterologous microsatellite loci. Samples were collected from the field (N = 49) and museum skins (N = 22) in Central (mainly Belize, Nicaragua and Costa Rica) and South America (Colombia, Venezuela, Peru and Brazil). A decline of mtDNA diversity was observed in comparisons between past (N = 20) and present (N = 40) samples collected in Central America and northern South America. Similar levels of microsatellite loci diversity were observed among contemporary samples. Lower levels of mtDNA variability were observed in samples from Central America and northern South America when compared to the Brazilian Pantanal region. Significant levels of genetic differentiation were found between contemporary locations sampled, whereas non-significant results were observed for historic samples. The non-geographic association of haplotypes observed at the cladograms and the recent divergence times estimated between locations are indicative of an evolutionary history of a large population size with limited population structure. Reconnection of populations via increased gene flow, particularly in Central America, is recommended if genetic structure and status are to be restored.

  7. Geography has a greater effect than Wolbachia infection on population genetic structure in the spider mite, Tetranychus pueraricola.

    PubMed

    Chen, Y-T; Zhang, Y-K; Du, W-X; Jin, P-Y; Hong, X-Y

    2016-10-01

    Wolbachia is an intracellular symbiotic bacterium that infects various spider mite species and is associated with alterations in host reproduction, which indicates the potential role in mite evolution. However, studies of Wolbachia infections in the spider mite Tetranychus pueraricola, a major agricultural pest, are limited. Here, we used multilocus sequence typing to determine Wolbachia infection status and examined the relationship between Wolbachia infection status and mitochondrial diversity in T. pueraricola from 12 populations in China. The prevalence of Wolbachia ranged from 2.8 to 50%, and three strains (wTpue1, wTpue2, and wTpue3) were identified. We also found double infections (wTpue1 + wTpue3) within the same individuals. Furthermore, the wTpue1 strain caused weak cytoplasmic incompatibility (CI) (egg hatchability ~55%), whereas another widespread strain, wTpue3, did not induce CI. There was no reduction in mitochondrial DNA (mtDNA) or nuclear DNA diversity among infected individuals, and mtDNA haplotypes did not correspond to specific Wolbachia strains. Phylogenetic analysis and analysis of molecular variance revealed that the distribution of mtDNA and nuclear DNA haplotypes were significantly associated with geography. These findings indicate that Wolbachia infection in T. pueraricola is complex, but T. pueraricola genetic differentiation likely resulted from substantial geographic isolation.

  8. Recent Southeast Asian domestication and Lapita dispersal of sacred male pseudohermaphroditic “tuskers” and hairless pigs of Vanuatu

    PubMed Central

    Lum, J. Koji; McIntyre, James K.; Greger, Douglas L.; Huffman, Kirk W.; Vilar, Miguel G.

    2006-01-01

    Recent analyses of global pig populations revealed strict correlations between mtDNA phylogenies and geographic locations. An exception was the monophyletic “Pacific clade” (PC) of pigs not previously linked to any specific location. We examined mtDNA sequences of two varieties of Vanuatu sacred pigs, the male pseudohermaphroditic Narave from the island of Malo (n = 9) and the hairless Kapia from the island of Tanna (n = 9), as well as control pigs (n = 21) from the islands of Malo, Tanna, and Epi and compared them with GenBank sequences to determine (i) the distribution of PC and introduced domestic lineages within Vanuatu, (ii) relationship between the Narave and Kapia, and (iii) origin of the PC. All of the Narave share two PC mtDNA sequences, one of which matches the sequence of a Narave collected in 1927, consistent with an unbroken maternal descent of these intersex pigs from the original pigs brought to Vanuatu 3,200 years ago. One-third of the Kapia share a single PC lineage also found in the Narave. The remaining Kapia lineages are associated with recently introduced, globally distributed domestic breeds. The predominant Narave lineage is also shared with two wild boars from Vietnam. These data suggest that PC pigs were recently domesticated within Southeast Asia and dispersed during the human colonization of Remote Oceania associated with the Lapita cultural complex. More extensive sampling of Southeast Asian wild boar diversity may refine the location of Pacific pig domestication and potentially the proximate homeland of the Lapita cultural complex. PMID:17088556

  9. Targeted exome sequencing of suspected mitochondrial disorders

    PubMed Central

    Lieber, Daniel S.; Calvo, Sarah E.; Shanahan, Kristy; Slate, Nancy G.; Liu, Shangtao; Hershman, Steven G.; Gold, Nina B.; Chapman, Brad A.; Thorburn, David R.; Berry, Gerard T.; Schmahmann, Jeremy D.; Borowsky, Mark L.; Mueller, David M.; Sims, Katherine B.

    2013-01-01

    Objective: To evaluate the utility of targeted exome sequencing for the molecular diagnosis of mitochondrial disorders, which exhibit marked phenotypic and genetic heterogeneity. Methods: We considered a diverse set of 102 patients with suspected mitochondrial disorders based on clinical, biochemical, and/or molecular findings, and whose disease ranged from mild to severe, with varying age at onset. We sequenced the mitochondrial genome (mtDNA) and the exons of 1,598 nuclear-encoded genes implicated in mitochondrial biology, mitochondrial disease, or monogenic disorders with phenotypic overlap. We prioritized variants likely to underlie disease and established molecular diagnoses in accordance with current clinical genetic guidelines. Results: Targeted exome sequencing yielded molecular diagnoses in established disease loci in 22% of cases, including 17 of 18 (94%) with prior molecular diagnoses and 5 of 84 (6%) without. The 5 new diagnoses implicated 2 genes associated with canonical mitochondrial disorders (NDUFV1, POLG2), and 3 genes known to underlie other neurologic disorders (DPYD, KARS, WFS1), underscoring the phenotypic and biochemical overlap with other inborn errors. We prioritized variants in an additional 26 patients, including recessive, X-linked, and mtDNA variants that were enriched 2-fold over background and await further support of pathogenicity. In one case, we modeled patient mutations in yeast to provide evidence that recessive mutations in ATP5A1 can underlie combined respiratory chain deficiency. Conclusion: The results demonstrate that targeted exome sequencing is an effective alternative to the sequential testing of mtDNA and individual nuclear genes as part of the investigation of mitochondrial disease. Our study underscores the ongoing challenge of variant interpretation in the clinical setting. PMID:23596069

  10. More reliable estimates of divergence times in Pan using complete mtDNA sequences and accounting for population structure.

    PubMed

    Stone, Anne C; Battistuzzi, Fabia U; Kubatko, Laura S; Perry, George H; Trudeau, Evan; Lin, Hsiuman; Kumar, Sudhir

    2010-10-27

    Here, we report the sequencing and analysis of eight complete mitochondrial genomes of chimpanzees (Pan troglodytes) from each of the three established subspecies (P. t. troglodytes, P. t. schweinfurthii and P. t. verus) and the proposed fourth subspecies (P. t. ellioti). Our population genetic analyses are consistent with neutral patterns of evolution that have been shaped by demography. The high levels of mtDNA diversity in western chimpanzees are unlike those seen at nuclear loci, which may reflect a demographic history of greater female to male effective population sizes possibly owing to the characteristics of the founding population. By using relaxed-clock methods, we have inferred a timetree of chimpanzee species and subspecies. The absolute divergence times vary based on the methods and calibration used, but relative divergence times show extensive uniformity. Overall, mtDNA produces consistently older times than those known from nuclear markers, a discrepancy that is reduced significantly by explicitly accounting for chimpanzee population structures in time estimation. Assuming the human-chimpanzee split to be between 7 and 5 Ma, chimpanzee time estimates are 2.1-1.5, 1.1-0.76 and 0.25-0.18 Ma for the chimpanzee/bonobo, western/(eastern + central) and eastern/central chimpanzee divergences, respectively.

  11. Mini-midi-mito: adapting the amplification and sequencing strategy of mtDNA to the degradation state of crime scene samples.

    PubMed

    Berger, Cordula; Parson, Walther

    2009-06-01

    The degradation state of some biological traces recovered from the crime scene requires the amplification of very short fragments to attain a useful mitochondrial (mt)DNA sequence. We have previously introduced two mini-multiplex assays that amplify 10 overlapping control region (CR) fragments in two separate multiplex PCRs, which brought successful CR consensus sequences from even highly degraded DNA extracts. This procedure requires a total of 20 sequencing reactions per sample, which is laborious and cost intensive. For only moderately degraded samples that we encounter more frequently with typical mtDNA casework material, we developed two new multiplex assays that use a subset of the mini-amplicon primers but embrace larger fragments (midis) and require only 10 sequencing reactions to build a double-stranded CR consensus sequence. We used a preceding mtDNA quantitation step by real-time PCR with two different target fragments (143 and 283 bp) that roughly correspond to the average fragment sizes of the different multiplex approaches to estimate size-dependent mtDNA quantities and to aid the choice of the appropriate PCR multiplexes with respect to quality of the results and required costs.

  12. Complete mtDNA sequencing reveals mutations m.9185T>C and m.13513G>A in three patients with Leigh syndrome.

    PubMed

    Pelnena, Dita; Burnyte, Birute; Jankevics, Eriks; Lace, Baiba; Dagyte, Evelina; Grigalioniene, Kristina; Utkus, Algirdas; Krumina, Zita; Rozentale, Jolanta; Adomaitiene, Irina; Stavusis, Janis; Pliss, Liana; Inashkina, Inna

    2017-12-12

    The most common mitochondrial disorder in children is Leigh syndrome, which is a progressive and genetically heterogeneous neurodegenerative disorder caused by mutations in nuclear genes or mitochondrial DNA (mtDNA). In the present study, a novel and robust method of complete mtDNA sequencing, which allows amplification of the whole mitochondrial genome, was tested. Complete mtDNA sequencing was performed in a cohort of patients with suspected mitochondrial mutations. Patients from Latvia and Lithuania (n = 92 and n = 57, respectively) referred by clinical geneticists were included. The de novo point mutations m.9185T>C and m.13513G>A, respectively, were detected in two patients with lactic acidosis and neurodegenerative lesions. In one patient with neurodegenerative lesions, the mutation m.9185T>C was identified. These mutations are associated with Leigh syndrome. The present data suggest that full-length mtDNA sequencing is recommended as a supplement to nuclear gene testing and enzymatic assays to enhance mitochondrial disease diagnostics.

  13. Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): A linear DNA molecule encoding a putative DNA-dependent DNA polymerase.

    PubMed

    Shao, Zhiyong; Graf, Shannon; Chaga, Oleg Y; Lavrov, Dennis V

    2006-10-15

    The 16,937-nuceotide sequence of the linear mitochondrial DNA (mt-DNA) molecule of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa) - the first mtDNA sequence from the class Scypozoa and the first sequence of a linear mtDNA from Metazoa - has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs. In addition, two open reading frames of 324 and 969 base pairs in length have been found. The deduced amino-acid sequence of one of them, ORF969, displays extensive sequence similarity with the polymerase [but not the exonuclease] domain of family B DNA polymerases, and this ORF has been tentatively identified as dnab. This is the first report of dnab in animal mtDNA. The genes in A. aurita mtDNA are arranged in two clusters with opposite transcriptional polarities; transcription proceeding toward the ends of the molecule. The determined sequences at the ends of the molecule are nearly identical but inverted and lack any obvious potential secondary structures or telomere-like repeat elements. The acquisition of mitochondrial genomic data for the second class of Cnidaria allows us to reconstruct characteristic features of mitochondrial evolution in this animal phylum.

  14. Cytogenetic and Sequence Analyses of Mitochondrial DNA Insertions in Nuclear Chromosomes of Maize

    PubMed Central

    Lough, Ashley N.; Faries, Kaitlyn M.; Koo, Dal-Hoe; Hussain, Abid; Roark, Leah M.; Langewisch, Tiffany L.; Backes, Teresa; Kremling, Karl A. G.; Jiang, Jiming; Birchler, James A.; Newton, Kathleen J.

    2015-01-01

    The transfer of mitochondrial DNA (mtDNA) into nuclear genomes is a regularly occurring process that has been observed in many species. Few studies, however, have focused on the variation of nuclear-mtDNA sequences (NUMTs) within a species. This study examined mtDNA insertions within chromosomes of a diverse set of Zea mays ssp. mays (maize) inbred lines by the use of fluorescence in situ hybridization. A relatively large NUMT on the long arm of chromosome 9 (9L) was identified at approximately the same position in four inbred lines (B73, M825, HP301, and Oh7B). Further examination of the similarly positioned 9L NUMT in two lines, B73 and M825, indicated that the large size of these sites is due to the presence of a majority of the mitochondrial genome; however, only portions of this NUMT (∼252 kb total) were found in the publically available B73 nuclear sequence for chromosome 9. Fiber-fluorescence in situ hybridization analysis estimated the size of the B73 9L NUMT to be ∼1.8 Mb and revealed that the NUMT is methylated. Two regions of mtDNA (2.4 kb and 3.3 kb) within the 9L NUMT are not present in the B73 mitochondrial NB genome; however, these 2.4-kb and 3.3-kb segments are present in other Zea mitochondrial genomes, including that of Zea mays ssp. parviglumis, a progenitor of domesticated maize. PMID:26333837

  15. Phylogeographic Differentiation of Mitochondrial DNA in Han Chinese

    PubMed Central

    Yao, Yong-Gang; Kong, Qing-Peng; Bandelt, Hans-Jürgen; Kivisild, Toomas; Zhang, Ya-Ping

    2002-01-01

    To characterize the mitochondrial DNA (mtDNA) variation in Han Chinese from several provinces of China, we have sequenced the two hypervariable segments of the control region and the segment spanning nucleotide positions 10171–10659 of the coding region, and we have identified a number of specific coding-region mutations by direct sequencing or restriction-fragment–length–polymorphism tests. This allows us to define new haplogroups (clades of the mtDNA phylogeny) and to dissect the Han mtDNA pool on a phylogenetic basis, which is a prerequisite for any fine-grained phylogeographic analysis, the interpretation of ancient mtDNA, or future complete mtDNA sequencing efforts. Some of the haplogroups under study differ considerably in frequencies across different provinces. The southernmost provinces show more pronounced contrasts in their regional Han mtDNA pools than the central and northern provinces. These and other features of the geographical distribution of the mtDNA haplogroups observed in the Han Chinese make an initial Paleolithic colonization from south to north plausible but would suggest subsequent migration events in China that mainly proceeded from north to south and east to west. Lumping together all regional Han mtDNA pools into one fictive general mtDNA pool or choosing one or two regional Han populations to represent all Han Chinese is inappropriate for prehistoric considerations as well as for forensic purposes or medical disease studies. PMID:11836649

  16. DNA barcoding applied to ex situ tropical amphibian conservation programme reveals cryptic diversity in captive populations.

    PubMed

    Crawford, Andrew J; Cruz, Catalina; Griffith, Edgardo; Ross, Heidi; Ibáñez, Roberto; Lips, Karen R; Driskell, Amy C; Bermingham, Eldredge; Crump, Paul

    2013-11-01

    Amphibians constitute a diverse yet still incompletely characterized clade of vertebrates, in which new species are still being discovered and described at a high rate. Amphibians are also increasingly endangered, due in part to disease-driven threats of extinctions. As an emergency response, conservationists have begun ex situ assurance colonies for priority species. The abundance of cryptic amphibian diversity, however, may cause problems for ex situ conservation. In this study we used a DNA barcoding approach to survey mitochondrial DNA (mtDNA) variation in captive populations of 10 species of Neotropical amphibians maintained in an ex situ assurance programme at El Valle Amphibian Conservation Center (EVACC) in the Republic of Panama. We combined these mtDNA sequences with genetic data from presumably conspecific wild populations sampled from across Panama, and applied genetic distance-based and character-based analyses to identify cryptic lineages. We found that three of ten species harboured substantial cryptic genetic diversity within EVACC, and an additional three species harboured cryptic diversity among wild populations, but not in captivity. Ex situ conservation efforts focused on amphibians are therefore vulnerable to an incomplete taxonomy leading to misidentification among cryptic species. DNA barcoding may therefore provide a simple, standardized protocol to identify cryptic diversity readily applicable to any amphibian community. © 2012 John Wiley & Sons Ltd.

  17. Reading Mammal Diversity from Flies: The Persistence Period of Amplifiable Mammal mtDNA in Blowfly Guts (Chrysomya megacephala) and a New DNA Mini-Barcode Target.

    PubMed

    Lee, Ping-Shin; Sing, Kong-Wah; Wilson, John-James

    2015-01-01

    Most tropical mammal species are threatened or data-deficient. Data collection is impeded by the traditional monitoring approaches which can be laborious, expensive and struggle to detect cryptic diversity. Monitoring approaches using mammal DNA derived from invertebrates are emerging as cost- and time-effective alternatives. As a step towards development of blowfly-derived DNA as an effective method for mammal monitoring in the biodiversity hotspot of Peninsular Malaysia, our objectives were (i) to determine the persistence period of amplifiable mammal mtDNA in blowfly guts through a laboratory feeding experiment (ii) to design and test primers that can selectively amplify mammal COI DNA mini-barcodes in the presence of high concentrations of blowfly DNA. The persistence period of amplifiable mammal mtDNA in blowfly guts was 24 h to 96 h post-feeding indicating the need for collecting flies within 24 h of capture to detect mammal mtDNA of sufficient quantity and quality. We designed a new primer combination for a COI DNA mini-barcode that did not amplify blowfly DNA and showed 89% amplification success for a dataset of mammals from Peninsular Malaysia. The short (205 bp) DNA mini-barcode could distinguish most mammal species (including separating dark taxa) and is of suitable length for high-throughput sequencing. Our new DNA mini-barcode target and a standardized trapping protocol with retrieval of blowflies every 24 h could point the way forward in the development of blowfly-derived DNA as an effective method for mammal monitoring.

  18. Reading Mammal Diversity from Flies: The Persistence Period of Amplifiable Mammal mtDNA in Blowfly Guts (Chrysomya megacephala) and a New DNA Mini-Barcode Target

    PubMed Central

    Lee, Ping-Shin; Sing, Kong-Wah; Wilson, John-James

    2015-01-01

    Most tropical mammal species are threatened or data-deficient. Data collection is impeded by the traditional monitoring approaches which can be laborious, expensive and struggle to detect cryptic diversity. Monitoring approaches using mammal DNA derived from invertebrates are emerging as cost- and time-effective alternatives. As a step towards development of blowfly-derived DNA as an effective method for mammal monitoring in the biodiversity hotspot of Peninsular Malaysia, our objectives were (i) to determine the persistence period of amplifiable mammal mtDNA in blowfly guts through a laboratory feeding experiment (ii) to design and test primers that can selectively amplify mammal COI DNA mini-barcodes in the presence of high concentrations of blowfly DNA. The persistence period of amplifiable mammal mtDNA in blowfly guts was 24 h to 96 h post-feeding indicating the need for collecting flies within 24 h of capture to detect mammal mtDNA of sufficient quantity and quality. We designed a new primer combination for a COI DNA mini-barcode that did not amplify blowfly DNA and showed 89% amplification success for a dataset of mammals from Peninsular Malaysia. The short (205 bp) DNA mini-barcode could distinguish most mammal species (including separating dark taxa) and is of suitable length for high-throughput sequencing. Our new DNA mini-barcode target and a standardized trapping protocol with retrieval of blowflies every 24 h could point the way forward in the development of blowfly-derived DNA as an effective method for mammal monitoring. PMID:25898278

  19. Genetic variation among the Mapuche Indians from the Patagonian region of Argentina: mitochondrial DNA sequence variation and allele frequencies of several nuclear genes.

    PubMed

    Ginther, C; Corach, D; Penacino, G A; Rey, J A; Carnese, F R; Hutz, M H; Anderson, A; Just, J; Salzano, F M; King, M C

    1993-01-01

    DNA samples from 60 Mapuche Indians, representing 39 maternal lineages, were genetically characterized for (1) nucleotide sequences of the mtDNA control region; (2) presence or absence of a nine base duplication in mtDNA region V; (3) HLA loci DRB1 and DQA1; (4) variation at three nuclear genes with short tandem repeats; and (5) variation at the polymorphic marker D2S44. The genetic profile of the Mapuche population was compared to other Amerinds and to worldwide populations. Two highly polymorphic portions of the mtDNA control region, comprising 650 nucleotides, were amplified by the polymerase chain reaction (PCR) and directly sequenced. The 39 maternal lineages were defined by two or three generation families identified by the Mapuches. These 39 lineages included 19 different mtDNA sequences that could be grouped into four classes. The same classes of sequences appear in other Amerinds from North, Central, and South American populations separated by thousands of miles, suggesting that the origin of the mtDNA patterns predates the migration to the Americas. The mtDNA sequence similarity between Amerind populations suggests that the migration throughout the Americas occurred rapidly relative to the mtDNA mutation rate. HLA DRB1 alleles 1602 and 1402 were frequent among the Mapuches. These alleles also occur at high frequency among other Amerinds in North and South America, but not among Spanish, Chinese or African-American populations. The high frequency of these alleles throughout the Americas, and their specificity to the Americas, supports the hypothesis that Mapuches and other Amerind groups are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Median network analysis of defectively sequenced entire mitochondrial genomes from early and contemporary disease studies.

    PubMed

    Bandelt, Hans-Jürgen; Yao, Yong-Gang; Bravi, Claudio M; Salas, Antonio; Kivisild, Toomas

    2009-03-01

    Sequence analysis of the mitochondrial genome has become a routine method in the study of mitochondrial diseases. Quite often, the sequencing efforts in the search of pathogenic or disease-associated mutations are affected by technical and interpretive problems, caused by sample mix-up, contamination, biochemical problems, incomplete sequencing, misdocumentation and insufficient reference to previously published data. To assess data quality in case studies of mitochondrial diseases, it is recommended to compare any mtDNA sequence under consideration to their phylogenetically closest lineages available in the Web. The median network method has proven useful for visualizing potential problems with the data. We contrast some early reports of complete mtDNA sequences to more recent total mtDNA sequencing efforts in studies of various mitochondrial diseases. We conclude that the quality of complete mtDNA sequences generated in the medical field in the past few years is somewhat unsatisfactory and may even fall behind that of pioneer manual sequencing in the early nineties. Our study provides a paradigm for an a posteriori evaluation of sequence quality and for detection of potential problems with inferring a pathogenic status of a particular mutation.

  1. Large-scale mitochondrial DNA analysis in Southeast Asia reveals evolutionary effects of cultural isolation in the multi-ethnic population of Myanmar.

    PubMed

    Summerer, Monika; Horst, Jürgen; Erhart, Gertraud; Weißensteiner, Hansi; Schönherr, Sebastian; Pacher, Dominic; Forer, Lukas; Horst, David; Manhart, Angelika; Horst, Basil; Sanguansermsri, Torpong; Kloss-Brandstätter, Anita

    2014-01-28

    Myanmar is the largest country in mainland Southeast Asia with a population of 55 million people subdivided into more than 100 ethnic groups. Ruled by changing kingdoms and dynasties and lying on the trade route between India and China, Myanmar was influenced by numerous cultures. Since its independence from British occupation, tensions between the ruling Bamar and ethnic minorities increased. Our aim was to search for genetic footprints of Myanmar's geographic, historic and sociocultural characteristics and to contribute to the picture of human colonization by describing and dating of new mitochondrial DNA (mtDNA) haplogroups. Therefore, we sequenced the mtDNA control region of 327 unrelated donors and the complete mitochondrial genome of 44 selected individuals according to highest quality standards. Phylogenetic analyses of the entire mtDNA genomes uncovered eight new haplogroups and three unclassified basal M-lineages. The multi-ethnic population and the complex history of Myanmar were reflected in its mtDNA heterogeneity. Population genetic analyses of Burmese control region sequences combined with population data from neighboring countries revealed that the Myanmar haplogroup distribution showed a typical Southeast Asian pattern, but also Northeast Asian and Indian influences. The population structure of the extraordinarily diverse Bamar differed from that of the Karen people who displayed signs of genetic isolation. Migration analyses indicated a considerable genetic exchange with an overall positive migration balance from Myanmar to neighboring countries. Age estimates of the newly described haplogroups point to the existence of evolutionary windows where climatic and cultural changes gave rise to mitochondrial haplogroup diversification in Asia.

  2. MtDNA and Y-chromosomal diversity in the Chachapoya, a population from the northeast Peruvian Andes-Amazon divide.

    PubMed

    Guevara, Evelyn K; Palo, Jukka U; Guillén, Sonia; Sajantila, Antti

    2016-11-01

    The ancient Chachapoya were an aggregate of several ethnic groups that shared a common language, religion, and material culture. They inhabited a territory at the juncture of the Andes and the Amazon basin. Their position between those ecozones most likely influenced their genetic composition. We attempted to better understand their population history by assessing the contemporary genetic diversity in the Chachapoya and three of their immediate neighbors (Huancas, Jivaro, and Cajamarca). We inferred signatures of demographic history and genetic affinities, and contrasted the findings with data from other populations on local and continental scales. We studied mitochondrial DNA (mtDNA; hypervariable segment [HVSI and HVSII]) and Y chromosome (23 short tandem repeats (STRs)) marker data in 382 modern individuals. We used Sanger sequencing for mtDNA and a commercially available kit for Y-chromosomal STR typing. The Chachapoya had affinities with various populations of Andean and Amazonian origin. When examining the Native American component, the Chachapoya displayed high levels of genetic diversity. Together with other parameters, for example, large Tajima's D and Fu's Fs, the data indicated no drastic reduction of the population size in the past. The high level of diversity in the Chachapoya, the lack of evidence of drift in the past, and genetic affinities with a broad range of populations in the Americas reflects an intricate population history in the region. The new genetic data from the Chachapoya indeed seems to point to a genetic complexity that is not yet resolved but beginning to be elucidated. Am. J. Hum. Biol. 28:857-867, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Extremely Low Genetic Diversity Indicating the Endangered Status of Ranodon sibiricus (Amphibia: Caudata) and Implications for Phylogeography

    PubMed Central

    Wang, Xiu-Ling; Sun, Jian-Yun; Xue, Yan; Zhang, Peng; Zhou, Hui; Qu, Liang-Hu

    2012-01-01

    Background The Siberian salamander (Ranodon sibiricus), distributed in geographically isolated areas of Central Asia, is an ideal alpine species for studies of conservation and phylogeography. However, there are few data regarding the genetic diversity in R. sibiricus populations. Methodology/Principal Findings We used two genetic markers (mtDNA and microsatellites) to survey all six populations of R. sibiricus in China. Both of the markers revealed extreme genetic uniformity among these populations. There were only three haplotypes in the mtDNA, and the overall nucleotide diversity in the mtDNA was 0.00064, ranging from 0.00000 to 0.00091 for the six populations. Although we recovered 70 sequences containing microsatellite repeats, there were only two loci that displayed polymorphism. We used the approximate Bayesian computation (ABC) method to study the demographic history of the populations. This analysis suggested that the extant populations diverged from the ancestral population approximately 120 years ago and that the historical population size was much larger than the present population size; i.e., R. sibiricus has experienced dramatic population declines. Conclusion/Significance Our findings suggest that the genetic diversity in the R. sibiricus populations is the lowest among all investigated amphibians. We conclude that the isolation of R. sibiricus populations occurred recently and was a result of recent human activity and/or climatic changes. The Pleistocene glaciation oscillations may have facilitated intraspecies genetic homogeneity rather than enhanced divergence. A low genomic evolutionary rate and elevated inbreeding frequency may have also contributed to the low genetic variation observed in this species. Our findings indicate the urgency of implementing a protection plan for this endangered species. PMID:22428037

  4. The Genetic Integrity of the Ex Situ Population of the European Wildcat (Felis silvestris silvestris) Is Seriously Threatened by Introgression from Domestic Cats (Felis silvestris catus)

    PubMed Central

    Witzenberger, Kathrin A.; Hochkirch, Axel

    2014-01-01

    Studies on the genetic diversity and relatedness of zoo populations are crucial for implementing successful breeding programmes. The European wildcat, Felis s. silvestris, is subject to intensive conservation measures, including captive breeding and reintroduction. We here present the first systematic genetic analysis of the captive population of Felis s. silvestris in comparison with a natural wild population. We used microsatellites and mtDNA sequencing to assess genetic diversity, structure and integrity of the ex situ population. Our results show that the ex situ population of the European wildcat is highly structured and that it has a higher genetic diversity than the studied wild population. Some genetic clusters matched the breeding lines of certain zoos or groups of zoos that often exchanged individuals. Two mitochondrial haplotype groups were detected in the in situ populations, one of which was closely related to the most common haplotype found in domestic cats, suggesting past introgression in the wild. Although native haplotypes were also found in the captive population, the majority (68%) of captive individuals shared a common mtDNA haplotype with the domestic cat (Felis s. catus). Only six captive individuals (7.7%) were assigned as wildcats in the STRUCTURE analysis (at K = 2), two of which had domestic cat mtDNA haplotypes and only two captive individuals were assigned as purebred wildcats by NewHybrids. These results suggest that the high genetic diversity of the captive population has been caused by admixture with domestic cats. Therefore, the captive population cannot be recommended for further breeding and reintroduction. PMID:25162450

  5. Assessing the Fidelity of Ancient DNA Sequences Amplified From Nuclear Genes

    PubMed Central

    Binladen, Jonas; Wiuf, Carsten; Gilbert, M. Thomas P.; Bunce, Michael; Barnett, Ross; Larson, Greger; Greenwood, Alex D.; Haile, James; Ho, Simon Y. W.; Hansen, Anders J.; Willerslev, Eske

    2006-01-01

    To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can lead to the generation of artifactual sequences. However, as yet no one has thoroughly investigated the damage spectrum in ancient nuDNA. By comparing clone sequences from 23 fossil specimens, recovered from environments ranging from permafrost to desert, we demonstrate the presence of miscoding lesion damage in both the mtDNA and nuDNA, resulting in insertion of erroneous bases during amplification. Interestingly, no significant differences in the frequency of miscoding lesion damage are recorded between mtDNA and nuDNA despite great differences in cellular copy numbers. For both mtDNA and nuDNA, we find significant positive correlations between total sequence heterogeneity and the rates of type 1 transitions (adenine → guanine and thymine → cytosine) and type 2 transitions (cytosine → thymine and guanine → adenine), respectively. Type 2 transitions are by far the most dominant and increase relative to those of type 1 with damage load. The results suggest that the deamination of cytosine (and 5-methyl cytosine) to uracil (and thymine) is the main cause of miscoding lesions in both ancient mtDNA and nuDNA sequences. We argue that the problems presented by postmortem damage, as well as problems with contamination from exogenous sources of conserved nuclear genes, allelic variation, and the reliance on single nucleotide polymorphisms, call for great caution in studies relying on ancient nuDNA sequences. PMID:16299392

  6. Molecular analysis of a 11 700-year-old rodent midden from the Atacama Desert, Chile

    USGS Publications Warehouse

    Kuch, M.; Rohland, N.; Betancourt, J.L.; Latorre, C.; Steppan, S.; Poinar, H.N.

    2002-01-01

    DNA was extracted from an 11 700-year-old rodent midden from the Atacama Desert, Chile and the chloroplast and animal mitochondrial DNA (mtDNA) gene sequences were analysed to investigate the floral environment surrounding the midden, and the identity of the midden agent. The plant sequences, together with the macroscopic identifications, suggest the presence of 13 plant families and three orders that no longer exist today at the midden locality, and thus point to a much more diverse and humid climate 11 700 years ago. The mtDNA sequences suggest the presence of at least four different vertebrates, which have been putatively identified as a camelid (vicuna), two rodents (Phyllotis and Abrocoma), and a cardinal bird (Passeriformes). To identify the midden agent, DNA was extracted from pooled faecal pellets, three small overlapping fragments of the mitochondrial cytochrome b gene were amplified and multiple clones were sequenced. These results were analysed along with complete cytochrome b sequences for several modern Phyllotis species to place the midden sequence phylogenetically. The results identified the midden agent as belonging to an ancestral P. limatus. Today, P. limatus is not found at the midden locality but it can be found 100 km to the north, indicating at least a small range shift. The more extensive sampling of modern Phyllotis reinforces the suggestion that P. limatus is recently derived from a peripheral isolate.

  7. Phylogenetic analysis of Tibetan mastiffs based on mitochondrial hypervariable region I.

    PubMed

    Ren, Zhanjun; Chen, Huiling; Yang, Xuejiao; Zhang, Chengdong

    2017-03-01

    Recently, the number of Tibetan mastiffs, which is a precious germplasm resource and cultural heritage, is decreasing sharply. Therefore, the genetic diversity of Tibetan mastiffs needs to be studied to clarify its phylogenetics relationships and lay the foundation for resource protection, rational development and utilization of Tibetan mastiffs. We sequenced hypervariable region I of mitochondrial DNA (mtDNA) of 110 individuals from Tibet region and Gansu province. A total of 12 polymorphic sites were identified which defined eight haplotypes of which H4 and H8 were unique to Tibetan population with H8 being identified first. The haplotype diversity (Hd: 0.808), nucleotide diversity (Pi: 0.603%), the average number of nucleotide difference (K: 3.917) of Tibetan mastiffs from Gansu were higher than those from Tibet region (Hd: 0.794; Pi: 0.589%; K: 3.831), which revealed higher genetic diversity in Gansu. In terms of total population, the genetic variation was low. The median-joining network and phylogenetic tree based on the mtDNA hypervariable region I showed that Tibetan mastiffs originated from grey wolves, as the other domestic dogs and had different history of maternal origin. The mismatch distribution analysis and neutrality tests indicated that Tibetan mastiffs were in genetic equilibrium or in a population decline.

  8. MELAS syndrome associated with both A3243G-tRNALeu mutation and multiple mitochondrial DNA deletions.

    PubMed

    Aharoni, Sharon; Traves, Teres A; Melamed, Eldad; Cohen, Sarit; Silver, Esther Leshinsky

    2010-09-15

    The syndrome of mitochondrial encephalopathy, lactic acidosis, and stroke-like episode (MELAS) is characterized clinically by recurrent focal neurological deficits, epilepsy, and short stature. The phenotypic spectrum is extremely diverse, with multisystemic organ involvement leading to isolated diabetes, deafness, renal tubulopathy, hypertrophic cardiomyopathy, and retinitis pigmentosa. In 80% of cases, the syndrome is associated with an AG transmission mutation (A3243G) in the tRNALeu gene of the mitochondrial DNA (mtDNA). We describe a woman with a unique combination of the MELAS A3243G mutation and multiple mtDNA deletions with normal POLG sequence. The patient presented with diabetes mellitus, sensorineural deafness, short stature, and mental disorientation. All her three children died in early adolescence. 2010 Elsevier B.V. All rights reserved.

  9. The determination of complete human mitochondrial DNA sequences in single cells: implications for the study of somatic mitochondrial DNA point mutations

    PubMed Central

    Taylor, Robert W.; Taylor, Geoffrey A.; Durham, Steve E.; Turnbull, Douglass M.

    2001-01-01

    Studies of single cells have previously shown intracellular clonal expansion of mitochondrial DNA (mtDNA) mutations to levels that can cause a focal cytochrome c oxidase (COX) defect. Whilst techniques are available to study mtDNA rearrangements at the level of the single cell, recent interest has focused on the possible role of somatic mtDNA point mutations in ageing, neurodegenerative disease and cancer. We have therefore developed a method that permits the reliable determination of the entire mtDNA sequence from single cells without amplifying contaminating, nuclear-embedded pseudogenes. Sequencing and PCR–RFLP analyses of individual COX-negative muscle fibres from a patient with a previously described heteroplasmic COX II (T7587C) mutation indicate that mutant loads as low as 30% can be reliably detected by sequencing. This technique will be particularly useful in identifying the mtDNA mutational spectra in age-related COX-negative cells and will increase our understanding of the pathogenetic mechanisms by which they occur. PMID:11470889

  10. Demography or selection on linked cultural traits or genes? Investigating the driver of low mtDNA diversity in the sperm whale using complementary mitochondrial and nuclear genome analyses.

    PubMed

    Morin, Phillip A; Foote, Andrew D; Baker, Charles Scott; Hancock-Hanser, Brittany L; Kaschner, Kristin; Mate, Bruce R; Mesnick, Sarah L; Pease, Victoria L; Rosel, Patricia E; Alexander, Alana

    2018-06-01

    Mitochondrial DNA has been heavily utilized in phylogeography studies for several decades. However, underlying patterns of demography and phylogeography may be misrepresented due to coalescence stochasticity, selection, variation in mutation rates and cultural hitchhiking (linkage of genetic variation to culturally-transmitted traits affecting fitness). Cultural hitchhiking has been suggested as an explanation for low genetic diversity in species with strong social structures, counteracting even high mobility, abundance and limited barriers to dispersal. One such species is the sperm whale, which shows very limited phylogeographic structure and low mtDNA diversity despite a worldwide distribution and large population. Here, we use analyses of 175 globally distributed mitogenomes and three nuclear genomes to evaluate hypotheses of a population bottleneck/expansion vs. a selective sweep due to cultural hitchhiking or selection on mtDNA as the mechanism contributing to low worldwide mitochondrial diversity in sperm whales. In contrast to mtDNA control region (CR) data, mitogenome haplotypes are largely ocean-specific, with only one of 80 shared between the Atlantic and Pacific. Demographic analyses of nuclear genomes suggest low mtDNA diversity is consistent with a global reduction in population size that ended approximately 125,000 years ago, correlated with the Eemian interglacial. Phylogeographic analysis suggests that extant sperm whales descend from maternal lineages endemic to the Pacific during the period of reduced abundance and have subsequently colonized the Atlantic several times. Results highlight the apparent impact of past climate change, and suggest selection and hitchhiking are not the sole processes responsible for low mtDNA diversity in this highly social species. © 2018 John Wiley & Sons Ltd.

  11. Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria

    PubMed Central

    Sundararaman, Sesh A.; Liu, Weimin; Keele, Brandon F.; Learn, Gerald H.; Bittinger, Kyle; Mouacha, Fatima; Ahuka-Mundeke, Steve; Manske, Magnus; Sherrill-Mix, Scott; Li, Yingying; Malenke, Jordan A.; Delaporte, Eric; Laurent, Christian; Mpoudi Ngole, Eitel; Kwiatkowski, Dominic P.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Sharp, Paul M.; Bushman, Frederic D.; Hahn, Beatrice H.

    2013-01-01

    Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome amplification, and 454 sequencing to screen humans from remote areas of southern Cameroon for ape Laverania infections. Among 1,402 blood samples, we found 1,000 to be Plasmodium mitochondrial DNA (mtDNA) positive, all of which contained human parasites as determined by sequencing and/or restriction enzyme digestion. To exclude low-abundance infections, we subjected 514 of these samples to 454 sequencing, targeting a region of the mtDNA genome that distinguishes ape from human Laverania species. Using algorithms specifically developed to differentiate rare Plasmodium variants from 454-sequencing error, we identified single and mixed-species infections with P. falciparum, Plasmodium malariae, and/or Plasmodium ovale. However, none of the human samples contained ape Laverania parasites, including the gorilla precursor of P. falciparum. To characterize further the diversity of P. falciparum in Cameroon, we used single-genome amplification to amplify 3.4-kb mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new variants, all of which clustered with extant P. falciparum, providing further evidence that P. falciparum emerged following a single gorilla-to-human transmission. Thus, unlike Plasmodium knowlesi-infected macaques in southeast Asia, African apes harboring Laverania parasites do not seem to serve as a recurrent source of human malaria, a finding of import to ongoing control and eradication measures. PMID:23569255

  12. Maternal and paternal genetic diversity of ancient sheep in Estonia from the Late Bronze Age to the post-medieval period and comparison with other regions in Eurasia.

    PubMed

    Rannamäe, E; Lõugas, L; Niemi, M; Kantanen, J; Maldre, L; Kadõrova, N; Saarma, U

    2016-04-01

    Sheep were among the first domesticated animals to appear in Estonia in the late Neolithic and became one of the most widespread livestock species in the region from the Late Bronze Age onwards. However, the origin and historical expansion of local sheep populations in Estonia remain poorly understood. Here, we analysed fragments of the hypervariable D-loop of mitochondrial DNA (mtDNA; 213 bp) and the Y-chromosome SRY gene (130 bp) extracted from 31 archaeological sheep bones dated from approximately 800 BC to 1700 AD. The ancient DNA data of sheep from Estonia were compared with ancient sheep from Finland as well as a set of contemporary sheep breeds from across Eurasia in order to place them in a wider phylogeographical context. The analysis shows that: (i) 24 successfully amplified and analysed mtDNA sequences of ancient sheep cluster into two haplogroups, A and B, of which B is predominant; (ii) four of the ancient mtDNA haplotypes are novel; (iii) higher mtDNA haplotype diversity occurred during the Middle Ages as compared to other periods, a fact concordant with the historical context of expanding international trade during the Middle Ages; (iv) the proportion of rarer haplotypes declined during the expansion of sheep from the Near Eastern domestication centre to the northern European region; (v) three male samples showed the presence of the characteristic northern European haplotype, SNP G-oY1 of the Y-chromosome, and represent the earliest occurrence of this haplotype. Our results provide the first insight into the genetic diversity and phylogeographical background of ancient sheep in Estonia and provide basis for further studies on the temporal fluctuations of ancient sheep populations. © 2016 Stichting International Foundation for Animal Genetics.

  13. Analysis of European mtDNAs for recombination.

    PubMed

    Elson, J L; Andrews, R M; Chinnery, P F; Lightowlers, R N; Turnbull, D M; Howell, N

    2001-01-01

    The standard paradigm postulates that the human mitochondrial genome (mtDNA) is strictly maternally inherited and that, consequently, mtDNA lineages are clonal. As a result of mtDNA clonality, phylogenetic and population genetic analyses should therefore be free of the complexities imposed by biparental recombination. The use of mtDNA in analyses of human molecular evolution is contingent, in fact, on clonality, which is also a condition that is critical both for forensic studies and for understanding the transmission of pathogenic mtDNA mutations within families. This paradigm, however, has been challenged recently by Eyre-Walker and colleagues. Using two different tests, they have concluded that recombination has contributed to the distribution of mtDNA polymorphisms within the human population. We have assembled a database that comprises the complete sequences of 64 European and 2 African mtDNAs. When this set of sequences was analyzed using any of three measures of linkage disequilibrium, one of the tests of Eyre-Walker and colleagues, there was no evidence for mtDNA recombination. When their test for excess homoplasies was applied to our set of sequences, only a slight excess of homoplasies was observed. We discuss possible reasons that our results differ from those of Eyre-Walker and colleagues. When we take the various results together, our conclusion is that mtDNA recombination has not been sufficiently frequent during human evolution to overturn the standard paradigm.

  14. The congruence between matrilineal genetic (mtDNA) and geographic diversity of Iranians and the territorial populations

    PubMed Central

    Bahmanimehr, Ardeshir; Eskandari, Ghafar; Nikmanesh, Fatemeh

    2015-01-01

    Objective(s): From the ancient era, emergence of Agriculture in the connecting region of Mesopotamia and the Iranian plateau at the foothills of the Zagros Mountains, made Iranian gene pool as an important source of populating the region. It has differentiated the population spread and different language groups. In order to trace the maternal genetic affinity between Iranians and other populations of the area and to establish the place of Iranians in a broad framework of ethnically and linguistically diverse groups of Middle Eastern and South Asian populations, a comparative study of territorial groups was designed and used in the population statistical analysis. Materials and Methods: Mix of 616 samples was sequenced for complete mtDNA or hyper variable regions in this study. A published dataset of neighboring populations was used as a comparison in the Iranian matrilineal lineage study based on mtDNA haplogroups. Results: Statistical analyses data, demonstrate a close genetic structure of all Iranian populations, thus suggesting their origin from a common maternal ancestral gene pool and show that the diverse maternal genetic structure does not reflect population differentiation in the region in their language. Conclusion: In the aggregate of the eastward spreads of proto-Elamo-Dravidian language from the Southwest region of Iran, the Elam province, a reasonable degree of homogeneity has been observed among Iranians in this study. The approach will facilitate our perception of the more detailed relationship of the ethnic groups living in Iran with the other ancient peoples of the area, testing linguistic hypothesis and population movements. PMID:25810873

  15. Mitochondrial and Y-chromosomal profile of the Kazakh population from East Kazakhstan

    PubMed Central

    Tarlykov, Pavel V.; Zholdybayeva, Elena V.; Akilzhanova, Ainur R.; Nurkina, Zhannur M.; Sabitov, Zhaxylyk M.; Rakhypbekov, Tolebay K.; Ramanculov, Erlan M.

    2013-01-01

    Aim To study the genetic relationship of Kazakhs from East Kazakhstan to other Eurasian populations by examining paternal and maternal DNA lineages. Methods Whole blood samples were collected in 2010 from 160 unrelated healthy Kazakhs residing in East Kazakhstan. Genomic DNA was extracted with Wizard® genomic DNA Purification Kit. Nucleotide sequence of hypervariable segment I of mitochondrial DNA (mtDNA) was determined and analyzed. Seventeen Y-short tandem repeat (STR) loci were studied in 67 samples with the AmpFiSTR Y-filer PCR Amplification Kit. In addition, mtDNA data for 2701 individuals and Y-STR data for 677 individuals were retrieved from the literature for comparison. Results There was a high degree of genetic differentiation on the level of mitochondrial DNA. The majority of maternal lineages belonged to haplogroups common in Central Asia. In contrast, Y-STR data showed very low genetic diversity, with the relative frequency of the predominant haplotype of 0.612. Conclusion The results revealed different migration patterns in the population sample, showing there had been more migration among women. mtDNA genetic diversity in this population was equivalent to that in other Central Asian populations. Genetic evidence suggests the existence of a single paternal founder lineage in the population of East Kazakhstan, which is consistent with verbal genealogical data of the local tribes. PMID:23444242

  16. Forensic strategy to ensure the quality of sequencing data of mitochondrial DNA in highly degraded samples.

    PubMed

    Adachi, Noboru; Umetsu, Kazuo; Shojo, Hideki

    2014-01-01

    Mitochondrial DNA (mtDNA) is widely used for DNA analysis of highly degraded samples because of its polymorphic nature and high number of copies in a cell. However, as endogenous mtDNA in deteriorated samples is scarce and highly fragmented, it is not easy to obtain reliable data. In the current study, we report the risks of direct sequencing mtDNA in highly degraded material, and suggest a strategy to ensure the quality of sequencing data. It was observed that direct sequencing data of the hypervariable segment (HVS) 1 by using primer sets that generate an amplicon of 407 bp (long-primer sets) was different from results obtained by using newly designed primer sets that produce an amplicon of 120-139 bp (mini-primer sets). The data aligned with the results of mini-primer sets analysis in an amplicon length-dependent manner; the shorter the amplicon, the more evident the endogenous sequence became. Coding region analysis using multiplex amplified product-length polymorphisms revealed the incongruence of single nucleotide polymorphisms between the coding region and HVS 1 caused by contamination with exogenous mtDNA. Although the sequencing data obtained using long-primer sets turned out to be erroneous, it was unambiguous and reproducible. These findings suggest that PCR primers that produce amplicons shorter than those currently recognized should be used for mtDNA analysis in highly degraded samples. Haplogroup motif analysis of the coding region and HVS should also be performed to improve the reliability of forensic mtDNA data. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Comparison of mitochondrial DNA control region sequence and microsatellite DNA analyses in estimating population structure and gene flow rates in Atlantic sturgeon Acipenser oxyrinchus

    USGS Publications Warehouse

    Wirgin, I.; Waldman, J.; Stabile, J.; Lubinski, B.; King, T.

    2002-01-01

    Atlantic sturgeon Acipenser oxyrinchus is large, long-lived, and anadromous with subspecies distributed along the Atlantic (A. oxyrinchus oxyrinchus) and Gulf of Mexico (A. o. desotoi) coasts of North America. Although it is not certain if extirpation of some population units has occurred, because of anthropogenic influences abundances of all populations are low compared with historical levels. Informed management of A. oxyrinchus demands a detailed knowledge of its population structure, levels of genetic diversity, and likelihood to home to natal rivers. We compared the use of mitochondrial DNA (mtDNA) control region sequence and microsatellite nuclear DNA (nDNA) analyses in identifying the stock structure and homing fidelity of Atlantic and Gulf coast populations of A. oxyrinchus. The approaches were concordant in that they revealed moderate to high levels of genetic diversity and suggested that populations of Atlantic sturgeon are highly structured. At least six genetically distinct management units were detected using the two approaches among the rivers surveyed. Mitochondrial DNA sequences revealed a significant cline in haplotype diversity along the Atlantic coast with monomorphism observed in Canadian populations. High levels of nDNA diversity were also observed among populations along the Atlantic coast, including the two Canadian populations, probably resulting from the more rapid rate of mutational and evolutionary change at microsatellite loci. Estimates of gene flow among populations were similar between both approaches with the exception that because of mtDNA monomorphism in Canadian populations, gene flow estimates between them were unobtainable. Analyses of both genomes provided high resolution and confidence in characterizing the population structure of Atlantic sturgeon. Microsatellite analysis was particularly informative in delineating population structure in rivers that were recently glaciated and may prove diagnostic in rivers that are geographically proximal along the south Atlantic coast of the US.

  18. Extensive genetic differentiation detected within a model marsupial, the tammar wallaby (Notamacropus eugenii)

    PubMed Central

    Miller, Emily J.; Neaves, Linda E.; Zenger, Kyall R.; Herbert, Catherine A.

    2017-01-01

    The tammar wallaby (Notamacropus eugenii) is one of the most intensively studied of all macropodids and was the first Australasian marsupial to have its genome sequenced. However, comparatively little is known about genetic diversity and differentiation amongst the morphologically distinct allopatric populations of tammar wallabies found in Western (WA) and South Australia (SA). Here we compare autosomal and Y-linked microsatellite genotypes, as well as sequence data (~600 bp) from the mitochondrial DNA (mtDNA) control region (CR) in tammar wallabies from across its distribution. Levels of diversity at autosomal microsatellite loci were typically high in the WA mainland and Kangaroo Island (SA) populations (A = 8.9–10.6; He = 0.77–0.78) but significantly reduced in other endemic island populations (A = 3.8–4.1; He = 0.41–0.48). Autosomal and Y-linked microsatellite loci revealed a pattern of significant differentiation amongst populations, especially between SA and WA. The Kangaroo Island and introduced New Zealand population showed limited differentiation. Multiple divergent mtDNA CR haplotypes were identified within both SA and WA populations. The CR haplotypes of tammar wallabies from SA and WA show reciprocal monophyly and are highly divergent (14.5%), with levels of sequence divergence more typical of different species. Within WA tammar wallabies, island populations each have unique clusters of highly related CR haplotypes and each is most closely related to different WA mainland haplotypes. Y-linked microsatellite haplotypes show a similar pattern of divergence although levels of diversity are lower. In light of these differences, we suggest that two subspecies of tammar wallaby be recognized; Notamacropus eugenii eugenii in SA and N. eugenii derbianus in WA. The extensive neutral genetic diversity and inter-population differentiation identified within tammar wallabies should further increase the species value and usefulness as a model organism. PMID:28257440

  19. Uniparental genetic markers in South Amerindians

    PubMed Central

    Bisso-Machado, Rafael; Bortolini, Maria Cátira; Salzano, Francisco Mauro

    2012-01-01

    A comprehensive review of uniparental systems in South Amerindians was undertaken. Variability in the Y-chromosome haplogroups were assessed in 68 populations and 1,814 individuals whereas that of Y-STR markers was assessed in 29 populations and 590 subjects. Variability in the mitochondrial DNA (mtDNA) haplogroup was examined in 108 populations and 6,697 persons, and sequencing studies used either the complete mtDNA genome or the highly variable segments 1 and 2. The diversity of the markers made it difficult to establish a general picture of Y-chromosome variability in the populations studied. However, haplogroup Q1a3a* was almost always the most prevalent whereas Q1a3* occurred equally in all regions, which suggested its prevalence among the early colonizers. The STR allele frequencies were used to derive a possible ancient Native American Q-clade chromosome haplotype and five of six STR loci showed significant geographic variation. Geographic and linguistic factors moderately influenced the mtDNA distributions (6% and 7%, respectively) and mtDNA haplogroups A and D correlated positively and negatively, respectively, with latitude. The data analyzed here provide rich material for understanding the biological history of South Amerindians and can serve as a basis for comparative studies involving other types of data, such as cultural data. PMID:22888284

  20. Polynesian genetic affinities with Southeast Asian populations as identified by mtDNA analysis.

    PubMed Central

    Melton, T; Peterson, R; Redd, A J; Saha, N; Sofro, A S; Martinson, J; Stoneking, M

    1995-01-01

    Polynesian genetic affinities to populations of Asia were studied using mtDNA markers. A total of 1,037 individuals from 12 populations were screened for a 9-bp deletion in the intergenic region between the COII and tRNA(Lys) genes that approaches fixation in Polynesians. Sequence-specific oligonucleotide probes that identify specific mtDNA control region nucleotide substitutions were used to describe variation in individuals with the 9-bp deletion. The 9-bp deletion was not observed in northern Indians, Bangladeshis, or Pakistanis but was seen at low to moderate frequencies in the nine other Southeast Asian populations. Three substitutions in the control region at positions 16217, 16247, and 16261 have previously been observed at high frequency in Polynesian mtDNAs; this "Polynesian motif" was observed in 20% of east Indonesians with the 9-bp deletion but was observed in only one additional individual. mtDNA types related to the Polynesian motif are highest in frequency in the corridor from Taiwan south through the Philippines and east Indonesia, and the highest diversity for these types is in Taiwan. These results are consistent with linguistic evidence of a Taiwanese origin for the proto-Polynesian expansion, which spread throughout Oceania by way of Indonesia. PMID:7668267

  1. Genetic diversity and differentiation in Prunus species (Rosaceae) using chloroplast and mitochondrial DNA CAPS markers.

    PubMed

    Ben Mustapha, S; Ben Tamarzizt, H; Baraket, G; Abdallah, D; Salhi Hannachi, A

    2015-04-27

    Chloroplast (cpDNA) and mitochondrial DNA (mtDNA) were analyzed to establish genetic relationships among Tunisian plum cultivars using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) technique. Two mtDNA regions (nad 1 b/c and nad 4 1/2) and a cpDNA region (trnL-trnF) were amplified and digested using restriction enzymes. Seventy and six polymorphic sites were revealed in cpDNA and mtDNA, respectively. As a consequence, cpDNA appears to be more polymorphic than mtDNA. The unweighted pair group method with arithmetic mean (UPGMA) dendrogram showed that accessions were distributed independently of their geographical origin, and introduced and local cultivars appear to be closely related. Both UPGMA and principal component analysis grouped Tunisian plum accessions into similar clusters. The analysis of the pooled sequences allowed the detection of 17 chlorotypes and 12 mitotypes. The unique haplotypes detected for cultivars are valuable for management and preservation of the plum local resources. From this study, PCR-RFLP analysis appears to be a useful approach to detect and identify cytoplasmic variation in plum trees. Our results also provide useful information for the management of genetic resources and to establish a program to improve the genetic resources available for plums.

  2. Mitochondrial DNA variant at HVI region as a candidate of genetic markers of type 2 diabetes

    NASA Astrophysics Data System (ADS)

    Gumilar, Gun Gun; Purnamasari, Yunita; Setiadi, Rahmat

    2016-02-01

    Mitochondrial DNA (mtDNA) is maternally inherited. mtDNA mutations which can contribute to the excess of maternal inheritance of type 2 diabetes. Due to the high mutation rate, one of the areas in the mtDNA that is often associated with the disease is the hypervariable region I (HVI). Therefore, this study was conducted to determine the genetic variants of human mtDNA HVI that related to the type 2 diabetes in four samples that were taken from four generations in one lineage. Steps being taken include the lyses of hair follicles, amplification of mtDNA HVI fragment using Polymerase Chain Reaction (PCR), detection of PCR products through agarose gel electrophoresis technique, the measurement of the concentration of mtDNA using UV-Vis spectrophotometer, determination of the nucleotide sequence via direct sequencing method and analysis of the sequencing results using SeqMan DNASTAR program. Based on the comparison between nucleotide sequence of samples and revised Cambridge Reference Sequence (rCRS) obtained six same mutations that these are C16147T, T16189C, C16193del, T16127C, A16235G, and A16293C. After comparing the data obtained to the secondary data from Mitomap and NCBI, it were found that two mutations, T16189C and T16217C, become candidates as genetic markers of type 2 diabetes even the mutations were found also in the generations of undiagnosed type 2 diabetes. The results of this study are expected to give contribution to the collection of human mtDNA database of genetic variants that associated to metabolic diseases, so that in the future it can be utilized in various fields, especially in medicine.

  3. Analysis of a library of macaque nuclear mitochondrial sequences confirms macaque origin of divergent sequences from old oral polio vaccine samples.

    PubMed

    Vartanian, Jean-Pierre; Wain-Hobson, Simon

    2002-05-28

    Nuclear mtDNA sequences (numts) are a widespread family of paralogs evolving as pseudogenes in chromosomal DNA [Zhang, D. E. & Hewitt, G. M. (1996) TREE 11, 247-251 and Bensasson, D., Zhang, D., Hartl, D. L. & Hewitt, G. M. (2001) TREE 16, 314-321]. When trying to identify the species origin of an unknown DNA sample by way of an mtDNA locus, PCR may amplify both mtDNA and numts. Indeed, occasionally numts dominate confounding attempts at species identification [Bensasson, D., Zhang, D. X. & Hewitt, G. M. (2000) Mol. Biol. Evol. 17, 406-415; Wallace, D. C., et al. (1997) Proc. Natl. Acad. Sci. USA 94, 14900-14905]. Rhesus and cynomolgus macaque mtDNA haplotypes were identified in a study of oral polio vaccine samples dating from the late 1950s [Blancou, P., et al. (2001) Nature (London) 410, 1045-1046]. They were accompanied by a number of putative numts. To confirm that these putative numts were of macaque origin, a library of numts corresponding to a small segment of 12S rDNA locus has been made by using DNA from a Chinese rhesus macaque. A broad distribution was found with up to 30% sequence variation. Phylogenetic analysis showed that the evolutionary trajectories of numts and bona fide mtDNA haplotypes do not overlap with the signal exception of the host species; mtDNA fragments are continually crossing over into the germ line. In the case of divergent mtDNA sequences from old oral polio vaccine samples [Blancou, P., et al. (2001) Nature (London) 410, 1045-1046], all were closely related to numts in the Chinese macaque library.

  4. Reconciling Apparent Conflicts between Mitochondrial and Nuclear Phylogenies in African Elephants

    PubMed Central

    Georgiadis, Nicholas J.; David, Victor A.; Zhao, Kai; Stephens, Robert M.; Kolokotronis, Sergios-Orestis; Roca, Alfred L.

    2011-01-01

    Conservation strategies for African elephants would be advanced by resolution of conflicting claims that they comprise one, two, three or four taxonomic groups, and by development of genetic markers that establish more incisively the provenance of confiscated ivory. We addressed these related issues by genotyping 555 elephants from across Africa with microsatellite markers, developing a method to identify those loci most effective at geographic assignment of elephants (or their ivory), and conducting novel analyses of continent-wide datasets of mitochondrial DNA. Results showed that nuclear genetic diversity was partitioned into two clusters, corresponding to African forest elephants (99.5% Cluster-1) and African savanna elephants (99.4% Cluster-2). Hybrid individuals were rare. In a comparison of basal forest “F” and savanna “S” mtDNA clade distributions to nuclear DNA partitions, forest elephant nuclear genotypes occurred only in populations in which S clade mtDNA was absent, suggesting that nuclear partitioning corresponds to the presence or absence of S clade mtDNA. We reanalyzed African elephant mtDNA sequences from 81 locales spanning the continent and discovered that S clade mtDNA was completely absent among elephants at all 30 sampled tropical forest locales. The distribution of savanna nuclear DNA and S clade mtDNA corresponded closely to range boundaries traditionally ascribed to the savanna elephant species based on habitat and morphology. Further, a reanalysis of nuclear genetic assignment results suggested that West African elephants do not comprise a distinct third species. Finally, we show that some DNA markers will be more useful than others for determining the geographic origins of illegal ivory. These findings resolve the apparent incongruence between mtDNA and nuclear genetic patterns that has confounded the taxonomy of African elephants, affirm the limitations of using mtDNA patterns to infer elephant systematics or population structure, and strongly support the existence of two elephant species in Africa. PMID:21701575

  5. [Genetic ecological monitoring in human populations: heterozygosity, mtDNA haplotype variation, and genetic load].

    PubMed

    Balanovskiĭ, O P; Koshel', S M; Zaporozhchenko, V V; Pshenichnov, A S; Frolova, S A; Kuznetsova, M A; Baranova, E E; Teuchezh, I E; Kuznetsova, A A; Romashkina, M V; Utevskaia, O M; Churnosov, M I; Villems, R; Balanovskaia, E V

    2011-11-01

    Yu. P. Altukhov suggested that heterozygosity is an indicator of the state of the gene pool. The idea and a linked concept of genetic ecological monitoring were applied to a new dataset on mtDNA variation in East European ethnic groups. Haplotype diversity (an analog of the average heterozygosity) was shown to gradually decrease northwards. Since a similar trend is known for population density, interlinked changes were assumed for a set of parameters, which were ordered to form a causative chain: latitude increases, land productivity decreases, population density decreases, effective population size decreases, isolation of subpopulations increases, genetic drift increases, and mtDNA haplotype diversity decreases. An increase in genetic drift increases the random inbreeding rate and, consequently, the genetic load. This was confirmed by a significant correlation observed between the incidence of autosomal recessive hereditary diseases and mtDNA haplotype diversity. Based on the findings, mtDNA was assumed to provide an informative genetic system for genetic ecological monitoring; e.g., analyzing the ecology-driven changes in the gene pool.

  6. Patterns of Adaptive and Neutral Diversity Identify the Xiaoxiangling Mountains as a Refuge for the Giant Panda

    PubMed Central

    Wan, Qiu-Hong; Lou, Ji-Kang; Li, Wen-Jing; Ge, Yun-Fa; Fang, Sheng-Guo

    2013-01-01

    Genetic variation plays a significant role in maintaining the evolutionary potential of a species. Comparing the patterns of adaptive and neutral diversity in extant populations is useful for understanding the local adaptations of a species. In this study, we determined the fine-scale genetic structure of 6 extant populations of the giant panda (Ailuropoda melanoleuca) using mtDNA and DNA fingerprints, and then overlaid adaptive variations in 6 functional Aime-MHC class II genes (DRA, DRB3, DQA1, DQA2, DQB1, and DQB2) on this framework. We found that: (1) analysis of the mtDNA and DNA fingerprint-based networks of the 6 populations identified the independent evolutionary histories of the 2 panda subspecies; (2) the basal (ancestral) branches of the fingerprint-based Sichuan-derived network all originated from the smallest Xiaoxiangling (XXL) population, suggesting the status of a glacial refuge in XXL; (3) the MHC variations among the tested populations showed that the XXL population exhibited extraordinary high levels of MHC diversity in allelic richness, which is consistent with the diversity characteristics of a glacial refuge; (4) the phylogenetic tree showed that the basal clades of giant panda DQB sequences were all occupied by XXL-specific sequences, providing evidence for the ancestor-resembling traits of XXL. Finally, we found that the giant panda had many more DQ alleles than DR alleles (33∶13), contrary to other mammals, and that the XXL refuge showed special characteristics in the DQB loci, with 7 DQB members of 9 XXL-unique alleles. Thus, this study identified XXL as a glacial refuge, specifically harboring the most number of primitive DQB alleles. PMID:23894623

  7. Patterns of adaptive and neutral diversity identify the Xiaoxiangling mountains as a refuge for the giant panda.

    PubMed

    Chen, Yi-Yan; Zhu, Ying; Wan, Qiu-Hong; Lou, Ji-Kang; Li, Wen-Jing; Ge, Yun-Fa; Fang, Sheng-Guo

    2013-01-01

    Genetic variation plays a significant role in maintaining the evolutionary potential of a species. Comparing the patterns of adaptive and neutral diversity in extant populations is useful for understanding the local adaptations of a species. In this study, we determined the fine-scale genetic structure of 6 extant populations of the giant panda (Ailuropoda melanoleuca) using mtDNA and DNA fingerprints, and then overlaid adaptive variations in 6 functional Aime-MHC class II genes (DRA, DRB3, DQA1, DQA2, DQB1, and DQB2) on this framework. We found that: (1) analysis of the mtDNA and DNA fingerprint-based networks of the 6 populations identified the independent evolutionary histories of the 2 panda subspecies; (2) the basal (ancestral) branches of the fingerprint-based Sichuan-derived network all originated from the smallest Xiaoxiangling (XXL) population, suggesting the status of a glacial refuge in XXL; (3) the MHC variations among the tested populations showed that the XXL population exhibited extraordinary high levels of MHC diversity in allelic richness, which is consistent with the diversity characteristics of a glacial refuge; (4) the phylogenetic tree showed that the basal clades of giant panda DQB sequences were all occupied by XXL-specific sequences, providing evidence for the ancestor-resembling traits of XXL. Finally, we found that the giant panda had many more DQ alleles than DR alleles (33∶13), contrary to other mammals, and that the XXL refuge showed special characteristics in the DQB loci, with 7 DQB members of 9 XXL-unique alleles. Thus, this study identified XXL as a glacial refuge, specifically harboring the most number of primitive DQB alleles.

  8. Technical adequacy of bisulfite sequencing and pyrosequencing for detection of mitochondrial DNA methylation: Sources and avoidance of false-positive detection.

    PubMed

    Owa, Chie; Poulin, Matthew; Yan, Liying; Shioda, Toshi

    2018-01-01

    The existence of cytosine methylation in mammalian mitochondrial DNA (mtDNA) is a controversial subject. Because detection of DNA methylation depends on resistance of 5'-modified cytosines to bisulfite-catalyzed conversion to uracil, examined parameters that affect technical adequacy of mtDNA methylation analysis. Negative control amplicons (NCAs) devoid of cytosine methylation were amplified to cover the entire human or mouse mtDNA by long-range PCR. When the pyrosequencing template amplicons were gel-purified after bisulfite conversion, bisulfite pyrosequencing of NCAs did not detect significant levels of bisulfite-resistant cytosines (brCs) at ND1 (7 CpG sites) or CYTB (8 CpG sites) genes (CI95 = 0%-0.94%); without gel-purification, significant false-positive brCs were detected from NCAs (CI95 = 4.2%-6.8%). Bisulfite pyrosequencing of highly purified, linearized mtDNA isolated from human iPS cells or mouse liver detected significant brCs (~30%) in human ND1 gene when the sequencing primer was not selective in bisulfite-converted and unconverted templates. However, repeated experiments using a sequencing primer selective in bisulfite-converted templates almost completely (< 0.8%) suppressed brC detection, supporting the false-positive nature of brCs detected using the non-selective primer. Bisulfite-seq deep sequencing of linearized, gel-purified human mtDNA detected 9.4%-14.8% brCs for 9 CpG sites in ND1 gene. However, because all these brCs were associated with adjacent non-CpG brCs showing the same degrees of bisulfite resistance, DNA methylation in this mtDNA-encoded gene was not confirmed. Without linearization, data generated by bisulfite pyrosequencing or deep sequencing of purified mtDNA templates did not pass the quality control criteria. Shotgun bisulfite sequencing of human mtDNA detected extremely low levels of CpG methylation (<0.65%) over non-CpG methylation (<0.55%). Taken together, our study demonstrates that adequacy of mtDNA methylation analysis using methods dependent on bisulfite conversion needs to be established for each experiment, taking effects of incomplete bisulfite conversion and template impurity or topology into consideration.

  9. Japanese Wolves are Genetically Divided into Two Groups Based on an 8-Nucleotide Insertion/Deletion within the mtDNA Control Region.

    PubMed

    Ishiguro, Naotaka; Inoshima, Yasuo; Yanai, Tokuma; Sasaki, Motoki; Matsui, Akira; Kikuchi, Hiroki; Maruyama, Masashi; Hongo, Hitomi; Vostretsov, Yuri E; Gasilin, Viatcheslav; Kosintsev, Pavel A; Quanjia, Chen; Chunxue, Wang

    2016-02-01

    The mitochondrial DNA (mtDNA) control region (198- to 598-bp) of four ancient Canis specimens (two Canis mandibles, a cranium, and a first phalanx) was examined, and each specimen was genetically identified as Japanese wolf. Two unique nucleotide substitutions, the 78-C insertion and the 482-G deletion, both of which are specific for Japanese wolf, were observed in each sample. Based on the mtDNA sequences analyzed, these four specimens and 10 additional Japanese wolf samples could be classified into two groups- Group A (10 samples) and Group B (4 samples)-which contain or lack an 8-bp insertion/deletion (indel), respectively. Interestingly, three dogs (Akita-b, Kishu 25, and S-husky 102) that each contained Japanese wolf-specific features were also classified into Group A or B based on the 8-bp indel. To determine the origin or ancestor of the Japanese wolf, mtDNA control regions of ancient continental Canis specimens were examined; 84 specimens were from Russia, and 29 were from China. However, none of these 113 specimens contained Japanese wolf-specific sequences. Moreover, none of 426 Japanese modern hunting dogs examined contained these Japanese wolf-specific mtDNA sequences. The mtDNA control region sequences of Groups A and B appeared to be unique to grey wolf and dog populations.

  10. Multi-locus DNA sequence data reveal a history of deep cryptic vicariance and habitat-driven convergence in the desert night lizard Xantusia vigilis species complex (Squamata: Xantusiidae).

    PubMed

    Leavitt, Dean H; Bezy, Robert L; Crandall, Keith A; Sites, Jack W

    2007-11-01

    The lizard genus Xantusia of southwestern North America has received recent attention in relation to delimiting species. Using more than 500 lizards from 156 localities, we further test hypothesized species boundaries and clarify phylogeographical patterns, particularly in regions of potential secondary contact. We sequenced the entire mitochondrial cytochrome b gene for every lizard in the study, plus a second mitochondrial DNA (mtDNA) region and two nuclear introns for subsets of the total sample. Phylogenetic analyses of the mtDNA recover a well-resolved, novel hypothesis for species in the Xantusia vigilis complex. The nuclear DNA (nDNA) data provide independent support for the recognition of X. arizonae, X. bezyi and X. wigginsi. Differences between the respective mtDNA and nDNA topologies result from either the effects of lineage sorting or ancient introgression. Nuclear data confirm the inference that some populations of X. vigilis in northwestern Arizona converged on rock-crevice-dwelling morphology and are not X. arizonae with an introgressed X. vigilis mtDNA genome. The historical independence of ancient cryptic lineages of Xantusia in southern California is also corroborated, though limited introgression is detected. Our proposed biogeographical scenario indicates that diversification of this group was driven by vicariance beginning in the late Miocene. Additionally, Pleistocene climatical changes influenced Xantusia distribution, and the now inhospitable Colorado Desert previously supported night lizard presence. The current taxonomy of the group likely underestimates species diversity within the group, and our results collectively show that while convergence on the rock-crevice-dwelling morphology is one hallmark of Xantusia evolution, morphological stasis is paradoxically another.

  11. Large-scale mitochondrial DNA analysis in Southeast Asia reveals evolutionary effects of cultural isolation in the multi-ethnic population of Myanmar

    PubMed Central

    2014-01-01

    Background Myanmar is the largest country in mainland Southeast Asia with a population of 55 million people subdivided into more than 100 ethnic groups. Ruled by changing kingdoms and dynasties and lying on the trade route between India and China, Myanmar was influenced by numerous cultures. Since its independence from British occupation, tensions between the ruling Bamar and ethnic minorities increased. Results Our aim was to search for genetic footprints of Myanmar’s geographic, historic and sociocultural characteristics and to contribute to the picture of human colonization by describing and dating of new mitochondrial DNA (mtDNA) haplogroups. Therefore, we sequenced the mtDNA control region of 327 unrelated donors and the complete mitochondrial genome of 44 selected individuals according to highest quality standards. Conclusion Phylogenetic analyses of the entire mtDNA genomes uncovered eight new haplogroups and three unclassified basal M-lineages. The multi-ethnic population and the complex history of Myanmar were reflected in its mtDNA heterogeneity. Population genetic analyses of Burmese control region sequences combined with population data from neighboring countries revealed that the Myanmar haplogroup distribution showed a typical Southeast Asian pattern, but also Northeast Asian and Indian influences. The population structure of the extraordinarily diverse Bamar differed from that of the Karen people who displayed signs of genetic isolation. Migration analyses indicated a considerable genetic exchange with an overall positive migration balance from Myanmar to neighboring countries. Age estimates of the newly described haplogroups point to the existence of evolutionary windows where climatic and cultural changes gave rise to mitochondrial haplogroup diversification in Asia. PMID:24467713

  12. Haplogroup relationships between domestic and wild sheep resolved using a mitogenome panel.

    PubMed

    Meadows, J R S; Hiendleder, S; Kijas, J W

    2011-04-01

    Five haplogroups have been identified in domestic sheep through global surveys of mitochondrial (mt) sequence variation, however these group classifications are often based on small fragments of the complete mtDNA sequence; partial control region or the cytochrome B gene. This study presents the complete mitogenome from representatives of each haplogroup identified in domestic sheep, plus a sample of their wild relatives. Comparison of the sequence successfully resolved the relationships between each haplogroup and provided insight into the relationship with wild sheep. The five haplogroups were characterised as branching independently, a radiation that shared a common ancestor 920,000 ± 190,000 years ago based on protein coding sequence. The utility of various mtDNA components to inform the true relationship between sheep was also examined with Bayesian, maximum likelihood and partitioned Bremmer support analyses. The control region was found to be the mtDNA component, which contributed the highest amount of support to the tree generated using the complete data set. This study provides the nucleus of a mtDNA mitogenome panel, which can be used to assess additional mitogenomes and serve as a reference set to evaluate small fragments of the mtDNA.

  13. Haplogroup relationships between domestic and wild sheep resolved using a mitogenome panel

    PubMed Central

    Meadows, J R S; Hiendleder, S; Kijas, J W

    2011-01-01

    Five haplogroups have been identified in domestic sheep through global surveys of mitochondrial (mt) sequence variation, however these group classifications are often based on small fragments of the complete mtDNA sequence; partial control region or the cytochrome B gene. This study presents the complete mitogenome from representatives of each haplogroup identified in domestic sheep, plus a sample of their wild relatives. Comparison of the sequence successfully resolved the relationships between each haplogroup and provided insight into the relationship with wild sheep. The five haplogroups were characterised as branching independently, a radiation that shared a common ancestor 920 000±190 000 years ago based on protein coding sequence. The utility of various mtDNA components to inform the true relationship between sheep was also examined with Bayesian, maximum likelihood and partitioned Bremmer support analyses. The control region was found to be the mtDNA component, which contributed the highest amount of support to the tree generated using the complete data set. This study provides the nucleus of a mtDNA mitogenome panel, which can be used to assess additional mitogenomes and serve as a reference set to evaluate small fragments of the mtDNA. PMID:20940734

  14. The origin, current diversity and future conservation of the modern lion (Panthera leo)

    PubMed Central

    Barnett, Ross; Yamaguchi, Nobuyuki; Barnes, Ian; Cooper, Alan

    2006-01-01

    Understanding the phylogeographic processes affecting endangered species is crucial both to interpreting their evolutionary history and to the establishment of conservation strategies. Lions provide a key opportunity to explore such processes; however, a lack of genetic diversity and shortage of suitable samples has until now hindered such investigation. We used mitochondrial control region DNA (mtDNA) sequences to investigate the phylogeographic history of modern lions, using samples from across their entire range. We find the sub-Saharan African lions are basal among modern lions, supporting a single African origin model of modern lion evolution, equivalent to the ‘recent African origin’ model of modern human evolution. We also find the greatest variety of mtDNA haplotypes in the centre of Africa, which may be due to the distribution of physical barriers and continental-scale habitat changes caused by Pleistocene glacial oscillations. Our results suggest that the modern lion may currently consist of three geographic populations on the basis of their recent evolutionary history: North African–Asian, southern African and middle African. Future conservation strategies should take these evolutionary subdivisions into consideration. PMID:16901830

  15. Is urbanisation scrambling the genetic structure of human populations? A case study

    PubMed Central

    Ashrafian-Bonab, Maziar; Handley, Lori Lawson; Balloux, François

    2007-01-01

    Recent population expansion and increased migration linked to urbanisation are assumed to be eroding the genetic structure of human populations. We investigated change in population structure over three generations by analysing both demographic and mitochondrial DNA (mtDNA) data from a random sample of 2351 men from twenty-two Iranian populations. Potential changes in genetic diversity (θ) and genetic distance (FST) over the last three generations were analysed by assigning mtDNA sequences to populations based on the individual's place of birth or that of their mother or grandmother. Despite the fact that several areas included cities of over one million inhabitants, we detected no change in genetic diversity, and only a small decrease in population structure, except in the capital city (Tehran), which was characterised by massive immigration, increased θ and a large decrease in FST over time. Our results suggest that recent erosion of human population structure might not be as important as previously thought, except in some large conurbations, and this clearly has important implications for future sampling strategies. PMID:17106453

  16. Genetic characterization of Kenai brown bears (Ursus arctos): Microsatellite and mitochondrial DNA control region variation in brown bears of the Kenai Peninsula, south central Alaska

    USGS Publications Warehouse

    Jackson, J.V.; Talbot, S.L.; Farley, S.

    2008-01-01

    We collected data from 20 biparentally inherited microsatellite loci, and nucleotide sequence from the maternally inherited mitochondrial DNA (mtDNA) control region, to determine levels of genetic variation of the brown bears (Ursus arctos L., 1758) of the Kenai Peninsula, south central Alaska. Nuclear genetic variation was similar to that observed in other Alaskan peninsular populations. We detected no significant inbreeding and found no evidence of population substructuring on the Kenai Peninsula. We observed a genetic signature of a bottleneck under the infinite alleles model (IAM), but not under the stepwise mutation model (SMM) or the two-phase model (TPM) of microsatellite mutation. Kenai brown bears have lower levels of mtDNA haplotypic diversity relative to most other brown bear populations in Alaska. ?? 2008 NRC.

  17. Phylogenetic analysis of mtDNA lineages in South American mummies.

    PubMed

    Monsalve, M V; Cardenas, F; Guhl, F; Delaney, A D; Devine, D V

    1996-07-01

    Some studies of mtDNA propose that contemporary Amerindians have descended from four haplotype groups, each defined by specific sets of polymorphisms. One recent study also found evidence of other potential founder haplotypes. We wanted to determine whether the four haplotypes in modern populations were also present in ancient South American aboriginals. We subjected mtDNA from Colombian mummies (470 to 1849 AD) to PCR amplification and restriction endonuclease analysis. The mtDNA D-loop region was surveyed for sequence variation by restriction analysis and a segment of this region was sequenced for each mummy to characterize the haplotypes. Our mummies exhibited three of the four major characteristic haplotypes of Amerindian populations defined by four markers. With sequence data obtained in the ancient samples and published data on contemporary Amerindians it was possible to infer the origin of these six mummies.

  18. The mitochondrial genome of Moniliophthora roreri, the frosty pod rot pathogen of cacao.

    PubMed

    Costa, Gustavo G L; Cabrera, Odalys G; Tiburcio, Ricardo A; Medrano, Francisco J; Carazzolle, Marcelo F; Thomazella, Daniela P T; Schuster, Stephen C; Carlson, John E; Guiltinan, Mark J; Bailey, Bryan A; Mieczkowski, Piotr; Pereira, Gonçalo A G; Meinhardt, Lyndel W

    2012-05-01

    In this study, we report the sequence of the mitochondrial (mt) genome of the Basidiomycete fungus Moniliophthora roreri, which is the etiologic agent of frosty pod rot of cacao (Theobroma cacao L.). We also compare it to the mtDNA from the closely-related species Moniliophthora perniciosa, which causes witches' broom disease of cacao. The 94 Kb mtDNA genome of M. roreri has a circular topology and codes for the typical 14 mt genes involved in oxidative phosphorylation. It also codes for both rRNA genes, a ribosomal protein subunit, 13 intronic open reading frames (ORFs), and a full complement of 27 tRNA genes. The conserved genes of M. roreri mtDNA are completely syntenic with homologous genes of the 109 Kb mtDNA of M. perniciosa. As in M. perniciosa, M. roreri mtDNA contains a high number of hypothetical ORFs (28), a remarkable feature that make Moniliophthoras the largest reservoir of hypothetical ORFs among sequenced fungal mtDNA. Additionally, the mt genome of M. roreri has three free invertron-like linear mt plasmids, one of which is very similar to that previously described as integrated into the main M. perniciosa mtDNA molecule. Moniliophthora roreri mtDNA also has a region of suspected plasmid origin containing 15 hypothetical ORFs distributed in both strands. One of these ORFs is similar to an ORF in the mtDNA gene encoding DNA polymerase in Pleurotus ostreatus. The comparison to M. perniciosa showed that the 15 Kb difference in mtDNA sizes is mainly attributed to a lower abundance of repetitive regions in M. roreri (5.8 Kb vs 20.7 Kb). The most notable differences between M. roreri and M. perniciosa mtDNA are attributed to repeats and regions of plasmid origin. These elements might have contributed to the rapid evolution of mtDNA. Since M. roreri is the second species of the genus Moniliophthora whose mtDNA genome has been sequenced, the data presented here contribute valuable information for understanding the evolution of fungal mt genomes among closely-related species. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  19. Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line.

    PubMed

    Liu, Huitao; Cui, Peng; Zhan, Kehui; Lin, Qiang; Zhuo, Guoyin; Guo, Xiaoli; Ding, Feng; Yang, Wenlong; Liu, Dongcheng; Hu, Songnian; Yu, Jun; Zhang, Aimin

    2011-03-29

    Plant mitochondria, semiautonomous organelles that function as manufacturers of cellular ATP, have their own genome that has a slow rate of evolution and rapid rearrangement. Cytoplasmic male sterility (CMS), a common phenotype in higher plants, is closely associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce F1 hybrid seeds in a variety of valuable crop species. Novel chimeric genes deduced from mtDNA rearrangements causing CMS have been identified in several plants, such as rice, sunflower, pepper, and rapeseed, but there are very few reports about mtDNA rearrangements in wheat. In the present work, we describe the mitochondrial genome of a wheat K-type CMS line and compare it with its maintainer line. The complete mtDNA sequence of a wheat K-type (with cytoplasm of Aegilops kotschyi) CMS line, Ks3, was assembled into a master circle (MC) molecule of 647,559 bp and found to harbor 34 known protein-coding genes, three rRNAs (18 S, 26 S, and 5 S rRNAs), and 16 different tRNAs. Compared to our previously published sequence of a K-type maintainer line, Km3, we detected Ks3-specific mtDNA (> 100 bp, 11.38%) and repeats (> 100 bp, 29 units) as well as genes that are unique to each line: rpl5 was missing in Ks3 and trnH was absent from Km3. We also defined 32 single nucleotide polymorphisms (SNPs) in 13 protein-coding, albeit functionally irrelevant, genes, and predicted 22 unique ORFs in Ks3, representing potential candidates for K-type CMS. All these sequence variations are candidates for involvement in CMS. A comparative analysis of the mtDNA of several angiosperms, including those from Ks3, Km3, rice, maize, Arabidopsis thaliana, and rapeseed, showed that non-coding sequences of higher plants had mostly divergent multiple reorganizations during the mtDNA evolution of higher plants. The complete mitochondrial genome of the wheat K-type CMS line Ks3 is very different from that of its maintainer line Km3, especially in non-coding sequences. Sequence rearrangement has produced novel chimeric ORFs, which may be candidate genes for CMS. Comparative analysis of several angiosperm mtDNAs indicated that non-coding sequences are the most frequently reorganized during mtDNA evolution in higher plants.

  20. Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions.

    PubMed

    Belmonte, Frances R; Martin, James L; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A; Kaufman, Brett A

    2016-04-28

    Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error.

  1. Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions

    PubMed Central

    Belmonte, Frances R.; Martin, James L.; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A.; Kaufman, Brett A.

    2016-01-01

    Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error. PMID:27122135

  2. Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution

    PubMed Central

    Humphries, Adam; Cereser, Biancastella; Gay, Laura J.; Miller, Daniel S. J.; Das, Bibek; Gutteridge, Alice; Elia, George; Nye, Emma; Jeffery, Rosemary; Poulsom, Richard; Novelli, Marco R.; Rodriguez-Justo, Manuel; McDonald, Stuart A. C.; Wright, Nicholas A.; Graham, Trevor A.

    2013-01-01

    The genetic and morphological development of colorectal cancer is a paradigm for tumorigenesis. However, the dynamics of clonal evolution underpinning carcinogenesis remain poorly understood. Here we identify multipotential stem cells within human colorectal adenomas and use methylation patterns of nonexpressed genes to characterize clonal evolution. Numerous individual crypts from six colonic adenomas and a hyperplastic polyp were microdissected and characterized for genetic lesions. Clones deficient in cytochrome c oxidase (CCO−) were identified by histochemical staining followed by mtDNA sequencing. Topographical maps of clone locations were constructed using a combination of these data. Multilineage differentiation within clones was demonstrated by immunofluorescence. Methylation patterns of adenomatous crypts were determined by clonal bisulphite sequencing; methylation pattern diversity was compared with a mathematical model to infer to clonal dynamics. Individual adenomatous crypts were clonal for mtDNA mutations and contained both mucin-secreting and neuroendocrine cells, demonstrating that the crypt contained a multipotent stem cell. The intracrypt methylation pattern was consistent with the crypts containing multiple competing stem cells. Adenomas were epigenetically diverse populations, suggesting that they were relatively mitotically old populations. Intratumor clones typically showed less diversity in methylation pattern than the tumor as a whole. Mathematical modeling suggested that recent clonal sweeps encompassing the whole adenoma had not occurred. Adenomatous crypts within human tumors contain actively dividing stem cells. Adenomas appeared to be relatively mitotically old populations, pocketed with occasional newly generated subclones that were the result of recent rapid clonal expansion. Relative stasis and occasional rapid subclone growth may characterize colorectal tumorigenesis. PMID:23766371

  3. Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution.

    PubMed

    Humphries, Adam; Cereser, Biancastella; Gay, Laura J; Miller, Daniel S J; Das, Bibek; Gutteridge, Alice; Elia, George; Nye, Emma; Jeffery, Rosemary; Poulsom, Richard; Novelli, Marco R; Rodriguez-Justo, Manuel; McDonald, Stuart A C; Wright, Nicholas A; Graham, Trevor A

    2013-07-02

    The genetic and morphological development of colorectal cancer is a paradigm for tumorigenesis. However, the dynamics of clonal evolution underpinning carcinogenesis remain poorly understood. Here we identify multipotential stem cells within human colorectal adenomas and use methylation patterns of nonexpressed genes to characterize clonal evolution. Numerous individual crypts from six colonic adenomas and a hyperplastic polyp were microdissected and characterized for genetic lesions. Clones deficient in cytochrome c oxidase (CCO(-)) were identified by histochemical staining followed by mtDNA sequencing. Topographical maps of clone locations were constructed using a combination of these data. Multilineage differentiation within clones was demonstrated by immunofluorescence. Methylation patterns of adenomatous crypts were determined by clonal bisulphite sequencing; methylation pattern diversity was compared with a mathematical model to infer to clonal dynamics. Individual adenomatous crypts were clonal for mtDNA mutations and contained both mucin-secreting and neuroendocrine cells, demonstrating that the crypt contained a multipotent stem cell. The intracrypt methylation pattern was consistent with the crypts containing multiple competing stem cells. Adenomas were epigenetically diverse populations, suggesting that they were relatively mitotically old populations. Intratumor clones typically showed less diversity in methylation pattern than the tumor as a whole. Mathematical modeling suggested that recent clonal sweeps encompassing the whole adenoma had not occurred. Adenomatous crypts within human tumors contain actively dividing stem cells. Adenomas appeared to be relatively mitotically old populations, pocketed with occasional newly generated subclones that were the result of recent rapid clonal expansion. Relative stasis and occasional rapid subclone growth may characterize colorectal tumorigenesis.

  4. Missing genes, multiple ORFs, and C-to-U type RNA editing in Acrasis kona (Heterolobosea, Excavata) mitochondrial DNA.

    PubMed

    Fu, Cheng-Jie; Sheikh, Sanea; Miao, Wei; Andersson, Siv G E; Baldauf, Sandra L

    2014-08-21

    Discoba (Excavata) is an ancient group of eukaryotes with great morphological and ecological diversity. Unlike the other major divisions of Discoba (Jakobida and Euglenozoa), little is known about the mitochondrial DNAs (mtDNAs) of Heterolobosea. We have assembled a complete mtDNA genome from the aggregating heterolobosean amoeba, Acrasis kona, which consists of a single circular highly AT-rich (83.3%) molecule of 51.5 kb. Unexpectedly, A. kona mtDNA is missing roughly 40% of the protein-coding genes and nearly half of the transfer RNAs found in the only other sequenced heterolobosean mtDNAs, those of Naegleria spp. Instead, over a quarter of A. kona mtDNA consists of novel open reading frames. Eleven of the 16 protein-coding genes missing from A. kona mtDNA were identified in its nuclear DNA and polyA RNA, and phylogenetic analyses indicate that at least 10 of these 11 putative nuclear-encoded mitochondrial (NcMt) proteins arose by direct transfer from the mitochondrion. Acrasis kona mtDNA also employs C-to-U type RNA editing, and 12 homologs of DYW-type pentatricopeptide repeat (PPR) proteins implicated in plant organellar RNA editing are found in A. kona nuclear DNA. A mapping of mitochondrial gene content onto a consensus phylogeny reveals a sporadic pattern of relative stasis and rampant gene loss in Discoba. Rampant loss occurred independently in the unique common lineage leading to Heterolobosea + Tsukubamonadida and later in the unique lineage leading to Acrasis. Meanwhile, mtDNA gene content appears to be remarkably stable in the Acrasis sister lineage leading to Naegleria and in their distant relatives Jakobida. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Fellow travellers: a concordance of colonization patterns between mice and men in the North Atlantic region.

    PubMed

    Jones, E P; Skirnisson, K; McGovern, T H; Gilbert, M T P; Willerslev, E; Searle, J B

    2012-03-19

    House mice (Mus musculus) are commensals of humans and therefore their phylogeography can reflect human colonization and settlement patterns. Previous studies have linked the distribution of house mouse mitochondrial (mt) DNA clades to areas formerly occupied by the Norwegian Vikings in Norway and the British Isles. Norwegian Viking activity also extended further westwards in the North Atlantic with the settlement of Iceland, short-lived colonies in Greenland and a fleeting colony in Newfoundland in 1000 AD. Here we investigate whether house mouse mtDNA sequences reflect human history in these other regions as well. House mice samples from Iceland, whether from archaeological Viking Age material or from modern-day specimens, had an identical mtDNA haplotype to the clade previously linked with Norwegian Vikings. From mtDNA and microsatellite data, the modern-day Icelandic mice also share the low genetic diversity shown by their human hosts on Iceland. Viking Age mice from Greenland had an mtDNA haplotype deriving from the Icelandic haplotype, but the modern-day Greenlandic mice belong to an entirely different mtDNA clade. We found no genetic association between modern Newfoundland mice and the Icelandic/ancient Greenlandic mice (no ancient Newfoundland mice were available). The modern day Icelandic and Newfoundland mice belong to the subspecies M. m. domesticus, the Greenlandic mice to M. m. musculus. In the North Atlantic region, human settlement history over a thousand years is reflected remarkably by the mtDNA phylogeny of house mice. In Iceland, the mtDNA data show the arrival and continuity of the house mouse population to the present day, while in Greenland the data suggest the arrival, subsequent extinction and recolonization of house mice--in both places mirroring the history of the European human host populations. If house mice arrived in Newfoundland with the Viking settlers at all, then, like the humans, their presence was also fleeting and left no genetic trace. The continuity of mtDNA haplotype in Iceland over 1000 years illustrates that mtDNA can retain the signature of the ancestral house mouse founders. We also show that, in terms of genetic variability, house mouse populations may also track their host human populations.

  6. Reassessing the evolutionary history of ass-like equids: insights from patterns of genetic variation in contemporary extant populations.

    PubMed

    Rosenbom, Sónia; Costa, Vânia; Chen, Shanyuan; Khalatbari, Leili; Yusefi, Gholam Hosein; Abdukadir, Ablimit; Yangzom, Chamba; Kebede, Fanuel; Teclai, Redae; Yohannes, Hagos; Hagos, Futsum; Moehlman, Patricia D; Beja-Pereira, Albano

    2015-04-01

    All extant equid species are grouped in a single genus - Equus. Among those, ass-like equids have remained particularly unstudied and their phylogenetic relations were poorly understood, most probably because they inhabit extreme environments in remote geographic areas. To gain further insights into the evolutionary history of ass-like equids, we have used a non-invasive sampling approach to collect representative fecal samples of extant African and Asiatic ass-like equid populations across their distribution range and mitochondrial DNA (mtDNA) sequencing analyses to examine intraspecific genetic diversity and population structure, and to reconstruct phylogenetic relations among wild ass species/subspecies. Sequence analyses of 410 base pairs of the fast evolving mtDNA control region identified the Asiatic wild ass population of Kalamaili (China) as the one displaying the highest diversity among all wild ass populations. Phylogenetic analyses of complete cytochrome b sequences revealed that African and Asiatic wild asses shared a common ancestor approximately 2.3Mya and that diversification in both groups occurred much latter, probably driven by climatic events during the Pleistocene. Inferred genetic relationships among Asiatic wild ass species do not support E. kiang monophyly, highlighting the need of more extensive studies in order to clarify the taxonomic status of species/subspecies belonging to this branch of the Equus phylogeny. These results highlight the importance of re-assessing the evolutionary history of ass-like equid species, and urge to extend studies at the population level to efficiently design conservation and management actions for these threatened species. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A test of the transcription model for biased inheritance of yeast mitochondrial DNA.

    PubMed

    Lorimer, H E; Brewer, B J; Fangman, W L

    1995-09-01

    Two strand-specific origins of replication appear to be required for mammalian mitochondrial DNA (mtDNA) replication. Structural equivalents of these origins are found in the rep sequences of Saccharomyces cerevisiae mtDNA. These striking similarities have contributed to a universal model for the initiation of mtDNA replication in which a primer is created by cleavage of an origin region transcript. Consistent with this model are the properties of deletion mutants of yeast mtDNA ([rho-]) with a high density of reps (HS [rho-]). These mutant mtDNAs are preferentially inherited by the progeny resulting from the mating of HS [rho-] cells with cells containing wild-type mtDNA ([rho+]). This bias is presumed to result from a replication advantage conferred on HS [rho-] mtDNA by the high density of rep sequences acting as origins. To test whether transcription is indeed required for the preferential inheritance of HS [rho-] mtDNA, we deleted the nuclear gene (RPO41) for the mitochondrial RNA polymerase, reducing transcripts by at least 1000-fold. Since [rho-] genomes, but not [rho+] genomes, are stable when RPO41 is deleted, we examined matings between HS [rho-] and neutral [rho-] cells. Neutral [rho-] mtDNAs lack rep sequences and are not preferentially inherited in [rho-] x [rho+] crosses. In HS [rho-] x neutral [rho-] matings, the HS [rho-] mtDNA was preferentially inherited whether both parents were wild type or both were deleted for RPO41. Thus, transcription from the rep promoter does not appear to be necessary for biased inheritance. Our results, and analysis of the literature, suggest that priming by transcription is not a universal mechanism for mtDNA replication initiation.

  8. Genetic diversity and population structure of Scottish Highland red deer (Cervus elaphus) populations: a mitochondrial survey.

    PubMed

    Pérez-Espona, S; Pérez-Barbería, F J; Goodall-Copestake, W P; Jiggins, C D; Gordon, I J; Pemberton, J M

    2009-02-01

    The largest population of red deer (Cervus elaphus) in Europe is found in Scotland. However, human impacts through hunting and introduction of foreign deer stock have disturbed the population's genetics to an unknown extent. In this study, we analysed mitochondrial control region sequences of 625 individuals to assess signatures of human and natural historical influence on the genetic diversity and population structure of red deer in the Scottish Highlands. Genetic diversity was high with 74 haplotypes found in our study area (115 x 87 km). Phylogenetic analyses revealed that none of the individuals had introgressed mtDNA from foreign species or subspecies of deer and only suggested a very few localized red deer translocations among British localities. A haplotype network and population analyses indicated significant genetic structure (Phi(ST)=0.3452, F(ST)=0.2478), largely concordant with the geographical location of the populations. Mismatch distribution analysis and neutrality tests indicated a significant population expansion for one of the main haplogroups found in the study area, approximately dated c. 8200 or 16 400 years ago when applying a fast or slow mutation rate, respectively. Contrary to general belief, our results strongly suggest that native Scottish red deer mtDNA haplotypes have persisted in the Scottish Highlands and that the population retains a largely natural haplotype diversity and structure in our study area.

  9. Mitochondrial DNA diversity of present-day Aboriginal Australians and implications for human evolution in Oceania.

    PubMed

    Nagle, Nano; Ballantyne, Kaye N; van Oven, Mannis; Tyler-Smith, Chris; Xue, Yali; Wilcox, Stephen; Wilcox, Leah; Turkalov, Rust; van Oorschot, Roland A H; van Holst Pellekaan, Sheila; Schurr, Theodore G; McAllister, Peter; Williams, Lesley; Kayser, Manfred; Mitchell, R John

    2017-03-01

    Aboriginal Australians are one of the more poorly studied populations from the standpoint of human evolution and genetic diversity. Thus, to investigate their genetic diversity, the possible date of their ancestors' arrival and their relationships with neighboring populations, we analyzed mitochondrial DNA (mtDNA) diversity in a large sample of Aboriginal Australians. Selected mtDNA single-nucleotide polymorphisms and the hypervariable segment haplotypes were analyzed in 594 Aboriginal Australians drawn from locations across the continent, chiefly from regions not previously sampled. Most (~78%) samples could be assigned to mtDNA haplogroups indigenous to Australia. The indigenous haplogroups were all ancient (with estimated ages >40 000 years) and geographically widespread across the continent. The most common haplogroup was P (44%) followed by S (23%) and M42a (9%). There was some geographic structure at the haplotype level. The estimated ages of the indigenous haplogroups range from 39 000 to 55 000 years, dates that fit well with the estimated date of colonization of Australia based on archeological evidence (~47 000 years ago). The distribution of mtDNA haplogroups in Australia and New Guinea supports the hypothesis that the ancestors of Aboriginal Australians entered Sahul through at least two entry points. The mtDNA data give no support to the hypothesis of secondary gene flow into Australia during the Holocene, but instead suggest long-term isolation of the continent.

  10. Reconstruction of caribou evolutionary history in Western North America and its implications for conservation.

    PubMed

    Weckworth, Byron V; Musiani, Marco; McDevitt, Allan D; Hebblewhite, Mark; Mariani, Stefano

    2012-07-01

    The role of Beringia as a refugium and route for trans-continental exchange of fauna during glacial cycles of the past 2million years are well documented; less apparent is its contribution as a significant reservoir of genetic diversity. Using mitochondrial DNA sequences and 14 microsatellite loci, we investigate the phylogeographic history of caribou (Rangifer tarandus) in western North America. Patterns of genetic diversity reveal two distinct groups of caribou. Caribou classified as a Northern group, of Beringian origin, exhibited greater number and variability in mtDNA haplotypes compared to a Southern group originating from refugia south of glacial ice. Results indicate that subspecies R. t. granti of Alaska and R. t. groenlandicus of northern Canada do not constitute distinguishable units at mtDNA or microsatellites, belying their current status as separate subspecies. Additionally, the Northern Mountain ecotype of woodland caribou (presently R. t. caribou) has closer kinship to caribou classified as granti or groenlandicus. Comparisons of mtDNA and microsatellite data suggest that behavioural and ecological specialization is a more recently derived life history characteristic. Notably, microsatellite differentiation among Southern herds is significantly greater, most likely as a result of human-induced landscape fragmentation and genetic drift due to smaller population sizes. These results not only provide important insight into the evolutionary history of northern species such as caribou, but also are important indicators for managers evaluating conservation measures for this threatened species. © 2012 Blackwell Publishing Ltd.

  11. The repeating nucleotide sequence in the repetitive mitochondrial DNA from a "low-density" petite mutant of yeast.

    PubMed Central

    Van Kreijl, C F; Bos, J L

    1977-01-01

    The repeating nucleotide sequence of 68 base pairs in the mtDNA from an ethidium-induced cytoplasmic petite mutant of yeast has been determined. For sequence analysis specifically primed and terminated RNA copies, obtained by in vitro transcription of the separated strands, were use. The sequence consists of 66 consecutive AT base pairs flanked by two GC pairs and comprises nearly all of the mutant mitochondrial genome. The sequence, moreover, also represents the first part of wild-type mtDNA sequence so far. Images PMID:198740

  12. The mitochondrial genome sequence of Enterobius vermicularis (Nematoda: Oxyurida)--an idiosyncratic gene order and phylogenetic information for chromadorean nematodes.

    PubMed

    Kang, Seokha; Sultana, Tahera; Eom, Keeseon S; Park, Yung Chul; Soonthornpong, Nathan; Nadler, Steven A; Park, Joong-Ki

    2009-01-15

    The complete mitochondrial genome sequence was determined for the human pinworm Enterobius vermicularis (Oxyurida: Nematoda) and used to infer its phylogenetic relationship to other major groups of chromadorean nematodes. The E. vermicularis genome is a 14,010-bp circular DNA molecule that encodes 36 genes (12 proteins, 22 tRNAs, and 2 rRNAs). This mtDNA genome lacks atp8, as reported for almost all other nematode species investigated. Phylogenetic analyses (maximum parsimony, maximum likelihood, neighbor joining, and Bayesian inference) of nucleotide sequences for the 12 protein-coding genes of 25 nematode species placed E. vermicularis, a representative of the order Oxyurida, as sister to the main Ascaridida+Rhabditida group. Tree topology comparisons using statistical tests rejected an alternative hypothesis favoring a closer relationship among Ascaridida, Spirurida, and Oxyurida, which has been supported from most studies based on nuclear ribosomal DNA sequences. Unlike the relatively conserved gene arrangement found for most chromadorean taxa, E. vermicularis mtDNA gene order is very unique, not sharing similarity to any other nematode species reported to date. This lack of gene order similarity may represent idiosyncratic gene rearrangements unique to this specific lineage of the oxyurids. To more fully understand the extent of gene rearrangement and its evolutionary significance within the nematode phylogenetic framework, additional mitochondrial genomes representing a greater evolutionary diversity of species must be characterized.

  13. Evidence for recombination of mitochondrial DNA in triploid crucian carp.

    PubMed

    Guo, Xinhong; Liu, Shaojun; Liu, Yun

    2006-03-01

    In this study, we report the complete mitochondrial DNA (mtDNA) sequences of the allotetraploid and triploid crucian carp and compare the complete mtDNA sequences between the triploid crucian carp and its female parent Japanese crucian carp and between the triploid crucian carp and its male parent allotetraploid. Our results indicate that the complete mtDNA nucleotide identity (98%) between the triploid crucian carp and its male parent allotetraploid was higher than that (93%) between the triploid crucian carp and its female parent Japanese crucian carp. Moreover, the presence of a pattern of identity and difference at synonymous sites of mitochondrial genomes between the triploid crucian carp and its parents provides direct evidence that triploid crucian carp possessed the recombination mtDNA fragment (12,759 bp) derived from the paternal fish. These results suggest that mtDNA recombination was derived from the fusion of the maternal and paternal mtDNAs. Compared with the haploid egg with one set of genome from the Japanese crucian carp, the diploid sperm with two sets of genomes from the allotetraploid could more easily make its mtDNA fuse with the mtDNA of the haploid egg. In addition, the triple hybrid nature of the triploid crucian carp probably allowed its better mtDNA recombination. In summary, our results provide the first evidence of mtDNA combination in polyploid fish.

  14. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites.

    PubMed

    Chaw, Shu-Miaw; Shih, Arthur Chun-Chieh; Wang, Daryi; Wu, Yu-Wei; Liu, Shu-Mei; Chou, The-Yuan

    2008-03-01

    The mtDNA of Cycas taitungensis is a circular molecule of 414,903 bp, making it 2- to 6-fold larger than the known mtDNAs of charophytes and bryophytes, but similar to the average of 7 elucidated angiosperm mtDNAs. It is characterized by abundant RNA editing sites (1,084), more than twice the number found in the angiosperm mtDNAs. The A + T content of Cycas mtDNA is 53.1%, the lowest among known land plants. About 5% of the Cycas mtDNA is composed of a novel family of mobile elements, which we designated as "Bpu sequences." They share a consensus sequence of 36 bp with 2 terminal direct repeats (AAGG) and a recognition site for the Bpu 10I restriction endonuclease (CCTGAAGC). Comparison of the Cycas mtDNA with other plant mtDNAs revealed many new insights into the biology and evolution of land plant mtDNAs. For example, the noncoding sequences in mtDNAs have drastically expanded as land plants have evolved, with abrupt increases appearing in the bryophytes, and then in the seed plants. As a result, the genomic organizations of seed plant mtDNAs are much less compact than in other plants. Also, the Cycas mtDNA appears to have been exempted from the frequent gene loss observed in angiosperm mtDNAs. Similar to the angiosperms, the 3 Cycas genes nad1, nad2, and nad5 are disrupted by 5 group II intron squences, which have brought the genes into trans-splicing arrangements. The evolutionary origin and invasion/duplication mechanism of the Bpu sequences in Cycas mtDNA are hypothesized and discussed.

  15. Genetic perspective of uniparental mitochondrial DNA landscape on the Punjabi population, Pakistan.

    PubMed

    Bhatti, Shahzad; Abbas, Sana; Aslamkhan, Muhammad; Attimonelli, Marcella; Trinidad, Magali Segundo; Aydin, Hikmet Hakan; de Souza, Erica Martinha Silva; Gonzalez, Gerardo Rodriguez

    2017-07-26

    To investigate the uniparental genetic structure of the Punjabi population from mtDNA aspect and to set up an appropriate mtDNA forensic database, we studied maternally unrelated Punjabi (N = 100) subjects from two caste groups (i.e. Arain and Gujar) belonging to territory of Punjab. The complete control region was elucidated by Sanger sequencing and the subsequent 58 different haplotypes were designated into appropriate haplogroups according to the most recently updated mtDNA phylogeny. We found a homogenous dispersal of Eurasian haplogroup uniformity among the Punjab Province and exhibited a strong connotation with the European populations. Punjabi castes are primarily a composite of substantial South Asian, East Asian and West Eurasian lineages. Moreover, for the first time we have defined the newly sub-haplogroup M52b1 characterized by 16223 T, 16275 G and 16438 A in Gujar caste. The vast array of mtDNA variants displayed in this study suggested that the haplogroup composition radiates signals of extensive genetic conglomeration, population admixture and demographic expansion that was equipped with diverse origin, whereas matrilineal gene pool was phylogeographically homogenous across the Punjab. This context was further fully acquainted with the facts supported by PCA scatterplot that Punjabi population clustered with South Asian populations. Finally, the high power of discrimination (0.8819) and low random match probability (0.0085%) proposed a worthy contribution of mtDNA control region dataset as a forensic database that considered a gold standard of today to get deeper insight into the genetic ancestry of contemporary matrilineal phylogeny.

  16. New insights into the origin and the genetic status of the Balkan donkey from Serbia.

    PubMed

    Stanisic, L J; Aleksic, J M; Dimitrijevic, V; Simeunovic, P; Glavinic, U; Stevanovic, J; Stanimirovic, Z

    2017-10-01

    The Balkan donkey (Equus asinus L.) is commonly regarded as a large-sized, unselected, unstructured and traditionally managed donkey breed. We assessed the current genetic status of the three largest E. asinus populations in the central Balkans (Serbia) by analysing the variability of nuclear microsatellites and the mitochondrial (mtDNA) control region of 77 and 49 individuals respectively. We further analysed our mtDNA dataset along with 209 published mtDNA sequences of ancient and modern individuals from 19 European and African populations to provide new insights into the origin and the history of the Balkan donkey. Serbian donkey populations are highly genetically diverse at both the nuclear and mtDNA levels despite severe population decline. Traditional Balkan donkeys in Serbia are rather heterogeneous; we found two groups of individuals with similar phenotypic features, somewhat distinct nuclear backgrounds and different proportions of mtDNA haplotypes belonging to matrilineal Clades 1 and 2. Another group, characterized by larger body size, different coat colour, distinct nuclear gene pool and predominantly Clade 2 haplotypes, was delineated as the Banat donkey breed. The maternal landscape of the large Balkan donkey population is highly heterogeneous and more complex than previously thought. Given the two independent domestication events in donkeys, multiple waves of introductions into the Balkans from Greece are hypothesized. Clade 2 donkeys probably appeared in Greece prior to those belonging to Clade 1, whereas expansion and diversification of Clade 1 donkeys within the Balkans predated that of Clade 2 donkeys. © 2017 Stichting International Foundation for Animal Genetics.

  17. Phenotypic and mtDNA variation in Philippine Kappaphycus cottonii (Gigartinales, Rhodophyta).

    PubMed

    Dumilag, Richard V; Gallardo, William George M; Garcia, Christian Philip C; You, YeaEun; Chaves, Alyssa Keren G; Agahan, Lance

    2017-11-09

    Members of the carrageenan-producing seaweeds of the genus Kappapphycus have a complicated taxonomic history particularly with regard to species identification. Many taxonomic challenges in this group have been currently addressed with the use of mtDNA sequences. The phylogenetic status and genetic diversity of one of the lesser known species, Kappaphycus cottonii, have repeatedly come into question. This study explored the genetic variation in Philippine K. cottonii using the mtDNA COI-5P gene and cox2-3 spacer sequences. The six phenotypic forms in K. cottonii did not correspond to the observed genetic variability; hinting at the greater involvement of environmental factors in determining changes to the morphology of this alga. Our results revealed that the Philippine K. cottonii has the richest number of haplotypes that have been detected, so far, for any Kappaphycus species. Our inferred phylogenetic trees suggested two lineages: a lineage, which exclusively includes K. cottonii and another lineage comprising the four known Kappaphycus species: K. alvarezii, K. inermis, K. malesianus, and K. striatus. The dichotomy supports the apparent synamorphy for each of these lineages (the strictly terete thalli, lack of protuberances, and the presence of a hyphal central core in the latter group, while the opposite of these morphologies in K. cottonii). These findings shed new light on understanding the evolutionary history of the genus. Assessing the breadth of the phenotypic and genetic variation in K. cottonii has implications for the conservation and management of the overall Kappaphycus genetic resources, especially in the Philippines.

  18. DNA analysis of ancient dogs of the Americas: identifying possible founding haplotypes and reconstructing population histories.

    PubMed

    Witt, Kelsey E; Judd, Kathleen; Kitchen, Andrew; Grier, Colin; Kohler, Timothy A; Ortman, Scott G; Kemp, Brian M; Malhi, Ripan S

    2015-02-01

    As dogs have traveled with humans to every continent, they can potentially serve as an excellent proxy when studying human migration history. Past genetic studies into the origins of Native American dogs have used portions of the hypervariable region (HVR) of mitochondrial DNA (mtDNA) to indicate that prior to European contact the dogs of Native Americans originated in Eurasia. In this study, we summarize past DNA studies of both humans and dogs to discuss their population histories in the Americas. We then sequenced a portion of the mtDNA HVR of 42 pre-Columbian dogs from three sites located in Illinois, coastal British Columbia, and Colorado, and identify four novel dog mtDNA haplotypes. Next, we analyzed a dataset comprised of all available ancient dog sequences from the Americas to infer the pre-Columbian population history of dogs in the Americas. Interestingly, we found low levels of genetic diversity for some populations consistent with the possibility of deliberate breeding practices. Furthermore, we identified multiple putative founding haplotypes in addition to dog haplotypes that closely resemble those of wolves, suggesting admixture with North American wolves or perhaps a second domestication of canids in the Americas. Notably, initial effective population size estimates suggest at least 1000 female dogs likely existed in the Americas at the time of the first known canid burial, and that population size increased gradually over time before stabilizing roughly 1200 years before present. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Phylogenetic relationships of German heavy draught horse breeds inferred from mitochondrial DNA D-loop variation.

    PubMed

    Aberle, K S; Hamann, H; Drögemüller, C; Distl, O

    2007-04-01

    We analysed a 610-bp mitochondrial (mt)DNA D-loop fragment in a sample of German draught horse breeds and compared the polymorphic sites with sequences from Arabian, Hanoverian, Exmoor, Icelandic, Sorraia and Przewalski's Horses as well as with Suffolk, Shire and Belgian horses. In a total of 65 horses, 70 polymorphic sites representing 47 haplotypes were observed. The average percentage of polymorphic sites was 11.5% for the mtDNA fragment analysed. In the nine different draught horse breeds including South German, Mecklenburg, Saxon Thuringa coldblood, Rhenisch German, Schleswig Draught Horse, Black Forest Horse, Shire, Suffolk and Belgian, 61 polymorphic sites and 24 haplotypes were found. The phylogenetic analysis failed to show monophyletic groups for the draught horses. The analysis indicated that the draught horse populations investigated consist of diverse genetic groups with respect to their maternal lineage.

  20. Atypical case of Wolfram syndrome revealed through targeted exome sequencing in a patient with suspected mitochondrial disease

    PubMed Central

    2012-01-01

    Background Mitochondrial diseases comprise a diverse set of clinical disorders that affect multiple organ systems with varying severity and age of onset. Due to their clinical and genetic heterogeneity, these diseases are difficult to diagnose. We have developed a targeted exome sequencing approach to improve our ability to properly diagnose mitochondrial diseases and apply it here to an individual patient. Our method targets mitochondrial DNA (mtDNA) and the exons of 1,600 nuclear genes involved in mitochondrial biology or Mendelian disorders with multi-system phenotypes, thereby allowing for simultaneous evaluation of multiple disease loci. Case Presentation Targeted exome sequencing was performed on a patient initially suspected to have a mitochondrial disorder. The patient presented with diabetes mellitus, diffuse brain atrophy, autonomic neuropathy, optic nerve atrophy, and a severe amnestic syndrome. Further work-up revealed multiple heteroplasmic mtDNA deletions as well as profound thiamine deficiency without a clear nutritional cause. Targeted exome sequencing revealed a homozygous c.1672C > T (p.R558C) missense mutation in exon 8 of WFS1 that has previously been reported in a patient with Wolfram syndrome. Conclusion This case demonstrates how clinical application of next-generation sequencing technology can enhance the diagnosis of patients suspected to have rare genetic disorders. Furthermore, the finding of unexplained thiamine deficiency in a patient with Wolfram syndrome suggests a potential link between WFS1 biology and thiamine metabolism that has implications for the clinical management of Wolfram syndrome patients. PMID:22226368

  1. Variation of partial transferrin sequences and phylogenetic relationships among hares (Lepus capensis, Lagomorpha) from Tunisia.

    PubMed

    Awadi, Asma; Suchentrunk, Franz; Makni, Mohamed; Ben Slimen, Hichem

    2016-10-01

    North African hares are currently included in cape hares, Lepus capensis sensu lato, a taxon that may be considered a superspecies or a complex of closely related species. The existing molecular data, however, are not unequivocal, with mtDNA control region sequences suggesting a separate species status and nuclear loci (allozymes, microsatellites) revealing conspecificity of L. capensis and L. europaeus. Here, we study sequence variation in the intron 6 (468 bp) of the transferrin nuclear gene, of 105 hares with different coat colour from different regions in Tunisia with respect to genetic diversity and differentiation, as well as their phylogenetic status. Forty-six haplotypes (alleles) were revealed and compared phylogenetically to all available TF haplotypes of various Lepus species retrieved from GenBank. Maximum Likelihood, neighbor joining and median joining network analyses concordantly grouped all currently obtained haplotypes together with haplotypes belonging to six different Chinese hare species and the African scrub hare L. saxatilis. Moreover, two Tunisian haploypes were shared with L. capensis, L timidus, L. sinensis, L. yarkandensis, and L. hainanus from China. These results indicated the evolutionary complexity of the genus Lepus with the mixing of nuclear gene haplotypes resulting from introgressive hybridization or/and shared ancestral polymorphism. We report the presence of shared ancestral polymorphism between North African and Chinese hares. This has not been detected earlier in the mtDNA sequences of the same individuals. Genetic diversity of the TF sequences from the Tunisian populations was relatively high compared to other hare populations. However, genetic differentiation and gene flow analyses (AMOVA, F ST , Nm) indicated little divergence with the absence of geographically meaningful phylogroups and lack of clustering with coat colour types. These results confirm the presence of a single hare species in Tunisia, but a sound inference on its phylogenetic position would require additional nuclear markers and numerous geographically meaningful samples from Africa and Eurasia.

  2. Ovine mitochondrial DNA sequence variation and its association with production and reproduction traits within an Afec-Assaf flock.

    PubMed

    Reicher, S; Seroussi, E; Weller, J I; Rosov, A; Gootwine, E

    2012-07-01

    Polymorphisms in mitochondrial DNA (mtDNA) protein- and tRNA-coding genes were shown to be associated with various diseases in humans as well as with production and reproduction traits in livestock. Alignment of full length mitochondria sequences from the 5 known ovine haplogroups: HA (n = 3), HB (n = 5), HC (n = 3), HD (n = 2), and HE (n = 2; GenBank accession nos. HE577847-50 and 11 published complete ovine mitochondria sequences) revealed sequence variation in 10 out of the 13 protein coding mtDNA sequences. Twenty-six of the 245 variable sites found in the protein coding sequences represent non-synonymous mutations. Sequence variation was observed also in 8 out of the 22 tRNA mtDNA sequences. On the basis of the mtDNA control region and cytochrome b partial sequences along with information on maternal lineages within an Afec-Assaf flock, 1,126 Afec-Assaf ewes were assigned to mitochondrial haplogroups HA, HB, and HC, with frequencies of 0.43, 0.43, and 0.14, respectively. Analysis of birth weight and growth rate records of lamb (n = 1286) and productivity from 4,993 lambing records revealed no association between mitochondrial haplogroup affiliation and female longevity, lambs perinatal survival rate, birth weight, and daily growth rate of lambs up to 150 d that averaged 1,664 d, 88.3%, 4.5 kg, and 320 g/d, respectively. However, significant (P < 0.0001) differences among the haplogroups were found for prolificacy of ewes, with prolificacies (mean ± SE) of 2.14 ± 0.04, 2.25 ± 0.04, and 2.30 ± 0.06 lamb born/ewe lambing for the HA, HB, and the HC haplogroups, respectively. Our results highlight the ovine mitogenome genetic variation in protein- and tRNA coding genes and suggest that sequence variation in ovine mtDNA is associated with variation in ewe prolificacy.

  3. Divergent mtDNA lineages of goats in an Early Neolithic site, far from the initial domestication areas

    PubMed Central

    Fernández, Helena; Hughes, Sandrine; Vigne, Jean-Denis; Helmer, Daniel; Hodgins, Greg; Miquel, Christian; Hänni, Catherine; Luikart, Gordon; Taberlet, Pierre

    2006-01-01

    Goats were among the first farm animals domesticated, ≈10,500 years ago, contributing to the rise of the “Neolithic revolution.” Previous genetic studies have revealed that contemporary domestic goats (Capra hircus) show far weaker intercontinental population structuring than other livestock species, suggesting that goats have been transported more extensively. However, the timing of these extensive movements in goats remains unknown. To address this question, we analyzed mtDNA sequences from 19 ancient goat bones (7,300–6,900 years old) from one of the earliest Neolithic sites in southwestern Europe. Phylogenetic analysis revealed that two highly divergent goat lineages coexisted in each of the two Early Neolithic layers of this site. This finding indicates that high mtDNA diversity was already present >7,000 years ago in European goats, far from their areas of initial domestication in the Near East. These results argue for substantial gene flow among goat populations dating back to the early neolithisation of Europe and for a dual domestication scenario in the Near East, with two independent but essentially contemporary origins (of both A and C domestic lineages) and several more remote and/or later origins. PMID:17030824

  4. Highly Conserved Mitochondrial Genomes among Multicellular Red Algae of the Florideophyceae

    PubMed Central

    Yang, Eun Chan; Kim, Kyeong Mi; Kim, Su Yeon; Lee, JunMo; Boo, Ga Hun; Lee, Jung-Hyun; Nelson, Wendy A.; Yi, Gangman; Schmidt, William E.; Fredericq, Suzanne; Boo, Sung Min; Bhattacharya, Debashish; Yoon, Hwan Su

    2015-01-01

    Two red algal classes, the Florideophyceae (approximately 7,100 spp.) and Bangiophyceae (approximately 193 spp.), comprise 98% of red algal diversity in marine and freshwater habitats. These two classes form well-supported monophyletic groups in most phylogenetic analyses. Nonetheless, the interordinal relationships remain largely unresolved, in particular in the largest subclass Rhodymeniophycidae that includes 70% of all species. To elucidate red algal phylogenetic relationships and study organelle evolution, we determined the sequence of 11 mitochondrial genomes (mtDNA) from 5 florideophycean subclasses. These mtDNAs were combined with existing data, resulting in a database of 25 florideophytes and 12 bangiophytes (including cyanidiophycean species). A concatenated alignment of mt proteins was used to resolve ordinal relationships in the Rhodymeniophycidae. Red algal mtDNA genome comparisons showed 47 instances of gene rearrangement including 12 that distinguish Bangiophyceae from Hildenbrandiophycidae, and 5 that distinguish Hildenbrandiophycidae from Nemaliophycidae. These organelle data support a rapid radiation and surprisingly high conservation of mtDNA gene syntheny among the morphologically divergent multicellular lineages of Rhodymeniophycidae. In contrast, we find extensive mitochondrial gene rearrangements when comparing Bangiophyceae and Florideophyceae and multiple examples of gene loss among the different red algal lineages. PMID:26245677

  5. Canis mtDNA HV1 database: a web-based tool for collecting and surveying Canis mtDNA HV1 haplotype in public database.

    PubMed

    Thai, Quan Ke; Chung, Dung Anh; Tran, Hoang-Dung

    2017-06-26

    Canine and wolf mitochondrial DNA haplotypes, which can be used for forensic or phylogenetic analyses, have been defined in various schemes depending on the region analyzed. In recent studies, the 582 bp fragment of the HV1 region is most commonly used. 317 different canine HV1 haplotypes have been reported in the rapidly growing public database GenBank. These reported haplotypes contain several inconsistencies in their haplotype information. To overcome this issue, we have developed a Canis mtDNA HV1 database. This database collects data on the HV1 582 bp region in dog mitochondrial DNA from the GenBank to screen and correct the inconsistencies. It also supports users in detection of new novel mutation profiles and assignment of new haplotypes. The Canis mtDNA HV1 database (CHD) contains 5567 nucleotide entries originating from 15 subspecies in the species Canis lupus. Of these entries, 3646 were haplotypes and grouped into 804 distinct sequences. 319 sequences were recognized as previously assigned haplotypes, while the remaining 485 sequences had new mutation profiles and were marked as new haplotype candidates awaiting further analysis for haplotype assignment. Of the 3646 nucleotide entries, only 414 were annotated with correct haplotype information, while 3232 had insufficient or lacked haplotype information and were corrected or modified before storing in the CHD. The CHD can be accessed at http://chd.vnbiology.com . It provides sequences, haplotype information, and a web-based tool for mtDNA HV1 haplotyping. The CHD is updated monthly and supplies all data for download. The Canis mtDNA HV1 database contains information about canine mitochondrial DNA HV1 sequences with reconciled annotation. It serves as a tool for detection of inconsistencies in GenBank and helps identifying new HV1 haplotypes. Thus, it supports the scientific community in naming new HV1 haplotypes and to reconcile existing annotation of HV1 582 bp sequences.

  6. Re-examination of population structure and phylogeography of hawksbill turtles in the wider Caribbean using longer mtDNA sequences.

    PubMed

    Leroux, Robin A; Dutton, Peter H; Abreu-Grobois, F Alberto; Lagueux, Cynthia J; Campbell, Cathi L; Delcroix, Eric; Chevalier, Johan; Horrocks, Julia A; Hillis-Starr, Zandy; Troëng, Sebastian; Harrison, Emma; Stapleton, Seth

    2012-01-01

    Management of the critically endangered hawksbill turtle in the Wider Caribbean (WC) has been hampered by knowledge gaps regarding stock structure. We carried out a comprehensive stock structure re-assessment of 11 WC hawksbill rookeries using longer mtDNA sequences, larger sample sizes (N = 647), and additional rookeries compared to previous surveys. Additional variation detected by 740 bp sequences between populations allowed us to differentiate populations such as Barbados-Windward and Guadeloupe (F (st) = 0.683, P < 0.05) that appeared genetically indistinguishable based on shorter 380 bp sequences. POWSIM analysis showed that longer sequences improved power to detect population structure and that when N < 30, increasing the variation detected was as effective in increasing power as increasing sample size. Geographic patterns of genetic variation suggest a model of periodic long-distance colonization coupled with region-wide dispersal and subsequent secondary contact within the WC. Mismatch analysis results for individual clades suggest a general population expansion in the WC following a historic bottleneck about 100 000-300 000 years ago. We estimated an effective female population size (N (ef)) of 6000-9000 for the WC, similar to the current estimated numbers of breeding females, highlighting the importance of these regional rookeries to maintaining genetic diversity in hawksbills. Our results provide a basis for standardizing future work to 740 bp sequence reads and establish a more complete baseline for determining stock boundaries in this migratory marine species. Finally, our findings illustrate the value of maintaining an archive of specimens for re-analysis as new markers become available.

  7. Colombian Creole horse breeds: Same origin but different diversity

    PubMed Central

    Jimenez, Ligia Mercedes; Mendez, Susy; Dunner, Susana; Cañón, Javier; Cortés, Óscar

    2012-01-01

    In order to understand the genetic ancestry and mitochondrial DNA (mtDNA) diversity of current Colombian horse breeds we sequenced a 364-bp fragment of the mitocondrial DNA D-loop in 116 animals belonging to five Spanish horse breeds and the Colombian Paso Fino and Colombian Creole cattle horse breeds. Among Colombian horse breeds, haplogroup D had the highest frequency (53%), followed by haplogroups A (19%), C (8%) and F (6%). The higher frequency of haplogroup D in Colombian horse breeds supports the theory of an ancestral Iberian origin for these breeds. These results also indicate that different selective pressures among the Colombian breeds could explain the relatively higher genetic diversity found in the Colombian Creole cattle horse when compared with the Colombian Paso Fino. PMID:23271940

  8. Genetic variability among Schistosoma japonicum isolates from the Philippines, Japan and China revealed by sequence analysis of three mitochondrial genes.

    PubMed

    Chen, Fen; Li, Juan; Sugiyama, Hiromu; Zhou, Dong-Hui; Song, Hui-Qun; Zhao, Guang-Hui; Zhu, Xing-Quan

    2015-02-01

    The present study examined sequence variability in the mitochondrial (mt) protein-coding genes cytochrome b (cytb), NADH dehydrogenase subunits 2 and 6 (nad2 and nad6) among 24 isolates of Schistosoma japonicum from different endemic regions in the Philippines, Japan and China. The complete cytb, nad2 and nad6 genes were amplified and sequenced separately from individual schistosome. Sequence variations for isolates from the Philippines were 0-0.5% for cytb, 0-0.6% for nad2, and 0-0.9% for nad6. Variation was 0-0.5%, 0.1-0.8%, 0-0.7% for corresponding genes for schistosome samples from mainland China. For worms in Japan, genetic variations were 0-0.2%, 0.1-0.2% and 0 for the three genes, respectively. Sequence variations were 0-1.0%, 0-1.8% and 0-1.1% for cytb, nad2 and nad6, respectively, among schistosome isolates from different geographical strains in the Philippines, Japan and China. Of the three countries, lowest sequence variations were found between isolates from mainland China and the Philippines and highest were detected between Japan and the Philippines in three mtDNA genes. Phylogenetic analyses based on the combined sequences of cytb, nad2 and nad6 revealed that all isolates in the Philippines clustered together sistered to samples from Yunnan and Zhejiang provinces in China, while isolates from Yamanashi in Japan were in a solitary clade. These results demonstrated the usefulness of the combined three mtDNA sequences for studying genetic diversity and population structure among S. japonicum isolates from the Philippines, China and Japan.

  9. Cattle phenotypes can disguise their maternal ancestry.

    PubMed

    Srirattana, Kanokwan; McCosker, Kieren; Schatz, Tim; St John, Justin C

    2017-06-26

    Cattle are bred for, amongst other factors, specific traits, including parasite resistance and adaptation to climate. However, the influence and inheritance of mitochondrial DNA (mtDNA) are not usually considered in breeding programmes. In this study, we analysed the mtDNA profiles of cattle from Victoria (VIC), southern Australia, which is a temperate climate, and the Northern Territory (NT), the northern part of Australia, which has a tropical climate, to determine if the mtDNA profiles of these cattle are indicative of breed and phenotype, and whether these profiles are appropriate for their environments. A phylogenetic tree of the full mtDNA sequences of different breeds of cattle, which were obtained from the NCBI database, showed that the mtDNA profiles of cattle do not always reflect their phenotype as some cattle with Bos taurus phenotypes had Bos indicus mtDNA, whilst some cattle with Bos indicus phenotypes had Bos taurus mtDNA. Using D-loop sequencing, we were able to contrast the phenotypes and mtDNA profiles from different species of cattle from the 2 distinct cattle breeding regions of Australia. We found that 67 of the 121 cattle with Bos indicus phenotypes from NT (55.4%) had Bos taurus mtDNA. In VIC, 92 of the 225 cattle with Bos taurus phenotypes (40.9%) possessed Bos indicus mtDNA. When focusing on oocytes from cattle with the Bos taurus phenotype in VIC, their respective oocytes with Bos indicus mtDNA had significantly lower levels of mtDNA copy number compared with oocytes possessing Bos taurus mtDNA (P < 0.01). However, embryos derived from oocytes with Bos indicus mtDNA had the same ability to develop to the blastocyst stage and the levels of mtDNA copy number in their blastocysts were similar to blastocysts derived from oocytes harbouring Bos taurus mtDNA. Nevertheless, oocytes originating from the Bos indicus phenotype exhibited lower developmental potential due to low mtDNA copy number when compared with oocytes from cattle with a Bos taurus phenotype. The phenotype of cattle is not always related to their mtDNA profiles. MtDNA profiles should be considered for breeding programmes as they also influence phenotypic traits and reproductive capacity in terms of oocyte quality.

  10. Surface Microflora of Four Smear-Ripened Cheeses

    PubMed Central

    Mounier, Jérôme; Gelsomino, Roberto; Goerges, Stefanie; Vancanneyt, Marc; Vandemeulebroecke, Katrien; Hoste, Bart; Scherer, Siegfried; Swings, Jean; Fitzgerald, Gerald F.; Cogan, Timothy M.

    2005-01-01

    The microbial composition of smear-ripened cheeses is not very clear. A total of 194 bacterial isolates and 187 yeast isolates from the surfaces of four Irish farmhouse smear-ripened cheeses were identified at the midpoint of ripening using pulsed-field gel electrophoresis (PFGE), repetitive sequence-based PCR, and 16S rRNA gene sequencing for identifying and typing the bacteria and Fourier transform infrared spectroscopy and mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) analysis for identifying and typing the yeast. The yeast microflora was very uniform, and Debaryomyces hansenii was the dominant species in the four cheeses. Yarrowia lipolytica was also isolated in low numbers from one cheese. The bacteria were highly diverse, and 14 different species, Corynebacterium casei, Corynebacterium variabile, Arthrobacter arilaitensis, Arthrobacter sp., Microbacterium gubbeenense, Agrococcus sp. nov., Brevibacterium linens, Staphylococcus epidermidis, Staphylococcus equorum, Staphylococcus saprophyticus, Micrococcus luteus, Halomonas venusta, Vibrio sp., and Bacillus sp., were identified on the four cheeses. Each cheese had a more or less unique microflora with four to nine species on its surface. However, two bacteria, C. casei and A. arilaitensis, were found on each cheese. Diversity at the strain level was also observed, based on the different PFGE patterns and mtDNA RFLP profiles of the dominant bacterial and yeast species. None of the ripening cultures deliberately inoculated onto the surface were reisolated from the cheeses. This study confirms the importance of the adventitious, resident microflora in the ripening of smear cheeses. PMID:16269673

  11. The Use and Effectiveness of Triple Multiplex System for Coding Region Single Nucleotide Polymorphism in Mitochondrial DNA Typing of Archaeologically Obtained Human Skeletons from Premodern Joseon Tombs of Korea

    PubMed Central

    Oh, Chang Seok; Lee, Soong Deok; Kim, Yi-Suk; Shin, Dong Hoon

    2015-01-01

    Previous study showed that East Asian mtDNA haplogroups, especially those of Koreans, could be successfully assigned by the coupled use of analyses on coding region SNP markers and control region mutation motifs. In this study, we tried to see if the same triple multiplex analysis for coding regions SNPs could be also applicable to ancient samples from East Asia as the complementation for sequence analysis of mtDNA control region. By the study on Joseon skeleton samples, we know that mtDNA haplogroup determined by coding region SNP markers successfully falls within the same haplogroup that sequence analysis on control region can assign. Considering that ancient samples in previous studies make no small number of errors in control region mtDNA sequencing, coding region SNP analysis can be used as good complimentary to the conventional haplogroup determination, especially of archaeological human bone samples buried underground over long periods. PMID:26345190

  12. 'Mitominis': multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples.

    PubMed

    Eichmann, Cordula; Parson, Walther

    2008-09-01

    The traditional protocol for forensic mitochondrial DNA (mtDNA) analyses involves the amplification and sequencing of the two hypervariable segments HVS-I and HVS-II of the mtDNA control region. The primers usually span fragment sizes of 300-400 bp each region, which may result in weak or failed amplification in highly degraded samples. Here we introduce an improved and more stable approach using shortened amplicons in the fragment range between 144 and 237 bp. Ten such amplicons were required to produce overlapping fragments that cover the entire human mtDNA control region. These were co-amplified in two multiplex polymerase chain reactions and sequenced with the individual amplification primers. The primers were carefully selected to minimize binding on homoplasic and haplogroup-specific sites that would otherwise result in loss of amplification due to mis-priming. The multiplexes have successfully been applied to ancient and forensic samples such as bones and teeth that showed a high degree of degradation.

  13. MitoTALEN: A General Approach to Reduce Mutant mtDNA Loads and Restore Oxidative Phosphorylation Function in Mitochondrial Diseases

    PubMed Central

    Hashimoto, Masami; Bacman, Sandra R; Peralta, Susana; Falk, Marni J; Chomyn, Anne; Chan, David C; Williams, Sion L; Moraes, Carlos T

    2015-01-01

    We have designed mitochondrially targeted transcription activator-like effector nucleases or mitoTALENs to cleave specific sequences in the mitochondrial DNA (mtDNA) with the goal of eliminating mtDNA carrying pathogenic point mutations. To test the generality of the approach, we designed mitoTALENs to target two relatively common pathogenic mtDNA point mutations associated with mitochondrial diseases: the m.8344A>G tRNALys gene mutation associated with myoclonic epilepsy with ragged red fibers (MERRF) and the m.13513G>A ND5 mutation associated with MELAS/Leigh syndrome. Transmitochondrial cybrid cells harbouring the respective heteroplasmic mtDNA mutations were transfected with the respective mitoTALEN and analyzed after different time periods. MitoTALENs efficiently reduced the levels of the targeted pathogenic mtDNAs in the respective cell lines. Functional assays showed that cells with heteroplasmic mutant mtDNA were able to recover respiratory capacity and oxidative phosphorylation enzymes activity after transfection with the mitoTALEN. To improve the design in the context of the low complexity of mtDNA, we designed shorter versions of the mitoTALEN specific for the MERRF m.8344A>G mutation. These shorter mitoTALENs also eliminated the mutant mtDNA. These reductions in size will improve our ability to package these large sequences into viral vectors, bringing the use of these genetic tools closer to clinical trials. PMID:26159306

  14. Population genetic structure of Santa Ynez rainbow trout – 2001 based on microsatellite and mtDNA analyses

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Zimmerman, Christian E.; Olsen, Jeffrey B.; Wiacek, Talia; Kretschmer, E.J.; Greenwald, Glenn M.; Wenburg, John K.

    2003-01-01

    Microsatellite allelic and mitochondrial DNA (mtDNA) haplotype diversity are analyzed in eight rainbow trout (Oncorhynchus mykiss) collections: two from tributaries flowing into the upper Santa Ynez River watershed at Gibraltar Reservoir (Camuesa and Gidney creeks); three from tributaries between Gibraltar and Jameson reservoirs (Fox, Blue Canyon, and Alder creeks); one from a tributary above Jameson Reservoir (Juncal Creek); Jameson Reservoir; and one from the mainstem Santa Ynez River above the Jameson Reservoir. Both analyses reveal a high degree of population structure. Thirteen microsatellite loci are amplified from 376 fish. Population pairwise comparisons show significant differences in allelic frequency among all populations with the exception of Juncal Creek and Jameson Reservoir (p = 0.4). Pairwise Fst values range from 0.001 (Juncal Creek and Jameson Reservoir) to 0.17 (Camuesa and Juncal creeks) with an overall value of 0.021. Regression analyses (Slatkin 1993) supports an isolation-bydistance model in the five populations below Jameson Reservoir (intercept = 1.187, slope = -0.41, r2 = 0.67). A neighbor-joining bootstrap value of 100% (based on 2000 replicate trees) separates the populations sampled above and below Juncal Dam. Composite haplotypes from 321 fish generated using mtDNA sequence data (Dloop) reveal four previously described haplotypes (MYS1, MYS3, MYS5 and MYS8; Nielsen et al. 1994a), and one (MYS5) was found in all populations. Mean haplotype diversity is 0.48. Pairwise Fst values from mtDNA range from -0.019 to 0.530 (0.177 over all populations) and are larger than those for microsatellites in 26 of 28 pairwise comparisons. In addition, the mtDNA and microsatellites provide contrasting evidence of the relationship of Fox and Alder creeks to the other six populations. Discrepancies between the two markers are likely due to the unique properties of the two marker types and their value in revealing historic (mtDNA) versus contemporary (microsatellites) genetic relationships. The contrasting results may indicate how relationships among the upper Santa Ynez River populations have changed since the installation of Juncal Dam. Comparisons of mtDNA haplotype frequencies from fish collected for this study with samples analyzed previously in JLN’s laboratory (1993) reveal significant differences in mtDNA haplotypes for Fox and Alder creeks. In the 2001 samples from this study, there is a loss of three haplotypes despite larger sample sizes. AMOVA analysis of what we term “upper” (Alder, Fox, Blue Canyon, Camuesa, Gidney creeks and the upper Santa Ynez mainstem) and “lower” (Hilton, Salsipuedes and the lower mainstem Santa Ynez River) Santa Ynez River populations (1993-2001) reveal that 11% of the variance in haplotypes is found between the upper and lower drainage. A comparison of the mtDNA data from this study with those available for southern California coastal and California hatchery O. mykiss populations yields Fst values of 0.15 and 0.47, respectively. Differentiation of mtDNA haplotypes for population pairs of Santa Ynez River and hatchery fish show no significant differentiation between wild and at least one hatchery strain in Cachuma Reservoir, Hilton Creek, and the Lower Santa Ynez River.

  15. Human settlement history between Sunda and Sahul: a focus on East Timor (Timor-Leste) and the Pleistocenic mtDNA diversity.

    PubMed

    Gomes, Sibylle M; Bodner, Martin; Souto, Luis; Zimmermann, Bettina; Huber, Gabriela; Strobl, Christina; Röck, Alexander W; Achilli, Alessandro; Olivieri, Anna; Torroni, Antonio; Côrte-Real, Francisco; Parson, Walther

    2015-02-14

    Distinct, partly competing, "waves" have been proposed to explain human migration in(to) today's Island Southeast Asia and Australia based on genetic (and other) evidence. The paucity of high quality and high resolution data has impeded insights so far. In this study, one of the first in a forensic environment, we used the Ion Torrent Personal Genome Machine (PGM) for generating complete mitogenome sequences via stand-alone massively parallel sequencing and describe a standard data validation practice. In this first representative investigation on the mitochondrial DNA (mtDNA) variation of East Timor (Timor-Leste) population including >300 individuals, we put special emphasis on the reconstruction of the initial settlement, in particular on the previously poorly resolved haplogroup P1, an indigenous lineage of the Southwest Pacific region. Our results suggest a colonization of southern Sahul (Australia) >37 kya, limited subsequent exchange, and a parallel incubation of initial settlers in northern Sahul (New Guinea) followed by westward migrations <28 kya. The temporal proximity and possible coincidence of these latter dispersals, which encompassed autochthonous haplogroups, with the postulated "later" events of (South) East Asian origin pinpoints a highly dynamic migratory phase.

  16. Fellow travellers: a concordance of colonization patterns between mice and men in the North Atlantic region

    PubMed Central

    2012-01-01

    Background House mice (Mus musculus) are commensals of humans and therefore their phylogeography can reflect human colonization and settlement patterns. Previous studies have linked the distribution of house mouse mitochondrial (mt) DNA clades to areas formerly occupied by the Norwegian Vikings in Norway and the British Isles. Norwegian Viking activity also extended further westwards in the North Atlantic with the settlement of Iceland, short-lived colonies in Greenland and a fleeting colony in Newfoundland in 1000 AD. Here we investigate whether house mouse mtDNA sequences reflect human history in these other regions as well. Results House mice samples from Iceland, whether from archaeological Viking Age material or from modern-day specimens, had an identical mtDNA haplotype to the clade previously linked with Norwegian Vikings. From mtDNA and microsatellite data, the modern-day Icelandic mice also share the low genetic diversity shown by their human hosts on Iceland. Viking Age mice from Greenland had an mtDNA haplotype deriving from the Icelandic haplotype, but the modern-day Greenlandic mice belong to an entirely different mtDNA clade. We found no genetic association between modern Newfoundland mice and the Icelandic/ancient Greenlandic mice (no ancient Newfoundland mice were available). The modern day Icelandic and Newfoundland mice belong to the subspecies M. m. domesticus, the Greenlandic mice to M. m. musculus. Conclusions In the North Atlantic region, human settlement history over a thousand years is reflected remarkably by the mtDNA phylogeny of house mice. In Iceland, the mtDNA data show the arrival and continuity of the house mouse population to the present day, while in Greenland the data suggest the arrival, subsequent extinction and recolonization of house mice - in both places mirroring the history of the European human host populations. If house mice arrived in Newfoundland with the Viking settlers at all, then, like the humans, their presence was also fleeting and left no genetic trace. The continuity of mtDNA haplotype in Iceland over 1000 years illustrates that mtDNA can retain the signature of the ancestral house mouse founders. We also show that, in terms of genetic variability, house mouse populations may also track their host human populations. PMID:22429664

  17. Few mitochondrial DNA sequences are inserted into the turkey (Meleagris gallopavo) nuclear genome: evolutionary analyses and informativity in the domestic lineage.

    PubMed

    Schiavo, G; Strillacci, M G; Ribani, A; Bovo, S; Roman-Ponce, S I; Cerolini, S; Bertolini, F; Bagnato, A; Fontanesi, L

    2018-06-01

    Mitochondrial DNA (mtDNA) insertions have been detected in the nuclear genome of many eukaryotes. These sequences are pseudogenes originated by horizontal transfer of mtDNA fragments into the nuclear genome, producing nuclear DNA sequences of mitochondrial origin (numt). In this study we determined the frequency and distribution of mtDNA-originated pseudogenes in the turkey (Meleagris gallopavo) nuclear genome. The turkey reference genome (Turkey_2.01) was aligned with the reference linearized mtDNA sequence using last. A total of 32 numt sequences (corresponding to 18 numt regions derived by unique insertional events) were identified in the turkey nuclear genome (size ranging from 66 to 1415 bp; identity against the modern turkey mtDNA corresponding region ranging from 62% to 100%). Numts were distributed in nine chromosomes and in one scaffold. They derived from parts of 10 mtDNA protein-coding genes, ribosomal genes, the control region and 10 tRNA genes. Seven numt regions reported in the turkey genome were identified in orthologues positions in the Gallus gallus genome and therefore were present in the ancestral genome that in the Cretaceous originated the lineages of the modern crown Galliformes. Five recently integrated turkey numts were validated by PCR in 168 turkeys of six different domestic populations. None of the analysed numts were polymorphic (i.e. absence of the inserted sequence, as reported in numts of recent integration in other species), suggesting that the reticulate speciation model is not useful for explaining the origin of the domesticated turkey lineage. © 2018 Stichting International Foundation for Animal Genetics.

  18. Loss of genetic connectivity and diversity in urban microreserves in a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus n. sp. "santa monica")

    USGS Publications Warehouse

    Vandergast, A.G.; Lewallen, E.A.; Deas, J.; Bohonak, A.J.; Weissman, D.B.; Fisher, R.N.

    2009-01-01

    Microreserves may be useful in protecting native arthropod diversity in urbanized landscapes. However, species that do not disperse through the urban matrix may eventually be lost from these fragments. Population extinctions may be precipitated by an increase in genetic differentiation among fragments and loss of genetic diversity within fragments, and these effects should become stronger with time. We analyzed population genetic structure in the dispersal limited Jerusalem cricket Stenopelmatus n. sp. "santa monica" in the Santa Monica Mountains and Simi Hills north of Los Angeles, California (CA), to determine the impacts of fragmentation over the past 70 years. MtDNA divergence was greater among urban fragments than within contiguous habitat and was positively correlated with fragment age. MtDNA genetic diversity within fragments increased with fragment size and decreased with fragment age. Genetic divergence across 38 anonymous nuclear Inter-Simple Sequence Repeat (ISSR) loci was influenced by the presence of major highways and highway age, but there was no effect of additional urban fragmentation. ISSR diversity was not correlated with fragment size or age. Differing results between markers may be due to male-biased dispersal, or different effective population sizes, sorting rates, or mutation rates among sampled genes. Results suggest that genetic connectivity among populations has been disrupted by highways and urban development, prior to declines in local population sizes. We emphasize that genetic connectivity can rapidly erode in fragmented landscapes and that flightless arthropods can serve as sensitive indicators for these effects. ?? Springer Science+Business Media B.V. 2008.

  19. Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.

    PubMed

    Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Hernández-Laín, Aurelio; Coca-Robinot, David; Rivera, Henry; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, MiguelÁngel; Martínez-Azorín, Francisco

    2016-02-29

    Whole-exome sequencing (WES) was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase (CK), deficiency of mitochondrial complex III and depletion of mtDNA. With WES data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in Thymidine kinase 2 gene (TK2; NM_004614.4:c.323C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes (MDS). This patient presents an atypical TK2 related-myopathic form of MDS, because despite having a very low content of mtDNA (<20%), she presents a slower and less severe evolution of the disease. In conclusion, our data confirm the role of TK2 gene in MDS and expanded the phenotypic spectrum.

  20. Triangulating the provenance of African elephants using mitochondrial DNA

    PubMed Central

    Ishida, Yasuko; Georgiadis, Nicholas J; Hondo, Tomoko; Roca, Alfred L

    2013-01-01

    African elephant mitochondrial (mt) DNA follows a distinctive evolutionary trajectory. As females do not migrate between elephant herds, mtDNA exhibits low geographic dispersal. We therefore examined the effectiveness of mtDNA for assigning the provenance of African elephants (or their ivory). For 653 savanna and forest elephants from 22 localities in 13 countries, 4258 bp of mtDNA was sequenced. We detected eight mtDNA subclades, of which seven had regionally restricted distributions. Among 108 unique haplotypes identified, 72% were found at only one locality and 84% were country specific, while 44% of individuals carried a haplotype detected only at their sampling locality. We combined 316 bp of our control region sequences with those generated by previous trans-national surveys of African elephants. Among 101 unique control region haplotypes detected in African elephants across 81 locations in 22 countries, 62% were present in only a single country. Applying our mtDNA results to a previous microsatellite-based assignment study would improve estimates of the provenance of elephants in 115 of 122 mis-assigned cases. Nuclear partitioning followed species boundaries and not mtDNA subclade boundaries. For taxa such as elephants in which nuclear and mtDNA markers differ in phylogeography, combining the two markers can triangulate the origins of confiscated wildlife products. PMID:23798975

  1. High genetic diversity in the offshore island populations of the tephritid fruit fly Bactrocera dorsalis.

    PubMed

    Yi, Chunyan; Zheng, Chunyan; Zeng, Ling; Xu, Yijuan

    2016-10-13

    Geographic isolation is an important factor that limit species dispersal and thereby affects genetic diversity. Because islands are often small and surrounded by a natural water barrier to dispersal, they generally form discrete isolated habitats. Therefore, islands may play a key role in the distribution of the genetic diversity of insects, including flies. To characterize the genetic structure of island populations of Bactrocera dorsalis, we analyzed a dataset containing both microsatellite and mtDNA loci of B. dorsalis samples collected from six offshore islands in Southern China. The microsatellite data revealed a high level of genetic diversity among these six island populations based on observed heterozygosity (Ho), expected heterozygosity (H E ), Nei's standard genetic distance (D), genetic identity (I) and the percentage of polymorphic loci (PIC). These island populations had low F ST values (F ST  = 0.04161), and only 4.16 % of the total genetic variation in the species was found on these islands, as determined by an analysis of molecular variance. Based on the mtDNA COI data, high nucleotide diversity (0.9655) and haplotype diversity (0.00680) were observed in all six island populations. F-statistics showed that the six island populations exhibited low or medium levels of genetic differentiation among some island populations. To investigate the population differentiation between the sampled locations, a factorial correspondence analysis and both the unweighted pair-group method with arithmetic mean and Bayesian clustering methods were used to analyze the microsatellite data. The results showed that Hebao Island, Weizhou Island and Dong'ao Island were grouped together in one clade. Another clade consisted of Shangchuan Island and Naozhou Island, and a final, separate clade contained only the Wailingding Island population. Phylogenetic analysis of the mtDNA COI sequences revealed that the populations on each of these six islands were closely related to different populations on mainland China. Our study suggests that these island populations have high genetic diversity, experience frequent gene flow and exhibit low or medium levels of genetic differentiation among some island populations. Therefore, the geographic isolation of the six islands does not appear to be a major dispersal barrier to B. dorsalis. Such knowledge is helpful for a better understanding of evolutionary processes of the species of island populations.

  2. Population structure and genetic differentiation of livestock guard dog breeds from the Western Balkans.

    PubMed

    Ceh, E; Dovc, P

    2014-08-01

    Livestock guard dog (LGD) breeds from the Western Balkans are a good example of how complex genetic diversity pattern observed in dog breeds has been shaped by transition in dog breeding practices. Despite their common geographical origin and relatively recent formal recognition as separate breeds, the Karst Shepherd, Sarplaninac and Tornjak show distinct population dynamics, assessed by pedigree, microsatellite and mtDNA data. We genotyped 493 dogs belonging to five dog breeds using a set of 18 microsatellite markers and sequenced mtDNA from 94 dogs from these breeds. Different demographic histories of the Karst Shepherd and Tornjak breeds are reflected in the pedigree data with the former breed having more unbalanced contributions of major ancestors and a realized effective population size of less than 20 animals. The highest allelic richness was found in Sarplaninac (5.94), followed by Tornjak (5.72), whereas Karst Shepherd dogs exhibited the lowest allelic richness (3.33). Similarly, the highest mtDNA haplotype diversity was found in Sarplaninac, followed by Tornjak and Karst Shepherd, where only one haplotype was found. Based on FST differentiation values and high percentages of animals correctly assigned, all breeds can be considered genetically distinct. However, using microsatellite data, common ancestry between the Karst Shepherd and Sarplaninac could not be reconstructed, despite pedigree and mtDNA evidence of their historical admixture. Using neighbour-joining, STRUCTURE or DAPC methods, Sarplaninac and Caucasian Shepherd breeds could not be separated and additionally showed close proximity in the NeighborNet tree. STRUCTURE analysis of the Tornjak breed demonstrated substructuring, which needs further investigation. Altogether, results of this study show that the official separation of these dog breeds strongly affected the resolution of genetic differentiation and thus suggest that the relationships between breeds are not only determined by breed relatedness, but in small populations even more importantly by stochastic effects. © 2014 Blackwell Verlag GmbH.

  3. Germ line insertion of mtDNA at the breakpoint junction of a reciprocal constitutional translocation.

    PubMed

    Willett-Brozick, J E; Savul, S A; Richey, L E; Baysal, B E

    2001-08-01

    Constitutional chromosomal translocations are relatively common causes of human morbidity, yet the DNA double-strand break (DSB) repair mechanisms that generate them are incompletely understood. We cloned, sequenced and analyzed the breakpoint junctions of a familial constitutional reciprocal translocation t(9;11)(p24;q23). Within the 10-kb region flanking the breakpoints, chromosome 11 had 25% repeat elements, whereas chromosome 9 had 98% repeats, 95% of which were L1-type LINE elements. The breakpoints occurred within an L1-type repeat element at 9p24 and at the 3'-end of an Alu sequence at 11q23. At the breakpoint junction of derivative chromosome 9, we discovered an unusually large 41-bp insertion, which showed 100% identity to 12S mitochondrial DNA (mtDNA) between nucleotides 896 and 936 of the mtDNA sequence. Analysis of the human genome failed to show the preexistence of the inserted sequence at normal chromosomes 9 and 11 breakpoint junctions or elsewhere in the genome, strongly suggesting that the insertion was derived from human mtDNA and captured into the junction during the DSB repair process. To our knowledge, these findings represent the first observation of spontaneous germ line insertion of modern human mtDNA sequences and suggest that DSB repair may play a role in inter-organellar gene transfer in vivo. Our findings also provide evidence for a previously unrecognized insertional mechanism in human, by which non-mobile extra-chromosomal fragments can be inserted into the genome at DSB repair junctions.

  4. Atypical mitochondrial inheritance patterns in eukaryotes.

    PubMed

    Breton, Sophie; Stewart, Donald T

    2015-10-01

    Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.

  5. Mitochondrial DNA perspective of Serbian genetic diversity.

    PubMed

    Davidovic, Slobodan; Malyarchuk, Boris; Aleksic, Jelena M; Derenko, Miroslava; Topalovic, Vladanka; Litvinov, Andrey; Stevanovic, Milena; Kovacevic-Grujicic, Natasa

    2015-03-01

    Although south-Slavic populations have been studied to date from various aspects, the population of Serbia, occupying the central part of the Balkan Peninsula, is still genetically understudied at least at the level of mitochondrial DNA (mtDNA) variation. We analyzed polymorphisms of the first and the second mtDNA hypervariable segments (HVS-I and HVS-II) and informative coding-region markers in 139 Serbians to shed more light on their mtDNA variability, and used available data on other Slavic and neighboring non-Slavic populations to assess their interrelations in a broader European context. The contemporary Serbian mtDNA profile is consistent with the general European maternal landscape having a substantial proportion of shared haplotypes with eastern, central, and southern European populations. Serbian population was characterized as an important link between easternmost and westernmost south-Slavic populations due to the observed lack of genetic differentiation with all other south-Slavic populations and its geographical positioning within the Balkan Peninsula. An increased heterogeneity of south Slavs, most likely mirroring turbulent demographic events within the Balkan Peninsula over time (i.e., frequent admixture and differential introgression of various gene pools), and a marked geographical stratification of Slavs to south-, east-, and west-Slavic groups, were also found. A phylogeographic analyses of 20 completely sequenced Serbian mitochondrial genomes revealed not only the presence of mtDNA lineages predominantly found within the Slavic gene pool (U4a2a*, U4a2a1, U4a2c, U4a2g, HV10), supporting a common Slavic origin, but also lineages that may have originated within the southern Europe (H5*, H5e1, H5a1v) and the Balkan Peninsula in particular (H6a2b and L2a1k). © 2014 Wiley Periodicals, Inc.

  6. Phylogenetic analysis of Sicilian goats reveals a new mtDNA lineage.

    PubMed

    Sardina, M T; Ballester, M; Marmi, J; Finocchiaro, R; van Kaam, J B C H M; Portolano, B; Folch, J M

    2006-08-01

    The mitochondrial hypervariable region 1 (HVR1) sequence of 67 goats belonging to the Girgentana, Maltese and Derivata di Siria breeds was partially sequenced in order to present the first phylogenetic characterization of Sicilian goat breeds. These sequences were compared with published sequences of Indian and Pakistani domestic goats and wild goats. Mitochondrial lineage A was observed in most of the Sicilian goats. However, three Girgentana haplotypes were highly divergent from the Capra hircus clade, indicating that a new mtDNA lineage in domestic goats was found.

  7. Identical mitochondrial somatic mutations unique to chronic periodontitis and coronary artery disease

    PubMed Central

    Pallavi, Tokala; Chandra, Rampalli Viswa; Reddy, Aileni Amarender; Reddy, Bavigadda Harish; Naveen, Anumala

    2016-01-01

    Context: The inflammatory processes involved in chronic periodontitis and coronary artery diseases (CADs) are similar and produce reactive oxygen species that may result in similar somatic mutations in mitochondrial deoxyribonucleic acid (mtDNA). Aims: The aims of the present study were to identify somatic mtDNA mutations in periodontal and cardiac tissues from subjects undergoing coronary artery bypass surgery and determine what fraction was identical and unique to these tissues. Settings and Design: The study population consisted of 30 chronic periodontitis subjects who underwent coronary artery surgery after an angiogram had indicated CAD. Materials and Methods: Gingival tissue samples were taken from the site with deepest probing depth; coronary artery tissue samples were taken during the coronary artery bypass grafting procedures, and blood samples were drawn during this surgical procedure. These samples were stored under aseptic conditions and later transported for mtDNA analysis. Statistical Analysis Used: Complete mtDNA sequences were obtained and aligned with the revised Cambridge reference sequence (NC_012920) using sequence analysis and auto assembler tools. Results: Among the complete mtDNA sequences, a total of 162 variations were spread across the whole mitochondrial genome and present only in the coronary artery and the gingival tissue samples but not in the blood samples. Among the 162 variations, 12 were novel and four of the 12 novel variations were found in mitochondrial NADH dehydrogenase subunit 5 complex I gene (33.3%). Conclusions: Analysis of mtDNA mutations indicated 162 variants unique to periodontitis and CAD. Of these, 12 were novel and may have resulted from destructive oxidative forces common to these two diseases. PMID:27041832

  8. Mitochondrial DNA typing from human axillary, pubic and head hair shafts - success rates and sequence comparisons.

    PubMed

    Pfeiffer, H; Hühne, J; Ortmann, C; Waterkamp, K; Brinkmann, B

    1999-01-01

    The analysis of mitochondrial DNA (mtDNA) from shed hairs has gained high importance in forensic casework since telogen hairs are one of the most common types of evidence left at the crime scene. In this systematic study of hair shafts from 20 individuals, the correlation of mtDNA recovery with hair morphology (length, diameter, volume, colour), with sex, and with body localisation (head, armpit, pubis) was investigated. The highest average success rate of hypervariable region 1 (HV 1) sequencing was found in head hair shafts (75%) followed by pubic (66%) and axillary hair shafts (52%). No statistically significant correlation between morphological parameters or sex and the success rate of sequencing was found. MtDNA sequences of buccal cells, head, pubic and axillary hair shafts did not show intraindividual differences. Heteroplasmic base positions were observed neither in the hair shafts nor in control samples of buccal cells.

  9. Near East mtDNA haplotype variants in Roman cattle from Augusta Raurica, Switzerland, and in the Swiss Evolène breed.

    PubMed

    Schlumbaum, A; Turgay, M; Schibler, J

    2006-08-01

    Typical Near East mitochondrial haplotypes of the T2 lineage were found in one cattle metacarpus sample from the Roman period and in two present-day Evolène cattle in Switzerland. Sequences from eight additional Evolène and four Raetian Grey aligned to the European haplotype T3. Analysis of nucleotide diversity within the mitochondrial D-loop of both studied Swiss cattle breeds revealed high haplotype diversity and similar diversity to a European cattle reference group. Mitochondrial T3 haplotypes radiated star-like from two similarly frequent haplotypes, possibly indicating two different expansion routes. The breed structure of Evolène cattle can be explained either by an introduction of diverse female lineages from the domestication centre or by later admixture. The introduction of the Near East lineage to Switzerland must have happened during the Roman time or earlier.

  10. Simultaneous detection of human mitochondrial DNA and nuclear-inserted mitochondrial-origin sequences (NumtS) using forensic mtDNA amplification strategies and pyrosequencing technology.

    PubMed

    Bintz, Brittania J; Dixon, Groves B; Wilson, Mark R

    2014-07-01

    Next-generation sequencing technologies enable the identification of minor mitochondrial DNA variants with higher sensitivity than Sanger methods, allowing for enhanced identification of minor variants. In this study, mixtures of human mtDNA control region amplicons were subjected to pyrosequencing to determine the detection threshold of the Roche GS Junior(®) instrument (Roche Applied Science, Indianapolis, IN). In addition to expected variants, a set of reproducible variants was consistently found in reads from one particular amplicon. A BLASTn search of the variant sequence revealed identity to a segment of a 611-bp nuclear insertion of the mitochondrial control region (NumtS) spanning the primer-binding sites of this amplicon (Nature 1995;378:489). Primers (Hum Genet 2012;131:757; Hum Biol 1996;68:847) flanking the insertion were used to confirm the presence or absence of the NumtS in buccal DNA extracts from twenty donors. These results further our understanding of human mtDNA variation and are expected to have a positive impact on the interpretation of mtDNA profiles using deep-sequencing methods in casework. © 2014 American Academy of Forensic Sciences.

  11. Mitochondrial DNA sequence data reveals association of haplogroup U with psychosis in bipolar disorder.

    PubMed

    Frye, Mark A; Ryu, Euijung; Nassan, Malik; Jenkins, Gregory D; Andreazza, Ana C; Evans, Jared M; McElroy, Susan L; Oglesbee, Devin; Highsmith, W Edward; Biernacka, Joanna M

    2017-01-01

    Converging genetic, postmortem gene-expression, cellular, and neuroimaging data implicate mitochondrial dysfunction in bipolar disorder. This study was conducted to investigate whether mitochondrial DNA (mtDNA) haplogroups and single nucleotide variants (SNVs) are associated with sub-phenotypes of bipolar disorder. MtDNA from 224 patients with Bipolar I disorder (BPI) was sequenced, and association of sequence variations with 3 sub-phenotypes (psychosis, rapid cycling, and adolescent illness onset) was evaluated. Gene-level tests were performed to evaluate overall burden of minor alleles for each phenotype. The haplogroup U was associated with a higher risk of psychosis. Secondary analyses of SNVs provided nominal evidence for association of psychosis with variants in the tRNA, ND4 and ND5 genes. The association of psychosis with ND4 (gene that encodes NADH dehydrogenase 4) was further supported by gene-level analysis. Preliminary analysis of mtDNA sequence data suggests a higher risk of psychosis with the U haplogroup and variation in the ND4 gene implicated in electron transport chain energy regulation. Further investigation of the functional consequences of this mtDNA variation is encouraged. Copyright © 2016. Published by Elsevier Ltd.

  12. What Maintains the Central North Pacific Genetic Discontinuity in Pacific Herring?

    PubMed Central

    Liu, Ming; Lin, Longshan; Gao, Tianxiang; Yanagimoto, Takashi; Sakurai, Yasunori; Grant, W. Stewart

    2012-01-01

    Pacific herring show an abrupt genetic discontinuity in the central North Pacific that represents secondary contact between refuge populations previously isolated during Pleistocene glaciations. Paradoxically, high levels of gene flow produce genetic homogeneity among ocean-type populations within each group. Here, we surveyed variability in mtDNA control-region sequences (463 bp) and nine microsatellite loci in Pacific herring from sites across the North Pacific to further explore the nature of the genetic discontinuity around the Alaska Peninsula. Consistent with previous studies, little divergence (ΦST  = 0.011) was detected between ocean-type populations of Pacific herring in the North West Pacific, except for a population in the Yellow Sea (ΦST  = 0.065). A moderate reduction in genetic diversity for both mtDNA and microsatellites in the Yellow Sea likely reflects founder effects during the last colonization of this sea. Reciprocal monophyly between divergent mtDNA lineages (ΦST  = 0.391) across the Alaska Peninsula defines the discontinuity across the North Pacific. However, microsatellites did not show a strong break, as eastern Bering Sea (EBS) herring were more closely related to NE Pacific than to NW Pacific herring. This discordance between mtDNA and microsatellites may be due to microsatellite allelic convergence or to sex-biased dispersal across the secondary contact zone. The sharp discontinuity between Pacific herring populations may be maintained by high-density blocking, competitive exclusion or hybrid inferiority. PMID:23300525

  13. The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae).

    PubMed

    Pan, Hong-Chun; Fang, Hong-Yan; Li, Shi-Wei; Liu, Jun-Hong; Wang, Ying; Wang, An-Tai

    2014-12-01

    The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae) is composed of two linear DNA molecules. The mitochondrial DNA (mtDNA) molecule 1 is 8010 bp long and contains six protein-coding genes, large subunit rRNA, methionine and tryptophan tRNAs, two pseudogenes consisting respectively of a partial copy of COI, and terminal sequences at two ends of the linear mtDNA, while the mtDNA molecule 2 is 7576 bp long and contains seven protein-coding genes, small subunit rRNA, methionine tRNA, a pseudogene consisting of a partial copy of COI and terminal sequences at two ends of the linear mtDNA. COI gene begins with GTG as start codon, whereas other 12 protein-coding genes start with a typical ATG initiation codon. In addition, all protein-coding genes are terminated with TAA as stop codon.

  14. Extensive Variation and Sub-Structuring in Lineage A mtDNA in Indian Sheep: Genetic Evidence for Domestication of Sheep in India

    PubMed Central

    Singh, Sachin; Kumar Jr, Satish; Kolte, Atul P.; Kumar, Satish

    2013-01-01

    Previous studies on mitochondrial DNA analysis of sheep from different regions of the world have revealed the presence of two major- A and B, and three minor- C, D and E maternal lineages. Lineage A is more frequent in Asia and lineage B is more abundant in regions other than Asia. We have analyzed mitochondrial DNA sequences of 330 sheep from 12 different breeds of India. Neighbor-joining analysis revealed lineage A, B and C in Indian sheep. Surprisingly, multidimensional scaling plot based on FST values of control region of mtDNA sequences showed significant breed differentiation in contrast to poor geographical structuring reported earlier in this species. The breed differentiation in Indian sheep was essentially due to variable contribution of two major lineages to different breeds, and sub- structuring of lineage A, possibly the latter resulting from genetic drift. Nucleotide diversity of this lineage was higher in Indian sheep (0.014 ± 0.007) as compared to that of sheep from other regions of the world (0.009 ± 0.005 to 0.01 ± 0.005). Reduced median network analysis of control region and cytochrome b gene sequences of Indian sheep when analyzed along with available published sequences of sheep from other regions of the world showed that several haplotypes of lineage A were exclusive to Indian sheep. Given the high nucleotide diversity in Indian sheep and the poor sharing of lineage A haplotypes between Indian and non-Indian sheep, we propose that lineage A sheep has also been domesticated in the east of Near East, possibly in Indian sub-continent. Finally, our data provide support that lineage B and additional lineage A haplotypes of sheep might have been introduced to Indian sub-continent from Near East, probably by ancient sea trade route. PMID:24244282

  15. mtDNA control-region sequence variation suggests multiple independent origins of an "Asian-specific" 9-bp deletion in sub-Saharan Africans.

    PubMed Central

    Soodyall, H.; Vigilant, L.; Hill, A. V.; Stoneking, M.; Jenkins, T.

    1996-01-01

    The intergenic COII/tRNA(Lys) 9-bp deletion in human mtDNA, which is found at varying frequencies in Asia, Southeast Asia, Polynesia, and the New World, was also found in 81 of 919 sub-Saharan Africans. Using mtDNA control-region sequence data from a subset of 41 individuals with the deletion, we identified 22 unique mtDNA types associated with the deletion in Africa. A comparison of the unique mtDNA types from sub-Saharan Africans and Asians with the 9-bp deletion revealed that sub-Saharan Africans and Asians have sequence profiles that differ in the locations and frequencies of variant sites. Both phylogenetic and mismatch-distribution analysis suggest that 9-bp deletion arose independently in sub-Saharan Africa and Asia and that the deletion has arisen more than once in Africa. Within Africa, the deletion was not found among Khoisan peoples and was rare to absent in western and southwestern African populations, but it did occur in Pygmy and Negroid populations from central Africa and in Malawi and southern African Bantu-speakers. The distribution of the 9-bp deletion in Africa suggests that the deletion could have arisen in central Africa and was then introduced to southern Africa via the recent "Bantu expansion." PMID:8644719

  16. Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs have been determined by geological processes and climate change in the Late Cenozoic.

    PubMed

    Akın, Ciğdem; Bilgin, C Can; Beerli, Peter; Westaway, Rob; Ohst, Torsten; Litvinchuk, Spartak N; Uzzell, Thomas; Bilgin, Metin; Hotz, Hansjürg; Guex, Gaston-Denis; Plötner, Jörg

    2010-11-01

    AIM: Our aims were to assess the phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs and to estimate divergence times using different geological scenarios. We related divergence times to past geological events and discuss the relevance of our data for the systematics of eastern Mediterranean water frogs. LOCATION: The eastern Mediterranean region. METHODS: Genetic diversity and divergence were calculated using sequences of two protein-coding mitochondrial (mt) genes: ND2 (1038 bp, 119 sequences) and ND3 (340 bp, 612 sequences). Divergence times were estimated in a Bayesian framework under four geological scenarios representing alternative possible geological histories for the eastern Mediterranean. We then compared the different scenarios using Bayes factors and additional geological data. RESULTS: Extensive genetic diversity in mtDNA divides eastern Mediterranean water frogs into six main haplogroups (MHG). Three MHGs were identified on the Anatolian mainland; the most widespread MHG with the highest diversity is distributed from western Anatolia to the northern shore of the Caspian Sea, including the type locality of Pelophylax ridibundus. The other two Anatolian MHGs are restricted to south-eastern Turkey, occupying localities west and east of the Amanos mountain range. One of the remaining three MHGs is restricted to Cyprus; a second to the Levant; the third was found in the distribution area of European lake frogs (P. ridibundus group), including the Balkans. MAIN CONCLUSIONS: Based on geological evidence and estimates of genetic divergence we hypothesize that the water frogs of Cyprus have been isolated from the Anatolian mainland populations since the end of the Messinian salinity crisis (MSC), i.e. since c. 5.5-5.3 Ma, while our divergence time estimates indicate that the isolation of Crete from the mainland populations (Peloponnese, Anatolia) most likely pre-dates the MSC. The observed rates of divergence imply a time window of c. 1.6-1.1 million years for diversification of the largest Anatolian MHG; divergence between the two other Anatolian MHGs may have begun about 3.0 Ma, apparently as a result of uplift of the Amanos Mountains. Our mtDNA data suggest that the Anatolian water frogs and frogs from Cyprus represent several undescribed species.

  17. Mitochondrial DNA (mtDNA) variants in the European haplogroups HV, JT, and U do not have a major role in schizophrenia.

    PubMed

    Torrell, Helena; Salas, Antonio; Abasolo, Nerea; Morén, Constanza; Garrabou, Glòria; Valero, Joaquín; Alonso, Yolanda; Vilella, Elisabet; Costas, Javier; Martorell, Lourdes

    2014-10-01

    It has been reported that certain genetic factors involved in schizophrenia could be located in the mitochondrial DNA (mtDNA). Therefore, we hypothesized that mtDNA mutations and/or variants would be present in schizophrenia patients and may be related to schizophrenia characteristics and mitochondrial function. This study was performed in three steps: (1) identification of pathogenic mutations and variants in 14 schizophrenia patients with an apparent maternal inheritance of the disease by sequencing the entire mtDNA; (2) case-control association study of 23 variants identified in step 1 (16 missense, 3 rRNA, and 4 tRNA variants) in 495 patients and 615 controls, and (3) analyses of the associated variants according to the clinical, psychopathological, and neuropsychological characteristics and according to the oxidative and enzymatic activities of the mitochondrial respiratory chain. We did not identify pathogenic mtDNA mutations in the 14 sequenced patients. Two known variants were nominally associated with schizophrenia and were further studied. The MT-RNR2 1811A > G variant likely does not play a major role in schizophrenia, as it was not associated with clinical, psychopathological, or neuropsychological variables, and the MT-ATP6 9110T > C p.Ile195Thr variant did not result in differences in the oxidative and enzymatic functions of the mitochondrial respiratory chain. The patients with apparent maternal inheritance of schizophrenia did not exhibit any mutations in their mtDNA. The variants nominally associated with schizophrenia in the present study were not related either to phenotypic characteristics or to mitochondrial function. We did not find evidence pointing to a role for mtDNA sequence variation in schizophrenia. © 2014 Wiley Periodicals, Inc.

  18. Analysis and Dynamics of the Chromosomal Complements of Wild Sparkling-Wine Yeast Strains

    PubMed Central

    Nadal, Dolors; Carro, David; Fernández-Larrea, Juan; Piña, Benjamin

    1999-01-01

    We isolated Saccharomyces cerevisiae yeast strains that are able to carry out the second fermentation of sparkling wine from spontaneously fermenting musts in El Penedès (Spain) by specifically designed selection protocols. All of them (26 strains) showed one of two very similar mitochondrial DNA (mtDNA) restriction patterns, whereas their karyotypes differed. These strains showed high rates of karyotype instability, which were dependent on both the medium and the strain, during vegetative growth. In all cases, the mtDNA restriction pattern was conserved in strains kept under the same conditions. Analysis of different repetitive sequences in their genomes suggested that ribosomal DNA repeats play an important role in the changes in size observed in chromosome XII, whereas SUC genes or Ty elements did not show amplification or transposition processes that could be related to rearrangements of the chromosomes showing these sequences. Karyotype changes also occurred in monosporidic diploid derivatives. We propose that these changes originated mainly from ectopic recombination between repeated sequences interspersed in the genome. None of the rearranged karyotypes provided a selective advantage strong enough to allow the strains to displace the parental strains. The nature and frequency of these changes suggest that they may play an important role in the establishment and maintenance of the genetic diversity observed in S. cerevisiae wild populations. PMID:10103269

  19. Mitochondrial pathology in inclusion body myositis.

    PubMed

    Lindgren, Ulrika; Roos, Sara; Hedberg Oldfors, Carola; Moslemi, Ali-Reza; Lindberg, Christopher; Oldfors, Anders

    2015-04-01

    Inclusion body myositis (IBM) is usually associated with a large number of cytochrome c oxidase (COX)-deficient muscle fibers and acquired mitochondrial DNA (mtDNA) deletions. We studied the number of COX-deficient fibers and the amount of mtDNA deletions, and if variants in nuclear genes involved in mtDNA maintenance may contribute to the occurrence of mtDNA deletions in IBM muscle. Twenty-six IBM patients were included. COX-deficient fibers were assayed by morphometry and mtDNA deletions by qPCR. POLG was analyzed in all patients by Sanger sequencing and C10orf2 (Twinkle), DNA2, MGME1, OPA1, POLG2, RRM2B, SLC25A4 and TYMP in six patients by next generation sequencing. Patients with many COX-deficient muscle fibers had a significantly higher proportion of mtDNA deletions than patients with few COX-deficient fibers. We found previously unreported variants in POLG and C10orf2 and IBM patients had a significantly higher frequency of an RRM2B variant than controls. POLG variants appeared more common in IBM patients with many COX-deficient fibers, but the difference was not statistically significant. We conclude that COX-deficient fibers in inclusion body myositis are associated with multiple mtDNA deletions. In IBM patients we found novel and also previously reported variants in genes of importance for mtDNA maintenance that warrants further studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Evidence for recombination of mtDNA in the marine mussel Mytilus trossulus from the Baltic.

    PubMed

    Burzyński, Artur; Zbawicka, Małgorzata; Skibinski, David O F; Wenne, Roman

    2003-03-01

    A number of studies have claimed that recombination occurs in animal mtDNA, although this evidence is controversial. Ladoukakis and Zouros (2001) provided strong evidence for mtDNA recombination in the COIII gene in gonadal tissue in the marine mussel Mytilus galloprovincialis from the Black Sea. The recombinant molecules they reported had not however become established in the population from which experimental animals were sampled. In the present study, we provide further evidence of the generality of mtDNA recombination in Mytilus by reporting recombinant mtDNA molecules in a related mussel species, Mytilus trossulus, from the Baltic. The mtDNA region studied begins in the 16S rRNA gene and terminates in the cytochrome b gene and includes a major noncoding region that may be analogous to the D-loop region observed in other animals. Many bivalve species, including some Mytilus species, are unusual in that they have two mtDNA genomes, one of which is inherited maternally (F genome) the other inherited paternally (M genome). Two recombinant variants reported in the present study have population frequencies of 5% and 36% and appear to be mosaic for F-like and M-like sequences. However, both variants have the noncoding region from the M genome, and both are transmitted to sperm like the M genome. We speculate that acquisition of the noncoding region by the recombinant molecules has conferred a paternal role on mtDNA genomes that otherwise resemble the F genome in sequence.

  1. High Mitochondrial DNA Stability in B-Cell Chronic Lymphocytic Leukemia

    PubMed Central

    Cerezo, María; Bandelt, Hans-Jürgen; Martín-Guerrero, Idoia; Ardanaz, Maite; Vega, Ana; Carracedo, Ángel; García-Orad, África; Salas, Antonio

    2009-01-01

    Background Chronic Lymphocytic Leukemia (CLL) leads to progressive accumulation of lymphocytes in the blood, bone marrow, and lymphatic tissues. Previous findings have suggested that the mtDNA could play an important role in CLL. Methodology/Principal Findings The mitochondrial DNA (mtDNA) control-region was analyzed in lymphocyte cell DNA extracts and compared with their granulocyte counterpart extract of 146 patients suffering from B-Cell CLL; B-CLL (all recruited from the Basque country). Major efforts were undertaken to rule out methodological artefacts that would render a high false positive rate for mtDNA instabilities and thus lead to erroneous interpretation of sequence instabilities. Only twenty instabilities were finally confirmed, most of them affecting the homopolymeric stretch located in the second hypervariable segment (HVS-II) around position 310, which is well known to constitute an extreme mutational hotspot of length polymorphism, as these mutations are frequently observed in the general human population. A critical revision of the findings in previous studies indicates a lack of proper methodological standards, which eventually led to an overinterpretation of the role of the mtDNA in CLL tumorigenesis. Conclusions/Significance Our results suggest that mtDNA instability is not the primary causal factor in B-CLL. A secondary role of mtDNA mutations cannot be fully ruled out under the hypothesis that the progressive accumulation of mtDNA instabilities could finally contribute to the tumoral process. Recommendations are given that would help to minimize erroneous interpretation of sequencing results in mtDNA studies in tumorigenesis. PMID:19924307

  2. Mitochondrial diversity and distribution of African green monkeys (chlorocebus gray, 1870).

    PubMed

    Haus, Tanja; Akom, Emmanuel; Agwanda, Bernard; Hofreiter, Michael; Roos, Christian; Zinner, Dietmar

    2013-04-01

    African green monkeys (Chlorocebus) represent a widely distributed and morphologically diverse primate genus in sub-Saharan Africa. Little attention has been paid to their genetic diversity and phylogeny. Based on morphological data, six species are currently recognized, but their taxonomy remains disputed. Here, we aim to characterize the mitochondrial (mt) DNA diversity, biogeography and phylogeny of African green monkeys. We analyzed the complete mitochondrial cytochrome b gene of 126 samples using feces from wild individuals and material from zoo and museum specimens with clear geographical provenance, including several type specimens. We found evidence for nine major mtDNA clades that reflect geographic distributions rather than taxa, implying that the mtDNA diversity of African green monkeys does not conform to existing taxonomic classifications. Phylogenetic relationships among clades could not be resolved suggesting a rapid early divergence of lineages. Several discordances between mtDNA and phenotype indicate that hybridization may have occurred in contact zones among species, including the threatened Bale monkey (Chlorocebus djamdjamensis). Our results provide both valuable data on African green monkeys' genetic diversity and evolution and a basis for further molecular studies on this genus. © 2013 Wiley Periodicals, Inc.

  3. Some maternal lineages of domestic horses may have origins in East Asia revealed with further evidence of mitochondrial genomes and HVR-1 sequences.

    PubMed

    Ma, Hongying; Wu, Yajiang; Xiang, Hai; Yang, Yunzhou; Wang, Min; Zhao, Chunjiang; Wu, Changxin

    2018-01-01

    There are large populations of indigenous horse ( Equus caballus ) in China and some other parts of East Asia. However, their matrilineal genetic diversity and origin remained poorly understood. Using a combination of mitochondrial DNA (mtDNA) and hypervariable region (HVR-1) sequences, we aim to investigate the origin of matrilineal inheritance in these domestic horses. To investigate patterns of matrilineal inheritance in domestic horses, we conducted a phylogenetic study using 31 de novo mtDNA genomes together with 317 others from the GenBank. In terms of the updated phylogeny, a total of 5,180 horse mitochondrial HVR-1 sequences were analyzed. Eightteen haplogroups (Aw-Rw) were uncovered from the analysis of the whole mitochondrial genomes. Most of which have a divergence time before the earliest domestication of wild horses (about 5,800 years ago) and during the Upper Paleolithic (35-10 KYA). The distribution of some haplogroups shows geographic patterns. The Lw haplogroup contained a significantly higher proportion of European horses than the horses from other regions, while haplogroups Jw, Rw, and some maternal lineages of Cw, have a higher frequency in the horses from East Asia. The 5,180 sequences of horse mitochondrial HVR-1 form nine major haplogroups (A-I). We revealed a corresponding relationship between the haplotypes of HVR-1 and those of whole mitochondrial DNA sequences. The data of the HVR-1 sequences also suggests that Jw, Rw, and some haplotypes of Cw may have originated in East Asia while Lw probably formed in Europe. Our study supports the hypothesis of the multiple origins of the maternal lineage of domestic horses and some maternal lineages of domestic horses may have originated from East Asia.

  4. Mitochondrial DNA Variation and the Evolution of Robertsonian Chromosomal Races of House Mice, Mus Domesticus

    PubMed Central

    Nachman, M. W.; Boyer, S. N.; Searle, J. B.; Aquadro, C. F.

    1994-01-01

    The house mouse, Mus domesticus, includes many distinct Robertsonian (Rb) chromosomal races with diploid numbers from 2n = 22 to 2n = 38. Although these races are highly differentiated karyotypically, they are otherwise indistinguishable from standard karyotype (i.e., 2n = 40) mice, and consequently their evolutionary histories are not well understood. We have examined mitochondrial DNA (mtDNA) sequence variation from the control region and the ND3 gene region among 56 M. domesticus from Western Europe, including 15 Rb populations and 13 standard karyotype populations, and two individuals of the sister species, Mus musculus. mtDNA exhibited an average sequence divergence of 0.84% within M. domesticus and 3.4% between M. domesticus and M. musculus. The transition/transversion bias for the regions sequenced is 5.7:1, and the overall rate of sequence evolution is approximately 10% divergence per million years. The amount of mtDNA variation was as great among different Rb races as among different populations of standard karyotype mice, suggesting that different Rb races do not derive from a single recent maternal lineage. Phylogenetic analysis of the mtDNA sequences resulted in a parsimony tree which contained six major clades. Each of these clades contained both Rb and standard karyotype mice, consistent with the hypothesis that Rb races have arisen independently multiple times. Discordance between phylogeny and geography was attributable to ancestral polymorphism as a consequence of the recent colonization of Western Europe by mice. Two major mtDNA lineages were geographically localized and contained both Rb and standard karyotype mice. The age of these lineages suggests that mice have moved into Europe only within the last 10,000 years and that Rb populations in different geographic regions arose during this time. PMID:8005418

  5. Multiple maternal origins and weak phylogeographic structure in domestic goats

    PubMed Central

    Luikart, Gordon; Gielly, Ludovic; Excoffier, Laurent; Vigne, Jean-Denis; Bouvet, Jean; Taberlet, Pierre

    2001-01-01

    Domestic animals have played a key role in human history. Despite their importance, however, the origins of most domestic species remain poorly understood. We assessed the phylogenetic history and population structure of domestic goats by sequencing a hypervariable segment (481 bp) of the mtDNA control region from 406 goats representing 88 breeds distributed across the Old World. Phylogeographic analysis revealed three highly divergent goat lineages (estimated divergence >200,000 years ago), with one lineage occurring only in eastern and southern Asia. A remarkably similar pattern exists in cattle, sheep, and pigs. These results, combined with recent archaeological findings, suggest that goats and other farm animals have multiple maternal origins with a possible center of origin in Asia, as well as in the Fertile Crescent. The pattern of goat mtDNA diversity suggests that all three lineages have undergone population expansions, but that the expansion was relatively recent for two of the lineages (including the Asian lineage). Goat populations are surprisingly less genetically structured than cattle populations. In goats only ≈10% of the mtDNA variation is partitioned among continents. In cattle the amount is ≥50%. This weak structuring suggests extensive intercontinental transportation of goats and has intriguing implications about the importance of goats in historical human migrations and commerce. PMID:11344314

  6. Biogeography of “Cyprinella lutrensis”: intensive genetic sampling from the Pecos River ‘melting pot’ reveals a dynamic history and phylogenetic complexity

    PubMed Central

    Osborne, Megan J.; Diver, Tracy A.; Hoagstrom, Christopher W.; Turner, Thomas F.

    2015-01-01

    Thorough sampling is necessary to delineate lineage diversity for polytypic “species” such as Cyprinella lutrensis. We conducted extensive mtDNA sampling (cytochrome b and ND4) from the Pecos River, Rio Grande, and South Canadian River, New Mexico. Our study emphasized the Pecos River due to its complex geological history and potential to harbor multiple lineages. We used geometric-morphometric, morphometric, and meristic analyses to test for phenotypic divergence and combined nucDNA with mtDNA to test for cytonuclear disequilibrium and combined our sequences with published data to conduct a phylogenetic re-assessment of the entire C. lutrensis clade. We detected five co-occurring mtDNA lineages in the Pecos River, but no evidence for cytonuclear disequilibrium or phenotypic divergence. Recognized species were interspersed amongst divergent lineages of “C. lutrensis”. Allopatric divergence among drainages isolated in the Late Miocene and Pliocene apparently produced several recognized species and major divisions within “C. lutrensis”. Pleistocene re-expansion and subsequent re-fragmentation of a centralized lineage founded younger, divergent lineages throughout the Rio Grande basin and Edwards Plateau. There is also evidence of recent introductions to the Rio Grande, Pecos and South Canadian Rivers. Nonetheless, deeply divergent lineages have coexisted since the Pleistocene. PMID:26858464

  7. A comprehensive molecular phylogeny for the hornbills (Aves: Bucerotidae).

    PubMed

    Gonzalez, Juan-Carlos T; Sheldon, Ben C; Collar, Nigel J; Tobias, Joseph A

    2013-05-01

    The hornbills comprise a group of morphologically and behaviorally distinct Palaeotropical bird species that feature prominently in studies of ecology and conservation biology. Although the monophyly of hornbills is well established, previous phylogenetic hypotheses were based solely on mtDNA and limited sampling of species diversity. We used parsimony, maximum likelihood and Bayesian methods to reconstruct relationships among all 61 extant hornbill species, based on nuclear and mtDNA gene sequences extracted largely from historical samples. The resulting phylogenetic trees closely match vocal variation across the family but conflict with current taxonomic treatments. In particular, they highlight a new arrangement for the six major clades of hornbills and reveal that three groups traditionally treated as genera (Tockus, Aceros, Penelopides) are non-monophyletic. In addition, two other genera (Anthracoceros, Ocyceros) were non-monophyletic in the mtDNA gene tree. Our findings resolve some longstanding problems in hornbill systematics, including the placement of 'Penelopides exharatus' (embedded in Aceros) and 'Tockus hartlaubi' (sister to Tropicranus albocristatus). We also confirm that an Asiatic lineage (Berenicornis) is sister to a trio of Afrotropical genera (Tropicranus [including 'Tockus hartlaubi'], Ceratogymna, Bycanistes). We present a summary phylogeny as a robust basis for further studies of hornbill ecology, evolution and historical biogeography. Copyright © 2013. Published by Elsevier Inc.

  8. Sequencing and comparing whole mitochondrial genomes ofanimals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based onmore » our experiences to date with determining and comparing complete mtDNA sequences.« less

  9. A reanalysis of the indirect evidence for recombination in human mitochondrial DNA.

    PubMed

    Piganeau, G; Eyre-Walker, A

    2004-04-01

    In an attempt to resolve the controversy about whether recombination occurs in human mtDNA, we have analysed three recently published data sets of complete mtDNA sequences along with 10 RFLP data sets. We have analysed the relationship between linkage disequilibrium (LD) and distance between sites under a variety of conditions using two measures of LD, r2 and /D'/. We find that there is a negative correlation between r2 and distance in the majority of data sets, but no overall trend for /D'/. Five out of six mtDNA sequence data sets show an excess of homoplasy, but this could be due to either recombination or hypervariable sites. Two additional recombination detection methods used, Geneconv and Maximum Chi-Square, showed nonsignificant results. The overall significance of these findings is hard to quantify because of nonindependence, but our results suggest a lack of evidence for recombination in human mtDNA.

  10. Development and expansion of high-quality control region databases to improve forensic mtDNA evidence interpretation.

    PubMed

    Irwin, Jodi A; Saunier, Jessica L; Strouss, Katharine M; Sturk, Kimberly A; Diegoli, Toni M; Just, Rebecca S; Coble, Michael D; Parson, Walther; Parsons, Thomas J

    2007-06-01

    In an effort to increase the quantity, breadth and availability of mtDNA databases suitable for forensic comparisons, we have developed a high-throughput process to generate approximately 5000 control region sequences per year from regional US populations, global populations from which the current US population is derived and global populations currently under-represented in available forensic databases. The system utilizes robotic instrumentation for all laboratory steps from pre-extraction through sequence detection, and a rigorous eight-step, multi-laboratory data review process with entirely electronic data transfer. Over the past 3 years, nearly 10,000 control region sequences have been generated using this approach. These data are being made publicly available and should further address the need for consistent, high-quality mtDNA databases for forensic testing.

  11. Phylogenetic position of the pentastomida and [pan]crustacean relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrov, Dennis V.; Brown, Wesley M.; Boore, Jeffrey L.

    2004-01-31

    Pentastomids are a small group of vermiform animals with unique morphology and parasitic lifestyle. They are generally recognized as being related to the Arthropoda, however the nature of this relationship is controversial. We have determined the complete sequence of the mitochondrial DNA (mtDNA) of the pentastomid Armillifer armillatus and complete, or nearly complete, mtDNA sequences from representatives of four previously unsampled groups of Crustacea: Remipedia (Speleonectes tulumensis), Cephalocarida (Hutchinsoniella macracantha), Cirripedia (Pollicipes polymerus), and Branchiura (Argulus americanus). Analyses of the mtDNA gene arrangements and sequences determined in this study indicate unambiguously that pentastomids are a group of modified crustaceans likelymore » related to branchiurans. In addition, gene arrangement comparisons strongly support an unforeseen assemblage of pentastomids with maxillopod and cephalocarid crustaceans, to the exclusion of remipedes, branchiopods, malacos tracans and insects.« less

  12. Nuclear and mtDNA phylogenetic analyses clarify the evolutionary history of two species of native Hawaiian bats and the taxonomy of Lasiurini (Mammalia: Chiroptera).

    PubMed

    Baird, Amy B; Braun, Janet K; Engstrom, Mark D; Holbert, Ashlyn C; Huerta, Maritza G; Lim, Burton K; Mares, Michael A; Patton, John C; Bickham, John W

    2017-01-01

    Previous studies on genetics of hoary bats produced differing conclusions on the timing of their colonization of the Hawaiian Islands and whether or not North American (Aeorestes cinereus) and Hawaiian (A. semotus) hoary bats are distinct species. One study, using mtDNA COI and nuclear Rag2 and CMA1, concluded that hoary bats colonized the Hawaiian Islands no more than 10,000 years ago based on indications of population expansion at that time using Extended Bayesian Skyline Plots. The other study, using 3 mtDNA and 1 Y-chromosome locus, concluded that the Hawaiian Islands were colonized about 1 million years ago. To address the marked inconsistencies between those studies, we examined DNA sequences from 4 mitochondrial and 2 nuclear loci in lasiurine bats to investigate the timing of colonization of the Hawaiian Islands by hoary bats, test the hypothesis that Hawaiian and North American hoary bats belong to different species, and further investigate the generic level taxonomy within the tribe. Phylogenetic analysis and dating of the nodes of mtDNA haplotypes and of nuclear CMA1 alleles show that A. semotus invaded the Hawaiian Islands approximately 1.35 Ma and that multiple arrivals of A. cinereus occurred much more recently. Extended Bayesian Skyline plots show population expansion at about 20,000 years ago in the Hawaiian Islands, which we conclude does not represent the timing of colonization of the Hawaiian Islands given the high degree of genetic differentiation among A. cinereus and A. semotus (4.2% divergence at mtDNA Cytb) and the high degree of genetic diversity within A. semotus. Rather, population expansion 20,000 years ago could have resulted from colonization of additional islands, expansion after a bottleneck, or other factors. New genetic data also support the recognition of A. semotus and A. cinereus as distinct species, a finding consistent with previous morphological and behavioral studies. The phylogenetic analysis of CMA1 alleles shows the presence of 2 clades that are primarily associated with A. semotus mtDNA haplotypes, and are unique to the Hawaiian Islands. There is evidence for low levels of hybridization between A. semotus and A. cinereus on the Hawaiian Islands, but it is not extensive (<15% of individuals are of hybrid origin), and clearly each species is able to maintain its own genetic distinctiveness. Both mtDNA and nuclear DNA sequences show deep divergence between the 3 groups (genera) of lasiurine bats that correspond to the previously recognized morphological differences between them. We show that the Tribe Lasiurini contains the genera Aeorestes (hoary bats), Lasiurus (red bats), and Dasypterus (yellow bats).

  13. Nuclear and mtDNA phylogenetic analyses clarify the evolutionary history of two species of native Hawaiian bats and the taxonomy of Lasiurini (Mammalia: Chiroptera)

    PubMed Central

    Braun, Janet K.; Engstrom, Mark D.; Holbert, Ashlyn C.; Huerta, Maritza G.; Lim, Burton K.; Mares, Michael A.; Patton, John C.

    2017-01-01

    Previous studies on genetics of hoary bats produced differing conclusions on the timing of their colonization of the Hawaiian Islands and whether or not North American (Aeorestes cinereus) and Hawaiian (A. semotus) hoary bats are distinct species. One study, using mtDNA COI and nuclear Rag2 and CMA1, concluded that hoary bats colonized the Hawaiian Islands no more than 10,000 years ago based on indications of population expansion at that time using Extended Bayesian Skyline Plots. The other study, using 3 mtDNA and 1 Y-chromosome locus, concluded that the Hawaiian Islands were colonized about 1 million years ago. To address the marked inconsistencies between those studies, we examined DNA sequences from 4 mitochondrial and 2 nuclear loci in lasiurine bats to investigate the timing of colonization of the Hawaiian Islands by hoary bats, test the hypothesis that Hawaiian and North American hoary bats belong to different species, and further investigate the generic level taxonomy within the tribe. Phylogenetic analysis and dating of the nodes of mtDNA haplotypes and of nuclear CMA1 alleles show that A. semotus invaded the Hawaiian Islands approximately 1.35 Ma and that multiple arrivals of A. cinereus occurred much more recently. Extended Bayesian Skyline plots show population expansion at about 20,000 years ago in the Hawaiian Islands, which we conclude does not represent the timing of colonization of the Hawaiian Islands given the high degree of genetic differentiation among A. cinereus and A. semotus (4.2% divergence at mtDNA Cytb) and the high degree of genetic diversity within A. semotus. Rather, population expansion 20,000 years ago could have resulted from colonization of additional islands, expansion after a bottleneck, or other factors. New genetic data also support the recognition of A. semotus and A. cinereus as distinct species, a finding consistent with previous morphological and behavioral studies. The phylogenetic analysis of CMA1 alleles shows the presence of 2 clades that are primarily associated with A. semotus mtDNA haplotypes, and are unique to the Hawaiian Islands. There is evidence for low levels of hybridization between A. semotus and A. cinereus on the Hawaiian Islands, but it is not extensive (<15% of individuals are of hybrid origin), and clearly each species is able to maintain its own genetic distinctiveness. Both mtDNA and nuclear DNA sequences show deep divergence between the 3 groups (genera) of lasiurine bats that correspond to the previously recognized morphological differences between them. We show that the Tribe Lasiurini contains the genera Aeorestes (hoary bats), Lasiurus (red bats), and Dasypterus (yellow bats). PMID:29020097

  14. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales.

    PubMed

    Palumbi, S R; Baker, C S

    1994-05-01

    Powerful analyses of population structure require information from multiple genetic loci. To help develop a molecular toolbox for obtaining this information, we have designed universal oligonucleotide primers that span conserved intron-exon junctions in a wide variety of animal phyla. We test the utility of exon-primed, intron-crossing amplifications by analyzing the variability of actin intron sequences from humpback, blue, and bowhead whales and comparing the results with mitochondrial DNA (mtDNA) haplotype data. Humpback actin introns fall into two major clades that exist in different frequencies in different oceanic populations. It is surprising that Hawaii and California populations, which are very distinct in mtDNAs, are similar in actin intron alleles. This discrepancy between mtDNA and nuclear DNA results may be due either to differences in genetic drift in mitochondrial and nuclear genes or to preferential movement of males, which do not transmit mtDNA to offspring, between separate breeding grounds. Opposing mtDNA and nuclear DNA results can help clarify otherwise hidden patterns of structure in natural populations.

  15. New insights from Thailand into the maternal genetic history of Mainland Southeast Asia.

    PubMed

    Kutanan, Wibhu; Kampuansai, Jatupol; Brunelli, Andrea; Ghirotto, Silvia; Pittayaporn, Pittayawat; Ruangchai, Sukhum; Schröder, Roland; Macholdt, Enrico; Srikummool, Metawee; Kangwanpong, Daoroong; Hübner, Alexander; Arias, Leonardo; Stoneking, Mark

    2018-02-26

    Tai-Kadai (TK) is one of the major language families in Mainland Southeast Asia (MSEA), with a concentration in the area of Thailand and Laos. Our previous study of 1234 mtDNA genome sequences supported a demic diffusion scenario in the spread of TK languages from southern China to Laos as well as northern and northeastern Thailand. Here we add an additional 560 mtDNA genomes from 22 groups, with a focus on the TK-speaking central Thai people and the Sino-Tibetan speaking Karen. We find extensive diversity, including 62 haplogroups not reported previously from this region. Demic diffusion is still a preferable scenario for central Thais, emphasizing the expansion of TK people through MSEA, although there is also some support for gene flow between central Thai and native Austroasiatic speaking Mon and Khmer. We also tested competing models concerning the genetic relationships of groups from the major MSEA languages, and found support for an ancestral relationship of TK and Austronesian-speaking groups.

  16. Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia

    PubMed Central

    Chen, Bin; Harbach, Ralph E.; Walton, Catherine; He, Zhengbo; Zhong, Daibin; Yan, Guiyun; Butlin, Roger K.

    2012-01-01

    Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except northern Thailand with central Thailand. Mismatch distributions and extremely significant Fs values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species. PMID:22982161

  17. Comprehensive study of mtDNA among Southwest Asian dogs contradicts independent domestication of wolf, but implies dog–wolf hybridization

    PubMed Central

    Ardalan, Arman; Kluetsch, Cornelya F C; Zhang, Ai-bing; Erdogan, Metin; Uhlén, Mathias; Houshmand, Massoud; Tepeli, Cafer; Ashtiani, Seyed Reza Miraei; Savolainen, Peter

    2011-01-01

    Studies of mitochondrial DNA (mtDNA) diversity indicate explicitly that dogs were domesticated, probably exclusively, in southern East Asia. However, Southwest Asia (SwAsia) has had poor representation and geographical coverage in these studies. Other studies based on archaeological and genome-wide SNP data have suggested an origin of dogs in SwAsia. Hence, it has been suspected that mtDNA evidence for this scenario may have remained undetected. In the first comprehensive investigation of genetic diversity among SwAsian dogs, we analyzed 582 bp of mtDNA for 345 indigenous dogs from across SwAsia, and compared with 1556 dogs across the Old World. We show that 97.4% of SwAsian dogs carry haplotypes belonging to a universal mtDNA gene pool, but that only a subset of this pool, five of the 10 principal haplogroups, is represented in SwAsia. A high frequency of haplogroup B, potentially signifying a local origin, was not paralleled with the high genetic diversity expected for a center of origin. Meanwhile, 2.6% of the SwAsian dogs carried the rare non-universal haplogroup d2. Thus, mtDNA data give no indication that dogs originated in SwAsia through independent domestication of wolf, but dog–wolf hybridization may have formed the local haplogroup d2 within this region. Southern East Asia remains the only region with virtually full extent of genetic variation, strongly indicating it to be the primary and probably sole center of wolf domestication. An origin of dogs in southern East Asia may have been overlooked by other studies due to a substantial lack of samples from this region. PMID:22393507

  18. The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants.

    PubMed

    Goremykin, Vadim V; Lockhart, Peter J; Viola, Roberto; Velasco, Riccardo

    2012-08-01

    Mitochondrial genomes of spermatophytes are the largest of all organellar genomes. Their large size has been attributed to various factors; however, the relative contribution of these factors to mitochondrial DNA (mtDNA) expansion remains undetermined. We estimated their relative contribution in Malus domestica (apple). The mitochondrial genome of apple has a size of 396 947 bp and a one to nine ratio of coding to non-coding DNA, close to the corresponding average values for angiosperms. We determined that 71.5% of the apple mtDNA sequence was highly similar to sequences of its nuclear DNA. Using nuclear gene exons, nuclear transposable elements and chloroplast DNA as markers of promiscuous DNA content in mtDNA, we estimated that approximately 20% of the apple mtDNA consisted of DNA sequences imported from other cell compartments, mostly from the nucleus. Similar marker-based estimates of promiscuous DNA content in the mitochondrial genomes of other species ranged between 21.2 and 25.3% of the total mtDNA length for grape, between 23.1 and 38.6% for rice, and between 47.1 and 78.4% for maize. All these estimates are conservative, because they underestimate the import of non-functional DNA. We propose that the import of promiscuous DNA is a core mechanism for mtDNA size expansion in seed plants. In apple, maize and grape this mechanism contributed far more to genome expansion than did homologous recombination. In rice the estimated contribution of both mechanisms was found to be similar. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  19. Similar evolutionary potentials in an obligate ant parasite and its two host species

    PubMed Central

    Pennings, P S; Achenbach, A; Foitzik, S

    2011-01-01

    The spatial structure of host–parasite coevolution is shaped by population structure and genetic diversity of the interacting species. We analysed these population genetic parameters in three related ant species: the parasitic slavemaking ant Protomognathus americanus and its two host species Temnothorax longispinosus and T. curvispinosus. We sampled throughout their range, genotyped ants on six to eight microsatellite loci and an MtDNA sequence and found high levels of genetic variation and strong population structure in all three species. Interestingly, the most abundant species and primary host, T. longispinosus, is characterized by less structure, but lower local genetic diversity. Generally, differences between the species were small, and we conclude that they have similar evolutionary potentials. The coevolutionary interaction between this social parasite and its hosts may therefore be less influenced by divergent evolutionary potentials, but rather by varying selection pressures. We employed different methods to quantify and compare genetic diversity and structure between species and genetic markers. We found that Jost D is well suited for these comparisons, as long as mutation rates between markers and species are similar. If this is not the case, for example, when using MtDNA and microsatellites to study sex-specific dispersal, model-based inference should be used instead of descriptive statistics (such as D or GST). Using coalescent-based methods, we indeed found that males disperse much more than females, but this sex bias in dispersal differed between species. The findings of the different approaches with regard to genetic diversity and structure were in good accordance with each other. PMID:21324025

  20. Asian affinities and continental radiation of the four founding Native American mtDNAs.

    PubMed Central

    Torroni, A; Schurr, T G; Cabell, M F; Brown, M D; Neel, J V; Larsen, M; Smith, D G; Vullo, C M; Wallace, D C

    1993-01-01

    The mtDNA variation of 321 individuals from 17 Native American populations was examined by high-resolution restriction endonuclease analysis. All mtDNAs were amplified from a variety of sources by using PCR. The mtDNA of a subset of 38 of these individuals was also analyzed by D-loop sequencing. The resulting data were combined with previous mtDNA data from five other Native American tribes, as well as with data from a variety of Asian populations, and were used to deduce the phylogenetic relationships between mtDNAs and to estimate sequence divergences. This analysis revealed the presence of four haplotype groups (haplogroups A, B, C, and D) in the Amerind, but only one haplogroup (A) in the Na-Dene, and confirmed the independent origins of the Amerinds and the Na-Dene. Further, each haplogroup appeared to have been founded by a single mtDNA haplotype, a result which is consistent with a hypothesized founder effect. Most of the variation within haplogroups was tribal specific, that is, it occurred as tribal private polymorphisms. These observations suggest that the process of tribalization began early in the history of the Amerinds, with relatively little intertribal genetic exchange occurring subsequently. The sequencing of 341 nucleotides in the mtDNA D-loop revealed that the D-loop sequence variation correlated strongly with the four haplogroups defined by restriction analysis, and it indicated that the D-loop variation, like the haplotype variation, arose predominantly after the migration of the ancestral Amerinds across the Bering land bridge. Images Figure 4 PMID:7688932

  1. DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing.

    PubMed

    Parson, W; Gusmão, L; Hares, D R; Irwin, J A; Mayr, W R; Morling, N; Pokorak, E; Prinz, M; Salas, A; Schneider, P M; Parsons, T J

    2014-11-01

    The DNA Commission of the International Society of Forensic Genetics (ISFG) regularly publishes guidelines and recommendations concerning the application of DNA polymorphisms to the question of human identification. Previous recommendations published in 2000 addressed the analysis and interpretation of mitochondrial DNA (mtDNA) in forensic casework. While the foundations set forth in the earlier recommendations still apply, new approaches to the quality control, alignment and nomenclature of mitochondrial sequences, as well as the establishment of mtDNA reference population databases, have been developed. Here, we describe these developments and discuss their application to both mtDNA casework and mtDNA reference population databasing applications. While the generation of mtDNA for forensic casework has always been guided by specific standards, it is now well-established that data of the same quality are required for the mtDNA reference population data used to assess the statistical weight of the evidence. As a result, we introduce guidelines regarding sequence generation, as well as quality control measures based on the known worldwide mtDNA phylogeny, that can be applied to ensure the highest quality population data possible. For both casework and reference population databasing applications, the alignment and nomenclature of haplotypes is revised here and the phylogenetic alignment proffered as acceptable standard. In addition, the interpretation of heteroplasmy in the forensic context is updated, and the utility of alignment-free database searches for unbiased probability estimates is highlighted. Finally, we discuss statistical issues and define minimal standards for mtDNA database searches. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Morphological characteristics and genetic diversity of Burmese long-tailed Macaques (Macaca fascicularis aurea).

    PubMed

    Bunlungsup, Srichan; Imai, Hiroo; Hamada, Yuzuru; Gumert, Michael D; San, Aye Mi; Malaivijitnond, Suchinda

    2015-12-15

    Macaca fascicularis aurea (Mfa) is the only macaque which has been recorded to use stone tools to access encased foods. They live in close contact with M. fascicularis fascicularis (Mff) in southwestern Thailand and the hybrids were reported [Fooden, 1995]. Although Mff and Mfa can be seen in the same habitat types, tool-use behavior has never been reported in Mff. Thus, comparing the morphological characteristics and genetics between Mfa and Mff should help elucidate not only the morphological differences and genetic divergence between these subspecies but also potentially the relationship between genetics and their tool use behavior. We surveyed Mfa and Mff in Myanmar and Thailand, ranging from 16° 58' to 7° 12' N. Fecal or blood samples were collected from eight, five, and four populations of Mfa, Mff, and Mff × Mfa morphological hybrids along with three individuals of captive Chinese M. mulatta (Mm), respectively, for mtDNA and Y-chromosome (TSPY and SRY genes) DNA sequence analyses. In addition, eight populations were captured and measured for 38 somatometric dimensions. Comparison of the somatic measurements revealed that Mfa had a statistically significantly shorter tail than Mff (P < 0.05). Based on the mtDNA sequences, Mfa was separated from the Mm/Mff clade. Within the Mfa clade, the mainland Myanmar population was separate from the Mergui Archipelago and Thailand Andaman seacoast populations. All the morphological hybrids had the Mff mtDNA haplotype. Based on the Y-chromosome sequences, the three major clades of Mm/Indochinese Mff, Sundaic Mff, and Mfa were constructed. The hybrid populations grouped either with the Mm/Indochinese Mff or with the Mfa. Regarding the genetic analysis, one subspecies hybrid population in Thailand (KRI) elicited tool use behavior, thus the potential role of genetics in tool use behavior is raised in addition to the environmental force, morphological suitability, and cognitive capability. Am. J. Primatol. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  3. Mitochondrial DNA and trade data support multiple origins of Helicoverpa armigera (Lepidoptera, Noctuidae) in Brazil

    PubMed Central

    Tay, Wee Tek; Walsh, Thomas K.; Downes, Sharon; Anderson, Craig; Jermiin, Lars S.; Wong, Thomas K. F.; Piper, Melissa C.; Chang, Ester Silva; Macedo, Isabella Barony; Czepak, Cecilia; Behere, Gajanan T.; Silvie, Pierre; Soria, Miguel F.; Frayssinet, Marie; Gordon, Karl H. J.

    2017-01-01

    The Old World bollworm Helicoverpa armigera is now established in Brazil but efforts to identify incursion origin(s) and pathway(s) have met with limited success due to the patchiness of available data. Using international agricultural/horticultural commodity trade data and mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and cytochrome b (Cyt b) gene markers, we inferred the origins and incursion pathways into Brazil. We detected 20 mtDNA haplotypes from six Brazilian states, eight of which were new to our 97 global COI-Cyt b haplotype database. Direct sequence matches indicated five Brazilian haplotypes had Asian, African, and European origins. We identified 45 parsimoniously informative sites and multiple substitutions per site within the concatenated (945 bp) nucleotide dataset, implying that probabilistic phylogenetic analysis methods are needed. High diversity and signatures of uniquely shared haplotypes with diverse localities combined with the trade data suggested multiple incursions and introduction origins in Brazil. Increasing agricultural/horticultural trade activities between the Old and New Worlds represents a significant biosecurity risk factor. Identifying pest origins will enable resistance profiling that reflects countries of origin to be included when developing a resistance management strategy, while identifying incursion pathways will improve biosecurity protocols and risk analysis at biosecurity hotspots including national ports. PMID:28350004

  4. Effects of the Qinghai-Tibet Railway on the Landscape Genetics of the Endangered Przewalski's Gazelle (Procapra przewalskii).

    PubMed

    Yu, He; Song, Shiya; Liu, Jiazi; Li, Sheng; Zhang, Lu; Wang, Dajun; Luo, Shu-Jin

    2017-12-21

    The Przewalski's gazelle (Procapra przewalskii) is one of the most endangered ungulates in the world, with fewer than 2,000 individuals surviving in nine habitat fragments on the Qinghai-Tibet Plateau and isolated by human settlements and infrastructure. In particular, the Qinghai-Tibet railway, which crosses the largest part of the gazelle's distribution, remains a major concern because of its potential to intensify landscape genetic differentiation. Here, using mtDNA sequencing and microsatellite genotyping to analyze 275 Przewalski's gazelle samples collected throughout the range, we observed low level of genetic diversity (mtDNA π = 0.0033) and strong phylogeographic structure. Overall, the nine patches of gazelles can be further clustered into five populations, with a strong division between the eastern vs. western side of Qinghai Lake. Our study provides the first evidence of the genetic divergence between the Haergai North and Haergai South gazelle populations, corresponding to the recent construction of a wired enclosure along the Qinghai-Tibet railway less than ten years ago, an equivalent of five generations. Well-designed wildlife corridors across the railway along with long-term monitoring of the anthropogenic effects are therefore recommended to alleviate further habitat fragmentation and loss of genetic diversity in Przewalski's gazelle.

  5. Mitochondrial DNA and trade data support multiple origins of Helicoverpa armigera (Lepidoptera, Noctuidae) in Brazil.

    PubMed

    Tay, Wee Tek; Walsh, Thomas K; Downes, Sharon; Anderson, Craig; Jermiin, Lars S; Wong, Thomas K F; Piper, Melissa C; Chang, Ester Silva; Macedo, Isabella Barony; Czepak, Cecilia; Behere, Gajanan T; Silvie, Pierre; Soria, Miguel F; Frayssinet, Marie; Gordon, Karl H J

    2017-03-28

    The Old World bollworm Helicoverpa armigera is now established in Brazil but efforts to identify incursion origin(s) and pathway(s) have met with limited success due to the patchiness of available data. Using international agricultural/horticultural commodity trade data and mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and cytochrome b (Cyt b) gene markers, we inferred the origins and incursion pathways into Brazil. We detected 20 mtDNA haplotypes from six Brazilian states, eight of which were new to our 97 global COI-Cyt b haplotype database. Direct sequence matches indicated five Brazilian haplotypes had Asian, African, and European origins. We identified 45 parsimoniously informative sites and multiple substitutions per site within the concatenated (945 bp) nucleotide dataset, implying that probabilistic phylogenetic analysis methods are needed. High diversity and signatures of uniquely shared haplotypes with diverse localities combined with the trade data suggested multiple incursions and introduction origins in Brazil. Increasing agricultural/horticultural trade activities between the Old and New Worlds represents a significant biosecurity risk factor. Identifying pest origins will enable resistance profiling that reflects countries of origin to be included when developing a resistance management strategy, while identifying incursion pathways will improve biosecurity protocols and risk analysis at biosecurity hotspots including national ports.

  6. Mitochondrial DNA and trade data support multiple origins of Helicoverpa armigera (Lepidoptera, Noctuidae) in Brazil

    NASA Astrophysics Data System (ADS)

    Tay, Wee Tek; Walsh, Thomas K.; Downes, Sharon; Anderson, Craig; Jermiin, Lars S.; Wong, Thomas K. F.; Piper, Melissa C.; Chang, Ester Silva; Macedo, Isabella Barony; Czepak, Cecilia; Behere, Gajanan T.; Silvie, Pierre; Soria, Miguel F.; Frayssinet, Marie; Gordon, Karl H. J.

    2017-03-01

    The Old World bollworm Helicoverpa armigera is now established in Brazil but efforts to identify incursion origin(s) and pathway(s) have met with limited success due to the patchiness of available data. Using international agricultural/horticultural commodity trade data and mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and cytochrome b (Cyt b) gene markers, we inferred the origins and incursion pathways into Brazil. We detected 20 mtDNA haplotypes from six Brazilian states, eight of which were new to our 97 global COI-Cyt b haplotype database. Direct sequence matches indicated five Brazilian haplotypes had Asian, African, and European origins. We identified 45 parsimoniously informative sites and multiple substitutions per site within the concatenated (945 bp) nucleotide dataset, implying that probabilistic phylogenetic analysis methods are needed. High diversity and signatures of uniquely shared haplotypes with diverse localities combined with the trade data suggested multiple incursions and introduction origins in Brazil. Increasing agricultural/horticultural trade activities between the Old and New Worlds represents a significant biosecurity risk factor. Identifying pest origins will enable resistance profiling that reflects countries of origin to be included when developing a resistance management strategy, while identifying incursion pathways will improve biosecurity protocols and risk analysis at biosecurity hotspots including national ports.

  7. Genetic variation and phylogeographic structure of the cotton aphid, Aphis gossypii, based on mitochondrial DNA and microsatellite markers.

    PubMed

    Wang, Xing-Ya; Yang, Xian-Ming; Lu, Bin; Zhou, Li-Hong; Wu, Kong-Ming

    2017-05-15

    Aphis gossypii, one of the most important agricultural pests in the world, can cause serious economic losses in the main crop-producing areas. To clarify issues such as the genetic differentiation, genetic structure, and demographic history of A. gossypii populations, we used 10 nuclear microsatellite loci (SSR) and two mitochondrial gene sequences (COI and Cytb) to investigate genetic diversity and population structure of A. gossypii populations that were collected from 33 sampling sites in China from different climatic zones. SSR and mtDNA data suggested low to moderate levels of genetic diversity. A star-shaped network of mtDNA haplotypes indicated that the maternal ancestor of China cotton aphids likely originated in Xinjiang. The POPTREE, STRUCTURE and principal coordinate analysis (PCoA) revealed two genetic clusters: an eastern and a western region group. Isolation by distance (IBD) results showed a positive correlation between geographic distance and genetic distance in the vast eastern region but not in the western region. Neutrality testing and mismatch distribution analysis provided strong evidence for a recent rapid expansion in most populations. Genetic bottleneck was not detected in A. gossypii populations of China. The present work can help us to develop strategies for managing this pest.

  8. Complete mtDNA genomes of Filipino ethnolinguistic groups: a melting pot of recent and ancient lineages in the Asia-Pacific region

    PubMed Central

    Delfin, Frederick; Min-Shan Ko, Albert; Li, Mingkun; Gunnarsdóttir, Ellen D; Tabbada, Kristina A; Salvador, Jazelyn M; Calacal, Gayvelline C; Sagum, Minerva S; Datar, Francisco A; Padilla, Sabino G; De Ungria, Maria Corazon A; Stoneking, Mark

    2014-01-01

    The Philippines is a strategic point in the Asia-Pacific region for the study of human diversity, history and origins, as it is a cross-road for human migrations and consequently exhibits enormous ethnolinguistic diversity. Following on a previous in-depth study of Y-chromosome variation, here we provide new insights into the maternal genetic history of Filipino ethnolinguistic groups by surveying complete mitochondrial DNA (mtDNA) genomes from a total of 14 groups (11 groups in this study and 3 groups previously published) including previously published mtDNA hypervariable segment (HVS) data from Filipino regional center groups. Comparison of HVS data indicate genetic differences between ethnolinguistic and regional center groups. The complete mtDNA genomes of 14 ethnolinguistic groups reveal genetic aspects consistent with the Y-chromosome, namely: diversity and heterogeneity of groups, no support for a simple dichotomy between Negrito and non-Negrito groups, and different genetic affinities with Asia-Pacific groups that are both ancient and recent. Although some mtDNA haplogroups can be associated with the Austronesian expansion, there are others that associate with South Asia, Near Oceania and Australia that are consistent with a southern migration route for ethnolinguistic group ancestors into the Asia-Pacific, with a timeline that overlaps with the initial colonization of the Asia-Pacific region, the initial colonization of the Philippines and a possible separate post-colonization migration into the Philippine archipelago. PMID:23756438

  9. More evidence for non-maternal inheritance of mitochondrial DNA?

    PubMed

    Bandelt, H-J; Kong, Q-P; Parson, W; Salas, A

    2005-12-01

    A single case of paternal co-transmission of mitochondrial DNA (mtDNA) in humans has been reported so far. To find potential instances of non-maternal inheritance of mtDNA. Published medical case studies (of single patients) were searched for irregular mtDNA patterns by comparing the given haplotype information for different clones or tissues with the worldwide mtDNA database as known to date-a method that has proved robust and reliable for the detection of flawed mtDNA sequence data. More than 20 studies were found reporting clear cut instances with mtDNAs of different ancestries in single individuals. As examples, cases are reviewed from recent published reports which, at face value, may be taken as evidence for paternal inheritance of mtDNA or recombination. Multiple types (or recombinant types) of quite dissimilar mitochondrial DNA from different parts of the known mtDNA phylogeny are often reported in single individuals. From re-analyses and corrigenda of forensic mtDNA data, it is apparent that the phenomenon of mixed or mosaic mtDNA can be ascribed solely to contamination and sample mix up.

  10. Origins of domestic dog in southern East Asia is supported by analysis of Y-chromosome DNA.

    PubMed

    Ding, Z-L; Oskarsson, M; Ardalan, A; Angleby, H; Dahlgren, L-G; Tepeli, C; Kirkness, E; Savolainen, P; Zhang, Y-P

    2012-05-01

    Global mitochondrial DNA (mtDNA) data indicates that the dog originates from domestication of wolf in Asia South of Yangtze River (ASY), with minor genetic contributions from dog-wolf hybridisation elsewhere. Archaeological data and autosomal single nucleotide polymorphism data have instead suggested that dogs originate from Europe and/or South West Asia but, because these datasets lack data from ASY, evidence pointing to ASY may have been overlooked. Analyses of additional markers for global datasets, including ASY, are therefore necessary to test if mtDNA phylogeography reflects the actual dog history and not merely stochastic events or selection. Here, we analyse 14,437 bp of Y-chromosome DNA sequence in 151 dogs sampled worldwide. We found 28 haplotypes distributed in five haplogroups. Two haplogroups were universally shared and included three haplotypes carried by 46% of all dogs, but two other haplogroups were primarily restricted to East Asia. Highest genetic diversity and virtually complete phylogenetic coverage was found within ASY. The 151 dogs were estimated to originate from 13-24 wolf founders, but there was no indication of post-domestication dog-wolf hybridisations. Thus, Y-chromosome and mtDNA data give strikingly similar pictures of dog phylogeography, most importantly that roughly 50% of the gene pools are shared universally but only ASY has nearly the full range of genetic diversity, such that the gene pools in all other regions may derive from ASY. This corroborates that ASY was the principal, and possibly sole region of wolf domestication, that a large number of wolves were domesticated, and that subsequent dog-wolf hybridisation contributed modestly to the dog gene pool.

  11. Origins of domestic dog in Southern East Asia is supported by analysis of Y-chromosome DNA

    PubMed Central

    Ding, Z-L; Oskarsson, M; Ardalan, A; Angleby, H; Dahlgren, L-G; Tepeli, C; Kirkness, E; Savolainen, P; Zhang, Y-P

    2012-01-01

    Global mitochondrial DNA (mtDNA) data indicates that the dog originates from domestication of wolf in Asia South of Yangtze River (ASY), with minor genetic contributions from dog–wolf hybridisation elsewhere. Archaeological data and autosomal single nucleotide polymorphism data have instead suggested that dogs originate from Europe and/or South West Asia but, because these datasets lack data from ASY, evidence pointing to ASY may have been overlooked. Analyses of additional markers for global datasets, including ASY, are therefore necessary to test if mtDNA phylogeography reflects the actual dog history and not merely stochastic events or selection. Here, we analyse 14 437 bp of Y-chromosome DNA sequence in 151 dogs sampled worldwide. We found 28 haplotypes distributed in five haplogroups. Two haplogroups were universally shared and included three haplotypes carried by 46% of all dogs, but two other haplogroups were primarily restricted to East Asia. Highest genetic diversity and virtually complete phylogenetic coverage was found within ASY. The 151 dogs were estimated to originate from 13–24 wolf founders, but there was no indication of post-domestication dog–wolf hybridisations. Thus, Y-chromosome and mtDNA data give strikingly similar pictures of dog phylogeography, most importantly that roughly 50% of the gene pools are shared universally but only ASY has nearly the full range of genetic diversity, such that the gene pools in all other regions may derive from ASY. This corroborates that ASY was the principal, and possibly sole region of wolf domestication, that a large number of wolves were domesticated, and that subsequent dog–wolf hybridisation contributed modestly to the dog gene pool. PMID:22108628

  12. Mito-nuclear genetic comparison in a Wolbachia infected weevil: insights on reproductive mode, infection age and evolutionary forces shaping genetic variation

    PubMed Central

    2010-01-01

    Background Maternally inherited endosymbionts like Wolbachia pipientis are in linkage disequilibrium with the mtDNA of their hosts. Therefore, they can induce selective sweeps, decreasing genetic diversity over many generations. This sex ratio distorter, that is involved in the origin of parthenogenesis and other reproductive alterations, infects the parthenogenetic weevil Naupactus cervinus, a serious pest of ornamental and fruit plants. Results Molecular evolution analyses of mitochondrial (COI) and nuclear (ITS1) sequences from 309 individuals of Naupactus cervinus sampled over a broad range of its geographical distribution were carried out. Our results demonstrate lack of recombination in the nuclear fragment, non-random association between nuclear and mitochondrial genomes and the consequent coevolution of both genomes, being an indirect evidence of apomixis. This weevil is infected by a single Wolbachia strain, which could have caused a moderate bottleneck in the invaded population which survived the initial infection. Conclusions Clonal reproduction and Wolbachia infection induce the coevolution of bacterial, mitochondrial and nuclear genomes. The time elapsed since the Wolbachia invasion would have erased the traces of the demographic crash in the mtDNA, being the nuclear genome the only one that retained the signal of the bottleneck. The amount of genetic change accumulated in the mtDNA and the high prevalence of Wolbachia in all populations of N. cervinus agree with the hypothesis of an ancient infection. Wolbachia probably had great influence in shaping the genetic diversity of N. cervinus. However, it would have not caused the extinction of males, since sexual and asexual infected lineages coexisted until recent times. PMID:21050430

  13. Spatial genetic structure and asymmetrical gene flow within the Pacific walrus

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Jay, Chadwick V.; Fischbach, Anthony S.; Sage, George K.; Talbot, Sandra L.

    2012-01-01

    Pacific walruses (Odobenus rosmarus divergens) occupying shelf waters of Pacific Arctic seas migrate during spring and summer from 3 breeding areas in the Bering Sea to form sexually segregated nonbreeding aggregations. We assessed genetic relationships among 2 putative breeding populations and 6 nonbreeding aggregations. Analyses of mitochondrial DNA (mtDNA) control region sequence data suggest that males are distinct among breeding populations (ΦST=0.051), and between the eastern Chukchi and other nonbreeding aggregations (ΦST=0.336–0.449). Nonbreeding female aggregations were genetically distinct across marker types (microsatellite FST=0.019; mtDNA ΦST=0.313), as was eastern Chukchi and all other nonbreeding aggregations (microsatellite FST=0.019–0.035; mtDNA ΦST=0.386–0.389). Gene flow estimates are asymmetrical from St. Lawrence Island into the southeastern Bering breeding population for both sexes. Partitioning of haplotype frequencies among breeding populations suggests that individuals exhibit some degree of philopatry, although weak. High levels of genetic differentiation among eastern Chukchi and all other nonbreeding aggregations, but considerably lower genetic differentiation between breeding populations, suggest that at least 1 genetically distinct breeding population remained unsampled. Limited genetic structure at microsatellite loci between assayed breeding areas can emerge from several processes, including male-mediated gene flow, or population admixture following a decrease in census size (i.e., due to commercial harvest during 1880–1950s) and subsequent recovery. Nevertheless, high levels of genetic diversity in the Pacific walrus, which withstood prolonged decreases in census numbers with little impact on neutral genetic diversity, may reflect resiliency in the face of past environmental challenges.

  14. Conservation genetics of the alligator snapping turtle: cytonuclear evidence of range-wide bottleneck effects and unusually pronounced geographic structure

    USGS Publications Warehouse

    Echelle, A.A.; Hackler, J.C.; Lack, Justin B.; Ballard, S. R.; Roman, J.; Fox, S. F.; Leslie,, David M.; Van Den Bussche, Ronald A.

    2010-01-01

    A previous mtDNA study indicated that female-mediated gene flow was extremely rare among alligator snapping turtle populations in different drainages of the Gulf of Mexico. In this study, we used variation at seven microsatellite DNA loci to assess the possibility of male-mediated gene flow, we augmented the mtDNA survey with additional sampling of the large Mississippi River System, and we evaluated the hypothesis that the consistently low within-population mtDNA diversity reflects past population bottlenecks. The results show that dispersal between drainages of the Gulf of Mexico is rare (F STmsat  = 0.43, ΦSTmtDNA = 0.98). Past range-wide bottlenecks are indicated by several genetic signals, including low diversity for microsatellites (1.1–3.9 alleles/locus; H e = 0.06–0.53) and mtDNA (h = 0.00 for most drainages; π = 0.000–0.001). Microsatellite data reinforce the conclusion from mtDNA that the Suwannee River population might eventually be recognized as a distinct taxonomic unit. It was the only population showing fixation or near fixation for otherwise rare microsatellite alleles. Six evolutionarily significant units are recommended on the basis of reciprocal mtDNA monophyly and high levels of microsatellite DNA divergence.

  15. Animal Mitochondrial DNA Replication

    PubMed Central

    Ciesielski, Grzegorz L.; Oliveira, Marcos T.; Kaguni, Laurie S.

    2016-01-01

    Recent advances in the field of mitochondrial DNA (mtDNA) replication highlight the diversity of both the mechanisms utilized and the structural and functional organization of the proteins at mtDNA replication fork, despite the simplicity of the animal mtDNA genome. DNA polymerase γ, mtDNA helicase and mitochondrial single-stranded DNA-binding protein- the key replisome proteins, have evolved distinct structural features and biochemical properties. These appear to be correlated with mtDNA genomic features in different metazoan taxa and with their modes of DNA replication, although a substantial integrative research is warranted to establish firmly these links. To date, several modes of mtDNA replication have been described for animals: rolling circle, theta, strand-displacement, and RITOLS/bootlace. Resolution of a continuing controversy relevant to mtDNA replication in mammals/vertebrates will have a direct impact on the mechanistic interpretation of mtDNA-related human diseases. Here we review these subjects, integrating earlier and recent data to provide a perspective on the major challenges for future research. PMID:27241933

  16. Phylogeny of Darwin's finches as revealed by mtDNA sequences.

    PubMed

    Sato, A; O'hUigin, C; Figueroa, F; Grant, P R; Grant, B R; Tichy, H; Klein, J

    1999-04-27

    Darwin's finches comprise a group of passerine birds first collected by Charles Darwin during his visit to the Galápagos Archipelago. The group, a textbook example of adaptive radiation (the diversification of a founding population into an array of species differentially adapted to diverse environmental niches), encompasses 14 currently recognized species, of which 13 live on the Galápagos Islands and one on the Cocos Island in the Pacific Ocean. Although Darwin's finches have been studied extensively by morphologists, ecologists, and ethologists, their phylogenetic relationships remain uncertain. Here, sequences of two mtDNA segments, the cytochrome b and the control region, have been used to infer the evolutionary history of the group. The data reveal the Darwin's finches to be a monophyletic group with the warbler finch being the species closest to the founding stock, followed by the vegetarian finch, and then by two sister groups, the ground and the tree finches. The Cocos finch is related to the tree finches of the Galápagos Islands. The traditional classification of ground finches into six species and tree finches into five species is not reflected in the molecular data. In these two groups, ancestral polymorphisms have not, as yet, been sorted out among the cross-hybridizing species.

  17. Global diversity and oceanic divergence of humpback whales (Megaptera novaeangliae).

    PubMed

    Jackson, Jennifer A; Steel, Debbie J; Beerli, P; Congdon, Bradley C; Olavarría, Carlos; Leslie, Matthew S; Pomilla, Cristina; Rosenbaum, Howard; Baker, C Scott

    2014-07-07

    Humpback whales (Megaptera novaeangliae) annually undertake the longest migrations between seasonal feeding and breeding grounds of any mammal. Despite this dispersal potential, discontinuous seasonal distributions and migratory patterns suggest that humpbacks form discrete regional populations within each ocean. To better understand the worldwide population history of humpbacks, and the interplay of this species with the oceanic environment through geological time, we assembled mitochondrial DNA control region sequences representing approximately 2700 individuals (465 bp, 219 haplotypes) and eight nuclear intronic sequences representing approximately 70 individuals (3700 bp, 140 alleles) from the North Pacific, North Atlantic and Southern Hemisphere. Bayesian divergence time reconstructions date the origin of humpback mtDNA lineages to the Pleistocene (880 ka, 95% posterior intervals 550-1320 ka) and estimate radiation of current Northern Hemisphere lineages between 50 and 200 ka, indicating colonization of the northern oceans prior to the Last Glacial Maximum. Coalescent analyses reveal restricted gene flow between ocean basins, with long-term migration rates (individual migrants per generation) of less than 3.3 for mtDNA and less than 2 for nuclear genomic DNA. Genetic evidence suggests that humpbacks in the North Pacific, North Atlantic and Southern Hemisphere are on independent evolutionary trajectories, supporting taxonomic revision of M. novaeangliae to three subspecies. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Global diversity and oceanic divergence of humpback whales (Megaptera novaeangliae)

    PubMed Central

    Jackson, Jennifer A.; Steel, Debbie J.; Beerli, P.; Congdon, Bradley C.; Olavarría, Carlos; Leslie, Matthew S.; Pomilla, Cristina; Rosenbaum, Howard; Baker, C. Scott

    2014-01-01

    Humpback whales (Megaptera novaeangliae) annually undertake the longest migrations between seasonal feeding and breeding grounds of any mammal. Despite this dispersal potential, discontinuous seasonal distributions and migratory patterns suggest that humpbacks form discrete regional populations within each ocean. To better understand the worldwide population history of humpbacks, and the interplay of this species with the oceanic environment through geological time, we assembled mitochondrial DNA control region sequences representing approximately 2700 individuals (465 bp, 219 haplotypes) and eight nuclear intronic sequences representing approximately 70 individuals (3700 bp, 140 alleles) from the North Pacific, North Atlantic and Southern Hemisphere. Bayesian divergence time reconstructions date the origin of humpback mtDNA lineages to the Pleistocene (880 ka, 95% posterior intervals 550–1320 ka) and estimate radiation of current Northern Hemisphere lineages between 50 and 200 ka, indicating colonization of the northern oceans prior to the Last Glacial Maximum. Coalescent analyses reveal restricted gene flow between ocean basins, with long-term migration rates (individual migrants per generation) of less than 3.3 for mtDNA and less than 2 for nuclear genomic DNA. Genetic evidence suggests that humpbacks in the North Pacific, North Atlantic and Southern Hemisphere are on independent evolutionary trajectories, supporting taxonomic revision of M. novaeangliae to three subspecies. PMID:24850919

  19. Implications of Hybridization, NUMTs, and Overlooked Diversity for DNA Barcoding of Eurasian Ground Squirrels

    PubMed Central

    Ermakov, Oleg A.; Simonov, Evgeniy; Surin, Vadim L.; Titov, Sergey V.; Brandler, Oleg V.; Ivanova, Natalia V.; Borisenko, Alex V.

    2015-01-01

    The utility of DNA Barcoding for species identification and discovery has catalyzed a concerted effort to build the global reference library; however, many animal groups of economical or conservational importance remain poorly represented. This study aims to contribute DNA barcode records for all ground squirrel species (Xerinae, Sciuridae, Rodentia) inhabiting Eurasia and to test efficiency of this approach for species discrimination. Cytochrome c oxidase subunit 1 (COI) gene sequences were obtained for 97 individuals representing 16 ground squirrel species of which 12 were correctly identified. Taxonomic allocation of some specimens within four species was complicated by geographically restricted mtDNA introgression. Exclusion of individuals with introgressed mtDNA allowed reaching a 91.6% identification success rate. Significant COI divergence (3.5–4.4%) was observed within the most widespread ground squirrel species (Spermophilus erythrogenys, S. pygmaeus, S. suslicus, Urocitellus undulatus), suggesting the presence of cryptic species. A single putative NUMT (nuclear mitochondrial pseudogene) sequence was recovered during molecular analysis; mitochondrial COI from this sample was amplified following re-extraction of DNA. Our data show high discrimination ability of 100 bp COI fragments for Eurasian ground squirrels (84.3%) with no incorrect assessments, underscoring the potential utility of the existing reference librariy for the development of diagnostic ‘mini-barcodes’. PMID:25617768

  20. A 28,000 Years Old Cro-Magnon mtDNA Sequence Differs from All Potentially Contaminating Modern Sequences

    PubMed Central

    Caramelli, David; Milani, Lucio; Vai, Stefania; Modi, Alessandra; Pecchioli, Elena; Girardi, Matteo; Pilli, Elena; Lari, Martina; Lippi, Barbara; Ronchitelli, Annamaria; Mallegni, Francesco; Casoli, Antonella; Bertorelle, Giorgio; Barbujani, Guido

    2008-01-01

    Background DNA sequences from ancient speciments may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal) and early modern (Cro-Magnoid) Europeans. Methodology/Principal Findings We typed the mitochondrial DNA (mtDNA) hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23) and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences. Conclusions/Significance: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of early modern Europeans. PMID:18628960

  1. Mitochondrial DNA diversity in the acanthocephalan Prosthenorchis elegans in Colombia based on cytochrome c oxidase I (COI) gene sequence.

    PubMed

    Falla, Ana Carolina; Brieva, Claudia; Bloor, Paul

    2015-12-01

    Prosthenorchis elegans is a member of the Phylum Acanthocephala and is an important parasite affecting New World Primates in the wild in South America and in captivity around the world. It is of significant management concern due to its pathogenicity and mode of transmission through intermediate hosts. Current diagnosis of P. elegans is based on the detection of eggs by coprological examination. However, this technique lacks both specificity and sensitivity, since eggs of most members of the genus are morphologically indistinguishable and shed intermittently, making differential diagnosis difficult, and coprological examinations are often negative in animals severely infected at death. We examined sequence variation in 633 bp of mitochondrial DNA (mtDNA) cytochrome c oxidase I (COI) sequence in 37 isolates of P. elegans from New World monkeys (Saguinus leucopus and Cebus albifrons) in Colombia held in rescue centers and from the wild. Intraspecific divergence ranged from 0.0 to 1.6% and was comparable with corresponding values within other species of acanthocephalans. Furthermore, comparisons of patterns of sequence divergence within the Acanthocephala suggest that Prosthenorchis represents a separate genus within the Oligacanthorhynchida. Six distinct haplotypes were identified within P. elegans which grouped into one of two well-supported mtDNA haplogroups. No association between haplogroup/haplotype, holding facility and species was found. This information will help pave the way to the development of molecular-based diagnostic tools for the detection of P. elegans as well as furthering research into the life cycle, intermediate hosts and epidemiological aspects of the species.

  2. MitoAge: a database for comparative analysis of mitochondrial DNA, with a special focus on animal longevity.

    PubMed

    Toren, Dmitri; Barzilay, Thomer; Tacutu, Robi; Lehmann, Gilad; Muradian, Khachik K; Fraifeld, Vadim E

    2016-01-04

    Mitochondria are the only organelles in the animal cells that have their own genome. Due to a key role in energy production, generation of damaging factors (ROS, heat), and apoptosis, mitochondria and mtDNA in particular have long been considered one of the major players in the mechanisms of aging, longevity and age-related diseases. The rapidly increasing number of species with fully sequenced mtDNA, together with accumulated data on longevity records, provides a new fascinating basis for comparative analysis of the links between mtDNA features and animal longevity. To facilitate such analyses and to support the scientific community in carrying these out, we developed the MitoAge database containing calculated mtDNA compositional features of the entire mitochondrial genome, mtDNA coding (tRNA, rRNA, protein-coding genes) and non-coding (D-loop) regions, and codon usage/amino acids frequency for each protein-coding gene. MitoAge includes 922 species with fully sequenced mtDNA and maximum lifespan records. The database is available through the MitoAge website (www.mitoage.org or www.mitoage.info), which provides the necessary tools for searching, browsing, comparing and downloading the data sets of interest for selected taxonomic groups across the Kingdom Animalia. The MitoAge website assists in statistical analysis of different features of the mtDNA and their correlative links to longevity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. A recent bottleneck of Y chromosome diversity coincides with a global change in culture

    PubMed Central

    Saag, Lauri; Vicente, Mário; Sayres, Melissa A. Wilson; Järve, Mari; Talas, Ulvi Gerst; Rootsi, Siiri; Ilumäe, Anne-Mai; Mägi, Reedik; Mitt, Mario; Pagani, Luca; Puurand, Tarmo; Faltyskova, Zuzana; Clemente, Florian; Cardona, Alexia; Metspalu, Ene; Sahakyan, Hovhannes; Yunusbayev, Bayazit; Hudjashov, Georgi; DeGiorgio, Michael; Loogväli, Eva-Liis; Eichstaedt, Christina; Eelmets, Mikk; Chaubey, Gyaneshwer; Tambets, Kristiina; Litvinov, Sergei; Mormina, Maru; Xue, Yali; Ayub, Qasim; Zoraqi, Grigor; Korneliussen, Thorfinn Sand; Akhatova, Farida; Lachance, Joseph; Tishkoff, Sarah; Momynaliev, Kuvat; Ricaut, François-Xavier; Kusuma, Pradiptajati; Razafindrazaka, Harilanto; Pierron, Denis; Cox, Murray P.; Sultana, Gazi Nurun Nahar; Willerslev, Rane; Muller, Craig; Westaway, Michael; Lambert, David; Skaro, Vedrana; Kovačevic´, Lejla; Turdikulova, Shahlo; Dalimova, Dilbar; Khusainova, Rita; Trofimova, Natalya; Akhmetova, Vita; Khidiyatova, Irina; Lichman, Daria V.; Isakova, Jainagul; Pocheshkhova, Elvira; Sabitov, Zhaxylyk; Barashkov, Nikolay A.; Nymadawa, Pagbajabyn; Mihailov, Evelin; Seng, Joseph Wee Tien; Evseeva, Irina; Migliano, Andrea Bamberg; Abdullah, Syafiq; Andriadze, George; Primorac, Dragan; Atramentova, Lubov; Utevska, Olga; Yepiskoposyan, Levon; Marjanovic´, Damir; Kushniarevich, Alena; Behar, Doron M.; Gilissen, Christian; Vissers, Lisenka; Veltman, Joris A.; Balanovska, Elena; Derenko, Miroslava; Malyarchuk, Boris; Metspalu, Andres; Fedorova, Sardana; Eriksson, Anders; Manica, Andrea; Mendez, Fernando L.; Karafet, Tatiana M.; Veeramah, Krishna R.; Bradman, Neil; Hammer, Michael F.; Osipova, Ludmila P.; Balanovsky, Oleg; Khusnutdinova, Elza K.; Johnsen, Knut; Remm, Maido; Thomas, Mark G.; Tyler-Smith, Chris; Underhill, Peter A.; Willerslev, Eske; Nielsen, Rasmus; Metspalu, Mait; Villems, Richard

    2015-01-01

    It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50–100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192–307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47–52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males. PMID:25770088

  4. Characterization of the Complete Mitochondrial Genome Sequence of Spirometra erinaceieuropaei (Cestoda: Diphyllobothriidae) from China

    PubMed Central

    Liu, Guo-Hua; Li, Chun; Li, Jia-Yuan; Zhou, Dong-Hui; Xiong, Rong-Chuan; Lin, Rui-Qing; Zou, Feng-Cai; Zhu, Xing-Quan

    2012-01-01

    Sparganosis, caused by the plerocercoid larvae of members of the genus Spirometra, can cause significant public health problem and considerable economic losses. In the present study, the complete mitochondrial DNA (mtDNA) sequence of Spirometra erinaceieuropaei from China was determined, characterized and compared with that of S. erinaceieuropaei from Japan. The gene arrangement in the mt genome sequences of S. erinaceieuropaei from China and Japan is identical. The identity of the mt genomes was 99.1% between S. erinaceieuropaei from China and Japan, and the complete mtDNA sequence of S. erinaceieuropaei from China is slightly shorter (2 bp) than that from Japan. Phylogenetic analysis of S. erinaceieuropaei with other representative cestodes using two different computational algorithms [Bayesian inference (BI) and maximum likelihood (ML)] based on concatenated amino acid sequences of 12 protein-coding genes, revealed that S. erinaceieuropaei is closely related to Diphyllobothrium spp., supporting classification based on morphological features. The present study determined the complete mtDNA sequences of S. erinaceieuropaei from China that provides novel genetic markers for studying the population genetics and molecular epidemiology of S. erinaceieuropaei in humans and animals. PMID:22553464

  5. [Application of mtDNA polymorphism in species identification of sarcosaphagous insects].

    PubMed

    Li, Xiang; Cai, Ji-feng

    2011-04-01

    Species identification of sarcosaphagous insects is one of the important steps in forensic research based on the knowledge of entomology. Recent studies reveal that the application of molecular biology, especially the mtDNA sequences analysis, works well in the species identification of sarcosaphagous insects. The molecular biology characteristics, structures, polymorphism of mtDNA of sarcosaphagous insects, and the recent studies in species identification of sarcosaphagous insects are reviewed in this article.

  6. SAM: String-based sequence search algorithm for mitochondrial DNA database queries

    PubMed Central

    Röck, Alexander; Irwin, Jodi; Dür, Arne; Parsons, Thomas; Parson, Walther

    2011-01-01

    The analysis of the haploid mitochondrial (mt) genome has numerous applications in forensic and population genetics, as well as in disease studies. Although mtDNA haplotypes are usually determined by sequencing, they are rarely reported as a nucleotide string. Traditionally they are presented in a difference-coded position-based format relative to the corrected version of the first sequenced mtDNA. This convention requires recommendations for standardized sequence alignment that is known to vary between scientific disciplines, even between laboratories. As a consequence, database searches that are vital for the interpretation of mtDNA data can suffer from biased results when query and database haplotypes are annotated differently. In the forensic context that would usually lead to underestimation of the absolute and relative frequencies. To address this issue we introduce SAM, a string-based search algorithm that converts query and database sequences to position-free nucleotide strings and thus eliminates the possibility that identical sequences will be missed in a database query. The mere application of a BLAST algorithm would not be a sufficient remedy as it uses a heuristic approach and does not address properties specific to mtDNA, such as phylogenetically stable but also rapidly evolving insertion and deletion events. The software presented here provides additional flexibility to incorporate phylogenetic data, site-specific mutation rates, and other biologically relevant information that would refine the interpretation of mitochondrial DNA data. The manuscript is accompanied by freeware and example data sets that can be used to evaluate the new software (http://stringvalidation.org). PMID:21056022

  7. Complete Mitochondrial DNA Analysis of Eastern Eurasian Haplogroups Rarely Found in Populations of Northern Asia and Eastern Europe

    PubMed Central

    Derenko, Miroslava; Malyarchuk, Boris; Denisova, Galina; Perkova, Maria; Rogalla, Urszula; Grzybowski, Tomasz; Khusnutdinova, Elza; Dambueva, Irina; Zakharov, Ilia

    2012-01-01

    With the aim of uncovering all of the most basal variation in the northern Asian mitochondrial DNA (mtDNA) haplogroups, we have analyzed mtDNA control region and coding region sequence variation in 98 Altaian Kazakhs from southern Siberia and 149 Barghuts from Inner Mongolia, China. Both populations exhibit the prevalence of eastern Eurasian lineages accounting for 91.9% in Barghuts and 60.2% in Altaian Kazakhs. The strong affinity of Altaian Kazakhs and populations of northern and central Asia has been revealed, reflecting both influences of central Asian inhabitants and essential genetic interaction with the Altai region indigenous populations. Statistical analyses data demonstrate a close positioning of all Mongolic-speaking populations (Mongolians, Buryats, Khamnigans, Kalmyks as well as Barghuts studied here) and Turkic-speaking Sojots, thus suggesting their origin from a common maternal ancestral gene pool. In order to achieve a thorough coverage of DNA lineages revealed in the northern Asian matrilineal gene pool, we have completely sequenced the mtDNA of 55 samples representing haplogroups R11b, B4, B5, F2, M9, M10, M11, M13, N9a and R9c1, which were pinpointed from a massive collection (over 5000 individuals) of northern and eastern Asian, as well as European control region mtDNA sequences. Applying the newly updated mtDNA tree to the previously reported northern Asian and eastern Asian mtDNA data sets has resolved the status of the poorly classified mtDNA types and allowed us to obtain the coalescence age estimates of the nodes of interest using different calibrated rates. Our findings confirm our previous conclusion that northern Asian maternal gene pool consists of predominantly post-LGM components of eastern Asian ancestry, though some genetic lineages may have a pre-LGM/LGM origin. PMID:22363811

  8. Quantitation of heteroplasmy of mtDNA sequence variants identified in a population of AD patients and controls by array-based resequencing.

    PubMed

    Coon, Keith D; Valla, Jon; Szelinger, Szabolics; Schneider, Lonnie E; Niedzielko, Tracy L; Brown, Kevin M; Pearson, John V; Halperin, Rebecca; Dunckley, Travis; Papassotiropoulos, Andreas; Caselli, Richard J; Reiman, Eric M; Stephan, Dietrich A

    2006-08-01

    The role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease (AD) has been well documented. Though evidence for the role of mitochondria in AD seems incontrovertible, the impact of mitochondrial DNA (mtDNA) mutations in AD etiology remains controversial. Though mutations in mitochondrially encoded genes have repeatedly been implicated in the pathogenesis of AD, many of these studies have been plagued by lack of replication as well as potential contamination of nuclear-encoded mitochondrial pseudogenes. To assess the role of mtDNA mutations in the pathogenesis of AD, while avoiding the pitfalls of nuclear-encoded mitochondrial pseudogenes encountered in previous investigations and showcasing the benefits of a novel resequencing technology, we sequenced the entire coding region (15,452 bp) of mtDNA from 19 extremely well-characterized AD patients and 18 age-matched, unaffected controls utilizing a new, reliable, high-throughput array-based resequencing technique, the Human MitoChip. High-throughput, array-based DNA resequencing of the entire mtDNA coding region from platelets of 37 subjects revealed the presence of 208 loci displaying a total of 917 sequence variants. There were no statistically significant differences in overall mutational burden between cases and controls, however, 265 independent sites of statistically significant change between cases and controls were identified. Changed sites were found in genes associated with complexes I (30.2%), III (3.0%), IV (33.2%), and V (9.1%) as well as tRNA (10.6%) and rRNA (14.0%). Despite their statistical significance, the subtle nature of the observed changes makes it difficult to determine whether they represent true functional variants involved in AD etiology or merely naturally occurring dissimilarity. Regardless, this study demonstrates the tremendous value of this novel mtDNA resequencing platform, which avoids the pitfalls of erroneously amplifying nuclear-encoded mtDNA pseudogenes, and our proposed analysis paradigm, which utilizes the availability of raw signal intensity values for each of the four potential alleles to facilitate quantitative estimates of mtDNA heteroplasmy. This information provides a potential new target for burgeoning diagnostics and therapeutics that could truly assist those suffering from this devastating disorder.

  9. Genetic structure and diversity of Japanese kokanee Oncorhynchus nerka stocks as revealed by microsatellite and mitochondrial DNA markers.

    PubMed

    Yamamoto, S; Kitamura, S; Sakano, H; Morita, K

    2011-11-01

    Genetic structure and diversity of nine Japanese kokanee (landlocked) Oncorhynchus nerka stocks and anadromous O. nerka from the North Pacific and the Canadian Lake Cultus population were examined using microsatellite and mitochondrial DNA. Sequence analyses of the cytochrome b region of mtDNA for Japanese kokanee O. nerka stocks on Honshu and Hokkaido islands revealed that most Japanese stocks were monomorphic of one major haplotype, which was also dominant in the Lake Cultus population and anadromous O. nerka in the North Pacific. Assignment tests using microsatellite DNA revealed that there was no clear-cut population structure in Japanese kokanee O. nerka stocks. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  10. Huangshan population of Chinese Zacco platypus (Teleostei, Cyprinidae) harbors diverse matrilines and high genetic diversity.

    PubMed

    Zheng, Xin; Zhou, Tian-Qi; Wan, Tao; Perdices, Anabel; Yang, Jin-Quan; Tang, Xin-Sheng; Wang, Zheng-Ping; Huang, Li-Qun; Huang, Song; He, Shun-Ping

    2016-03-18

    Six main mitochondrial DNA (mtDNA) lineages have been described in minnow (Zacco platypus) samples obtained from northern, western and southern China. Perdices et al. (2004) predicted that further sampling of other tributaries might discover more lineages of this species. In this study, we collected 26 Zacco platypus individuals in the Huangshan area of eastern China and determined the cytochrome b (cytb) sequence variations. Combined with reported data in GenBank, we identified ten matrilines (Zacco A-J) in a total of 169 samples, with relatively high molecular divergence found among them. The Huangshan population had the greatest genetic variation among all sampled regions and hosted six of the ten matrilines. Our results highlight the significance of the Huangshan area for the conservation of Zacco platypus.

  11. Genetic differentiation in blue shark, Prionace glauca, from the central Pacific Ocean, as inferred by mitochondrial cytochrome b region.

    PubMed

    Li, Weiwen; Dai, Xiaojie; Zhu, Jiangfeng; Tian, Siquan; He, Shan; Wu, Feng

    2017-07-01

    Six hundred and ninety-seven base pairs of cytochrome b gene of mtDNA was sequenced and analyzed for 78 blue shark Prionace glauca individuals from three sampled locations in the central Pacific Ocean (CPO). In total, three polymorphic sites were detected which defined four haplotypes. The haplotype diversity (h) ranged from 0.517 to 0.768, and nucleotide diversity (π) was between 0.0007 and 0.0011. Analysis of molecular variance indicated a non-significant differentiation among subpopulations. Furthermore, pairwise F ST score analysis revealed a non-significant differentiation among three sampled regions. Generally, low genetic differences were found between different geographic locations in the CPO. This study suggests a single panmictic population of P. glauca in the CPO.

  12. Divergence with gene flow within the recent chipmunk radiation (Tamias)

    PubMed Central

    Sullivan, J; Demboski, J R; Bell, K C; Hird, S; Sarver, B; Reid, N; Good, J M

    2014-01-01

    Increasing data have supported the importance of divergence with gene flow (DGF) in the generation of biological diversity. In such cases, lineage divergence occurs on a shorter timescale than does the completion of reproductive isolation. Although it is critical to explore the mechanisms driving divergence and preventing homogenization by hybridization, it is equally important to document cases of DGF in nature. Here we synthesize data that have accumulated over the last dozen or so years on DGF in the chipmunk (Tamias) radiation with new data that quantify very high rates of mitochondrial DNA (mtDNA) introgression among para- and sympatric species in the T. quadrivittatus group in the central and southern Rocky Mountains. These new data (188 cytochrome b sequences) bring the total number of sequences up to 1871; roughly 16% (298) of the chipmunks we have sequenced exhibit introgressed mtDNA. This includes ongoing introgression between subspecies and between both closely related and distantly related taxa. In addition, we have identified several taxa that are apparently fixed for ancient introgressions and in which there is no evidence of ongoing introgression. A recurrent observation is that these introgressions occur between ecologically and morphologically diverged, sometimes non-sister taxa that engage in well-documented niche partitioning. Thus, the chipmunk radiation in western North America represents an excellent mammalian example of speciation in the face of recurrent gene flow among lineages and where biogeography, habitat differentiation and mating systems suggest important roles for both ecological and sexual selection. PMID:24781803

  13. Shallow phylogeographic structuring of Vimba vimba across Europe suggests two distinct refugia during the last glaciation.

    PubMed

    Hänfling, B; Dümpelmann, C; Bogutskaya, N G; Brandl, R; Brändle, M

    2009-12-01

    Genetic variation and geographical structuring of vimba Vimba vimba were analysed across 26 sites (80 individuals) by means of mtDNA sequences (cyt b gene, mitochondrial control region) to localize hypothesized glacial refugia and to reconstruct postglacial recoloniation routes. Although genetic diversity among sequenced individuals was low, a combined analysis of the two sequenced fragments revealed a western (central and northern Europe: Danube, Elbe and lakes of Sweden) and an eastern clade (eastern Europe: Dnieper-South Bug, Don, Neman). Furthermore, a number of divergent ancestral haplotypes distributed around the Black and Caspian Seas became apparent. Mismatch analyses supported a sudden expansion model for the populations of the western clade between 50 and 10 000 bp. Overall, the study provides strong evidence for a northward and westward expansion of V. vimba from two refugial regions located in the Danubian drainage and the northern Pontic regions respectively.

  14. SG-ADVISER mtDNA: a web server for mitochondrial DNA annotation with data from 200 samples of a healthy aging cohort.

    PubMed

    Rueda, Manuel; Torkamani, Ali

    2017-08-18

    Whole genome and exome sequencing usually include reads containing mitochondrial DNA (mtDNA). Yet, state-of-the-art pipelines and services for human nuclear genome variant calling and annotation do not handle mitochondrial genome data appropriately. As a consequence, any researcher desiring to add mtDNA variant analysis to their investigations is forced to explore the literature for mtDNA pipelines, evaluate them, and implement their own instance of the desired tool. This task is far from trivial, and can be prohibitive for non-bioinformaticians. We have developed SG-ADVISER mtDNA, a web server to facilitate the analysis and interpretation of mtDNA genomic data coming from next generation sequencing (NGS) experiments. The server was built in the context of our SG-ADVISER framework and on top of the MtoolBox platform (Calabrese et al., Bioinformatics 30(21):3115-3117, 2014), and includes most of its functionalities (i.e., assembly of mitochondrial genomes, heteroplasmic fractions, haplogroup assignment, functional and prioritization analysis of mitochondrial variants) as well as a back-end and a front-end interface. The server has been tested with unpublished data from 200 individuals of a healthy aging cohort (Erikson et al., Cell 165(4):1002-1011, 2016) and their data is made publicly available here along with a preliminary analysis of the variants. We observed that individuals over ~90 years old carried low levels of heteroplasmic variants in their genomes. SG-ADVISER mtDNA is a fast and functional tool that allows for variant calling and annotation of human mtDNA data coming from NGS experiments. The server was built with simplicity in mind, and builds on our own experience in interpreting mtDNA variants in the context of sudden death and rare diseases. Our objective is to provide an interface for non-bioinformaticians aiming to acquire (or contrast) mtDNA annotations via MToolBox. SG-ADVISER web server is freely available to all users at https://genomics.scripps.edu/mtdna .

  15. Molecular studies on larvae of Pseudoterranova parasite of Trichiurus lepturus Linnaeus, 1758 and Pomatomus saltatrix (Linnaeus, 1766) off Brazilian waters.

    PubMed

    Borges, Juliana N; Cunha, Luiz F G; Miranda, Daniele F; Monteiro-Neto, Cassiano; Santos, Cláudia P

    2015-12-01

    Pseudoterranova larvae parasitizing cutlassfish Trichiurus lepturus and bluefish Pomatomus saltatrix from Southwest Atlantic coast of Brazil were studied in this work by morphological, ultrastructural and molecular approaches. The genetic analysis were performed for the ITS2 intergenic region specific for Pseudoterranova decipiens, the partial 28S (LSU) of ribosomal DNA and the mtDNA cox-1 region. We obtained results for the 28S region and mtDNA cox-1 that was amplified using the polymerase chain reaction and sequenced to evaluate the phylogenetic relationships between sequences of this study and sequences from the GenBank. The morphological profile indicated that all the nine specimens collected from both fish were L3 larvae of Pseudoterranova sp. The genetic profile confirmed the generic level but due to the absence of similar sequences for adult parasites on GenBank for the regions amplifyied, it was not possible to identify them to the species level. The sequences obtained presented 89% of similarity with Pseudoterranova decipiens (28S sequences) and Contracaecum osculatum B (mtDNA cox-1). The low similarity allied to the fact that the amplification with the specific primer for P. decipiens didn't occur, lead us to conclude that our sequences don't belong to P. decipiens complex.

  16. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing

    PubMed Central

    Just, Rebecca S.; Irwin, Jodi A.; Parson, Walther

    2015-01-01

    Long an important and useful tool in forensic genetic investigations, mitochondrial DNA (mtDNA) typing continues to mature. Research in the last few years has demonstrated both that data from the entire molecule will have practical benefits in forensic DNA casework, and that massively parallel sequencing (MPS) methods will make full mitochondrial genome (mtGenome) sequencing of forensic specimens feasible and cost-effective. A spate of recent studies has employed these new technologies to assess intraindividual mtDNA variation. However, in several instances, contamination and other sources of mixed mtDNA data have been erroneously identified as heteroplasmy. Well vetted mtGenome datasets based on both Sanger and MPS sequences have found authentic point heteroplasmy in approximately 25% of individuals when minor component detection thresholds are in the range of 10–20%, along with positional distribution patterns in the coding region that differ from patterns of point heteroplasmy in the well-studied control region. A few recent studies that examined very low-level heteroplasmy are concordant with these observations when the data are examined at a common level of resolution. In this review we provide an overview of considerations related to the use of MPS technologies to detect mtDNA heteroplasmy. In addition, we examine published reports on point heteroplasmy to characterize features of the data that will assist in the evaluation of future mtGenome data developed by any typing method. PMID:26009256

  17. Maternal and paternal genealogy of Eurasian taurine cattle (Bos taurus).

    PubMed

    Kantanen, J; Edwards, C J; Bradley, D G; Viinalass, H; Thessler, S; Ivanova, Z; Kiselyova, T; Cinkulov, M; Popov, R; Stojanović, S; Ammosov, I; Vilkki, J

    2009-11-01

    Maternally inherited mitochondrial DNA (mtDNA) has been used extensively to determine origin and diversity of taurine cattle (Bos taurus) but global surveys of paternally inherited Y-chromosome diversity are lacking. Here, we provide mtDNA information on previously uncharacterised Eurasian breeds and present the most comprehensive Y-chromosomal microsatellite data on domestic cattle to date. The mitochondrial haplogroup T3 was the most frequent, whereas T4 was detected only in the Yakutian cattle from Siberia. The mtDNA data indicates that the Ukrainian and Central Asian regions are zones where hybrids between taurine and zebu (B. indicus) cattle have existed. This zebu influence appears to have subsequently spread into southern and southeastern European breeds. The most common Y-chromosomal microsatellite haplotype, termed here as H11, showed an elevated frequency in the Eurasian sample set compared with that detected in Near Eastern and Anatolian breeds. The taurine Y-chromosomal microsatellite haplotypes were found to be structured in a network according to the Y-haplogroups Y1 and Y2. These data do not support the recent hypothesis on the origin of Y1 from the local European hybridization of cattle with male aurochsen. Compared with mtDNA, the intensive culling of breeding males and male-mediated crossbreeding of locally raised native breeds has accelerated loss of Y-chromosomal variation in domestic cattle, and affected the contribution of genetic drift to diversity. In conclusion, to maintain diversity, breeds showing rare Y-haplotypes should be prioritised in the conservation of cattle genetic resources.

  18. MtDNA COI-COII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres.

    PubMed

    Bertrand, Bénédicte; Alburaki, Mohamed; Legout, Hélène; Moulin, Sibyle; Mougel, Florence; Garnery, Lionel

    2015-05-01

    Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations. © 2014 John Wiley & Sons Ltd.

  19. Archaeogenetics of Late Iron Age Çemialo Sırtı, Batman: Investigating maternal genetic continuity in north Mesopotamia since the Neolithic.

    PubMed

    Yaka, Reyhan; Birand, Ayşegül; Yılmaz, Yasemin; Caner, Ceren; Açan, Sinan Can; Gündüzalp, Sidar; Parvizi, Poorya; Erim Özdoğan, Aslı; Togan, İnci; Somel, Mehmet

    2018-05-01

    North Mesopotamia has witnessed dramatic social change during the Holocene, but the impact of these events on its demographic history is poorly understood. Here, we study this question by analysing genetic data from the recently excavated Late Iron Age settlement of Çemialo Sırtı in Batman, southeast Turkey. Archaeological and radiocarbon evidence indicate that the site was inhabited during the second and first millennia BCE. Çemialo Sırtı reveals nomadic items of the Early Iron Age, as well as items associated with the Late Achaemenid and subsequent Hellenistic Periods. We compare Çemialo Sırtı mitochondrial DNA profiles with earlier and later populations from west Eurasia to describe genetic continuity patterns in the region. A total of 16 Çemialo Sırtı individuals' remains were studied. PCR and Sanger sequencing were used to obtain mitochondrial DNA HVRI-HVRII sequences. We studied haplotype diversity and pairwise genetic distances using F ST , comparing the Çemialo Sırtı population with ancient and modern-day populations from west Eurasia. Coalescent simulations were carried out to test continuity for specific population comparisons. Mitochondrial DNA (mtDNA) haplotypes from 12 Çemialo Sırtı individuals reveal high haplotype diversity in this population, conspicuously higher than early Holocene west Eurasian populations, which supports the notion of increasing population admixture in west Eurasia through the Holocene. In its mtDNA composition, Çemialo Sırtı shows highest affinity to Neolithic north Syria and Neolithic Anatolia among ancient populations studied, and to modern-day southwest Asian populations. Based on population genetic simulations we cannot reject continuity between Neolithic and Iron Age, or between Iron Age and present-day populations of the region. Despite the region's complex sociopolitical history and indication for increased genetic diversity over time, we find no evidence for sharp shifts in north Mesopotamian maternal genetic composition within the last 10,000 years. © 2018 Wiley Periodicals, Inc.

  20. Temporal analysis of mtDNA variation reveals decreased genetic diversity in least terns

    USGS Publications Warehouse

    Draheim, Hope M.; Baird, Patricia; Haig, Susan M.

    2012-01-01

    The Least Tern (Sternula antillarum) has undergone large population declines over the last century as a result of direct and indirect anthropogenic factors. The genetic implications of these declines are unknown. We used historical museum specimens (pre-1960) and contemporary (2001–2005) samples to examine range-wide phylogeographic patterns and investigate potential loss in the species' genetic variation. We obtained sequences (522 bp) of the mitochondrial gene for NADH dehydrogenase subunit 6 (ND6) from 268 individuals from across the species' range. Phylogeographic analysis revealed no association with geography or traditional subspecies designations. However, we detected potential reductions in genetic diversity in contemporary samples from California and the Atlantic coast Least Tern from that in historical samples, suggesting that current genetic diversity in Least Tern populations is lower than in their pre-1960 counterparts. Our results offer unique insights into changes in the Least Tern's genetic diversity over the past century and highlight the importance and utility of museum specimens in studies of conservation genetics.

  1. Molecular characterization of the canine mitochondrial DNA control region for forensic applications.

    PubMed

    Eichmann, Cordula; Parson, Walther

    2007-09-01

    The canine mitochondrial DNA (mtDNA) control region of 133 dogs living in the area around Innsbruck, Austria was sequenced. A total of 40 polymorphic sites were observed in the first hypervariable segment and 15 in the second, which resulted in the differentiation of 40 distinct haplotypes. We observed five nucleotide positions that were highly polymorphic within different haplogroups, and they represent good candidates for mtDNA screening. We found five point heteroplasmic positions; all located in HVS-I and a polythymine region in HVS-II, the latter often being associated with length heteroplasmy. In contrast to human mtDNA, the canine control region contains a hypervariable 10 nucleotide repeat region, which is located between the two hypervariable regions. In our population sample, we observed eight different repeat types, which we characterized by direct sequencing and fragment length analysis. The discrimination power of the canine mtDNA control region was 0.93, not taking the polymorphic repeat region into consideration.

  2. Complete mitochondrial genome sequence of the common bean anthracnose pathogen Colletotrichum lindemuthianum.

    PubMed

    Gutiérrez, Pablo; Alzate, Juan; Yepes, Mauricio Salazar; Marín, Mauricio

    2016-01-01

    Colletotrichum lindemuthianum is the causal agent of anthracnose in common bean (Phaseolus vulgaris), one of the most limiting factors for this crop in South and Central America. In this work, the mitochondrial sequence of a Colombian isolate of C. lindemuthianum obtained from a common bean plant (var. Cargamanto) with anthracnose symptoms is presented. The mtDNA codes for 13 proteins of the respiratory chain, 1 ribosomal protein, 2 homing endonucleases, 2 ribosomal RNAs and 28 tRNAs. This is the first report of a complete mtDNA genome sequence from C. lindemuthianum.

  3. Identification of Forensic Samples via Mitochondrial DNA in the Undergraduate Biochemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Millard, Julie T.; Pilon, André M.

    2003-04-01

    A recent forensic approach for identification of unknown biological samples is mitochondrial DNA (mtDNA) sequencing. We describe a laboratory exercise suitable for an undergraduate biochemistry course in which the polymerase chain reaction is used to amplify a 440 base pair hypervariable region of human mtDNA from a variety of "crime scene" samples (e.g., teeth, hair, nails, cigarettes, envelope flaps, toothbrushes, and chewing gum). Amplification is verified via agarose gel electrophoresis and then samples are subjected to cycle sequencing. Sequence alignments are made via the program CLUSTAL W, allowing students to compare samples and solve the "crime."

  4. Genetic Diversity and Phylogenetic Evolution of Tibetan Sheep Based on mtDNA D-Loop Sequences

    PubMed Central

    Yue, Yaojing; Guo, Xian; Guo, Tingting; Chu, Min; Wang, Fan; Han, Jilong; Feng, Ruilin; Sun, Xiaoping; Niu, Chune; Yang, Bohui; Guo, Jian; Yuan, Chao

    2016-01-01

    The molecular and population genetic evidence of the phylogenetic status of the Tibetan sheep (Ovis aries) is not well understood, and little is known about this species’ genetic diversity. This knowledge gap is partly due to the difficulty of sample collection. This is the first work to address this question. Here, the genetic diversity and phylogenetic relationship of 636 individual Tibetan sheep from fifteen populations were assessed using 642 complete sequences of the mitochondrial DNA D-loop. Samples were collected from the Qinghai-Tibetan Plateau area in China, and reference data were obtained from the six reference breed sequences available in GenBank. The length of the sequences varied considerably, between 1031 and 1259 bp. The haplotype diversity and nucleotide diversity were 0.992±0.010 and 0.019±0.001, respectively. The average number of nucleotide differences was 19.635. The mean nucleotide composition of the 350 haplotypes was 32.961% A, 29.708% T, 22.892% C, 14.439% G, 62.669% A+T, and 37.331% G+C. Phylogenetic analysis showed that all four previously defined haplogroups (A, B, C, and D) were found in the 636 individuals of the fifteen Tibetan sheep populations but that only the D haplogroup was found in Linzhou sheep. Further, the clustering analysis divided the fifteen Tibetan sheep populations into at least two clusters. The estimation of the demographic parameters from the mismatch analyses showed that haplogroups A, B, and C had at least one demographic expansion in Tibetan sheep. These results contribute to the knowledge of Tibetan sheep populations and will help inform future conservation programs about the Tibetan sheep native to the Qinghai-Tibetan Plateau. PMID:27463976

  5. MtDNA mutations are a common cause of severe disease phenotypes in children with Leigh syndrome.

    PubMed

    Naess, Karin; Freyer, Christoph; Bruhn, Helene; Wibom, Rolf; Malm, Gunilla; Nennesmo, Inger; von Döbeln, Ulrika; Larsson, Nils-Göran

    2009-05-01

    Leigh syndrome is a common clinical manifestation in children with mitochondrial disease and other types of inborn errors of metabolism. We characterised clinical symptoms, prognosis, respiratory chain function and performed extensive genetic analysis of 25 Swedish children suffering from Leigh syndrome with the aim to obtain insights into the molecular pathophysiology and to provide a rationale for genetic counselling. We reviewed the clinical history of all patients and used muscle biopsies in order to perform molecular, biochemical and genetic investigations, including sequencing the entire mitochondrial DNA (mtDNA), the mitochondrial DNA polymerase (POLGA) gene and the surfeit locus protein 1 (SURF1) gene. Respiratory chain enzyme activity measurements identified five patients with isolated complex I deficiency and five with combined enzyme deficiencies. No patient presented with isolated complex IV deficiency. Seven patients had a decreased ATP production rate. Extensive sequence analysis identified eight patients with pathogenic mtDNA mutations and one patient with mutations in POLGA. Mutations of mtDNA are a common cause of LS and mtDNA analysis should always be included in the diagnosis of LS patients, whereas SURF1 mutations are not a common cause of LS in Sweden. Unexpectedly, age of onset, clinical symptoms and prognosis did not reveal any clear differences in LS patients with mtDNA or nuclear DNA mutations.

  6. AQME: A forensic mitochondrial DNA analysis tool for next-generation sequencing data.

    PubMed

    Sturk-Andreaggi, Kimberly; Peck, Michelle A; Boysen, Cecilie; Dekker, Patrick; McMahon, Timothy P; Marshall, Charla K

    2017-11-01

    The feasibility of generating mitochondrial DNA (mtDNA) data has expanded considerably with the advent of next-generation sequencing (NGS), specifically in the generation of entire mtDNA genome (mitogenome) sequences. However, the analysis of these data has emerged as the greatest challenge to implementation in forensics. To address this need, a custom toolkit for use in the CLC Genomics Workbench (QIAGEN, Hilden, Germany) was developed through a collaborative effort between the Armed Forces Medical Examiner System - Armed Forces DNA Identification Laboratory (AFMES-AFDIL) and QIAGEN Bioinformatics. The AFDIL-QIAGEN mtDNA Expert, or AQME, generates an editable mtDNA profile that employs forensic conventions and includes the interpretation range required for mtDNA data reporting. AQME also integrates an mtDNA haplogroup estimate into the analysis workflow, which provides the analyst with phylogenetic nomenclature guidance and a profile quality check without the use of an external tool. Supplemental AQME outputs such as nucleotide-per-position metrics, configurable export files, and an audit trail are produced to assist the analyst during review. AQME is applied to standard CLC outputs and thus can be incorporated into any mtDNA bioinformatics pipeline within CLC regardless of sample type, library preparation or NGS platform. An evaluation of AQME was performed to demonstrate its functionality and reliability for the analysis of mitogenome NGS data. The study analyzed Illumina mitogenome data from 21 samples (including associated controls) of varying quality and sample preparations with the AQME toolkit. A total of 211 tool edits were automatically applied to 130 of the 698 total variants reported in an effort to adhere to forensic nomenclature. Although additional manual edits were required for three samples, supplemental tools such as mtDNA haplogroup estimation assisted in identifying and guiding these necessary modifications to the AQME-generated profile. Along with profile generation, AQME reported accurate haplogroups for 18 of the 19 samples analyzed. The single errant haplogroup assignment, although phylogenetically close, identified a bug that only affects partial mitogenome data. Future adjustments to AQME's haplogrouping tool will address this bug as well as enhance the overall scoring strategy to better refine and automate haplogroup assignments. As NGS enables broader use of the mtDNA locus in forensics, the availability of AQME and other forensic-focused mtDNA analysis tools will ease the transition and further support mitogenome analysis within routine casework. Toward this end, the AFMES-AFDIL has utilized the AQME toolbox in conjunction with the CLC Genomics Workbench to successfully validate and implement two NGS mitogenome methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Genetic uniqueness of the Waorani tribe from the Ecuadorian Amazon

    PubMed Central

    Cardoso, S; Alfonso-Sánchez, M A; Valverde, L; Sánchez, D; Zarrabeitia, M T; Odriozola, A; Martínez-Jarreta, B; de Pancorbo, M M

    2012-01-01

    South America and especially the Amazon basin is known to be home to some of the most isolated human groups in the world. Here, we report on a study of mitochondrial DNA (mtDNA) in the Waorani from Ecuador, probably the most warlike human population known to date. Seeking to look in more depth at the characterization of the genetic diversity of this Native American tribe, molecular markers from the X and Y chromosomes were also analyzed. Only three different mtDNA haplotypes were detected among the Waorani sample. One of them, assigned to Native American haplogroup A2, accounted for more than 94% of the total diversity of the maternal gene pool. Our results for sex chromosome molecular markers failed to find close genetic kinship between individuals, further emphasizing the low genetic diversity of the mtDNA. Bearing in mind the results obtained for both the analysis of the mtDNA control region and complete mitochondrial genomes, we suggest the existence of a ‘Waorani-specific' mtDNA lineage. According to current knowledge on the phylogeny of haplogroup A2, we propose that this lineage could be designated as subhaplogroup A2s. Its wide predominance among the Waorani people might have been conditioned by severe genetic drift episodes resulting from founding events, long-term isolation and a traditionally small population size most likely associated with the striking ethnography of this Amazonian community. In all, the Waorani constitute a fine example of how genetic imprint may mirror ethnopsychology and sociocultural features in human populations. PMID:22234246

  8. Genetic uniqueness of the Waorani tribe from the Ecuadorian Amazon.

    PubMed

    Cardoso, S; Alfonso-Sánchez, M A; Valverde, L; Sánchez, D; Zarrabeitia, M T; Odriozola, A; Martínez-Jarreta, B; de Pancorbo, M M

    2012-06-01

    South America and especially the Amazon basin is known to be home to some of the most isolated human groups in the world. Here, we report on a study of mitochondrial DNA (mtDNA) in the Waorani from Ecuador, probably the most warlike human population known to date. Seeking to look in more depth at the characterization of the genetic diversity of this Native American tribe, molecular markers from the X and Y chromosomes were also analyzed. Only three different mtDNA haplotypes were detected among the Waorani sample. One of them, assigned to Native American haplogroup A2, accounted for more than 94% of the total diversity of the maternal gene pool. Our results for sex chromosome molecular markers failed to find close genetic kinship between individuals, further emphasizing the low genetic diversity of the mtDNA. Bearing in mind the results obtained for both the analysis of the mtDNA control region and complete mitochondrial genomes, we suggest the existence of a 'Waorani-specific' mtDNA lineage. According to current knowledge on the phylogeny of haplogroup A2, we propose that this lineage could be designated as subhaplogroup A2s. Its wide predominance among the Waorani people might have been conditioned by severe genetic drift episodes resulting from founding events, long-term isolation and a traditionally small population size most likely associated with the striking ethnography of this Amazonian community. In all, the Waorani constitute a fine example of how genetic imprint may mirror ethnopsychology and sociocultural features in human populations.

  9. The joint evolutionary histories of Wolbachia and mitochondria in Hypolimnas bolina.

    PubMed

    Charlat, Sylvain; Duplouy, Anne; Hornett, Emily A; Dyson, Emily A; Davies, Neil; Roderick, George K; Wedell, Nina; Hurst, Gregory D D

    2009-03-24

    The interaction between the Blue Moon butterfly, Hypolimnas bolina, and Wolbachia has attracted interest because of the high prevalence of male-killing achieved within the species, the ecological consequences of this high prevalence, the intensity of selection on the host to suppress the infection, and the presence of multiple Wolbachia infections inducing different phenotypes. We examined diversity in the co-inherited marker, mtDNA, and the partitioning of this between individuals of different infection status, as a means to investigate the population biology and evolutionary history of the Wolbachia infections. Part of the mitochondrial COI gene was sequenced from 298 individuals of known infection status revealing ten different haplotypes. Despite very strong biological evidence that the sample represents a single species, the ten haplotypes did not fall within a monophyletic clade within the Hypolimnas genus, with one haplotype differing by 5% from the other nine. There were strong associations between infection status and mtDNA haplotype. The presence of wBol1 infection in association with strongly divergent haplotypes prompted closer examination of wBol1 genetic variation. This revealed the existence of two cryptic subtypes, wBol1a and wBol1b. The wBol1a infection, by far the most common, was in strict association with the single divergent mtDNA haplotype. The wBol1b infection was found with two haplotypes that were also observed in uninfected specimens. Finally, the wBol2 infection was associated with a large diversity of mtDNA haplotypes, most often shared with uninfected sympatric butterflies. This data overall supports the hypothesis that high prevalence of male-killing Wolbachia (wBol1) in H. bolina is associated with very high transmission efficiency rather than regular horizontal transmission. It also suggests this infection has undergone a recent selective sweep and was introduced in this species through introgression. In contrast, the sharing of haplotypes between wBol2-infected and uninfected individuals indicates that this strain is not perfectly transmitted and/or shows a significant level of horizontal transmission.

  10. The joint evolutionary histories of Wolbachia and mitochondria in Hypolimnas bolina

    PubMed Central

    Charlat, Sylvain; Duplouy, Anne; Hornett, Emily A; Dyson, Emily A; Davies, Neil; Roderick, George K; Wedell, Nina; Hurst, Gregory DD

    2009-01-01

    Background The interaction between the Blue Moon butterfly, Hypolimnas bolina, and Wolbachia has attracted interest because of the high prevalence of male-killing achieved within the species, the ecological consequences of this high prevalence, the intensity of selection on the host to suppress the infection, and the presence of multiple Wolbachia infections inducing different phenotypes. We examined diversity in the co-inherited marker, mtDNA, and the partitioning of this between individuals of different infection status, as a means to investigate the population biology and evolutionary history of the Wolbachia infections. Results Part of the mitochondrial COI gene was sequenced from 298 individuals of known infection status revealing ten different haplotypes. Despite very strong biological evidence that the sample represents a single species, the ten haplotypes did not fall within a monophyletic clade within the Hypolimnas genus, with one haplotype differing by 5% from the other nine. There were strong associations between infection status and mtDNA haplotype. The presence of wBol1 infection in association with strongly divergent haplotypes prompted closer examination of wBol1 genetic variation. This revealed the existence of two cryptic subtypes, wBol1a and wBol1b. The wBol1a infection, by far the most common, was in strict association with the single divergent mtDNA haplotype. The wBol1b infection was found with two haplotypes that were also observed in uninfected specimens. Finally, the wBol2 infection was associated with a large diversity of mtDNA haplotypes, most often shared with uninfected sympatric butterflies. Conclusion This data overall supports the hypothesis that high prevalence of male-killing Wolbachia (wBol1) in H. bolina is associated with very high transmission efficiency rather than regular horizontal transmission. It also suggests this infection has undergone a recent selective sweep and was introduced in this species through introgression. In contrast, the sharing of haplotypes between wBol2-infected and uninfected individuals indicates that this strain is not perfectly transmitted and/or shows a significant level of horizontal transmission. PMID:19317891

  11. Capillary electrophoresis of Big-Dye terminator sequencing reactions for human mtDNA Control Region haplotyping in the identification of human remains.

    PubMed

    Montesino, Marta; Prieto, Lourdes

    2012-01-01

    Cycle sequencing reaction with Big-Dye terminators provides the methodology to analyze mtDNA Control Region amplicons by means of capillary electrophoresis. DNA sequencing with ddNTPs or terminators was developed by (1). The progressive automation of the method by combining the use of fluorescent-dye terminators with cycle sequencing has made it possible to increase the sensibility and efficiency of the method and hence has allowed its introduction into the forensic field. PCR-generated mitochondrial DNA products are the templates for sequencing reactions. Different set of primers can be used to generate amplicons with different sizes according to the quality and quantity of the DNA extract providing sequence data for different ranges inside the Control Region.

  12. Next-generation sequencing reveals cryptic mtDNA diversity of Plasmodium relictum in the Hawaiian Islands

    USGS Publications Warehouse

    Jarvi, S.I.; Farias, M.E.; Lapointe, D.A.; Belcaid, M.; Atkinson, C.T.

    2013-01-01

    Next-generation 454 sequencing techniques were used to re-examine diversity of mitochondrial cytochrome b lineages of avian malaria (Plasmodium relictum) in Hawaii. We document a minimum of 23 variant lineages of the parasite based on single nucleotide transitional changes, in addition to the previously reported single lineage (GRW4). A new, publicly available portal (Integroomer) was developed for initial parsing of 454 datasets. Mean variant prevalence and frequency was higher in low elevation Hawaii Amakihi (Hemignathus virens) with Avipoxvirus-like lesions (P = 0·001), suggesting that the variants may be biologically distinct. By contrast, variant prevalence and frequency did not differ significantly among mid-elevation Apapane (Himatione sanguinea) with or without lesions (P = 0·691). The low frequency and the lack of detection of variants independent of GRW4 suggest that multiple independent introductions of P. relictum to Hawaii are unlikely. Multiple variants may have been introduced in heteroplasmy with GRW4 or exist within the tandem repeat structure of the mitochondrial genome. The discovery of multiple mitochondrial lineages of P. relictum in Hawaii provides a measure of genetic diversity within a geographically isolated population of this parasite and suggests the origins and evolution of parasite diversity may be more complicated than previously recognized.

  13. Next-generation sequencing reveals cryptic mtDNA diversity of Plasmodium relictum in the Hawaiian Islands.

    PubMed

    Jarvi, S I; Farias, M E; Lapointe, D A; Belcaid, M; Atkinson, C T

    2013-12-01

    Next-generation 454 sequencing techniques were used to re-examine diversity of mitochondrial cytochrome b lineages of avian malaria (Plasmodium relictum) in Hawaii. We document a minimum of 23 variant lineages of the parasite based on single nucleotide transitional changes, in addition to the previously reported single lineage (GRW4). A new, publicly available portal (Integroomer) was developed for initial parsing of 454 datasets. Mean variant prevalence and frequency was higher in low elevation Hawaii Amakihi (Hemignathus virens) with Avipoxvirus-like lesions (P = 0·001), suggesting that the variants may be biologically distinct. By contrast, variant prevalence and frequency did not differ significantly among mid-elevation Apapane (Himatione sanguinea) with or without lesions (P = 0·691). The low frequency and the lack of detection of variants independent of GRW4 suggest that multiple independent introductions of P. relictum to Hawaii are unlikely. Multiple variants may have been introduced in heteroplasmy with GRW4 or exist within the tandem repeat structure of the mitochondrial genome. The discovery of multiple mitochondrial lineages of P. relictum in Hawaii provides a measure of genetic diversity within a geographically isolated population of this parasite and suggests the origins and evolution of parasite diversity may be more complicated than previously recognized.

  14. On ancestors of dog breeds with focus on Weimaraner hunting dogs.

    PubMed

    Kropatsch, R; Streitberger, K; Schulte-Middelmann, T; Dekomien, G; Epplen, J T

    2011-02-01

    Paternally inherited Y chromosomal markers and maternally inherited mitochondrial (mt) DNA sequences were investigated in 27 dog breeds (Canis familiaris), of which the Weimaraner hunting dog was studied in greater detail. Altogether, nine potentially polymorphic markers of the Y chromosome were examined as well as parts of the canine mt genome (1947 base pairs) in 111 male dogs and four wolves for comparison. Twenty Y chromosomal and fifty-nine mitochondrial DNA (mtDNA) haplotypes were identified in the canine breeds and wolves. In 34 Weimaraners, four distinct Y chromosomal haplotypes were observed as well as three mtDNA types thus reflecting at least four male and three female ancestors for the current population in Germany. Tracing patri- and matrilineages, several entries in the Weimaraner stud book cannot be reconciled with the male-only, Y chromosomal neither the female-only, mt inheritance patterns, respectively. The investigated breeds represent 9 of 10 groups defined by the Fédération Cynologique Internationale (FCI). The level of Y chromosomal and especially mtDNA diversity was immense considering the relatively small number of individuals investigated per breed. Unique haplotypes were found only in a few breeds and the wolf. Other haplotypes were shared among several breeds, also across different FCI groups, suggesting that these canine breeds had common male and female ancestors. © 2010 Blackwell Verlag GmbH.

  15. The confounding effects of hybridization on phylogenetic estimation in the New Zealand cicada genus Kikihia.

    PubMed

    Banker, Sarah E; Wade, Elizabeth J; Simon, Chris

    2017-11-01

    Phylogenetic studies of multiple independently inherited nuclear genes considered in combination with patterns of inheritance of organelle DNA have provided considerable insight into the history of species evolution. In particular, investigations of cicadas in the New Zealand genus Kikihia have identified interesting cases where mitochondrial DNA (mtDNA) crosses species boundaries in some species pairs but not others. Previous phylogenetic studies focusing on mtDNA largely corroborated Kikihia species groups identified by song, morphology and ecology with the exception of a unique South Island mitochondrial haplotype clade-the Westlandica group. This newly identified group consists of diverse taxa previously classified as belonging to three different sub-generic clades. We sequenced five nuclear loci from multiple individuals from every species of Kikihia to assess the nuclear gene concordance for this newly-identified mtDNA lineage. Bayes Factor analysis of the constrained phylogeny suggests some support for the mtDNA-based hypotheses, despite the fact that neither concatenation nor multiple species tree methods resolve the Westlandica group as monophyletic. The nuclear analyses suggest a geographic distinction between clearly defined monophyletic North Island clades and unresolved South Island clades. We suggest that more extreme habitat modification on South Island during the Pliocene and Pleistocene resulted in secondary contact and hybridization between species pairs and a series of mitochondrial capture events followed by subsequent lineage evolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effects of Pleistocene glaciations and rivers on the population structure of Bornean orangutans (Pongo pygmaeus)

    PubMed Central

    Arora, Natasha; Nater, Alexander; van Schaik, Carel P.; Willems, Erik P.; van Noordwijk, Maria A.; Goossens, Benoit; Morf, Nadja; Bastian, Meredith; Knott, Cheryl; Morrogh-Bernard, Helen; Kuze, Noko; Kanamori, Tomoko; Pamungkas, Joko; Perwitasari-Farajallah, Dyah; Verschoor, Ernst; Warren, Kristin; Krützen, Michael

    2010-01-01

    Sundaland, a tropical hotspot of biodiversity comprising Borneo and Sumatra among other islands, the Malay Peninsula, and a shallow sea, has been subject to dramatic environmental processes. Thus, it presents an ideal opportunity to investigate the role of environmental mechanisms in shaping species distribution and diversity. We investigated the population structure and underlying mechanisms of an insular endemic, the Bornean orangutan (Pongo pygmaeus). Phylogenetic reconstructions based on mtDNA sequences from 211 wild orangutans covering the entire range of the species indicate an unexpectedly recent common ancestor of Bornean orangutans 176 ka (95% highest posterior density, 72–322 ka), pointing to a Pleistocene refugium. High mtDNA differentiation among populations and rare haplotype sharing is consistent with a pattern of strong female philopatry. This is corroborated by isolation by distance tests, which show a significant correlation between mtDNA divergence and distance and a strong effect of rivers as barriers for female movement. Both frequency-based and Bayesian clustering analyses using as many as 25 nuclear microsatellite loci revealed a significant separation among all populations, as well as a small degree of male-mediated gene flow. This study highlights the unique effects of environmental and biological features on the evolutionary history of Bornean orangutans, a highly endangered species particularly vulnerable to future climate and anthropogenic change as an insular endemic. PMID:21098261

  17. Effects of Pleistocene glaciations and rivers on the population structure of Bornean orangutans (Pongo pygmaeus).

    PubMed

    Arora, Natasha; Nater, Alexander; van Schaik, Carel P; Willems, Erik P; van Noordwijk, Maria A; Goossens, Benoit; Morf, Nadja; Bastian, Meredith; Knott, Cheryl; Morrogh-Bernard, Helen; Kuze, Noko; Kanamori, Tomoko; Pamungkas, Joko; Perwitasari-Farajallah, Dyah; Verschoor, Ernst; Warren, Kristin; Krützen, Michael

    2010-12-14

    Sundaland, a tropical hotspot of biodiversity comprising Borneo and Sumatra among other islands, the Malay Peninsula, and a shallow sea, has been subject to dramatic environmental processes. Thus, it presents an ideal opportunity to investigate the role of environmental mechanisms in shaping species distribution and diversity. We investigated the population structure and underlying mechanisms of an insular endemic, the Bornean orangutan (Pongo pygmaeus). Phylogenetic reconstructions based on mtDNA sequences from 211 wild orangutans covering the entire range of the species indicate an unexpectedly recent common ancestor of Bornean orangutans 176 ka (95% highest posterior density, 72-322 ka), pointing to a Pleistocene refugium. High mtDNA differentiation among populations and rare haplotype sharing is consistent with a pattern of strong female philopatry. This is corroborated by isolation by distance tests, which show a significant correlation between mtDNA divergence and distance and a strong effect of rivers as barriers for female movement. Both frequency-based and Bayesian clustering analyses using as many as 25 nuclear microsatellite loci revealed a significant separation among all populations, as well as a small degree of male-mediated gene flow. This study highlights the unique effects of environmental and biological features on the evolutionary history of Bornean orangutans, a highly endangered species particularly vulnerable to future climate and anthropogenic change as an insular endemic.

  18. Low Variation in the Polymorphic Clock Gene Poly-Q Region Despite Population Genetic Structure across Barn Swallow (Hirundo rustica) Populations

    PubMed Central

    Dor, Roi; Lovette, Irby J.; Safran, Rebecca J.; Billerman, Shawn M.; Huber, Gernot H.; Vortman, Yoni; Lotem, Arnon; McGowan, Andrew; Evans, Matthew R.; Cooper, Caren B.; Winkler, David W.

    2011-01-01

    Recent studies of several species have reported a latitudinal cline in the circadian clock gene, Clock, which influences rhythms in both physiology and behavior. Latitudinal variation in this gene may hence reflect local adaptation to seasonal variation. In some bird populations, there is also an among-individual association between Clock poly-Q genotype and clutch initiation date and incubation period. We examined Clock poly-Q allele variation in the Barn Swallow (Hirundo rustica), a species with a cosmopolitan geographic distribution and considerable variation in life-history traits that may be influenced by the circadian clock. We genotyped Barn Swallows from five populations (from three subspecies) and compared variation at the Clock locus to that at microsatellite loci and mitochondrial DNA (mtDNA). We found very low variation in the Clock poly-Q region, as >96% of individuals were homozygous, and the two other alleles at this locus were globally rare. Genetic differentiation based on the Clock poly-Q locus was not correlated with genetic differentiation based on either microsatellite loci or mtDNA sequences. Our results show that high diversity in Clock poly-Q is not general across avian species. The low Clock variation in the background of heterogeneity in microsatellite and mtDNA loci in Barn Swallows may be an outcome of stabilizing selection on the Clock locus. PMID:22216124

  19. Population Genetic Structure of Rock Bream (Oplegnathus fasciatus Temminck & Schlegel, 1884) Revealed by mtDNA COI Sequence in Korea and China

    NASA Astrophysics Data System (ADS)

    Park, Hyun Suk; Kim, Choong-Gon; Kim, Sung; Park, Yong-Joo; Choi, Hee-Jung; Xiao, Zhizhong; Li, Jun; Xiao, Yongshuang; Lee, Youn-Ho

    2018-04-01

    The rock bream, Oplegnathus fasciatus, is a common rocky reef game fish in East Asia and recently has become an aquaculture species. Despite its commercial importance, the population genetic structure of this fish species remains poorly understood. In this study, 163 specimens were collected from 6 localities along the coastal waters of Korea and China and their genetic variation was analyzed with mtDNA COI sequences. A total of 34 polymorphic sites were detected which determined 30 haplotypes. The genetic pattern reveals a low level of nucleotide diversity (0.04 ± 0.003) but a high level of haplotype diversity (0.83 ± 0.02). The 30 haplotypes are divided into two major genealogical clades: one that consists of only Zhoushan (ZS, East China Sea) specific haplotypes from the southern East China Sea and the other that consists of the remaining haplotypes from the northern East China Sea, Yellow Sea, Korea Strait, and East Sea/Sea of Japan. The two clades are separated by approximately 330 435 kyBP. Analyses of AMOVA and F st show a significant population differentiation between the ZS sample and the other ones, corroborating separation of the two genealogical clades. Larval dispersal and the fresh Yangtze River plume are invoked as the main determining factors for this population genetic structure of O. fasciatus. Neutrality tests and mismatch distribution analyses indicate late Pleistocene population expansion along the coastal waters of Korea and China approximately 133-183 kyBP during which there were periodic cycles of glaciations and deglaciations. Such population information needs to be taken into account when stock enhancement and conservation measures are implemented for this fisheries species.

  20. Mitochondrial DNA evolution in mice.

    PubMed

    Ferris, S D; Sage, R D; Prager, E M; Ritte, U; Wilson, A C

    1983-11-01

    This study extends knowledge of mitochondrial DNA (mtDNA) diversity in mice to include 208 animals belonging to eight species in the subgenus Mus. Highly purified mtDNA from each has been subjected to high-resolution restriction mapping with respect to the known sequence of one mouse mtDNA. Variation attributed to base substitutions was encountered at about 200 of the 300 cleavage sites examined, and a length mutation was located in or near the displacement loop. The variability of different functional regions in this genome was as follows, from least to most: ribosomal RNA, transfer RNA, known proteins, displacement loop and unidentified reading frames. --Phylogenetic analysis confirmed the utility of the Sage and Marshall revision of mouse classification, according to which there are at least four species of commensal mice and three species of aboriginal mice in the complex that was formerly considered to be one species. The most thoroughly studied of these species is Mus domesticus, the house mouse of Western Europe and the Mediterranean region, which is the mitochondrial source of all 50 of the laboratory strains examined and of the representatives of wild house mice introduced by Europeans to North and South America during the past few hundred years. --The level of mtDNA variation among wild representatives of M. domesticus is similar to that for the Eastern European house mouse (M. musculus) and several other mammalian species. By contrast, among the many laboratory strains that are known or suspected to stem from the pet mouse trade, there is little interstrain variation, most strains having the "old inbred" type of domesticus mtDNA, whose frequency in the 145 wild mice examined is low, about 0.04. Also notable is the apparent homogeneity of mtDNA in domesticus races that have fixed six or more fused chromosomes and the close relationship of some of these mtDNAs to those of karyotypically normal mice. --In addition, this paper discusses fossil and other evidence for the view that in mice, as in many other mammals, the average rate of point mutational divergence in mtDNA is 2-4% per million years. From this, it is estimated that the commensal association between mice and our ancestors began more than a million years ago, i.e., at an early stage in the evolution of Homo erectus.

  1. Mitochondrial DNA Evolution in Mice

    PubMed Central

    Ferris, Stephen D.; Sage, Richard D.; Prager, Ellen M.; Ritte, Uzi; Wilson, Allan C.

    1983-01-01

    This study extends knowledge of mitochondrial DNA (mtDNA) diversity in mice to include 208 animals belonging to eight species in the subgenus Mus. Highly purified mtDNA from each has been subjected to high-resolution restriction mapping with respect to the known sequence of one mouse mtDNA. Variation attributed to base substitutions was encountered at about 200 of the 300 cleavage sites examined, and a length mutation was located in or near the displacement loop. The variability of different functional regions in this genome was as follows, from least to most: ribosomal RNA, transfer RNA, known proteins, displacement loop and unidentified reading frames.—Phylogenetic analysis confirmed the utility of the Sage and Marshall revision of mouse classification, according to which there are at least four species of commensal mice and three species of aboriginal mice in the complex that was formerly considered to be one species. The most thoroughly studied of these species is Mus domesticus, the house mouse of Western Europe and the Mediterranean region, which is the mitochondrial source of all 50 of the laboratory strains examined and of the representatives of wild house mice introduced by Europeans to North and South America during the past few hundred years.—The level of mtDNA variation among wild representatives of (M. musculus) and several other mammalian species. By contrast, among the many laboratory strains that are known or suspected to stem from the pet mouse trade, there is little interstrain variation, most strains having the "old inbred" type of domesticus mtDNA, whose frequency in the 145 wild mice examined is low, about 0.04. Also notable is the apparent homogeneity of mtDNA in domesticus races that have fixed six or more fused chromosomes and the close relationship of some of these mtDNAs to those of karyotypically normal mice.—In addition, this paper discusses fossil and other evidence for the view that in mice, as in many other mammals, the average rate of point mutational divergence in mtDNA is 2–4% per million years. From this, it is estimated that the commensal association between mice and our ancestors began more than a million years ago, i.e., at an early stage in the evolution of Homo erectus. PMID:6315529

  2. Nonneutral mitochondrial DNA variation in humans and chimpanzees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nachman, M.W.; Aquadro, C.F.; Brown, W.M.

    1996-03-01

    We sequenced the NADH dehydrogenase subunit 3 (ND3) gene from a sample of 61 humans, five common chimpanzees, and one gorilla to test whether patterns of mitochondrial DNA (mtDNA) variation are consistent with a neutral model of molecular evolution. Within humans and within chimpanzees, the ratio of replacement to silent nucleotide substitutions was higher than observed in comparisons between species, contrary to neutral expectations. To test the generality of this result, we reanalyzed published human RFLP data from the entire mitochondrial genome. Gains of restriction sites relative to a known human mtDNA sequence were used to infer unambiguous nucleotide substitutions.more » We also compared the complete mtDNA sequences of three humans. Both the RFLP data and the sequence data reveal a higher ratio of replacement to silent nucleotide substitutions within humans than is seen between species. This pattern is observed at most or all human mitochondrial genes and is inconsistent with a strictly neutral model. These data suggest that many mitochondrial protein polymorphisms are slightly deleterious, consistent with studies of human mitochondrial diseases. 59 refs., 2 figs., 8 tabs.« less

  3. Analysis of plastome and chondriome genome types in potato somatic hybrids from Solanum tuberosum × Solanum etuberosum.

    PubMed

    Tiwari, Jagesh K; Chandel, Poonam; Singh, Bir Pal; Bhardwaj, Vinay

    2014-01-01

    Cytoplasm types of the potato somatic hybrids from Solanum tuberosum × Solanum etuberosum were analysed using chloroplast (cp) and mitochondrial (mt) organelle genomes-specific markers. Of the 29 markers (15 cpDNA and 14 mtDNA) amplified in the 26 genotypes, 5 cpDNA (H3, NTCP4, NTCP8, NTCP9, and ALC1/ALC3) and 13 mtDNA markers showed polymorphism. The cluster analysis based on the mtDNA markers detected higher diversity compared with the cpDNA markers. Presence of new mtDNA fragments of the markers, namely, T11-2, Nsm1, pumD, Nsm3, and Nsm4, were observed, while monomorphic loci revealed highly conserved genomic regions in the somatic hybrids. The study revealed that the somatic hybrids had diverse cytoplasm types consisting predominantly of T-, W-, and C-, with a few A- and S-type cp genomes; and α-, β-, and γ-type mt genomes. Somatic hybridization has unique potential to widen the cytoplasm types of the cultivated gene pools from wild species through introgression by breeding methods.

  4. Estimates of Continental Ancestry Vary Widely among Individuals with the Same mtDNA Haplogroup

    PubMed Central

    Emery, Leslie S.; Magnaye, Kevin M.; Bigham, Abigail W.; Akey, Joshua M.; Bamshad, Michael J.

    2015-01-01

    The association between a geographical region and an mtDNA haplogroup(s) has provided the basis for using mtDNA haplogroups to infer an individual’s place of origin and genetic ancestry. Although it is well known that ancestry inferences using mtDNA haplogroups and those using genome-wide markers are frequently discrepant, little empirical information exists on the magnitude and scope of such discrepancies between multiple mtDNA haplogroups and worldwide populations. We compared genetic-ancestry inferences made by mtDNA-haplogroup membership to those made by autosomal SNPs in ∼940 samples of the Human Genome Diversity Panel and recently admixed populations from the 1000 Genomes Project. Continental-ancestry proportions often varied widely among individuals sharing the same mtDNA haplogroup. For only half of mtDNA haplogroups did the highest average continental-ancestry proportion match the highest continental-ancestry proportion of a majority of individuals with that haplogroup. Prediction of an individual’s mtDNA haplogroup from his or her continental-ancestry proportions was often incorrect. Collectively, these results indicate that for most individuals in the worldwide populations sampled, mtDNA-haplogroup membership provides limited information about either continental ancestry or continental region of origin. PMID:25620206

  5. First Molecular Identification and Phylogeny of Moroccan Anopheles sergentii (Diptera: Culicidae) Based on Second Internal Transcribed Spencer (ITS2) and Cytochrome c Oxidase I (COI) Sequences.

    PubMed

    Benabdelkrim Filali, Oumama; Kabine, Mostafa; El Hamouchi, Adil; Lemrani, Meryem; Debboun, Mustapha; Sarih, M'hammed

    2018-06-05

    Anopheles sergentii known as the "oasis vector" or the "desert malaria vector" is considered the main vector of malaria in the southern parts of Morocco. Its presence in Morocco is confirmed for the first time through sequencing of mitochondrial DNA (mDNA) cytochrome c oxidase subunit I (COI) barcodes and nuclear ribosomal DNA (rDNA) second internal transcribed spacer (ITS2) sequences and direct comparison with specimens of A. sergentii of other countries. The DNA barcodes (n = 39) obtained from A. sergentii collected in 2015 and 2016 showed more diversity with 10 haplotypes, compared with 3 haplotypes obtained from ITS2 sequences (n = 59). Moreover, the comparison using the ITS2 sequences showed closer evolutionary relationship between the Moroccan and Egyptian strains than the Iranian strain. Nevertheless, genetic differences due to geographical segregation were also observed. This study provides the first report on the sequence of rDNA-ITS2 and mtDNA COI, which could be used to better understand the biodiversity of A. sergentii.

  6. Large Variation in the Ratio of Mitochondrial to Nuclear Mutation Rate across Animals: Implications for Genetic Diversity and the Use of Mitochondrial DNA as a Molecular Marker.

    PubMed

    Allio, Remi; Donega, Stefano; Galtier, Nicolas; Nabholz, Benoit

    2017-11-01

    It is commonly assumed that mitochondrial DNA (mtDNA) evolves at a faster rate than nuclear DNA (nuDNA) in animals. This has contributed to the popularity of mtDNA as a molecular marker in evolutionary studies. Analyzing 121 multilocus data sets and four phylogenomic data sets encompassing 4,676 species of animals, we demonstrate that the ratio of mitochondrial over nuclear mutation rate is highly variable among animal taxa. In nonvertebrates, such as insects and arachnids, the ratio of mtDNA over nuDNA mutation rate varies between 2 and 6, whereas it is above 20, on average, in vertebrates such as scaled reptiles and birds. Interestingly, this variation is sufficient to explain the previous report of a similar level of mitochondrial polymorphism, on average, between vertebrates and nonvertebrates, which was originally interpreted as reflecting the effect of pervasive positive selection. Our analysis rather indicates that the among-phyla homogeneity in within-species mtDNA diversity is due to a negative correlation between mtDNA per-generation mutation rate and effective population size, irrespective of the action of natural selection. Finally, we explore the variation in the absolute per-year mutation rate of both mtDNA and nuDNA using a reduced data set for which fossil calibration is available, and discuss the potential determinants of mutation rate variation across genomes and taxa. This study has important implications regarding DNA-based identification methods in predicting that mtDNA barcoding should be less reliable in nonvertebrates than in vertebrates. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Mitochondrial and microsatellite DNA markers reveal a Balkan origin for the highly invasive horse-chestnut leaf miner Cameraria ohridella (Lepidoptera, Gracillariidae).

    PubMed

    Valade, R; Kenis, M; Hernandez-Lopez, A; Augustin, S; Mari Mena, N; Magnoux, E; Rougerie, R; Lakatos, F; Roques, A; Lopez-Vaamonde, C

    2009-08-01

    Biological invasions usually start with a small number of founder individuals. These founders are likely to represent a small fraction of the total genetic diversity found in the source population. Our study set out to trace genetically the geographical origin of the horse-chestnut leafminer, Cameraria ohridella, an invasive microlepidopteran whose area of origin is still unkown. Since its discovery in Macedonia 25 years ago, this insect has experienced an explosive westward range expansion, progressively colonizing all of Central and Western Europe. We used cytochrome oxidase I sequences (DNA barcode fragment) and a set of six polymorphic microsatellites to assess the genetic variability of C. ohridella populations, and to test the hypothesis that C. ohridella derives from the southern Balkans (Albania, Macedonia and Greece). Analysis of mtDNA of 486 individuals from 88 localities allowed us to identify 25 geographically structured haplotypes. In addition, 480 individuals from 16 populations from Europe and the southern Balkans were genotyped for 6 polymorphic microsatellite loci. High haplotype diversity and low measures of nucleotide diversities including a significantly negative Tajima's D indicate that C. ohridella has experienced rapid population expansion during its dispersal across Europe. Both mtDNA and microsatellites show a reduction in genetic diversity of C. ohridella populations sampled from artificial habitats (e.g. planted trees in public parks, gardens, along roads in urban or sub-urban areas) across Europe compared with C. ohridella sampled in natural stands of horse-chestnuts in the southern Balkans. These findings suggest that European populations of C. ohridella may indeed derive from the southern Balkans.

  8. The split of the Arara population: comparison of genetic drift and founder effect.

    PubMed

    Ribeiro-dos-Santos, A K; Guerreiro, J F; Santos, S E; Zago, M A

    2001-01-01

    The total genetic diversity of the Amerindian population is as high as that observed for other continental human populations because a large contribution from variation among tribes makes up for the low variation within tribes. This is attributed mainly to genetic drift acting on small isolated populations. However, a small founder population with a low genetic diversity is another factor that may contribute to the low intratribal diversity. Small founder populations seem to be a frequent event in the formation of new tribes among the Amerindians, but this event is usually not well recorded. In this paper, we analyze the genetic diversity of the Arara of Laranjal village and the Arara of Iriri village, with respect to seven tandem repeat autosomic segments (D1S80, ApoB, D4S43, vW1, vW2, F13A1 and D12S67), two Y-chromosome-specific polymorphisms (DYS19 and DYS199), and mitochondrial DNA (mtDNA) markers (restriction fragment length polymorphisms and sequencing of a segment of the D loop region). The occurrence of a single Y chromosome and mtDNA haplotype, and only 1-4 alleles of the autosomic loci investigated, corroborates historic and demographic records that the Arara of Iriri were founded by a single couple of siblings who came from the Arara of Laranjal, the largest group. Notwithstanding this fact, the genetic distance and the molecular variance between the two Arara villages were greater than those observed between them and other Amazonian tribes, suggesting that the microevolutionary process among Brazilian Amerindians may be misinterpreted if historic demographic data are not considered. Copyright 2000 S. Karger AG, Basel.

  9. Hybridization and massive mtDNA unidirectional introgression between the closely related Neotropical toads Rhinella marina and R. schneideri inferred from mtDNA and nuclear markers

    PubMed Central

    2011-01-01

    Background The classical perspective that interspecific hybridization in animals is rare has been changing due to a growing list of empirical examples showing the occurrence of gene flow between closely related species. Using sequence data from cyt b mitochondrial gene and three intron nuclear genes (RPL9, c-myc, and RPL3) we investigated patterns of nucleotide polymorphism and divergence between two closely related toad species R. marina and R. schneideri. By comparing levels of differentiation at nuclear and mtDNA levels we were able to describe patterns of introgression and infer the history of hybridization between these species. Results All nuclear loci are essentially concordant in revealing two well differentiated groups of haplotypes, corresponding to the morphologically-defined species R. marina and R. schneideri. Mitochondrial DNA analysis also revealed two well-differentiated groups of haplotypes but, in stark contrast with the nuclear genealogies, all R. schneideri sequences are clustered with sequences of R. marina from the right Amazon bank (RAB), while R. marina sequences from the left Amazon bank (LAB) are monophyletic. An Isolation-with-Migration (IM) analysis using nuclear data showed that R. marina and R. schneideri diverged at ≈ 1.69 Myr (early Pleistocene), while R. marina populations from LAB and RAB diverged at ≈ 0.33 Myr (middle Pleistocene). This time of divergence is not consistent with the split between LAB and RAB populations obtained with mtDNA data (≈ 1.59 Myr), which is notably similar to the estimate obtained with nuclear genes between R. marina and R. schneideri. Coalescent simulations of mtDNA phylogeny under the speciation history inferred from nuclear genes rejected the hypothesis of incomplete lineage sorting to explain the conflicting signal between mtDNA and nuclear-based phylogenies. Conclusions The cytonuclear discordance seems to reflect the occurrence of interspecific hybridization between these two closely related toad species. Overall, our results suggest a phenomenon of extensive mtDNA unidirectional introgression from the previously occurring R. schneideri into the invading R. marina. We hypothesize that climatic-induced range shifts during the Pleistocene/Holocene may have played an important role in the observed patterns of introgression. PMID:21939538

  10. What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?

    PubMed

    Alexander, Alana; Steel, Debbie; Hoekzema, Kendra; Mesnick, Sarah L; Engelhaupt, Daniel; Kerr, Iain; Payne, Roger; Baker, C Scott

    2016-06-01

    The interplay of natural selection and genetic drift, influenced by geographic isolation, mating systems and population size, determines patterns of genetic diversity within species. The sperm whale provides an interesting example of a long-lived species with few geographic barriers to dispersal. Worldwide mtDNA diversity is relatively low, but highly structured among geographic regions and social groups, attributed to female philopatry. However, it is unclear whether this female philopatry is due to geographic regions or social groups, or how this might vary on a worldwide scale. To answer these questions, we combined mtDNA information for 1091 previously published samples with 542 newly obtained DNA profiles (394-bp mtDNA, sex, 13 microsatellites) including the previously unsampled Indian Ocean, and social group information for 541 individuals. We found low mtDNA diversity (π = 0.430%) reflecting an expansion event <80 000 years bp, but strong differentiation by ocean, among regions within some oceans, and among social groups. In comparison, microsatellite differentiation was low at all levels, presumably due to male-mediated gene flow. A hierarchical amova showed that regions were important for explaining mtDNA variance in the Indian Ocean, but not Pacific, with social group sampling in the Atlantic too limited to include in analyses. Social groups were important in partitioning mtDNA and microsatellite variance within both oceans. Therefore, both geographic philopatry and social philopatry influence genetic structure in the sperm whale, but their relative importance differs by sex and ocean, reflecting breeding behaviour, geographic features and perhaps a more recent origin of sperm whales in the Pacific. By investigating the interplay of evolutionary forces operating at different temporal and geographic scales, we show that sperm whales are perhaps a unique example of a worldwide population expansion followed by rapid assortment due to female social organization. © 2016 John Wiley & Sons Ltd.

  11. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development.

    PubMed

    Ross, Jaime M; Stewart, James B; Hagström, Erik; Brené, Stefan; Mourier, Arnaud; Coppotelli, Giuseppe; Freyer, Christoph; Lagouge, Marie; Hoffer, Barry J; Olson, Lars; Larsson, Nils-Göran

    2013-09-19

    Ageing is due to an accumulation of various types of damage, and mitochondrial dysfunction has long been considered to be important in this process. There is substantial sequence variation in mammalian mitochondrial DNA (mtDNA), and the high mutation rate is counteracted by different mechanisms that decrease maternal transmission of mutated mtDNA. Despite these protective mechanisms, it is becoming increasingly clear that low-level mtDNA heteroplasmy is quite common and often inherited in humans. We designed a series of mouse mutants to investigate the extent to which inherited mtDNA mutations can contribute to ageing. Here we report that maternally transmitted mtDNA mutations can induce mild ageing phenotypes in mice with a wild-type nuclear genome. Furthermore, maternally transmitted mtDNA mutations lead to anticipation of reduced fertility in mice that are heterozygous for the mtDNA mutator allele (PolgA(wt/mut)) and aggravate premature ageing phenotypes in mtDNA mutator mice (PolgA(mut/mut)). Unexpectedly, a combination of maternally transmitted and somatic mtDNA mutations also leads to stochastic brain malformations. Our findings show that a pre-existing mutation load will not only allow somatic mutagenesis to create a critically high total mtDNA mutation load sooner but will also increase clonal expansion of mtDNA mutations to enhance the normally occurring mosaic respiratory chain deficiency in ageing tissues. Our findings suggest that maternally transmitted mtDNA mutations may have a similar role in aggravating aspects of normal human ageing.

  12. Length Variation, Heteroplasmy and Sequence Divergence in the Mitochondrial DNA of Four Species of Sturgeon (Acipenser)

    PubMed Central

    Brown, J. R.; Beckenbach, K.; Beckenbach, A. T.; Smith, M. J.

    1996-01-01

    The extent of mtDNA length variation and heteroplasmy as well as DNA sequences of the control region and two tRNA genes were determined for four North American sturgeon species: Acipenser transmontanus, A. medirostris, A. fulvescens and A. oxyrhnychus. Across the Continental Divide, a division in the occurrence of length variation and heteroplasmy was observed that was concordant with species biogeography as well as with phylogenies inferred from restriction fragment length polymorphisms (RFLP) of whole mtDNA and pairwise comparisons of unique sequences of the control region. In all species, mtDNA length variation was due to repeated arrays of 78-82-bp sequences each containing a D-loop strand synthesis termination associated sequence (TAS). Individual repeats showed greater sequence conservation within individuals and species rather than between species, which is suggestive of concerted evolution. Differences in the frequencies of multiple copy genomes and heteroplasmy among the four species may be ascribed to differences in the rates of recurrent mutation. A mechanism that may offset the high rate of mutation for increased copy number is suggested on the basis that an increase in the number of functional TAS motifs might reduce the frequency of successfully initiated H-strand replications. PMID:8852850

  13. Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals

    PubMed Central

    Posth, Cosimo; Wißing, Christoph; Kitagawa, Keiko; Pagani, Luca; van Holstein, Laura; Racimo, Fernando; Wehrberger, Kurt; Conard, Nicholas J.; Kind, Claus Joachim; Bocherens, Hervé; Krause, Johannes

    2017-01-01

    Ancient DNA is revealing new insights into the genetic relationship between Pleistocene hominins and modern humans. Nuclear DNA indicated Neanderthals as a sister group of Denisovans after diverging from modern humans. However, the closer affinity of the Neanderthal mitochondrial DNA (mtDNA) to modern humans than Denisovans has recently been suggested as the result of gene flow from an African source into Neanderthals before 100,000 years ago. Here we report the complete mtDNA of an archaic femur from the Hohlenstein–Stadel (HST) cave in southwestern Germany. HST carries the deepest divergent mtDNA lineage that splits from other Neanderthals ∼270,000 years ago, providing a lower boundary for the time of the putative mtDNA introgression event. We demonstrate that a complete Neanderthal mtDNA replacement is feasible over this time interval even with minimal hominin introgression. The highly divergent HST branch is indicative of greater mtDNA diversity during the Middle Pleistocene than in later periods. PMID:28675384

  14. The Trouble with MEAM2: Implications of Pseudogenes on Species Delimitation in the Globally Invasive Bemisia tabaci (Hemiptera: Aleyrodidae) Cryptic Species Complex.

    PubMed

    Tay, Wee Tek; Elfekih, Samia; Court, Leon N; Gordon, Karl H J; Delatte, Hélène; De Barro, Paul J

    2017-10-01

    Molecular species identification using suboptimal PCR primers can over-estimate species diversity due to coamplification of nuclear mitochondrial (NUMT) DNA/pseudogenes. For the agriculturally important whitefly Bemisia tabaci cryptic pest species complex, species identification depends primarily on characterization of the mitochondrial DNA cytochrome oxidase I (mtDNA COI) gene. The lack of robust PCR primers for the mtDNA COI gene can undermine correct species identification which in turn compromises management strategies. This problem is identified in the B. tabaci Africa/Middle East/Asia Minor clade which comprises the globally invasive Mediterranean (MED) and Middle East Asia Minor I (MEAM1) species, Middle East Asia Minor 2 (MEAM2), and the Indian Ocean (IO) species. Initially identified from the Indian Ocean island of Réunion, MEAM2 has since been reported from Japan, Peru, Turkey and Iraq. We identified MEAM2 individuals from a Peruvian population via Sanger sequencing of the mtDNA COI gene. In attempting to characterize the MEAM2 mitogenome, we instead characterized mitogenomes of MEAM1. We also report on the mitogenomes of MED, AUS, and IO thereby increasing genomic resources for members of this complex. Gene synteny (i.e., same gene composition and orientation) was observed with published B. tabaci cryptic species mitogenomes. Pseudogene fragments matching MEAM2 partial mtDNA COI gene exhibited low frequency single nucleotide polymorphisms that matched low copy number DNA fragments (<3%) of MEAM1 genomes, whereas presence of internal stop codons, loss of expected stop codons and poor primer annealing sites, all suggested MEAM2 as a pseudogene artifact and so not a real species. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. A compositional segmentation of the human mitochondrial genome is related to heterogeneities in the guanine mutation rate

    PubMed Central

    Samuels, David C.; Boys, Richard J.; Henderson, Daniel A.; Chinnery, Patrick F.

    2003-01-01

    We applied a hidden Markov model segmentation method to the human mitochondrial genome to identify patterns in the sequence, to compare these patterns to the gene structure of mtDNA and to see whether these patterns reveal additional characteristics important for our understanding of genome evolution, structure and function. Our analysis identified three segmentation categories based upon the sequence transition probabilities. Category 2 segments corresponded to the tRNA and rRNA genes, with a greater strand-symmetry in these segments. Category 1 and 3 segments covered the protein- coding genes and almost all of the non-coding D-loop. Compared to category 1, the mtDNA segments assigned to category 3 had much lower guanine abundance. A comparison to two independent databases of mitochondrial mutations and polymorphisms showed that the high substitution rate of guanine in human mtDNA is largest in the category 3 segments. Analysis of synonymous mutations showed the same pattern. This suggests that this heterogeneity in the mutation rate is partly independent of respiratory chain function and is a direct property of the genome sequence itself. This has important implications for our understanding of mtDNA evolution and its use as a ‘molecular clock’ to determine the rate of population and species divergence. PMID:14530452

  16. [Application of multiple polymorphism genetic markers in determination of half sibling sharing a same mother].

    PubMed

    Que, Ting-zhi; Zhao, Shu-min; Li, Cheng-tao

    2010-08-01

    Determination strategies for half sibling sharing a same mother were investigated through the detection of autosomal and X-chromosomal STR (X-STR) loci and polymorphisms on hypervariable (HV) region of mitochondrial DNA (mtDNA). Genomic DNA were extracted from blood stain samples of the 3 full siblings and one dubious half sibling sharing the same mother with them. Fifteen autosomal STR loci were genotyped by Sinofiler kit, and 19 X-STR loci were genotyped by Mentype Argus X-8 kit and 16 plex in-house system. Polymorphisms of mtDNA HV-I and HV-II were also detected with sequencing technology. Full sibling relationship between the dubious half sibling and each of the 3 full siblings were excluded based on the results of autosomal STR genotyping and calculation of full sibling index (FSI) and half sibling index (HIS). Results of sequencing for mtDNA HV-I and HV-II showed that all of the 4 samples came from a same maternal line. X-STR genotyping results determined that the dubious half sibling shared a same mother with the 3 full siblings. It is reliable to combine three different genotyping technologies including autosomal STR, X-STR and sequencing of mtDNA HV-I and HV-II for determination of half sibling sharing a same mother.

  17. Genetic analysis of 7 medieval skeletons from Aragonese Pyrenees

    PubMed Central

    Núńez, Carolina; Sosa, Cecilia; Baeta, Miriam; Geppert, Maria; Turnbough, Meredith; Phillips, Nicole; Casalod, Yolanda; Bolea, Miguel; Roby, Rhonda; Budowle, Bruce; Martínez-Jarreta, Begońa

    2011-01-01

    Aim To perform a genetic characterization of 7 skeletons from medieval age found in a burial site in the Aragonese Pyrenees. Methods Allele frequencies of autosomal short tandem repeats (STR) loci were determined by 3 different STR systems. Mitochondrial DNA (mtDNA) and Y-chromosome haplogroups were determined by sequencing of the hypervariable segment 1 of mtDNA and typing of phylogenetic Y chromosome single nucleotide polymorphisms (Y-SNP) markers, respectively. Possible familial relationships were also investigated. Results Complete or partial STR profiles were obtained in 3 of the 7 samples. Mitochondrial DNA haplogroup was determined in 6 samples, with 5 of them corresponding to the haplogroup H and 1 to the haplogroup U5a. Y-chromosome haplogroup was determined in 2 samples, corresponding to the haplogroup R. In one of them, the sub-branch R1b1b2 was determined. mtDNA sequences indicated that some of the individuals could be maternally related, while STR profiles indicated no direct family relationships. Conclusions Despite the antiquity of the samples and great difficulty that genetic analyses entail, the combined use of autosomal STR markers, Y-chromosome informative SNPs, and mtDNA sequences allowed us to genotype a group of skeletons from the medieval age. PMID:21674829

  18. Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts

    PubMed Central

    Langkjær, R. B.; Casaregola, S.; Ussery, D. W.; Gaillardin, C.; Piškur, J.

    2003-01-01

    The complete sequences of mitochondrial DNA (mtDNA) from the two budding yeasts Saccharomyces castellii and Saccharomyces servazzii, consisting of 25 753 and 30 782 bp, respectively, were analysed and compared to Saccharomyces cerevisiae mtDNA. While some of the traits are very similar among Saccharomyces yeasts, others have highly diverged. The two mtDNAs are much more compact than that of S.cerevisiae and contain fewer introns and intergenic sequences, although they have almost the same coding potential. A few genes contain group I introns, but group II introns, otherwise found in S.cerevisiae mtDNA, are not present. Surprisingly, four genes (ATP6, COX2, COX3 and COB) in the mtDNA of S.servazzii contain, in total, five +1 frameshifts. mtDNAs of S.castellii, S.servazzii and S.cerevisiae contain all genes on the same strand, except for one tRNA gene. On the other hand, the gene order is very different. Several gene rearrangements have taken place upon separation of the Saccharomyces lineages, and even a part of the transcription units have not been preserved. It seems that the mechanism(s) involved in the generation of the rearrangements has had to ensure that all genes stayed encoded by the same DNA strand. PMID:12799436

  19. Toward a mtDNA locus-specific mutation database using the LOVD platform.

    PubMed

    Elson, Joanna L; Sweeney, Mary G; Procaccio, Vincent; Yarham, John W; Salas, Antonio; Kong, Qing-Peng; van der Westhuizen, Francois H; Pitceathly, Robert D S; Thorburn, David R; Lott, Marie T; Wallace, Douglas C; Taylor, Robert W; McFarland, Robert

    2012-09-01

    The Human Variome Project (HVP) is a global effort to collect and curate all human genetic variation affecting health. Mutations of mitochondrial DNA (mtDNA) are an important cause of neurogenetic disease in humans; however, identification of the pathogenic mutations responsible can be problematic. In this article, we provide explanations as to why and suggest how such difficulties might be overcome. We put forward a case in support of a new Locus Specific Mutation Database (LSDB) implemented using the Leiden Open-source Variation Database (LOVD) system that will not only list primary mutations, but also present the evidence supporting their role in disease. Critically, we feel that this new database should have the capacity to store information on the observed phenotypes alongside the genetic variation, thereby facilitating our understanding of the complex and variable presentation of mtDNA disease. LOVD supports fast queries of both seen and hidden data and allows storage of sequence variants from high-throughput sequence analysis. The LOVD platform will allow construction of a secure mtDNA database; one that can fully utilize currently available data, as well as that being generated by high-throughput sequencing, to link genotype with phenotype enhancing our understanding of mitochondrial disease, with a view to providing better prognostic information. © 2012 Wiley Periodicals, Inc.

  20. Toward a mtDNA Locus-Specific Mutation Database Using the LOVD Platform

    PubMed Central

    Elson, Joanna L.; Sweeney, Mary G.; Procaccio, Vincent; Yarham, John W.; Salas, Antonio; Kong, Qing-Peng; van der Westhuizen, Francois H.; Pitceathly, Robert D.S.; Thorburn, David R.; Lott, Marie T.; Wallace, Douglas C.; Taylor, Robert W.; McFarland, Robert

    2015-01-01

    The Human Variome Project (HVP) is a global effort to collect and curate all human genetic variation affecting health. Mutations of mitochondrial DNA (mtDNA) are an important cause of neurogenetic disease in humans; however, identification of the pathogenic mutations responsible can be problematic. In this article, we provide explanations as to why and suggest how such difficulties might be overcome. We put forward a case in support of a new Locus Specific Mutation Database (LSDB) implemented using the Leiden Open-source Variation Database (LOVD) system that will not only list primary mutations, but also present the evidence supporting their role in disease. Critically, we feel that this new database should have the capacity to store information on the observed phenotypes alongside the genetic variation, thereby facilitating our understanding of the complex and variable presentation of mtDNA disease. LOVD supports fast queries of both seen and hidden data and allows storage of sequence variants from high-throughput sequence analysis. The LOVD platform will allow construction of a secure mtDNA database; one that can fully utilize currently available data, as well as that being generated by high-throughput sequencing, to link genotype with phenotype enhancing our understanding of mitochondrial disease, with a view to providing better prognostic information. PMID:22581690

  1. Modified midi- and mini-multiplex PCR systems for mitochondrial DNA control region sequence analysis in degraded samples.

    PubMed

    Kim, Na Young; Lee, Hwan Young; Park, Sun Joo; Yang, Woo Ick; Shin, Kyoung-Jin

    2013-05-01

    Two multiplex polymerase chain reaction (PCR) systems (Midiplex and Miniplex) were developed for the amplification of the mitochondrial DNA (mtDNA) control region, and the efficiencies of the multiplexes for amplifying degraded DNA were validated using old skeletal remains. The Midiplex system consisted of two multiplex PCRs to amplify six overlapping amplicons ranging in length from 227 to 267 bp. The Miniplex system consisted of three multiplex PCRs to amplify 10 overlapping short amplicons ranging in length from 142 to 185 bp. Most mtDNA control region sequences of several 60-year-old and 400-500-year-old skeletal remains were successfully obtained using both PCR systems and consistent with those previously obtained by monoplex amplification. The multiplex system consisting of smaller amplicons is effective for mtDNA sequence analyses of ancient and forensic degraded samples, saving time, cost, and the amount of DNA sample consumed during analysis. © 2013 American Academy of Forensic Sciences.

  2. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake

    USGS Publications Warehouse

    Soldánová, Miroslava; Georgieva, Simona; Roháčováa, Jana; Knudsen, Rune; Kuhn, Jesper A.; Henriksen, Eirik H.; Siwertsson, Anna; Shaw, Jenny C.; Kuris, Armand M.; Amundsen, Per-Arne; Scholz, Tomáš; Lafferty, Kevin D.; Kostadinova, Aneta

    2017-01-01

    To identify trematode diversity and life-cycles in the sub-Arctic Lake Takvatn, Norway, we characterised 120 trematode isolates from mollusc first intermediate hosts, metacercariae from second intermediate host fishes and invertebrates, and adults from fish and invertebrate definitive hosts, using molecular techniques. Phylogenies based on nuclear and/or mtDNA revealed high species richness (24 species or species-level genetic lineages), and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching of sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles and exploration of host-parasite interactions. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic Lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem, and indicating that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages.

  3. Comparative mitochondrial genetics of North American and Eurasian mergansers with an emphasis on the endangered scaly-sided merganser (Mergus squamatus)

    USGS Publications Warehouse

    Solovyeva, Diana V.; Pearce, John M.

    2011-01-01

    The scaly-sided merganser, Mergus squamatus, is considered one of the most threatened sea duck species in the Palearctic with limited breeding and wintering distribution in China and Russia. To provide information for future conservation efforts, we sequenced a portion of the mitochondrial (mt) DNA control region in four species of mergansers and three additional sea duck taxa to characterize the evolutionary history of the scaly-sided merganser, infer population trends that may have led to its limited geographic distribution, and to compare indices of genetic diversity among species of mergansers. Scaly-sided mergansers exhibit substantially lower levels of mtDNA genetic diversity (h = 0.292, π = 0.0007) than other closely related sea ducks and many other avian taxa. The four haplotypes observed differed by a single base pair suggesting that the species has not experienced a recent population decline but has instead been at a low population level for some time. A phylogenetic analysis placed the scaly-sided merganser basal to North American and European forms of the common merganser, M. merganser. Our inclusion of a small number of male samples doubled the number of mtDNA haplotypes observed, suggesting that additional genetic variation likely exists within the global population if there is immigration of males from unsampled breeding areas.

  4. Maternal phylogeny of a newly-found yak population in china.

    PubMed

    Mipam, Tserang Donko; Wen, Yongli; Fu, Changxiu; Li, Shanrong; Zhao, Hongwen; Ai, Yi; Li, Lu; Zhang, Lei; Zou, Deqiang

    2012-01-01

    The Jinchuan yak is a new yak population identified in Sichuan, China. This population has a special anatomical characteristic: an additional pair of ribs compared with other yak breeds. The genetic structure of this population is unknown. In the present study, we investigated the maternal phylogeny of this special yak population using the mitochondrial DNA variation. A total of 23 Jinchuan yaks were sequenced for a 823-bp fragment of D-loop control region and three individuals were sequenced for the whole mtDNA genome with a length of 16,371-bp. To compare with the data from other yaks, we extracted sequence data from Genebank, including D-loop of 398 yaks (from 12 breeds) and 55 wild yaks, and whole mitochondrial genomes of 53 yaks (from 12 breeds) and 21 wild yaks. A total of 127 haplotypes were defined, based on the D-loop data. Thirteen haplotypes were defined from 23 mtDNA D-loop sequences of Jinchuan yaks, six of which were shared only by Jinchuan, and one was shared by Jinchuan and wild yaks. The Jinquan yaks were found to carry clades A and B from lineage I and clade C of lineage II, respectively. It was also suggested that the Jinchuan population has no distinct different phylogenetic relationship in maternal inheritance with other breeds of yak. The highly haplotype diversity of the Pali breed, Jinchuan population, Maiwa breed and Jiulong breed suggested that the yak was first domesticated from wild yaks in the middle Himalayan region and the northern Hengduan Mountains. The special anatomic characteristic that we found in the Jinchuan population needs further studies based on nuclear data.

  5. Green turtles (Chelonia mydas) foraging at Arvoredo Island in Southern Brazil: Genetic characterization and mixed stock analysis through mtDNA control region haplotypes

    PubMed Central

    2009-01-01

    We analyzed mtDNA control region sequences of green turtles (Chelonia mydas) from Arvoredo Island, a foraging ground in southern Brazil, and identified eight haplotypes. Of these, CM-A8 (64%) and CM-A5 (22%) were dominant, the remainder presenting low frequencies (< 5%). Haplotype (h) and nucleotide (π) diversities were 0.5570 ± 0.0697 and 0.0021 ± 0.0016, respectively. Exact tests of differentiation and AMOVA ΦST pairwise values between the study area and eight other Atlantic foraging grounds revealed significant differences in most areas, except Ubatuba and Rocas/Noronha, in Brazil (p > 0.05). Mixed Stock Analysis, incorporating eleven Atlantic and one Mediterranean rookery as possible sources of individuals, indicated Ascension and Aves islands as the main contributing stocks to the Arvoredo aggregation (68.01% and 22.96%, respectively). These results demonstrate the extensive relationships between Arvoredo Island and other Atlantic foraging and breeding areas. Such an understanding provides a framework for establishing adequate management and conservation strategies for this endangered species. PMID:21637527

  6. Rapid Mitochondrial Genome Evolution through Invasion of Mobile Elements in Two Closely Related Species of Arbuscular Mycorrhizal Fungi

    PubMed Central

    Beaudet, Denis; Nadimi, Maryam; Iffis, Bachir; Hijri, Mohamed

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are common and important plant symbionts. They have coenocytic hyphae and form multinucleated spores. The nuclear genome of AMF is polymorphic and its organization is not well understood, which makes the development of reliable molecular markers challenging. In stark contrast, their mitochondrial genome (mtDNA) is homogeneous. To assess the intra- and inter-specific mitochondrial variability in closely related Glomus species, we performed 454 sequencing on total genomic DNA of Glomus sp. isolate DAOM-229456 and we compared its mtDNA with two G. irregulare isolates. We found that the mtDNA of Glomus sp. is homogeneous, identical in gene order and, with respect to the sequences of coding regions, almost identical to G. irregulare. However, certain genomic regions vary substantially, due to insertions/deletions of elements such as introns, mitochondrial plasmid-like DNA polymerase genes and mobile open reading frames. We found no evidence of mitochondrial or cytoplasmic plasmids in Glomus species, and mobile ORFs in Glomus are responsible for the formation of four gene hybrids in atp6, atp9, cox2, and nad3, which are most probably the result of horizontal gene transfer and are expressed at the mRNA level. We found evidence for substantial sequence variation in defined regions of mtDNA, even among closely related isolates with otherwise identical coding gene sequences. This variation makes it possible to design reliable intra- and inter-specific markers. PMID:23637766

  7. Rapid mitochondrial genome evolution through invasion of mobile elements in two closely related species of arbuscular mycorrhizal fungi.

    PubMed

    Beaudet, Denis; Nadimi, Maryam; Iffis, Bachir; Hijri, Mohamed

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are common and important plant symbionts. They have coenocytic hyphae and form multinucleated spores. The nuclear genome of AMF is polymorphic and its organization is not well understood, which makes the development of reliable molecular markers challenging. In stark contrast, their mitochondrial genome (mtDNA) is homogeneous. To assess the intra- and inter-specific mitochondrial variability in closely related Glomus species, we performed 454 sequencing on total genomic DNA of Glomus sp. isolate DAOM-229456 and we compared its mtDNA with two G. irregulare isolates. We found that the mtDNA of Glomus sp. is homogeneous, identical in gene order and, with respect to the sequences of coding regions, almost identical to G. irregulare. However, certain genomic regions vary substantially, due to insertions/deletions of elements such as introns, mitochondrial plasmid-like DNA polymerase genes and mobile open reading frames. We found no evidence of mitochondrial or cytoplasmic plasmids in Glomus species, and mobile ORFs in Glomus are responsible for the formation of four gene hybrids in atp6, atp9, cox2, and nad3, which are most probably the result of horizontal gene transfer and are expressed at the mRNA level. We found evidence for substantial sequence variation in defined regions of mtDNA, even among closely related isolates with otherwise identical coding gene sequences. This variation makes it possible to design reliable intra- and inter-specific markers.

  8. The evolutionary history of Saccharomyces species inferred from completed mitochondrial genomes and revision in the ‘yeast mitochondrial genetic code’

    PubMed Central

    Szabóová, Dana; Bielik, Peter; Poláková, Silvia; Šoltys, Katarína; Jatzová, Katarína; Szemes, Tomáš

    2017-01-01

    Abstract The yeast Saccharomyces are widely used to test ecological and evolutionary hypotheses. A large number of nuclear genomic DNA sequences are available, but mitochondrial genomic data are insufficient. We completed mitochondrial DNA (mtDNA) sequencing from Illumina MiSeq reads for all Saccharomyces species. All are circularly mapped molecules decreasing in size with phylogenetic distance from Saccharomyces cerevisiae but with similar gene content including regulatory and selfish elements like origins of replication, introns, free-standing open reading frames or GC clusters. Their most profound feature is species-specific alteration in gene order. The genetic code slightly differs from well-established yeast mitochondrial code as GUG is used rarely as the translation start and CGA and CGC code for arginine. The multilocus phylogeny, inferred from mtDNA, does not correlate with the trees derived from nuclear genes. mtDNA data demonstrate that Saccharomyces cariocanus should be assigned as a separate species and Saccharomyces bayanus CBS 380T should not be considered as a distinct species due to mtDNA nearly identical to Saccharomyces uvarum mtDNA. Apparently, comparison of mtDNAs should not be neglected in genomic studies as it is an important tool to understand the origin and evolutionary history of some yeast species. PMID:28992063

  9. The numbers of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway.

    PubMed

    MacAlpine, D M; Perlman, P S; Butow, R A

    2000-02-15

    Mitochondrial DNA (mtDNA) is inherited as a protein-DNA complex (the nucleoid). We show that activation of the general amino acid response pathway in rho(+) and rho(-) petite cells results in an increased number of nucleoids without an increase in mtDNA copy number. In rho(-) cells, activation of the general amino acid response pathway results in increased intramolecular recombination between tandemly repeated sequences of rho(-) mtDNA to produce small, circular oligomers that are packaged into individual nucleoids, resulting in an approximately 10-fold increase in nucleoid number. The parsing of mtDNA into nucleoids due to general amino acid control requires Ilv5p, a mitochondrial protein that also functions in branched chain amino acid biosynthesis, and one or more factors required for mtDNA recombination. Two additional proteins known to function in mtDNA recombination, Abf2p and Mgt1p, are also required for parsing mtDNA into a larger number of nucleoids, although expression of these proteins is not under general amino acid control. Increased nucleoid number leads to increased mtDNA transmission, suggesting a mechanism to enhance mtDNA inheritance under amino acid starvation conditions.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do, Minhwa; Jang, Won-Gu; Hwang, Jeong Hee

    Highlights: Black-Right-Pointing-Pointer We success serial SCNT through the third generation using pig fibroblasts. Black-Right-Pointing-Pointer Donor-specific mtDNA in the recloned pigs was detected. Black-Right-Pointing-Pointer SCNT affect mtDNA mounts. -- Abstract: Somatic cell nuclear transfer (SCNT) has been established for the transmission of specific nuclear DNA. However, the fate of donor mitochondrial DNA (mtDNA) remains unclear. Here, we examined the fate of donor mtDNA in recloned pigs through third generations. Fibroblasts of recloned pigs were obtained from offspring of each generation produced by fusion of cultured fibroblasts from a Minnesota miniature pig (MMP) into enucleated oocytes of a Landrace pig. The D-loopmore » regions from the mtDNA of donor and recipient differ at nucleotide sequence positions 16050 (A{yields}T), 16062 (T{yields}C), and 16135 (G{yields}A). In order to determine the fate of donor mtDNA in recloned pigs, we analyzed the D-loop region of the donor's mtDNA by allele-specific PCR (AS-PCR) and real-time PCR. Donor mtDNA was successfully detected in all recloned offspring (F1, F2, and F3). These results indicate that heteroplasmy that originate from donor and recipient mtDNA is maintained in recloned pigs, resulting from SCNT, unlike natural reproduction.« less

  11. Phylogeography, intraspecific structure and sex-biased dispersal of Dall's porpoise, Phocoenoides dalli, revealed by mitochondrial and microsatellite DNA analyses.

    PubMed

    Escorza-Treviño, S; Dizon, A E

    2000-08-01

    Mitochondrial DNA (mtDNA) control-region sequences and microsatellite loci length polymorphisms were used to estimate phylogeographical patterns (historical patterns underlying contemporary distribution), intraspecific population structure and gender-biased dispersal of Phocoenoides dalli dalli across its entire range. One-hundred and thirteen animals from several geographical strata were sequenced over 379 bp of mtDNA, resulting in 58 mtDNA haplotypes. Analysis using F(ST) values (based on haplotype frequencies) and phi(ST) values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (bootstrap values P < 0.05) among most of the stocks currently used for management purposes. A minimum spanning network of haplotypes showed two very distinctive clusters, differentially occupied by western and eastern populations, with some common widespread haplotypes. This suggests some degree of phyletic radiation from west to east, superimposed on gene flow. Highly male-biased migration was detected for several population comparisons. Nuclear microsatellite DNA markers (119 individuals and six loci) provided additional support for population subdivision and gender-biased dispersal detected in the mtDNA sequences. Analysis using F(ST) values (based on allelic frequencies) yielded statistically significant separation between some, but not all, populations distinguished by mtDNA analysis. R(ST) values (based on frequencies of and genetic distance between alleles) showed no statistically significant subdivision. Again, highly male-biased dispersal was detected for all population comparisons, suggesting, together with morphological and reproductive data, the existence of sexual selection. Our molecular results argue for nine distinct dalli-type populations that should be treated as separate units for management purposes.

  12. A large homozygous deletion in the SAMHD1 gene causes atypical Aicardi–Goutiéres syndrome associated with mtDNA deletions

    PubMed Central

    Leshinsky-Silver, Esther; Malinger, Gustavo; Ben-Sira, Liat; Kidron, Dvora; Cohen, Sarit; Inbar, Shani; Bezaleli, Tali; Levine, Arie; Vinkler, Chana; Lev, Dorit; Lerman-Sagie, Tally

    2011-01-01

    Aicardi–Goutiéres syndrome (AGS) is a genetic neurodegenerative disorder with clinical symptoms mimicking a congenital viral infection. Five causative genes have been described: three prime repair exonuclease1 (TREX1), ribonucleases H2A, B and C, and most recently SAM domain and HD domain 1 (SAMHD1). We performed a detailed clinical and molecular characterization of a family with autosomal recessive neurodegenerative disorder showing white matter destruction and calcifications, presenting in utero and associated with multiple mtDNA deletions. A muscle biopsy was normal and did not show any evidence of respiratory chain dysfunction. Southern blot analysis of tissue from a living child and affected fetuses demonstrated multiple mtDNA deletions. Molecular analysis of genes involved in mtDNA synthesis and maintenance (POLGα, POLGβ, Twinkle, ANT1, TK2, SUCLA1 and DGOUK) revealed normal sequences. Sequencing of TREX1 and ribonucleases H2A, B and C failed to reveal any mutations. Whole-genome homozygosity mapping revealed a candidate region containing the SAMHD1 gene. Sequencing of the gene in the affected child and two affected fetuses revealed a large deletion (9 kb), spanning the promoter, exon1 and intron 1. The parents were found to be heterozygous for this deletion. The identification of a homozygous large deletion in the SAMHD1 gene causing atypical AGS with multiple mtDNA deletions may add information regarding the involvement of mitochondria in self-activation of innate immunity by cell intrinsic components. PMID:21102625

  13. Complete sequences of the highly rearranged molluscan mitochondrial genomes of the scaphopod graptacme eborea and the bivalve mytilus edulis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boore, Jeffrey L.; Medina, Monica; Rosenberg, Lewis A.

    2004-01-31

    We have determined the complete sequence of the mitochondrial genome of the scaphopod mollusk Graptacme eborea (Conrad, 1846) (14,492 nts) and completed the sequence of the mitochondrial genome of the bivalve mollusk Mytilus edulis Linnaeus, 1758 (16,740 nts). (The name Graptacme eborea is a revision of the species formerly known as Dentalium eboreum.) G. eborea mtDNA contains the 37 genes that are typically found and has the genes divided about evenly between the two strands, but M. edulis contains an extra trnM and is missing atp8, and has all genes on the same strand. Each has a highly rearranged genemore » order relative to each other and to all other studied mtDNAs. G. eborea mtDNA has almost no strand skew, but the coding strand of M. edulis mtDNA is very rich in G and T. This is reflected in differential codon usage patterns and even in amino acid compositions. G. eborea mtDNA has fewer non-coding nucleotides than any other mtDNA studied to date, with the largest non-coding region being only 24 nt long. Phylogenetic analysis using 2,420 aligned amino acid positions of concatenated proteins weakly supports an association of the scaphopod with gastropods to the exclusion of Bivalvia, Cephalopoda, and Polyplacophora, but is generally unable to convincingly resolve the relationships among major groups of the Lophotrochozoa, in contrast to the good resolution seen for several other major metazoan groups.« less

  14. Yeast aconitase binds and provides metabolically coupled protection to mitochondrial DNA.

    PubMed

    Chen, Xin Jie; Wang, Xiaowen; Butow, Ronald A

    2007-08-21

    Aconitase (Aco1p) is a multifunctional protein: It is an enzyme of the tricarboxylic acid cycle. In animal cells, Aco1p also is a cytosolic protein binding to mRNAs to regulate iron metabolism. In yeast, Aco1p was identified as a component of mtDNA nucleoids. Here we show that yeast Aco1p protects mtDNA from excessive accumulation of point mutations and ssDNA breaks and suppresses reductive recombination of mtDNA. Aconitase binds to both ds- and ssDNA, with a preference for GC-containing sequences. Therefore, mitochondria are opportunistic organelles that seize proteins, such as metabolic enzymes, for construction of the nucleoid, an mtDNA maintenance/segregation apparatus.

  15. No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline

    PubMed Central

    Hagström, Erik; Freyer, Christoph; Battersby, Brendan J.; Stewart, James B.; Larsson, Nils-Göran

    2014-01-01

    Variants of mitochondrial DNA (mtDNA) are commonly used as markers to track human evolution because of the high sequence divergence and exclusive maternal inheritance. It is assumed that the inheritance is clonal, i.e. that mtDNA is transmitted between generations without germline recombination. In contrast to this assumption, a number of studies have reported the presence of recombinant mtDNA molecules in cell lines and animal tissues, including humans. If germline recombination of mtDNA is frequent, it would strongly impact phylogenetic and population studies by altering estimates of coalescent time and branch lengths in phylogenetic trees. Unfortunately, this whole area is controversial and the experimental approaches have been widely criticized as they often depend on polymerase chain reaction (PCR) amplification of mtDNA and/or involve studies of transformed cell lines. In this study, we used an in vivo mouse model that has had germline heteroplasmy for a defined set of mtDNA mutations for more than 50 generations. To assess recombination, we adapted and validated a method based on cloning of single mtDNA molecules in the λ phage, without prior PCR amplification, followed by subsequent mutation analysis. We screened 2922 mtDNA molecules and found no germline recombination after transmission of mtDNA under genetically and evolutionary relevant conditions in mammals. PMID:24163253

  16. Killer whale nuclear genome and mtDNA reveal widespread population bottleneck during the last glacial maximum.

    PubMed

    Moura, Andre E; Janse van Rensburg, Charlene; Pilot, Malgorzata; Tehrani, Arman; Best, Peter B; Thornton, Meredith; Plön, Stephanie; de Bruyn, P J Nico; Worley, Kim C; Gibbs, Richard A; Dahlheim, Marilyn E; Hoelzel, Alan Rus

    2014-05-01

    Ecosystem function and resilience is determined by the interactions and independent contributions of individual species. Apex predators play a disproportionately determinant role through their influence and dependence on the dynamics of prey species. Their demographic fluctuations are thus likely to reflect changes in their respective ecological communities and habitat. Here, we investigate the historical population dynamics of the killer whale based on draft nuclear genome data for the Northern Hemisphere and mtDNA data worldwide. We infer a relatively stable population size throughout most of the Pleistocene, followed by an order of magnitude decline and bottleneck during the Weichselian glacial period. Global mtDNA data indicate that while most populations declined, at least one population retained diversity in a stable, productive ecosystem off southern Africa. We conclude that environmental changes during the last glacial period promoted the decline of a top ocean predator, that these events contributed to the pattern of diversity among extant populations, and that the relatively high diversity of a population currently in productive, stable habitat off South Africa suggests a role for ocean productivity in the widespread decline.

  17. Historical explanation of genetic variation in the Mediterranean horseshoe bat Rhinolophus euryale (Chiroptera: Rhinolophidae) inferred from mitochondrial cytochrome-b and D-loop genes in Iran.

    PubMed

    Najafi, Nargess; Akmali, Vahid; Sharifi, Mozafar

    2018-04-26

    Molecular phylogeography and species distribution modelling (SDM) suggest that late Quaternary glacial cycles have portrayed a significant role in structuring current population genetic structure and diversity. Based on phylogenetic relationships using Bayesian inference and maximum likelihood of 535 bp mtDNA (D-loop) and 745 bp mtDNA (Cytb) in 62 individuals of the Mediterranean Horseshoe Bat, Rhinolophus euryale, from 13 different localities in Iran we identified two subspecific populations with differing population genetic structure distributed in southern Zagros Mts. and northern Elburz Mts. Analysis of molecular variance (AMOVA) obtained from D-loop sequences indicates that 21.18% of sequence variation is distributed among populations and 10.84% within them. Moreover, a degree of genetic subdivision, mainly attributable to the existence of significant variance among the two regions is shown (θCT = 0.68, p = .005). The positive and significant correlation between geographic and genetic distances (R 2  = 0.28, r = 0.529, p = .000) is obtained following controlling for environmental distance. Spatial distribution of haplotypes indicates that marginal population of the species in southern part of the species range have occupied this section as a glacial refugia. However, this genetic variation, in conjunction with results of the SDM shows a massive postglacial range expansion for R. euryale towards higher latitudes in Iran.

  18. Molecular Evidence for Multiple Origins of Hybridogenetic Fish Clones (Poeciliidae: Poeciliopsis)

    PubMed Central

    Quattro, J. M.; Avise, J. C.; Vrijenhoek, R. C.

    1991-01-01

    Hybrid matings between the sexual species Poeciliopsis monacha and Poeciliopsis lucida produced a series of diploid all-female lineages of P. monacha-lucida that inhabit the Rio Fuerte of northwestern Mexico. Restriction site analyses of mitochondrial DNA (mtDNA) clearly revealed that P. monacha was the maternal ancestor of these hybrids. The high level of mtDNA diversity in P. monacha was mirrored by similarly high levels in P. monacha-lucida; thus hybridizations giving rise to unisexual lineages have occurred many times. However, mtDNA variability among P. monacha-lucida lineages revealed a geographical component. Apparently the opportunity for the establishment of unisexual lineages varies among tributaries of the Rio Fuerte. We hypothesize that a dynamic complex of sexual and clonal fishes appear to participate in a feedback process that maintains genetic diversity in both the sexual and asexual components. PMID:2004710

  19. Behavioral vs. molecular sources of conflict between nuclear and mitochondrial DNA: The role of male-biased dispersal in a Holarctic sea duck

    USGS Publications Warehouse

    Peters, Jeffrey L.; Bolender, Kimberly A.; Pearce, John M.

    2012-01-01

    Genetic studies of waterfowl (Anatidae) have observed the full spectrum of mitochondrial (mt) DNA population divergence, from apparent panmixia to deep, reciprocally monophyletic lineages. Yet, these studies often found weak or no nuclear (nu) DNA structure, which was often attributed to male-biased gene flow, a common behaviour within this family. An alternative explanation for this ‘conflict’ is that the smaller effective population size and faster sorting rate of mtDNA relative to nuDNA lead to different signals of population structure. We tested these alternatives by sequencing 12 nuDNA introns for a Holarctic pair of waterfowl subspecies, the European goosander (Mergus merganser merganser) and the North American common merganser (M. m. americanus), which exhibit strong population structure in mtDNA. We inferred effective population sizes, gene flow and divergence times from published mtDNA sequences and simulated expected differentiation for nuDNA based on those histories. Between Europe and North America, nuDNA ФST was 3.4-fold lower than mtDNA ФST, a result consistent with differences in sorting rates. However, despite geographically structured and monophyletic mtDNA lineages within continents, nuDNA ФST values were generally zero and significantly lower than predicted. This between- and within-continent contrast held when comparing mtDNA and nuDNA among published studies of ducks. Thus, male-mediated gene flow is a better explanation than slower sorting rates for limited nuDNA differentiation within continents, which is also supported by nonmolecular data. This study illustrates the value of quantitatively testing discrepancies between mtDNA and nuDNA to reject the null hypothesis that conflict simply reflects different sorting rates.

  20. Impact of Somatic Mutations in the D-Loop of Mitochondrial DNA on the Survival of Oral Squamous Cell Carcinoma Patients

    PubMed Central

    Lin, Jin-Ching; Wang, Chen-Chi; Jiang, Rong-San; Wang, Wen-Yi; Liu, Shih-An

    2015-01-01

    Objectives The aim of this study was to investigate somatic mutations in the D-loop of mitochondrial DNA (mtDNA) and their impact on survival in oral squamous cell carcinoma patients. Materials and Methods Surgical specimen confirmed by pathological examination and corresponding non-cancerous tissues were collected from 120 oral squamous cell carcinoma patients. The sequence in the D-loop of mtDNA from non-cancerous tissues was compared with that from paired cancer samples and any sequence differences were recognized as somatic mutations. Results Somatic mutations in the D-loop of mtDNA were identified in 75 (62.5%) oral squamous cell carcinoma patients and most of them occurred in the poly-C tract. Although there were no significant differences in demographic and tumor-related features between participants with and without somatic mutation, the mutation group had a better survival rate (5 year disease-specific survival rate: 64.0% vs. 43.0%, P = 0.0266). Conclusion Somatic mutation in D-loop of mtDNA was associated with a better survival in oral squamous cell carcinoma patients. PMID:25906372

  1. Deep sequencing shows that oocytes are not prone to accumulate mtDNA heteroplasmic mutations during ovarian ageing.

    PubMed

    Boucret, L; Bris, C; Seegers, V; Goudenège, D; Desquiret-Dumas, V; Domin-Bernhard, M; Ferré-L'Hotellier, V; Bouet, P E; Descamps, P; Reynier, P; Procaccio, V; May-Panloup, P

    2017-10-01

    Does ovarian ageing increase the number of heteroplasmic mitochondrial DNA (mtDNA) point mutations in oocytes? Our results suggest that oocytes are not subject to the accumulation of mtDNA point mutations during ovarian ageing. Ageing is associated with the alteration of mtDNA integrity in various tissues. Primary oocytes, present in the ovary since embryonic life, may accumulate mtDNA mutations during the process of ovarian ageing. This was an observational study of 53 immature oocyte-cumulus complexes retrieved from 35 women undergoing IVF at the University Hospital of Angers, France, from March 2013 to March 2014. The women were classified in two groups, one including 19 women showing signs of ovarian ageing objectified by a diminished ovarian reserve (DOR), and the other, including 16 women with a normal ovarian reserve (NOR), which served as a control group. mtDNA was extracted from isolated oocytes, and from their corresponding cumulus cells (CCs) considered as a somatic cell compartment. The average mtDNA content of each sample was assessed by using a quantitative real-time PCR technique. Deep sequencing was performed using the Ion Torrent Proton for Next-Generation Sequencing. Signal processing and base calling were done by the embedded pre-processing pipeline and the variants were analyzed using an in-house workflow. The distribution of the different variants between DOR and NOR patients, on one hand, and oocyte and CCs, on the other, was analyzed with the generalized mixed linear model to take into account the cluster of cells belonging to a given mother. There were no significant differences between the numbers of mtDNA variants between the DOR and the NOR patients, either in the oocytes (P = 0.867) or in the surrounding CCs (P = 0.154). There were also no differences in terms of variants with potential functional consequences. De-novo mtDNA variants were found in 28% of the oocytes and in 66% of the CCs with the mean number of variants being significantly different (respectively 0.321, SD = 0.547 and 1.075, SD = 1.158) (P < 0.0001). Variants with a potential functional consequence were also overrepresented in CCs compared with oocytes (P = 0.0019). N/A. Limitations may be due to the use of immature oocytes discarded during the assisted reproductive technology procedure, the small size of the sample, and the high-throughput sequencing technology that might not have detected heteroplasmy levels lower than 2%. The alteration of mtDNA integrity in oocytes during ovarian ageing is a recurring question to which our pilot study suggests a reassuring answer. This work was supported by the University Hospital of Angers, the University of Angers, France, and the French national research centers, INSERM and the CNRS. There are nocompeting interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  2. Human beta-globin gene polymorphisms characterized in DNA extracted from ancient bones 12,000 years old.

    PubMed

    Béraud-Colomb, E; Roubin, R; Martin, J; Maroc, N; Gardeisen, A; Trabuchet, G; Goosséns, M

    1995-12-01

    Analyzing the nuclear DNA from ancient human bones is an essential step to the understanding of genetic diversity in current populations, provided that such systematic studies are experimentally feasible. This article reports the successful extraction and amplification of nuclear DNA from the beta-globin region from 5 of 10 bone specimens up to 12,000 years old. These have been typed for beta-globin frameworks by sequencing through two variable positions and for a polymorphic (AT) chi (T) gamma microsatellite 500 bp upstream of the beta-globin gene. These specimens of human remains are somewhat older than those analyzed in previous nuclear gene sequencing reports and considerably older than those used to study high-copy-number human mtDNA. These results show that the systematic study of nuclear DNA polymorphisms of ancient populations is feasible.

  3. Capturing goats: documenting two hundred years of mitochondrial DNA diversity among goat populations from Britain and Ireland.

    PubMed

    Cassidy, Lara M; Teasdale, Matthew D; Carolan, Seán; Enright, Ruth; Werner, Raymond; Bradley, Daniel G; Finlay, Emma K; Mattiangeli, Valeria

    2017-03-01

    The domestic goat ( Capra hircus ) plays a key role in global agriculture, being especially prized in regions of marginal pasture. However, the advent of industrialized breeding has seen a dramatic reduction in genetic diversity within commercial populations, while high extinction rates among feral herds have further depleted the reservoir of genetic variation available. Here, we present the first survey of whole mitochondrial genomic variation among the modern and historical goat populations of Britain and Ireland using a combination of mtDNA enrichment and high throughput sequencing. Fifteen historical taxidermy samples, representing the indigenous 'Old Goat' populations of the islands, were sequenced alongside five modern Irish dairy goats and four feral samples from endangered populations in western Ireland. Phylogenetic and network analyses of European mitochondrial variation revealed distinct groupings dominated by historical British and Irish samples, which demonstrate a degree of maternal genetic structure between the goats of insular and continental Europe. Several Irish modern feral samples also fall within these clusters, suggesting continuity between these dwindling populations and the ancestral 'Old Goats' of Ireland and Britain. © 2017 The Author(s).

  4. Capturing goats: documenting two hundred years of mitochondrial DNA diversity among goat populations from Britain and Ireland

    PubMed Central

    Carolan, Seán; Enright, Ruth; Werner, Raymond; Bradley, Daniel G.; Finlay, Emma K.; Mattiangeli, Valeria

    2017-01-01

    The domestic goat (Capra hircus) plays a key role in global agriculture, being especially prized in regions of marginal pasture. However, the advent of industrialized breeding has seen a dramatic reduction in genetic diversity within commercial populations, while high extinction rates among feral herds have further depleted the reservoir of genetic variation available. Here, we present the first survey of whole mitochondrial genomic variation among the modern and historical goat populations of Britain and Ireland using a combination of mtDNA enrichment and high throughput sequencing. Fifteen historical taxidermy samples, representing the indigenous ‘Old Goat’ populations of the islands, were sequenced alongside five modern Irish dairy goats and four feral samples from endangered populations in western Ireland. Phylogenetic and network analyses of European mitochondrial variation revealed distinct groupings dominated by historical British and Irish samples, which demonstrate a degree of maternal genetic structure between the goats of insular and continental Europe. Several Irish modern feral samples also fall within these clusters, suggesting continuity between these dwindling populations and the ancestral ‘Old Goats’ of Ireland and Britain. PMID:28250207

  5. Clarification of the Concept of Ganoderma orbiforme with High Morphological Plasticity

    PubMed Central

    Wang, Dong-Mei; Wu, Sheng-Hua; Yao, Yi-Jian

    2014-01-01

    Ganoderma has been considered a very difficult genus among the polypores to classify and is currently in a state of taxonomic chaos. In a study of Ganoderma collections including numerous type specimens, we found that six species namely G. cupreum, G. densizonatum, G. limushanense, G. mastoporum, G. orbiforme, G. subtornatum, and records of G. fornicatum from Mainland China and Taiwan are very similar to one another in basidiocarp texture, pilear cuticle structure, context color, pore color and basidiospore characteristics. Further, we sequenced the nrDNA ITS region (ITS1 and ITS2) and partial mtDNA SSU region of the studied materials, and performed phylogenetic analyses based on these sequence data. The nrDNA ITS sequence analysis results show that the eight nrDNA ITS sequences derived from this study have single-nucleotide polymorphisms in ITS1 and/or ITS2 at inter- and intra-individual levels. In the nrDNA ITS phylogenetic trees, all the sequences from this study are grouped together with those of G. cupreum and G. mastoporum retrieved from GenBank to form a distinct clade. The mtDNA SSU sequence analysis results reveal that the five mtDNA SSU sequences derived from this study are clustered together with those of G. cupreum retrieved from GenBank and also form a distinct clade in the mtDNA SSU phylogenetic trees. Based on morphological and molecular data, we conclude that the studied taxa are conspecific. Among the names assigned to this species, G. fornicatum given to Asian collections has nomenclatural priority over the others. However, the type of G. fornicatum from Brazil is probably lost and a modern description based on the type lacks. The identification of the Asian collections to G. fornicatum therefore cannot be confirmed. To the best of our knowledge, G. orbiforme is the earliest valid name for use. PMID:24875218

  6. Mitochondrial DNA Variant in COX1 Subunit Significantly Alters Energy Metabolism of Geographically Divergent Wild Isolates in Caenorhabditis elegans

    PubMed Central

    Dingley, Stephen D.; Polyak, Erzsebet; Ostrovsky, Julian; Srinivasan, Satish; Lee, Icksoo; Rosenfeld, Amy B.; Tsukikawa, Mai; Xiao, Rui; Selak, Mary A.; Coon, Joshua J.; Hebert, Alexander S.; Grimsrud, Paul A.; Kwon, Young Joon; Pagliarini, David J.; Gai, Xiaowu; Schurr, Theodore G.; Hüttemann, Maik; Nakamaru-Ogiso, Eiko; Falk, Marni J.

    2014-01-01

    Mitochondrial DNA (mtDNA) sequence variation can influence the penetrance of complex diseases and climatic adaptation. While studies in geographically defined human populations suggest that mtDNA mutations become fixed when they have conferred metabolic capabilities optimally suited for a specific environment, it has been challenging to definitively assign adaptive functions to specific mtDNA sequence variants in mammals. We investigated whether mtDNA genome variation functionally influences Caenorhabditis elegans wild isolates of distinct mtDNA lineages and geographic origins. We found that, relative to N2 (England) wild-type nematodes, CB4856 wild isolates from a warmer native climate (Hawaii) had a unique p.A12S amino acid substitution in the mtDNA-encoded COX1 core catalytic subunit of mitochondrial complex IV (CIV). Relative to N2, CB4856 worms grown at 20 °C had significantly increased CIV enzyme activity, mitochondrial matrix oxidant burden, and sensitivity to oxidative stress but had significantly reduced lifespan and mitochondrial membrane potential. Interestingly, mitochondrial membrane potential was significantly increased in CB4856 grown at its native temperature of 25 °C. A transmitochondrial cybrid worm strain, chpIR (M, CB4856 > N2), was bred as homoplasmic for the CB4856 mtDNA genome in the N2 nuclear background. The cybrid strain also displayed significantly increased CIV activity, demonstrating that this difference results from the mtDNA-encoded p.A12S variant. However, chpIR (M, CB4856 > N2) worms had significantly reduced median and maximal lifespan relative to CB4856, which may relate to their nuclear– mtDNA genome mismatch. Overall, these data suggest that C. elegans wild isolates of varying geographic origins may adapt to environmental challenges through mtDNA variation to modulate critical aspects of mitochondrial energy metabolism. PMID:24534730

  7. Microevolution in prehistoric Andean populations: chronologic mtDNA variation in the desert valleys of northern Chile.

    PubMed

    Moraga, Mauricio; Santoro, Calogero M; Standen, Vivien G; Carvallo, Pilar; Rothhammer, Francisco

    2005-06-01

    Archeological evidence suggests that the iconographic and technological developments that took place in the highlands around Lake Titicaca in the Central Andean region had an influence on the cultural elaborations of the human groups in the valleys and the Pacific coast of northern Chile. In a previous communication, we were able to show, by means of a distance analysis, that a craniofacial differentiation accompanied the process of cultural evolution in the valleys (Rothhammer and Santoro [2001] Lat. Am. Antiq. 12:59-66). Recently, numerous South Amerindian mtDNA studies were published, and more accurate molecular techniques to study ancient mtDNA are available. In view of these recent developments, we decided 1) to study chronological changes of ancient mtDNA haplogroup frequencies in the nearby Lluta, Azapa, and Camarones Valleys, 2) to identify microevolutionary forces responsible for such changes, and 3) to compare ancient mtDNA haplogroup frequencies with previous data in order to validate craniometrical results and to reconstruct the biological history of the prehistoric valley groups in the context of their interaction with culturally more developed highland populations. From a total of 97 samples from 83 individuals, 68 samples (61 individuals) yielded amplifications for the fragments that harbor classical mtDNA markers. The haplogroup distribution among the total sample was as follows: 26.2%, haplogroup A; 34.4%, haplogroup B; 14.8%, haplogroup C; 3.3%, haplogroup D; and 21.3%, other haplogroups. Haplogroup B tended to increase, and haplogroup A to decrease during a 3,900-year time interval. The sequence data are congruent with the haplogroup analysis. In fact, the sequencing of hypervariable region I of 30 prehistoric individuals revealed 43 polymorphic sites. Sequence alignment and subsequent phylogenetic tree construction showed two major clusters associated with the most common restriction haplogroups. Individuals belonging to haplogroups C and D tended to cluster together with nonclassical lineages. 2004 Wiley-Liss, Inc.

  8. MtDNA diversity among four Portuguese autochthonous dog breeds: a fine-scale characterisation

    PubMed Central

    van Asch, Barbara; Pereira, Luísa; Pereira, Filipe; Santa-Rita, Pedro; Lima, Manuela; Amorim, António

    2005-01-01

    Background The picture of dog mtDNA diversity, as obtained from geographically wide samplings but from a small number of individuals per region or breed, has revealed weak geographic correlation and high degree of haplotype sharing between very distant breeds. We aimed at a more detailed picture through extensive sampling (n = 143) of four Portuguese autochthonous breeds – Castro Laboreiro Dog, Serra da Estrela Mountain Dog, Portuguese Sheepdog and Azores Cattle Dog-and comparatively reanalysing published worldwide data. Results Fifteen haplotypes belonging to four major haplogroups were found in these breeds, of which five are newly reported. The Castro Laboreiro Dog presented a 95% frequency of a new A haplotype, while all other breeds contained a diverse pool of existing lineages. The Serra da Estrela Mountain Dog, the most heterogeneous of the four Portuguese breeds, shared haplotypes with the other mainland breeds, while Azores Cattle Dog shared no haplotypes with the other Portuguese breeds. A review of mtDNA haplotypes in dogs across the world revealed that: (a) breeds tend to display haplotypes belonging to different haplogroups; (b) haplogroup A is present in all breeds, and even uncommon haplogroups are highly dispersed among breeds and continental areas; (c) haplotype sharing between breeds of the same region is lower than between breeds of different regions and (d) genetic distances between breeds do not correlate with geography. Conclusion MtDNA haplotype sharing occurred between Serra da Estrela Mountain dogs (with putative origin in the centre of Portugal) and two breeds in the north and south of the country-with the Castro Laboreiro Dog (which behaves, at the mtDNA level, as a sub-sample of the Serra da Estrela Mountain Dog) and the southern Portuguese Sheepdog. In contrast, the Azores Cattle Dog did not share any haplotypes with the other Portuguese breeds, but with dogs sampled in Northern Europe. This suggested that the Azores Cattle Dog descended maternally from Northern European dogs rather than Portuguese mainland dogs. A review of published mtDNA haplotypes identified thirteen non-Portuguese breeds with sufficient data for comparison. Comparisons between these thirteen breeds, and the four Portuguese breeds, demonstrated widespread haplotype sharing, with the greatest diversity among Asian dogs, in accordance with the central role of Asia in canine domestication. PMID:15972107

  9. Genetic structure in contemporary south Tyrolean isolated populations revealed by analysis of Y-chromosome, mtDNA, and Alu polymorphisms.

    PubMed

    Pichler, Irene; Mueller, Jakob C; Stefanov, Stefan A; De Grandi, Alessandro; Volpato, Claudia Beu; Pinggera, Gerd K; Mayr, Agnes; Ogriseg, Martin; Ploner, Franz; Meitinger, Thomas; Pramstaller, Peter P

    2006-08-01

    Most of the inhabitants of South Tyrol in the eastern Italian Alps can be considered isolated populations because of their physical separation by mountain barriers and their sociocultural heritage. We analyzed the genetic structure of South Tyrolean populations using three types of genetic markers: Y-chromosome, mitochondrial DNA (mtDNA), and autosomal Alu markers. Using random samples taken from the populations of Val Venosta, Val Pusteria, Val Isarco, Val Badia, and Val Gardena, we calculated genetic diversity within and among the populations. Microsatellite diversity and unique event polymorphism diversity (on the Y chromosome) were substantially lower in the Ladin-speaking population of Val Badia compared to the neighboring German-speaking populations. In contrast, the genetic diversity of mtDNA haplotypes was lowest for the upper Val Venosta and Val Pusteria. These data suggest a low effective population size, or little admixture, for the gene pool of the Ladin-speaking population from Val Badia. Interestingly, this is more pronounced for Ladin males than for Ladin females. For the pattern of genetic Alu variation, both Ladin samples (Val Gardena and Val Badia) are among the samples with the lowest diversity. An admixture analysis of one German-speaking valley (Val Venosta) indicates a relatively high genetic contribution of Ladin origin. The reduced genetic diversity and a high genetic differentiation in the Rhaetoroman- and German-speaking South Tyrolean populations may constitute an important basis for future medical genetic research and gene mapping studies in South Tyrol.

  10. Molecular phylogenetics of the family Cyprinidae (Actinopterygii: Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal protein-coding gene: further evidence from a nuclear gene of the systematic chaos in the family.

    PubMed

    He, Shunping; Mayden, Richard L; Wang, Xuzheng; Wang, Wei; Tang, Kevin L; Chen, Wei-Jen; Chen, Yiyu

    2008-03-01

    The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichowensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis, that are consistent with or correspond to Barbini and Leuciscini. The Barbini includes taxa traditionally aligned with the subfamily Cyprininae sensu previous morphological revisionary studies by Howes (Barbinae, Labeoninae, Cyprininae and Schizothoracinae). The Leuciscini includes six other subfamilies that are mainly divided into three separate lineages. The relationships among genera and subfamilies are discussed as well as the possible origins of major lineages.

  11. An integrated pipeline for next generation sequencing and annotation of the complete mitochondrial genome of the giant intestinal fluke, Fasciolopsis buski (Lankester, 1857) Looss, 1899

    PubMed Central

    Biswal, Devendra Kumar; Ghatani, Sudeep; Shylla, Jollin A.; Sahu, Ranjana; Mullapudi, Nandita

    2013-01-01

    Helminths include both parasitic nematodes (roundworms) and platyhelminths (trematode and cestode flatworms) that are abundant, and are of clinical importance. The genetic characterization of parasitic flatworms using advanced molecular tools is central to the diagnosis and control of infections. Although the nuclear genome houses suitable genetic markers (e.g., in ribosomal (r) DNA) for species identification and molecular characterization, the mitochondrial (mt) genome consistently provides a rich source of novel markers for informative systematics and epidemiological studies. In the last decade, there have been some important advances in mtDNA genomics of helminths, especially lung flukes, liver flukes and intestinal flukes. Fasciolopsis buski, often called the giant intestinal fluke, is one of the largest digenean trematodes infecting humans and found primarily in Asia, in particular the Indian subcontinent. Next-generation sequencing (NGS) technologies now provide opportunities for high throughput sequencing, assembly and annotation within a short span of time. Herein, we describe a high-throughput sequencing and bioinformatics pipeline for mt genomics for F. buski that emphasizes the utility of short read NGS platforms such as Ion Torrent and Illumina in successfully sequencing and assembling the mt genome using innovative approaches for PCR primer design as well as assembly. We took advantage of our NGS whole genome sequence data (unpublished so far) for F. buski and its comparison with available data for the Fasciola hepatica mtDNA as the reference genome for design of precise and specific primers for amplification of mt genome sequences from F. buski. A long-range PCR was carried out to create an NGS library enriched in mt DNA sequences. Two different NGS platforms were employed for complete sequencing, assembly and annotation of the F. buski mt genome. The complete mt genome sequences of the intestinal fluke comprise 14,118 bp and is thus the shortest trematode mitochondrial genome sequenced to date. The noncoding control regions are separated into two parts by the tRNA-Gly gene and don’t contain either tandem repeats or secondary structures, which are typical for trematode control regions. The gene content and arrangement are identical to that of F. hepatica. The F. buski mtDNA genome has a close resemblance with F. hepatica and has a similar gene order tallying with that of other trematodes. The mtDNA for the intestinal fluke is reported herein for the first time by our group that would help investigate Fasciolidae taxonomy and systematics with the aid of mtDNA NGS data. More so, it would serve as a resource for comparative mitochondrial genomics and systematic studies of trematode parasites. PMID:24255820

  12. The full mitochondrial genome sequence of Raillietina tetragona from chicken (Cestoda: Davaineidae).

    PubMed

    Liang, Jian-Ying; Lin, Rui-Qing

    2016-11-01

    In the present study, the complete mitochondrial DNA (mtDNA) sequence of Raillietina tetragona was sequenced and its gene contents and genome organizations was compared with that of other tapeworm. The complete mt genome sequence of R. tetragona is 14,444 bp in length. It contains 12 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and two non-coding region. All genes are transcribed in the same direction and have a nucleotide composition high in A and T. The contents of A + T of the complete mt genome are 71.4% for R. tetragona. The R. tetragona mt genome sequence provides novel mtDNA marker for studying the molecular epidemiology and population genetics of Raillietina and has implications for the molecular diagnosis of chicken cestodosis caused by Raillietina.

  13. A recent bottleneck of Y chromosome diversity coincides with a global change in culture.

    PubMed

    Karmin, Monika; Saag, Lauri; Vicente, Mário; Wilson Sayres, Melissa A; Järve, Mari; Talas, Ulvi Gerst; Rootsi, Siiri; Ilumäe, Anne-Mai; Mägi, Reedik; Mitt, Mario; Pagani, Luca; Puurand, Tarmo; Faltyskova, Zuzana; Clemente, Florian; Cardona, Alexia; Metspalu, Ene; Sahakyan, Hovhannes; Yunusbayev, Bayazit; Hudjashov, Georgi; DeGiorgio, Michael; Loogväli, Eva-Liis; Eichstaedt, Christina; Eelmets, Mikk; Chaubey, Gyaneshwer; Tambets, Kristiina; Litvinov, Sergei; Mormina, Maru; Xue, Yali; Ayub, Qasim; Zoraqi, Grigor; Korneliussen, Thorfinn Sand; Akhatova, Farida; Lachance, Joseph; Tishkoff, Sarah; Momynaliev, Kuvat; Ricaut, François-Xavier; Kusuma, Pradiptajati; Razafindrazaka, Harilanto; Pierron, Denis; Cox, Murray P; Sultana, Gazi Nurun Nahar; Willerslev, Rane; Muller, Craig; Westaway, Michael; Lambert, David; Skaro, Vedrana; Kovačevic, Lejla; Turdikulova, Shahlo; Dalimova, Dilbar; Khusainova, Rita; Trofimova, Natalya; Akhmetova, Vita; Khidiyatova, Irina; Lichman, Daria V; Isakova, Jainagul; Pocheshkhova, Elvira; Sabitov, Zhaxylyk; Barashkov, Nikolay A; Nymadawa, Pagbajabyn; Mihailov, Evelin; Seng, Joseph Wee Tien; Evseeva, Irina; Migliano, Andrea Bamberg; Abdullah, Syafiq; Andriadze, George; Primorac, Dragan; Atramentova, Lubov; Utevska, Olga; Yepiskoposyan, Levon; Marjanovic, Damir; Kushniarevich, Alena; Behar, Doron M; Gilissen, Christian; Vissers, Lisenka; Veltman, Joris A; Balanovska, Elena; Derenko, Miroslava; Malyarchuk, Boris; Metspalu, Andres; Fedorova, Sardana; Eriksson, Anders; Manica, Andrea; Mendez, Fernando L; Karafet, Tatiana M; Veeramah, Krishna R; Bradman, Neil; Hammer, Michael F; Osipova, Ludmila P; Balanovsky, Oleg; Khusnutdinova, Elza K; Johnsen, Knut; Remm, Maido; Thomas, Mark G; Tyler-Smith, Chris; Underhill, Peter A; Willerslev, Eske; Nielsen, Rasmus; Metspalu, Mait; Villems, Richard; Kivisild, Toomas

    2015-04-01

    It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males. © 2015 Karmin et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Genetic characterization of the honeybee ectoparasitic mite Varroa destructor from Benin (West Africa) using mitochondrial and microsatellite markers.

    PubMed

    Kelomey, Aude E; Paraiso, Armand; Sina, Haziz; Legout, Hélène; Garnery, Lionel; Baba-Moussa, Lamine

    2017-05-01

    Varroa destructor is one of the scourges of global beekeeping. It was detected for the first time in Benin in 2011 on the honeybee Apis mellifera adansonii. The aim of this study was to identify the strain of Varroa sp. found and study its genetic diversity. In total 183 Varroa mites were sampled in 21 municipalities in Benin. The COI intergenic region of each mite mtDNA was amplified by PCR. The SacI restriction enzyme was used to determine the strains of Varroa sp. Only the Korean (K) haplotype, identical to the most prevalent strain in Africa, was detected. Analysis of the genetic diversity of Varroa mites with eight microsatellite loci (Simple Sequence Repeats) indicated a very low diversity of genotypes. Thus, V. destructor populations from Benin appear to make up a single group. Their clonal wealth ranges from 0.00 to 0.47. This study is an important step forward in the monitoring of the infestation of V. destructor.

  15. Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family.

    PubMed

    Kullar, Peter J; Gomez-Duran, Aurora; Gammage, Payam A; Garone, Caterina; Minczuk, Michal; Golder, Zoe; Wilson, Janet; Montoya, Julio; Häkli, Sanna; Kärppä, Mikko; Horvath, Rita; Majamaa, Kari; Chinnery, Patrick F

    2018-01-01

    The m.1555A>G mtDNA variant causes maternally inherited deafness, but the reasons for the highly variable clinical penetrance are not known. Exome sequencing identified a heterozygous start loss mutation in SSBP1, encoding the single stranded binding protein 1 (SSBP1), segregating with hearing loss in a multi-generational family transmitting m.1555A>G, associated with mtDNA depletion and multiple deletions in skeletal muscle. The SSBP1 mutation reduced steady state SSBP1 levels leading to a perturbation of mtDNA metabolism, likely compounding the intra-mitochondrial translation defect due to m.1555A>G in a tissue-specific manner. This family demonstrates the importance of rare trans-acting genetic nuclear modifiers in the clinical expression of mtDNA disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  16. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud.

    PubMed

    Weissensteiner, Hansi; Forer, Lukas; Fuchsberger, Christian; Schöpf, Bernd; Kloss-Brandstätter, Anita; Specht, Günther; Kronenberg, Florian; Schönherr, Sebastian

    2016-07-08

    Next generation sequencing (NGS) allows investigating mitochondrial DNA (mtDNA) characteristics such as heteroplasmy (i.e. intra-individual sequence variation) to a higher level of detail. While several pipelines for analyzing heteroplasmies exist, issues in usability, accuracy of results and interpreting final data limit their usage. Here we present mtDNA-Server, a scalable web server for the analysis of mtDNA studies of any size with a special focus on usability as well as reliable identification and quantification of heteroplasmic variants. The mtDNA-Server workflow includes parallel read alignment, heteroplasmy detection, artefact or contamination identification, variant annotation as well as several quality control metrics, often neglected in current mtDNA NGS studies. All computational steps are parallelized with Hadoop MapReduce and executed graphically with Cloudgene. We validated the underlying heteroplasmy and contamination detection model by generating four artificial sample mix-ups on two different NGS devices. Our evaluation data shows that mtDNA-Server detects heteroplasmies and artificial recombinations down to the 1% level with perfect specificity and outperforms existing approaches regarding sensitivity. mtDNA-Server is currently able to analyze the 1000G Phase 3 data (n = 2,504) in less than 5 h and is freely accessible at https://mtdna-server.uibk.ac.at. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. The mitochondrial genome of Hydra oligactis (Cnidaria, Hydrozoa) sheds new light on animal mtDNA evolution and cnidarian phylogeny.

    PubMed

    Kayal, Ehsan; Lavrov, Dennis V

    2008-02-29

    The 16,314-nuceotide sequence of the linear mitochondrial DNA (mtDNA) molecule of Hydra oligactis (Cnidaria, Hydrozoa)--the first from the class Hydrozoa--has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs, as is typical for cnidarians. All genes have the same transcriptional orientation and their arrangement in the genome is similar to that of the jellyfish Aurelia aurita. In addition, a partial copy of cox1 is present at one end of the molecule in a transcriptional orientation opposite to the rest of the genes, forming a part of inverted terminal repeat characteristic of linear mtDNA and linear mitochondrial plasmids. The sequence close to at least one end of the molecule contains several homonucleotide runs as well as small inverted repeats that are able to form strong secondary structures and may be involved in mtDNA maintenance and expression. Phylogenetic analysis of mitochondrial genes of H. oligactis and other cnidarians supports the Medusozoa hypothesis but also suggests that Anthozoa may be paraphyletic, with octocorallians more closely related to the Medusozoa than to the Hexacorallia. The latter inference implies that Anthozoa is paraphyletic and that the polyp (rather than a medusa) is the ancestral body type in Cnidaria.

  18. High-resolution mitochondrial DNA analysis sheds light on human diversity, cultural interactions, and population mobility in Northwestern Amazonia.

    PubMed

    Arias, Leonardo; Barbieri, Chiara; Barreto, Guillermo; Stoneking, Mark; Pakendorf, Brigitte

    2018-02-01

    Northwestern Amazonia (NWA) is a center of high linguistic and cultural diversity. Several language families and linguistic isolates occur in this region, as well as different subsistence patterns, with some groups being foragers and others agriculturalists. In addition, speakers of Eastern Tukanoan languages are known for practicing linguistic exogamy, a marriage system in which partners are taken from different language groups. In this study, we use high-resolution mitochondrial DNA sequencing to investigate the impact of this linguistic and cultural diversity on the genetic relationships and population structure of NWA groups. We collected saliva samples from individuals representing 40 different NWA ethnolinguistic groups and sequenced 439 complete mitochondrial genomes to an average coverage of 1,030×. The mtDNA data revealed that NWA populations have high genetic diversity with extensive sharing of haplotypes among groups. Moreover, groups who practice linguistic exogamy have higher genetic diversity, while the foraging Nukak have lower genetic diversity. We also find that rivers play a more important role than either geography or language affiliation in structuring the genetic relationships of populations. Contrary to the view of NWA as a pristine area inhabited by small human populations living in isolation, our data support a view of high diversity and contact among different ethnolinguistic groups, with movement along rivers probably facilitating this contact. Additionally, we provide evidence for the impact of cultural practices, such as linguistic exogamy, on patterns of genetic variation. Overall, this study provides new data and insights into a remote and little-studied region of the world. © 2017 Wiley Periodicals, Inc.

  19. Mitochondrial inheritance in budding yeasts: towards an integrated understanding.

    PubMed

    Solieri, Lisa

    2010-11-01

    Recent advances in yeast mitogenomics have significantly contributed to our understanding of the diversity of organization, structure and topology in the mitochondrial genome of budding yeasts. In parallel, new insights on mitochondrial DNA (mtDNA) inheritance in the model organism Saccharomyces cerevisiae highlighted an integrated scenario where recombination, replication and segregation of mtDNA are intricately linked to mitochondrial nucleoid (mt-nucleoid) structure and organelle sorting. In addition to this, recent discoveries of bifunctional roles of some mitochondrial proteins have interesting implications on mito-nuclear genome interactions and the relationship between mtDNA inheritance, yeast fitness and speciation. This review summarizes the current knowledge on yeast mitogenomics, mtDNA inheritance with regard to mt-nucleoid structure and organelle dynamics, and mito-nuclear genome interactions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion

    PubMed Central

    Osman, Christof; Noriega, Thomas R.; Okreglak, Voytek; Fung, Jennifer C.; Walter, Peter

    2015-01-01

    Mitochondrial DNA (mtDNA) is essential for mitochondrial and cellular function. In Saccharomyces cerevisiae, mtDNA is organized in nucleoprotein structures termed nucleoids, which are distributed throughout the mitochondrial network and are faithfully inherited during the cell cycle. How the cell distributes and inherits mtDNA is incompletely understood although an involvement of mitochondrial fission and fusion has been suggested. We developed a LacO-LacI system to noninvasively image mtDNA dynamics in living cells. Using this system, we found that nucleoids are nonrandomly spaced within the mitochondrial network and observed the spatiotemporal events involved in mtDNA inheritance. Surprisingly, cells deficient in mitochondrial fusion and fission distributed and inherited mtDNA normally, pointing to alternative pathways involved in these processes. We identified such a mechanism, where we observed fission-independent, but F-actin–dependent, tip generation that was linked to the positioning of mtDNA to the newly generated tip. Although mitochondrial fusion and fission were dispensable for mtDNA distribution and inheritance, we show through a combination of genetics and next-generation sequencing that their absence leads to an accumulation of mitochondrial genomes harboring deleterious structural variations that cluster at the origins of mtDNA replication, thus revealing crucial roles for mitochondrial fusion and fission in maintaining the integrity of the mitochondrial genome. PMID:25730886

  1. Population genetics studies of the walrus (Odobenus rosmarus): A summary and interpretation of results and research needs

    USGS Publications Warehouse

    Scribner, Kim T.; Hills, Susan; Fain, Steven R.; Cronin, Matthew A.; Dizon, Andrew E.; Chivers, Susan J.; Perrin, William F.

    1997-01-01

    A summary of population genetics data is presented for the walrus (Odobenus rosmarus). Current information on the ecology and behavior of the species is highlighted to aid in the interpretation of genetics results and to suggest future areas of research. Walruses are discontinuously distributed across the Arctic and are currently subdivided into six regional populations on the basis of historical distribution and morphology. Few population genetics studies have been conducted on the walrus. Only three of the six trigonal populations have been surveyed with biochemical or molecular techniques. Analysis of mitochondrial DNA (mtDNA) variation among walruses from the northern Pacific (Chukchi Sea) and western Atlantic (Greenland) regions revealed 13 haplotypes; 6 were found only in Pacific walruses while 7 were unique to the Atlantic subspecies. Estimates of sequence divergence between Atlantic and Pacific haplotypes were 1.0%-1.6%. No evidence of microgeographic structuring within the northern Pacific or western Atlantic regional populations was found on the basis of mtDNA haplotype frequency distributions or multilocus minisatellite band sharing. Minisatellite analysis of adult-juvenile and adult-adult pairs suggests that assemblages of walruses on individual ice floes are made up at least in part by groups of related individuals from more than one generation. Furthermore, high mtDNA haplotype diversities and low minisatellite band-sharing values suggest that both the northern Pacific and western Atlantic walruses have retained a high degree of genetic variability.

  2. DNA recombination-initiation plays a role in the extremely biased inheritance of yeast [rho-] mitochondrial DNA that contains the replication origin ori5.

    PubMed

    Ling, Feng; Hori, Akiko; Shibata, Takehiko

    2007-02-01

    Hypersuppressiveness, as observed in Saccharomyces cerevisiae, is an extremely biased inheritance of a small mitochondrial DNA (mtDNA) fragment that contains a replication origin (HS [rho(-)] mtDNA). Our previous studies showed that concatemers (linear head-to-tail multimers) are obligatory intermediates for mtDNA partitioning and are primarily formed by rolling-circle replication mediated by Mhr1, a protein required for homologous mtDNA recombination. In this study, we found that Mhr1 is required for the hypersuppressiveness of HS [ori5] [rho(-)] mtDNA harboring ori5, one of the replication origins of normal ([rho(+)]) mtDNA. In addition, we detected an Ntg1-stimulated double-strand break at the ori5 locus. Purified Ntg1, a base excision repair enzyme, introduced a double-stranded break by itself into HS [ori5] [rho(-)] mtDNA at ori5 isolated from yeast cells. Both hypersuppressiveness and concatemer formation of HS [ori5] [rho(-)] mtDNA are simultaneously suppressed by the ntg1 null mutation. These results support a model in which, like homologous recombination, rolling-circle HS [ori5] [rho(-)] mtDNA replication is initiated by double-stranded breakage in ori5, followed by Mhr1-mediated homologous pairing of the processed nascent DNA ends with circular mtDNA. The hypersuppressiveness of HS [ori5] [rho(-)] mtDNA depends on a replication advantage furnished by the higher density of ori5 sequences and on a segregation advantage furnished by the higher genome copy number on transmitted concatemers.

  3. PCR-RFLP analysis of mitochondrial DNA cytochrome b gene among Haruan (Channa striatus) in Malaysia.

    PubMed

    Rahim, Mohamamd Hafiz Abdul; Ismail, Patimah; Alias, Rozila; Muhammad, Norwati; Mat Jais, Abdul Manan

    2012-02-15

    Haruan (Channa striatus) is in great demand in the Malaysian domestic fish market. In the present study, mtDNA cyt b was used to investigate genetic variation of C. striatus among populations in Peninsular Malaysia. The overall population of C. striatus demonstrated a high level of haplotype diversity (h) and a low-to-moderate level of nucleotide diversity (π). Analysis of molecular variance (AMOVA) results showed a significantly different genetic differentiation among 6 populations (F(ST)=0.37566, P=0.01). Gene flow (Nm) was high and ranged from 0.32469 to infinity (∞). No significant relationship between genetic distance and geographic distance was detected. A UPGMA tree based on the distance matrix of net interpopulation nucleotide divergence (d(A)) and haplotype network of mtDNA cyt b revealed that C. striatus is divided into 2 major clades. The neutrality and mismatch distribution tests for all populations suggested that C. striatus in the study areas had undergone population expansion. The estimated time of population expansion in the mtDNA cyt b of C. striatus populations occurred 0.72-6.19 million years ago. Genetic diversity of mtDNA cyt b and population structure among Haruan populations in Peninsular Malaysia will be useful in fisheries management for standardization for Good Agriculture Practices (GAP) in fish-farming technology, as well as providing the basis for Good Manufacturing Practices (GMP). Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Are mutagenic non D-loop direct repeat motifs in mitochondrial DNA under a negative selection pressure?

    PubMed Central

    Lakshmanan, Lakshmi Narayanan; Gruber, Jan; Halliwell, Barry; Gunawan, Rudiyanto

    2015-01-01

    Non D-loop direct repeats (DRs) in mitochondrial DNA (mtDNA) have been commonly implicated in the mutagenesis of mtDNA deletions associated with neuromuscular disease and ageing. Further, these DRs have been hypothesized to put a constraint on the lifespan of mammals and are under a negative selection pressure. Using a compendium of 294 mammalian mtDNA, we re-examined the relationship between species lifespan and the mutagenicity of such DRs. Contradicting the prevailing hypotheses, we found no significant evidence that long-lived mammals possess fewer mutagenic DRs than short-lived mammals. By comparing DR counts in human mtDNA with those in selectively randomized sequences, we also showed that the number of DRs in human mtDNA is primarily determined by global mtDNA properties, such as the bias in synonymous codon usage (SCU) and nucleotide composition. We found that SCU bias in mtDNA positively correlates with DR counts, where repeated usage of a subset of codons leads to more frequent DR occurrences. While bias in SCU and nucleotide composition has been attributed to nucleotide mutational bias, mammalian mtDNA still exhibit higher SCU bias and DR counts than expected from such mutational bias, suggesting a lack of negative selection against non D-loop DRs. PMID:25855815

  5. Mitochondrial DNA sequence context in the penetrance of mitochondrial t-RNA mutations: A study across multiple lineages with diagnostic implications

    PubMed Central

    Queen, Rachel A.; Steyn, Jannetta S.; Lord, Phillip

    2017-01-01

    Mitochondrial DNA (mtDNA) mutations are well recognized as an important cause of inherited disease. Diseases caused by mtDNA mutations exhibit a high degree of clinical heterogeneity with a complex genotype-phenotype relationship, with many such mutations exhibiting incomplete penetrance. There is evidence that the spectrum of mutations causing mitochondrial disease might differ between different mitochondrial lineages (haplogroups) seen in different global populations. This would point to the importance of sequence context in the expression of mutations. To explore this possibility, we looked for mutations which are known to cause disease in humans, in animals of other species unaffected by mtDNA disease. The mt-tRNA genes are the location of many pathogenic mutations, with the m.3243A>G mutation on the mt-tRNA-Leu(UUR) being the most frequently seen mutation in humans. This study looked for the presence of m.3243A>G in 2784 sequences from 33 species, as well as any of the other mutations reported in association with disease located on mt-tRNA-Leu(UUR). We report a number of disease associated variations found on mt-tRNA-Leu(UUR) in other chordates, as the major population variant, with m.3243A>G being seen in 6 species. In these, we also found a number of mutations which appear compensatory and which could prevent the pathogenicity associated with this change in humans. This work has important implications for the discovery and diagnosis of mtDNA mutations in non-European populations. In addition, it might provide a partial explanation for the conflicting results in the literature that examines the role of mtDNA variants in complex traits. PMID:29161289

  6. The Complete Mitochondrial Genomes of Two Octopods Cistopus chinensis and Cistopus taiwanicus: Revealing the Phylogenetic Position of the Genus Cistopus within the Order Octopoda

    PubMed Central

    Cheng, Rubin; Zheng, Xiaodong; Ma, Yuanyuan; Li, Qi

    2013-01-01

    In the present study, we determined the complete mitochondrial DNA (mtDNA) sequences of two species of Cistopus, namely C. chinensis and C. taiwanicus, and conducted a comparative mt genome analysis across the class Cephalopoda. The mtDNA length of C. chinensis and C. taiwanicus are 15706 and 15793 nucleotides with an AT content of 76.21% and 76.5%, respectively. The sequence identity of mtDNA between C. chinensis and C. taiwanicus was 88%, suggesting a close relationship. Compared with C. taiwanicus and other octopods, C. chinensis encoded two additional tRNA genes, showing a novel gene arrangement. In addition, an unusual 23 poly (A) signal structure is found in the ATP8 coding region of C. chinensis. The entire genome and each protein coding gene of the two Cistopus species displayed notable levels of AT and GC skews. Based on sliding window analysis among Octopodiformes, ND1 and DN5 were considered to be more reliable molecular beacons. Phylogenetic analyses based on the 13 protein-coding genes revealed that C. chinensis and C. taiwanicus form a monophyletic group with high statistical support, consistent with previous studies based on morphological characteristics. Our results also indicated that the phylogenetic position of the genus Cistopus is closer to Octopus than to Amphioctopus and Callistoctopus. The complete mtDNA sequence of C. chinensis and C. taiwanicus represent the first whole mt genomes in the genus Cistopus. These novel mtDNA data will be important in refining the phylogenetic relationships within Octopodiformes and enriching the resource of markers for systematic, population genetic and evolutionary biological studies of Cephalopoda. PMID:24358345

  7. The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: Insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2002-01-01

    The land plants and their immediate green algal ancestors, the charophytes, form the Streptophyta. There is evidence that both the chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) underwent substantial changes in their architecture (intron insertions, gene losses, scrambling in gene order, and genome expansion in the case of mtDNA) during the evolution of streptophytes; however, because no charophyte organelle DNAs have been sequenced completely thus far, the suite of events that shaped streptophyte organelle genomes remains largely unknown. Here, we have determined the complete cpDNA (131,183 bp) and mtDNA (56,574 bp) sequences of the charophyte Chaetosphaeridium globosum (Coleochaetales). At the levels of gene content (124 genes), intron composition (18 introns), and gene order, Chaetosphaeridium cpDNA is remarkably similar to land-plant cpDNAs, implying that most of the features characteristic of land-plant lineages were gained during the evolution of charophytes. Although the gene content of Chaetosphaeridium mtDNA (67 genes) closely resembles that of the bryophyte Marchantia polymorpha (69 genes), this charophyte mtDNA differs substantially from its land-plant relatives at the levels of size, intron composition (11 introns), and gene order. Our finding that it shares only one intron with its land-plant counterparts supports the idea that the vast majority of mitochondrial introns in land plants appeared after the emergence of these organisms. Our results also suggest that the events accounting for the spacious intergenic spacers found in land-plant mtDNAs took place late during the evolution of charophytes or coincided with the transition from charophytes to land plants. PMID:12161560

  8. Genome-wide mapping of nuclear mitochondrial DNA sequences links DNA replication origins to chromosomal double-strand break formation in Schizosaccharomyces pombe

    PubMed Central

    Lenglez, Sandrine; Hermand, Damien; Decottignies, Anabelle

    2010-01-01

    Chromosomal double-strand breaks (DSBs) threaten genome integrity and repair of these lesions is often mutagenic. How and where DSBs are formed is a major question conveniently addressed in simple model organisms like yeast. NUMTs, nuclear DNA sequences of mitochondrial origin, are present in most eukaryotic genomes and probably result from the capture of mitochondrial DNA (mtDNA) fragments into chromosomal breaks. NUMT formation is ongoing and was reported to cause de novo human genetic diseases. Study of NUMTs is likely to contribute to the understanding of naturally occurring chromosomal breaks. We show that Schizosaccharomyces pombe NUMTs are exclusively located in noncoding regions with no preference for gene promoters and, when located into promoters, do not affect gene transcription level. Strikingly, most noncoding regions comprising NUMTs are also associated with a DNA replication origin (ORI). Chromatin immunoprecipitation experiments revealed that chromosomal NUMTs are probably not acting as ORI on their own but that mtDNA insertions occurred directly next to ORIs, suggesting that these loci may be prone to DSB formation. Accordingly, induction of excessive DNA replication origin firing, a phenomenon often associated with human tumor formation, resulted in frequent nucleotide deletion events within ORI3001 subtelomeric chromosomal locus, illustrating a novel aspect of DNA replication-driven genomic instability. How mtDNA is fragmented is another important issue that we addressed by sequencing experimentally induced NUMTs. This highlighted regions of S. pombe mtDNA prone to breaking. Together with an analysis of human NUMTs, we propose that these fragile sites in mtDNA may correspond to replication pause sites. PMID:20688779

  9. The effects of mitochondrial genotype on hypoxic survival and gene expression in a hybrid population of the killifish, Fundulus heteroclitus

    PubMed Central

    Flight, Patrick A.; Nacci, Diane; Champlin, Denise; Whitehead, Andrew; Rand, David M.

    2012-01-01

    The physiological link between oxygen availability and mitochondrial function is well established. However, whether or not fitness variation is associated with mitochondrial genotypes in the field remains a contested topic in evolutionary biology. In this study we draw on a population of the teleost fish, Fundulus heteroclitus, where functionally distinct subspecies hybridize, likely as a result of past glacial events. We had two specific aims: 1) to determine the effect of mtDNA genotype on survivorship of male and female fish under hypoxic stress; 2) to determine the effect of hypoxic stress, sex and mtDNA genotype on gene expression. We found an unexpected and highly significant effect of sex on survivorship under hypoxic conditions, but no significant effect of mtDNA genotype. Gene expression analyses revealed hundreds of transcripts differentially regulated by sex and hypoxia. Mitochondrial transcripts and other predicted pathways were among those influenced by hypoxic stress, and a transcript corresponding to the mtDNA control region was the most highly suppressed transcript under conditions of hypoxia. An RT-PCR experiment on the control region was consistent with microarray results. Effects of mtDNA sequence variation on genome expression were limited, however a potentially important epistasis between mtDNA sequence and expression of a nuclear-encoded mitochondrial translation protein was discovered. Overall, these results confirm that mitochondrial regulation is a major component of hypoxia tolerance and further suggest that purifying selection has been the predominant selective force on mitochondrial genomes in these two subspecies. PMID:21980951

  10. The Control Region of Mitochondrial DNA Shows an Unusual CpG and Non-CpG Methylation Pattern

    PubMed Central

    Bellizzi, Dina; D'Aquila, Patrizia; Scafone, Teresa; Giordano, Marco; Riso, Vincenzo; Riccio, Andrea; Passarino, Giuseppe

    2013-01-01

    DNA methylation is a common epigenetic modification of the mammalian genome. Conflicting data regarding the possible presence of methylated cytosines within mitochondrial DNA (mtDNA) have been reported. To clarify this point, we analysed the methylation status of mtDNA control region (D-loop) on human and murine DNA samples from blood and cultured cells by bisulphite sequencing and methylated/hydroxymethylated DNA immunoprecipitation assays. We found methylated and hydroxymethylated cytosines in the L-strand of all samples analysed. MtDNA methylation particularly occurs within non-C-phosphate-G (non-CpG) nucleotides, mainly in the promoter region of the heavy strand and in conserved sequence blocks, suggesting its involvement in regulating mtDNA replication and/or transcription. We observed DNA methyltransferases within the mitochondria, but the inactivation of Dnmt1, Dnmt3a, and Dnmt3b in mouse embryonic stem (ES) cells results in a reduction of the CpG methylation, while the non-CpG methylation shows to be not affected. This suggests that D-loop epigenetic modification is only partially established by these enzymes. Our data show that DNA methylation occurs in the mtDNA control region of mammals, not only at symmetrical CpG dinucleotides, typical of nuclear genome, but in a peculiar non-CpG pattern previously reported for plants and fungi. The molecular mechanisms responsible for this pattern remain an open question. PMID:23804556

  11. Evidence for recombination in scorpion mitochondrial DNA (Scorpiones: Buthidae).

    PubMed

    Gantenbein, Benjamin; Fet, Victor; Gantenbein-Ritter, Iris A; Balloux, François

    2005-04-07

    There has been very little undisputed evidence for recombination in animal mitochondrial DNA (mtDNA) provided so far. Previous unpublished results suggestive of mtDNA recombination in the scorpion family Buthidae, together with cytological evidence for a unique mechanism of mitochondrial fusion in that family, prompted us to investigate this group in more details. First, we sequenced the complete mtDNA genome of Mesobuthus gibbosus, and chose two genes opposing each other (16S and coxI). We then sequenced 150 individuals from the natural populations of four species of Buthidae (Old World genera Buthus and Mesobuthus). We observed strong evidence for widespread recombination through highly significant negative correlations between linkage disequilibrium and physical distance in three out of four species. The evidence is further confirmed when using five other tests for recombination and by the presence of a high amount of homoplasy in phylogenetic trees.

  12. Nonrandom patterns of genetic admixture expose the complex historical hybrid origin of unisexual leaf beetle species in the genus Calligrapha.

    PubMed

    Montelongo, Tinguaro; Gómez-Zurita, Jesús

    2015-01-01

    Many unisexual animal lineages supposedly arose from hybridization. However, support for their putative hybrid origins mostly comes from indirect methodologies, which are rarely confirmatory. Here we provide compelling data indicating that tetraploid unisexual Calligrapha are true genetic mosaics obtained via analysis of mitochondrial DNA (mtDNA) and allelic variation and coalescence times for three single-copy nuclear genes (CPS, HARS, and Wg) in five of six unisexual Calligrapha and a representative sample of bisexual species. Nuclear allelic diversity in unisexuals consistently segregates in the gene pools of at least two but up to three divergent bisexual species, interpreted as putative parentals of interspecific hybridization crosses. Interestingly, their mtDNA diversity derives from an additional yet undiscovered older evolutionary lineage that is possibly the same for all independently originated unisexual species. One possibly extinct species transferred its mtDNA to several evolutionary lineages in a wave of hybridization events during the Pliocene, whereby descendant species retained a polymorphic mtDNA constitution. Recent hybridizations, in the Pleistocene and always involving females with the old introgressed mtDNA, seemingly occurred in the lineages leading to unisexual species, decoupling mtDNA introgression (and inferences derived from these data, such as timing and parentage) from subsequent acquisition of the new reproductive mode. These results illuminate an unexpected complexity in possible routes to animal unisexuality, with implications for the interpretation of ancient unisexuality. If the origin of unisexuality requires a mechanism where (1) hybridization is a necessary but insufficient condition and (2) multiple bouts of hybridization involving more than two divergent lineages are required, then the origins of several classical unisexual systems may have to be reassessed.

  13. Heterologous mitochondrial DNA recombination in human cells.

    PubMed

    D'Aurelio, Marilena; Gajewski, Carl D; Lin, Michael T; Mauck, William M; Shao, Leon Z; Lenaz, Giorgio; Moraes, Carlos T; Manfredi, Giovanni

    2004-12-15

    Inter-molecular heterologous mitochondrial DNA (mtDNA) recombination is known to occur in yeast and plants. Nevertheless, its occurrence in human cells is still controversial. To address this issue we have fused two human cytoplasmic hybrid cell lines, each containing a distinct pathogenic mtDNA mutation and specific sets of genetic markers. In this hybrid model, we found direct evidence of recombination between these two mtDNA haplotypes. Recombinant mtDNA molecules in the hybrid cells were identified using three independent experimental approaches. First, recombinant molecules containing genetic markers from both parental alleles were demonstrated with restriction fragment length polymorphism of polymerase chain reaction products, by measuring the relative frequencies of each marker. Second, fragments of recombinant mtDNA were cloned and sequenced to identify the regions involved in the recombination events. Finally, recombinant molecules were demonstrated directly by Southern blot using appropriate combinations of polymorphic restriction sites and probes. This combined approach confirmed the existence of heterogeneous species of recombinant mtDNA molecules in the hybrid cells. These findings have important implications for mtDNA-related diseases, the interpretation of human evolution and population genetics and forensic analyses based on mtDNA genotyping.

  14. Recovering mitochondrial DNA lineages of extinct Amerindian nations in extant homopatric Brazilian populations.

    PubMed

    Gonçalves, Vanessa F; Parra, Flavia C; Gonçalves-Dornelas, Higgor; Rodrigues-Carvalho, Claudia; Silva, Hilton P; Pena, Sergio Dj

    2010-12-01

    Brazilian Amerindians have experienced a drastic population decrease in the past 500 years. Indeed, many native groups from eastern Brazil have vanished. However, their mitochondrial mtDNA haplotypes, still persist in Brazilians, at least 50 million of whom carry Amerindian mitochondrial lineages. Our objective was to test whether, by analyzing extant rural populations from regions anciently occupied by specific Amerindian groups, we could identify potentially authentic mitochondrial lineages, a strategy we have named 'homopatric targeting'. We studied 173 individuals from Queixadinha, a small village located in a territory previously occupied by the now extinct Botocudo Amerindian nation. Pedigree analysis revealed 74 unrelated matrilineages, which were screened for Amerindian mtDNA lineages by restriction fragment length polymorphism. A cosmopolitan control group was composed of 100 individuals from surrounding cities. All Amerindian lineages identified had their hypervariable segment HVSI sequenced, yielding 13 Amerindian haplotypes in Queixadinha, nine of which were not present in available databanks or in the literature. Among these haplotypes, there was a significant excess of haplogroup C (70%) and absence of haplogroup A lineages, which were the most common in the control group. The novelty of the haplotypes and the excess of the C haplogroup suggested that we might indeed have identified Botocudo lineages. To validate our strategy, we studied teeth extracted from 14 ancient skulls of Botocudo Amerindians from the collection of the National Museum of Rio de Janeiro. We recovered mtDNA sequences from all the teeth, identifying only six different haplotypes (a low haplotypic diversity of 0.8352 ± 0.0617), one of which was present among the lineages observed in the extant individuals studied. These findings validate the technique of homopatric targeting as a useful new strategy to study the peopling and colonization of the New World, especially when direct analysis of genetic material is not possible.

  15. Recovering mitochondrial DNA lineages of extinct Amerindian nations in extant homopatric Brazilian populations

    PubMed Central

    2010-01-01

    Background Brazilian Amerindians have experienced a drastic population decrease in the past 500 years. Indeed, many native groups from eastern Brazil have vanished. However, their mitochondrial mtDNA haplotypes, still persist in Brazilians, at least 50 million of whom carry Amerindian mitochondrial lineages. Our objective was to test whether, by analyzing extant rural populations from regions anciently occupied by specific Amerindian groups, we could identify potentially authentic mitochondrial lineages, a strategy we have named 'homopatric targeting'. Results We studied 173 individuals from Queixadinha, a small village located in a territory previously occupied by the now extinct Botocudo Amerindian nation. Pedigree analysis revealed 74 unrelated matrilineages, which were screened for Amerindian mtDNA lineages by restriction fragment length polymorphism. A cosmopolitan control group was composed of 100 individuals from surrounding cities. All Amerindian lineages identified had their hypervariable segment HVSI sequenced, yielding 13 Amerindian haplotypes in Queixadinha, nine of which were not present in available databanks or in the literature. Among these haplotypes, there was a significant excess of haplogroup C (70%) and absence of haplogroup A lineages, which were the most common in the control group. The novelty of the haplotypes and the excess of the C haplogroup suggested that we might indeed have identified Botocudo lineages. To validate our strategy, we studied teeth extracted from 14 ancient skulls of Botocudo Amerindians from the collection of the National Museum of Rio de Janeiro. We recovered mtDNA sequences from all the teeth, identifying only six different haplotypes (a low haplotypic diversity of 0.8352 ± 0.0617), one of which was present among the lineages observed in the extant individuals studied. Conclusions These findings validate the technique of homopatric targeting as a useful new strategy to study the peopling and colonization of the New World, especially when direct analysis of genetic material is not possible. PMID:21122100

  16. Mitochondrial DNA Diversity of Modern, Ancient and Wild Sheep (Ovis gmelinii anatolica) from Turkey: New Insights on the Evolutionary History of Sheep

    PubMed Central

    Pişkin, Evangelia; Engin, Atilla; Özer, Füsun; Yüncü, Eren; Doğan, Şükrü Anıl; Togan, İnci

    2013-01-01

    In the present study, to contribute to the understanding of the evolutionary history of sheep, the mitochondrial (mt) DNA polymorphisms occurring in modern Turkish native domestic (n = 628), modern wild (Ovis gmelinii anatolica) (n = 30) and ancient domestic sheep from Oylum Höyük in Kilis (n = 33) were examined comparatively with the accumulated data in the literature. The lengths (75 bp/76 bp) of the second and subsequent repeat units of the mtDNA control region (CR) sequences differentiated the five haplogroups (HPGs) observed in the domestic sheep into two genetic clusters as was already implied by other mtDNA markers: the first cluster being composed of HPGs A, B, D and the second cluster harboring HPGs C, E. To manifest genetic relatedness between wild Ovis gmelinii and domestic sheep haplogroups, their partial cytochrome B sequences were examined together on a median-joining network. The two parallel but wider aforementioned clusters were observed also on the network of Ovis gmelenii individuals, within which domestic haplogroups were embedded. The Ovis gmelinii wilds of the present day appeared to be distributed on two partially overlapping geographic areas parallel to the genetic clusters that they belong to (the first cluster being in the western part of the overall distribution). Thus, the analyses suggested that the domestic sheep may be the products of two maternally distinct ancestral Ovis gmelinii populations. Furthermore, Ovis gmelinii anatolica individuals exhibited a haplotype of HPG A (n = 22) and another haplotype (n = 8) from the second cluster which was not observed among the modern domestic sheep. HPG E, with the newly observed members (n = 11), showed signs of expansion. Studies of ancient and modern mtDNA suggest that HPG C frequency increased in the Southeast Anatolia from 6% to 22% some time after the beginning of the Hellenistic period, 500 years Before Common Era (BCE). PMID:24349158

  17. Mitochondrial DNA diversity of modern, ancient and wild sheep(Ovis gmelinii anatolica) from Turkey: new insights on the evolutionary history of sheep.

    PubMed

    Demirci, Sevgin; Koban Baştanlar, Evren; Dağtaş, Nihan Dilşad; Pişkin, Evangelia; Engin, Atilla; Ozer, Füsun; Yüncü, Eren; Doğan, Sükrü Anıl; Togan, Inci

    2013-01-01

    In the present study, to contribute to the understanding of the evolutionary history of sheep, the mitochondrial (mt) DNA polymorphisms occurring in modern Turkish native domestic (n = 628), modern wild (Ovis gmelinii anatolica) (n = 30) and ancient domestic sheep from Oylum Höyük in Kilis (n = 33) were examined comparatively with the accumulated data in the literature. The lengths (75 bp/76 bp) of the second and subsequent repeat units of the mtDNA control region (CR) sequences differentiated the five haplogroups (HPGs) observed in the domestic sheep into two genetic clusters as was already implied by other mtDNA markers: the first cluster being composed of HPGs A, B, D and the second cluster harboring HPGs C, E. To manifest genetic relatedness between wild Ovis gmelinii and domestic sheep haplogroups, their partial cytochrome B sequences were examined together on a median-joining network. The two parallel but wider aforementioned clusters were observed also on the network of Ovis gmelenii individuals, within which domestic haplogroups were embedded. The Ovis gmelinii wilds of the present day appeared to be distributed on two partially overlapping geographic areas parallel to the genetic clusters that they belong to (the first cluster being in the western part of the overall distribution). Thus, the analyses suggested that the domestic sheep may be the products of two maternally distinct ancestral Ovis gmelinii populations. Furthermore, Ovis gmelinii anatolica individuals exhibited a haplotype of HPG A (n = 22) and another haplotype (n = 8) from the second cluster which was not observed among the modern domestic sheep. HPG E, with the newly observed members (n = 11), showed signs of expansion. Studies of ancient and modern mtDNA suggest that HPG C frequency increased in the Southeast Anatolia from 6% to 22% some time after the beginning of the Hellenistic period, 500 years Before Common Era (BCE).

  18. Diversity, Phylogeny, and Host-Specialization of Hyaloperonospora Species in Korea.

    PubMed

    Lee, Jae Sung; Lee, Hyang Burm; Shin, Hyeon-Dong; Choi, Young-Joon

    2017-09-01

    The genus Hyaloperonospora (Peronosporaceae; Oomycota) is an obligate biotrophic group that causes downy mildew disease on the Brassicaceae and allied families of Brassicales, including many economically relevant crops, such as broccoli, cabbage, radish, rape, and wasabi. To investigate the diversity of Hyaloperonospora species in northeast Asia, we performed a morphological analysis for the dried herbarium specimens collected in Korea, along with molecular phylogenetic inferences based on internal transcribed spacer rDNA and cox 2 mtDNA sequences. It was confirmed that 14 species of Hyaloperonospora exist in Korea. Of these, three species, previously classified under the genus Peronospora , were combined to Hyaloperonospora : H. arabidis-glabrae comb. nov. (ex Arabis glabra ), H. nasturtii-montani comb. nov. (ex Rorippa indica ), and H. nasturtii-palustris comb. nov. (ex Rorippa palustris ). In addition, finding two potentially new species specific to northeast Asian plants is noteworthy in support of the view that the species abundance of Hyaloperonospora has been underestimated hitherto.

  19. Weak Population Structure in European Roe Deer (Capreolus capreolus) and Evidence of Introgressive Hybridization with Siberian Roe Deer (C. pygargus) in Northeastern Poland

    PubMed Central

    Olano-Marin, Juanita; Plis, Kamila; Sönnichsen, Leif; Borowik, Tomasz; Niedziałkowska, Magdalena; Jędrzejewska, Bogumiła

    2014-01-01

    We investigated contemporary and historical influences on the pattern of genetic diversity of European roe deer (Capreolus capreolus). The study was conducted in northeastern Poland, a zone where vast areas of primeval forests are conserved and where the European roe deer was never driven to extinction. A total of 319 unique samples collected in three sampling areas were genotyped at 16 microsatellites and one fragment (610 bp) of mitochondrial DNA (mtDNA) control region. Genetic diversity was high, and a low degree of genetic differentiation among sampling areas was observed with both microsatellites and mtDNA. No evidence of genetic differentiation between roe deer inhabiting open fields and forested areas was found, indicating that the ability of the species to exploit these contrasting environments might be the result of its phenotypic plasticity. Half of the studied individuals carried an mtDNA haplotype that did not belong to C. capreolus, but to a related species that does not occur naturally in the area, the Siberian roe deer (C. pygargus). No differentiation between individuals with Siberian and European mtDNA haplotypes was detected at microsatellite loci. Introgression of mtDNA of Siberian roe deer into the genome of European roe deer has recently been detected in eastern Europe. Such introgression might be caused by human-mediated translocations of Siberian roe deer within the range of European roe deer or by natural hybridization between these species in the past. PMID:25271423

  20. [Genetic characterization of different populations of Rhopilema esculentum based on the mitochondrial COI sequence.

    PubMed

    Li, Yu Long; Dong, Jing; Wang, Bin; Li, Yi Ping; Yu, Xu Guang; Fu, Jie; Wang, Wen Bo

    2016-07-01

    To investigate the genetic characterization and population genetic structure of Rhopilema esculentum, we sequenced the mtDNA COI gene (624 bp) in 56 individuals collected from Liaodong Bay and the Ganghwado Island in the estuarine waters of the Han River. In addition, the homologous sequences of other 15 individuals which were sampled from the Bohai and Yellow seas and Sea of Japan were analyzed. A total of 28 polymorphic nucleotide sites were detected among the 71 individuals, which defined 32 haplotypes. Haplotype diversity levels were high (0.91±0.06-0.94±0.01) in R. esculentum populations, whereas those of nucleotide diversity were moderate to low [(0.60±0.34)%-(0.68±0.40)%]. Compared with several other giant jellyfish species, the variation level of R. esculentum was high. Phylogeographic analysis of the COI region revealed two lineages. The pairwise F ST comparison and hierarchical molecular variance analysis (AMOVA) showed that significant population structure existed throughout the range of R. esculentum. The results of this study indicated that the life-cycle characteristics, together with possible anthropogenic introduction such as stock enhancement and the prevailing ocean currents in this region, were proposed as the main factors that determined the genetic patterns of R. esculentum.

  1. Genetic variation and evolutionary demography of Fenneropenaeus chinensis populations, as revealed by the analysis of mitochondrial control region sequences

    PubMed Central

    2010-01-01

    Genetic variation and evolutionary demography of the shrimp Fenneropenaeus chinensis were investigated using sequence data of the complete mitochondrial control region (CR). Fragments of 993 bp of the CR were sequenced for 93 individuals from five localities over most of the species' range in the Yellow Sea and the Bohai Sea. There were 84 variable sites defining 68 haplotypes. Haplotype diversity levels were very high (0.95 ± 0.03-0.99 ± 0.02) in F. chinensis populations, whereas those of nucleotide diversity were moderate to low (0.66 ± 0.36%-0.84 ± 0.46%). Analysis of molecular variance and conventional population statistics (FST ) revealed no significant genetic structure throughout the range of F. chinensis. Mismatch distribution, estimates of population parameters and neutrality tests revealed that the significant fluctuations and shallow coalescence of mtDNA genealogies observed were coincident with estimated demographic parameters and neutrality tests, in implying important past-population size fluctuations or range expansion. Isolation with Migration (IM) coalescence results suggest that F. chinensis, distributed along the coasts of northern China and the Korean Peninsula (about 1000 km apart), diverged recently, the estimated time-split being 12,800 (7,400-18,600) years ago. PMID:21637498

  2. Phylogeny and temporal diversification of darters (Percidae: Etheostomatinae).

    PubMed

    Near, Thomas J; Bossu, Christen M; Bradburd, Gideon S; Carlson, Rose L; Harrington, Richard C; Hollingsworth, Phillip R; Keck, Benjamin P; Etnier, David A

    2011-10-01

    Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.

  3. Killer Whale Nuclear Genome and mtDNA Reveal Widespread Population Bottleneck during the Last Glacial Maximum

    PubMed Central

    Moura, Andre E.; Janse van Rensburg, Charlene; Pilot, Malgorzata; Tehrani, Arman; Best, Peter B.; Thornton, Meredith; Plön, Stephanie; de Bruyn, P.J. Nico; Worley, Kim C.; Gibbs, Richard A.; Dahlheim, Marilyn E.; Hoelzel, Alan Rus

    2014-01-01

    Ecosystem function and resilience is determined by the interactions and independent contributions of individual species. Apex predators play a disproportionately determinant role through their influence and dependence on the dynamics of prey species. Their demographic fluctuations are thus likely to reflect changes in their respective ecological communities and habitat. Here, we investigate the historical population dynamics of the killer whale based on draft nuclear genome data for the Northern Hemisphere and mtDNA data worldwide. We infer a relatively stable population size throughout most of the Pleistocene, followed by an order of magnitude decline and bottleneck during the Weichselian glacial period. Global mtDNA data indicate that while most populations declined, at least one population retained diversity in a stable, productive ecosystem off southern Africa. We conclude that environmental changes during the last glacial period promoted the decline of a top ocean predator, that these events contributed to the pattern of diversity among extant populations, and that the relatively high diversity of a population currently in productive, stable habitat off South Africa suggests a role for ocean productivity in the widespread decline. PMID:24497033

  4. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle.

    PubMed

    Mannen, H; Kohno, M; Nagata, Y; Tsuji, S; Bradley, D G; Yeo, J S; Nyamsamba, D; Zagdsuren, Y; Yokohama, M; Nomura, K; Amano, T

    2004-08-01

    In order to clarify the origin and genetic diversity of cattle in North Eastern Asia, this study examined mitochondrial displacement loop sequence variation and frequencies of Bos taurus and Bos indicus Y chromosome haplotypes in Japanese, Mongolian, and Korean native cattle. In mitochondrial analyses, 20% of Mongolian cattle carried B. indicus mitochondrial haplotypes, but Japanese and Korean cattle carried only B. taurus haplotypes. In contrast, all samples revealed B. taurus Y chromosome haplotypes. This may be due to the import of zebu and other cattle during the Mongol Empire era with subsequent crossing with native taurine cattle. B. taurus mtDNA sequences fall into several geographically distributed haplogroups and one of these, termed here T4, is described in each of the test samples, but has not been observed in Near Eastern, European or African cattle. This may have been locally domesticated from an East Eurasian strain of Bos primigenius.

  5. Biparental inheritance of organelles in Pelargonium: evidence for intergenomic recombination of mitochondrial DNA.

    PubMed

    Apitz, Janina; Weihe, Andreas; Pohlheim, Frank; Börner, Thomas

    2013-02-01

    While uniparental transmission of mtDNA is widespread and dominating in eukaryotes leaving mutation as the major source of genotypic diversity, recently, biparental inheritance of mitochondrial genes has been demonstrated in reciprocal crosses of Pelargonium zonale and P. inquinans. The thereby arising heteroplasmy carries the potential for recombination between mtDNAs of different descent, i.e. between the parental mitochondrial genomes. We have analyzed these Pelargonium hybrids for mitochondrial intergenomic recombination events by examining differences in DNA blot hybridization patterns of the mitochondrial genes atp1 and cob. Further investigation of these genes and their flanking regions using nucleotide sequence polymorphisms and PCR revealed DNA segments in the progeny, which contained both P. zonale and P. inquinans sequences suggesting an intergenomic recombination in hybrids of Pelargonium. This turns Pelargonium into an interesting subject for studies of recombination and evolutionary dynamics of mitochondrial genomes.

  6. mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves.

    PubMed

    Pang, Jun-Feng; Kluetsch, Cornelya; Zou, Xiao-Ju; Zhang, Ai-bing; Luo, Li-Yang; Angleby, Helen; Ardalan, Arman; Ekström, Camilla; Sköllermo, Anna; Lundeberg, Joakim; Matsumura, Shuichi; Leitner, Thomas; Zhang, Ya-Ping; Savolainen, Peter

    2009-12-01

    There is no generally accepted picture of where, when, and how the domestic dog originated. Previous studies of mitochondrial DNA (mtDNA) have failed to establish the time and precise place of origin because of lack of phylogenetic resolution in the so far studied control region (CR), and inadequate sampling. We therefore analyzed entire mitochondrial genomes for 169 dogs to obtain maximal phylogenetic resolution and the CR for 1,543 dogs across the Old World for a comprehensive picture of geographical diversity. Hereby, a detailed picture of the origins of the dog can for the first time be suggested. We obtained evidence that the dog has a single origin in time and space and an estimation of the time of origin, number of founders, and approximate region, which also gives potential clues about the human culture involved. The analyses showed that dogs universally share a common homogenous gene pool containing 10 major haplogroups. However, the full range of genetic diversity, all 10 haplogroups, was found only in southeastern Asia south of Yangtze River, and diversity decreased following a gradient across Eurasia, through seven haplogroups in Central China and five in North China and Southwest (SW)Asia, down to only four haplogroups in Europe. The mean sequence distance to ancestral haplotypes indicates an origin 5,400-16,300 years ago (ya) from at least 51 female wolf founders. These results indicate that the domestic dog originated in southern China less than 16,300 ya, from several hundred wolves. The place and time coincide approximately with the origin of rice agriculture, suggesting that the dogs may have originated among sedentary hunter-gatherers or early farmers, and the numerous founders indicate that wolf taming was an important culture trait.

  7. Mitochondrial DNA phylogeography of the Norway rat.

    PubMed

    Song, Ying; Lan, Zhenjiang; Kohn, Michael H

    2014-01-01

    Central Eastern Asia, foremost the area bordering northern China and Mongolia, has been thought to be the geographic region where Norway rats (Rattus norvegicus) have originated. However recent fossil analyses pointed to their origin in southern China. Moreover, whereas analyses of fossils dated the species' origin as ∼ 1.2-1.6 million years ago (Mya), molecular analyses yielded ∼ 0.5-2.9 Mya. Here, to study the geographic origin of the Norway rat and its spread across the globe we analyzed new and all published mitochondrial DNA cytochrome-b (cyt-b; N = 156) and D-loop (N = 212) sequences representing wild rats from four continents and select inbred strains. Our results are consistent with an origin of the Norway rat in southern China ∼ 1.3 Mya, subsequent prehistoric differentiation and spread in China and Asia from an initially weakly structured ancestral population, followed by further spread and differentiation across the globe during historic times. The recent spreading occurred mostly from derived European populations rather than from archaic Asian populations. We trace laboratory strains to wild lineages from Europe and North America and these represent a subset of the diversity of the rat; leaving Asian lineages largely untapped as a resource for biomedical models. By studying rats from Europe we made the observation that mtDNA diversity cannot be interpreted without consideration of pest control and, possibly, the evolution of rodenticide resistance. However, demographic models explored by forward-time simulations cannot fully explain the low mtDNA diversity of European rats and lack of haplotype sharing with their source from Asia. Comprehensive nuclear marker analyses of a larger sample of Norway rats representing the world are needed to better resolve the evolutionary history of wild rats and of laboratory rats, as well as to better understand the evolution of anticoagulant resistance.

  8. Phylogeography of the antilopine wallaroo (Macropus antilopinus) across tropical northern Australia.

    PubMed

    Wadley, Jessica J; Fordham, Damien A; Thomson, Vicki A; Ritchie, Euan G; Austin, Jeremy J

    2016-11-01

    The distribution of antilopine wallaroo, Macropus antilopinus , is marked by a break in the species' range between Queensland and the Northern Territory, coinciding with the Carpentarian barrier. Previous work on M. antilopinus revealed limited genetic differentiation between the Northern Territory and Queensland M. antilopinus populations across this barrier. The study also identified a number of divergent lineages in the Northern Territory, but was unable to elucidate any geographic structure. Here, we re-examine these results to (1) determine phylogeographic patterns across the range of M. antilopinus and (2) infer the biogeographic barriers associated with these patterns. The tropical savannahs of northern Australia: from the Cape York Peninsula in the east, to the Kimberley in the west. We examined phylogeographic patterns in M. antilopinus using a larger number of samples and three mtDNA genes: NADH dehydrogenase subunit 2, cytochrome b, and the control region. Two datasets were generated and analyzed: (1) a subset of samples with all three mtDNA regions concatenated together and (2) all samples for just control region sequences that included samples from the previous study. Analysis included generating phylogenetic trees based on Bayesian analysis and intraspecific median-joining networks. The contemporary spatial structure of M. antilopinus mtDNA lineages revealed five shallow clades and a sixth, divergent lineage. The genetic differences that we found between Queensland and Northern Territory M. antilopinus samples confirmed the split in the geographic distribution of the species. We also found weak genetic differentiation between Northern Territory samples and those from the Kimberley region of Western Australia, possibly due to the Kimberley Plateau-Arnhem Land barrier. Within the Northern Territory, two clades appear to be parapatric in the west, while another two clades are broadly sympatric across the Northern Territory. MtDNA diversity of M. antilopinus revealed an unexpectedly complex evolutionary history involving multiple sympatric and parapatric mtDNA clades across northern Australia. These phylogeographic patterns highlight the importance of investigating genetic variation across distributions of species and integrating this information into biodiversity conservation.

  9. Inferring genealogical processes from patterns of Bronze-Age and modern DNA variation in Sardinia.

    PubMed

    Ghirotto, Silvia; Mona, Stefano; Benazzo, Andrea; Paparazzo, Francesco; Caramelli, David; Barbujani, Guido

    2010-04-01

    The ancient inhabitants of a region are often regarded as ancestral, and hence genetically related, to the modern dwellers (for instance, in studies of admixture), but so far, this assumption has not been tested empirically using ancient DNA data. We studied mitochondrial DNA (mtDNA) variation in Sardinia, across a time span of 2,500 years, comparing 23 Bronze-Age (nuragic) mtDNA sequences with those of 254 modern individuals from two regions, Ogliastra (a likely genetic isolate) and Gallura, and considering the possible impact of gene flow from mainland Italy. To understand the genealogical relationships between past and present populations, we developed seven explicit demographic models; we tested whether these models can account for the levels and patterns of genetic diversity in the data and which one does it best. Extensive simulation based on a serial coalescent algorithm allowed us to compare the posterior probability of each model and estimate the relevant evolutionary (mutation and migration rates) and demographic (effective population sizes, times since population splits) parameters, by approximate Bayesian computations. We then validated the analyses by investigating how well parameters estimated from the simulated data can reproduce the observed data set. We show that a direct genealogical continuity between Bronze-Age Sardinians and the current people of Ogliastra, but not Gallura, has a much higher probability than any alternative scenarios and that genetic diversity in Gallura evolved largely independently, owing in part to gene flow from the mainland.

  10. Population genetics and evaluation of genetic evidence for subspecies in the Semipalmated Sandpiper (Calidris pusilla)

    USGS Publications Warehouse

    Miller, Mark P.; Gratto-Trevor, Cheri; Haig, Susan M.; Mizrahi, David S.; Mitchell, Melanie M.; Mullins, Thomas D.

    2013-01-01

    Semipalmated Sandpipers (Calidris pusilla) are among the most common North American shorebirds. Breeding in Arctic North America, this species displays regional differences in migratory pathways and possesses longitudinal bill length variation. Previous investigations suggested that genetic structure may occur within Semipalmated Sandpipers and that three subspecies corresponding to western, central, and eastern breeding groups exist. In this study, mitochondrial control region sequences and nuclear microsatellite loci were used to analyze DNA of birds (microsatellites: n = 120; mtDNA: n = 114) sampled from seven North American locations. Analyses designed to quantify genetic structure and diversity patterns, evaluate genetic evidence for population size changes, and determine if genetic data support the existence of Semipalmated Sandpiper subspecies were performed. Genetic structure based only on the mtDNA data was observed, whereas the microsatellite loci provided no evidence of genetic differentiation. Differentiation among locations and regions reflected allele frequency differences rather than separate phylogenetic groups, and similar levels of genetic diversity were noted. Combined, the two data sets provided no evidence to support the existence of subspecies and were not useful for determining migratory connectivity between breeding sites and wintering grounds. Birds from western and central groups displayed signatures of population expansions, whereas the eastern group was more consistent with a stable overall population. Results of this analysis suggest that the eastern group was the source of individuals that colonized the central and western regions currently utilized by Semipalmated Sandpipers.

  11. Are lowland rainforests really evolutionary museums? Phylogeography of the green hylia (Hylia prasina) in the Afrotropics.

    PubMed

    Marks, Ben D

    2010-04-01

    A recent trend in the literature highlights the special role that tropical montane regions and habitat transitions peripheral to large blocks of lowland rainforest play in the diversification process. The emerging view is one of lowland rainforests as evolutionary 'museums'; where biotic diversity is maintained over evolutionary time, and additional diversity is accrued from peripheral areas, but where there has been little recent diversification. This leads to the prediction of genetic diversity without geographic structure in widespread taxa. Here, I assess the notion of the lowland rainforest 'museum' with a phylogeographic study of the green hylia (Aves: Sylviidae: Hylia prasina) using 1132 bp of mtDNA sequence data. The distribution of genetic diversity within the mainland subspecies of Hylia reveals five highly divergent haplotype groups distributed in accordance with broad-scale areas of endemism in the Afrotropics. This pattern of genetic diversity within a currently described subspecies refutes the characterization of lowland forests as evolutionary museums. If the pattern of geographic variation in Hylia occurs broadly in widespread rainforest species, conservation policy makers may need to rethink their priorities for conservation in the Afrotropics. (c) 2009 Elsevier Inc. All rights reserved.

  12. A somatic T15091C mutation in the Cytb gene of mouse mitochondrial DNA dominantly induces respiration defects.

    PubMed

    Hayashi, Chisato; Takibuchi, Gaku; Shimizu, Akinori; Mito, Takayuki; Ishikawa, Kaori; Nakada, Kazuto; Hayashi, Jun-Ichi

    2015-08-07

    Our previous studies provided evidence that mammalian mitochondrial DNA (mtDNA) mutations that cause mitochondrial respiration defects behave in a recessive manner, because the induction of respiration defects could be prevented with the help of a small proportion (10%-20%) of mtDNA without the mutations. However, subsequent studies found the induction of respiration defects by the accelerated accumulation of a small proportion of mtDNA with various somatic mutations, indicating the presence of mtDNA mutations that behave in a dominant manner. Here, to provide the evidence for the presence of dominant mutations in mtDNA, we used mouse lung carcinoma P29 cells and examined whether some mtDNA molecules possess somatic mutations that dominantly induce respiration defects. Cloning and sequence analysis of 40-48 mtDNA molecules from P29 cells was carried out to screen for somatic mutations in protein-coding genes, because mutations in these genes could dominantly regulate respiration defects by formation of abnormal polypeptides. We found 108 missense mutations existing in one or more of 40-48 mtDNA molecules. Of these missense mutations, a T15091C mutation in the Cytb gene was expected to be pathogenic due to the presence of its orthologous mutation in mtDNA from a patient with cardiomyopathy. After isolation of many subclones from parental P29 cells, we obtained subclones with various proportions of T15091C mtDNA, and showed that the respiration defects were induced in a subclone with only 49% T15091C mtDNA. Because the induction of respiration defects could not be prevented with the help of the remaining 51% mtDNA without the T15091C mutation, the results indicate that the T15091C mutation in mtDNA dominantly induced the respiration defects. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Extensive paternal mtDNA leakage in natural populations of Drosophila melanogaster.

    PubMed

    Nunes, Maria D S; Dolezal, Marlies; Schlötterer, Christian

    2013-04-01

    Strict maternal inheritance is considered a hallmark of animal mtDNA. Although recent reports suggest that paternal leakage occurs in a broad range of species, it is still considered an exceptionally rare event. To evaluate the impact of paternal leakage on the evolution of mtDNA, it is essential to reliably estimate the frequency of paternal leakage in natural populations. Using allele-specific real-time quantitative PCR (RT-qPCR), we show that heteroplasmy is common in natural populations with at least 14% of the individuals carrying multiple mitochondrial haplotypes. However, the average frequency of the minor mtDNA haplotype is low (0.8%), which suggests that this pervasive heteroplasmy has not been noticed before due to a lack of power in sequencing surveys. Based on the distribution of mtDNA haplotypes in the offspring of heteroplasmic mothers, we found no evidence for strong selection against one of the haplotypes. We estimated that the rate of paternal leakage is 6% and that at least 100 generations are required for complete sorting of mtDNA haplotypes. Despite the high proportion of heteroplasmic individuals in natural populations, we found no evidence for recombination between mtDNA molecules, suggesting that either recombination is rare or recombinant haplotypes are counter-selected. Our results indicate that evolutionary studies using mtDNA as a marker might be biased by paternal leakage in this species. © 2013 Blackwell Publishing Ltd.

  14. Genetic Evidence for Elevated Pathogenicity of Mitochondrial DNA Heteroplasmy in Autism Spectrum Disorder.

    PubMed

    Wang, Yiqin; Picard, Martin; Gu, Zhenglong

    2016-10-01

    Increasing clinical and biochemical evidence implicate mitochondrial dysfunction in the pathophysiology of Autism Spectrum Disorder (ASD), but little is known about the biological basis for this connection. A possible cause of ASD is the genetic variation in the mitochondrial DNA (mtDNA) sequence, which has yet to be thoroughly investigated in large genomic studies of ASD. Here we evaluated mtDNA variation, including the mixture of different mtDNA molecules in the same individual (i.e., heteroplasmy), using whole-exome sequencing data from mother-proband-sibling trios from simplex families (n = 903) where only one child is affected by ASD. We found that heteroplasmic mutations in autistic probands were enriched at non-polymorphic mtDNA sites (P = 0.0015), which were more likely to confer deleterious effects than heteroplasmies at polymorphic mtDNA sites. Accordingly, we observed a ~1.5-fold enrichment of nonsynonymous mutations (P = 0.0028) as well as a ~2.2-fold enrichment of predicted pathogenic mutations (P = 0.0016) in autistic probands compared to their non-autistic siblings. Both nonsynonymous and predicted pathogenic mutations private to probands conferred increased risk of ASD (Odds Ratio, OR[95% CI] = 1.87[1.14-3.11] and 2.55[1.26-5.51], respectively), and their influence on ASD was most pronounced in families with probands showing diminished IQ and/or impaired social behavior compared to their non-autistic siblings. We also showed that the genetic transmission pattern of mtDNA heteroplasmies with high pathogenic potential differed between mother-autistic proband pairs and mother-sibling pairs, implicating developmental and possibly in utero contributions. Taken together, our genetic findings substantiate pathogenic mtDNA mutations as a potential cause for ASD and synergize with recent work calling attention to their unique metabolic phenotypes for diagnosis and treatment of children with ASD.

  15. Mitochondrial DNA mutation screening of male patients with obstructive sleep apnea-hypopnea syndrome.

    PubMed

    Huang, Xiao-Ying; Li, Hong; Xu, Xiao-Mei; Wang, Liang-Xing

    2014-08-01

    The aim of the present study was to analyze the differences between the genes of the mitochondrial DNA (mtDNA) displacement loop (D-loop) region and the Cambridge Reference sequence, in order to screen the mutation sites and investigate the correlation between mutations, clinical parameters and complications associated with obstructive sleep apnea-hypopnea syndrome (OSAHS). mtDNA was obtained from male patients with OSAHS in the Zhejiang Province. In total, 60 male patients with OSAHS and 102 healthy adults were assessed to determine the levels of fasting blood glucose, total cholesterol, triglyceride (TG) and high-density and low-density lipoproteins (LDL). Furthermore, peripheral mtDNA was extracted and bidirectional sequencing was conducted to enable mutation screening. In the mtDNA D-loop region, 178 mutation sites were identified, of which 115 sites were present in the two groups. The number of non-common sites in the OSAHS group was significantly higher compared with the control group (P<0.05). No statistically significant difference was observed in the mutations among the mild, moderate and severe OSAHS groups (P>0.05). A total of 21 cases in the severe OSAHS group exhibited mutation rates of >10%. In the control group, there were 24 cases where the np73A-G and np263A-G mutations were predominant. The np303-np315 region was identified to be the highly variable region and various mutation forms were observed. Statistically significant differences were observed in the neck perimeter, TG and LDL levels among the OSAHS-no-mutation subgroups (P<0.05) and LDL was shown to be associated with an mtDNA mutation in the OSAHS group. Numerous polymorphic mutation sites were identified in the mtDNA D-loop region of the OSAHS group. Therefore, mtDNA mutation sites may be closely associated with the clinical manifestations and complications of OSAHS.

  16. Development of forensic-quality full mtGenome haplotypes: success rates with low template specimens.

    PubMed

    Just, Rebecca S; Scheible, Melissa K; Fast, Spence A; Sturk-Andreaggi, Kimberly; Higginbotham, Jennifer L; Lyons, Elizabeth A; Bush, Jocelyn M; Peck, Michelle A; Ring, Joseph D; Diegoli, Toni M; Röck, Alexander W; Huber, Gabriela E; Nagl, Simone; Strobl, Christina; Zimmermann, Bettina; Parson, Walther; Irwin, Jodi A

    2014-05-01

    Forensic mitochondrial DNA (mtDNA) testing requires appropriate, high quality reference population data for estimating the rarity of questioned haplotypes and, in turn, the strength of the mtDNA evidence. Available reference databases (SWGDAM, EMPOP) currently include information from the mtDNA control region; however, novel methods that quickly and easily recover mtDNA coding region data are becoming increasingly available. Though these assays promise to both facilitate the acquisition of mitochondrial genome (mtGenome) data and maximize the general utility of mtDNA testing in forensics, the appropriate reference data and database tools required for their routine application in forensic casework are lacking. To address this deficiency, we have undertaken an effort to: (1) increase the large-scale availability of high-quality entire mtGenome reference population data, and (2) improve the information technology infrastructure required to access/search mtGenome data and employ them in forensic casework. Here, we describe the application of a data generation and analysis workflow to the development of more than 400 complete, forensic-quality mtGenomes from low DNA quantity blood serum specimens as part of a U.S. National Institute of Justice funded reference population databasing initiative. We discuss the minor modifications made to a published mtGenome Sanger sequencing protocol to maintain a high rate of throughput while minimizing manual reprocessing with these low template samples. The successful use of this semi-automated strategy on forensic-like samples provides practical insight into the feasibility of producing complete mtGenome data in a routine casework environment, and demonstrates that large (>2kb) mtDNA fragments can regularly be recovered from high quality but very low DNA quantity specimens. Further, the detailed empirical data we provide on the amplification success rates across a range of DNA input quantities will be useful moving forward as PCR-based strategies for mtDNA enrichment are considered for targeted next-generation sequencing workflows. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Development of a Multiplex Single Base Extension Assay for Mitochondrial DNA Haplogroup Typing

    PubMed Central

    Nelson, Tahnee M.; Just, Rebecca S.; Loreille, Odile; Schanfield, Moses S.; Podini, Daniele

    2007-01-01

    Aim To provide a screening tool to reduce time and sample consumption when attempting mtDNA haplogroup typing. Methods A single base primer extension assay was developed to enable typing, in a single reaction, of twelve mtDNA haplogroup specific polymorphisms. For validation purposes a total of 147 samples were tested including 73 samples successfully haplogroup typed using mtDNA control region (CR) sequence data, 21 samples inconclusively haplogroup typed by CR data, 20 samples previously haplogroup typed using restriction fragment length polymorphism (RFLP) analysis, and 31 samples of known ancestral origin without previous haplogroup typing. Additionally, two highly degraded human bones embalmed and buried in the early 1950s were analyzed using the single nucleotide polymorphisms (SNP) multiplex. Results When the SNP multiplex was used to type the 96 previously CR sequenced specimens, an increase in haplogroup or macrohaplogroup assignment relative to conventional CR sequence analysis was observed. The single base extension assay was also successfully used to assign a haplogroup to decades-old, embalmed skeletal remains dating to World War II. Conclusion The SNP multiplex was successfully used to obtain haplogroup status of highly degraded human bones, and demonstrated the ability to eliminate possible contributors. The SNP multiplex provides a low-cost, high throughput method for typing of mtDNA haplogroups A, B, C, D, E, F, G, H, L1/L2, L3, M, and N that could be useful for screening purposes for human identification efforts and anthropological studies. PMID:17696300

  18. Repetitive transpositions of mitochondrial DNA sequences to the nucleus during the radiation of horseshoe bats (Rhinolophus, Chiroptera).

    PubMed

    Shi, Huizhen; Dong, Ji; Irwin, David M; Zhang, Shuyi; Mao, Xiuguang

    2016-05-01

    Transposition of mitochondrial DNA into the nucleus, which gives rise to nuclear mitochondrial DNAs (NUMTs), has been well documented in eukaryotes. However, very few studies have assessed the frequency of these transpositions during the evolutionary history of a specific taxonomic group. Here we used the horseshoe bats (Rhinolophus) as a case study to determine the frequency and relative timing of nuclear transfers of mitochondrial control region sequences. For this, phylogenetic and coalescent analyzes were performed on NUMTs and authentic mtDNA sequences generated from eight horseshoe bat species. Our results suggest at least three independent transpositions, including two ancient and one more recent, during the evolutionary history of Rhinolophus. The two ancient transpositions are represented by the NUMT-1 and -2 clades, with each clade consisting of NUMTs from almost all studied species but originating from different portions of the mtDNA genome. Furthermore, estimates of the most recent common ancestor for each clade corresponded to the time of the initial diversification of this genus. The recent transposition is represented by NUMT-3, which was discovered only in a specific subgroup of Rhinolophus and exhibited a close relationship to its mitochondrial counterpart. Our similarity searches of mtDNA in the R. ferrumequinum genome confirmed the presence of NUMT-1 and NUMT-2 clade sequences and, for the first time, assessed the extent of NUMTs in a bat genome. To our knowledge, this is the first study to report on the frequency of transpositions of mtDNA occurring before the common ancestry of a genus. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer.

    PubMed

    Goremykin, Vadim V; Salamini, Francesco; Velasco, Riccardo; Viola, Roberto

    2009-01-01

    The mitochondrial genome of grape (Vitis vinifera), the largest organelle genome sequenced so far, is presented. The genome is 773,279 nt long and has the highest coding capacity among known angiosperm mitochondrial DNAs (mtDNAs). The proportion of promiscuous DNA of plastid origin in the genome is also the largest ever reported for an angiosperm mtDNA, both in absolute and relative terms. In all, 42.4% of chloroplast genome of Vitis has been incorporated into its mitochondrial genome. In order to test if horizontal gene transfer (HGT) has also contributed to the gene content of the grape mtDNA, we built phylogenetic trees with the coding sequences of mitochondrial genes of grape and their homologs from plant mitochondrial genomes. Many incongruent gene tree topologies were obtained. However, the extent of incongruence between these gene trees is not significantly greater than that observed among optimal trees for chloroplast genes, the common ancestry of which has never been in doubt. In both cases, we attribute this incongruence to artifacts of tree reconstruction, insufficient numbers of characters, and gene paralogy. This finding leads us to question the recent phylogenetic interpretation of Bergthorsson et al. (2003, 2004) and Richardson and Palmer (2007) that rampant HGT into the mtDNA of Amborella best explains phylogenetic incongruence between mitochondrial gene trees for angiosperms. The only evidence for HGT into the Vitis mtDNA found involves fragments of two coding sequences stemming from two closteroviruses that cause the leaf roll disease of this plant. We also report that analysis of sequences shared by both chloroplast and mitochondrial genomes provides evidence for a previously unknown gene transfer route from the mitochondrion to the chloroplast.

  20. Novel microsatellite DNA markers indicate strict parthenogenesis and few genotypes in the invasive willow sawfly Nematus oligospilus.

    PubMed

    Caron, V; Norgate, M; Ede, F J; Nyman, T; Sunnucks, P

    2013-02-01

    Invasive organisms can have major impacts on the environment. Some invasive organisms are parthenogenetic in their invasive range and, therefore, exist as a number of asexual lineages (=clones). Determining the reproductive mode of invasive species has important implications for understanding the evolutionary genetics of such species, more especially, for management-relevant traits. The willow sawfly Nematus oligospilus Förster (Hymenoptera: Tenthredinidae) has been introduced unintentionally into several countries in the Southern Hemisphere where it has subsequently become invasive. To assess the population expansion, reproductive mode and host-plant relationships of this insect, microsatellite markers were developed and applied to natural populations sampled from the native and expanded range, along with sequencing of the cytochrome-oxidase I mitochondrial DNA (mtDNA) region. Other tenthredinids across a spectrum of taxonomic similarity to N. oligospilus and having a range of life strategies were also tested. Strict parthenogenesis was apparent within invasive N. oligospilus populations throughout the Southern Hemisphere, which comprised only a small number of genotypes. Sequences of mtDNA were identical for all individuals tested in the invasive range. The microsatellite markers were used successfully in several sawfly species, especially Nematus spp. and other genera of the Nematini tribe, with the degree of success inversely related to genetic divergence as estimated from COI sequences. The confirmation of parthenogenetic reproduction in N. oligospilus and the fact that it has a very limited pool of genotypes have important implications for understanding and managing this species and its biology, including in terms of phenotypic diversity, host relationships, implications for spread and future adaptive change. It would appear to be an excellent model study system for understanding evolution of invasive parthenogens that diverge without sexual reproduction and genetic recombination.

  1. Y-chromosome and mtDNA variation confirms independent domestications and directional hybridization in South American camelids.

    PubMed

    Marín, J C; Romero, K; Rivera, R; Johnson, W E; González, B A

    2017-10-01

    Investigations of genetic diversity and domestication in South American camelids (SAC) have relied on autosomal microsatellite and maternally-inherited mitochondrial data. We present the first integrated analysis of domestic and wild SAC combining male and female sex-specific markers (male specific Y-chromosome and female-specific mtDNA sequence variation) to assess: (i) hypotheses about the origin of domestic camelids, (ii) directionality of introgression among domestic and/or wild taxa as evidence of hybridization and (iii) currently recognized subspecies patterns. Three male-specific Y-chromosome markers and control region sequences of mitochondrial DNA are studied here. Although no sequence variation was found in SRY and ZFY, there were seven variable sites in DBY generating five haplotypes on the Y-chromosome. The haplotype network showed clear separation between haplogroups of guanaco-llama and vicuña-alpaca, indicating two genetically distinct patrilineages with near absence of shared haplotypes between guanacos and vicuñas. Although we document some examples of directional hybridization, the patterns strongly support the hypothesis that llama (Lama glama) is derived from guanaco (Lama guanicoe) and the alpaca (Vicugna pacos) from vicuña (Vicugna vicugna). Within male guanacos we identified a haplogroup formed by three haplotypes with different geographical distributions, the northernmost of which (Peru and northern Chile) was also observed in llamas, supporting the commonly held hypothesis that llamas were domesticated from the northernmost populations of guanacos (L. g. cacilensis). Southern guanacos shared the other two haplotypes. A second haplogroup, consisting of two haplotypes, was mostly present in vicuñas and alpacas. However, Y-chromosome variation did not distinguish the two subspecies of vicuñas. © 2017 Stichting International Foundation for Animal Genetics.

  2. Repair of DNA damage caused by cytosine deamination in mitochondrial DNA of forensic case samples.

    PubMed

    Gorden, Erin M; Sturk-Andreaggi, Kimberly; Marshall, Charla

    2018-05-01

    DNA sequence damage from cytosine deamination is well documented in degraded samples, such as those from ancient and forensic contexts. This study examined the effect of a DNA repair treatment on mitochondrial DNA (mtDNA) from aged and degraded skeletal samples. DNA extracts from 21 non-probative, degraded skeletal samples (aged 50-70 years) were utilized for the analysis. A portion of each sample extract was subjected to DNA repair using a commercial repair kit, the New England BioLabs' NEBNext FFPE DNA Repair Kit (Ipswich, MA). MtDNA was enriched using PCR and targeted capture in a side-by-side experiment of untreated and repaired DNA. Sequencing was performed using both traditional (Sanger-type; STS) and next-generation sequencing (NGS) methods Although cytosine deamination was evident in the mtDNA sequence data, the observed level of damaged bases varied by sequencing method as well as by enrichment type. The STS PCR amplicon data did not show evidence of cytosine deamination that could be distinguished from background signal in either the untreated or repaired sample set. However, the same PCR amplicons showed 850 C → T/G → A substitutions consistent with cytosine deamination with variant frequencies (VFs) of up to 25% when sequenced using NGS methods The occurrence of base misincorporation due to cytosine deamination was reduced by 98% (to 10) in the NGS amplicon data after repair. The NGS capture data indicated low levels (1-2%) of cytosine deamination in mtDNA fragments that was effectively mitigated by DNA repair. The observed difference in the level of cytosine deamination between the PCR and capture enrichment methods can be attributed to the greater propensity for stochastic effects from the PCR enrichment technique employed (e.g., low template input, increased PCR cycles). Altogether these results indicate that DNA repair may be required when sequencing PCR-amplified DNA from degraded forensic case samples with NGS methods. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. East Asian mtDNA haplogroup determination in Koreans: haplogroup-level coding region SNP analysis and subhaplogroup-level control region sequence analysis.

    PubMed

    Lee, Hwan Young; Yoo, Ji-Eun; Park, Myung Jin; Chung, Ukhee; Kim, Chong-Youl; Shin, Kyoung-Jin

    2006-11-01

    The present study analyzed 21 coding region SNP markers and one deletion motif for the determination of East Asian mitochondrial DNA (mtDNA) haplogroups by designing three multiplex systems which apply single base extension methods. Using two multiplex systems, all 593 Korean mtDNAs were allocated into 15 haplogroups: M, D, D4, D5, G, M7, M8, M9, M10, M11, R, R9, B, A, and N9. As the D4 haplotypes occurred most frequently in Koreans, the third multiplex system was used to further define D4 subhaplogroups: D4a, D4b, D4e, D4g, D4h, and D4j. This method allowed the complementation of coding region information with control region mutation motifs and the resultant findings also suggest reliable control region mutation motifs for the assignment of East Asian mtDNA haplogroups. These three multiplex systems produce good results in degraded samples as they contain small PCR products (101-154 bp) for single base extension reactions. SNP scoring was performed in 101 old skeletal remains using these three systems to prove their utility in degraded samples. The sequence analysis of mtDNA control region with high incidence of haplogroup-specific mutations and the selective scoring of highly informative coding region SNPs using the three multiplex systems are useful tools for most applications involving East Asian mtDNA haplogroup determination and haplogroup-directed stringent quality control.

  4. An Analysis of Enzyme Kinetics Data for Mitochondrial DNA Strand Termination by Nucleoside Reverse Transcription Inhibitors

    PubMed Central

    Wendelsdorf, Katherine V.; Song, Zhuo; Cao, Yang; Samuels, David C.

    2009-01-01

    Nucleoside analogs used in antiretroviral treatment have been associated with mitochondrial toxicity. The polymerase-γ hypothesis states that this toxicity stems from the analogs' inhibition of the mitochondrial DNA polymerase (polymerase-γ) leading to mitochondrial DNA (mtDNA) depletion. We have constructed a computational model of the interaction of polymerase-γ with activated nucleoside and nucleotide analog drugs, based on experimentally measured reaction rates and base excision rates, together with the mtDNA genome size, the human mtDNA sequence, and mitochondrial dNTP concentrations. The model predicts an approximately 1000-fold difference in the activated drug concentration required for a 50% probability of mtDNA strand termination between the activated di-deoxy analogs d4T, ddC, and ddI (activated to ddA) and the activated forms of the analogs 3TC, TDF, AZT, FTC, and ABC. These predictions are supported by experimental and clinical data showing significantly greater mtDNA depletion in cell culture and patient samples caused by the di-deoxy analog drugs. For zidovudine (AZT) we calculated a very low mtDNA replication termination probability, in contrast to its reported mitochondrial toxicity in vitro and clinically. Therefore AZT mitochondrial toxicity is likely due to a mechanism that does not involve strand termination of mtDNA replication. PMID:19132079

  5. Mutational load of the mitochondrial genome predicts pathological features and biochemical recurrence in prostate cancer.

    PubMed

    Kalsbeek, Anton M F; Chan, Eva F K; Grogan, Judith; Petersen, Desiree C; Jaratlerdsiri, Weerachai; Gupta, Ruta; Lyons, Ruth J; Haynes, Anne-Maree; Horvath, Lisa G; Kench, James G; Stricker, Phillip D; Hayes, Vanessa M

    2016-10-05

    Prostate cancer management is complicated by extreme disease heterogeneity, which is further limited by availability of prognostic biomarkers. Recognition of prostate cancer as a genetic disease has prompted a focus on the nuclear genome for biomarker discovery, with little attention given to the mitochondrial genome. While it is evident that mitochondrial DNA (mtDNA) mutations are acquired during prostate tumorigenesis, no study has evaluated the prognostic value of mtDNA variation. Here we used next-generation sequencing to interrogate the mitochondrial genomes from prostate tissue biopsies and matched blood of 115 men having undergone a radical prostatectomy for which there was a mean of 107 months clinical follow-up. We identified 74 unique prostate cancer specific somatic mtDNA variants in 50 patients, providing significant expansion to the growing catalog of prostate cancer mtDNA mutations. While no single variant or variant cluster showed recurrence across multiple patients, we observe a significant positive correlation between the total burden of acquired mtDNA variation and elevated Gleason Score at diagnosis and biochemical relapse. We add to accumulating evidence that total acquired genomic burden, rather than specific mtDNA mutations, has diagnostic value. This is the first study to demonstrate the prognostic potential of mtDNA mutational burden in prostate cancer.

  6. Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload.

    PubMed

    Fetterman, Jessica L; Zelickson, Blake R; Johnson, Larry W; Moellering, Douglas R; Westbrook, David G; Pompilius, Melissa; Sammy, Melissa J; Johnson, Michelle; Dunham-Snary, Kimberly J; Cao, Xuemei; Bradley, Wayne E; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G; Kesterson, Robert A; Dell'italia, Louis J; Darley-Usmar, Victor M; Welch, Danny R; Ballinger, Scott W

    2013-10-15

    Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mtDNA sequence variation contributes to disease susceptibility. In the present study we show a novel animal model of mtDNA polymorphisms, the MNX (mitochondrial-nuclear exchange) mouse, in which the mtDNA from the C3H/HeN mouse has been inserted on to the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harbouring the C57/BL6J mtDNA generate more ROS (reactive oxygen species) and have a higher mitochondrial membrane potential relative to those with C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the 'mitochondrial paradigm' for the development of disease susceptibility, and show that the mtDNA modulates cellular bioenergetics, mitochondrial ROS generation and susceptibility to cardiac stress.

  7. Mitochondrial Genetic Background Modulates Bioenergetics and Susceptibility to Acute Cardiac Volume – Overload

    PubMed Central

    Fetterman, Jessica L.; Zelickson, Blake R.; Johnson, Larry W.; Moellering, Douglas R.; Westbrook, David G.; Pompilius, Melissa; Sammy, Melissa J.; Johnson, Michelle; Dunham-Snary, Kimberly J.; Cao, Xuemei; Bradley, Wayne E.; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G.; Kesterson, Robert A.; Dell’Italia, Louis J.; Darley-Usmar, Victor M.; Welch, Danny R.; Ballinger, Scott W.

    2013-01-01

    Synopsis Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mitochondrial DNA (mtDNA) sequence variation contributes to disease susceptibility. In this study we present a novel animal model of mtDNA polymorphisms, the mitochondrial nuclear exchange mouse (MNX), in which the mtDNA from C3H/HeN mouse has been inserted onto the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harboring the C57/BL6J mtDNA generate more reactive oxygen species (ROS) and have a higher mitochondrial membrane potential relative to those having the C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the “mitochondrial paradigm” for the development of disease susceptibility, and show that the mtDNA modulates, cellular bioenergetics, mitochondrial reactive oxygen species generation and susceptibility to cardiac stress. PMID:23924350

  8. Mitochondrial DNA replication, nucleoside reverse-transcriptase inhibitors, and AIDS cardiomyopathy.

    PubMed

    Lewis, William

    2003-01-01

    Nucleoside reverse-transcriptase inhibitors (NRTIs) in combination with other antiretrovirals (HAART) are the cornerstones of current AIDS therapy, but extensive use brought mitochondrial side effects to light. Clinical experience, pharmacological, cell, and molecular biological evidence links altered mitochondrial (mt-) DNA replication to the toxicity of NRTIs in many tissues, and conversely, mtDNA replication defects and mtDNA depletion in target tissues are observed. Organ-specific pathological changes or diverse systemic effects result from and are frequently attributed to HAART in which NRTIs are included. The shared features of mtDNA depletion and energy depletion became key observations and related the clinical and in vivo experimental findings to inhibition of mtDNA replication by NRTI triphosphates in vitro. Subsequent to those findings, other observations suggested that mitochondrial energy deprivation is concomitant with or the result of mitochondrial oxidative stress in AIDS (from HIV, for example) or from NRTI therapy itself. Copyright 2003, Elsevier Science (USA)

  9. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma.

    PubMed

    Calabrese, Francesco Maria; Clima, Rosanna; Pignataro, Piero; Lasorsa, Vito Alessandro; Hogarty, Michael D; Castellano, Aurora; Conte, Massimo; Tonini, Gian Paolo; Iolascon, Achille; Gasparre, Giuseppe; Capasso, Mario

    2016-08-02

    Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as 'passengers' and consequently have no discernible effect in this type of cancer.

  10. Cigarette smoking and hOGG1 Ser326Cys polymorphism are associated with 8-OHdG accumulation on mitochondrial DNA in thoracic esophageal squamous cell carcinoma.

    PubMed

    Lin, Chen-Sung; Wang, Liang-Shun; Chou, Teh-Ying; Hsu, Wen-Hu; Lin, Hui-Chen; Lee, Shu-Yu; Lee, Mau-Hua; Chang, Shi-Chuan; Wei, Yau-Huei

    2013-12-01

    We examined whether cigarette smoking affects the degrees of oxidative damage (8-hydroxyl-2'-deoxyguanosine [8-OHdG]) on mitochondrial DNA (mtDNA), whether the degree of 8-OHdG accumulation on mtDNA is related to the increased total mtDNA copy number, and whether human 8-oxoguanine DNA glycosylase 1 (hOGG1) Ser326Cys polymorphisms affect the degrees of 8-OHdG accumulation on mtDNA in thoracic esophageal squamous cell carcinoma (TESCC). DNA extracted from microdissected tissues of paired noncancerous esophageal muscles, noncancerous esophageal mucosa, and cancerous TESCC nests (n = 74) along with metastatic lymph nodes (n = 38) of 74 TESCC patients was analyzed. Both the mtDNA copy number and mtDNA integrity were analyzed by quantitative real-time polymerase chain reaction (PCR). The hOGG1 Ser326Cys polymorphisms were identified by restriction fragment length polymorphism PCR and PCR-based direct sequencing. Among noncancerous esophageal mucosa, cancerous TESCC nests, and metastatic lymph nodes, the mtDNA integrity decreased (95.2 to 47.9 to 18.6 %; P < 0.001) and the mtDNA copy number disproportionally increased (0.163 to 0.204 to 0.207; P = 0.026). In TESCC, higher indexes of cigarette smoking (0, 0-20, 20-40, and >40 pack-years) were related to an advanced pathologic N category (P = 0.038), elevated mtDNA copy number (P = 0.013), higher mtDNA copy ratio (P = 0.028), and increased mtDNA integrity (P = 0.069). The TESCC mtDNA integrity in patients with Ser/Ser, Ser/Cys, and Cys/Cys hOGG1 variants decreased stepwise from 65.2 to 52.1 to 41.3 % (P = 0.051). Elevated 8-OHdG accumulations on mtDNA in TESCC were observed. Such accumulations were associated with a compensatory increase in total mtDNA copy number, indexes of cigarette smoking, and hOGG1 Ser326Cys polymorphisms.

  11. The genetics of the pre-Roman Iberian Peninsula: a mtDNA study of ancient Iberians.

    PubMed

    Sampietro, M L; Caramelli, D; Lao, O; Calafell, F; Comas, D; Lari, M; Agustí, B; Bertranpetit, J; Lalueza-Fox, C

    2005-09-01

    The Iberians developed a surprisingly sophisticated culture in the Mediterranean coast of the Iberian Peninsula from the 6th century BC until their conquest by the Romans in the 2nd century BC. They spoke and wrote a non-Indo-European language that still cannot be understood; their origins and relationships with other non-Indo-European peoples, like the Etruscans, are unclear, since their funerary practices were based on the cremation of bodies, and therefore anthropology has been unable to approach the study of this people. We have retrieved mitochondrial DNA (mtDNA) from a few of the scarce skeletal remains that have been preserved, some of them belonging to ritualistically executed individuals. The most stringent authentication criteria proposed for ancient DNA, such as independent replication, amino-acid analysis, quantitation of template molecules, multiple extractions and cloning of PCR products, have been followed to obtain reliable sequences from the mtDNA hypervariable region 1 (HVR1), as well as some haplogroup diagnostic SNPs. Phylogeographic analyses show that the haplogroup composition of the ancient Iberians was very similar to that found in modern Iberian Peninsula populations, suggesting a long-term genetic continuity since pre-Roman times. Nonetheless, there is less genetic diversity in the ancient Iberians than is found among modern populations, a fact that could reflect the small population size at the origin of the population sampled, and the heterogenic tribal structure of the Iberian society. Moreover, the Iberians were not especially closely related to the Etruscans, which points to considerable genetic heterogeneity in Pre-Roman Western Europe.

  12. Mitochondrial DNA inheritance in the human fungal pathogen Cryptococcus gattii.

    PubMed

    Wang, Zixuan; Wilson, Amanda; Xu, Jianping

    2015-02-01

    The inheritance of mitochondrial DNA (mtDNA) is predominantly uniparental in most sexual eukaryotes. In this study, we examined the mitochondrial inheritance pattern of Cryptococcus gattii, a basidiomycetous yeast responsible for the recent and ongoing outbreak of cryptococcal infections in the US Pacific Northwest and British Columbia (especially Vancouver Island) in Canada. Using molecular markers, we analyzed the inheritance of mtDNA in 14 crosses between strains within and between divergent lineages in C. gattii. Consistent with results from recent studies, our analyses identified significant variations in mtDNA inheritance patterns among strains and crosses, ranging from strictly uniparental to biparental. For two of the crosses that showed uniparental mitochondrial inheritance in standard laboratory conditions, we further investigated the effects of the following environmental variables on mtDNA inheritance: UV exposure, temperature, and treatments with the methylation inhibitor 5-aza-2'-deoxycytidine and with the ubiquitination inhibitor ammonium chloride. Interestingly, one of these crosses showed no response to these environmental variables while the other exhibited diverse patterns ranging from complete uniparental inheritance of the MATa parent mtDNA, to biparental inheritance, and to a significant bias toward inheritance of the MATα parental mtDNA. Our results indicate that mtDNA inheritance in C. gattii differs from that in its closely related species Cryptococcus neoformans. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Molecular phylogeny of grey mullets (Teleostei: Mugilidae) in Greece: evidence from sequence analysis of mtDNA segments.

    PubMed

    Papasotiropoulos, Vasilis; Klossa-Kilia, Elena; Alahiotis, Stamatis N; Kilias, George

    2007-08-01

    Mitochondrial DNA sequence analysis has been used to explore genetic differentiation and phylogenetic relationships among five species of the Mugilidae family, Mugil cephalus, Chelon labrosus, Liza aurata, Liza ramada, and Liza saliens. DNA was isolated from samples originating from the Messolongi Lagoon in Greece. Three mtDNA segments (12s rRNA, 16s rRNA, and CO I) were PCR amplified and sequenced. Sequencing analysis revealed that the greatest genetic differentiation was observed between M. cephalus and all the other species studied, while C. labrosus and L. aurata were the closest taxa. Dendrograms obtained by the neighbor-joining method and Bayesian inference analysis exhibited the same topology. According to this topology, M. cephalus is the most distinct species and the remaining taxa are clustered together, with C. labrosus and L. aurata forming a single group. The latter result brings into question the monophyletic origin of the genus Liza.

  14. Mitochondrial D-loop sequences reveal a mixture of endemism and immigration in Egyptian goat populations.

    PubMed

    Ahmed, Sahar; Grobler, Paul; Madisha, Thabang; Kotze, Antionette

    2017-09-01

    The mitochondrial D-loop region was used to investigate genetic diversity within and between populations of Egyptian goats, to elucidate processes that explain present patterns of diversity and differentiation and to characterize Egyptian goats relative to international breeds. A total of 120 animals from six populations were sampled. Results confirm the main trend from previous studies of mtDNA diversity in goats, with high levels of diversity within populations, but with a comparative lack of genetic structure supporting geographic distribution. Haplotype diversity varied in a narrow range whereas nucleotide diversity values were more informative in showing differences between populations. The majority of goats analyzed (93.2%) displayed haplotypes that group with Haplogroup A, the most common type found in global goat populations. The remaining animals grouped with the less common Haplogroup G. Population differentiation analysis showed some uniqueness in the Aswan and Sharkawi populations from the South and East of Egypt. Overall, the structure of the Egyptian goat population is characterized by a high degree of homogeneity among populations from the north-western coastal region, the Nile Delta and the upper and middle regions of the Nile valley, but with possible introgression of rarer haplotypes into populations at the southern and eastern extremities of the country.

  15. MitoBreak: the mitochondrial DNA breakpoints database.

    PubMed

    Damas, Joana; Carneiro, João; Amorim, António; Pereira, Filipe

    2014-01-01

    Mitochondrial DNA (mtDNA) rearrangements are key events in the development of many diseases. Investigations of mtDNA regions affected by rearrangements (i.e. breakpoints) can lead to important discoveries about rearrangement mechanisms and can offer important clues about the causes of mitochondrial diseases. Here, we present the mitochondrial DNA breakpoints database (MitoBreak; http://mitobreak.portugene.com), a free, web-accessible comprehensive list of breakpoints from three classes of somatic mtDNA rearrangements: circular deleted (deletions), circular partially duplicated (duplications) and linear mtDNAs. Currently, MitoBreak contains >1400 mtDNA rearrangements from seven species (Homo sapiens, Mus musculus, Rattus norvegicus, Macaca mulatta, Drosophila melanogaster, Caenorhabditis elegans and Podospora anserina) and their associated phenotypic information collected from nearly 400 publications. The database allows researchers to perform multiple types of data analyses through user-friendly interfaces with full or partial datasets. It also permits the download of curated data and the submission of new mtDNA rearrangements. For each reported case, MitoBreak also documents the precise breakpoint positions, junction sequences, disease or associated symptoms and links to the related publications, providing a useful resource to study the causes and consequences of mtDNA structural alterations.

  16. Population genetics inside a cell: Mutations and mitochondrial genome maintenance

    NASA Astrophysics Data System (ADS)

    Goyal, Sidhartha; Shraiman, Boris; Gottschling, Dan

    2012-02-01

    In realistic ecological and evolutionary systems natural selection acts on multiple levels, i.e. it acts on individuals as well as on collection of individuals. An understanding of evolutionary dynamics of such systems is limited in large part due to the lack of experimental systems that can challenge theoretical models. Mitochondrial genomes (mtDNA) are subjected to selection acting on cellular as well as organelle levels. It is well accepted that mtDNA in yeast Saccharomyces cerevisiae is unstable and can degrade over time scales comparable to yeast cell division time. We utilize a recent technology designed in Gottschling lab to extract DNA from populations of aged yeast cells and deep sequencing to characterize mtDNA variation in a population of young and old cells. In tandem, we developed a stochastic model that includes the essential features of mitochondrial biology that provides a null model for expected mtDNA variation. Overall, we find approximately 2% of the polymorphic loci that show significant increase in frequency as cells age providing direct evidence for organelle level selection. Such quantitative study of mtDNA dynamics is absolutely essential to understand the propagation of mtDNA mutations linked to a spectrum of age-related diseases in humans.

  17. Genetic features of ancient West Siberian people of the Middle Ages, revealed by mitochondrial DNA haplogroup analysis.

    PubMed

    Sato, Takehiro; Razhev, Dmitry; Amano, Tetsuya; Masuda, Ryuichi

    2011-08-01

    In order to investigate the genetic features of ancient West Siberian people of the Middle Ages, we studied ancient DNA from bone remains excavated from two archeological sites in West Siberia: Saigatinsky 6 (eighth to eleventh centuries) and Zeleny Yar (thirteenth century). Polymerase chain reaction amplification and nucleotide sequencing of mitochondrial DNA (mtDNA) succeeded for 9 of 67 specimens examined, and the sequences were assigned to mtDNA haplogroups B4, C4, G2, H and U. This distribution pattern of mtDNA haplogroups in medieval West Siberian people was similar to those previously reported in modern populations living in West Siberia, such as the Mansi, Ket and Nganasan. Exact tests of population differentiation showed no significant differences between the medieval people and modern populations in West Siberia. The findings suggest that some medieval West Siberian people analyzed in the present study are included in direct ancestral lineages of modern populations native to West Siberia.

  18. Genetic Ancestry of the Extinct Javan and Bali Tigers

    PubMed Central

    Xue, Hao-Ran; Yamaguchi, Nobuyuki; Driscoll, Carlos A.; Han, Yu; Bar-Gal, Gila Kahila; Zhuang, Yan; Mazak, Ji H.; Macdonald, David W.; O’Brien, Stephen J.

    2015-01-01

    The Bali (Panthera tigris balica) and Javan (P. t. sondaica) tigers are recognized as distinct tiger subspecies that went extinct in the 1940s and 1980s, respectively. Yet their genetic ancestry and taxonomic status remain controversial. Following ancient DNA procedures, we generated concatenated 1750bp mtDNA sequences from 23 museum samples including 11 voucher specimens from Java and Bali and compared these to diagnostic mtDNA sequences from 122 specimens of living tiger subspecies and the extinct Caspian tiger. The results revealed a close genetic affinity of the 3 groups from the Sunda Islands (Bali, Javan, and Sumatran tigers P. t. sumatrae). Bali and Javan mtDNA haplotypes differ from Sumatran haplotypes by 1–2 nucleotides, and the 3 island populations define a monophyletic assemblage distinctive and equidistant from other mainland subspecies. Despite this close phylogenetic relationship, no mtDNA haplotype was shared between Sumatran and Javan/Bali tigers, indicating little or no matrilineal gene flow among the islands after they were colonized. The close phylogenetic relationship among Sunda tiger subspecies suggests either recent colonization across the islands, or else a once continuous tiger population that had subsequently isolated into different island subspecies. This supports the hypothesis that the Sumatran tiger is the closest living relative to the extinct Javan and Bali tigers. PMID:25754539

  19. Mitochondrial DNA haplotype distribution patterns in Pinus ponderosa (Pinaceae): range-wide evolutionary history and implications for conservation.

    PubMed

    Potter, Kevin M; Hipkins, Valerie D; Mahalovich, Mary F; Means, Robert E

    2013-08-01

    Ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) exhibits complicated patterns of morphological and genetic variation across its range in western North America. This study aims to clarify P. ponderosa evolutionary history and phylogeography using a highly polymorphic mitochondrial DNA marker, with results offering insights into how geographical and climatological processes drove the modern evolutionary structure of tree species in the region. We amplified the mtDNA nad1 second intron minisatellite region for 3,100 trees representing 104 populations, and sequenced all length variants. We estimated population-level haplotypic diversity and determined diversity partitioning among varieties, races and populations. After aligning sequences of minisatellite repeat motifs, we evaluated evolutionary relationships among haplotypes. The geographical structuring of the 10 haplotypes corresponded with division between Pacific and Rocky Mountain varieties. Pacific haplotypes clustered with high bootstrap support, and appear to have descended from Rocky Mountain haplotypes. A greater proportion of diversity was partitioned between Rocky Mountain races than between Pacific races. Areas of highest haplotypic diversity were the southern Sierra Nevada mountain range in California, northwestern California, and southern Nevada. Pinus ponderosa haplotype distribution patterns suggest a complex phylogeographic history not revealed by other genetic and morphological data, or by the sparse paleoecological record. The results appear consistent with long-term divergence between the Pacific and Rocky Mountain varieties, along with more recent divergences not well-associated with race. Pleistocene refugia may have existed in areas of high haplotypic diversity, as well as the Great Basin, Southwestern United States/northern Mexico, and the High Plains.

  20. Reconstructing the history of a fragmented and heavily exploited red deer population using ancient and contemporary DNA.

    PubMed

    Rosvold, Jørgen; Røed, Knut H; Hufthammer, Anne Karin; Andersen, Reidar; Stenøien, Hans K

    2012-09-26

    Red deer (Cervus elaphus) have been an important human resource for millennia, experiencing intensive human influence through habitat alterations, hunting and translocation of animals. In this study we investigate a time series of ancient and contemporary DNA from Norwegian red deer spanning about 7,000 years. Our main aim was to investigate how increasing agricultural land use, hunting pressure and possibly human mediated translocation of animals have affected the genetic diversity on a long-term scale. We obtained mtDNA (D-loop) sequences from 73 ancient specimens. These show higher genetic diversity in ancient compared to extant samples, with the highest diversity preceding the onset of agricultural intensification in the Early Iron Age. Using standard diversity indices, Bayesian skyline plot and approximate Bayesian computation, we detected a population reduction which was more prolonged than, but not as severe as, historic documents indicate. There are signs of substantial changes in haplotype frequencies primarily due to loss of haplotypes through genetic drift. There is no indication of human mediated translocations into the Norwegian population. All the Norwegian sequences show a western European origin, from which the Norwegian lineage diverged approximately 15,000 years ago. Our results provide direct insight into the effects of increasing habitat fragmentation and human hunting pressure on genetic diversity and structure of red deer populations. They also shed light on the northward post-glacial colonisation process of red deer in Europe and suggest increased precision in inferring past demographic events when including both ancient and contemporary DNA.

  1. Highly conserved D-loop-like nuclear mitochondrial sequences (Numts) in tiger (Panthera tigris).

    PubMed

    Zhang, Wenping; Zhang, Zhihe; Shen, Fujun; Hou, Rong; Lv, Xiaoping; Yue, Bisong

    2006-08-01

    Using oligonucleotide primers designed to match hypervariable segments I (HVS-1) of Panthera tigris mitochondrial DNA (mtDNA), we amplified two different PCR products (500 bp and 287 bp) in the tiger (Panthera tigris), but got only one PCR product (287 bp) in the leopard (Panthera pardus). Sequence analyses indicated that the sequence of 287 bp was a D-loop-like nuclear mitochondrial sequence (Numts), indicating a nuclear transfer that occurred approximately 4.8-17 million years ago in the tiger and 4.6-16 million years ago in the leopard. Although the mtDNA D-loop sequence has a rapid rate of evolution, the 287-bp Numts are highly conserved; they are nearly identical in tiger subspecies and only 1.742% different between tiger and leopard. Thus, such sequences represent molecular 'fossils' that can shed light on evolution of the mitochondrial genome and may be the most appropriate outgroup for phylogenetic analysis. This is also proved by comparing the phylogenetic trees reconstructed using the D-loop sequence of snow leopard and the 287-bp Numts as outgroup.

  2. ACCELERATED EVOLUTION OF LAND SNAILS MANDARINA IN THE OCEANIC BONIN ISLANDS: EVIDENCE FROM MITOCHONDRIAL DNA SEQUENCES.

    PubMed

    Chiba, Satoshi

    1999-04-01

    An endemic land snail genus Mandarina of the oceanic Bonin (Ogasawara) Islands shows exceptionally rapid evolution not only of morphological and ecological traits, but of DNA sequence. A phylogenetic relationship based on mitochondrial DNA (mtDNA) sequences suggests that morphological differences equivalent to the differences between families were produced between Mandarina and its ancestor during the Pleistocene. The inferred phylogeny shows that species with similar morphologies and life habitats appeared repeatedly and independently in different lineages and islands at different times. Sequential adaptive radiations occurred in different islands of the Bonin Islands and species occupying arboreal, semiarboreal, and terrestrial habitat arose independently in each island. Because of a close relationship between shell morphology and life habitat, independent evolution of the same life habitat in different islands created species possesing the same shell morphology in different islands and lineages. This rapid evolution produced some incongruences between phylogenetic relationship and species taxonomy. Levels of sequence divergence of mtDNA among the species of Mandarina is extremely high. The maximum level of sequence divergence at 16S and 12S ribosomal RNA sequence within Mandarina are 18.7% and 17.7%, respectively, and this suggests that evolution of mtDNA of Mandarina is extremely rapid, more than 20 times faster than the standard rate in other animals. The present examination reveals that evolution of morphological and ecological traits occurs at extremely high rates in the time of adaptive radiation, especially in fragmented environments. © 1999 The Society for the Study of Evolution.

  3. Mitochondrial comparative genomics and phylogenetic signal assessment of mtDNA among arbuscular mycorrhizal fungi.

    PubMed

    Nadimi, Maryam; Daubois, Laurence; Hijri, Mohamed

    2016-05-01

    Mitochondrial (mt) genes, such as cytochrome C oxidase genes (cox), have been widely used for barcoding in many groups of organisms, although this approach has been less powerful in the fungal kingdom due to the rapid evolution of their mt genomes. The use of mt genes in phylogenetic studies of Dikarya has been met with success, while early diverging fungal lineages remain less studied, particularly the arbuscular mycorrhizal fungi (AMF). Advances in next-generation sequencing have substantially increased the number of publically available mtDNA sequences for the Glomeromycota. As a result, comparison of mtDNA across key AMF taxa can now be applied to assess the phylogenetic signal of individual mt coding genes, as well as concatenated subsets of coding genes. Here we show comparative analyses of publically available mt genomes of Glomeromycota, augmented with two mtDNA genomes that were newly sequenced for this study (Rhizophagus irregularis DAOM240159 and Glomus aggregatum DAOM240163), resulting in 16 complete mtDNA datasets. R. irregularis isolate DAOM240159 and G. aggregatum isolate DAOM240163 showed mt genomes measuring 72,293bp and 69,505bp with G+C contents of 37.1% and 37.3%, respectively. We assessed the phylogenies inferred from single mt genes and complete sets of coding genes, which are referred to as "supergenes" (16 concatenated coding genes), using Shimodaira-Hasegawa tests, in order to identify genes that best described AMF phylogeny. We found that rnl, nad5, cox1, and nad2 genes, as well as concatenated subset of these genes, provided phylogenies that were similar to the supergene set. This mitochondrial genomic analysis was also combined with principal coordinate and partitioning analyses, which helped to unravel certain evolutionary relationships in the Rhizophagus genus and for G. aggregatum within the Glomeromycota. We showed evidence to support the position of G. aggregatum within the R. irregularis 'species complex'. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A New Phylogeographic Pattern of Endemic Bufo bankorensis in Taiwan Island Is Attributed to the Genetic Variation of Populations

    PubMed Central

    Yu, Teng-Lang; Lin, Hung-Du; Weng, Ching-Feng

    2014-01-01

    Aim To comprehend the phylogeographic patterns of genetic variation in anurans at Taiwan Island, this study attempted to examine (1) the existence of various geological barriers (Central Mountain Ranges, CMRs); and (2) the genetic variation of Bufo bankorensis using mtDNA sequences among populations located in different regions of Taiwan, characterized by different climates and existing under extreme conditions when compared available sequences of related species B. gargarizans of mainland China. Methodology/Principal Findings Phylogenetic analyses of the dataset with mitochondrial DNA (mtDNA) D-loop gene (348 bp) recovered a close relationship between B. bankorensis and B. gargarizans, identified three distinct lineages. Furthermore, the network of mtDNA D-loop gene (564 bp) amplified (279 individuals, 27 localities) from Taiwan Island indicated three divergent clades within B. bankorensis (Clade W, E and S), corresponding to the geography, thereby verifying the importance of the CMRs and Kaoping River drainage as major biogeographic barriers. Mismatch distribution analysis, neutrality tests and Bayesian skyline plots revealed that a significant population expansion occurred for the total population and Clade W, with horizons dated to approximately 0.08 and 0.07 Mya, respectively. These results suggest that the population expansion of Taiwan Island species B. bankorensis might have resulted from the release of available habitat in post-glacial periods, the genetic variation on mtDNA showing habitat selection, subsequent population dispersal, and co-distribution among clades. Conclusions The multiple origins (different clades) of B. bankorensis mtDNA sequences were first evident in this study. The divergent genetic clades found within B. bankorensis could be independent colonization by previously diverged lineages; inferring B. bankorensis originated from B. gargarizans of mainland China, then dispersal followed by isolation within Taiwan Island. Highly divergent clades between W and E of B. bankorensis, implies that the CMRs serve as a genetic barrier and separated the whole island into the western and eastern phylogroups. PMID:24853679

  5. Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins.

    PubMed

    O'Rourke, Thomas W; Doudican, Nicole A; Mackereth, Melinda D; Doetsch, Paul W; Shadel, Gerald S

    2002-06-01

    The mitochondrial genome is a significant target of exogenous and endogenous genotoxic agents; however, the determinants that govern this susceptibility and the pathways available to resist mitochondrial DNA (mtDNA) damage are not well characterized. Here we report that oxidative mtDNA damage is elevated in strains lacking Ntg1p, providing the first direct functional evidence that this mitochondrion-localized, base excision repair enzyme functions to protect mtDNA. However, ntg1 null strains did not exhibit a mitochondrial respiration-deficient (petite) phenotype, suggesting that mtDNA damage is negotiated by the cooperative actions of multiple damage resistance pathways. Null mutations in ABF2 or PIF1, two genes implicated in mtDNA maintenance and recombination, exhibit a synthetic-petite phenotype in combination with ntg1 null mutations that is accompanied by enhanced mtDNA point mutagenesis in the corresponding double-mutant strains. This phenotype was partially rescued by malonic acid, indicating that reactive oxygen species generated by the electron transport chain contribute to mitochondrial dysfunction in abf2 Delta strains. In contrast, when two other genes involved in mtDNA recombination, CCE1 and NUC1, were inactivated a strong synthetic-petite phenotype was not observed, suggesting that the effects mediated by Abf2p and Pif1p are due to novel activities of these proteins other than recombination. These results document the existence of recombination-independent mechanisms in addition to base excision repair to cope with oxidative mtDNA damage in Saccharomyces cerevisiae. Such systems are likely relevant to those operating in human cells where mtDNA recombination is less prevalent, validating yeast as a model system in which to study these important issues.

  6. The Phylogeny of the Four Pan-American MtDNA Haplogroups: Implications for Evolutionary and Disease Studies

    PubMed Central

    Achilli, Alessandro; Perego, Ugo A.; Bravi, Claudio M.; Coble, Michael D.; Kong, Qing-Peng; Woodward, Scott R.; Salas, Antonio; Torroni, Antonio; Bandelt, Hans-Jürgen

    2008-01-01

    Only a limited number of complete mitochondrial genome sequences belonging to Native American haplogroups were available until recently, which left America as the continent with the least amount of information about sequence variation of entire mitochondrial DNAs. In this study, a comprehensive overview of all available complete mitochondrial DNA (mtDNA) genomes of the four pan-American haplogroups A2, B2, C1, and D1 is provided by revising the information scattered throughout GenBank and the literature, and adding 14 novel mtDNA sequences. The phylogenies of haplogroups A2, B2, C1, and D1 reveal a large number of sub-haplogroups but suggest that the ancestral Beringian population(s) contributed only six (successful) founder haplotypes to these haplogroups. The derived clades are overall starlike with coalescence times ranging from 18,000 to 21,000 years (with one exception) using the conventional calibration. The average of about 19,000 years somewhat contrasts with the corresponding lower age of about 13,500 years that was recently proposed by employing a different calibration and estimation approach. Our estimate indicates a human entry and spread of the pan-American haplogroups into the Americas right after the peak of the Last Glacial Maximum and comfortably agrees with the undisputed ages of the earliest Paleoindians in South America. In addition, the phylogenetic approach also indicates that the pathogenic status proposed for various mtDNA mutations, which actually define branches of Native American haplogroups, was based on insufficient grounds. PMID:18335039

  7. Genetic signs of multiple colonization events in Baltic ciscoes with radiation into sympatric spring- and autumn-spawners confined to early postglacial arrival

    PubMed Central

    Delling, Bo; Palm, Stefan; Palkopoulou, Eleftheria; Prestegaard, Tore

    2014-01-01

    Presence of sympatric populations may reflect local diversification or secondary contact of already distinct forms. The Baltic cisco (Coregonus albula) normally spawns in late autumn, but in a few lakes in Northern Europe sympatric autumn and spring- or winter-spawners have been described. So far, the evolutionary relationships and taxonomic status of these main life history forms have remained largely unclear. With microsatellites and mtDNA sequences, we analyzed extant and extinct spring- and autumn-spawners from a total of 23 Swedish localities, including sympatric populations. Published sequences from Baltic ciscoes in Germany and Finland, and Coregonus sardinella from North America were also included together with novel mtDNA sequences from Siberian C. sardinella. A clear genetic structure within Sweden was found that included two population assemblages markedly differentiated at microsatellites and apparently fixed for mtDNA haplotypes from two distinct clades. All sympatric Swedish populations belonged to the same assemblage, suggesting parallel evolution of spring-spawning rather than secondary contact. The pattern observed further suggests that postglacial immigration to Northern Europe occurred from at least two different refugia. Previous results showing that mtDNA in Baltic cisco is paraphyletic with respect to North American C. sardinella were confirmed. However, the inclusion of Siberian C. sardinella revealed a more complicated pattern, as these novel haplotypes were found within one of the two main C. albula clades and were clearly distinct from those in North American C. sardinella. The evolutionary history of Northern Hemisphere ciscoes thus seems to be more complex than previously recognized. PMID:25540695

  8. Genetic signs of multiple colonization events in Baltic ciscoes with radiation into sympatric spring- and autumn-spawners confined to early postglacial arrival.

    PubMed

    Delling, Bo; Palm, Stefan; Palkopoulou, Eleftheria; Prestegaard, Tore

    2014-11-01

    Presence of sympatric populations may reflect local diversification or secondary contact of already distinct forms. The Baltic cisco (Coregonus albula) normally spawns in late autumn, but in a few lakes in Northern Europe sympatric autumn and spring- or winter-spawners have been described. So far, the evolutionary relationships and taxonomic status of these main life history forms have remained largely unclear. With microsatellites and mtDNA sequences, we analyzed extant and extinct spring- and autumn-spawners from a total of 23 Swedish localities, including sympatric populations. Published sequences from Baltic ciscoes in Germany and Finland, and Coregonus sardinella from North America were also included together with novel mtDNA sequences from Siberian C. sardinella. A clear genetic structure within Sweden was found that included two population assemblages markedly differentiated at microsatellites and apparently fixed for mtDNA haplotypes from two distinct clades. All sympatric Swedish populations belonged to the same assemblage, suggesting parallel evolution of spring-spawning rather than secondary contact. The pattern observed further suggests that postglacial immigration to Northern Europe occurred from at least two different refugia. Previous results showing that mtDNA in Baltic cisco is paraphyletic with respect to North American C. sardinella were confirmed. However, the inclusion of Siberian C. sardinella revealed a more complicated pattern, as these novel haplotypes were found within one of the two main C. albula clades and were clearly distinct from those in North American C. sardinella. The evolutionary history of Northern Hemisphere ciscoes thus seems to be more complex than previously recognized.

  9. Mitochondrial D-loop analysis for uncovering the population structure and genetic diversity among the indigenous duck (Anas platyrhynchos) populations of India.

    PubMed

    Gaur, Uma; Tantia, Madhu Sudan; Mishra, Bina; Bharani Kumar, Settypalli Tirumala; Vijh, Ramesh Kumar; Chaudhury, Ashok

    2018-03-01

    The indigenous domestic duck (Anas platyrhynchos domestica) which is domesticated from Mallard (Anas platyrhynchos) contributes significantly to poor farming community in coastal and North Eastern regions of India. For conservation and maintenance of indigenous duck populations it is very important to know the existing genetic diversity and population structure. To unravel the population structure and genetic diversity among the five indigenous duck populations of India, the mitochondrial D-loop sequences of 120 ducks were analyzed. The sequence analysis by comparison of mtDNA D-loop region (470 bp) of five Indian duck populations revealed 25 mitochondrial haplotypes. Pairwise F ST value among populations was 0.4243 (p < .01) and the range of nucleotide substitution per site (Dxy) between the five Indian duck populations was 0.00034-0.00555, and the net divergence (Da) was 0-0.00355. The phylogenetic analysis in the present study unveiled three clades. The analysis revealed genetic continuity among ducks of coastal region of the country which formed a separate group from the ducks of the inland area. Both coastal as well as the land birds revealed introgression of the out group breed Khaki Campbell, which is used for breed improvement programs in India. The observations revealed very less selection and a single matrilineal lineage of indigenous domestic ducks.

  10. Diverse origin of mitochondrial lineages in Iron Age Black Sea Scythians

    PubMed Central

    Juras, Anna; Krzewińska, Maja; Nikitin, Alexey G.; Ehler, Edvard; Chyleński, Maciej; Łukasik, Sylwia; Krenz-Niedbała, Marta; Sinika, Vitaly; Piontek, Janusz; Ivanova, Svetlana; Dabert, Miroslawa; Götherström, Anders

    2017-01-01

    Scythians were nomadic and semi-nomadic people that ruled the Eurasian steppe during much of the first millennium BCE. While having been extensively studied by archaeology, very little is known about their genetic identity. To fill this gap, we analyzed ancient mitochondrial DNA (mtDNA) from Scythians of the North Pontic Region (NPR) and successfully retrieved 19 whole mtDNA genomes. We have identified three potential mtDNA lineage ancestries of the NPR Scythians tracing back to hunter-gatherer and nomadic populations of east and west Eurasia as well as the Neolithic farming expansion into Europe. One third of all mt lineages in our dataset belonged to subdivisions of mt haplogroup U5. A comparison of NPR Scythian mtDNA linages with other contemporaneous Scythian groups, the Saka and the Pazyryks, reveals a common mtDNA package comprised of haplogroups H/H5, U5a, A, D/D4, and F1/F2. Of these, west Eurasian lineages show a downward cline in the west-east direction while east Eurasian haplogroups display the opposite trajectory. An overall similarity in mtDNA lineages of the NPR Scythians was found with the late Bronze Age Srubnaya population of the Northern Black Sea region which supports the archaeological hypothesis suggesting Srubnaya people as ancestors of the NPR Scythians. PMID:28266657

  11. MSeqDR mvTool: A mitochondrial DNA Web and API resource for comprehensive variant annotation, universal nomenclature collation, and reference genome conversion.

    PubMed

    Shen, Lishuang; Attimonelli, Marcella; Bai, Renkui; Lott, Marie T; Wallace, Douglas C; Falk, Marni J; Gai, Xiaowu

    2018-06-01

    Accurate mitochondrial DNA (mtDNA) variant annotation is essential for the clinical diagnosis of diverse human diseases. Substantial challenges to this process include the inconsistency in mtDNA nomenclatures, the existence of multiple reference genomes, and a lack of reference population frequency data. Clinicians need a simple bioinformatics tool that is user-friendly, and bioinformaticians need a powerful informatics resource for programmatic usage. Here, we report the development and functionality of the MSeqDR mtDNA Variant Tool set (mvTool), a one-stop mtDNA variant annotation and analysis Web service. mvTool is built upon the MSeqDR infrastructure (https://mseqdr.org), with contributions of expert curated data from MITOMAP (https://www.mitomap.org) and HmtDB (https://www.hmtdb.uniba.it/hmdb). mvTool supports all mtDNA nomenclatures, converts variants to standard rCRS- and HGVS-based nomenclatures, and annotates novel mtDNA variants. Besides generic annotations from dbNSFP and Variant Effect Predictor (VEP), mvTool provides allele frequencies in more than 47,000 germline mitogenomes, and disease and pathogenicity classifications from MSeqDR, Mitomap, HmtDB and ClinVar (Landrum et al., 2013). mvTools also provides mtDNA somatic variants annotations. "mvTool API" is implemented for programmatic access using inputs in VCF, HGVS, or classical mtDNA variant nomenclatures. The results are reported as hyperlinked html tables, JSON, Excel, and VCF formats. MSeqDR mvTool is freely accessible at https://mseqdr.org/mvtool.php. © 2018 Wiley Periodicals, Inc.

  12. Genetic Diversity and Population Structure of the Critically Endangered Yangtze Finless Porpoise (Neophocaena asiaeorientalis asiaeorientalis) as Revealed by Mitochondrial and Microsatellite DNA

    PubMed Central

    Chen, Minmin; Zheng, Jinsong; Wu, Min; Ruan, Rui; Zhao, Qingzhong; Wang, Ding

    2014-01-01

    Ecological surveys have indicated that the population of the critically endangered Yangtze finless porpoise (YFP, Neophocaena asiaeorientalis asiaeorientalis) is becoming increasingly small and fragmented, and will be at high risk of extinction in the near future. Genetic conservation of this population will be an important component of the long-term conservation effort. We used a 597 base pair mitochondrial DNA (mtDNA) control region and 11 microsatellite loci to analyze the genetic diversity and population structure of the YFP. The analysis of both mtDNA and microsatellite loci suggested that the genetic diversity of the YFP will possibly decrease in the future if the population keeps declining at a rapid rate, even though these two types of markers revealed different levels of genetic diversity. In addition, mtDNA revealed strong genetic differentiation between one local population, Xingchang–Shishou (XCSS), and the other five downstream local populations; furthermore, microsatellite DNA unveiled fine but significant genetic differentiation between three of the local populations (not only XCSS but also Poyang Lake (PY) and Tongling (TL)) and the other local populations. With an increasing number of distribution gaps appearing in the Yangtze main steam, the genetic differentiation of local populations will likely intensify in the future. The YFP is becoming a genetically fragmented population. Therefore, we recommend attention should be paid to the genetic conservation of the YFP. PMID:24968271

  13. Mitochondrial DNA polymorphisms associated with longevity in a Finnish population.

    PubMed

    Niemi, Anna-Kaisa; Hervonen, Antti; Hurme, Mikko; Karhunen, Pekka J; Jylhä, Marja; Majamaa, Kari

    2003-01-01

    Sequence variation in mitochondrial DNA (mtDNA) may cause slight differences both in the functioning of the respiratory chain and in free radical production, and an association between certain mtDNA haplogroups and longevity has been suggested. In order to determine further the role of mtDNA in longevity, we studied the frequencies of mtDNA haplogroups and haplogroup clusters among elderly subjects and controls in a Finnish population. Samples were obtained from 225 persons aged 90-91 years (Vitality 90+) and from 400 middle-aged controls and 257 infants. MtDNA haplogroups were determined by restriction fragment length polymorphism. The haplogroup frequencies of the Vitality 90+ group differed from both those of the middle-aged controls ( P=0.01) and the infants ( P=0.00005), haplogroup H being less frequent than among the middle-aged subjects ( P=0.001) and infants ( P=0.00001), whereas haplogroups U and J were more frequent. Haplogroup clusters also differed between Vitality 90+ and both the middle-aged subjects ( P=0.002) and infants ( P=0.00001), the frequency of haplogroup cluster HV being lower in the former and that of UK and WIX being higher. These data suggest an association between certain mtDNA haplogroups or haplogroup clusters and longevity. Furthermore, our data appear to favour the presence of advantageous polymorphisms and support a role for mitochondria and mtDNA in the degenerative processes involved in ageing.

  14. Detailed mtDNA genotypes permit a reassessment of the settlement and population structure of the Andaman Islands.

    PubMed

    Barik, S S; Sahani, R; Prasad, B V R; Endicott, P; Metspalu, M; Sarkar, B N; Bhattacharya, S; Annapoorna, P C H; Sreenath, J; Sun, D; Sanchez, J J; Ho, S Y W; Chandrasekar, A; Rao, V R

    2008-05-01

    The population genetics of the Indian subcontinent is central to understanding early human prehistory due to its strategic location on the proposed corridor of human movement from Africa to Australia during the late Pleistocene. Previous genetic research using mtDNA has emphasized the relative isolation of the late Pleistocene colonizers, and the physically isolated Andaman Island populations of Island South-East Asia remain the source of claims supporting an early split between the populations that formed the patchy settlement pattern along the coast of the Indian Ocean. Using whole-genome sequencing, combined with multiplexed SNP typing, this study investigates the deep structure of mtDNA haplogroups M31 and M32 in India and the Andaman Islands. The identification of a so far unnoticed rare polymorphism shared between these two lineages suggests that they are actually sister groups within a single haplogroup, M31'32. The enhanced resolution of M31 allows for the inference of a more recent colonization of the Andaman Islands than previously suggested, but cannot reject the very early peopling scenario. We further demonstrate a widespread overlap of mtDNA and cultural markers between the two major language groups of the Andaman archipelago. Given the "completeness" of the genealogy based on whole genome sequences, and the multiple scenarios for the peopling of the Andaman Islands sustained by this inferred genealogy, our study hints that further mtDNA based phylogeographic studies are unlikely to unequivocally support any one of these possibilities. (c) 2008 Wiley-Liss, Inc.

  15. Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial–nuclear interactions

    PubMed Central

    Cristina Kenney, M.; Chwa, Marilyn; Atilano, Shari R.; Falatoonzadeh, Payam; Ramirez, Claudio; Malik, Deepika; Tarek, Mohamed; Cáceres-del-Carpio, Javier; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Vawter, Marquis; Michal Jazwinski, S.; Miceli, Michael; Wallace, Douglas C.; Udar, Nitin

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in developed countries. While linked to genetic polymorphisms in the complement pathway, there are many individuals with high risk alleles that do not develop AMD, suggesting that other ‘modifiers’ may be involved. Mitochondrial (mt) haplogroups, defined by accumulations of specific mtDNA single nucleotide polymorphisms (SNPs) which represent population origins, may be one such modifier. J haplogroup has been associated with high risk for AMD while the H haplogroup is protective. It has been difficult to assign biological consequences for haplogroups so we created human ARPE-19 cybrids (cytoplasmic hybrids), which have identical nuclei but mitochondria of either J or H haplogroups, to investigate their effects upon bioenergetics and molecular pathways. J cybrids have altered bioenergetic profiles compared with H cybrids. Q-PCR analyses show significantly lower expression levels for seven respiratory complex genes encoded by mtDNA. J and H cybrids have significantly altered expression of eight nuclear genes of the alternative complement, inflammation and apoptosis pathways. Sequencing of the entire mtDNA was carried out for all the cybrids to identify haplogroup and non-haplogroup defining SNPs. mtDNA can mediate cellular bioenergetics and expression levels of nuclear genes related to complement, inflammation and apoptosis. Sequencing data suggest that observed effects are not due to rare mtDNA variants but rather the combination of SNPs representing the J versus H haplogroups. These findings represent a paradigm shift in our concepts of mt–nuclear interactions. PMID:24584571

  16. Future of human mitochondrial DNA editing technologies.

    PubMed

    Verechshagina, N; Nikitchina, N; Yamada, Y; Harashima, Н; Tanaka, M; Orishchenko, K; Mazunin, I

    2018-05-15

    ATP and other metabolites, which are necessary for the development, maintenance, and functioning of bodily cells are all synthesized in the mitochondria. Multiple copies of the genome, present within the mitochondria, together with its maternal inheritance, determine the clinical manifestation and spreading of mutations in mitochondrial DNA (mtDNA). The main obstacle in the way of thorough understanding of mitochondrial biology and the development of gene therapy methods for mitochondrial diseases is the absence of systems that allow to directly change mtDNA sequence. Here, we discuss existing methods of manipulating the level of mtDNA heteroplasmy, as well as the latest systems, that could be used in the future as tools for human mitochondrial genome editing.

  17. [Genetic structure of Hemibarbus labeo and Hemibarbus medius in South China based on mtDNA COI and ND5 genes].

    PubMed

    Lan, Zhao Jun; Lin, Long Feng; Zhao, Jun

    2017-04-18

    Both Hemibarbus labeo and H. medius (Cypriniformes: Cyprinidae: Gobioninae) are primary freshwater fishes and are widely distributed. As such, they provide an ideal model for phylogeographical studies. However, the similarity in morphological characters between these two species made the description of their distributions and the validation of species quite challenging. Here we employed variations in the DNA sequences of mitochondrial COI and ND5 genes (2151 bp) to solve this challenge and to study the population genetics structure of these two species. Among the 130 specimens belonging to 8 populations of H. labeo and 9 populations of H. medius from 17 drainage systems in southern China,196 variable sites (9.1% in the full sequences) falling into 50 haplotypes were identified. The haplotype diversity (h) and the nucleotide diversity (π) were 0.964 and 0.019, respectively, indicating a high level of genetic diversity and an evolutionary potential in both species. The result of neighbor-joining tree based on composite nucleotide sequences of the mtDNA COI and ND5 genes showed that the H. labeo and H. medius fell into two major clades (clade1and clade2): clade1was composed of some specimens of Oujiang River, all the specimens of Hanjiang River and Jiulongjiang River, whereas all remaining populations fell in clade2. The genetic distance between clade I and clade II was 0.036, while that between H. labeo and H. medius was 0.027. The haplotype network analyses indicated that the populations of Hanjiang River and Jiulongjiang River had relatively high genetic variation with the rest rivers. The po-pulations of Hainan Island migrated northward to Moyangjaing River. Haplotypes of the rivers of Hainan Island and Moyangjang River had relatively higher genetic variation with the Yangtze River than Pearl River. The populations of Xiangjiang River had no genetic variation with the populations of Guijiang River and Liujiang River. Analysis of molecular variance (AMOVA) indicated that the genetic variance mainly presented in individuals between geographical regions. The genetic variation of populations among regions was 71.2%, the genetic variation among populations within regions was 16.6%, and that within populations within the regions was 12.2%, indicating that most of the genetic variations resided in the populations among regions. The results of mismatch distribution and tests of neutrality suggested that in all populations, H. labeo, H. medius, clade1and clade2 were relatively stable.

  18. Phylogeography of the American woodcock (Scolopax minor): Are management units based on band recovery data reflected in genetically based management units?

    USGS Publications Warehouse

    Rhymer, J.M.; McAuley, D.G.; Ziel, H.L.

    2005-01-01

    Information on population connectivity throughout the annual cycle has become more crucial, because populations of many migratory birds are in decline. One such species is the American Woodcock (Scolopax minor), which inhabits early-successional forests in eastern North America. Although band recoveries have proved useful for dividing populations of this game bird species into an Eastern Region and Central Region for management purposes, these data do not provide enough detail to determine the breeding population of origin of birds recovered on stopover and wintering areas. To obtain more fine-scale data, we undertook a phylogeographic study of American Woodcock populations throughout their primary breeding range in the eastern United States and Canada using mitochondrial DNA (mtDNA) sequences from the hypervariable control region I (CRI) and ND6 gene. Despite high haplotype diversity, nucleotide diversity was low and there was no phylogeographic structure among American Woodcock populations across the species range, with birds from many states and provinces in both management regions sharing identical haplotypes. Results suggest recent or ongoing gene flow among populations, with asymmetric movement of birds between migration flyways. As has been demonstrated for several other avian species in North America, American Woodcock appear to have undergone a rapid population expansion following the late Pleistocene glacial retreat. Thus, a combination of historical demographic factors and recent or ongoing gene flow mask any population structure based on mtDNA that might accrue from philopatry to breeding areas observed in studies of marked birds.

  19. The dog originated south of Yangtse river less than 16,000 years ago, from numerous wolves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitner, Thomas; Pang, Jun - Feng; Kluetsch, Cornelya

    We here present a detailed picture of the origins of the dog, giving strong and precise evidence for 'where and when', and thereby also a first tentative picture of 'how, why and by whom' the wolf was domesticated. Previous studies of mitochondrial DNA (mtDNA) have failed to definitely establish the time and place of origin because of lack in phylogenetic resolution for the so far studied 582 bp region, and inadequate sampling across the world. We therefore analysed 169 mtDNA genomes, selected from partial sequences (582 bp) from 1,576 dogs worldwide. This shows that dogs universally share a common genemore » pool, but the three earlier identified universally occurring phylogenetic clades ofhigh age consist often much younger subclades, which originated 5,000-16,000 ya from at least 48 wolf founders. The full range of genetic diversity, all 10 subclades, is found only in south-eastern Asia south of Yangtze River, and the diversity decreases gradually across Eurasia down to only four sub clades in Europe. This establishes that the dog has a single origin in time and space from a large number ofwolves, less than 16,000 ya, probably in China south of Y angtzeRiver. The place and time coincide with the origin of rice agriculture, suggesting an origin among sedentary hunter-gatherers or early rice farmers. The numerous founders indicate that wolf taming was an important cultural trait, and it is noticeable that in this region dogs are since ancient times used as food, offering a possible reason for the wolf domestication.« less

  20. Incorporating non-equilibrium dynamics into demographic history inferences of a migratory marine species.

    PubMed

    Carroll, E L; Alderman, R; Bannister, J L; Bérubé, M; Best, P B; Boren, L; Baker, C S; Constantine, R; Findlay, K; Harcourt, R; Lemaire, L; Palsbøll, P J; Patenaude, N J; Rowntree, V J; Seger, J; Steel, D; Valenzuela, L O; Watson, M; Gaggiotti, O E

    2018-05-03

    Understanding how dispersal and gene flow link geographically separated the populations over evolutionary history is challenging, particularly in migratory marine species. In southern right whales (SRWs, Eubalaena australis), patterns of genetic diversity are likely influenced by the glacial climate cycle and recent history of whaling. Here we use a dataset of mitochondrial DNA (mtDNA) sequences (n = 1327) and nuclear markers (17 microsatellite loci, n = 222) from major wintering grounds to investigate circumpolar population structure, historical demography and effective population size. Analyses of nuclear genetic variation identify two population clusters that correspond to the South Atlantic and Indo-Pacific ocean basins that have similar effective breeder estimates. In contrast, all wintering grounds show significant differentiation for mtDNA, but no sex-biased dispersal was detected using the microsatellite genotypes. An approximate Bayesian computation (ABC) approach with microsatellite markers compared the scenarios with gene flow through time, or isolation and secondary contact between ocean basins, while modelling declines in abundance linked to whaling. Secondary-contact scenarios yield the highest posterior probabilities, implying that populations in different ocean basins were largely isolated and came into secondary contact within the last 25,000 years, but the role of whaling in changes in genetic diversity and gene flow over recent generations could not be resolved. We hypothesise that these findings are driven by factors that promote isolation, such as female philopatry, and factors that could promote dispersal, such as oceanographic changes. These findings highlight the application of ABC approaches to infer the connectivity in mobile species with complex population histories and, currently, low levels of differentiation.

  1. Repeated Reticulate Evolution in North American Papilio machaon Group Swallowtail Butterflies

    PubMed Central

    Dupuis, Julian R.; Sperling, Felix A. H.

    2015-01-01

    Hybridization between distinct populations or species is increasingly recognized as an important process for generating biodiversity. However, the interaction between hybridization and speciation is complex, and the diverse evolutionary outcomes of hybridization are difficult to differentiate. Here we characterize potential hybridization in a species group of swallowtail butterflies using microsatellites, DNA sequences, and morphology, and assess whether adaptive introgression or homoploid hybrid speciation was the primary process leading to each putative hybrid lineage. Four geographically separated hybrid populations were identified in the Papilio machaon species group. One distinct mitochondrial DNA clade from P. machaon was fixed in three hybrid taxa (P. brevicauda, P. joanae, and P. m. kahli), while one hybrid swarm (P. zelicaon x machaon) exhibited this hybrid mtDNA clade as well as widespread parental mtDNA haplotypes from both parental species. Microsatellite markers and morphology showed variable admixture and intermediacy, ranging from signatures of prolonged differential introgression from the paternal species (P. polyxenes/P. zelicaon) to current gene flow with both parental species. Divergences of the hybrid lineages dated to early- to mid-Pleistocene, suggesting that repeated glaciations and subsequent range shifts of parental species, particularly P. machaon hudsonianus, facilitated initial hybridization. Although each lineage is distinct, P. joanae is the only taxon with sufficient evidence (ecological separation from parental species) to define it as a homoploid hybrid species. The repetition of hybridization in this group provides a valuable foundation for future research on hybridization, and these results emphasize the potential for hybridization to drive speciation in diverse ways. PMID:26517268

  2. Diversity and distribution of white-tailed deer mtdna lineages in chronic wasting disease (cwd) outbreak areas in southern wisconsin, USA

    USGS Publications Warehouse

    Rogers, K.G.; Robinson, S.J.; Samuel, M.D.; Grear, D.A.

    2011-01-01

    Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy affecting North American cervids. Because it is uniformly fatal, the disease is a major concern in the management of white-tailed deer populations. Management programs to control CWD require improved knowledge of deer interaction, movement, and population connectivity that could influence disease transmission and spread. Genetic methods were employed to evaluate connectivity among populations in the CWD management zone of southern Wisconsin. A 576-base-pair region of the mitochondrial DNA of 359 white-tailed deer from 12 sample populations was analyzed. Fifty-eight variable sites were detected within the sequence, defining 43 haplotypes. While most sample populations displayed similar levels of haplotype diversity, individual haplotypes were clustered on the landscape. Spatial clusters of different haplotypes were apparent in distinct ecoregions surrounding CWD outbreak areas. The spatial distribution of mtDNA haplotypes suggests that clustering of the deer matrilineal groups and population connectivity are associated with broad-scale geographic landscape features. These landscape characteristics may also influence the contact rates between groups and therefore the potential spread of CWD; this may be especially true of local disease spread between female social groups. Our results suggest that optimal CWD management needs to be tailored to fit gender-specific dispersal behaviors and regional differences in deer population connectivity. This information will help wildlife managers design surveillance and monitoring efforts based on population interactions and potential deer movement among CWD-affected and unaffected areas. Copyright ?? Taylor & Francis Group, LLC.

  3. Pre-Quaternary divergence and subsequent radiation explain longitudinal patterns of genetic and morphological variation in the striped skink, Heremites vittatus.

    PubMed

    Baier, Felix; Schmitz, Andreas; Sauer-Gürth, Hedwig; Wink, Michael

    2017-06-09

    Many animal and plant species in the Middle East and northern Africa have a predominantly longitudinal distribution, extending from Iran and Turkey along the eastern Mediterranean coast into northern Africa. These species are potentially characterized by longitudinal patterns of biological diversity, but little is known about the underlying biogeographic mechanisms and evolutionary timescales. We examined these questions in the striped skink, Heremites vittatus, one such species with a roughly longitudinal distribution across the Middle East and northern Africa, by analyzing range-wide patterns of mitochondrial DNA (mtDNA) sequence and multi-trait morphological variation. The striped skink exhibits a basic longitudinal organization of mtDNA diversity, with three major mitochondrial lineages inhabiting northern Africa, the eastern Mediterranean coast, and Turkey/Iran. Remarkably, these lineages are of pre-Quaternary origin, and are characterized by p-distances of 9-10%. In addition, within each of these lineages a more recent Quaternary genetic diversification was observed, as evidenced by deep subclades and high haplotype diversity especially in the Turkish/Iranian and eastern Mediterranean lineages. Consistent with the genetic variation, our morphological analysis revealed that the majority of morphological traits show significant mean differences between specimens from northern Africa, the eastern Mediterranean coast, and Turkey/Iran, suggesting lineage-specific trait evolution. In addition, a subset of traits exhibits clinal variation along the eastern Mediterranean coast, potentially indicating selection gradients at the geographic transition from northern Africa to Anatolia. The existence of allopatric, morphologically and genetically divergent lineages suggests that Heremites vittatus might represent a complex with several taxa. Our work demonstrates that early divergence events in the Pliocene, likely driven by both climatic and geological factors, established the longitudinal patterns and distribution of Heremites vittatus. Subsequent radiation during the Pleistocene generated the genetic and morphological diversity observed today. Our study provides further evidence that longitudinal diversity patterns and species distributions in the Middle East and northern Africa were shaped by complex evolutionary processes, involving the region's intricate geological history, climatic oscillations, and the presence of the Sahara.

  4. Evidence of low genetic variation and rare alleles in a bottlenecked endangered island endemic, the Lasan Teal (Anas laysanensis)

    USGS Publications Warehouse

    Reynolds, Michelle H.; Pearce, John M.; Lavretsky, Philip; Peters Jeffrey L,; Courtot, Karen; Seixas, Pedro P.

    2015-01-01

    Genetic diversity is assumed to reflect the evolutionary potential and adaptability of populations, and thus quantifying the genetic diversity of endangered species is useful for recovery programs. In particular, if conservation strategies include reintroductions, periodic genetic assessments are useful to evaluate whether management efforts have resulted in the maximization or loss of genetic variation within populations over generations. In this study, we collected blood, feather, and tissue samples during 1999–2009 and quantified genetic diversity for a critically endangered waterfowl species endemic to the Hawaiian archipelago, the Laysan teal or duck (Anas laysanensis; n = 239 individual birds sampled). The last extant population of this species at Laysan Island was sourced in 2004–2005 for a ‘wild to wild’ translocation of 42 individuals for an experimental reintroduction to Midway Atoll. To inform future management strategies, we compared genetic diversity sampled from the source population (n = 133 Laysan birds) including 23 of Midway’s founders and offspring of the translocated population 2–5 years post release (n = 96 Midway birds). We attempted to identify polymorphic markers by screening nuclear microsatellite (N = 83) and intronic loci (N = 19), as well as the mitochondrial control region (mtDNA) for a subset of samples. Among 83 microsatellite loci screened, six were variable. We found low nuclear variation consistent with the species’ historical population bottlenecks and sequence variation was observed at a single intron locus. We detected no variation within the mtDNA. We found limited but similar estimates of allelic richness (2.58 alleles per locus) and heterozygosity within islands. Two rare alleles found in the Laysan Island source population were not present in the Midway translocated group, and a rare allele was discovered in an individual on Midway in 2008. We found similar genetic diversity and low, but statistically significant, levels of differentiation (0.6%) between island populations suggesting that genetic drift (as a result of translocation-induced population bottlenecking) has had a limited effect within five years post-release. Our results have utility for informing translocation and genetic management decisions.

  5. Evolutionary history of Wolbachia infections in the fire ant Solenopsis invicta

    PubMed Central

    Ahrens, Michael E; Shoemaker, Dewayne

    2005-01-01

    Background Wolbachia are endosymbiotic bacteria that commonly infect numerous arthropods. Despite their broad taxonomic distribution, the transmission patterns of these bacteria within and among host species are not well understood. We sequenced a portion of the wsp gene from the Wolbachia genome infecting 138 individuals from eleven geographically distributed native populations of the fire ant Solenopsis invicta. We then compared these wsp sequence data to patterns of mitochondrial DNA (mtDNA) variation of both infected and uninfected host individuals to infer the transmission patterns of Wolbachia in S. invicta. Results Three different Wolbachia (wsp) variants occur within S. invicta, all of which are identical to previously described strains in fire ants. A comparison of the distribution of Wolbachia variants within S. invicta to a phylogeny of mtDNA haplotypes suggests S. invicta has acquired Wolbachia infections on at least three independent occasions. One common Wolbachia variant in S. invicta (wSinvictaB) is associated with two divergent mtDNA haplotype clades. Further, within each of these clades, Wolbachia-infected and uninfected individuals possess virtually identical subsets of mtDNA haplotypes, including both putative derived and ancestral mtDNA haplotypes. The same pattern also holds for wSinvictaA, where at least one and as many as three invasions into S. invicta have occurred. These data suggest that the initial invasions of Wolbachia into host ant populations may be relatively ancient and have been followed by multiple secondary losses of Wolbachia in different infected lineages over time. Finally, our data also provide additional insights into the factors responsible for previously reported variation in Wolbachia prevalence among S. invicta populations. Conclusion The history of Wolbachia infections in S. invicta is rather complex and involves multiple invasions or horizontal transmission events of Wolbachia into this species. Although these Wolbachia infections apparently have been present for relatively long time periods, these data clearly indicate that Wolbachia infections frequently have been secondarily lost within different lineages. Importantly, the uncoupled transmission of the Wolbachia and mtDNA genomes suggests that the presumed effects of Wolbachia on mtDNA evolution within S. invicta are less severe than originally predicted. Thus, the common concern that use of mtDNA markers for studying the evolutionary history of insects is confounded by maternally inherited endosymbionts such as Wolbachia may be somewhat unwarranted in the case of S. invicta. PMID:15927071

  6. Mitochondrial DNA association study of type 2 diabetes with or without ischemic stroke in Taiwan

    PubMed Central

    2014-01-01

    Background The importance of mitochondrial DNA (mtDNA) polymorphism in the prediction of type 2 diabetes (T2D) in men and women is not well understood. We questioned whether mtDNA polymorphism, mitochondrial functions, age and gender influenced the occurrence of T2D with or without ischemic stroke (IS). Methods We first designed a matched case–control study of 373 T2D patients and 327 healthy unrelated individuals without history of IS. MtDNA haplogroups were determined on all participants using sequencing of the control region and relevant SNPs from the coding region. Mitochondria functional tests, systemic biochemical measurements and complete genomic mtDNA sequencing were further determined on 239 participants (73 healthy controls, 33 T2D with IS, 70 T2D only and 63 IS patients without T2D). Results MtDNA haplogroups B4a1a, and E2b1 showed significant association with T2D (P <0.05), and haplogroup D4 indicated resistance (P <0.05). Mitochondrial and systemic functional tests showed significantly less variance within groups bearing the same mtDNA haplotypes. There was a pronounced male excess among all T2D patients and prevalence of IS was seen only in the older population. Finally, nucleotide variant np 15746, a determinant of haplogroup G3 seen in Japanese and of B4a1a prevalent in Taiwanese was associated with T2D in both populations. Conclusions Men appeared more susceptible to T2D than women. Although the significant association of B4a1a and E2b1 with T2D ceased when corrected for multiple testings, these haplogroups are seen only among Taiwan Aborigines, Southeast Asian and the Pacific Ocean islanders where T2D is predominant. The data further suggested that physiological and biochemical measurements were influenced by the mtDNA genetic profile of the individual. More understanding of the function of the mitochondrion in the development of T2D might indicate ways of influencing the early course of the disease. PMID:24713204

  7. The evolutionary dynamics of the lion Panthera leo revealed by host and viral population genomics.

    PubMed

    Antunes, Agostinho; Troyer, Jennifer L; Roelke, Melody E; Pecon-Slattery, Jill; Packer, Craig; Winterbach, Christiaan; Winterbach, Hanlie; Hemson, Graham; Frank, Laurence; Stander, Philip; Siefert, Ludwig; Driciru, Margaret; Funston, Paul J; Alexander, Kathy A; Prager, Katherine C; Mills, Gus; Wildt, David; Bush, Mitch; O'Brien, Stephen J; Johnson, Warren E

    2008-11-01

    The lion Panthera leo is one of the world's most charismatic carnivores and is one of Africa's key predators. Here, we used a large dataset from 357 lions comprehending 1.13 megabases of sequence data and genotypes from 22 microsatellite loci to characterize its recent evolutionary history. Patterns of molecular genetic variation in multiple maternal (mtDNA), paternal (Y-chromosome), and biparental nuclear (nDNA) genetic markers were compared with patterns of sequence and subtype variation of the lion feline immunodeficiency virus (FIV(Ple)), a lentivirus analogous to human immunodeficiency virus (HIV). In spite of the ability of lions to disperse long distances, patterns of lion genetic diversity suggest substantial population subdivision (mtDNA Phi(ST) = 0.92; nDNA F(ST) = 0.18), and reduced gene flow, which, along with large differences in sero-prevalence of six distinct FIV(Ple) subtypes among lion populations, refute the hypothesis that African lions consist of a single panmictic population. Our results suggest that extant lion populations derive from several Pleistocene refugia in East and Southern Africa ( approximately 324,000-169,000 years ago), which expanded during the Late Pleistocene ( approximately 100,000 years ago) into Central and North Africa and into Asia. During the Pleistocene/Holocene transition ( approximately 14,000-7,000 years), another expansion occurred from southern refugia northwards towards East Africa, causing population interbreeding. In particular, lion and FIV(Ple) variation affirms that the large, well-studied lion population occupying the greater Serengeti Ecosystem is derived from three distinct populations that admixed recently.

  8. The Evolutionary Dynamics of the Lion Panthera leo Revealed by Host and Viral Population Genomics

    PubMed Central

    Antunes, Agostinho; Troyer, Jennifer L.; Roelke, Melody E.; Pecon-Slattery, Jill; Packer, Craig; Winterbach, Christiaan; Winterbach, Hanlie; Hemson, Graham; Frank, Laurence; Stander, Philip; Siefert, Ludwig; Driciru, Margaret; Funston, Paul J.; Alexander, Kathy A.; Prager, Katherine C.; Mills, Gus; Wildt, David; Bush, Mitch; O'Brien, Stephen J.; Johnson, Warren E.

    2008-01-01

    The lion Panthera leo is one of the world's most charismatic carnivores and is one of Africa's key predators. Here, we used a large dataset from 357 lions comprehending 1.13 megabases of sequence data and genotypes from 22 microsatellite loci to characterize its recent evolutionary history. Patterns of molecular genetic variation in multiple maternal (mtDNA), paternal (Y-chromosome), and biparental nuclear (nDNA) genetic markers were compared with patterns of sequence and subtype variation of the lion feline immunodeficiency virus (FIVPle), a lentivirus analogous to human immunodeficiency virus (HIV). In spite of the ability of lions to disperse long distances, patterns of lion genetic diversity suggest substantial population subdivision (mtDNA ΦST = 0.92; nDNA F ST = 0.18), and reduced gene flow, which, along with large differences in sero-prevalence of six distinct FIVPle subtypes among lion populations, refute the hypothesis that African lions consist of a single panmictic population. Our results suggest that extant lion populations derive from several Pleistocene refugia in East and Southern Africa (∼324,000–169,000 years ago), which expanded during the Late Pleistocene (∼100,000 years ago) into Central and North Africa and into Asia. During the Pleistocene/Holocene transition (∼14,000–7,000 years), another expansion occurred from southern refugia northwards towards East Africa, causing population interbreeding. In particular, lion and FIVPle variation affirms that the large, well-studied lion population occupying the greater Serengeti Ecosystem is derived from three distinct populations that admixed recently. PMID:18989457

  9. Mito-nuclear discord in six congeneric lineages of Holarctic ducks (genus Anas).

    PubMed

    Peters, Jeffrey L; Winker, Kevin; Millam, Kendra C; Lavretsky, Philip; Kulikova, Irina; Wilson, Robert E; Zhuravlev, Yuri N; McCracken, Kevin G

    2014-06-01

    Many species have Holarctic distributions that extend across Europe, Asia and North America. Most genetics research on these species has examined only mitochondrial (mt) DNA, which has revealed wide variance in divergence between Old World (OW) and New World (NW) populations, ranging from shallow, unstructured genealogies to deeply divergent lineages. In this study, we sequenced 20 nuclear introns to test for concordant patterns of OW-NW differentiation between mtDNA and nuclear (nu) DNA for six lineages of Holarctic ducks (genus Anas). Genetic differentiation for both marker types varied widely among these lineages (idiosyncratic population histories), but mtDNA and nuDNA divergence within lineages was not significantly correlated. Moreover, compared with the association between mtDNA and nuDNA divergence observed among different species, OW-NW nuDNA differentiation was generally lower than mtDNA divergence, at least for lineages with deeply divergent mtDNA. Furthermore, coalescent estimates indicated significantly higher rates of gene flow for nuDNA than mtDNA for four of the six lineages. Thus, Holarctic ducks show prominent mito-nuclear discord between OW and NW populations, and we reject differences in sorting rates as the sole cause of the within-species discord. Male-mediated intercontinental gene flow is likely a leading contributor to this discord, although selection could also cause increased mtDNA divergence relative to weak nuDNA differentiation. The population genetics of these ducks contribute to growing evidence that mtDNA can be an unreliable indicator of stage of speciation and that more holistic approaches are needed for species delimitation. © 2014 John Wiley & Sons Ltd.

  10. Alcohol consumption and breast tumor mitochondrial DNA mutations.

    PubMed

    Platek, Mary E; Shields, Peter G; Tan, Duanjun; Marian, Catalin; Bonner, Matthew R; McCann, Susan E; Nie, Jing; Wilding, Gregory E; Ambrosone, Christine; Millen, Amy E; Trevisan, Maurizio; Russell, Marcia; Nochajski, Thomas H; Edge, Stephen B; Winston, Janet; Freudenheim, Jo L

    2010-06-01

    Mitochondrial DNA (mtDNA) mutations are frequent in breast tumors, but the etiology of these mutations is unknown. We hypothesized that these mutations are associated with exposures that affect oxidative stress such as alcohol metabolism. Using archived tumor blocks from incident breast cancer cases in a case control study, the Western New York Exposures and Breast Cancer (WEB) study, analysis of mtDNA mutations was conducted on 128 breast cancer cases selected based on extremes of alcohol intake. Temporal temperature gradient gel electrophoresis (TTGE) was used to screen the entire mtDNA genome and sequencing was completed for all TTGE positive samples. Case-case comparisons were completed using unconditional logistic regression to determine the relative prevalence of the mutations by exposures including alcohol consumption, manganese superoxide dismutase (MnSOD) genotype, nutrient intake related to oxidative stress and established breast cancer risk factors. Somatic mtDNA mutations were found in 60 of the 128 tumors examined. There were no differences in the prevalence of mtDNA mutations by alcohol consumption, MnSOD genotype or dietary intake. The likelihood of mtDNA mutations was reduced among those with a positive family history for breast cancer (OR = 0.33, CI = 0.12-0.92), among postmenopausal women who used hormone replacement therapy (OR = 0.46, CI = 0.19-1.08, P = 0.08) and was increased for ER negative tumors (OR = 2.05, CI = 0.95-4.43, P = 0.07). Consistent with previous studies, we found that mtDNA mutations are a frequent occurrence in breast tumors. An understanding of the etiology of mtDNA mutations may provide insight into breast carcinogenesis.

  11. eCOMPAGT integrates mtDNA: import, validation and export of mitochondrial DNA profiles for population genetics, tumour dynamics and genotype-phenotype association studies.

    PubMed

    Weissensteiner, Hansi; Schönherr, Sebastian; Specht, Günther; Kronenberg, Florian; Brandstätter, Anita

    2010-03-09

    Mitochondrial DNA (mtDNA) is widely being used for population genetics, forensic DNA fingerprinting and clinical disease association studies. The recent past has uncovered severe problems with mtDNA genotyping, not only due to the genotyping method itself, but mainly to the post-lab transcription, storage and report of mtDNA genotypes. eCOMPAGT, a system to store, administer and connect phenotype data to all kinds of genotype data is now enhanced by the possibility of storing mtDNA profiles and allowing their validation, linking to phenotypes and export as numerous formats. mtDNA profiles can be imported from different sequence evaluation programs, compared between evaluations and their haplogroup affiliations stored. Furthermore, eCOMPAGT has been improved in its sophisticated transparency (support of MySQL and Oracle), security aspects (by using database technology) and the option to import, manage and store genotypes derived from various genotyping methods (SNPlex, TaqMan, and STRs). It is a software solution designed for project management, laboratory work and the evaluation process all-in-one. The extended mtDNA version of eCOMPAGT was designed to enable error-free post-laboratory data handling of human mtDNA profiles. This software is suited for small to medium-sized human genetic, forensic and clinical genetic laboratories. The direct support of MySQL and the improved database security options render eCOMPAGT a powerful tool to build an automated workflow architecture for several genotyping methods. eCOMPAGT is freely available at http://dbis-informatik.uibk.ac.at/ecompagt.

  12. eCOMPAGT integrates mtDNA: import, validation and export of mitochondrial DNA profiles for population genetics, tumour dynamics and genotype-phenotype association studies

    PubMed Central

    2010-01-01

    Background Mitochondrial DNA (mtDNA) is widely being used for population genetics, forensic DNA fingerprinting and clinical disease association studies. The recent past has uncovered severe problems with mtDNA genotyping, not only due to the genotyping method itself, but mainly to the post-lab transcription, storage and report of mtDNA genotypes. Description eCOMPAGT, a system to store, administer and connect phenotype data to all kinds of genotype data is now enhanced by the possibility of storing mtDNA profiles and allowing their validation, linking to phenotypes and export as numerous formats. mtDNA profiles can be imported from different sequence evaluation programs, compared between evaluations and their haplogroup affiliations stored. Furthermore, eCOMPAGT has been improved in its sophisticated transparency (support of MySQL and Oracle), security aspects (by using database technology) and the option to import, manage and store genotypes derived from various genotyping methods (SNPlex, TaqMan, and STRs). It is a software solution designed for project management, laboratory work and the evaluation process all-in-one. Conclusions The extended mtDNA version of eCOMPAGT was designed to enable error-free post-laboratory data handling of human mtDNA profiles. This software is suited for small to medium-sized human genetic, forensic and clinical genetic laboratories. The direct support of MySQL and the improved database security options render eCOMPAGT a powerful tool to build an automated workflow architecture for several genotyping methods. eCOMPAGT is freely available at http://dbis-informatik.uibk.ac.at/ecompagt. PMID:20214782

  13. Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck.

    PubMed

    Wilson, Ian J; Carling, Phillipa J; Alston, Charlotte L; Floros, Vasileios I; Pyle, Angela; Hudson, Gavin; Sallevelt, Suzanne C E H; Lamperti, Costanza; Carelli, Valerio; Bindoff, Laurence A; Samuels, David C; Wonnapinij, Passorn; Zeviani, Massimo; Taylor, Robert W; Smeets, Hubert J M; Horvath, Rita; Chinnery, Patrick F

    2016-03-01

    With a combined carrier frequency of 1:200, heteroplasmic mitochondrial DNA (mtDNA) mutations cause human disease in ∼1:5000 of the population. Rapid shifts in the level of heteroplasmy seen within a single generation contribute to the wide range in the severity of clinical phenotypes seen in families transmitting mtDNA disease, consistent with a genetic bottleneck during transmission. Although preliminary evidence from human pedigrees points towards a random drift process underlying the shifting heteroplasmy, some reports describe differences in segregation pattern between different mtDNA mutations. However, based on limited observations and with no direct comparisons, it is not clear whether these observations simply reflect pedigree ascertainment and publication bias. To address this issue, we studied 577 mother-child pairs transmitting the m.11778G>A, m.3460G>A, m.8344A>G, m.8993T>G/C and m.3243A>G mtDNA mutations. Our analysis controlled for inter-assay differences, inter-laboratory variation and ascertainment bias. We found no evidence of selection during transmission but show that different mtDNA mutations segregate at different rates in human pedigrees. m.8993T>G/C segregated significantly faster than m.11778G>A, m.8344A>G and m.3243A>G, consistent with a tighter mtDNA genetic bottleneck in m.8993T>G/C pedigrees. Our observations support the existence of different genetic bottlenecks primarily determined by the underlying mtDNA mutation, explaining the different inheritance patterns observed in human pedigrees transmitting pathogenic mtDNA mutations. © The Author 2016. Published by Oxford University Press.

  14. Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs.

    PubMed

    Plötner, J; Uzzell, T; Beerli, P; Spolsky, C; Ohst, T; Litvinchuk, S N; Guex, G-D; Reyer, H-U; Hotz, H

    2008-05-01

    Interspecies transfer of mitochondrial (mt) DNA is a common phenomenon in plants, invertebrates and vertebrates, normally linked with hybridization of closely related species in zones of sympatry or parapatry. In central Europe, in an area north of 48 degrees N latitude and between 8 degrees and 22 degrees E longitude, western Palaearctic water frogs show massive unidirectional introgression of mtDNA: 33.7% of 407 Rana ridibunda possessed mtDNA specific for Rana lessonae. By contrast, no R. lessonae with R. ridibunda mtDNA was observed. That R. ridibunda with introgressed mitochondrial genomes were found exclusively within the range of the hybrid Rana esculenta and that most hybrids had lessonae mtDNA (90.4% of 335 individuals investigated) is evidence that R. esculenta serves as a vehicle for transfer of lessonae mtDNA into R. ridibunda. Such introgression has occurred several times independently. The abundance and wide distribution of individuals with introgressed mitochondrial genomes show that R. lessonae mt genomes work successfully in a R. ridibunda chromosomal background despite their high sequence divergence from R. ridibunda mtDNAs (14.2-15.2% in the ND2/ND3 genes). Greater effectiveness of enzymes encoded by R. lessonae mtDNA may be advantageous to individuals of R. ridibunda and probably R. esculenta in the northern parts of their ranges.

  15. Wolbachia transmission dynamics in Formica wood ants

    PubMed Central

    2008-01-01

    Background The role of Wolbachia endosymbionts in shaping the mitochondrial diversity of their arthropod host depends on the effects they have on host reproduction and on the mode of transmission of the bacteria. We have compared the sequence diversity of wsp (Wolbachia surface protein gene) and the host mtDNA in a group of Formica ant species that have diverged approximately 0.5 million years ago (MYA). The aim was to study the relationship of Wolbachia and its ant hosts in terms of vertical and horizontal transmission of the bacteria. Results All studied ant species were doubly infected with two Wolbachia strains (wFex1 and wFex4) all over their geographical distribution area in Eurasia. The most common haplotypes of these strains were identical with strains previously described from a more distantly related Formica ant, with an estimated divergence time of 3.5 – 4 MYA. Some strain haplotypes were associated to the same or closely related mtDNA haplotypes as expected under vertical transmission. However, in several cases the wsp haplotypes coexisted with distant mtDNA haplotypes, a pattern which is more compatible with horizontal transmission of the bacteria. Conclusion Two lines of evidence suggest that the sharing of Wolbachia strains by all F. rufa species is rather due to horizontal than vertical transmission. First, the fact that endosymbiont strains identical to those of F. rufa ants have been found in another species that diverged 3.5–4 MYA strongly suggests that horizontal transfer can and does occur between Formica ants. Second, the frequent sharing of identical Wolbachia strains by distant mitochondrial lineages within the F. rufa group further shows that horizontal transmission has occurred repeatedly. Nevertheless, our dataset also provides some evidence for longer-term persistence of infection, indicating that Wolbachia infection within this host clade has been shaped by both horizontal and vertical transmission of symbionts. The fact that all the ants were infected irrespective of the family structure of their societies gives no support to the proposed hypotheses that the spreading of Wolbachia in ants might be associated to the types of their societies. PMID:18291041

  16. Phylogeographic patterns in suckermouth catfish Hypostomus ancistroides (Loricariidae): dispersion, vicariance and species complexity across a Neotropical biogeographic region.

    PubMed

    Hollanda Carvalho, Pedro; Maia Queiroz Lima, Sergio; Henrique Zawadzki, Cláudio; Oliveira, Cláudio; de Pinna, Mario

    2016-09-01

    The upper Paraná River system (UP) is a highly diverse biogeographic province for freshwater fishes, but little is known about processes which shaped that diversity. This study describes the phylogeographic pattern in Hypostomus ancistroides, a suckermouth catfish species that is widespread in the UP and also reported from the adjoining Ribeira do Iguape basin. We used complete mtDNA sequences of ATPase 6/8 of 162 specimens to infer haplotype distribution using phylogenetic and demographic analyses and a Bayesian molecular clock. Results suggest that during the Quaternary H. ancistroides has undergone superimposed phylogeographic histories, alternating between isolation and subsequent merging of different populations. Occurrence of an isolated population on the Ribeira de Iguape is demonstrated to be a Pleistocene headwater capture event. Widely distributed haplotypes indicate deep genetic differences and suggest that populations of H. ancistroides were isolated for considerable time, but did not undergo speciation because of recurrent population mixing.

  17. Phylogeography of brown bears (Ursus arctos) of Alaska and paraphyly within the Ursidae.

    PubMed

    Talbot, S L; Shields, G F

    1996-06-01

    Complete nucleotide sequences of the mitochondrial cytochrome b, tRNA(prolime), and tRNA(threonine) genes were described for 166 brown bears (Ursus arctos) from 10 geographic regions of Alaska to describe natural genetic variation, construct a molecular phylogeny, and evaluate classical taxonomies. DNA sequences of brown bears were compared to homologous sequences of the polar bear (maritimus) and of the sun bear (Helarctos malayanus), which was used as an outgroup. Parsimony and neighbor-joining methods each produced essentially identical phylogenetic trees that suggest two distinct clades of mtDNA for brown bears in Alaska: one composed only of bears that now reside on some of the islands of southeastern Alaska and the other which includes bears from all other regions of Alaska. The very close relationship of the polar bear to brown bears of the islands of southeastern Alaska as previously reported by us and the paraphyletic association of polar bears to brown bears reported by others have been reaffirmed with this much larger data set. A weak correlation is suggested between types of mtDNA and habitat preference by brown bears in Alaska. Our mtDNA data support some, but not all, of the currently designated subspecies of brown bears whose descriptions have been based essentially on morphology.

  18. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma

    PubMed Central

    Pignataro, Piero; Lasorsa, Vito Alessandro; Hogarty, Michael D.; Castellano, Aurora; Conte, Massimo; Tonini, Gian Paolo; Iolascon, Achille; Gasparre, Giuseppe; Capasso, Mario

    2016-01-01

    Background Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Results Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. Conclusions The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as ‘passengers’ and consequently have no discernible effect in this type of cancer. PMID:27351283

  19. Eurasian otters, Lutra lutra, have a dominant mtDNA haplotype from the Iberian Peninsula to Scandinavia.

    PubMed

    Ferrando, Ainhoa; Ponsà, Montserrat; Marmi, Josep; Domingo-Roura, Xavier

    2004-01-01

    The Eurasian otter, Lutra lutra, has a Palaearctic distribution and has suffered a severe decline throughout Europe during the last century. Previous studies in this and other mustelids have shown reduced levels of variability in mitochondrial DNA, although otter phylogeographic studies were restricted to central-western Europe. In this work we have sequenced 361 bp of the mtDNA control region in 73 individuals from eight countries and added our results to eight sequences available from GenBank and the literature. The range of distribution has been expanded in relation to previous works north towards Scandinavia, east to Russia and Belarus, and south to the Iberian Peninsula. We found a single dominant haplotype in 91.78% of the samples, and six more haplotypes deviating a maximum of two mutations from the dominant haplotype restricted to a single country. Variability was extremely low in western Europe but higher in eastern countries. This, together with the lack of phylogeographical structuring, supports the postglacial recolonization of Europe from a single refugium. The Eurasian otter mtDNA control region has a 220-bp variable minisatellite in Domain III that we sequenced in 29 otters. We found a total of 19 minisatellite haplotypes, but they showed no phylogenetic information.

  20. A Critical Reassessment of the Role of Mitochondria in Tumorigenesis

    PubMed Central

    Salas, Antonio; Yao, Yong-Gang; Macaulay, Vincent; Vega, Ana; Carracedo, Ángel; Bandelt, Hans-Jürgen

    2005-01-01

    Background Mitochondrial DNA (mtDNA) is being analyzed by an increasing number of laboratories in order to investigate its potential role as an active marker of tumorigenesis in various types of cancer. Here we question the conclusions drawn in most of these investigations, especially those published in high-rank cancer research journals, under the evidence that a significant number of these medical mtDNA studies are based on obviously flawed sequencing results. Methods and Findings In our analyses, we take a phylogenetic approach and employ thorough database searches, which together have proven successful for detecting erroneous sequences in the fields of human population genetics and forensics. Apart from conceptual problems concerning the interpretation of mtDNA variation in tumorigenesis, in most cases, blocks of seemingly somatic mutations clearly point to contamination or sample mix-up and, therefore, have nothing to do with tumorigenesis. Conclusion The role of mitochondria in tumorigenesis remains unclarified. Our findings of laboratory errors in many contributions would represent only the tip of the iceberg since most published studies do not provide the raw sequence data for inspection, thus hindering a posteriori evaluation of the results. There is no precedent for such a concatenation of errors and misconceptions affecting a whole subfield of medical research. PMID:16187796

  1. Of mice and (Viking?) men: phylogeography of British and Irish house mice.

    PubMed

    Searle, Jeremy B; Jones, Catherine S; Gündüz, Islam; Scascitelli, Moira; Jones, Eleanor P; Herman, Jeremy S; Rambau, R Victor; Noble, Leslie R; Berry, R J; Giménez, Mabel D; Jóhannesdóttir, Fríoa

    2009-01-22

    The west European subspecies of house mouse (Mus musculus domesticus) has gained much of its current widespread distribution through commensalism with humans. This means that the phylogeography of M. m. domesticus should reflect patterns of human movements. We studied restriction fragment length polymorphism (RFLP) and DNA sequence variations in mouse mitochondrial (mt) DNA throughout the British Isles (328 mice from 105 localities, including previously published data). There is a major mtDNA lineage revealed by both RFLP and sequence analyses, which is restricted to the northern and western peripheries of the British Isles, and also occurs in Norway. This distribution of the 'Orkney' lineage fits well with the sphere of influence of the Norwegian Vikings and was probably generated through inadvertent transport by them. To form viable populations, house mice would have required large human settlements such as the Norwegian Vikings founded. The other parts of the British Isles (essentially most of mainland Britain) are characterized by house mice with different mtDNA sequences, some of which are also found in Germany, and which probably reflect both Iron Age movements of people and mice and earlier development of large human settlements. MtDNA studies on house mice have the potential to reveal novel aspects of human history.

  2. Of mice and (Viking?) men: phylogeography of British and Irish house mice

    PubMed Central

    Searle, Jeremy B.; Jones, Catherine S.; Gündüz, İslam; Scascitelli, Moira; Jones, Eleanor P.; Herman, Jeremy S.; Rambau, R. Victor; Noble, Leslie R.; Berry, R.J.; Giménez, Mabel D.; Jóhannesdóttir, Fríða

    2008-01-01

    The west European subspecies of house mouse (Mus musculus domesticus) has gained much of its current widespread distribution through commensalism with humans. This means that the phylogeography of M. m. domesticus should reflect patterns of human movements. We studied restriction fragment length polymorphism (RFLP) and DNA sequence variations in mouse mitochondrial (mt) DNA throughout the British Isles (328 mice from 105 localities, including previously published data). There is a major mtDNA lineage revealed by both RFLP and sequence analyses, which is restricted to the northern and western peripheries of the British Isles, and also occurs in Norway. This distribution of the ‘Orkney’ lineage fits well with the sphere of influence of the Norwegian Vikings and was probably generated through inadvertent transport by them. To form viable populations, house mice would have required large human settlements such as the Norwegian Vikings founded. The other parts of the British Isles (essentially most of mainland Britain) are characterized by house mice with different mtDNA sequences, some of which are also found in Germany, and which probably reflect both Iron Age movements of people and mice and earlier development of large human settlements. MtDNA studies on house mice have the potential to reveal novel aspects of human history. PMID:18826939

  3. Repatriation and Identification of Finnish World War II Soldiers

    PubMed Central

    Palo, Jukka U.; Hedman, Minttu; Söderholm, Niklas; Sajantila, Antti

    2007-01-01

    Aim To present a summary of the organization, field search, repatriation, forensic anthropological examination, and DNA analysis for the purpose of identification of Finnish soldiers with unresolved fate in World War II. Methods Field searches were organized, executed, and financed by the Ministry of Education and the Association for Cherishing the Memory of the Dead of the War. Anthropological examination conducted on human remains retrieved in the field searches was used to establish the minimum number of individuals and description of the skeletal diseases, treatment, anomalies, or injuries. DNA tests were performed by extracting DNA from powdered bones and blood samples from relatives. Mitochondrial DNA (mtDNA) sequence comparisons, together with circumstantial evidence, were used to connect the remains to the putative family members. Results At present, the skeletal remains of about a thousand soldiers have been found and repatriated. In forensic anthropological examination, several injuries related to death were documented. For the total of 181 bone samples, mtDNA HVR-1 and HVR-2 sequences were successfully obtained for 167 (92.3%) and 148 (81.8%) of the samples, respectively. Five samples yielded no reliable sequence data. Our data suggests that mtDNA preserves at least for 60 years in the boreal acidic soil. The quality of the obtained mtDNA sequence data varied depending on the sample bone type, with long compact bones (femur, tibia and humerus) having significantly better (90.0%) success rate than other bones (51.2%). Conclusion Although more than 60 years have passed since the World War II, our experience is that resolving the fate of soldiers missing in action is still of uttermost importance for people having lost their relatives in the war. Although cultural and individual differences may exist, our experience presented here gives a good perspective on the importance of individual identification performed by forensic professionals. PMID:17696308

  4. The ability of human nuclear DNA to cause false positive low-abundance heteroplasmy calls varies across the mitochondrial genome.

    PubMed

    Albayrak, Levent; Khanipov, Kamil; Pimenova, Maria; Golovko, George; Rojas, Mark; Pavlidis, Ioannis; Chumakov, Sergei; Aguilar, Gerardo; Chávez, Arturo; Widger, William R; Fofanov, Yuriy

    2016-12-12

    Low-abundance mutations in mitochondrial populations (mutations with minor allele frequency ≤ 1%), are associated with cancer, aging, and neurodegenerative disorders. While recent progress in high-throughput sequencing technology has significantly improved the heteroplasmy identification process, the ability of this technology to detect low-abundance mutations can be affected by the presence of similar sequences originating from nuclear DNA (nDNA). To determine to what extent nDNA can cause false positive low-abundance heteroplasmy calls, we have identified mitochondrial locations of all subsequences that are common or similar (one mismatch allowed) between nDNA and mitochondrial DNA (mtDNA). Performed analysis revealed up to a 25-fold variation in the lengths of longest common and longest similar (one mismatch allowed) subsequences across the mitochondrial genome. The size of the longest subsequences shared between nDNA and mtDNA in several regions of the mitochondrial genome were found to be as low as 11 bases, which not only allows using these regions to design new, very specific PCR primers, but also supports the hypothesis of the non-random introduction of mtDNA into the human nuclear DNA. Analysis of the mitochondrial locations of the subsequences shared between nDNA and mtDNA suggested that even very short (36 bases) single-end sequencing reads can be used to identify low-abundance variation in 20.4% of the mitochondrial genome. For longer (76 and 150 bases) reads, the proportion of the mitochondrial genome where nDNA presence will not interfere found to be 44.5 and 67.9%, when low-abundance mutations at 100% of locations can be identified using 417 bases long single reads. This observation suggests that the analysis of low-abundance variations in mitochondria population can be extended to a variety of large data collections such as NCBI Sequence Read Archive, European Nucleotide Archive, The Cancer Genome Atlas, and International Cancer Genome Consortium.

  5. Taenia solium cysticercosis in Bali, Indonesia: serology and mtDNA analysis.

    PubMed

    Sudewi, A A R; Wandra, T; Artha, A; Nkouawa, A; Ito, A

    2008-01-01

    An active Taenia solium cysticercosis case in Bali, Indonesia, was followed-up by serology and computed tomography. Serology using semi-purified glycoprotein and recombinant antigens showed a drastic drop in titers after calcification of the cysts. Three paraffin-embedded cysts, prepared for histopathological examination, from three other patients were used for mtDNA analysis. The sequences of cox1 gene from T. solium cysticerci from Bali differed from those in Papua and other Asian countries.

  6. Genetic ancestry of the extinct Javan and Bali tigers.

    PubMed

    Xue, Hao-Ran; Yamaguchi, Nobuyuki; Driscoll, Carlos A; Han, Yu; Bar-Gal, Gila Kahila; Zhuang, Yan; Mazak, Ji H; Macdonald, David W; O'Brien, Stephen J; Luo, Shu-Jin

    2015-01-01

    The Bali (Panthera tigris balica) and Javan (P. t. sondaica) tigers are recognized as distinct tiger subspecies that went extinct in the 1940s and 1980s, respectively. Yet their genetic ancestry and taxonomic status remain controversial. Following ancient DNA procedures, we generated concatenated 1750bp mtDNA sequences from 23 museum samples including 11 voucher specimens from Java and Bali and compared these to diagnostic mtDNA sequences from 122 specimens of living tiger subspecies and the extinct Caspian tiger. The results revealed a close genetic affinity of the 3 groups from the Sunda Islands (Bali, Javan, and Sumatran tigers P. t. sumatrae). Bali and Javan mtDNA haplotypes differ from Sumatran haplotypes by 1-2 nucleotides, and the 3 island populations define a monophyletic assemblage distinctive and equidistant from other mainland subspecies. Despite this close phylogenetic relationship, no mtDNA haplotype was shared between Sumatran and Javan/Bali tigers, indicating little or no matrilineal gene flow among the islands after they were colonized. The close phylogenetic relationship among Sunda tiger subspecies suggests either recent colonization across the islands, or else a once continuous tiger population that had subsequently isolated into different island subspecies. This supports the hypothesis that the Sumatran tiger is the closest living relative to the extinct Javan and Bali tigers. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Genes for cytochrome c oxidase subunit I, URF2, and three tRNAs in Drosophila mitochondrial DNA.

    PubMed Central

    Clary, D O; Wolstenholme, D R

    1983-01-01

    Genes for URF2, tRNAtrp, tRNAcys, tRNAtyr and cytochrome c oxidase subunit I (COI) have been identified within a sequenced segment of the Drosophila yakuba mtDNA molecule. The five genes are arranged in the order given. Transcription of the tRNAcys and tRNAtyr genes is in the same direction as replication, while transcription of the URF2, tRNAtrp and COI genes is in the opposite direction. A similar arrangement of these genes is found in mammalian mtDNA except that in the latter, the tRNAala and tRNAasn genes are located between the tRNAtrp and tRNAcys genes. Also, a sequence found between the tRNAasn and tRNAcys genes in mammalian mtDNA, which is associated with the initiation of second strand DNA synthesis, is not found in this region of the D. yakuba mtDNA molecule. As the D. yakuba COI gene lacks a standard translation initiation codon, we consider the possibility that the quadruplet ATAA may serve this function. As in other D. yakuba mitochondrial polypeptide genes, AGA codons in the URF2 and COI genes do not correspond in position to arginine-specifying codons in the equivalent genes of mouse and yeast mtDNAs, but do most frequently correspond to serine-specifying codons. PMID:6314262

  8. Evolutionary Analyses of Entire Genomes Do Not Support the Association of mtDNA Mutations with Ras/MAPK Pathway Syndromes

    PubMed Central

    Cerezo, María; Balboa, Emilia; Heredia, Claudia; Castro-Feijóo, Lidia; Rica, Itxaso; Barreiro, Jesús; Eirís, Jesús; Cabanas, Paloma; Martínez-Soto, Isabel; Fernández-Toral, Joaquín; Castro-Gago, Manuel; Pombo, Manuel; Carracedo, Ángel; Barros, Francisco

    2011-01-01

    Background There are several known autosomal genes responsible for Ras/MAPK pathway syndromes, including Noonan syndrome (NS) and related disorders (such as LEOPARD, neurofibromatosis type 1), although mutations of these genes do not explain all cases. Due to the important role played by the mitochondrion in the energetic metabolism of cardiac muscle, it was recently proposed that variation in the mitochondrial DNA (mtDNA) genome could be a risk factor in the Noonan phenotype and in hypertrophic cardiomyopathy (HCM), which is a common clinical feature in Ras/MAPK pathway syndromes. In order to test these hypotheses, we sequenced entire mtDNA genomes in the largest series of patients suffering from Ras/MAPK pathway syndromes analyzed to date (n = 45), most of them classified as NS patients (n = 42). Methods/Principal Findings The results indicate that the observed mtDNA lineages were mostly of European ancestry, reproducing in a nutshell the expected haplogroup (hg) patterns of a typical Iberian dataset (including hgs H, T, J, and U). Three new branches of the mtDNA phylogeny (H1j1, U5b1e, and L2a5) are described for the first time, but none of these are likely to be related to NS or Ras/MAPK pathway syndromes when observed under an evolutionary perspective. Patterns of variation in tRNA and protein genes, as well as redundant, private and heteroplasmic variants, in the mtDNA genomes of patients were as expected when compared with the patterns inferred from a worldwide mtDNA phylogeny based on more than 8700 entire genomes. Moreover, most of the mtDNA variants found in patients had already been reported in healthy individuals and constitute common polymorphisms in human population groups. Conclusions/Significance As a whole, the observed mtDNA genome variation in the NS patients was difficult to reconcile with previous findings that indicated a pathogenic role of mtDNA variants in NS. PMID:21526175

  9. Recent volcanism and mitochondrial DNA structuring in the lizard Gallotia atlantica from the island of Lanzarote.

    PubMed

    Bloor, P; Kemp, S J; Brown, R P

    2008-02-01

    The phylogeography of the lacertid lizard Gallotia atlantica from the small volcanic island of Lanzarote (Canary Islands) was analysed based on 1075 bp of mitochondrial DNA (mtDNA) sequence (partial cytochrome b and ND2) for 157 individuals from 27 sites (including three sites from neighbouring islets). Levels of sequence divergence were generally low, with the most distant haplotypes separated by only 14 mutational steps. MtDNA divergence appears to coincide with formation of the middle Pleistocene lowland that united formerly separate ancient islands to form the current island of Lanzarote, allowing rejection of a two-island model of phylogeographical structure. There was evidence of large-scale population expansion after island unification, consistent with the colonization of new areas. A nested clade phylogeographical analysis (NCPA) revealed significant phylogeographical structuring. Two-step and higher-level clades each had disjunct distributions, being found to the east and west of a common area with a north-south orientation that extends between coasts in the centre-east of the island (El Jable). Other clades were almost entirely restricted to the El Jable region alone. Bayesian Markov chain Monte Carlo analyses were used to separate ongoing gene flow from historical associations. These supported the NCPA by indicating recent (75,000-150,000 years ago) east-west vicariance across the El Jable region. Lava flows covered El Jable and other parts of the central lowland at this time and likely led to population extinctions and temporary dispersal barriers, although present-day evidence suggests some populations would have survived in small refugia. Expansion of the latter appears to explain the presence of a clade located between the eastern and western components of the disjunct clades. Direct relationships between mtDNA lineages and morphology were not found, although one of two morphological forms on the island has a disjunct distribution that is broadly concordant with east-west components of the phylogeographical pattern. This work demonstrates how recent volcanic activity can cause population fragmentation and thus shape genetic diversity on microgeographical scales.

  10. Y-Chromosome and mtDNA Genetics Reveal Significant Contrasts in Affinities of Modern Middle Eastern Populations with European and African Populations

    PubMed Central

    Badro, Danielle A.; Youhanna, Sonia C.; Salloum, Angélique; Ghassibe-Sabbagh, Michella; Johnsrud, Brian; Khazen, Georges; Matisoo-Smith, Elizabeth; Soria-Hernanz, David F.; Wells, R. Spencer; Tyler-Smith, Chris; Platt, Daniel E.; Zalloua, Pierre A.

    2013-01-01

    The Middle East was a funnel of human expansion out of Africa, a staging area for the Neolithic Agricultural Revolution, and the home to some of the earliest world empires. Post LGM expansions into the region and subsequent population movements created a striking genetic mosaic with distinct sex-based genetic differentiation. While prior studies have examined the mtDNA and Y-chromosome contrast in focal populations in the Middle East, none have undertaken a broad-spectrum survey including North and sub-Saharan Africa, Europe, and Middle Eastern populations. In this study 5,174 mtDNA and 4,658 Y-chromosome samples were investigated using PCA, MDS, mean-linkage clustering, AMOVA, and Fisher exact tests of FST's, RST's, and haplogroup frequencies. Geographic differentiation in affinities of Middle Eastern populations with Africa and Europe showed distinct contrasts between mtDNA and Y-chromosome data. Specifically, Lebanon's mtDNA shows a very strong association to Europe, while Yemen shows very strong affinity with Egypt and North and East Africa. Previous Y-chromosome results showed a Levantine coastal-inland contrast marked by J1 and J2, and a very strong North African component was evident throughout the Middle East. Neither of these patterns were observed in the mtDNA. While J2 has penetrated into Europe, the pattern of Y-chromosome diversity in Lebanon does not show the widespread affinities with Europe indicated by the mtDNA data. Lastly, while each population shows evidence of connections with expansions that now define the Middle East, Africa, and Europe, many of the populations in the Middle East show distinctive mtDNA and Y-haplogroup characteristics that indicate long standing settlement with relatively little impact from and movement into other populations. PMID:23382925

  11. Y-chromosome and mtDNA genetics reveal significant contrasts in affinities of modern Middle Eastern populations with European and African populations.

    PubMed

    Badro, Danielle A; Douaihy, Bouchra; Haber, Marc; Youhanna, Sonia C; Salloum, Angélique; Ghassibe-Sabbagh, Michella; Johnsrud, Brian; Khazen, Georges; Matisoo-Smith, Elizabeth; Soria-Hernanz, David F; Wells, R Spencer; Tyler-Smith, Chris; Platt, Daniel E; Zalloua, Pierre A

    2013-01-01

    The Middle East was a funnel of human expansion out of Africa, a staging area for the Neolithic Agricultural Revolution, and the home to some of the earliest world empires. Post LGM expansions into the region and subsequent population movements created a striking genetic mosaic with distinct sex-based genetic differentiation. While prior studies have examined the mtDNA and Y-chromosome contrast in focal populations in the Middle East, none have undertaken a broad-spectrum survey including North and sub-Saharan Africa, Europe, and Middle Eastern populations. In this study 5,174 mtDNA and 4,658 Y-chromosome samples were investigated using PCA, MDS, mean-linkage clustering, AMOVA, and Fisher exact tests of F(ST)'s, R(ST)'s, and haplogroup frequencies. Geographic differentiation in affinities of Middle Eastern populations with Africa and Europe showed distinct contrasts between mtDNA and Y-chromosome data. Specifically, Lebanon's mtDNA shows a very strong association to Europe, while Yemen shows very strong affinity with Egypt and North and East Africa. Previous Y-chromosome results showed a Levantine coastal-inland contrast marked by J1 and J2, and a very strong North African component was evident throughout the Middle East. Neither of these patterns were observed in the mtDNA. While J2 has penetrated into Europe, the pattern of Y-chromosome diversity in Lebanon does not show the widespread affinities with Europe indicated by the mtDNA data. Lastly, while each population shows evidence of connections with expansions that now define the Middle East, Africa, and Europe, many of the populations in the Middle East show distinctive mtDNA and Y-haplogroup characteristics that indicate long standing settlement with relatively little impact from and movement into other populations.

  12. Feline Non-repetitive Mitochondrial DNA Control Region Database for Forensic Evidence

    PubMed Central

    Grahn, R. A.; Kurushima, J. D.; Billings, N. C.; Grahn, J.C.; Halverson, J. L.; Hammer, E.; Ho, C.K.; Kun, T. J.; Levy, J.K.; Lipinski, M. J.; Mwenda, J.M.; Ozpinar, H.; Schuster, R.K; Shoorijeh, S.J.; Tarditi, C. R.; Waly, N.E.; Wictum, E. J.; Lyons, L. A.

    2010-01-01

    The domestic cat is the one of the most popular pets throughout the world. A by-product of owning, interacting with, or being in a household with a cat is the transfer of shed fur to clothing or personal objects. As trace evidence, transferred cat fur is a relatively untapped resource for forensic scientists. Both phenotypic and genotypic characteristics can be obtained from cat fur, but databases for neither aspect exist. Because cats incessantly groom, cat fur may have nucleated cells, not only in the hair bulb, but also as epithelial cells on the hair shaft deposited during the grooming process, thereby generally providing material for DNA profiling. To effectively exploit cat hair as a resource, representative databases must be established. This study evaluates 402 bp of the mtDNA control region (CR) from 1,394 cats, including cats from 25 distinct worldwide populations and 26 breeds. Eighty-three percent of the cats are represented by 12 major mitotypes. An additional 8.0% are clearly derived from the major mitotypes. Unique sequences were found in 7.5% of the cats. The overall genetic diversity for this data set was 0.8813 ± 0.0046 with a random match probability of 11.8%. This region of the cat mtDNA has discriminatory power suitable for forensic application worldwide. PMID:20457082

  13. Genetic diversity and population structure in Bactrocera correcta (Diptera: Tephritidae) inferred from mtDNA cox1 and microsatellite markers

    PubMed Central

    Qin, Yu-Jia; Buahom, Nopparat; Krosch, Matthew N.; Du, Yu; Wu, Yi; Malacrida, Anna R.; Deng, Yu-Liang; Liu, Jia-Qi; Jiang, Xiao-Long; Li, Zhi-Hong

    2016-01-01

    Bactrocera correcta is one of the most destructive pests of horticultural crops in tropical and subtropical regions. Despite the economic risk, the population genetics of this pest have remained relatively unexplored. This study explores population genetic structure and contemporary gene flow in B. correcta in Chinese Yunnan Province and attempts to place observed patterns within the broader geographical context of the species’ total range. Based on combined data from mtDNA cox1 sequences and 12 microsatellite loci obtained from 793 individuals located in 7 countries, overall genetic structuring was low. The expansion history of this species, including likely human-mediated dispersal, may have played a role in shaping the observed weak structure. The study suggested a close relationship between Yunnan Province and adjacent countries, with evidence for Western and/or Southern Yunnan as the invasive origin of B. correcta within Yunnan Province. The information gleaned from this analysis of gene flow and population structure has broad implications for quarantine, trade and management of this pest, especially in China where it is expanding northward. Future studies should concentrate effort on sampling South Asian populations, which would enable better inferences of the ancestral location of B. correcta and its invasion history into and throughout Asia. PMID:27929126

  14. Development of a multilocus-based approach for sponge (phylum Porifera) identification: refinement and limitations.

    PubMed

    Yang, Qi; Franco, Christopher M M; Sorokin, Shirley J; Zhang, Wei

    2017-02-02

    For sponges (phylum Porifera), there is no reliable molecular protocol available for species identification. To address this gap, we developed a multilocus-based Sponge Identification Protocol (SIP) validated by a sample of 37 sponge species belonging to 10 orders from South Australia. The universal barcode COI mtDNA, 28S rRNA gene (D3-D5), and the nuclear ITS1-5.8S-ITS2 region were evaluated for their suitability and capacity for sponge identification. The highest Bit Score was applied to infer the identity. The reliability of SIP was validated by phylogenetic analysis. The 28S rRNA gene and COI mtDNA performed better than the ITS region in classifying sponges at various taxonomic levels. A major limitation is that the databases are not well populated and possess low diversity, making it difficult to conduct the molecular identification protocol. The identification is also impacted by the accuracy of the morphological classification of the sponges whose sequences have been submitted to the database. Re-examination of the morphological identification further demonstrated and improved the reliability of sponge identification by SIP. Integrated with morphological identification, the multilocus-based SIP offers an improved protocol for more reliable and effective sponge identification, by coupling the accuracy of different DNA markers.

  15. Development of a multilocus-based approach for sponge (phylum Porifera) identification: refinement and limitations

    PubMed Central

    Yang, Qi; Franco, Christopher M. M.; Sorokin, Shirley J.; Zhang, Wei

    2017-01-01

    For sponges (phylum Porifera), there is no reliable molecular protocol available for species identification. To address this gap, we developed a multilocus-based Sponge Identification Protocol (SIP) validated by a sample of 37 sponge species belonging to 10 orders from South Australia. The universal barcode COI mtDNA, 28S rRNA gene (D3–D5), and the nuclear ITS1-5.8S-ITS2 region were evaluated for their suitability and capacity for sponge identification. The highest Bit Score was applied to infer the identity. The reliability of SIP was validated by phylogenetic analysis. The 28S rRNA gene and COI mtDNA performed better than the ITS region in classifying sponges at various taxonomic levels. A major limitation is that the databases are not well populated and possess low diversity, making it difficult to conduct the molecular identification protocol. The identification is also impacted by the accuracy of the morphological classification of the sponges whose sequences have been submitted to the database. Re-examination of the morphological identification further demonstrated and improved the reliability of sponge identification by SIP. Integrated with morphological identification, the multilocus-based SIP offers an improved protocol for more reliable and effective sponge identification, by coupling the accuracy of different DNA markers. PMID:28150727

  16. Genetic diversity and population structure of the New World screwworm fly from the Amazon region of Brazil.

    PubMed

    Mastrangelo, Thiago; Fresia, Pablo; Lyra, Mariana L; Rodrigues, Rosangela A; Azeredo-Espin, Ana Maria L

    2014-10-01

    Cochliomyia hominivorax (Coquerel) is a myiasis fly that causes economic losses to livestock farmers in warmer American regions. Previous studies of this pest had found population structure at north and south of the Amazon Basin, which was considered to be a barrier to dispersal. The present study analyzed three mitochondrial DNA (mtDNA) markers and eight nuclear microsatellite loci to investigate for the first time the genetic diversity and population structure across the Brazilian Amazon region (Amazonia). Both mtDNA and microsatellite data supported the existence of much diversity and significant population structure among nine regional populations of C. hominivorax, which was found to be surprisingly common in Amazonia. Forty-six mtDNA haplotypes were identified, of which 39 were novel and seven had previously been found only at south of Amazonia. Seventy microsatellite alleles were identified by size, moderate to high values of heterozygosity were discovered in all regions, and a Bayesian clustering analysis identified four genetic groups that were not geographically distributed. Reproductive compatibility was also investigated by laboratory crossing, but no evidence of hybrid dysgenesis was found between an Amazonian colony and one each of from Northeast and Southeast Brazil. The results have important implications for area-wide control by the Sterile Insect Technique. Copyright © 2014 International Atomic Energy Agency 2014. Published by Elsevier B.V. All rights reserved.

  17. Brown and polar bear Y chromosomes reveal extensive male-biased gene flow within brother lineages.

    PubMed

    Bidon, Tobias; Janke, Axel; Fain, Steven R; Eiken, Hans Geir; Hagen, Snorre B; Saarma, Urmas; Hallström, Björn M; Lecomte, Nicolas; Hailer, Frank

    2014-06-01

    Brown and polar bears have become prominent examples in phylogeography, but previous phylogeographic studies relied largely on maternally inherited mitochondrial DNA (mtDNA) or were geographically restricted. The male-specific Y chromosome, a natural counterpart to mtDNA, has remained underexplored. Although this paternally inherited chromosome is indispensable for comprehensive analyses of phylogeographic patterns, technical difficulties and low variability have hampered its application in most mammals. We developed 13 novel Y-chromosomal sequence and microsatellite markers from the polar bear genome and screened these in a broad geographic sample of 130 brown and polar bears. We also analyzed a 390-kb-long Y-chromosomal scaffold using sequencing data from published male ursine genomes. Y chromosome evidence support the emerging understanding that brown and polar bears started to diverge no later than the Middle Pleistocene. Contrary to mtDNA patterns, we found 1) brown and polar bears to be reciprocally monophyletic sister (or rather brother) lineages, without signals of introgression, 2) male-biased gene flow across continents and on phylogeographic time scales, and 3) male dispersal that links the Alaskan ABC islands population to mainland brown bears. Due to female philopatry, mtDNA provides a highly structured estimate of population differentiation, while male-biased gene flow is a homogenizing force for nuclear genetic variation. Our findings highlight the importance of analyzing both maternally and paternally inherited loci for a comprehensive view of phylogeographic history, and that mtDNA-based phylogeographic studies of many mammals should be reevaluated. Recent advances in sequencing technology render the analysis of Y-chromosomal variation feasible, even in nonmodel organisms. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Ancient and recent Middle Eastern maternal genetic contribution to North Africa as viewed by mtDNA diversity in Tunisian Arab populations.

    PubMed

    Elkamel, Sarra; Boussetta, Sami; Khodjet-El-Khil, Houssein; Benammar Elgaaied, Amel; Cherni, Lotfi

    2018-05-01

    Through previous mitochondrial DNA studies, the Middle Eastern maternal genetic contribution to Tunisian populations appears limited. In fact, most of the studied communities were cosmopolitan, or of Berber or Andalusian origin. To provide genetic evidence for the actual contribution of Middle Eastern mtDNA lineages to Tunisia, we focused on two Arab speaking populations from Kairouan and Wesletia known to belong to an Arab genealogical lineage. A total of 114 samples were sequenced for the mtDNA HVS-I and HVS-II regions. Using these data, we evaluated the distribution of Middle Eastern haplogroups in the study populations, constructed interpolation maps, and established phylogenetic networks allowing estimation of the coalescence time for three specific Middle Eastern subclades (R0a, J1b, and T1). Both studied populations displayed North African genetic structure and Middle Eastern lineages with a frequency of 12% and 28.12% in Kairouan and Wesletia, respectively. TMRCA estimates for haplogroups T1a, R0a, and J1b in Tunisian Arabian samples were around 15 000 YBP, 9000 to 5000 YBP, and 960 to 600 YBP, respectively. The Middle Eastern maternal genetic contribution to Tunisian populations, as to other North African populations, occurred mostly in deep prehistory. They were brought in different migration waves during the Upper Paleolithic, probably with the expansion of Iberomaurusian culture, and during Epipaleolithic and Early Neolithic periods, which are concomitant with the Capsian civilization. Middle Eastern lineages also came to Tunisia during the recent Islamic expansion of the 7th CE and the subsequent massive Bedouin migration during the 11th CE. © 2018 Wiley Periodicals, Inc.

  19. The Basque Paradigm: Genetic Evidence of a Maternal Continuity in the Franco-Cantabrian Region since Pre-Neolithic Times

    PubMed Central

    Behar, Doron M.; Harmant, Christine; Manry, Jeremy; van Oven, Mannis; Haak, Wolfgang; Martinez-Cruz, Begoña; Salaberria, Jasone; Oyharçabal, Bernard; Bauduer, Frédéric; Comas, David; Quintana-Murci, Lluis

    2012-01-01

    Different lines of evidence point to the resettlement of much of western and central Europe by populations from the Franco-Cantabrian region during the Late Glacial and Postglacial periods. In this context, the study of the genetic diversity of contemporary Basques, a population located at the epicenter of the Franco-Cantabrian region, is particularly useful because they speak a non-Indo-European language that is considered to be a linguistic isolate. In contrast with genome-wide analysis and Y chromosome data, where the problem of poor time estimates remains, a new timescale has been established for the human mtDNA and makes this genome the most informative marker for studying European prehistory. Here, we aim to increase knowledge of the origins of the Basque people and, more generally, of the role of the Franco-Cantabrian refuge in the postglacial repopulation of Europe. We thus characterize the maternal ancestry of 908 Basque and non-Basque individuals from the Basque Country and immediate adjacent regions and, by sequencing 420 complete mtDNA genomes, we focused on haplogroup H. We identified six mtDNA haplogroups, H1j1, H1t1, H2a5a1, H1av1, H3c2a, and H1e1a1, which are autochthonous to the Franco-Cantabrian region and, more specifically, to Basque-speaking populations. We detected signals of the expansion of these haplogroups at ∼4,000 years before present (YBP) and estimated their separation from the pan-European gene pool at ∼8,000 YBP, antedating the Indo-European arrival to the region. Our results clearly support the hypothesis of a partial genetic continuity of contemporary Basques with the preceding Paleolithic/Mesolithic settlers of their homeland. PMID:22365151

  20. Ancient female philopatry, asymmetric male gene flow, and synchronous population expansion support the influence of climatic oscillations on the evolution of South American sea lion (Otaria flavescens).

    PubMed

    Oliveira, Larissa Rosa de; Gehara, Marcelo C M; Fraga, Lúcia D; Lopes, Fernando; Túnez, Juan Ignacio; Cassini, Marcelo H; Majluf, Patricia; Cárdenas-Alayza, Susana; Pavés, Héctor J; Crespo, Enrique Alberto; García, Nestor; Loizaga de Castro, Rocío; Hoelzel, A Rus; Sepúlveda, Maritza; Olavarría, Carlos; Valiati, Victor Hugo; Quiñones, Renato; Pérez-Alvarez, Maria Jose; Ott, Paulo Henrique; Bonatto, Sandro L

    2017-01-01

    The South American sea lion (Otaria flavescens) is widely distributed along the southern Atlantic and Pacific coasts of South America with a history of significant commercial exploitation. We aimed to evaluate the population genetic structure and the evolutionary history of South American sea lion along its distribution by analyses of mitochondrial DNA (mtDNA) and 10 nuclear microsatellites loci. We analyzed 147 sequences of mtDNA control region and genotyped 111 individuals of South American sea lion for 10 microsatellite loci, representing six populations (Peru, Northern Chile, Southern Chile, Uruguay (Brazil), Argentina and Falkland (Malvinas) Islands) and covering the entire distribution of the species. The mtDNA phylogeny shows that haplotypes from the two oceans comprise two very divergent clades as observed in previous studies, suggesting a long period (>1 million years) of low inter-oceanic female gene flow. Bayesian analysis of bi-parental genetic diversity supports significant (but less pronounced than mitochondrial) genetic structure between Pacific and Atlantic populations, although also suggested some inter-oceanic gene flow mediated by males. Higher male migration rates were found in the intra-oceanic population comparisons, supporting very high female philopatry in the species. Demographic analyses showed that populations from both oceans went through a large population expansion ~10,000 years ago, suggesting a very similar influence of historical environmental factors, such as the last glacial cycle, on both regions. Our results support the proposition that the Pacific and Atlantic populations of the South American sea lion should be considered distinct evolutionarily significant units, with at least two managements units in each ocean.

Top