A method to measure the presampling MTF in digital radiography using Wiener deconvolution
NASA Astrophysics Data System (ADS)
Zhou, Zhongxing; Zhu, Qingzhen; Gao, Feng; Zhao, Huijuan; Zhang, Lixin; Li, Guohui
2013-03-01
We developed a novel method for determining the presampling modulation transfer function (MTF) of digital radiography systems from slanted edge images based on Wiener deconvolution. The degraded supersampled edge spread function (ESF) was obtained from simulated slanted edge images with known MTF in the presence of poisson noise, and its corresponding ideal ESF without degration was constructed according to its central edge position. To meet the requirements of the absolute integrable condition of Fourier transformation, the origianl ESFs were mirrored to construct the symmetric pattern of ESFs. Then based on Wiener deconvolution technique, the supersampled line spread function (LSF) could be acquired from the symmetric pattern of degraded supersampled ESFs in the presence of ideal symmetric ESFs and system noise. The MTF is then the normalized magnitude of the Fourier transform of the LSF. The determined MTF showed a strong agreement with the theoritical true MTF when appropriated Wiener parameter was chosen. The effects of Wiener parameter value and the width of square-like wave peak in symmetric ESFs were illustrated and discussed. In conclusion, an accurate and simple method to measure the presampling MTF was established using Wiener deconvolution technique according to slanted edge images.
Validation of a Custom-made Software for DQE Assessment in Mammography Digital Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayala-Dominguez, L.; Perez-Ponce, H.; Brandan, M. E.
2010-12-07
This works presents the validation of a custom-made software, designed and developed in Matlab, intended for routine evaluation of detective quantum efficiency DQE, according to algorithms described in the IEC 62220-1-2 standard. DQE, normalized noise power spectrum NNPS and pre-sampling modulation transfer function MTF were calculated from RAW images from a GE Senographe DS (FineView disabled) and a Siemens Novation system. Calculated MTF is in close agreement with results obtained with alternative codes: MTF lowbar tool (Maidment), ImageJ plug-in (Perez-Ponce) and MIQuaELa (Ayala). Overall agreement better than {approx_equal}90% was found in MTF; the largest differences were observed at frequencies closemore » to the Nyquist limit. For the measurement of NNPS and DQE, agreement is similar to that obtained in the MTF. These results suggest that the developed software can be used with confidence for image quality assessment.« less
Towards the Experimental Assessment of the DQE in SPECT Scanners
NASA Astrophysics Data System (ADS)
Fountos, G. P.; Michail, C. M.
2017-11-01
The purpose of this work was to introduce the Detective Quantum Efficiency (DQE) in single photon emission computed tomography (SPECT) systems using a flood source. A Tc-99m-based flood source (Eγ = 140 keV) consisting of a radiopharmaceutical solution of dithiothreitol (DTT, 10-3 M)/Tc-99m(III)-DMSA, 40 mCi/40 ml bound to the grains of an Agfa MammoRay HDR Medical X-ray film) was prepared in laboratory. The source was placed between two PMMA blocks and images were obtained by using the brain tomographic acquisition protocol (DatScan-brain). The Modulation Transfer Function (MTF) was evaluated using the Iterative 2D algorithm. All imaging experiments were performed in a Siemens e-Cam gamma camera. The Normalized Noise Power spectra (NNPS) were obtained from the sagittal views of the source. The higher MTF values were obtained for the Flash Iterative 2D with 24 iterations and 20 subsets. The noise levels of the SPECT reconstructed images, in terms of the NNPS, were found to increase as the number of iterations increase. The behavior of the DQE was influenced by both MTF and NNPS. As the number of iterations was increased, higher MTF values were obtained, however with a parallel, increase of magnitude in image noise, as depicted from the NNPS results. DQE values, which were influenced by both MTF and NNPS, were found higher when the number of iterations results in resolution saturation. The method presented here is novel and easy to implement, requiring materials commonly found in clinical practice and can be useful in the quality control of SPECT scanners.
Examining the Spatial Frequency Components of a Digital Dental Detector
NASA Astrophysics Data System (ADS)
Anastasiou, A.; Michail, C.; Koukou, V.; Martini, N.; Bakas, A.; Papastamati, F.; Maragkaki, P.; Lavdas, L.; Fountos, G.; Valais, I.; Kalyvas, N.
2017-11-01
Digital X-ray detectors are widely used in dental radiography. The scope of this work is the examination of the spatial frequency component of a dedicated dental CMOS detector. A commercially available SCHICK CDR CMOS detector was irradiated at a Del Medical Eureka X-ray system at 60kVp and 70kVp. The irradiation setup included images of an edge, for Modulation Transfer Function (MTF) calculation. The air-KERMA was measured with an RTI PIRANHA X-ray multimeter. The images were evaluated in ‘for presentation’ format with the use of ImageJ software. The linear range of the detector was found in the range 13μGy-183μGy at 60 kVp and 18μGy-180μGy at 70 kVp. By inspecting the MTF curves it was found that MTF(6lp/mm)60kVp=0.29 and MTF(6lp/mm)70kVp=0.25. The inspection of the Normalized Noise Power Spetrum (NNPS) showed similar low noise components. Our results indicate that this detector presents comparable performance at both kVp, although its X-ray response (pixel value vs air KERMA) was not equal to previously published results, for the same detector type.
NASA Technical Reports Server (NTRS)
Helder, Dennis; Choi, Taeyoung; Rangaswamy, Manjunath
2005-01-01
The spatial characteristics of an imaging system cannot be expressed by a single number or simple statement. However, the Modulation Transfer Function (MTF) is one approach to measure the spatial quality of an imaging system. Basically, MTF is the normalized spatial frequency response of an imaging system. The frequency response of the system can be evaluated by applying an impulse input. The resulting impulse response is termed the Point Spread function (PSF). This function is a measure of the amount of blurring present in the imaging system and is itself a useful measure of spatial quality. An underlying assumption is that the imaging system is linear and shift-independent. The Fourier transform of the PSF is called the Optical Transfer Function (OTF) and the normalized magnitude of the OTF is the MTF. In addition to using an impulse input, a knife-edge in technique has also been used in this project. The sharp edge exercises an imaging system at all spatial frequencies. The profile of an edge response from an imaging system is called an Edge Spread Function (ESF). Differentiation of the ESF results in a one-dimensional version of the Point Spread Function (PSF). Finally, MTF can be calculated through use of Fourier transform of the PSF as stated previously. Every image includes noise in some degree which makes MTF of PSF estimation more difficult. To avoid the noise effects, many MTF estimation approaches use smooth numerical models. Historically, Gaussian models and Fermi functions were applied to reduce the random noise in the output profiles. The pulse-input method was used to measure the MTF of the Landsat Thematic Mapper (TM) using 8th order even functions over the San Mateo Bridge in San Francisco, California. Because the bridge width was smaller than the 30-meter ground sample distance (GSD) of the TM, the Nyquist frequency was located before the first zero-crossing point of the sinc function from the Fourier transformation of the bridge pulse. To avoid the zero-crossing points in the frequency domain from a pulse, the pulse width should be less than the width of two pixels (or 2 GSD's), but the short extent of the pulse results in a poor signal-to-noise ratio. Similarly, for a high-resolution satellite imaging system such as Quickbird, the input pulse width was critical because of the zero crossing points and noise present in the background area. It is important, therefore, that the width of the input pulse be appropriately sized. Finally, the MTF was calculated by taking ratio between Fourier transform of output and Fourier transform of input. Regardless of whether the edge, pulse and impulse target method is used, the orientation of the targets is critical in order to obtain uniformly spaced sub-pixel data points. When the orientation is incorrect, sample data points tend to be located in clusters that result in poor reconstruction of the edge or pulse profiles. Thus, a compromise orientation must be selected so that all spectral bands can be accommodated. This report continues by outlining the objectives in Section 2, procedures followed in Section 3, descriptions of the field campaigns in Section 4, results in Section 5, and a brief summary in Section 6.
A novel EPID design for enhanced contrast and detective quantum efficiency
NASA Astrophysics Data System (ADS)
Rottmann, Joerg; Morf, Daniel; Fueglistaller, Rony; Zentai, George; Star-Lack, Josh; Berbeco, Ross
2016-09-01
Beams-eye-view imaging applications such as real-time soft-tissue motion estimation are hindered by the inherently low image contrast of electronic portal imaging devices (EPID) currently available for clinical use. We introduce and characterize a novel EPID design that provides substantially increased detective quantum efficiency (DQE), contrast-to-noise ratio (CNR) and sensitivity without degradation in spatial resolution. The prototype design features a stack of four conventional EPID layers combined with low noise integrated readout electronics. Each layer consists of a copper plate, a scintillator (\\text{G}{{\\text{d}}2}{{\\text{O}}2}{{\\text{S}}{}}\\text{:Tb} ) and a photodiode/TFT-switch (aSi:H). We characterize the prototype’s signal response to a 6 MV photon beam in terms of modulation transfer function (MTF), DQE and CNR. The presampled MTF is estimated using a slanted slit technique, the DQE is calculated from measured normalized noise power spectra (nNPS) and the MTF and CNR is estimated using a Las Vegas contrast phantom. The prototype has been designed and built to be interchangeable with the current clinical EPID on the Varian TrueBeam platform (AS-1200) in terms of size and data output specifications. Performance evaluation is conducted in absolute values as well as in relative terms using the Varian AS-1200 EPID as a reference detector. A fivefold increase of DQE(0) to about 6.7% was observed by using the four-layered design versus the AS-1200 reference detector. No substantial differences are observed between each layer’s individual MTF and the one for all four layers operating combined indicating that defocusing due to beam divergence is negligible. Also, using four layers instead of one increases the signal to noise ratio by a factor of 1.7.
NASA Astrophysics Data System (ADS)
Jeon, Hosang; Kim, Hyunduk; Cha, Bo Kyung; Kim, Jong Yul; Cho, Gyuseong; Chung, Yong Hyun; Yun, Jong-Il
2009-06-01
Presently, the gamma camera system is widely used in various medical diagnostic, industrial and environmental fields. Hence, the quantitative and effective evaluation of its imaging performance is essential for design and quality assurance. The National Electrical Manufacturers Association (NEMA) standards for gamma camera evaluation are insufficient to perform sensitive evaluation. In this study, modulation transfer function (MTF) and normalized noise power spectrum (NNPS) will be suggested to evaluate the performance of small gamma camera with changeable pinhole collimators using Monte Carlo simulation. We simulated the system with a cylinder and a disk source, and seven different pinhole collimators from 1- to 4-mm-diameter pinhole with lead. The MTF and NNPS data were obtained from output images and were compared with full-width at half-maximum (FWHM), sensitivity and differential uniformity. In the result, we found that MTF and NNPS are effective and novel standards to evaluate imaging performance of gamma cameras instead of conventional NEMA standards.
A distance-driven deconvolution method for CT image-resolution improvement
NASA Astrophysics Data System (ADS)
Han, Seokmin; Choi, Kihwan; Yoo, Sang Wook; Yi, Jonghyon
2016-12-01
The purpose of this research is to achieve high spatial resolution in CT (computed tomography) images without hardware modification. The main idea is to consider geometry optics model, which can provide the approximate blurring PSF (point spread function) kernel, which varies according to the distance from the X-ray tube to each point. The FOV (field of view) is divided into several band regions based on the distance from the X-ray source, and each region is deconvolved with a different deconvolution kernel. As the number of subbands increases, the overshoot of the MTF (modulation transfer function) curve increases first. After that, the overshoot begins to decrease while still showing a larger MTF than the normal FBP (filtered backprojection). The case of five subbands seems to show balanced performance between MTF boost and overshoot minimization. It can be seen that, as the number of subbands increases, the noise (STD) can be seen to show a tendency to decrease. The results shows that spatial resolution in CT images can be improved without using high-resolution detectors or focal spot wobbling. The proposed algorithm shows promising results in improving spatial resolution while avoiding excessive noise boost.
A real-time MTFC algorithm of space remote-sensing camera based on FPGA
NASA Astrophysics Data System (ADS)
Zhao, Liting; Huang, Gang; Lin, Zhe
2018-01-01
A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.
Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco; Acchiappati, Domenico
2011-08-01
Here, we present a physical and psychophysical characterization of a new clinical unit (named AcSelerate) for digital radiography based on a thick a-Se layer. We also compared images acquired with and without a software filter (named CRF) developed for reducing sharpness and noise of the images and making them similar to images coming from traditional computed radiography systems. The characterization was achieved in terms of physical figures of merit [modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE)], and psychophysical parameters (contrast-detail analysis with an automatic reading of CDRAD images). We accomplished measurements with four standard beam conditions: RAQ3, RQA5, RQA7, and RQA9. The system shows an excellent MTF (about 50% at the Nyquist frequency). The DQE is about 55% at 0.5 lp/mm and above 20% at the Nyquist frequency and is almost independent from exposure. The contrast-detail curves are comparable to some of the best published data for other systems devoted to imaging in general radiography. The CRF filter influences both the MTF and NPS, but it does lead to very small changes on DQE. Also the visibility of CDRAD details is basically unaltered, when the filter is activated. As normally happens with detector based on direct conversion, the system presents an excellent MTF. The improved efficiency caused by the thick layer allows getting good noise characteristics and DQE results better (about 10% on average) than many of the computed radiography (CR) systems and comparable to those obtained by the best systems for digital radiography available on the market.
NASA Astrophysics Data System (ADS)
Li, Ke; Zambelli, Joseph; Bevins, Nicholas; Ge, Yongshuai; Chen, Guang-Hong
2013-06-01
By adding a Talbot-Lau interferometer to a conventional x-ray absorption computed tomography (CT) imaging system, both differential phase contrast (DPC) signal and absorption contrast signal can be simultaneously measured from the same set of CT measurements. The imaging performance of such multi-contrast x-ray CT imaging systems can be characterized with standard metrics such as noise variance, noise power spectrum, contrast-to-noise ratio, modulation transfer function (MTF), and task-based detectability index. Among these metrics, the measurement of the MTF can be challenging in DPC-CT systems due to several confounding factors such as phase wrapping and the difficulty of using fine wires as probes. To address these technical challenges, this paper discusses a viable and reliable method to experimentally measure the MTF of DPC-CT. It has been found that the spatial resolution of DPC-CT is degraded, when compared to that of the corresponding absorption CT, due to the presence of a source grating G0 in the Talbot-Lau interferometer. An effective MTF was introduced and experimentally estimated to describe the impact of the Talbot-Lau interferometer on the system MTF.
Katsura, Masaki; Sato, Jiro; Akahane, Masaaki; Mise, Yoko; Sumida, Kaoru; Abe, Osamu
2017-08-01
To compare image quality characteristics of high-resolution computed tomography (HRCT) in the evaluation of interstitial lung disease using three different reconstruction methods: model-based iterative reconstruction (MBIR), adaptive statistical iterative reconstruction (ASIR), and filtered back projection (FBP). Eighty-nine consecutive patients with interstitial lung disease underwent standard-of-care chest CT with 64-row multi-detector CT. HRCT images were reconstructed in 0.625-mm contiguous axial slices using FBP, ASIR, and MBIR. Two radiologists independently assessed the images in a blinded manner for subjective image noise, streak artifacts, and visualization of normal and pathologic structures. Objective image noise was measured in the lung parenchyma. Spatial resolution was assessed by measuring the modulation transfer function (MTF). MBIR offered significantly lower objective image noise (22.24±4.53, P<0.01 among all pairs, Student's t-test) compared with ASIR (39.76±7.41) and FBP (51.91±9.71). MTF (spatial resolution) was increased using MBIR compared with ASIR and FBP. MBIR showed improvements in visualization of normal and pathologic structures over ASIR and FBP, while ASIR was rated quite similarly to FBP. MBIR significantly improved subjective image noise (P<0.01 among all pairs, the sign test), and streak artifacts (P<0.01 each for MBIR vs. the other 2 image data sets). MBIR provides high-quality HRCT images for interstitial lung disease by reducing image noise and streak artifacts and improving spatial resolution compared with ASIR and FBP. Copyright © 2017 Elsevier B.V. All rights reserved.
Image quality analysis of a color LCD as well as a monochrome LCD using a Foveon color CMOS camera
NASA Astrophysics Data System (ADS)
Dallas, William J.; Roehrig, Hans; Krupinski, Elizabeth A.
2007-09-01
We have combined a CMOS color camera with special software to compose a multi-functional image-quality analysis instrument. It functions as a colorimeter as well as measuring modulation transfer functions (MTF) and noise power spectra (NPS). It is presently being expanded to examine fixed-pattern noise and temporal noise. The CMOS camera has 9 μm square pixels and a pixel matrix of 2268 x 1512 x 3. The camera uses a sensor that has co-located pixels for all three primary colors. We have imaged sections of both a color and a monochrome LCD monitor onto the camera sensor with LCD-pixel-size to camera-pixel-size ratios of both 12:1 and 17.6:1. When used as an imaging colorimeter, each camera pixel is calibrated to provide CIE color coordinates and tristimulus values. This capability permits the camera to simultaneously determine chromaticity in different locations on the LCD display. After the color calibration with a CS-200 colorimeter the color coordinates of the display's primaries determined from the camera's luminance response are very close to those found from the CS-200. Only the color coordinates of the display's white point were in error. For calculating the MTF a vertical or horizontal line is displayed on the monitor. The captured image is color-matrix preprocessed, Fourier transformed then post-processed. For NPS, a uniform image is displayed on the monitor. Again, the image is pre-processed, transformed and processed. Our measurements show that the horizontal MTF's of both displays have a larger negative slope than that of the vertical MTF's. This behavior indicates that the horizontal MTF's are poorer than the vertical MTF's. However the modulations at the Nyquist frequency seem lower for the color LCD than for the monochrome LCD. The spatial noise of the color display in both directions is larger than that of the monochrome display. Attempts were also made to analyze the total noise in terms of spatial and temporal noise by applying subtractions of images taken at exactly the same exposure. Temporal noise seems to be significantly lower than spatial noise.
Generic Sensor Modeling Using Pulse Method
NASA Technical Reports Server (NTRS)
Helder, Dennis L.; Choi, Taeyoung
2005-01-01
Recent development of high spatial resolution satellites such as IKONOS, Quickbird and Orbview enable observation of the Earth's surface with sub-meter resolution. Compared to the 30 meter resolution of Landsat 5 TM, the amount of information in the output image was dramatically increased. In this era of high spatial resolution, the estimation of spatial quality of images is gaining attention. Historically, the Modulation Transfer Function (MTF) concept has been used to estimate an imaging system's spatial quality. Sometimes classified by target shapes, various methods were developed in laboratory environment utilizing sinusoidal inputs, periodic bar patterns and narrow slits. On-orbit sensor MTF estimation was performed on 30-meter GSD Landsat4 Thematic Mapper (TM) data from the bridge pulse target as a pulse input . Because of a high resolution sensor s small Ground Sampling Distance (GSD), reasonably sized man-made edge, pulse, and impulse targets can be deployed on a uniform grassy area with accurate control of ground targets using tarps and convex mirrors. All the previous work cited calculated MTF without testing the MTF estimator's performance. In previous report, a numerical generic sensor model had been developed to simulate and improve the performance of on-orbit MTF estimating techniques. Results from the previous sensor modeling report that have been incorporated into standard MTF estimation work include Fermi edge detection and the newly developed 4th order modified Savitzky-Golay (MSG) interpolation technique. Noise sensitivity had been studied by performing simulations on known noise sources and a sensor model. Extensive investigation was done to characterize multi-resolution ground noise. Finally, angle simulation was tested by using synthetic pulse targets with angles from 2 to 15 degrees, several brightness levels, and different noise levels from both ground targets and imaging system. As a continuing research activity using the developed sensor model, this report was dedicated to MTF estimation via pulse input method characterization using the Fermi edge detection and 4th order MSG interpolation method. The relationship between pulse width and MTF value at Nyquist was studied including error detection and correction schemes. Pulse target angle sensitivity was studied by using synthetic targets angled from 2 to 12 degrees. In this report, from the ground and system noise simulation, a minimum SNR value was suggested for a stable MTF value at Nyquist for the pulse method. Target width error detection and adjustment technique based on a smooth transition of MTF profile is presented, which is specifically applicable only to the pulse method with 3 pixel wide targets.
Brüllmann, D D; d'Hoedt, B
2011-05-01
The aim of this study was to illustrate the influence of digital filters on the signal-to-noise ratio (SNR) and modulation transfer function (MTF) of digital images. The article will address image pre-processing that may be beneficial for the production of clinically useful digital radiographs with lower radiation dose. Three filters, an arithmetic mean filter, a median filter and a Gaussian filter (standard deviation (SD) = 0.4), with kernel sizes of 3 × 3 pixels and 5 × 5 pixels were tested. Synthetic images with exactly increasing amounts of Gaussian noise were created to gather linear regression of SNR before and after application of digital filters. Artificial stripe patterns with defined amounts of line pairs per millimetre were used to calculate MTF before and after the application of the digital filters. The Gaussian filter with a 5 × 5 kernel size caused the highest noise suppression (SNR increased from 2.22, measured in the synthetic image, to 11.31 in the filtered image). The smallest noise reduction was found with the 3 × 3 median filter. The application of the median filters resulted in no changes in MTF at the different resolutions but did result in the deletion of smaller structures. The 5 × 5 Gaussian filter and the 5 × 5 arithmetic mean filter showed the strongest changes of MTF. The application of digital filters can improve the SNR of a digital sensor; however, MTF can be adversely affected. As such, imaging systems should not be judged solely on their quoted spatial resolutions because pre-processing may influence image quality.
Imaging characteristics of different mammographic screens.
Kuhn, H; Knüpfer, W
1992-01-01
A study of mammography systems with green-emitting screens was conducted to determine how the image quality parameters (apart from dose requirement), such as modulation transfer function (MTF) and Wiener spectrum (WS), depend on the dye content of the compound and coating weight of the screen. In addition, the contribution to total noise of the individual components, i.e., film, screen, and quantum noise, was studied. The quantities derived from MTF and WS, namely detective quantum efficiency (DQE) and noise equivalent quanta (NEQ), were also investigated in regard to their dose dependency. It can be demonstrated that the MTF of the screens becomes more favorable when the dye content is increased, while noise is not significantly affected. This suggests the use of a mammography screen capable of greater detail recognition, requiring at least double the dose of today's conventional systems with approximately 80 microGy system dose. On the other hand, the manufacture of a screen with about 60% of the dose of the conventional system is possible with very little loss in image quality. For the systems in common use today (80 microGy), quantum noise represents a considerable share of the total noise at low spatial frequencies, whereas in high spatial frequencies, the graininess of the film dominates quantum noise and screen structure.
MO-F-CAMPUS-J-04: One-Year Analysis of Elekta CBCT Image Quality Using NPS and MTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakahara, S; Tachibana, M; Watanabe, Y
2015-06-15
Purpose: To compare quantitative image quality (IQ) evaluation methods using Noise Power Spectrum (NPS) and Modulation Transfer Function (MTF) with standard IQ analyses for minimizing the observer subjectivity of the standard methods and maximizing the information content. Methods: For our routine IQ tests of Elekta XVI Cone-Beam CT, image noise was quantified by the standard deviation of CT number (CT#) (Sigma) over a small area in an IQ test phantom (CatPhan), and the high spatial resolution (HSR) was evaluated by the number of line-pairs (LP#) visually recognizable on the image. We also measured the image uniformity, the low contrast resolutionmore » ratio, and the distances of two points for geometrical accuracy. For this study, we did additional evaluation of the XVI data for 12 monthly IQ tests by using NPS for noise, MTF for HSR, and the CT#-to-density relationship. NPS was obtained by applying Fourier analysis in a small area on the uniformity test section of CatPhan. The MTF analysis was performed by applying the Droege-Morin (D-M) method to the line pairs on the phantom. The CT#-to-density was obtained for inserts in the low-contrast test section of the phantom. Results: All the quantities showed a noticeable change over the one-year period. Especially the noise level changed significantly after a repair of the imager. NPS was more sensitive to the IQ change than Sigma. MTF could provide more quantitative and objective evaluation of the HSR. The CT# was very different from the expected CT#; but, the CT#-to-density curves were constant within 5% except two months. Conclusion: Since the D-M method is easy to implement, we recommend using MTF instead of the LP# even for routine periodic QA. The month-to-month variation of IQ was not negligible; hence a routine IQ test must be performed, particularly after any modification of hardware including detector calibration.« less
A comparison of the performance of digital mammography systems.
Monnin, P; Gutierrez, D; Bulling, S; Guntern, D; Verdun, F R
2007-03-01
An objective analysis of image quality parameters was performed for six digital mammography systems. The presampled modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) for the systems were determined at different doses, for 28 kVp with a Mo/Mo or W/Al target/filter combination and 2 mm of additional aluminium filtration. The flat-panel units have higher MTF and DQE in the mid to high frequency range than standard CR systems. The highest DQE, over the whole dose range, is for the slit-scanning direct photon counting system. Dual-side read CR can overcome the inherent x-ray absorption and signal collection limitations of standard CR mammography, improving the low-frequency DQE by 40%, to the same level as full-field systems, but it does not improve the poor spatial resolution of phosphor.
Pipeline for effective denoising of digital mammography and digital breast tomosynthesis
NASA Astrophysics Data System (ADS)
Borges, Lucas R.; Bakic, Predrag R.; Foi, Alessandro; Maidment, Andrew D. A.; Vieira, Marcelo A. C.
2017-03-01
Denoising can be used as a tool to enhance image quality and enforce low radiation doses in X-ray medical imaging. The effectiveness of denoising techniques relies on the validity of the underlying noise model. In full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT), calibration steps like the detector offset and flat-fielding can affect some assumptions made by most denoising techniques. Furthermore, quantum noise found in X-ray images is signal-dependent and can only be treated by specific filters. In this work we propose a pipeline for FFDM and DBT image denoising that considers the calibration steps and simplifies the modeling of the noise statistics through variance-stabilizing transformations (VST). The performance of a state-of-the-art denoising method was tested with and without the proposed pipeline. To evaluate the method, objective metrics such as the normalized root mean square error (N-RMSE), noise power spectrum, modulation transfer function (MTF) and the frequency signal-to-noise ratio (SNR) were analyzed. Preliminary tests show that the pipeline improves denoising. When the pipeline is not used, bright pixels of the denoised image are under-filtered and dark pixels are over-smoothed due to the assumption of a signal-independent Gaussian model. The pipeline improved denoising up to 20% in terms of spatial N-RMSE and up to 15% in terms of frequency SNR. Besides improving the denoising, the pipeline does not increase signal smoothing significantly, as shown by the MTF. Thus, the proposed pipeline can be used with state-of-the-art denoising techniques to improve the quality of DBT and FFDM images.
[Comparison of noise characteristics of direct and indirect conversion flat panel detectors].
Murai, Masami; Kishimoto, Kenji; Tanaka, Katsuhisa; Oota, Kenji; Ienaga, Akinori
2010-11-20
Flat-panel detector (FPD) digital radiography systems have direct and indirect conversion systems, and the 2 conversion systems provide different imaging performances. We measured some imaging performances [input-output characteristic, presampled modulation transfer function (presampled MTF), noise power spectrum (NPS)] of direct and indirect FPD systems. Moreover, some image samples of the NPSs were visually evaluated by the pair comparison method. As a result, the presampled MTF of the direct FPD system was substantially higher than that of the indirect FPD system. The NPS of the direct FPD system had a high value for all spatial frequencies. In contrast, the NPS of the indirect FPD system had a lower value as the frequency became higher. The results of visual evaluations showed the same tendency as that found for NPSs. We elucidated the cause of the difference in NPSs in a simulation study, and we determined that the cause of the difference in the noise components of the direct and indirect FPD systems was closely related to the presampled MTF.
Performance characteristics of a Kodak computed radiography system.
Bradford, C D; Peppler, W W; Dobbins, J T
1999-01-01
The performance characteristics of a photostimulable phosphor based computed radiographic (CR) system were studied. The modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE) of the Kodak Digital Science computed radiography (CR) system (Eastman Kodak Co.-model 400) were measured and compared to previously published results of a Fuji based CR system (Philips Medical Systems-PCR model 7000). To maximize comparability, the same measurement techniques and analysis methods were used. The DQE at four exposure levels (30, 3, 0.3, 0.03 mR) and two plate types (standard and high resolution) were calculated from the NPS and MTF measurements. The NPS was determined from two-dimensional Fourier analysis of uniformly exposed plates. The presampling MTF was determined from the Fourier transform (FT) of the system's finely sampled line spread function (LSF) as produced by a narrow slit. A comparison of the slit type ("beveled edge" versus "straight edge") and its effect on the resulting MTF measurements was also performed. The results show that both systems are comparable in resolution performance. The noise power studies indicated a higher level of noise for the Kodak images (approximately 20% at the low exposure levels and 40%-70% at higher exposure levels). Within the clinically relevant exposure range (0.3-3 mR), the resulting DQE for the Kodak plates ranged between 20%-50% lower than for the corresponding Fuji plates. Measurements of the presampling MTF with the two slit types have shown that a correction factor can be applied to compensate for transmission through the relief edges.
Favazza, Christopher P.; Duan, Xinhui; Zhang, Yi; Yu, Lifeng; Leng, Shuai; Kofler, James M.; Bruesewitz, Michael R.; McCollough, Cynthia H.
2015-01-01
Through this investigation we developed a methodology to evaluate and standardize CT image quality from routine abdomen protocols across different manufacturers and models. The influence of manufacturer-specific automated exposure control systems on image quality was directly assessed to standardize performance across a range of patient sizes. We evaluated 16 CT scanners across our health system, including Siemens, GE, and Toshiba models. Using each practice’s routine abdomen protocol, we measured spatial resolution, image noise, and scanner radiation output (CTDIvol). Axial and in-plane spatial resolutions were assessed through slice sensitivity profile (SSP) and modulation transfer function (MTF) measurements, respectively. Image noise and CTDIvol values were obtained for three different phantom sizes. SSP measurements demonstrated a bimodal distribution in slice widths: an average of 6.2 ± 0.2 mm using GE’s “Plus” mode reconstruction setting and 5.0 ± 0.1 mm for all other scanners. MTF curves were similar for all scanners. Average spatial frequencies at 50%, 10%, and 2% MTF values were 3.24 ± 0.37, 6.20 ± 0.34, and 7.84 ± 0.70 lp/cm, respectively. For all phantom sizes, image noise and CTDIvol varied considerably: 6.5–13.3 HU (noise) and 4.8–13.3 mGy (CTDIvol) for the smallest phantom; 9.1–18.4 HU and 9.3–28.8 mGy for the medium phantom; and 7.8–23.4 HU and 16.0–48.1 mGy for the largest phantom. Using these measurements and benchmark SSP, MTF, and image noise targets, CT image quality can be standardized across a range of patient sizes. PMID:26459751
Saini, Neetu; Sodhi, Rupinder Kaur; Bajaj, Lotika; Pandey, Ravi Shankar; Jain, Upendra Kumar; Katare, Om Prakash; Madan, Jitender
2016-08-01
Metformin hydrochloride (MTF-HCl) is extensively recommended by physicians for the treatment of polycystic ovary syndrome (PCOS). Mechanistically, MTF-HCl activates AMP-dependent kinase-α (AMPK-α) pathway to decrease the glucose production, enhances fatty acid oxidation and elevates the uptake of glucose in tissues. However, despite favourable physicochemical properties, oral administration of MTF-HCl is associated with impaired bioavailability (50-60%), lactic-acidosis and frequent dosing (500mg 2-3 times a day) in PCOS that ultimately influence the patient compliance. Therefore, in present investigation, MTF-HCl loaded unmodified and cationic small unilamellar niosomes were separately amalgamated with thermosensitive gel (MTF-HCl-SUNs-Gel and MTF-HCl-C-SUNs-Gel) for the treatment of PCOS through vaginal route of administration. MTF-HCl-SUNs and MTF-HCl-C-SUNs were separately prepared by reverse phase evaporation method. The nanovesicle size and zeta-potential of MTF-HCl-C-SUNs were measured to be 210.3±14.8-nm (P<0.05) and +8.7±2.7-mV (P<0.001), significantly higher than 198.5±20.3-nm and -16.6±3.9-mV of MTF-HCl-SUNs, respectively. Moreover, promising results of in vitro characterization parameters like gelation time, gelling temperature, viscosity analysis, percent mucoadhesiveness and drug release of MTF-HCl-C-SUNs-Gel and MTF-HCl-SUNs-Gel ensured the candidature of tailored gels for further in vivo investigations. In this way, treatment of PCOS rats under scheduled dose-dosage regimen with oral MTF-HCl solution, intravaginal MTF-HCl-SUNs-Gel and intravaginal MTF-HCl-C-SUNs-gel exhibited remarkable alterations, recruitment and development of normal follicles in addition to normalization of level of various hormones in PCOS. In conclusion, MTF-C-SUNs-Gel has paved the way for developing intravaginal dosage form of MTF-HCl for the treatment of PCOS. Copyright © 2016 Elsevier B.V. All rights reserved.
Physics considerations in MV-CBCT multi-layer imager design.
Hu, Yue-Houng; Fueglistaller, Rony; Myronakis, Marios E; Rottmann, Joerg; Wang, Adam; Shedlock, Daniel; Morf, Daniel; Baturin, Paul; Huber, Pascal; Star-Lack, Josh M; Berbeco, Ross I
2018-05-30
Megavoltage (MV) cone-beam computed tomography (CBCT) using an electronic portal imaging (EPID) offers advantageous features, including 3D mapping, treatment beam registration, high-z artifact suppression, and direct radiation dose calculation. Adoption has been slowed by image quality limitations and concerns about imaging dose. Developments in imager design, including pixelated scintillators, structured phosphors, inexpensive scintillation materials, and multi-layer imager (MLI) architecture have been explored to improve EPID image quality and reduce imaging dose. The present study employs a hybrid Monte Carlo and linear systems model to determine the effect of detector design elements, such as multi-layer architecture and scintillation materials. We follow metrics of image quality including modulation transfer function (MTF) and noise power spectrum (NPS) from projection images to 3D reconstructions to in-plane slices and apply a task based figure-of-merit, the ideal observer signal-to-noise ratio (d') to determine the effect of detector design on object detectability. Generally, detectability was limited by detector noise performance. Deploying an MLI imager with a single scintillation material for all layers yields improvement in noise performance and d' linear with the number of layers. In general, improving x-ray absorption using thicker scintillators results in improved DQE(0). However, if light yield is low, performance will be affected by electronic noise at relatively high doses, resulting in rapid image quality degradation. Maximizing image quality in a heterogenous MLI detector (i.e. multiple different scintillation materials) is most affected by limiting imager noise. However, while a second-order effect, maximizing total spatial resolution of the MLI detector is a balance between the intensity contribution of each layer against its individual MTF. So, while a thinner scintillator may yield a maximal individual-layer MTF, its quantum efficiency will be relatively low in comparison to a thicker scintillator and thus, intensity contribution may be insufficient to noticeably improve the total detector MTF. © 2018 Institute of Physics and Engineering in Medicine.
Error of the slanted edge method for measuring the modulation transfer function of imaging systems.
Xie, Xufen; Fan, Hongda; Wang, Hongyuan; Wang, Zebin; Zou, Nianyu
2018-03-01
The slanted edge method is a basic approach for measuring the modulation transfer function (MTF) of imaging systems; however, its measurement accuracy is limited in practice. Theoretical analysis of the slanted edge MTF measurement method performed in this paper reveals that inappropriate edge angles and random noise reduce this accuracy. The error caused by edge angles is analyzed using sampling and reconstruction theory. Furthermore, an error model combining noise and edge angles is proposed. We verify the analyses and model with respect to (i) the edge angle, (ii) a statistical analysis of the measurement error, (iii) the full width at half-maximum of a point spread function, and (iv) the error model. The experimental results verify the theoretical findings. This research can be referential for applications of the slanted edge MTF measurement method.
The effect of serum on monocyte tissue factor generation.
Edwards, R L; Perla, D
1984-09-01
Human monocytes generate the procoagulant tissue factor (MTF) following exposure to a variety of immune stimuli in vitro. The generation of MTF is modified by T cells, lymphokines, and immunoregulatory lipoproteins, and recent studies have shown that MTF can be activated in an immune-specific manner following exposure to antigen. We have examined the role of serum factors in the regulation of MTF generation. Low concentrations (less than 1%) of heat-inactivated normal human serum greatly enhanced MTF generation in cultures of normal peripheral blood mononuclear cells. The stimulatory effect was observed in cultures of both unstimulated cells and cells exposed to bacterial lipopolysaccharide. Stimulation was not observed at high serum concentrations (greater than 10%) and could not be explained by endotoxin contamination or activation of the assay system. Stimulatory activity was present in plasma and BaSO4-adsorbed plasma as well as autologous and allogeneic serum, was not abolished by removal of serum lipoproteins, and did not require the presence of T cells for its expression. Sera from 28 different normal volunteers were screened for stimulatory activity and demonstrated a wide variation in potency. These results suggest that a potent factor is present in sera that enhances the expression of MTF activity in vitro. This factor is distinct from previously described lipoprotein regulators and may play a role in the initiation of coagulation in both normal hemostasis and pathologic states.
Technical characterization of five x-ray detectors for paediatric radiography applications
NASA Astrophysics Data System (ADS)
Marshall, N. W.; Smet, M.; Hofmans, M.; Pauwels, H.; De Clercq, T.; Bosmans, H.
2017-12-01
Physical image quality of five x-ray detectors used in the paediatric imaging department is characterized with the aim of establishing the range/scope of imaging performance provided by these detectors for neonatal imaging. Two computed radiography (CR) detectors (MD4.0 powder imaging plate (PIP) and HD5.0 needle imaging plate (NIP), Agfa HealthCare NV, B-2640 Mortsel, Belgium) and three flat panel detectors (FPD) (the Agfa DX-D35C and DX-D45C and the DRX-2530C (Carestream Health Inc., Rochester, NY 14608, USA)) were assessed. Physical image quality was characterized using the detector metrics given by the International Electrotechnical Commission (IEC 62220-1) to measure modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) using the IEC-specified beam qualities of RQA3 and RQA5. The DQE was evaluated at the normal operating detector air kerma (DAK) level, defined at 2.5 µGy for all detectors, and at factors of 1/3.2 and 3.2 times the normal level. MTF curves for the different detectors were similar at both RQA3 and RQA5 energies; the average spatial frequency for the 50% point (MTF0.5) at RQA3 was 1.26 mm-1, with a range from 1.20 mm-1 to 1.37 mm-1. The DQE of the NIP CR compared to the PIP CR was notably greater and similar to that for the FPD devices. At RQA3, average DQE for the FPD and NIP (at 0.5 mm-1 2.5 µGy) was 0.57 compared to 0.26 for the PIP CR. At the RQA5 energy, the DRX-2530C and the DX-D45C had the highest DQE (~0.6 at 0.5 mm-1 2.5 µGy). Noise separation analysis using the polynomial model showed higher electronic noise for the DX-D35C and DRX-2530C detectors; this explains the reduced DQE seen at 0.7 µGy/image. The NIP CR detector offers notably improved DQE performance compared to the PIP CR system and a value similar to the DQE for FPD devices at the RQA3 energy.
NASA Astrophysics Data System (ADS)
Pospisil, J.; Jakubik, P.; Machala, L.
2005-11-01
This article reports the suggestion, realization and verification of the newly developed measuring means of the noiseless and locally shift-invariant modulation transfer function (MTF) of a digital video camera in a usual incoherent visible region of optical intensity, especially of its combined imaging, detection, sampling and digitizing steps which are influenced by the additive and spatially discrete photodetector, aliasing and quantization noises. Such means relates to the still camera automatic working regime and static two-dimensional spatially continuous light-reflection random target of white-noise property. The introduced theoretical reason for such a random-target method is also performed under exploitation of the proposed simulation model of the linear optical intensity response and possibility to express the resultant MTF by a normalized and smoothed rate of the ascertainable output and input power spectral densities. The random-target and resultant image-data were obtained and processed by means of a processing and evaluational PC with computation programs developed on the basis of MATLAB 6.5E The present examples of results and other obtained results of the performed measurements demonstrate the sufficient repeatability and acceptability of the described method for comparative evaluations of the performance of digital video cameras under various conditions.
Favazza, Christopher P; Duan, Xinhui; Zhang, Yi; Yu, Lifeng; Leng, Shuai; Kofler, James M; Bruesewitz, Michael R; McCollough, Cynthia H
2015-11-07
Through this investigation we developed a methodology to evaluate and standardize CT image quality from routine abdomen protocols across different manufacturers and models. The influence of manufacturer-specific automated exposure control systems on image quality was directly assessed to standardize performance across a range of patient sizes. We evaluated 16 CT scanners across our health system, including Siemens, GE, and Toshiba models. Using each practice's routine abdomen protocol, we measured spatial resolution, image noise, and scanner radiation output (CTDIvol). Axial and in-plane spatial resolutions were assessed through slice sensitivity profile (SSP) and modulation transfer function (MTF) measurements, respectively. Image noise and CTDIvol values were obtained for three different phantom sizes. SSP measurements demonstrated a bimodal distribution in slice widths: an average of 6.2 ± 0.2 mm using GE's 'Plus' mode reconstruction setting and 5.0 ± 0.1 mm for all other scanners. MTF curves were similar for all scanners. Average spatial frequencies at 50%, 10%, and 2% MTF values were 3.24 ± 0.37, 6.20 ± 0.34, and 7.84 ± 0.70 lp cm(-1), respectively. For all phantom sizes, image noise and CTDIvol varied considerably: 6.5-13.3 HU (noise) and 4.8-13.3 mGy (CTDIvol) for the smallest phantom; 9.1-18.4 HU and 9.3-28.8 mGy for the medium phantom; and 7.8-23.4 HU and 16.0-48.1 mGy for the largest phantom. Using these measurements and benchmark SSP, MTF, and image noise targets, CT image quality can be standardized across a range of patient sizes.
NASA Astrophysics Data System (ADS)
Hu, Yue-Houng; Rottmann, Joerg; Fueglistaller, Rony; Myronakis, Marios; Wang, Adam; Huber, Pascal; Shedlock, Daniel; Morf, Daniel; Baturin, Paul; Star-Lack, Josh; Berbeco, Ross
2018-02-01
While megavoltage cone-beam computed tomography (CBCT) using an electronic portal imaging device (EPID) provides many advantages over kilovoltage (kV) CBCT, clinical adoption is limited by its high doses. Multi-layer imager (MLI) EPIDs increase DQE(0) while maintaining high resolution. However, even well-designed, high-performance MLIs suffer from increased electronic noise from each readout, degrading low-dose image quality. To improve low-dose performance, shift-and-bin addition (ShiBA) imaging is proposed, leveraging the unique architecture of the MLI. ShiBA combines hardware readout-binning and super-resolution concepts, reducing electronic noise while maintaining native image sampling. The imaging performance of full-resolution (FR); standard, aligned binned (BIN); and ShiBA images in terms of noise power spectrum (NPS), electronic NPS, modulation transfer function (MTF), and the ideal observer signal-to-noise ratio (SNR)—the detectability index (d‧)—are compared. The FR 4-layer readout of the prototype MLI exhibits an electronic NPS magnitude 6-times higher than a state-of-the-art single layer (SLI) EPID. Although the MLI is built on the same readout platform as the SLI, with each layer exhibiting equivalent electronic noise, the multi-stage readout of the MLI results in electronic noise 50% higher than simple summation. Electronic noise is mitigated in both BIN and ShiBA imaging, reducing its total by ~12 times. ShiBA further reduces the NPS, effectively upsampling the image, resulting in a multiplication by a sinc2 function. Normalized NPS show that neither ShiBA nor BIN otherwise affects image noise. The LSF shows that ShiBA removes the pixilation artifact of BIN images and mitigates the effect of detector shift, but does not quantifiably improve the MTF. ShiBA provides a pre-sampled representation of the images, mitigating phase dependence. Hardware binning strategies lower the quantum noise floor, with 2 × 2 implementation reducing the dose at which DQE(0) degrades by 10% from 0.01 MU to 0.004 MU, representing 20% improvement in d‧.
Cascaded systems analysis of photon counting detectors
Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Lundqvist, M.; Fredenberg, E.; Carrino, J. A.; Siewerdsen, J. H.
2014-01-01
Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at which the MTF falls to a value of 0.50) by ∼30% with corresponding improvement in DQE. The range in exposure and additive noise for which PCDs yield intrinsically higher DQE was quantified, showing performance advantages under conditions of very low-dose, high additive noise, and high fidelity rejection of coincident photons. Conclusions: The model for PCD signal and noise performance agreed with measurements of detector signal, MTF, and NPS and provided a useful basis for understanding complex dependencies in PCD imaging performance and the potential advantages (and disadvantages) in comparison to EIDs as well as an important guide to task-based optimization in developing new PCD imaging systems. PMID:25281959
Cascaded systems analysis of photon counting detectors.
Xu, J; Zbijewski, W; Gang, G; Stayman, J W; Taguchi, K; Lundqvist, M; Fredenberg, E; Carrino, J A; Siewerdsen, J H
2014-10-01
Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1-7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at which the MTF falls to a value of 0.50) by ∼30% with corresponding improvement in DQE. The range in exposure and additive noise for which PCDs yield intrinsically higher DQE was quantified, showing performance advantages under conditions of very low-dose, high additive noise, and high fidelity rejection of coincident photons. The model for PCD signal and noise performance agreed with measurements of detector signal, MTF, and NPS and provided a useful basis for understanding complex dependencies in PCD imaging performance and the potential advantages (and disadvantages) in comparison to EIDs as well as an important guide to task-based optimization in developing new PCD imaging systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rottmann, J; Myronakis, M; Hu, Y
Purpose: Beams-eye-view imaging applications such as real-time soft-tissue motion estimation and MV-CBCT are hindered by the inherently low image contrast of electronic portal imaging devices (EPID) currently in clinical use. We investigate a cost effective scintillating glass that provides substantially increased detective quantum efficiency (DQE) and contrast to noise ratio (CNR). Methods: A pixelated scintillator prototype was built from LKH-5 glass. The array is 12mm thick; 42.4×42.4cm2 wide and features 1.51mm pixel pitch with 20µm separation (glue+septa). The LKH-5 array was mounted on the active matrix flat panel imager (AMPFI) of an AS-1200 (Varian) with the GdO2S2:Tb removed. A secondmore » AS-1200 was utilized as reference detector. The prototype EPID was characterized in terms of CNR, modulation transfer function (MTF) and DQE. Additionally, the visibility of various fiducial markers typically used in the clinic as well as a realistic 3D-printed lung tumor model was assessed. All items were placed in a 12cm thick solid water phantom. CNR is estimated using a Las Vegas contrast phantom, presampled MTF is estimated using a slanted slit technique and the DQE is calculated from measured normalized noise power spectra (NPS) and the MTF. Results: DQE(0) for the LKH-5 prototype increased by a factor of 8× to about 10%, compared to the AS-1200 equipped with its standard GdO2S2:Tb scintillator. CNR increased by a factor of 5.3×. Due to the pixel size the MTF50 decreased by about 55% to 0.23lp/mm. The visibility of all fiducial markers as well as the tumor model were however markedly improved in comparison to an acquisition with the same parameters using the GdO2S2:Tb scintillator. Conclusion: LKH-5 scintillating glasses allow the cost effective construction of thick pixelated scintillators for portal imaging which can yield a substantial increase in DQE and CNR. Soft tissue and fiducial marker visibility was found to be markedly improved. The project was supported in part by NIH grant R01CA188446-01 and a grant from Varian Medical Systems.« less
Detector evaluation of a prototype amorphous selenium-based full field digital mammography system
NASA Astrophysics Data System (ADS)
Jesneck, Jonathan L.; Saunders, Robert S.; Samei, Ehsan; Xia, Jessie Q.; Lo, Joseph Y.
2005-04-01
This study evaluated the physical performance of a selenium-based direct full-field digital mammography prototype detector (Siemens Mammomat NovationDR), including the pixel value vs. exposure linearity, the modulation transfer function (MTF), the normalized noise power spectrum (NNPS), and the detective quantum efficiency (DQE). The current detector is the same model which received an approvable letter from FDA for release to the US market. The results of the current prototype are compared to those of an earlier prototype. Two IEC standard beam qualities (RQA-M2: Mo/Mo, 28 kVp, 2 mm Al; RQA-M4: Mo/Mo, 35 kVp, 2 mm Al) and two additional beam qualities (MW2: W/Rh, 28 kVp, 2 mm Al; MW4: W/Rh, 35 kVp, 2 mm Al) were investigated. To calculate the modulation transfer function (MTF), a 0.1 mm Pt-Ir edge was imaged at each beam quality. Detector pixel values responded linearly against exposure values (R2 0.999). As before, above 6 cycles/mm Mo/Mo MTF was slightly higher along the chest-nipple axis compared to the left-right axis. MTF was comparable to the previously reported prototype, with slightly reduced resolution. The DQE peaks ranged from 0.71 for 3.31 μC/kg (12.83 mR) to 0.4 for 0.48 μC/kg (1.86 mR) at 1.75 cycles/mm for Mo/Mo at 28 kVp. The DQE range for W/Rh at 28 kVP was 0.81 at 2.03 μC/kg (7.87 mR) to 0.50 at 0.50 μC/kg (1.94 mR) at 1 cycle/mm. NNPS tended to increase with greater exposures, while all exposures had a significant low-frequency component. Bloom and detector edge artifacts observed previously were no longer present in this prototype. The new detector shows marked noise improvement, with slightly reduced resolution. There remain artifacts due to imperfect gain calibration, but at a reduced magnitude compared to a prototype detector.
Effects of image processing on the detective quantum efficiency
NASA Astrophysics Data System (ADS)
Park, Hye-Suk; Kim, Hee-Joung; Cho, Hyo-Min; Lee, Chang-Lae; Lee, Seung-Wan; Choi, Yu-Na
2010-04-01
Digital radiography has gained popularity in many areas of clinical practice. This transition brings interest in advancing the methodologies for image quality characterization. However, as the methodologies for such characterizations have not been standardized, the results of these studies cannot be directly compared. The primary objective of this study was to standardize methodologies for image quality characterization. The secondary objective was to evaluate affected factors to Modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) according to image processing algorithm. Image performance parameters such as MTF, NPS, and DQE were evaluated using the international electro-technical commission (IEC 62220-1)-defined RQA5 radiographic techniques. Computed radiography (CR) images of hand posterior-anterior (PA) for measuring signal to noise ratio (SNR), slit image for measuring MTF, white image for measuring NPS were obtained and various Multi-Scale Image Contrast Amplification (MUSICA) parameters were applied to each of acquired images. In results, all of modified images were considerably influence on evaluating SNR, MTF, NPS, and DQE. Modified images by the post-processing had higher DQE than the MUSICA=0 image. This suggests that MUSICA values, as a post-processing, have an affect on the image when it is evaluating for image quality. In conclusion, the control parameters of image processing could be accounted for evaluating characterization of image quality in same way. The results of this study could be guided as a baseline to evaluate imaging systems and their imaging characteristics by measuring MTF, NPS, and DQE.
Characterization of on-site digital mammography systems: Direct versus indirect conversion detectors
NASA Astrophysics Data System (ADS)
Youn, Hanbean; Han, Jong Chul; Yun, Seungman; Kam, Soohwa; Cho, Seungryong; Kim, Ho Kyung
2015-06-01
We investigated the performances of two digital mammography systems. The systems use a cesium-iodide (CsI) scintillator and an amorphous selenium ( a-Se) photoconductor for X-ray detection and are installed in the same hospital. As physical metrics, we measured the modulationtransfer function (MTF), the noise-power spectrum (NPS), and the detective quantum efficiency (DQE). In addition, we analyzed the contrast-detail performances of the two systems by using a commercial contrast-detail phantom. The CsI-based indirect conversion detector provided better MTF and DQE performances than the a-Se-based direct conversion detector whereas the former provided a poorer NPS performance than the latter. These results are explained by the fact that the CsI-based detector used an MTF restoration preprocessing algorithm. The a-Se-based detector showed better contrast-detail performance than the CsI-based detector. We believe that the highfrequency noise characteristic of a detector is more responsible for the visibility of small details than its spatial-resolution performance.
Minimum resolvable power contrast model
NASA Astrophysics Data System (ADS)
Qian, Shuai; Wang, Xia; Zhou, Jingjing
2018-01-01
Signal-to-noise ratio and MTF are important indexs to evaluate the performance of optical systems. However,whether they are used alone or joint assessment cannot intuitively describe the overall performance of the system. Therefore, an index is proposed to reflect the comprehensive system performance-Minimum Resolvable Radiation Performance Contrast (MRP) model. MRP is an evaluation model without human eyes. It starts from the radiance of the target and the background, transforms the target and background into the equivalent strips,and considers attenuation of the atmosphere, the optical imaging system, and the detector. Combining with the signal-to-noise ratio and the MTF, the Minimum Resolvable Radiation Performance Contrast is obtained. Finally the detection probability model of MRP is given.
Retrospective analysis of a detector fault for a full field digital mammography system
NASA Astrophysics Data System (ADS)
Marshall, N. W.
2006-11-01
This paper describes objective and subjective image quality measurements acquired as part of a routine quality assurance (QA) programme for an amorphous selenium (a-Se) full field digital mammography (FFDM) system between August-04 and February-05. During this period, the FFDM detector developed a fault and was replaced. A retrospective analysis of objective image quality parameters (modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE)) is presented to try and gain a deeper understanding of the detector problem that occurred. These measurements are discussed in conjunction with routine contrast-detail (c-d) results acquired with the CDMAM (Artinis, The Netherlands) test object. There was significant reduction in MTF over this period of time indicating an increase in blurring occurring within the a-Se converter layer. This blurring was not isotropic, being greater in the data line direction (left to right across the detector) than in the gate line direction (chest wall to nipple). The initial value of the 50% MTF point was 6 mm-1; for the faulty detector the 50% MTF points occurred at 3.4 mm-1 and 1.0 mm-1 in the gate line and data line directions, respectively. Prior to NNPS estimation, variance images were formed of the detector flat field images. Spatial distribution of variance was not uniform, suggesting that the physical blurring process was not constant across the detector. This change in variance with image position implied that the stationarity of the noise statistics within the image was limited and that care would be needed when performing objective measurements. The NNPS measurements confirmed the results found for the MTF, with a strong reduction in NNPS as a function of spatial frequency. This reduction was far more severe in the data line direction. A somewhat tentative DQE estimate was made; in the gate line direction there was little change in DQE up to 2.5 mm-1 but at the Nyquist frequency the DQE had fallen to approximately 35% of the original value. There was severe attenuation of DQE in the data line direction, the DQE falling to less than 0.01 above approximately 3.0 mm-1. C-d results showed an increase in threshold contrast of approximately 25% for details less than 0.2 mm in diameter, while no reduction in c-d performance was found at the largest detail diameters (1.0 mm and above). Despite the detector fault, the c-d curve was found to pass the European protocol acceptable c-d curve.
NASA Astrophysics Data System (ADS)
Nano, Tomi; Escartin, Terenz; Karim, Karim S.; Cunningham, Ian A.
2016-03-01
The ability to improve visualization of structural information in digital radiography without increasing radiation exposures requires improved image quality across all spatial frequencies, especially at high frequencies. The detective quantum efficiency (DQE) as a function of spatial frequency quantifies image quality given by an x-ray detector. We present a method of increasing DQE at high spatial frequencies by improving the modulation transfer function (MTF) and reducing noise aliasing. The Apodized Aperature Pixel (AAP) design uses a detector with micro-elements to synthesize desired pixels and provide higher DQE than conventional detector designs. A cascaded system analysis (CSA) that incorporates x-ray interactions is used for comparison of the theoretical MTF, noise power spectrum (NPS), and DQE. Signal and noise transfer through the converter material is shown to consist of correlated an uncorrelated terms. The AAP design was shown to improve the DQE of both material types that have predominantly correlated transfer (such as CsI) and predominantly uncorrelated transfer (such as Se). Improvement in the MTF by 50% and the DQE by 100% at the sampling cut-off frequency is obtained when uncorrelated transfer is prevalent through the converter material. Optimizing high-frequency DQE results in improved image contrast and visualization of small structures and fine-detail.
Directional MTF measurement using sphere phantoms for a digital breast tomosynthesis system
NASA Astrophysics Data System (ADS)
Lee, Changwoo; Baek, Jongduk
2015-03-01
The digital breast tomosynthesis (DBT) has been widely used as a diagnosis imaging modality of breast cancer because of potential for structure noise reduction, better detectability, and less breast compression. Since 3D modulation transfer function (MTF) is one of the quantitative metrics to assess the spatial resolution of medical imaging systems, it is very important to measure 3D MTF of the DBT system to evaluate the resolution performance. In order to do that, Samei et al. used sphere phantoms and applied Thornton's method to the DBT system. However, due to the limitation of Thornton's method, the low frequency drop, caused by the limited data acquisition angle and reconstruction filters, was not measured correctly. To overcome this limitation, we propose a Richardson-Lucy (RL) deconvolution based estimation method to measure the directional MTF. We reconstructed point and sphere objects using FDK algorithm within a 40⁰ data acquisition angle. The ideal 3D MTF is obtained by taking Fourier transform of the reconstructed point object, and three directions (i.e., fx-direction, fy-direction, and fxy-direction) of the ideal 3D MTF are used as a reference. To estimate the directional MTF, the plane integrals of the reconstructed and ideal sphere object were calculated and used to estimate the directional PSF using RL deconvolution technique. Finally, the directional MTF was calculated by taking Fourier transform of the estimated PSF. Compared to the previous method, the proposed method showed a good agreement with the ideal directional MTF, especially at low frequency regions.
Elbakri, I A; McIntosh, B J; Rickey, D W
2009-03-21
We investigated the physical characteristics of two complementary metal oxide semiconductor (CMOS) mammography detectors. The detectors featured 14-bit image acquisition, 50 microm detector element (del) size and an active area of 5 cm x 5 cm. One detector was a passive-pixel sensor (PPS) with signal amplification performed by an array of amplifiers connected to dels via data lines. The other detector was an active-pixel sensor (APS) with signal amplification performed at each del. Passive-pixel designs have higher read noise due to data line capacitance, and the APS represents an attempt to improve the noise performance of this technology. We evaluated the detectors' resolution by measuring the modulation transfer function (MTF) using a tilted edge. We measured the noise power spectra (NPS) and detective quantum efficiencies (DQE) using mammographic beam conditions specified by the IEC 62220-1-2 standard. Our measurements showed the APS to have much higher gain, slightly higher MTF, and higher NPS. The MTF of both sensors approached 10% near the Nyquist limit. DQE values near dc frequency were in the range of 55-67%, with the APS sensor DQE lower than the PPS DQE for all frequencies. Our results show that lower read noise specifications in this case do not translate into gains in the imaging performance of the sensor. We postulate that the lower fill factor of the APS is a possible cause for this result.
Space station interior noise analysis program
NASA Technical Reports Server (NTRS)
Stusnick, E.; Burn, M.
1987-01-01
Documentation is provided for a microcomputer program which was developed to evaluate the effect of the vibroacoustic environment on speech communication inside a space station. The program, entitled Space Station Interior Noise Analysis Program (SSINAP), combines a Statistical Energy Analysis (SEA) prediction of sound and vibration levels within the space station with a speech intelligibility model based on the Modulation Transfer Function and the Speech Transmission Index (MTF/STI). The SEA model provides an effective analysis tool for predicting the acoustic environment based on proposed space station design. The MTF/STI model provides a method for evaluating speech communication in the relatively reverberant and potentially noisy environments that are likely to occur in space stations. The combinations of these two models provides a powerful analysis tool for optimizing the acoustic design of space stations from the point of view of speech communications. The mathematical algorithms used in SSINAP are presented to implement the SEA and MTF/STI models. An appendix provides an explanation of the operation of the program along with details of the program structure and code.
LCD displays performance comparison by MTF measurement using the white noise stimulus method
NASA Astrophysics Data System (ADS)
Mitjà, Carles; Escofet, Jaume
2011-01-01
The amount of images produced to be viewed as soft copies on output displays are significantly increasing. This growing occurs at the expense of the images targeted to hard copy versions on paper or any other physical support. Even in the case of high quality hard copy production, people working in professional imaging uses different displays in selecting, editing, processing and showing images, from laptop screen to specialized high end displays. Then, the quality performance of these devices is crucial in the chain of decisions to be taken in image production. Metrics of this quality performance can help in the equipment acquisition. Different metrics and methods have been described to determine the quality performance of CRT and LCD computer displays in clinical area. One of most important metrics in this field is the device spatial frequency response obtained measuring the modulation transfer function (MTF). This work presents a comparison between the MTF of three different LCD displays, Apple MacBook Pro 15", Apple LED Cinema Display 24" and Apple iPhone4, measured by the white noise stimulus method, over vertical and horizontal directions. Additionally, different displays show particular pixels structure pattern. In order to identify this pixel structure, a set of high magnification images is taken from each display to be related with the respective vertical and horizontal MTF.
Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J
2017-03-07
High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g. ±30°) improves the low spatial frequency (below 5 mm -1 ) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.
NASA Astrophysics Data System (ADS)
Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.
2017-03-01
High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g. ±30°) improves the low spatial frequency (below 5 mm-1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.
Small pixel cross-talk MTF and its impact on MWIR sensor performance
NASA Astrophysics Data System (ADS)
Goss, Tristan M.; Willers, Cornelius J.
2017-05-01
As pixel sizes reduce in the development of modern High Definition (HD) Mid Wave Infrared (MWIR) detectors the interpixel cross-talk becomes increasingly difficult to regulate. The diffusion lengths required to achieve the quantum efficiency and sensitivity of MWIR detectors are typically longer than the pixel pitch dimension, and the probability of inter-pixel cross-talk increases as the pixel pitch/diffusion length fraction decreases. Inter-pixel cross-talk is most conveniently quantified by the focal plane array sampling Modulation Transfer Function (MTF). Cross-talk MTF will reduce the ideal sinc square pixel MTF that is commonly used when modelling sensor performance. However, cross-talk MTF data is not always readily available from detector suppliers, and since the origins of inter-pixel cross-talk are uniquely device and manufacturing process specific, no generic MTF models appear to satisfy the needs of the sensor designers and analysts. In this paper cross-talk MTF data has been collected from recent publications and the development for a generic cross-talk MTF model to fit this data is investigated. The resulting cross-talk MTF model is then included in a MWIR sensor model and the impact on sensor performance is evaluated in terms of the National Imagery Interoperability Rating Scale's (NIIRS) General Image Quality Equation (GIQE) metric for a range of fnumber/ detector pitch Fλ/d configurations and operating environments. By applying non-linear boost transfer functions in the signal processing chain, the contrast losses due to cross-talk may be compensated for. Boost transfer functions, however, also reduce the signal to noise ratio of the sensor. In this paper boost function limits are investigated and included in the sensor performance assessments.
Evaluation of image quality in terahertz pulsed imaging using test objects.
Fitzgerald, A J; Berry, E; Miles, R E; Zinovev, N N; Smith, M A; Chamberlain, J M
2002-11-07
As with other imaging modalities, the performance of terahertz (THz) imaging systems is limited by factors of spatial resolution, contrast and noise. The purpose of this paper is to introduce test objects and image analysis methods to evaluate and compare THz image quality in a quantitative and objective way, so that alternative terahertz imaging system configurations and acquisition techniques can be compared, and the range of image parameters can be assessed. Two test objects were designed and manufactured, one to determine the modulation transfer functions (MTF) and the other to derive image signal to noise ratio (SNR) at a range of contrasts. As expected the higher THz frequencies had larger MTFs, and better spatial resolution as determined by the spatial frequency at which the MTF dropped below the 20% threshold. Image SNR was compared for time domain and frequency domain image parameters and time delay based images consistently demonstrated higher SNR than intensity based parameters such as relative transmittance because the latter are more strongly affected by the sources of noise in the THz system such as laser fluctuations and detector shot noise.
42 CFR 37.42 - Chest radiograph specifications-digital radiography systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... resolution, modulation transfer function (MTF), image signal-to-noise and detective quantum efficiency must... Information Object Definitions, sections: Computed Radiography Image Information Object Definition; Digital X...
NASA Astrophysics Data System (ADS)
Duan, Yaxuan; Xu, Songbo; Yuan, Suochao; Chen, Yongquan; Li, Hongguang; Da, Zhengshang; Gao, Limin
2018-01-01
ISO 12233 slanted-edge method experiences errors using fast Fourier transform (FFT) in the camera modulation transfer function (MTF) measurement due to tilt angle errors in the knife-edge resulting in nonuniform sampling of the edge spread function (ESF). In order to resolve this problem, a modified slanted-edge method using nonuniform fast Fourier transform (NUFFT) for camera MTF measurement is proposed. Theoretical simulations for images with noise at a different nonuniform sampling rate of ESF are performed using the proposed modified slanted-edge method. It is shown that the proposed method successfully eliminates the error due to the nonuniform sampling of the ESF. An experimental setup for camera MTF measurement is established to verify the accuracy of the proposed method. The experiment results show that under different nonuniform sampling rates of ESF, the proposed modified slanted-edge method has improved accuracy for the camera MTF measurement compared to the ISO 12233 slanted-edge method.
Night Vision Laboratory Static Performance Model for Thermal Viewing Systems
1975-04-01
Research and Development Technical Report f ECOM- • i’.__1’=• =•NIGHT VISION LABORATORY STATIC PERFORMANCE MODEL 1 S1=• : FOR THERMAL VIEWING...resolvable temperature Infrared imaging Minimum detectable temperature1.Detection and recognition performance Night visi,-)n Noise equivalent temperature...modulation transfer function (MTF). The noise charactcristics are specified by the noise equivalent temper- ature difference (NE AT), The next sections
Optimization and Comparison of Different Digital Mammographic Tomosynthesis Reconstruction Methods
2007-04-01
physical measurements of impulse response analysis, modulation transfer function (MTF) and noise power spectrum (NPS). (Months 5- 12). 1.2.1. Simulate...added: projection images with simulated impulse and the 1/r2 shading difference. Other system blur and noise issues were not addressed in this paper...spectrum (NPS), Noise -equivalent quanta (NEQ), impulse response, Back Projection (BP) 1. INTRODUCTION Digital breast tomosynthesis is a new
Optimization and Comparison of Different Digital Mammographic Tomosynthesis Reconstruction Methods
2008-04-01
physical measurements of impulse response analysis, modulation transfer function (MTF) and noise power spectrum (NPS). (Months 5- 12). This task has...and 2 impulse -added: projection images with simulated impulse and the I /r2 shading difference. Other system blur and noise issues are not...blur, and suppressed high frequency noise . Point-by-point BP rather than traditional SAA should be considered as the basis of further deblurring
Zahorik, Pavel; Kim, Duck O; Kuwada, Shigeyuki; Anderson, Paul W; Brandewie, Eugene; Collecchia, Regina; Srinivasan, Nirmal
2012-06-01
Previous work [Zahorik et al., POMA, 12, 050005 (2011)] has reported that for a broadband noise carrier signal in a simulated reverberant sound field, human sensitivity to amplitude modulation (AM) is higher than would be predicted based on the broadband acoustical modulation transfer function (MTF) of the listening environment. Interpretation of this result was complicated by the fact that acoustical MTFs of rooms are often quite different for different carrier frequency regions, and listeners may have selectively responded to advantageous carrier frequency regions where the effective acoustic modulation loss due to the room was less than indicated by a broadband acoustic MTF analysis. Here, AM sensitivity testing and acoustic MTF analyses were expanded to include narrowband noise carriers (1-octave and 1/3-octave bands centered at 4 kHz), as well as monaural and binaural listening conditions. Narrowband results were found to be consistent with broadband results: In a reverberant sound field, human AM sensitivity is higher than indicated by the acoustical MTFs. The effect was greatest for modulation frequencies above 32 Hz and was present whether the stimulation was monaural or binaural. These results are suggestive of mechanisms that functionally enhance modulation in reverberant listening.
Comparison of methods for acceptance and constancy testing in dental cone-beam computed tomography.
Steiding, C; Kolditz, D; Kalender, W
2015-04-01
The aim of this work was to implement, validate, and compare two procedures for routine image quality (IQ) assurance in dental cone-beam computed tomography (CBCT): 1. the German standard DIN 6868 - 161 introduced in 2013 and 2. the established standard IEC 61,223 - 3-5 for clinical CT x-ray equipment referenced as "DIN" and "IEC" below. The approximated in-plane modulation transfer function (MTF), the contrast-to-noise indicator (CNI), and the uniformity indicator (UI*) were determined in accordance with DIN. Image noise, the uniformity index (UI), the contrast-to-noise ratio (CNR), and the 3 D MTF were measured according to IEC 61,223 - 3-5 using a previously proposed quality assurance (QA) framework. For this, a modular phantom was used. All experiments were performed on a clinical dental CBCT unit. The severity of image artefacts was measured at different z-positions. A dedicated computer program was implemented to allow for automated QA procedure. The position and orientation of the phantoms were detected automatically in all of the measurements providing a reproducible placement of the evaluation regions and volumes. 50 % and 10 % in-plane MTF values of the approximated and the exact MTF calculation procedure were in agreement to within 5 %. With increasing axial distance from the isocentre, UI* and CNI dropped by 30 % and 19 %, respectively. Conventional IQ parameters showed higher sensitivity to image artefacts; i. e., UI and CNR were reduced by about 197 % and 37 %. The implemented automated QA routines are compatible with both the DIN and the IEC approach and offer reliable and quantitative tracking of imaging performance in dental CBCT for clinical practice. However, there is no equivalence between the DIN and the IEC metrics. In addition, direct measurements of physical IQ parameters such as image contrast and noise, uniformity, and axial resolution are not supported by the new concept according to DIN. The new DIN 6868 - 161 is not equivalent to the established IEC 61 223 - 3-5. Noise, uniformity, and contrast are well-suited to assess image artefacts. The implemented automated quality assurance program fits clinical routine. © Georg Thieme Verlag KG Stuttgart · New York.
Theoretical performance analysis for CMOS based high resolution detectors.
Jain, Amit; Bednarek, Daniel R; Rudin, Stephen
2013-03-06
High resolution imaging capabilities are essential for accurately guiding successful endovascular interventional procedures. Present x-ray imaging detectors are not always adequate due to their inherent limitations. The newly-developed high-resolution micro-angiographic fluoroscope (MAF-CCD) detector has demonstrated excellent clinical image quality; however, further improvement in performance and physical design may be possible using CMOS sensors. We have thus calculated the theoretical performance of two proposed CMOS detectors which may be used as a successor to the MAF. The proposed detectors have a 300 μm thick HL-type CsI phosphor, a 50 μm-pixel CMOS sensor with and without a variable gain light image intensifier (LII), and are designated MAF-CMOS-LII and MAF-CMOS, respectively. For the performance evaluation, linear cascade modeling was used. The detector imaging chains were divided into individual stages characterized by one of the basic processes (quantum gain, binomial selection, stochastic and deterministic blurring, additive noise). Ranges of readout noise and exposure were used to calculate the detectors' MTF and DQE. The MAF-CMOS showed slightly better MTF than the MAF-CMOS-LII, but the MAF-CMOS-LII showed far better DQE, especially for lower exposures. The proposed detectors can have improved MTF and DQE compared with the present high resolution MAF detector. The performance of the MAF-CMOS is excellent for the angiography exposure range; however it is limited at fluoroscopic levels due to additive instrumentation noise. The MAF-CMOS-LII, having the advantage of the variable LII gain, can overcome the noise limitation and hence may perform exceptionally for the full range of required exposures; however, it is more complex and hence more expensive.
WE-FG-207B-11: Objective Image Characterization of Spectral CT with a Dual-Layer Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozguner, O; Halliburton, S; Dhanantwari, A
2016-06-15
Purpose: To obtain objective reference data for the spectral performance on a dual-layer detector CT platform (IQon, Philips) and compare virtual monoenergetic to conventional CT images. Methods: Scanning was performed using the hospital’s clinical adult body protocol: helical acquisition at 120kVp, with CTDIvol=15mGy. Multiple modules (591, 515, 528) of a CATPHAN 600 phantom and a 20 cm diameter cylindrical water phantom were scanned. No modifications to the standard protocol were necessary to enable spectral imaging. Both conventional and virtual monoenergetic images were generated from acquired data. Noise characteristics were assessed through Noise Power Spectra (NPS) and pixel standard deviation frommore » water phantom images. Spatial resolution was evaluated using Modulation Transfer Functions (MTF) of a tungsten wire as well as resolution bars. Low-contrast detectability was studied using contrast-to-noise ratio (CNR) of a low contrast object. Results: MTF curves of monoenergetic and conventional images were almost identical. MTF 50%, 10%, and 5% levels for monoenergetic images agreed with conventional images within 0.05lp/cm. These observations were verified by the resolution bars, which were clearly resolved at 7lp/cm but started blurring at 8lp/cm for this protocol in both conventional and 70 keV images. NPS curves indicated that, compared to conventional images, the noise power distribution of 70 keV monoenergetic images is similar (i.e. noise texture is similar) but exhibit a low frequency peak at keVs higher and lower than 70 keV. Standard deviation measurements show monoenergetic images have lower noise except at 40 keV where it is slightly higher. CNR of monoenergetic images is mostly flat across keV values and is superior to that of conventional images. Conclusion: Values for standard image quality metrics are the same or better for monoenergetic images compared to conventional images. Results indicate virtual monoenergetic images can be used without any loss in image quality or noise penalties relative to conventional images. This study was performed as part of a research agreement among Philips Healthcare, University Hospitals of Cleveland, and Case Western Reserve University.« less
Raw data normalization for a multi source inverse geometry CT system
Baek, Jongduk; De Man, Bruno; Harrison, Daniel; Pelc, Norbert J.
2015-01-01
A multi-source inverse-geometry CT (MS-IGCT) system consists of a small 2D detector array and multiple x-ray sources. During data acquisition, each source is activated sequentially, and may have random source intensity fluctuations relative to their respective nominal intensity. While a conventional 3rd generation CT system uses a reference channel to monitor the source intensity fluctuation, the MS-IGCT system source illuminates a small portion of the entire field-of-view (FOV). Therefore, it is difficult for all sources to illuminate the reference channel and the projection data computed by standard normalization using flat field data of each source contains error and can cause significant artifacts. In this work, we present a raw data normalization algorithm to reduce the image artifacts caused by source intensity fluctuation. The proposed method was tested using computer simulations with a uniform water phantom and a Shepp-Logan phantom, and experimental data of an ice-filled PMMA phantom and a rabbit. The effect on image resolution and robustness of the noise were tested using MTF and standard deviation of the reconstructed noise image. With the intensity fluctuation and no correction, reconstructed images from simulation and experimental data show high frequency artifacts and ring artifacts which are removed effectively using the proposed method. It is also observed that the proposed method does not degrade the image resolution and is very robust to the presence of noise. PMID:25837090
Modulation transfer function of a fish-eye lens based on the sixth-order wave aberration theory.
Jia, Han; Lu, Lijun; Cao, Yiqing
2018-01-10
A calculation program of the modulation transfer function (MTF) of a fish-eye lens is developed with the autocorrelation method, in which the sixth-order wave aberration theory of ultra-wide-angle optical systems is used to simulate the wave aberration distribution at the exit pupil of the optical systems. The autocorrelation integral is processed with the Gauss-Legendre integral, and the magnification chromatic aberration is discussed to calculate polychromatic MTF. The MTF calculation results of a given example are then compared with those previously obtained based on the fourth-order wave aberration theory of plane-symmetrical optical systems and with those from the Zemax program. The study shows that MTF based on the sixth-order wave aberration theory has satisfactory calculation accuracy even for a fish-eye lens with a large acceptance aperture. And the impacts of different types of aberrations on the MTF of a fish-eye lens are analyzed. Finally, we apply the self-adaptive and normalized real-coded genetic algorithm and the MTF developed in the paper to optimize the Nikon F/2.8 fish-eye lens; consequently, the optimized system shows better MTF performances than those of the original design.
Cho, Hyo-Min; Barber, William C.; Ding, Huanjun; Iwanczyk, Jan S.; Molloi, Sabee
2014-01-01
Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A109Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm2) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The energy resolution measured with the 22 keV photons from a 109Cd source was less than 9%. A reduction of image noise was shown in all the spatial frequencies in 1D NPS as a result of the elimination of the electronic noise. The spatial resolution was measured just above 5 line pairs per mm (lp/mm) where 10% of MTF corresponded to 5.4 mm−1. The 2D NPS and NEQ shows a low noise floor and a linear dependence on dose. The reconstruction filter choice affected both of the MTF and NPS results, but had a weak effect on the NEQ. Conclusions: The prototype energy resolved photon counting Si strip detector can offer superior imaging performance for dedicated breast CT as compared to a conventional energy-integrating detector due to its high output count rate, high spatial and energy resolution, and low noise characteristics, which are essential characteristics for spectral breast CT imaging. PMID:25186390
Boyce, Sarah J; Choudhury, Kingshuk Roy; Samei, Ehsan
2013-09-01
Stereoscopic chest biplane correlation imaging (stereo∕BCI) has been proposed as an alternative modality to single view chest x-ray (CXR). The metrics effective modulation transfer function (eMTF), effective normalized noise power spectrum (eNNPS), and effective detective quantum efficiency (eDQE) have been proposed as clinically relevant metrics for assessing clinical system performance taking into consideration the magnification and scatter effects. This study compared the metrics eMTF, eNNPS, eDQE, and detectability index for stereo∕BCI and single view CXR under isodose conditions at two magnifications for two anthropomorphic phantoms of differing sizes. Measurements for the eMTF were taken for two phantom sizes with an opaque edge test device using established techniques. The eNNPS was measured at two isodose conditions for two phantoms using established techniques. The scatter was measured for two phantoms using an established beam stop method. All measurements were also taken at two different magnifications with two phantoms. A geometrical phantom was used for comparison with prior results for CXR although the results for an anatomy free phantom are not expected to vary for BCI. Stereo∕BCI resulted in improved metrics compared to single view CXR. Results indicated that magnification can potentially improve the detection performance primarily due to the air gap which reduced scatter by ∼20%. For both phantoms, at isodose, eDQE(0) for stereo∕BCI was ∼100 times higher than that for CXR. Magnification at isodose improved eDQE(0) by ∼10 times for stereo∕BCI. Increasing the dose did not improve eDQE. The detectability index for stereo∕BCI was ∼100 times better than single view CXR for all conditions. The detectability index was also not improved with increased dose. The findings indicate that stereo∕BCI with magnification may improve detectability of subtle lung nodules compared to single view CXR. Results were improved with magnification for the smaller phantom but not for the larger phantom. The effective DQE and the detectability index did not improve with increasing dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyce, Sarah J.; Choudhury, Kingshuk Roy; Samei, Ehsan
2013-09-15
Purpose: Stereoscopic chest biplane correlation imaging (stereo/BCI) has been proposed as an alternative modality to single view chest x-ray (CXR). The metrics effective modulation transfer function (eMTF), effective normalized noise power spectrum (eNNPS), and effective detective quantum efficiency (eDQE) have been proposed as clinically relevant metrics for assessing clinical system performance taking into consideration the magnification and scatter effects. This study compared the metrics eMTF, eNNPS, eDQE, and detectability index for stereo/BCI and single view CXR under isodose conditions at two magnifications for two anthropomorphic phantoms of differing sizes.Methods: Measurements for the eMTF were taken for two phantom sizes withmore » an opaque edge test device using established techniques. The eNNPS was measured at two isodose conditions for two phantoms using established techniques. The scatter was measured for two phantoms using an established beam stop method. All measurements were also taken at two different magnifications with two phantoms. A geometrical phantom was used for comparison with prior results for CXR although the results for an anatomy free phantom are not expected to vary for BCI.Results: Stereo/BCI resulted in improved metrics compared to single view CXR. Results indicated that magnification can potentially improve the detection performance primarily due to the air gap which reduced scatter by ∼20%. For both phantoms, at isodose, eDQE(0) for stereo/BCI was ∼100 times higher than that for CXR. Magnification at isodose improved eDQE(0) by ∼10 times for stereo/BCI. Increasing the dose did not improve eDQE. The detectability index for stereo/BCI was ∼100 times better than single view CXR for all conditions. The detectability index was also not improved with increased dose.Conclusions: The findings indicate that stereo/BCI with magnification may improve detectability of subtle lung nodules compared to single view CXR. Results were improved with magnification for the smaller phantom but not for the larger phantom. The effective DQE and the detectability index did not improve with increasing dose.« less
Error analysis of the Golay3 optical imaging system.
Wu, Quanying; Fan, Junliu; Wu, Feng; Zhao, Jun; Qian, Lin
2013-05-01
We use aberration theory to derive a generalized pupil function of the Golay3 imaging system when astigmatisms exist in its submirrors. Theoretical analysis and numerical simulation using ZEMAX show that the point spread function (PSF) and the modulation transfer function (MTF) of the Golay3 sparse aperture system have a periodic change when there are piston errors. When the peak-valley value of the wavefront (PV(tilt)) due to the tilt error increases from zero to λ, the PSF and the MTF change significantly, and the change direction is determined by the location of the submirror with the tilt error. When PV(tilt) becomes larger than λ, the PSF and the MTF remain unvaried. We calculate the peaks of the signal-to-noise ratio (PSNR) resulting from the piston and tilt errors according to the Strehl ratio, and show that the PSNR decreases when the errors increase.
Comparison of analytic and iterative digital tomosynthesis reconstructions for thin slab objects
NASA Astrophysics Data System (ADS)
Yun, J.; Kim, D. W.; Ha, S.; Kim, H. K.
2017-11-01
For digital x-ray tomosynthesis of thin slab objects, we compare the tomographic imaging performances obtained from the filtered backprojection (FBP) and simultaneous algebraic reconstruction (SART) algorithms. The imaging performance includes the in-plane molulation-transfer function (MTF), the signal difference-to-noise ratio (SDNR), and the out-of-plane blur artifact or artifact-spread function (ASF). The MTF is measured using a thin tungsten-wire phantom, and the SDNR and the ASF are measured using a thin aluminum-disc phantom embedded in a plastic cylinder. The FBP shows a better MTF performance than the SART. On the contrary, the SART outperforms the FBP with regard to the SDNR and ASF performances. Detailed experimental results and their analysis results are described in this paper. For a more proper use of digital tomosynthesis technique, this study suggests to use a reconstuction algorithm suitable for application-specific purposes.
NASA Astrophysics Data System (ADS)
Wu, Z.; Luo, Z.; Zhang, Y.; Guo, F.; He, L.
2018-04-01
A Modulation Transfer Function (MTF)-based fuzzy comprehensive evaluation method was proposed in this paper for the purpose of evaluating high-resolution satellite image quality. To establish the factor set, two MTF features and seven radiant features were extracted from the knife-edge region of image patch, which included Nyquist, MTF0.5, entropy, peak signal to noise ratio (PSNR), average difference, edge intensity, average gradient, contrast and ground spatial distance (GSD). After analyzing the statistical distribution of above features, a fuzzy evaluation threshold table and fuzzy evaluation membership functions was established. The experiments for comprehensive quality assessment of different natural and artificial objects was done with GF2 image patches. The results showed that the calibration field image has the highest quality scores. The water image has closest image quality to the calibration field, quality of building image is a little poor than water image, but much higher than farmland image. In order to test the influence of different features on quality evaluation, the experiment with different weights were tested on GF2 and SPOT7 images. The results showed that different weights correspond different evaluating effectiveness. In the case of setting up the weights of edge features and GSD, the image quality of GF2 is better than SPOT7. However, when setting MTF and PSNR as main factor, the image quality of SPOT7 is better than GF2.
Zhuang, Zhenhong; Lohmar, Jessica M; Satterlee, Timothy; Cary, Jeffrey W; Calvo, Ana M
2016-01-20
Aspergillus flavus produces a variety of toxic secondary metabolites; among them, the aflatoxins (AFs) are the most well known. These compounds are highly mutagenic and carcinogenic, particularly AFB₁. A. flavus is capable of colonizing a number of economically-important crops, such as corn, cotton, peanut and tree nuts, and contaminating them with AFs. Molecular genetic studies in A. flavus could identify novel gene targets for use in strategies to reduce AF contamination and its adverse impact on food and feed supplies worldwide. In the current study, we investigated the role of the master transcription factor gene mtfA in A. flavus. Our results revealed that forced overexpression of mtfA results in a drastic decrease or elimination of several secondary metabolites, among them AFB₁. The reduction in AFB₁ was accompanied by a decrease in aflR expression. Furthermore, mtfA also regulates development; conidiation was influenced differently by this gene depending on the type of colonized substrate. In addition to its effect on conidiation, mtfA is necessary for the normal maturation of sclerotia. Importantly, mtfA positively affects the pathogenicity of A. flavus when colonizing peanut seeds. AF production in colonized seeds was decreased in the deletion mtfA strain and particularly in the overexpression strain, where only trace amounts were detected. Interestingly, a more rapid colonization of the seed tissue occurred when mtfA was overexpressed, coinciding with an increase in lipase activity and faster maceration of the oily part of the seed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, V. V.; Fischer, P. J.; Chan, E. R.
We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate themore » MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope's MTF, tests with the BPRML sample can be used to fine tune the instrument's focal distance. Finally, our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, V. V., E-mail: VVYashchuk@lbl.gov; Chan, E. R.; Lacey, I.
We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate themore » MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope’s MTF, tests with the BPRML sample can be used to fine tune the instrument’s focal distance. Our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
NASA Astrophysics Data System (ADS)
Ott, Julien G.; Becce, Fabio; Monnin, Pascal; Schmidt, Sabine; Bochud, François O.; Verdun, Francis R.
2014-08-01
The state of the art to describe image quality in medical imaging is to assess the performance of an observer conducting a task of clinical interest. This can be done by using a model observer leading to a figure of merit such as the signal-to-noise ratio (SNR). Using the non-prewhitening (NPW) model observer, we objectively characterised the evolution of its figure of merit in various acquisition conditions. The NPW model observer usually requires the use of the modulation transfer function (MTF) as well as noise power spectra. However, although the computation of the MTF poses no problem when dealing with the traditional filtered back-projection (FBP) algorithm, this is not the case when using iterative reconstruction (IR) algorithms, such as adaptive statistical iterative reconstruction (ASIR) or model-based iterative reconstruction (MBIR). Given that the target transfer function (TTF) had already shown it could accurately express the system resolution even with non-linear algorithms, we decided to tune the NPW model observer, replacing the standard MTF by the TTF. It was estimated using a custom-made phantom containing cylindrical inserts surrounded by water. The contrast differences between the inserts and water were plotted for each acquisition condition. Then, mathematical transformations were performed leading to the TTF. As expected, the first results showed a dependency of the image contrast and noise levels on the TTF for both ASIR and MBIR. Moreover, FBP also proved to be dependent of the contrast and noise when using the lung kernel. Those results were then introduced in the NPW model observer. We observed an enhancement of SNR every time we switched from FBP to ASIR to MBIR. IR algorithms greatly improve image quality, especially in low-dose conditions. Based on our results, the use of MBIR could lead to further dose reduction in several clinical applications.
Sci-Thur AM: YIS – 08: Automated Imaging Quality Assurance for Image-Guided Small Animal Irradiators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstone, Chris; Bazalova-Carter, Magdalena
Purpose: To develop quality assurance (QA) standards and tolerance levels for image quality of small animal irradiators. Methods: A fully automated in-house QA software for image analysis of a commercial microCT phantom was created. Quantitative analyses of CT linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, modulation transfer function (MTF), and CT number evaluation was performed. Phantom microCT scans from seven institutions acquired with varying parameters (kVp, mA, time, voxel size, and frame rate) and five irradiator units (Xstrahl SARRP, PXI X-RAD 225Cx, PXI X-RAD SmART, GE explore CT/RT 140, and GE Explore CT 120) were analyzed. Multi-institutional datamore » sets were compared using our in-house software to establish pass/fail criteria for each QA test. Results: CT linearity (R2>0.996) was excellent at all but Institution 2. Acceptable SNR (>35) and noise levels (<55HU) were obtained at four of the seven institutions, where failing scans were acquired with less than 120mAs. Acceptable MTF (>1.5 lp/mm for MTF=0.2) was obtained at all but Institution 6 due to the largest scan voxel size (0.35mm). The geometric accuracy passed (<1.5%) at five of the seven institutions. Conclusion: Our QA software can be used to rapidly perform quantitative imaging QA for small animal irradiators, accumulate results over time, and display possible changes in imaging functionality from its original performance and/or from the recommended tolerance levels. This tool will aid researchers in maintaining high image quality, enabling precise conformal dose delivery to small animals.« less
Modulation transfer function measurement technique for small-pixel detectors
NASA Technical Reports Server (NTRS)
Marchywka, Mike; Socker, Dennis G.
1992-01-01
A modulation transfer function (MTF) measurement technique suitable for large-format, small-pixel detector characterization has been investigated. A volume interference grating is used as a test image instead of the bar or sine wave target images normally used. This technique permits a high-contrast, large-area, sinusoidal intensity distribution to illuminate the device being tested, avoiding the need to deconvolve raw data with imaging system characteristics. A high-confidence MTF result at spatial frequencies near 200 cycles/mm is obtained. We present results at several visible light wavelengths with a 6.8-micron-pixel CCD. Pixel response functions are derived from the MTF results.
Physical characteristics of GE Senographe Essential and DS digital mammography detectors.
Ghetti, Caterina; Borrini, Adriano; Ortenzia, Ornella; Rossi, Raffaella; Ordóñez, Pedro L
2008-02-01
The purpose of this study was to investigate physical characteristics of two full field digital mammography (FFDM) systems (GE Senographe Essential and DS). Both are indirect conversion (x ray to light) alpha-Si flat panels coupled with a CsI(Tl) scintillator. The examined systems have the same pixel size (100 microm) but a different field of view: a conventional size 23 x 19.2 cm2 and a large field 24 X 30.7 cm2, specifically designed to image large breasts. In the GE Senographe Essential model relevant improvements in flat panel design were implemented and new deposition tools for metal, alpha-Si, and CsI(Tl) were introduced by GE. These changes in detector design are expected to be beneficial for advanced applications such as breast tomosynthesis. The presampling modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were measured for a wide range of exposure (25-240 microGy) with a RQA-M2 technique (28 kVp with a Mo/Mo target/filter combination and 2 mm of additional aluminum filtration). At 1, 2, and at 4 lp/mm MTF is equal to 0.9, 0.76, and 0.46 for the conventional field detector and to 0.85, 0.59, and 0.24 for the large field detector. The latter detector exhibits an improved NNPS due to a lower electronic noise and a better DQE that reaches 60%. In addition a contrast-detail analysis was performed with CDMAM 3.4 phantom and CDCOM software: GE Senographe DS showed statistically significant poorer detection ability in comparison with the GE Senographe Essential. These results could have been expected, at least qualitatively, considering the relative DQE of the two systems.
Sakurai, T; Kawamata, R; Kozai, Y; Kaku, Y; Nakamura, K; Saito, M; Wakao, H; Kashima, I
2010-05-01
The aim of the study was to clarify the change in image quality upon X-ray dose reduction and to re-analyse the possibility of X-ray dose reduction in photostimulable phosphor luminescence (PSPL) X-ray imaging systems. In addition, the study attempted to verify the usefulness of multiobjective frequency processing (MFP) and flexible noise control (FNC) for X-ray dose reduction. Three PSPL X-ray imaging systems were used in this study. Modulation transfer function (MTF), noise equivalent number of quanta (NEQ) and detective quantum efficiency (DQE) were evaluated to compare the basic physical performance of each system. Subjective visual evaluation of diagnostic ability for normal anatomical structures was performed. The NEQ, DQE and diagnostic ability were evaluated at base X-ray dose, and 1/3, 1/10 and 1/20 of the base X-ray dose. The MTF of the systems did not differ significantly. The NEQ and DQE did not necessarily depend on the pixel size of the system. The images from all three systems had a higher diagnostic utility compared with conventional film images at the base and 1/3 X-ray doses. The subjective image quality was better at the base X-ray dose than at 1/3 of the base dose in all systems. The MFP and FNC-processed images had a higher diagnostic utility than the images without MFP and FNC. The use of PSPL imaging systems may allow a reduction in the X-ray dose to one-third of that required for conventional film. It is suggested that MFP and FNC are useful for radiation dose reduction.
Jain, A; Bednarek, D; Rudin, S
2012-06-01
The need for high-resolution, dynamic x-ray imaging capability for neurovascular applications has put an ever increasing demand on x-ray detector technology. Present state-of-the-art detectors such as flat panels have limited resolution and noise performance. A linear cascade model analysis was used to estimate the theoretical performance for a proposed CMOS-based detector. The proposed CMOS-based detector was assumed to have a 300-micron thick HL type CsI phosphor, 35-micron pixels, a variable gain light image intensifier (LU), and 400 electron readout noise. The proposed detector has a CMOS sensor coupled to an LII which views the output of the CsI phosphor. For the analysis the whole imaging chain was divided into individual stages characterized by one of the basic processes (stochastic/deterministic blurring, binomial selection, quantum gain, additive noise). Standard linear cascade modeling was used for the propagation of signal and noise through the stages and an RQA5 spectrum was assumed. The gain, blurring or transmission of different stages was either measured or taken from manufacturer's specifications. The theoretically calculated MTF and DQE for the proposed detector were compared with a high-resolution, high-sensitive Micro-Angio Fluoroscope (MAF), predecessor of the proposed detector. Signal and noise for each of the 19 stages in the complete imaging chain were calculated and showed improved performance. For example, at 5 cycles/mm the MTF and DQE were 0.08 and 0.28, respectively, for the CMOS detector compared to 0.05 and 0.07 for the MAF detector. The proposed detector will have improved MTF and DQE and slimmer physical dimension due to the elimination of the large fiber-optic taper used in the MAF. Once operational, the proposed CMOS detector will serve as a further improvement over standard flat panel detectors compared to the MAF which is already receiving a very positive reception by neuro-vascular interventionalists. (Support:NIH-Grant R01EB002873) NIH Grants R01- EB008425, R01-EB002873 and an equipment grant from Toshiba Medical Systems Corp. © 2012 American Association of Physicists in Medicine.
Image quality evaluation of medical color and monochrome displays using an imaging colorimeter
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Gu, Xiliang; Fan, Jiahua
2012-10-01
The purpose of this presentation is to demonstrate the means which permit examining the accuracy of Image Quality with respect to MTF (Modulation Transfer Function) and NPS (Noise Power Spectrum) of Color Displays and Monochrome Displays. Indications were in the past that color displays could affect the clinical performance of color displays negatively compared to monochrome displays. Now colorimeters like the PM-1423 are available which have higher sensitivity and color accuracy than the traditional cameras like CCD cameras. Reference (1) was not based on measurements made with a colorimeter. This paper focuses on the measurements of physical characteristics of the spatial resolution and noise performance of color and monochrome medical displays which were made with a colorimeter and we will after this meeting submit the data to an ROC study so we have again a paper to present at a future SPIE Conference.Specifically, Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS) were evaluated and compared at different digital driving levels (DDL) between the two medical displays. This paper focuses on the measurements of physical characteristics of the spatial resolution and noise performance of color and monochrome medical displays which were made with a colorimeter and we will after this meeting submit the data to an ROC study so we have again a paper to present at a future Annual SPIE Conference. Specifically, Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS) were evaluated and compared at different digital driving levels (DDL) between the two medical displays. The Imaging Colorimeter. Measurement of color image quality needs were done with an imaging colorimeter as it is shown below. Imaging colorimetry is ideally suited to FPD measurement because imaging systems capture spatial data generating millions of data points in a single measurement operation. The imaging colorimeter which was used was the PM-1423 from Radiant Imaging. It uses full-frame CCDs with 100% fill factor which makes it very suitable to measure luminance and chrominance of individual LCD pixels and sub-pixels on an LCD display. The CCDs used are 14-bit thermoelectrically cooled and temperature stabilized , scientific grade.
Objective image characterization of a spectral CT scanner with dual-layer detector
NASA Astrophysics Data System (ADS)
Ozguner, Orhan; Dhanantwari, Amar; Halliburton, Sandra; Wen, Gezheng; Utrup, Steven; Jordan, David
2018-01-01
This work evaluated the performance of a detector-based spectral CT system by obtaining objective reference data, evaluating attenuation response of iodine and accuracy of iodine quantification, and comparing conventional CT and virtual monoenergetic images in three common phantoms. Scanning was performed using the hospital’s clinical adult body protocol. Modulation transfer function (MTF) was calculated for a tungsten wire and visual line pair targets were evaluated. Image noise power spectrum (NPS) and pixel standard deviation were calculated. MTF for monoenergetic images agreed with conventional images within 0.05 lp cm-1. NPS curves indicated that noise texture of 70 keV monoenergetic images is similar to conventional images. Standard deviation measurements showed monoenergetic images have lower noise except at 40 keV. Mean CT number and CNR agreed with conventional images at 75 keV. Measured iodine concentration agreed with true concentration within 6% for inserts at the center of the phantom. Performance of monoenergetic images at detector based spectral CT is the same as, or better than, that of conventional images. Spectral acquisition and reconstruction with a detector based platform represents the physical behaviour of iodine as expected and accurately quantifies the material concentration.
Lee, Kam L; Bernardo, Michael; Ireland, Timothy A
2016-06-01
This is part two of a two-part study in benchmarking system performance of fixed digital radiographic systems. The study compares the system performance of seven fixed digital radiography systems based on quantitative metrics like modulation transfer function (sMTF), normalised noise power spectrum (sNNPS), detective quantum efficiency (sDQE) and entrance surface air kerma (ESAK). It was found that the most efficient image receptors (greatest sDQE) were not necessarily operating at the lowest ESAK. In part one of this study, sMTF is shown to depend on system configuration while sNNPS is shown to be relatively consistent across systems. Systems are ranked on their signal-to-noise ratio efficiency (sDQE) and their ESAK. Systems using the same equipment configuration do not necessarily have the same system performance. This implies radiographic practice at the site will have an impact on the overall system performance. In general, systems are more dose efficient at low dose settings.
Flicker sensitivity as a function of target area with and without temporal noise.
Rovamo, J; Donner, K; Näsänen, R; Raninen, A
2000-01-01
Flicker sensitivities (1-30 Hz) in foveal, photopic vision were measured as functions of stimulus area with and without strong external white temporal noise. Stimuli were circular, sinusoidally flickering sharp-edged spots of variable diameters (0.25-4 degrees ) but constant duration (2 s), surrounded by a uniform equiluminant field. The data was described with a model comprising (i) low-pass filtering in the retina (R), with a modulation transfer function (MTF) of a form derived from responses of cones; (ii) normalisation of the temporal luminance distribution by the average luminance; (iii) high-pass filtering by postreceptoral neural pathways (P), with an MTF proportional to temporal frequency; (iv) addition of internal white neural noise (N(i)); (v) integration over a spatial window; and (vi) detection by a suboptimal temporal matched filter of efficiency eta. In strong external noise, flicker sensitivity was independent of spot area. Without external noise, sensitivity increased with the square root of stimulus area (Piper's law) up to a critical area (A(c)), where it reaches a maximum level (S(max)). Both A(c) and eta were monotonic functions of temporal frequency (f), such that log A(c) increased and log eta decreased linearly with log f. Remarkably, the increase in spatial integration area and the decrease in efficiency were just balanced, so A(c)(f)eta(f) was invariant against f. Thus the bandpass characteristics of S(max)(f) directly reflected the composite effect of the distal filters R(f) and P(f). The temporal equivalent (N(it)) of internal neural noise (N(i)) decreased in inverse proportion to spot area up to A(c) and then stayed constant indicating that spatially homogeneous signals and noise are integrated over the same area.
Aging of imaging properties of a CMOS flat-panel detector for dental cone-beam computed tomography
NASA Astrophysics Data System (ADS)
Kim, D. W.; Han, J. C.; Yun, S.; Kim, H. K.
2017-01-01
We have experimentally investigated the long-term stability of imaging properties of a flat-panel detector in conditions used for dental x-ray imaging. The detector consists of a CsI:Tl layer and CMOS photodiode pixel arrays. Aging simulations were carried out using an 80-kVp x-ray beam at an air-kerma rate of approximately 5 mGy s-1 at the entrance surface of the detector with a total air kerma of up to 0.6 kGy. Dark and flood-field images were periodically obtained during irradiation, and the mean signal and noise levels were evaluated for each image. We also evaluated the modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). The aging simulation showed a decrease in both the signal and noise of the gain-offset-corrected images, but there was negligible change in the signal-to-noise performance as a function of the accumulated dose. The gain-offset correction for analyzing images resulted in negligible changes in MTF, NPS, and DQE results over the total dose. Continuous x-ray exposure to a detector can cause degradation in the physical performance factors such the detector sensitivity, but linear analysis of the gain-offset-corrected images can assure integrity of the imaging properties of a detector during its lifetime.
Honda, Michitaka
2014-04-01
Several improvements were implemented in the edge method of presampled modulation transfer function measurements (MTFs). The estimation technique for edge angle was newly developed by applying an algorithm for principal components analysis. The error in the estimation was statistically confirmed to be less than 0.01 even in the presence of quantum noise. Secondly, the geometrical edge slope was approximated using a rationalized number, making it possible to obtain an oversampled edge response function (ESF) with equal intervals. Thirdly, the final MTFs were estimated using the average of multiple MTFs calculated for local areas. This averaging operation eliminates the errors caused by the rationalized approximation. Computer-simulated images were used to evaluate the accuracy of our method. The relative error between the estimated MTF and the theoretical MTF at the Nyquist frequency was less than 0.5% when the MTF was expressed as a sinc function. For MTFs representing an indirect detector and phase-contrast detector, good agreement was also observed for the estimated MTFs for each. The high accuracy of the MTF estimation was also confirmed, even for edge angles of around 10 degrees, which suggests the potential for simplification of the measurement conditions. The proposed method could be incorporated into an automated measurement technique using a software application.
Yashchuk, V. V.; Fischer, P. J.; Chan, E. R.; ...
2015-12-09
We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate themore » MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope's MTF, tests with the BPRML sample can be used to fine tune the instrument's focal distance. Finally, our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
Intercomparison of methods for image quality characterization. I. Modulation transfer function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samei, Ehsan; Ranger, Nicole T.; Dobbins, James T. III
The modulation transfer function (MTF) and the noise power spectrum (NPS) are widely recognized as the most relevant metrics of resolution and noise performance in radiographic imaging. These quantities have commonly been measured using various techniques, the specifics of which can have a bearing on the accuracy of the results. As a part of a study aimed at comparing the relative performance of different techniques, in this paper we report on a comparison of two established MTF measurement techniques: one using a slit test device [Dobbins et al., Med. Phys. 22, 1581-1593 (1995)] and another using a translucent edge testmore » device [Samei et al., Med. Phys. 25, 102-113 (1998)], with one another and with a third technique using an opaque edge test device recommended by a new international standard (IEC 62220-1, 2003). The study further aimed to substantiate the influence of various acquisition and processing parameters on the estimated MTF. The slit test device was made of 2 mm thick Pb slabs with a 12.5 {mu}m opening. The translucent edge test device was made of a laminated and polished Pt{sub 0.9}Ir{sub 0.1} alloy foil of 0.1 mm thickness. The opaque edge test device was made of a 2 mm thick W slab. All test devices were imaged on a representative indirect flat-panel digital radiographic system using three published beam qualities: 70 kV with 0.5 mm Cu filtration, 70 kV with 19 mm Al filtration, and 74 kV with 21 mm Al filtration (IEC-RQA5). The latter technique was also evaluated in conjunction with two external beam-limiting apertures (per IEC 62220-1), and with the tube collimator limiting the beam to the same area achieved with the apertures. The presampled MTFs were deduced from the acquired images by Fourier analysis techniques, and the results analyzed for relative values and the influence of impacting parameters. The findings indicated that the measurement technique has a notable impact on the resulting MTF estimate, with estimates from the overall IEC method 4.0%{+-}0.2% lower than that of Dobbins et al. and 0.7%{+-}0.4% higher than that of Samei et al. averaged over the zero to cutoff frequency range. Over the same frequency range, keeping beam quality and limitation constant, the average MTF estimate obtained with the edge techniques differed by up to 5.2%{+-}0.2% from that of the slit, with the opaque edge providing lower MTF estimates at lower frequencies than those obtained with the translucent edge or slit. The beam quality impacted the average estimated MTF by as much as 3.7%{+-}0.9% while the use of beam limiting devices alone increased the average estimated MTF by as much as 7.0%{+-}0.9%. While the slit method is inherently very sensitive to misalignment, both edge techniques were found to tolerate misalignments by as much as 6 cm. The results suggest the use of the opaque edge test device and the tube internal collimator for beam limitation in order to achieve an MTF result most reflective of the overall performance of the imaging system and least susceptible to misalignment and scattered radiation. Careful attention to influencing factors is warranted to achieve accurate results.« less
Intercomparison of methods for image quality characterization. I. Modulation transfer function.
Samei, Ehsan; Ranger, Nicole T; Dobbins, James T; Chen, Ying
2006-05-01
The modulation transfer function (MTF) and the noise power spectrum (NPS) are widely recognized as the most relevant metrics of resolution and noise performance in radiographic imaging. These quantities have commonly been measured using various techniques, the specifics of which can have a bearing on the accuracy of the results. As a part of a study aimed at comparing the relative performance of different techniques, in this paper we report on a comparison of two established MTF measurement techniques: one using a slit test device [Dobbins et al., Med. Phys. 22, 1581-1593 (1995)] and another using a translucent edge test device [Samei et al., Med. Phys. 25, 102-113 (1998)], with one another and with a third technique using an opaque edge test device recommended by a new international standard (IEC 62220-1, 2003). The study further aimed to substantiate the influence of various acquisition and processing parameters on the estimated MTF. The slit test device was made of 2 mm thick Pb slabs with a 12.5 microm opening. The translucent edge test device was made of a laminated and polished Pt(0.9)Ir(0.1). alloy foil of 0.1 mm thickness. The opaque edge test device was made of a 2 mm thick W slab. All test devices were imaged on a representative indirect flat-panel digital radiographic system using three published beam qualities: 70 kV with 0.5 mm Cu filtration, 70 kV with 19 mm Al filtration, and 74 kV with 21 mm Al filtration (IEC-RQA5). The latter technique was also evaluated in conjunction with two external beam-limiting apertures (per IEC 62220-1), and with the tube collimator limiting the beam to the same area achieved with the apertures. The presampled MTFs were deduced from the acquired images by Fourier analysis techniques, and the results analyzed for relative values and the influence of impacting parameters. The findings indicated that the measurement technique has a notable impact on the resulting MTF estimate, with estimates from the overall IEC method 4.0% +/- 0.2% lower than that of Dobbins et al. and 0.7% +/- 0.4% higher than that of Samei et al. averaged over the zero to cutoff frequency range. Over the same frequency range, keeping beam quality and limitation constant, the average MTF estimate obtained with the edge techniques differed by up to 5.2% +/- 0.2% from that of the slit, with the opaque edge providing lower MTF estimates at lower frequencies than those obtained with the translucent edge or slit. The beam quality impacted the average estimated MTF by as much as 3.7% +/- 0.9% while the use of beam limiting devices alone increased the average estimated MTF by as much as 7.0% +/- 0.9%. While the slit method is inherently very sensitive to misalignment, both edge techniques were found to tolerate misalignments by as much as 6 cm. The results suggest the use of the opaque edge test device and the tube internal collimator for beam limitation in order to achieve an MTF result most reflective of the overall performance of the imaging system and least susceptible to misalignment and scattered radiation. Careful attention to influencing factors is warranted to achieve accurate results.
Image quality of conventional images of dual-layer SPECTRAL CT: A phantom study.
van Ommen, Fasco; Bennink, Edwin; Vlassenbroek, Alain; Dankbaar, Jan Willem; Schilham, Arnold M R; Viergever, Max A; de Jong, Hugo W A M
2018-05-10
Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips Healthcare) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips Healthcare), by means of phantom experiments. For both CT scanners, conventional CT images were acquired using four adult scanning protocols: (a) body helical, (b) body axial, (c) head helical, and (d) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10%, and 5% MTF of the iCT and IQon showed small, but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with differences up to 0.51. Spatial resolution did not change with phantom size, but noise levels increased significantly. For head scans, IQon had a noise level that was significantly lower than the iCT, on the other hand IQon showed noise levels significantly higher than the iCT for body scans. Still, these differences were well within the specified range of performance of iCT scanners. At equivalent dose levels, this study showed similar quality of conventional images acquired on iCT and IQon for medium-sized phantoms and slightly degraded image quality for (very) large phantoms at lower tube voltages on the IQon. Accordingly, it may be concluded that the introduction of a dual-layer detector neither compromises image quality of conventional images nor increases radiation dose for normal-sized patients, and slightly degrades dose efficiency for large patients at 120 kVp and lower tube voltages. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Lwaleed, B A; Chisholm, M; Francis, J L
1999-01-01
Monocytes express tissue factor (mTF) in several conditions including cancer where levels may be valuable in assessing tumour presence and progression. Using a two-stage kinetic chromogenic assay (KCA), mTF levels were measured in controls [normal subjects (n = 60) and patients undergoing hernia repair or cholecystectomy (n = 60)], in patients with benign and malignant disease of the breast (n = 83) and of the large bowel (n = 62). This was performed under fresh (resting) conditions and after incubation for 6 h without (unstimulated) and with (stimulated) Escherichia coli endotoxin. The malignant groups showed higher mTF levels than each of the three controls for resting (P < 0.05 breast, P < 0.05 colorectal) unstimulated (P < 0.05 breast, P < 0.05 colorectal) and stimulated cells (P < 0.001 breast, P < 0.01 colorectal). Similarly, the benign inflammatory groups had higher mTF levels than controls for resting (P < 0.05 colorectal), unstimulated (P < 0.05 colorectal) and stimulated cells (P < 0.01 breast, P < 0.01 colorectal). There was no significant difference between malignant and benign inflammatory groups in each organ. mTF levels showed an increase corresponding to that of histological tumour progression and were higher in non-surviving patients. In conclusion, mTF levels are raised in malignant and inflammatory disease compared to controls and patients with non-inflammatory conditions. Stimulated cells give better discrimination between the groups and may be of value in identifying high risk individuals. mTF levels showed an association with tumour grade or stage and the patients' survival time. © 1999 Cancer Research Campaign PMID:10390009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Ryan G.; Vance, Sean; Cattaneo, Richard
2014-08-15
Purpose: Iterative reconstruction (IR) reduces noise, thereby allowing dose reduction in computed tomography (CT) while maintaining comparable image quality to filtered back-projection (FBP). This study sought to characterize image quality metrics, delineation, dosimetric assessment, and other aspects necessary to integrate IR into treatment planning. Methods: CT images (Brilliance Big Bore v3.6, Philips Healthcare) were acquired of several phantoms using 120 kVp and 25–800 mAs. IR was applied at levels corresponding to noise reduction of 0.89–0.55 with respect to FBP. Noise power spectrum (NPS) analysis was used to characterize noise magnitude and texture. CT to electron density (CT-ED) curves were generatedmore » over all IR levels. Uniformity as well as spatial and low contrast resolution were quantified using a CATPHAN phantom. Task specific modulation transfer functions (MTF{sub task}) were developed to characterize spatial frequency across objects of varied contrast. A prospective dose reduction study was conducted for 14 patients undergoing interfraction CT scans for high-dose rate brachytherapy. Three physicians performed image quality assessment using a six-point grading scale between the normal-dose FBP (reference), low-dose FBP, and low-dose IR scans for the following metrics: image noise, detectability of the vaginal cuff/bladder interface, spatial resolution, texture, segmentation confidence, and overall image quality. Contouring differences between FBP and IR were quantified for the bladder and rectum via overlap indices (OI) and Dice similarity coefficients (DSC). Line profile and region of interest analyses quantified noise and boundary changes. For two subjects, the impact of IR on external beam dose calculation was assessed via gamma analysis and changes in digitally reconstructed radiographs (DRRs) were quantified. Results: NPS showed large reduction in noise magnitude (50%), and a slight spatial frequency shift (∼0.1 mm{sup −1}) with application of IR at L6. No appreciable changes were observed for CT-ED curves between FBP and IR levels [maximum difference ∼13 HU for bone (∼1% difference)]. For uniformity, differences were ∼1 HU between FBP and IR. Spatial resolution was well conserved; the largest MTF{sub task} decrease between FBP and IR levels was 0.08 A.U. No notable changes in low-contrast detectability were observed and CNR increased substantially with IR. For the patient study, qualitative image grading showed low-dose IR was equivalent to or slightly worse than normal dose FBP, and is superior to low-dose FBP (p < 0.001 for noise), although these did not translate to differences in CT number, contouring ability, or dose calculation. The largest CT number discrepancy from FBP occurred at a bone/tissue interface using the most aggressive IR level [−1.2 ± 4.9 HU (range: −17.6–12.5 HU)]. No clinically significant contour differences were found between IR and FBP, with OIs and DSCs ranging from 0.85 to 0.95. Negligible changes in dose calculation were observed. DRRs preserved anatomical detail with <2% difference in intensity from FBP combined with aggressive IRL6. Conclusions: These results support integrating IR into treatment planning. While slight degradation in edges and shift in texture were observed in phantom, patient results show qualitative image grading, contouring ability, and dosimetric parameters were not adversely affected.« less
Onboard TDI stage estimation and calibration using SNR analysis
NASA Astrophysics Data System (ADS)
Haghshenas, Javad
2017-09-01
Electro-Optical design of a push-broom space camera for a Low Earth Orbit (LEO) remote sensing satellite is performed based on the noise analysis of TDI sensors for very high GSDs and low light level missions. It is well demonstrated that the CCD TDI mode of operation provides increased photosensitivity relative to a linear CCD array, without the sacrifice of spatial resolution. However, for satellite imaging, in order to utilize the advantages which the TDI mode of operation offers, attention should be given to the parameters which affect the image quality of TDI sensors such as jitters, vibrations, noises and etc. A predefined TDI stages may not properly satisfy image quality requirement of the satellite camera. Furthermore, in order to use the whole dynamic range of the sensor, imager must be capable to set the TDI stages in every shots based on the affecting parameters. This paper deals with the optimal estimation and setting the stages based on tradeoffs among MTF, noises and SNR. On-board SNR estimation is simulated using the atmosphere analysis based on the MODTRAN algorithm in PcModWin software. According to the noises models, we have proposed a formulation to estimate TDI stages in such a way to satisfy the system SNR requirement. On the other hand, MTF requirement must be satisfy in the same manner. A proper combination of both parameters will guaranty the full dynamic range usage along with the high SNR and image quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokurei, S; Department of Radiology, Yamaguchi University Hospital, Ube, Yamaguchi; Morishita, J
2015-06-15
Purpose: To develop a method for improving sharpness of images reproduced on liquid-crystal displays (LCDs) by compensating for the degradation of modulation transfer function (MTF) of the LCD. Methods: The inherent MTF of a color LCD (display MTF) was measured using a commercially available color digital camera. The frequency responses necessary to compensate for the resolution property of the LCD were calculated from the inverses of the display MTFs in both the horizontal and vertical directions. In addition, the inverses of the display MTFs were combined with the response of the human eye. The finite impulse response (FIR) filters weremore » computed by taking the inverse Fourier transform of the frequency responses, and the effects of the FIR filtering on both the resolution and noise properties of the displayed images were verified by measuring the MTF and Wiener spectrum (WS), respectively. The FIR filtering was then applied to the representation of digital bone and chest radiographs. Results: The FIR filtering improved the MTF values by up to almost 1.0 or greater over the frequency range of interest, while it minimally increased the WS values. Combining the inverses of the display MTFs with the response of the human eye led to further refinement of the MTF. Our method was successfully and beneficially applied to the image interpretation of bone radiographs. The resolution enhancement of chest radiographs, which include larger scattered radiation than bone radiographs, was easily perceived by incorporating the response of the human eye. In addition, no artifacts were observed on the processed images. Conclusion: Our proposed method to compensate for the degradation of the resolution properties of LCDs has the potential to improve the observer performance of radiologists when reading digital radiographs. This work was supported in part by grant from EIZO Corporation.« less
Preliminary display comparison for dental diagnostic applications
NASA Astrophysics Data System (ADS)
Odlum, Nicholas; Spalla, Guillaume; van Assche, Nele; Vandenberghe, Bart; Jacobs, Reinhilde; Quirynen, Marc; Marchessoux, Cédric
2012-02-01
The aim of this study is to predict the clinical performance and image quality of a display system for viewing dental images. At present, the use of dedicated medical displays is not uniform among dentists - many still view images on ordinary consumer displays. This work investigated whether the use of a medical display improved the perception of dental images by a clinician, compared to a consumer display. Display systems were simulated using the MEdical Virtual Imaging Chain (MEVIC). Images derived from two carefully performed studies on periodontal bone lesion detection and endodontic file length determination, were used. Three displays were selected: a medical grade one and two consumer displays (Barco MDRC-2120, Dell 1907FP and Dell 2007FPb). Some typical characteristics of the displays are evaluated by measurements and simulations like the Modulation Function (MTF), the Noise Power Spectrum (NPS), backlight stability or calibration. For the MTF, the display with the largest pixel pitch has logically the worst MTF. Moreover, the medical grade display has a slightly better MTF and the displays have similar NPS. The study shows the instability effect for the emitted intensity of the consumer displays compared to the medical grade one. Finally the study on the calibration methodology of the display shows that the signal in the dental images will be always more perceivable on the DICOM GSDF display than a gamma 2,2 display.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Soyoung
Purpose: To investigate the use of local noise power spectrum (NPS) to characterize image noise and wavelet analysis to isolate defective pixels and inter-subpanel flat-fielding artifacts for quantitative quality assurance (QA) of electronic portal imaging devices (EPIDs). Methods: A total of 93 image sets including custom-made bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Global quantitative metrics such as modulation transform function (MTF), NPS, and detective quantum efficiency (DQE) were computed for each image set. Local NPS was also calculated for individual subpanels by sampling region of interests within each subpanelmore » of the EPID. The 1D NPS, obtained by radially averaging the 2D NPS, was fitted to a power-law function. The r-square value of the linear regression analysis was used as a singular metric to characterize the noise properties of individual subpanels of the EPID. The sensitivity of the local NPS was first compared with the global quantitative metrics using historical image sets. It was then compared with two commonly used commercial QA systems with images collected after applying two different EPID calibration methods (single-level gain and multilevel gain). To detect isolated defective pixels and inter-subpanel flat-fielding artifacts, Haar wavelet transform was applied on the images. Results: Global quantitative metrics including MTF, NPS, and DQE showed little change over the period of data collection. On the contrary, a strong correlation between the local NPS (r-square values) and the variation of the EPID noise condition was observed. The local NPS analysis indicated image quality improvement with the r-square values increased from 0.80 ± 0.03 (before calibration) to 0.85 ± 0.03 (after single-level gain calibration) and to 0.96 ± 0.03 (after multilevel gain calibration), while the commercial QA systems failed to distinguish the image quality improvement between the two calibration methods. With wavelet analysis, defective pixels and inter-subpanel flat-fielding artifacts were clearly identified as spikes after thresholding the inversely transformed images. Conclusions: The proposed local NPS (r-square values) showed superior sensitivity to the noise level variations of individual subpanels compared with global quantitative metrics such as MTF, NPS, and DQE. Wavelet analysis was effective in detecting isolated defective pixels and inter-subpanel flat-fielding artifacts. The proposed methods are promising for the early detection of imaging artifacts of EPIDs.« less
NASA Astrophysics Data System (ADS)
Marshall, N. W.
2007-09-01
Quantitative image quality results in the form of the modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) are presented for nine full field digital mammography (FFDM) systems. These parameters are routinely measured as part of the quality assurance (QA) programme for the seven FFDM units covered by our centre. Just one additional image is required compared to the standard FFDM protocol; this is the image of an edge, from which the MTF is calculated. A variance image is formed from one of the flood images used to measure the detector response and this provides useful information on the condition of the detector with respect to artefacts. Finally, the NNPS is calculated from the flood image acquired at a target detector air kerma (DAK) of 100 µGy. DQE is then estimated from these data; however, no correction is currently made for effects of detector cover transmission on DQE. The coefficient of variation (cov) of the 50% point of the MTF for five successive MTF results was 1%, while the cov for the 50% MTF point for an a-Se system over a period of 17 months was approximately 3%. For four a-Se based systems, the cov for the NNPS at 1 mm-1 for a target DAK of 100 µGy was approximately 4%; the same result was found for four CsI based FFDM units. With regard to the stability of NNPS over time, the cov for four NNPS results acquired over a period of 12 months was also approximately 4%. The effect of acquisition geometry on NNPS was also assessed for a CsI based system. NNPS data acquired with the antiscatter grid in place showed increased noise at low spatial frequency; this effect was more severe as DAK increased. DQE results for the three detector types (a-Se, CsI and CR) are presented as a function of DAK. Some reduction in DQE was found for both the a-Se and CsI based systems at a target DAK of 12.5 µGy when compared to DQE data acquired at 100 µGy. For the CsI based systems, DQE at 1 mm-1 fell from 0.49 at 100 µGy to 0.38 at 12.5 µGy. For the a-Se units, there was a slightly greater reduction in average DQE at 1 mm-1, from 0.53 at 100 µGy to 0.31 at 12.5 µGy. Somewhat different behaviour was seen for the CR unit; DQE (at 1 mm-1) increased from 0.40 at 100 µGy to 0.49 at 12.5 µGy however, DQE fell to 0.30 at 420 µGy. DQE stability over time was assessed using the cov of DQE at 1 mm-1 and a target DAK of 100 µGy the cov for data acquired over a period of 17 months for an a-Se system was approximately 7%. For comparison with conventional testing methods, the cov was calculated for contrast-detail (cd) data acquired over the same period of time for this unit. The cov for the threshold contrast results (averaged for disc diameters between 0.1 mm and 2 mm) was 6%, indicating similar stability.
NASA Astrophysics Data System (ADS)
Yang, Xusan; Tang, Yuanhe; Liu, Kai; Liu, Hanchen; Gao, Haiyang; Li, Qing; Zhang, Ruixia; Ye, Na; Liang, Yuan; Zhao, Gaoxiang
2008-12-01
Based on the electro-optical properties of liquid crystal, we have designed a novel partial gating detector. Liquid crystal can be taken to change its own transmission according to the light intensity outside. Every single pixel of the image is real-time modulated by liquid crystal, thus the strong light is weakened and low light goes through the detector normally .The purpose of partial-gating strong light (>105lx) can be achieved by this detector. The modulation transfer function (MTF) equations of the main optical sub-systems are calculated in this paper, they are liquid crystal panels, linear fiber panel and CCD array detector. According to the relevant size, the MTF value of this system is fitted out. The result is MTF= 0.518 at Nyquist frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingold, E; Dave, J
2014-06-01
Purpose: The purpose of this study was to compare a new model-based iterative reconstruction with existing reconstruction methods (filtered backprojection and basic iterative reconstruction) using quantitative analysis of standard image quality phantom images. Methods: An ACR accreditation phantom (Gammex 464) and a CATPHAN600 phantom were scanned using 3 routine clinical acquisition protocols (adult axial brain, adult abdomen, and pediatric abdomen) on a Philips iCT system. Each scan was acquired using default conditions and 75%, 50% and 25% dose levels. Images were reconstructed using standard filtered backprojection (FBP), conventional iterative reconstruction (iDose4) and a prototype model-based iterative reconstruction (IMR). Phantom measurementsmore » included CT number accuracy, contrast to noise ratio (CNR), modulation transfer function (MTF), low contrast detectability (LCD), and noise power spectrum (NPS). Results: The choice of reconstruction method had no effect on CT number accuracy, or MTF (p<0.01). The CNR of a 6 HU contrast target was improved by 1–67% with iDose4 relative to FBP, while IMR improved CNR by 145–367% across all protocols and dose levels. Within each scan protocol, the CNR improvement from IMR vs FBP showed a general trend of greater improvement at lower dose levels. NPS magnitude was greatest for FBP and lowest for IMR. The NPS of the IMR reconstruction showed a pronounced decrease with increasing spatial frequency, consistent with the unusual noise texture seen in IMR images. Conclusion: Iterative Model Reconstruction reduces noise and improves contrast-to-noise ratio without sacrificing spatial resolution in CT phantom images. This offers the possibility of radiation dose reduction and improved low contrast detectability compared with filtered backprojection or conventional iterative reconstruction.« less
Pahn, Gregor; Skornitzke, Stephan; Schlemmer, Hans-Peter; Kauczor, Hans-Ulrich; Stiller, Wolfram
2016-01-01
Based on the guidelines from "Report 87: Radiation Dose and Image-quality Assessment in Computed Tomography" of the International Commission on Radiation Units and Measurements (ICRU), a software framework for automated quantitative image quality analysis was developed and its usability for a variety of scientific questions demonstrated. The extendable framework currently implements the calculation of the recommended Fourier image quality (IQ) metrics modulation transfer function (MTF) and noise-power spectrum (NPS), and additional IQ quantities such as noise magnitude, CT number accuracy, uniformity across the field-of-view, contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of simulated lesions for a commercially available cone-beam phantom. Sample image data were acquired with different scan and reconstruction settings on CT systems from different manufacturers. Spatial resolution is analyzed in terms of edge-spread function, line-spread-function, and MTF. 3D NPS is calculated according to ICRU Report 87, and condensed to 2D and radially averaged 1D representations. Noise magnitude, CT numbers, and uniformity of these quantities are assessed on large samples of ROIs. Low-contrast resolution (CNR, SNR) is quantitatively evaluated as a function of lesion contrast and diameter. Simultaneous automated processing of several image datasets allows for straightforward comparative assessment. The presented framework enables systematic, reproducible, automated and time-efficient quantitative IQ analysis. Consistent application of the ICRU guidelines facilitates standardization of quantitative assessment not only for routine quality assurance, but for a number of research questions, e.g. the comparison of different scanner models or acquisition protocols, and the evaluation of new technology or reconstruction methods. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Barca, Patrizio; Giannelli, Marco; Fantacci, Maria Evelina; Caramella, Davide
2018-06-01
Computed tomography (CT) is a useful and widely employed imaging technique, which represents the largest source of population exposure to ionizing radiation in industrialized countries. Adaptive Statistical Iterative Reconstruction (ASIR) is an iterative reconstruction algorithm with the potential to allow reduction of radiation exposure while preserving diagnostic information. The aim of this phantom study was to assess the performance of ASIR, in terms of a number of image quality indices, when different reconstruction blending levels are employed. CT images of the Catphan-504 phantom were reconstructed using conventional filtered back-projection (FBP) and ASIR with reconstruction blending levels of 20, 40, 60, 80, and 100%. Noise, noise power spectrum (NPS), contrast-to-noise ratio (CNR) and modulation transfer function (MTF) were estimated for different scanning parameters and contrast objects. Noise decreased and CNR increased non-linearly up to 50 and 100%, respectively, with increasing blending level of reconstruction. Also, ASIR has proven to modify the NPS curve shape. The MTF of ASIR reconstructed images depended on tube load/contrast and decreased with increasing blending level of reconstruction. In particular, for low radiation exposure and low contrast acquisitions, ASIR showed lower performance than FBP, in terms of spatial resolution for all blending levels of reconstruction. CT image quality varies substantially with the blending level of reconstruction. ASIR has the potential to reduce noise whilst maintaining diagnostic information in low radiation exposure CT imaging. Given the opposite variation of CNR and spatial resolution with the blending level of reconstruction, it is recommended to use an optimal value of this parameter for each specific clinical application.
Up Periscope! Designing a New Perceptual Metric for Imaging System Performance
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
2016-01-01
Modern electronic imaging systems include optics, sensors, sampling, noise, processing, compression, transmission and display elements, and are viewed by the human eye. Many of these elements cannot be assessed by traditional imaging system metrics such as the MTF. More complex metrics such as NVTherm do address these elements, but do so largely through parametric adjustment of an MTF-like metric. The parameters are adjusted through subjective testing of human observers identifying specific targets in a set of standard images. We have designed a new metric that is based on a model of human visual pattern classification. In contrast to previous metrics, ours simulates the human observer identifying the standard targets. One application of this metric is to quantify performance of modern electronic periscope systems on submarines.
Characterization of photon-counting multislit breast tomosynthesis.
Berggren, Karl; Cederström, Björn; Lundqvist, Mats; Fredenberg, Erik
2018-02-01
It has been shown that breast tomosynthesis may improve sensitivity and specificity compared to two-dimensional mammography, resulting in increased detection-rate of cancers or lowered call-back rates. The purpose of this study is to characterize a spectral photon-counting multislit breast tomosynthesis system that is able to do single-scan spectral imaging with multiple collimated x-ray beams. The system differs in many aspects compared to conventional tomosynthesis using energy-integrating flat-panel detectors. The investigated system was a prototype consisting of a dual-threshold photon-counting detector with 21 collimated line detectors scanning across the compressed breast. A review of the system is done in terms of detector, acquisition geometry, and reconstruction methods. Three reconstruction methods were used, simple back-projection, filtered back-projection and an iterative algebraic reconstruction technique. The image quality was evaluated by measuring the modulation transfer-function (MTF), normalized noise-power spectrum, detective quantum-efficiency (DQE), and artifact spread-function (ASF) on reconstructed spectral tomosynthesis images for a total-energy bin (defined by a low-energy threshold calibrated to remove electronic noise) and for a high-energy bin (with a threshold calibrated to split the spectrum in roughly equal parts). Acquisition was performed using a 29 kVp W/Al x-ray spectrum at a 0.24 mGy exposure. The difference in MTF between the two energy bins was negligible, that is, there was no energy dependence on resolution. The MTF dropped to 50% at 1.5 lp/mm to 2.3 lp/mm in the scan direction and 2.4 lp/mm to 3.3 lp/mm in the slit direction, depending on the reconstruction method. The full width at half maximum of the ASF was found to range from 13.8 mm to 18.0 mm for the different reconstruction methods. The zero-frequency DQE of the system was found to be 0.72. The fraction of counts in the high-energy bin was measured to be 59% of the total detected spectrum. Scantimes ranged from 4 s to 16.5 s depending on voltage and current settings. The characterized system generates spectral tomosynthesis images with a dual-energy photon-counting detector. Measurements show a high DQE, enabling high image quality at a low dose, which is beneficial for low-dose applications such as screening. The single-scan spectral images open up for applications such as quantitative material decomposition and contrast-enhanced tomosynthesis. © 2017 American Association of Physicists in Medicine.
Li, Guang; Greene, Travis C; Nishino, Thomas K; Willis, Charles E
2016-09-08
The purpose of this study was to evaluate several of the standardized image quality metrics proposed by the American Association of Physics in Medicine (AAPM) Task Group 150. The task group suggested region-of-interest (ROI)-based techniques to measure nonuniformity, minimum signal-to-noise ratio (SNR), number of anomalous pixels, and modulation transfer function (MTF). This study evaluated the effects of ROI size and layout on the image metrics by using four different ROI sets, assessed result uncertainty by repeating measurements, and compared results with two commercially available quality control tools, namely the Carestream DIRECTVIEW Total Quality Tool (TQT) and the GE Healthcare Quality Assurance Process (QAP). Seven Carestream DRX-1C (CsI) detectors on mobile DR systems and four GE FlashPad detectors in radiographic rooms were tested. Images were analyzed using MATLAB software that had been previously validated and reported. Our values for signal and SNR nonuniformity and MTF agree with values published by other investigators. Our results show that ROI size affects nonuniformity and minimum SNR measurements, but not detection of anomalous pixels. Exposure geometry affects all tested image metrics except for the MTF. TG-150 metrics in general agree with the TQT, but agree with the QAP only for local and global signal nonuniformity. The difference in SNR nonuniformity and MTF values between the TG-150 and QAP may be explained by differences in the calculation of noise and acquisition beam quality, respectively. TG-150's SNR nonuniformity metrics are also more sensitive to detector nonuniformity compared to the QAP. Our results suggest that fixed ROI size should be used for consistency because nonuniformity metrics depend on ROI size. Ideally, detector tests should be performed at the exact calibration position. If not feasible, a baseline should be established from the mean of several repeated measurements. Our study indicates that the TG-150 tests can be used as an independent standardized procedure for detector performance assessment. © 2016 The Authors.
Greene, Travis C.; Nishino, Thomas K.; Willis, Charles E.
2016-01-01
The purpose of this study was to evaluate several of the standardized image quality metrics proposed by the American Association of Physics in Medicine (AAPM) Task Group 150. The task group suggested region‐of‐interest (ROI)‐based techniques to measure nonuniformity, minimum signal‐to‐noise ratio (SNR), number of anomalous pixels, and modulation transfer function (MTF). This study evaluated the effects of ROI size and layout on the image metrics by using four different ROI sets, assessed result uncertainty by repeating measurements, and compared results with two commercially available quality control tools, namely the Carestream DIRECTVIEW Total Quality Tool (TQT) and the GE Healthcare Quality Assurance Process (QAP). Seven Carestream DRX‐1C (CsI) detectors on mobile DR systems and four GE FlashPad detectors in radiographic rooms were tested. Images were analyzed using MATLAB software that had been previously validated and reported. Our values for signal and SNR nonuniformity and MTF agree with values published by other investigators. Our results show that ROI size affects nonuniformity and minimum SNR measurements, but not detection of anomalous pixels. Exposure geometry affects all tested image metrics except for the MTF. TG‐150 metrics in general agree with the TQT, but agree with the QAP only for local and global signal nonuniformity. The difference in SNR nonuniformity and MTF values between the TG‐150 and QAP may be explained by differences in the calculation of noise and acquisition beam quality, respectively. TG‐150's SNR nonuniformity metrics are also more sensitive to detector nonuniformity compared to the QAP. Our results suggest that fixed ROI size should be used for consistency because nonuniformity metrics depend on ROI size. Ideally, detector tests should be performed at the exact calibration position. If not feasible, a baseline should be established from the mean of several repeated measurements. Our study indicates that the TG‐150 tests can be used as an independent standardized procedure for detector performance assessment. PACS number(s): 87.57.‐s, 87.57.C PMID:27685102
Improvement of the edge method for on-orbit MTF measurement.
Viallefont-Robinet, Françoise; Léger, Dominique
2010-02-15
The edge method is a widely used way to assess the on-orbit Modulation Transfer Function (MTF). Since good quality is required for the edge, the higher the spatial resolution, the better the results are. In this case, an artificial target can be built and used to ensure a good edge quality. For moderate spatial resolutions, only natural targets are available. Hence the edge quality is unknown and generally rather poor. Improvements of the method have been researched in order to compensate for the poor quality of natural edges. This has been done through the use of symmetry and/or a transfer function model, which enables the elimination of noise. This has also been used for artificial target. In this case, the use of the model overcomes the incomplete sampling when the target is too small or gives the opportunity to assess the defocus of the sensor. This paper begins with a recall of the method followed by a presentation of the changes relying on transfer function parametric model. The transfer function model and the process corresponding to the changes are described. Applications of these changes for several satellites of the French spatial agency are presented: for SPOT 1, it enables to assess XS MTF with natural edges, for SPOT 5, it enables to use the Salon-de-Provence artificial target for MTF assessment in the HM mode, and for the foreseen Pleiades, it enables to estimate the defocus.
Kuttig, Jan D; Steiding, Christian; Kolditz, Daniel; Hupfer, Martin; Karolczak, Marek; Kalender, Willi A
2015-06-01
To investigate the dose saving potential of direct-converting CdTe photon-counting detector technology for dedicated breast CT. We analyzed the modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) of two detector technologies, suitable for breast CT (BCT): a flat-panel energy-integrating detector with a 70 μm and a 208 μm thick gadolinium oxysulfide (GOS) and a 150 μm thick cesium iodide (CsI) scintillator and a photon-counting detector with a 1000 μm thick CdTe sensor. The measurements for GOS scintillator thicknesses of 70 μm and 208 μm delivered 10% pre-sampled MTF values of 6.6 mm(-1) and 3.2 mm(-1), and DQE(0) values of 23% and 61%. The 10% pre-sampled MTF value for the 150 μm thick CsI scintillator 6.9 mm(-1), and the DQE(0) value was 49%. The CdTe sensor reached a 10% pre-sampled MTF value of 8.5 mm(-1) and a DQE(0) value of 85%. The photon-counting CdTe detector technology allows for significant dose reduction compared to the energy-integrating scintillation detector technology used in BCT today. Our comparative evaluation indicates that a high potential dose saving may be possible for BCT by using CdTe detectors, without loss of spatial resolution. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Image quality and stability of image-guided radiotherapy (IGRT) devices: A comparative study.
Stock, Markus; Pasler, Marlies; Birkfellner, Wolfgang; Homolka, Peter; Poetter, Richard; Georg, Dietmar
2009-10-01
Our aim was to implement standards for quality assurance of IGRT devices used in our department and to compare their performances with that of a CT simulator. We investigated image quality parameters for three devices over a period of 16months. A multislice CT was used as a benchmark and results related to noise, spatial resolution, low contrast visibility (LCV) and uniformity were compared with a cone beam CT (CBCT) at a linac and simulator. All devices performed well in terms of LCV and, in fact, exceeded vendor specifications. MTF was comparable between CT and linac CBCT. Integral nonuniformity was, on average, 0.002 for the CT and 0.006 for the linac CBCT. Uniformity, LCV and MTF varied depending on the protocols used for the linac CBCT. Contrast-to-noise ratio was an average of 51% higher for the CT than for the linac and simulator CBCT. No significant time trend was observed and tolerance limits were implemented. Reasonable differences in image quality between CT and CBCT were observed. Further research and development are necessary to increase image quality of commercially available CBCT devices in order for them to serve the needs for adaptive and/or online planning.
Improvement of spatial resolution in a Timepix based CdTe photon counting detector using ToT method
NASA Astrophysics Data System (ADS)
Park, Kyeongjin; Lee, Daehee; Lim, Kyung Taek; Kim, Giyoon; Chang, Hojong; Yi, Yun; Cho, Gyuseong
2018-05-01
Photon counting detectors (PCDs) have been recognized as potential candidates in X-ray radiography and computed tomography due to their many advantages over conventional energy-integrating detectors. In particular, a PCD-based X-ray system shows an improved contrast-to-noise ratio, reduced radiation exposure dose, and more importantly, exhibits a capability for material decomposition with energy binning. For some applications, a very high resolution is required, which translates into smaller pixel size. Unfortunately, small pixels may suffer from energy spectral distortions (distortion in energy resolution) due to charge sharing effects (CSEs). In this work, we propose a method for correcting CSEs by measuring the point of interaction of an incident X-ray photon by the time-of-threshold (ToT) method. Moreover, we also show that it is possible to obtain an X-ray image with a reduced pixel size by using the concept of virtual pixels at a given pixel size. To verify the proposed method, modulation transfer function (MTF) and signal-to-noise ratio (SNR) measurements were carried out with the Timepix chip combined with the CdTe pixel sensor. The X-ray test condition was set at 80 kVp with 5 μA, and a tungsten edge phantom and a lead line phantom were used for the measurements. Enhanced spatial resolution was achieved by applying the proposed method when compared to that of the conventional photon counting method. From experiment results, MTF increased from 6.3 (conventional counting method) to 8.3 lp/mm (proposed method) at 0.3 MTF. On the other hand, the SNR decreased from 33.08 to 26.85 dB due to four virtual pixels.
NASA Astrophysics Data System (ADS)
Shankar, A.; Russ, M.; Vijayan, S.; Bednarek, D. R.; Rudin, S.
2017-03-01
Apodized Aperture Pixel (AAP) design, proposed by Ismailova et.al, is an alternative to the conventional pixel design. The advantages of AAP processing with a sinc filter in comparison with using other filters include non-degradation of MTF values and elimination of signal and noise aliasing, resulting in an increased performance at higher frequencies, approaching the Nyquist frequency. If high resolution small field-of-view (FOV) detectors with small pixels used during critical stages of Endovascular Image Guided Interventions (EIGIs) could also be extended to cover a full field-of-view typical of flat panel detectors (FPDs) and made to have larger effective pixels, then methods must be used to preserve the MTF over the frequency range up to the Nyquist frequency of the FPD while minimizing aliasing. In this work, we convolve the experimentally measured MTFs of an Microangiographic Fluoroscope (MAF) detector, (the MAF-CCD with 35μm pixels) and a High Resolution Fluoroscope (HRF) detector (HRF-CMOS50 with 49.5μm pixels) with the AAP filter and show the superiority of the results compared to MTFs resulting from moving average pixel binning and to the MTF of a standard FPD. The effect of using AAP is also shown in the spatial domain, when used to image an infinitely small point object. For detectors in neurovascular interventions, where high resolution is the priority during critical parts of the intervention, but full FOV with larger pixels are needed during less critical parts, AAP design provides an alternative to simple pixel binning while effectively eliminating signal and noise aliasing yet allowing the small FOV high resolution imaging to be maintained during critical parts of the EIGI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco
2013-10-15
Purpose: A characterization of a clinical unit for digital radiography (FUJIFILM FDR D-EVO) is presented. This system is based on the irradiation side sampling (ISS) technology and can be equipped with two different scintillators: one traditional gadolinium-oxysulphide phosphor (GOS) and a needle structured cesium iodide (CsI) phosphor panel.Methods: The characterization was achieved in terms of response curve, modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE), and psychophysical parameters (contrast-detail analysis with an automatic reading of CDRAD images). For both scintillation screens the authors accomplished the measurements with four standard beam conditions: RAQ3, RQA5, RQA7, and RQA9.Results:more » At the Nyquist frequency (3.33 lp/mm) the MTF is about 35% and 25% for CsI and GOS detectors, respectively. The CsI scintillator has better noise properties than the GOS screen in almost all the conditions. This is particularly true for low-energy beams, where the noise for the GOS system can go up to a factor 2 greater than that found for CsI. The DQE of the CsI detector reaches a peak of 60%, 60%, 58%, and 50% for the RQA3, RQA5, RQA7, and RQA9 beams, respectively, whereas for the GOS screen the maximum DQE is 40%, 44%, 44%, and 35%. The contrast-detail analysis confirms that in the majority of cases the CsI scintillator is able to provide improved outcomes to those obtained with the GOS screen.Conclusions: The limited diffusion of light produced by the ISS reading makes possible the achievement of very good spatial resolution. In fact, the MTF of the unit with the CsI panel is only slightly lower to that achieved with direct conversion detectors. The combination of very good spatial resolution, together with the good noise properties reached with the CsI screen, allows achieving DQE on average about 1.5 times greater than that obtained with GOS. In fact, the DQE of unit equipped with CsI is comparable to the best alternative methods available which are based on the same technology, and similar to others based on an a-Se direct conversion detectors.« less
Physical evaluation of color and monochrome medical displays using an imaging colorimeter
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Gu, Xiliang; Fan, Jiahua
2013-03-01
This paper presents an approach to physical evaluation of color and monochrome medical grade displays using an imaging colorimeter. The purpose of this study was to examine the influence of medical display types, monochrome or color at the same maximum luminance settings, on diagnostic performance. The focus was on the measurements of physical characteristics including spatial resolution and noise performance, which we believed could affect the clinical performance. Specifically, Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS) were evaluated and compared at different digital driving levels (DDL) between two EIZO displays.
Oh, Seok-Kyun; Kim, Gwang-Won; Yang, Jong-Chul; Kim, Seok-Kwun; Kang, Heoung-Keun
2012-01-01
Objective This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. Materials and Methods A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. Results The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Conclusion Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males. PMID:22563262
NASA Astrophysics Data System (ADS)
Miéville, Frédéric A.; Ayestaran, Paul; Argaud, Christophe; Rizzo, Elena; Ou, Phalla; Brunelle, Francis; Gudinchet, François; Bochud, François; Verdun, Francis R.
2010-04-01
Adaptive Statistical Iterative Reconstruction (ASIR) is a new imaging reconstruction technique recently introduced by General Electric (GE). This technique, when combined with a conventional filtered back-projection (FBP) approach, is able to improve the image noise reduction. To quantify the benefits provided on the image quality and the dose reduction by the ASIR method with respect to the pure FBP one, the standard deviation (SD), the modulation transfer function (MTF), the noise power spectrum (NPS), the image uniformity and the noise homogeneity were examined. Measurements were performed on a control quality phantom when varying the CT dose index (CTDIvol) and the reconstruction kernels. A 64-MDCT was employed and raw data were reconstructed with different percentages of ASIR on a CT console dedicated for ASIR reconstruction. Three radiologists also assessed a cardiac pediatric exam reconstructed with different ASIR percentages using the visual grading analysis (VGA) method. For the standard, soft and bone reconstruction kernels, the SD is reduced when the ASIR percentage increases up to 100% with a higher benefit for low CTDIvol. MTF medium frequencies were slightly enhanced and modifications of the NPS shape curve were observed. However for the pediatric cardiac CT exam, VGA scores indicate an upper limit of the ASIR benefit. 40% of ASIR was observed as the best trade-off between noise reduction and clinical realism of organ images. Using phantom results, 40% of ASIR corresponded to an estimated dose reduction of 30% under pediatric cardiac protocol conditions. In spite of this discrepancy between phantom and clinical results, the ASIR method is as an important option when considering the reduction of radiation dose, especially for pediatric patients.
Objective performance assessment of five computed tomography iterative reconstruction algorithms.
Omotayo, Azeez; Elbakri, Idris
2016-11-22
Iterative algorithms are gaining clinical acceptance in CT. We performed objective phantom-based image quality evaluation of five commercial iterative reconstruction algorithms available on four different multi-detector CT (MDCT) scanners at different dose levels as well as the conventional filtered back-projection (FBP) reconstruction. Using the Catphan500 phantom, we evaluated image noise, contrast-to-noise ratio (CNR), modulation transfer function (MTF) and noise-power spectrum (NPS). The algorithms were evaluated over a CTDIvol range of 0.75-18.7 mGy on four major MDCT scanners: GE DiscoveryCT750HD (algorithms: ASIR™ and VEO™); Siemens Somatom Definition AS+ (algorithm: SAFIRE™); Toshiba Aquilion64 (algorithm: AIDR3D™); and Philips Ingenuity iCT256 (algorithm: iDose4™). Images were reconstructed using FBP and the respective iterative algorithms on the four scanners. Use of iterative algorithms decreased image noise and increased CNR, relative to FBP. In the dose range of 1.3-1.5 mGy, noise reduction using iterative algorithms was in the range of 11%-51% on GE DiscoveryCT750HD, 10%-52% on Siemens Somatom Definition AS+, 49%-62% on Toshiba Aquilion64, and 13%-44% on Philips Ingenuity iCT256. The corresponding CNR increase was in the range 11%-105% on GE, 11%-106% on Siemens, 85%-145% on Toshiba and 13%-77% on Philips respectively. Most algorithms did not affect the MTF, except for VEO™ which produced an increase in the limiting resolution of up to 30%. A shift in the peak of the NPS curve towards lower frequencies and a decrease in NPS amplitude were obtained with all iterative algorithms. VEO™ required long reconstruction times, while all other algorithms produced reconstructions in real time. Compared to FBP, iterative algorithms reduced image noise and increased CNR. The iterative algorithms available on different scanners achieved different levels of noise reduction and CNR increase while spatial resolution improvements were obtained only with VEO™. This study is useful in that it provides performance assessment of the iterative algorithms available from several mainstream CT manufacturers.
Human Operator Interface with FLIR Displays.
1980-03-01
model (Ratches, et al., 1976) used to evaluate FUIR system performanmce. SECURITY CLASSIFICATION OF THIS PAOE(When Does Bntoff. PREFACE The research...the minimum resolv- able temperature (MRT) paradigm to test two modeled FLIR systems. Twelve male subjects with 20/20 uncorrected vision served as...varying iv levels of size, contrast, noise, and MTF. The test results were compared with the NVL predictive model (Ratches, et al., 1975) used to
Infrared Sensor Readout Design
1975-11-01
Line Replaceable Unit LT Level Translator MRT Minimum Resolvable Temperature MTF Modulation Transfer Function PC Printed Circuit SCCCD Surface...reduced, not only will the aliased noise increase, but signal aliasing will also start to occur. Atlbe display level this means that sharp edges could...converted from a quantity ol charge to a voltage- level shift by the action ol the precharge pulse that presets the potential on the output diode node to
Dedicated mobile volumetric cone-beam computed tomography for human brain imaging: A phantom study.
Ryu, Jong-Hyun; Kim, Tae-Hoon; Jeong, Chang-Won; Jun, Hong-Young; Heo, Dong-Woon; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha
2015-01-01
Mobile computed tomography (CT) with a cone-beam source is increasingly used in the clinical field. Mobile cone-beam CT (CBCT) has great merits; however, its clinical utility for brain imaging has been limited due to problems including scan time and image quality. The aim of this study was to develop a dedicated mobile volumetric CBCT for obtaining brain images, and to optimize the imaging protocol using a brain phantom. The mobile volumetric CBCT system was evaluated with regards to scan time and image quality, measured as signal-to-noise-ratio (SNR), contrast-to-noise-ratio (CNR), spatial resolution (10% MTF), and effective dose. Brain images were obtained using a CT phantom. The CT scan took 5.14 s at 360 projection views. SNR and CNR were 5.67 and 14.5 at 120 kV/10 mA. SNR and CNR values showed slight improvement as the x-ray voltage and current increased (p < 0.001). Effective dose and 10% MTF were 0.92 mSv and 360 μ m at 120 kV/10 mA. Various intracranial structures were clearly visible in the brain phantom images. Using this CBCT under optimal imaging acquisition conditions, it is possible to obtain human brain images with low radiation dose, reproducible image quality, and fast scan time.
Kouno, Takuya; Kuga, Noriyuki; Enzaki, Masahiro; Yamashita, Yuuki; Kitazato, Yumiko; Shimotabira, Haruhiko; Jinnouchi, Takashi; Kusuhara, Kazuo; Kawamura, Shinji
2015-04-01
The aim of this study was to reduce the exposed dose of radiotherapy treatment planning computed tomography (CT) by using low tube voltage technique. We used tube voltages of 80 kV, 100 kV, and 120 kV, respectively. First, we evaluated exposure dose with CT dose index (CTDI) for each voltage. Second, we compared image quality indexes such as modulation transfer function (MTF), noise power spectrum (NPS), and contrast to noise ratio (CNR) of phantom images with each voltage. Third, CT to electron density tables were measured in three voltages and monitor unit value was calculated along with clinical cases. Finally, CT surface exposed dose of chest skin was measured by thermoluminescent dosimeter (TLD). In image evaluation MTF and NPS were approximately equal; CNR slightly decreased, 2.0% for 100 kV. We performed check radiation dose accuracy for each tube voltage with each model phantom. As a result, the difference of MU value was not accepted. Finally, compared with 120 kV, CTDIvol and TLD value showed markedly decreased radiation dose, 60% for 80 kV and 30% for 100 kV. Using a technique with low tube voltages, especially 100 kV, is useful in radiotherapy treatment planning to obtain 20% dose reduction without compromising 120 kV image quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Y; Rottmann, J; Myronakis, M
2016-06-15
Purpose: The purpose of this study was to quantify the improvement in tumor tracking, with and without fiducial markers, afforded by employing a multi-layer (MLI) electronic portal imaging device (EPID) over the current state-of-the-art, single-layer, digital megavolt imager (DMI) architecture. Methods: An ideal observer signal-to-noise ratio (d’) approach was used to quantify the ability of an MLI EPID and a current, state-of-the-art DMI EPID to track lung tumors from the treatment beam’s-eye-view. Using each detector modulation transfer function (MTF) and noise power spectrum (NPS) as inputs, a detection task was employed with object functions describing simple three-dimensional Cartesian shapes (spheresmore » and cylinders). Marker-less tumor tracking algorithms often use texture discrimination to differentiate benign and malignant tissue. The performance of such algorithms is simulated by employing a discrimination task for the ideal observer, which measures the ability of a system to differentiate two image quantities. These were defined as the measured textures for benign and malignant lung tissue. Results: The NNPS of the MLI ∼25% of that of the DMI at the expense of decreased MTF at intermediate frequencies (0.25≤« less
Image quality and stability of image-guided radiotherapy (IGRT) devices: A comparative study
Stock, Markus; Pasler, Marlies; Birkfellner, Wolfgang; Homolka, Peter; Poetter, Richard; Georg, Dietmar
2010-01-01
Introduction Our aim was to implement standards for quality assurance of IGRT devices used in our department and to compare their performances with that of a CT simulator. Materials and methods We investigated image quality parameters for three devices over a period of 16 months. A multislice CT was used as a benchmark and results related to noise, spatial resolution, low contrast visibility (LCV) and uniformity were compared with a cone beam CT (CBCT) at a linac and simulator. Results All devices performed well in terms of LCV and, in fact, exceeded vendor specifications. MTF was comparable between CT and linac CBCT. Integral nonuniformity was, on average, 0.002 for the CT and 0.006 for the linac CBCT. Uniformity, LCV and MTF varied depending on the protocols used for the linac CBCT. Contrast-to-noise ratio was an average of 51% higher for the CT than for the linac and simulator CBCT. No significant time trend was observed and tolerance limits were implemented. Discussion Reasonable differences in image quality between CT and CBCT were observed. Further research and development are necessary to increase image quality of commercially available CBCT devices in order for them to serve the needs for adaptive and/or online planning. PMID:19695725
Li, Ke; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong
2013-02-01
Using a grating interferometer, a conventional x-ray cone beam computed tomography (CT) data acquisition system can be used to simultaneously generate both conventional absorption CT (ACT) and differential phase contrast CT (DPC-CT) images from a single data acquisition. Since the two CT images were extracted from the same set of x-ray projections, it is expected that intrinsic relationships exist between the noise properties of the two contrast mechanisms. The purpose of this paper is to investigate these relationships. First, a theoretical framework was developed using a cascaded system model analysis to investigate the relationship between the noise power spectra (NPS) of DPC-CT and ACT. Based on the derived analytical expressions of the NPS, the relationship between the spatial-frequency-dependent noise equivalent quanta (NEQ) of DPC-CT and ACT was derived. From these fundamental relationships, the NPS and NEQ of the DPC-CT system can be derived from the corresponding ACT system or vice versa. To validate these theoretical relationships, a benchtop cone beam DPC-CT/ACT system was used to experimentally measure the modulation transfer function (MTF) and NPS of both DPC-CT and ACT. The measured three-dimensional (3D) MTF and NPS were then combined to generate the corresponding 3D NEQ. Two fundamental relationships have been theoretically derived and experimentally validated for the NPS and NEQ of DPC-CT and ACT: (1) the 3D NPS of DPC-CT is quantitatively related to the corresponding 3D NPS of ACT by an inplane-only spatial-frequency-dependent factor 1∕f (2), the ratio of window functions applied to DPC-CT and ACT, and a numerical factor C(g) determined by the geometry and efficiency of the grating interferometer. Note that the frequency-dependent factor is independent of the frequency component f(z) perpendicular to the axial plane. (2) The 3D NEQ of DPC-CT is related to the corresponding 3D NEQ of ACT by an f (2) scaling factor and numerical factors that depend on both the attenuation and refraction properties of the image object, as well as C(g) and the MTF of the grating interferometer. The performance of a DPC-CT system is intrinsically related to the corresponding ACT system. As long as the NPS and NEQ of an ACT system is known, the corresponding NPS and NEQ of the DPC-CT system can be readily estimated using additional characteristics of the grating interferometer.
Physical evaluation of a needle photostimulable phosphor based CR mammography system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Nicholas W.; Lemmens, Kim; Bosmans, Hilde
2012-02-15
Purpose: Needle phosphor based computed radiography (CR) systems promise improved image quality compared to powder phosphor based CR units for x-ray screening mammography. This paper compares the imaging performance of needle CR cassettes, powder based CR cassettes and a well established amorphous selenium (a-Se) based flat panel based mammography system, using consistent beam qualities. Methods: Detector performance was assessed using modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE). Mammography system performance was assessed against levels from the European Guidelines, including threshold gold thickness (c-d), relative signal difference to noise (SdNR) and mean glandular dose,more » for automatic exposure control settings suggested by the manufacturers. The needle based Agfa HM5.0 CR detector was compared against the single sided readout Agfa MM3.0R and dual sided readout Fuji Profect CS powder CR plates using a 28 kV Mo/Rh spectrum, while a 28 kV W/Rh spectrum was used to compare the Agfa HM5.0 against the Siemens MAMMOMAT Inspiration a-Se based system. Results: MTF at 5 mm{sup -1} was 0.16 and 0.24 for the needle CR detector in the fast and slow scan directions, respectively, indicating a slight improvement ({approx}20%) over the two powder CR systems but remained 50% lower than the result at 5 mm{sup -1} for the a-Se detector ({approx}0.55). Structured screen noise was lower for the needle phosphor compared to the powder plates. CR system gain, estimated from the measured absorption fraction and NNPS results, was 6.3 for the (single sided) needle phosphor and 5.1 and 7.2 for the single sided and dual sided powder phosphor systems. Peak DQE at {approx}100 {mu}Gy was 0.47 for the needle system compared to peak DQE figures of 0.33 and 0.46 for the single sided readout powder plates and dual sided readout plates. The high frequency DQE (at 5 mm{sup -1}) was 0.19 for the needle CR plates, a factor of approximately 3 greater than for the powder CR plates. At 28 kV W/Rh, 2 mm Al, peak DQE for the needle CR system was 0.45 against a value of 0.50 for the a-Se detector. The needle CR detector reached the Acceptable limit for 0.1 mm details in the European Guidelines at a mean glandular dose (MGD) of approximately 1.31 mGy imaged at 28 kV Mo/Rh, compared to figures of 2.19 and 1.43 mGy for the single sided and dual sided readout powder CR systems. The a-Se detector could reach the limit at 0.65 mGy using a 28 kV W/Rh spectrum, while the needle CR system required 1.09 mGy for the same spectrum. Conclusions: Imaging performance for the needle CR phosphor technology, characterized using MTF and DQE and threshold gold thickness demonstrated a clear improvement compared to both single and dual sided reading powder phosphor based CR systems.« less
Characterizing X-ray detectors for prototype digital breast tomosynthesis systems
NASA Astrophysics Data System (ADS)
Kim, Y.-s.; Park, H.-s.; Park, S.-J.; Choi, S.; Lee, H.; Lee, D.; Choi, Y.-W.; Kim, H.-J.
2016-03-01
The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R2>0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types of x-ray detectors for commercial DBT systems. Our findings suggest that the Dexela detector can be applied to the DBT system with regard to its high imaging performance.
Quirós, Carmen; Patrascioiu, Ioana; Mora, Mireia; Aranda, Gloria Beatriz; Hanzu, Felicia Alexandra; Gómez-Gil, Esther; Godás, Teresa; Halperin, Irene
2015-05-01
Since the onset of cross hormone therapy (CHT) in transsexual individuals, there has been concern about possible chronic side effects. Our objective was to assess baseline differences in lipid profile in individuals with gender identity disorder in relation to prior CHT, and changes in the lipid profile and other cardiovascular (CV) risk factors after 24 months of treatment. Retrospective longitudinal study including all individuals assisted for the first time in the Gender Identity Unit of Catalonia from 2006 to 2010. Socio-demographical, anthropometric and laboratory data were collected. We evaluated 247 transsexuals, 150 male to female (MtF: 60.7%) and 97 female to male (FtM; 39.3%). At baseline, FtM transsexuals were younger and had started prior CHT less often than MtF (13.4% vs. 64.7%; p<0.001). During follow up, in MtF weight and BMI increased significantly, as well as systolic and diastolic blood pressure, though these latter remained within normal range. No significant differences in lipid profile were observed. FtM transsexuals also presented an increase in weight and BMI, without differences in blood pressure. A general worsening in lipid profile was observed in this group, with increased total cholesterol (166.0 ± 35.1 vs. 175.6 ± 38.2mg/dL; p=0.001), triglycerides (70.6 ± 30.7 vs. 102.3 ± 68.5 mg/dL; p<0.001) and LDL cholesterol (103.8 ± 28.7 vs. 112.8 ± 30.3 mg/dL; p=.013) and decreased HDL cholesterol (52.2 ± 12.2 vs. 45.4 ± 13.8 mg/dL; p=0.001), even though final levels were all within normal range. There is no detectable increase in CV risk factors in MtF transsexuals who were treated with currently prescribed estrogenic compounds, while a slight worsening in lipid profile takes place in the FtM group, though within normal limits. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.
Edge method for on-orbit defocus assessment.
Viallefont-Robinet, Françoise
2010-09-27
In the earth observation domain, two classes of sensors may be distinguished: a class for which sensor performances are driven by radiometric accuracy of the images and a class for which sensor performances are driven by spatial resolution. In this latter case, as spatial resolution depends on the triplet constituted by the Ground Sampling Distance (GSD), Modulation Transfer Function (MTF), and Signal to Noise Ratio (SNR), refocusing, acting as an MTF improvement, is very important. Refocusing is not difficult by itself as far as the on-board mechanism is reliable. The difficulty is on the defocus assessment side. Some methods such as those used for the SPOT family rely on the ability of the satellite to image the same landscape with two focusing positions. This can be done with a bi-sensor configuration, with adequate focal plane, or with the satellite agility. A new generation of refocusing mechanism will be taken aboard Pleiades. As the speed of this mechanism will be much slower than the speed of the older generation, it won't be possible, despite the agility of the satellite, to image the same landscape with two focusing positions on the same orbit. That's why methods relying on MTF measurement with edge method have been studied. This paper describes the methods and the work done to assess the defocus measurement accuracy in the Pleiades context.
NASA Technical Reports Server (NTRS)
Choi, Taeyong; Xiong, Xiaoxiong; Wang, Zhipeng
2013-01-01
Spatial quality of an imaging sensor can be estimated by evaluating its modulation transfer function (MTF) from many different sources such as a sharp edge, a pulse target, or bar patterns with different spatial frequencies. These well-defined targets are frequently used for prelaunch laboratory tests, providing very reliable and accurate MTF measurements. A laboratory-quality edge input source was included in the spatial-mode operation of the Spectroradiometric Calibration Assembly (SRCA), which is one of the onboard calibrators of the Moderate Resolution Imaging Spectroradiometer (MODIS). Since not all imaging satellites have such an instrument, SRCA MTF estimations can be used as a reference for an on-orbit lunar MTF algorithm and results. In this paper, the prelaunch spatial quality characterization process from the Integrated Alignment Collimator and SRCA is briefly discussed. Based on prelaunch MTF calibration using the SRCA, a lunar MTF algorithm is developed and applied to the lifetime on-orbit Terra and Aqua MODIS lunar collections. In each lunar collection, multiple scan-directionMoon-to-background transition profiles are aligned by the subpixel edge locations from a parametric Fermi function fit. Corresponding accumulated edge profiles are filtered and interpolated to obtain the edge spread function (ESF). The MTF is calculated by applying a Fourier transformation on the line spread function through a simple differentiation of the ESF. The lifetime lunar MTF results are analyzed and filtered by a relationship with the Sun-Earth-MODIS angle. Finally, the filtered lunarMTF values are compared to the SRCA MTF results. This comparison provides the level of accuracy for on-orbit MTF estimations validated through prelaunch SRCA measurements. The lunar MTF values had larger uncertainty than the SRCA MTF results; however, the ratio mean of lunarMTF fit and SRCA MTF values is within 2% in the 250- and 500-m bands. Based on the MTF measurement uncertainty range, the suggested lunar MTF algorithm can be applied to any on-orbit imaging sensor with lunar calibration capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gislason-Lee, Amber J., E-mail: A.J.Gislason@leeds.ac.uk; Tunstall, Clare M.; Kengyelics, Stephen K.
Purpose: Cardiac x-ray detectors are used to acquire moving images in real-time for angiography and interventional procedures. Detective quantum efficiency (DQE) is not generally measured on these dynamic detectors; the required “for processing” image data and control of x-ray settings have not been accessible. By 2016, USA hospital physicists will have the ability to measure DQE and will likely utilize the International Electrotechnical Commission (IEC) standard for measuring DQE of dynamic x-ray imaging devices. The current IEC standard requires an image of a tilted tungsten edge test object to obtain modulation transfer function (MTF) for DQE calculation. It specifies themore » range of edge angles to use; however, it does not specify a preferred method to determine this angle for image analysis. The study aimed to answer the question “will my choice in method impact my results?” Four different established edge angle determination methods were compared to investigate the impact on DQE. Methods: Following the IEC standard, edge and flat field images were acquired on a cardiac flat-panel detector to calculate MTF and noise power spectrum, respectively, to determine DQE. Accuracy of the methods in determining the correct angle was ascertained using a simulated edge image with known angulations. Precision of the methods was ascertained using variability of MTF and DQE, calculated via bootstrapping. Results: Three methods provided near equal angles and the same MTF while the fourth, with an angular difference of 6%, had a MTF lower by 3% at 1.5 mm{sup −1} spatial frequency and 8% at 2.5 mm{sup −1}; corresponding DQE differences were 6% at 1.5 mm{sup −1} and 17% at 2.5 mm{sup −1}; differences were greater than standard deviations in the measurements. Conclusions: DQE measurements may vary by a significant amount, depending on the method used to determine the edge angle when following the IEC standard methodology for a cardiac x-ray detector. The most accurate and precise methods are recommended for absolute assessments and reproducible measurements, respectively.« less
NASA Astrophysics Data System (ADS)
Choi, Seungyeon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Lee, Donghoon; Choi, Young-Wook; Kim, Hee-Joung
2017-03-01
Digital breast tomosynthesis (DBT) system is a novel imaging modality which is strongly depended on the performance of a detector. Recently, effective detective quantum efficiency (eDQE) has been introduced to solve the disadvantages of conventional DQE evaluations which do not consider clinical operating conditions. For eDQE evaluation, the variety of patient breast, especially the glandularity and thickness needs to be studied to consider different races of patient. For these reasons, eDQE in a prototype DBT system considering different breast thickness and glandularity was evaluated. In this study, we used the prototype DBT system with CsI(Tl) scintillator/CMOS flat panel digital detector developed by Korea Electrotechnology Research Institute (KERI). A scatter fraction, a transmission factor, an effective modulation transfer function (eMTF) and an effective normalized noise power spectrum (eNNPS) were measured in different thickness and glandularity of breast equivalent phantom. As results, scatter fraction increased and transmission fraction decreased by a factor of 2.09 and 6.25, respectively, as increasing glandularity and thickness. We also found that the breast phantom with small thickness presented high eMTF and low eNNPS. As results, eDQE from 4 cm thick breast phantom with 30% and 70% glandularity showed small changes from 0.20 to 0.19 at 0.1 mm-1, whereas eDQE from 50% glandularity of 3 cm and 5 cm presented relatively significant increase from 0.16 to 0.20 at 0.1 mm-1 spatial frequency. These indicated that eDQE was strongly affected by phantom thickness, but the effect of glandularity seemed to be trivial. According to our study, the whole system evaluation considering the races of patients from standard to abnormal cases is needed to be studied in future works.
Kobashi, Hidenaga; Kamiya, Kazutaka; Yanome, Kyohei; Igarashi, Akihito; Shimizu, Kimiya
2013-01-01
To assess the longitudinal changes in optical quality including intraocular scattering in normal eyes and eyes with short tear breakup time (TBUT). We prospectively examined twenty eyes of 20 healthy subjects, and age-matched twenty eyes of 20 short TBUT subjects. The modulation transfer function (MTF) cutoff frequency, the Strehl ratio, and the objective scattering index (OSI) were quantitatively assessed using an Optical Quality Analysis System. We investigated the changes in these variables measured consecutively at the initial examination, 5, and 10 seconds without blinking. We also compared these variables in eyes with short TBUT with those in normal eyes. No significant differences in the MTF cutoff frequency, Strehl ratio, or OSI were detected over a 10-second period in normal eyes. These variables also became significantly degraded even over a 5-second period in eyes with short TBUT (p<0.01). We found significant differences in these variables at 5 and 10 seconds (p<0.05), but none immediately after the blink between normal and short TBUT eyes. Optical quality including intraocular scattering deteriorated significantly with time in eyes with short TBUT, whereas we found significant differences over a 10-second period in normal eyes. Eyes with short TBUT showed greater deterioration in optical quality after the blink than normal eyes. The longitudinal assessment of optical quality may be effective in distinguishing eyes with short TBUT from normal eyes.
A Test Strategy for High Resolution Image Scanners.
1983-10-01
for multivariate analysis. Holt, Richart and Winston, Inc., New York. Graybill , F.A., 1961: An introduction to linear statistical models . SVolume I...i , j i -(7) 02 1 )2 y 4n .i ij 13 The linear estimation model for the polynomial coefficients can be set up as - =; =(8) with T = ( x’ . . X-nn "X...Resolution Image Scanner MTF Geometrical and radiometric performance Dynamic range, linearity , noise - Dynamic scanning errors Response uniformity Skewness of
Restoration of motion blurred image with Lucy-Richardson algorithm
NASA Astrophysics Data System (ADS)
Li, Jing; Liu, Zhao Hui; Zhou, Liang
2015-10-01
Images will be blurred by relative motion between the camera and the object of interest. In this paper, we analyzed the process of motion-blurred image, and demonstrated a restoration method based on Lucy-Richardson algorithm. The blur extent and angle can be estimated by Radon transform algorithm and auto-correlation function, respectively, and then the point spread function (PSF) of the motion-blurred image can be obtained. Thus with the help of the obtained PSF, the Lucy-Richardson restoration algorithm is used for experimental analysis on the motion-blurred images that have different blur extents, spatial resolutions and signal-to-noise ratios (SNR's). Further, its effectiveness is also evaluated by structural similarity (SSIM). Further studies show that, at first, for the image with a spatial frequency of 0.2 per pixel, the modulation transfer function (MTF) of the restored images can maintains above 0.7 when the blur extent is no bigger than 13 pixels. That means the method compensates low frequency information of the image, while attenuates high frequency information. At second, we fund that the method is more effective on condition that the product of the blur extent and spatial frequency is smaller than 3.75. Finally, the Lucy-Richardson algorithm is found insensitive to the Gaussian noise (of which the variance is not bigger than 0.1) by calculating the MTF of the restored image.
NASA Astrophysics Data System (ADS)
Mir, J. A.; Plackett, R.; Shipsey, I.; dos Santos, J. M. F.
2017-11-01
Hybrid pixel sensor technology such as the Medipix3 represents a unique tool for electron imaging. We have investigated its performance as a direct imaging detector using a Transmission Electron Microscope (TEM) which incorporated a Medipix3 detector with a 300 μm thick silicon layer compromising of 256×256 pixels at 55 μm pixel pitch. We present results taken with the Medipix3 in Single Pixel Mode (SPM) with electron beam energies in the range, 60-200 keV . Measurements of the Modulation Transfer Function (MTF) and the Detective Quantum Efficiency (DQE) were investigated. At a given beam energy, the MTF data was acquired by deploying the established knife edge technique. Similarly, the experimental data required to determine DQE was obtained by acquiring a stack of images of a focused beam and of free space (flatfield) to determine the Noise Power Spectrum (NPS).
Camera System MTF: combining optic with detector
NASA Astrophysics Data System (ADS)
Andersen, Torben B.; Granger, Zachary A.
2017-08-01
MTF is one of the most common metrics used to quantify the resolving power of an optical component. Extensive literature is dedicated to describing methods to calculate the Modulation Transfer Function (MTF) for stand-alone optical components such as a camera lens or telescope, and some literature addresses approaches to determine an MTF for combination of an optic with a detector. The formulations pertaining to a combined electro-optical system MTF are mostly based on theory, and assumptions that detector MTF is described only by the pixel pitch which does not account for wavelength dependencies. When working with real hardware, detectors are often characterized by testing MTF at discrete wavelengths. This paper presents a method to simplify the calculation of a polychromatic system MTF when it is permissible to consider the detector MTF to be independent of wavelength.
NASA Astrophysics Data System (ADS)
Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.
2017-03-01
X-ray detectors to meet the high-resolution requirements for endovascular image-guided interventions (EIGIs) are being developed and evaluated. A new 49.5-micron pixel prototype detector is being investigated and compared to the current suite of high-resolution fluoroscopic (HRF) detectors. This detector featuring a 300-micron thick CsI(Tl) scintillator, and low electronic noise CMOS readout is designated the HRF- CMOS50. To compare the abilities of this detector with other existing high resolution detectors, a standard performance metric analysis was applied, including the determination of the modulation transfer function (MTF), noise power spectra (NPS), noise equivalent quanta (NEQ), and detective quantum efficiency (DQE) for a range of energies and exposure levels. The advantage of the smaller pixel size and reduced blurring due to the thin phosphor was exemplified when the MTF of the HRF-CMOS50 was compared to the other high resolution detectors, which utilize larger pixels, other optical designs or thicker scintillators. However, the thinner scintillator has the disadvantage of a lower quantum detective efficiency (QDE) for higher diagnostic x-ray energies. The performance of the detector as part of an imaging chain was examined by employing the generalized metrics GMTF, GNEQ, and GDQE, taking standard focal spot size and clinical imaging parameters into consideration. As expected, the disparaging effects of focal spot unsharpness, exacerbated by increasing magnification, degraded the higher-frequency performance of the HRF-CMOS50, while increasing scatter fraction diminished low-frequency performance. Nevertheless, the HRF-CMOS50 brings improved resolution capabilities for EIGIs, but would require increased sensitivity and dynamic range for future clinical application.
Simultaneous deblurring and iterative reconstruction of CBCT for image guided brain radiosurgery.
Hashemi, SayedMasoud; Song, William Y; Sahgal, Arjun; Lee, Young; Huynh, Christopher; Grouza, Vladimir; Nordström, Håkan; Eriksson, Markus; Dorenlot, Antoine; Régis, Jean Marie; Mainprize, James G; Ruschin, Mark
2017-04-07
One of the limiting factors in cone-beam CT (CBCT) image quality is system blur, caused by detector response, x-ray source focal spot size, azimuthal blurring, and reconstruction algorithm. In this work, we develop a novel iterative reconstruction algorithm that improves spatial resolution by explicitly accounting for image unsharpness caused by different factors in the reconstruction formulation. While the model-based iterative reconstruction techniques use prior information about the detector response and x-ray source, our proposed technique uses a simple measurable blurring model. In our reconstruction algorithm, denoted as simultaneous deblurring and iterative reconstruction (SDIR), the blur kernel can be estimated using the modulation transfer function (MTF) slice of the CatPhan phantom or any other MTF phantom, such as wire phantoms. The proposed image reconstruction formulation includes two regularization terms: (1) total variation (TV) and (2) nonlocal regularization, solved with a split Bregman augmented Lagrangian iterative method. The SDIR formulation preserves edges, eases the parameter adjustments to achieve both high spatial resolution and low noise variances, and reduces the staircase effect caused by regular TV-penalized iterative algorithms. The proposed algorithm is optimized for a point-of-care head CBCT unit for image-guided radiosurgery and is tested with CatPhan phantom, an anthropomorphic head phantom, and 6 clinical brain stereotactic radiosurgery cases. Our experiments indicate that SDIR outperforms the conventional filtered back projection and TV penalized simultaneous algebraic reconstruction technique methods (represented by adaptive steepest-descent POCS algorithm, ASD-POCS) in terms of MTF and line pair resolution, and retains the favorable properties of the standard TV-based iterative reconstruction algorithms in improving the contrast and reducing the reconstruction artifacts. It improves the visibility of the high contrast details in bony areas and the brain soft-tissue. For example, the results show the ventricles and some brain folds become visible in SDIR reconstructed images and the contrast of the visible lesions is effectively improved. The line-pair resolution was improved from 12 line-pair/cm in FBP to 14 line-pair/cm in SDIR. Adjusting the parameters of the ASD-POCS to achieve 14 line-pair/cm caused the noise variance to be higher than the SDIR. Using these parameters for ASD-POCS, the MTF of FBP and ASD-POCS were very close and equal to 0.7 mm -1 which was increased to 1.2 mm -1 by SDIR, at half maximum.
Simultaneous deblurring and iterative reconstruction of CBCT for image guided brain radiosurgery
NASA Astrophysics Data System (ADS)
Hashemi, SayedMasoud; Song, William Y.; Sahgal, Arjun; Lee, Young; Huynh, Christopher; Grouza, Vladimir; Nordström, Håkan; Eriksson, Markus; Dorenlot, Antoine; Régis, Jean Marie; Mainprize, James G.; Ruschin, Mark
2017-04-01
One of the limiting factors in cone-beam CT (CBCT) image quality is system blur, caused by detector response, x-ray source focal spot size, azimuthal blurring, and reconstruction algorithm. In this work, we develop a novel iterative reconstruction algorithm that improves spatial resolution by explicitly accounting for image unsharpness caused by different factors in the reconstruction formulation. While the model-based iterative reconstruction techniques use prior information about the detector response and x-ray source, our proposed technique uses a simple measurable blurring model. In our reconstruction algorithm, denoted as simultaneous deblurring and iterative reconstruction (SDIR), the blur kernel can be estimated using the modulation transfer function (MTF) slice of the CatPhan phantom or any other MTF phantom, such as wire phantoms. The proposed image reconstruction formulation includes two regularization terms: (1) total variation (TV) and (2) nonlocal regularization, solved with a split Bregman augmented Lagrangian iterative method. The SDIR formulation preserves edges, eases the parameter adjustments to achieve both high spatial resolution and low noise variances, and reduces the staircase effect caused by regular TV-penalized iterative algorithms. The proposed algorithm is optimized for a point-of-care head CBCT unit for image-guided radiosurgery and is tested with CatPhan phantom, an anthropomorphic head phantom, and 6 clinical brain stereotactic radiosurgery cases. Our experiments indicate that SDIR outperforms the conventional filtered back projection and TV penalized simultaneous algebraic reconstruction technique methods (represented by adaptive steepest-descent POCS algorithm, ASD-POCS) in terms of MTF and line pair resolution, and retains the favorable properties of the standard TV-based iterative reconstruction algorithms in improving the contrast and reducing the reconstruction artifacts. It improves the visibility of the high contrast details in bony areas and the brain soft-tissue. For example, the results show the ventricles and some brain folds become visible in SDIR reconstructed images and the contrast of the visible lesions is effectively improved. The line-pair resolution was improved from 12 line-pair/cm in FBP to 14 line-pair/cm in SDIR. Adjusting the parameters of the ASD-POCS to achieve 14 line-pair/cm caused the noise variance to be higher than the SDIR. Using these parameters for ASD-POCS, the MTF of FBP and ASD-POCS were very close and equal to 0.7 mm-1 which was increased to 1.2 mm-1 by SDIR, at half maximum.
Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance
Cruz-Bastida, Juan P.; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P.; Chen, Guang-Hong
2016-01-01
Purpose: The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. Methods: A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0–16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. Results: At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. Conclusions: The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions. PMID:27147351
Cruz-Bastida, Juan P; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P; Chen, Guang-Hong
2016-05-01
The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0-16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions.
Fukunaga, Masaaki; Onishi, Hideo; Matsutomo, Norikazu; Yamamoto, Hiroyuki
2016-06-01
The purpose of this study was to evaluate the effects of target diameter and display-field of view (D-FOV) in modulation transfer function (MTF) by circular edge strategy using the computed tomography (CT) image measurement program "CTmeasure". We calculated the MTF (MTF(edge)) using the circular edge strategy applied to cylindrical phantom (200 mmφ) that inserted with cylinders have 10, 20, 30, and 40 mm diameters. The phantom images were reconstructed using filtered back projection method varied with D-FOV (240, 320, 400, and 500 mm). The study compared both MTF(edge) and MTF(wire) at MTF50% and MTF(10%) for target diameter and D-FOV, respectively. The MTF(edge) by the different of target diameter indicated in rough compatibility. However, MTF(edge) of D-FOV diameters (320, 400, and 500 mm) decreased in the high frequency range. The circular edge strategy for MTF depended on the D-FOV, however, it was little dependent on target diameter using the CT image measurement program "CTmeasure".
Simulation of digital mammography images
NASA Astrophysics Data System (ADS)
Workman, Adam
2005-04-01
A number of different technologies are available for digital mammography. However, it is not clear how differences in the physical performance aspects of the different imaging technologies affect clinical performance. Randomised controlled trials provide a means of gaining information on clinical performance however do not provide direct comparison of the different digital imaging technologies. This work describes a method of simulating the performance of different digital mammography systems. The method involves modifying the imaging performance parameters of images from a small field of view (SFDM), high resolution digital imaging system used for spot imaging. Under normal operating conditions this system produces images with higher signal-to-noise ratio (SNR) over a wide spatial frequency range than current full field digital mammography (FFDM) systems. The SFDM images can be 'degraded" by computer processing to simulate the characteristics of a FFDM system. Initial work characterised the physical performance (MTF, NPS) of the SFDM detector and developed a model and method for simulating signal transfer and noise properties of a FFDM system. It was found that the SNR properties of the simulated FFDM images were very similar to those measured from an actual FFDM system verifying the methodology used. The application of this technique to clinical images from the small field system will allow the clinical performance of different FFDM systems to be simulated and directly compared using the same clinical image datasets.
[Drugs for attention deficit hyperactivity disorder].
Montañés-Rada, F; Gangoso-Fermoso, A B; Martíínez-Granero, M A
Quantitative studies have highlighted differences in several drugs approved for use in Spain in the treatment of attention deficit hyperactivity disorder. No clear differences are observed, however, in the case of qualitative studies. The number of patients needed to be treated in order for one to reach complete remission (NNT) of methylphenidate (MTF) is from 2.2 to 5, and the effect size (ES) is 0.9. Atomoxetine has an NNT of 4 and an ES of 0.7. The advantages of immediate-release MTF (IR-MTF) over the extended-release version (ER-MTF) lie in its low cost, its flexibility and the better results obtained in quantitative studies. In contrast, ER-MTF offers a lower risk of abuse, needs to be taken fewer times with less need for third parties to control administration, and there is a lower risk of stigmatisation. Combination or changes of IR-MTF and ER-MTF and the combination of MTF with atomoxetine are sometimes necessary to adjust the weekday or weekend doses. Starting treatment with IR-MTF and then maintaining or changing to ER-MTF offers certain advantages as regards safety, dose adjustments and dosage. Atomoxetine is the best alternative if there is a background of adverse events with low or moderate doses of stimulants, or lack of response to high doses of stimulants. In cases of notable comorbid anxiety, both MTF and atomoxetine have the same level of indication. If there is a risk of substance abuse, both atomoxetine and ER-MTF are the preferred treatment. For the other indications, MTF is the preferred treatment.
Heuchel, R; Radtke, F; Georgiev, O; Stark, G; Aguet, M; Schaffner, W
1994-06-15
We have described and cloned previously a factor (MTF-1) that binds specifically to heavy metal-responsive DNA sequence elements in the enhancer/promoter region of metallothionein genes. MTF-1 is a protein of 72.5 kDa that contains six zinc fingers and multiple domains for transcriptional activation. Here we report the disruption of both alleles of the MTF-1 gene in mouse embryonic stem cells by homologous recombination. The resulting null mutant cell line fails to produce detectable amounts of MTF-1. Moreover, due to the loss of MTF-1, the endogenous metallothionein I and II genes are silent, indicating that MTF-1 is required for both their basal and zinc-induced transcription. In addition to zinc, other heavy metals, including cadmium, copper, nickel and lead, also fail to activate metal-responsive promoters in null mutant cells. However, cotransfection of an MTF-1 expression vector and metal-responsive reporter genes yields strong basal transcription that can be further boosted by zinc treatment of cells. These results demonstrate that MTF-1 is essential for metallothionein gene regulation. Finally, we present evidence that MTF-1 itself is a zinc sensor, which exhibits increased DNA binding activity upon zinc treatment.
On-Orbit MTF Measurement and Product Quality Monitoring for Commercial Remote Sensing Systems
NASA Technical Reports Server (NTRS)
Person, Steven
2007-01-01
Initialization and opportunistic targets are chosen that represent the MTF on the spatial domain. Ideal targets have simple mathematical relationships. Determine the MTF of an on-orbit satellite using in-scene targets: Slant-Edge, Line Source, point Source, and Radial Target. Attempt to facilitate the MTF calculation by automatically locating targets of opportunity. Incorporate MTF results into a product quality monitoring architecture.
NASA Astrophysics Data System (ADS)
Monnin, P.; Verdun, F. R.; Bosmans, H.; Rodríguez Pérez, S.; Marshall, N. W.
2017-07-01
This work proposes a method for assessing the detective quantum efficiency (DQE) of radiographic imaging systems that include both the x-ray detector and the antiscatter device. Cascaded linear analysis of the antiscatter device efficiency (DQEASD) with the x-ray detector DQE is used to develop a metric of system efficiency (DQEsys); the new metric is then related to the existing system efficiency parameters of effective DQE (eDQE) and generalized DQE (gDQE). The effect of scatter on signal transfer was modelled through its point spread function (PSF), leading to an x-ray beam transfer function (BTF) that multiplies with the classical presampling modulation transfer function (MTF) to give the system MTF. Expressions are then derived for the influence of scattered radiation on signal-difference to noise ratio (SDNR) and contrast-detail (c-d) detectability. The DQEsys metric was tested using two digital mammography systems, for eight x-ray beams (four with and four without scatter), matched in terms of effective energy. The model was validated through measurements of contrast, SDNR and MTF for poly(methyl)methacrylate thicknesses covering the range of scatter fractions expected in mammography. The metric also successfully predicted changes in c-d detectability for different scatter conditions. Scatter fractions for the four beams with scatter were established with the beam stop method using an extrapolation function derived from the scatter PSF, and validated through Monte Carlo (MC) simulations. Low-frequency drop of the MTF from scatter was compared to both theory and MC calculations. DQEsys successfully quantified the influence of the grid on SDNR and accurately gave the break-even object thickness at which system efficiency was improved by the grid. The DQEsys metric is proposed as an extension of current detector characterization methods to include a performance evaluation in the presence of scattered radiation, with an antiscatter device in place.
O'Shields, Britton; McArthur, Andrew G; Holowiecki, Andrew; Kamper, Martin; Tapley, Jeffrey; Jenny, Matthew J
2014-09-01
The metal responsive element-binding transcription factor-1 (MTF-1) responds to changes in cellular zinc levels caused by zinc exposure or disruption of endogenous zinc homeostasis by heavy metals or oxygen-related stress. Here we report the functional characterization of a complete zebrafish MTF-1 in comparison with the previously identified isoform lacking the highly conserved cysteine-rich motif (Cys-X-Cys-Cys-X-Cys) found in all other vertebrate MTF-1 orthologs. In an effort to develop novel molecular tools, a constitutively nuclear dominant-negative MTF-1 (dnMTF-1) was generated as tool for inhibiting endogenous MTF-1 signaling. The in vivo efficacy of the dnMTF-1 was determined by microinjecting in vitro transcribed dnMTF-1 mRNA into zebrafish embryos (1-2 cell stage) followed by transcriptomic profiling using an Agilent 4x44K array on 28- and 36-hpf embryos. A total of 594 and 560 probes were identified as differentially expressed at 28hpf and 36hpf, respectively, with interesting overlaps between timepoints. The main categories of genes affected by the inhibition of MTF-1 signaling were: nuclear receptors and genes involved in stress signaling, neurogenesis, muscle development and contraction, eye development, and metal homeostasis, including novel observations in iron and heme homeostasis. Finally, we investigate both the transcriptional activator and transcriptional repressor role of MTF-1 in potential novel target genes identified by transcriptomic profiling during early zebrafish development. Copyright © 2014 Elsevier B.V. All rights reserved.
Development of a high spatial resolution neutron imaging system and performance evaluation
NASA Astrophysics Data System (ADS)
Cao, Lei
The combination of a scintillation screen and a charged coupled device (CCD) camera is a digitized neutron imaging technology that has been widely employed for research and industry application. The maximum of spatial resolution of scintillation screens is in the range of 100 mum and creates a bottleneck for the further improvement of the overall system resolution. In this investigation, a neutron sensitive micro-channel plate (MCP) detector with pore pitch of 11.4 mum is combined with a cooled CCD camera with a pixel size of 6.8 mum to provide a high spatial resolution neutron imaging system. The optical path includes a high reflection front surface mirror for keeping the camera out of neutron beam and a macro lens for achieving the maximum magnification that could be achieved. All components are assembled into an aluminum light tight box with heavy radiation shielding to protect the camera as well as to provide a dark working condition. Particularly, a remote controlled stepper motor is also integrated into the system to provide on-line focusing ability. The best focus is guaranteed through use of an algorithm instead of perceptual observation. An evaluation routine not previously utilized in the field of neutron radiography is developed in this study. Routines like this were never previously required due to the lower resolution of other systems. Use of the augulation technique to obtain presampled MTF addresses the problem of aliasing associated with digital sampling. The determined MTF agrees well with the visual inspection of imaging a testing target. Other detector/camera combinations may be integrated into the system and their performances are also compared. The best resolution achieved by the system at the TRIGA Mark II reactor at the University of Texas at Austin is 16.2 lp/mm, which is equivalent to a minimum resolvable spacing of 30 mum. The noise performance of the device is evaluated in terms of the noise power spectrum (NPS) and the detective quantum efficiency (DQE) is calculated with above determined MTF and NPS.
NASA Astrophysics Data System (ADS)
Schuster, J.
2018-02-01
Military requirements demand both single and dual-color infrared (IR) imaging systems with both high resolution and sharp contrast. To quantify the performance of these imaging systems, a key measure of performance, the modulation transfer function (MTF), describes how well an optical system reproduces an objects contrast in the image plane at different spatial frequencies. At the center of an IR imaging system is the focal plane array (FPA). IR FPAs are hybrid structures consisting of a semiconductor detector pixel array, typically fabricated from HgCdTe, InGaAs or III-V superlattice materials, hybridized with heat/pressure to a silicon read-out integrated circuit (ROIC) with indium bumps on each pixel providing the mechanical and electrical connection. Due to the growing sophistication of the pixel arrays in these FPAs, sophisticated modeling techniques are required to predict, understand, and benchmark the pixel array MTF that contributes to the total imaging system MTF. To model the pixel array MTF, computationally exhaustive 2D and 3D numerical simulation approaches are required to correctly account for complex architectures and effects such as lateral diffusion from the pixel corners. It is paramount to accurately model the lateral di_usion (pixel crosstalk) as it can become the dominant mechanism limiting the detector MTF if not properly mitigated. Once the detector MTF has been simulated, it is directly decomposed into its constituent contributions to reveal exactly what is limiting the total detector MTF, providing a path for optimization. An overview of the MTF will be given and the simulation approach will be discussed in detail, along with how different simulation parameters effect the MTF calculation. Finally, MTF optimization strategies (crosstalk mitigation) will be discussed.
Ramamoorthy, Vellaisamy; Dhingra, Sourabh; Kincaid, Alexander; Shantappa, Sourabha; Feng, Xuehuan; Calvo, Ana M.
2013-01-01
Secondary metabolism in the model fungus Aspergillus nidulans is controlled by the conserved global regulator VeA, which also governs morphological differentiation. Among the secondary metabolites regulated by VeA is the mycotoxin sterigmatocystin (ST). The presence of VeA is necessary for the biosynthesis of this carcinogenic compound. We identified a revertant mutant able to synthesize ST intermediates in the absence of VeA. The point mutation occurred at the coding region of a gene encoding a novel putative C2H2 zinc finger domain transcription factor that we denominated mtfA. The A. nidulans mtfA gene product localizes at nuclei independently of the illumination regime. Deletion of the mtfA gene restores mycotoxin biosynthesis in the absence of veA, but drastically reduced mycotoxin production when mtfA gene expression was altered, by deletion or overexpression, in A. nidulans strains with a veA wild-type allele. Our study revealed that mtfA regulates ST production by affecting the expression of the specific ST gene cluster activator aflR. Importantly, mtfA is also a regulator of other secondary metabolism gene clusters, such as genes responsible for the synthesis of terrequinone and penicillin. As in the case of ST, deletion or overexpression of mtfA was also detrimental for the expression of terrequinone genes. Deletion of mtfA also decreased the expression of the genes in the penicillin gene cluster, reducing penicillin production. However, in this case, over-expression of mtfA enhanced the transcription of penicillin genes, increasing penicillin production more than 5 fold with respect to the control. Importantly, in addition to its effect on secondary metabolism, mtfA also affects asexual and sexual development in A. nidulans. Deletion of mtfA results in a reduction of conidiation and sexual stage. We found mtfA putative orthologs conserved in other fungal species. PMID:24066102
Optical analysis of electro-optical systems by MTF calculus
NASA Astrophysics Data System (ADS)
Barbarini, Elisa Signoreto; Dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fátima Maria Mitsue; Castro Neto, Jarbas C.; Rodrigues, Evandro Luís Linhari
2011-08-01
One of the widely used methods for performance analysis of an optical system is the determination of the Modulation Transfer Function (MTF). The MTF represents a quantitative and direct measure of image quality, and, besides being an objective test, it can be used on concatenated optical system. This paper presents the application of software called SMTF (software modulation transfer function), built in C++ and Open CV platforms for MTF calculation on electro-optical system. Through this technique, it is possible to develop specific method to measure the real time performance of a digital fundus camera, an infrared sensor and an ophthalmological surgery microscope. Each optical instrument mentioned has a particular device to measure the MTF response, which is being developed. Then the MTF information assists the analysis of the optical system alignment, and also defines its resolution limit by the MTF graphic. The result obtained from the implemented software is compared with the theoretical MTF curve from the analyzed systems.
The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godfrey, Devon J.; Page McAdams, H.; Dobbins, James T. III
2013-02-15
Purpose: Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Methods: Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes,more » three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. Results: For scan angles of 20 Degree-Sign and 5 mm plane separation, seven MITS planes must be averaged to sufficiently remove partial-pixel artifacts. MITSa7 does appear to subtly reduce the contrast of high-frequency 'edge' information, but the removal of partial-pixel artifacts makes the appearance of low-contrast, fine-detail anatomy even more conspicuous in MITSa7 slices. MITSa7 also appears to render simulated subtle 5 mm pulmonary nodules with greater visibility than MITS alone, in both the open lung and regions overlying the mediastinum. Finally, the MITSa7 technique reduces stochastic image variance, though the in-plane stochastic SNR (for very thin objects which do not span multiple MITS planes) is only improved at spatial frequencies between 0.05 and 0.20 cycles/mm. Conclusions: The MITSa7 method is an improvement over traditional single-plane MITS for thoracic imaging and the pulmonary nodule detection task, and thus the authors plan to use the MITSa7 approach for all future MITS research at the authors' institution.« less
The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis.
Godfrey, Devon J; McAdams, H Page; Dobbins, James T
2013-02-01
Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. For scan angles of 20° and 5 mm plane separation, seven MITS planes must be averaged to sufficiently remove partial-pixel artifacts. MITSa7 does appear to subtly reduce the contrast of high-frequency "edge" information, but the removal of partial-pixel artifacts makes the appearance of low-contrast, fine-detail anatomy even more conspicuous in MITSa7 slices. MITSa7 also appears to render simulated subtle 5 mm pulmonary nodules with greater visibility than MITS alone, in both the open lung and regions overlying the mediastinum. Finally, the MITSa7 technique reduces stochastic image variance, though the in-plane stochastic SNR (for very thin objects which do not span multiple MITS planes) is only improved at spatial frequencies between 0.05 and 0.20 cycles∕mm. The MITSa7 method is an improvement over traditional single-plane MITS for thoracic imaging and the pulmonary nodule detection task, and thus the authors plan to use the MITSa7 approach for all future MITS research at the authors' institution.
NASA Technical Reports Server (NTRS)
Wrigley, R. C. (Principal Investigator)
1984-01-01
Band-to-band registration, geodetic registration, interdector noise, and the modulation transfer function (MTE) are discussed for the Palmer County; TX scene. Band combinations for several LANDSAT 4 and LANDSAT 5 scenes; the geodetic registration test for the Sacramento, CA area; periodic noise components in TM band 5; and grey level measurements by detector for Great Salt Lake (UT) dark water forescans and backscans are considered. Results of MTF analyses of the San Mateo Bridge and of TM high resolution and aerial Daedalus scanner imagery are consistent and appear to be repeatable. An oil-on-sand target was constructed on the White Sands Missile Range in New Mexico. The two-image analysis procedure used is summarized.
Tcherniavski, Iouri; Kahrizi, Mojtaba
2008-11-20
Using a gradient optimization method with objective functions formulated in terms of a signal-to-noise ratio (SNR) calculated at given values of the prescribed spatial ground resolution, optimization problems of geometrical parameters of a distributed optical system and a charge-coupled device of a space-based optical-electronic system are solved for samples of the optical systems consisting of two and three annular subapertures. The modulation transfer function (MTF) of the distributed aperture is expressed in terms of an average MTF taking residual image alignment (IA) and optical path difference (OPD) errors into account. The results show optimal solutions of the optimization problems depending on diverse variable parameters. The information on the magnitudes of the SNR can be used to determine the number of the subapertures and their sizes, while the information on the SNR decrease depending on the IA and OPD errors can be useful in design of a beam combination control system to produce the necessary requirements to its accuracy on the basis of the permissible deterioration in the image quality.
Lee, Kam L; Ireland, Timothy A; Bernardo, Michael
2016-06-01
This is the first part of a two-part study in benchmarking the performance of fixed digital radiographic general X-ray systems. This paper concentrates on reporting findings related to quantitative analysis techniques used to establish comparative image quality metrics. A systematic technical comparison of the evaluated systems is presented in part two of this study. A novel quantitative image quality analysis method is presented with technical considerations addressed for peer review. The novel method was applied to seven general radiographic systems with four different makes of radiographic image receptor (12 image receptors in total). For the System Modulation Transfer Function (sMTF), the use of grid was found to reduce veiling glare and decrease roll-off. The major contributor in sMTF degradation was found to be focal spot blurring. For the System Normalised Noise Power Spectrum (sNNPS), it was found that all systems examined had similar sNNPS responses. A mathematical model is presented to explain how the use of stationary grid may cause a difference between horizontal and vertical sNNPS responses.
Modulation transfer function of a triangular pixel array detector.
Karimzadeh, Ayatollah
2014-07-01
The modulation transfer function (MTF) is the main parameter that is used to evaluate image quality in electro-optical systems. Detector sampling MTF in most electro-optical systems determines the cutoff frequency of the system. The MTF of the detector depends on its pixel shape. In this work, we calculated the MTF of a detector with an equilateral triangular pixel shape. Some new results were found in deriving the MTF for the equilateral triangular pixel shape.
Optimization of x-ray capillary optics for mammography
NASA Astrophysics Data System (ADS)
Ross, Richard E.; Bradford, Carla D.; Peppler, Walter W.
2002-05-01
The purpose of this study is to develop a full-field digital mammography system utilizing capillary optics. Specific aims are to identify optic properties that affect image quality and to optimize those properties in the design of a multi-element capillary array. It has been shown that polycapillary optics significantly improve mammographic image quality through increased resolution and reduced x-ray scatter. For practical clinical application much larger multi-element optics will be required. This study quantified the contributing factors to the multi-element optic MTF and investigated methods to determine optimal parameters for a practical design. Individual and a prototype multi-element array of linearly tapered optics with a common focal point were investigated. A conventional (MO/MO) mammography tube and computed radiography system were used. The system and optic MTF were measured using the angled slit method with a slit camera (10 micron slit). MTF measurements were performed with both stationary and scanned optics. Contributions to MTF included: distortion within individual optics, misalignment between optics, capillary channel size, and vibration. Measurement techniques used to identify and quantify the contributions to optic MTF included a phantom chosen specifically for polycapillary optics. This phantom provided a method for assessing the coherence among capillaries within an optic as well as the relative alignment of the optics within the array. In addition, modifications to the scanning procedure allowed for the isolation and quantification of several contributors to the system MTF. Specifically, measurements were made using a stationary optic, a scanning optic, and an optic placed at multiple locations within the imaged field of view. These techniques yielded the optic MTF, the degradation of MTF due to loss of coherence within the optic, and the degradation of MTF due to vibration of the scanning mechanism. Distortion within individual optics was, typically, quite small. However, MTF degradation resulting from twist was significant in some optics. MTF degradation due to misalignment was relatively large in the prototype triad. Modeling found that misalignment up to 50 microns reduced MTF by less than 10 percent up to 3 cycles/mm. Channel diameters of 52 microns and 85 microns reduced MTF by 9 percent to 20 percent at 5 cycles/mm and provided an optimal tradeoff between transmission and MTF. Vibration was identified as a significant degradation to MTF but can easily reduced with simple modifications. In spite of some reduced optic MTF values, system MTF has always been significantly improved - in some cases almost by the magnification ratio. These results allow for accurate modeling of optic performance and optimization of design parameters. This study demonstrates that a multi-element array can be produced with nearly optimal properties. A large area array suitable for clinical trial is feasible and is the next step in this program.
Performance measurement of commercial electronic still picture cameras
NASA Astrophysics Data System (ADS)
Hsu, Wei-Feng; Tseng, Shinn-Yih; Chiang, Hwang-Cheng; Cheng, Jui-His; Liu, Yuan-Te
1998-06-01
Commercial electronic still picture cameras need a low-cost, systematic method for evaluating the performance. In this paper, we present a measurement method to evaluating the dynamic range and sensitivity by constructing the opto- electronic conversion function (OECF), the fixed pattern noise by the peak S/N ratio (PSNR) and the image shading function (ISF), and the spatial resolution by the modulation transfer function (MTF). The evaluation results of individual color components and the luminance signal from a PC camera using SONY interlaced CCD array as the image sensor are then presented.
MTF measurements on real time for performance analysis of electro-optical systems
NASA Astrophysics Data System (ADS)
Stuchi, Jose Augusto; Signoreto Barbarini, Elisa; Vieira, Flavio Pascoal; dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fatima Maria Mitsue; Castro Neto, Jarbas C.; Linhari Rodrigues, Evandro Luis
2012-06-01
The need of methods and tools that assist in determining the performance of optical systems is actually increasing. One of the most used methods to perform analysis of optical systems is to measure the Modulation Transfer Function (MTF). The MTF represents a direct and quantitative verification of the image quality. This paper presents the implementation of the software, in order to calculate the MTF of electro-optical systems. The software was used for calculating the MTF of Digital Fundus Camera, Thermal Imager and Ophthalmologic Surgery Microscope. The MTF information aids the analysis of alignment and measurement of optical quality, and also defines the limit resolution of optical systems. The results obtained with the Fundus Camera and Thermal Imager was compared with the theoretical values. For the Microscope, the results were compared with MTF measured of Microscope Zeiss model, which is the quality standard of ophthalmological microscope.
Mid-frequency MTF compensation of optical sparse aperture system.
Zhou, Chenghao; Wang, Zhile
2018-03-19
Optical sparse aperture (OSA) can greatly improve the spatial resolution of optical system. However, because of its aperture dispersion and sparse, its mid-frequency modulation transfer function (MTF) are significantly lower than that of a single aperture system. The main focus of this paper is on the mid-frequency MTF compensation of the optical sparse aperture system. Firstly, the principle of the mid-frequency MTF decreasing and missing of optical sparse aperture are analyzed. This paper takes the filling factor as a clue. The method of processing the mid-frequency MTF decreasing with large filling factor and method of compensation mid-frequency MTF with small filling factor are given respectively. For the MTF mid-frequency decreasing, the image spatial-variant restoration method is proposed to restore the mid-frequency information in the image; for the mid-frequency MTF missing, two images obtained by two system respectively are fused to compensate the mid-frequency information in optical sparse aperture image. The feasibility of the two method are analyzed in this paper. The numerical simulation of the system and algorithm of the two cases are presented using Zemax and Matlab. The results demonstrate that by these two methods the mid-frequency MTF of OSA system can be compensated effectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konstantinidis, Anastasios C.; Olivo, Alessandro; Speller, Robert D.
2011-12-15
Purpose: The x-ray performance evaluation of digital x-ray detectors is based on the calculation of the modulation transfer function (MTF), the noise power spectrum (NPS), and the resultant detective quantum efficiency (DQE). The flat images used for the extraction of the NPS should not contain any fixed pattern noise (FPN) to avoid contamination from nonstochastic processes. The ''gold standard'' method used for the reduction of the FPN (i.e., the different gain between pixels) in linear x-ray detectors is based on normalization with an average reference flat-field. However, the noise in the corrected image depends on the number of flat framesmore » used for the average flat image. The aim of this study is to modify the standard gain correction algorithm to make it independent on the used reference flat frames. Methods: Many publications suggest the use of 10-16 reference flat frames, while other studies use higher numbers (e.g., 48 frames) to reduce the propagated noise from the average flat image. This study quantifies experimentally the effect of the number of used reference flat frames on the NPS and DQE values and appropriately modifies the gain correction algorithm to compensate for this effect. Results: It is shown that using the suggested gain correction algorithm a minimum number of reference flat frames (i.e., down to one frame) can be used to eliminate the FPN from the raw flat image. This saves computer memory and time during the x-ray performance evaluation. Conclusions: The authors show that the method presented in the study (a) leads to the maximum DQE value that one would have by using the conventional method and very large number of frames and (b) has been compared to an independent gain correction method based on the subtraction of flat-field images, leading to identical DQE values. They believe this provides robust validation of the proposed method.« less
Free software for performing physical analysis of systems for digital radiography and mammography.
Donini, Bruno; Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco
2014-05-01
In this paper, the authors present a free software for assisting users in achieving the physical characterization of x-ray digital systems and image quality checks. The program was developed as a plugin of a well-known public-domain suite ImageJ. The software can assist users in calculating various physical parameters such as the response curve (also termed signal transfer property), modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE). It also includes the computation of some image quality checks: defective pixel analysis, uniformity, dark analysis, and lag. The software was made available in 2009 and has been used during the last couple of years by many users who gave us valuable feedback for improving its usability. It was tested for achieving the physical characterization of several clinical systems for digital radiography and mammography. Various published papers made use of the outcomes of the plugin. This software is potentially beneficial to a variety of users: physicists working in hospitals, staff working in radiological departments, such as medical physicists, physicians, engineers. The plugin, together with a brief user manual, are freely available and can be found online (www.medphys.it/downloads.htm). With our plugin users can estimate all three most important parameters used for physical characterization (MTF, NPS, and also DQE). The plugin can run on any operating system equipped with ImageJ suite. The authors validated the software by comparing MTF and NPS curves on a common set of images with those obtained with other dedicated programs, achieving a very good agreement.
NASA Astrophysics Data System (ADS)
Dragusin, Octavian; Rogge, Frank; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde
2006-03-01
A new generation CR system that is based on phosphor needles and that uses a digitizer with line scan technology was compared to a clinically used CR system. Purely technical and more clinically related tests were run on both systems. This included the calculation of the DQE, signal-to-noise and contrast to noise ratios from Aluminum inserts, contrast detail analysis with the CDRAD phantom and the use of anthropomorphic phantoms (wrist, chest and skull) with scoring by a radiologist. X-ray exposures with various dose levels and 50kV, 70kV and 125kV were acquired. For detector doses above 0.8 μGy, all noise related measurements showed the superiority of the new technology. The MTF confirmed the improvement in sharpness: between 1 and 3 lp/mm increases ranged from 20 to 50%. Further work should be devoted to the determination of the required dose levels in the plate for the different radiological applications.
Modeling of video compression effects on target acquisition performance
NASA Astrophysics Data System (ADS)
Cha, Jae H.; Preece, Bradley; Espinola, Richard L.
2009-05-01
The effect of video compression on image quality was investigated from the perspective of target acquisition performance modeling. Human perception tests were conducted recently at the U.S. Army RDECOM CERDEC NVESD, measuring identification (ID) performance on simulated military vehicle targets at various ranges. These videos were compressed with different quality and/or quantization levels utilizing motion JPEG, motion JPEG2000, and MPEG-4 encoding. To model the degradation on task performance, the loss in image quality is fit to an equivalent Gaussian MTF scaled by the Structural Similarity Image Metric (SSIM). Residual compression artifacts are treated as 3-D spatio-temporal noise. This 3-D noise is found by taking the difference of the uncompressed frame, with the estimated equivalent blur applied, and the corresponding compressed frame. Results show good agreement between the experimental data and the model prediction. This method has led to a predictive performance model for video compression by correlating various compression levels to particular blur and noise input parameters for NVESD target acquisition performance model suite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samei, Ehsan, E-mail: samei@duke.edu; Richard, Samuel
2015-01-15
Purpose: Different computed tomography (CT) reconstruction techniques offer different image quality attributes of resolution and noise, challenging the ability to compare their dose reduction potential against each other. The purpose of this study was to evaluate and compare the task-based imaging performance of CT systems to enable the assessment of the dose performance of a model-based iterative reconstruction (MBIR) to that of an adaptive statistical iterative reconstruction (ASIR) and a filtered back projection (FBP) technique. Methods: The ACR CT phantom (model 464) was imaged across a wide range of mA setting on a 64-slice CT scanner (GE Discovery CT750 HD,more » Waukesha, WI). Based on previous work, the resolution was evaluated in terms of a task-based modulation transfer function (MTF) using a circular-edge technique and images from the contrast inserts located in the ACR phantom. Noise performance was assessed in terms of the noise-power spectrum (NPS) measured from the uniform section of the phantom. The task-based MTF and NPS were combined with a task function to yield a task-based estimate of imaging performance, the detectability index (d′). The detectability index was computed as a function of dose for two imaging tasks corresponding to the detection of a relatively small and a relatively large feature (1.5 and 25 mm, respectively). The performance of MBIR in terms of the d′ was compared with that of ASIR and FBP to assess its dose reduction potential. Results: Results indicated that MBIR exhibits a variability spatial resolution with respect to object contrast and noise while significantly reducing image noise. The NPS measurements for MBIR indicated a noise texture with a low-pass quality compared to the typical midpass noise found in FBP-based CT images. At comparable dose, the d′ for MBIR was higher than those of FBP and ASIR by at least 61% and 19% for the small feature and the large feature tasks, respectively. Compared to FBP and ASIR, MBIR indicated a 46%–84% dose reduction potential, depending on task, without compromising the modeled detection performance. Conclusions: The presented methodology based on ACR phantom measurements extends current possibilities for the assessment of CT image quality under the complex resolution and noise characteristics exhibited with statistical and iterative reconstruction algorithms. The findings further suggest that MBIR can potentially make better use of the projections data to reduce CT dose by approximately a factor of 2. Alternatively, if the dose held unchanged, it can improve image quality by different levels for different tasks.« less
NASA Astrophysics Data System (ADS)
Bardoux, Alain; Gimenez, Thierry; Jamin, Nicolas; Seve, Frederic
2017-11-01
MTF (Modulation Transfer Frequency) of a detector is a key parameter for imagers. When image is not moving on the detector, MTF can be measured by some methods (knife edge, slanted slit,…). But with LEO satellites, image is moving on the surface of the detector, and MTF has to be measured in the same way: that is what we call "dynamic MTF". CNES (French Space Agency) has built a specific bench in order to measure dynamic MTF of detectors (CCD and CMOS), especially with component working in TDI (Time delay and integration) mode. The method is based on a moving edge, synchronized with the movement of charges inside the TDI detector. The moving part is a rotating cube, allowing a very stable movement of the image on the surface of the detector The main difficulties were: - stability of the rotating speed - synchronization between cube speed and charge transfer inside the detectors - synchronization between cube position and data acquisition. Different methods have been tested for the displacement of the knife edge: - geometrical displacement - electrical shift of the charge transfer clocks. Static MTF has been performed before dynamic measurements, in order to fix a reference measurement, Then dynamic MTF bench has been set up. The results, for a TDI CCD show a very good precision. So this bench is validated, and the dynamic MTF value of the TDI CCD is confirmed.
32 CFR 728.34 - Care beyond the capabilities of a naval MTF.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Care beyond the capabilities of a naval MTF. 728... Dependents of the Uniformed Services § 728.34 Care beyond the capabilities of a naval MTF. When either during... determination is made that required care or services are beyond the capability of the naval MTF, the provisions...
32 CFR 728.34 - Care beyond the capabilities of a naval MTF.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Care beyond the capabilities of a naval MTF. 728... Dependents of the Uniformed Services § 728.34 Care beyond the capabilities of a naval MTF. When either during... determination is made that required care or services are beyond the capability of the naval MTF, the provisions...
GOCI image enhancement using an MTF compensation technique for coastal water applications.
Oh, Eunsong; Choi, Jong-Kuk
2014-11-03
The Geostationary Ocean Color Imager (GOCI) is the first optical sensor in geostationary orbit for monitoring the ocean environment around the Korean Peninsula. This paper discusses on-orbit modulation transfer function (MTF) estimation with the pulse-source method and its compensation results for the GOCI. Additionally, by analyzing the relationship between the MTF compensation effect and the accuracy of the secondary ocean product, we confirmed the optimal MTF compensation parameter for enhancing image quality without variation in the accuracy. In this study, MTF assessment was performed using a natural target because the GOCI system has a spatial resolution of 500 m. For MTF compensation with the Wiener filter, we fitted a point spread function with a Gaussian curve controlled by a standard deviation value (σ). After a parametric analysis for finding the optimal degradation model, the σ value of 0.4 was determined to be an optimal indicator. Finally, the MTF value was enhanced from 0.1645 to 0.2152 without degradation of the accuracy of the ocean color product. Enhanced GOCI images by MTF compensation are expected to recognize small-scale ocean products in coastal areas with sharpened geometric performance.
Aerosol scattering and absorption modulation transfer function
NASA Astrophysics Data System (ADS)
Sadot, Dan; Kopeika, Norman S.
1993-08-01
Recent experimental measurements of overall atmospheric modulation transfer function (MTF) indicate significant difference between the turbulence and overall atmospheric MTFs, except often at midday when turbulence is strong. We suggest here a physical explanation for those results which essentially relates to what we call a practical instrumentation-based atmospheric aerosol MTF which is a modification of the classical aerosol MTF theory. It is shown that system field-of-view and dynamic range affect strongly aerosol and overall atmospheric MTFs. It is often necessary to choose between MTF and SNR depending upon dynamic range requirements. Also, a new approach regarding aerosol absorption is presented. It is shown that aerosol-absorbed irradiance is spatial frequency dependent and enhances the degradation in image quality arising from received scattered light. This is most relevant for thermal imaging. An analytically corrected model for the aerosol MTF is presented which is relevant for imaging. An important conclusion is that the aerosol MTF is often the dominant part in the actual overall atmospheric MTF all across the optical spectral region.
MTF measurement and analysis of linear array HgCdTe infrared detectors
NASA Astrophysics Data System (ADS)
Zhang, Tong; Lin, Chun; Chen, Honglei; Sun, Changhong; Lin, Jiamu; Wang, Xi
2018-01-01
The slanted-edge technique is the main method for measurement detectors MTF, however this method is commonly used on planar array detectors. In this paper the authors present a modified slanted-edge method to measure the MTF of linear array HgCdTe detectors. Crosstalk is one of the major factors that degrade the MTF value of such an infrared detector. This paper presents an ion implantation guard-ring structure which was designed to effectively absorb photo-carriers that may laterally defuse between adjacent pixels thereby suppressing crosstalk. Measurement and analysis of the MTF of the linear array detectors with and without a guard-ring were carried out. The experimental results indicated that the ion implantation guard-ring structure effectively suppresses crosstalk and increases MTF value.
Crossover And MTF Characteristics Of A Tabular-Grain X-Ray Film
NASA Astrophysics Data System (ADS)
Huff, K. E.; Wagner, P. W.
1984-08-01
An orthochromatic x-ray film made with tabular silver halide grains has a significantly higher MTF when exposed with green-emitting intensifying screens than do conventional films with similar sensitometric properties. The primary reason for the improved MTF is a decrease in the amount of crossover exposure, i.e., exposure by light that has crossed the support one or more times. Two well-established sensitometric procedures for measuring crossover have been compared. One produces results accurate enough for calculations of MTF relationships. Calculated MTF relationships for tabulargrain and conventional films are compared with measured values.
MTF measurements of a type-II superlattice infrared focal plane array sealed in a cryocooler.
Nghiem, Jean; Jaeck, Julien; Primot, Jerome; Coudrain, Christophe; Derelle, Sophie; Huard, Edouard; Caes, Marcel; Bernhardt, Sylvie; Haidar, Riad; Christol, Philippe; Ribet-Mohamed, Isabelle
2018-04-16
In operational electro-optical systems, infrared focal plane arrays (IR FPA) are integrated in cryocoolers which induce vibrations that may strongly affect their modulation transfer function (MTF). In this paper, we present the MTF measurement of an IR FPA sealed in its cryocooler. The method we use to measure the MTF decorrelates operational constraints and the technological limitations of the IR FPA. The bench is based on the diffraction properties of a continuously self imaging grating (CSIG). The 26 µm pixel size extracted from the MTF measurement is in good agreement with the expected value.
Lam, Kuen; Leung, Man Fuk; Kwan, Chi Wai; Kwan, Joseph
2016-11-01
The study aimed to examine the epidemiology of hypertonic contractures and its relationship with minimal trauma fracture (MTF), and to determine the incidence and predictors of (MTF) in long-term care residents. This was a longitudinal cohort study of prospectively collected data. Participants were followed from March 2007 to March 2016 or until death. A 300-bed long-term care hospital in Hong Kong. All long-term care residents who were in need of continuous medical and nursing care for their activities of daily living. Information on patients' demographic data, severe contracture defined as a decrease of 50% or more of the normal passive range of joint movement of the joint, and severe limb spasticity defined by the Modified Ashworth Scale higher than grade 3, medical comorbidities, functional status, cognitive status, nutritional status including body mass index and serum albumin, past history of fractures, were evaluated as potential risk factors for subsequent MTF. Three hundred ninety-six residents [148 males, mean ± standard deviation (SD), age = 79 ± 16 years] were included for analysis. The presence of severe contracture was highly prevalent among the study population: 91% of residents had at least 1 severe contracture, and 41% of residents had severe contractures involving all 4 limbs. Moreover, there were a significant proportion of residents who had severe limb spasticity with the elbow flexors (32.4%) and knee flexors (33.9%) being the most commonly involved muscles. Twelve residents (3%) suffered from subsequent MTF over a median follow-up of 33 (SD = 30) months. Seven out of these 12 residents died during the follow-up period, with a mean survival of 17.8 months (SD = 12.6) after the fracture event. The following 2 factors were found to independently predict subsequent MTF in a multivariate Cox regression: bilateral severe spastic knee contractures (hazard ratio = 16.5, P < .0001, confidence interval 4.8-56.4) and diabetes mellitus (hazard ratio = 4.0. P = .018, confidence interval 1.3-12.7). Severe spasticity and contractures are common morbidities in long-term care residents, and bilateral severe spastic knee contractures and diabetes mellitus are 2 independent predictors of subsequent MTF. Spasticity management and prevention of contractures, combined with educational programs for caregivers to identify the high-risk residents and apply proper handling techniques during routine care, may be helpful in reducing the risk of MTF in long-term care residents. Further large-scale longitudinal studies are needed to confirm these findings. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Modulation Transfer Function (MTF) measurement techniques for lenses and linear detector arrays
NASA Technical Reports Server (NTRS)
Schnabel, J. J., Jr.; Kaishoven, J. E., Jr.; Tom, D.
1984-01-01
Application is the determination of the Modulation Transfer Function (MTF) for linear detector arrays. A system set up requires knowledge of the MTF of the imaging lens. Procedure for this measurement is described for standard optical lab equipment. Given this information, various possible approaches to MTF measurement for linear arrays is described. The knife edge method is then described in detail.
Benson, Sarah; Downey, Luke A; Stough, Con; Wetherell, Mark; Zangara, Andrea; Scholey, Andrew
2014-04-01
Little research exists in humans concerning the anxiolytic, antidepressant, sedative, and adaptogenic actions the traditional Ayurvedic medicine Bacopa monnieri (BM) possesses in addition to its documented cognitive-enhancing effects. Preclinical work has identified a number of acute anxiolytic, nootropic, and adaptogenic effects of BM that may also co-occur in humans. The current double-blind, placebo-controlled cross-over study assessed the acute effects of a specific extract of BM (KeenMind® - CDRI 08) in normal healthy participants during completion of a multitasking framework (MTF). Seventeen healthy volunteers completed the MTF, at baseline, then 1 h and 2 h after consuming a placebo, 320 mg BM and 640 mg of BM. Treatments were separated by a 7-day washout with order determined by Latin Square. Outcome measures included cognitive outcomes from the MTF, with mood and salivary cortisol measured before and after each completion of the MTF. Change from baseline scores indicated positive cognitive effects, notably at both 1 h post and 2 h post BM consumption on the Letter Search and Stroop tasks, suggesting an earlier nootropic effect of BM than previously investigated. There were also some positive mood effects and reduction in cortisol levels, pointing to a physiological mechanism for stress reduction associated with BM consumption. It was concluded that acute BM supplementation produced some adaptogenic and nootropic effects that need to be replicated in a larger sample and in isolation from stressful cognitive tests in order to quantify the magnitude of these effects. The study was registered with the Australian and New Zealand Clinical Trials Registry (ACTRN12612000834853). Copyright © 2013 John Wiley & Sons, Ltd.
TU-E-BRA-05: Reverse Geometry Imaging with MV Detector for Improved Image Resolution.
Ganguly, A; Abel, E; Sun, M; Fahrig, R; Virshup, G; Star-Lack, J
2012-06-01
Thick pixilated scintillators can offer significant improvements in quantum efficiency over phosphor screen megavoltage (MV) detectors. However spatial resolution can be compromised due to the spreading of light across pixels within septa. Of particular interest are the lower energy x-ray photons and associated light photons that produce higher image contrast but are stopped near the scintillator entrance surface. They suffer the most scattering in the scintillator prior to detection in the photodiodes. Reversing the detector geometry, so that the incident x-ray beam passes through the photodiode array into the scintillator, allows the light to scatter less prior to detection. This also reduces the Swank noise since now higher and lower energy x-ray photons tend to produce similar electronic signals. In this work, we present simulations and measurements of detector MTF for the conventional/forward and reverse geometries to demonstrate this phenomenon. A tabletop system consisting of a Varian CX1 1MeV linear accelerator and a modified Varian Paxscan4030 with the readout electronics moved away from the incident the beam was used. A special holder was used to press a 2.5W×5.0L×2.0Hcm 3 pixellated Cesium Iodide (CsI:Tl) scintillator array on to the detector glass. The CsI array had a pitch of 0.784mm with plastic septa between pixels and the photodiode array pitch was 0.192 mm. The MTF in the forward and reverse geometries was measured using a 0.5mm thick Tantalum slanted edge. Geant4-based Monte Carlo simulations were performed for comparison. The measured and simulated MTFs matched to within 3.4(±3.7)% in the forward and 4.4(±1.5)% in reverse geometries. The reverse geometry MTF was higher than the forward geometry MTF at all spatial frequencies and doubled to .25 at 0.3lp/mm. A novel method of improving the image resolution at MV energies was demonstrated. The improvements should be more pronounced with increased scintillator thickness. Funding support provided by NIH (grant number NIH R01 CA138426). © 2012 American Association of Physicists in Medicine.
Correlation between k-space sampling pattern and MTF in compressed sensing MRSI.
Heikal, A A; Wachowicz, K; Fallone, B G
2016-10-01
To investigate the relationship between the k-space sampling patterns used for compressed sensing MR spectroscopic imaging (CS-MRSI) and the modulation transfer function (MTF) of the metabolite maps. This relationship may allow the desired frequency content of the metabolite maps to be quantitatively tailored when designing an undersampling pattern. Simulations of a phantom were used to calculate the MTF of Nyquist sampled (NS) 32 × 32 MRSI, and four-times undersampled CS-MRSI reconstructions. The dependence of the CS-MTF on the k-space sampling pattern was evaluated for three sets of k-space sampling patterns generated using different probability distribution functions (PDFs). CS-MTFs were also evaluated for three more sets of patterns generated using a modified algorithm where the sampling ratios are constrained to adhere to PDFs. Strong visual correlation as well as high R 2 was found between the MTF of CS-MRSI and the product of the frequency-dependant sampling ratio and the NS 32 × 32 MTF. Also, PDF-constrained sampling patterns led to higher reproducibility of the CS-MTF, and stronger correlations to the above-mentioned product. The relationship established in this work provides the user with a theoretical solution for the MTF of CS MRSI that is both predictable and customizable to the user's needs.
NASA Astrophysics Data System (ADS)
Yalcin, A.; Olgar, T.
2018-07-01
The aim of this study was to assess the performance of a digital radiography system in terms of effective detective quantum efficiency (eDQE) for different tube voltages, polymethyl methacrylate (PMMA) phantom thicknesses and different grid types. The image performance of the digital radiography system was also evaluated by using CDRAD measurements at the same conditions and the correlation of CDRAD results with eDQE was compared. The eDQE was calculated via measurement of effective modulation transfer function (eMTF), effective normalized noise power spectra (eNNPS), scatter fraction (SF) and transmission factors (TF). SFs and TFs were also calculated for different beam qualities by using MCNP4C Monte Carlo simulation code. The integrated eDQE (IeDQE) over the frequency range was used to find the correlation with the inverse image quality figure (IQFinv) obtained from CDRAD measurements. The highest eDQE was obtained with 60 lp/cm grid frequency and 10:1 grid ratio. No remarkable effect was observed on eDQE with different grid frequency, but eDQE decreased with increasing grid ratio. A significant correlation was found between IeDQE and IQFinv.
Advances in photon counting for bioluminescence
NASA Astrophysics Data System (ADS)
Ingle, Martin B.; Powell, Ralph
1998-11-01
Photon counting systems were originally developed for astronomy, initially by the astronomical community. However, a major application area is in the study of luminescent probes in living plants, fishes and cell cultures. For these applications, it has been necessary to develop camera system capability at very low light levels -- a few photons occasionally -- and also at reasonably high light levels to enable the systems to be focused and to collect quality images of the object under study. The paper presents new data on MTF at extremely low photon flux and conventional ICCD illumination, counting efficiency and dark noise as a function of temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunner, Claudia C.; Stern, Stanley H.; Chakrabarti, Kish
2013-08-15
Purpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reedmore » National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner. We also analyzed images of the ACR CT accreditation phantom with the corresponding protocols. While the Siemens Definition and the Philips Brilliance protocols utilized only conventional, filtered back-projection (FBP) image-reconstruction methods, the GE Discovery also employed its particular version of an adaptive statistical iterative reconstruction (ASIR) algorithm that can be blended in desired proportions with the FBP algorithm. We did an objective image-metrics analysis evaluating the modulation transfer function (MTF), noise power spectrum (NPS), and CNR for images reconstructed with FBP. For images reconstructed with ASIR, we only analyzed the CNR, since MTF and NPS results are expected to depend on the object for iterative reconstruction algorithms.Results: The OSLD measurements showed that the Siemens Definition and the Philips Brilliance scanners (located at two different clinical facilities) yield average absorbed doses in tissue of 42.6 and 43.1 mGy, respectively. The GE Discovery delivers about the same amount of dose (43.7 mGy) when run under similar operating and image-reconstruction conditions, i.e., without tube current modulation and ASIR. The image-metrics analysis likewise showed that the MTF, NPS, and CNR associated with the reconstructed images are mutually comparable when the three scanners are run with similar settings, and differences can be attributed to different edge-enhancement properties of the applied reconstruction filters. Moreover, when the GE scanner was operated with the facility's scanner settings for routine head exams, which apply 50% ASIR and use only approximately half of the 100%-FBP dose, the CNR of the images showed no significant change. Even though the CNR alone is not sufficient to characterize the image quality and justify any dose reduction claims, it can be useful as a constancy test metric.Conclusions: This work presents a straightforward method to connect direct measurements of CT dose with objective image metrics such as high-contrast resolution, noise, and CNR. It demonstrates that OSLD measurements in an anthropomorphic head phantom allow a realistic and locally precise estimation of magnitude and spatial distribution of dose in tissue delivered during a typical CT head scan. Additional objective analysis of the images of the ACR accreditation phantom can be used to relate the measured doses to high contrast resolution, noise, and CNR.« less
A comparison of the performance of modern screen-film and digital mammography systems.
Monnin, P; Gutierrez, D; Bulling, S; Lepori, D; Valley, J-F; Verdun, F R
2005-06-07
This work compares the detector performance and image quality of the new Kodak Min-R EV mammography screen-film system with the Fuji CR Profect detector and with other current mammography screen-film systems from Agfa, Fuji and Kodak. Basic image quality parameters (MTF, NPS, NEQ and DQE) were evaluated for a 28 kV Mo/Mo (HVL = 0.646 mm Al) beam using different mAs exposure settings. Compared with other screen-film systems, the new Kodak Min-R EV detector has the highest contrast and a low intrinsic noise level, giving better NEQ and DQE results, especially at high optical density. Thus, the properties of the new mammography film approach those of a fine mammography detector, especially at low frequency range. Screen-film systems provide the best resolution. The presampling MTF of the digital detector has a value of 15% at the Nyquist frequency and, due to the spread size of the laser beam, the use of a smaller pixel size would not permit a significant improvement of the detector resolution. The dual collection reading technology increases significantly the low frequency DQE of the Fuji CR system that can at present compete with the most efficient mammography screen-film systems.
Moore, C S; Liney, G P; Beavis, A W; Saunderson, J R
2007-09-01
A test methodology using an anthropomorphic-equivalent chest phantom is described for the optimization of the Agfa computed radiography "MUSICA" processing algorithm for chest radiography. The contrast-to-noise ratio (CNR) in the lung, heart and diaphragm regions of the phantom, and the "system modulation transfer function" (sMTF) in the lung region, were measured using test tools embedded in the phantom. Using these parameters the MUSICA processing algorithm was optimized with respect to low-contrast detectability and spatial resolution. Two optimum "MUSICA parameter sets" were derived respectively for maximizing the CNR and sMTF in each region of the phantom. Further work is required to find the relative importance of low-contrast detectability and spatial resolution in chest images, from which the definitive optimum MUSICA parameter set can then be derived. Prior to this further work, a compromised optimum MUSICA parameter set was applied to a range of clinical images. A group of experienced image evaluators scored these images alongside images produced from the same radiographs using the MUSICA parameter set in clinical use at the time. The compromised optimum MUSICA parameter set was shown to produce measurably better images.
Miura, Yohei; Ichikawa, Katsuhiro; Fujimura, Ichiro; Hara, Takanori; Hoshino, Takashi; Niwa, Shinji; Funahashi, Masao
2018-03-01
The 320-detector row computed tomography (CT) system, i.e., the area detector CT (ADCT), can perform helical scanning with detector configurations of 4-, 16-, 32-, 64-, 80-, 100-, and 160-detector rows for routine CT examinations. This phantom study aimed to compare the quality of images obtained using helical scan mode with different detector configurations. The image quality was measured using modulation transfer function (MTF) and noise power spectrum (NPS). The system performance function (SP), based on the pre-whitening theorem, was calculated as MTF 2 /NPS, and compared between configurations. Five detector configurations, i.e., 0.5 × 16 mm (16 row), 0.5 × 64 mm (64 row), 0.5 × 80 mm (80 row), 0.5 × 100 mm (100 row), and 0.5 × 160 mm (160 row), were compared using a constant volume CT dose index (CTDI vol ) of 25 mGy, simulating the scan of an adult abdomen, and with a constant effective mAs value. The MTF was measured using the wire method, and the NPS was measured from images of a 20-cm diameter phantom with uniform content. The SP of 80-row configuration was the best, for the constant CTDI vol , followed by the 64-, 160-, 16-, and 100-row configurations. The decrease in the rate of the 100- and 160-row configurations from the 80-row configuration was approximately 30%. For the constant effective mAs, the SPs of the 100-row and 160-row configurations were significantly lower, compared with the other three detector configurations. The 80- and 64-row configurations were adequate in cases that required dose efficiency rather than scan speed.
Valdés, Enrique; Sepúlveda-Martínez, Alvaro; Candia, Paula; Abusada, Nancy; Orellana, Rodrigo; Manukian, Bárbara; Cuellar, Eduardo
2018-01-01
We aimed to assess the use of metformin (MTF) in the prevention of gestational diabetes mellitus (GDM) in patients with pregestational insulin resistance (PIR). A double blind, multicenter, randomized trial was carried out in patients with a history of PIR and pregestational MTF treatment. Groups were allocated either to MTF 1700 mg/day or placebo. Patients were recruited between 12 +0 and 15 +6 gestational weeks, and treatment was extended until week 36. A multiple logistic regression analysis was applied to determine the relation between the use of metformin and the development of GDM. One hundred and forty one patients were randomized (68 patients in the MTF group and 73 in the placebo group). A total of 30 patients withdrew from the study during follow-up. Administration of MTF was not associated with a decrease in the incidence of GDM as compared to placebo (37.5% vs 25.4%, respectively; P = 0.2). Moreover, MTF administration was associated with a significant increase in drug intolerance as compared to placebo (14.3% vs 1.8%, respectively; P = 0.02). The use of MTF is not effective in prevention of GDM in populations with PIR. The use of MTF shows a significantly higher frequency of drug intolerance than placebo. © 2017 Japan Society of Obstetrics and Gynecology.
Breadboard linear array scan imager using LSI solid-state technology
NASA Technical Reports Server (NTRS)
Tracy, R. A.; Brennan, J. A.; Frankel, D. G.; Noll, R. E.
1976-01-01
The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained.
NASA Astrophysics Data System (ADS)
Lundqvist, Mats; Danielsson, Mats; Cederstroem, Bjoern; Chmill, Valery; Chuntonov, Alexander; Aslund, Magnus
2003-06-01
Sectra Microdose is the first single photon counting mammography detector. An edge-on crystalline silicon detector is connected to application specific integrated circuits that individually process each photon. The detector is scanned across the breast and the rejection of scattered radiation exceeds 97% without the use of a Bucky. Processing of each x-rays individually enables an optimization of the information transfer from the x-rays to the image in a way previously not possible. Combined with an almost absence of noise from scattered radiation and from electronics we foresee a possibility to reduce the radiation dose and/or increase the image quality. We will discuss fundamental features of the new direct photon counting technique in terms of dose efficiency and present preliminary measurements for a prototype on physical parameters such as Noise Power Spectra (NPS), MTF and DQE.
NASA Astrophysics Data System (ADS)
Garma, Rey Jan D.
The trade between detector and optics performance is often conveyed through the Q metric, which is defined as the ratio of detector sampling frequency and optical cutoff frequency. Historically sensors have operated at Q ≈ 1, which introduces aliasing but increases the system modulation transfer function (MTF) and signal-to-noise ratio (SNR). Though mathematically suboptimal, such designs have been operationally ideal when considering system parameters such as pointing stability and detector performance. Substantial advances in read noise and quantum efficiency of modern detectors may compensate for the negative aspects associated with balancing detector/optics performance, presenting an opportunity to revisit the potential for implementing Nyquist-sampled (Q ≈ 2) sensors. A digital image chain simulation is developed and validated against a laboratory testbed using objective and subjective assessments. Objective assessments are accomplished by comparison of the modeled MTF and measurements from slant-edge photographs. Subjective assessments are carried out by performing a psychophysical study where subjects are asked to rate simulation and testbed imagery against a DeltaNIIRS scale with the aid of a marker set. Using the validated model, additional test cases are simulated to study the effects of increased detector sampling on image quality with operational considerations. First, a factorial experiment using Q-sampling, pointing stability, integration time, and detector performance is conducted to measure the main effects and interactions of each on the response variable, DeltaNIIRS. To assess the fidelity of current models, variants of the General Image Quality Equation (GIQE) are evaluated against subject-provided ratings and two modified GIQE versions are proposed. Finally, using the validated simulation and modified IQE, trades are conducted to ascertain the feasibility of implementing Q ≈ 2 designs in future systems.
Wang, Yunlong; Ji, Jun; Jiang, Changsong; Huang, Zengyue
2015-04-01
This study was aimed to use the method of modulation transfer function (MTF) to compare image quality among three different Olympus medical rigid cystoscopes in an in vitro model. During the experimental processes, we firstly used three different types of cystoscopes (i. e. OLYMPUS cystourethroscopy with FOV of 12 degrees, OLYMPUS Germany A22003A and OLYMPUS A2013A) to collect raster images at different brightness with industrial camera and computer from the resolution target which is with different spatial frequency, and then we processed the collected images using MALAB software with the optical transfer function MTF to obtain the values of MTF at different brightness and different spatial frequency. We then did data mathematical statistics and compared imaging quality. The statistical data showed that all three MTF values were smaller than 1. MTF values with the spatial frequency gradually increasing would decrease approaching 0 at the same brightness. When the brightness enhanced in the same process at the same spatial frequency, MTF values showed a slowly increasing trend. The three endoscopes' MTF values were completely different. In some cases the MTF values had a large difference, and the maximum difference could reach 0.7. Conclusion can be derived from analysis of experimental data that three Olympus medical rigid cystoscopes have completely different imaging quality abilities. The No. 3 endoscope OLYMPUS A2013A has low resolution but high contrast. The No. 1 endoscope OLYMPUS cystourethroscopy with FOV of 12 degrees, on the contrary, had high resolution and lower contrast. The No. 2 endoscope OLYMPUS Germany A22003A had high contrast and high resolution, and its image quality was the best.
Measurements of system sharpness for two digital breast tomosynthesis systems
NASA Astrophysics Data System (ADS)
Marshall, N. W.; Bosmans, H.
2012-11-01
The aim of this work was to propose system sharpness parameters for digital breast tomosynthesis (DBT) systems that include the influence of focus size and focus motion for use in quality assurance protocols. X-ray focus size was measured using a multiple pinhole test object, while detector presampling modulation transfer function (MTF) was measured from projection images of a 10 cm × 10 cm, 1 mm thick steel edge, for the Siemens Inspiration and Hologic Selenia Dimensions DBT systems. The height of the edge above the table was then varied from 1 to 78 mm. The MTF expected from theory for the projection images was calculated from the measured detector MTF, focus size MTF and focus motion MTF and was compared against measured curves. Two methods were used to measure the in-plane MTF in the DBT volume: a tungsten wire of diameter 25 µm and an Al edge 0.2 mm thick, both imaged with a 15 mm thick poly(methyl methacrylate) (PMMA) plate. The in-depth point spread function (PSF) was measured using an angled tungsten wire. The full 3D MTF was estimated with a 0.5 mm diameter aluminium bead held in a 45 mm thick PMMA phantom, with the bead 15 and 65 mm above the table. Inspiration DBT projection images are saved at native detector resolution (85 µm), while the Dimensions re-bins projections to 140 µm pixels (2 × 2 binning); both systems used 2 × 2 binning of projection data before reconstruction. The 50% point for the MTF (MTF0.50) measured in the DBT projection images for the tube-travel direction fell as a function of height above the table from 3.60 to 0.90 mm-1 for the Inspiration system and from 2.50 to 1.20 mm-1 for the Dimensions unit. The maximum deviation of measured MTF0.50 from the calculated value was 13%. MTF0.50 measured in-plane (tube-travel direction) fell as a function of height above the table from 1.66 to 0.97 mm-1 for the Inspiration system and from 2.21 to 1.31 mm-1 for the Dimensions system. The full-width half-maximum for the in-depth PSF was 3.0 and 5.9 mm for the Inspiration and Dimensions systems, respectively. There was no difference in the 3D MTF curves, sectioned in the tube-travel direction, for bead heights of 15 and 65 mm above the table. A 25 µm tungsten wire held within a 15 mm thick PMMA plate was found to be a suitable test object for measurement of in-plane MTF. Evaluation of MTF as a function of height above the table, both in the projection images and in the reconstructed planes, provides important information on the impact of focus size and focus motion on the DBT system's imaging performance.
Measurements of system sharpness for two digital breast tomosynthesis systems.
Marshall, N W; Bosmans, H
2012-11-21
The aim of this work was to propose system sharpness parameters for digital breast tomosynthesis (DBT) systems that include the influence of focus size and focus motion for use in quality assurance protocols. X-ray focus size was measured using a multiple pinhole test object, while detector presampling modulation transfer function (MTF) was measured from projection images of a 10 cm × 10 cm, 1 mm thick steel edge, for the Siemens Inspiration and Hologic Selenia Dimensions DBT systems. The height of the edge above the table was then varied from 1 to 78 mm. The MTF expected from theory for the projection images was calculated from the measured detector MTF, focus size MTF and focus motion MTF and was compared against measured curves. Two methods were used to measure the in-plane MTF in the DBT volume: a tungsten wire of diameter 25 µm and an Al edge 0.2 mm thick, both imaged with a 15 mm thick poly(methyl methacrylate) (PMMA) plate. The in-depth point spread function (PSF) was measured using an angled tungsten wire. The full 3D MTF was estimated with a 0.5 mm diameter aluminium bead held in a 45 mm thick PMMA phantom, with the bead 15 and 65 mm above the table. Inspiration DBT projection images are saved at native detector resolution (85 µm), while the Dimensions re-bins projections to 140 µm pixels (2 × 2 binning); both systems used 2 × 2 binning of projection data before reconstruction. The 50% point for the MTF (MTF(0.50)) measured in the DBT projection images for the tube-travel direction fell as a function of height above the table from 3.60 to 0.90 mm(-1) for the Inspiration system and from 2.50 to 1.20 mm(-1) for the Dimensions unit. The maximum deviation of measured MTF(0.50) from the calculated value was 13%. MTF(0.50) measured in-plane (tube-travel direction) fell as a function of height above the table from 1.66 to 0.97 mm(-1) for the Inspiration system and from 2.21 to 1.31 mm(-1) for the Dimensions system. The full-width half-maximum for the in-depth PSF was 3.0 and 5.9 mm for the Inspiration and Dimensions systems, respectively. There was no difference in the 3D MTF curves, sectioned in the tube-travel direction, for bead heights of 15 and 65 mm above the table. A 25 µm tungsten wire held within a 15 mm thick PMMA plate was found to be a suitable test object for measurement of in-plane MTF. Evaluation of MTF as a function of height above the table, both in the projection images and in the reconstructed planes, provides important information on the impact of focus size and focus motion on the DBT system's imaging performance.
Lunar-edge based on-orbit modulation transfer function (MTF) measurement
NASA Astrophysics Data System (ADS)
Cheng, Ying; Yi, Hongwei; Liu, Xinlong
2017-10-01
Modulation transfer function (MTF) is an important parameter for image quality evaluation of on-orbit optical image systems. Various methods have been proposed to determine the MTF of an imaging system which are based on images containing point, pulse and edge features. In this paper, the edge of the moon can be used as a high contrast target to measure on-orbit MTF of image systems based on knife-edge methods. The proposed method is an extension of the ISO 12233 Slanted-edge Spatial Frequency Response test, except that the shape of the edge is a circular arc instead of a straight line. In order to get more accurate edge locations and then obtain a more authentic edge spread function (ESF), we choose circular fitting method based on least square to fit lunar edge in sub-pixel edge detection process. At last, simulation results show that the MTF value at Nyquist frequency calculated using our lunar edge method is reliable and accurate with error less than 2% comparing with theoretical MTF value.
Samei, Ehsan; Buhr, Egbert; Granfors, Paul; Vandenbroucke, Dirk; Wang, Xiaohui
2005-08-07
The modulation transfer function (MTF) is well established as a metric to characterize the resolution performance of a digital radiographic system. Implemented by various laboratories, the edge technique is currently the most widespread approach to measure the MTF. However, there can be differences in the results attributed to differences in the analysis technique employed. The objective of this study was to determine whether comparable results can be obtained from different algorithms processing identical images representative of those of current digital radiographic systems. Five laboratories participated in a round-robin evaluation of six different algorithms including one prescribed in the International Electrotechnical Commission (IEC) 62220-1 standard. The algorithms were applied to two synthetic and 12 real edge images from different digital radiographic systems including CR, and direct- and indirect-conversion detector systems. The results were analysed in terms of variability as well as accuracy of the resulting presampled MTFs. The results indicated that differences between the individual MTFs and the mean MTF were largely below 0.02. In the case of the two simulated edge images, all algorithms yielded similar results within 0.01 of the expected true MTF. The findings indicated that all algorithms tested in this round-robin evaluation, including the IEC-prescribed algorithm, were suitable for accurate MTF determination from edge images, provided the images are not excessively noisy. The agreement of the MTF results was judged sufficient for the measurement of the MTF necessary for the determination of the DQE.
Assessing the Performance of Military Treatment Facilities
2011-01-01
NUMBER OF PAGES 140 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c . THIS PAGE unclassified Standard Form...Benchmark Analysis of MTF Outcomes . . . . . . . . 73 C . Outpatient utilization and MTF Size...and FY 2006, Mean by MTF Size Quintile . . . . . . . . . . . . . . . . . . . . . 99 C .1. Regression of Outpatient Utilization
Miyajima, Eiichi; Taira, Naoki; Koda, Munenaga; Kondo, Tsuyoshi
2014-12-15
The present study aimed to investigate differences in personality traits among male-to-female (MtF), female-to-male (FtM) gender identity disorder (GID) subjects and non-transsexual male (M) and female (F) controls. Subjects were 72 MtF and 187 FtM GID subjects without psychiatric comorbidities together with 184 male and 159 female non-transsexual controls. Personality traits were assessed using a short version of the Temperament and Character Inventory (TCI-125). Group comparisons were made by two-way ANOVA. Statistical significances were observed as follows: 1) lower novelty seeking in FtM than in M or MtF, 2) higher reward dependence in FtM than in M, 3) higher cooperativeness in FtM than in M or MtF, 4) the highest self-transcendence in MtF among all the groups. The highest self-transcendence in MtF subjects may reflect their vulnerable identity and constrained adaptation to society as the minority. Nevertheless, higher reward dependence and cooperativeness in FtM subjects can be related to more determined motivation for the treatments of GID and might promise better social functioning and adjustment than MtF subjects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Bok, Jan; Schauer, Petr
2014-01-01
In the paper, the SEM detector is evaluated by the modulation transfer function (MTF) which expresses the detector's influence on the SEM image contrast. This is a novel approach, since the MTF was used previously to describe only the area imaging detectors, or whole imaging systems. The measurement technique and calculation of the MTF for the SEM detector are presented. In addition, the measurement and calculation of the detective quantum efficiency (DQE) as a function of the spatial frequency for the SEM detector are described. In this technique, the time modulated e-beam is used in order to create well-defined input signal for the detector. The MTF and DQE measurements are demonstrated on the Everhart-Thornley scintillation detector. This detector was alternated using the YAG:Ce, YAP:Ce, and CRY18 single-crystal scintillators. The presented MTF and DQE characteristics show good imaging properties of the detectors with the YAP:Ce or CRY18 scintillator, especially for a specific type of the e-beam scan. The results demonstrate the great benefit of the description of SEM detectors using the MTF and DQE. In addition, point-by-point and continual-sweep e-beam scans in SEM were discussed and their influence on the image quality was revealed using the MTF. © 2013 Wiley Periodicals, Inc.
Saini, Nidhi; Georgiev, Oleg; Schaffner, Walter
2011-01-01
The gene for Parkin, an E3 ubiquitin ligase, is mutated in some familial forms of Parkinson's disease, a severe neurodegenerative disorder. A homozygous mutant of the Drosophila ortholog of human parkin is viable but results in severe motoric impairment including an inability to fly, female and male sterility, and a decreased life span. We show here that a double mutant of the genes for Parkin and the metal-responsive transcription factor 1 (MTF-1) is not viable. MTF-1, which is conserved from insects to mammals, is a key regulator of heavy metal homeostasis and detoxification and plays additional roles in other stress conditions, notably oxidative stress. In contrast to the synthetic lethality of the double mutant, elevated expression of MTF-1 dramatically ameliorates the parkin mutant phenotype, as evidenced by a prolonged life span, motoric improvement including short flight episodes, and female fertility. At the cellular level, muscle and mitochondrial structures are substantially improved. A beneficial effect is also seen with a transgene encoding human MTF-1. We propose that Parkin and MTF-1 provide complementary functions in metal homeostasis, oxidative stress and other cellular stress responses. Our findings also raise the possibility that MTF-1 gene polymorphisms in humans could affect the severity of Parkinson's disease. PMID:21383066
Digital image processing for information extraction.
NASA Technical Reports Server (NTRS)
Billingsley, F. C.
1973-01-01
The modern digital computer has made practical image processing techniques for handling nonlinear operations in both the geometrical and the intensity domains, various types of nonuniform noise cleanup, and the numerical analysis of pictures. An initial requirement is that a number of anomalies caused by the camera (e.g., geometric distortion, MTF roll-off, vignetting, and nonuniform intensity response) must be taken into account or removed to avoid their interference with the information extraction process. Examples illustrating these operations are discussed along with computer techniques used to emphasize details, perform analyses, classify materials by multivariate analysis, detect temporal differences, and aid in human interpretation of photos.
Scanners for analytic print measurement: the devil in the details
NASA Astrophysics Data System (ADS)
Zeise, Eric K.; Williams, Don; Burns, Peter D.; Kress, William C.
2007-01-01
Inexpensive and easy-to-use linear and area-array scanners have frequently substituted as colorimeters and densitometers for low-frequency (i.e., large area) hard copy image measurement. Increasingly, scanners are also being used for high spatial frequency, image microstructure measurements, which were previously reserved for high performance microdensitometers. In this paper we address characteristics of flatbed reflection scanners in the evaluation of print uniformity, geometric distortion, geometric repeatability and the influence of scanner MTF and noise on analytic measurements. Suggestions are made for the specification and evaluation of scanners to be used in print image quality standards that are being developed.
NASA Technical Reports Server (NTRS)
Montgomery, H. E.; Ostrow, H.; Ressler, G. M.
1990-01-01
The theory is described and the equations required to design are developed and the performance of electro-optical sensor systems that operate from the visible through the thermal infrared spectral regions are analyzed. Methods to compute essential optical and detector parameters, signal-to-noise ratio, MTF, and figures of merit such as NE delta rho and NE delta T are developed. A set of atmospheric tables are provided to determine scene radiance in the visible spectral region. The Planck function is used to determine radiance in the infrared. The equations developed were incorporated in a spreadsheet so that a wide variety of sensor studies can be rapidly and efficiently conducted.
MTF Driven by Plasma Liner Dynamically Formed by the Merging of Plasma Jets: An Overview
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Eskridge, Richard; Martin, Adam; Smith, James; Lee, Michael; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
One approach for standoff delivery of the momentum flux for compressing the target in MTF consists of using a spherical array of plasma jets to form a spherical plasma shell imploding towards the center of a magnetized plasma, a compact toroid (Figure 1). A 3-year experiment (PLX-1) to explore the physics of forming a 2-D plasma liner (shell) by merging plasma jets is described. An overview showing how this 3-year project (PLX-1) fits into the program plan at the national and international level for realizing MTF for energy and propulsion is discussed. Assuming that there will be a parallel program in demonstrating and establishing the underlying physics principles of MTF using whatever liner is appropriate (e.g. a solid liner) with a goal of demonstrating breakeven by 2010, the current research effort at NASA MSFC attempts to complement such a program by addressing the issues of practical embodiment of MTF for propulsion. Successful conclusion of PLX-1 will be followed by a Physics Feasibility Experiment (PLX-2) for the Plasma Liner Driven MTF.
Cascaded systems analysis of charge sharing in cadmium telluride photon-counting x-ray detectors.
Tanguay, Jesse; Cunningham, Ian A
2018-05-01
Single-photon-counting (SPC) and spectroscopic x-ray detectors are under development in academic and industry laboratories for medical imaging applications. The spatial resolution of SPC and spectroscopic x-ray detectors is an important design criterion. The purpose of this article was to extend the cascaded systems approach to include a description of the spatial resolution of SPC and spectroscopic x-ray imaging detectors. A cascaded systems approach was used to model reabsorption of characteristic x rays, Coulomb repulsion, and diffusion in SPC and spectroscopic x-ray detectors. In addition to reabsorption, diffusion, and Coulomb repulsion, the model accounted for x-ray conversion to electron-hole (e-h) pairs, integration of e-h pairs in detector elements, electronic noise, and energy thresholding. The probability density function (PDF) describing the number of e-h pairs was propagated through each stage of the model and was used to derive new theoretical expressions for the large-area gain and modulation transfer function (MTF) of CdTe SPC x-ray detectors, and the energy bin sensitivity functions and MTFs of CdTe spectroscopic detectors. Theoretical predictions were compared with the results of MATLAB-based Monte Carlo (MC) simulations and published data. Comparisons were also made with the MTF of energy-integrating systems. Under general radiographic conditions, reabsorption, diffusion, and Coulomb repulsion together artificially inflate count rates by 20% to 50%. For thicker converters (e.g. 1000 μm) and larger detector elements (e.g. 500 μm pixel pitch) these processes result in modest inflation (i.e. ∼10%) in apparent count rates. Our theoretical and MC analyses predict that SPC MTFs will be degraded relative to those of energy-integrating systems for fluoroscopic, general radiographic, and CT imaging conditions. In most cases, this degradation is modest (i.e., ∼10% at the Nyquist frequency). However, for thicker converters, the SPC MTF can be degraded by up to 25% at the Nyquist frequency relative to EI systems. Additionally, unlike EI systems, the MTF of spectroscopic systems is strongly dependent on photon energy, which results in energy-bin-dependent spatial resolution in spectroscopic systems. The PDF-transfer approach to modeling signal transfer through SPC and spectroscopic x-ray imaging systems provides a framework for understanding system performance. Application of this approach demonstrated that charge sharing artificially inflates the SPC image signal and degrades the MTF of SPC and spectroscopic systems relative to energy-integrating systems. These results further motivate the need for anticharge-sharing circuits to mitigate the effects of charge sharing on SPC and spectroscopic x-ray image quality. © 2018 American Association of Physicists in Medicine.
Huard, Edouard; Derelle, Sophie; Jaeck, Julien; Nghiem, Jean; Haïdar, Riad; Primot, Jérôme
2018-03-05
A challenging point in the prediction of the image quality of infrared imaging systems is the evaluation of the detector modulation transfer function (MTF). In this paper, we present a linear method to get a 2D continuous MTF from sparse spectral data. Within the method, an object with a predictable sparse spatial spectrum is imaged by the focal plane array. The sparse data is then treated to return the 2D continuous MTF with the hypothesis that all the pixels have an identical spatial response. The linearity of the treatment is a key point to estimate directly the error bars of the resulting detector MTF. The test bench will be presented along with measurement tests on a 25 μm pitch InGaAs detector.
Cheraghi, Ebrahim; Soleimani Mehranjani, Malek; Shariatzadeh, Mohammad Ali; Nasr Esfahani, Mohammad Hossein; Ebrahimi, Zahra
2014-01-01
Background Studies have demonstrated the efficacy of metformin (MTF ) in reducing insulin resistance and N-acetyl cysteine (NAC) in inhibiting oxidative stress which are involved in the pathogenesis of polycystic ovarian syndrome (PCOS). We aimed to compare the effects of MTF and NAC combination on serum metabolite and hormonal levels during the course of ovulation induction in PCOS individual candidates of intracytoplasmic sperm injection (ICSI). Materials and Methods In this prospective randomized clinical trial, placebo con- trolled pilot study, 80 patients of polycystic ovarian syndrome at the age of 25-35 years were divided into 4 groups (n=20): i. NAC=treated with N-acetyl cysteine (600 mg three times daily), ii. MTF=treated with metformin (500 mg three times daily), iii. MTF+NAC=treated with N-acetyl cysteine plus metformin (the offered doses) and iv. placebo (PLA). A total number of 20 patients (6 from MTF group, 4 from NAC group, 6 from MTF+NAC group and 4 from PLA group) were dropped of the study. The drugs were administrated from day 3 of menses of previous cycle until ovum pick-up. Results Serum levels of luteinizing hormone (LH), total testosterone, cholester- ol and triglyceride, insulin and leptin significantly reduced in the MTF and NAC groups compared to the placebo (p<0.01). But levels of LH, total testosterone, cholesterol and triglyceride had no significant reduction in the MTF+NAC groups compared to the placebo. The serum levels of malonyldialdehyde (MDA), insulin and leptin reduced significantly after treatment in the MTF+NAC group compared to the placebo (p<0.05). Conclusion Considering the adverse effect of combination therapy, we proposed the conadministration might have no beneficial effect for PCOS patient during course of ovulation induction of ICSI (Registration Number: IRCT201204159476N1). PMID:25083175
Anderson-Wurf, Jane; McGirr, Joe; Seal, Alexa; Harding, Catherine
2017-12-01
A study of orthopedic surgeons in rural and regional Southeast Australia to determine attitudes to investigation and management of osteoporosis found they believe follow-up in regard to osteoporosis after MTF is important; responsibility for follow-up diagnosis and management lies with primary health care and current communication systems are poor. The investigation and treatment of osteoporosis after minimal trauma fracture (MTF) is regarded as sub-optimal. There is strong evidence of the benefit of identifying and treating osteoporosis after MTF, and there has been discussion of the possible role that orthopedic surgeons might play in the management of osteoporosis after MTF. The study surveyed orthopedic surgeons in rural and regional Southeast Australia to determine their attitudes to investigation and management of osteoporosis, the role health professionals should play, and the communication and co-ordination of follow-up care. A survey was developed and piloted prior to being posted to 69 orthopedic surgeons asking for their opinions about the general management of osteoporosis, and the roles and responsibilities of health professionals in dealing with osteoporosis following an MTF. Responses were received from 42 participants (60.8%) with the majority of respondents agreeing that it is important to treat osteoporosis following MTF. Less than 15% of respondents felt that it was their responsibility to initiate discussion or treatment or investigation after MTF. No respondent felt that the coordination of osteoporosis care was good and 45% stated it was poor. Communication after discharge is mostly left to the hospital (30%), while 20% stated they did not follow up at all. This study shows that many rural orthopedic surgeons believe that follow-up in regard to osteoporosis after MTF is important, that responsibility for follow-up diagnosis and management of osteoporosis lies with primary health care and the current communication systems are poor.
Wells, Jered R.; Dobbins, James T.
2012-01-01
Purpose: The modulation transfer function (MTF) of medical imaging devices is commonly reported in the form of orthogonal one-dimensional (1D) measurements made near the vertical and horizontal axes with a slit or edge test device. A more complete description is found by measuring the two-dimensional (2D) MTF. Some 2D test devices have been proposed, but there are some issues associated with their use: (1) they are not generally available; (2) they may require many images; (3) the results may have diminished accuracy; and (4) their implementation may be particularly cumbersome. This current work proposes the application of commonly available 1D test devices for practical and accurate estimation of the 2D presampled MTF of digital imaging systems. Methods: Theory was developed and applied to ensure adequate fine sampling of the system line spread function for 1D test devices at orientations other than approximately vertical and horizontal. Methods were also derived and tested for slit nonuniformity correction at arbitrary angle. Techniques were validated with experimental measurements at ten angles using an edge test object and three angles using a slit test device on an indirect-detection flat-panel system [GE Revolution XQ/i (GE Healthcare, Waukesha, WI)]. The 2D MTF was estimated through a simple surface fit with interpolation based on Delaunay triangulation of the 1D edge-based MTF measurements. Validation by synthesis was also performed with simulated images from a hypothetical direct-detection flat-panel device. Results: The 2D MTF derived from physical measurements yielded an average relative precision error of 0.26% for frequencies below the cutoff (2.5 mm−1) and approximate circular symmetry at frequencies below 4 mm−1. While slit analysis generally agreed with the results of edge analysis, the two showed subtle differences at frequencies above 4 mm−1. Slit measurement near 45° revealed radial asymmetry in the MTF resulting from the square pixel aperture (0.2 mm × 0.2 mm), a characteristic which was not necessarily appreciated with the orthogonal 1D MTF measurements. In simulation experiments, both slit- and edge-based measurements resolved the radial asymmetries in the 2D MTF. The average absolute relative accuracy error in the 2D MTF between the DC and cutoff (2.5 mm−1) frequencies was 0.13% with average relative precision error of 0.11%. Other simulation results were similar to those derived from physical data. Conclusions: Overall, the general availability, acceptance, accuracy, and ease of implementation of 1D test devices for MTF assessment make this a valuable technique for 2D MTF estimation. PMID:23039654
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Jered R.; Dobbins, James T. III; Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705
2012-10-15
Purpose: The modulation transfer function (MTF) of medical imaging devices is commonly reported in the form of orthogonal one-dimensional (1D) measurements made near the vertical and horizontal axes with a slit or edge test device. A more complete description is found by measuring the two-dimensional (2D) MTF. Some 2D test devices have been proposed, but there are some issues associated with their use: (1) they are not generally available; (2) they may require many images; (3) the results may have diminished accuracy; and (4) their implementation may be particularly cumbersome. This current work proposes the application of commonly available 1Dmore » test devices for practical and accurate estimation of the 2D presampled MTF of digital imaging systems. Methods: Theory was developed and applied to ensure adequate fine sampling of the system line spread function for 1D test devices at orientations other than approximately vertical and horizontal. Methods were also derived and tested for slit nonuniformity correction at arbitrary angle. Techniques were validated with experimental measurements at ten angles using an edge test object and three angles using a slit test device on an indirect-detection flat-panel system [GE Revolution XQ/i (GE Healthcare, Waukesha, WI)]. The 2D MTF was estimated through a simple surface fit with interpolation based on Delaunay triangulation of the 1D edge-based MTF measurements. Validation by synthesis was also performed with simulated images from a hypothetical direct-detection flat-panel device. Results: The 2D MTF derived from physical measurements yielded an average relative precision error of 0.26% for frequencies below the cutoff (2.5 mm{sup -1}) and approximate circular symmetry at frequencies below 4 mm{sup -1}. While slit analysis generally agreed with the results of edge analysis, the two showed subtle differences at frequencies above 4 mm{sup -1}. Slit measurement near 45 Degree-Sign revealed radial asymmetry in the MTF resulting from the square pixel aperture (0.2 mm Multiplication-Sign 0.2 mm), a characteristic which was not necessarily appreciated with the orthogonal 1D MTF measurements. In simulation experiments, both slit- and edge-based measurements resolved the radial asymmetries in the 2D MTF. The average absolute relative accuracy error in the 2D MTF between the DC and cutoff (2.5 mm{sup -1}) frequencies was 0.13% with average relative precision error of 0.11%. Other simulation results were similar to those derived from physical data. Conclusions: Overall, the general availability, acceptance, accuracy, and ease of implementation of 1D test devices for MTF assessment make this a valuable technique for 2D MTF estimation.« less
Wells, Jered R; Dobbins, James T
2012-10-01
The modulation transfer function (MTF) of medical imaging devices is commonly reported in the form of orthogonal one-dimensional (1D) measurements made near the vertical and horizontal axes with a slit or edge test device. A more complete description is found by measuring the two-dimensional (2D) MTF. Some 2D test devices have been proposed, but there are some issues associated with their use: (1) they are not generally available; (2) they may require many images; (3) the results may have diminished accuracy; and (4) their implementation may be particularly cumbersome. This current work proposes the application of commonly available 1D test devices for practical and accurate estimation of the 2D presampled MTF of digital imaging systems. Theory was developed and applied to ensure adequate fine sampling of the system line spread function for 1D test devices at orientations other than approximately vertical and horizontal. Methods were also derived and tested for slit nonuniformity correction at arbitrary angle. Techniques were validated with experimental measurements at ten angles using an edge test object and three angles using a slit test device on an indirect-detection flat-panel system [GE Revolution XQ∕i (GE Healthcare, Waukesha, WI)]. The 2D MTF was estimated through a simple surface fit with interpolation based on Delaunay triangulation of the 1D edge-based MTF measurements. Validation by synthesis was also performed with simulated images from a hypothetical direct-detection flat-panel device. The 2D MTF derived from physical measurements yielded an average relative precision error of 0.26% for frequencies below the cutoff (2.5 mm(-1)) and approximate circular symmetry at frequencies below 4 mm(-1). While slit analysis generally agreed with the results of edge analysis, the two showed subtle differences at frequencies above 4 mm(-1). Slit measurement near 45° revealed radial asymmetry in the MTF resulting from the square pixel aperture (0.2 mm × 0.2 mm), a characteristic which was not necessarily appreciated with the orthogonal 1D MTF measurements. In simulation experiments, both slit- and edge-based measurements resolved the radial asymmetries in the 2D MTF. The average absolute relative accuracy error in the 2D MTF between the DC and cutoff (2.5 mm(-1)) frequencies was 0.13% with average relative precision error of 0.11%. Other simulation results were similar to those derived from physical data. Overall, the general availability, acceptance, accuracy, and ease of implementation of 1D test devices for MTF assessment make this a valuable technique for 2D MTF estimation.
Tanaka, Nobukazu; Yano, Yuki; Yabuuchi, Hidetake; Akasaka, Tsutomu; Sasaki, Masayuki; Ohki, Masafumi; Morishita, Junji
2013-01-01
The image quality and potential usefulness for patient skin-dose reduction of a newly developed flat-panel detector (FPD) system employing irradiation side sampling (ISS) were investigated and compared to a conventional computed radiography (CR) system. We used the X-ray beam quality of RQA 9 as noted in the standard evaluation method by the International Electrotechnical Commission 62220-1 to evaluate the image quality of the detector for chest radiography. The presampled modulation transfer function (MTF) of the ISS-FPD system was slightly higher than that of the CR system in the horizontal direction at more than 2.2 cycles/mm. However, the presampled MTF of the ISS-FPD system was slightly lower than that of the CR system in the vertical direction. The Wiener spectrum of the ISS-FPD system showed a 50-65 % lesser noise level than that of the CR system under the same exposure condition. The detective quantum efficiency of the ISS-FPD system was at least twice as great as that of the CR system. We conclude that the ISS-FPD system has the potential to reduce the patient skin dose compared to a conventional CR system for chest radiography.
Backside illuminated CMOS-TDI line scanner for space applications
NASA Astrophysics Data System (ADS)
Cohen, O.; Ben-Ari, N.; Nevo, I.; Shiloah, N.; Zohar, G.; Kahanov, E.; Brumer, M.; Gershon, G.; Ofer, O.
2017-09-01
A new multi-spectral line scanner CMOS image sensor is reported. The backside illuminated (BSI) image sensor was designed for continuous scanning Low Earth Orbit (LEO) space applications including A custom high quality CMOS Active Pixels, Time Delayed Integration (TDI) mechanism that increases the SNR, 2-phase exposure mechanism that increases the dynamic Modulation Transfer Function (MTF), very low power internal Analog to Digital Converters (ADC) with resolution of 12 bit per pixel and on chip controller. The sensor has 4 independent arrays of pixels where each array is arranged in 2600 TDI columns with controllable TDI depth from 8 up to 64 TDI levels. A multispectral optical filter with specific spectral response per array is assembled at the package level. In this paper we briefly describe the sensor design and present some electrical and electro-optical recent measurements of the first prototypes including high Quantum Efficiency (QE), high MTF, wide range selectable Full Well Capacity (FWC), excellent linearity of approximately 1.3% in a signal range of 5-85% and approximately 1.75% in a signal range of 2-95% out of the signal span, readout noise of approximately 95 electrons with 64 TDI levels, negligible dark current and power consumption of less than 1.5W total for 4 bands sensor at all operation conditions .
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-05
... hospitals located within Military Treatment Facility (MTF) Prime Service Areas (PSAs) and deemed essential... costs. It has come to our attention that there may be some CAHs located in MTF PSAs that are deemed... proposing a CAH TMCPA for TRICARE network hospitals located within MTF PSAs and deemed essential for...
NASA Astrophysics Data System (ADS)
van Leunen, J. A. J.; Dreessen, J.
1984-05-01
The result of a measurement of the modulation transfer function is only useful as long as it is accompanied by a complete description of all relevant measuring conditions involved. For this reason it is necessary to file a full description of the relevant measuring conditions together with the results. In earlier times some of our results were rendered useless because some of the relevant measuring conditions were accidentally not written down and were forgotten. This was mainly due to the lack of concensus about which measuring conditions had to be filed together with the result of a measurement. One way to secure uniform and complete archiving of measuring conditions and results is to automate the data handling. An attendent advantage of automation of data handling is that it does away with the time-consuming correction of rough measuring results. The automation of the data handling was accomplished with rather cheap desktop computers, which were powerfull enough, however, to allow us to automate the measurement as well. After automation of the data handling we started with automatic collection of rough measurement data. Step by step we extended the automation by letting the desktop computer control more and more of the measuring set-up. At present the desktop computer controls all the electrical and most of the mechanical measuring conditions. Further it controls and reads the MTF measuring instrument. Focussing and orientation optimization can be fully automatic, semi-automatic or completely manual. MTF measuring results can be collected automatically but they can also be typed in by hand. Due to the automation we are able to implement proper archival of measuring results together with all necessary measuring conditions. The improved measuring efficiency made it possible to increase the number of routine measurements done in the same time period by an order of magnitude. To our surprise the measuring accuracy also improved by a factor of two. This was due to the much better reproducibility of the automatic optimization, which resulted in better reproducibility of the measurement result. Another advantage of the automation is that the programs that control the data handling and the automatic measurement are "user friendly". They guide the operator through the measuring procedure using information from earlier measurements of equivalent test specimens. This makes it possible to let routine measurements be done by much less skilled assistants. It also removes much of the tedious routine labour normally involved in MTF measurements. It can be concluded that automation of MTF measurements as described in the foregoing enhances the usefulness of MTF results as well as reducing the cost of MTF measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Xiangyang; Yang Yi; Tang Shaojie
Purpose: Differential phase contrast CT (DPC-CT) is emerging as a new technology to improve the contrast sensitivity of conventional attenuation-based CT. The noise equivalent quanta as a function over spatial frequency, i.e., the spectrum of noise equivalent quanta NEQ(k), is a decisive indicator of the signal and noise transfer properties of an imaging system. In this work, we derive the functional form of NEQ(k) in DPC-CT. Via system modeling, analysis, and computer simulation, we evaluate and verify the derived NEQ(k) and compare it with that of the conventional attenuation-based CT. Methods: The DPC-CT is implemented with x-ray tube and gratings.more » The x-ray propagation and data acquisition are modeled and simulated through Fresnel and Fourier analysis. A monochromatic x-ray source (30 keV) is assumed to exclude any system imperfection and interference caused by scatter and beam hardening, while a 360 Degree-Sign full scan is carried out in data acquisition to avoid any weighting scheme that may disrupt noise randomness. Adequate upsampling is implemented to simulate the x-ray beam's propagation through the gratings G{sub 1} and G{sub 2} with periods 8 and 4 {mu}m, respectively, while the intergrating distance is 193.6 mm (1/16 of the Talbot distance). The dimensions of the detector cell for data acquisition are 32 Multiplication-Sign 32, 64 Multiplication-Sign 64, 96 Multiplication-Sign 96, and 128 Multiplication-Sign 128 {mu}m{sup 2}, respectively, corresponding to a 40.96 Multiplication-Sign 40.96 mm{sup 2} field of view in data acquisition. An air phantom is employed to obtain the noise power spectrum NPS(k), spectrum of noise equivalent quanta NEQ(k), and detective quantum efficiency DQE(k). A cylindrical water phantom at 5.1 mm diameter and complex refraction coefficient n= 1 -{delta}+i{beta}= 1 -2.5604 Multiplication-Sign 10{sup -7}+i1.2353 Multiplication-Sign 10{sup -10} is placed in air to measure the edge transfer function, line spread function and then modulation transfer function MTF(k), of both DPC-CT and the conventional attenuation-based CT. The x-ray flux is set at 5 Multiplication-Sign 10{sup 6} photon/cm{sup 2} per projection and observes the Poisson distribution, which is consistent with that of a micro-CT for preclinical applications. Approximately 360 regions, each at 128 Multiplication-Sign 128 matrix, are used to calculate the NPS(k) via 2D Fourier transform, in which adequate zero padding is carried out to avoid aliasing in noise. Results: The preliminary data show that the DPC-CT possesses a signal transfer property [MTF(k)] comparable to that of the conventional attenuation-based CT. Meanwhile, though there exists a radical difference in their noise power spectrum NPS(k) (trait 1/|k| in DPC-CT but |k| in the conventional attenuation-based CT) the NEQ(k) and DQE(k) of DPC-CT and the conventional attenuation-based CT are in principle identical. Conclusions: Under the framework of ideal observer study, the joint signal and noise transfer property NEQ(k) and detective quantum efficiency DQE(k) of DPC-CT are essentially the same as those of the conventional attenuation-based CT. The findings reported in this paper may provide insightful guidelines on the research, development, and performance optimization of DPC-CT for extensive preclinical and clinical applications in the future.« less
Resolution Properties Of A Computed Radiographic System
NASA Astrophysics Data System (ADS)
Fujita, Hiroshi; Morishita, Junji; Ueda, Katsuhiko; Tsai, Du Y.; Ohtsuka, Akiyoshi; Fujikawa, Tsuyoshi
1989-05-01
The analysis of spatial-resolution properties in terms of the modulation transfer function (MTF) has been presented in a computed radiographic (CR) system (FCR-101) with the photostimulable-phosphor plate (imaging plate, IP). The newly devised method of determining the presampling MTF which includes the x-ray detector (IP) unsharpness and the unsharpness of the sampling aperture is described in which an image of a slightly-angulated lead slit relative to a horizontal or vertical direction is employed. The IP MTFs as an analog MTF in the system, the presampling MTFs for different types of IPs, different sampling distances, different versions of IPs, simultaneous multisection tomography and magnification radiography, and the laser-printer MTFs as display MTF are measured and shown. The effective sampling aperture MTFs calculated indicate that the noticeable degradation of resolution occurs at the stage of image data sampling. The usefulness of the magnification technique for mammography and bone radiography is demonstrated. It is shown that both of the digital MTF and the overall MTF are difficult to use for general purpose due to the aliasing artifacts. The effect of glare on the contrast is also characterized by lead-disk method. The glare fraction is found to be approximately 6.5%.
Addressing challenges of modulation transfer function measurement with fisheye lens cameras
NASA Astrophysics Data System (ADS)
Deegan, Brian M.; Denny, Patrick E.; Zlokolica, Vladimir; Dever, Barry; Russell, Laura
2015-03-01
Modulation transfer function (MTF) is a well defined and accepted method of measuring image sharpness. The slanted edge test, as defined in ISO12233 is a standard method of calculating MTF, and is widely used for lens alignment and auto-focus algorithm verification. However, there are a number of challenges which should be considered when measuring MTF in cameras with fisheye lenses. Due to trade-offs related Petzval curvature, planarity of the optical plane is difficult to achieve in fisheye lenses. It is therefore critical to have the ability to accurately measure sharpness throughout the entire image, particularly for lens alignment. One challenge for fisheye lenses is that, because of the radial distortion, the slanted edges will have different angles, depending on the location within the image and on the distortion profile of the lens. Previous work in the literature indicates that MTF measurements are robust for angles between 2 and 10 degrees. Outside of this range, MTF measurements become unreliable. Also, the slanted edge itself will be curved by the lens distortion, causing further measurement problems. This study summarises the difficulties in the use of MTF for sharpness measurement in fisheye lens cameras, and proposes mitigations and alternative methods.
Hunter, David M; Belev, George; Kasap, Safa; Yaffe, Martin J
2012-02-01
Theoretical reasoning suggests that direct conversion digital x-ray detectors based upon photoconductive amorphous-selenium (a-Se) could attain very high values of the MTF (modulation transfer function) at spatial frequencies well beyond 20 cycles mm(-1). One of the fundamental factors affecting resolution loss, particularly at x-ray energies just above the K-edge of selenium (12.66 keV), is the K-fluorescence reabsorption mechanism, wherein energy can be deposited in the detector at locations laterally displaced from the initial x-ray interaction site. This paper compares measured MTF changes above and below the Se K-edge of a CCD based a-Se x-ray detector with theoretical expectations. A prototype 25 μm sampling pitch (Nyquist frequency = 20 cycles mm(-1), 200 μm thick a-Se layer based x-ray detector, utilizing a specialized CCD readout device (200 × 400 area array), was used to make edge images with monochromatic x-rays above and below the K-edge of Se. A vacuum double crystal monochromator, exposed to polychromatic x-rays from a synchrotron, formed the monochromatic x-ray source. The monochromaticity of the x-rays was 99% or better. The presampling MTF was determined using the slanted edge method. The theory modeling the MTF performance of the detector includes the basic x-ray interaction physics in the a-Se layer as well as effects related to the operation of the CCD and charge trapping at a blocking layer present at the CCD/a-Se interface. The MTF performance of the prototype a-Se CCD was reduced from the theoretical value prescribed by the basic Se x-ray interaction physics, principally by the presence of a blocking layer. Nevertheless, the K-fluorescence reduction in the MTF was observed, approximately as predicted by theory. For the CCD prototype detector, at five cycles mm(-1), there was a 14% reduction of the MTF, from a value of 0.7 below the K-edge of Se, to 0.6 just above the K-edge. The MTF of an a-Se x-ray detector has been measured using monochromatic x-rays above and below the K-edge of selenium. The MTF is poorer above the K-edge by an amount consistent with theoretical expectations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weir, V; Zhang, J; Bruner, A
Purpose: The AIRO Mobile CT system was recently introduced which overcomes the limitations from existing CT, CT fluoroscopy, and intraoperative O-arm. With an integrated table and a large diameter bore, the system is suitable for cranial, spine and trauma procedures, making it a highly versatile intraoperative imaging system. This study is to investigate radiation dose and image quality of the AIRO and compared with those from a routine CT scanner. Methods: Radiation dose was measured using a conventional 100mm pencil ionization chamber and CT polymethylmetacrylate (PMMA) body and head phantoms. Image quality was evaluated with a CATPHAN 500 phantom. Spatialmore » resolution, low contrast resolution (CNR), Modulation Transfer Function (MTF), and Normalized Noise Power Spectrum (NNPS) were analyzed. Results: Under identical technique conditions, radiation dose (mGy/mAs) from the AIRO mobile CT system (AIRO) is higher than that from a 64 slice CT scanner. MTFs show that both Soft and Standard filters of the AIRO system lost resolution quickly compared to the Sensation 64 slice CT. With the Standard kernel, the spatial resolutions of the AIRO system are 3lp/cm and 4lp/cm for the body and head FOVs, respectively. NNPSs show low frequency noise due to ring-like artifacts. Due to a higher dose in terms of mGy/mAs at both head and body FOV, CNR of the AIRO system is higher than that of the Siemens scanner. However detectability of the low contrast objects is poorer in the AIRO due to the presence of ring artifacts in the location of the targets. Conclusion: For image guided surgery applications, the AIRO has some advantages over a routine CT scanner due to its versatility, large bore size, and acceptable image quality. Our evaluation of the physical performance helps its future improvements.« less
ERIC Educational Resources Information Center
Dacakis, Georgia; Oates, Jennifer; Douglas, Jacinta
2017-01-01
Background: The Transsexual Voice Questionnaire (TVQ[Superscript MtF]) was designed to capture the voice-related perceptions of individuals whose gender identity as female is the opposite of their birth-assigned gender (MtF women). Evaluation of the psychometric properties of the TVQ[Superscript MtF]is ongoing. Aims: To investigate associations…
Computer enhancement of radiographs
NASA Technical Reports Server (NTRS)
Dekaney, A.; Keane, J.; Desautels, J.
1973-01-01
Examination of three relevant noise processes and the image degradation associated with Marshall Space Flight Center's (MSFC) X-ray/scanning system was conducted for application to computer enhancement of radiographs using MSFC's digital filtering techniques. Graininess of type M, R single coat and R double coat X-ray films was quantified as a function of density level using root-mean-square (RMS) granularity. Quantum mottle (including film grain) was quantified as a function of the above film types, exposure level, specimen material and thickness, and film density using RMS granularity and power spectral density (PSD). For various neutral-density levels the scanning device used in digital conversion of radiographs was examined for noise characteristics which were quantified by RMS granularity and PSD. Image degradation of the entire pre-enhancement system (MG-150 X-ray device; film; and optronics scanner) was measured using edge targets to generate modulation transfer functions (MTF). The four parameters were examined as a function of scanning aperture sizes of approximately 12.5 25 and 50 microns.
Characterization of a parallel beam CCD optical-CT apparatus for 3D radiation dosimetry
NASA Astrophysics Data System (ADS)
Krstajić, Nikola; Doran, Simon J.
2006-12-01
This paper describes the initial steps we have taken in establishing CCD based optical-CT as a viable alternative for 3-D radiation dosimetry. First, we compare the optical density (OD) measurements from a high quality test target and variable neutral density filter (VNDF). A modulation transfer function (MTF) of individual projections is derived for three positions of the sinusoidal test target within the scanning tank. Our CCD is then characterized in terms of its signal-to-noise ratio (SNR). Finally, a sample reconstruction of a scan of a PRESAGETM (registered trademark of Heuris Pharma, NJ, Skillman, USA.) dosimeter is given, demonstrating the capabilities of the apparatus.
MTF measurement of LCDs by a linear CCD imager: I. Monochrome case
NASA Astrophysics Data System (ADS)
Kim, Tae-hee; Choe, O. S.; Lee, Yun Woo; Cho, Hyun-Mo; Lee, In Won
1997-11-01
We construct the modulation transfer function (MTF) measurement system of a LCD using a linear charge-coupled device (CCD) imager. The MTF used in optical system can not describe in the effect of both resolution and contrast on the image quality of display. Thus we present the new measurement method based on the transmission property of a LCD. While controlling contrast and brightness levels, the MTF is measured. From the result, we show that the method is useful for describing of the image quality. A ne measurement method and its condition are described. To demonstrate validity, the method is applied for comparison of the performance of two different LCDs.
A virtual image chain for perceived image quality of medical display
NASA Astrophysics Data System (ADS)
Marchessoux, Cédric; Jung, Jürgen
2006-03-01
This paper describes a virtual image chain for medical display (project VICTOR: granted in the 5th framework program by European commission). The chain starts from raw data of an image digitizer (CR, DR) or synthetic patterns and covers image enhancement (MUSICA by Agfa) and both display possibilities, hardcopy (film on viewing box) and softcopy (monitor). Key feature of the chain is a complete image wise approach. A first prototype is implemented in an object-oriented software platform. The display chain consists of several modules. Raw images are either taken from scanners (CR-DR) or from a pattern generator, in which characteristics of DR- CR systems are introduced by their MTF and their dose-dependent Poisson noise. The image undergoes image enhancement and comes to display. For soft display, color and monochrome monitors are used in the simulation. The image is down-sampled. The non-linear response of a color monitor is taken into account by the GOG or S-curve model, whereas the Standard Gray-Scale-Display-Function (DICOM) is used for monochrome display. The MTF of the monitor is applied on the image in intensity levels. For hardcopy display, the combination of film, printer, lightbox and viewing condition is modeled. The image is up-sampled and the DICOM-GSDF or a Kanamori Look-Up-Table is applied. An anisotropic model for the MTF of the printer is applied on the image in intensity levels. The density-dependent color (XYZ) of the hardcopy film is introduced by Look-Up-tables. Finally a Human Visual System Model is applied to the intensity images (XYZ in terms of cd/m2) in order to eliminate nonvisible differences. Comparison leads to visible differences, which are quantified by higher order image quality metrics. A specific image viewer is used for the visualization of the intensity image and the visual difference maps.
Automated Verification of Spatial Resolution in Remotely Sensed Imagery
NASA Technical Reports Server (NTRS)
Davis, Bruce; Ryan, Robert; Holekamp, Kara; Vaughn, Ronald
2011-01-01
Image spatial resolution characteristics can vary widely among sources. In the case of aerial-based imaging systems, the image spatial resolution characteristics can even vary between acquisitions. In these systems, aircraft altitude, speed, and sensor look angle all affect image spatial resolution. Image spatial resolution needs to be verified with estimators that include the ground sample distance (GSD), the modulation transfer function (MTF), and the relative edge response (RER), all of which are key components of image quality, along with signal-to-noise ratio (SNR) and dynamic range. Knowledge of spatial resolution parameters is important to determine if features of interest are distinguishable in imagery or associated products, and to develop image restoration algorithms. An automated Spatial Resolution Verification Tool (SRVT) was developed to rapidly determine the spatial resolution characteristics of remotely sensed aerial and satellite imagery. Most current methods for assessing spatial resolution characteristics of imagery rely on pre-deployed engineered targets and are performed only at selected times within preselected scenes. The SRVT addresses these insufficiencies by finding uniform, high-contrast edges from urban scenes and then using these edges to determine standard estimators of spatial resolution, such as the MTF and the RER. The SRVT was developed using the MATLAB programming language and environment. This automated software algorithm assesses every image in an acquired data set, using edges found within each image, and in many cases eliminating the need for dedicated edge targets. The SRVT automatically identifies high-contrast, uniform edges and calculates the MTF and RER of each image, and when possible, within sections of an image, so that the variation of spatial resolution characteristics across the image can be analyzed. The automated algorithm is capable of quickly verifying the spatial resolution quality of all images within a data set, enabling the appropriate use of those images in a number of applications.
Koh, Shizuka; Tung, Cynthia; Aquavella, James; Yadav, Rahul; Zavislan, James; Yoon, Geunyoung
2010-07-01
PURPOSE. To investigate tear film dynamics using simultaneous measurements of ocular aberrations and lower tear meniscus. METHODS. Simultaneous measurements of wavefront aberration and lower tear meniscus were performed for 11 normal eyes and 7 eyes with short tear film break-up time (SBUT) dry eye, with a tear film break-up time shorter than 5 seconds, using a wavefront sensor and an anterior segment optical coherence tomography (OCT). During the measurement, the subjects were instructed to blink every 6 seconds for a total of 30 seconds. From the measured aberration, root mean square (RMS) wavefront error and volume modulation transfer function (vMTF) induced by changes in tear film dynamics were calculated for a 5-mm pupil. Lower tear meniscus height (TMH) and area (TMA) were estimated from the cross-sectional OCT images of lower tear meniscus. RESULTS. There was a positive correlation between RMS and tear meniscus dimensions and a negative correlation between vMTF and tear meniscus in both groups. There were moderate negative correlations between the postblink initial RMS change and baseline TMH (R = -0.61) and TMA (R = -0.54) in SBUT dry eyes that were stronger than in normal eyes (R = -0.37, R = -0.38). CONCLUSIONS. Tear meniscus dimensions increase with RMS over time, and tear quantity before blink has a significant role in maintaining initial optical integrity, especially in SBUT dry eye. Simultaneous measurement of optical quality and tear meniscus has the potential to improve understanding of tear stability in normal eyes and dry eyes.
Contrast computation methods for interferometric measurement of sensor modulation transfer function
NASA Astrophysics Data System (ADS)
Battula, Tharun; Georgiev, Todor; Gille, Jennifer; Goma, Sergio
2018-01-01
Accurate measurement of image-sensor frequency response over a wide range of spatial frequencies is very important for analyzing pixel array characteristics, such as modulation transfer function (MTF), crosstalk, and active pixel shape. Such analysis is especially significant in computational photography for the purposes of deconvolution, multi-image superresolution, and improved light-field capture. We use a lensless interferometric setup that produces high-quality fringes for measuring MTF over a wide range of frequencies (here, 37 to 434 line pairs per mm). We discuss the theoretical framework, involving Michelson and Fourier contrast measurement of the MTF, addressing phase alignment problems using a moiré pattern. We solidify the definition of Fourier contrast mathematically and compare it to Michelson contrast. Our interferometric measurement method shows high detail in the MTF, especially at high frequencies (above Nyquist frequency). We are able to estimate active pixel size and pixel pitch from measurements. We compare both simulation and experimental MTF results to a lens-free slanted-edge implementation using commercial software.
Takatsu, Yasuo; Ueyama, Tsuyoshi; Miyati, Tosiaki; Yamamura, Kenichirou
2016-12-01
The image characteristics in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) depend on the partial Fourier fraction and contrast medium concentration. These characteristics were assessed and the modulation transfer function (MTF) was calculated by computer simulation. A digital phantom was created from signal intensity data acquired at different contrast medium concentrations on a breast model. The frequency images [created by fast Fourier transform (FFT)] were divided into 512 parts and rearranged to form a new image. The inverse FFT of this image yielded the MTF. From the reference data, three linear models (low, medium, and high) and three exponential models (slow, medium, and rapid) of the signal intensity were created. Smaller partial Fourier fractions, and higher gradients in the linear models, corresponded to faster MTF decline. The MTF more gradually decreased in the exponential models than in the linear models. The MTF, which reflects the image characteristics in DCE-MRI, was more degraded as the partial Fourier fraction decreased.
Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology
NASA Astrophysics Data System (ADS)
Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat
2014-07-01
The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.
MTF analysis using lunar observations for Himawari-8/AHI
NASA Astrophysics Data System (ADS)
Keller, Graziela R.; Chang, Tiejun; Xiong, Xiaoxiong
2017-09-01
The modulation transfer function, or MTF, is a common measure of image fidelity, which has been historically characterized on-orbit using high contrast images of the lunar limb obtained by remote sensing instruments onboard both low-orbit and geostationary satellites. Himawari-8, launched in 2014, is a Japanese geostationary satellite that carries the Advanced Himawari Imager (AHI), a near-identical copy of the Advanced Baseline Imager (ABI) instrument onboard the GOES-16 satellite. In this paper, we apply a variation of the slantededge method for deriving the MTF from lunar images, first verified by us on simulated test images, to the Himawari-8/AHI L1A and L1B data. The MTF is derived along the North/South and East/West directions separately. The AHI L1A images used in the characterization of the MTF are obtained from lunar observations routinely acquired for validating the radiometric calibration. The L1B data, which is spatially re-sampled, come from serendipitous lunar observations where the Moon appears close to the Earth's disk. We developed and implemented an algorithm to identify such occurrences using the SPICE/Icy package to predict the times where the Moon is visible in the L1B imagery and demonstrate their use for MTF derivation.
The effect of split pixel HDR image sensor technology on MTF measurements
NASA Astrophysics Data System (ADS)
Deegan, Brian M.
2014-03-01
Split-pixel HDR sensor technology is particularly advantageous in automotive applications, because the images are captured simultaneously rather than sequentially, thereby reducing motion blur. However, split pixel technology introduces artifacts in MTF measurement. To achieve a HDR image, raw images are captured from both large and small sub-pixels, and combined to make the HDR output. In some cases, a large sub-pixel is used for long exposure captures, and a small sub-pixel for short exposures, to extend the dynamic range. The relative size of the photosensitive area of the pixel (fill factor) plays a very significant role in the output MTF measurement. Given an identical scene, the MTF will be significantly different, depending on whether you use the large or small sub-pixels i.e. a smaller fill factor (e.g. in the short exposure sub-pixel) will result in higher MTF scores, but significantly greater aliasing. Simulations of split-pixel sensors revealed that, when raw images from both sub-pixels are combined, there is a significant difference in rising edge (i.e. black-to-white transition) and falling edge (white-to-black) reproduction. Experimental results showed a difference of ~50% in measured MTF50 between the falling and rising edges of a slanted edge test chart.
Robinson, Nicole; Kavanagh, David; Connor, Jason; May, Jon; Andrade, Jackie
2016-08-01
The Elaborated Intrusion Theory of Desire holds that desires for functional and dysfunctional goals share a common form. Both are embodied cognitive events, characterised by affective intensity and frequency. Accordingly, we developed scales to measure motivational cognitions for functional goals (Motivational Thought Frequency, MTF; State Motivation, SM), based on the existing Craving Experience Questionnaire (CEQ). When applied to increasing exercise, MTF and SM showed the same three-factor structure as the CEQ (Intensity, Imagery, Availability). The current study tested the internal structure and concurrent validity of the MTF and SM Scales when applied to control of alcohol consumption (MTF-A; SM-A). Participants (N=417) were adult tertiary students, staff or community members who had recently engaged in high-risk drinking or were currently trying to control alcohol consumption. They completed an online survey comprising the MTF-A, SM-A, Alcohol Use Disorders Identification Test (AUDIT), Readiness to Change Questionnaire (RCQ) and demographics. Confirmatory Factor Analysis gave acceptable fit for the MTF-A, but required the loss of one SM-A item, and was improved by intercorrelations of error terms. Higher scores were associated with more severe problems on the AUDIT and with higher Contemplation and Action scores on the RCQ. The MTF-A and SM-A show potential as measures of motivation to control drinking. Future research will examine their predictive validity and sensitivity to change. The scales' application to both increasing functional and decreasing dysfunctional behaviours is consistent with EI Theory's contention that both goal types operate in similar ways. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szczykutowicz, T; Rubert, N; Ranallo, F
Purpose: A framework for explaining differences in image quality to non-technical audiences in medial imaging is needed. Currently, this task is something that is learned “on the job.” The lack of a formal methodology for communicating optimal acquisition parameters into the clinic effectively mitigates many technological advances. As a community, medical physicists need to be held responsible for not only advancing image science, but also for ensuring its proper use in the clinic. This work outlines a framework that bridges the gap between the results from quantitative image quality metrics like detectability, MTF, and NPS and their effect on specificmore » anatomical structures present in diagnostic imaging tasks. Methods: Specific structures of clinical importance were identified for a body, an extremity, a chest, and a temporal bone protocol. Using these structures, quantitative metrics were used to identify the parameter space that should yield optimal image quality constrained within the confines of clinical logistics and dose considerations. The reading room workflow for presenting the proposed changes for imaging each of these structures is presented. The workflow consists of displaying images for physician review consisting of different combinations of acquisition parameters guided by quantitative metrics. Examples of using detectability index, MTF, NPS, noise and noise non-uniformity are provided. During review, the physician was forced to judge the image quality solely on those features they need for diagnosis, not on the overall “look” of the image. Results: We found that in many cases, use of this framework settled mis-agreements between physicians. Once forced to judge images on the ability to detect specific structures inter reader agreement was obtained. Conclusion: This framework will provide consulting, research/industrial, or in-house physicists with clinically relevant imaging tasks to guide reading room image review. This framework avoids use of the overall “look” or “feel” to dictate acquisition parameter selection. Equipment grants GE Healthcare.« less
A digital ISO expansion technique for digital cameras
NASA Astrophysics Data System (ADS)
Yoo, Youngjin; Lee, Kangeui; Choe, Wonhee; Park, SungChan; Lee, Seong-Deok; Kim, Chang-Yong
2010-01-01
Market's demands of digital cameras for higher sensitivity capability under low-light conditions are remarkably increasing nowadays. The digital camera market is now a tough race for providing higher ISO capability. In this paper, we explore an approach for increasing maximum ISO capability of digital cameras without changing any structure of an image sensor or CFA. Our method is directly applied to the raw Bayer pattern CFA image to avoid non-linearity characteristics and noise amplification which are usually deteriorated after ISP (Image Signal Processor) of digital cameras. The proposed method fuses multiple short exposed images which are noisy, but less blurred. Our approach is designed to avoid the ghost artifact caused by hand-shaking and object motion. In order to achieve a desired ISO image quality, both low frequency chromatic noise and fine-grain noise that usually appear in high ISO images are removed and then we modify the different layers which are created by a two-scale non-linear decomposition of an image. Once our approach is performed on an input Bayer pattern CFA image, the resultant Bayer image is further processed by ISP to obtain a fully processed RGB image. The performance of our proposed approach is evaluated by comparing SNR (Signal to Noise Ratio), MTF50 (Modulation Transfer Function), color error ~E*ab and visual quality with reference images whose exposure times are properly extended into a variety of target sensitivity.
The influence of focal spot blooming on high-contrast spatial resolution in CT imaging.
Grimes, Joshua; Duan, Xinhui; Yu, Lifeng; Halaweish, Ahmed F; Haag, Nicole; Leng, Shuai; McCollough, Cynthia
2015-10-01
The objective of this work was to investigate focal spot blooming effects on the spatial resolution of CT images and to evaluate an x-ray tube that uses dynamic focal spot control for minimizing focal spot blooming. The influence of increasing tube current at a fixed tube potential of 80 kV on high-contrast spatial resolution of seven different CT scanner models (scanners A-G), including one scanner that uses dynamic focal spot control to reduce focal spot blooming (scanner A), was evaluated. Spatial resolution was assessed using a wire phantom for the modulation transfer function (MTF) calculation and a copper disc phantom for measuring the slice sensitivity profile (SSP). The impact of varying the tube potential was investigated on two scanner models (scanners A and B) by measuring the MTF and SSP and also by using the resolution bar pattern module of the ACR CT phantom. The phantoms were scanned at 70-150 kV on scanner A and 80-140 kV on scanner B, with tube currents from 100 mA up to the maximum tube current available on each scanner. The images were reconstructed using a slice thickness of 0.6 mm with both smooth and sharp kernels. Additionally, focal spot size at varying tube potentials and currents was directly measured using pinhole and slit camera techniques. Evaluation of the MTF and SSP data from the 7 CT scanner models evaluated demonstrated decreased focal spot blooming for newer scanners, as evidenced by decreasing deviations in MTF and SSP as tube current varied. For scanners A and B, where focal spot blooming effects as a function of tube potential were assessed, the spatial resolution variation in the axial plane was much smaller on scanner A compared to scanner B as tube potential and current changed. On scanner A, the 50% MTF never decreased by more than 2% from the 50% MTF measured at 100 mA. On scanner B, the 50% MTF decreased by as much as 19% from the 50% MTF measured at 100 mA. Assessments of the SSP, the bar patterns in the ACR phantom and the pinhole and slit camera measurements were consistent with the MTF calculations. Focal spot blooming has a noticeable effect on spatial resolution in CT imaging. The focal spot shaping technology of scanner A greatly reduced blooming effects.
Electron imaging with Medipix2 hybrid pixel detector.
McMullan, G; Cattermole, D M; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R
2007-01-01
The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 microm x 55 microm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 microm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach approximately 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach approximately 35% of that expected for a perfect detector (4/pi(2)). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/pi). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses.
Giedroc, D P; Chen, X; Pennella, M A; LiWang, A C
2001-11-09
The human metalloregulatory transcription factor, metal-response element (MRE)-binding transcription factor-1 (MTF-1), contains six TFIIIA-type Cys(2)-His(2) motifs, each of which was projected to form well-structured betabetaalpha domains upon Zn(II) binding. In this report, the structure and backbone dynamics of a fragment containing the unusual C-terminal fingers F4-F6 has been investigated. (15)N heteronuclear single quantum coherence (HSQC) spectra of uniformly (15)N-labeled hMTF-zf46 show that Zn(II) induces the folding of hMTF-zf46. Analysis of the secondary structure of Zn(3) hMTF-zf46 determined by (13)Calpha chemical shift indexing and the magnitude of (3)J(Halpha-HN) clearly reveal that zinc fingers F4 and F6 adopt typical betabetaalpha structures. An analysis of the heteronuclear backbone (15)N relaxation dynamics behavior is consistent with this picture and further reveals independent tumbling of the finger domains in solution. Titration of apo-MTF-zf46 with Zn(II) reveals that the F4 domain binds Zn(II) significantly more tightly than do the other two finger domains. In contrast to fingers F4 and F6, the betabetaalpha fold of finger F5 is unstable and only partially populated at substoichiometric Zn(II); a slight molar excess of zinc results in severe conformational exchange broadening of all F5 NH cross-peaks. Finally, although Cd(II) binds to apo-hMTF-zf46 as revealed by intense S(-)-->Cd(II) absorption, a non-native structure results; addition of stoichiometric Zn(II) to the Cd(II) complex results in quantitative refolding of the betabetaalpha structure in F4 and F6. The functional implications of these results are discussed.
Bean Metal-Responsive Element-Binding Transcription Factor Confers Cadmium Resistance in Tobacco1
Sun, Na; Liu, Meng; Zhang, Wentao; Yang, Wanning; Bei, Xiujuan; Ma, Hui; Qiao, Fan; Qi, Xiaoting
2015-01-01
Cadmium (Cd) is highly toxic to plants. Modulation of Cd-responsive transcription is an important way for Cd detoxification in plants. Metal-responsive element (MRE) is originally described in animal metallothionein genes. Although functional MREs also exist in Cd-regulated plant genes, specific transcription factors that bind MRE to regulate Cd tolerance have not been identified. Previously, we showed that Cd-inducible bean (Phaseolus vulgaris) stress-related gene2 (PvSR2) produces a short (S) PvSR2 transcript (S-PvSR2) driven by an intronic promoter. Here, we demonstrate that S-PvSR2 encodes a bean MRE-binding transcription factor1 (PvMTF-1) that confers Cd tolerance in tobacco (Nicotiana tabacum). PvMTF-1 expression was up-regulated by Cd at the levels of RNA and protein. Importantly, expression of PvMTF-1 in tobacco enhanced Cd tolerance, indicating its role in regulating Cd resistance in planta. This was achieved through direct regulation of a feedback-insensitive Anthranilate Synthase α-2 chain gene (ASA2), which catalyzes the first step for tryptophan biosynthesis. In vitro and in vivo DNA-protein interaction studies further revealed that PvMTF-1 directly binds to the MRE in the ASA2 promoter, and this binding depends on the zinc finger-like motif of PvMTF-1. Through modulating ASA2 up-regulation by Cd, PvMTF-1 increased free tryptophan level and subsequently reduced Cd accumulation, thereby enhancing Cd tolerance of transgenic tobacco plants. Consistent with this observation, tobacco transiently overexpressing ASA2 also exhibited increased tolerance to Cd. We conclude that PvMTF-1 is a zinc finger-like transcription factor that links MRE to Cd resistance in transgenic tobacco through activation of tryptophan biosynthesis. PMID:25624396
Engineering of the Magnetized Target Fusion Propulsion System
NASA Technical Reports Server (NTRS)
Statham, G.; White, S.; Adams, R. B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Chapman, J.; Fincher, S.; Philips, A.; Polsgrove, T.
2003-01-01
Engineering details are presented for a magnetized target fusion (MTF) propulsion system designed to support crewed missions to the outer solar system. Basic operation of an MTF propulsion system is introduced. Structural, thermal, radiation-management and electrical design details are presented. The propellant storage and supply system design is also presented. A propulsion system mass estimate and associated performance figures are given. The advantages of helium-3 as a fusion fuel for an advanced MTF system are discussed.
Hillmann, Kathrin; Garcia Bartels, Natalie; Kottner, Jan; Stroux, Andrea; Canfield, Douglas; Blume-Peytavi, Ulrike
2015-01-01
5% minoxidil formulations twice daily are effective in treating vertex male androgenetic alopecia (AGA); however, efficacy and safety data in frontotemporal regions are lacking. To assess the efficacy of 5% minoxidil topical foam (5% MTF) in the frontotemporal region of male AGA patients after 24 weeks of treatment compared to placebo treatment and to the vertex region. Seventy males with moderate AGA applied 5% MTF or placebo foam (plaTF) twice daily for 24 weeks in frontotemporal and vertex regions. Target area non-vellus hair count (TAHC) was the primary end point. Frontotemporal and vertex TAHC and target area cumulative non-vellus hair width (TAHW) showed similar responses to 5% MTF with significant increases up to week 16 compared to baseline (p < 0.001). After 24 weeks of treatment, frontotemporal TAHW increased significantly in the 5% MTF group compared to the plaTF group (p = 0.017), while TAHC showed a similar non-significant increase from baseline in both regions. At 24 weeks, 5% MTF users rated a significant improvement in scalp coverage for the frontotemporal (p = 0.016) and vertex areas (p = 0.027). 5% MTF twice a day promotes hair density and width in both frontotemporal and vertex regions in men with moderate stages of AGA. © 2015 S. Karger AG, Basel.
Lawrence, Anne A
2010-04-01
There are two distinct subtypes of male-to-female (MtF) transsexuals: homosexual and nonhomosexual. The relative prevalence of these two subtypes varies dramatically between countries, but no explanation of this variability has yet been proposed. This study examined the hypothesis that the prevalence of nonhomosexual MtF transsexualism, relative to homosexual MtF transsexualism, would be higher in individualistic countries than in collectivistic countries. I analyzed data from 22 studies of MtF transsexualism, conducted in 16 countries, examining the association between percentage of nonhomosexual participants and Hofstede's (Culture's consequences: Comparing values, behaviors, institutions, and organizations across nations, 2001) Individualism Index (IDV). IDV accounted for 77% of observed variance in the percentage of nonhomosexual MtF participants (r = 0.88, p < .0001). Controlling for differences in national wealth and in Hofstede's other indices of societal values (Power Distance, Uncertainty Avoidance, and Masculinity) did not significantly change the ability of IDV to account for variance in the percentage of nonhomosexual participants. The factors that contribute to the observed association between societal individualism and the relative prevalence of nonhomosexual MtF transsexualism remain to be determined, but a greater tolerance within individualistic countries for socially disruptive gender transitions by nonhomosexual gender dysphoric men, and the availability within many collectivistic countries of socially approved transgender roles for pervasively feminine homosexual gender dysphoric men, are plausible contributors.
PSF and MTF comparison of two different surface ablation techniques for laser visual correction
NASA Astrophysics Data System (ADS)
Cruz Félix, Angel Sinue; López Olazagasti, Estela; Rosales, Marco A.; Ibarra, Jorge; Tepichín Rodríguez, Eduardo
2009-08-01
It is well known that the Zernike expansion of the wavefront aberrations has been extensively used to evaluate the performance of image forming optical systems. Recently, these techniques were adopted in the field of Ophthalmology to evaluate the objective performance of the human ocular system. We have been working in the characterization and evaluation of the performance of normal human eyes; i.e., eyes which do not require any refractive correction (20/20 visual acuity). These data provide us a reference model to analyze Pre- and Post-Operated results from eyes that have been subjected to laser refractive surgery. Two different ablation techniques are analyzed in this work. These techniques were designed to correct the typical refractive errors known as myopia, hyperopia, and presbyopia. When applied to the corneal surface, these techniques provide a focal shift and, in principle, an improvement of the visual performance. These features can be suitably described in terms of the PSF and MTF of the corresponding Pre- and Post-Operated wavefront aberrations. We show the preliminary results of our comparison.
NASA Astrophysics Data System (ADS)
Petković, Dalibor; Shamshirband, Shahaboddin; Saboohi, Hadi; Ang, Tan Fong; Anuar, Nor Badrul; Rahman, Zulkanain Abdul; Pavlović, Nenad T.
2014-07-01
The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the polynomial and radial basis function (RBF) are applied as the kernel function of Support Vector Regression (SVR) to estimate and predict estimate MTF value of the actual optical system according to experimental tests. Instead of minimizing the observed training error, SVR_poly and SVR_rbf attempt to minimize the generalization error bound so as to achieve generalized performance. The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the SVR_rbf approach in compare to SVR_poly soft computing methodology.
Separation of presampling and postsampling modulation transfer functions in infrared sensor systems
NASA Astrophysics Data System (ADS)
Espinola, Richard L.; Olson, Jeffrey T.; O'Shea, Patrick D.; Hodgkin, Van A.; Jacobs, Eddie L.
2006-05-01
New methods of measuring the modulation transfer function (MTF) of electro-optical sensor systems are investigated. These methods are designed to allow the separation and extraction of presampling and postsampling components from the total system MTF. The presampling MTF includes all the effects prior to the sampling stage of the imaging process, such as optical blur and detector shape. The postsampling MTF includes all the effects after sampling, such as interpolation filters and display characteristics. Simulation and laboratory measurements are used to assess the utility of these techniques. Knowledge of these components and inclusion into sensor models, such as the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate's NVThermIP, will allow more accurate modeling and complete characterization of sensor performance.
Objective evaluation of slanted edge charts
NASA Astrophysics Data System (ADS)
Hornung, Harvey (.
2015-01-01
Camera objective characterization methodologies are widely used in the digital camera industry. Most objective characterization systems rely on a chart with specific patterns, a software algorithm measures a degradation or difference between the captured image and the chart itself. The Spatial Frequency Response (SFR) method, which is part of the ISO 122331 standard, is now very commonly used in the imaging industry, it is a very convenient way to measure a camera Modulation transfer function (MTF). The SFR algorithm can measure frequencies beyond the Nyquist frequency thanks to super-resolution, so it does provide useful information on aliasing and can provide modulation for frequencies between half Nyquist and Nyquist on all color channels of a color sensor with a Bayer pattern. The measurement process relies on a chart that is simple to manufacture: a straight transition from a bright reflectance to a dark one (black and white for instance), while a sine chart requires handling precisely shades of gray which can also create all sort of issues with printers that rely on half-toning. However, no technology can create a perfect edge, so it is important to assess the quality of the chart and understand how it affects the accuracy of the measurement. In this article, I describe a protocol to characterize the MTF of a slanted edge chart, using a high-resolution flatbed scanner. The main idea is to use the RAW output of the scanner as a high-resolution micro-densitometer, since the signal is linear it is suitable to measure the chart MTF using the SFR algorithm. The scanner needs to be calibrated in sharpness: the scanner MTF is measured with a calibrated sine chart and inverted to compensate for the modulation loss from the scanner. Then the true chart MTF is computed. This article compares measured MTF from commercial charts and charts printed on printers, and also compares how of the contrast of the edge (using different shades of gray) can affect the chart MTF, then concludes on what distance range and camera resolution the chart can reliably measure the camera MTF.
On the relationships between higher and lower bit-depth system measurements
NASA Astrophysics Data System (ADS)
Burks, Stephen D.; Haefner, David P.; Doe, Joshua M.
2018-04-01
The quality of an imaging system can be assessed through controlled laboratory objective measurements. Currently, all imaging measurements require some form of digitization in order to evaluate a metric. Depending on the device, the amount of bits available, relative to a fixed dynamic range, will exhibit quantization artifacts. From a measurement standpoint, measurements are desired to be performed at the highest possible bit-depth available. In this correspondence, we described the relationship between higher and lower bit-depth measurements. The limits to which quantization alters the observed measurements will be presented. Specifically, we address dynamic range, MTF, SiTF, and noise. Our results provide guidelines to how systems of lower bit-depth should be characterized and the corresponding experimental methods.
On use of image quality metrics for perceptual blur modeling: image/video compression case
NASA Astrophysics Data System (ADS)
Cha, Jae H.; Olson, Jeffrey T.; Preece, Bradley L.; Espinola, Richard L.; Abbott, A. Lynn
2018-02-01
Linear system theory is employed to make target acquisition performance predictions for electro-optical/infrared imaging systems where the modulation transfer function (MTF) may be imposed from a nonlinear degradation process. Previous research relying on image quality metrics (IQM) methods, which heuristically estimate perceived MTF has supported that an average perceived MTF can be used to model some types of degradation such as image compression. Here, we discuss the validity of the IQM approach by mathematically analyzing the associated heuristics from the perspective of reliability, robustness, and tractability. Experiments with standard images compressed by x.264 encoding suggest that the compression degradation can be estimated by a perceived MTF within boundaries defined by well-behaved curves with marginal error. Our results confirm that the IQM linearizer methodology provides a credible tool for sensor performance modeling.
NASA Technical Reports Server (NTRS)
Weissman, D. E.; Johnson, J. W.
1984-01-01
The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.
NASA Technical Reports Server (NTRS)
Weissman, D. E.; Johnson, J. W.
1986-01-01
The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.
Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season
NASA Technical Reports Server (NTRS)
Blonski, Slawomir
2006-01-01
This presentation focuses on spatial resolution characterization for QuickBird panochromatic images in 2003-2004 and presents data measurements and analysis of SSC edge target deployment and edge response extraction and modeling. The results of the characterization are shown as values of the Modulation Transfer Function (MTF) at the Nyquist spatial frequency and as the Relative Edge Response (RER) components. The results show that RER is much less sensitive to accuracy of the curve fitting than the value of MTF at Nyquist frequency. Therefore, the RER/edge response slope is a more robust estimator of the digital image spatial resolution than the MTF. For the QuickBird panochromatic images, the RER is consistently equal to 0.5 for images processed with the Cubic Convolution resampling and to 0.8 for the MTF resampling.
[Evaluation of the resolving power of different angles in MPR images of 16DAS-MDCT].
Kimura, Mikio; Usui, Junshi; Nozawa, Takeo
2007-03-20
In this study, we evaluated the resolving power of three-dimensional (3D) multiplanar reformation (MPR) images with various angles by using 16 data acquisition system multi detector row computed tomography (16DAS-MDCT) . We reconstructed the MPR images using data with a 0.75 mm slice thickness of the axial image in this examination. To evaluate resolving power, we used an original new phantom (RC phantom) that can be positioned at any slice angle in MPR images. We measured the modulation transfer function (MTF) by using the methods of measuring pre-sampling MTF, and used Fourier transform of image data of the square wave chart. The scan condition and image reconstruction condition that were adopted in this study correspond to the condition that we use for three-dimensional computed tomographic angiography (3D-CTA) examination of the head in our hospital. The MTF of MPR images showed minimum values at slice angles in parallel with the axial slice, and showed maximum values at the sagittal slice and coronal slice angles that are parallel to the Z-axis. With an oblique MPR image, MTF did not change with angle changes in the oblique sagittal slice plane, but in the oblique coronal slice plane, MTF increased as the tilt angle increased from the axial plane to the Z plane. As a result, we could evaluate the resolving power of a head 3D image by measuring the MTF of the axial image and sagittal image or the coronal image.
Warnes, G; Biggerstaff, J P; Francis, J L
1998-07-01
Recent studies have investigated the use of anti-inflammatory cytokine, interleukin 10 (IL-10) to control the development of disseminated intravascular coagulation (DIC) in sepsis by down-regulation of monocyte tissue factor (MTF) induced by lipopolysaccharide (LPS) in the initial phase of the disease. In vitro and in vivo human studies have shown that a minimal (<1 h) delay in IL-10 treatment significantly reduces the cytokines ability to inhibit LPS-induced MTF expression and the end products of coagulation. In this whole blood in vitro study we investigated the role of lymphocyte and platelet interactions with monocytes to up-regulate MTF expression in the presence of IL-10 in the initial phase of exposure to LPS. Individual blockade of monocyte B7 or platelet P-selectin significantly (35%) reduced MTF expression (P<0.05). IL-10 showed a dose-dependent inhibition of LPS (0.1 microg/ml) induced MTF expression, with 56% inhibition at 1 ng/ml, maximizing at 5 ng/ml IL-10 (75%; P<0.05). Simultaneous exposure to LPS and IL-10 (1 ng/ml) or addition of IL-10 1 h after LPS, with individual B7 and P-selectin blockade significantly enhanced the inhibition of MTF expression by IL-10 (P<0.05). We conclude that the efficacy of IL-10 to control DIC could be enhanced by a simultaneous B7 and P-selectin blockade.
Modeling and measurement of the detector presampling MTF of a variable resolution x-ray CT scanner.
Melnyk, Roman; DiBianca, Frank A
2007-03-01
The detector presampling modulation transfer function (MTF) of a 576-channel variable resolution x-ray (VRX) computed tomography (CT) scanner was evaluated in this study. The scanner employs a VRX detector, which provides increased spatial resolution by matching the scanner's field of view (FOV) to the size of an object being imaged. Because spatial resolution is the parameter the scanner promises to improve, the evaluation of this resolution is important. The scanner's pre-reconstruction spatial resolution, represented by the detector presampling MTF, was evaluated using both modeling (Monte Carlo simulation) and measurement (the moving slit method). The theoretical results show the increase in the cutoff frequency of the detector presampling MTF from 1.39 to 43.38 cycles/mm as the FOV of the VRX CT scanner decreases from 32 to 1 cm. The experimental results are in reasonable agreement with the theoretical data. Some discrepancies between the measured and the modeled detector presampling MTFs can be explained by the limitations of the model. At small FOVs (1-8 cm), the MTF measurements were limited by the size of the focal spot. The obtained results are important for further development of the VRX CT scanner.
Modeling and measurement of the detector presampling MTF of a variable resolution x-ray CT scanner
Melnyk, Roman; DiBianca, Frank A.
2007-01-01
The detector presampling MTF of a 576-channel variable resolution x-ray (VRX) CT scanner was evaluated in this study. The scanner employs a VRX detector, which provides increased spatial resolution by matching the scanner’s field of view (FOV) to the size of an object being imaged. Because spatial resolution is the parameter the scanner promises to improve, the evaluation of this resolution is important. The scanner’s pre-reconstruction spatial resolution, represented by the detector presampling MTF, was evaluated using both modeling (Monte Carlo simulation) and measurement (the moving slit method). The theoretical results show the increase in the cutoff frequency of the detector presampling MTF from 1.39 cy/mm to 43.38 cy/mm as the FOV of the VRX CT scanner decreases from 32 cm to 1 cm. The experimental results are in reasonable agreement with the theoretical data. Some discrepancies between the measured and the modeled detector presampling MTFs can be explained by the limitations of the model. At small FOVs (1–8 cm), the MTF measurements were limited by the size of the focal spot. The obtained results are important for further development of the VRX CT scanner. PMID:17369872
Autogynephilia: an underappreciated paraphilia.
Lawrence, Anne A
2011-01-01
Autogynephilia is defined as a male's propensity to be sexually aroused by the thought of himself as a female. It is the paraphilia that is theorized to underlie transvestism and some forms of male-to-female (MtF) transsexualism. Autogynephilia encompasses sexual arousal with cross-dressing and cross-gender expression that does not involve women's clothing per se. The concept of autogynephilia defines a typology of MtF transsexualism and offers a theory of motivation for one type of MtF transsexualism. Autogynephilia resembles a sexual orientation in that it involves elements of idealization and attachment as well as erotic desire. Nearly 3% of men in Western countries may experience autogynephilia; its most severe manifestation, MtF transsexualism, is rare but increasing in prevalence. Some theorists and clinicians reject the transsexual typology and theory of motivation derived from autogynephilia; their objections suggest a need for additional research. The concept of autogynephilia can assist clinicians in understanding some otherwise puzzling manifestations of nonhomosexual MtF transsexualism. Autogynephilia exemplifies an unusual paraphilic category called 'erotic target identity inversions', in which men desire to impersonate or turn their bodies into facsimiles of the persons or things to which they are sexually attracted. Copyright © 2011 S. Karger AG, Basel.
Tutorial on X-ray photon counting detector characterization.
Ren, Liqiang; Zheng, Bin; Liu, Hong
2018-01-01
Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.
The influence of software filtering in digital mammography image quality
NASA Astrophysics Data System (ADS)
Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.
2009-05-01
Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.
OrbView-3 Technical Performance Evaluation 2005: Modulation Transfer Function
NASA Technical Reports Server (NTRS)
Cole, Aaron
2007-01-01
The Technical performance evaluation of OrbView-3 using the Modulation Transfer Function (MTF) is presented. The contents include: 1) MTF Results and Methodology; 2) Radiometric Calibration Methodology; and 3) Relative Radiometric Assessment Results
Zinc-induced Dnmt1 expression involves antagonism between MTF-1 and nuclear receptor SHP
Zhang, Yuxia; Andrews, Glen K.; Wang, Li
2012-01-01
Dnmt1 is frequently overexpressed in cancers, which contributes significantly to cancer-associated epigenetic silencing of tumor suppressor genes. However, the mechanism of Dnmt1 overexpression remains elusive. Herein, we elucidate a pathway through which nuclear receptor SHP inhibits zinc-dependent induction of Dnmt1 by antagonizing metal-responsive transcription factor-1 (MTF-1). Zinc treatment induces Dnmt1 transcription by increasing the occupancy of MTF-1 on the Dnmt1 promoter while decreasing SHP expression. SHP in turn represses MTF-1 expression and abolishes zinc-mediated changes in the chromatin configuration of the Dnmt1 promoter. Dnmt1 expression is increased in SHP-knockout (sko) mice but decreased in SHP-transgenic (stg) mice. In human hepatocellular carcinoma (HCC), increased DNMT1 expression is negatively correlated with SHP levels. Our study provides a molecular explanation for increased Dnmt1 expression in HCC and highlights SHP as a potential therapeutic target. PMID:22362755
1967-01-01
This photograph is a view of the Saturn V S-IC-5 (first) flight stage being hoisted into the S-IC-B1 test stand at the Mississippi Test Facility (MTF), Bay St. Louis, Mississippi. Begirning operations in 1966, the MTF has two test stands, a dual-position structure for running the S-IC stage at full throttle, and two separate stands for the S-II (Saturn V third) stage. It became the focus of the static test firing program. The completed S-IC stage was shipped from Michoud Assembly Facility (MAF) to the MTF. The stage was then installed into the 124-meter-high test stand for static firing tests before shipment to the Kennedy Space Center for final assembly of the Saturn V vehicle. The MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Stennis Space Center (SSC) in May 1988.
1967-01-01
This photograph is a view of the Saturn V S-IC (first) test stage being hoisted into the S-IC-B1 test stand at the Mississippi Test Facility (MTF), Bay St. Louis, Mississippi. This stage was used to prove the operational readiness of the stand. Begirning operations in 1966, the MTF has two test stands; a dual-position structure for running the S-IC stage at full throttle, and two separate stands for the S-II (Saturn V third) stage. It became the focus of the static test firing program. The completed S-IC stage was shipped from the Michoud Assembly Facility (MAF) to the MTF. The stage was then installed into the 124-meter-high test stand for static firing tests before shipment to the Kennedy Space Center for final assembly of the Saturn V vehicle. The MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Stennis Space Center (SSC) in May 1988.
1967-08-01
This photograph is a view of the Saturn V S-IC-5 (first) flight stage static test firing at the S-IC-B1 test stand at the Mississippi Test Facility (MTF), Bay St. Louis, Mississippi. Begirning operations in 1966, the MTF has two test stands, a dual-position structure for running the S-IC stage at full throttle, and two separate stands for the S-II (Saturn V third) stage. It became the focus of the static test firing program. The completed S-IC stage was shipped from Michoud Assembly Facility (MAF) to the MTF. The stage was then installed into the 407-foot-high test stand for the static firing tests before shipment to the Kennedy Space Center for final assembly of the Saturn V vehicle. The MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Stennis Space Center (SSC) in May 1988.
HIV Prevalence and Risk Behaviors in Male to Female (MTF) Transgender Persons in Tijuana, Mexico.
Salas-Espinoza, Kristian Jesús; Menchaca-Diaz, Rufino; Patterson, Thomas L; Urada, Lianne A; Smith, Davey; Strathdee, Steffanie A; Pitpitan, Eileen V
2017-12-01
Compared to HIV research on men who have sex with men, less is known about the risks and vulnerabilities for HIV among Male to Female (MTF) transgender persons, particularly in different geographic regions like Mexico. In Tijuana, Mexico, a border city experiencing a dynamic HIV epidemic, no precedent data exists on the MTF transgender population. Our aims were to estimate HIV prevalence and examine the behaviors and characteristics of the population. We conducted a cross-sectional study of 100 MTF transgender persons recruited through time location sampling in 2012. Participants underwent interviewer-administered (paper and pen) surveys and rapid tests for HIV. Descriptive univariate analyses were conducted on various factors, including sociodemographics, substance use, accessing social services (requested vs. received), stigma, and sex behaviors. A total of 22% tested positive for HIV, a prevalence higher than other key populations at risk for HIV in Tijuana.
Zhao, C; Konstantinidis, A C; Zheng, Y; Anaxagoras, T; Speller, R D; Kanicki, J
2015-12-07
Wafer-scale CMOS active pixel sensors (APSs) have been developed recently for x-ray imaging applications. The small pixel pitch and low noise are very promising properties for medical imaging applications such as digital breast tomosynthesis (DBT). In this work, we evaluated experimentally and through modeling the imaging properties of a 50 μm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). A modified cascaded system model was developed for CMOS APS x-ray detectors by taking into account the device nonlinear signal and noise properties. The imaging properties such as modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were extracted from both measurements and the nonlinear cascaded system analysis. The results show that the DynAMITe x-ray detector achieves a high spatial resolution of 10 mm(-1) and a DQE of around 0.5 at spatial frequencies <1 mm(-1). In addition, the modeling results were used to calculate the image signal-to-noise ratio (SNRi) of microcalcifications at various mean glandular dose (MGD). For an average breast (5 cm thickness, 50% glandular fraction), 165 μm microcalcifications can be distinguished at a MGD of 27% lower than the clinical value (~1.3 mGy). To detect 100 μm microcalcifications, further optimizations of the CMOS APS x-ray detector, image aquisition geometry and image reconstruction techniques should be considered.
Spectral context affects temporal processing in awake auditory cortex
Beitel, Ralph E.; Vollmer, Maike; Heiser, Marc A; Schreiner, Christoph E.
2013-01-01
Amplitude modulation encoding is critical for human speech perception and complex sound processing in general. The modulation transfer function (MTF) is a staple of auditory psychophysics, and has been shown to predict speech intelligibility performance in a range of adverse listening conditions and hearing impairments, including cochlear implant-supported hearing. Although both tonal and broadband carriers have been employed in psychophysical studies of modulation detection and discrimination, relatively little is known about differences in the cortical representation of such signals. We obtained MTFs in response to sinusoidal amplitude modulation (SAM) for both narrowband tonal carriers and 2-octave bandwidth noise carriers in the auditory core of awake squirrel monkeys. MTFs spanning modulation frequencies from 4 to 512 Hz were obtained using 16 channel linear recording arrays sampling across all cortical laminae. Carrier frequency for tonal SAM and center frequency for noise SAM was set at the estimated best frequency for each penetration. Changes in carrier type affected both rate and temporal MTFs in many neurons. Using spike discrimination techniques, we found that discrimination of modulation frequency was significantly better for tonal SAM than for noise SAM, though the differences were modest at the population level. Moreover, spike trains elicited by tonal and noise SAM could be readily discriminated in most cases. Collectively, our results reveal remarkable sensitivity to the spectral content of modulated signals, and indicate substantial interdependence between temporal and spectral processing in neurons of the core auditory cortex. PMID:23719811
Effects of intraocular lenses with different diopters on chromatic aberrations in human eye models.
Song, Hui; Yuan, Xiaoyong; Tang, Xin
2016-01-11
In this study, the effects of intraocular lenses (IOLs) with different diopters (D) on chromatic aberration were investigated in human eye models, and the influences of the central thickness of IOLs on chromatic aberration were compared. A Liou-Brennan-based IOL eye model was constructed using ZEMAX optical design software. Spherical IOLs with different diopters (AR40e, AMO Company, USA) were implanted; modulation transfer function (MTF) values at 3 mm of pupil diameter and from 0 to out-of-focus blur were collected and graphed. MTF values, measured at 555 nm of monochromatic light under each spatial frequency, were significantly higher than the values measured at 470 to 650 nm of polychromatic light. The influences of chromatic aberration on MTF values decreased with the increase in IOL diopter when the spatial frequency was ≤12 c/d, while increased effects were observed when the spatial frequency was ≥15 c/d. The MTF values of each IOL eye model were significantly lower than the MTF values of the Liou-Brennan eye models when measured at 555 nm of monochromatic light and at 470 to 650 nm of polychromatic light. The MTF values were also found to be increased with the increase in IOL diopter. With higher diopters of IOLs, the central thickness increased accordingly, which could have created increased chromatic aberration and decreased the retinal image quality. To improve the postoperative visual quality, IOLs with lower chromatic aberration should be selected for patients with short axial lengths.
Development of Pseudorandom Binary Arrays for Calibration of Surface Profile Metrology Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, S.K.; Takacs, P.; Soldate, P.
2009-12-01
Optical metrology tools, especially for short wavelengths (extreme ultraviolet and x-ray), must cover a wide range of spatial frequencies from the very low, which affects figure, to the important mid-spatial frequencies and the high spatial frequency range, which produces undesirable scattering. A major difficulty in using surface profilometers arises due to the unknown point-spread function (PSF) of the instruments [G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, Bellingham, WA, 2001)] that is responsible for distortion of the measured surface profile. Generally, the distortion due to the PSF is difficult to account for because the PSF ismore » a complex function that comes to the measurement via the convolution operation, while the measured profile is described with a real function. Accounting for instrumental PSF becomes significantly simpler if the result of measurement of a profile is presented in the spatial frequency domain as a power spectral density (PSD) distribution [J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company, Englewood, CO, 2005)]. For example, measured PSD distributions provide a closed set of data necessary for three-dimensional calculations of scattering of light by the optical surfaces [E. L. Church et al., Opt. Eng. (Bellingham) 18, 125 (1979); J. C. Stover, Optical Scattering, 2nd ed. (SPIE Optical Engineering Press, Bellingham, WA, 1995)]. The distortion of the surface PSD distribution due to the PSF can be modeled with the modulation transfer function (MTF), which is defined over the spatial frequency bandwidth of the instrument. The measured PSD distribution can be presented as a product of the squared MTF and the ideal PSD distribution inherent for the system under test. Therefore, the instrumental MTF can be evaluated by comparing a measured PSD distribution of a known test surface with the corresponding ideal numerically simulated PSD. The square root of the ratio of the measured and simulated PSD distributions gives the MTF of the instrument. The applicability of the MTF concept to phase map measurements with optical interferometric microscopes needs to be experimentally verified as the optical tool and algorithms may introduce nonlinear artifacts into the process. In previous work [V. V. Yashchuk et al., Proc. SPIE 6704, 670408 (2007); Valeriy V. Yashchuk et al., Opt. Eng. (Bellingham) 47, 073602 (2008)] the instrumental MTF of a surface profiler was precisely measured using reference test surfaces based on binary pseudorandom (BPR) gratings. Here, the authors present results of fabricating and using two-dimensional (2D) BPR arrays that allow for a direct 2D calibration of the instrumental MTF. BPR sequences are widely used in engineering and communication applications such as global position systems and wireless communication protocols. The ideal BPR pattern has a flat 'white noise' response over the entire range of spatial frequencies of interest. The BPR array used here is based on the uniformly redundant array (URA) prescription [E. E. Fenimore and T. M. Cannon, Appl. Opt. 17, 337 (1978)] initially used for x-ray and gamma ray astronomy applications. The URA's superior imaging capability originates from the fact that its cyclical autocorrelation function very closely approximates a delta function, which produces a flat PSD. Three different size BPR array patterns were fabricated by electron beam lithography and induction coupled plasma etching of silicon. The basic size units were 200, 400, and 600 nm. Two different etch processes were used, CF{sub 4}/Ar and HBr, which resulted in undercut and vertical sidewall profiles, respectively. The 2D BPR arrays were used as standard test surfaces for MTF calibration of the MicroMap{trademark}-570 interferometric microscope using all available objectives. The MicroMap{trademark}-570 interferometric microscope uses incoherent illumination from a tungsten filament source and common path modulated phase shifting interference to produce a set of interferograms detected on a change coupled device. Mathematical algorithms applied to the datasets yield the surface phase map. The HBr etched two-dimensional BPR arrays have proven to be a very effective calibration standard making possible direct calibration corrections without the need of additional calculation considerations, while departures from the ideal vertical sidewall require an additional correction term for the CF{sub 4}/Ar etched samples [Samuel K. Barber et al., Abstract to Optics and Photonics 2009: Optical Engineering and Applications Symposium, San Diego, CA, 2-6 August 2009]. Initial surface roughness of low cost 'prime' wafers limits low magnification calibration but should not be a limitation if better polished samples are used.« less
A novel method for quantification of beam's-eye-view tumor tracking performance.
Hu, Yue-Houng; Myronakis, Marios; Rottmann, Joerg; Wang, Adam; Morf, Daniel; Shedlock, Daniel; Baturin, Paul; Star-Lack, Josh; Berbeco, Ross
2017-11-01
In-treatment imaging using an electronic portal imaging device (EPID) can be used to confirm patient and tumor positioning. Real-time tumor tracking performance using current digital megavolt (MV) imagers is hindered by poor image quality. Novel EPID designs may help to improve quantum noise response, while also preserving the high spatial resolution of the current clinical detector. Recently investigated EPID design improvements include but are not limited to multi-layer imager (MLI) architecture, thick crystalline and amorphous scintillators, and phosphor pixilation and focusing. The goal of the present study was to provide a method of quantitating improvement in tracking performance as well as to reveal the physical underpinnings of detector design that impact tracking quality. The study employs a generalizable ideal observer methodology for the quantification of tumor tracking performance. The analysis is applied to study both the effect of increasing scintillator thickness on a standard, single-layer imager (SLI) design as well as the effect of MLI architecture on tracking performance. The present study uses the ideal observer signal-to-noise ratio (d') as a surrogate for tracking performance. We employ functions which model clinically relevant tasks and generalized frequency-domain imaging metrics to connect image quality with tumor tracking. A detection task for relevant Cartesian shapes (i.e., spheres and cylinders) was used to quantitate trackability of cases employing fiducial markers. Automated lung tumor tracking algorithms often leverage the differences in benign and malignant lung tissue textures. These types of algorithms (e.g., soft-tissue localization - STiL) were simulated by designing a discrimination task, which quantifies the differentiation of tissue textures, measured experimentally and fit as a power-law in trend (with exponent β) using a cohort of MV images of patient lungs. The modeled MTF and NPS were used to investigate the effect of scintillator thickness and MLI architecture on tumor tracking performance. Quantification of MV images of lung tissue as an inverse power-law with respect to frequency yields exponent values of β = 3.11 and 3.29 for benign and malignant tissues, respectively. Tracking performance with and without fiducials was found to be generally limited by quantum noise, a factor dominated by quantum detective efficiency (QDE). For generic SLI construction, increasing the scintillator thickness (gadolinium oxysulfide - GOS) from a standard 290 μm to 1720 μm reduces noise to about 10%. However, 81% of this reduction is appreciated between 290 and 1000 μm. In comparing MLI and SLI detectors of equivalent individual GOS layer thickness, the improvement in noise is equal to the number of layers in the detector (i.e., 4) with almost no difference in MTF. Further, improvement in tracking performance was slightly less than the square-root of the reduction in noise, approximately 84-90%. In comparing an MLI detector with an SLI with a GOS scintillator of equivalent total thickness, improvement in object detectability is approximately 34-39%. We have presented a novel method for quantification of tumor tracking quality and have applied this model to evaluate the performance of SLI and MLI EPID designs. We showed that improved tracking quality is primarily limited by improvements in NPS. When compared to very thick scintillator SLI, employing MLI architecture exhibits the same gains in QDE, but by mitigating the effect of optical Swank noise, results in more dramatic improvements in tracking performance. © 2017 American Association of Physicists in Medicine.
MONITORING THE FUTURE (MTF) SURVEY
Monitoring The Future (MTF) is an ongoing study of the behaviors, attitudes, and values of American secondary school students, college students, and young adults, conducted by the University of Michigan's Institute for Social Research and funded by the National Institute on Drug ...
Pan, Patrick J; Bansal, Anshuman K; Genshaft, Scott J; Kim, Grace H; Suh, Robert D; Abtin, Fereidoun
2018-05-01
To determine size of ablation zone and pulmonary hemorrhage in double-freeze (DF) vs modified triple-freeze (mTF) cryoablation protocols with different probe sizes in porcine lung. In 10 healthy adult pigs, 20 pulmonary cryoablations were performed using either a 2.4-mm or a 1.7-mm probe. Either conventional DF or mTF protocol was used. Serial noncontrast CT scans were performed during ablations. Ablation iceball and hemorrhage volumes were measured and compared between protocols and probe sizes. With 1.7-mm probe, greater peak iceball volume was observed with DF compared with mTF, although difference was not statistically significant (16.1 mL ± 1.9 vs 8.8 mL ± 3.6, P = .07). With 2.4-mm probe, DF and mTF produced similar peak iceball volumes (14.0 mL ± 2.8 vs 14.6 mL ± 2.7, P = .88). Midcycle hemorrhage was significantly larger with DF with the 1.7-mm probe (94.3 mL ± 22.2 vs 19.6 mL ± 2.1, P = .02) and with both sizes combined (93.2 mL ± 17.5 vs. 50.9 mL ± 12.6, P = .048). Rate of hemorrhage increase was significantly higher in DF (10.4 mL/min vs 5.1 mL/min, P = .003). End-cycle hemorrhage was visibly larger in DF compared with mTF across probe sizes, although differences were not statistically significant (P = .14 for 1.7 mm probe, P = .18 for 2.4 mm probe, and P = .07 for both probes combined). Rate of increase in hemorrhage during the last thaw period was not statistically different between DF and mTF (3.0 mL/min vs 2.8 mL/min, P = .992). mTF reduced rate of midcycle hemorrhage compared with DF. With mTF, midcycle hemorrhage was significantly smaller with 1.7-mm probe; although noticeably smaller with 2.4-mm probe, statistical significance was not achieved. Iceball size was not significantly different across both protocols and probe types. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.
Sociodemographic Study of Danish Individuals Diagnosed with Transsexualism.
Simonsen, Rikke; Hald, Gert Martin; Giraldi, Annamaria; Kristensen, Ellids
2015-06-01
Male-to-female (MtF) and female-to-male (FtM) individuals with transsexualism (International Classification of Diseases-10) may differ in core clinical and sociodemographic variables such as age, sexual orientation, marriage and parenthood, school, educational level, and employment. Assessing and understanding the implication of such differences may be a key to developing appropriate and effective treatment and intervention strategies for this group. However, research in the area remains sparse and is often on small populations, making the generalization of results from current studies on individuals diagnosed with transsexualism difficult. (i) To describe and assess key sociodemographic and treatment-related differences between MtF and FtM individuals in a Danish population of individuals diagnosed with transsexualism; (ii) to assess possible implications of such difference, if any, for clinical treatment initiatives for individuals diagnosed with transsexualism. Follow-up of 108 individuals who had permission to undergo sex reassignment surgery (SRS, meaning castration and genital plastic surgery) over a 30-year period from 1978 to 2008 through the Gender Identity Unit in Copenhagen, Denmark. The individuals were identified through Social Security numbers. Clinical and sociodemographic data from medical records were collected. The sex ratio was 1.16:1 (MtF : FtM). Mean age at first referral was 26.9 (standard deviation [SD] 8.8) years for FtM and 30.2 (SD 9.7) for MtF individuals. Compared with MtF, FtM had a significantly lower onset age (before 12 years of age) and lower age when permission for SRS was granted. Further, FtM individuals were significantly more often gynephilic (sexually attracted to females) during research period and less likely to start self-initiated hormonal sex reassignment (SR) (treatment with cross-sex hormones). The MtF and FtM groups did not differ in years of school, educational level, employment, or engagement in marriage and cohabitation. As approximately half of MtF started cross-sex hormonal SR without attending a gender unit, future treatment needs to focus on this group of MtF individuals in order to accommodate the medical risks of self-initiated hormonal treatment.Earlier intervention with adolescents appears necessary since three-quarters of FtM individuals before age 12 had problems with their assigned sex. For both MtF and FtM, we found problems in areas of school, education, and employment and recommend further help in these core areas.
NASA Astrophysics Data System (ADS)
Tower, J. R.; Cope, A. D.; Pellion, L. E.; McCarthy, B. M.; Strong, R. T.; Kinnard, K. F.; Moldovan, A. G.; Levine, P. A.; Elabd, H.; Hoffman, D. M.
1985-12-01
Performance measurements of two Multispectral Linear Array focal planes are presented. Both pushbroom sensors have been developed for application in remote sensing instruments. A buttable, four-spectral-band, linear-format charge coupled device (CCD) and a but-table, two-spectral-band, linear-format, shortwave infrared charge coupled device (IRCCD) have been developed under NASA funding. These silicon integrated circuits may be butted end to end to provide very-high-resolution multispectral focal planes. The visible CCD is organized as four sensor lines of 1024 pixels each. Each line views the scene in a different spectral window defined by integral optical bandpass filters. A prototype focal plane with five devices, providing 4x5120-pixel resolution has been demonstrated. The high quantum efficiency of the backside-illuminated CCD technology provides excellent signal-to-noise performance and unusually high MTF across the entire visible and near-IR spectrum. The shortwave infrared (SWIR) sensor is organized as two line sensors of 512 detectors each. The SWIR (1-2.5 μm) spectral windows may be defined by bandpass filters placed in close proximity to the devices. The dual-band sensor consists of Schottky barrier detectors read out by CCD multiplexers. This monolithic sensor operates at 125°K with radiometric performance. A prototype five-device focal plane providing 2x2560 detectors has been demonstrated. The devices provide very high uniformity, and excellent MTF across the SWIR band.
Apollo 9 multiband photography experiment S065
NASA Technical Reports Server (NTRS)
Schowengerdt, R. A.; Slater, P. N.
1972-01-01
Fourier analysis was applied to microdensitometer scans of a selected region of one SO65 frame in each of the three black-and-white bands. The approach was unique because a somewhat arbitrary section of the image was used and not limited to available targets as in edge analysis. Comparison of duplicates and calculation of absolute SO65 MTF were done by applying linear systems theory to the spatial spectra of the image scans. It was found that the duplication process was nonlinear and resulted in general amplification of spatial frequency modulation. However, the increase in modulation was offset by a corresponding increase in the granularity of the copies. The amount of increase seemed to be related to the initial granularity, but a direct relationship was not verified. Band-to-band comparison of image quality was achieved in the form of signal-to-noise ratio curves as a function of spatial frequency for each band. From this standpoint the DD band was an order of magnitude better than the other two. These were several factors that restricted the analysis of the Apollo 9 imagery. Among these were the lack of precise sensitometric and optical system data on the high altitude photography. In addition it was determined that there was only one simultaneous pair of high altitude and SO65 frames. Finally, the original SO65 photography was not available for scanning (for obvious reasons), thus eliminating a reference base for granularity and SO65 MTF determination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjoeberg, J; Bujila, R; Omar, A
2015-06-15
Purpose: To measure and compare the performance of X-ray imaging detectors in a clinical setting using a dedicated instrument for the quantitative determination of detector performance. Methods: The DQEPro (DQE Instruments Inc., London, Ontario Canada) was used to determine the MTF, NPS and DQE using an IEC compliant methodology for three different imaging modalities: conventional radiography (CsI-based detector), general-purpose radioscopy (CsI-based detector), and mammography (a-Se based detector). The radiation qualities (IEC) RQA-5 and RQA-M-2 were used for the CsI-based and a-Se-based detectors, respectively. The DQEPro alleviates some of the difficulties associated with DQE measurements by automatically positioning test devices overmore » the detector, guiding the user through the image acquisition process and providing software for calculations. Results: A comparison of the NPS showed that the image noise of the a-Se detector was less correlated than the CsI detectors. A consistently higher performance was observed for the a-Se detector at all spatial frequencies (MTF: 0.97@0.25 cy/mm, DQE: 0.72@0.25 cy/mm) and the DQE drops off slower than for the CsI detectors. The CsI detector used for conventional radiography displayed a higher performance at low spatial frequencies compared to the CsI detector used for radioscopy (DQE: 0.65 vs 0.60@0.25 cy/mm). However, at spatial frequencies above 1.3 cy/mm, the radioscopy detector displayed better performance than the conventional radiography detector (DQE: 0.35 vs 0.24@2.00 cy/mm). Conclusion: The difference in the MTF, NPS and DQE that was observed for the two different CsI detectors and the a-Se detector reflect the imaging tasks that the different detector types are intended for. The DQEPro has made the determination and calculation of quantitative metrics of X-ray imaging detector performance substantially more convenient and accessible to undertake in a clinical setting.« less
Steiding, Christian; Kolditz, Daniel; Kalender, Willi A
2014-03-01
Thousands of cone-beam computed tomography (CBCT) scanners for vascular, maxillofacial, neurological, and body imaging are in clinical use today, but there is no consensus on uniform acceptance and constancy testing for image quality (IQ) and dose yet. The authors developed a quality assurance (QA) framework for fully automated and time-efficient performance evaluation of these systems. In addition, the dependence of objective Fourier-based IQ metrics on direction and position in 3D volumes was investigated for CBCT. The authors designed a dedicated QA phantom 10 cm in length consisting of five compartments, each with a diameter of 10 cm, and an optional extension ring 16 cm in diameter. A homogeneous section of water-equivalent material allows measuring CT value accuracy, image noise and uniformity, and multidimensional global and local noise power spectra (NPS). For the quantitative determination of 3D high-contrast spatial resolution, the modulation transfer function (MTF) of centrally and peripherally positioned aluminum spheres was computed from edge profiles. Additional in-plane and axial resolution patterns were used to assess resolution qualitatively. The characterization of low-contrast detectability as well as CT value linearity and artifact behavior was tested by utilizing sections with soft-tissue-equivalent and metallic inserts. For an automated QA procedure, a phantom detection algorithm was implemented. All tests used in the dedicated QA program were initially verified in simulation studies and experimentally confirmed on a clinical dental CBCT system. The automated IQ evaluation of volume data sets of the dental CBCT system was achieved with the proposed phantom requiring only one scan for the determination of all desired parameters. Typically, less than 5 min were needed for phantom set-up, scanning, and data analysis. Quantitative evaluation of system performance over time by comparison to previous examinations was also verified. The maximum percentage interscan variation of repeated measurements was less than 4% and 1.7% on average for all investigated quality criteria. The NPS-based image noise differed by less than 5% from the conventional standard deviation approach and spatially selective 10% MTF values were well comparable to subjective results obtained with 3D resolution pattern. Determining only transverse spatial resolution and global noise behavior in the central field of measurement turned out to be insufficient. The proposed framework transfers QA routines employed in conventional CT in an advanced version to CBCT for fully automated and time-efficient evaluation of technical equipment. With the modular phantom design, a routine as well as an expert version for assessing IQ is provided. The QA program can be used for arbitrary CT units to evaluate 3D imaging characteristics automatically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiding, Christian; Kolditz, Daniel; Kalender, Willi A., E-mail: willi.kalender@imp.uni-erlangen.de
Purpose: Thousands of cone-beam computed tomography (CBCT) scanners for vascular, maxillofacial, neurological, and body imaging are in clinical use today, but there is no consensus on uniform acceptance and constancy testing for image quality (IQ) and dose yet. The authors developed a quality assurance (QA) framework for fully automated and time-efficient performance evaluation of these systems. In addition, the dependence of objective Fourier-based IQ metrics on direction and position in 3D volumes was investigated for CBCT. Methods: The authors designed a dedicated QA phantom 10 cm in length consisting of five compartments, each with a diameter of 10 cm, andmore » an optional extension ring 16 cm in diameter. A homogeneous section of water-equivalent material allows measuring CT value accuracy, image noise and uniformity, and multidimensional global and local noise power spectra (NPS). For the quantitative determination of 3D high-contrast spatial resolution, the modulation transfer function (MTF) of centrally and peripherally positioned aluminum spheres was computed from edge profiles. Additional in-plane and axial resolution patterns were used to assess resolution qualitatively. The characterization of low-contrast detectability as well as CT value linearity and artifact behavior was tested by utilizing sections with soft-tissue-equivalent and metallic inserts. For an automated QA procedure, a phantom detection algorithm was implemented. All tests used in the dedicated QA program were initially verified in simulation studies and experimentally confirmed on a clinical dental CBCT system. Results: The automated IQ evaluation of volume data sets of the dental CBCT system was achieved with the proposed phantom requiring only one scan for the determination of all desired parameters. Typically, less than 5 min were needed for phantom set-up, scanning, and data analysis. Quantitative evaluation of system performance over time by comparison to previous examinations was also verified. The maximum percentage interscan variation of repeated measurements was less than 4% and 1.7% on average for all investigated quality criteria. The NPS-based image noise differed by less than 5% from the conventional standard deviation approach and spatially selective 10% MTF values were well comparable to subjective results obtained with 3D resolution pattern. Determining only transverse spatial resolution and global noise behavior in the central field of measurement turned out to be insufficient. Conclusions: The proposed framework transfers QA routines employed in conventional CT in an advanced version to CBCT for fully automated and time-efficient evaluation of technical equipment. With the modular phantom design, a routine as well as an expert version for assessing IQ is provided. The QA program can be used for arbitrary CT units to evaluate 3D imaging characteristics automatically.« less
Theory of lidar method for measurement of the modulation transfer function of water layers.
Dolin, Lev S
2013-01-10
We develop a method to evaluate the modulation transfer function (MTF) of a water layer from the characteristics of lidar signal backscattered by water volume. We propose several designs of a lidar system for remote measurement of the MTF and the procedure to determine optical properties of water using the measured MTF. We discuss a laser system for sea-bottom imaging that accounts for the influence of water slab on the image structure and allows for correction of image distortions caused by light scattering in water. © 2013 Optical Society of America
NASA Astrophysics Data System (ADS)
Han, Lu; Gao, Kun; Gong, Chen; Zhu, Zhenyu; Guo, Yue
2017-08-01
On-orbit Modulation Transfer Function (MTF) is an important indicator to evaluate the performance of the optical remote sensors in a satellite. There are many methods to estimate MTF, such as pinhole method, slit method and so on. Among them, knife-edge method is quite efficient, easy-to-use and recommended in ISO12233 standard for the wholefrequency MTF curve acquisition. However, the accuracy of the algorithm is affected by Edge Spread Function (ESF) fitting accuracy significantly, which limits the range of application. So in this paper, an optimized knife-edge method using Powell algorithm is proposed to improve the ESF fitting precision. Fermi function model is the most popular ESF fitting model, yet it is vulnerable to the initial values of the parameters. Considering the characteristics of simple and fast convergence, Powell algorithm is applied to fit the accurate parameters adaptively with the insensitivity to the initial parameters. Numerical simulation results reveal the accuracy and robustness of the optimized algorithm under different SNR, edge direction and leaning angles conditions. Experimental results using images of the camera in ZY-3 satellite show that this method is more accurate than the standard knife-edge method of ISO12233 in MTF estimation.
Lawrence, Anne A
2007-01-01
The increasing prevalence of male-to-female (MtF) transsexualism in Western countries is largely due to the growing number of MtF transsexuals who have a history of sexual arousal with cross-dressing or cross-gender fantasy. Ray Blanchard proposed that these transsexuals have a paraphilia he called autogynephilia, which is the propensity to be sexually aroused by the thought or image of oneself as female. Autogynephilia defines a transsexual typology and provides a theory of transsexual motivation, in that Blanchard proposed that MtF transsexuals are either sexually attracted exclusively to men (homosexual) or are sexually attracted primarily to the thought or image of themselves as female (autogynephilic), and that autogynephilic transsexuals seek sex reassignment to actualize their autogynephilic desires. Despite growing professional acceptance, Blanchard's formulation is rejected by some MtF transsexuals as inconsistent with their experience. This rejection, I argue, results largely from the misconception that autogynephilia is a purely erotic phenomenon. Autogynephilia can more accurately be conceptualized as a type of sexual orientation and as a variety of romantic love, involving both erotic and affectional or attachment-based elements. This broader conception of autogynephilia addresses many of the objections to Blanchard's theory and is consistent with a variety of clinical observations concerning autogynephilic MtF transsexualism.
Characteristic of x-ray tomography performance using CdTe timepix detector
NASA Astrophysics Data System (ADS)
Zain, R. M.; O'Shea, V.; Maneuski, D.
2017-01-01
X-ray Computed Tomography (CT) is a non-destructive technique for visualizing interior features within solid objects, and for obtaining digital information on their 3-D geometries and properties. The selection of CdTe Timepix detector has a sufficient performance of imaging detector is based on quality of detector performance and energy resolution. The study of Modulation Transfer Function (MTF) shows a 70% contrast at 4 lp/mm was achieved for the 55 µm pixel pitch detector with the 60 kVp X-ray tube and 5 keV noise level. No significant degradation in performance was observed for X-ray tube energies of 20 - 60 keV. The paper discusses the application of the CdTe Timepix detector to produce a good quality image of X-ray tomography imaging.
NASA Astrophysics Data System (ADS)
Wang, Y.; Hu, X.; Yang, X.; Xie, G.
2018-04-01
The image quality of the surveying camera will affect the stereoscopic positioning accuracy of the remote sensing satellite. The key factors closely related to the image quality are Modulation Transfer Function(MTF),Signal to Noise Ratio(SNR) and Quantization Bits(QB). In "Mapping Satellite-1" image as the background, research the effect of positioning precision about the image quality in no ground controlled conditions, and evaluate the quantitative relationship with the positioning precision. At last verify the validity of the experimental results by simulating three factors of the degraded data on orbit, and counting the number of matching points, the mismatch rate, and the matching residuals of the degraded data. The reason for the variety of the positioning precision was analyzed.
Comparison of interpolation functions to improve a rebinning-free CT-reconstruction algorithm.
de las Heras, Hugo; Tischenko, Oleg; Xu, Yuan; Hoeschen, Christoph
2008-01-01
The robust algorithm OPED for the reconstruction of images from Radon data has been recently developed. This reconstructs an image from parallel data within a special scanning geometry that does not need rebinning but only a simple re-ordering, so that the acquired fan data can be used directly for the reconstruction. However, if the number of rays per fan view is increased, there appear empty cells in the sinogram. These cells need to be filled by interpolation before the reconstruction can be carried out. The present paper analyzes linear interpolation, cubic splines and parametric (or "damped") splines for the interpolation task. The reconstruction accuracy in the resulting images was measured by the Normalized Mean Square Error (NMSE), the Hilbert Angle, and the Mean Relative Error. The spatial resolution was measured by the Modulation Transfer Function (MTF). Cubic splines were confirmed to be the most recommendable method. The reconstructed images resulting from cubic spline interpolation show a significantly lower NMSE than the ones from linear interpolation and have the largest MTF for all frequencies. Parametric splines proved to be advantageous only for small sinograms (below 50 fan views).
Viral hepatitis screening in transgender patients undergoing gender identity hormonal therapy.
Mangla, Neeraj; Mamun, Rifat; Weisberg, Ilan S
2017-11-01
Viral hepatitis is a global health issue and can lead to cirrhosis, liver failure, and hepatocellular carcinoma. Guidelines for viral hepatitis screening in the transgender population do not exist. Transgender patients may be at higher risk for contracting viral hepatitis due to socioeconomic and behavioral factors. The aim of this study was to measure the quality of screening, prevalence, and susceptibility of viral hepatitis, and to identify barriers to screening in transgender patients undergoing gender identity hormonal therapy. LGBTQ-friendly clinic visits from transgender patients older than 18 years in New York City from 2012 to 2015 were reviewed. Approximately 13% of patients were screened for any viral hepatitis on initial consultation. Screening rates for hepatitis C virus (HCV), hepatitis B virus (HBV), and hepatitis A virus (HAV) at any point were 27, 22, and 20%. HAV screening was performed in 28% of the female to male (FtM) patients and 16% of male to female (MtF) (P<0.05) patients. HBV screening was performed in 30% of FtM patients and 18% of MtF patients (P<0.05). Thirty-one percent of FtM, 24% of MtF, and 17% of genderqueer patients were tested for HCV (P>0.05). Prevalence of HCV, HBV, and HIV in FtM was 0, 0, and 0.44% and that in MtF was 1.78, 0.89, and 1.78%, respectively. Percentage of patients immune to hepatitis A in FtM and MtF subgroups were 55 and 47% (P>0.05). Percentage of patients immune to HBV in FtM and MtF subgroups were 54 and 48% (P>0.05). This study indicates a significant lack of hepatitis screening in the transgender population and a concerning proportion of patients susceptible to disease.
Mirmirani, P; Consolo, M; Oyetakin-White, P; Baron, E; Leahy, P; Karnik, P
2015-06-01
There are regional variations in the scalp hair miniaturization seen in androgenetic alopecia (AGA). Use of topical minoxidil can lead to reversal of miniaturization in the vertex scalp. However, its effects on other scalp regions have been less well studied. To determine whether scalp biopsies from men with AGA show variable gene expression before and after 8 weeks of treatment with minoxidil topical foam 5% (MTF) vs. placebo. A placebo-controlled double-blinded prospective pilot study of MTF vs. placebo was conducted in 16 healthy men aged 18-49 years with Hamilton-Norwood type IV-V thinning. The subjects were asked to apply the treatment (active drug or placebo) to the scalp twice daily for 8 weeks. Stereotactic scalp photographs were taken at the baseline and final visits, to monitor global hair growth. Scalp biopsies were taken at the leading edge of hair loss from the frontal and vertex scalp before and after treatment with MTF and placebo, and microarray analysis was performed using the Affymetrix GeneChip HG U133 Plus 2.0. Global stereotactic photographs showed that MTF induced hair growth in both the frontal and vertex scalp of patients with AGA. Regional differences in gene expression profiles were observed before treatment. However, MTF treatment induced the expression of hair keratin-associated genes and decreased the expression of epidermal differentiation complex and inflammatory genes in both scalp regions. These data suggest that MTF is effective in the treatment of both the frontal and vertex scalp of patients with AGA. © 2014 British Association of Dermatologists.
Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samulyak, Roman V.; Brookhaven National Lab.; Parks, Paul
The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy.more » High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.« less
Association study of ERβ, AR, and CYP19A1 genes and MtF transsexualism.
Fernández, Rosa; Esteva, Isabel; Gómez-Gil, Esther; Rumbo, Teresa; Almaraz, Mari Cruz; Roda, Ester; Haro-Mora, Juan-Jesús; Guillamón, Antonio; Pásaro, Eduardo
2014-12-01
The etiology of male-to-female (MtF) transsexualism is unknown. Both genetic and neurological factors may play an important role. To investigate the possible influence of the genetic factor on the etiology of MtF transsexualism. We carried out a cytogenetic and molecular analysis in 442 MtFs and 473 healthy, age- and geographical origin-matched XY control males. The karyotype was investigated by G-banding and by high-density array in the transsexual group. The molecular analysis involved three tandem variable regions of genes estrogen receptor β (ERβ) (CA tandem repeats in intron 5), androgen receptor (AR) (CAG tandem repeats in exon 1), and CYP19A1 (TTTA tandem repeats in intron 4). The allele and genotype frequencies, after division into short and long alleles, were obtained. We investigated the association between genotype and transsexualism by performing a molecular analysis of three variable regions of genes ERβ, AR, and CYP19A1 in 915 individuals (442 MtFs and 473 control males). Most MtFs showed an unremarkable 46,XY karyotype (97.96%). No specific chromosome aberration was associated with MtF transsexualism, and prevalence of aneuploidy (2.04%) was slightly higher than in the general population. Molecular analyses showed no significant difference in allelic or genotypic distribution of the genes examined between MtFs and controls. Moreover, molecular findings presented no evidence of an association between the sex hormone-related genes (ERβ, AR, and CYP19A1) and MtF transsexualism. The study suggests that the analysis of karyotype provides limited information in these subjects. Variable regions analyzed from ERβ, AR, and CYP19A1 are not associated with MtF transsexualism. Nevertheless, this does not exclude other polymorphic regions not analyzed. © 2014 International Society for Sexual Medicine.
Image quality evaluation of color displays using a Fovean color camera
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Dallas, William J.; Fan, Jiahua; Krupinski, Elizabeth A.; Redford, Gary R.; Yoneda, Takahiro
2007-03-01
This paper presents preliminary data on the use of a color camera for the evaluation of Quality Control (QC) and Quality Analysis (QA) of a color LCD in comparison with that of a monochrome LCD. The color camera is a C-MOS camera with a pixel size of 9 µm and a pixel matrix of 2268 × 1512 × 3. The camera uses a sensor that has co-located pixels for all three primary colors. The imaging geometry used mostly was 12 × 12 camera pixels per display pixel even though it appears that an imaging geometry of 17.6 might provide results which are more accurate. The color camera is used as an imaging colorimeter, where each camera pixel is calibrated to serve as a colorimeter. This capability permits the camera to determine chromaticity of the color LCD at different sections of the display. After the color calibration with a CS-200 colorimeter the color coordinates of the display's primaries determined from the camera's luminance response are very close to those found from the CS-200. Only the color coordinates of the display's white point were in error. Modulation Transfer Function (MTF) as well as Noise in terms of the Noise Power Spectrum (NPS) of both LCDs were evaluated. The horizontal MTFs of both displays have a larger negative slope than the vertical MTFs, indicating that the horizontal MTFs are poorer than the vertical MTFs. However the modulations at the Nyquist frequency seem lower for the color LCD than for the monochrome LCD. These results contradict simulations regarding MTFs in the vertical direction. The spatial noise of the color display in both directions are larger than that of the monochrome display. Attempts were also made to analyze the total noise in terms of spatial and temporal noise by applying subtractions of images taken at exactly the same exposure. Temporal noise seems to be significantly lower than spatial noise.
Influence of range-gated intensifiers on underwater imaging system SNR
NASA Astrophysics Data System (ADS)
Wang, Xia; Hu, Ling; Zhi, Qiang; Chen, Zhen-yue; Jin, Wei-qi
2013-08-01
Range-gated technology has been a hot research field in recent years due to its high effective back scattering eliminating. As a result, it can enhance the contrast between a target and its background and extent the working distance of the imaging system. The underwater imaging system is required to have the ability to image in low light level conditions, as well as the ability to eliminate the back scattering effect, which means that the receiver has to be high-speed external trigger function, high resolution, high sensitivity, low noise, higher gain dynamic range. When it comes to an intensifier, the noise characteristics directly restrict the observation effect and range of the imaging system. The background noise may decrease the image contrast and sharpness, even covering the signal making it impossible to recognize the target. So it is quite important to investigate the noise characteristics of intensifiers. SNR is an important parameter reflecting the noise features of a system. Through the use of underwater laser range-gated imaging prediction model, and according to the linear SNR system theory, the gated imaging noise performance of the present market adopted super second generation and generation Ⅲ intensifiers were theoretically analyzed. Based on the active laser underwater range-gated imaging model, the effect to the system by gated intensifiers and the relationship between the system SNR and MTF were studied. Through theoretical and simulation analysis to the image intensifier background noise and SNR, the different influence on system SNR by super second generation and generation Ⅲ ICCD was obtained. Range-gated system SNR formula was put forward, and compared the different effect influence on the system by using two kind of ICCDs was compared. According to the matlab simulation, a detailed analysis was carried out theoretically. All the work in this paper lays a theoretical foundation to further eliminating back scattering effect, improving image SNR, designing and manufacturing higher performance underwater range-gated imaging systems.
Imaging quality evaluation method of pixel coupled electro-optical imaging system
NASA Astrophysics Data System (ADS)
He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui
2017-09-01
With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.
Wang, Ling-li; Ren, Wei; Cheng, Qing-feng; Fan, Xiao-dong
2012-09-01
To evaluate the efficacy of metformin (MTF) in treatment of clomiphene (CC)-resistant patients with polycystic ovary syndrome (PCOS). The published articles of randomized controlled trial (RCT) of comparison of MTF combined with CC and CC alone in treatment of CC-resistant PCOS were searched in PubMed, EMBASE, OVID, EBSCO databases and Cochrane Library, and these studies were screened under inclusion and exclusion criteria. The quality of included studies and extract data of comparison of ovulation rates and pregnancy rates were evaluated. And the Meta-analysis using statistic software RevMan 5.0 was completed. Total of 333 patients in total 8 trials were included. Meta analysis showed that MTF plus CC led to a significantly higher clinical ovulation rate (OR = 7.31, 95%CI: 2.57 - 20.76, P < 0.05) and pregnancy rate (OR = 7.93, 95%CI: 2.45 - 25.63, P < 0.05) than that of CC alone. MTF can increase ovulation and pregnancy rates of CC-resistant PCOS women.
NASA Astrophysics Data System (ADS)
Minami, Setsuo; Ogawa, Ryota
1980-09-01
Consequences of the working project formed in JOERA (JAPAN OPTICAL ENGINEERING RESEARCH ASSOCIATION) from 1976 to 1978 are to be reported. The question, "What is the most reasonable number of mesh divides of entrance pupil to get monochromatic OTF and the most economical sampling method of spectral wavelengths to calculate White Light MTF?" is important in the actual stage of designing to optimize the conflict relationship between numerical accuracy and computing time. We have examined the spectral characteristics of OTF using some typical lenses such as photographic telephoto lens and wide angled retrofocus lens, cleared the structure of the White Light MTF, and found some techniques to get the reasonable numerical results. As a result of trial experiments to get coincidence between measurements and calculat-ions, the standard filter, which should be added to the MTF lens tester and whose spectral transmittance should be installed in the calculation, are proposed.
Increased Cortical Thickness in Male-to-Female Transsexualism.
Luders, Eileen; Sánchez, Francisco J; Tosun, Duygu; Shattuck, David W; Gaser, Christian; Vilain, Eric; Toga, Arthur W
2012-08-01
The degree to which one identifies as male or female has a profound impact on one's life. Yet, there is a limited understanding of what contributes to this important characteristic termed gender identity . In order to reveal factors influencing gender identity, studies have focused on people who report strong feelings of being the opposite sex, such as male-to-female (MTF) transsexuals. To investigate potential neuroanatomical variations associated with transsexualism, we compared the regional thickness of the cerebral cortex between 24 MTF transsexuals who had not yet been treated with cross-sex hormones and 24 age-matched control males. Results revealed thicker cortices in MTF transsexuals, both within regions of the left hemisphere (i.e., frontal and orbito-frontal cortex, central sulcus, perisylvian regions, paracentral gyrus) and right hemisphere (i.e., pre-/post-central gyrus, parietal cortex, temporal cortex, precuneus, fusiform, lingual, and orbito-frontal gyrus). These findings provide further evidence that brain anatomy is associated with gender identity, where measures in MTF transsexuals appear to be shifted away from gender-congruent men.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Rong; Lamb, Sherry S.; Zakeri, Bijan
2009-06-01
There is a considerable interest in the modification of existing antibiotics to generate new antimicrobials. Glycopeptide antibiotics (GPAs) are effective against serious Gram-positive bacterial pathogens including methicillin-resistant Staphylococcus aureus. However, resistance to these antibiotics is becoming a serious problem requiring new strategies. We show that the Amycolatopsis orientalis (S)-adenosyl-L-methionine-dependent methyltransferase MtfA, from the vancomycin-class GPA chloroeremomycin biosynthetic pathway, catalyzes in vivo and in vitro methyl transfer to generate methylated GPA derivatives of the teicoplanin class. The crystal structure of MtfA complexed with (S)-adenosyl-L-methionine, (S)-adenosylhomocysteine, or sinefungin inhibitor, coupled with mutagenesis, identified His228 as a likely general base required for methylmore » transfer to the N terminus of the glycopeptide. Computational docking and molecular dynamics simulations were used to model binding of demethyl-vancomycin aglycone to MtfA. These results demonstrate its utility as a tool for engineering methylated analogs of GPAs.« less
Lee, Shinwook; Choi, Myoung; Xu, Zaiwei; Zhao, Zeyu; Alexander, Elsinore; Liu, Yueai
2016-01-01
Purpose The purpose of this study is to compare the optical characteristics of the novel PanOptix presbyopia-correcting trifocal intraocular lens (IOL) and the multifocal ReSTOR +3.0 D IOL, through in vitro bench investigations. Methods The optical characteristics of AcrySof® IQ PanOptix™ (PanOptix) and AcrySof® IQ ReSTOR +3.0 D (ReSTOR +3.0 D) IOLs were evaluated by through-focus Badal images, simulated headlight images, and modulation transfer function (MTF) measurements which determine resolution, photic phenomena, and image quality. Through-focus Badal images of an Early Treatment of Diabetic Retinopathy Study chart were recorded at both photopic and mesopic pupil sizes. Simulated headlight images were taken on an MTF bench with a 50-μm pinhole target and a 5.0 mm pupil at the distance focus of the IOL. MTF curves were measured with a 3.0 mm pupil, and spatial frequencies equivalent to 20/40 and 20/20 visual acuities were recorded to illustrate the through-focus MTF curves. Far-, intermediate-, and near-focus MTF values were obtained. Results Bench Badal image testing and MTF measurements showed that PanOptix has a near focus at a distance of 42 cm and an additional intermediate focus at a distance of about 60 cm. The near focus for ReSTOR +3.0 D is at 45 cm. PanOptix and ReSTOR +3.0 D have comparable photopic distances and near MTF values. Additionally, PanOptix provided a substantial continuous range of vision from distance to intermediate and to near compared with ReSTOR +3.0 D. The halo propensity for PanOptix was slightly higher than that for ReSTOR +3.0 D. Conclusion Laboratory-based in vitro simulations showed that PanOptix trifocal IOL has comparable resolution and image quality performance in distance and near foci compared with ReSTOR +3.0 D IOL. PanOptix showed better resolution and image quality performance at the intermediate focus than ReSTOR +3.0 D IOL. PMID:27330273
Biological indicators for monitoring water quality of MTF canals system
NASA Technical Reports Server (NTRS)
Sethi, S. L.
1975-01-01
Biological models, diversity indexes, were developed to predict environmental effects of NASA's Mississippi test facility (MTF) chemical operations on canal systems in the area. To predict the effects on local streams, a physical model of unpolluted streams was established. The model is fed by artesian well water free of background levels of pollutants. The species diversity and biota composition of unpolluted MTF stream was determined; resulting information will be used to form baseline data for future comparisons. Biological modeling was accomplished by adding controlled quantities or kinds of chemical pollutants and evaluating the effects of these chemicals on the biological life of the stream.
Reisner, Sari L; Vetters, Ralph; White, Jaclyn M; Cohen, Elijah L; LeClerc, M; Zaslow, Shayne; Wolfrum, Sarah; Mimiaga, Matthew J
2015-01-01
The sexual health of transgender adolescents and young adults who present for health care in urban community health centers is understudied. A retrospective review of electronic health record (EHR) data was conducted from 180 transgender patients aged 12-29 years seen for one or more health-care visits between 2001 and 2010 at an urban community health center serving youth in Boston, MA. Analyses were restricted to 145 sexually active transgender youth (87.3% of the sample). Laboratory-confirmed HIV and sexually transmitted infections (STIs) seroprevalence, demographics, sexual risk behavior, and structural and psychosocial risk indicators were extracted from the EHR. Analyses were descriptively focused for HIV and STIs. Stratified multivariable logistic regression models were fit for male-to-female (MTF) and female-to-male (FTM) patients separately to examine factors associated with any unprotected anal and/or vaginal sex (UAVS). The mean age was 20.0 (SD=2.9); 21.7% people of color, 46.9% white (non-Hispanic), 21.4% race/ethnicity unknown; 43.4% MTF, and 56.6% FTM; and 68.3% were on cross-sex hormones. Prevalence of STIs: 4.8% HIV, 2.8% herpes simplex virus, 2.8% syphilis, 2.1% chlamydia, 2.1% gonorrhea, 2.8% hepatitis C, 1.4% human papilloma virus. Only gonorrhea prevalence significantly differed by gender identity (MTF 2.1% vs. 0.0% FTM; p=0.046). Nearly half (47.6%) of the sample engaged in UAVS (52.4% MTF, 43.9% FTM, p=0.311). FTM more frequently had a primary sex partner compared to MTF (48.8% vs. 25.4%; p=0.004); MTF more frequently had a casual sex partner than FTM (69.8% vs. 42.7% p=0.001). In multivariable models, MTF youth who were younger in age, white non-Hispanic, and reported a primary sex partner had increased odds of UAVS; whereas, FTM youth reporting a casual sex partner and current alcohol use had increased odds of UAVS (all p<0.05). Factors associated with sexual risk differ for MTF and FTM youth. Partner type appears pivotal to understanding sexual risk in transgender adolescents and young adults. HIV and STI prevention efforts, including early intervention efforts, are needed in community-based settings serving transgender youth that attend to sex-specific (biological) and gender-related (social) pathways.
Sociodemographic Study of Danish Individuals Diagnosed with Transsexualism
Simonsen, Rikke; Hald, Gert Martin; Giraldi, Annamaria; Kristensen, Ellids
2015-01-01
Introduction Male-to-female (MtF) and female-to-male (FtM) individuals with transsexualism (International Classification of Diseases-10) may differ in core clinical and sociodemographic variables such as age, sexual orientation, marriage and parenthood, school, educational level, and employment. Assessing and understanding the implication of such differences may be a key to developing appropriate and effective treatment and intervention strategies for this group. However, research in the area remains sparse and is often on small populations, making the generalization of results from current studies on individuals diagnosed with transsexualism difficult. Aims (i) To describe and assess key sociodemographic and treatment-related differences between MtF and FtM individuals in a Danish population of individuals diagnosed with transsexualism; (ii) to assess possible implications of such difference, if any, for clinical treatment initiatives for individuals diagnosed with transsexualism. Methods Follow-up of 108 individuals who had permission to undergo sex reassignment surgery (SRS, meaning castration and genital plastic surgery) over a 30-year period from 1978 to 2008 through the Gender Identity Unit in Copenhagen, Denmark. The individuals were identified through Social Security numbers. Clinical and sociodemographic data from medical records were collected. Results The sex ratio was 1.16:1 (MtF : FtM). Mean age at first referral was 26.9 (standard deviation [SD] 8.8) years for FtM and 30.2 (SD 9.7) for MtF individuals. Compared with MtF, FtM had a significantly lower onset age (before 12 years of age) and lower age when permission for SRS was granted. Further, FtM individuals were significantly more often gynephilic (sexually attracted to females) during research period and less likely to start self-initiated hormonal sex reassignment (SR) (treatment with cross-sex hormones). The MtF and FtM groups did not differ in years of school, educational level, employment, or engagement in marriage and cohabitation. Conclusions As approximately half of MtF started cross-sex hormonal SR without attending a gender unit, future treatment needs to focus on this group of MtF individuals in order to accommodate the medical risks of self-initiated hormonal treatment.Earlier intervention with adolescents appears necessary since three-quarters of FtM individuals before age 12 had problems with their assigned sex. For both MtF and FtM, we found problems in areas of school, education, and employment and recommend further help in these core areas. PMID:26185676
Stress-coping strategies of patients with gender identity disorder.
Matsumoto, Yosuke; Sato, Toshiki; Ohnishi, Masaru; Kishimoto, Yuki; Terada, Seishi; Kuroda, Shigetoshi
2009-12-01
Previous research has not addressed gender differences in coping strategies among patients with gender identity disorder (GID). Nor has the relationship of coping strategies to other demographic characteristics ever been clarified in GID. In this study, we tried to clarify the relationship between stress-coping strategies and demographic characteristics among patients with GID. The coping strategies of 344 patients with GID [227 female-to-male (FTM) and 117 male-to-female (MTF)] were assessed using the Japanese version of the Ways of Coping Questionnaires, Lazarus Stress-coping Inventory. Comparison of the stress-coping inventory between MTF and FTM GID patients revealed that FTM GID patients were significantly more reliant on positive reappraisal strategies in stressful situations than MTF GID patients (P = 0.007). The difference in the usage of positive reappraisal strategies between MTF and FTM type GID patients was not explained by other demographic characteristics, and we suppose that the gender difference in GID patients might influence the usage of positive reappraisal strategies. The ratio of FTM GID patients might be higher at our center because MTF GID patients can obtain vaginoplasty easily, whereas phalloplasty surgery for FTM GID patients is performed at only a few centers, including our clinic, in Japan. As a result, more FTM GID patients come to our clinic with a clear intention to undergo sexual rearrangement surgery, which might influence the gender difference in using positive reappraisal.
A hyperspectral image optimizing method based on sub-pixel MTF analysis
NASA Astrophysics Data System (ADS)
Wang, Yun; Li, Kai; Wang, Jinqiang; Zhu, Yajie
2015-04-01
Hyperspectral imaging is used to collect tens or hundreds of images continuously divided across electromagnetic spectrum so that the details under different wavelengths could be represented. A popular hyperspectral imaging methods uses a tunable optical band-pass filter settled in front of the focal plane to acquire images of different wavelengths. In order to alleviate the influence of chromatic aberration in some segments in a hyperspectral series, in this paper, a hyperspectral optimizing method uses sub-pixel MTF to evaluate image blurring quality was provided. This method acquired the edge feature in the target window by means of the line spread function (LSF) to calculate the reliable position of the edge feature, then the evaluation grid in each line was interpolated by the real pixel value based on its relative position to the optimal edge and the sub-pixel MTF was used to analyze the image in frequency domain, by which MTF calculation dimension was increased. The sub-pixel MTF evaluation was reliable, since no image rotation and pixel value estimation was needed, and no artificial information was introduced. With theoretical analysis, the method proposed in this paper is reliable and efficient when evaluation the common images with edges of small tilt angle in real scene. It also provided a direction for the following hyperspectral image blurring evaluation and the real-time focal plane adjustment in real time in related imaging system.
Accurate and cost-effective MTF measurement system for lens modules of digital cameras
NASA Astrophysics Data System (ADS)
Chang, Gao-Wei; Liao, Chia-Cheng; Yeh, Zong-Mu
2007-01-01
For many years, the widening use of digital imaging products, e.g., digital cameras, has given rise to much attention in the market of consumer electronics. However, it is important to measure and enhance the imaging performance of the digital ones, compared to that of conventional cameras (with photographic films). For example, the effect of diffraction arising from the miniaturization of the optical modules tends to decrease the image resolution. As a figure of merit, modulation transfer function (MTF) has been broadly employed to estimate the image quality. Therefore, the objective of this paper is to design and implement an accurate and cost-effective MTF measurement system for the digital camera. Once the MTF of the sensor array is provided, that of the optical module can be then obtained. In this approach, a spatial light modulator (SLM) is employed to modulate the spatial frequency of light emitted from the light-source. The modulated light going through the camera under test is consecutively detected by the sensors. The corresponding images formed from the camera are acquired by a computer and then, they are processed by an algorithm for computing the MTF. Finally, through the investigation on the measurement accuracy from various methods, such as from bar-target and spread-function methods, it appears that our approach gives quite satisfactory results.
Dodge, Cristina T.; Tamm, Eric P.; Cody, Dianna D.; Liu, Xinming; Jensen, Corey T.; Wei, Wei; Kundra, Vikas
2016-01-01
The purpose of this study was to characterize image quality and dose performance with GE CT iterative reconstruction techniques, adaptive statistical iterative reconstruction (ASiR), and model‐based iterative reconstruction (MBIR), over a range of typical to low‐dose intervals using the Catphan 600 and the anthropomorphic Kyoto Kagaku abdomen phantoms. The scope of the project was to quantitatively describe the advantages and limitations of these approaches. The Catphan 600 phantom, supplemented with a fat‐equivalent oval ring, was scanned using a GE Discovery HD750 scanner at 120 kVp, 0.8 s rotation time, and pitch factors of 0.516, 0.984, and 1.375. The mA was selected for each pitch factor to achieve CTDIvol values of 24, 18, 12, 6, 3, 2, and 1 mGy. Images were reconstructed at 2.5 mm thickness with filtered back‐projection (FBP); 20%, 40%, and 70% ASiR; and MBIR. The potential for dose reduction and low‐contrast detectability were evaluated from noise and contrast‐to‐noise ratio (CNR) measurements in the CTP 404 module of the Catphan. Hounsfield units (HUs) of several materials were evaluated from the cylinder inserts in the CTP 404 module, and the modulation transfer function (MTF) was calculated from the air insert. The results were confirmed in the anthropomorphic Kyoto Kagaku abdomen phantom at 6, 3, 2, and 1 mGy. MBIR reduced noise levels five‐fold and increased CNR by a factor of five compared to FBP below 6 mGy CTDIvol, resulting in a substantial improvement in image quality. Compared to ASiR and FBP, HU in images reconstructed with MBIR were consistently lower, and this discrepancy was reversed by higher pitch factors in some materials. MBIR improved the conspicuity of the high‐contrast spatial resolution bar pattern, and MTF quantification confirmed the superior spatial resolution performance of MBIR versus FBP and ASiR at higher dose levels. While ASiR and FBP were relatively insensitive to changes in dose and pitch, the spatial resolution for MBIR improved with increasing dose and pitch. Unlike FBP, MBIR and ASiR may have the potential for patient imaging at around 1 mGy CTDIvol. The improved low‐contrast detectability observed with MBIR, especially at low‐dose levels, indicate the potential for considerable dose reduction. PACS number(s): 87.57.Q‐, 87.57,nf, 87.57.C‐, 87.57.cj, 87.57.cf, 87.57.cm, 87.57.uq PMID:27074454
NASA Astrophysics Data System (ADS)
Gang, Grace J.; Siewerdsen, Jeffrey H.; Webster Stayman, J.
2017-06-01
Tube current modulation (TCM) is routinely adopted on diagnostic CT scanners for dose reduction. Conventional TCM strategies are generally designed for filtered-backprojection (FBP) reconstruction to satisfy simple image quality requirements based on noise. This work investigates TCM designs for model-based iterative reconstruction (MBIR) to achieve optimal imaging performance as determined by a task-based image quality metric. Additionally, regularization is an important aspect of MBIR that is jointly optimized with TCM, and includes both the regularization strength that controls overall smoothness as well as directional weights that permits control of the isotropy/anisotropy of the local noise and resolution properties. Initial investigations focus on a known imaging task at a single location in the image volume. The framework adopts Fourier and analytical approximations for fast estimation of the local noise power spectrum (NPS) and modulation transfer function (MTF)—each carrying dependencies on TCM and regularization. For the single location optimization, the local detectability index (d‧) of the specific task was directly adopted as the objective function. A covariance matrix adaptation evolution strategy (CMA-ES) algorithm was employed to identify the optimal combination of imaging parameters. Evaluations of both conventional and task-driven approaches were performed in an abdomen phantom for a mid-frequency discrimination task in the kidney. Among the conventional strategies, the TCM pattern optimal for FBP using a minimum variance criterion yielded a worse task-based performance compared to an unmodulated strategy when applied to MBIR. Moreover, task-driven TCM designs for MBIR were found to have the opposite behavior from conventional designs for FBP, with greater fluence assigned to the less attenuating views of the abdomen and less fluence to the more attenuating lateral views. Such TCM patterns exaggerate the intrinsic anisotropy of the MTF and NPS as a result of the data weighting in MBIR. Directional penalty design was found to reinforce the same trend. The task-driven approaches outperform conventional approaches, with the maximum improvement in d‧ of 13% given by the joint optimization of TCM and regularization. This work demonstrates that the TCM optimal for MBIR is distinct from conventional strategies proposed for FBP reconstruction and strategies optimal for FBP are suboptimal and may even reduce performance when applied to MBIR. The task-driven imaging framework offers a promising approach for optimizing acquisition and reconstruction for MBIR that can improve imaging performance and/or dose utilization beyond conventional imaging strategies.
Present tendencies in equipment noise normalization. [permissible sound level standards
NASA Technical Reports Server (NTRS)
Sternberg, A.
1974-01-01
The importance of equipment noise normalization in the complex of measures aimed at reducing noise in work spaces, as well as the necessity of correlating these norms with the criteria that establish the noxious values of noise for man are outlined.
A Procedure for High Resolution Satellite Imagery Quality Assessment
Crespi, Mattia; De Vendictis, Laura
2009-01-01
Data products generated from High Resolution Satellite Imagery (HRSI) are routinely evaluated during the so-called in-orbit test period, in order to verify if their quality fits the desired features and, if necessary, to obtain the image correction parameters to be used at the ground processing center. Nevertheless, it is often useful to have tools to evaluate image quality also at the final user level. Image quality is defined by some parameters, such as the radiometric resolution and its accuracy, represented by the noise level, and the geometric resolution and sharpness, described by the Modulation Transfer Function (MTF). This paper proposes a procedure to evaluate these image quality parameters; the procedure was implemented in a suitable software and tested on high resolution imagery acquired by the QuickBird, WorldView-1 and Cartosat-1 satellites. PMID:22412312
Lechuga, Lawrence; Weidlich, Georg A
2016-09-12
A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.
Weidlich, Georg A.
2016-01-01
A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404
Latest improvements on long wave p on n HgCdTe technology at Sofradir
NASA Astrophysics Data System (ADS)
Rubaldo, Laurent; Taalat, Rachid; Berthoz, Jocelyn; Maillard, Magalie; Péré-Laperne, Nicolas; Brunner, Alexandre; Guinedor, Pierre; Dargent, L.; Manissadjian, A.; Reibel, Y.; Kerlain, A.
2017-02-01
SOFRADIR is the worldwide leader on the cooled IR detector market for high-performance space, military and security applications thanks to a well mastered Mercury Cadmium Telluride (MCT) technology, and recently thanks to the acquisition of III-V technology: InSb, InGaAs, and QWIP quantum detectors. As a result, strong and continuous development efforts are deployed to deliver cutting edge products with improved performances in terms of spatial and thermal resolution, dark current, quantum efficiency, low excess noise and high operability. The actual trend in quantum IR detector development is the design of very small pixel, with the higher achievable operating temperature whatever the spectral band. Moreover maintaining the detector operability and image quality at higher temperature moreover for long wavelength is a major issue. This paper presents the recent developments achieved at Sofradir to meet this challenge for LW band MCT extrinsic p on n technology with a cut-off wavelength of 9.3μm at 90K. State of the art performances will be presented in terms of dark current, operability and NETD temperature dependency, quantum efficiency, MTF, and RFPN (Residual Fixed Pattern Noise) stability up to 100K.
Establishing imaging sensor specifications for digital still cameras
NASA Astrophysics Data System (ADS)
Kriss, Michael A.
2007-02-01
Digital Still Cameras, DSCs, have now displaced conventional still cameras in most markets. The heart of a DSC is thought to be the imaging sensor, be it Full Frame CCD, and Interline CCD, a CMOS sensor or the newer Foveon buried photodiode sensors. There is a strong tendency by consumers to consider only the number of mega-pixels in a camera and not to consider the overall performance of the imaging system, including sharpness, artifact control, noise, color reproduction, exposure latitude and dynamic range. This paper will provide a systematic method to characterize the physical requirements of an imaging sensor and supporting system components based on the desired usage. The analysis is based on two software programs that determine the "sharpness", potential for artifacts, sensor "photographic speed", dynamic range and exposure latitude based on the physical nature of the imaging optics, sensor characteristics (including size of pixels, sensor architecture, noise characteristics, surface states that cause dark current, quantum efficiency, effective MTF, and the intrinsic full well capacity in terms of electrons per square centimeter). Examples will be given for consumer, pro-consumer, and professional camera systems. Where possible, these results will be compared to imaging system currently on the market.
In-vivo detectability index: development and validation of an automated methodology
NASA Astrophysics Data System (ADS)
Smith, Taylor Brunton; Solomon, Justin; Samei, Ehsan
2017-03-01
The purpose of this study was to develop and validate a method to estimate patient-specific detectability indices directly from patients' CT images (i.e., "in vivo"). The method works by automatically extracting noise (NPS) and resolution (MTF) properties from each patient's CT series based on previously validated techniques. Patient images are thresholded into skin-air interfaces to form edge-spread functions, which are further binned, differentiated, and Fourier transformed to form the MTF. The NPS is likewise estimated from uniform areas of the image. These are combined with assumed task functions (reference function: 10 mm disk lesion with contrast of -15 HU) to compute detectability indices for a non-prewhitening matched filter model observer predicting observer performance. The results were compared to those from a previous human detection study on 105 subtle, hypo-attenuating liver lesions, using a two-alternative-forcedchoice (2AFC) method, over 6 dose levels using 16 readers. The in vivo detectability indices estimated for all patient images were compared to binary 2AFC outcomes with a generalized linear mixed-effects statistical model (Probit link function, linear terms only, no interactions, random term for readers). The model showed that the in vivo detectability indices were strongly predictive of 2AFC outcomes (P < 0.05). A linear comparison between the human detection accuracy and model-predicted detection accuracy (for like conditions) resulted in Pearson and Spearman correlations coefficients of 0.86 and 0.87, respectively. These data provide evidence that the in vivo detectability index could potentially be used to automatically estimate and track image quality in a clinical operation.
Plasma Liner Research for MTF at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Thio, Y. C. F.; Eskridge, R.; Lee, M.; Martin, A.; Smith, J.; Cassibry, J. T.; Wu, S. T.; Kirkpatrick, R. C.; Knapp, C. E.; Turchi, P. J.;
2002-01-01
The current research effort at NASA Marshall Space Flight Center (MSFC) in MTF is directed towards exploring the critical physics issues of potential embodiments of MTF for propulsion, especially standoff drivers involving plasma liners for MTF. There are several possible approaches for forming plasma liners. One approach consists of using a spherical array of plasma jets to form a spherical plasma shell imploding towards the center of a magnetized plasma, a compact toroid. Current experimental plan and status to explore the physics of forming a 2-D plasma liner (shell) by merging plasma jets are described. A first-generation coaxial plasma guns (Mark-1) to launch the required plasma jets have been built and tested. Plasma jets have been launched reproducibly with a low jitter, and velocities in excess of 50 km/s for the leading edge of the plasma jet. Some further refinements are being explored for the plasma gun, Successful completion of these single-gun tests will be followed by an experimental exploration of the problems of launching a multiple number of these jets simultaneously to form a cylindrical plasma liner.
MTF evaluation of in-line phase contrast imaging system
NASA Astrophysics Data System (ADS)
Sun, Xiaoran; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing
2017-02-01
X-ray phase contrast imaging (XPCI) is a novel method that exploits the phase shift for the incident X-ray to form an image. Various XPCI methods have been proposed, among which, in-line phase contrast imaging (IL-PCI) is regarded as one of the most promising clinical methods. The contrast of the interface is enhanced due to the introduction of the boundary fringes in XPCI, thus it is generally used to evaluate the image quality of XPCI. But the contrast is a comprehensive index and it does not reflect the information of image quality in the frequency range. The modulation transfer function (MTF), which is the Fourier transform of the system point spread function, is recognized as the metric to characterize the spatial response of conventional X-ray imaging system. In this work, MTF is introduced into the image quality evaluation of the IL-PCI system. Numerous simulations based on Fresnel - Kirchhoff diffraction theory are performed with varying system settings and the corresponding MTFs were calculated for comparison. The results show that MTF can provide more comprehensive information of image quality comparing to contrast in IL-PCI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, V.V.; Takacs, P.; Anderson, E.H.
A modulation transfer function (MTF) calibration method based on binary pseudorandom (BPR) gratings and arrays has been proven to be an effective MTF calibration method for interferometric microscopes and a scatterometer. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 in. phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending andmore » filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to the BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
Increased Cortical Thickness in Male-to-Female Transsexualism
Luders, Eileen; Sánchez, Francisco J.; Tosun, Duygu; Shattuck, David W.; Gaser, Christian; Vilain, Eric; Toga, Arthur W.
2013-01-01
Background The degree to which one identifies as male or female has a profound impact on one’s life. Yet, there is a limited understanding of what contributes to this important characteristic termed gender identity. In order to reveal factors influencing gender identity, studies have focused on people who report strong feelings of being the opposite sex, such as male-to-female (MTF) transsexuals. Method To investigate potential neuroanatomical variations associated with transsexualism, we compared the regional thickness of the cerebral cortex between 24 MTF transsexuals who had not yet been treated with cross-sex hormones and 24 age-matched control males. Results Results revealed thicker cortices in MTF transsexuals, both within regions of the left hemisphere (i.e., frontal and orbito-frontal cortex, central sulcus, perisylvian regions, paracentral gyrus) and right hemisphere (i.e., pre-/post-central gyrus, parietal cortex, temporal cortex, precuneus, fusiform, lingual, and orbito-frontal gyrus). Conclusion These findings provide further evidence that brain anatomy is associated with gender identity, where measures in MTF transsexuals appear to be shifted away from gender-congruent men. PMID:23724358
NASA Astrophysics Data System (ADS)
Newswander, T.; Riesland, David W.; Miles, Duane; Reinhart, Lennon
2017-09-01
For space optical systems that image extended scenes such as earth-viewing systems, modulation transfer function (MTF) test data is directly applicable to system optical resolution. For many missions, it is the most direct metric for establishing the best focus of the instrument. Additionally, MTF test products can be combined to predict overall imaging performance. For fixed focus instruments, finding the best focus during ground testing is critical to achieving good imaging performance. The ground testing should account for the full-imaging system, operational parameters, and operational environment. Testing the full-imaging system removes uncertainty caused by breaking configurations and the combination of multiple subassembly test results. For earth viewing, the imaging system needs to be tested at infinite conjugate. Operational environment test conditions should include temperature and vacuum. Optical MTF testing in the presence of operational vibration and gravity release is less straightforward and may not be possible on the ground. Gravity effects are mitigated by testing in multiple orientations. Many space telescope systems are designed and built to have optimum performance in a gravity-free environment. These systems can have imaging performance that is dominated by aberration including astigmatism. This paper discusses how the slanted edge MTF test is applied to determine the best focus of a space optical telescope in ground testing accounting for gravity sag effects. Actual optical system test results and conclusions are presented.
Mirmirani, P.; Consolo, M.; Oyetakin-White, P.; Baron, E.; Leahy, P.; Karnik, P.
2014-01-01
Summary Background There are regional variations in scalp hair miniaturization seen in androgenetic alopecia (AGA). Use of topical minoxidil can lead to reversal of miniaturization in the vertex scalp. However, its effects on other scalp regions are less well studied. Methods A placebo controlled double-blinded prospective pilot study of minoxidil topical foam 5% (MTF) vs placebo was conducted in sixteen healthy men ages 18-49 with Hamilton-Norwood type IV-V thinning. The subjects were asked to apply the treatment (active drug or placebo) to the scalp twice daily for eight weeks. Stereotactic scalp photographs were taken at the baseline and final visits to monitor global hair growth. Scalp biopsies were done at the leading edge of hair loss from the frontal and vertex scalp before and after treatment with MTF and placebo and microarray analysis was done using the Affymetrix GeneChip HG U133 Plus 2.0. Results Global stereotactic photographs showed that MTF induced hair growth in both the frontal and vertex scalp of AGA patients. Regional differences in gene expression profiles were observed before treatment. However, MTF treatment induced the expression of hair keratin associated genes and decreased the expression of epidermal differentiation complex (EDC) and inflammatory genes in both scalp regions. Conclusions These data suggest that MTF is effective in the treatment of both the frontal and vertex scalp of AGA patients. PMID:25204361
Adams, Scott V.; Barrick, Brian; Freney, Emily P.; Shafer, Martin M.; Makar, Karen; Song, Xiaoling; Lampe, Johanna; Vilchis, Hugo; Ulery, April; Newcomb, Polly A.
2015-01-01
Background Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might therefore influence excretion of these metals. Methods 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encoding the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 was associated with lower urinary Cd. Conclusions These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. PMID:26529669
MTF measurement of IR optics in different temperature ranges
NASA Astrophysics Data System (ADS)
Bai, Alexander; Duncker, Hannes; Dumitrescu, Eugen
2017-10-01
Infrared (IR) optical systems are at the core of many military, civilian and manufacturing applications and perform mission critical functions. To reliably fulfill the demanding requirements imposed on today's high performance IR optics, highly accurate, reproducible and fast lens testing is of crucial importance. Testing the optical performance within different temperature ranges becomes key in many military applications. Due to highly complex IR-Applications in the fields of aerospace, military and automotive industries, MTF Measurement under realistic environmental conditions become more and more relevant. A Modulation Transfer Function (MTF) test bench with an integrated thermal chamber allows measuring several sample sizes in a temperature range from -40 °C to +120°C. To reach reliable measurement results under these difficult conditions, a specially developed temperature stable design including an insulating vacuum are used. The main function of this instrument is the measurement of the MTF both on- and off-axis at up to +/-70° field angle, as well as measurement of effective focal length, flange focal length and distortion. The vertical configuration of the system guarantees a small overall footprint. By integrating a high-resolution IR camera with focal plane array (FPA) in the detection unit, time consuming measurement procedures such as scanning slit with liquid nitrogen cooled detectors can be avoided. The specified absolute accuracy of +/- 3% MTF is validated using internationally traceable reference optics. Together with a complete and intuitive software solution, this makes the instrument a turn-key device for today's state-of- the-art optical testing.
Image quality of the cat eye measured during retinal ganglion cell experiments.
Bonds, A B; Enroth-Cugell, C; Pinto, L H
1972-01-01
1. The modulation transfer function (MTF) of the dioptrics of fifteen cat eyes was determined. The aerial image, formed by the eye of a standard object (a 0.5-1.0 degrees annulus), was photographed. The transmission of the film negative was measured with a scanning microdensitometer to yield the light distribution within the aerial image. Correcting for the double passage, this experimentally determined light distribution and the known object light distribution were used to obtain the MTF, applying Fourier methods. Each MTF was used to calculate the light distribution within the retinal image of stimuli of various geometry used in experiments on retinal ganglion cells in the same eye.2. When the eye was equipped with an artificial pupil of the same size as that used in the neurophysiological experiments (4.0-4.8 mm diam.) the MTF had fallen to 0.5 at 2.43 c/deg. When the pupil was removed the MTF had fallen to 0.5 at a much lower spatial frequency (1.0 c/deg). This shows that even when one uses an artificial pupil too large to provide optimal image quality there is a vast improvement over using no pupil.3. These image quality measurements were prompted by the need to know the actual stimulus image in experiments on the functional organization of the receptive field, a need exemplified in this paper by a few specific physiological results. The full neurophysiological results appear in the next two papers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, X.; Hua, H.; Balamurugan, K.
2009-05-12
Drosophila melanogaster MTF-1 (dMTF-1) is a copper-responsive transcriptional activator that mediates resistance to Cu, as well as Zn and Cd. Here, we characterize a novel cysteine-rich domain which is crucial for sensing excess intracellular copper by dMTF-1. Transgenic flies expressing mutant dMTF-1 containing alanine substitutions of two, four or six cysteine residues within the sequence {sup 547}CNCTNCKCDQTKSCHGGDC{sup 565} are significantly or completely impaired in their ability to protect flies from copper toxicity and fail to up-regulate MtnA (metallothionein) expression in response to excess Cu. In contrast, these flies exhibit wild-type survival in response to copper deprivation thus revealing that themore » cysteine cluster domain is required only for sensing Cu load by dMTF-1. Parallel studies show that the isolated cysteine cluster domain is required to protect a copper-sensitive S. cerevisiae ace1 strain from copper toxicity. Cu(I) ligation by a Cys-rich domain peptide fragment drives the cooperative assembly of a polydentate [Cu{sub 4}-S{sub 6}] cage structure, characterized by a core of trigonally S{sub 3} coordinated Cu(I) ions bound by bridging thiolate ligands. While reminiscent of Cu{sub 4}-L{sub 6} (L = ligand) tetranuclear clusters in copper regulatory transcription factors of yeast, the absence of significant sequence homology is consistent with convergent evolution of a sensing strategy particularly well suited for Cu(I).« less
Wooten, Dennis C; Starr, Clarise R; Lyon, Wanda J
2016-01-01
Different forms of heavy metals affect biochemical systems in characteristic ways that cannot be detected with typical metal analysis methods like atomic absorption spectrometry. Further, using living systems to analyze interaction of heavy metals with biochemical systems can be laborious and unreliable. To generate a reliable easy-to-use biologically-based biosensor system, the entire human metallothionein-II (MT-II) gene was incorporated into a plasmid (pUC57-MT) easily replicated in Escherichia coli. In this system, a commercial polyclonal antibody raised against human metal-responsive transcription factor-1 protein (MTF-1 protein) could modify the electrophoretic migration patterns (i.e. cause specific decreases in agarose gel electrophoretic mobility) of the plasmid in the presence or absence of heavy metals other than zinc (Zn). In the study here, heavy metals, MTF-1 protein, and polyclonal anti-MTF-1 antibody were used to assess pUC57-MT plasmid antibody-assisted electrophoretic mobility. Anti-MTF-1 antibody bound both MTF-1 protein and pUC57-MT plasmid in a non-competitive fashion such that it could be used to differentiate specific heavy metal binding. The results showed that antibody-inhibited plasmid migration was heavy metal level-dependent. Zinc caused a unique mobility shift pattern opposite to that of other metals tested, i.e. Zn blocked the antibody ability to inhibit plasmid migration, despite a greatly increased affinity for DNA by the antibody when Zn was present. The Zn effect was reversed/modified by adding MTF-1 protein. Additionally, antibody inhibition of plasmid mobility was resistant to heat pre-treatment and trypsinization, indicating absence of residual DNA extraction-resistant bacterial DNA binding proteins. DNA binding by anti-DNA antibodies may be commonly enhanced by xenobiotic heavy metals and elevated levels of Zn, thus making them potentially effective tools for assessment of heavy metal bioavailability in aqueous solutions and fluid obtained from metal implant sites.
Contributions to the Characterization and Mitigation of Rotorcraft Brownout
NASA Astrophysics Data System (ADS)
Tritschler, John Kirwin
Rotorcraft brownout, the condition in which the flow field of a rotorcraft mobilizes sediment from the ground to generate a cloud that obscures the pilot's field of view, continues to be a significant hazard to civil and military rotorcraft operations. This dissertation presents methodologies for: (i) the systematic mitigation of rotorcraft brownout through operational and design strategies and (ii) the quantitative characterization of the visual degradation caused by a brownout cloud. In Part I of the dissertation, brownout mitigation strategies are developed through simulation-based brownout studies that are mathematically formulated within a numerical optimization framework. Two optimization studies are presented. The first study involves the determination of approach-to-landing maneuvers that result in reduced brownout severity. The second study presents a potential methodology for the design of helicopter rotors with improved brownout characteristics. The results of both studies indicate that the fundamental mechanisms underlying brownout mitigation are aerodynamic in nature, and the evolution of a ground vortex ahead of the rotor disk is seen to be a key element in the development of a brownout cloud. In Part II of the dissertation, brownout cloud characterizations are based upon the Modulation Transfer Function (MTF), a metric commonly used in the optics community for the characterization of imaging systems. The use of the MTF in experimentation is examined first, and the application of MTF calculation and interpretation methods to actual flight test data is described. The potential for predicting the MTF from numerical simulations is examined second, and an initial methodology is presented for the prediction of the MTF of a brownout cloud. Results from the experimental and analytical studies rigorously quantify the intuitively-known facts that the visual degradation caused by brownout is a space and time-dependent phenomenon, and that high spatial frequency features, i.e., fine-grained detail, are obscured before low spatial frequency features, i.e., large objects. As such, the MTF is a metric that is amenable to Handling Qualities (HQ) analyses.
Blume-Peytavi, Ulrike; Hillmann, Kathrin; Dietz, Ekkehart; Canfield, Douglas; Garcia Bartels, Natalie
2011-12-01
Although twice-daily application of propylene glycol-containing 2% minoxidil topical solution (MTS) stimulates new hair growth, higher concentrations of minoxidil in a once-daily, propylene glycol-free formulation may improve efficacy and reduce unpleasant side effects. We sought to compare the efficacy, safety, and acceptability and to show noninferiority of once-daily 5% minoxidil topical foam (MTF) with twice-daily 2% MTS in women with androgenetic alopecia. A total of 113 women with androgenetic alopecia were randomized to 24 weeks of treatment with 5% MTF or 2% MTS. The primary efficacy parameter was change from baseline in nonvellus target area hair count at week 24. Secondary end points included change in nonvellus target area hair width, overall efficacy by global photographic review as assessed by treatment-blinded evaluators and the subject herself, adverse events, and participants' assessment of product aesthetics. After 24 weeks, women randomized to 5% MTF once daily showed noninferior target area hair count and target area hair width and experienced greater, but nonsignificant, improvements in target area hair count, target area hair width, and overall efficacy by global photographic review than those randomized to 2% MTS used twice daily. 5% MTF was significantly superior to 2% MTS in participants' agreement with "the treatment does not interfere with styling my hair" (P = .002). Women randomized to 5% MTF experienced significantly lower rates of local intolerance (P = .046) especially in pruritus and dandruff compared with 2% MTS. Because of differences in the formulations tested, study participants were not blinded to treatment. Once-daily 5% MTF is noninferior and as effective for stimulating hair growth as twice-daily 2% MTS in women with androgenetic alopecia and is associated with several aesthetic and practical advantages. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Shults, Ruth A; Williams, Allan F
2017-09-01
The Monitoring the Future (MTF) survey provides nationally-representative annual estimates of licensure and driving patterns among U.S. teens. A previous study using MTF data reported substantial declines in the proportion of high school seniors that were licensed to drive and increases in the proportion of nondrivers following the recent U.S. economic recession. To explore whether licensure and driving patterns among U.S. high school seniors have rebounded in the post-recession years, we analyzed MTF licensure and driving data for the decade of 2006-2015. We also examined trends in teen driver involvement in fatal and nonfatal injury crashes for that decade using data from the Fatality Analysis Reporting System and National Automotive Sampling System General Estimates System, respectively. During 2006-2015, the proportion of high school seniors that reported having a driver's license declined by 9 percentage points (11%) from 81% to 72% and the proportion that did not drive during an average week increased by 8 percentage points (44%) from 18% to 26%. The annual proportion of black seniors that did not drive was consistently greater than twice the proportion of nondriving white seniors. Overall during the decade, 17- and 18-year-old drivers experienced large declines in fatal and nonfatal injury crashes, although crashes increased in both 2014 and 2015. The MTF data indicate that licensure and driving patterns among U.S. high school seniors have not rebounded since the economic recession. The recession had marked negative effects on teen employment opportunities, which likely influenced teen driving patterns. Possible explanations for the apparent discrepancies between the MTF data and the 2014 and 2015 increases in crashes are explored. MTF will continue to be an important resource for clarifying teen driving trends in relation to crash trends and informing strategies to improve teen driver safety. Published by Elsevier Ltd.
Bergfeld, Wilma; Washenik, Ken; Callender, Valerie; Zhang, Paul; Quiza, Carlos; Doshi, Uday; Blume-Peytavi, Ulrike
2016-07-01
BACKGROUND Female pattern hair loss (FPHL) is a common hair disorder that affects millions of women. A new 5% minoxidil topical foam (MTF) formulation, which does not contain propylene glycol, has been developed.
To compare the efficacy and safety of once-daily 5% MTF with vehicle foam for the treatment of FPHL.
This was a Phase III, randomized, double-blind, vehicle-controlled, parallel-group, international multicenter trial (17 sites) in women aged at least 18 years with FPHL (grade D3 to D6 on the Savin Density Scale), treated once daily with 5% MTF or vehicle foam for 24 weeks. The co-primary efficacy endpoints were the change from baseline at week 24 in target area hair count (TAHC) and subject assessment of scalp coverage. Also evaluated were TAHC at week 12, expert panel review of hair regrowth at week 24, and change from baseline in total unit area density (TUAD, sum of hair diameters/cm2) at weeks 12 and 24.
A total of 404 women were enrolled. At 12 and 24 weeks, 5% MTF treatment resulted in regrowth of 10.9 hairs/cm2 and 9.1 hairs/cm2 more than vehicle foam, respectively (both P<.0001). Improved scalp coverage at week 24 was observed by both subject self-assessment (0.69-point improvement over vehicle foam; P<.0001) and expert panel review (0.36-point improvement over the vehicle foam; P<.0001). TUAD increased by 658 μm/cm2 and 644 μm/cm2 more with 5% MTF than with vehicle foam at weeks 12 and 24, respectively (both P<.0001). MTF was well tolerated. A low incidence of scalp irritation and facial hypertrichosis was observed, with no clinically significant differences between groups.
Five percent MTF once daily for 24 weeks was well tolerated and promoted hair regrowth in women with FPHL, resulting in improved scalp coverage and increased hair density compared with vehicle foam. ClinicalTrials.gov identifier: nCT01226459
J Drugs Dermatol. 2016;15(7):874-881.
Remote Imaging of Earthquake Characteristics Along Oceanic Transforms
NASA Astrophysics Data System (ADS)
Cleveland, M.; Ammon, C. J.
2014-12-01
Compared with subduction and continental transform systems, many characteristics of oceanic transform faults (OTF) are better defined (first-order structure and composition, thermal properties, etc.). Still, many aspects of earthquake behavior along OTFs remain poorly understood as a result of their relative remoteness. But the substantial aseismic deformation (averaging roughly 85%) that occurs along OTFs and the implied interaction of aseismic with seismic deformation is an opportunity to explore fundamental earthquake nucleation and rupture processes. However, the study of OTF earthquake properties is not easy because these faults are often located in remote regions, lacking nearby seismic networks. Thus, many standard network-based seismic approaches are infeasible, but some can be adapted to the effort. For example, double-difference methods applied to cross-correlation measured Rayleigh wave time shifts is an effective tool to provide greatly improved relative epicentroid locations, origin-time shifts, and relative event magnitudes for earthquakes in remote regions. The same comparative waveform measurements can provide insight into rupture directivity of the larger OTF events. In this study, we calculate improved relative earthquake locations and magnitudes of earthquakes along the Blanco Fracture Zone in the northeast Pacific Ocean and compare and contrast that work with a study of the more remote Menard Transform Fault (MTF), located in the southeast Pacific Ocean. For the Blanco, we work exclusively with Rayleigh (R1) observations exploiting the dense networks in the northern hemisphere. For the MTF, we combine R1 with Love (G1) observations to map and to analyze the distribution of strong asperities along this remote, 200-km-long fault. Specifically, we attempt to better define the relationship between observed near-transform normal and vertical strike-slip earthquakes in the vicinity of the MTF. We test our ability to use distant observations (the closest station is about 2,500 km distant) to constrain rupture characteristics of recent strong earthquakes in the region. We compare the seismicity characteristics along the faults to explore the relationship of fault age and morphology on rupture behavior.
ERIC Educational Resources Information Center
Hsiung, Chin-Min; Zheng, Xiang-Xiang
2015-01-01
The Measurements for Team Functioning (MTF) database contains a series of student academic performance measurements obtained at a national university in Taiwan. The measurements are acquired from unit tests and homework tests performed during a core mechanical engineering course, and provide an objective means of assessing the functioning of…
Dynamic MTF, an innovative test bench for detector characterization
NASA Astrophysics Data System (ADS)
Emmanuel, Rossi; Raphaël, Lardière; Delmonte, Stephane
2017-11-01
PLEIADES HR are High Resolution satellites for Earth observation. Placed at 695km they reach a 0.7m spatial resolution. To allow such performances, the detectors are working in a TDI mode (Time and Delay Integration) which consists in a continuous charge transfer from one line to the consecutive one while the image is passing on the detector. The spatial resolution, one of the most important parameter to test, is characterized by the MTF (Modulation Transfer Function). Usually, detectors are tested in a staring mode. For a higher level of performances assessment, a dedicated bench has been set-up, allowing detectors' MTF characterization in the TDI mode. Accuracy and reproducibility are impressive, opening the door to new perspectives in term of HR imaging systems testing.
MTF Analysis of LANDSAT-4 Thematic Mapper
NASA Technical Reports Server (NTRS)
Schowengerdt, R.
1984-01-01
A research program to measure the LANDSAT 4 Thematic Mapper (TM) modulation transfer function (MTF) is described. Measurement of a satellite sensor's MTF requires the use of a calibrated ground target, i.e., the spatial radiance distribution of the target must be known to a resolution at least four to five times greater than that of the system under test. A small reflective mirror or a dark light linear pattern such as line or edge, and relatively high resolution underflight imagery are used to calibrate the target. A technique that utilizes an analytical model for the scene spatial frequency power spectrum will be investigated as an alternative to calibration of the scene. The test sites and analysis techniques are also described.
Hearing in Noise Test Brazil: standardization for young adults with normal hearing.
Sbompato, Andressa Forlevise; Corteletti, Lilian Cassia Bornia Jacob; Moret, Adriane de Lima Mortari; Jacob, Regina Tangerino de Souza
2015-01-01
Individuals with the same ability of speech recognition in quiet can have extremely different results in noisy environments. To standardize speech perception in adults with normal hearing in the free field using the Brazilian Hearing in Noise Test. Contemporary, cross-sectional cohort study. 79 adults with normal hearing and without cognitive impairment participated in the study. Lists of Hearing in Noise Test sentences were randomly in quiet, noise front, noise right, and noise left. There were no significant differences between right and left ears at all frequencies tested (paired t-1 test). Nor were significant differences observed when comparing gender and interaction between these conditions. A difference was observed among the free field positions tested, except in the situations of noise right and noise left. Results of speech perception in adults with normal hearing in the free field during different listening situations in noise indicated poorer performance during the condition with noise and speech in front, i.e., 0°/0°. The values found in the standardization of the Hearing in Noise Test free field can be used as a reference in the development of protocols for tests of speech perception in noise, and for monitoring individuals with hearing impairment. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Blume-Peytavi, Ulrike; Shapiro, Jerry; Messenger, Andrew G; Hordinsky, Maria K; Zhang, Paul; Quiza, Carlos; Doshi, Uday; Olsen, Elise A
2016-07-01
A once-daily minoxidil topical foam (MTF) has been developed to treat female pattern hair loss.
Determine noninferiority of once-daily 5% MTF versus twice-daily 2% minoxidil topical solution (MTS) based on the change from baseline in target area hair count (TAHC) at 24 weeks. In a randomized, phase III trial, women with female pattern hair loss received once-daily 5% MTF (n=161) or twice-daily 2% MTS (n=161) for 52 weeks. Primary endpoint was change from baseline in TAHC at 24 weeks. Secondary endpoint was change from baseline in TAHC at 12 weeks. Exploratory endpoints included change in total unit area density and change in overall scalp coverage.
Once-daily 5% MTF increased TAHC from baseline (adjusted mean ± standard error) by 23.9 ± 2.1 hairs/cm2 at week 24. Twice-daily 2% MTS increased TAHC 24.2 ± 2.1 hairs/cm2 at week 24. The treatment difference was -0.3 hairs/cm2 (95% CI = -6.0, 5.4). Since the lower bound of the 95% CI was less than -5.0, the prespecified noninferiority goal was not met. Both treatments were well tolerated.
Once-daily 5% MTF and twice-daily 2% MTS induced hair regrowth in female pattern hair loss, but prespecified noninferiority criteria were not met.
ClinicalTrials.gov identifier: NCT01145625
J Drugs Dermatol. 2016;15(7):883-889.
Watanabe, Hiroshi; Nomura, Yoshikazu; Kuribayashi, Ami; Kurabayashi, Tohru
2018-02-01
We aimed to employ the Radia diagnostic software with the safety and efficacy of a new emerging dental X-ray modality (SEDENTEXCT) image quality (IQ) phantom in CT, and to evaluate its validity. The SEDENTEXCT IQ phantom and Radia diagnostic software were employed. The phantom was scanned using one medical full-body CT and two dentomaxillofacial cone beam CTs. The obtained images were imported to the Radia software, and the spatial resolution outputs were evaluated. The oversampling method was employed using our original wire phantom as a reference. The resultant modulation transfer function (MTF) curves were compared. The null hypothesis was that MTF curves generated using both methods would be in agreement. One-way analysis of variance tests were applied to the f50 and f10 values from the MTF curves. The f10 values were subjectively confirmed by observing the line pair modules. The Radia software reported the MTF curves on the xy-plane of the CT scans, but could not return f50 and f10 values on the z-axis. The null hypothesis concerning the reported MTF curves on the xy-plane was rejected. There were significant differences between the results of the Radia software and our reference method, except for f10 values in CS9300. These findings were consistent with our line pair observations. We evaluated the validity of the Radia software with the SEDENTEXCT IQ phantom. The data provided were semi-automatic, albeit with problems and statistically different from our reference. We hope the manufacturer will overcome these limitations.
Parham, Sophie C; Kavanagh, David J; Gericke, Christian A; King, Neil; May, Jon; Andrade, Jackie
2017-06-01
There is a need for improved measurement of motivation for diabetes self-care. The Elaborated Intrusion Theory of Desire offers a coherent framework for understanding and identifying the cognitive-affective events that constitute the subjective experience of motivation and may therefore inform the development of such an instrument. Recent research has shown the resultant Motivation Thought Frequency scale (MTF) to have a stable factor structure (Intensity, Incentives Imagery, Self-Efficacy Imagery, Availability) when applied to physical activity, excessive snacking or alcohol use in the general population. The current study aimed to confirm the four-factor structure of the MTF for glucose testing, physical activity and healthy eating in people with type 2 diabetes. Associations with self-reports of concurrent diabetic self-care behaviours were also examined. Confirmatory factor analyses tested the internal structure, and multiple regressions assessed the scale's relationship with concurrent self-care behaviours. The MTF was completed by 340 adults with type 2 diabetes, and 237 from that sample also reported self-care behaviours. Separate MTFs assessed motivation for glucose testing, physical activity and healthy eating. Self-care was assessed using questions from the Summary of Diabetes Self-Care Activities. The MTF for each goal achieved an acceptable fit on all indices after selected errors within factors were allowed to intercorrelate. Intensity and Self-Efficacy Imagery provided the strongest and most consistent correlations with relevant self-care behaviours. Results provide preliminary support for the MTF in a diabetes sample. Testing of its sensitivity to change and its predictive utility over time is needed.
Image quality of the cat eye measured during retinal ganglion cell experiments
Bonds, A. B.; Enroth-Cugell, Christina; Pinto, L. H.
1972-01-01
1. The modulation transfer function (MTF) of the dioptrics of fifteen cat eyes was determined. The aerial image, formed by the eye of a standard object (a 0·5-1·0° annulus), was photographed. The transmission of the film negative was measured with a scanning microdensitometer to yield the light distribution within the aerial image. Correcting for the double passage, this experimentally determined light distribution and the known object light distribution were used to obtain the MTF, applying Fourier methods. Each MTF was used to calculate the light distribution within the retinal image of stimuli of various geometry used in experiments on retinal ganglion cells in the same eye. 2. When the eye was equipped with an artificial pupil of the same size as that used in the neurophysiological experiments (4·0-4·8 mm diam.) the MTF had fallen to 0·5 at 2·43 c/deg. When the pupil was removed the MTF had fallen to 0·5 at a much lower spatial frequency (1·0 c/deg). This shows that even when one uses an artificial pupil too large to provide optimal image quality there is a vast improvement over using no pupil. 3. These image quality measurements were prompted by the need to know the actual stimulus image in experiments on the functional organization of the receptive field, a need exemplified in this paper by a few specific physiological results. The full neurophysiological results appear in the next two papers. ImagesFig. 3Fig. 4 PMID:5014105
ERIC Educational Resources Information Center
Miech, Richard A.; Johnston, Lloyd D.; O'Malley, Patrick M.; Bachman, Jerald G.; Schulenberg, John E.; Patrick, Megan E.
2017-01-01
Monitoring the Future (MTF) is designed to give sustained attention to substance use among the nation's youth and adults. It is an investigator-initiated study that originated with and is conducted by a team of research professors at the University of Michigan's Institute for Social Research. Since its onset in 1975, MTF has been continuously…
ERIC Educational Resources Information Center
Miech, Richard A.; Johnston, Lloyd D.; O'Malley, Patrick M.; Bachman, Jerald G.; Schulenberg, John E.
2016-01-01
Monitoring the Future (MTF) is designed to give sustained attention to substance use among the nation's youth and adults. It is an investigator-initiated study that originated with and is conducted by a team of research professors at the University of Michigan's Institute for Social Research. Since its onset in 1975, MTF has been continuously…
Parsanezhad, M E; Alborzi, S; Zarei, A; Dehbashi, S; Omrani, G
2001-10-01
To evaluate the clinical features, endocrine and metabolic profiles in clomiphene (CC) responders and non-responders with polycystic ovarian disease (PCOD), and to examine the effects of metformin (MTF) on the above parameters of CC resistance. A prospective clinical trial was undertaken at the infertility division of a university teaching hospital. Forty-one CC responders were selected and their hormonal and clinical features were determined. Forty-one CC-resistant PCOD women were also selected and clinical features; metabolic and hormonal profiles before and after treatment with MTF 1500 mg/day for 6-8 weeks were evaluated. Women who failed to conceive were treated by CC while continuing to take MTF. CC responders had higher insulin levels while non-responders were hyperinsulinemic. Menstrual irregularities improved in 30%. Mean+/-S.D. area under curve of insulin decreased from 297.58+/-191.33 to 206+/-0.1 mIU/ml per min (P=0.005). Only 39.39% ovulated and 24.24% conceived. PCOD is associated with insulin resistance (IR) particularly in CC-resistant women. Insulin resistance and androgen levels are significantly higher in obese patients. MTF therapy improved hyperandrogenemia, IR, and pregnancy rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melnyk, Roman; DiBianca, Frank A.
The detector presampling modulation transfer function (MTF) of a 576-channel variable resolution x-ray (VRX) computed tomography (CT) scanner was evaluated in this study. The scanner employs a VRX detector, which provides increased spatial resolution by matching the scanner's field of view (FOV) to the size of an object being imaged. Because spatial resolution is the parameter the scanner promises to improve, the evaluation of this resolution is important. The scanner's pre-reconstruction spatial resolution, represented by the detector presampling MTF, was evaluated using both modeling (Monte Carlo simulation) and measurement (the moving slit method). The theoretical results show the increase inmore » the cutoff frequency of the detector presampling MTF from 1.39 to 43.38 cycles/mm as the FOV of the VRX CT scanner decreases from 32 to 1 cm. The experimental results are in reasonable agreement with the theoretical data. Some discrepancies between the measured and the modeled detector presampling MTFs can be explained by the limitations of the model. At small FOVs (1-8 cm), the MTF measurements were limited by the size of the focal spot. The obtained results are important for further development of the VRX CT scanner.« less
Chiu, Sheng-Yi; Kao, Chien-Ya; Huang, Tzu-Ting; Lin, Chia-Jung; Ong, Seow-Chin; Chen, Chun-Da; Chang, Jo-Shu; Lin, Chih-Sheng
2011-10-01
The growth and on-site bioremediation potential of an isolated thermal- and CO₂-tolerant mutant strain, Chlorella sp. MTF-7, were investigated. The Chlorella sp. MTF-7 cultures were directly aerated with the flue gas generated from coke oven of a steel plant. The biomass concentration, growth rate and lipid content of Chlorella sp. MTF-7 cultured in an outdoor 50-L photobioreactor for 6 days was 2.87 g L⁻¹ (with an initial culture biomass concentration of 0.75 g L⁻¹), 0.52 g L⁻¹ d⁻¹ and 25.2%, respectively. By the operation with intermittent flue gas aeration in a double-set photobioreactor system, average efficiency of CO₂ removal from the flue gas could reach to 60%, and NO and SO₂ removal efficiency was maintained at approximately 70% and 50%, respectively. Our results demonstrate that flue gas from coke oven could be directly introduced into Chlorella sp. MTF-7 cultures to potentially produce algal biomass and efficiently capture CO₂, NO and SO₂ from flue gas. Copyright © 2011 Elsevier Ltd. All rights reserved.
Influence of Iterative Reconstruction Algorithms on PET Image Resolution
NASA Astrophysics Data System (ADS)
Karpetas, G. E.; Michail, C. M.; Fountos, G. P.; Valais, I. G.; Nikolopoulos, D.; Kandarakis, I. S.; Panayiotakis, G. S.
2015-09-01
The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction. The simulated PET scanner was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the modulation transfer function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL, the ordered subsets separable paraboloidal surrogate (OSSPS), the median root prior (MRP) and OSMAPOSL with quadratic prior, algorithms. OSMAPOSL reconstruction was assessed by using fixed subsets and various iterations, as well as by using various beta (hyper) parameter values. MTF values were found to increase with increasing iterations. MTF also improves by using lower beta values. The simulated PET evaluation method, based on the TLC plane source, can be useful in the resolution assessment of PET scanners.
Regional gray matter variation in male-to-female transsexualism
Luders, Eileen; Sánchez, Francisco J.; Gaser, Christian; Toga, Arthur W.; Narr, Katherine L.; Hamilton, Liberty S.; Vilain, Eric
2009-01-01
Gender identity—one's sense of being a man or a woman—is a fundamental perception experienced by all individuals that extends beyond biological sex. Yet, what contributes to our sense of gender remains uncertain. Since individuals who identify as transsexual report strong feelings of being the opposite sex and a belief that their sexual characteristics do not reflect their true gender, they constitute an invaluable model to understand the biological underpinnings of gender identity. We analyzed MRI data of 24 male-to-female (MTF) transsexuals not yet treated with cross-sex hormones in order to determine whether gray matter volumes in MTF transsexuals more closely resemble people who share their biological sex (30 control men), or people who share their gender identity (30 control women). Results revealed that regional gray matter variation in MTF transsexuals is more similar to the pattern found in men than in women. However, MTF transsexuals show a significantly larger volume of regional gray matter in the right putamen compared to men. These findings provide new evidence that transsexualism is associated with distinct cerebral pattern, which supports the assumption that brain anatomy plays a role in gender identity. PMID:19341803
Regional gray matter variation in male-to-female transsexualism.
Luders, Eileen; Sánchez, Francisco J; Gaser, Christian; Toga, Arthur W; Narr, Katherine L; Hamilton, Liberty S; Vilain, Eric
2009-07-15
Gender identity-one's sense of being a man or a woman-is a fundamental perception experienced by all individuals that extends beyond biological sex. Yet, what contributes to our sense of gender remains uncertain. Since individuals who identify as transsexual report strong feelings of being the opposite sex and a belief that their sexual characteristics do not reflect their true gender, they constitute an invaluable model to understand the biological underpinnings of gender identity. We analyzed MRI data of 24 male-to-female (MTF) transsexuals not yet treated with cross-sex hormones in order to determine whether gray matter volumes in MTF transsexuals more closely resemble people who share their biological sex (30 control men), or people who share their gender identity (30 control women). Results revealed that regional gray matter variation in MTF transsexuals is more similar to the pattern found in men than in women. However, MTF transsexuals show a significantly larger volume of regional gray matter in the right putamen compared to men. These findings provide new evidence that transsexualism is associated with distinct cerebral pattern, which supports the assumption that brain anatomy plays a role in gender identity.
Impact of large x-ray beam collimation on image quality
NASA Astrophysics Data System (ADS)
Racine, Damien; Ba, Alexandre; Ott, Julien G.; Bochud, François O.; Verdun, Francis R.
2016-03-01
Large X-ray beam collimation in computed tomography (CT) opens the way to new image acquisition techniques and improves patient management for several clinical indications. The systems that offer large X-ray beam collimation enable, in particular, a whole region of interest to be investigated with an excellent temporal resolution. However, one of the potential drawbacks of this option might be a noticeable difference in image quality along the z-axis when compared with the standard helical acquisition mode using more restricted X-ray beam collimations. The aim of this project is to investigate the impact of the use of large X-ray beam collimation and new iterative reconstruction on noise properties, spatial resolution and low contrast detectability (LCD). An anthropomorphic phantom and a custom made phantom were scanned on a GE Revolution CT. The images were reconstructed respectively with ASIR-V at 0% and 50%. Noise power spectra, to evaluate the noise properties, and Target Transfer Functions, to evaluate the spatial resolution, were computed. Then, a Channelized Hotelling Observer with Gabor and Dense Difference of Gaussian channels was used to evaluate the LCD using the Percentage correct as a figure of merit. Noticeable differences of 3D noise power spectra and MTF have been recorded; however no significant difference appeared when dealing with the LCD criteria. As expected the use of iterative reconstruction, for a given CTDIvol level, allowed a significant gain in LCD in comparison to ASIR-V 0%. In addition, the outcomes of the NPS and TTF metrics led to results that would contradict the outcomes of CHO model observers if used for a NPWE model observer (Non- Prewhitening With Eye filter). The unit investigated provides major advantages for cardiac diagnosis without impairing the image quality level of standard chest or abdominal acquisitions.
Model MTF for the mosaic window
NASA Astrophysics Data System (ADS)
Xing, Zhenchong; Hong, Yongfeng; Zhang, Bao
2017-10-01
An electro-optical targeting system mounted either within an airframe or housed in separate pods requires a window to form an environmental barrier to the outside world. In current practice, such windows usually use a mosaic or segmented window. When scanning the target, internally gimbaled systems sweep over the window, which can affect the modulation transfer function (MTF) due to wave-front division and optical path differences arising from the thickness/wedge differences between panes. In this paper, a mathematical model of the MTF of the mosaic window is presented that allows an analysis of influencing factors; we show how the model may be integrated into ZEMAX® software for optical design. The model can be used to guide both the design and the tolerance analysis of optical systems that employ a mosaic window.
Backside-illuminated 6.6-μm pixel video-rate CCDs for scientific imaging applications
NASA Astrophysics Data System (ADS)
Tower, John R.; Levine, Peter A.; Hsueh, Fu-Lung; Patel, Vipulkumar; Swain, Pradyumna K.; Meray, Grazyna M.; Andrews, James T.; Dawson, Robin M.; Sudol, Thomas M.; Andreas, Robert
2000-05-01
A family of backside illuminated CCD imagers with 6.6 micrometers pixels has been developed. The imagers feature full 12 bit (> 4,000:1) dynamic range with measured noise floor of < 10 e RMS at 5 MHz clock rates, and measured full well capacity of > 50,000 e. The modulation transfer function performance is excellent, with measured MTF at Nyquist of 46% for 500 nm illumination. Three device types have been developed. The first device is a 1 K X 1 K full frame device with a single output port, which can be run as a 1 K X 512 frame transfer device. The second device is a 512 X 512 frame transfer device with a single output port. The third device is a 512 X 512 split frame transfer device with four output ports. All feature the high quantum efficiency afforded by backside illumination.
Towards an Analytical Age-Dependent Model of Contrast Sensitivity Functions for an Ageing Society
Joulan, Karine; Brémond, Roland
2015-01-01
The Contrast Sensitivity Function (CSF) describes how the visibility of a grating depends on the stimulus spatial frequency. Many published CSF data have demonstrated that contrast sensitivity declines with age. However, an age-dependent analytical model of the CSF is not available to date. In this paper, we propose such an analytical CSF model based on visual mechanisms, taking into account the age factor. To this end, we have extended an existing model from Barten (1999), taking into account the dependencies of this model's optical and physiological parameters on age. Age-dependent models of the cones and ganglion cells densities, the optical and neural MTF, and optical and neural noise are proposed, based on published data. The proposed age-dependent CSF is finally tested against available experimental data, with fair results. Such an age-dependent model may be beneficial when designing real-time age-dependent image coding and display applications. PMID:26078994
Phase and group delay of S-band megawatt Cassegrain diplexer and S-band megawatt transmit filter
NASA Technical Reports Server (NTRS)
Lay, R.
1977-01-01
The phase characteristics and group delay of the S-band Megawatt Cassegrain Diplexer (MCD) and S-band Megawatt Transmit Filter (MTF) are reported. These phase measurements on the MCD and MTF were done in response to the need to obtain the total DSS hardware ground delay required for very long baseline interferometry and ranging radio metric measurements.
PRIMUS/NAVCARE Cost-Effectiveness Analysis
1991-04-08
ICD-9-CM diagnosis codes that occurred most frequently in the medical record sample - 328.9 ( otitis media , unspecified) and 465.9 (upper...when attention is focused upon a single diagnosis, the MTF CECs are no longer consistently above the PRIMUS CECs. For otitis media , the MTF CECs are...CHAMPUS-EQUIVALENT COSTS FOR SELECTED DIAGNOSES 328.9 OTITIS MEDIA , UNSPECIFIED Sample Size Mean 95% Confidence Interval Upper Limit Lower
Qi, Meirigeng; Valiente, Luis; McFadden, Brian; Omori, Keiko; Bilbao, Shiela; Juan, Jemily; Rawson, Jeffrey; Scott, Stephen; Ferreri, Kevin; Mullen, Yoko; El-Shahawy, Mohamed; Dafoe, Donald; Kandeel, Fouad; Al-Abdullah, Ismail H
2015-05-01
We evaluated three commercially available enzymes for pancreatic digestion by comparing key parameters during the islet isolation process, as well as islet quality post-isolation. Retrospectively compared and analyzed islet isolations from pancreata using three different enzyme groups: Liberase HI (n=63), Collagenase NB1/Neutral Protease (NP) (n=43), and Liberase Mammalian Tissue Free Collagenase/Thermolysin (MTF C/T) (n=115). A standardized islet isolation and purification method was used. Islet quality assessment was carried out using islet count, viability, in vitro glucose-stimulated insulin secretion (GSIS), glucose-stimulated oxygen consumption rate (ΔOCR), and in vivo transplantation model in mice. Donor characteristics were not significantly different among the three enzyme groups used in terms of age, sex, hospital stay duration, cause of death, body mass index (BMI), hemoglobin A1c (HbA1c), cold ischemia time (CIT), and pancreas weight. Digestion efficacy (percentage of digested tissue by weight) was significantly higher in the Liberase MTF C/T group (73.5 ± 1.5 %) when compared to the Liberase HI group (63.6 ± 2.3 %) (p<0.001) and the Collagenase NB1/NP group (61.7 ± 2.9%) (p<0.001). The stimulation index for GSIS was significantly higher in the Liberase MTF C/T group (5.3 ± 0.5) as compared to the Liberase HI (2.9 ± 0.2) (p<0.0001) and the Collagenase NB1/NP (3.6 ± 2.9) (p=0.012) groups. Furthermore, the Liberase MTF C/T enzymes showed the highest success rate of transplantation in diabetic NOD Scid mice (65%), which was significantly higher than the Liberase HI (42%, p=0.001) and the Collagenase NB1/NP enzymes (41%, p<0.001). Liberase MTF C/T is superior to Liberase HI and Collagenase NB1/NP in terms of digestion efficacy and glucose-stimulated insulin secretion in vitro . Moreover, Liberase MTF C/T had a significantly higher success rate of transplantation in diabetic NOD Scid mice compared to Liberase HI and Collagenase NB1/NP enzymes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kam, S; Youn, H; Kim, H
2014-06-01
Purpose: To compare and analyze two novel algorithms for the assessment of modulation transfer functions (MTFs) of computed tomography (CT) systems using a simple acrylic cylindrical phantom Method and Materials: Images of the acrylic cylindrical phantom were acquired by a GE LightSpeed 16 RT (GE Healthcare, Milwaukee, WI) using 120 kVp, 330 mA, 2.5 mm slice thickness, 10 cm field-of view (FOV), four reconstruction kernels (e.g. standard, soft, detail, bone, and lung). Two different algorithms were used to analyze images for MTF assessment. First, Richard et al. suggested a task-based MTF assessment method through an edge spread function (ESF) whichmore » described pixel intensities as a function of distance from the center. The MTF was obtained as the absolute value of Fourier transform of the differentiated ESF. Second, Ohkubo et al. devised an effective method to determine the point spread function (PSF) of CT system accompanied with verification. The line spread function (LSF), which was the one-dimensional integration of the PSF, was used to obtain the MTF. We validated the reliability of two above-mentioned methods through the comparison with a conventional method using a thin tungsten wire phantom. Results: The measured MTFs by two methods were mostly similar each other for standard, soft, and detail kernels. In 0.6 lp/mm, the MTF difference between two methods were 0.012(standard), 0.004(soft), and 0.037(detail). They also coincided with the MTF by the conventional method well. However, there were considerable distinctions for bone and lung kernels containing edge enhancement that might cause undershoots near the peak of the LSF. Conclusions: We compared two novel methods to assess task-based MTFs for clinical CT systems especially using a simple acrylic cylindrical phantom with high-convenience and low-cost, and validated them against a conventional method. This work can provide a practical solution to users for the quality assurance of CT.« less
Luzzati, Roberto; Zatta, Marta; Pavan, Nicola; Serafin, Maurizia; Maurel, Cristina; Trombetta, Carlo; Barbone, Fabio
2016-07-01
The burden of human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) infections in transgender population is an underestimated issue. We performed a study to evaluate the prevalence of such infections in transgender persons addressed our center for total sex reassignment surgery (SRS). All transgender persons undergoing SRS from 2000 to 2014 were evaluated retrospectively. Participant characteristics and results of HIV, HBV, and HCV testing were collected. Exact Fisher test, Cochran-Armitage tests for trend and correct prevalence ratios were estimated. Among 498 transgender persons, 243 had confirmed serological data. Of them, 25 were female-to-male and 218 male-to-female (MtF) subjects. The prevalence of HIV, HBV and HCV infections was 0%, 4.0%, and 8.0% in female-to-male, and 12.1%, 4.6%, and 3.7% in MtF. Among MtF, younger age and earlier year of SRS were associated with lower HIV prevalence. From the multivariate model, the mutually adjustment prevalence ratios were 1.9 (95% confidence interval [95% CI], 1.2-3.1) for SRS in 2005-2010 and 3.6 (95% CI, 1.3-9.4) in 2010-2014, as compared with SRS in 2000-2004; and 4.7 (95% CI, 2.4-9.4) for South Americans as compared with others. Among the HCV-positive MtF, 57.1% were also HIV-positive. Regarding HBV, the immunity was 38.5% and, after mutual adjustment, the prevalence ratios were 2.1 (95% CI, 1.3-3.4) for South Americans versus others and 2.2 (95% CI, 1.6-3.1) for year of birth ≥ 1980. The prevalence of HBV and HCV infections among our transgender persons overlaps that reported in the general population, but HCV prevalence was much higher in HIV-infected MtF. The high burden of HIV infection among MtF and its recent incremented prevalence points out that social and medical support should be strongly promoted in such population.
Sound localization in noise in hearing-impaired listeners.
Lorenzi, C; Gatehouse, S; Lever, C
1999-06-01
The present study assesses the ability of four listeners with high-frequency, bilateral symmetrical sensorineural hearing loss to localize and detect a broadband click train in the frontal-horizontal plane, in quiet and in the presence of a white noise. The speaker array and stimuli are identical to those described by Lorenzi et al. (in press). The results show that: (1) localization performance is only slightly poorer in hearing-impaired listeners than in normal-hearing listeners when noise is at 0 deg azimuth, (2) localization performance begins to decrease at higher signal-to-noise ratios for hearing-impaired listeners than for normal-hearing listeners when noise is at +/- 90 deg azimuth, and (3) the performance of hearing-impaired listeners is less consistent when noise is at +/- 90 deg azimuth than at 0 deg azimuth. The effects of a high-frequency hearing loss were also studied by measuring the ability of normal-hearing listeners to localize the low-pass filtered version of the clicks. The data reproduce the effects of noise on three out of the four hearing-impaired listeners when noise is at 0 deg azimuth. They reproduce the effects of noise on only two out of the four hearing-impaired listeners when noise is at +/- 90 deg azimuth. The additional effects of a low-frequency hearing loss were investigated by attenuating the low-pass filtered clicks and the noise by 20 dB. The results show that attenuation does not strongly affect localization accuracy for normal-hearing listeners. Measurements of the clicks' detectability indicate that the hearing-impaired listeners who show the poorest localization accuracy also show the poorest ability to detect the clicks. The inaudibility of high frequencies, "distortions," and reduced detectability of the signal are assumed to have caused the poorer-than-normal localization accuracy for hearing-impaired listeners.
Jain, Amit; Kuhls-Gilcrist, Andrew T; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen
2010-03-01
The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Scott V., E-mail: sadams@fhcrc.org; Barrick, Brian; Christopher, Emily P.
Background: Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might influence excretion of these metals. Methods: 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encodingmore » the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results: Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 were associated with lower urinary Cd. Conclusions: These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. - Highlights: • Genetic variation in metallothionein (MT) genes was assessed in two diverse populations. • Single nucleotide polymorphisms (SNPs) in MT genes were associated with mean urinary Cd, Cu and Zn. • Genetic variation may influence biomarkers of exposure, and associations of exposure with health.« less
Dimensional profiles of male to female gender identity disorder: an exploratory research.
Fisher, Alessandra D; Bandini, Elisa; Ricca, Valdo; Ferruccio, Naika; Corona, Giovanni; Meriggiola, Maria C; Jannini, Emmanuele A; Manieri, Chiara; Ristori, Jiska; Forti, Gianni; Mannucci, Edoardo; Maggi, Mario
2010-07-01
Male-to-Female Gender Identity Disorder (MtF GID) is a complex phenomenon that could be better evaluated by using a dimensional approach. To explore the aggregation of clinical manifestations of MtF GID in order to identify meaningful variables describing the heterogeneity of the disorder. A consecutive series of 80 MtF GID subjects (mean age 37 +/- 10.3 years), referred to the Interdepartmental Center for Assistance Gender Identity Disorder of Florence and to other Italian centers from July 2008 to June 2009, was studied. Diagnosis was based on formal psychiatric classification criteria. Factor analysis was performed. Several socio-demographic and clinical parameters were investigated. Patients were asked to complete the Bem Sex Role Inventory (BSRI, a self-rating scale to evaluate gender role) and Symptom Checklist-90 Revised (SCL-90-R, a self-rating scale to measure psychological state). Factor analysis identified two dimensional factors: Factor 1 was associated with sexual orientation, and Factor 2 related to behavioral and psychological correlates of early GID development. No correlation was observed between the two factors. A positive correlation between Factor 2 and feminine BSRI score was found, along with a negative correlation between Factor 2 and undifferentiated BSRI score. Moreover, a significant association between SCL-90-R Phobic subscale score and Factor 2 was observed. A variety of other socio-demographic parameters and clinical features were associated with both factors. Behavioral and psychological correlates of Factor 1 (sexual orientation) and Factor 2 (gender identity) do not constitute the framework of two separate clinical entities, but instead represent two dimensions of the complex MtF GID structure, which can be variably intertwined in the same subject. By using factor analysis, we offer a new approach capable of delineating a psychopathological and clinical profile of MtF GID patients.
Auer, Matthias K; Fuss, Johannes; Stalla, Guenter K; Athanasoulia, Anastasia P
2013-10-01
To demonstrate that adequate pubertal history, physical examination, and a basal hormone profile is sufficient to exclude disorders of sexual development (DSD) in adult transsexuals and that chromosomal analysis could be omitted in cases of unremarkable hormonal profile and pubertal history. Retrospective chart analysis. Endocrine outpatient clinic of a psychiatric research institute. A total of 475 subjects (302 male-to-female transsexuals [MtF], 173 female-to-male transsexuals [FtM]). Data from 323 (192 MtF/131 FtM) were collected for hormonal and pubertal abnormalities. Information regarding chromosomal analysis was available for 270 patients (165 MtF/105 FtM). None. Pubertal abnormalities, menstrual cycle, and hormonal irregularities in relation to chromosomal analysis conducted by karyotype or hair root analysis. In the MtF group, 5.2% of the patients reported pubertal irregularities and 5.7% hormonal abnormalities, and in the FtM group 3.8% and 19.1%, respectively. Overall chromosomal abnormality in both groups was 1.5% (2.9% in the FtM and 0.6% in the MtF group). The aneuploidies found included one gonosomal aneuploidy (45,X[10]/47,XXX[6]/46,XX[98]), two Robertsonian translocations (45,XXder(14;22)(q10;q10)), and one Klinefelter syndrome (47,XXY) that had already been diagnosed in puberty. Our data show a low incidence of chromosomal abnormalities and thus question routine chromosomal analysis at the baseline evaluation of transsexualism, and suggest that it be considered only in cases of abnormal history or hormonal examination. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Lindblad, Ann-Cathrine; Rosenhall, Ulf; Olofsson, Åke; Hagerman, Björn
2014-01-01
The aim of the investigation was to study if dysfunctions associated to the cochlea or its regulatory system can be found, and possibly explain hearing problems in subjects with normal or near-normal audiograms. The design was a prospective study of subjects recruited from the general population. The included subjects were persons with auditory problems who had normal, or near-normal, pure tone hearing thresholds, who could be included in one of three subgroups: teachers, Education; people working with music, Music; and people with moderate or negligible noise exposure, Other. A fourth group included people with poorer pure tone hearing thresholds and a history of severe occupational noise, Industry. Ntotal = 193. The following hearing tests were used: - pure tone audiometry with Békésy technique, - transient evoked otoacoustic emissions and distortion product otoacoustic emissions, without and with contralateral noise; - psychoacoustical modulation transfer function, - forward masking, - speech recognition in noise, - tinnitus matching. A questionnaire about occupations, noise exposure, stress/anxiety, muscular problems, medication, and heredity, was addressed to the participants. Forward masking results were significantly worse for Education and Industry than for the other groups, possibly associated to the inner hair cell area. Forward masking results were significantly correlated to louder matched tinnitus. For many subjects speech recognition in noise, left ear, did not increase in a normal way when the listening level was increased. Subjects hypersensitive to loud sound had significantly better speech recognition in noise at the lower test level than subjects not hypersensitive. Self-reported stress/anxiety was similar for all groups. In conclusion, hearing dysfunctions were found in subjects with tinnitus and other auditory problems, combined with normal or near-normal pure tone thresholds. The teachers, mostly regarded as a group exposed to noise below risk levels, had dysfunctions almost identical to those of the more exposed Industry group.
Lindblad, Ann-Cathrine; Rosenhall, Ulf; Olofsson, Åke; Hagerman, Björn
2014-01-01
The aim of the investigation was to study if dysfunctions associated to the cochlea or its regulatory system can be found, and possibly explain hearing problems in subjects with normal or near-normal audiograms. The design was a prospective study of subjects recruited from the general population. The included subjects were persons with auditory problems who had normal, or near-normal, pure tone hearing thresholds, who could be included in one of three subgroups: teachers, Education; people working with music, Music; and people with moderate or negligible noise exposure, Other. A fourth group included people with poorer pure tone hearing thresholds and a history of severe occupational noise, Industry. Ntotal = 193. The following hearing tests were used: − pure tone audiometry with Békésy technique, − transient evoked otoacoustic emissions and distortion product otoacoustic emissions, without and with contralateral noise; − psychoacoustical modulation transfer function, − forward masking, − speech recognition in noise, − tinnitus matching. A questionnaire about occupations, noise exposure, stress/anxiety, muscular problems, medication, and heredity, was addressed to the participants. Forward masking results were significantly worse for Education and Industry than for the other groups, possibly associated to the inner hair cell area. Forward masking results were significantly correlated to louder matched tinnitus. For many subjects speech recognition in noise, left ear, did not increase in a normal way when the listening level was increased. Subjects hypersensitive to loud sound had significantly better speech recognition in noise at the lower test level than subjects not hypersensitive. Self-reported stress/anxiety was similar for all groups. In conclusion, hearing dysfunctions were found in subjects with tinnitus and other auditory problems, combined with normal or near-normal pure tone thresholds. The teachers, mostly regarded as a group exposed to noise below risk levels, had dysfunctions almost identical to those of the more exposed Industry group. PMID:24827149
Central obscuration effects on optical synthetic aperture imaging
NASA Astrophysics Data System (ADS)
Wang, Xue-wen; Luo, Xiao; Zheng, Li-gong; Zhang, Xue-jun
2014-02-01
Due to the central obscuration problem exists in most optical synthetic aperture systems, it is necessary to analyze its effects on their image performance. Based on the incoherent diffraction limited imaging theory, a Golay-3 type synthetic aperture system was used to study the central obscuration effects on the point spread function (PSF) and the modulation transfer function (MTF). It was found that the central obscuration does not affect the width of the central peak of the PSF and the cutoff spatial frequency of the MTF, but attenuate the first sidelobe of the PSF and the midfrequency of the MTF. The imaging simulation of a Golay-3 type synthetic aperture system with central obscuration proved this conclusion. At last, a Wiener Filter restoration algorithm was used to restore the image of this system, the images were obviously better.
HIV infection risk factors among male-to-female transgender persons: a review of the literature.
De Santis, Joseph P
2009-01-01
Male-to-female (MTF) transgender women experience a host of psychosocial issues such as discrimination, stigmatization, and marginalization. These challenges often limit economic opportunities, affect mental health, and may place members of this population at an increased risk for HIV infection. This report presents a review of the literature that focuses on risk factors for HIV infection specific to the MTF population. Factors including needle sharing and substance abuse, high-risk sexual behaviors, commercial sex work, health care access, lack of knowledge regarding HIV transmission, violence, stigma and discrimination, and mental health issues have been identified in the literature as risk factors for the acquisition of HIV infection by members of this population. Implications for care provided to MTF transgender persons are presented, and suggestions for future research are identified.
NASA Astrophysics Data System (ADS)
Gopal, Arun
In image guided radiation therapy (IGRT), imaging devices serve as guidance systems to aid patient set-up and tumor volume localization. Traditionally, 2-D megavoltage x-ray imagers, referred to as electronic portal imaging devices (EPIDs), have been used for planar target localization, and have recently been extended to perform 3-D volumetric reconstruction via cone-beam computed tomography (CBCT). However, current EPIDs utilize thin and inefficient phosphor screen detectors and are subsequently limited by poor soft tissue visualization, which limits their use for CBCT. Therefore, the use of thick scintillation media as megavoltage x-ray detectors for greater x-ray sensitivity and enhanced image quality has recently been of significant interest. In this research, two candidates for thick scintillators: CsI(Tl) and terbium doped scintillation glass were investigated in separate imaging configurations. In the first configuration, a thick scintillation crystal (TSC) consisting of a thick, monolithic slab of CsI(Tl) was coupled to a mirror-lens-camera system. The second configuration is based on a fiber-optic scintillation glass array (FOSGA), wherein the scintillation glass is drawn into long fiber-optic conduits, inserted into a grid-type housing constructed out of polymer-tungsten alloy, and coupled to an array of photodiodes for digital read-out. The imaging prototypes were characterized using theoretical studies and imaging measurements to obtain fundamental metrics of imaging performance. Spatial resolution was measured based on a modulation transfer function (MTF), noise was evaluated in terms of a noise power spectrum (NPS), and overall contrast was characterized in the form of detective quantum efficiency (DQE). The imaging studies were used to optimize the TSC and FOSGA imagers and propose prototype configurations for order-of-magnitude improvements in overall image quality. In addition, a fast and simple technique was developed to measure the MTF, NPS, and DQE metrics for clinical EPID and CBCT systems based on a novel adaptation of a traditional line-pair resolution bar-pattern. This research provides two significant benefits to radiotherapy: the characterization of a new generation of thick scintillator based megavoltage x-ray imagers for CBCT based IGRT, and the novel adaptation of fundamental imaging metrics from imaging research to routine clinical performance monitoring.
1988-06-17
Two difinitions have been devised to quantify contrast. Contrast ratio is given by - L2CR= = L (1) in which L2 and Li are luminance measurements and L2...units, which are quantitative , well understood, and predictable, before the display hardware is built. The last advantage is economically important in...then estimate quantitatively the effect of the resultant MTF change on user performance. 10 The reader interested in probing MTF in further depth is
2011-01-25
The Quadruple Aim: Working Together, Achieving Success 2011 Military Health System Conference Driving change through MTF and market -level assessment...and strategies Tidewater Multi-Service Market Perspectives January 25, 2011 Rear Admiral A. Stocks, MC, USN Colonel E. Stone, MC, USAF...Colonel K. Gausman, NC, USA 1 Military Health System Conference Tidewater Multi-Service Market Report Documentation Page Form ApprovedOMB No. 0704-0188
ERIC Educational Resources Information Center
Johnston, Lloyd D.; O'Malley, Patrick M.; Bachman, Jerald G.; Schulenberg, John E.; Miech, Richard A.
2014-01-01
This occasional paper presents national demographic subgroup trends for U.S. secondary school students in a series of figures and tables. It supplements two of four annual monographs from the Monitoring the Future (MTF) study, namely the "Overview of Key Findings" and "Volume I: Secondary School Students." MTF is funded by the…
Chromatin insulation by a transcriptional activator
Sutter, Nathan B.; Scalzo, David; Fiering, Steven; Groudine, Mark; Martin, David I. K.
2003-01-01
In eukaryotic genomes, transcriptionally active regions are interspersed with silent chromatin that may repress genes in its vicinity. Chromatin insulators are elements that can shield a locus from repressive effects of flanking chromatin. Few such elements have been characterized in higher eukaryotes, but transcriptional activating elements are an invariant feature of active loci and have been shown to suppress transgene silencing. Hence, we have assessed the ability of a transcriptional activator to cause chromatin insulation, i.e., to relieve position effects at transgene integration sites in cultured cells. The transgene contained a series of binding sites for the metal-inducible transcriptional activator MTF, linked to a GFP reporter. Clones carrying single integrated transgenes were derived without selection for expression, and in most clones the transgene was silent. Induction of MTF resulted in transition of the transgene from the silent to the active state, prolongation of the active state, and a marked narrowing of the range of expression levels at different genomic sites. At one genomic site, prolonged induction of MTF resulted in suppression of transgene silencing that persisted after withdrawal of the induction stimulus. These results are consistent with MTF acting as a chromatin insulator and imply that transcriptional activating elements can insulate active loci against chromatin repression. PMID:12547916
Okabe, Nobuyuki; Sato, Toshiki; Matsumoto, Yosuke; Ido, Yumiko; Terada, Seishi; Kuroda, Shigetoshi
2008-01-15
The aim of this study was to examine the clinical characteristics of patients with gender identity disorder (GID) at a GID clinic in Japan. A total of 603 consecutive patients were evaluated at the GID clinic using clinical information and results of physical and neurological examinations. Using DSM-IV criteria, 579 patients (96.0%) were diagnosed with GID. Four patients were excluded for transvestic fetishism, eight for homosexuality, five for schizophrenia, three for personality disorders, and four for other psychiatric disorders. Among the GID patients, 349 (60.3%) were the female-to-male (FTM) type, and 230 (39.7%) were the male-to-female (MTF) type. Almost all FTM-type GID patients started to feel discomfort with their sex before puberty and were sexually attracted to females. The proportion of FTM patients who had experienced marriage as a female was very low, and very few had children. Therefore, FTM-type GID patients seem to be highly homogeneous. On the other hand, various patterns of age at onset and sexual attraction existed among MTF patients. Among the MTF-type GID patients, 28.3% had married as males and 18.7% had sired children. Thus, MTF-type GID patients seem to be more heterogeneous.
One-dimensional MHD simulations of MTF systems with compact toroid targets and spherical liners
NASA Astrophysics Data System (ADS)
Khalzov, Ivan; Zindler, Ryan; Barsky, Sandra; Delage, Michael; Laberge, Michel
2017-10-01
One-dimensional (1D) MHD code is developed in General Fusion (GF) for coupled plasma-liner simulations in magnetized target fusion (MTF) systems. The main goal of these simulations is to search for optimal parameters of MTF reactor, in which spherical liquid metal liner compresses compact toroid plasma. The code uses Lagrangian description for both liner and plasma. The liner is represented as a set of spherical shells with fixed masses while plasma is discretized as a set of nested tori with circular cross sections and fixed number of particles between them. All physical fields are 1D functions of either spherical (liner) or small toroidal (plasma) radius. Motion of liner and plasma shells is calculated self-consistently based on applied forces and equations of state. Magnetic field is determined by 1D profiles of poloidal and toroidal fluxes - they are advected with shells and diffuse according to local resistivity, this also accounts for flux leakage into the liner. Different plasma transport models are implemented, this allows for comparison with ongoing GF experiments. Fusion power calculation is included into the code. We performed a series of parameter scans in order to establish the underlying dependencies of the MTF system and find the optimal reactor design point.
Hubbard, Joanna K.; Potts, Macy A.; Couch, Brian A.
2017-01-01
Assessments represent an important component of undergraduate courses because they affect how students interact with course content and gauge student achievement of course objectives. To make decisions on assessment design, instructors must understand the affordances and limitations of available question formats. Here, we use a crossover experimental design to identify differences in how multiple-true-false (MTF) and free-response (FR) exam questions reveal student thinking regarding specific conceptions. We report that correct response rates correlate across the two formats but that a higher percentage of students provide correct responses for MTF questions. We find that MTF questions reveal a high prevalence of students with mixed (correct and incorrect) conceptions, while FR questions reveal a high prevalence of students with partial (correct and unclear) conceptions. These results suggest that MTF question prompts can direct students to address specific conceptions but obscure nuances in student thinking and may overestimate the frequency of particular conceptions. Conversely, FR questions provide a more authentic portrait of student thinking but may face limitations in their ability to diagnose specific, particularly incorrect, conceptions. We further discuss an intrinsic tension between question structure and diagnostic capacity and how instructors might use multiple formats or hybrid formats to overcome these obstacles. PMID:28450446
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.
2011-03-14
A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A616, 172 (2010)]. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's datamore » processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
Imaging quality analysis of multi-channel scanning radiometer
NASA Astrophysics Data System (ADS)
Fan, Hong; Xu, Wujun; Wang, Chengliang
2008-03-01
Multi-channel scanning radiometer, on boarding FY-2 geostationary meteorological satellite, plays a key role in remote sensing because of its wide field of view and continuous multi-spectral images acquirements. It is significant to evaluate image quality after performance parameters of the imaging system are validated. Several methods of evaluating imaging quality are discussed. Of these methods, the most fundamental is the MTF. The MTF of photoelectric scanning remote instrument, in the scanning direction, is the multiplication of optics transfer function (OTF), detector transfer function (DTF) and electronics transfer function (ETF). For image motion compensation, moving speed of scanning mirror should be considered. The optical MTF measurement is performed in both the EAST/WEST and NORTH/SOUTH direction, whose values are used for alignment purposes and are used to determine the general health of the instrument during integration and testing. Imaging systems cannot perfectly reproduce what they see and end up "blurring" the image. Many parts of the imaging system can cause blurring. Among these are the optical elements, the sampling of the detector itself, post-processing, or the earth's atmosphere for systems that image through it. Through theory calculation and actual measurement, it is proved that DTF and ETF are the main factors of system MTF and the imaging quality can satisfy the requirement of instrument design.
Examination of the dental cone-beam CT equipped with flat-panel-detector (FPD)
NASA Astrophysics Data System (ADS)
Ito, Rieko; Fujita, Naotoshi; Kodera, Yoshie
2011-03-01
In dentistry, computed tomography (CT) is essential for diagnosis. Recently, cone-beam CT has come into use. We used an "Alphard 3030" cone-beam CT equipped with an FPD system. This system can obtain fluoroscopic and CT images. Moreover, the Alphard has 4 exposure modes for CT, and each mode has a different field of view (FOV) and voxel size. We examined the image quality of kinetic and CT images obtained using the cone-beam CT system. To evaluate kinetic image quality, we calculated the Wiener spectrum (WS) and modulation transfer function (MTF). We then analyzed the lag images and exposed a phantom. To evaluate CT image quality, we calculated WS and MTF at various places in the FOV and examined the influence of extension of the cone beam X-ray on voxel size. Furthermore, we compared the WS and MTF values of cone-beam CT to those of another CT system. Evaluation of the kinetic images showed that cone-beam CT is sufficient for clinical diagnosis and provides better image quality than the other system tested. However, during exposure of a CT image, the distance from the center influences image quality (especially MTF). Further, differences in voxel size affect image quality. It is therefore necessary to carefully position the region of interest and select an appropriate mode.
Huber, Rainer; Bisitz, Thomas; Gerkmann, Timo; Kiessling, Jürgen; Meister, Hartmut; Kollmeier, Birger
2018-06-01
The perceived qualities of nine different single-microphone noise reduction (SMNR) algorithms were to be evaluated and compared in subjective listening tests with normal hearing and hearing impaired (HI) listeners. Speech samples added with traffic noise or with party noise were processed by the SMNR algorithms. Subjects rated the amount of speech distortions, intrusiveness of background noise, listening effort and overall quality, using a simplified MUSHRA (ITU-R, 2003 ) assessment method. 18 normal hearing and 18 moderately HI subjects participated in the study. Significant differences between the rating behaviours of the two subject groups were observed: While normal hearing subjects clearly differentiated between different SMNR algorithms, HI subjects rated all processed signals very similarly. Moreover, HI subjects rated speech distortions of the unprocessed, noisier signals as being more severe than the distortions of the processed signals, in contrast to normal hearing subjects. It seems harder for HI listeners to distinguish between additive noise and speech distortions or/and they might have a different understanding of the term "speech distortion" than normal hearing listeners have. The findings confirm that the evaluation of SMNR schemes for hearing aids should always involve HI listeners.
Doubled full shot noise in quantum coherent superconductor-semiconductor junctions.
Lefloch, F; Hoffmann, C; Sanquer, M; Quirion, D
2003-02-14
We performed low temperature shot noise measurements in superconductor (TiN) strongly disordered normal metal (heavily doped Si) weakly transparent junctions. We show that the conductance has a maximum due to coherent multiple Andreev reflections at low energy and that the shot noise is then twice the Poisson noise (S = 4eI). When the subgap conductance reaches its minimum at finite voltage the shot noise changes to the normal value (S = 2eI) due to a large quasiparticle contribution.
Wang, Yan-hong; Zhao, Wen-jie; Zheng, Wei-juan; Mao, Li; Lian, Hong-zhen; Hu, Xin; Hua, Zi-chun
2016-03-01
Intracellular metal elements exist in mammalian cells with the concentration range from picomoles per litre to micromoles per litre and play a considerable role in various biological procedures. Element provided by different species can influence the availability and distribution of the element in a cell and could lead to different biological effects on the cell's growth and function. Zinc as an abundant and widely distributed essential trace element, is involved in numerous and relevant physiological functions. Zinc homeostasis in cells, which is regulated by metallothioneins, zinc transporter/SLC30A, Zrt-/Irt-like proteins/SLC39A and metal-response element-binding transcription factor-1 (MTF-1), is crucial for normal cellular functioning. In this study, we investigated the influences of different zinc species, zinc sulphate, zinc gluconate and bacitracin zinc, which represented inorganic, organic and biological zinc species, respectively, on cell cycle, viability and apoptosis in MDAMB231 cells. It was found that the responses of cell cycle, apoptosis and death to different zinc species in MDAMB231 cells are different. Western blot analysis of the expression of several key proteins in regulating zinc-related transcription, cell cycle, apoptosis, including MTF-1, cyclin B1, cyclin D1, caspase-8 and caspase-9 in treated cells further confirmed the observed results on cell level.
Choi, Sunghoon; Lee, Haenghwa; Lee, Donghoon; Choi, Seungyeon; Lee, Chang-Lae; Kwon, Woocheol; Shin, Jungwook; Seo, Chang-Woo; Kim, Hee-Joung
2018-05-01
This work describes the hardware and software developments of a prototype chest digital tomosynthesis (CDT) R/F system. The purpose of this study was to validate the developed system for its possible clinical application on low-dose chest tomosynthesis imaging. The prototype CDT R/F system was operated by carefully controlling the electromechanical subsystems through a synchronized interface. Once a command signal was delivered by the user, a tomosynthesis sweep started to acquire 81 projection views (PVs) in a limited angular range of ±20°. Among the full projection dataset of 81 images, several sets of 21 (quarter view) and 41 (half view) images with equally spaced angle steps were selected to represent a sparse view condition. GPU-accelerated and total-variation (TV) regularization strategy-based compressed sensing (CS) image reconstruction was implemented. The imaged objects were a flat-field using a copper filter to measure the noise power spectrum (NPS), a Catphan ® CTP682 quality assurance (QA) phantom to measure a task-based modulation transfer function (MTF T ask ) of three different cylinders' edge, and an anthropomorphic chest phantom with inserted lung nodules. The authors also verified the accelerated computing power over CPU programming by checking the elapsed time required for the CS method. The resultant absorbed and effective doses that were delivered to the chest phantom from two-view digital radiographic projections, helical computed tomography (CT), and the prototype CDT system were compared. The prototype CDT system was successfully operated, showing little geometric error with fast rise and fall times of R/F x-ray pulse less than 2 and 10 ms, respectively. The in-plane NPS presented essential symmetric patterns as predicted by the central slice theorem. The NPS images from 21 PVs were provided quite different pattern against 41 and 81 PVs due to aliased noise. The voxel variance values which summed all NPS intensities were inversely proportional to the number of PVs, and the CS method gave much lower voxel variance by the factors of 3.97-6.43 and 2.28-3.36 compared to filtered backprojection (FBP) and 20 iterations of simultaneous algebraic reconstruction technique (SART). The spatial frequencies of the f 50 at which the MTF T ask reduced to 50% were 1.50, 1.55, and 1.67 cycles/mm for FBP, SART, and CS methods, respectively, in the case of Bone 20% cylinder using 41 views. A variety of ranges of TV reconstruction parameters were implemented during the CS method and we could observe that the NPS and MTF T ask preserved best when the regularization and TV smoothing parameters α and τ were in a range of 0.001-0.1. For the chest phantom data, the signal difference to noise ratios (SDNRs) were higher in the proposed CS scheme images than in the FBP and SART, showing the enhanced rate of 1.05-1.43 for half view imaging. The total averaged reconstruction time during 20 iterations of the CS scheme was 124.68 s, which could match-up a clinically feasible time (<3 min). This computing time represented an enhanced speed 386 times greater than CPU programming. The total amounts of estimated effective doses were 0.12, 0.53 (half view), and 2.56 mSv for two-view radiographs, the prototype CDT system, and helical CT, respectively, showing 4.49 times higher than conventional radiography and 4.83 times lower than a CT exam, respectively. The current work describes the development and performance assessment of both hardware and software for tomosynthesis applications. The authors observed reasonable outcomes by showing a potential for low-dose application in CDT imaging using GPU acceleration. © 2018 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Xu, Tianhua; Jacobsen, Gunnar; Popov, Sergei; Li, Jie; Liu, Tiegen; Zhang, Yimo
2016-10-01
The performance of long-haul high speed coherent optical fiber communication systems is significantly degraded by the laser phase noise and the equalization enhanced phase noise (EEPN). In this paper, the analysis of the one-tap normalized least-mean-square (LMS) carrier phase recovery (CPR) is carried out and the close-form expression is investigated for quadrature phase shift keying (QPSK) coherent optical fiber communication systems, in compensating both laser phase noise and equalization enhanced phase noise. Numerical simulations have also been implemented to verify the theoretical analysis. It is found that the one-tap normalized least-mean-square algorithm gives the same analytical expression for predicting CPR bit-error-rate (BER) floors as the traditional differential carrier phase recovery, when both the laser phase noise and the equalization enhanced phase noise are taken into account.
Free Field Word recognition test in the presence of noise in normal hearing adults.
Almeida, Gleide Viviani Maciel; Ribas, Angela; Calleros, Jorge
In ideal listening situations, subjects with normal hearing can easily understand speech, as can many subjects who have a hearing loss. To present the validation of the Word Recognition Test in a Free Field in the Presence of Noise in normal-hearing adults. Sample consisted of 100 healthy adults over 18 years of age with normal hearing. After pure tone audiometry, a speech recognition test was applied in free field condition with monosyllables and disyllables, with standardized material in three listening situations: optimal listening condition (no noise), with a signal to noise ratio of 0dB and a signal to noise ratio of -10dB. For these tests, an environment in calibrated free field was arranged where speech was presented to the subject being tested from two speakers located at 45°, and noise from a third speaker, located at 180°. All participants had speech audiometry results in the free field between 88% and 100% in the three listening situations. Word Recognition Test in Free Field in the Presence of Noise proved to be easy to be organized and applied. The results of the test validation suggest that individuals with normal hearing should get between 88% and 100% of the stimuli correct. The test can be an important tool in measuring noise interference on the speech perception abilities. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Evaluate depth of field limits of fixed focus lens arrangements in thermal infrared
NASA Astrophysics Data System (ADS)
Schuster, Norbert
2016-05-01
More and more modern thermal imaging systems use uncooled detectors. High volume applications work with detectors that have a reduced pixel count (typically between 200x150 and 640x480). This reduces the usefulness of modern image treatment procedures such as wave front coding. On the other hand, uncooled detectors demand lenses with fast fnumbers, near f/1.0, which reduces the expected Depth of Field (DoF). What are the limits on resolution if the target changes distance to the camera system? The desire to implement lens arrangements without a focusing mechanism demands a deeper quantification of the DoF problem. A new approach avoids the classic "accepted image blur circle" and quantifies the expected DoF by the Through Focus MTF of the lens. This function is defined for a certain spatial frequency that provides a straightforward relation to the pixel pitch of imaging device. A certain minimum MTF-level is necessary so that the complete thermal imaging system can realize its basic functions, such as recognition or detection of specified targets. Very often, this technical tradeoff is approved with a certain lens. But what is the impact of changing the lens for one with a different focal length? Narrow field lenses, which give more details of targets in longer distances, tighten the DoF problem. A first orientation is given by the hyperfocal distance. It depends in a square relation on the focal length and in a linear relation on the through focus MTF of the lens. The analysis of these relations shows the contradicting requirements between higher thermal and spatial resolution, faster f-number and desired DoF. Furthermore, the hyperfocal distance defines the DoF-borders. Their relation between is such as the first order imaging formulas. A calculation methodology will be presented to transfer DoF-results from an approved combination lens and camera to another lens in combination with the initial camera. Necessary input for this prediction is the accepted DoF of the initial combination and the through focus MTFs of both lenses. The accepted DoF of the initial combination defines an application and camera related MTF-level, which must be provided also by the new lens. Examples are provided. The formula of the Diffraction-Limited-Through-Focus-MTF (DLTF) quantifies the physical limit and works without any ray trace. This relation respects the pixel pitch, the waveband and the aperture based f-number, but is independent of detector size. The DLTF has a steeper slope than the ray traced Through-Focus-MTF; its maximum is the diffraction limit. The DLTF predicts the DoF-relations quite precisely. Differences to ray trace results are discussed. Last calculations with modern detectors show that a static chosen MTF-level doesn't reflect the reality for the DoFproblem. The MTF-level to respect depends on application, pixel pitch, IR-camera and image treatment. A value of 0.250 at the detector Nyquist frequency seems to be a reasonable starting point for uncooled FPAs with 17μm pixel pitch.
Accent, intelligibility, and comprehensibility in the perception of foreign-accented Lombard speech
NASA Astrophysics Data System (ADS)
Li, Chi-Nin
2003-10-01
Speech produced in noise (Lombard speech) has been reported to be more intelligible than speech produced in quiet (normal speech). This study examined the perception of non-native Lombard speech in terms of intelligibility, comprehensibility, and degree of foreign accent. Twelve Cantonese speakers and a comparison group of English speakers read simple true and false English statements in quiet and in 70 dB of masking noise. Lombard and normal utterances were mixed with noise at a constant signal-to-noise ratio, and presented along with noise-free stimuli to eight new English listeners who provided transcription scores, comprehensibility ratings, and accent ratings. Analyses showed that, as expected, utterances presented in noise were less well perceived than were noise-free sentences, and that the Cantonese speakers' productions were more accented, but less intelligible and less comprehensible than those of the English speakers. For both groups of speakers, the Lombard sentences were correctly transcribed more often than their normal utterances in noisy conditions. However, the Cantonese-accented Lombard sentences were not rated as easier to understand than was the normal speech in all conditions. The assigned accent ratings were similar throughout all listening conditions. Implications of these findings will be discussed.
ERIC Educational Resources Information Center
Johnston, Lloyd D.; O'Malley, Patrick M.; Miech, Richard A.; Bachman, Jerald G.; Schulenberg, John E.
2016-01-01
This occasional paper presents national demographic subgroup data for the 1975-2015 Monitoring the Future (MTF) national survey results on 8th, 10th, and 12th graders' use of drugs, alcohol, and tobacco. MTF is funded by the National Institute on Drug Abuse at the National Institutes of Health under a series of investigator-initiated, competitive…
ERIC Educational Resources Information Center
Johnston, Lloyd D.; O'Malley, Patrick M.; Miech, Richard A.; Bachman, Jerald G.; Schulenberg, John E.
2015-01-01
This occasional paper presents national demographic subgroup data for the 1975-2014 Monitoring the Future (MTF) national survey results on 8th, 10th, and 12th graders' use of drugs, alcohol, and tobacco. MTF is funded by the National Institute on Drug Abuse at the National Institutes of Health under a series of investigator-initiated, competitive…
ERIC Educational Resources Information Center
Johnston, Lloyd D.; O'Malley, Patrick M.; Miech, Richard A.; Bachman, Jerald G.; Schulenberg, John E.
2017-01-01
This occasional paper presents national demographic subgroup data for the 1975-2016 Monitoring the Future (MTF) national survey results on 8th , 10th, and 12th graders' use of drugs, alcohol, and tobacco. MTF is funded by the National Institute on Drug Abuse at the National Institutes of Health under a series of investigator-initiated, competitive…
Using Time-Phased Casualty Estimates to Determine Medical Resupply Requirements
2006-09-18
calculated from the list of tasks. The RSVP-planned MTF laydown would be replaced by the reporting MTF with a known location. One advantage of...Another advantage is the ability to adapt quickly to changing requirements. Supplies that are used at a faster than initially forecast rate will...Officer ( GMO ) Platforms. San Diego, Calif: Naval Health Research Center; 2001. Technical Report No. 01-18. 5. Galarneau MR, Pang G, Konoske PJ
2005-01-01
Summary xxv their knowledge and to train newly arrived providers who rotated in from previous MTF assignments. Patient Education . The provision of... patient education on self- care was one of the weaker components of the implementation activi- ties. Patient behaviors affect the MTFs’ ability to...and severity of asthma exacerbations. Inadequacies in MTF patient education activities were identified, including problems with program design, limited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheehey, P.T.; Faehl, R.J.; Kirkpatrick, R.C.
1997-12-31
Magnetized Target Fusion (MTF) experiments, in which a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions, present some challenging computational modeling problems. Recently, joint experiments relevant to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic compression) have been performed by Los Alamos National Laboratory and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). Modeling of target plasmas must accurately predict plasma densities, temperatures, fields, and lifetime; dense plasma interactions with wall materials must be characterized. Modeling of magnetically driven imploding solid liners, for compression of target plasmas, must address issues such as Rayleigh-Taylor instability growthmore » in the presence of material strength, and glide plane-liner interactions. Proposed experiments involving liner-on-plasma compressions to fusion conditions will require integrated target plasma and liner calculations. Detailed comparison of the modeling results with experiment will be presented.« less
High-MTF hybrid ferroelectric IRFPA
NASA Astrophysics Data System (ADS)
Evans, Scott B.; Hayden, Terrence
1998-07-01
Low cost, uncooled hybrid infrared focal plane arrays (IRFPA's) are in full-scale production at Raytheon Systems Company (RSC), formerly Texas Instruments Defense Systems and Electronics Group. Detectors consist of reticulated ceramic barium strontium titanate (BST) arrays of 320 X 240 pixels on 48.5 micrometer pitch. The principal performance shortcoming of the hybrid arrays has been low MTF due to thermal crosstalk between pixels. In the past two years, significant improvements have been made to increase MTF making hybrids more competitive in performance with monolithic arrays. The improvements are (1) the reduction of the thickness of the IR absorbing layer electrode that maintains electrical continuity and increases thermal isolation between pixels, (2) reduction of the electrical crosstalk from the ROIC, and (3) development of a process to increase the thermal path-length between pixels called 'elevated optical coat.' This paper describes all three activities and their efficacy. Also discussed is the uncooled IRFPA production capability at RSC.
An alternative approach to depth of field which avoids the blur circle and uses the pixel pitch
NASA Astrophysics Data System (ADS)
Schuster, Norbert
2015-09-01
Modern thermal imaging systems apply more and more uncooled detectors. High volume applications work with detectors which have a reduced pixel count (typical between 200x150 and 640x480). This shrinks the application of modern image treatment procedures like wave front coding. On the other hand side, uncooled detectors demand lenses with fast F-numbers near 1.0. Which are the limits on resolution if the target to analyze changes its distance to the camera system? The aim to implement lens arrangements without any focusing mechanism demands a deeper quantification of the Depth of Field problem. The proposed Depth of Field approach avoids the classic "accepted image blur circle". It bases on a camera specific depth of focus which is transformed in the object space by paraxial relations. The traditional RAYLEIGH's -criterion bases on the unaberrated Point Spread Function and delivers a first order relation for the depth of focus. Hence, neither the actual lens resolution neither the detector impact is considered. The camera specific depth of focus respects a lot of camera properties: Lens aberrations at actual F-number, detector size and pixel pitch. The through focus MTF is the base of the camera specific depth of focus. It has a nearly symmetric course around the maximum of sharp imaging. The through focus MTF is considered at detector's Nyquist frequency. The camera specific depth of focus is this the axial distance in front and behind of sharp image plane where the through focus MTF is <0.25. This camera specific depth of focus is transferred in the object space by paraxial relations. It follows a general applicable Depth of Field diagram which could be applied to lenses realizing a lateral magnification range -0.05…0. Easy to handle formulas are provided between hyperfocal distance and the borders of the Depth of Field in dependence on sharp distances. These relations are in line with the classical Depth of Field-theory. Thermal pictures, taken by different IR-camera cores, illustrate the new approach. The quite often requested graph "MTF versus distance" choses the half Nyquist frequency as reference. The paraxial transfer of the through focus MTF in object space distorts the MTF-curve: hard drop at closer distances than sharp distance, smooth drop at further distances. The formula of a general Diffraction-Limited-Through-Focus-MTF (DLTF) is deducted. Arbitrary detector-lens combinations could be discussed. Free variables in this analysis are waveband, aperture based F-number (lens) and pixel pitch (detector). The DLTF- discussion provides physical limits and technical requirements. The detector development with pixel pitches smaller than captured wavelength in the LWIR-region generates a special challenge for optical design.
Effects of Masking Noise on Laryngeal Resistance for Breathy, Normal, and Pressed Voice
ERIC Educational Resources Information Center
Grillo, Elizabeth U.; Abbott, Katherine Verdolini; Lee, Timothy D.
2010-01-01
Purpose: The purpose of the present study was to explore the effects of masking noise on laryngeal resistance for breathy, normal, and pressed voice in vocally trained women. Method: Eighteen vocally trained women produced breathy, normal, and pressed voice across 7 fundamental frequencies during a repeated CV utterance of /pi/ under normal and…
Hearing in Noise Test, HINT-Brazil, in normal-hearing children.
Novelli, Carolina Lino; Carvalho, Nádia Giulian de; Colella-Santos, Maria Francisca
The auditory processing is related to certain skills such as speech recognition in noise. The HINT-Brazil test allows the measurement of the Speech/Noise ratio however there are no studies in the national literature that establish parameters for the child population. To analyze the performance of normal-hearing subjects aged 8-10 years old in tasks for speech recognition in noise using HINT test. Sixty schoolchildren were evaluated. They were between 8 and 10 years of age, of both genders, and had no auditory and school complaints, with results ranking within normality for the Basic Audiological Assessment and the Dichotic Digits Test. HINT-Brazil test was applied with headphones, with the Speech/Noise ratio in conditions of frontal noise, noise to the right, and noise to the left being investigated. The software calculated the Composite Noise, which corresponds to the weighted mean of the tested conditions. There was no statistically significant difference between the ears, nor between the genders. There was a statistically significant difference for age ranges of 8 and 10 years, in situations with noise, and for Composite Noise. The age group of 10 years showed better performance than the age group of 8; the age group of 9 years did not show statistically significant difference regarding the other age ranges. We suggest the values of mean and standard deviation of the Speech/Noise ratio, considering the age ranges of: 8 years - Frontal Noise: -2.09 (±1.09); Right Noise: -7.64 (±1.72); Left Noise: -7.53 (±2.80); Composite Noise: -4.86 (±1.31); 9 years - Frontal Noise: -2.82 (±0.74); Right Noise: -8.49 (±2.24); Left Noise: -8.41 (±1.75); Composite Noise: -5.63 (±1.02); 10 years - Frontal Noise: -3.01 (±0.95); Right Noise: -9.47 (±1.43); Left Noise: -9.16 (±1.65); Composite Noise: -6.16 (±0.91). HINT-Brazil test is a simple and fast test, and is not difficult to performed with normal-hearing children. The results confirm that it is an efficient test to be used with the age range evaluated. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Nagaev, K E
2001-04-02
The shot noise in long diffusive superconductor-normal-metal-superconductor contacts is calculated using the semiclassical approach. At low frequencies and for purely elastic scattering, the voltage dependence of the noise is of the form S(I) = (4Delta+2eV)/3R. The electron-electron scattering suppresses the noise at small voltages resulting in vanishing noise yet infinite dS(I)/dV at V = 0. The distribution function of electrons consists of a series of steps, and the frequency dependence of noise exhibits peculiarities at omega = neV, omega = neV-2Delta, and omega = 2Delta-neV for integer n.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V; Anderson, Erik H.; Barber, Samuel K.
2010-07-26
A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47(7), 073602-1-5 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A 616, 172-82 (2010]. Here we report on a significant expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument'smore » data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
The Progress of Research Project for Magnetized Target Fusion in China
NASA Astrophysics Data System (ADS)
Yang, Xian-Jun
2015-11-01
The fusion of magnetized plasma called Magnetized Target Fusion (MTF) is a hot research area recently. It may significantly reduce the cost and size. Great progress has been achieved in past decades around the world. Five years ago, China initiated the MTF project and has gotten some progress as follows: 1. Verifying the feasibility of ignition of MTF by means of first principle and MHD simulation; 2. Generating the magnetic field over 1400 Tesla, which can be suppress the heat conduction from charged particles, deposit the energy of alpha particle to promote the ignition process, and produce the stable magnetized plasma for the target of ignition; 3. The imploding facility of FP-1 can put several Mega Joule energy to the solid liner of about ten gram in the range of microsecond risen time, while the simulating tool has been developed for design and analysis of the process; 4. The target of FRC can be generated by ``YG 1 facility'' while some simulating tools have be developed. Next five years, the above theoretical work and the experiments of MTF may be integrated to step up as the National project, which may make my term play an important lead role and be supposed to achieve farther progress in China. Supported by the National Natural Science Foundation of China under Grant No 11175028.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, David M.; Belev, Gueorgi; DeCrescenzo, Giovanni
2007-08-15
Blocking layers are used to reduce leakage current in amorphous selenium detectors. The effect of the thickness of the blocking layer on the presampling modulation transfer function (MTF) and on dark current was experimentally determined in prototype single-line CCD-based amorphous selenium (a-Se) x-ray detectors. The sampling pitch of the detectors evaluated was 25 {mu}m and the blocking layer thicknesses varied from 1 to 51 {mu}m. The blocking layers resided on the signal collection electrodes which, in this configuration, were used to collect electrons. The combined thickness of the blocking layer and a-Se bulk in each detector was {approx}200 {mu}m. Asmore » expected, the dark current increased monotonically as the thickness of the blocking layer was decreased. It was found that if the blocking layer thickness was small compared to the sampling pitch, it caused a negligible reduction in MTF. However, the MTF was observed to decrease dramatically at spatial frequencies near the Nyquist frequency as the blocking layer thickness approached or exceeded the electrode sampling pitch. This observed reduction in MTF is shown to be consistent with predictions of an electrostatic model wherein the image charge from the a-Se is trapped at a characteristic depth within the blocking layer, generally near the interface between the blocking layer and the a-Se bulk.« less
[Improvement in Phoneme Discrimination in Noise in Normal Hearing Adults].
Schumann, A; Garea Garcia, L; Hoppe, U
2017-02-01
Objective: The study's aim was to examine the possibility to train phoneme-discrimination in noise with normal hearing adults, and its effectivity on speech recognition in noise. A specific computerised training program was used, consisting of special nonsense-syllables with background noise, to train participants' discrimination ability. Material and Methods: 46 normal hearing subjects took part in this study, 28 as training group participants, 18 as control group participants. Only the training group subjects were asked to train over a period of 3 weeks, twice a week for an hour with a computer-based training program. Speech recognition in noise were measured pre- to posttraining for the training group subjects with the Freiburger Einsilber Test. The control group subjects obtained test and restest measures within a 2-3 week break. For the training group follow-up speech recognition was measured 2-3 months after the end of the training. Results: The majority of training group subjects improved their phoneme discrimination significantly. Besides, their speech recognition in noise improved significantly during the training compared to the control group, and remained stable for a period of time. Conclusions: Phonem-Discrimination in noise can be trained by normal hearing adults. The improvements have got a positiv effect on speech recognition in noise, also for a longer period of time. © Georg Thieme Verlag KG Stuttgart · New York.
The effect of noise-induced hearing loss on the intelligibility of speech in noise
NASA Astrophysics Data System (ADS)
Smoorenburg, G. F.; Delaat, J. A. P. M.; Plomp, R.
1981-06-01
Speech reception thresholds, both in quiet and in noise, and tone audiograms were measured for 14 normal ears (7 subjects) and 44 ears (22 subjects) with noise-induced hearing loss. Maximum hearing loss in the 4-6 kHz region equalled 40 to 90 dB (losses exceeded by 90% and 10%, respectively). Hearing loss for speech in quiet measured with respect to the median speech reception threshold for normal ears ranged from 1.8 dB to 13.4 dB. For speech in noise the numbers are 1.2 dB to 7.0 dB which means that the subjects with noise-induced hearing loss need a 1.2 to 7.0 dB higher signal-to-noise ratio than normal to understand sentences equally well. A hearing loss for speech of 1 dB corresponds to a decrease in sentence intelligibility of 15 to 20%. The relation between hearing handicap conceived as a reduced ability to understand speech and tone audiogram is discussed. The higher signal-to-noise ratio needed by people with noise-induced hearing loss to understand speech in noisy environments is shown to be due partly to the decreased bandwidth of their hearing caused by the noise dip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scaduto, DA; Hu, Y-H; Zhao, W
Purpose: Spatial resolution in digital breast tomosynthesis (DBT) is affected by inherent/binned detector resolution, oblique entry of x-rays, and focal spot size/motion; the limited angular range further limits spatial resolution in the depth-direction. While DBT is being widely adopted clinically, imaging performance metrics and quality control protocols have not been standardized. AAPM Task Group 245 on Tomosynthesis Quality Control has been formed to address this deficiency. Methods: Methods of measuring spatial resolution are evaluated using two prototype quality control phantoms for DBT. Spatial resolution in the detector plane is measured in projection and reconstruction domains using edge-spread function (ESF), point-spreadmore » function (PSF) and modulation transfer function (MTF). Spatial resolution in the depth-direction and effective slice thickness are measured in the reconstruction domain using slice sensitivity profile (SSP) and artifact spread function (ASF). An oversampled PSF in the depth-direction is measured using a 50 µm angulated tungsten wire, from which the MTF is computed. Object-dependent PSF is derived and compared with ASF. Sensitivity of these measurements to phantom positioning, imaging conditions and reconstruction algorithms is evaluated. Results are compared from systems of varying acquisition geometry (9–25 projections over 15–60°). Dependence of measurements on feature size is investigated. Results: Measurements of spatial resolution using PSF and LSF are shown to depend on feature size; depth-direction spatial resolution measurements are shown to similarly depend on feature size for ASF, though deconvolution with an object function removes feature size-dependence. A slanted wire may be used to measure oversampled PSFs, from which MTFs may be computed for both in-plane and depth-direction resolution. Conclusion: Spatial resolution measured using PSF is object-independent with sufficiently small object; MTF is object-independent. Depth-direction spatial resolution may be measured directly using MTF or indirectly using ASF or SSP as surrogate measurements. While MTF is object-independent, it is invalid for nonlinear reconstructions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bache, S; Rong, J
Purpose: To quantify a radiology team’s assessment of image quality differences between two CT scanner models currently in clinical use, with emphasis on spatial resolution that could be impacted by focal spot size. Methods: Modulation Transfer Functions (MTF) measurements were performed by scanning the impulse source insert module of the Catphan 600 at 120/140 kVp with both large (LFS) and small (SFS) focal spots and reconstructed to 2.5mm and 5.0mm thicknesses on a GE Discovery CT750 HD and a LightSpeed VCT CT scanner. MTFs were calculated by summing the 2D PSF along one-dimension to obtain line-spread-function (LSF), and calculating themore » Fourier Transform of the zero-padded and background corrected LSF. Spatial resolution performance was evaluated by comparing MTF curves, 50% and 10% MTF cutoff, and total area under the MTF curve (AUC). In addition, images of the Catphan high-contrast module and a Kagaku anthropomorphic body phantom were acquired from the HD scanner for visual comparisons. Results: For each scanner model, SFS was superior to LFS spatial resolution with respect to 50%/10% MTF cutoff and AUC. For the HD, 50%/10% cutoff was 4.29/7.22cm-1 for the LFS and 4.43/7.45cm-1 for the SFS. VCT outperformed HD, with 50%/10% cutoff of 4.40/7.29 cm-1 for LFS and 4.62/7.47cm-1 for SFS. Scanner model performance in order of decreasing AUC performance was VCT SFS (7.43), HD SFS (7.20), VCT LFS (7.09) and HD LFS (6.93). Visual evaluations of Kagaku phantom images confirmed that VCT outperformed HD. Conclusion: VCT outperformed HD and small focal spot is desired for either model over large focal spot in term of spatial resolution – in agreement with radiologist feedback of overall image quality. In-depth evaluations of clinical impact and focal spot selection mechanisms is currently being assessed.« less
Transgender transitioning and change of self-reported sexual orientation.
Auer, Matthias K; Fuss, Johannes; Höhne, Nina; Stalla, Günter K; Sievers, Caroline
2014-01-01
Sexual orientation is usually considered to be determined in early life and stable in the course of adulthood. In contrast, some transgender individuals report a change in sexual orientation. A common reason for this phenomenon is not known. We included 115 transsexual persons (70 male-to-female "MtF" and 45 female-to-male "FtM") patients from our endocrine outpatient clinic, who completed a questionnaire, retrospectively evaluating the history of their gender transition phase. The questionnaire focused on sexual orientation and recalled time points of changes in sexual orientation in the context of transition. Participants were further asked to provide a personal concept for a potential change in sexual orientation. In total, 32.9% (n = 23) MtF reported a change in sexual orientation in contrast to 22.2% (n = 10) FtM transsexual persons (p = 0.132). Out of these patients, 39.1% (MtF) and 60% (FtM) reported a change in sexual orientation before having undergone any sex reassignment surgery. FtM that had initially been sexually oriented towards males ( = androphilic), were significantly more likely to report on a change in sexual orientation than gynephilic, analloerotic or bisexual FtM (p = 0.012). Similarly, gynephilic MtF reported a change in sexual orientation more frequently than androphilic, analloerotic or bisexual MtF transsexual persons (p =0.05). In line with earlier reports, we reveal that a change in self-reported sexual orientation is frequent and does not solely occur in the context of particular transition events. Transsexual persons that are attracted by individuals of the opposite biological sex are more likely to change sexual orientation. Qualitative reports suggest that the individual's biography, autogynephilic and autoandrophilic sexual arousal, confusion before and after transitioning, social and self-acceptance, as well as concept of sexual orientation itself may explain this phenomenon.
Impact of Sexual Orientation Identity on Medical Morbidities in Male-to-Female Transgender Patients.
Gaither, Thomas W; Awad, Mohannad A; Osterberg, E Charles; Romero, Angelita; Bowers, Marci L; Breyer, Benjamin N
2017-02-01
We aim to describe the relationship between sexual orientation identity and medical morbidities in a large sample of male-to-female (MTF) transgender patients. We reviewed medical records of patients presenting for MTF sex reassignment surgery (SRS) by a single, high-volume surgeon from 2011 to 2015. Sexual attraction to men (heterosexual), women (lesbian), or both (bisexual) was asked of each patient. We examined 16 medical morbidities for this analysis. During the study period, 330 MTF transgender patients presented for SRS. The average age at the time of surgery was 38.9 (range 18-76). One hundred and one patients (32%) reported being heterosexual, 110 patients (34%) reported being lesbian, and 108 patients (34%) reported being bisexual. Lesbian patients presented for SRS at older ages (mean = 43 years old) compared with heterosexual patients (mean = 36 years old) and bisexual patients (mean = 37), P < 0.01. No differences were found in the majority of coexisting medical morbidities by sexual orientation identity. Lesbian patients had greater odds of having a history of depression, age-adjusted odds ratio (aOR) = 2.36, 95% confidence interval (CI) 1.26-4.40, compared with heterosexual patients. Lesbian patients had higher odds of being married or partnered, aOR = 2.31, 95% CI (1.27-4.19), compared with heterosexual patients. Heterosexual patients had higher odds of having human immunodeficiency virus (HIV), aOR = 9.07, 95% CI (1.08-76.5) compared with lesbian patients. Sexual orientation identity in MTF transgender patients is variable. The majority of medical morbidities are not associated with sexual orientation identity. Although HIV and depression are common morbidities among MTF patients seeking SRS, the prevalence of these morbidities differs by sexual orientation identity, but these findings need replication. Counseling and future research initiatives in transgender care should incorporate sexual orientation identity and associated risk behavior.
Ganesh, Sri; Brar, Sheetal; Pandey, Rahul; Pawar, Archana
2018-01-01
Purpose: To study the time course of interface healing and its correlation with visual acuity, modulation transfer function (MTF), and aberrations after myopic small-incision lenticule extraction (SMILE) correction. Methods: Seventy-eight eyes of 78 patients (1 eye per patient) with a mean age of 25.7 years and mean spherical equivalent (SE) of −3.74D, undergoing bilateral SMILE procedure, were included in this study. On postoperative day 1, 2 weeks, and 3 months, dilated retroillumination photographs were taken and morphology of corneal interface was graded by comparing them with 5 standard templates representing 5 grades of interface roughness (IRG): IRG – 0 (clear), IRG – 1 (mild), IRG – 2 (moderate), IRG – 3 (severe), and IRG – 4 (severe IRG with Bowman's folds in visual axis). Pearson's correlations were computed to study correlation associations, and Wilcoxon signed-rank test was used for intragroup comparison of means. P ≤ 0.05 was considered statistically significant. Results: At 3 months, 90.70% eyes were Grade 0 while 9.30% eyes still had Grade 2 interface granularity. Mean IRG significantly improved from 2.47 ± 0.57 at day 1 to 0.62 ± 0.53 at 3 months (P = 0.00). At day 1, pre-SE showed a significant positive correlation with IRG; however, mean postoperative corrected distant visual acuity (CDVA, in decimal), corneal Strehl ratio (SR), and MTF showed weak but significant negative correlation with IRG (r2 = 0.28 for SE, −0.052 for CDVA, −0.017 for SR, and −0.39 for MTF, respectively, P < 0.05 for all correlations). At 2 weeks and 3 months, corneal MTF continued to show a significant negative correlation, whereas other parameters did not show any correlation with IRG. Conclusion: Visual quality and corneal MTF may be significantly affected by the IRG in the immediate postoperative period after SMILE and may take 3 months or more for complete recovery. PMID:29380760
Ganesh, Sri; Brar, Sheetal; Pandey, Rahul; Pawar, Archana
2018-02-01
To study the time course of interface healing and its correlation with visual acuity, modulation transfer function (MTF), and aberrations after myopic small-incision lenticule extraction (SMILE) correction. Seventy-eight eyes of 78 patients (1 eye per patient) with a mean age of 25.7 years and mean spherical equivalent (SE) of -3.74D, undergoing bilateral SMILE procedure, were included in this study. On postoperative day 1, 2 weeks, and 3 months, dilated retroillumination photographs were taken and morphology of corneal interface was graded by comparing them with 5 standard templates representing 5 grades of interface roughness (IRG): IRG - 0 (clear), IRG - 1 (mild), IRG - 2 (moderate), IRG - 3 (severe), and IRG - 4 (severe IRG with Bowman's folds in visual axis). Pearson's correlations were computed to study correlation associations, and Wilcoxon signed-rank test was used for intragroup comparison of means. P ≤ 0.05 was considered statistically significant. At 3 months, 90.70% eyes were Grade 0 while 9.30% eyes still had Grade 2 interface granularity. Mean IRG significantly improved from 2.47 ± 0.57 at day 1 to 0.62 ± 0.53 at 3 months (P = 0.00). At day 1, pre-SE showed a significant positive correlation with IRG; however, mean postoperative corrected distant visual acuity (CDVA, in decimal), corneal Strehl ratio (SR), and MTF showed weak but significant negative correlation with IRG (r2 = 0.28 for SE, -0.052 for CDVA, -0.017 for SR, and -0.39 for MTF, respectively, P < 0.05 for all correlations). At 2 weeks and 3 months, corneal MTF continued to show a significant negative correlation, whereas other parameters did not show any correlation with IRG. Visual quality and corneal MTF may be significantly affected by the IRG in the immediate postoperative period after SMILE and may take 3 months or more for complete recovery.
2011-04-01
habits, and the complex nature of health care operations resulting from team efforts. Concerns about medical liability from medical malpractice ...investigations as blame is easier to assign to one individual than to evaluate the layers of an organization for failures. Medical malpractice fears...Risk Manager will brief the MTF/CC and Executive Staff on MTF medical malpractice claims semi-annually as well as discuss lessons learned, systemic
Coming Soon to an MTF Near You: Psychological Health Policy Initiatives
2011-01-25
Force Health Protection and Readiness Coming Soon to an MTF Near You: Psychological Health Policy Initiatives 25 Jan 11 LCDR Nicole Frazer, Ph.D. & Dr...it does not display a currently valid OMB control number. 1. REPORT DATE 25 JAN 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011...if a disaster were to occur next week? *U.S. Navy photo by Mass Communication Specialist 1st Class Carmichael Yepez, 5/12/10, Armona, CA 2011 MHS
Change of spatial information under rescaling: A case study using multi-resolution image series
NASA Astrophysics Data System (ADS)
Chen, Weirong; Henebry, Geoffrey M.
Spatial structure in imagery depends on a complicated interaction between the observational regime and the types and arrangements of entities within the scene that the image portrays. Although block averaging of pixels has commonly been used to simulate coarser resolution imagery, relatively little attention has been focused on the effects of simple rescaling on spatial structure and the explanation and a possible solution to the problem. Yet, if there are significant differences in spatial variance between rescaled and observed images, it may affect the reliability of retrieved biogeophysical quantities. To investigate these issues, a nested series of high spatial resolution digital imagery was collected at a research site in eastern Nebraska in 2001. An airborne Kodak DCS420IR camera acquired imagery at three altitudes, yielding nominal spatial resolutions ranging from 0.187 m to 1 m. The red and near infrared (NIR) bands of the co-registered image series were normalized using pseudo-invariant features, and the normalized difference vegetation index (NDVI) was calculated. Plots of grain sorghum planted in orthogonal crop row orientations were extracted from the image series. The finest spatial resolution data were then rescaled by averaging blocks of pixels to produce a rescaled image series that closely matched the spatial resolution of the observed image series. Spatial structures of the observed and rescaled image series were characterized using semivariogram analysis. Results for NDVI and its component bands show, as expected, that decreasing spatial resolution leads to decreasing spatial variability and increasing spatial dependence. However, compared to the observed data, the rescaled images contain more persistent spatial structure that exhibits limited variation in both spatial dependence and spatial heterogeneity. Rescaling via simple block averaging fails to consider the effect of scene object shape and extent on spatial information. As the features portrayed by pixels are equally weighted regardless of the shape and extent of the underlying scene objects, the rescaled image retains more of the original spatial information than would occur through direct observation at a coarser sensor spatial resolution. In contrast, for the observed images, due to the effect of the modulation transfer function (MTF) of the imaging system, high frequency features like edges are blurred or lost as the pixel size increases, resulting in greater variation in spatial structure. Successive applications of a low-pass spatial convolution filter are shown to mimic a MTF. Accordingly, it is recommended that such a procedure be applied prior to rescaling by simple block averaging, if insufficient image metadata exist to replicate the net MTF of the imaging system, as might be expected in land cover change analysis studies using historical imagery.
Individual differences in language and working memory affect children's speech recognition in noise.
McCreery, Ryan W; Spratford, Meredith; Kirby, Benjamin; Brennan, Marc
2017-05-01
We examined how cognitive and linguistic skills affect speech recognition in noise for children with normal hearing. Children with better working memory and language abilities were expected to have better speech recognition in noise than peers with poorer skills in these domains. As part of a prospective, cross-sectional study, children with normal hearing completed speech recognition in noise for three types of stimuli: (1) monosyllabic words, (2) syntactically correct but semantically anomalous sentences and (3) semantically and syntactically anomalous word sequences. Measures of vocabulary, syntax and working memory were used to predict individual differences in speech recognition in noise. Ninety-six children with normal hearing, who were between 5 and 12 years of age. Higher working memory was associated with better speech recognition in noise for all three stimulus types. Higher vocabulary abilities were associated with better recognition in noise for sentences and word sequences, but not for words. Working memory and language both influence children's speech recognition in noise, but the relationships vary across types of stimuli. These findings suggest that clinical assessment of speech recognition is likely to reflect underlying cognitive and linguistic abilities, in addition to a child's auditory skills, consistent with the Ease of Language Understanding model.
The Effects of Noise on Pupil Performance.
ERIC Educational Resources Information Center
Slater, Barbara Ruth
Effects of school noise conditions on student written task performance were studied. Three noise levels were examined--(1) irregular interval noise, 75-90 decibels, (2) average or normal noise, and (3) quiet condition, 45-55 decibels. An attempt was made to reproduce noise conditions typical of the school environment. A second controlled…
Lee, Soo Jung; Park, Kyung Won; Kim, Lee-Suk; Kim, HyangHee
2016-06-01
Along with auditory function, cognitive function contributes to speech perception in the presence of background noise. Older adults with cognitive impairment might, therefore, have more difficulty perceiving speech-in-noise than their peers who have normal cognitive function. We compared the effects of noise level and cognitive function on speech perception in patients with amnestic mild cognitive impairment (aMCI), cognitively normal older adults, and cognitively normal younger adults. We studied 14 patients with aMCI and 14 age-, education-, and hearing threshold-matched cognitively intact older adults as experimental groups, and 14 younger adults as a control group. We assessed speech perception with monosyllabic word and sentence recognition tests at four noise levels: quiet condition and signal-to-noise ratio +5 dB, 0 dB, and -5 dB. We also evaluated the aMCI group with a neuropsychological assessment. Controlling for hearing thresholds, we found that the aMCI group scored significantly lower than both the older adults and the younger adults only when the noise level was high (signal-to-noise ratio -5 dB). At signal-to-noise ratio -5 dB, both older groups had significantly lower scores than the younger adults on the sentence recognition test. The aMCI group's sentence recognition performance was related to their executive function scores. Our findings suggest that patients with aMCI have more problems communicating in noisy situations in daily life than do their cognitively healthy peers and that older listeners with more difficulties understanding speech in noise should be considered for testing of neuropsychological function as well as hearing.
Speech intelligibility with helicopter noise: tests of three helmet-mounted communication systems.
Ribera, John E; Mozo, Ben T; Murphy, Barbara A
2004-02-01
Military aviator helmet communications systems are designed to enhance speech intelligibility (SI) in background noise and reduce exposure to harmful levels of noise. Some aviators, over the course of their aviation career, develop noise-induced hearing loss that may affect their ability to perform required tasks. New technology can improve SI in noise for aviators with normal hearing as well as those with hearing loss. SI in noise scores were obtained from 40 rotary-wing aviators (20 with normal hearing and 20 with hearing-loss waivers). There were three communications systems evaluated: a standard SPH-4B, an SPH-4B aviator helmet modified with communications earplug (CEP), and an SPH-4B modified with active noise reduction (ANR). Subjects' SI was better in noise with newer technologies than with the standard issue aviator helmet. A significant number of aviators on waivers for hearing loss performed within the range of their normal hearing counterparts when wearing the newer technology. The rank order of perceived speech clarity was 1) CEP, 2) ANR, and 3) unmodified SPH-4B. To insure optimum SI in noise for rotary-wing aviators, consideration should be given to retrofitting existing aviator helmets with new technology, and incorporating such advances in communication systems of the future. Review of standards for determining fitness to fly is needed.
Optimization technique of wavefront coding system based on ZEMAX externally compiled programs
NASA Astrophysics Data System (ADS)
Han, Libo; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua
2016-10-01
Wavefront coding technique as a means of athermalization applied to infrared imaging system, the design of phase plate is the key to system performance. This paper apply the externally compiled programs of ZEMAX to the optimization of phase mask in the normal optical design process, namely defining the evaluation function of wavefront coding system based on the consistency of modulation transfer function (MTF) and improving the speed of optimization by means of the introduction of the mathematical software. User write an external program which computes the evaluation function on account of the powerful computing feature of the mathematical software in order to find the optimal parameters of phase mask, and accelerate convergence through generic algorithm (GA), then use dynamic data exchange (DDE) interface between ZEMAX and mathematical software to realize high-speed data exchanging. The optimization of the rotational symmetric phase mask and the cubic phase mask have been completed by this method, the depth of focus increases nearly 3 times by inserting the rotational symmetric phase mask, while the other system with cubic phase mask can be increased to 10 times, the consistency of MTF decrease obviously, the maximum operating temperature of optimized system range between -40°-60°. Results show that this optimization method can be more convenient to define some unconventional optimization goals and fleetly to optimize optical system with special properties due to its externally compiled function and DDE, there will be greater significance for the optimization of unconventional optical system.
Hsu, Joseph R; Owens, Johnny G; DeSanto, Jennifer; Fergason, John R; Kuhn, Kevin M; Potter, Benjamin K; Stinner, Daniel J; Sheu, Robert G; Waggoner, Sandra L; Wilken, Jason M; Huang, Yanjie; Scharfstein, Daniel O; MacKenzie, Ellen J
2017-04-01
Although limb salvage is now possible for many high-energy open fractures and crush injuries to the distal tibia, ankle, hindfoot, and midfoot, orthotic options are limited. The Intrepid Dynamic Exoskeletal Orthosis (IDEO) is a custom, energy-storing carbon fiber orthosis developed for trauma patients undergoing limb salvage. The IDEO differs from other orthoses in that it allows patients with ankle weakness to have more normal ankle biomechanics and increased ankle power. This article describes the design of a study to evaluate the effectiveness of the IDEO when delivered together with a high-intensity, sports medicine-based approach to rehabilitation. It builds on earlier studies by testing the program at military treatment facilities beyond the Brooke Army Medical Center and the Center for the Intrepid where the device was developed. The PRIORITI-MTF study is a multicenter before-after program evaluation where participants at least 1 year out from a traumatic lower extremity injury serve as their own controls. Participants are evaluated before receiving the IDEO, immediately after 4 weeks of physical therapy with the IDEO and at 6 and 12 months after the completion of physical therapy. Primary outcomes include functional performance, measured using well-validated assessments of speed, agility, power, and postural stability and self-reported functioning using the Short Musculoskeletal Function Assessment (SMFA) and the Veterans Health Survey (VR-12). Secondary outcomes include pain, depression, posttraumatic stress, and satisfaction with the IDEO.
Research and development on performance models of thermal imaging systems
NASA Astrophysics Data System (ADS)
Wang, Ji-hui; Jin, Wei-qi; Wang, Xia; Cheng, Yi-nan
2009-07-01
Traditional ACQUIRE models perform the discrimination tasks of detection (target orientation, recognition and identification) for military target based upon minimum resolvable temperature difference (MRTD) and Johnson criteria for thermal imaging systems (TIS). Johnson criteria is generally pessimistic for performance predict of sampled imager with the development of focal plane array (FPA) detectors and digital image process technology. Triangle orientation discrimination threshold (TOD) model, minimum temperature difference perceived (MTDP)/ thermal range model (TRM3) Model and target task performance (TTP) metric have been developed to predict the performance of sampled imager, especially TTP metric can provides better accuracy than the Johnson criteria. In this paper, the performance models above are described; channel width metrics have been presented to describe the synthesis performance including modulate translate function (MTF) channel width for high signal noise to ration (SNR) optoelectronic imaging systems and MRTD channel width for low SNR TIS; the under resolvable questions for performance assessment of TIS are indicated; last, the development direction of performance models for TIS are discussed.
Characterization of a 512x512-pixel 8-output full-frame CCD for high-speed imaging
NASA Astrophysics Data System (ADS)
Graeve, Thorsten; Dereniak, Eustace L.
1993-01-01
The characterization of a 512 by 512 pixel, eight-output full frame CCD manufactured by English Electric Valve under part number CCD13 is discussed. This device is a high- resolution Silicon-based array designed for visible imaging applications at readout periods as low as two milliseconds. The characterization of the device includes mean-variance analysis to determine read noise and dynamic range, as well as charge transfer efficiency, MTF, and quantum efficiency measurements. Dark current and non-uniformity issues on a pixel-to-pixel basis and between individual outputs are also examined. The characterization of the device is restricted by hardware limitations to a one MHz pixel rate, corresponding to a 40 ms readout time. However, subsections of the device have been operated at up to an equivalent 100 frames per second. To maximize the frame rate, the CCD is illuminated by a synchronized strobe flash in between frame readouts. The effects of the strobe illumination on the imagery obtained from the device is discussed.
Performance assessment of FY-3C/MERSI on early orbit
NASA Astrophysics Data System (ADS)
Hu, Xiuqing; Xu, Na; Wu, Ronghua; Chen, Lin; Min, Min; Wang, Ling; Xu, Hanlie; Sun, Ling; Yang, Zhongdong; Zhang, Peng
2014-11-01
FY-3C/MERSI has some remarkable improvements compared to the previous MERSIs including better spectral response function (SRF) consistency of different detectors within one band, increasing the capability of lunar observation by space view (SV) and the improvement of radiometric response stability of solar bands. During the In-orbit verification (IOV) commissioning phase, early results that indicate the MERSI representative performance were derived, including the signal noise ratio (SNR), dynamic range, MTF, B2B registration, calibration bias and instrument stability. The SNRs at the solar bands (Bands 1-4 and 6-20) was largely beyond the specifications except for two NIR bands. The in-flight calibration and verification for these bands are also heavily relied on the vicarious techniques such as China radiometric calibration sites(CRCS), cross-calibration, lunar calibration, DCC calibration, stability monitoring using Pseudo Invariant Calibration Sites (PICS) and multi-site radiance simulation. This paper will give the results of the above several calibration methods and monitoring the instrument degradation in early on-orbit time.
NASA Astrophysics Data System (ADS)
Greiter, Matthias B.; Hoeschen, Christoph
2010-04-01
The international standard IEC 62220-1-2 defines the measurement procedure for determination of the detective quantum efficiency (DQE) of digital x-ray imaging devices used in mammography. A mobile setup complying to this standard and adaptable to most current systems was constructed in the Helmholtz Zentrum München to allow for an objective technical comparison of current full field digital mammography units employed in mammography screening in Germany. This article demonstrates the setup's capabilities with a focus on the measurement uncertainties of all quantities contributing to DQE measurements. Evaluation of uncertainties encompasses results from measurements on a Sectra Microdose Mammography in clinical use, as well as on a prototype of a Fujifilm Amulet system at various radiation qualities. Both systems have a high spatial resolution of 50 μm × 50 μm. The modulation transfer function (MTF), noise power spectrum (NPS) and DQE of the Sectra MDM are presented in comparison to results previously published by other authors.
Physical characterization and optimal magnification of a portal imaging system
NASA Astrophysics Data System (ADS)
Bissonnette, Jean-Pierre; Jaffray, David A.; Fenster, Aaron; Munro, Peter
1992-06-01
One problem in radiation therapy is ensuring accurate positioning of the patient so that the prescribed dose is delivered to the diseased regions while healthy tissues are spared. Positioning is usually assessed by exposing film to the high-energy treatment beam. Unfortunately, these films exhibit poor image quality (primarily due to low subject contrast) and the development delays make film impractical to check patient positioning routinely. Therefore, we have been developing a digital video-based imaging system to replace film. The system consists of a copper plate/fluorescent screen detector, a 45 degree(s) mirror, and a TV camera equipped with a large aperture lens. We have determined the signal and noise transfer properties of the imaging system by measuring its MTF(f) and NPS(f) and used these valued to estimate the optimal magnification for the imaging system. We have found that the optimal magnification is 2.3 - 2.5 when optimizing signal transfer (spatial resolution) alone; however, the optimal magnification is only 1.5 - 2.0 if SNR transfer is considered.
Li, Jin; Liu, Zilong; Liu, Si
2017-02-20
In on-board photographing processes of satellite cameras, the platform vibration can generate image motion, distortion, and smear, which seriously affect the image quality and image positioning. In this paper, we create a mathematical model of a vibrating modulate transfer function (VMTF) for a remote-sensing camera. The total MTF of a camera is reduced by the VMTF, which means the image quality is degraded. In order to avoid the degeneration of the total MTF caused by vibrations, we use an Mn-20Cu-5Ni-2Fe (M2052) manganese copper alloy material to fabricate a vibration-isolation mechanism (VIM). The VIM can transform platform vibration energy into irreversible thermal energy with its internal twin crystals structure. Our experiment shows the M2052 manganese copper alloy material is good enough to suppress image motion below 125 Hz, which is the vibration frequency of satellite platforms. The camera optical system has a higher MTF after suppressing the vibration of the M2052 material than before.
Modulation Transfer Function of Infrared Focal Plane Arrays
NASA Technical Reports Server (NTRS)
Gunapala, S. D.; Rafol, S. B.; Ting, D. Z.; Soibel, A.; Hill, C. J.; Khoshakhlagh, A.; Liu, J. K.; Mumolo, J. M.; Hoglund, L.; Luong, E. M.
2015-01-01
Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this presentation we will discuss the detail MTF measurements of 1024x1024 pixels mid -wavelength and long- wavelength quantum well infrared photodetector, and 320x256 pixels long- wavelength InAs/GaSb superlattice infrared focal plane arrays (FPAs). Long wavelength Complementary Barrier Infrared Detector (CBIRD) based on InAs/GaSb superlattice material is hybridized to recently designed and fabricated 320x256 pixel format ROIC. The n-type CBIRD was characterized in terms of performance and thermal stability. The experimentally measured NE delta T of the 8.8 micron cutoff n-CBIRD FPA was 18.6 mK with 300 K background and f/2 cold stop at 78K FPA operating temperature. The horizontal and vertical MTFs of this pixel fully delineated CBIRD FPA at Nyquist frequency are 49% and 52%, respectively.
Leonardo (formerly Selex ES) infrared sensors for astronomy: present and future
NASA Astrophysics Data System (ADS)
Baker, Ian; Maxey, Chris; Hipwood, Les; Barnes, Keith
2016-07-01
Many branches of science require infrared detectors sensitive to individual photons. Applications range from low background astronomy to high speed imaging. Leonardo in Southampton, UK, has been developing HgCdTe avalanche photodiode (APD) sensors for astronomy in collaboration with European Southern Observatory (ESO) since 2008 and more recently the University of Hawaii. The devices utilise Metal Organic Vapour Phase Epitaxy, MOVPE, grown on low-cost GaAs substrates and in combination with a mesa device structure achieve very low dark current and near-ideal MTF. MOVPE provides the ability to grow complex HgCdTe heterostructures and these have proved crucial to suppress breakdown currents and allow high avalanche gain in low background situations. A custom device called Saphira (320x256/24μm) has been developed for wavefront sensors, interferometry and transient event imaging. This device has achieved read noise as low as 0.26 electrons rms and single photon imaging with avalanche gain up to x450. It is used in the ESO Gravity program for adaptive optics and fringe tracking and has been successfully trialled on the 3m NASA IRTF, 8.2m Subaru and 60 inch Mt Palomar for lucky imaging and wavefront sensing. In future the technology offers much shorter observation times for read-noise limited instruments, particularly spectroscopy. The paper will describe the MOVPE APD technology and current performance status.
Jeong, Chang-Won; Ryu, Jong-Hyun; Joo, Su-Chong; Jun, Hong-Young; Heo, Dong-Woon; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha
2015-01-01
Technologies employing digital X-ray devices are developed for mobile settings. To develop a mobile digital X-ray fluoroscopy (MDF) for intraoperative guidance, using a novel flat panel detector to focus on diagnostics in outpatient clinics, operating and emergency rooms. An MDF for small-scale field diagnostics was configured using an X-ray source and a novel flat panel detector. The imager enabled frame rates reaching 30 fps in full resolution fluoroscopy with maximal running time of 5 minutes. Signal-to-noise (SNR), contrast-to-noise (CNR), and spatial resolution were analyzed. Stray radiation, exposure radiation dose, and effective absorption dose were measured for patients. The system was suitable for small-scale field diagnostics. SNR and CNR were 62.4 and 72.0. Performance at 10% of MTF was 9.6 lp/mm (53 μ m) in the no binned mode. Stray radiation at 100 cm and 150 cm from the source was below 0.2 μ Gy and 0.1 μ Gy. Exposure radiation in radiography and fluoroscopy (5 min) was 10.2 μ Gy and 82.6 mGy. The effective doses during 5-min-long fluoroscopy were 0.26 mSv (wrist), 0.28 mSv (elbow), 0.29 mSv (ankle), and 0.31 mSv (knee). The proposed MDF is suitable for imaging in operating rooms.
Hydrogen-rich saline alleviates experimental noise-induced hearing loss in guinea pigs.
Zhou, Y; Zheng, H; Ruan, F; Chen, X; Zheng, G; Kang, M; Zhang, Q; Sun, X
2012-05-03
To examine the efficiency of hydrogen-rich saline in the treatment of intensive noise-induced cochlear injury. Forty guinea pigs were assigned to one of four groups: HS+NOISE (i.p. injection hydrogen-rich saline), NS+NOISE (i.p. injection normal saline), NOISE ALONE (noise control), and NO TREATMENT (normal control) groups. The HS+NOISE, NS+NOISE, and NOISE ALONE groups were exposed to intensive noise (4 h at 115 dB SPL noise of 4000±100 Hz). The auditory brainstem response (ABR) was used to examine the hearing threshold in each group. Distortion product otoacoustic emission (DPOAE) was used to examine outer hair cell function. We also examined cochlear morphology to evaluate inner and outer hair cell trauma induced by noise exposure. Hydrogen-rich saline was administered twice daily for 6 days (2.5 ml/kg, i.p.) 24 h after noise exposure. Baseline ABR thresholds and DPOAE values were normal in all groups at the measured frequencies (2, 4, 8, and 16 kHz) before noise exposure. The ABR threshold shift was 50-55 dB across the frequencies tested, and average DPOAE declined in the NOISE ALONE, NS+NOISE, and HS+NOISE groups 24 h after noise exposure. However, the changes in cochlear parameters were different between groups. The HS+NOISE group showed a significantly decreased ABR threshold value as compared with the NS+NOISE or NOISE ALONE group (P<0.01) on day 7. The mean DPOAE recovered to some extent in the three noise exposure groups, but at most frequencies the HS+NOISE group showed significantly increased DPOAE on day 7 as compared with the NS+NOISE group or NOISE ALONE group (P<0.01). Surface Corti organ preparations stained with succinate dehydrogenase (SDH) showed that most outer hair cells (OHCs) were still dropsical and a few were missing 7 days after noise exposure in the NS+NOISE group. Only a few OHCs were slightly dropsical in the HS+NOISE group. The numbers of missing hair cells 7 days after noise exposure were significantly greater in the NOISE ONLY and NS+NOISE groups than the HS+NOISE group (P<0.01). Hydrogen-rich saline can alleviate experimental noise-induced hearing loss in guinea pigs, partially by preventing the death of cochlear hair cells after intensive noise exposure. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Characterizing 3D sensors using the 3D modulation transfer function
NASA Astrophysics Data System (ADS)
Kellner, Timo; Breitbarth, Andreas; Zhang, Chen; Notni, Gunther
2018-03-01
The fields of optical 3D measurement system applications are continuously expanding and becoming more and more diverse. To evaluate appropriate systems for various measurement tasks, comparable parameters are necessary, whereas the 3D modulation transfer function (3D-MTF) has been established as a further criterion. Its aim is the determination of the system response between the measurement of a straight, sharp-edged cube and its opposite ideal calculated one. Within the scope of this work simulations and practical investigations regarding the 3D-MTF’s influences and its main issues are specifically investigated. Therefore, different determined edge radii representing the high-frequency spectra lead to various decreasing 3D-MTF characteristics. Furthermore, rising sampling frequencies improve its maximum transfer value to a saturation point in dependence of the radius. To approve these results of previous simulations, three fringe projection scanners were selected to determine the diversity. As the best 3D-MTF characteristic, a saturated transfer value of H_3D( f_N, 3D) = 0.79 has been identified at a sufficient sampling frequency, which is reached at four times the Nyquist limit. This high 3D resolution can mainly be achieved due to an improved camera projector interaction. Additionally, too small sampling ratios lead to uncertainties in the edge function determination, while higher ratios do not show major improvements. In conclusion, the 3D-MTF algorithm has thus been practically verified and its repeatability as well as its robustness have been confirmed.
Gizewski, Elke R; Krause, Eva; Schlamann, Marc; Happich, Friederike; Ladd, Mark E; Forsting, Michael; Senf, Wolfgang
2009-02-01
Transsexuals harbor the strong feeling of having been born to the wrong sex. There is a continuing controversial discussion of whether or not transsexualism has a biological representation. Differences between males and females in terms of functional imaging during erotic stimuli have been previously described, revealing gender-specific results. Therefore, we postulated that male-to-female (MTF) transsexuals may show specific cerebral activation differing from their biological gender. Cerebral activation patterns during viewing of erotic film excerpts in functional magnetic resonance imaging (fMRI). Twelve male and 12 female heterosexual volunteers and 12 MTF transsexuals before any treatment viewed erotic film excerpts during fMRI. Additionally, subjective rating of sexual arousal was assessed. Statistics were performed using the Statistical Parametric Mapping software. Significantly enhanced activation for men compared with women was revealed in brain areas involved in erotic processing, i.e., the thalamus, the amygdala, and the orbitofrontal and insular cortex, whereas no specific activation for women was found. When comparing MTF transsexuals with male volunteers, activation patterns similar to female volunteers being compared with male volunteers were revealed. Sexual arousal was assessed using standard rating scales and did not differ significantly for the three groups. We revealed a cerebral activation pattern in MTF transsexuals compared with male controls similar to female controls compared with male controls during viewing of erotic stimuli, indicating a tendency of female-like cerebral processing in transsexualism.
Geographic variation within the military health system.
Kimsey, Linda; Olaiya, Samuel; Smith, Chad; Hoburg, Andrew; Lipsitz, Stuart R; Koehlmoos, Tracey; Nguyen, Louis L; Weissman, Joel S
2017-04-13
This study seeks to quantify variation in healthcare utilization and per capita costs using system-defined geographic regions based on enrollee residence within the Military Health System (MHS). Data for fiscal years 2007 - 2010 were obtained from the Military Health System under a data sharing agreement with the Defense Health Agency (DHA). DHA manages all aspects of the Department of Defense Military Health System, including TRICARE. Adjusted rates were calculated for per capita costs and for two procedures with high interest to the MHS- back surgery and Cesarean sections for TRICARE Prime and Plus enrollees. Coefficients of variation (CoV) and interquartile ranges (IQR) were calculated and analyzed using residence catchment area as the geographic unit. Catchment areas anchored by a Military Treatment Facility (MTF) were compared to catchment areas not anchored by a MTF. Variation, as measured by CoV, was 0.37 for back surgery and 0.13 for C-sections in FY 2010- comparable to rates documented in other healthcare systems. The 2010 CoV (and average cost) for per capita costs was 0.26 ($3,479.51). Procedure rates were generally lower and CoVs higher in regions anchored by a MTF compared with regions not anchored by a MTF, based on both system-wide comparisons and comparisons of neighboring areas. In spite of its centrally managed system and relatively healthy beneficiaries with very robust health benefits, the MHS is not immune to unexplained variation in utilization and cost of healthcare.
Linear chirped slope profile for spatial calibration in slope measuring deflectometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siewert, F., E-mail: frank.siewert@helmholtz-berlin.de; Zeschke, T.; Arnold, T.
2016-05-15
Slope measuring deflectometry is commonly used by the X-ray optics community to measure the long-spatial-wavelength surface figure error of optical components dedicated to guide and focus X-rays under grazing incidence condition at synchrotron and free electron laser beamlines. The best performing instruments of this kind are capable of absolute accuracy on the level of 30-50 nrad. However, the exact bandwidth of the measurements, determined at the higher spatial frequencies by the instrument’s spatial resolution, or more generally by the instrument’s modulation transfer function (MTF) is hard to determine. An MTF calibration method based on application of a test surface withmore » a one-dimensional (1D) chirped height profile of constant amplitude was suggested in the past. In this work, we propose a new approach to designing the test surfaces with a 2D-chirped topography, specially optimized for MTF characterization of slope measuring instruments. The design of the developed MTF test samples based on the proposed linear chirped slope profiles (LCSPs) is free of the major drawback of the 1D chirped height profiles, where in the slope domain, the amplitude strongly increases with the local spatial frequency of the profile. We provide the details of fabrication of the LCSP samples. The results of first application of the developed test samples to measure the spatial resolution of the BESSY-NOM at different experimental arrangements are also presented and discussed.« less
Characterization of operating parameters of an in vivo micro CT system
NASA Astrophysics Data System (ADS)
Ghani, Muhammad U.; Ren, Liqiang; Yang, Kai; Chen, Wei R.; Wu, Xizeng; Liu, Hong
2016-03-01
The objective of this study was to characterize the operating parameters of an in-vivo micro CT system. In-plane spatial resolution, noise, geometric accuracy, CT number uniformity and linearity, and phase effects were evaluated using various phantoms. The system employs a flat panel detector with a 127 μm pixel pitch, and a micro focus x-ray tube with a focal spot size ranging from 5-30 μm. The system accommodates three magnification sets of 1.72, 2.54 and 5.10. The in-plane cutoff frequencies (10% MTF) ranged from 2.31 lp/mm (60 mm FOV, M=1.72, 2×2 binning) to 13 lp/mm (10 mm FOV, M=5.10, 1×1 binning). The results were qualitatively validated by a resolution bar pattern phantom and the smallest visible lines were in 30-40 μm range. Noise power spectrum (NPS) curves revealed that the noise peaks exponentially increased as the geometric magnification (M) increased. True in-plane pixel spacing and slice thickness were within 2% of the system's specifications. The CT numbers in cone beam modality are greatly affected by scattering and thus they do not remain the same in the three magnifications. A high linear relationship (R2 > 0.999) was found between the measured CT numbers and Hydroxyapatite (HA) loadings of the rods of a water filled mouse phantom. Projection images of a laser cut acrylic edge acquired at a small focal spot size of 5 μm with 1.5 fps revealed that noticeable phase effects occur at M=5.10 in the form of overshooting at the boundary of air and acrylic. In order to make the CT numbers consistent across all the scan settings, scatter correction methods may be a valuable improvement for this system.
Monnin, P; Gutierrez, D; Bulling, S; Lepori, D; Verdun, F R
2005-10-07
Three standard radiation qualities (RQA 3, RQA 5 and RQA 9) and two screens, Kodak Lanex Regular and Insight Skeletal, were used to compare the imaging performance and dose requirements of the new Kodak Hyper Speed G and the current Kodak T-MAT G/RA medical x-ray films. The noise equivalent quanta (NEQ) and detective quantum efficiencies (DQE) of the four screen-film combinations were measured at three gross optical densities and compared with the characteristics for the Kodak CR 9000 system with GP (general purpose) and HR (high resolution) phosphor plates. The new Hyper Speed G film has double the intrinsic sensitivity of the T-MAT G/RA film and a higher contrast in the high optical density range for comparable exposure latitude. By providing both high sensitivity and high spatial resolution, the new film significantly improves the compromise between dose and image quality. As expected, the new film has a higher noise level and a lower signal-to-noise ratio than the standard film, although in the high frequency range this is compensated for by a better resolution, giving better DQE results--especially at high optical density. Both screen-film systems outperform the phosphor plates in terms of MTF and DQE for standard imaging conditions (Regular screen at RQA 5 and RQA 9 beam qualities). At low energy (RQA 3), the CR system has a comparable low-frequency DQE to screen-film systems when used with a fine screen at low and middle optical densities, and a superior low-frequency DQE at high optical density.
Gated IR imaging with 128 × 128 HgCdTe electron avalanche photodiode FPA
NASA Astrophysics Data System (ADS)
Beck, Jeff; Woodall, Milton; Scritchfield, Richard; Ohlson, Martha; Wood, Lewis; Mitra, Pradip; Robinson, Jim
2007-04-01
The next generation of IR sensor systems will include active imaging capabilities. One example of such a system is a gated-active/passive system. The gated-active/passive system promises long-range target detection and identification. A detector that is capable of both active and passive modes of operation opens up the possibility of a self-aligned system that uses a single focal plane. The detector would need to be sensitive in the 3-5 μm band for passive mode operation. In the active mode, the detector would need to be sensitive in eye-safe range, e.g. 1.55 μm, and have internal gain to achieve the required system sensitivity. The MWIR HgCdTe electron injection avalanche photodiode (e-APD) not only provides state-of-the-art 3-5 μm spectral sensitivity, but also high avalanche photodiode gain without minimal excess noise. Gains of greater than 1000 have been measured in MWIR e-APDs with a gain independent excess noise factor of 1.3. This paper reports the application of the mid-wave HgCdTe e-APD for near-IR gated-active/passive imaging. Specifically a 128x128 FPA composed of 40 μm pitch, 4.2 μm to 5 μm cutoff, APD detectors with a custom readout integrated circuit was designed, fabricated, and tested. Median gains as high as 946 at 11 V bias with noise equivalent inputs as low as 0.4 photon were measured at 80 K. A gated imaging demonstration system was designed and built using commercially available parts. High resolution gated imagery out to 9 km was obtained with this system that demonstrated predicted MTF, precision gating, and sub 10 photon sensitivity.
Analysis of in-plane signal-to-noise ratio in computed tomography
NASA Astrophysics Data System (ADS)
Hara, Takanori; Ichikawa, Katsuhiro; Sanada, Shigeru; Ida, Yoshihiro
2008-03-01
The purposes of this study are to analyze signal-to-noise ratio (SNR) changes for in-plane (axial plane) position and in-plane direction in X-ray computed tomography (CT) system and to verify those visual effects by using simulated small low-contrast disc objects. Three-models of multi detector-row CT were employed. Modulation transfer function (MTF) was obtained using a thin metal wire. Noise power spectrum (NPSs) was obtained using a cylindrical water phantom. The measurement positions were set to center and off-centered positions of 64mm, 128mm and 192mm. One-dimensional MTFs and NPSs for the x- and y-direction were calculated by means of a numerical slit scanning method. SNRs were then calculated from MTFs and NPSs. The simulated low-contrast disc objects with diameter of 2 to 10mm and contrast to background of 3.0%, 4.5% and 6.0% were superimposed on the water phantom images. Respective simulated objects in the images are then visually evaluated in degree of their recognition, and then the validity of the resultant SNRs are examined. Resultant in-plane SNRs differed between the center and peripheries and indicated a trend that the SNR values increase in accordance with distance from the center. The increasing degree differed between x- and y-direction, and also changed by the CT systems. These results suggested that the peripheries region has higher low-contrast detectability than the center. The properties derived in this study indicated that the depiction abilities at various in-plane positions are not uniform in clinical CT images, and detectability of the low contrast lesion may be influenced.
ERIC Educational Resources Information Center
Harris, Richard W.; And Others
1988-01-01
A two-microphone adaptive digital noise cancellation technique improved word-recognition ability for 20 normal and 12 hearing-impaired adults by reducing multitalker speech babble and speech spectrum noise 18-22 dB. Word recognition improvements averaged 37-50 percent for normal and 27-40 percent for hearing-impaired subjects. Improvement was best…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.
2011-11-15
Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-raymore » views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.« less
Schoof, Tim; Rosen, Stuart
2014-01-01
Normal-hearing older adults often experience increased difficulties understanding speech in noise. In addition, they benefit less from amplitude fluctuations in the masker. These difficulties may be attributed to an age-related auditory temporal processing deficit. However, a decline in cognitive processing likely also plays an important role. This study examined the relative contribution of declines in both auditory and cognitive processing to the speech in noise performance in older adults. Participants included older (60–72 years) and younger (19–29 years) adults with normal hearing. Speech reception thresholds (SRTs) were measured for sentences in steady-state speech-shaped noise (SS), 10-Hz sinusoidally amplitude-modulated speech-shaped noise (AM), and two-talker babble. In addition, auditory temporal processing abilities were assessed by measuring thresholds for gap, amplitude-modulation, and frequency-modulation detection. Measures of processing speed, attention, working memory, Text Reception Threshold (a visual analog of the SRT), and reading ability were also obtained. Of primary interest was the extent to which the various measures correlate with listeners' abilities to perceive speech in noise. SRTs were significantly worse for older adults in the presence of two-talker babble but not SS and AM noise. In addition, older adults showed some cognitive processing declines (working memory and processing speed) although no declines in auditory temporal processing. However, working memory and processing speed did not correlate significantly with SRTs in babble. Despite declines in cognitive processing, normal-hearing older adults do not necessarily have problems understanding speech in noise as SRTs in SS and AM noise did not differ significantly between the two groups. Moreover, while older adults had higher SRTs in two-talker babble, this could not be explained by age-related cognitive declines in working memory or processing speed. PMID:25429266
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedantham, S; Shrestha, S; Shi, L
Purpose: To optimize the cesium iodide (CsI:Tl) scintillator thickness in a complimentary metal-oxide semiconductor (CMOS)-based detector for use in dedicated cone-beam breast CT. Methods: The imaging task considered was the detection of a microcalcification cluster comprising six 220µm diameter calcium carbonate spheres, arranged in the form of a regular pentagon with 2 mm spacing on its sides and a central calcification, similar to that in ACR-recommended mammography accreditation phantom, at a mean glandular dose of 4.5 mGy. Generalized parallel-cascades based linear systems analysis was used to determine Fourier-domain image quality metrics in reconstructed object space, from which the detectability indexmore » inclusive of anatomical noise was determined for a non-prewhitening numerical observer. For 300 projections over 2π, magnification-associated focal-spot blur, Monte Carlo derived x-ray scatter, K-fluorescent emission and reabsorption within CsI:Tl, CsI:Tl quantum efficiency and optical blur, fiberoptic plate transmission efficiency and blur, CMOS quantum efficiency, pixel aperture function and additive noise, and filtered back-projection to isotropic 105µm voxel pitch with bilinear interpolation were modeled. Imaging geometry of a clinical prototype breast CT system, a 60 kV Cu/Al filtered x-ray spectrum from 0.3 mm focal spot incident on a 14 cm diameter semi-ellipsoidal breast were used to determine the detectability index for 300–600 µm thick (75µm increments) CsI:Tl. The CsI:Tl thickness that maximized the detectability index was considered optimal. Results: The limiting resolution (10% modulation transfer function, MTF) progressively decreased with increasing CsI:Tl thickness. The zero-frequency detective quantum efficiency, DQE(0), in projection space increased with increasing CsI:Tl thickness. The maximum detectability index was achieved with 525µm thick CsI:Tl scintillator. Reduced MTF at mid-to-high frequencies for 600µm thick CsI:Tl lowered the detectability index than 525µm CsI:Tl. Conclusion: For the x-ray spectrum and imaging conditions considered, a 525µm thick CsI:Tl scintillator integrated with the CMOS detector is optimal for detecting microcalcification cluster. Funding support: Supported in part by NIH R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI. Disclosures: SV, GV and AK - Research collaboration, Koning Corp., West Henrietta, NY.« less
Emulation Aid System II (EASY II) System Programmer’s Guide.
1981-03-01
DISK-SAVE, PASSWD =SSSS .MTUINIT= 17 ,MTF IILE=99,D)SKUNIT=7. RESTORE-DISK, PASSWD =SSSS,,MTt!NI=I 7,MTF [LE--=99,DSKtJNIT=7. where PASSWD - a system disk...DISK-SAVE, PASSWD =SSSS ,MTUNIT=17,MTFILE=99,DSKtJNIT=7. SAVE A DISK FILE ON TAPE HELP ,O,O,O. DSKSV. EDIT. CR’r BASED EDITOR (COMM ANDS EXPLAINED AS...BE EXPLICITLY TURNED ON QCNTRL ,LOCKED. RDTAPE,UNIT= 17. READING TAPE FOR USE WITH 6000 AND PRINT. 0. RDTAPE. RESTORE-DISK, PASSWD =SSSS ,MTUNIT= 17
1991-07-01
MTF, or establishing a standard CGR should be done cautiously since health care is a local phenomenon and a number of factors influence (1) the...goals should be formulated locally. That is, each MTF must identify for itself those beneficiaries in its catchment area with billable insurance who...this, managers must know the work they supervise. 8. Drive out fear. Employees should not be afraid to point out problems for fear of argument or being
Guest, Hannah; Munro, Kevin J; Prendergast, Garreth; Howe, Simon; Plack, Christopher J
2017-02-01
In rodents, exposure to high-level noise can destroy synapses between inner hair cells and auditory nerve fibers, without causing hair cell loss or permanent threshold elevation. Such "cochlear synaptopathy" is associated with amplitude reductions in wave I of the auditory brainstem response (ABR) at moderate-to-high sound levels. Similar ABR results have been reported in humans with tinnitus and normal audiometric thresholds, leading to the suggestion that tinnitus in these cases might be a consequence of synaptopathy. However, the ABR is an indirect measure of synaptopathy and it is unclear whether the results in humans reflect the same mechanisms demonstrated in rodents. Measures of noise exposure were not obtained in the human studies, and high frequency audiometric loss may have impacted ABR amplitudes. To clarify the role of cochlear synaptopathy in tinnitus with a normal audiogram, we recorded ABRs, envelope following responses (EFRs), and noise exposure histories in young adults with tinnitus and matched controls. Tinnitus was associated with significantly greater lifetime noise exposure, despite close matching for age, sex, and audiometric thresholds up to 14 kHz. However, tinnitus was not associated with reduced ABR wave I amplitude, nor with significant effects on EFR measures of synaptopathy. These electrophysiological measures were also uncorrelated with lifetime noise exposure, providing no evidence of noise-induced synaptopathy in this cohort, despite a wide range of exposures. In young adults with normal audiograms, tinnitus may be related not to cochlear synaptopathy but to other effects of noise exposure. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Effect of signal to noise ratio on the speech perception ability of older adults
Shojaei, Elahe; Ashayeri, Hassan; Jafari, Zahra; Zarrin Dast, Mohammad Reza; Kamali, Koorosh
2016-01-01
Background: Speech perception ability depends on auditory and extra-auditory elements. The signal- to-noise ratio (SNR) is an extra-auditory element that has an effect on the ability to normally follow speech and maintain a conversation. Speech in noise perception difficulty is a common complaint of the elderly. In this study, the importance of SNR magnitude as an extra-auditory effect on speech perception in noise was examined in the elderly. Methods: The speech perception in noise test (SPIN) was conducted on 25 elderly participants who had bilateral low–mid frequency normal hearing thresholds at three SNRs in the presence of ipsilateral white noise. These participants were selected by available sampling method. Cognitive screening was done using the Persian Mini Mental State Examination (MMSE) test. Results: Independent T- test, ANNOVA and Pearson Correlation Index were used for statistical analysis. There was a significant difference in word discrimination scores at silence and at three SNRs in both ears (p≤0.047). Moreover, there was a significant difference in word discrimination scores for paired SNRs (0 and +5, 0 and +10, and +5 and +10 (p≤0.04)). No significant correlation was found between age and word recognition scores at silence and at three SNRs in both ears (p≥0.386). Conclusion: Our results revealed that decreasing the signal level and increasing the competing noise considerably reduced the speech perception ability in normal hearing at low–mid thresholds in the elderly. These results support the critical role of SNRs for speech perception ability in the elderly. Furthermore, our results revealed that normal hearing elderly participants required compensatory strategies to maintain normal speech perception in challenging acoustic situations. PMID:27390712
Davis, Chris; Kislyuk, Daniel; Kim, Jeesun; Sams, Mikko
2008-11-25
We used whole-head magnetoencephalograpy (MEG) to record changes in neuromagnetic N100m responses generated in the left and right auditory cortex as a function of the match between visual and auditory speech signals. Stimuli were auditory-only (AO) and auditory-visual (AV) presentations of /pi/, /ti/ and /vi/. Three types of intensity matched auditory stimuli were used: intact speech (Normal), frequency band filtered speech (Band) and speech-shaped white noise (Noise). The behavioural task was to detect the /vi/ syllables which comprised 12% of stimuli. N100m responses were measured to averaged /pi/ and /ti/ stimuli. Behavioural data showed that identification of the stimuli was faster and more accurate for Normal than for Band stimuli, and for Band than for Noise stimuli. Reaction times were faster for AV than AO stimuli. MEG data showed that in the left hemisphere, N100m to both AO and AV stimuli was largest for the Normal, smaller for Band and smallest for Noise stimuli. In the right hemisphere, Normal and Band AO stimuli elicited N100m responses of quite similar amplitudes, but N100m amplitude to Noise was about half of that. There was a reduction in N100m for the AV compared to the AO conditions. The size of this reduction for each stimulus type was same in the left hemisphere but graded in the right (being largest to the Normal, smaller to the Band and smallest to the Noise stimuli). The N100m decrease for the Normal stimuli was significantly larger in the right than in the left hemisphere. We suggest that the effect of processing visual speech seen in the right hemisphere likely reflects suppression of the auditory response based on AV cues for place of articulation.
van den Tillaart-Haverkate, Maj; de Ronde-Brons, Inge; Dreschler, Wouter A; Houben, Rolph
2017-01-01
Single-microphone noise reduction leads to subjective benefit, but not to objective improvements in speech intelligibility. We investigated whether response times (RTs) provide an objective measure of the benefit of noise reduction and whether the effect of noise reduction is reflected in rated listening effort. Twelve normal-hearing participants listened to digit triplets that were either unprocessed or processed with one of two noise-reduction algorithms: an ideal binary mask (IBM) and a more realistic minimum mean square error estimator (MMSE). For each of these three processing conditions, we measured (a) speech intelligibility, (b) RTs on two different tasks (identification of the last digit and arithmetic summation of the first and last digit), and (c) subjective listening effort ratings. All measurements were performed at four signal-to-noise ratios (SNRs): -5, 0, +5, and +∞ dB. Speech intelligibility was high (>97% correct) for all conditions. A significant decrease in response time, relative to the unprocessed condition, was found for both IBM and MMSE for the arithmetic but not the identification task. Listening effort ratings were significantly lower for IBM than for MMSE and unprocessed speech in noise. We conclude that RT for an arithmetic task can provide an objective measure of the benefit of noise reduction. For young normal-hearing listeners, both ideal and realistic noise reduction can reduce RTs at SNRs where speech intelligibility is close to 100%. Ideal noise reduction can also reduce perceived listening effort.
Paul, Brandon T; Waheed, Sajal; Bruce, Ian C; Roberts, Larry E
2017-11-01
Noise exposure and aging can damage cochlear synapses required for suprathreshold listening, even when cochlear structures needed for hearing at threshold remain unaffected. To control for effects of aging, behavioral amplitude modulation (AM) detection and subcortical envelope following responses (EFRs) to AM tones in 25 age-restricted (18-19 years) participants with normal thresholds, but different self-reported noise exposure histories were studied. Participants with more noise exposure had smaller EFRs and tended to have poorer AM detection than less-exposed individuals. Simulations of the EFR using a well-established cochlear model were consistent with more synaptopathy in participants reporting greater noise exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z; Hoerner, M; Lamoureux, R
Purpose: Children in early teens with scoliosis require repeated radiographic exams over a number of years. The EOS (EOS imaging S.A., Paris, France) is a novel low-dose slot-scanning digital radiographic system designed to produce full-spine images of a free-standing patient. The radiation dose and image quality characteristics of the EOS were evaluated relative to those of a Computed Radiography (CR) system for scoliosis imaging. Methods: For dose evaluation, a full-torso anthropomorphic phantom was scanned five times using the default standard clinical protocols for both the EOS and a CR system, which include both posteroanterior and lateral full-spine views. Optically stimulatedmore » luminescent dosimeters (OSLDs), also known as nanoDots™ (Landauer, Inc., Glenwood, IL), were placed on the phantom’s surface to measure entrance skin dose. To assess image quality, MTF curves were generated from sampling the noise levels within the high-contrast regions of a line-pair phantom. Vertical and horizontal distortions were measured for the square line-pair phantom with the EOS system to evaluate the effects of geometric magnification and misalignment with the indicated imaging plane. Results: The entrance skin dose was measured to be 0.4 to 1.1 mGy for the EOS, and 0.7 to 3.6 mGy for the CR study. MTF comparison shows that CR greatly outperforms the EOS, despite both systems having a limiting resolution at 1.8 line-pairs per mm. Vertical distortion was unaffected by phantom positioning, because of the EOS slot-scanning geometry. Horizontal distortion increased linearly with miscentering distance. Conclusion: The EOS system resulted in approximately 70% lower radiation dose than CR for full-spine images. Image quality was found to be inferior to CR. Further investigation is required to see if EOS system is an acceptable modality for performing clinically diagnostic scoliosis examinations.« less
NASA Astrophysics Data System (ADS)
Miyahara, Yoshinori; Hara, Yuki; Nakashima, Hiroto; Nishimura, Tomonori; Itakura, Kanae; Inomata, Taisuke; Kitagaki, Hajime
2018-03-01
In high-dose-rate (HDR) brachytherapy, a direct-conversion flat-panel detector (d-FPD) clearly depicts a 192Ir source without image halation, even under the emission of high-energy gamma rays. However, it was unknown why iridium is visible when using a d-FPD. The purpose of this study was to clarify the reasons for visibility of the source core based on physical imaging characteristics, including the modulation transfer functions (MTF), noise power spectral (NPS), contrast transfer functions, and linearity of d-FPD to high-energy gamma rays. The acquired data included: x-rays, [X]; gamma rays, [γ] dual rays (X + γ), [D], and subtracted data for depicting the source ([D] - [γ]). In the quality assurance (QA) test for the positional accuracy of a source core, the coordinates of each dwelling point were compared between the planned and actual source core positions using a CT/MR-compatible ovoid applicator and a Fletcher-Williamson applicator. The profile curves of [X] and ([D] - [γ]) matched well on MTF and NPS. The contrast resolutions of [D] and [X] were equivalent. A strongly positive linear correlation was found between the output data of [γ] and source strength (r 2 > 0.99). With regard to the accuracy of the source core position, the largest coordinate difference (3D distance) was noted at the maximum curvature of the CT/MR-compatible ovoid and Fletcher-Williamson applicators, showing 1.74 ± 0.02 mm and 1.01 ± 0.01 mm, respectively. A d-FPD system provides high-quality images of a source, even when high-energy gamma rays are emitted to the detector, and positional accuracy tests with clinical applicators are useful in identifying source positions (source movements) within the applicator for QA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, G; Nishino, T; Greene, T
Purpose: To determine the consistency of digital detector (DR) tests recommended by AAPM TG150 and tests provided by commercially available DirectView Total Quality Tool (TQT). Methods: The DR tests recommended by the TG150 Detector Subgroup[1] were performed on 4 new Carestream DRX-Revolution and one Carestream DRX1C retrofit of a GE AMX-4 that had been in service for three years. After detector calibration, flat-field images plus images of two bar patterns oriented parallel and perpendicular to the A-C axis, were acquired at conditions recommended by TG150. Raw images were harvested and then analyzed using a MATLAB software previously validated[2,3,4]. Data weremore » analyzed using ROIs of two different dimensions: 1) 128 x 128 ROIs matching the detector electronics; and 2) 256 x 256 ROIs, each including 4 adjacent smaller ROIs. TG150 metrics from 128 x 128 ROIs were compared to TQT metrics, which are also obtained from 128 x 128 ROIs[5]. Results: The results show that both TG150 and TQT measurements were consistent among these detectors. Differences between TG150 and TQT values appear systematic. Compared with 128 x 128 ROIs, noise and SNR non-uniformity were lower with 256 x 256 ROIs, although signal non-uniformity was similar, indicating detectors were appropriately calibrated for gain and offset. MTF of the retrofit unit remained essentially the same between 2012 and 2015, but was inferior to the new units. The older generator focal spot is smaller (0.75mm vs. 1.2mm), and the SID for acquisition is 182cm as well, so focal spot dimensions cannot explain the difference. The difference in MTF may be secondary to differences in generator X-ray spectrum or by unannounced changes in detector architecture. Further investigation is needed. Conclusion: The study shows that both TG150 and TQT tests are consistent. The numerical value of some metrics are dependent on ROI size.« less
NASA Astrophysics Data System (ADS)
Michail, C. M.; Fountos, G. P.; David, S. L.; Valais, I. G.; Toutountzis, A. E.; Kalyvas, N. E.; Kandarakis, I. S.; Panayiotakis, G. S.
2009-10-01
The dominant powder scintillator in most medical imaging modalities for decades has been Gd2O2S:Tb due to the very good intrinsic properties and overall efficiency. Apart from Gd2O2S:Tb, there are alternative powder phosphor scintillators such as Lu2SiO5:Ce and Gd2O2S:Eu that have been suggested for use in various medical imaging modalities. Gd2O2S:Eu emits red light and can be combined mainly with digital mammography detectors such as CCDs. Lu2SiO5:Ce emits blue light and can be combined with blue sensitivity films, photocathodes and some photodiodes. For the purposes of the present study, two scintillating screens, one from Lu2SiO5:Ce and the other from Gd2O2S:Eu powders, were prepared using the method of sedimentation. The screen coating thicknesses were 25.0 and 33.1 mg cm-2 respectively. The screens were investigated by evaluating the following parameters: the output signal, the modulation transfer function, the noise equivalent passband, the informational efficiency, the quantum detection efficiency and the zero-frequency detective quantum efficiency. Furthermore, the spectral compatibility of those materials with various optical detectors was determined. Results were compared to published data for the commercially employed 'Kodak Min-R film-screen system', based on a 31.7 mg cm-2 thick Gd2O2S:Tb phosphor. For Gd2O2S:Eu, MTF data were found comparable to those of Gd2O2S:Tb, while the MTF of Lu2SiO5:Ce was even higher resulting in better spatial resolution and image sharpness properties. On the other hand, Gd2O2S:Eu was found to exhibit higher output signal and zero-frequency detective quantum efficiency than Lu2SiO5:Ce.
Vedantham, S; Karellas, A; Suryanarayanan, S; D'Orsi, C J; Hendrick, R E
2000-11-01
An amorphous silicon-based full-breast imager for digital mammography was evaluated for detector stability over a period of 1 year. This imager uses a structured CsI:TI scintillator coupled to an amorphous silicon layer with a 100-micron pixel pitch and read out by special purpose electronics. The stability of the system was characterized using the following quantifiable metrics: conversion factor (mean number of electrons generated per incident x-ray), presampling modulation transfer function (MTF), detector linearity and sensitivity, detector signal-to-noise ratio (SNR), and American College of Radiology (ACR) accreditation phantom scores. Qualitative metrics such as flat field uniformity, geometric distortion, and Society of Motion Picture and Television Engineers (SMPTE) test pattern image quality were also used to study the stability of the system. Observations made over this 1-year period indicated that the maximum variation from the average of the measurements were less than 0.5% for conversion factor, 3% for presampling MTF over all spatial frequencies, 5% for signal response, linearity and sensitivity, 12% for SNR over seven locations for all 3 target-filter combinations, and 0% for ACR accreditation phantom scores. ACR mammographic accreditation phantom images indicated the ability to resolve 5 fibers, 4 speck groups, and 5 masses at a mean glandular dose of 1.23 mGy. The SMPTE pattern image quality test for the display monitors used for image viewing indicated ability to discern all contrast steps and ability to distinguish line-pair images at the center and corners of the image. No bleeding effects were observed in the image. Flat field uniformity for all 3 target-filter combinations displayed no artifacts such as gridlines, bad detector rows or columns, horizontal or vertical streaks, or bad pixels. Wire mesh screen images indicated uniform resolution and no geometric distortion.
Abdul Aziz,, Siti Aishah; Mohd Saparudin, Abdul Khaliq; Harun, Ahmad Zaky
2013-01-01
Background: Different target-filter combinations in computed radiography have different impacts on the dose and image quality in digital radiography. This study aims to evaluate the mean glandular dose (MGD) and modulation transfer function (MTF) of various target-filter combinations by investigating the signal intensities of X-ray beams. Methods: General Electric (GE) Senographe DMR Plus mammography unit was used for MGD and MTF evaluation. The measured MGD was compared with the dose reference level (DRL), whereas the MTF was evaluated using ImageJ 1.46o software. A modified Mammography Accreditation Phantom RMI 156 was exposed using different target-filter combinations of molybdenum-molybdenum (Mo-Mo), molybdenum-rhodium (Mo-Rh) and rhodium-rhodium (Rh-Rh) at two different tube voltages, 26 kV and 32 kV with 50 mAs. Results: In the MGD evaluations, all target-filters gave an MGD value of < 1.5 mGy. The one-way ANOVA test showed a highly significant interaction between the MGD and the kilovoltage and target-filter material used (26 kV: F (2,12) = 49,234, P = 0.001;32 kV: F (2,12) = 89,972, P = 0.001). A Tukey post-hoc test revealed that the MGD for 26 kV and 32 kV was highly affected by the target-filter combinations. The test of homogeneity of variances indicates that the MGD varies significantly for 26 kV and 32 kV images (0.045 and 0.030 (P < 0.05), respectively). However, the one-way ANOVA for the MTF shows that no significant difference exists between the target-filter combinations used with 26 kV and 32 kV images either in parallel or perpendicular to the chest wall side F (2,189) = 0.26, P > 0.05). Conclusion: Higher tube voltage and atomic number target-filter yield higher MGD values. However, the MTF is independent of the X-ray energy and the type of target-filter combinations used. PMID:23966821
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkubo, Masaki, E-mail: mook@clg.niigata-u.ac.jp
Purpose: In lung cancer computed tomography (CT) screening, the performance of a computer-aided detection (CAD) system depends on the selection of the image reconstruction kernel. To reduce this dependence on reconstruction kernels, the authors propose a novel application of an image filtering method previously proposed by their group. Methods: The proposed filtering process uses the ratio of modulation transfer functions (MTFs) of two reconstruction kernels as a filtering function in the spatial-frequency domain. This method is referred to as MTF{sub ratio} filtering. Test image data were obtained from CT screening scans of 67 subjects who each had one nodule. Imagesmore » were reconstructed using two kernels: f{sub STD} (for standard lung imaging) and f{sub SHARP} (for sharp edge-enhancement lung imaging). The MTF{sub ratio} filtering was implemented using the MTFs measured for those kernels and was applied to the reconstructed f{sub SHARP} images to obtain images that were similar to the f{sub STD} images. A mean filter and a median filter were applied (separately) for comparison. All reconstructed and filtered images were processed using their prototype CAD system. Results: The MTF{sub ratio} filtered images showed excellent agreement with the f{sub STD} images. The standard deviation for the difference between these images was very small, ∼6.0 Hounsfield units (HU). However, the mean and median filtered images showed larger differences of ∼48.1 and ∼57.9 HU from the f{sub STD} images, respectively. The free-response receiver operating characteristic (FROC) curve for the f{sub SHARP} images indicated poorer performance compared with the FROC curve for the f{sub STD} images. The FROC curve for the MTF{sub ratio} filtered images was equivalent to the curve for the f{sub STD} images. However, this similarity was not achieved by using the mean filter or median filter. Conclusions: The accuracy of MTF{sub ratio} image filtering was verified and the method was demonstrated to be effective for reducing the kernel dependence of CAD performance.« less
14 CFR 36.801 - Noise measurement.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Noise measurement. 36.801 Section 36.801 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary, normal...
14 CFR 36.801 - Noise measurement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Noise measurement. 36.801 Section 36.801 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary, normal...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teymurazyan, A.; Rowlands, J. A.; Thunder Bay Regional Research Institute
2014-04-15
Purpose: Electronic Portal Imaging Devices (EPIDs) have been widely used in radiation therapy and are still needed on linear accelerators (Linacs) equipped with kilovoltage cone beam CT (kV-CBCT) or MRI systems. Our aim is to develop a new high quantum efficiency (QE) Čerenkov Portal Imaging Device (CPID) that is quantum noise limited at dose levels corresponding to a single Linac pulse. Methods: Recently a new concept of CPID for MV x-ray imaging in radiation therapy was introduced. It relies on Čerenkov effect for x-ray detection. The proposed design consisted of a matrix of optical fibers aligned with the incident x-raysmore » and coupled to an active matrix flat panel imager (AMFPI) for image readout. A weakness of such design is that too few Čerenkov light photons reach the AMFPI for each incident x-ray and an AMFPI with an avalanche gain is required in order to overcome the readout noise for portal imaging application. In this work the authors propose to replace the optical fibers in the CPID with light guides without a cladding layer that are suspended in air. The air between the light guides takes on the role of the cladding layer found in a regular optical fiber. Since air has a significantly lower refractive index (∼1 versus 1.38 in a typical cladding layer), a much superior light collection efficiency is achieved. Results: A Monte Carlo simulation of the new design has been conducted to investigate its feasibility. Detector quantities such as quantum efficiency (QE), spatial resolution (MTF), and frequency dependent detective quantum efficiency (DQE) have been evaluated. The detector signal and the quantum noise have been compared to the readout noise. Conclusions: Our studies show that the modified new CPID has a QE and DQE more than an order of magnitude greater than that of current clinical systems and yet a spatial resolution similar to that of current low-QE flat-panel based EPIDs. Furthermore it was demonstrated that the new CPID does not require an avalanche gain in the AMFPI and is quantum noise limited at dose levels corresponding to a single Linac pulse.« less
Gender identity rather than sexual orientation impacts on facial preferences.
Ciocca, Giacomo; Limoncin, Erika; Cellerino, Alessandro; Fisher, Alessandra D; Gravina, Giovanni Luca; Carosa, Eleonora; Mollaioli, Daniele; Valenzano, Dario R; Mennucci, Andrea; Bandini, Elisa; Di Stasi, Savino M; Maggi, Mario; Lenzi, Andrea; Jannini, Emmanuele A
2014-10-01
Differences in facial preferences between heterosexual men and women are well documented. It is still a matter of debate, however, how variations in sexual identity/sexual orientation may modify the facial preferences. This study aims to investigate the facial preferences of male-to-female (MtF) individuals with gender dysphoria (GD) and the influence of short-term/long-term relationships on facial preference, in comparison with healthy subjects. Eighteen untreated MtF subjects, 30 heterosexual males, 64 heterosexual females, and 42 homosexual males from university students/staff, at gay events, and in Gender Clinics were shown a composite male or female face. The sexual dimorphism of these pictures was stressed or reduced in a continuous fashion through an open-source morphing program with a sequence of 21 pictures of the same face warped from a feminized to a masculinized shape. An open-source morphing program (gtkmorph) based on the X-Morph algorithm. MtF GD subjects and heterosexual females showed the same pattern of preferences: a clear preference for less dimorphic (more feminized) faces for both short- and long-term relationships. Conversely, both heterosexual and homosexual men selected significantly much more dimorphic faces, showing a preference for hyperfeminized and hypermasculinized faces, respectively. These data show that the facial preferences of MtF GD individuals mirror those of the sex congruent with their gender identity. Conversely, heterosexual males trace the facial preferences of homosexual men, indicating that changes in sexual orientation do not substantially affect preference for the most attractive faces. © 2014 International Society for Sexual Medicine.
Tandogan, Tamer; Auffarth, Gerd U; Choi, Chul Y; Liebing, Stephanie; Mayer, Christian; Khoramnia, Ramin
2017-02-08
To analyse objective optical properties of the spherical and aspheric design of the same intraocular lens (IOL) model using optical bench analysis. This study entailed a comparative analysis of 10 spherical C-flex 570 C and 10 aspheric C-flex 970 C IOLs (Rayner Intraocular Lenses Ltd., Hove, UK) of 26 diopters [D] using an optical bench (OptiSpheric, Trioptics, Germany). In all lenses, we evaluated the modulation transfer function (MTF) at 50 lp/mm and 100 lp/mm and the Strehl Ratio using a 3-mm (photopic) and 4.5-mm (mesopic) aperture. At 50 lp/mm, the MTF values were 0.713/0.805 (C-flex 570 C/C-flex 970 C) for a 3-mm aperture and 0.294/0.591 for a 4.5-mm aperture. At 100 lp/mm, the MTF values were 0.524/0.634 for a 3-mm aperture and 0.198/0.344 for a 4.5-mm aperture. The Strehl Ratio was 0.806/0.925 and 0.237/0.479 for a 3-mm and 4.5-mm aperture respectively. A Mann-Whitney U test revealed all intergroup differences to be statistically significant (p < 0.01). The aspheric IOL design achieved higher MTF values than the spherical design of the same IOL for both apertures. Moreover, the differences between the two designs of the IOL were more prominent for larger apertures. This suggests that the evaluated IOL provides enhanced optical quality to patients with larger pupils or working under mesopic conditions.
Clinical and theoretical parallels between desire for limb amputation and gender identity disorder.
Lawrence, Anne A
2006-06-01
Desire for amputation of a healthy limb has usually been regarded as a paraphilia (apotemnophilia), but some researchers propose that it may be a disorder of identity, similar to Gender Identity Disorder (GID) or transsexualism. Similarities between the desire for limb amputation and nonhomosexual male-to-female (MtF) transsexualism include profound dissatisfaction with embodiment, related paraphilias from which the conditions plausibly derive (apotemnophilia and autogynephilia), sexual arousal from simulation of the sought-after status (pretending to be an amputee and transvestism), attraction to persons with the same body type one wants to acquire, and an elevated prevalence of other paraphilic interests. K. Freund and R. Blanchard (1993) proposed that nonhomosexual MtF transsexualism represents an erotic target location error, in which men whose preferred erotic targets are women also eroticize their own feminized bodies. Desire for limb amputation may also reflect an erotic target location error, occurring in combination with an unusual erotic target preference for amputees. This model predicts that persons who desire limb amputation would almost always be attracted to amputees and would display an increased prevalence of gender identity problems, both of which have been observed. Persons who desire limb amputation and nonhomosexual MtF transsexuals often assert that their motives for wanting to change their bodies reflect issues of identity rather than sexuality, but because erotic/romantic orientations contribute significantly to identity, such distinctions may not be meaningful. Experience with nonhomosexual MtF transsexualism suggests possible directions for research and treatment for persons who desire limb amputation.
Design, assembly, and metrology of an oil-immersion microscope objective with long working distance
NASA Astrophysics Data System (ADS)
Peng, Wei-Jei; Lin, Wen-Lung; Kuo, Hui-Jean; Ho, Cheng-Fang; Hsu, Wei-Yao
2016-10-01
The design, tolerance sensitivity reduction, assembly, and optical bench test for an oil-immersion microscope objective with long working distance employed in a lattice light-sheet microscope is presented in this paper. In this application, the orthogonal excitation and detection objectives are dipped in an oil medium. The excitation objective focuses the incident laser beam to generate fluorescence on specimen for collecting by detection objective. The excitation objective is custom-designed to meet the requirement specification such as oil-immersion, the long working distance, and numerical aperture (NA) of 0.5, etc. To produce an acceptable point spread function (PSF) for effective excitation, the performance of the objective needs to be close to diffraction limit. Because the tolerance of the modulation transfer function (MTF) is more and more sensitive at higher spatial frequency, it is extremely critical to keep the performance after manufacture. Consequently, an insensitive optical design is very important for relaxing tolerance. We compare the design with and without tolerance sensitivity reduction, and the as-built MTF shows the result. Furthermore, the method for sensitivity reduction is presented. The opto-mechanical design and assembly method are also discussed. Eventually, the objective with five spherical lenses was fabricated. In optical bench test, the depth of the oil is sensitive to MTF, and it leads to the complicated adjustment. For solving this issue, we made an index-matching lens to replace oil for measurement easily. Finally, the measured MTF of the excitation objective can accomplish the requirement specification and successfully employed in a lattice light-sheet microscope.
Glick, S J; Hawkins, W G; King, M A; Penney, B C; Soares, E J; Byrne, C L
1992-01-01
The application of stationary restoration techniques to SPECT images assumes that the modulation transfer function (MTF) of the imaging system is shift invariant. It was hypothesized that using intrinsic attenuation correction (i.e., methods which explicitly invert the exponential radon transform) would yield a three-dimensional (3-D) MTF which varies less with position within the transverse slices than the combined conjugate view two-dimensional (2-D) MTF varies with depth. Thus the assumption of shift invariance would become less of an approximation for 3-D post- than for 2-D pre-reconstruction restoration filtering. SPECT acquisitions were obtained from point sources located at various positions in three differently shaped, water-filled phantoms. The data were reconstructed with intrinsic attenuation correction, and 3-D MTFs were calculated. Four different intrinsic attenuation correction methods were compared: (1) exponentially weighted backprojection, (2) a modified exponentially weighted backprojection as described by Tanaka et al. [Phys. Med. Biol. 29, 1489-1500 (1984)], (3) a Fourier domain technique as described by Bellini et al. [IEEE Trans. ASSP 27, 213-218 (1979)], and (4) the circular harmonic transform (CHT) method as described by Hawkins et al. [IEEE Trans. Med. Imag. 7, 135-148 (1988)]. The dependence of the 3-D MTF obtained with these methods, on point source location within an attenuator, and on shape of the attenuator, was studied. These 3-D MTFs were compared to: (1) those MTFs obtained with no attenuation correction, and (2) the depth dependence of the arithmetic mean combined conjugate view 2-D MTFs.(ABSTRACT TRUNCATED AT 250 WORDS)
Evaluation of loss in optical quality of multifocal intraocular lenses with glistenings.
DeHoog, Edward; Doraiswamy, Anand
2016-04-01
To study the impact of loss in optical quality from glistenings in diffractive multifocal intraocular lenses (IOLs) using ray tracing in a model eye. Independent research laboratory, Irvine, California, USA. Experimental study. A pseudophakic eye model was constructed in Zemax, an optical ray-tracing program, using the Arizona eye model as the basis. The Mie scattering theory was used to describe the intensity and direction of light as it scattered for a spherical particle immersed in a diffractive multifocal IOL. To evaluate the impact of glistening scatter, a more advanced eye model was constructed in Fred, a nonsequential optical ray-tracing software. An evaluation of scatter and modulation transfer function (MTF) was performed for a hydrophobic biomaterial with a refractive index of 1.54 for various sizes and densities of glistenings under mesopic conditions. As predicted by the Mie theory, the amount of scatter was a function of the change in the refractive index, size of the scatterer, and volume fraction of the scatterers. This modeling showed that an increase in density of glistenings can lead to a significant drop of MTF of the IOL. This effect was more pronounced in multifocal IOLs than in monofocal IOLs. Mathematical modeling showed that glistenings in multifocal IOLs lead to a reduction in MTF of the IOL and the pseudophakic eye. The relative loss of MTF in multifocal IOLs was more significant than in monofocal IOLs because of the nature of the design. Drs. DeHoog and Doraiswamy are consultants to Advanced Vision Science, Inc. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Evaluation of the impact of light scatter from glistenings in pseudophakic eyes.
DeHoog, Edward; Doraiswamy, Anand
2014-01-01
To study the impact of light scatter from glistenings in pseudophakic eyes using ray tracing in a model eye Department of Research, Advanced Vision Science, Inc., Goleta, California, USA. Mathematical modeling and simulation. A pseudophakic eye model was constructed in Zemax using the Arizona eye model as the basis. The Mie scattering theory was used to describe the intensity and direction of light as it scatters for a spherical particle immersed in a given media (intraocular lens [IOL]). The modeling and evaluation of scatter and modulation transfer function (MTF) were performed for several biomaterials with various size and density of glistenings under scotopic, mesopic, and photopic conditions. As predicted by the Mie theory, the amount of scatter was a function of the relative difference in refractive index between the media and the scatterer, the size of the scatterer, and the volume fraction of the scatterer. The simulation demonstrated that an increase in density of glistenings can lead to a significant drop in the MTF of the IOL and the pseudophakic eye. This effect was more pronounced in IOLs with smaller cavitations, and the observation was consistent for all tested biomaterials. Mathematical modeling demonstrated that glistenings in IOLs will lead to reduction in the MTF of the IOL and the pseudophakic eye. The loss in MTF was more pronounced at high densities and small cavitation sizes across all biomaterials. Inconsistent and poor clinical quantification of glistenings in IOLs may explain some inconsistencies in the literature. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Spies, M; Hahn, A; Kranz, G S; Sladky, R; Kaufmann, U; Hummer, A; Ganger, S; Kraus, C; Winkler, D; Seiger, R; Comasco, E; Windischberger, C; Kasper, S; Lanzenberger, R
2016-09-01
Sex-steroid hormones have repeatedly been shown to influence empathy, which is in turn reflected in resting state functional connectivity (rsFC). Cross-sex hormone treatment in transgender individuals provides the opportunity to examine changes to rsFC over gender transition. We aimed to investigate whether sex-steroid hormones influence rsFC patterns related to unique aspects of empathy, namely emotion recognition and description as well as emotional contagion. RsFC data was acquired with 7Tesla magnetic resonance imaging in 24 male-to-female (MtF) and 33 female-to-male (FtM) transgender individuals before treatment, in addition to 33 male- and 44 female controls. Of the transgender participants, 15 MtF and 20 FtM were additionally assessed after 4 weeks and 4 months of treatment. Empathy scores were acquired at the same time-points. MtF differed at baseline from all other groups and assimilated over the course of gender transition in a rsFC network around the supramarginal gyrus, a region central to interpersonal emotion processing. While changes to sex-steroid hormones did not correlate with rsFC in this network, a sex hormone independent association between empathy scores and rsFC was found. Our results underline that 1) MtF transgender persons demonstrate unique rsFC patterns in a network related to empathy and 2) changes within this network over gender transition are likely related to changes in emotion recognition, -description, and -contagion, and are sex-steroid hormone independent. Copyright © 2016 Elsevier Inc. All rights reserved.
Finger length ratio (2D:4D) in adults with gender identity disorder.
Kraemer, Bernd; Noll, Thomas; Delsignore, Aba; Milos, Gabriella; Schnyder, Ulrich; Hepp, Urs
2009-06-01
From early childhood, gender identity and the 2nd to 4th finger length ratio (2D:4D) are discriminative characteristics between sexes. Both the human brain and 2D:4D may be influenced by prenatal testosterone levels. This calls for an examination of 2D:4D in patients with gender identity disorder (GID) to study the possible influence of prenatal testosterone on gender identity. Until now, the only study carried out on this issue suggests lower prenatal testosterone levels in right-handed male-to-female GID patients (MtF). We compared 2D:4D of 56 GID patients (39 MtF; 17 female-to-male GID patients, FtM) with data from a control sample of 176 men and 190 women. Bivariate group comparisons showed that right hand 2D:4D in MtF was significantly higher (feminized) than in male controls, but similar to female controls. The comparison of 2D:4D ratios of biological women revealed significantly higher (feminized) values for right hands of right handed FtM. Analysis of variance confirmed significant effects for sex and for gender identity on 2D:4D ratios but not for sexual orientation or for the interaction among variables. Our results indirectly point to the possibility of a weak influence of reduced prenatal testosterone as an etiological factor in the multifactorially influenced development of MtF GID. The development of FtM GID seems even more unlikely to be notably influenced by prenatal testosterone.
Wang, Peng; Wang, Yimin; Zou, Chao; Guo, Jixing
2017-04-01
The noise in the metro station is synthesized from a variety of different noise sources. Excessive noise exposure will bring serious impacts on humans' health. To alleviate the shortage of the urban land, most metro stations are planning to develop convenience stores and shopping malls. In order to evaluate the potential noise impact on humans' comfort in the metro stations, this study selected four representative stations of Guangzhou Metro Line 1 to carry out a preliminary questionnaire survey of 226 respondents for the perception and perform a noise measurement. Additionally, platform screen doors as a potential method for noise mitigation were examined. The results show that the noise caused by trains was dominant in the metro stations; however, the noise impact by public broadcast and passengers cannot be ignored. The noise levels of the transfer stations were obviously greater than the normal stations, especially during the peak hours. In addition, people in the metro stations have potential exposure to noise that the noise levels exceed the criteria limit of China, which would bring discomfort for humans; however, the normal activities of people would not be impacted. The platform screen doors should be further improved or relevant noise mitigation methods should be taken into account to reduce the noise level within the criteria limit.
Rönnberg, Niklas; Rudner, Mary; Lunner, Thomas; Stenfelt, Stefan
2014-01-01
Listening in noise is often perceived to be effortful. This is partly because cognitive resources are engaged in separating the target signal from background noise, leaving fewer resources for storage and processing of the content of the message in working memory. The Auditory Inference Span Test (AIST) is designed to assess listening effort by measuring the ability to maintain and process heard information. The aim of this study was to use AIST to investigate the effect of background noise types and signal-to-noise ratio (SNR) on listening effort, as a function of working memory capacity (WMC) and updating ability (UA). The AIST was administered in three types of background noise: steady-state speech-shaped noise, amplitude modulated speech-shaped noise, and unintelligible speech. Three SNRs targeting 90% speech intelligibility or better were used in each of the three noise types, giving nine different conditions. The reading span test assessed WMC, while UA was assessed with the letter memory test. Twenty young adults with normal hearing participated in the study. Results showed that AIST performance was not influenced by noise type at the same intelligibility level, but became worse with worse SNR when background noise was speech-like. Performance on AIST also decreased with increasing memory load level. Correlations between AIST performance and the cognitive measurements suggested that WMC is of more importance for listening when SNRs are worse, while UA is of more importance for listening in easier SNRs. The results indicated that in young adults with normal hearing, the effort involved in listening in noise at high intelligibility levels is independent of the noise type. However, when noise is speech-like and intelligibility decreases, listening effort increases, probably due to extra demands on cognitive resources added by the informational masking created by the speech fragments and vocal sounds in the background noise. PMID:25566159
Rönnberg, Niklas; Rudner, Mary; Lunner, Thomas; Stenfelt, Stefan
2014-01-01
Listening in noise is often perceived to be effortful. This is partly because cognitive resources are engaged in separating the target signal from background noise, leaving fewer resources for storage and processing of the content of the message in working memory. The Auditory Inference Span Test (AIST) is designed to assess listening effort by measuring the ability to maintain and process heard information. The aim of this study was to use AIST to investigate the effect of background noise types and signal-to-noise ratio (SNR) on listening effort, as a function of working memory capacity (WMC) and updating ability (UA). The AIST was administered in three types of background noise: steady-state speech-shaped noise, amplitude modulated speech-shaped noise, and unintelligible speech. Three SNRs targeting 90% speech intelligibility or better were used in each of the three noise types, giving nine different conditions. The reading span test assessed WMC, while UA was assessed with the letter memory test. Twenty young adults with normal hearing participated in the study. Results showed that AIST performance was not influenced by noise type at the same intelligibility level, but became worse with worse SNR when background noise was speech-like. Performance on AIST also decreased with increasing memory load level. Correlations between AIST performance and the cognitive measurements suggested that WMC is of more importance for listening when SNRs are worse, while UA is of more importance for listening in easier SNRs. The results indicated that in young adults with normal hearing, the effort involved in listening in noise at high intelligibility levels is independent of the noise type. However, when noise is speech-like and intelligibility decreases, listening effort increases, probably due to extra demands on cognitive resources added by the informational masking created by the speech fragments and vocal sounds in the background noise.
NASA Astrophysics Data System (ADS)
Zhou, Yali; Zhang, Qizhi; Yin, Yixin
2015-05-01
In this paper, active control of impulsive noise with symmetric α-stable (SαS) distribution is studied. A general step-size normalized filtered-x Least Mean Square (FxLMS) algorithm is developed based on the analysis of existing algorithms, and the Gaussian distribution function is used to normalize the step size. Compared with existing algorithms, the proposed algorithm needs neither the parameter selection and thresholds estimation nor the process of cost function selection and complex gradient computation. Computer simulations have been carried out to suggest that the proposed algorithm is effective for attenuating SαS impulsive noise, and then the proposed algorithm has been implemented in an experimental ANC system. Experimental results show that the proposed scheme has good performance for SαS impulsive noise attenuation.
Intonation and gender perception: applications for transgender speakers.
Hancock, Adrienne; Colton, Lindsey; Douglas, Fiacre
2014-03-01
Intonation is commonly addressed in voice and communication feminization therapy, yet empirical evidence of gender differences for intonation is scarce and rarely do studies examine how it relates to gender perception of transgender speakers. This study examined intonation of 12 males, 12 females, six female-to-male, and 14 male-to-female transgender speakers describing a Norman Rockwell image. Several intonation measures were compared between biological gender groups, between perceived gender groups, and between male-to-female (MTF) speakers who were perceived as male, female, or ambiguous gender. Speakers with a larger percentage of utterances with upward intonation and a larger utterance semitone range were perceived as female by listeners, despite no significant differences between the actual intonation of the four gender groups. MTF speakers who do not pass as female appear to use less upward and more downward intonations than female and passing MTF speakers. Intonation has potential for use in transgender communication therapy because it can influence perception to some degree. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Social context of HIV risk behaviours among male-to-female transgenders of colour.
Nemoto, T; Operario, D; Keatley, J; Villegas, D
2004-08-01
To explore the social context of drug use and sexual behaviours that put male-to-female (MTF) transgenders at risk for HIV, focus groups were conducted consisting of African American, Latina and Asian and Pacific Islander MTF transgenders (N = 48) who reside or work in San Francisco, California. Participants were likely to report having unprotected sex with primary partners to signify love and emotional connection, as well as to receive gender validation from their partners. In contrast, viewing sex work with customers as a business encouraged intentious to use condoms. Safer sex intentions with customers were frequently undermined by urgent financial needs, which stemmed from transphobia, employment discrimination and costly procedures associated with gender transition. Participants reported using drugs as a way to cope with or escape life stresses associated with relationships, sex work, transphobia and financial hardship. Interventions with at-risk MTF transgenders should address the interpersonal and social context of unsafe sex and drug use, particularly the unique roles of relationship issues with male partners, stigma, discrimination and community norms regarding sex work and drug use.
14 CFR 36.801 - Noise measurement.
Code of Federal Regulations, 2014 CFR
2014-01-01
...: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary, normal, transport, or restricted category helicopters for which certification is sought under appendix H of this part, the noise generated by the helicopter must be measured at the noise measuring points and under...
14 CFR 36.801 - Noise measurement.
Code of Federal Regulations, 2012 CFR
2012-01-01
...: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary, normal, transport, or restricted category helicopters for which certification is sought under appendix H of this part, the noise generated by the helicopter must be measured at the noise measuring points and under...
14 CFR 36.801 - Noise measurement.
Code of Federal Regulations, 2013 CFR
2013-01-01
...: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary, normal, transport, or restricted category helicopters for which certification is sought under appendix H of this part, the noise generated by the helicopter must be measured at the noise measuring points and under...
Gordon-Salant, Sandra; Cole, Stacey Samuels
2016-01-01
This study aimed to determine if younger and older listeners with normal hearing who differ on working memory span perform differently on speech recognition tests in noise. Older adults typically exhibit poorer speech recognition scores in noise than younger adults, which is attributed primarily to poorer hearing sensitivity and more limited working memory capacity in older than younger adults. Previous studies typically tested older listeners with poorer hearing sensitivity and shorter working memory spans than younger listeners, making it difficult to discern the importance of working memory capacity on speech recognition. This investigation controlled for hearing sensitivity and compared speech recognition performance in noise by younger and older listeners who were subdivided into high and low working memory groups. Performance patterns were compared for different speech materials to assess whether or not the effect of working memory capacity varies with the demands of the specific speech test. The authors hypothesized that (1) normal-hearing listeners with low working memory span would exhibit poorer speech recognition performance in noise than those with high working memory span; (2) older listeners with normal hearing would show poorer speech recognition scores than younger listeners with normal hearing, when the two age groups were matched for working memory span; and (3) an interaction between age and working memory would be observed for speech materials that provide contextual cues. Twenty-eight older (61 to 75 years) and 25 younger (18 to 25 years) normal-hearing listeners were assigned to groups based on age and working memory status. Northwestern University Auditory Test No. 6 words and Institute of Electrical and Electronics Engineers sentences were presented in noise using an adaptive procedure to measure the signal-to-noise ratio corresponding to 50% correct performance. Cognitive ability was evaluated with two tests of working memory (Listening Span Test and Reading Span Test) and two tests of processing speed (Paced Auditory Serial Addition Test and The Letter Digit Substitution Test). Significant effects of age and working memory capacity were observed on the speech recognition measures in noise, but these effects were mediated somewhat by the speech signal. Specifically, main effects of age and working memory were revealed for both words and sentences, but the interaction between the two was significant for sentences only. For these materials, effects of age were observed for listeners in the low working memory groups only. Although all cognitive measures were significantly correlated with speech recognition in noise, working memory span was the most important variable accounting for speech recognition performance. The results indicate that older adults with high working memory capacity are able to capitalize on contextual cues and perform as well as young listeners with high working memory capacity for sentence recognition. The data also suggest that listeners with normal hearing and low working memory capacity are less able to adapt to distortion of speech signals caused by background noise, which requires the allocation of more processing resources to earlier processing stages. These results indicate that both younger and older adults with low working memory capacity and normal hearing are at a disadvantage for recognizing speech in noise.
Contralateral Noise Stimulation Delays P300 Latency in School-Aged Children.
Ubiali, Thalita; Sanfins, Milaine Dominici; Borges, Leticia Reis; Colella-Santos, Maria Francisca
2016-01-01
The auditory cortex modulates auditory afferents through the olivocochlear system, which innervates the outer hair cells and the afferent neurons under the inner hair cells in the cochlea. Most of the studies that investigated the efferent activity in humans focused on evaluating the suppression of the otoacoustic emissions by stimulating the contralateral ear with noise, which assesses the activation of the medial olivocochlear bundle. The neurophysiology and the mechanisms involving efferent activity on higher regions of the auditory pathway, however, are still unknown. Also, the lack of studies investigating the effects of noise on human auditory cortex, especially in peadiatric population, points to the need for recording the late auditory potentials in noise conditions. Assessing the auditory efferents in schoolaged children is highly important due to some of its attributed functions such as selective attention and signal detection in noise, which are important abilities related to the development of language and academic skills. For this reason, the aim of the present study was to evaluate the effects of noise on P300 responses of children with normal hearing. P300 was recorded in 27 children aged from 8 to 14 years with normal hearing in two conditions: with and whitout contralateral white noise stimulation. P300 latencies were significantly longer at the presence of contralateral noise. No significant changes were observed for the amplitude values. Contralateral white noise stimulation delayed P300 latency in a group of school-aged children with normal hearing. These results suggest a possible influence of the medial olivocochlear activation on P300 responses under noise condition.
Optical quality in central serous chorioretinopathy.
Lee, Kyungmin; Sohn, Joonhong; Choi, Jong Gil; Chung, Sung Kun
2014-12-02
To assess optical quality and intraocular scattering using the Optical Quality Analysis System (OQAS) in central serous chorioretinopathy (CSC) and to determine the effects of retinal changes on optical quality. This was a prospective, case-control study. Participants were 29 patients with diagnosis of CSC. The control group consisted of the patients' unaffected eyes. Initial logMAR visual acuity, central macular thickness (by spectral domain optical coherence tomography), and optical quality parameters including modulation transfer function (MTF) cutoff frequency, Strehl (2-dimensional) ratio, and OQAS values at 100%, 20%, and 9% contrast levels were investigated. Objective scattering index (OSI) at 4.0-mm pupil size was assessed in both eyes by using the OQAS. After 3 months of treatment, which included observation and focal laser or injections of antivascular endothelial growth factor, every CSC-affected eye was followed. Main outcome measures were differences between clinical parameters of the CSC-affected eye and those of the control eye and changes in those parameters according to the clinical course of CSC over 3 months. In CSC-affected eyes, the MTF cutoff was significantly reduced (P = 0.01), and OSI was significantly increased (P = 0.03). As macular thickness decreased, OSI decreased but did not become normalized compared to the control eye, nor was it statistically significantly correlated with central macular thickness change. Retinal change affected optical quality and intraocular scatter. Therefore, when the severity of a cataract is assessed using the OQAS, retinal status should be considered when interpreting OQAS values. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Safety assessment of a new single-use small-incision injector for intraocular lens implantation.
Satanovsky, Alexandra; Ben-Eliahu, Shmuel; Apple, David J; Kleinmann, Guy
2011-07-01
To evaluate the safety of a new injector, the Raysert R-INJ-04/18, for implantation of the C-flex intraocular lens (IOL). Ophthalmology Department, Kaplan Medical Center, Rehovot, Israel. Experimental study. Sixty IOLs were subdivided into 2 equally sized groups. Group A IOLs were injected using the established R-INJ-04 injector, and those in Group B were injected with the new injector. The IOLs were injected into a Petri dish. Subsequently, all IOLs and injectors were evaluated macroscopically and microscopically and then photographed under light microscopy (LM). Two IOLs in each group were randomly chosen and sent for evaluation by scanning electron microscopy (SEM) and energy dispersive analysis of x-ray. All remaining IOLs were sent for power and modulation transfer function (MTF) analysis. All Group B IOLs were successfully injected without evident signs of scratching, cracks, or deposits on LM and SEM examination. In Group A, findings were confined to a singular incidence of a small deposit detected on the periphery of the posterior optical surface of the IOL, with corresponding findings detected on the injector nozzle. No signs of scratching, cracks, or deposits were found in the rest of the IOLs or injectors. The power and MTF analyses were within the normal range for all IOLs. The new 1.8 mm external diameter soft-tipped injector for 2.4 to 2.2 mm incisions was shown to be safe for the implantation of the C-flex 21.0 diopter IOL. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Contact lens design with slope-constrained Q-type aspheres for myopia correction
NASA Astrophysics Data System (ADS)
Peng, Wei-Jei; Cheng, Yuan-Chieh; Hsu, Wei-Yao; Yu, Zong-Ru; Ho, Cheng-Fang; Abou-El-Hossein, Khaled
2017-08-01
The design of the rigid contact lens (CL) with slope-constrained Q-type aspheres for myopia correction is presented in this paper. The spherical CL is the most common type for myopia correction, however the spherical aberration (SA) caused from the pupil dilation in dark leads to the degradation of visual acuity which cannot be corrected by spherical surface. The spherical and aspheric CLs are designed respectively based on Liou's schematic eye model, and the criterion is the modulation transfer function (MTF) at the frequency of 100 line pair per mm, which corresponds to the normal vision of one arc-minute. After optimization, the MTF of the aspheric design is superior to that of the spherical design, because the aspheric surface corrects the SA for improving the visual acuity in dark. For avoiding the scratch caused from the contact profilometer, the aspheric surface is designed to match the measurability of the interferometer. The Q-type aspheric surface is employed to constrain the root-mean-square (rms) slope of the departure from a best-fit sphere directly, because the fringe density is limited by the interferometer. The maximum sag departure from a best-fit sphere is also controlled according to the measurability of the aspheric stitching interferometer (ASI). The inflection point is removed during optimization for measurability and appearance. In this study, the aspheric CL is successfully designed with Q-type aspheres for the measurability of the interferometer. It not only corrects the myopia but also eliminates the SA for improving the visual acuity in dark based on the schematic eye model.
Julstrom, Stephen; Kozma-Spytek, Linda; Isabelle, Scott
2011-09-01
During the revision of the American National Standards Institute (ANSI) C63.19 and the development of the ANSI/Telecommunications Industry Association-1083 hearing aid compatibility standards, it became evident that additional data concerning user acceptance of interfering magnetic noises generated by wireless and cordless telephones were needed in order to determine the requirements for telecoil-coupling compatibility. Further insight was needed into the magnetic signal-to-noise (S/N) ratios required to achieve specific levels of telephone usability by hearing aid wearers. (A companion article addresses magnetic signal level requirements.) Test subjects used their own hearing aids. The magnetic signals were applied through large magnetic head-worn coils, selected for the field orientation appropriate for each hearing aid. After adjusting their aid's volume control to an acoustic speech reference, the subjects adjusted the applied magnetic signal level to find their Most Comfortable Level (MCL). Each subject then adjusted the levels of six of eight different representative interfering noises to three levels of subjective telephone usability: "usable for a brief call," "acceptable for normal use," and "excellent performance." Each subject's objective noise audibility threshold in the presence of speech was also obtained for the various noise types. The 57 test subjects covered an age range of 22 to 79 yr, with a self-reported hearing loss duration of 12 to 72 yr. All had telecoils that they used for at least some telecommunications needs. The self-reported degree of hearing loss ranged from moderate to profound. A guided intake questionnaire yielded general background information for each subject. A test control box fed by prepared speech and noise recordings from computer files enabled the subject or the tester, depending on the portion of the test, to select A-weighting-normalized noise interference levels in 1.25 dB steps relative to the selected MCL. For each subject for each tested noise type, the values for the selected S/N ratios were recorded for the three categories of subjective usability and the objective noise threshold. About half of the test subjects needed a minimum 21 dB S/N ratio for them to consider their listening experience "acceptable for normal use" of a telephone. With a 30 dB S/N ratio, about 85% of the subjects reported normal use acceptability. Significant differences were apparent in the measured S/N user requirements among the noise types, though, indicating a deficiency in an A-weighted level measurement's ability to consistently predict the subjective acceptability of the various noises. An improved weighting function having both spectral and temporal components was developed to substantially eliminate these predictive inconsistencies. The interfering noise level that subjects chose for a telephone usability rating of "excellent performance" matched closely their objectively measured noise audibility threshold. A rating of "acceptable for normal use" was typically achieved at a 4 dB higher noise level, and a rating of "usable for a brief call," at a 10.4 dB higher noise level. These results did not relate significantly to noise type or to the subject's aided noise-in-speech hearing acuity. American Academy of Audiology.
Mackersie, Carol L.; MacPhee, Imola X.; Heldt, Emily W.
2014-01-01
SHORT SUMMARY (précis) Sentence recognition by participants with and without hearing loss was measured in quiet and in babble noise while monitoring two autonomic nervous system measures: heart-rate variability and skin conductance. Heart-rate variability decreased under difficult listening conditions for participants with hearing loss, but not for participants with normal hearing. Skin conductance noise reactivity was greater for those with hearing loss, than for those with normal hearing, but did not vary with the signal-to-noise ratio. Subjective ratings of workload/stress obtained after each listening condition were similar for the two participant groups. PMID:25170782
Advanced Land Imager Assessment System
NASA Technical Reports Server (NTRS)
Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim;
2008-01-01
The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.
NASA Astrophysics Data System (ADS)
Samant, Sanjiv S.; Gopal, Arun; DiBianca, Frank A.
2003-06-01
Megavoltage x-ray imaging suffers from relatively poor contrast and spatial resolution compared to diagnostic kilovoltage x-ray imaging due to the dominant Compton scattering in the former. Recently available amorphous silicon/selenium based flat-panel imagers overcome many of the limitations of poor contrast and spatial resolution that affect conventional video based electronic portal imaging devices (EPIDs). An alternative technology is presented here: kinestatic charge detection (KCD). The KCD uses a slot photon beam, high-pressure gas (xenon, 100 atm) and a multi-ion rectangular chamber in scanning mode. An electric field is used to regulate the cation drift velocity. By matching the scanning speed with that of the cation drift, the cations remain static in the object frame of reference, allowing temporal integration of the signal. KCD imaging is characterized by reduced scatter and a high signal-to-noise ratio. Measurements and Monte Carlo simulations of modulation transfer function (MTF), noise power spectrum (NPS) and the detective quantum efficiency (DQE) of a prototype small field of view KCD detector (384 channels, 0.5 mm spacing) were carried out. Measurements yield DQE[0]=0.19 and DQE[0.5cy/mm]=0.01. KCD imaging is compared to film and commercial EPID systems using phantoms, with the KCD requiring an extremely low dose (0.1 cGy) per image. A proposed cylindrical chamber design with a higher ion-collection depth is expected to further improve image quality (DQE[0]>0.25).
NASA Astrophysics Data System (ADS)
Peng, Hao
2015-10-01
A fundamental challenge for PET block detector designs is to deploy finer crystal elements while limiting the number of readout channels. The standard Anger-logic scheme including light sharing (an 8 by 8 crystal array coupled to a 2×2 photodetector array with an optical diffuser, multiplexing ratio: 16:1) has been widely used to address such a challenge. Our work proposes a generalized model to study the impacts of two critical parameters on spatial resolution performance of a PET block detector: multiple interaction events and signal-to-noise ratio (SNR). The study consists of the following three parts: (1) studying light output profile and multiple interactions of 511 keV photons within crystal arrays of different crystal widths (from 4 mm down to 1 mm, constant height: 20 mm); (2) applying the Anger-logic positioning algorithm to investigate positioning/decoding uncertainties (i.e., "block effect") in terms of peak-to-valley ratio (PVR), with light sharing, multiple interactions and photodetector SNR taken into account; and (3) studying the dependency of spatial resolution on SNR in the context of modulation transfer function (MTF). The proposed model can be used to guide the development and evaluation of a standard Anger-logic based PET block detector including: (1) selecting/optimizing the configuration of crystal elements for a given photodetector SNR; and (2) predicting to what extent additional electronic multiplexing may be implemented to further reduce the number of readout channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Bruno, S.; Siemon, Richard, E.
2008-10-22
We are pleased to report important progress in experimentally characterizing and numerically modeling the transformation into plasma of walls subjected to pulsed megagauss magnetic fields. Understanding this is important to Magnetized Target Fusion (MTF) because an important limitation to the metal liner approach to MTF comes from the strong eddy current heating on the surface of the metal liner. This has intriguing non-linear aspects when the magnetic field is in the megagauss regime as needed for MTF, and may limit the magnetic field in an MTF implosion. Many faculty, students, and staff have contributed to this work, and, implicitly ormore » explicitly, to this report. Contributors include, in addition to the PIs, Andrey Esaulov, Stephan Fuelling, Irvin Lindemuth, Volodymyr Makhin, Ioana Paraschiv, Milena Angelova, Tom Awe, Tasha Goodrich, Arunkumar Prasadam, Andrew Oxner, Bruno Le Galloudec, Radu Presura, and Vladimir Ivanov. Highlights of the progress made during the grant include: • 12 articles published, and 44 conference and workshop presentations made, on a broad range of issues related to this project; • An ongoing experiment that uses the 1 MA, 100-ns Zebra z-pinch at UNR to apply 2 5 megagauss to a variety of metal surfaces, examining plasma formation and evolution; • Numerical simulation studies of the 1-MA Zebra, and potential Shiva Star and Atlas experiments that include realistic equations of state and radiation effects, using a variety of tables. • Collaboration with other groups doing simulations of this experiment at LANL, VNIIEF, SNL, and NumerEx leading to a successful international workshop at UNR in the spring of 2008.« less
Dura-Trave, T; Yoldi-Petri, M E; Zardoya-Santos, P
2011-09-01
To perform a developmental analysis of the anthropometric variables of a group of patients diagnosed with attention deficit hyperactivity disorder (ADHD) in order to determine the repercussions of treatment with osmotic controlled-release methylphenidate (MTF-OROS). The medical records of 187 patients with ADHD under treatment with MTF-OROS over a period of 30 months were reviewed. Data collected included weight, height and body mass index at diagnosis (baseline) and at 6, 12, 18, 24 and 30 months' follow-up. The mean age at diagnosis was 8.14 ± 1.6 years. The dose of MTF-OROS was progressively increased until 36.9 ± 12.1 mg/day (1.05 mg/kg/day) at day 30 of the follow-up. At diagnosis, 34.9% of patients had a deficient nutritional situation (subnutrition or malnutrition), which affected 50.3% of the patients at 30 months. The baseline value for weight (Z-score) progressively decreased during treatment until values that were significantly lower than the baseline value at 12 months were reached (p < 0.05); these values remained significantly lower until 30 months. The baseline value for height (Z-score) also progressively decreased during treatment until values that were significantly lower than the baseline value at 24 and 30 months were reached (p < 0.05). At the time they were diagnosed with ADHD, one out of every three patients was in a deficient nutritional situation (subnutrition or malnutrition). Continued treatment with MTF-OROS for 30 months had a negative influence on height, which could perhaps be attenuated by improving the patients' nutrition.
MFP scanner diagnostics using a self-printed target to measure the modulation transfer function
NASA Astrophysics Data System (ADS)
Wang, Weibao; Bauer, Peter; Wagner, Jerry; Allebach, Jan P.
2014-01-01
In the current market, reduction of warranty costs is an important avenue for improving profitability by manufacturers of printer products. Our goal is to develop an autonomous capability for diagnosis of printer and scanner caused defects with mid-range laser multifunction printers (MFPs), so as to reduce warranty costs. If the scanner unit of the MFP is not performing according to specification, this issue needs to be diagnosed. If there is a print quality issue, this can be diagnosed by printing a special test page that is resident in the firmware of the MFP unit, and then scanning it. However, the reliability of this process will be compromised if the scanner unit is defective. Thus, for both scanner and printer image quality issues, it is important to be able to properly evaluate the scanner performance. In this paper, we consider evaluation of the scanner performance by measuring its modulation transfer function (MTF). The MTF is a fundamental tool for assessing the performance of imaging systems. Several ways have been proposed to measure the MTF, all of which require a special target, for example a slanted-edge target. It is unacceptably expensive to ship every MFP with such a standard target, and to expect that the customer can keep track of it. To reduce this cost, in this paper, we develop new approach to this task. It is based on a self-printed slanted-edge target. Then, we propose algorithms to improve the results using a self-printed slanted-edge target. Finally, we present experimental results for MTF measurement using self-printed targets and compare them to the results obtained with standard targets.
Kanti, V; Hillmann, K; Kottner, J; Stroux, A; Canfield, D; Blume-Peytavi, U
2016-07-01
Topical minoxidil formulations have been shown to be effective in treating androgenetic alopecia (AGA) for 12 months. Efficacy and safety in both frontotemporal and vertex regions over longer application periods have not been studied so far. To evaluate the effect of 5% minoxidil topical foam (5% MTF) in the frontotemporal and vertex areas in patients with moderate AGA over 104 weeks. An 80-week, open-label extension phase was performed, following a 24-week randomized, double-blind, placebo-controlled study in men with AGA grade IIIvertex to VI. Group 1 (n = 22) received ongoing 5% MTF for 104 weeks, Group 2 (n = 23) received placebo topical foam (plaTF) until week 24, followed by 5% MTF until week 104 during the extension phase. Frontotemporal and vertex target area non-vellus hair counts (f-TAHC, v-TAHC) and cumulative hair width (f-TAHW, v-TAHW) were assessed at baseline and at weeks 24, 52, 76 and 104. In Group 1, f-TAHW and f-TAHC showed a statistically significant increase from baseline to week 52 and week 76, respectively, returning to values comparable to baseline at week 104. No significant differences were found between baseline and week 104 in v-TAHC in Group 1 as well as f-TAHC, v-TAHC, f-TAHW and v-TAHW values in Group 2. 5% MTF is effective in stabilizing hair density, hair width and scalp coverage in both frontotemporal and vertex areas over an application period of 104 weeks, while showing a good safety and tolerability profile with a low rate of irritant contact dermatitis. © 2015 European Academy of Dermatology and Venereology.
Hubbard, Joanna K; Potts, Macy A; Couch, Brian A
2017-01-01
Assessments represent an important component of undergraduate courses because they affect how students interact with course content and gauge student achievement of course objectives. To make decisions on assessment design, instructors must understand the affordances and limitations of available question formats. Here, we use a crossover experimental design to identify differences in how multiple-true-false (MTF) and free-response (FR) exam questions reveal student thinking regarding specific conceptions. We report that correct response rates correlate across the two formats but that a higher percentage of students provide correct responses for MTF questions. We find that MTF questions reveal a high prevalence of students with mixed (correct and incorrect) conceptions, while FR questions reveal a high prevalence of students with partial (correct and unclear) conceptions. These results suggest that MTF question prompts can direct students to address specific conceptions but obscure nuances in student thinking and may overestimate the frequency of particular conceptions. Conversely, FR questions provide a more authentic portrait of student thinking but may face limitations in their ability to diagnose specific, particularly incorrect, conceptions. We further discuss an intrinsic tension between question structure and diagnostic capacity and how instructors might use multiple formats or hybrid formats to overcome these obstacles. © 2017 J. K. Hubbard et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Reisner, Sari L.; Vetters, Ralph; Leclerc, M; Zaslow, Shayne; Wolfrum, Sarah; Shumer, Daniel; Mimiaga, Matthew J.
2014-01-01
Purpose Transgender youth represent a vulnerable population at risk for negative mental health outcomes including depression, anxiety, self-harm, and suicidality. Limited data exists to compare the mental health of transgender adolescents and emerging adults to cisgender youth accessing community-based clinical services; the current study aimed to fill this gap. Methods A retrospective cohort study of electronic health record (EHR) data from 180 transgender patients age 12–29 years seen between 2002–2011 at a Boston-based community health center was performed. The 106 female-to-male (FTM) and 74 male-to-female (MTF) patients were matched on gender identity, age, visit date, and race/ethnicity to cisgender controls. Mental health outcomes were extracted and analyzed using conditional logistic regression models. Logistic regression models compared FTM to MTF youth on mental health outcomes. Results The sample (n=360) had a mean age of 19.6 (SD=3.0); 43% white, 33% racial/ethnic minority, and 24% race/ethnicity unknown. Compared to cisgender matched controls, transgender youth had a two- to three-fold increased risk of depression, anxiety disorder, suicidal ideation, suicide attempt, self-harm without lethal intent, and both inpatient and outpatient mental health treatment (all p<0.05). No statistically significant differences in mental health outcomes were observed comparing FTM and MTF patients, adjusting for age, race/ethnicity, and hormone use. Conclusions Transgender youth were found to have a disparity in negative mental health outcomes compared to cisgender youth, with equally high burden in FTM and MTF patients. Identifying gender identity differences in clinical settings and providing appropriate services and supports are important steps in addressing this disparity. PMID:25577670
Reisner, Sari L; Vetters, Ralph; Leclerc, M; Zaslow, Shayne; Wolfrum, Sarah; Shumer, Daniel; Mimiaga, Matthew J
2015-03-01
Transgender youth represent a vulnerable population at risk for negative mental health outcomes including depression, anxiety, self-harm, and suicidality. Limited data exist to compare the mental health of transgender adolescents and emerging adults to cisgender youth accessing community-based clinical services; the present study aimed to fill this gap. A retrospective cohort study of electronic health record data from 180 transgender patients aged 12-29 years seen between 2002 and 2011 at a Boston-based community health center was performed. The 106 female-to-male (FTM) and 74 male-to-female (MTF) patients were matched on gender identity, age, visit date, and race/ethnicity to cisgender controls. Mental health outcomes were extracted and analyzed using conditional logistic regression models. Logistic regression models compared FTM with MTF youth on mental health outcomes. The sample (N = 360) had a mean age of 19.6 years (standard deviation, 3.0); 43% white, 33% racial/ethnic minority, and 24% race/ethnicity unknown. Compared with cisgender matched controls, transgender youth had a twofold to threefold increased risk of depression, anxiety disorder, suicidal ideation, suicide attempt, self-harm without lethal intent, and both inpatient and outpatient mental health treatment (all p < .05). No statistically significant differences in mental health outcomes were observed comparing FTM and MTF patients, adjusting for age, race/ethnicity, and hormone use. Transgender youth were found to have a disparity in negative mental health outcomes compared with cisgender youth, with equally high burden in FTM and MTF patients. Identifying gender identity differences in clinical settings and providing appropriate services and supports are important steps in addressing this disparity. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Rodríguez-Ruiz, A; Castillo, M; Garayoa, J; Chevalier, M
2016-06-01
The aim of this work was to research and evaluate the performance of three different digital breast tomosynthesis (DBT) systems in the clinical environment (Siemens Mammomat Inspiration, Hologic Selenia Dimensions, and Fujifilm Amulet Innovality). The characterization included the study of the detector, the automatic exposure control, and the resolution of DBT projections and reconstructed planes. The modulation transfer function (MTF) of the DBT projections was measured with a 1mm thick steel edge, showing a strong anisotropy (30-40% lower MTF0.5 frequencies in the tube travel direction). The in-plane MTF0.5, measured with a 25μm tungsten wire, ranges from 1.3 to 1.8lp/mm in the tube-travel direction and between 2.4 and 3.7lp/mm in the chest wall-nipple. In the latter direction, the MTF peak shift is more emphasized for large angular range systems (2.0 versus 1.0lp/mm). In-depth resolution of the planes, via the full width at half maximum (FWHM) from the point spread function of a 25μm tungsten wire, is not only influenced by angular range and yields 1.3-4.6mm among systems. The artifact spread function from 1mm diameter tungsten beads depends mainly on angular range, yielding two tendencies whether large (FWHM is 4.5mm) or small (FWHM is 10mm) angular range is used. DBT delivers per scan a mean glandular dose between 1.4 and 2.7mGy for a 45mm thick polymethyl methacrylate (PMMA) block. In conclusion, we have identified and analysed specific metrics that can be used for quality assurance of DBT systems. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Berggren, Karl; Cederström, Björn; Lundqvist, Mats; Fredenberg, Erik
2018-02-01
Digital breast tomosynthesis (DBT) is an emerging tool for breast-cancer screening and diagnostics. The purpose of this study is to present a second-generation photon-counting slit-scanning DBT system and compare it to the first-generation system in terms of geometry and image quality. The study presents the first image-quality measurements on the second-generation system. The geometry of the new system is based on a combined rotational and linear motion, in contrast to a purely rotational scan motion in the first generation. In addition, the calibration routines have been updated. Image quality was measured in the center of the image field in terms of in-slice modulation transfer function (MTF), artifact spread function (ASF), and in-slice detective quantum efficiency (DQE). Images were acquired using a W/Al 29 kVp spectrum at 13 mAs with 2 mm Al additional filtration and reconstructed using simple back-projection. The in-slice 50% MTF was improved in the chest-mammilla direction, going from 3.2 to 3.5 lp/mm, and the zero-frequency DQE increased from 0.71 to 0.77. The MTF and ASF were otherwise found to be on par for the two systems. The new system has reduced in-slice variation of the tomographic angle. The new geometry is less curved, which reduces in-slice tomographic-angle variation, and increases the maximum compression height, making the system accessible for a larger population. The improvements in MTF and DQE were attributed to the updated calibration procedures. We conclude that the second-generation system maintains the key features of the photon-counting system while maintaining or improving image quality and improving the maximum compression height. © 2017 American Association of Physicists in Medicine.
Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Åslund, Magnus
2012-01-01
Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption contrast. Talbot interferometry with a plane wave increased detectability for 0.1-mm tumor and glandular structures by a factor of 3–4 at equal dose, whereas absorption contrast was the preferred method for structures larger than ∼0.5 mm. Microcalcifications are small, but differ from soft tissue in atomic number more than density, which is favored by absorption contrast, and Talbot interferometry was barely beneficial at all within the resolution limit of the system. Further, Talbot interferometry favored detection of “sharp” as opposed to “smooth” structures, and discrimination tasks by about 50% compared to detection tasks. The technique was relatively insensitive to spectrum bandwidth, whereas the projected source size was more important. If equal photon economy was added as a restriction, phase-contrast efficiency was reduced so that the benefit for detection tasks almost vanished compared to absorption contrast, but discrimination tasks were still improved close to a factor of 2 at the resolution limit. Conclusions: Cascaded-systems analysis enables comprehensive and intuitive evaluation of phase-contrast efficiency in relation to absorption contrast under requirements of equal dose, equal geometry, and equal photon economy. The benefit of Talbot interferometry was highly dependent on task, in particular detection versus discrimination tasks, and target size, shape, and material. Requiring equal photon economy weakened the benefit of Talbot interferometry in mammography. PMID:22957600
[The discrimination of mono-syllable words in noise in listeners with normal hearing].
Yoshida, M; Sagara, T; Nagano, M; Korenaga, K; Makishima, K
1992-02-01
The discrimination of mono-syllable words (67S word-list) pronounced by a male and a female speaker was investigated in noise in 39 normal hearing subjects. The subjects listened to the test words at a constant level of 62 dB together with white or weighted noise in four S/N conditions. By processing the data with logit transformation, S/N-discrimination curves were presumed for each combination of a speech material and a noise. Regardless of the type of noise, the discrimination scores for the female voice started to decrease gradually at a S/N ratio of +10 dB, and reached 10 to 20% at-10 dB. For the male voice in white noise, the discrimination curve was similar to those for the female voice. On the contrary, the discrimination score for the male voice in weighted noise declined rapidly from a S/N ratio of +5 dB, and went below 10% at -5 dB. The discrimination curves seem to be shaped by the interrelations between the spectrum of the speech material and that of the noise.
Hua, Håkan; Emilsson, Magnus; Kähäri, Kim; Widén, Stephen; Möller, Claes; Lyxell, Björn
2014-10-01
Health care professionals frequently meet employees with hearing impairment (HI) who experience difficulties at work. There are indications that the majority of these difficulties might be related to the presence of background noise. Moreover, research has also shown that high-level noise has a more detrimental effect on cognitive performance and self-rated disturbance in individuals with HI than low-level noise. The purpose of this study was to examine the impact of different types of background noise on cognitive performance and perceived disturbance (PD) in employees with aided HI and normal hearing. A mixed factorial design was conducted to examine the effect of noise in four experimental conditions. A total of 40 participants (21 men and 19 women) were recruited to take part in the study. The study sample consisted of employees with HI (n = 20) and normal hearing (n = 20). The group with HI had a mild-moderate sensorineural HI, and they were all frequent hearing-aid users. The current study was conducted by using four general work-related tasks (mental arithmetic, orthographic decoding, phonological decoding, and serial recall) in four different background conditions: (1) quiet, (2) office noise at 56 dBA, (3) daycare noise at 73.5 dBA, and (4) traffic noise at 72.5 dBA. Reaction time and the proportion of correct answers in the working tasks were used as outcome measures of cognitive performance. The Borg CR-10 scale was used to assess PD. Data collection occurred on two separate sessions, completed within 4 wk of each other. All tasks and experimental conditions were used in a counterbalanced order. Two-way analysis of variance with repeated measures was performed to analyze the results. To examine interaction effects, pairwise t-tests were used. Pearson correlation coefficients between reaction time and proportion of correct answers, and cognitive performance and PD were also calculated to examine the possible correlation between the different variables. No significant between-group or within-group differences in cognitive performance were observed across the four background conditions. Ratings of PD showed that both groups rated PD according to noise level, where higher noise level generated a higher PD. The present findings also demonstrated that the group with HI was more disturbed by higher than lower levels of noise (i.e., traffic and daycare setting compared with office setting). This pattern was observed consistently throughout four working tasks where the group with HI reported a significantly greater PD in the daycare and traffic settings compared with office noise. The present results demonstrate that background noise does not impair cognitive performance in nonauditory tasks in employees with HI and normal hearing, but that PD is affected to a greater extent in employees with HI during higher levels of background noise exposure. In addition, this study also supports previous studies regarding the detrimental effects that high-level noise has on employees with HI. Therefore, we emphasize the need of both self-rated and cognitive measurements in hearing care and occupational health services for both employees with normal hearing and HI. American Academy of Audiology.
Conception of a cheap infrared camera using a Fresnel lens
NASA Astrophysics Data System (ADS)
Grulois, Tatiana; Druart, Guillaume; Guérineau, Nicolas; Crastes, Arnaud; Sauer, Hervé; Chavel, Pierre
2014-09-01
Today huge efforts are made in the research and industrial areas to design compact and cheap uncooled infrared optical systems for low-cost imagery applications. Indeed, infrared cameras are currently too expensive to be widespread. If we manage to cut their cost, we expect to open new types of markets. In this paper, we will present the cheap broadband microimager we have designed. It operates in the long-wavelength infrared range and uses only one silicon lens at a minimal cost for the manufacturing process. Our concept is based on the use of a thin optics. Therefore inexpensive unconventional materials can be used because some absorption can be tolerated. Our imager uses a thin Fresnel lens. Up to now, Fresnel lenses have not been used for broadband imagery applications because of their disastrous chromatic properties. However, we show that working in a high diffraction order can significantly reduce chromatism. A prototype has been made and the performance of our camera will be discussed. Its characterization has been carried out in terms of modulation transfer function (MTF) and noise equivalent temperature difference (NETD). Finally, experimental images will be presented.
Overview of CMOS process and design options for image sensor dedicated to space applications
NASA Astrophysics Data System (ADS)
Martin-Gonthier, P.; Magnan, P.; Corbiere, F.
2005-10-01
With the growth of huge volume markets (mobile phones, digital cameras...) CMOS technologies for image sensor improve significantly. New process flows appear in order to optimize some parameters such as quantum efficiency, dark current, and conversion gain. Space applications can of course benefit from these improvements. To illustrate this evolution, this paper reports results from three technologies that have been evaluated with test vehicles composed of several sub arrays designed with some space applications as target. These three technologies are CMOS standard, improved and sensor optimized process in 0.35μm generation. Measurements are focussed on quantum efficiency, dark current, conversion gain and noise. Other measurements such as Modulation Transfer Function (MTF) and crosstalk are depicted in [1]. A comparison between results has been done and three categories of CMOS process for image sensors have been listed. Radiation tolerance has been also studied for the CMOS improved process in the way of hardening the imager by design. Results at 4, 15, 25 and 50 krad prove a good ionizing dose radiation tolerance applying specific techniques.
Image degradation characteristics and restoration based on regularization for diffractive imaging
NASA Astrophysics Data System (ADS)
Zhi, Xiyang; Jiang, Shikai; Zhang, Wei; Wang, Dawei; Li, Yun
2017-11-01
The diffractive membrane optical imaging system is an important development trend of ultra large aperture and lightweight space camera. However, related investigations on physics-based diffractive imaging degradation characteristics and corresponding image restoration methods are less studied. In this paper, the model of image quality degradation for the diffraction imaging system is first deduced mathematically based on diffraction theory and then the degradation characteristics are analyzed. On this basis, a novel regularization model of image restoration that contains multiple prior constraints is established. After that, the solving approach of the equation with the multi-norm coexistence and multi-regularization parameters (prior's parameters) is presented. Subsequently, the space-variant PSF image restoration method for large aperture diffractive imaging system is proposed combined with block idea of isoplanatic region. Experimentally, the proposed algorithm demonstrates its capacity to achieve multi-objective improvement including MTF enhancing, dispersion correcting, noise and artifact suppressing as well as image's detail preserving, and produce satisfactory visual quality. This can provide scientific basis for applications and possesses potential application prospects on future space applications of diffractive membrane imaging technology.
Marshall, N W
2001-06-01
This paper applies a published version of signal detection theory to x-ray image intensifier fluoroscopy data and compares the results with more conventional subjective image quality measures. An eight-bit digital framestore was used to acquire temporally contiguous frames of fluoroscopy data from which the modulation transfer function (MTF(u)) and noise power spectrum were established. These parameters were then combined to give detective quantum efficiency (DQE(u)) and used in conjunction with signal detection theory to calculate contrast-detail performance. DQE(u) was found to lie between 0.1 and 0.5 for a range of fluoroscopy systems. Two separate image quality experiments were then performed in order to assess the correspondence between the objective and subjective methods. First, image quality for a given fluoroscopy system was studied as a function of doserate using objective parameters and a standard subjective contrast-detail method. Following this, the two approaches were used to assess three different fluoroscopy units. Agreement between objective and subjective methods was good; doserate changes were modelled correctly while both methods ranked the three systems consistently.
Investigation of several aspects of LANDSAT-4 data quality
NASA Technical Reports Server (NTRS)
Wrigley, R. C. (Principal Investigator)
1983-01-01
No insurmountable problems in change detection analysis were found when portions of scenes collected simultaneously by LANDSAT 4 MSS and either LANDSAT 2 or 3. The cause of the periodic noise in LANDSAT 4 MSS images which had a RMS value of approximately 2DN should be corrected in the LANDSAT D instrument before its launch. Analysis of the P-tape of the Arkansas scene shows bands within the same focal plane very well registered except for the thermal band which was misregistered by approximately three 28.5 meter pixels in both directions. It is possible to derive tight confidence bounds for the registration errors. Preliminary analyses of the Sacramento and Arkansas scenes reveals a very high degree of consistency with earlier results for bands 3 vs 1, 3 vs 4, and 3 vs 5. Results are presented in table form. It is suggested that attention be given to the standard deviations of registrations errors to judge whether or not they will be within specification once any known mean registration errors are corrected. Techniques used for MTF analysis of a Washington scene produced noisy results.
Andreev Reflection in an s-Type Superconductor Proximized 3D Topological Insulator.
Tikhonov, E S; Shovkun, D V; Snelder, M; Stehno, M P; Huang, Y; Golden, M S; Golubov, A A; Brinkman, A; Khrapai, V S
2016-09-30
We investigate transport and shot noise in lateral normal-metal-3D topological-insulator-superconductor contacts, where the 3D topological insulator (TI) is based on Bi. In the normal state, the devices are in the elastic diffusive transport regime, as demonstrated by a nearly universal value of the shot noise Fano factor F_{N}≈1/3 in magnetic field and in a reference normal-metal contact. In the absence of magnetic field, we identify the Andreev reflection (AR) regime, which gives rise to the effective charge doubling in shot noise measurements. Surprisingly, the Fano factor F_{AR}≈0.22±0.02 is considerably reduced in the AR regime compared to F_{N}, in contrast to previous AR experiments in normal metals and semiconductors. We suggest that this effect is related to a finite thermal conduction of the proximized, superconducting TI owing to a residual density of states at low energies.
Wu, Dan; Chen, Jian-yong; Wang, Shuo; Zhang, Man-hua; Chen, Jing; Li, Yu-ling; Zhang, Hua
2013-03-01
To evaluate the relationship between the Mandarin acceptable noise level (ANL) and the personality trait for normal-hearing adults. Eighty-five Mandarin speakers, aged from 21 to 27, participated in this study. ANL materials and the Eysenck Personality Questionnaire (EPQ) questionnaire were used to test the acceptable noise level and the personality trait for normal-hearing subjects. SPSS 17.0 was used to analyze the results. ANL were (7.8 ± 2.9) dB in normal hearing participants. The P and N scores in EPQ were significantly correlated with ANL (r = 0.284 and 0.318, P < 0.01). No significant correlations were found between ANL and E and L scores (r = -0.036 and -.167, P > 0.05). Listeners with higher ANL were more likely to be eccentric, hostile, aggressive, and instabe, no ANL differences were found in listeners who were different in introvert-extravert or lying.
1981-03-01
m u z r- Z > H < m ff -< C 2 C) 2 3 r- c is o 1 L_ • o > • en • • • Ŕ O > 00 o 30 n 30 T r- 1> - n o > IDE N T S E LIN E D IT...responsibilities to the Defense Intelligence Agency ( DIA ), the Services, and the unified and specified commands for carrying out that guidance. 3 - JCS...Testing 1-2 1.4 JINTACCS Message Text Eorinats (MTF) and TADIL Messages 1-2 1.4.1 JINTACCS Message Text Formats (MTF) 1- 3 1.4.2 Developmental TADIL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madanipour, Khosro; Tavassoly, Mohammad T
2009-02-01
We show theoretically and verify experimentally that the modulation transfer function (MTF) of a printing system can be determined by measuring the autocorrelation of a printed Ronchi grating. In practice, two similar Ronchi gratings are printed on two transparencies and the transparencies are superimposed with parallel grating lines. Then, the gratings are uniformly illuminated and the transmitted light from a large section is measured versus the displacement of one grating with respect to the other in a grating pitch interval. This measurement provides the required autocorrelation function for determination of the MTF.
Effect of aberrations in human eye on contrast sensitivity function
NASA Astrophysics Data System (ADS)
Quan, Wei; Wang, Feng-lin; Wang, Zhao-qi
2011-06-01
The quantitative analysis of the effect of aberrations in human eye on vision has important clinical value in the correction of aberrations. The wave-front aberrations of human eyes were measured with the Hartmann-Shack wave-front sensor and modulation transfer function (MTF) was computed from the wave-front aberrations. Contrast sensitivity function (CSF) was obtained from MTF and the retinal aerial image modulation (AIM). It is shown that the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations deteriorate contrast sensitivity function. When the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations are corrected high contrast sensitivity function can be obtained.
NASA Astrophysics Data System (ADS)
Intrator, T.; Zhang, S. Y.; Degnan, J. H.; Furno, I.; Grabowski, C.; Hsu, S. C.; Ruden, E. L.; Sanchez, P. G.; Taccetti, J. M.; Tuszewski, M.; Waganaar, W. J.; Wurden, G. A.
2004-05-01
Magnetized target fusion (MTF) is a potentially low cost path to fusion, intermediate in plasma regime between magnetic and inertial fusion energy. It requires compression of a magnetized target plasma and consequent heating to fusion relevant conditions inside a converging flux conserver. To demonstrate the physics basis for MTF, a field reversed configuration (FRC) target plasma has been chosen that will ultimately be compressed within an imploding metal liner. The required FRC will need large density, and this regime is being explored by the FRX-L (FRC-Liner) experiment. All theta pinch formed FRCs have some shock heating during formation, but FRX-L depends further on large ohmic heating from magnetic flux annihilation to heat the high density (2-5×1022m-3), plasma to a temperature of Te+Ti≈500 eV. At the field null, anomalous resistivity is typically invoked to characterize the resistive like flux dissipation process. The first resistivity estimate for a high density collisional FRC is shown here. The flux dissipation process is both a key issue for MTF and an important underlying physics question.
Lower bound for LCD image quality
NASA Astrophysics Data System (ADS)
Olson, William P.; Balram, Nikhil
1996-03-01
The paper presents an objective lower bound for the discrimination of patterns and fine detail in images on a monochrome LCD. In applications such as medical imaging and military avionics the information of interest is often at the highest frequencies in the image. Since LCDs are sampled data systems, their output modulation is dependent on the phase between the input signal and the sampling points. This phase dependence becomes particularly significant at high spatial frequencies. In order to use an LCD for applications such as those mentioned above it is essential to have a lower (worst case) bound on the performance of the display. We address this problem by providing a mathematical model for the worst case output modulation of an LCD in response to a sine wave input. This function can be interpreted as a worst case modulation transfer function (MTF). The intersection of the worst case MTF with the contrast threshold function (CTF) of the human visual system defines the highest spatial frequency that will always be detectable. In addition to providing the worst case limiting resolution, this MTF is combined with the CTF to produce objective worst case image quality values using the modulation transfer function area (MTFA) metric.
Structural Connectivity Networks of Transgender People
Hahn, Andreas; Kranz, Georg S.; Küblböck, Martin; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.; Lanzenberger, Rupert
2015-01-01
Although previous investigations of transsexual people have focused on regional brain alterations, evaluations on a network level, especially those structural in nature, are largely missing. Therefore, we investigated the structural connectome of 23 female-to-male (FtM) and 21 male-to-female (MtF) transgender patients before hormone therapy as compared with 25 female and 25 male healthy controls. Graph theoretical analysis of whole-brain probabilistic tractography networks (adjusted for differences in intracranial volume) showed decreased hemispheric connectivity ratios of subcortical/limbic areas for both transgender groups. Subsequent analysis revealed that this finding was driven by increased interhemispheric lobar connectivity weights (LCWs) in MtF transsexuals and decreased intrahemispheric LCWs in FtM patients. This was further reflected on a regional level, where the MtF group showed mostly increased local efficiencies and FtM patients decreased values. Importantly, these parameters separated each patient group from the remaining subjects for the majority of significant findings. This work complements previously established regional alterations with important findings of structural connectivity. Specifically, our data suggest that network parameters may reflect unique characteristics of transgender patients, whereas local physiological aspects have been shown to represent the transition from the biological sex to the actual gender identity. PMID:25217469
Andrasik, Michele Peake; Yoon, Ro; Mooney, Jessica; Broder, Gail; Bolton, Marcus; Votto, Teress; Davis-Vogel, Annet
2014-06-01
Observed seroincidence and prevalence rates in male-to-female (MTF) transgender individuals highlight the need for effective targeted HIV prevention strategies for this community. In order to develop an effective vaccine that can be used by transgender women, researchers must understand and address existing structural issues that present barriers to this group's participation in HIV vaccine clinical trials. Overcoming barriers to participation is important for ensuring HIV vaccine acceptability and efficacy for the MTF transgender community. To explore barriers and facilitators to MTF transgender participation in preventive HIV vaccine clinical trials, the HIV Vaccine Trials Network conducted focus groups among transgender women in four urban areas (Atlanta, Boston, Philadelphia, and San Francisco). Barriers and facilitators to engagement of transgender women in preventive HIV vaccine clinical trials led to the following recommendations: (a) transgender cultural competency training, (b) creating trans-friendly environments, (c) true partnerships with local trans-friendly organizations and health care providers, (d) protocols that focus on transgender specific issues, and (e) data collection and tracking of transgender individuals. These results have implications for the conduct of HIV vaccine trials, as well as engagement of transgender women in research programs in general.
A Review of the Status of Brain Structure Research in Transsexualism.
Guillamon, Antonio; Junque, Carme; Gómez-Gil, Esther
2016-10-01
The present review focuses on the brain structure of male-to-female (MtF) and female-to-male (FtM) homosexual transsexuals before and after cross-sex hormone treatment as shown by in vivo neuroimaging techniques. Cortical thickness and diffusion tensor imaging studies suggest that the brain of MtFs presents complex mixtures of masculine, feminine, and demasculinized regions, while FtMs show feminine, masculine, and defeminized regions. Consequently, the specific brain phenotypes proposed for MtFs and FtMs differ from those of both heterosexual males and females. These phenotypes have theoretical implications for brain intersexuality, asymmetry, and body perception in transsexuals as well as for Blanchard's hypothesis on sexual orientation in homosexual MtFs. Falling within the aegis of the neurohormonal theory of sex differences, we hypothesize that cortical differences between homosexual MtFs and FtMs and male and female controls are due to differently timed cortical thinning in different regions for each group. Cross-sex hormone studies have reported marked effects of the treatment on MtF and FtM brains. Their results are used to discuss the early postmortem histological studies of the MtF brain.
Transgender Surgery in Denmark From 1994 to 2015: 20-Year Follow-Up Study.
Aydin, Dogu; Buk, Liv Johanne; Partoft, Søren; Bonde, Christian; Thomsen, Michael Vestergaard; Tos, Tina
2016-04-01
Gender dysphoria is a mismatch between a person's biological sex and gender identity. The best treatment is believed to be hormonal therapy and gender-confirming surgery that will transition the individual toward the desired gender. Treatment in Denmark is covered by public health care, and gender-confirming surgery in Denmark is centralized at a single-center with few specialized plastic surgeons conducting top surgery (mastectomy or breast augmentation) and bottom surgery (vaginoplasty or phalloplasty and metoidioplasty). To report the first nationwide single-center review on transsexual patients in Denmark undergoing gender-confirming surgery performed by a single surgical team and to assess whether age at time of gender-confirming surgery decreased during a 20-year period. Electronic patient databases were used to identify patients diagnosed with gender identity disorders from January 1994 through March 2015. Patients were excluded from the study if they were pseudohermaphrodites or if their gender was not reported. Gender distribution, age trends, and surgeries performed for Danish patients who underwent gender-confirming surgery. One hundred fifty-eight patients referred for gender-confirming surgery were included. Fifty-five cases (35%) were male-to-female (MtF) and 103 (65%) were female-to-male (FtM). In total, 126 gender-confirming surgeries were performed. For FtM cases, top surgery (mastectomy) was conducted in 62 patients and bottom surgery (phalloplasty and metoidioplasty) was conducted in 17 patients. For MtF cases, 45 underwent bottom surgery (vaginoplasty), 2 of whom received breast augmentation. The FtM:MtF ratio of the referred patients was 1.9:1. The median age at the time of surgery decreased from 40 to 27 years during the 20-year period. Gender-confirming surgery was performed on 65 FtM and 40 MtF cases at our hospital, and 21 transsexuals underwent surgery abroad. Mastectomy was performed in 62 FtM and bottom surgery in 17 FtM cases. Vaginoplasty was performed in 45 MtF and breast augmentation in 2 MtF cases. There was a significant decrease in age at the time of gender-confirming surgery during the course of the study period. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bencomo, Jose Antonio Fagundez
The main goal of this study was to relate physical changes in image quality measured by Modulation Transfer Function (MTF) to diagnostic accuracy. One Hundred and Fifty Kodak Min-R screen/film combination conventional craniocaudal mammograms obtained with the Pfizer Microfocus Mammographic system were selected from the files of the Department of Radiology, at M.D. Anderson Hospital and Tumor Institute. The mammograms included 88 cases with a variety of benign diagnosis and 62 cases with a variety of malignant biopsy diagnosis. The average age of the patient population was 55 years old. 70 cases presented calcifications with 30 cases having calcifications smaller than 0.5mm. 46 cases presented irregular bordered masses larger than 1 cm. 30 cases presented smooth bordered masses with 20 larger than 1 cm. Four separated copies of the original images were made each having a different change in the MTF using a defocusing technique whereby copies of the original were obtained by light exposure through different thicknesses (spacing) of transparent film base. The mammograms were randomized, and evaluated by three experienced mammographers for the degree of visibility of various anatomical breast structures and pathological lesions (masses and calicifications), subjective image quality, and mammographic interpretation. 3,000 separate evaluations were anayzed by several statistical techniques including Receiver Operating Characteristic curve analysis, McNemar test for differences between proportions and the Landis et al. method of agreement weighted kappa for ordinal categorical data. Results from the statistical analysis show: (1) There were no statistical significant differences in the diagnostic accuracy of the observers when diagnosing from mammograms with the same MTF. (2) There were no statistically significant differences in diagnostic accuracy for each observer when diagnosing from mammograms with the different MTF's used in the study. (3) There statistical significant differences in detail visibility between the copies and the originals. Detail visibility was better in the originals. (4) Feature interpretations were not significantly different between the originals and the copies. (5) Perception of image quality did not affect image interpretation. Continuation and improvement of this research ca be accomplished by: using a case population more sensitive to MTF changes, i.e., asymptomatic women with minimum breast cancer, more observers (including less experienced radiologists and experienced technologists) must collaborate in the study, and using a minimum of 200 benign and 200 malignant cases.
Potgieter, Jenni-Marí; Swanepoel, De Wet; Myburgh, Hermanus Carel; Hopper, Thomas Christopher; Smits, Cas
2015-07-01
The objective of this study was to develop and validate a smartphone-based digits-in-noise hearing test for South African English. Single digits (0-9) were recorded and spoken by a first language English female speaker. Level corrections were applied to create a set of homogeneous digits with steep speech recognition functions. A smartphone application was created to utilize 120 digit-triplets in noise as test material. An adaptive test procedure determined the speech reception threshold (SRT). Experiments were performed to determine headphones effects on the SRT and to establish normative data. Participants consisted of 40 normal-hearing subjects with thresholds ≤15 dB across the frequency spectrum (250-8000 Hz) and 186 subjects with normal-hearing in both ears, or normal-hearing in the better ear. The results show steep speech recognition functions with a slope of 20%/dB for digit-triplets presented in noise using the smartphone application. The results of five headphone types indicate that the smartphone-based hearing test is reliable and can be conducted using standard Android smartphone headphones or clinical headphones. A digits-in-noise hearing test was developed and validated for South Africa. The mean SRT and speech recognition functions correspond to previous developed telephone-based digits-in-noise tests.
Zhu, Shufeng; Wong, Lena L N; Wang, Bin; Chen, Fei
2017-07-12
The aim of the present study was to evaluate the influence of lexical tone contour and age on sentence perception in quiet and in noise conditions in Mandarin-speaking children ages 7 to 11 years with normal hearing. Test materials were synthesized Mandarin sentences, each word with a manipulated lexical contour, that is, normal contour, flat contour, or a tone contour randomly selected from the four Mandarin lexical tone contours. A convenience sample of 75 Mandarin-speaking participants with normal hearing, ages 7, 9, and 11 years (25 participants in each age group), was selected. Participants were asked to repeat the synthesized speech in quiet and in speech spectrum-shaped noise at 0 dB signal-to-noise ratio. In quiet, sentence recognition by the 11-year-old children was similar to that of adults, and misrepresented lexical tone contours did not have a detrimental effect. However, the performance of children ages 9 and 7 years was significantly poorer. The performance of all three age groups, especially the younger children, declined significantly in noise. The present research suggests that lexical tone contour plays an important role in Mandarin sentence recognition, and misrepresented tone contours result in greater difficulty in sentence recognition in younger children. These results imply that maturation and/or language use experience play a role in the processing of tone contours for Mandarin speech understanding, particularly in noise.
Chen, Liwei; Han, Mingkun; Lu, Yan; Chen, Daishi; Sun, Xuejun; Yang, Shiming; Sun, Wei; Yu, Ning; Zhai, Suoqiang
2017-10-01
This study aimed to explore the molecular mechanism of the protective effects of hydrogen-saturated saline on NIHL. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections 3 d before and 1 h before noise exposure. ABR were tested to examine cochlear physiology changes. The changes of 8-hydroxy-desoxyguanosine (8-HOdG), interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), intercellular cell adhesion molecule-1 (ICAM-1) and high mobility group box-1 protein (HMGB1) in the cochlea were also examined. The results showed that pre-treatment with hydrogen-saturated saline could significantly attenuate noise-induced hearing loss. The concentration of 8-HOdG was also significantly decreased in the hydrogen-saturated saline group compared with the normal saline group. After noise exposure, the concentrations of IL-1, IL-6, TNF-α, and ICAM-1 in the cochlea of guinea pigs in the hydrogen-saturated saline group were dramatically reduced compared to those in the normal saline group. The concentrations of HMGB-1 and IL-10 in the hydrogen-saturated saline group were significantly higher than in those in the normal saline group immediately and at 7 d after noise exposure. This study revealed for the first time the protective effects of hydrogen-saturated saline on noise-induced hearing loss (NIHL) are related to both the anti-oxidative activity and anti-inflammatory activity.
Deng, Mingge; Grinberg, Leopold; Caswell, Bruce; Karniadakis, George Em
2015-06-28
We investigate the dynamics of a single inextensible elastic filament subject to anisotropic friction in a viscous stagnation-point flow, by employing both a continuum model represented by Langevin type stochastic partial differential equations (SPDEs) and a dissipative particle dynamics (DPD) method. Unlike previous works, the filament is free to rotate and the tension along the filament is determined by the local inextensible constraint. The kinematics of the filament is recorded and studied with normal modes analysis. The results show that the filament displays an instability induced by negative tension, which is analogous to Euler buckling of a beam. Symmetry breaking of normal modes dynamics and stretch-coil transitions are observed above the threshold of the buckling instability point. Furthermore, both temporal and spatial noise are amplified resulting from the interaction of thermal fluctuations and nonlinear filament dynamics. Specifically, the spatial noise is amplified with even normal modes being excited due to symmetry breaking, while the temporal noise is amplified with increasing time correlation length and variance.